

� ا������دة ا������� ا� ��� ��زا�� �������ت ا����ر و ا����������$ا��"��# ��"�! � �����ت ا�����

 $����-,��2 �1,���� ا�����0ة +���� ا/و*���ف ا��������# ا��-,�+��# وا��ا*����ت ا��(����# ا��اط'��# ا��&����ى ا��

 ُ� ً��� ،��Dا���� ،ا/C&��مA$ @�? ا��<� ھ$ أدوات ;���# �,�-:��1ت ا/9(ى ��1,� �"�,5 �� ، 7�� �8

�(�Cعا��"(�#، ،)metadata(ا�����ي ل �ا����� ،و*7 ا�� ����ت ا�:�(�#�Hا.

�,��# �إ�J �1&�! ا����� �"�ف ھIا ا����L� ث �9ارز����تN; ل���� ;�! ،إ�J �5د �� ا�,1-�ت +��

 ��� 7���� #����� ���� Jر ا������� إ����*(static blocks) #��) �� ��� (dynamic blocks)و�

 $A ��Oا��(ق +�� ا� J,5 د���5H�+1# *�ر ا������QN��Tا���L(اج @��R�,� ��� ��5 ،ا�����Lا� ���

�� ا��� (�# ���ر ا�����Oا�&���# وا� ��Oا��، T���Lة ھ$ ا���:� :ا��

١. T���Lا� #����QVا statistical features)(

)������ اH@ �(اف ا��-,�(standard deviation)� ،W ، اH@ �(اف ا������ري(mean) ا������

(mean absolute deviation) اف) @Hا ،(skewness)(

٢. T���Lا��&��0# ا�textural features)(

:ُ�� ، ����� �(contrast 2)٢، ا��:���(contrast 1)١، ا��:���(energy of gradient) ط�<# ا����(

)(modification fractal dimension H) *�رةِ @�-$ ھ���$ ��O(ر

�T<�ة ا����D �,<��س ��1 �!��L #C)L��� �Q J,5 #�*�9ة أو ���5��0ت إ�� +����Lام ا��&

 T�����Lا� ����) ���Q J٥إ��� T�9�:���ر +���ن +���[����5��0ت ھ���Iه و<��� ،)9����Hا _�����أ`����رت @

�T ����ة ����D �1-�ت ا�������Lت ا������ �ا�������� �c�+ �5"� +���0ح 9��*�� إذا �����5 � ���ي �

)video sequences (� �5د J,5 ا�,1-�ت �� #C)L� *��رة، و) ٢٥(� *�ر ا������ ا�:(�� ا��&

9�:�رHا _������ ا�&����# ����5ا أ��cً إ�J أ`�رت @Oا� ��� #C)L��T ا��&����Lإن �� ا�)H (��-5أ

#�) ��� ا��Oا� �� #C)L��T ا��&��Lا� �� J,5أ D��� ة�>.

إ�J �5د �� ا/*��ف و���1 ���7 �1-�ت ا��������)K-means(�9ارز��# أل ا���Lام و <� �!

9�:�ر إ�J إن ھIه ا��Lارز��# أ5-� ا��1(ارا ��Cا A$ ا������H 7ن ���d! أ`�رتHا _���������ت @��

 .ا��&�C)L# �� ا�,1-�ت <� *��� ��A �c$ @�? ا���7 �ا�����

 Image and video classifications, are important problems in

multimedia content understand that requires bridging the gap between the

target semantic categories, or classes, and the low-level visual descriptors

that can be automatically obtained. At the same time, they are valuable

tools towards other applications like object detection and recognition,

visual content description, semantic metadata generation, indexing and

retrieval.

This work aims to segment the video into a number of shots using

three different types of algorithms, classify the video frames data into

static and dynamic blocks depending on the difference between the

blocks of successive frames, extract two types of features from the static

and dynamic blocks of the video shots, the adopted features are:

1. The statistical features (mean, standard deviation, mean absolute

deviation, skewness).

2. The textural features (energy of gradient, contrast, modification

fractal dimension H).

 The discrimination power for the extracted features was determined

by using each features alone, or combinations of features (up to 5.

features).

 The test results indicated that some combinations of these features

are useful to successfully recognize the video shots from each other

especially when the extracted video sequences from any shot consist of

video frames more than (٢٥) frame the results also showed that the

features extracted from the static blocks (except the H) gave higher

discrimination power than the features extracted form the dynamic

blocks.

