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 Image and video classifications, are important problems in 

multimedia content understand that requires bridging the gap between the 

target semantic categories, or classes, and the low-level visual descriptors 

that can be automatically obtained. At the same time, they are valuable 

tools towards other applications like object detection and recognition, 

visual content description, semantic metadata generation, indexing and 

retrieval. 

This work aims to segment the video into a number of shots using 

three different types of algorithms, classify the video frames data into 

static and dynamic blocks depending on the difference between the 

blocks of successive frames, extract two types of features from the static 

and dynamic blocks of the video shots, the adopted features are:  

1. The statistical features (mean, standard deviation, mean absolute 

deviation, skewness).  

2. The textural features (energy of gradient, contrast, modification 

fractal dimension H). 

 The discrimination power for the extracted features was determined 

by using each features alone, or combinations of features (up to 5. 

features). 

 The test results indicated that some combinations of these features 

are useful to successfully recognize the video shots from each other 

especially when the extracted video sequences from any shot consist of 

video frames more than (٢٥) frame the results also showed that the 

features extracted from the static blocks (except the H) gave higher 



discrimination power than the features extracted form the dynamic 

blocks.      

Finally the K-means clustering algorithm was used to categorize the 

video shots into a number of classes. The test results indicate that this 

algorithm shows good stability in classifying the video shots, because 

most of the extracted sequences from each shot were classified as 

members to the same class.    
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Appendix A  

AVI File Structure 

 

A.1 AVI Main Header  

In this section the elements of the header section of AVI files are given. 

The AVI file begins with the main header. This header is identified by the 

string 'avih' which is consists of (four-character code). The header contains 

global information for the entire AVI file, such as the number of streams 

within the file and the width and height of the AVI sequence. The items of the 

AVI main header are listed in the table (A-1) [Msdn98]:  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct { 

 DWORD dwMicroSecPerFrame; 

 DWORD dwMaxBytesPerSec; 

 DWORD dwReserved1; 

 DWORD dwFlags; 

 DWORD dwTotalFrames; 

 DWORD dwInitialFrames; 

 DWORD dwStreams; 

 DWORD dwSuggestedBufferSize; 

 DWORD dwWidth; 

 DWORD dwHeight; 

 DWORD dwReserved[4]; 

} MainAVIHeader; 



 
 

dwMicroSecPerFrame 
Specifies the time interval (in microseconds) between frames. 

This value indicates the overall timing of the file. 

dwMaxBytesPerSec 

Specifies the approximate maximum data rate of the file. This 

value indicates the number of bytes per second the system must 

handle to present an AVI sequence, as specified by the other 

parameters contained in the main header and stream header 

chunks. 

dwReserved1 Reserved. Set this to zero. 

dwFlags 

Contains the flags. The following flags may exists: 

AVIF_HASINDEX: Indicates the AVI file has an 'idx1' chunk 

containing an index at the end of the file. For good performance, 

all AVI files should contain an index. 

AVIF_MUSTUSEINDEX: Indicates that the index, rather than 

the physical ordering of the chunks in the file, should be used to 

determine the order of presentation of the data. For example, you 

could use this to create a list of frames for editing. 

AVIF_ISINTERLEAVED: Indicates the AVI file is interleaved. 

AVIF_WASCAPTUREFILE: Indicates the AVI file is a specially 

allocated file used for capturing real-time video. Applications 

should warn the user before writing over a file with this flag set 

because the user probably defragmented this file. 

AVIF_COPYRIGHTED: Indicates the AVI file contains 

copyrighted data and software. When this flag is used, software 

should not permit the data to be duplicated. 

dwTotalFrames Specifies the total number of frames of data in the file. 

dwInitialFrames 

Specifies the initial frame for interleaved files. For 

Noninterleaved files it should set zero. While for interleaved files 

it should specifies the number of frames in the file prior to the 

initial frame of the AVI sequence in this member.  

Table (A.1) The contents of MainAVIHeader  



 

 
A.2 AVI Stream Headers  

The main header is followed by one or more 'strl' chunks. A 'strl' chunk 

is required for each data stream. These chunks contain information about the 

streams in the file. Each 'strl' chunk must contain a stream header and stream 

format chunk. Stream header chunks are identified by the FOURCC (four-

character code) 'strh', and the stream format chunks are identified by the 

FOURCC 'strf'. In addition to the stream header and stream format chunks, 

the 'strl' chunk might also contain a stream-header data chunk and a stream 

name chunk. Stream-header data chunks are identified by the FOURCC 'strd'. 

Stream name chunks are identified by the FOURCC 'strn'. The stream header 

structure contains header information for a single stream of a file, and it 

specifies the type of data the stream contains, such as audio or video, by 

means of a FOURCC table (A.2) content information about of the stream 

header [Msdn98]:  

  

 

dwStreams 
Specifies the number of streams in the file. For example, a file 

with audio and video has two streams. 

dwSuggestedBufferSize 

Specifies the suggested buffer size for reading the file. 

Generally, this size should be large enough to contain the largest 

chunk in the file. If set to zero, or if it is too small, the playback 

software will have to reallocate memory during playback, which 

will reduce performance. For an interleaved file, the buffer size 

should be large enough to read an entire record, and not just a 

chunk. 

dwWidth Specifies the width of the AVI file in pixels. 

dwHeight Specifies the height of the AVI file in pixels. 

dwReserved[4] Reserved. Set this array to zero. 

 

Table (A.1) Continue 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fccType 

Contains a FOURCC that specifies the type of the data contained in the 

stream. The following standard AVI values for video and audio are defined: 

'vids': Indicates the stream contains video data. The stream format chunk 

contains a BITMAPINFO structure that can include palette information. 

'auds': Indicates the stream contains audio data. The stream format chunk 

contains a WAVEFORMATEX or PCMWAVEFORMAT structure. 

'txts': Indicates the stream contains text data. 

fccHandler 

Optionally, contains a FOURCC that identifies a specific data handler. The 

data handler is the preferred handler for the stream. For audio and video 

streams, this specifies the installable compressor or decompressor. 

typedef struct { 

 FOURCC fccType; 

 FOURCC fccHandler; 

 DWORD  dwFlags; 

 DWORD  dwPriority; 

 DWORD  dwInitialFrames;  

 DWORD  dwScale; 

 DWORD  dwRate;                                           

 DWORD  dwStart;  

 DWORD  dwLength; 

 DWORD  dwSuggestedBufferSize; 

 DWORD  dwQuality; 

 DWORD  dwSampleSize; 

 RECT   rcFrame; 

           } AVIStreamHeader; 

 

Table (A.2) the contents of the AVIStreamHeader 



 

dwFlags 

Contains any flags for the data stream. The bits in the high-order word 

of these flags are specific to the type of data contained in the stream. 

The following standard flags are defined: 

AVISF_DISABLED: Indicates that this stream should not be enabled 

by default. 

AVISF_VIDEO_PALCHANGES: Indicates that this video stream 

contains palette changes. This flag warns the playback software that it 

will need to animate the palette. 

dwPriority 

Specifies priority of a stream type. For example, in a file with 

multiple audio streams, the one with the highest priority might be the 

default stream. 

dwInitialFrames 

Specifies how far audio data is skewed ahead of the video frames in 

interleaved files. Typically, this is about 0.75 seconds. If you are 

creating interleaved files, specify the number of frames in the file 

prior to the initial frame of the AVI sequence in this member.  

dwScale 

Used with dwRate to specify the time scale that this stream will use. 

Dividing dwRate by dwScale gives the number of samples per 

second. For video streams, this rate should be the frame rate. For 

audio streams, this rate should correspond to the time needed for 

nBlockAlign bytes of audio, which for PCM audio simply reduces to 

the sample rate. 

dwRate See dwScale. 

dwStart 

Specifies the starting time of the AVI file. The units are defined by 

the dwRate and dwScale members in the main file header. Usually, 

this is zero, but it can specify a delay time for a stream that does not 

start concurrently with the file. 

dwLength 
Specifies the length of this stream. The units are defined by the 

dwRate and dwScale members of the stream's header. 

Table (A.2) Continue 



 

 

 
The last eight members in table (A.2) describe the playback 

characteristics of the stream. These factors include the playback rate (dwScale 

and dwRate), the starting time of the sequence (dwStart), the length of the 

dwSuggestedBufferSize 

Specifies how large a buffer should be used to read this stream. 

Typically, this contains a value corresponding to the largest chunk 

present in the stream. Using the correct buffer size makes playback 

more efficient. Use zero if you do not know the correct buffer size. 

dwQuality 

Specifies an indicator of the quality of the data in the stream. Quality 

is represented as a number between 0 and 10,000. For compressed 

data, this typically represents the value of the quality parameter 

passed to the compression software. If set to –1, drivers use the 

default quality value. 

dwSampleSize 

Specifies the size of a single sample of data. This is set to zero if the 

samples can vary in size. If this number is nonzero, then multiple 

samples of data can be grouped into a single chunk within the file. If 

it is zero, each sample of data (such as a video frame) must be in a 

separate chunk. For video streams, this number is typically zero, 

although it can be nonzero if all video frames are the same size. For 

audio streams, this number should be the same as the nBlockAlign 

member of the WAVEFORMATEX structure describing the audio. 

rcFrame 

Specifies the destination rectangle for a text or video stream within 

the movie rectangle specified by the dwWidth and dwHeight 

members of the AVI main header structure. The rcFrame member is 

typically used in support of multiple video streams. Set this 

rectangle to the coordinates corresponding to the movie rectangle to 

update the whole movie rectangle. Units for this member are pixels. 

The upper-left corner of the destination rectangle is relative to the 

upper-left corner of the movie rectangle. 

Table (A.2) Continue 



sequence (dwLength), the size of the playback buffer (dwSuggestedBuffer), an 

indicator of the data quality (dwQuality), and the sample size (dwSampleSize). 
 

Some of the members in the stream header structure are also present in 

the main header structure. The data in the main header applies to the whole 

file, while the data in the stream header structure applies only to a stream. 
  

A stream format ('strf') chunk must follow a stream header ('strh') chunk. 

The stream format chunk describes the format of the data in the stream. For 

video streams, the information in this chunk is a BITMAPINFO structure 

(including palette information if appropriate).  

The 'strl' chunk might also contain an additional stream-header data 

('strd') chunk. If used, this chunk follows the stream format chunk. The format 

and the contents of this chunk are defined by installable compression or 

decompression drivers. Typically, drivers use this information for 

configuration. Applications that read and write RIFF files do not need to 

decode this information. They transfer this data to and from a driver as a 

memory block.  
 

The optional 'strn' stream name chunk provides a zero-terminated text 

string describing the stream. The AVI file functions can use this chunk to let 

applications identify the streams they want to access by their names.  
 

An AVI player associates the stream headers in the LIST 'hdrl' chunk 

with the stream data in the LIST 'movi' chunk by using the order of the 'strl' 

chunks. The first 'strl' chunk applies to stream 0; the second applies to stream 

1, and so forth. For example, if the first 'strl' chunk describes the wave audio 

data, the wave audio data is contained in stream 0. Similarly, if the second 

'strl' chunk describes video data, then the video data is contained in stream 1.  

 

 



A.3 Stream Data (LIST 'movi' Chunk)  

Following the header information is a LIST 'movi' chunk that contains 

chunks of the actual data in the streams (that is, the pictures and sounds 

themselves). The data chunks can reside directly in the LIST 'movi' chunk or 

they might be grouped into 'rec' chunks. The 'rec' grouping implies that the 

grouped chunks should be read from disk all at once. This is used only for 

files specifically interleaved to play from CD-ROM.  
 

Like any RIFF chunk, the data chunks contain a FOURCC (four-

character code) to identify the chunk type. A FOURCC is a 32-bit quantity 

represented as a sequence of one to four ASCII alphanumeric characters, 

padded on the right with blank characters. The FOURCC that identifies each 

chunk consists of the stream number and a two-character code that defines the 

type of information encapsulated in the chunk. For example, a waveform 

chunk is identified by a two-character code of 'wb'. If a waveform chunk 

corresponded to the second LIST 'hdrl' stream description, it would have a 

FOURCC of '01wb'.  



Appendix B  

BMP File Structure 

 

 

B.1 BITMAPINFOHEADER Structure  

The BITMAPINFOHEADER structure contains information for the video 

stream of an AVI RIFF file. Table (B.1) describe the content of 

BITMAPINFOHEADER structure [Msdn98]:  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct tagBITMAPINFOHEADER { 

 DWORD  biSize; 

 LONG      biWidth; 

 LONG      biHeight; 

 WORD     biPlanes; 

 WORD      biBitCount; 

 DWORD   biCompression; 

 DWORD   biSizeImage; 

 LONG       biXPelsPerMeter; 

 LONG       biYPelsPerMeter; 

 DWORD    biClrUsed; 

 DWORD    biClrImportant; 

} BITMAPINFOHEADER; 

 



 

 
 
  
 

biSize Specifies the number of bytes required by the structure. 

biWidth Specifies the width of the bitmap, in pixels. 

biHeight 

Specifies the height of the bitmap, in pixels. If biHeight is positive, the 

bitmap is a bottom-up DIB (device-independent bitmap) and its origin 

is the lower left corner. If biHeight is negative, the bitmap is a top-

down DIB and its origin is the upper left corner. 

biPlanes 
Specifies the number of planes for the target device. This value must be 

set to 1. 

biBitCount 
Specifies the number of bits per pixel. Some compression formats need 

this information to properly decode the colors in the pixel. 

biCompression 
Specifies the type of compression used or requested. Both existing and 

new compression formats use this member. 

biSizeImage 
Specifies the size, in bytes, of the image. This can be set to 0 for 

uncompressed RGB bitmaps. 

biXPelsPerMeter 

Specifies the horizontal resolution, in pixels per meter, of the target 

device for the bitmap. An application can use this value to select a 

bitmap from a resource group that best matches the characteristics of 

the current device. 

biYPelsPerMeter 
Specifies the vertical resolution, in pixels per meter, of the target device 

for the bitmap. 

biClrUsed 

Specifies the number of color indices in the color table that are actually 

used by the bitmap. If this value is zero, the bitmap uses the maximum 

number of colors corresponding to the value of the biBitCount member 

for the compression mode specified by biCompression. 

biClrImportant 
Specifies the number of color indices that are considered important for 

displaying the bitmap. If this value is zero, all colors are important. 

Table (B.1) The content of the BITMAPINFOHEADER 



When the value in the biBitCount member is set to greater than eight, 

video drivers can assume bitmaps are true color and they do not use a color 

table. While if the value in the biBitCount member is set to less than or equal 

to eight, video drivers can assume the bitmap uses a palette or color table 

defined in the BITMAPINFO data structure. This data structure has the 

following members:  
 

 

 
 

 

 

 

 

The (BITMAPINFOHEADER), member specifies a 

BITMAPINFOHEADER structure. The (BITMAPINFO) member specifies 

an array of RGBQUAD data types that define the colors in the bitmap.  

 

typedef struct tagBITMAPINFO { 

BITMAPINFOHEADER bmiHeader; 

           RGBQUAD          bmiColors; 

} BITMAPINFO; 
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Chapter Five 

Conclusions and Suggestions 

 
5.1 Conclusions 

Form the test results; conducted to investigate the performance of the 

proposed system the following remarks were derived: 

 
1. The three designed algorithms for shot boundaries detection can 

exactly detect the boundaries of the shots for all the tested video, 

which have the (cut) boundary type, and it failed in detecting other 

types of shot boundaries types (like fade, dissolve, wipe). 

 

2. The results of blocks classification algorithm indicate that the 

number of static and dynamic blocks belong to each frame in the 

video are different from one frame to another depending on the 

changes in the pixels data between the current frame and the next 

frame in the video. 

 

3. The features analysis results indicate that the increase in the 

number of video frames belong to the video sequences (extracted 

from the any shot) will improve the recognition efficiency of the 

adopted features. 

 

4. The results of the power discrimination analysis indicate that all 

the statistical and textural features (except the H), extracted from 

the static blocks have a higher discrimination rate than the 

corresponding features extracted from the dynamic blocks. 
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5. The results of the power discrimination analysis also indicate that 

the features (contrast2 and the energy of the horizontal gradient) 

have the highest rate of discrimination whether it is alone or 

combined with other features. 

 

6. The results of the power discrimination analysis also indicate that 

the combinations of the features (mean, standard deviation, mean 

absolute deviation, contrast2 and the energy of the horizontal 

gradient) have the highest rate of discrimination than the 

combinations of other features.   

 

7. The K-mean clustering algorithm had classified the shots 98% 

success when classify it into five clusters, because most of the 

extracted sequences from each shot were classified as a member in 

the same shot.   
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5.2 Suggestions 

During the development of the proposed system many suggestions 

brought in mined to increase the system efficiency, among these 

suggestions are following: 

 
1. Enhance the shot boundaries detection criteria to be capable to 

detect the different type of shot boundaries. 
  
2. Using other textural (like run-length based features) and 

statistical features (like co-occurrence based features). 
 
3.  Extracts other features from the video's frames (like motion, 

shape). 
 

4. Using neural network approach to improve the video 

discrimination capability.  
 

5. Study the effect of various video compression techniques (like 

MPEG) on the classification of the video. 

 

 



Chapter Four 

Experimental Results 
 

 

4.1 Introduction  
This chapter is dedicating to displaying the results of the calculated 

tests to study the efficiency of the adopted image features to classify the 

video data. The results presented in this chapter are for the following 

system steps:  

1. The classification of static and dynamic blocks of the videos image. 

2. The shots boundaries detection by using of the three detection 

algorithms mentioned in chapter three. 

3. Statistical and textural extraction. For both static and dynamic blocks 

and for the three color components (Red, Blue, Green).   

4. Feature analysis for video sequences.  

5. Determined power discrimination for the features.  

6. The k-mean clustering algorithm results. 

 

 

4.2 Video Test Samples 
As test materials eleven video samples have been utilized. Figure (4.1) 

present some frames extracted from the eleven video samples. As a 

prototype the results of video No.6 are given in detail in this chapter. The 

obtained results for other video sequences indicate similar behavior to the 

presented prototype results.     
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Figure (4.1) Video Test Samples 

Video No.1: 994 Frames, 9 Shots Video No.1: 994 Frames, 8 Shots 

Video No.3: 126 frames, 2 Shots Video No.4: 501 Frames, 5 Shots 

Video No.5: 235 Frames, 4 Shots Video No.6: 192 Frames, 3 Shots 

Video No.7: 326 Frames, 6 Shots Video No.8: 801 Frames, 5 Shots 

Video No.9: 173 Frames, 3 Shots 
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Figure (4.1) Continue 

 

4.3 The Results of Shot Boundaries Detection 

Three algorithms have been applied to detect the shots boundaries, the 

video samples may have different types of shot boundaries like (fade, 

dissolve, wipe and cut), and so many video sequences have been tested by 

using these three algorithms in order to detect the shots boundaries which is 

exist in these video sequences, and the test results indicate that these three 

algorithms can only detect the (cut) boundary type, so the eleven video 

samples that have been utilized as a test materials are all have (cut) 

boundary type.  