Finally the K-means clustering algorithm was used to categorize the

video shots into a number of classes. The test results indicate that this

algorithm shows good stability in classifying the video shots, because

most of the extracted sequences from each shot were classified as

members to the same class.

Acknowledgment

First of all, my great thanks to Allah who helped me and

gave me the ability to achieve this work.

I would like to express my appreciation and my deepest

gratefulness to my supervisor Dr. Loay A. George for his

guidance, supervision and his efforts during the development of

this work.

Grateful thanks for the head of the department Dr. Taha S.

Bashaga for his help and support.

My deep gratitude to my lovely family, To the precious, my

mother, my father, my brothers mohanad and faseel and my

sister hadeel for their love and help during the study years.

 Finally thanks to all employees and stuff of the computer

science department and to all my friends.

Appendix A

AVI File Structure

A.1 AVI Main Header

In this section the elements of the header section of AVI files are given.

The AVI file begins with the main header. This header is identified by the

string 'avih' which is consists of (four-character code). The header contains

global information for the entire AVI file, such as the number of streams

within the file and the width and height of the AVI sequence. The items of the

AVI main header are listed in the table (A-1) [Msdn98]:

typedef struct {

 DWORD dwMicroSecPerFrame;

 DWORD dwMaxBytesPerSec;

 DWORD dwReserved1;

 DWORD dwFlags;

 DWORD dwTotalFrames;

 DWORD dwInitialFrames;

 DWORD dwStreams;

 DWORD dwSuggestedBufferSize;

 DWORD dwWidth;

 DWORD dwHeight;

 DWORD dwReserved[4];

} MainAVIHeader;

dwMicroSecPerFrame
Specifies the time interval (in microseconds) between frames.

This value indicates the overall timing of the file.

dwMaxBytesPerSec

Specifies the approximate maximum data rate of the file. This

value indicates the number of bytes per second the system must

handle to present an AVI sequence, as specified by the other

parameters contained in the main header and stream header

chunks.

dwReserved1 Reserved. Set this to zero.

dwFlags

Contains the flags. The following flags may exists:

AVIF_HASINDEX: Indicates the AVI file has an 'idx1' chunk

containing an index at the end of the file. For good performance,

all AVI files should contain an index.

AVIF_MUSTUSEINDEX: Indicates that the index, rather than

the physical ordering of the chunks in the file, should be used to

determine the order of presentation of the data. For example, you

could use this to create a list of frames for editing.

AVIF_ISINTERLEAVED: Indicates the AVI file is interleaved.

AVIF_WASCAPTUREFILE: Indicates the AVI file is a specially

allocated file used for capturing real-time video. Applications

should warn the user before writing over a file with this flag set

because the user probably defragmented this file.

AVIF_COPYRIGHTED: Indicates the AVI file contains

copyrighted data and software. When this flag is used, software

should not permit the data to be duplicated.

dwTotalFrames Specifies the total number of frames of data in the file.

dwInitialFrames

Specifies the initial frame for interleaved files. For

Noninterleaved files it should set zero. While for interleaved files

it should specifies the number of frames in the file prior to the

initial frame of the AVI sequence in this member.

Table (A.1) The contents of MainAVIHeader

A.2 AVI Stream Headers

The main header is followed by one or more 'strl' chunks. A 'strl' chunk

is required for each data stream. These chunks contain information about the

streams in the file. Each 'strl' chunk must contain a stream header and stream

format chunk. Stream header chunks are identified by the FOURCC (four-

character code) 'strh', and the stream format chunks are identified by the

FOURCC 'strf'. In addition to the stream header and stream format chunks,

the 'strl' chunk might also contain a stream-header data chunk and a stream

name chunk. Stream-header data chunks are identified by the FOURCC 'strd'.

Stream name chunks are identified by the FOURCC 'strn'. The stream header

structure contains header information for a single stream of a file, and it

specifies the type of data the stream contains, such as audio or video, by

means of a FOURCC table (A.2) content information about of the stream

header [Msdn98]:

dwStreams
Specifies the number of streams in the file. For example, a file

with audio and video has two streams.

dwSuggestedBufferSize

Specifies the suggested buffer size for reading the file.

Generally, this size should be large enough to contain the largest

chunk in the file. If set to zero, or if it is too small, the playback

software will have to reallocate memory during playback, which

will reduce performance. For an interleaved file, the buffer size

should be large enough to read an entire record, and not just a

chunk.

dwWidth Specifies the width of the AVI file in pixels.

dwHeight Specifies the height of the AVI file in pixels.

dwReserved[4] Reserved. Set this array to zero.

Table (A.1) Continue

fccType

Contains a FOURCC that specifies the type of the data contained in the

stream. The following standard AVI values for video and audio are defined:

'vids': Indicates the stream contains video data. The stream format chunk

contains a BITMAPINFO structure that can include palette information.

'auds': Indicates the stream contains audio data. The stream format chunk

contains a WAVEFORMATEX or PCMWAVEFORMAT structure.

'txts': Indicates the stream contains text data.

fccHandler

Optionally, contains a FOURCC that identifies a specific data handler. The

data handler is the preferred handler for the stream. For audio and video

streams, this specifies the installable compressor or decompressor.

typedef struct {

 FOURCC fccType;

 FOURCC fccHandler;

 DWORD dwFlags;

 DWORD dwPriority;

 DWORD dwInitialFrames;

 DWORD dwScale;

 DWORD dwRate;

 DWORD dwStart;

 DWORD dwLength;

 DWORD dwSuggestedBufferSize;

 DWORD dwQuality;

 DWORD dwSampleSize;

 RECT rcFrame;

 } AVIStreamHeader;

Table (A.2) the contents of the AVIStreamHeader

dwFlags

Contains any flags for the data stream. The bits in the high-order word

of these flags are specific to the type of data contained in the stream.

The following standard flags are defined:

AVISF_DISABLED: Indicates that this stream should not be enabled

by default.

AVISF_VIDEO_PALCHANGES: Indicates that this video stream

contains palette changes. This flag warns the playback software that it

will need to animate the palette.

dwPriority

Specifies priority of a stream type. For example, in a file with

multiple audio streams, the one with the highest priority might be the

default stream.

dwInitialFrames

Specifies how far audio data is skewed ahead of the video frames in

interleaved files. Typically, this is about 0.75 seconds. If you are

creating interleaved files, specify the number of frames in the file

prior to the initial frame of the AVI sequence in this member.

dwScale

Used with dwRate to specify the time scale that this stream will use.

Dividing dwRate by dwScale gives the number of samples per

second. For video streams, this rate should be the frame rate. For

audio streams, this rate should correspond to the time needed for

nBlockAlign bytes of audio, which for PCM audio simply reduces to

the sample rate.

dwRate See dwScale.

dwStart

Specifies the starting time of the AVI file. The units are defined by

the dwRate and dwScale members in the main file header. Usually,

this is zero, but it can specify a delay time for a stream that does not

start concurrently with the file.

dwLength
Specifies the length of this stream. The units are defined by the

dwRate and dwScale members of the stream's header.

Table (A.2) Continue

The last eight members in table (A.2) describe the playback

characteristics of the stream. These factors include the playback rate (dwScale

and dwRate), the starting time of the sequence (dwStart), the length of the

dwSuggestedBufferSize

Specifies how large a buffer should be used to read this stream.

Typically, this contains a value corresponding to the largest chunk

present in the stream. Using the correct buffer size makes playback

more efficient. Use zero if you do not know the correct buffer size.

dwQuality

Specifies an indicator of the quality of the data in the stream. Quality

is represented as a number between 0 and 10,000. For compressed

data, this typically represents the value of the quality parameter

passed to the compression software. If set to –1, drivers use the

default quality value.

dwSampleSize

Specifies the size of a single sample of data. This is set to zero if the

samples can vary in size. If this number is nonzero, then multiple

samples of data can be grouped into a single chunk within the file. If

it is zero, each sample of data (such as a video frame) must be in a

separate chunk. For video streams, this number is typically zero,

although it can be nonzero if all video frames are the same size. For

audio streams, this number should be the same as the nBlockAlign

member of the WAVEFORMATEX structure describing the audio.

rcFrame

Specifies the destination rectangle for a text or video stream within

the movie rectangle specified by the dwWidth and dwHeight

members of the AVI main header structure. The rcFrame member is

typically used in support of multiple video streams. Set this

rectangle to the coordinates corresponding to the movie rectangle to

update the whole movie rectangle. Units for this member are pixels.