The results of the three considered algorithms shows that the sixth 

video samples consists three shots, the first shot contains (147) frames the 

second contains (24) frames the third contains (22) frames. Table (4.1) 

represents the results of applying the first detection method of the shot 

boundaries which is based on the means of the absolute difference between 

the color components of the frames, see algorithm (3.2). Tables (4.2-4) 

show the detection results of applying the second method which is based on 

using the three overall means of the three difference (Absolute, square, 

cubic) the difference is between the mean of two successive frames, see 

algorithm (3.3). Tables (4.5-8) show the detection results of applying the 

Video No.11: 159 Frames, 4 Shots Video No.10: 937 Frames, 17 Shots 
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third method which is based on using the three overall means of the three 

differences (absolute, square, cubic) the difference is between the mean of 

two successive frames (the mean is computed form the difference between 

two neighbor pixels in the same frame), see algorithm (3.4). 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure (4.2) Shots detection using the mean of the difference between the frames color 

components (red, blue, green) 

Frame No. 

Mean of Difference the 

frames colors (Red, 

Blue, Green)  

1 625.83 

147 75.32 

148 467.29 

170 70.19 

171 307.20 

191 77.76 

Table (4.1) The mean of the difference between the frames 
color components (red, blue, green) 
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Figure (4.3) Shot detection using the criteria of the absolute differences between the 
mean of two successive frames 

 
 

Absolute difference 

Frame 

No. 
Red Blue Green 

1 0.761156 0.326468 0.208116 

147 0.594648 0.263563 0.435971 

148 57.18723 70.56349 69.16737 

170 0.152896 0.147165 0.110766 

171 13.00987 33.3122 31.44362 

191 0.515566 0.573765 0.51379 
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Table (4.2) The results of using the criteria of the absolute 
differences between the mean of two successive frames  
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Figure (4.4) Shots detection using the criteria of the square differences between the 

mean of two successive frames  

Square difference 

Frame 

No. 
Red Blue Green 

1 0.579 0.107 0.043 

147 0.354 0.069 0.190 

148 70.380 79.206 80.125 

170 0.023 0.022 0.012 

171 98.257 89.703 88.701 

191 0.266 0.329 0.264 

Table (4.3) the results of the using the criteria of the 
square differences between the mean of two 

successive frames  
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Figure (4.5) Shots detection using the criteria of the cubic differences between the mean 
of two successive frames 

Cubic difference 

Frame 

No. 
Red Blue Green 

1 0.441 0.035 0.009 

147 0.210 0.018 0.083 

148 123.968 150.108 195.306 

170 0.004 0.003 0.001 

171 142.010 165.651 185.334 

191 0.137 0.189 0.136 

Table (4.4) the results of using the criteria of the 
cubic differences between the mean of two 

successive frames 
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Figure (4.6) Shots detection using the criteria of the absolute differences between the 

mean of the difference between two neighbored pixels in the frame 
 

 

Absolute difference 

Frame 

No. 
Red Blue Green 

1 0.0512 0.0703 0.0294 

147 0.0044 0.0152 0.0103 

148 0.3711 0.7790 0.4704 

170 0.1793 0.1478 0.1847 

171 2.4127 2.1383 2.4521 

191 0.0372 0.0261 0.0061 

Table (4.5) the results of using the criteria of the absolute 
differences between the mean of the difference between two 

neighbored pixels in the frame 
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Figure (4.7) Shots detection using the criteria of the square differences between the 
mean of the difference between two neighbored pixels in the frame 

Square difference 

Frame 

No. 
Red Blue Green 

1 0.002624 0.004938 0.000866 

147 0.000020 0.000231 0.000106 

148 0.622115 0.606830 0.221279 

170 0.032161 0.021853 0.034132 

171 5.821236 4.572216 6.012942 

191 0.001385 0.000682 0.000038 

Table (4.6) the results of using the criteria of the square 
differences between the mean of the difference between 

two neighbored pixels in the frame  
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Figure (4.8) Shots detection using the criteria of the cubic differences between the mean 
of the difference between two neighbored pixels in the frame 

Cubic difference 

Frame 

No. 
Red Blue Green 

1 0.0001344 0.0003470 0.0000255 

147 0.0000088 0.0000035 0.0000011 

148 0.3305963 0.4727166 0.1040903 

170 0.0057675 0.0032304 0.0063058 

171 14.0450334 9.7766510 14.7445177 

191 0.0019900 0.0015506 0.0016176 

Table (4.7) the results of using the criteria of the cubic 
differences between the mean of the difference between 

two neighbored pixels in the frame  
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4.4 The Results of Static and Dynamic Classification 

Table (4.8) shows the results of the block classification for three colors 

(red, blue, green) for ten frames as a prototype from the sixth video sample, 

the value threshold was taken equal to 5 and the block size was (4×4).  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
  

 

Figure (4.10) The mean of the number of the static and dynamic blocks  

Frame 

No. 

Mean of the 

Static Blocks 

Mean of the 

Dynamic Blocks 

1 0.4410 0.5590 

2 0.4607 0.5393 

3 0.4635 0.5365 

4 0.9598 0.0402 

5 0.4253 0.5747 

6 0.5207 0.4793 

7 0.4932 0.5068 

8 0.5319 0.4681 

9 0.9929 0.0071 

10 0.5311 0.4689 

Table (4.8) the results for the mean of the number of the 
static and dynamic blocks  
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4.5 The Results of Features Extraction 

Two types of features have been extracted from the video shots 

(textural, color) the color features calculated form the color histogram 

which is calculated for three colors components (Red, Blue, Green) from 

both static and dynamic blocks the following figures display the histogram 

behavior for the three colors components and for static and dynamic 

blocks. 

Figure (4.11) The ten histograms for the red 

component of the static blocks belong to the 

selected ten frames. 

Figure (4.12) The ten histograms for the 

blue component of the static blocks 

belong to the selected ten frames. 

Figure (4.13) The ten histograms for the green 

component of the static blocks belong to the 

selected ten frames. 

Figure (4.14) The ten histograms for the red 

component of the dynamic blocks belong to the 

selected ten frames. 

Figure (4.15) The ten histograms for the blue 

component of the dynamic blocks belong to the 

selected ten frames. 

 

Figure (4.16) The ten histograms for the red 

component of the dynamic blocks belong to 

the selected ten frames. 
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First adopted type of features is the color features which are (mean, 

standard deviation, mean absolute deviation, skewness) theses features are 

extracted form both static and dynamic blocks and from the three colors 

components (red, blue, green) figures (4.17, 19, 21, 23) represent the 

results of these adopted features extracted from the static blocks and figures 

(4.18, 20, 22, 24) represent the results of the same features extracted from 

the dynamic blocks. The results are taken form the sixth video sample 

which contain three shots.     

 
 
 
 
 
 
 
 
  
 
 
 
 
 

Figure (4.17) The result for mean of color histogram 
extracted from the static blocks for three color component 

(red, blue, green).  
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Figure (4.18) The result for mean of color histogram 
extracted from the dynamic blocks for three color 

component (red, blue, green).  
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Figure (4.19) The results of the standard deviation of the 
color histogram extracted from the static blocks for three 

color component (red, blue, green). 
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Figure (4.20) The results of the standard deviation of the 
color histogram extracted from the dynamic blocks for 

three color component (red, blue, green). 
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Figure (4.21) The results of mean absolute deviation of the 
color histogram extracted from the static blocks for three 

color component (red, blue, green). 

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e 
M

ad
 o

f 
th

e 
co

lo
r 

h
is

to
g

ra
m Red

Blue

Green

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e 
M

ad
 o

f t
h

e 
co

lo
r 

h
is

to
g

ra
m Red

Blue

Green

Figure (4.22) The results of mean absolute deviation of the 
color histogram extracted from the dynamic blocks for 

three color component (red, blue, green). 
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Figure (4.23) The results of skweness of the color 
histogram extracted from the static blocks for three color 

component (red, blue, green). 
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Figure (4.24) The results of skweness of the color histogram 
extracted from the dynamic blocks for three color component 

(red, blue, green). 
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Second adopted type of features is the textural features which are (the 

average energy of three gradient (horizontal, vertical, diagonal), contrast1, 

contrast2, modification on fractal dimension(H)) theses features are 

extracted form both static and dynamic blocks and from the three colors 

components (red, blue, green) figures (4.25, 27, 29, 31, 33, 35) represent 

the results of these adopted features extracted from the static blocks and 

figures (4.26, 28, 30, 32, 34, 36) represent the results of the same features 

extracted from the dynamic blocks . The results are taken form the sixth 

video sample which contain three shots.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
  

Figure (4.25) The results of energy of the horizontal 
gradient extracted from the static blocks for three color 

component (red, blue, green). 
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Figure (4.26) The results of energy of the horizontal 
gradient extracted from the dynamic blocks for three color 

component (red, blue, green). 
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Figure (4.27) The results of energy of the vertical gradient 
extracted from the static blocks for three color component 

(red, blue, green). 
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Figure (4.28) The results of energy of the vertical gradient 
extracted from the dynamic blocks for three color 

component (red, blue, green). 
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Figure (4.29) The results of energy of the diagonal 
gradient extracted from the static blocks for three color 

component (red, blue, green). 
  

Figure (4.30) The results of energy of the diagonal 
gradient extracted from the dynamic blocks for three color 

component (red, blue, green). 
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Figure (4.31) The results of contrast1 extracted 
from the static blocks for three color component 

(red, blue, green). 
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Figure (4.32) The results of contrast1 extracted 
from the dynamic blocks for three color 

component (red, blue, green). 
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Figure (4.33) The results of contrast2 extracted 
from the static blocks for three color component 

(red, blue, green). 
  

Figure (4.34) The results of contrast2 extracted 
from the dynamic blocks for three color 

component (red, blue, green). 
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Figure (4.35) The results of modified fractal 
dimension (H) extracted from the static blocks for 

three color component (red, blue, green). 
  

Figure (4.36) The results of modified fractal dimension 
(H) extracted from the dynamic blocks for three color 

component (red, blue, green). 
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4.6 The Results of Feature Analysis    

 The above ten features have been calculated for all the frames belong 

to each shot in the eleven tested videos, for each shot in the tested videos 

the mean of these ten features were determined, then ten video sequences 

have been taken from each shot and the same ten features have been 

extracted from each video sequence, the number of frames belongs to each 

sequence is depending on how many frames in the shot.  

A set of tests were conducted to study the effect of the number of the 

video frames (used to represent each video shot) on the recognition results 

indicate the increase in the number of frames will improve the recognition 

efficiency of the adopted features, so each video's shot consist of less than 

45 frame is neglected, for this reason in the sixth video sample only first 

shot was taken because the two other shots have a small number of frames. 

Table (4.9) show the results of Ten values as a prototype the values is for 

the mean of the adopted ten features calculated for three randomly selected 

sequences belong to the first shot. 

 

 

4.7 The Results of Power Discrimination    

Tables (4.10-14) display the rate of the recognition success and frailer 

of the adopted ten features. As seen from the presented results the first 

ninth features (mean, standard deviation, skewness, mean absolute 

deviation, energy of gradient, contrast1, contrast2) show high successful 

rates than other features; all the obtained results refer to indicate that all the 

static features except the (modified fractal dimension) have higher 

successful recognition rate than the dynamic features. 
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Table (4.9) The mean for the ten adopted features calculated for three randomly 
selected sequences that belong to shot No.1 (from the sixth video sample).  

 

Dynamic Static 

se
q

u
en

ce
  N

o
.1

 

Features Red Blue Green Red Blue Green 
Mean 120.20871 192.20363 168.30032 113.02430 155.67870 142.72464 

Std 83.97413 95.22082 94.08603 70.98245 77.88278 78.43591 

Mad 72.56188 88.85220 85.85184 59.41537 66.96887 66.87877 

Skewness 91.43575 99.40249 99.26940 79.98340 87.86890 87.43938 

H-Energy 1.51100 0.83060 1.02048 0.21805 0.09710 0.11462 

V-Energy 2.23824 1.80894 1.91750 0.24298 0.10861 0.13780 

D-Energy 1.02420 0.61878 0.58675 0.92054 0.70582 0.57362 

Contrast-1 0.18613 0.09885 0.12164 0.04489 0.02295 0.02593 

Contrast-2 0.40323 0.35704 0.37254 0.29327 0.29230 0.33916 

H 0.00191 0.00134 0.00210 0.00150 0.00014 0.00017 

Mean 136.70397 195.24983 171.67958 171.09918 187.10038 125.78592 

se
q

u
en

ce
  N

o
.2

 

Std 83.94187 93.25120 95.17006 71.57174 82.98902 82.47166 

Mad 72.88498 87.13978 86.56016 60.13697 72.96849 71.00647 

Skewness 91.29477 98.33491 100.81112 80.22058 92.22312 91.31607 

H-Energy 1.58371 1.00762 1.10951 0.21605 0.08205 0.09376 

V-Energy 1.91067 1.58760 1.63680 0.19290 0.11702 0.13226 

D-Energy 1.09999 1.31977 0.85354 0.62953 0.62599 0.42133 

Contrast-1 0.19413 0.11010 0.13499 0.04516 0.02105 0.02360 

Contrast-2 0.37167 0.27818 0.32410 0.33553 0.27735 0.28534 

H 0.00247 0.00275 0.00291 0.00225 0.00012 0.00027 

Mean 137.82109 198.45694 182.62041 111.25058 164.79339 138.60219 

se
q

u
en

ce
  N

o
.3

 

Std 86.40482 97.26434 99.64530 61.12988 75.35320 70.24007 

Mad 74.64823 89.76535 89.69606 49.26038 63.58346 57.18453 

Skewness 94.01401 103.78550 106.13080 71.10556 83.79155 80.55727 

H-Energy 2.40583 1.45500 1.73911 0.41121 0.10847 0.16685 

V-Energy 1.73967 1.22726 1.41940 0.32033 0.20031 0.21742 

D-Energy 1.19700 1.31719 0.88988 1.11768 0.60739 0.66620 

Contrast-1 0.20483 0.13836 0.16873 0.05963 0.02251 0.03154 

Contrast-2 0.44230 0.60149 0.55002 0.27065 0.21431 0.24116 

H 0.00278 0.00196 0.00220 0.00277 0.00017 0.00044 
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Table (4.10) The best five values of the discrimination power of 
each feature alone.  

Table (4.21) The best discrimination power values (≥%80) of the 
combination of two features. 

Table (4.12) The best discrimination power values (≥%91) of the 
combination of three features. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Feature No. Successful 
Rate % 

Failure 
Rate % 

9 64.79 35.21 

5 51.04 48.96 

1 49.38 50.62 

3 47.08 52.92 

2 43.75 56.25 

Feature No. 
Successful 

Rate % 

Failure 

Rate % 

5 9 85.83 14.17 

2 7 83.54 16.46 

8 9 82.08 17.92 

6 9 81.67 18.33 

3 7 81.25 18.75 

1 9 81.04 18.96 

3 5 80.83 19.17 

1 5 80.00 20.00 

3 9 80.00 20.00 

Feature No. 
Successful 

Rate % 

Failure 

Rate % 

3 5 9 94.79 5.21 

2 5 9 93.13 6.87 

5 6 9 92.92 7.08 

3 7 9 92.50 7.50 

5 8 9 92.50 7.50 

1 5 6 91.88 8.12 

1 6 9 91.46 8.54 

2 7 9 91.46 8.54 

1 5 9 91.04 8.96 

1 7 9 91.04 8.96 
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Table (4.13) The best discrimination power values (≥%94) 
of the combination of four features. 

 

Table (4.14) The best discrimination power values (≥%95) 
of the combination of five features. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

Feature No. Successfu
l Rate % 

Failure 
Rate % 

3 5 8 9 96.04 3.96 

3 5 7 9 95.83 4.17 

1 6 7 9 95.42 4.58 

1 5 7 9 95.21 4.79 

3 5 6 9 95.21 4.79 

2 5 8 9 95.00 5.00 

5 6 8 9 95.00 5.00 

3 7 8 9 94.79 5.21 

1 5 6 7 94.17 5.83 

1 5 8 9 94.17 5.83 

1 7 8 9 94.17 5.83 

Feature No. Successful 
Rate % 

Failure 
Rate % 

1 3 5 8 9 96.04 3.96 

2 3 5 8 9 96.04 3.96 

1 3 5 7 9 95.83 4.17 

2 3 5 7 9 95.83 4.17 

1 3 5 6 9 95.21 4.79 

2 3 5 6 9 95.21 4.79 

1 2 5 8 9 95.00 5.00 

1 5 6 8 9 95.00 5.00 

2 5 6 8 9 95.00 5.00 

3 5 6 8 9 95.00 5.00 

4 5 6 8 9 95.00 5.00 
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4.8 The Results of K-Means Algorithm   

Table (4.15) present the results of applying K-means clustering 

method, the k-mean method used the features that give a high recognition 

success rate, these features are the first nine features for the three color 

components (red, blue, green) in the features vector (i.e., mean, standard 

deviation, skewness, mean absolute deviation, energy of gradient, 

contrast1, contrast2), they are the features extracted from the static blocks 

except the (modified fractal dimension), the number of training video 

sequences is 490 patterns (i.e. ten sequences are randomly selected from 

each of the 49 segmented shots, which are in turn gathered from the eleven 

tested video samples). 

The number of clusters that used in the K-means algorithm is five 

clusters, because the shots in the considered video samples can be 

categorized into five types, depending on the events inside the shots.   

The results given in table (4.15) shows that most of the ten sequences 

that belong to certain shot were clustered within one cluster, except the 

sequences belong to shots (6, 12, 41, 43, 44) where %80 of the sequences 

belong to each of these shots have been clustered in the same cluster. 

Table (4.16) shows the classification results when the number of 

clusters was taken four. It is obvious that the failure in classification rate 

was increase. 
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Table (4.15) The results of K-means algorithm for five clusters.   

 
 Shot No. 