The upper-left corner of the destination rectangle is relative to the

upper-left corner of the movie rectangle.

Table (A.2) Continue

sequence (dwLength), the size of the playback buffer (dwSuggestedBuffer), an

indicator of the data quality (dwQuality), and the sample size (dwSampleSize).

Some of the members in the stream header structure are also present in

the main header structure. The data in the main header applies to the whole

file, while the data in the stream header structure applies only to a stream.

A stream format ('strf') chunk must follow a stream header ('strh') chunk.

The stream format chunk describes the format of the data in the stream. For

video streams, the information in this chunk is a BITMAPINFO structure

(including palette information if appropriate).

The 'strl' chunk might also contain an additional stream-header data

('strd') chunk. If used, this chunk follows the stream format chunk. The format

and the contents of this chunk are defined by installable compression or

decompression drivers. Typically, drivers use this information for

configuration. Applications that read and write RIFF files do not need to

decode this information. They transfer this data to and from a driver as a

memory block.

The optional 'strn' stream name chunk provides a zero-terminated text

string describing the stream. The AVI file functions can use this chunk to let

applications identify the streams they want to access by their names.

An AVI player associates the stream headers in the LIST 'hdrl' chunk

with the stream data in the LIST 'movi' chunk by using the order of the 'strl'

chunks. The first 'strl' chunk applies to stream 0; the second applies to stream

1, and so forth. For example, if the first 'strl' chunk describes the wave audio

data, the wave audio data is contained in stream 0. Similarly, if the second

'strl' chunk describes video data, then the video data is contained in stream 1.

A.3 Stream Data (LIST 'movi' Chunk)

Following the header information is a LIST 'movi' chunk that contains

chunks of the actual data in the streams (that is, the pictures and sounds

themselves). The data chunks can reside directly in the LIST 'movi' chunk or

they might be grouped into 'rec' chunks. The 'rec' grouping implies that the

grouped chunks should be read from disk all at once. This is used only for

files specifically interleaved to play from CD-ROM.

Like any RIFF chunk, the data chunks contain a FOURCC (four-

character code) to identify the chunk type. A FOURCC is a 32-bit quantity

represented as a sequence of one to four ASCII alphanumeric characters,

padded on the right with blank characters. The FOURCC that identifies each

chunk consists of the stream number and a two-character code that defines the

type of information encapsulated in the chunk. For example, a waveform

chunk is identified by a two-character code of 'wb'. If a waveform chunk

corresponded to the second LIST 'hdrl' stream description, it would have a

FOURCC of '01wb'.

Appendix B

BMP File Structure

B.1 BITMAPINFOHEADER Structure

The BITMAPINFOHEADER structure contains information for the video

stream of an AVI RIFF file. Table (B.1) describe the content of

BITMAPINFOHEADER structure [Msdn98]:

typedef struct tagBITMAPINFOHEADER {

 DWORD biSize;

 LONG biWidth;

 LONG biHeight;

 WORD biPlanes;

 WORD biBitCount;

 DWORD biCompression;

 DWORD biSizeImage;

 LONG biXPelsPerMeter;

 LONG biYPelsPerMeter;

 DWORD biClrUsed;

 DWORD biClrImportant;

} BITMAPINFOHEADER;

biSize Specifies the number of bytes required by the structure.

biWidth Specifies the width of the bitmap, in pixels.

biHeight

Specifies the height of the bitmap, in pixels. If biHeight is positive, the

bitmap is a bottom-up DIB (device-independent bitmap) and its origin

is the lower left corner. If biHeight is negative, the bitmap is a top-

down DIB and its origin is the upper left corner.

biPlanes
Specifies the number of planes for the target device. This value must be

set to 1.

biBitCount
Specifies the number of bits per pixel. Some compression formats need

this information to properly decode the colors in the pixel.

biCompression
Specifies the type of compression used or requested. Both existing and

new compression formats use this member.

biSizeImage
Specifies the size, in bytes, of the image. This can be set to 0 for

uncompressed RGB bitmaps.

biXPelsPerMeter

Specifies the horizontal resolution, in pixels per meter, of the target

device for the bitmap. An application can use this value to select a

bitmap from a resource group that best matches the characteristics of

the current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device

for the bitmap.

biClrUsed

Specifies the number of color indices in the color table that are actually

used by the bitmap. If this value is zero, the bitmap uses the maximum

number of colors corresponding to the value of the biBitCount member

for the compression mode specified by biCompression.

biClrImportant
Specifies the number of color indices that are considered important for

displaying the bitmap. If this value is zero, all colors are important.

Table (B.1) The content of the BITMAPINFOHEADER

When the value in the biBitCount member is set to greater than eight,

video drivers can assume bitmaps are true color and they do not use a color

table. While if the value in the biBitCount member is set to less than or equal

to eight, video drivers can assume the bitmap uses a palette or color table

defined in the BITMAPINFO data structure. This data structure has the

following members:

The (BITMAPINFOHEADER), member specifies a

BITMAPINFOHEADER structure. The (BITMAPINFO) member specifies

an array of RGBQUAD data types that define the colors in the bitmap.

typedef struct tagBITMAPINFO {

BITMAPINFOHEADER bmiHeader;

 RGBQUAD bmiColors;

} BITMAPINFO;

Signature:
Name: Dr. Loay A. George
Title: Senior Researcher
Date: / / 2006

Signature:
Name: Dr. Taha S. Bashaga
Title: Head of the Department of Computer Science, Al-Nahrain University
Date: / / 2006

Supervisor Certification

I certify that this thesis was prepared under my supervision at the

Department of Computer Science/College of Science/ Al-Nahrain

University, by Hind Ali Al-Kitt as a partial fulfillment of the

requirement for the degree of Master of Science in Computer Science.

In view of the available recommendation, I forward this thesis for

debate by the examination committee.

Chapter Five

Conclusions and Suggestions

5.1 Conclusions

Form the test results; conducted to investigate the performance of the

proposed system the following remarks were derived:

1. The three designed algorithms for shot boundaries detection can

exactly detect the boundaries of the shots for all the tested video,

which have the (cut) boundary type, and it failed in detecting other

types of shot boundaries types (like fade, dissolve, wipe).

2. The results of blocks classification algorithm indicate that the

number of static and dynamic blocks belong to each frame in the

video are different from one frame to another depending on the

changes in the pixels data between the current frame and the next

frame in the video.

3. The features analysis results indicate that the increase in the

number of video frames belong to the video sequences (extracted

from the any shot) will improve the recognition efficiency of the

adopted features.

4. The results of the power discrimination analysis indicate that all

the statistical and textural features (except the H), extracted from

the static blocks have a higher discrimination rate than the

corresponding features extracted from the dynamic blocks.

 102

5. The results of the power discrimination analysis also indicate that

the features (contrast2 and the energy of the horizontal gradient)

have the highest rate of discrimination whether it is alone or

combined with other features.

6. The results of the power discrimination analysis also indicate that

the combinations of the features (mean, standard deviation, mean

absolute deviation, contrast2 and the energy of the horizontal

gradient) have the highest rate of discrimination than the

combinations of other features.

7. The K-mean clustering algorithm had classified the shots 98%

success when classify it into five clusters, because most of the

extracted sequences from each shot were classified as a member in

the same shot.

 103

5.2 Suggestions

During the development of the proposed system many suggestions

brought in mined to increase the system efficiency, among these

suggestions are following:

1. Enhance the shot boundaries detection criteria to be capable to

detect the different type of shot boundaries.

2. Using other textural (like run-length based features) and

statistical features (like co-occurrence based features).

3. Extracts other features from the video's frames (like motion,

shape).

4. Using neural network approach to improve the video

discrimination capability.

5. Study the effect of various video compression techniques (like

MPEG) on the classification of the video.

Chapter Four

Experimental Results

4.1 Introduction
This chapter is dedicating to displaying the results of the calculated

tests to study the efficiency of the adopted image features to classify the

video data. The results presented in this chapter are for the following

system steps:

1. The classification of static and dynamic blocks of the videos image.

2. The shots boundaries detection by using of the three detection

algorithms mentioned in chapter three.

3. Statistical and textural extraction. For both static and dynamic blocks

and for the three color components (Red, Blue, Green).

4. Feature analysis for video sequences.

5. Determined power discrimination for the features.

6. The k-mean clustering algorithm results.

4.2 Video Test Samples
As test materials eleven video samples have been utilized. Figure (4.1)

present some frames extracted from the eleven video samples. As a

prototype the results of video No.6 are given in detail in this chapter. The

obtained results for other video sequences indicate similar behavior to the

presented prototype results.