Class 
No. 1 

Class 
No. 2 

Class 
No. 3 

Class 
No. 4 

Class 
No.5 

1 0 0 0 100% 0 
2 100% 0 0 0 0 
3 100% 0 0 0 0 
4 100% 0 0 0 0 
5 0 0 100% 0 0 
6 20% 0 0 80% 0 
7 100% 0 0 0 0 
8 100% 0 0 0 0 
9 100% 0 0 0 0 

10 100% 0 0 0 0 
11 0 0 100% 0 0 
12 10% 0 0 90% 0 
13 0 0 100% 0 0 
14 0 0 0 100% 0 
15 0 0 100% 0 0 
16 0 0 100% 0 0 
17 0 0 100% 0 0 
18 0 0 100% 0 0 
19 100% 0 0 0 0 
20 0 0 100% 0 0 
21 0 0 100% 0 0 
22 0 0 100% 0 0 
23 0 0 100% 0 0 
24 0 0 100% 0 0 
25 100% 0 0 0 0 
26 0 0 0 100% 0 
27 0 100% 0 0 0 
28 100% 0 0 0 0 
29 100% 0 0 0 0 
30 100% 0 0 0 0 
31 100% 0 0 0 0 
32 100% 0 0 0 0 
33 0 100% 0 0 0 
34 0 100% 0 0 0 
35 0 100% 0 0 0 
36 0 100% 0 0 0 
37 0 0 100% 0 0 
38 0 0 0 0 100% 
39 0 0 100% 0 0 
40 0 0 0 100% 0 
41 20% 0 0 80% 0 
42 0 0 0 0 100% 
43 20% 0 80% 0 0 
44 30% 0 70% 0 0 
45 0 0 100% 0 0 
46 0 0 100% 0 0 
47 0 0 0 100% 0 
48 0 0 0 0 100% 
49 0 0 0 100% 0 

Overall 
successful 

98% 100% 99% 99% 100% 
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Table (4.16) The results of K-means algorithm for four clusters.  
 

 
 
 
  
 

Shot No. 
Class 
No. 1 

Class 
No. 2 

Class 
No. 3 

Class 
No. 4 

1 100% 0 0 0 
2 0 100% 0 0 
3 0 100% 0 0 
4 0 100% 0 0 
5 0 0 0 100% 
6 50% 50% 0 0 
7 0 100% 0 0 
8 0 100% 0 0 
9 0 100% 0 0 

10 0 100% 0 0 
11 0 0 0 100% 
12 70% 30% 0 0 
13 0 0 0 100% 
14 100% 0 0 0 
15 0 0 0 100% 
16 0 0 0 100% 
17 0 0 0 100% 
18 0 0 0 100% 
19 0 100% 0 0 
20 0 0 0 100% 
21 0 0 0 100% 
22 0 0 0 100% 
23 0 0 0 100% 
24 0 0 0 100% 
25 0 100% 0 0 
26 100% 0 0 0 
27 0 0 100% 0 
28 0 100% 0 0 
29 0 100% 0 0 
30 0 100% 0 0 
31 0 100% 0 0 
32 0 100% 0 0 
33 0 0 100% 0 
34 0 0 100% 0 
35 0 0 100% 0 
36 0 0 100% 0 
37 0 0 0 100% 
38 100% 0 0 0 
39 0 0 0 100% 
40 100% 0 0 0 
41 80% 20% 0 0 
42 40% 0 0 60% 
43 0 20% 0 80% 
44 0 30% 0 70% 
45 0 0 0 100% 
46 0 0 0 100% 
47 100% 0 0 0 
48 80% 0 0 20% 
49 100% 0 0 0 

Overall 
successful 

96% 97% 100% 97% 



Chapter One 

General Introduction 

 

 
 

1.1 Data Mining  

Substantial progress in the field of data mining research has been 

witnessed in the last few years [Han98]. The Data mining DM (sometimes 

called data or knowledge discovery) is the process of analyzing data from 

different perspectives and summarizing it into useful information. Data 

mining software is one of a number of analytical tools for analyzing data. It 

allows users to analyze data from many different dimensions or angles, 

categorize it, and summarize the identified relationships. Technically, data 

mining is the process of finding correlations or patterns among dozens of 

fields in large relational databases. 

Data might be one of the most valuable assets of your corporation, but 

only if you know how to reveal valuable knowledge hidden in raw data. Data 

mining allows you to extract diamonds of knowledge from your historical 

data and predict outcomes of future situations. It will help you optimize your 

business decisions, increase the value of each customer and communication, 

and improve satisfaction of customer with your services [Data05]. 

Data mining software analyzes relationships and patterns in stored 

transaction data based on open-ended user queries. Several types of analytical 

software are available: statistical, machine learning, and neural networks.  
 

Generally, four types of relationships are sought [What01]: 
 

1. Classes: Stored data is used to locate data in predetermined groups. For 

example, a restaurant chain could mine customer purchase data to 
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determine when customers visit the restaurant and what they typically 

order? This information could be used to increase traffic by having daily 

specials. 
 
2. Clusters: Data items are grouped according to logical relationships or 

consumer preferences. For example, data can be mined to identify market 

segments or consumer affinities. 
 

3. Associations: Data can be mined to identify associations. The beer-

diaper example is an example of associative mining.  
 

4. Sequential patterns: Data is mined to anticipate behavior patterns and 

trends. For example, an outdoor equipment retailer could predict the 

likelihood of a backpack being purchased based on a consumer's 

purchase of sleeping bags and hiking shoes. 
  

Data mining consists of five major elements [What01]: 
 

1. Extract, transform, and load transaction data onto the data warehouse 

system.  

2. Store and manage the data in a multidimensional database system.  

3. Provide data access to business analysts and information technology 

professionals.  

4. Analyze the data by data mining software.  

5. Present the data in a useful format, such as a graph or table. 

 

 
1.2 Growth of Data Mining  

During the last years the data mining issues have been rapidly developed, 

the reasons behind this development are [Data05]: 
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1. Growing Data Volume: The main reason for necessity of automated 

computer systems for intelligent data analysis is the enormous volume of 

existing and newly appearing data that require processing. The amount of 

data accumulated each day by various business, scientific, and 

governmental organizations around the world is daunting. According to 

information from GTE research center, only scientific organizations store 

each day about 1 TB (terabyte) of new information. And it is well known 

that academic world is by far not the leading supplier of new data. It 

becomes impossible for human analysts to cope with such overwhelming 

amounts of data.  
 
2. Low Cost of Machine Learning: One additional benefit of using 

automated data mining systems is that this process has a much lower cost 

than hiring an army of highly trained professional statisticians. While 

data mining does not eliminate human participation in solving the task 

completely, it significantly simplifies the job and allows an analyst who 

is not professional in statistics and programming to manage the process 

of extracting knowledge from data. 

 

 
1.3 Multimedia Data Mining 

Multimedia data mining is a subfield of data mining that deals with the 

extraction of implicit knowledge, multimedia relationship, or other patterns 

not explicitly stored in multimedia data base [Han98]. 

 Multimedia data (image, audio and video) has been the major focus for 

many researchers around the world. Many techniques for representing, 

storing, indexing and retrieving multimedia data have been proposed 

[Zaia00].  

The computer industry has seen a large growth in technology access, 

storage and processing fields. This combined with the fact that there are a lot 
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of data to be processed, and they paved the way for analyzing and mining data 

to derive potentially useful information. Various fields ranging from 

commercial to military want to analyze data in an efficient and fast manner. 

Particularly in the area of Multimedia data, images have the stronghold. 

However there is a general agreement that sufficient tools are not available for 

analysis of images. One of the issues is the effective identification of features 

in the images (color, shape and texture) and the other one is extracting them. 

One of the difficult tasks is how to know the image domain and obtaining a 

priori knowledge of what information is required from the image. This is one 

of the reasons behind making the image mining process cannot be completely 

automated [Fosc01]. 

 
 
 
1.4 Literature Survey 

Several researches in the multimedia data mining field had been done; 

the following are some of these research:  
 

1. Zaiane, et al [Zaia98] they had designed and developed a multimedia 

data mining system prototype called (multimediaminer), the system 

include the construction of multimedia data cube which facilitated 

multiple dimensional analysis of multimedia data, the system is primarily 

based on the visual content, and the mined of multiple kinds of 

knowledge, including summarization, comparison, classification, 

association and clustering. 

 

2. Zaiane, et al [Zaia99] they had designed and implemented 

MultiMediaMiner, a system prototype to mine high-level multimedia 

information and knowledge from large multimedia repositories like the 

WWW. WordNet, a semantic network for English, was used to clean and 

transform sets of keywords extracted from Web pages to index 
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multimedia objects contained in these pages. WordNet was also enriched 

and used to generate concept hierarchies necessary for interactive 

information retrieval and the construction of multi-dimensional data 

cubes for multimedia data mining with MultiMediaMiner. 

 

3. Zaïane, et al [Zaia00] they studied methods that mined content-based 

associations with recurrent items and with spatial relationships that 

extracted from large visual data repositories. A progressive resolution 

refinement approach is proposed in which frequent item-sets at rough 

resolution levels are mined, and progressively finer resolutions are mined 

only on the candidate frequent item-sets derived from mining rough 

resolution levels.  

 

4. Foschi, et al [Fosc01] they proposed system that extracted patterns and 

derived knowledge from large collections of images, dealt mainly with 

identification and extraction of unique features for particular domain. 

The aim was to identify the best features and thereby extract relevant 

information from the images. They tried various methods of extraction; 

the extracted features and the used extraction techniques have been 

evaluated. The experimental results showed that the adopted features are 

sufficient to identify the patterns of the images. The extracted features 

were evaluated for goodness and tested on tested images. 

 

5. Zhang, et al [Zhan01] they had presented a research that highlighted the 

need for image mining in view of the rapidly growing amounts of image 

data, they pointed out the unique characteristics of image databases that 

brought a whole new set of challenging and interesting research issues to 

be resolved. Also they examined two frameworks for image mining: 

function-driven and information-driven image mining frameworks. They 
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discussed some techniques that are frequently used in the early works in 

image mining, namely, object recognition, image retrieval, image 

indexing, image classification and clustering, association rule mining and 

neural network. 

 

6. Oh and Bandi [Band02] they proposed general framework for real time 

video data mining to be applied to the raw videos (like Traffic videos, 

surveillance videos, etc.). The system was designed to perform the 

following tasks, grouping of input frames into segments, discovering 

unknown knowledge and detecting interesting patterns (like motion, 

object, colors, etc.), the researchers focused on motion as a feature and 

the last task was the clustering of segments using multi-level hierarchical 

clustering approach.  

 

7. Datcu and Seidel [Datc02] they presented a system for image 

information mining based on modeling the causalities, which link the 

image-signal contents to the objects and structures lay within the regions 

of interest for the users. The basic idea was to split the process of 

information representation into the stages: image feature extraction, 

unsupervised grouping in a large number of clusters, data reduction by 

parametric modeling the clusters, and supervised learning of user 

semantics. (Where instead of being programmed, the system is trained by 

a set of examples). The proposed system was a prototyped for inclusion 

in a new generation of intelligent satellite ground segment systems, and 

several other applications. 

 

8.  Ciucu, et al [Ciuc02] they described an application of a scale space 

clustering algorithm (melting) for exploration of image information 

content. Clustering by melting considers the feature space as a thermo 
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dynamical ensemble and groups the data by minimizing the free energy, 

using the temperature as a scale parameter. They developed clustering by 

melting for multidimensional data; they proposed and demonstrated a 

solution for the initialization of the algorithm. 

 

9. Oh, et al [Band03] they extended their previous work [Band02], to 

further address the issue such as how to mine video data, in other words 

how to extract previously unknown knowledge and detect interesting 

patterns. To extract motions, they used a criteria based on the 

accumulation of quantized pixel differences among all frames in a video 

segment. They studied how to cluster those segmented pieces by using 

the features: the amount and the location of motions. Also they 

investigated an algorithm to find whether a segment has normal or 

abnormal events and computes the degree of abnormality of a segment, 

which represents to what extent a segment is distant from to the existing 

segments. 

 

10.  Zhu and Wu [Zhu04] they proposed an association-based video 

summarization scheme that mined sequential associations from video 

data for summary creation. The detected shots of the video were 

clustered into visually distinct groups, and then constructed a sequential 

sequence by integrating the temporal order and cluster type of each shot. 

An association mining scheme is designed to mine sequentially 

associated clusters from the sequence, and these clusters are selected as 

summary candidates. The system generated the corresponding summary 

by selecting representative frames from candidate clusters and assembled 

them according to their original temporal order.  
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1.5 Aim of Thesis 

The aim of this project is summarized by the following targets: 
  

1. Partition the video data into static and dynamic blocks according to the 

level of variability of the pixels belong to each block (across the video 

sequences). 

2. Segment the video into shots (collection of frames) and find the 

boundaries of each shot. 

3. Extract two types of features textural and color features form the static 

and dynamic blocks.   

4. Study the discrimination power of the extracted features (textural and 

color) to recognize video sequences from each other. 

5. Utilize the k-mean clustering method to classify the video sequences. 

6. establish the program required to perform the following tasks: 
 

a.  Find the shots boundaries of the video. 

b. Segment each frame to static and dynamic blocks. 

c. Extract the features. 

d. Analysis the discrimination power of the adopted features set. 

e. Apply the K-Mean algorithm to classify the video sequences.  

 

 

1.6 Chapters overview  

 In this section, the contents of the individual chapters of this thesis are 

briefly reviewed: 

 
1. Chapter two "Theoretical Background" consists of all the methodology    

deals with the video classification, details of features extraction (color 

and textural features) and the clustering of the video sequences.  
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2. Chapter three "The Proposed System" presents the proposed system 

design steps, Like the detection of shots boundaries, the extraction of 

the features (color and textural) from the video frames, the finding of 

the power discrimination for these features and the use of the K-mean 

clustering algorithm to cluster the video sequences. 

 
3. Chapter four "Experimental Results" this chapter display the 

experimental results of the work. 

 
4. Chapter five "Conclusion and Future Work" introduce the conclusion 

of the experimental results of this work with som recommendation for 

the future work.       

   

 



Chapter Three 

Proposed System   
 

 

3.1 Introduction  

This chapter is concerned with the description of the designed and 

implemented video classification system. The description will include the 

following stages of the proposed system:  

decomposition of the colors of each frame in the video, detection of the 

scenes changes (shots), classify the blocks of the frames into dynamic and 

static, then extract the features from the shots of AVI file, analyze the 

extracted features and find the discrimination power of each extracted features 

and as a last step apply the K-Means algorithm to establish the video 

classification system.  

The programming language Microsoft Visual Basic-0.6 had been used to 

establish the required programs of this project.  

 
 
3.2 The System Model 

Figure (3.1) illustrates the phases of the proposed video. As it's shown in 

the figure, the system model consists of three phases. 

 The first phase contains the load of the video stream and decompose the 

colors component of each frame into three colors (Red, Green, Blue) then 

detect the shots boundaries, the last step is classifying the blocks of the frames 

into static and dynamic blocks; the output from this phase are the dynamic 

and the static blocks for the three colors (Red, Green, Blue) for each frame in 

the shot. 
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Figure (3.1) The system model 
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 The second phase, use the output of the first phase to extract ten features 

for both static and dynamic blocks for the three color components (Red, 

Green, Blue) belong to each shot, then analysis these features by computing 

the same ten features for some selected number of frames belong to each shot 

in the video. Then find the power discrimination for these ten features, the 

power was first determined for each single feature alone, then for combination 

of features (starting from two to five); the output is a vector of filtered 

features that have high discrimination power. 

The third and last phase is the clustering phase; the k-means algorithm 

has been used to cluster the videos shots. 

Eleven AVI video had been used as test sample to implement this 

project, and more than 49 shots had been detected, the shots that have small 

number of frames have been neglected, so only 49 shots have been used in 

our research work.          

 

 
3.2.1 Load Video stream 

Every AVI file contains audio stream and video stream, the audio stream 

contains information about the audio part of the AVI file and the video stream 

contains information about the video part of the AVI file (like total number of 

frames, frame width, frame height). In our work the audio stream had 

separated from the video stream by using (VCDCutter V- 4.04) program, then 

only the video stream data which had been used in the implementation of the 

project.  

 

 
3.2.2 Color Decomposition 

    The video stream data which is contains a sequence of bitmap frames. The 

bitmap image consists of two parts header and data, each pixel in the image 

data have three color components (Red, Blue and Green), in code list (3.1) 
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these three components (Red, Blue and Green) have separated and put in the 

buffer (Color-array).   

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.3 Shots Boundaries Detection 

In order to detect the video shots boundaries three methods have been 

considered, these three algorithms depending on two major elements; the first 

one is the mean for all the frames in the video, which is calculated its value 

varies in each algorithm. The second element is the relative threshold value 

which is varies from video to another. 

 To detect a shot, the relative threshold value is multiplied by the overall 

mean of the frames in the video to get the absolute threshold value. Then a 

Code List (3.1) Decompose Color Component of Video Frames 

Input: 

           Videono is the video number. 

           Image  is a record contains the frame color (Red, Blue and Green) information  

 

Output: 

            Frames_file (Video No., Frame No.) is a buffer contains the array Color_array 

which holds the data of the color components (Red, Blue and Green). 

 

Steps: 

    For each frame in the video Xi 

         For each pixel in the image X, Y     

                 Color_array (Xi, 0, X, Y) ← Image (x, y).R 

                 Color_array (Xi, 1, X, Y) ← Image (x, y).B 

                 Color_array (Xi, 2, X, Y) ← Image (x, y).G 

         End loop X, Y 
 
          Save in buffer named Frame_files (Videono) the array Color_array. 

    End loop Xi 
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compare between the absolute threshold with the mean of each frame, if the 

mean of the tested frame is larger than the absolute threshold then a new shot 

is detected.  

The three methods gave the same results so we considered the first the 

result of the first method only in our work.  

Code list (3.2) illustrates the steps of the first implemented method to 

allocate the shots boundaries (i.e., the start and the end frames numbers); in 

this Code List the mean is calculated for the difference between pixels in two 

successive frames. 

 
                        Code List (3.2) Shots Boundaries Detection-1 

Input: 

Videono is the video number. 

Th is a predefined relative threshold for each video. 

Tf is the total number of frames in the video. 

Le is the block size. 

Output: 

        Shot (Video No.) Is a buffer contains the record Shots_Record which holds the start 

and end frames numbers of a shot.  

Steps: 

       From buffer named Frame_file (Videno) the output of code list (3.1) gets the array             

named Color_array. 
 