Chapter Four: Experimental Results 73

Figure (4.1) Video Test Samples

Video No.1: 994 Frames, 9 Shots Video No.1: 994 Frames, 8 Shots

Video No.3: 126 frames, 2 Shots Video No.4: 501 Frames, 5 Shots

Video No.5: 235 Frames, 4 Shots Video No.6: 192 Frames, 3 Shots

Video No.7: 326 Frames, 6 Shots Video No.8: 801 Frames, 5 Shots

Video No.9: 173 Frames, 3 Shots

Chapter Four: Experimental Results 74

Figure (4.1) Continue

4.3 The Results of Shot Boundaries Detection

Three algorithms have been applied to detect the shots boundaries, the

video samples may have different types of shot boundaries like (fade,

dissolve, wipe and cut), and so many video sequences have been tested by

using these three algorithms in order to detect the shots boundaries which is

exist in these video sequences, and the test results indicate that these three

algorithms can only detect the (cut) boundary type, so the eleven video

samples that have been utilized as a test materials are all have (cut)

boundary type.

The results of the three considered algorithms shows that the sixth

video samples consists three shots, the first shot contains (147) frames the

second contains (24) frames the third contains (22) frames. Table (4.1)

represents the results of applying the first detection method of the shot

boundaries which is based on the means of the absolute difference between

the color components of the frames, see algorithm (3.2). Tables (4.2-4)

show the detection results of applying the second method which is based on

using the three overall means of the three difference (Absolute, square,

cubic) the difference is between the mean of two successive frames, see

algorithm (3.3). Tables (4.5-8) show the detection results of applying the

Video No.11: 159 Frames, 4 Shots Video No.10: 937 Frames, 17 Shots

Chapter Four: Experimental Results 75

third method which is based on using the three overall means of the three

differences (absolute, square, cubic) the difference is between the mean of

two successive frames (the mean is computed form the difference between

two neighbor pixels in the same frame), see algorithm (3.4).

Figure (4.2) Shots detection using the mean of the difference between the frames color

components (red, blue, green)

Frame No.

Mean of Difference the

frames colors (Red,

Blue, Green)

1 625.83

147 75.32

148 467.29

170 70.19

171 307.20

191 77.76

Table (4.1) The mean of the difference between the frames
color components (red, blue, green)

Shot1 Shot3 Shot2

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160 180

Frame No.

M
ea

n
of

 D
if

fe
re

nc
e

Chapter Four: Experimental Results 76

Figure (4.3) Shot detection using the criteria of the absolute differences between the
mean of two successive frames

Absolute difference

Frame

No.
Red Blue Green

1 0.761156 0.326468 0.208116

147 0.594648 0.263563 0.435971

148 57.18723 70.56349 69.16737

170 0.152896 0.147165 0.110766

171 13.00987 33.3122 31.44362

191 0.515566 0.573765 0.51379

0
10
20
30
40
50
60
70
80

0 20 40 60 80 100 120 140 160 180

Frame No.

A
bs

ol
ut

e
di

ff
er

en
ce

Shot2 Shot3 Shot1

Table (4.2) The results of using the criteria of the absolute
differences between the mean of two successive frames

Chapter Four: Experimental Results 77

Figure (4.4) Shots detection using the criteria of the square differences between the

mean of two successive frames

Square difference

Frame

No.
Red Blue Green

1 0.579 0.107 0.043

147 0.354 0.069 0.190

148 70.380 79.206 80.125

170 0.023 0.022 0.012

171 98.257 89.703 88.701

191 0.266 0.329 0.264

Table (4.3) the results of the using the criteria of the
square differences between the mean of two

successive frames

Shot1 Shot2 Shot3

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160 180

Frame No.

Sq
ua

re
 D

if
fe

re
nc

e

Chapter Four: Experimental Results 78

Figure (4.5) Shots detection using the criteria of the cubic differences between the mean
of two successive frames

Cubic difference

Frame

No.
Red Blue Green

1 0.441 0.035 0.009

147 0.210 0.018 0.083

148 123.968 150.108 195.306

170 0.004 0.003 0.001

171 142.010 165.651 185.334

191 0.137 0.189 0.136

Table (4.4) the results of using the criteria of the
cubic differences between the mean of two

successive frames

Shot2 Shot3 Shot1

1

100

10000

1000000

0 20 40 60 80 100 120 140 160 180

Frame No.

C
ub

ic
 D

if
fe

re
nc

e

Chapter Four: Experimental Results 79

Figure (4.6) Shots detection using the criteria of the absolute differences between the

mean of the difference between two neighbored pixels in the frame

Absolute difference

Frame

No.
Red Blue Green

1 0.0512 0.0703 0.0294

147 0.0044 0.0152 0.0103

148 0.3711 0.7790 0.4704

170 0.1793 0.1478 0.1847

171 2.4127 2.1383 2.4521

191 0.0372 0.0261 0.0061

Table (4.5) the results of using the criteria of the absolute
differences between the mean of the difference between two

neighbored pixels in the frame

Shot2 Shot3 Shot1

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180

Frame No.

A
bs

ol
ut

e
di

ff
er

en
ce

Chapter Four: Experimental Results 80

Figure (4.7) Shots detection using the criteria of the square differences between the
mean of the difference between two neighbored pixels in the frame

Square difference

Frame

No.
Red Blue Green

1 0.002624 0.004938 0.000866

147 0.000020 0.000231 0.000106

148 0.622115 0.606830 0.221279

170 0.032161 0.021853 0.034132

171 5.821236 4.572216 6.012942

191 0.001385 0.000682 0.000038

Table (4.6) the results of using the criteria of the square
differences between the mean of the difference between

two neighbored pixels in the frame

0.01

0.1

1

10

0 20 40 60 80 100 120 140 160 180

Frame No.

Sq
ua

re
 D

if
fe

re
nc

e

Shot1 Shot2 Shot3

Chapter Four: Experimental Results 81

Figure (4.8) Shots detection using the criteria of the cubic differences between the mean
of the difference between two neighbored pixels in the frame

Cubic difference

Frame

No.
Red Blue Green

1 0.0001344 0.0003470 0.0000255

147 0.0000088 0.0000035 0.0000011

148 0.3305963 0.4727166 0.1040903

170 0.0057675 0.0032304 0.0063058

171 14.0450334 9.7766510 14.7445177

191 0.0019900 0.0015506 0.0016176

Table (4.7) the results of using the criteria of the cubic
differences between the mean of the difference between

two neighbored pixels in the frame

Shot2 Shot3 Shot1

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180

Frame No.

C
ub

ic
 D

if
fe

re
nc

e

Chapter Four: Experimental Results 82

4.4 The Results of Static and Dynamic Classification

Table (4.8) shows the results of the block classification for three colors

(red, blue, green) for ten frames as a prototype from the sixth video sample,

the value threshold was taken equal to 5 and the block size was (4×4).

Figure (4.10) The mean of the number of the static and dynamic blocks

Frame

No.

Mean of the

Static Blocks

Mean of the

Dynamic Blocks

1 0.4410 0.5590

2 0.4607 0.5393

3 0.4635 0.5365

4 0.9598 0.0402

5 0.4253 0.5747

6 0.5207 0.4793

7 0.4932 0.5068

8 0.5319 0.4681

9 0.9929 0.0071

10 0.5311 0.4689

Table (4.8) the results for the mean of the number of the
static and dynamic blocks

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180

Frame No.

M
e

a
n

 o
f
th

e

D
yn

a
m

ic
 B

lo
ck

s

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180

Frame No.

M
e

a
n

 o
f
th

e
 S

ta
tic

B

lo
ck

s

Chapter Four: Experimental Results 83

4.5 The Results of Features Extraction

Two types of features have been extracted from the video shots

(textural, color) the color features calculated form the color histogram

which is calculated for three colors components (Red, Blue, Green) from

both static and dynamic blocks the following figures display the histogram

behavior for the three colors components and for static and dynamic

blocks.

Figure (4.11) The ten histograms for the red

component of the static blocks belong to the

selected ten frames.

Figure (4.12) The ten histograms for the

blue component of the static blocks

belong to the selected ten frames.

Figure (4.13) The ten histograms for the green

component of the static blocks belong to the

selected ten frames.

Figure (4.14) The ten histograms for the red

component of the dynamic blocks belong to the

selected ten frames.

Figure (4.15) The ten histograms for the blue

component of the dynamic blocks belong to the

selected ten frames.

Figure (4.16) The ten histograms for the red

component of the dynamic blocks belong to

the selected ten frames.

.