       For each frame in the video Xi 

           Count ← 0 

           For each block in the frame Ix, Iy 

               Xs ← Ix × Le, Xe ← Xs + Le - 1 

               Ys ← Iy × Le, Ye ← Ys + Le – 1 

               Difference ← 0 

               For each color (Red, Blue and Green) C 

                   For X ← Xs to Xe 

                       For Y ← Ys to Ye 

                                  Continue  
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 In code list (3.3) three kind of the overall means have been calculated, 

the first is for the absolute difference between the mean of two successive 

frames, the second is for the square difference between the mean of two 

successive frames, the last one is cubic absolute difference between the mean 

of two successive frames, and it is found that the three computed type of 

means gave a peak at the same position (frame) approximately, there for only 

        
            Difference ← Difference + Y)X,C,1,y(XiColor_arra - Y)X,C,y(Xi,Color_arra +  

          End loop Y 

        End loop X    

      End loop C 

      Mean_Difference (Xi) ← Mean_Difference (Xi) + Difference  

      Count ← Count + 1 

    End loop Iy, Ix 

    Mean_Difference (Xi) ← Mean_Difference (Xi) / Count      

  End loop Xi     

  For each frame in the video Xi 

     Mean ← Mean + Mean_Difference (Xi)   

  End loop Xi    

  Mean ← Mean / Tf 

  B ← 0 

  For each frame in the video Xi 

      If Mean_ Difference (Xi) > Mean × Th Then 

          Shots_Record (Count).Start ← B 

          Shots_Record (Count).End ← Xi 

          B ← Xi + 1, Count ← Count + 1 

      End If 

   End loop Xi 

   Shots_Record (Count).End ← Tf  

   Shots_Record (Count).Start ← B 

   Save in buffer named Shots (Videono) the record Shots_Record. 
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one of them can be used as a criteria to allocate the shots boundaries, or the 

sum of the three kinds of the mean of difference could be utilized to define 

the absolute threshold value by multiplying the sum of the total means by the 

relative threshold value.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

                        Code List (3.3) Shots Boundaries Detection-2 

Input: 

Videono is the video number. 

Th is a given threshold for each video. 

Tf is the total number of frames in the video. 

Output: 

          Shot2 (Video No.) is a buffer contains the record Shots2_Record which holds the start 

and end frames numbers of a shot.  

Steps: 

          From buffer named Frame_file (Videno) the output of code list (3.1) gets the array   

Color_array. 
 
          For each frame in the video Xi 

  For each color (Red, Blue, Green) C 

                  For each pixel in the frame X, Y 

                      Mean(C, Xi) ← Mean (C, Xi) + Color_array (Xi, C, X, Y) 

                  End loop X, Y  

                  Mean(C, Xi) ← Mean (C, Xi) / (H × W) 

              End loop C 

          End loop Xi 
        
          For each frame in the video Xi 

              For each color (Red, Blue, Green) C 

                  Difference1(C, Xi) ← Xi) (C,Mean  - 1)  Xi (C,Mean +   

                  Difference2 (C, Xi) ← (Mean (C, Xi+1) – Mean (C, Xi)) 2 

                  Difference3 (C, Xi) ← Xi) (C,Mean  - 1)  Xi (C,Mean +  3 

                                  Continue   
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In code list (3.4) three overall means had been calculated one for the 

absolute difference other for the square difference and the last one for the 

cubic absolute difference, the above difference is computed between the mean 

of two successive frames, the mean of the frames is computed from the 

difference between two neighbor pixels in the frame. and it is found that the 

three computed type of means gave a peak at the same position (frame) 

approximately, there for only one of them can be used as a criteria to allocate 

           
             Mean_Diff1(C) ← Mean_Diff1 (C) + Difference1(C, Xi) 

             Mean_Diff2(C) ← Mean_Diff2 (C) + Difference2(C, Xi) 

             Mean_Diff3(C) ← Mean_Diff3 (C) + Difference3(C, Xi) 

         End loop C 

      End loop Xi 
 
      For each color (Red, Blue, Green) C 

          Mean_Diff1(C) ← Mean_Diff1(C)/ Tf 

          Mean_Diff2(C) ← Mean_Diff2 (C) / Tf 

          Mean_Diff3(C) ← Mean_Diff3 (C) / Tf 

      End loop C 
    

      B ← 0 

      For each frame in the video Xi  

 If Difference1 (0, Xi) > Mean_Diff1 (0) * Th and  

    Difference1 (1, Xi) > Mean_Diff1 (1) * Th and  

    Difference1 (2, Xi) > Mean_Diff1 (2) * Th Then 

       Shots_Record (Count).Start ← B 

       Shots_Record (Count).End ← Xi 

       B ← Xi + 1, Count ← Count + 1 

 End If 

      End loop Xi 

      Shots_Record (Count).End ← Tf  

      Shots_Record (Count).Start ← B 

      Save in buffer named Shot2 (Videono) the record Shots_Record. 
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the shots boundaries, or the sum of the three kinds of the mean of difference 

could be utilized to define the absolute threshold value by multiplying the 

sum of the total means by the relative threshold value.  

  

 
 
 

Code List (3.4) Shots boundaries Detection-3 

Input: 

Videono is the video number. 

Th is a given threshold for each video. 

Tf is the total number of frames in the video. 

Output: 

        Shot3 (Video No.) is a buffer contains the record Shots3_Record which holds the start 

and end frames numbers of a shot.  

Steps: 

       From buffer named Frame_file (Videno) the output of code list (3.1) gets the array     

Color_array. 
 
       For each frame in the video Xi 

            Pixel_Diff ← 0 

            For each color (Red, Blue, Green) C 

                For each pixel in the frame X, Y 

                    Pixel_Diff ← )Y,X,C,Xi(array_Color)1Y,X,C,Xi(array_Color −+  

                    Mean_pixel_Diff(C, Xi) ← Mean_pixel_Diff (C, Xi) + Pixel_Diff      

                End loop X, Y  

            End loop C 

       End loop Xi 

       Mean_pixel_Diff(C, Xi) ← Mean_pixel_Diff (C, Xi) / (H-1 × W) 
         
       For each frame in the video Xi 

          For each color (Red, Blue, Green) C 

              Difference1(C, Xi) ←  Xi) _Diff(C,Mean_pixel -  1)Xi _Diff(C,Mean_pixel +   

              Difference2 (C, Xi) ← (Mean_pixel_Diff(C, Xi+1) – Mean_pixel_Diff(C, Xi)) 2 

              Difference3 (C, Xi) ←  Xi) _Diff(C,Mean_pixel -  1)Xi _Diff(C,Mean_pixel +  3 

       

   Continue  
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3.2.4 Static and Dynamic Classification 

The blocks belong to each frame had been classified into static and 

dynamic blocks, by taking the difference between the two successive frames, 

then this difference is compared with the calculated threshold, if the 

difference is larger than the threshold then the block is considered as a 

          
                    Mean_Diff1 (C) ← Mean_Diff1 (C) + Difference1(C, Xi) 

                    Mean_Diff2 (C) ← Mean_Diff2 (C) + Difference2(C, Xi) 

                    Mean_Diff3 (C) ← Mean_Diff3 (C) + Difference3(C, Xi) 

                  End loop C 

                End loop Xi 

                For each color (Red, Blue, Green) C 

                    Mean_Diff1(C) ← Mean_Diff1(C)/ Tf 

                    Mean_Diff2(C) ← Mean_Diff2 (C) / Tf 

                    Mean_Diff3(C) ← Mean_Diff3 (C) / Tf 

                End loop C 

                B ← 0 

                For each frame in the video Xi  

           If Difference1 (0, Xi) > Mean_Diff1 (0, Xi) * Th And                                          

              Difference1 (1, Xi) > Mean_Diff1 (1, Xi) * Th And                                 

              Difference1 (2, Xi) > Mean_Diff1 (2, Xi) * Th Then 

                 Shots_Record (Count).Start ← B 

                 Shots_Record (Count).End ← Xi 

                 B ← Xi + 1, Count ← Count + 1 

           End If 

                End loop Xi 

                Shots_Record (Count).End ← Tf  

                Shots_Record (Count).Start ← B 

                Save in buffer named Shot3 (Videono) the record Shots_Record. 
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dynamic block otherwise it is a static block, code list (3.5) shows the detail of 

this classification process.   

 

 
 

                      Code list (3.5) Classification of Static and Dynamic Blocks 
  
Input: 

          Videono is the video number. 

          Le is the length of the block. 

          Th is a given threshold.  
 
  
Output: 

          Static_Dynamic_records (Videono) is a buffer contains the records Static_record, 

Dynamic_record they hold the information about the static blocks and information about 

the dynamic blocks. 
 
 
Steps: 

 

  Threshold = le × le × 3 × Th 

   From buffer named Frame_file (Videno) the output of code list (3.1) gets                                        

the array named Color_array. 
 
   For each frame in the shot Xi 

      S ← 0 

      D ← 0          

      For each block in the frame Ix, Iy  

          Xs ← Ix × Le 

          Xe ← Xs + Le − 1 

          Ys ← Iy × Le 

          Ye ← Ys + Le – 1 

          Difference ← 0 

          For each color (Red, Blue and Green) C  

             For X ← Xs to Xe 

                For Y ← Ys to Ye  
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                  Difference ← Difference + Y)X,C,1,y2(XiColor_arra - Y)X,C,y(Xi,Color_arra +  

                End loop Y 

              End loop X    

            End loop C 

   

If Difference < Threshold Then 

         S ← S + 1 

         For each color (Red, Blue and Green) C  

              Static_record (C, Xi).Scount(S).Xss ← Xs   

              Static_record (C, Xi).Scount(S).Xes ← Xe 

              Static_record (C, Xi).Scount(S).Yss ← Ys   

              Static_record (C, Xi).Scount(S).Yes ← Ye   

         End loop C 

  Else 

           D ← D + 1 

           For each color (Red, Blue and Green) C      

                Dynamic_record (C, Xi).Dcount (D).Xs ← Xs   

                Dynamic_record (C, Xi).Dcount (D).Xe ← Xe  

                Dynamic_record (C, Xi).Dcount (D).Ys ← Xs   

                Dynamic_record (C, Xi).Dcount (D).Ye ← Xe  

           End loop C  

  End if 

         End loop Ix, Iy 

         

        For each color (Red, Blue and Green) C      

   Static_record (C, Xi).Scounter ← S 

   Dynamic_record (C, Xi).Dcounter ← D 

        End loop C 

    End loop Xi 
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3.2.5 Feature Extraction  

First it should be clear that the feature extraction stage was applied three 

colors (red, blue and green) on both the static and the dynamic blocks, two 

types of features have adopted in our work the histogram features and the 

textures features, as mentioned in chapter two. The steps of determining the 

color histogram are listed in code list (3.6).  

                                Code List (3.6) Calculate the Color Histogram  

Input: 

          Videono is the video number. 

Output: 

          Hist_S is an array contains color histogram values for the static blocks.  

          Hist_D is an array contains color histogram values for the dynamic blocks.                                 

Steps: 

     Form buffer named Shot (Videono) the output of code list (3.2) gets the record 

Shots_Record.  

     For each shot in the video Si 

         Bs ← Shots_Record (Si).Start 

         Es ← Shots_Record (Si).End 
 
         From buffer named Frame_files (Videono) the output of code list (3.1) gets the array 

named Color_array. 

         From buffer named Static_Dynamic_Records (Videono) the output of code list (5.3) 

gets the records Static_record and Dynamic_record. 
 
         For Xi ← Bs to Es 

            For each color (Red, Blue and Green)         

                Sc ← Static_record (C, Xi).Scounter   

                Dc ← Dynamic_record (C, Xi).Dcounter   

                For S ← 1 to Sc             

                   Xs ← Static_record (C, Xi).Scount(S).Xs 

                   Xe ← Static_record (C, Xi).Scount(S).Xe  

                   Ys ← Static_record (C, Xi).Scount(S).Ys  

                   Ye ← Static_record (C, Xi).Scount(S).Ye  

                                       Continue 
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Forms the output of Code List (3.6), the following features were 

determined: 

  

1. Mean of the color histogram, calculated by using equation (2.6). Code list 

(3.7) presents of steps of determining the Mean of the color histogram 

values. 

          For X ← Xs to Xe 

            For y ← Ys to Ye 

              Hist_S (C, Color_array (Xi, C, X, Y)) ← Hist_S (Xi, C, Color_array(C, X, Y)) + 1 

            End loop Y 

          End loop X 

       End loop S 

       For D ← 1 to Dc             

           Xs ← Dynamic_record (C, Xi).Dcount (D).Xs  

           Xe ← Dynamic_record (C, Xi).Dcount (D).Xe  

           Ys ← Dynamic_record (C, Xi).Dcount (D).Ys  

           Ye ← Dynamic_record (C, Xi).Dcount (D).Ye  

           For X ← Xs to Xe 

              For y ← Ys to Ye 

                  Co ← Color_array (Xi,C, X, Y)   

                  Hist_D (Xi, C, Co) ← Hist_D (Xi, C, Co) + 1 

              End loop Y 

           End loop X 

       End loop D 

     End loop C 

   End loop Xi 

 End loop Si 
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2. Standard Deviation of the color histogram, calculated by using equation 

(2.7). Code list (3.8) presents of steps of determining the value of Standard 

deviation of color histogram. 

Code list (3.7) Calculate the Mean for the Color Histogram 

Input: 

Videono is the video number. 

Output: 

  Mean_S is an array contains the mean values for the static blocks. 

  Mean_D is an array contains the mean values for the static blocks. 

Steps: 

  Form buffer named Shots (Videono) the output of code list (3.2) gets the record    

Shots_Record. 
 

        For each shot in the video Si 

   Bs ← Shots_Record (Si).Start 

   Es ← Shots_Record (Si).End 

   For Xi ← Bs to Es 

Sum_S ← 0, Sum_D ← 0 
 

               Call Calculate the Color Histogram "code list (3.6)".  
 

            For each color (Red, Blue and Green) C   

                For Xc ← 0 to 255  

              Sum_S ← Sum_S + Hist_S(C, Xc) 

              Sum_D ← Sum_D + Hist_D(C, Xc) 

              Mean_S (C, Xi) ← Mean_S (C, Xi) + (Xc × Hist_S (C, Xc)) 

              Mean_D (C, Xi) ← Mean_D (C, Xi) + (Xc × Hist_D (C, Xc)) 

             End loop Xc 

          Mean_S (C, Xi) ← Mean_S (C, Xi) / Sum_S 

          Mean_D (C, Xi) ← Mean_D (C, Xi) / Sum_D 

               End loop C 

            End loop Xi 

       End loop Si 
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3. Mean Absolute Deviation, is calculated by using equation (2.8). Code list 

(3.9) presents of steps of determining the value of the mean absolute 

deviation.  

Code List (3.8) Calculate Standard Deviation of the Color Histogram 

Input: 

Videono is the video number. 

Output: 

      Std_S is an array contains the standard deviation values for the static blocks. 

      Std_D is an array contains the standard deviation values for the dynamic blocks. 

Steps: 

        Form buffer named Shots (Videono) the output of code list (3.2) gets the record   

Shots_Record.  
 
        For each shot in the video Si 

  Bs ← Shots_Record (Si).Start 

  Es ← Shots_Record (Si).End 
          
           For Xi ← Bs to Es 

      Sum_S ← 0, Sum_D ← 0  
 

  
               Call Calculate the Color Histogram "code list (3.6)". 

            Call Calculate the Mean for the Color Histogram "code list (3.7)". 
 
            For each color (Red, Blue and Green) C   

               For Xc ← 0 to 255  

            Sum_S ← Sum_S + Hist_S(C, Xc) 

            Sum_D ← Sum_D + Hist_D(C, Xc) 

            Std_S (C, Xi) ← Std_S (C, Xi) + (Xc − Mean_S(C, Xi)) 2 × Hist_S (C, Xc) 

            Std_D (C, Xi) ← Std_D (C, Xi) + (Xc − Mean_D(C, Xi)) 2 × Hist_D (C, Xc) 

            End loop Xc 

         Std_S (C, Xi) ← Sum_S) / Xi) Std_S(C, (  

         Std_S (C, Xi) ← Sum_S) / Xi) Std_S(C, (  

      End loop C 

           End loop Xi 

        End Si 
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4. Skewness is calculated by using equation (2.9). The skewness is the third 

order moment which is defined as the measure asymmetry about the mean. 

Code list (10.3) presents of steps of determining the values of the skewness. 

Code List (3.9) Calculate Mean Absolute Deviation 

Input: 

     Videono is the video number. 

Output: 

    Mad_S is an array contains the mean absolute deviation values for the static blocks. 

    Mad_D is an array contains the mean absolute deviation values for the dynamic blocks. 

Steps: 

       Form buffer named Shots (Videono) the output of code list (3.2) gets the record    

Shots_Record.  
 
       For each shot in the video Si 

Bs ← Shots_Record (Si).Start 

Es ← Shots_Record (Si).End 

For xi ← BS to Es 

           Sum_S ← 0, Sum_D ← 0 
 
           Call Calculate the Color Histogram "code list (3.6)". 

        Call Calculate the Mean for the Color Histogram "code list (3.7)". 
 
        For each color (Red, Blue and Green) C   

            For Xc ← 0 to 255  

         Sum_S ← Sum_S + Hist_S(C, Xc) 

         Sum_D ← Sum_D + Hist_D(C, Xc) 

         mad_S (C, Xi) ← mad_S (C, Xi) + Xi) Mean_S(C, - Xc × Hist_S (C, Xc) 

         mad_D (C, Xi) ← mad_D (C, Xi) + Xi) Mean_D(C, - Xc × Hist_D (C, Xc) 

         End loop Xc 

      Mad_S (C, Xi) ← Mad_S (C, Xi) / Sum_S 

      Mad_D (C, Xi) ← Mad_D (C, Xi) / Sum_D 

           End loop C 

        End loop Xi 

      End loop Si 
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All the above features are determined by using the color histogram of the 

image, the following textural features have been determined:  

Code List (3.10) Calculate the Skewness 

Input: 

Videono is the video number. 

Output: 

      Sk_S is an array contains the skewness values for the static blocks. 

      Sk_D is an array contains the skewness values for the dynamic blocks. 

Steps: 

      Form buffer named Shots (Videono) the output of code list (3.2) gets the record 

Shots_Record.  
 
      For each shot in the video Si 

 Bs ← Shots_Record (Si).Start 

 Es ← Shots_Record (Si).End 

          For Xi ← Bs to Es 

    Sum_S ← 0, Sum_D ← 0  
 

             Call Calculate the Color Histogram "code list (3.6)". 

          Call Calculate the Mean for the Color Histogram "code list (3.7)". 
 
          For each color (Red, Blue and Green) C   

              For Xc ← 0 to 255  

            Sum_S ← Sum_S + Hist_S(C, Xc) 

            Sum_D ← Sum_D + Hist_D(C, Xc) 

            Sk_S (C, Xi) ← Sk_S (C, Xi) + 
3

Xi) (C, Mean_S - Xc   × Hist_S (C, Xc) 

            Sk_D (C, Xi) ← Sk_D (C, Xi) +
3

Xi) (C, Mean_D - Xc × Hist_D (C, Xc) 

        End loop Xc       

        Sk_S (C, Xi) ← 3 Sum_S / Xi) (C, Sk_S              

        Sk_D (C, Xi) ← 3 Sum_D / Xi) (C, Sk_D  

             End loop C 

          End loop Xi 

      End loop Si 
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1. Energy, the average energy of the gradient image was calculated by using 

equation (2.4). Three directions of image differencing have been 

determined (horizontal, vertical and diagonal) and considered as the 

gradient components. This determination was done on each block in the 

frame (both the static and dynamic blocks) and for the three color 

components (Red, Blue, Green); the average energy of the gradient image 

will result from the summation of the average energy of gradient of the 

blocks divided by the number of the blocks. Code list (3.11) illustrates the 

steps of determining the values of average energy.  

Code List (3.11) Calculate the Average Energy 

Input: 

           Videono is the video number. 
 
Output: 

      Ene_S is an array contains the average energy values for the static blocks. 

      Ene_D is an array contains the average energy values for the dynamic blocks  
 
Steps: 

     Form buffer named Shots (Videono) the output of code list (3.2) gets the record 

Shots_Record.  

     From buffer named Frame_files (Videono) the output of code list (3.1) gets the array 

Color_array. 

     From buffer named Static_Dynamic_Records (Videono) the output of code list (3.5) 

gets the records Static_record and Dynamic_record. 
      
     For each shot in the video Si 

Bs ← Shots_Record (Si).Start 

Es ← Shots_Record (Si).End 

         For Xi ← Bs to Es 

           For each color (Red, Blue and Green) C 

             Sc ← Static_record (C, Xi).Scounter   

             Dc ← Dynamic_record (C, Xi).Dcounter   
                 
                                                                                                                              Continue 
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         For S ← 1 to Sc             

             Xs ← Static_record (C, Xi).Scount(S).Xs  

             Xe ← Static_record (C, Xi).Scount(S).Xe 

             Ys ← Static_record (C, Xi).Scount(S).Ys  

             Ye ← Static_record (C, Xi).Scount(S).Ye  
 
             Call Determine the average energy of the HVD gradient of the sub-blocks "Code 

List (3.12)". 
 
             Ene_S(C, Xi, 0) ← Ene_S (C, Xi, 0) + Energy_h  

             Ene_S(C, Xi, 1) ← Ene_S (C, Xi, 1) + Energy_v 

             Ene_S(C, Xi, 2) ← Ene_S (C, Xi, 2) + Energy_d  

         End loop S 

         Ene_S(C, Xi, 0) ← Ene_S (C, Xi, 0) / Sc 

         Ene_S(C, Xi, 1) ← Ene_S (C, Xi, 1) / Sc 

         Ene_S(C, Xi, 2) ← Ene_S (C, Xi, 2) / Sc 

         For D ← 1 to Dc             

                Xs ← Dynamic_record (C, Xi).Dcount (D).Xs 

                Xe ← Dynamic _record (C, Xi).Dcount (D).Xe  

                Ys ← Dynamic _record (C, Xi).Dcount (D).Ys  

                Ye ← Dynamic _record (C, Xi).Dcount (D).Ye  
 
                Call Determine the average energy of the HVD gradient of the sub-blocks 

"Code List (3.12)". 
 
                Ene_D(C, Xi, 0) ← Ene_D (C, Xi, 0) + Energy_h  

                Ene_D(C, Xi, 1) ← Ene_D (C, Xi, 1) + Energy_v 

                Ene_D(C, Xi, 2) ← Ene_D (C, Xi, 2) + Energy_d  

        End loop D  

        Ene_D(C, Xi, 0) ← Ene_D (C, Xi, 0) / Dc 

        Ene_D(C, Xi, 1) ← Ene_D (C, Xi, 1) / Dc 

        Ene_D(C, Xi, 2) ← Ene_D (C, Xi, 2) / Dc 

    End loop C 

  End loop Xi 

End loop Si 

                                Continue 
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       Code list (3.12) is established to determine the average energies of the 

vertical, horizontal and diagonal components of the gradient, these average 

energies are defined as follows:  
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The above average energies are computed for the static and dynamic sub-

blocks. 

Code List (3.12) Determine the average energy of the HVD gradient of the sub-blocks 
 
Input: 

       Xs is the x-coordinate of the left side of the sub-block. 

       Xe is the x-coordinate of the right side of the sub-block. 

       Ys is the y-coordinate of the left side of the sub-block. 

       Ye is the y-coordinate of the right side of the sub-block. 

       Color_array is an array contains color component data for each frame. 

       Xi is the frame index. 
 
Output: 

        Energy_h is an array contains the average energy values for horizontal gradient in the 

sub-blocks.   

        Energy_v is an array contains the average energy values for vertical gradient in the 

sub-blocks.   

        Energy_d is an array contains the average energy values for diagonal gradient in the 

sub-blocks.   
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Steps: 
 
    Sum1 ← 0 

    Sum2 ← 0 

    Energy_h ← 0 

    Energy_v ← 0 

    Energy_d ← 0 
     
    For each color (Red, Blue and Green) C 
 
       For Y ← Ys to Ye – 1 

          For X ← Xs to Xe  

             Ene_h ← Ene_h + (Color_array (Xi, C, X, Y + 1) – Color_array (Xi, C, X, Y)) 2 

             Sum1← Sum1 + 1 

          End loop Y 

       End loop X 
 
       For Y ← Ys to Ye 

        For X ← Xs to Xe - 1 

           Ene_v ← Ene_v + (Color_array (Xi, C, X + 1, Y) – Color_array (Xi, C, X, Y)) 2    

        End loop X  

     End loop Y 
 
     For Y ← Ys to Ye – 1 

        For X ← Xs to Xe - 1 

          Ene_d ← Ene_d + (Color_array (Xi, C, X + 1, Y + 1) – Color_array (Xi, C, X, Y)) 2  

          Sum1← Sum1 + 1 

        End loop X  

     End loop Y 
  
     Energy_h ← Ene_h/Sum1 

     Energy_v ← Ene_v/Sum1 

     Energy_d ← Ene_d /Sum2  

  End loop C 
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2. Contrast-1, calculated by using equation (2.2). In order to compute the 

contrast the standard deviation of each block (both static and dynamic) is 

computed for three color component (Red, Blue, Green) and then take the 

average of these values and consider as the standard deviation of the frame 

in the same way the average of the block’s mean is computed for each 

frame and the contrast is computed by dividing the average of the standard 

deviation over the average of the mean for each frame. Code list (3.12) 

illustrates the implementation step to determined Contrast-1. 

Code List (3.13) Calculate the Contrast-1 

 

Input: 

        Videono is the video number. 
 
 
Output: 

        Cont _S is an array contains the contrast values for the static blocks. 

        Cont_D is an array contains the contrast values for the dynamic blocks.  
  
Steps: 
       
       Form buffer named Shots (Videono) the output of code list (3.2) gets the record     

named Shots_Record. 
        
       From buffer named Frame_files (Videono) the output of code list (3.1) gets the array 

named Color_array. 
 
       From buffer named Static_Dynamic_Records (Videono) the output from the code list   

(5.3) gets the records Static_record and Dynamic_record 
 
       
     For each shot in the video Si 

   Bs ← Shots_Record (Si).Start 

   Es ← Shots_Record (Si).End 

                                                                                                                                  Continue 
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      For Xi ← Bs to Es 

         For each color (Red, Blue and Green) C 
 
           Xe ← Static_record (C, Xi).Scount(S).Xe  

           Ys ← Static_record (C, Xi).Scount(S).Ys  

           Ye ← Static_record (C, Xi).Scount(S).Ye        
            
           Mean (Xi, C) ← 0        

           Sc ← Static_record (C, Xi).Scounter   

           Dc ← Dynamic_record (C, Xi).Dcounter  
            
           For S ← 1 to Sc             

            Xs ← Static_record (C, Xi).Scount(S).Xs 
            
            Call Determined the Mean and Stander for sub-blocks "Code List (3.14)". 
 

         Mean_S (C, Xi) ← Mean_S (C, Xi) + M_block (C, S) 

            Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) + Std_Block (C, S) 

        End loop S 
      
     Mean_S (C, Xi) ← Mean_S (C, Xi) /Sc    

        Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) / Sc  

        Cont_S (C, xi) ← Mean_Std_S (C, Xi) / Mean_S (C, Xi)   
       
 
         For D ← 1 to Dc             

             Xs ← Dynamic_record (C, Xi).Dcount (D).Xs 

             Xe ← Dynamic _record (C, Xi).Dcount (D).Xe  

             Ys ← Dynamic _record (C, Xi).Dcount (D).Ys  

             Ye ← Dynamic _record (C, Xi).Dcount (D).Ye  
  
             Call Determined the Mean and Stander for sub-blocks "Code List (3.14)". 
 

                         Mean_D (Xi) ← Mean_D (C, Xi) + M_block (C, D) 

                Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) + Std_block (C, D) 

                     End loop D 

                                                                                                                                 Continue 
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Code list (3.14), is established to determine the mean and the standard 

deviation for each sub-block in the image (whether it is static or dynamic).   

            Mean_D (C, Xi) ← Mean_D (C, Xi) / Dc    

                  Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) / Dc    

            Cont_D (C, xi) ← Mean_Std_D (C, Xi) / Mean_D (C, Xi) 

       End loop C 

    End loop Xi    

 End loop Si 
 

Code List (3.14) Determined the Mean and Stander for sub-blocks 

   

Input: 

       Xs is the x-coordinate of the left side of the sub-block 

       Xe is the x-coordinate of the right side of the sub-block 

       Ys is the y-coordinate of the left side of the sub-block 

       Ye is the y-coordinate of the right side of the sub-block 

       Color_array is an array contains color component data for each frame 

        Bi is the block index. 

        Xi is the frame index. 
 
 Output: 

       Std_block it is an array contains the standard deviation values for the sub-blocks. 

       M_block it is an array contains the mean values for the sub-blocks. 

 
Steps: 
 
For each color (Red, Blue and Green) C 
    
   For X ← Xs to Xe 

     For Y ← Ys to Ye 

       Counter (C) ← Counter (C) + 1 

                                                                                                                                    Continue      
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3. Contrast-2, it is calculated by using equation (2.3). In order to compute the 

contrast minimum pixel value and the maximum pixel value from each 

block (both static and dynamic) in the frame is computed and the mid 

value for each frame is computed from the average of the minimum and 

maximum values of the blocks of each frame. The contrast of each frame 

is computed by dividing the summation of the points that are smaller of the 

mid value over the summation of the points that are larger than the mid 

value. Code list (3.15) shows the implementation steps to determine the 

Contrast-2. 

       M_block (C, Bi) ← M_block (C, Bi) + Color_arrary (Xi, C, X, Y) 

    End loop Y 

  End loop X 

  M_block (C, Bi) ← M_block (C, Bi) / Counter (C) 

  For X ← Xs to Xe 

    For Y ← Ys to Ye 

      Std_block (C, Bi) ← Std_block (C, Bi) + (Color_arrary (Xi, C, X, Y) – M_block(C, Bi)) ^ 2 

    End loop Y 

  End loop  

  Std_block (C, Bi) ← Counter(C) / Bi) (C,Std_block  

End loop C 

Code List (3.15) Calculate Contrast-2 

Input: 

      Videono is the video number. 

Output: 

      Cont _S is an array contains the contrast values for the static blocks. 

      Cont_D is an array contains the contrast values for the dynamic blocks  

Steps: 

          Form buffer named Shots (Videono) the output of code list (3.2) gets the record      

Shots_Record.  
               
                                                                                                                                       Continue 
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          From buffer named Frame_files (Videono) the output of code list (3.1) gets the    

array named Color_array. 
 
          From buffer named Static_dynamic_records (Videono) the output of code list (5.3) 

gets the records Static_record and Dynamic_record. 
 
 
          For each shot in the video Si 

     Bs ← Shot_Record (Si).Start 

     Es ← Shot_Record (Si).End 
 

              For Xi ← Bs to Es 

                 For each color (Red, Blue and Green) C 

                    Sc ← Static_record (C, Xi).Scounter   

                    Dc ← Dynamic_record (C, Xi).Dcounter  
 
                    For S ← 1 to Sc             

                        Xs ← Static_record (C, Xi).Scount(S).Xs  

                        Xe ← Static_record (C, Xi).Scount(S).Xe  

                        Ys ← Static_record (C, Xi).Scount(S).Ys  

                        Ye ← Static_record (C, Xi).Scount(S).Ye  
 
                        Call Determined the Min and Max of the Sub-blocks "code List (3.17)".   
 
                        M_Min_S (C, Xi) ← M_Min_S (C, Xi) + Min (C, S) 

                        M_Max_S (C, Xi) ← M_Max_S (C, Xi) + Max (C, S) 
 

                     M_Min_S (C, Xi) ← M_Min_S (C, Xi) /Sc    

                        M_Max_S (C, Xi) ← M_Max_S (C, Xi) / Sc  

                       Median_S (C) ← (M_Min_S (C, Xi) + M_Max_S (C, Xi)) / 2 
 
                       For X ← Xs to Xe 

                          For Y ← Ys to Ye  

                                If Color_array (Xi, C, X, Y) > Meadin_S (C) Then 

                                      Small(C) ← Small(C) + Color_array (Xi, C, X, Y) 

                                Else         

                                

                                                                                                                             Continue 
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                                 Large(C) ← Large(C) + Color_array (Xi, C, X, Y) 

                            End if 

                       End loop Y 

                   End loop X   

              End loop S 
                                                                                
            Cont_S (C, Xi) ← Smal_S(C) / Large_S(C)                              

            For D ← 1 to Dc             

                 Xs ← Dynamic_record (C, Xi).Dcount (D).Xs  

                 Xe ← Dynamic _record (C, Xi).Dcount (D).Xe 

                 Ys ← Dynamic _record (C, Xi).Dcount (D).Ys  

                 Ye ← Dynamic _record (C, Xi).Dcount (D).Ye  

                             Call Determined the Min and Max of the Sub-blocks "code List (3.17)". 

                  M_Min_D (C, Xi) ← M_Min_D (C, Xi) + Min (C, D) 

                  M_Max_D (C, Xi) ← M_Max_D (C, Xi) + Max (C, D) 
               

               M_Min_D (C, Xi) ← M_Min_D (C, Xi) / Dc    

               M_Max_D (C, Xi) ← M_Max_D (C, Xi) / Dc  

                  Median_D (C) ← (M_Min_D (C, Xi) + M_Max_D (C, Xi)) / 2 

                  Large (C) ← 0, Small (C) ← 0 

                  For X ← Xs to Xe 

                     For Y ← Ys to Ye  

                          If Color_array (Xi, C, X, Y) > Meadin_D (C) Then 

                               Small(C) ← Small(C) + Color_array (Xi, C, X, Y) 

                          Else 

                               Large(C) ← Large(C) + Color_array (Xi, C, X, Y) 

                          End if 

                     End loop Y 

                  End loop X                                                   

            End loop D 

            Cont_D (C, Xi) ← Smal_D(C) / Large_D(C) 

     End loop C 

   End loop Xi 

End loop Si 
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        Code list (3.16) computes the minimum and maximum values for each 

block in the frame, whether it is static and dynamic blocks. 

 

 
                      Code List (3.17) Determined the Min and Max of the Sub-blocks    

 

Input: 

       Xs is the x-coordinate of the left side of the sub-block. 

       Xe is the x-coordinate of the right side of the sub-block. 

       Ys is the y-coordinate of the left side of the sub-block. 

       Ye is the y-coordinate of the right side of the sub-block. 

       Color_array is an array contains color component data for each frame. 

        Bi is the block index. 

        Xi is the frame index.    

 
Output: 

       Min it is array of the Minimum values. 

       Max it is array for the Maximum values. 
 
Steps: 

     For each color (Red, Blue and Green) C 

        Min (C, Index) ← Color_array (Xi, C, Xs, Ys)  

        Max (C, Index) ← Color_array (Xi, C, Xs, Ys)  

 
        For X ← Xs+1 to Xe 

           For Y ← Ys to Ye  

                           If Min (C, Index) > Color_arrary (C, X, Y) Then 

                  Min (C, Index) ← Color_arrary (C, X, Y) 

              End if  

              If Max (C, Index) < Color_arrary (C, X, Y) Then 

                 Max (C, Index) ← Color_arrary (C, X, Y) 

              End if  

            End loop Y 

          End loop X 

        End loop C 
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4. Modification of Fractal Dimension: one of the important textural feature is 

fractal dimension, in this research work a modification (simplified) 

method for determination of fractal dimension was implemented, the 

modification is proposed to handle the high computational complexity of 

the traditional methods for determination of fractal implies the following 

steps: 

1. Scan the blocks (static/dynamic) and find the mean (g) and standard    

deviation (σ ) of the pixels values 

2. determined the following parameters:      

    M1 = g − (α ×σ )                                                                        (3.4) 

              M2 = g + (α ×σ  )                                                                        (3.5)             

              Where α was taken (3). 

        And apply the following conditions: 

            If M1 < 0 then M1=0. 

            If M2 >255 then M2=255. 

3. determined the following slope value: 

       
p

12
N

M - M
 S=                                                                                 (3.6) 

        Where Np is the number of threshold values (Ti) used to categorize the 

block's points into dark or bright points.  

4. for each threshold value (T1……..TNp) 

a. Set the counter ni= 0. 

b. Scan all pixels of the blocks (static/dynamic), and for the case 

where each scanned pixel has a value larger than Ti increment ni 

by 1.   

          End for 

5. then determined the estimated (approximate) fractal dimension 

parameter buy using the following equation: 
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      Code list (3.18) shows how to determine the modification of the fractal 

dimension (H). 
 

 
 

Code List (3.18) Calculate modification of the fractal dimension (H) 

 
Input: 
            Videono is the video number. 

            Np is the number of point.  

 
Output: 
            Slop_S is an array that contains the slope values for the static blocks. 

            Slop_D is an array that contains the slope values for the static blocks. 

 
Steps: 

Form buffer named Shots (Videono) the output of code list (3.2) gets the record           

Shots_Record. 

         From buffer named Frame_files (Videono) the output of code list (3.1) gets the 

array named Color_array. 

 
         From buffer named Static_dynamic_records (Videono) the output of code list 

(5.3) gets the records Static_record and Dynamic_record. 

 
          For each scenes in the video Si 

     Bs ← Shot_Record (Si).Start 

     Es ← Shot_Record (Si).End 

              For Xi ← Bs to Es                                                                  

                  For each color (Red, Blue and Green) C 

                     Sc ← Static_record (C, Xi).Scounter   

                     Dc ← Dynamic_record (C, Xi).Dcounter   

             Continue 
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      For S ← 1 to Sc             

          Xs ← Static_record (C, Xi).Scount(S).Xs  

          Xe ← Static_record (C, Xi).Scount(S).Xe  

          Ys ← Static_record (C, Xi).Scount(S).Ys  

          Ye ← Static_record (C, Xi).Scount(S).Ye 
 
          Call Determined the Mean and Stander for sub-blocks "Code List (3.14)". 
 
           Mean_S (C, Xi) ← Mean_S (C, Xi) + M_block (C, S) 

           Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) + Std_Block (C, S) 
 
           Mean_S (C, Xi) ← Mean_S (C, Xi) /Sc    

           Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) / Sc  

           Min_S(C, Xi) ← Mean_S (C, Xi) - 3 × Mean_ Std_S (C, Xi) 

           Max_S(C, Xi) ← Mean_S (C, Xi) + 3 × Mean_ Std_S (C, Xi) 
 
           If Min_S(C, Xi) < 0 Then 

               Min_S(C, Xi) ← 0 

           End If 
 
           If Max_S(C, Xi) > 255 Then 

               Max_S(C, Xi) ← 255 

           End If 

             For I ← 1 to Np 

                  Po_S = Min_S(C, Xi) + (Max_S(C, Xi) – Min_S(C, Xi)) × I / Np 

                  For X ← Xs toXe 

                    For Y ← Ys to Ye 

                           If Color_array (Xi, C, X, Y) ≤ Po_S   Then 

                               PCount_S (C, Xi, I) ← PCount_S (C, Xi, I) + 1 

                           End If 

                    End loop Y 

                  End loop X 

              End loop I 

           End loop S 

                                                                                                                   Continue 
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              For D ← 1 to Dc             

                                Xs ← Dynamic_record (C, Xi).Dcount (D).Xs  

                                 Xe ← Dynamic _record (C, Xi).Dcount (D).Xe  

                        Ys ← Dynamic _record (C, Xi).Dcount (D).Ys  

                                 Ye ← Dynamic _record (C, Xi).Dcount (D).Ye  

                     Call Determined the Mean and Stander for sub-blocks "Code List (3.14)". 
 
                     Mean_D (Xi) ← Mean_D (C, Xi) + M_block (C, D) 

                                 Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) + Std_block (C, D) 

                  Mean_D (C, Xi) ← Mean_D (C, Xi) / Dc    

            Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) / Dc  

            Min_D(C, Xi) ← Mean_D (C, Xi) - 3 × Mean_ Std_D (C, Xi) 

            Max_D(C, Xi) ← Mean_D (C, Xi) + 3 × Mean_ Std_D (C, Xi) 
 
            If Min_D (C, Xi) < 0 Then 

                  Min_D (C, Xi) ← 0 

            End If 
          
            If Max_D(C, Xi) > 255 Then 

                Max_D(C, Xi) ← 255 

            End If 

            For I ← 1 to Np 

                        Po_D = Min_D(C, Xi) + (Max_D(C, Xi) – Min_D(C, Xi)) × I / Np 

               For X ← Xs toXe 

                    For Y ← Ys to Ye 

                           If Color_array (Xi, C, X, Y) ≤ Po_D Then 

                               PCount_D (C, Xi, I) ← PCount_D (C, Xi, I) + 1 

                           End If 

                    End loop Y 

                  End loop X 

              End loop I 

              End loop D 

     End loop C 

 End loop Xi                                                                                                      

                                                                                                                                Continue 
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      For Xi ← Bs to Es 

          For each color (Red, Blue and Green) C 

              K ← 0 

              For I ← 1 to Np 

                 If PCount_S (C, Xi, I) > 0 Then 

                     Sum_I ← Sum_I + I 

                     Sqr_I ← Sqr_I + (I) 2 

                     Ig ← Ig + I × log (PCount_S(C, Xi, I)) 

                     Cg ← Cg + log (PCount_S(C, Xi, I)) 

                      K ← K + 1 

                 End If 

              End loop I 

              If K > 0 Then 

                   
 (Sum_I)- Sqr_I  Np   

Ig  Sum_I - Cg  Np
 Xi) (C, Slop_S

2×
××←  

              End If 

              Sum_I ← 0, Sqr_I ←0 

              Ig ← 0, Cg ← 0 

              K ← 0 

              For I ← 1 to Np 

                  If PCount_D (C, Xi, I) > 0 Then 

                      Sum_I ← Sum_I + I 

                      Sqr_I ← Sqr_I + (I) 2 

                      Ig ← Ig + I × log (PCount_D(C, Xi, I)) 

                      Cg ← Cg + log (PCount_D(C, Xi, I)) 

                      K ← K + 1 

                  End If 

              End loop I 

              If K > 0 Then 

                   
 (Sum_I)- Sqr_I  Np 

Ig  Sum_I - Cg  Np
 Xi) (C, Slop_D

2×

××←  

              End If 

          End loop C   

      End loop Xi  

    End loop Si                        
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 3.2.6 Features Analysis 

The first step of features analysis is to neglect all shots that have small 

number of frames; in our work all the shots that have less than 45 frames have 

been neglected. The next step is to select a number that should be less than the 

total number of frames in a specific shot, this number refers to the number of 

frames in each video sequence, Ten video sequence have been taken from 

each shot, in every sequence the list of frames that belongs to that sequence is 

determined by the start frame, end frame and the total number of frames in the 

specific shot. The same ten features will be recalculated for the list of frames 

in every sequence of the shot. The last step is to compute the average of each 

feature in each sequence, the results will put in matrix named pattern, it 

contains the average of each feature of the entire 49 shots and the indices of 

the matrix are the sequence number and the feature number. It should be 

known that all the above steps are applied on the three colors (red, blue and 

green) and for both static and dynamic blocks.     

 

 
3.2.7 Power Discrimination 

In order to reduce the computation time taken in the K-Means algorithm, 

and to improve the classification results, the discrimination power of the 

adopted features must be calculated;  

 This procedure use three matrices as a major input, first one is the 

pattern matrix which is mentioned in the features analysis, the second matrix 

is the M_Template matrix (the matrix contains the averages of the features 

calculated for all the frames in the entire 49 shots, and indexed by shot 

number and feature number), the third matrix is the Std_Template matrix (the 

matrix contains the standard deviation of the features calculated for all the 

frames in the entire 49 shots, and indexed by shot number and feature 

number), all the above matrices are for the three color components (Red, 
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Blue, Green) and both have 20 features first ten features are for the static 

features and the last ten are for the dynamic features. 

two types of distance measure had been used the first depends on the 

Euclidean distance and the second depending on the city block distance, the 

results of the two measures were approximately similar, therefore only one of 

them is consider in the next steps of the work.   

The procedure of the power discrimination will include five steps, in 

the first step every feature is tested alone, the second step is the test of 

combination of two features, the third step is the test to the combination of 

three features, the fourth step is test to the combination of four features, the 

fifth step is test to the combination of five features, only the test of the single 

feature and the test of the combination of two features are mentioned in the 

code list (3.19).        

          
Code List (3.19) Determined the Power Discrimination 

Input: 

     Pattern is an array contains means of features that extracted from the video sequence.  

     M_Template is an array contains means of features that extracted from the shot's frames. 

     Std _Template is an array contains standard deviation of features that extracted from the 

shot's frames. 

     Index is an array indexed by the video sequence number and contains the shot number.  

     Pn is the number of patterns. 

     Sn is the number of shots.  

     Fn is the number of features. 

Output: 

     Featues_Power_file1 is a buffer contains two records Feature_Record.Success and   

Feature_Record.Failure, they hold the high power discrimination and low power 

discrimination rates. 

     Featues_Power_file2 is a buffer contains two records Feature_Record.Success2 and   

Feature_Record.Failure2 they hold the high power discrimination and low power 

discrimination rates. 

                                    Continue 
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Steps: 

      For fi ← 1 to Fn  

Fo r P ← 1 to Pn  

Min ← 99999999999# 

   For S ← 1 to Sn 

     Diff ← (Abs (Pattern (P, Fi) – M_Template (S, Fi)) / Std_ Template (S, Fi)) 

     If Min > Diff Then  

         Min ← Diff 

         Sm ← S 

     End if 

   End loop S 

   If Sm ← Index (p) Then 

       Success (Fi) ← Success (Fi) + 1 

   Else 

       Failure (Fi) ← Failure (Fi) + 1 

   End If 

         End loop p 

      End loop fi 

      Feature_Record.Success (Fi) ← 100 * Success (Fi) / Xr 

      Feature_Record.Failure (Fi) ← 100 * Failure (Fi)/ Xr 

      For I ← 1 to Nf - 1 

        For J ← I + 1 to Fn 

          For P ← 1 to Xr 

            Mn ← 99999999999# 

            For Si ← 1 to Sn 

              Diff ← 0 

              Diff ← (Abs Pattern (P, I) – M_Template (S, I)) / Std_Template(S, I)) + 

                           (Abs Pattern (P, J) – M_Template (S, J)) / Std_Template (S, J)) 

     If Mn > diff Then  

         Mn ← Diff 

         Sm ← S 

     End if 

            End loop S 

   If Sm ← Index (P) Then 

                              Continue 
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3.2.8 K-means Algorithm 

The last step of the work is the clustering, the algorithm used in the 

clustering is the K-Means algorithm, and the input to the algorithm will be 

only the features (for read, blue and green) that give high rate of success after 

applied Code List (3.19). Code List (3.20) shows how the K-mean algorithm 

has been implemented.  

        Success2 (I, J) ← Success2 (I, J) + 1 

    Else 

        Failure2 (I, J) ← Failure2 (I, J) + 1 

    End If 

        End loop P 

      End loop J 

       End loop I 

       Feature_Record.Success2 (I, J) ← 100 * Success2 (I, J) / Xr 

       Feature_Record.Failure2 (I, J) ← 100 * Failure2 (I, J)/ Xr 
 
       Save in buffered named Featues_Power_file1 the records Feature_Record.Success 

and   Feature_Record.Failure.  

      Save in buffered named Featues_Power_file2 the records Feature_Record.Success2 

and   Feature_Record.Failure2.  

                                Code List (3.20) Implement the K-Means Algorithm 

Input: 

       Cntr is an array contains the centriods.  

        Pn is the number of the videos sequence. 

        Cn is the number of centriode.  

        Fn is the number of features. 

        Feature is an array contains the features that have high rate of power discrimination. 

Output: 

        Success array contains the successful rate for the features. 

        Failure array contains the failure rate for the features. 

Steps: 

        Flag ← 1 

                                                                                                                                Continue 
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     While Flag ← 1   

           Cc ← 0, Cm ← 0 

           Max = -99999999999# 

           For Pi ← 1 to Pn 

              Min = 99999999999# 

              For Ci ← 1 to Cn 

                 Diff ← 0 

                  For Fi ← 1 to Fn 

                    Diff ← Diff + (Cntr (Ci, Fi) – Feature (Pi, Fi)) 2 

                  End loop Fi 

                  If Min > Diff  Then 

                      Min ← Diff  

                      Cc ← Ci 

                  End If 

              End loop Ci 

              Count (Cc) ← Count (Cc) + 1 

              Clust (Cc).Counter (Count (Cc)) ← Pi 

               If Max < Count (Cc) Then 

                   Max ← Count (Cc) 

                    Cm ← Cc 

               End If 

                    End loop Pi 

           For Ci ← 1 to Cn 

              For C ← 1 to Count (Ci) 

                 Pi ← Clust (Ci).Counter (C) 

                 For Fi ← 1 to Fn 

                    Scntr (Fi) ← Scntr (Fi) + Feature (Pi, Fi) 

                 End loop Fi 

              End loop C 

              For Fi ← 1 to Fn 

                Ocntr (Ci, Fi) ← Ocntr (Ci, Fi) 

                Cntr (Ci, Fi) ← Scntr (Fi) 

               

 

                    Continue 
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                   Scntr (Fi) ← 0 

                  Cntr(Ci, Fi) ← Cntr(Ci, Fi) / Count(Ci) 

              End loop Fi 

           End loop Ci    

           Flag2 ← 0 

                    For Ci ← 1 to Cn       

              If Count (Ci) ← 0 Then 

                  Flag2 ← 1, Flag ← 1  

                  For Fi ← 1 to Fn 

                    Cntr (Ci, Fi) ← Cntr (Cm, Fi) × 0.95 

                    Cntr (Cm, Fi) ← Cntr (Cm, Fi) × 1.05 

                  End loop Fi 

              End If 

           End loop Ci 

           If Flag2 ← 0 Then 

              Flag ← 0 

              For Ci ← 1 to Cn 

                For Fi ← 1 to Fn 

                   If (Cntr (Ci, Fi) – Ocntr (Ci, Fi)) ≤ 0.00001 Then 

                   Else 

                      Flag ← 1 

                   End If 

                End loop Fi 

              End loop Ci 

                    End If 

      End while loop 

 



          Chapter Two 

         Theoretical Background 
 

 

2.1 Introduction 

Fields ranging from commercial to military are needed to analyze 

data in an efficient and fast manner. And due to the digitization of data 

and advances in technology, it has become extremely easy to obtain and 

store large quantities of data, particularly multimedia data (video, image, 

audio). Multimedia data mining is a sub field of data mining that deal 

with the extraction of implicit knowledge, multimedia relationship, or 

other patterns, not explicitly stored in multimedia database. Feature 

selection and extraction is the pre-processing step of multimedia data 

mining. Obviously this is a critical step in the entire scenario of 

multimedia data mining.  

 

 

2.2 Video Segmentation 

Video, whether digital or analog, consists of a series of individual 

frames displayed at a constant rate (the effect of which is to give the 

illusion of motion) along with an associated audio track [Smea99]. 

generally, there are three types of videos; the produced, the raw, and the 

medical video. The examples of produced video are movies, news videos, 

dramas...etc. And, those of raw video are traffic videos, surveillance 

videos…etc. Ultra sound videos including echocardiogram can be an 

example of the medical videos; these different types of videos need to be 
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treated differently to achieve these missing parts due to their different 

characteristics [Band02]. 
 
To allow any kind of content-based navigation of video, the material 

has first to be broken up into constituent elements and structured. For 

video, these elements are shots and scenes. A shot is defined as the video 

resulting from a continuous recording by a single camera. A scene is 

made up of multiple shots, while a television broadcast of a program 

consists of a collection of scenes. For studio broadcasts (for example the 

news transmitted live), it is fairly easy to break the program up as the 

boundaries between shots so these boundaries are hard. However, many 

television programs and most films use special post-production 

techniques to soften the boundaries, thus making them easier for the 

human eye, but more difficult to detect automatically [Smea99].  

There are four major types of boundaries between shots [Gorm99, 

Smea00]: 
 

1. Cut: This is a hard boundary and occurs when there is a complete   

change of shot over a span of two consecutive frames. This is 

commonly used in live or in studio transmissions. 

2. Fade: There are two types of fade, a fade-out and a fade-in. A 

fade-out occurs when the picture gradually fades to a dot or black 

screen, while a fade-in occurs when the picture is gradually 

displayed from a black screen. Both these effects occur over a few 

frames, e.g. 12 frames for a half-second fade-out. 

3. Dissolve: This is the simultaneous occurrence of a fade-out and a 

fade-in, the two frames being superimposed on each other over a 

fixed duration of, say, 1/2 second (12 frames). This can be used in 

live in-studio transmissions. 
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4. Wipe: This effect is like a virtual line going across the screen 

clearing one picture as it brings in another, again occurring over a 

few frames. It was particularly common in early TV (such as the 

Batman series, but it still used). 
 

Each of these post-production and live techniques makes the 

automatic detection of shot boundaries in video a non-trivial task. 

A number of techniques have been tried in shot boundary detection 

with varying degrees of success. Some of these techniques are pixel 

differences between adjacent frames, color histograms method which 

compares the intensity or color histograms between adjacent frames, and 

the edges detection in adjacent frames. Each of these techniques is known 

to work well for different transition types, e.g. frame comparison based 

on colors works well on cuts, but not on fades or dissolves, while edge 

detection handles wipes and dissolves quite well [Smea00, Zhon00]. 

In general, the most widely used basic unit in produced videos (i.e., 

movies, news videos) is a shot which is defined as collections of frames 

recorded from a single camera operation. Raw videos are usually 

recorded from a single fixed camera or multiple cameras with very 

limited camera motion without any camera on-off. Therefore, the concept 

of the shot is not relevant since whole video would be a shot by the above 

definition [Band02]. 

 

 
2.3 Scene Changes Detection  

Shot based indexing techniques have been widely used to organize 

video data. Scene change detection is the most commonly used method to 

segment image sequences into coherent units for video indexing. A shot 

is a sequence of contiguous frames that are recorded from a camera. 
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There is usually one continuous action within a shot, with no major 

change of scene content. However, there are still many different changes 

in a video (e.g. object motion, lighting change and camera motion), it is a 

nontrivial task to accurately detect scene changes. Furthermore, the 

cinematic techniques used between scenes, such as dissolves, fade and 

wipes, produce gradual scene changes that are harder to detect. Scene cut 

detection algorithms have been studied since the early 90’s [Zhon00]. The 

basic method is to measure the pixel difference frame-to-frame in terms 

of intensity or color. The number of changed pixels is counted and if the 

number exceeds a certain percentage, a scene cut is detected. This method 

is not robust due to the camera and object motions that can cause large 

pixel value differences. Color histograms have been used to overcome the 

problem, as color distributions in successive frames are not significantly 

affected by camera or object motions. Assume Hi is an N-bin color 

histogram extracted from frame i, the frame difference is defined as 

[Fern03]: 

∑
=

+−=
n

j
iii jHjHD

1
1 )()(                                                    (2.1) 

 
If D i is larger than a given threshold, a scene cut is detected at the 

frame i+1.  

Although color histogram difference is good for direct scene 

changes, gradual transitions such as fade-in, fade-out, dissolve and wipe 

cannot be accurately detected in the same way.  

The edge detection method is used to solve this problem; this method 

is based on detecting edges in two adjacent images and comparing them. 

By detecting the appearance of intensity edges in a frame that are far 

away from the intensity edges in the previous frame, it should be possible 
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to detect and classify the four different types of shot breaks [Smea99, 

Gorm99].   

 

 
2.4 Motion Estimation 

A lot of information can be extracted from time varying sequences of 

images, often more easily than from static images. For example, 

camouflaged objects are only easily seen when they move. Moreover, the 

relative sizes and position of objects are more easily determined when the 

objects move. The analysis of visual motion divides into two stages: 
 

1. The measurement of the motion 

2. The use of motion data to segment the scene into distinct objects, 

and to extract information, about the shape and motion of the 

objects. 

There are two types of motion to consider: movement in the scene 

with a static camera, and movement of the camera. Since motion is 

relative anyway, these types of motion should be the same. 

However, this is not always the case, since if the scene moves 

relative to the illumination, shadow effects need to be dealt with. Also, 

specularities can cause relative motion within the scene [Comp87]. 
 

The Motion estimation has been wildly used in many applications of 

video processing since it provides the most essential information for an 

image sequence; Motion estimation is defined as the process which 

generates the motion vectors that determine the differences between the 

blocks of the current frame and the blocks of the previous frame 

[Kuan03].  One of the most common methods of motion estimation is the 

Block Matching (BM); the block matching is a standard technique for 

encoding motion in video sequences. It aims at detecting the motion 
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between two images in a block-wise sense. The blocks are usually 

defined by dividing the image frame into non-overlapping square parts 

[Gyao03, Watk94, Bolt06]. This method work on a sequence of frames, 

the current frame is predicted from a previous frame known as reference 

frame. The current frame is divided into macro blocks, typically 16 x 16 

pixels in size. This choice of size is a good trade-off between accuracy 

and computational cost. However, motion estimation techniques may 

choose different block sizes, and may vary the size of the blocks within a 

given frame. Each macro block is compared to a macro block in the 

reference frame using some error measure, if there is no motion between 

fields, there will be high correlation between the pixel values. However, 

in the case of motion, the same or similar pixel values will be elsewhere 

and it will be necessary to search for them by moving the search block to 

all possible locations in the search area, and the best matching macro 

block is selected. A vector denoting the displacement of the macro block 

in the reference frame with respect to the macro block in the current 

frame is determined. This vector is known as motion vector [Moti00]. 

Different error measures can bee used for motion estimation. Among 

others, the sum of absolute differences (SAD) and the minimum squared 

error (MSE) are commonly used [Bane00]. 

 

 
2.5 Image Mining  

Image mining deals with extraction of implicit knowledge, image 

data relationship or other patterns are not explicitly stored in images; 

image mining methodology uses ideas from computer vision, image 

processing, image retrieval, data mining, machine learning, databases and 

AI [Zhan01]. The fundamental challenge in image mining is to determine 

how low-level, pixel representation contained in an image or an image 
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sequence can be effectively and efficiently processed to identify high-

level spatial objects and relationships; typical image mining process 

involves preprocessing, transformations and feature extraction, mining (to 

discover significant patterns out of extracted features), evaluation and 

interpretation and establishment of the final knowledge. Various 

techniques have been utilized to image mining; they include object 

recognition, learning, clustering and classification. For example, 

Association rule mining is a well known data mining technique that aims 

to find interesting patterns in very large databases. Some preliminary 

work has been done to apply association rule mining on sets of images to 

find interesting patterns [Mali05].  

Clearly, image mining is different from low-level computer vision 

and image processing techniques because the focus of image mining is in 

extraction of patterns from large collection of images, whereas the focus 

of computer vision and image processing techniques is in understanding 

and/or extracting specific features from a single image. While there seems 

to be some overlaps between image mining and content-based retrieval 

(both are dealing with large collection of images). The content-base 

retrieval requires the image search engine to find the set of images from a 

given image collection that is similar to the given query image [Haup02]; 

the image mining goes beyond the problem of retrieving relevant images. 

In image mining, the goal is the discovery of image patterns that are 

significant in a given collection of images. Perhaps, the most common 

misconception of image mining is that image mining is nothing more than 

just applying existing data mining algorithms on images; this is certainly 

not true because there are important differences between relational 

databases versus image databases [Zhan01]: 
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1. Absolute versus relative values. In relational databases, the data 

values are semantically meaningful. For example, age is 35 is well 

understood. However, in image databases, the data values 

themselves may not be significant unless the context supports them. 

For example, a grey scale value of 46 could appear darker than a 

grey scale value of 87 if the surrounding context pixels values are all 

very bright. 
  
2. Spatial information (Independent versus dependent position). 

Another important difference between relational databases and 

image databases is that the implicit spatial information is critical for 

interpretation of image contents but there is no such requirement in 

relational databases. As a result, image miners try to overcome this 

problem by extracting position-independent features from images 

first before attempting to mine useful patterns from the images. 
 

3. Unique versus multiple interpretations. A third important 

difference deals with image characteristics of having multiple     

interpretations for the same visual patterns. The traditional data 

mining algorithm of associating a pattern to a class (interpretation) 

will not work well here. A new class of discovery algorithms is 

needed to cater to the special needs in mining useful patterns from 

images. 

 

 
2.6 Color Image  

Color is a property of light that is determined by its wavelength or 

by its composition as a blend of several wavelengths. The range of visible 

wavelengths of light is known as the visible spectrum, or simply the 

spectrum. The term color may also refer to a property of objects or 
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materials, determined by which wavelengths of light they reflect, 

transmit, or emit. Typically only features of the composition of light that 

are detectable by humans are included, so color may also be considered as 

a psychological phenomenon [Colo06]. 

It is possible to construct almost all visible colors by combining the 

three primary colors (red, green and blue), because the human eye has 

only three different color receptors, each of them sensible to one of the 

three colors. Different combinations in the stimulation of the receptors 

enable the human eye to distinguish approximately 350000 colors 

[Colo03]. 

RGB color model is an additive model in which red, green and blue 

(often used in additive light models) are combined in various ways to 

reproduce other colors. The name of the model and the abbreviation 

"RGB" come from the three primary colors: Red, Green and Blue. These 

three colors should not be confused with the primary pigments of red, 

blue and yellow, known in the art world as "primary colors" [Rgb06]. 

Color image is a digital image that includes color information for 

each pixel. Color image can be modeled as three-band monochrome 

image data, where each band of data corresponds to different color. The 

actual information stored in the digital image data is the brightness 

information in each spectral band. When the image is to be presented the 

corresponding brightness information is displayed on the screen by 

picture elements that emit light energy corresponding to that particular 

color. Any typical color image is represented as red, green, blue, or RGB 

images. Using the 8-bit monochrome standard as a model, the 

corresponding color would have 24 bits/pixel, where 8-bits for each of the 

three color bands (red, green, blue). Figure (2.1) illustrates the typical 

RGB color image. Figure (2.2) illustrates that, in addition to referring to a 

row or column as a vector, we can refer to the red, green, blue value as a 
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color pixel vector (R, G, B)[Umba98].  
  

 

Figure (2.1) A typical RGB color image can be thought as three separate images: 

IR(r,c), IG(r,c) and IB(r,c) [Umba98]. 

 

 

 

 

 

 

 

 

 

 

Figure (2.2) A color pixel vector consists of the red, green, blue pixel values       

(R, G, B) at one given row/column pixel coordinate (r,c) [Umba98]. 

 

 
2.7 Color and Textural Features   

Feature (content) extraction is the basis of content-based image 

retrieval. In a broad sense, features may include both text-based features 

   

         

a. Color image 

 b. Red IR(r,c)                          c. Green IG(r,c)                                  d. Blue IB(r,c) 
 

(r,c) 
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(key words, annotations) and visual features (color, texture, shape, faces). 

The features can be further classified as general features and domain-

specific features. The former include color, texture, and shape features 

while the latter is application-dependent and may include, for example, 

features related to geometry of human faces and finger prints. Because of 

perception subjectivity, there is no single best representation for a given 

feature. For any given feature there exist multiple representations which 

characterize the feature from different perspectives [Rui99]. Among the 

general types of features are the following two important types: 
 

1. Texture feature refers to the visual patterns that have properties of 

homogeneity that do not result from the presence of only a single color 

or intensity. It is an innate property of virtually all surfaces, including 

clouds, trees, bricks, hair, and fabric. It contains important information 

about the structural arrangement of surfaces and their relationship to 

the surrounding environment [Rui99]. The statistical methods for 

feature extraction are one of the early methods proposed in the 

literatures; they used to detect texels and the relationship among them. 

Some statistical quantities (like entropy, correlation, energy, contrast) 

have been utilized to describe the statistical behavior of the textural 

image [Wazi99]. 

Energy tells us something about how the gray levels are     

distributed; it is usually determined by using the following: 

 

          Energy = ( )( )( )∑
)c,r(

2c,rID                                                  (2.2) 

 
Where D is the difference between two pixels value and I (r, c) is 

the pixel value. 
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 Contrast is very important measure in the image processing which 

often determined the quality of an image [Abdu96]; Different 

mathematical definitions for contrast were appeared in the literatures 

the most popular definitions are: Contrast, is the difference in visual 

properties that makes an object (or its representation in an image) 

distinguishable from other objects and from the background. Other 

definition of contrast is the relative difference in intensity between an 

image point and its surroundings.  

High contrast means the difference is great; low contrast, means 

the difference is little (e.g., image is mostly made up of gray areas, 

lacking white and/or black areas). In visual perception of the real 

world, contrast is determined by the difference in the color and 

brightness of the object and other objects within the same field of view 

[Cont06]. 

The following equations represent how to compute the contrast: 

 

          C1 =
m

σ
                                                                          (2.3) 

 

         C2=
∑

∑

∈

∈

2

1

B)c,r(

B)c,r(

)c,r(I

)c,r(I

                                                          (2.4) 

 

Where m is the mean, σ  is the standard deviation, B1 is the set of 

pixels whose values are larger than the median of the block, B2 is the 

set of pixels whose values are smallest than the median of the block 

and I (r, c) is the pixel value. 
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2. Color features are most widely used as visual features in image 

retrieval. They relatively robust to background complication and 

independent of image size and orientation, the color histogram are one 

of the most important color features. Besides the color histogram 

(which is the most commonly used color feature representation), 

several other color feature representations have been applied in image 

retrieval, including color moments and color sets [Rui99].  

 

 
2.8 Histogram Feature  

Color histogram of an image is produced first by dividing the colors 

in the image into a number of bins, and counting the number of image 

pixels in each bin. The idea was proposed by Michael Swain and Dana 

Ballard in 1991 and is primarily used in situations where speed of 

processing is a factor in the choice of algorithm. Color histograms are a 

flexible constructs that can be built from images in various color spaces, 

whether RGB, or any other color space of any dimension [Rui99]. 

The most popularly used features are the color histogram features 

because the color histogram is computationally efficient and generally 

insensitive to small changes in camera position [Zhan02]. The histogram 

is a statistically based feature, where it is used as a model of the 

probability distribution of the gray levels [Umba98]. First order statistical 

features are extracted from the histograms of the three color channels 

(RGB) and the grey level histogram [Mari04].  

These statistical features describe the gray level histogram without 

considering spatial independence [Mien02]. The first-order histogram 

probability is [Umba98]: 
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M

gn
gP

)(
)( =                                                                           (2.5) 

 
 
Where M is the number of pixels in the image or sub image (if the 

entire image is under consideration then M=N2 for an N×N image), and 

n(g) is the number of pixels at gray-level g. Some of the features based on 

the first-order histogram probability are: Mean, Variance, Median, 

Skewness, Kurtosis, and Energy [Mien02].    

The mean is the average values, so it tells us something about the 

general brightness of the image. The mean can be defined as [Umba98]: 
 
 

∑
−

=
=

1L

0g
gP(g)g                                                                       (2.6)  

         
 
The standard deviation which is also known as the square root of the 

variance tells us something about the contrast. And it is defined as 

follows [Umba98]: 
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−
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The mean absolute deviation MAD is the average of the difference 

between pixels values and the average value [Umba98]: 
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The shape of the boundary segment can be described quantitatively 

by using the moments; the nth moment of g about its mean can be defined 

as [Gonz92]:  

   
 

)g(P)gg()r(M
1L

0g

n
n ∑

−

=
−=                                                           (2.9) 

 
The second moment measures the spread of the curve about the 

mean value of g and the third moment measures its symmetry with 

reference to the mean. Both moment representations may used 

simultaneously to describe a boundary segment [Gonz92]. 
 
Since the color images consist of three color planes (red, blue, 

green), so it can be treated as three gray-scale images. This approach 

allows us to use any of the previously defined histogram features for three 

times, one for each color component. 

 

 

2.9 Clustering 

Clustering is unsupervised learning of a hidden data concept, it 

implies the division of data into groups of similar objects. Each group, 

called cluster, consists of objects that are similar between themselves and 

dissimilar to objects of other groups. Clustering differs from classification 

in that there is no target variable for clustering. The clustering task does 

not try to classify, estimate, or predict the value of a target variable. 

Instead, clustering algorithms seek to segment the entire data set into 

relatively homogeneous subgroups or clusters, where the similarity of the 

records within the cluster is maximized and the similarity to records 

outside the cluster is minimized [Laro04].  
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Clustering is one of the most important tasks performed in Data 

Mining applications. A clustering algorithm attempts to find natural 

groups of components (or data) based on some similarity. The clustering 

algorithm also finds the centroid (like center of mass or center of gravity) 

of a group of data sets. To determine cluster membership, most 

algorithms evaluate a distance between a point and the cluster centroids. 

The output from a clustering algorithm is a statistical description of the 

clusters, centroids and the number of components in each cluster. There is 

more than one way to measure a distance. The most commonly used 

distance is the Euclidean measure, generally, the distance between the 

two points (in the feature space) is taken as a common metric to assess 

the similarity among the components of a population.  
 
The Euclidian distance measure between two points's p= (p1, p2...) 

and q = (q1, q2...) is [Ciuc02]: 
 
 

∑
=

−=
k

1t

2
tt )qp(d                                                                (2.10) 

 
Various clustering concepts have been appeared in the literature; 

they can be grouped into two classes according to the type of the 

partitioning structure imposed on the data: 
 

1. Hierarchical clustering: the hierarchical approach produces a 

nested series of partitions consisting of clusters either disjoint or 

included one into the other [Peng04]. In hierarchical clustering the 

input data are not partitioned into the desired number of classes in a 

single step. Instead, a series of successive partitions of data are 

performed until the final number of clusters is obtained [Cuic02]. An 

example of hierarchical clustering algorithms is [Andr02]: 
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a. Agglomerative: algorithms start with each object being a 

separate cluster itself, and successively merge groups according 

to a distance measure. The clustering may stop when all objects 

are in a single group or at any other point the user wants.  

b. Divisive algorithms follow the opposite strategy. They start with 

one group of all objects and successively split groups into 

smaller ones, until each object falls in one cluster, or as desired. 

Divisive approaches divide the data objects in disjoint groups at 

every step, and follow the same Patterns until all objects fall 

into a separate cluster.  

In general, hierarchical algorithms can not provide optimal 

partitions for their criterion. 
  

2. Nonhierarchical clustering (partitional clustering) [Andr02]:   

partitional clustering algorithm constructs partitions of the data, 

where each cluster optimizes a clustering criterion, such as the 

minimization of the sum of squared distance from the mean within 

each cluster. 

One of the issues with such algorithms is their high complexity, 

as some of them exhaustively enumerate all possible groupings and 

try to find the global optimum. Even for a small number of objects, 

the number of partitions is huge. That’s why; common solutions start 

with an initial, usually random, partition and proceed with its 

refinement. A better practice would be to run the partitional 

algorithm for different sets of initial k points (considered as 

representatives), and investigate whether all solutions lead to the 

same final partition. Partitional Clustering algorithms try to locally 

improve a certain criterion. First, they compute the values of the 
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similarity or distance, they order the results, and pick the one that 

optimizes the criterion.  
 
Some of partitional clustering algorithms include the first ones 

that appeared in the Data Mining Community [Andr02]:  
 
a. PAM (Partitioning Around Medoids) 

b. K-means 
 

PAM is an extension to k-means, intended to handle outliers 

efficiently. Instead of cluster centers, it chooses to represent each cluster 

by its medoid. A medoid is the most centrally located object inside a 

cluster, the computational complexity of PAM is very large for large data. 
 

K-means is an iterative, non-hierarchical algorithm for clustering 

very large data sets. It was developed in 1967 by J.B. MacQueen 

[Hohl01].  

The algorithm starts by partitioning the input points into k initial sets, 

either at random or using some heuristic data. It then calculates the mean 

point, or centroid, of each set. It constructs a new partition by associating 

each point with the closest centroid. Then the centroids are recalculated 

for the new clusters, and these steps are repeated by alternate application 

of these two steps until convergence, which is obtained when the points 

no longer switch clusters (or alternatively centroids are no longer 

changed). The algorithm has remained extremely popular because it 

converges extremely quickly in practice. In fact, many have observed that 

the number of iterations is typically much less than the number of points. 

The quality of the final solution depends largely on the initial set of 

clusters, and may, in practice, be much poorer than the global optimum. 

Since the algorithm is extremely fast, a common method is to run the 

algorithm several times and return the best clustering found. 



Chapter Two: Theoretical Background                                                                 28    
 

Another main drawback of the algorithm is that it has to be told the 

number of clusters k to find. If the data is not naturally clustered, you get 

some strange results. Also, the algorithm works well only when spherical 

clusters are naturally available in data [Kmea06]. 
 
The main advantages of this algorithm are its simplicity and speed 

which allows it to run on large datasets. Its disadvantage is that it does 

not yield the same result with each run, since the resulting clusters 

depend on the initial random assignments. It maximizes inter-cluster 

variance and minimizes intra-cluster variance, but does not ensure that the 

result has a global minimum of variance [Andr02]. 
 

The steps of the classic K-means clustering algorithm are [Peng04]: 
 

1. Choose k cluster centers randomly generated in a domain 

containing all the points, 

2. Assign each point to the closest cluster center, 

3. Recompute the cluster centers using the current cluster 

memberships, 

4. If the convergence criterion is met then stop; otherwise go to step 

2.  

 

 

2.10 AVI File [Msdn98] 

The Microsoft audio-video interleaved (AVI) file format is a 

resource interchange file format (RIFF) file specification used with 

applications that capture, edit, and play back audio-video sequences. In 

general, AVI files contain multiple streams of different types of data. 

Most AVI sequences use both audio and video streams. A simple 

variation for an AVI sequence uses video data and does not hold an audio 

stream.  
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AVI files use the AVI RIFF format. The AVI RIFF formation is 

identified by the FOURCC (four-character code) 'AVI '. All AVI files 

include two mandatory LIST chunks. These chunks define the format of 

the stream and stream data. AVI files might also include an index chunk. 

This optional chunk specifies the location of data chunks within the file. 

Figure (2.3) shows the typical structure of an AVI file with these 

components.  

 

 

Figure (2.3) The AVI file chunks [Msdn98] 

 

The LIST chunks and the index chunk are subchunks of the RIFF 

'AVI ' chunk. The 'AVI ' chunk identifies the file as an AVI RIFF file. 

The LIST 'hdrl' chunk defines the format of the data and usually is the 

first required LIST sub-chunk. The LIST 'movi' chunk contains the data 

for the AVI sequence and is the second required LIST sub-chunk. The 

'idx1' sub-chunk is the index chunk. AVI files must keep these three 

components in the proper sequence.  

Figure (2.4) show an example of the AVI RIFF form expanded with 

the chunks needed to complete the LIST 'hdrl' and LIST 'movi' chunks. 

For more details about the AVI file format see the appendix (A). 

 

 

RIFF 'AVI' 

 

LIST 'hdrl' 

LIST 'movi' 

['idx1'<AVI Index>] 
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Figure (2.4) The LIST 'hdrl' and LIST 'movi' chunks [Msdn98] 

 

 

2.11 Image File Format  

In computer graphics, types of image data are divided into two 

primary categories: Bitmap and vector. Bitmap images are represented by 

the RGB color image model, where the pixel data {IR(r,c), IG(r,c), IB(r,c)} 

stored successively in the file [Umba98]. 

The bitmap structure defines the type, width, height, color format, 

and bit values of a bitmap [Msdn98].  

RIFF 'AVI' 

 

LIST ('hdrl') 

 

LIST 'movi' 

 

 ['idx1'<AVI Index>] 

'avih'(<Main AVI Header>) 

LIST ('strl') 

 
'strh'(Stream header) 

'strf '(Stream format) 

'strd'(additional header data) 

'strn'(Stream name) 

{SubChunk | LIST ('rec ')} 

  SubChunk1 

SubChunk2 
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Every BMP file consists of three parts; First part is the header which 

begins with a bitmapfileheader which contains information about file 

type and size also it specifies the location of the pixel data in the file. 

Image header followed the bitmapheaderfile, the image header contains 

information about the image (like width, height), second part is the color 

palette (if it is exists) which is followed the file header and it contains 

information about colors value of the image pixel, and last part is the 

image data (represent the pixels values). 

Most of the types of file format fall into the category of Bitmap 

images some of the format uses compression, so that the I(r,c) values are 

not directly available until the file is decompressed. some of more 

complex file formats, the header may contain information about the type 

of compression used and any other necessary parameters to create the 

image, I(r,c). For more information about the image file format see the 

appendix (B). 

  

 

 
 

 



Signature:  
Name: Dr. Imad H. Al- Hussaini  
Title: Assistant Professor  
Date:       /       / 2006 

(Chairman) 

Signature:  
Name: Dr. Laith A. Al Ani 
Title: Dean of College of Science 
Date:           /         / 2006 

Signature:  
Name: Dr. Loay A. George 
Title: Senior Researcher  
Date:         /          / 2006 

(Supervisor) 

Signature:  
Name: Dr. Ali Abid D. Al- Zuky  
Title: Assistant Professor  
Date:       /        / 2006 

(Member) 

Signature:  
Name: Dr. Taha S. Bashaga  
Title: Lecturer 
Date:       /        / 2006 

(Member) 

Certification of the Examination Committee 

 

We chairman and members of the examination committee, certify that we 
have study the thesis entitle (Video Data Mining Using Color and 
Textural Features Analysis) presented by the student Hind Ali Al-Kitt 
and examined her its content and in what is related to it, we have found it 
worthy to be accepted for the degree of Master of Science in Computer 
Science.g 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



References 

 

 

[Abdu96] 

L. Abdul Aziz, "Classification of digital Satellites image", (PhD) 

Thesis, College of Science, Al-Nahrain University, Iraq, 1996.    

 

[Andr02]  

P. Andritsos, "Data Clustering Techniques" Paper, Department of 

Computer Science, University of Toronto, Canada, 2002. 

 

[Band02]  

 J. Oh and B. Bandi, "Multimedia Data Mining Framework for Raw 

Video Sequences", In Proc. of ACM Third International Workshop on 

Multimedia Data Mining (MDM/KDD2002), Edmonton, Alberta, 

Canada, 2002. 

 

[Band03]  

  J. Oh, J. Lee, S. Kote, and B. Bandi, "Multimedia Data Mining 

Framework for Raw Video Sequences", Department of Computer 

Science and Engineering, University of Texas at Arlington, 2003. 

 

[Bane00]  

S. Banerjee, "Motion Estimation and Compensation of H.263 Video", 

Technical report, Department of Electrical and Computer Engineering, 

University of Texas, 2000.  

 



[Bolt06]  

S. Boltz, E. Wolsztynski, E. Debreuve, E. Thierry, M. Barlaud and L. 

Pronzato, "A Minimum-Entropy Procedure for Robust Motion 

Estimation", In proceedings, International Conference on Image 

Processing – ICIP, Atlanta, Georgia, USA, 2006.  

 

[Chan99]  

Y. Rui, T. Huang, S. Chang, " Image Retrieval: Current Techniques, 

Promising Directions, and Open Issues", Journal of Visual 

Communication and Image Representation 10, 39–62, 1999. 

 

[Ciuc02]  

M. Ciucu, P. Heas, M. Datcu and J. Tilton, "Scale Space Exploration 

for Mining Image Information Content", In Proc. of ACM Third 

International Workshop on Multimedia Data Mining 

(MDM/KDD2002), Edmonton, Alberta, Canada, 2002. 

 

[Colo03]  

  "Color Images", 2003 

  http://homepages.inf.ed.ac.uk/rbf/HIPR2/Glossary-Color Images.htm  

 

[Colo06]  

  "Color",   2006  

  http://en.wikipedia.org/wiki/Color  

 

[Comp87]  

  "Computer Vision IT412", School of Computer Science, Software 

Engineering 1987 

   http://www.undergraduate.csse.uwa.edu.au/courses/233.412  



[Cont06]  

  "Contrast (vision)", 2006 

  http://en.wikipedia.org/wiki/Contrast_(vision)  

 

[Data05]  

  "Data mining", internet survey 2005 

  http://www.megaputer.com/dm/dm101.php3#whyuse. 

 

[Datc02]  

M. Datcu, K. Seidel, "An Innovative Concept for Image Information 

Mining", In Proc. of ACM Third International Workshop on Multimedia 

Data Mining (MDM/KDD2002), Edmonton, Alberta, Canada, 2002. 

 

[Fern03]  

J. mas and G. Fernandez, "Video Shot Boundary Detection Based on 

Color Histogram", paper, Digital Television Center La Salle School of 

Engineering, Ramon Llull University, Spain, 2003.  

 

[Fosc01]  

       P. Foschi, D. Kolippakkam, H. Liu and A. Mandvikar, "Feature 

Extraction for Image Mining", Workshop on Multimedia Information 

Systems, DOCIS Documents in Computing and Information Science, 

2001. 

 

[Gonz92] 

R. Gonzalez and R. Woods, "Digital Image Processing", Addison 

Wesley Publishing Company, 1992. 

 

 



[Gorm99]  

G. Gormley, "Scene Break Detection & Classification in Digital Video 

Sequences", Technical Report, School of Electronic Engineering, 

Dublin City University, Ireland, 1999. 

 

[Gyao03]  

A. Gyaourova, C. Kamath, S. Cheung, "Block matching for object 

tracking", research, Department of Energy's (DOE), Office of Scientific 

and Technical Information (OSTI), 2003.  

 

[Han98]  

O. Zaiane, J. Han, Z. Li, J. Hou, "Mining multimedia data", Proceedings 

CASCON'98: Meeting of Minds, Toronto, Canada, 83-96 1998. 

 

[Haup02]  

A. Hauptmann, R. Yan, Y. Qi, R. Jin, M. Christel, M. Derthick, M. 

Chen, R. Baron and W. Lin, "Video Classification and Retrieval with 

the Informedia Digital Video Library System", paper, NIST Special 

Publication: SP500-251, The Eleventh Text Retrieval Conference 

(TREC), 2002. 

 

[Hohl01]  

B. Hohlt, "Pthread Parallel K-means", CS267 Applications of Parallel 

Computing, UC Berkeley, 2001. 

 

[Kmea06]  

  "K-means algorithm", 2006   

  http://en.wikipedia.org/wiki/K-means_algorithm 

 



[Kuan03]  

W. Kuang Li and S. Hong Lai,
 
"Integrated video shot segmentation 

algorithm", research, Department of Computer Science, National Tsing-

Hua University, Taiwan, 2003. 

 

[Laro04]  

D. Larose, "Discovering Knowledge in Data: An Introduction to Data 

Mining", Published by John Wiley & Sons, Inc., 2004. 

 

[Mali05]  

H. Malik, "iARM: Image Association Rule Mining Language", COMS 

W4115: Programming Languages and Translators, Department of 

Computer Science, Columbia University, 2005. 

 

[Mari04]  

N. Marios, P. Constantinos, P. Marios, T.Vasilios, K. Efthyvoulos and 

K. Dimitris, "Multiscale Texture Feature Variability Analysis in Images 

during Laparoscopy under Different Viewing Positions", Medical 

Informatics Laboratory, Department of Computer Science, University of 

Cyprus, 2004. 

 

[Mien02]  

A. Miene, T. Hermes, G. Ioannidis, R. Fathi, and O. Herzog, 

"Automatic Shot Boundary Detection and Classification of Indoor and 

Outdoor Scenes", paper, NIST Special Publication:SP 500-251,The 

Eleventh Text Retrieval Conference (TREC), 2002. 

 

 



[Msdn98] 

   MSDN Library, Visual Studio 6.0 release, 1998 

 

[Moti00]  

  "Welcome to the Motion Estimation Tutorial", 2000, 

http://stargate.ecn.purdue.edu/~ips/tutorials/me/ . 

 

[Peng04]  

  J. Peng and Y. Xia, "A new theoretical framework for K-means-type 

Clustering", Advanced Optimization Lab, Department of Computing 

and Software, McMaster University, 2004. 

 

[Rgb06]  

  "RGB color model", 2006    

http://en.wikipedia.org/wiki/RGB_color_model  

 

[Smea99]  

A. Smeaton, J. Gilvarry, G. Gormley, B. Tobin S.  Marlow and N. 

Murphy, "An Evaluation of Alternative Techniques for Automatic 

Detection of Shot Boundaries in Digital Video", Paper, Centre for 

Digital Video Processing, Dublin City University, Ireland, 1999. 

 

 [Smea00]  

A. Smeaton, P. Browne, N. Murphy, N.  O’Connor, S. Marlow and C. 

Berrut, "Evaluating and Combining Digital Video Shot Boundary 

Detection Algorithms" paper, Centre for Digital Video Processing, 

Dublin City University, Ireland, 2000. 

 



[Umb98]  

  S. Umbaugh, "Computer Vision and Image Processing- A Practical 

Approach Using CVIP Tools", Prentice-Hall, Inc., 1998. 

 

[Watk94]  

J. Watkinson, "The Engineer’s Guide to Motion Compensation", 

Published by Snell and Wilcox Ltd. Durford Mill, Petersfield 

Hampshire GU13 5AZ, 1994. 

 

[Wazi99] 

V. Wazir, "An Investigation into the use of neural network in texture 

classification", (PhD) Thesis, college of Science, Al-Nahrain 

University, Iraq, 1999.  

 

[What01]  

      "What is data mining", An internet survey 2001 

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/

palace/datamining.htm 

 

[Zaia98]  

O. Zaiane, J. han and Z. Nian, "multimediaminer: A System prototype 

for multimedia data mining", Proceedings of ACM-SIGMOD 

International Conference on Management of Data, pp. 581 – 583, 1998. 

 

[Zaia99]  

  O. Zaiane , E. and J. Han, "Word Taxonomy for On-line Visual Asset 

Management and Mining", Fourth International Workshop on 

Application of Natural Language to Information Systems, pp 271-276, 

Klagenfurt, Austria,, 1999. 



[Zaia00]  

O. Zaiane, J. Han and H. Zhu, "Mining Recurrent Items in Multimedia 

with Progressive Resolution refinement", Int. Conf. on Data 

Engineering (ICDE'2000), pp. 461-470, San Diego, CA, 2000. 

 

[Zhan01]  

J. Zhang, W. Hsu and M.  Lee, "Image Mining: Issues, Frameworks and 

Techniques", Proceedings of the Second International Workshop on 

Multimedia Data Mining (MDM/KDD'2001), in conjunction with ACM 

SIGKDD conference. San Francisco, USA, 2001. 

 

[Zhan02]  

R. Zhang, Z. Mark and T. Watson, "A Clustering Based Approach to 

Efficient Image Retrieval", 14th IEEE International Conference on 

Tools with Artificial Intelligence (ICTAI'02) p. 339, 2002. 

 

[Zhon00]  

  D. Zhong and S. Chang, "Video Shot Detection Combining Multiple 

Visual Features", research, Department of Electrical Engineering, 

Columbia University, 2000. 

 

[Zhu04]  

  X. Zhu and X. Wu, "Sequential Association Mining for Video 

Summarization", research, Department of Computer Science, University 

of Vermont, 2004.  

 



 

Republic of Iraq 
Ministry of Higher Education and scientific research  
Al- Nahrain University 
 
 
 
 
 
 
 

Video Data Mining Using 
Color and Textural Features 

Analysis 
 
 
 
 

A Thesis 

Submitted to the 

College of Science, Al-Nahrain University 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Computer Science 

 

 
  

By 

Hind Ali Hussain Al-Kitt 

(B.Sc.2003) 
 

Supervisor 

Dr. Loay A. George  

 

 2006 1247 



 Table of contents 
 

Chapter One: General Introduction 

1.1 Data Mining 1 

1.2 Growth of Data Mining  2 

1.3 Multimedia Data Mining 3 

1.4 Literature Survey 4 

1.5 Aim of thesis  8 

1.6 Chapters Overview  8 

Chapter Two: Theoretical Background 

2.1 Introduction 10 

2.2 Video Segmentation 10 

2.3 Scenes Changes Detection 12 

2.4 Motion Estimation 14 

2.5 Image Mining 15 

2.6 Color Image 17 

2.7 Color And Texture Features 19 

2.8 Histogram Features 22 

2.9 Clustering 24 

2.10 AVI File  28 

2.11 Image File Format 30 

Chapter Three: Proposed System 

3.1 Introduction 32 

3.2 The System Model 32 

3.2.1 Load Video Stream 34 

3.2.2 Color Decomposition 34 

3.2.3 Shot Boundaries Detection 35 

3.2.4 Static and Dynamic Classification 41 

3.2.5 Features Extraction 44 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
  

3.2.6 Feature Analysis 66 

3.2.7 Power Discrimination  66 

3.2.8 K-Means Algorithm 69 

Chapter Four:  Experimental Results 

4.1 Introduction 72 

4.2 Videos Test Sample 72 

4.3 The Results of  Shot Boundaries Detection 74 

4.4 The Results of Static and Dynamic Classification 82 

4.5 The Results of Features Extraction 83 

4.6 The Results of Feature Analysis 94 

4.7 The Results of Power discrimination 94 

4.8 The Results of K-Means Algorithm 98 

Chapter Five: Conclusions and Suggestions    

5.1 Conclusions 101 

5.2 Suggestions 103 

References  104 



 ءا�ه�ا
  
  
  
  
  
  

� ا	�
	�� ا��
 ��وا ��ا	� �
 وا����

�  ���اً � �	 ������ 
�  �	

ت"! و�$%� 

 

  
  

 ��	
ا	� روح ا	)'��ة ا	�
��ه
 -  ��� ����ا	,+ ��

0 ا	�ا/.��"�� 

 

 

 

 

 ھ�د



  
  

�ـ�ـــــ� � 
 ا
	�ــ� ا
	�ـــ�ـ�

 
 

 ن أ�رِ �ِ  ا�روحُ  لِ �ُ  ا�روحِ  نِ 
َ  وَ 	���و�كَ 
  	 ً �ِ إ� �َ ِ◌  �ما��ِ  نَ م �ِ 	�ُ �� أو�ِ  وَ  ��رَ 

  
 
 
 
 

 ��ق � ا
��ـ��
  
  
 

  ا#�راء�ورة                                                                                  
  )٨٥( آ	$                                                                                    

  



  وا���� ا��	�� وزارة ا�
�	�� ا�����
  ����� ا������  

�	�� ا��	�م      
  

 
 
 
 
 
 

ا	���� �������ل ����ت ا	����� �� 
�� وا	�������� ا	��� �	 !��  ا	�"

  
  

�	�� ا��	�م �  ����� ا������ �,+ء �� �
(	��ت '�& %��دة، ر"��� �! �� إ�

�م ا���"��ت 	- �. ��
  ا����/

  
  
  

  م� $#!

  ھ�  -	� 2/�� ا�01

��15�ر��س  

2003 

 

  ا���7ف

�رج �9ي ادوار. د�  



desktop

[.ShellClassInfo]
LocalizedResourceName=@%SystemRoot%\system32\shell32.dll,-21815

Page 1


	Microsoft Word - Abstract عربي_1.pdf
	Microsoft Word - Abstract_1.pdf
	Microsoft Word - Acknowledgment_1.pdf
	Microsoft Word - Appendices_1.pdf
	Microsoft Word - Certification_1.pdf
	Microsoft Word - Chapter Five_1.pdf
	Microsoft Word - Chapter Four.pdf
	Microsoft Word - Chapter One.pdf
	Microsoft Word - Chapter Three.pdf
	Microsoft Word - Chapter Two.pdf
	Microsoft Word - exam.pdf
	Microsoft Word - References.pdf
	Microsoft Word - Republic of Iraq.pdf
	Microsoft Word - Table of contents.pdf
	Microsoft Word - الاهداء.pdf
	Microsoft Word - الاية.pdf
	Microsoft Word - وزارة التعليم العالي.pdf
	desktop - Notepad.pdf