0
100
200
300
400
500

0 20 40 60 80 100 120 140 160 180

Frmae No.
H

is
to

gr
am

 v
la

ue

0
200
400
600
800

1000

0 20 40 60 80 100 120 140 160 180

Frame No.

H
is

to
gr

am
 v

al
ue

0

200

400

600

800

0 20 40 60 80 100 120 140 160 180

Frame No.

H
is

to
gr

am
 v

al
ue

0
500

1000

1500
2000
2500

0 20 40 60 80 100 120 140 160 180

Frame No.

H
is

to
gr

am
 v

al
ue

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180

Frame No.

H
is

to
gr

am
 v

al
ue

0
100
200
300
400
500

0 20 40 60 80 100 120 140 160 180

Frame No.

H
is

to
gr

am
 v

al
ue

Chapter Four: Experimental Results 84

First adopted type of features is the color features which are (mean,

standard deviation, mean absolute deviation, skewness) theses features are

extracted form both static and dynamic blocks and from the three colors

components (red, blue, green) figures (4.17, 19, 21, 23) represent the

results of these adopted features extracted from the static blocks and figures

(4.18, 20, 22, 24) represent the results of the same features extracted from

the dynamic blocks. The results are taken form the sixth video sample

which contain three shots.

Figure (4.17) The result for mean of color histogram
extracted from the static blocks for three color component

(red, blue, green).

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
m

ea
n

 o
f

co
lo

r
h

is
to

g
ra

m

Red

Blue

Green

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

Frame No.

T
he

 m
ea

n
of

 c
o

lo
r

hi
st

o
g

ra
m

Red

Blue

Green

Figure (4.18) The result for mean of color histogram
extracted from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 85

Figure (4.19) The results of the standard deviation of the
color histogram extracted from the static blocks for three

color component (red, blue, green).

10

30

50

70

90

110

0 20 40 60 80 100 120 140 160 180

Frame No.

S
td

 o
f t

h
e

co
lo

r
h

is
to

g
ra

m Red

Blue

Green

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
S

td
 o

f c
o

lo
r

h
is

to
g

ra
m Red

Blue

Green

Figure (4.20) The results of the standard deviation of the
color histogram extracted from the dynamic blocks for

three color component (red, blue, green).

Chapter Four: Experimental Results 86

Figure (4.21) The results of mean absolute deviation of the
color histogram extracted from the static blocks for three

color component (red, blue, green).

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
M

ad
 o

f
th

e
co

lo
r

h
is

to
g

ra
m Red

Blue

Green

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
M

ad
 o

f t
h

e
co

lo
r

h
is

to
g

ra
m Red

Blue

Green

Figure (4.22) The results of mean absolute deviation of the
color histogram extracted from the dynamic blocks for

three color component (red, blue, green).

Chapter Four: Experimental Results 87

Figure (4.23) The results of skweness of the color
histogram extracted from the static blocks for three color

component (red, blue, green).

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
sk

w
en

es
s

o
f t

h
e

co
lo

r
h

is
to

g
ra

m Red

Blue

Green

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
sk

w
en

es
s

o
f t

h
e

co
lo

r
h

is
to

g
ra

m
Red

Blue

Green

Figure (4.24) The results of skweness of the color histogram
extracted from the dynamic blocks for three color component

(red, blue, green).

Chapter Four: Experimental Results 88

Second adopted type of features is the textural features which are (the

average energy of three gradient (horizontal, vertical, diagonal), contrast1,

contrast2, modification on fractal dimension(H)) theses features are

extracted form both static and dynamic blocks and from the three colors

components (red, blue, green) figures (4.25, 27, 29, 31, 33, 35) represent

the results of these adopted features extracted from the static blocks and

figures (4.26, 28, 30, 32, 34, 36) represent the results of the same features

extracted from the dynamic blocks . The results are taken form the sixth

video sample which contain three shots.

Figure (4.25) The results of energy of the horizontal
gradient extracted from the static blocks for three color

component (red, blue, green).

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
en

er
g

y
o

f t
h

e
h

o
ri

zo
n

ta
l

g
ra

d
ie

n
t

Red

Blue

Green

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
en

er
g

y
o

f t
h

e
h

o
ri

zo
n

ta
l g

ra
d

ie
n

t

Red

Blue

Green

Figure (4.26) The results of energy of the horizontal
gradient extracted from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 89

Figure (4.27) The results of energy of the vertical gradient
extracted from the static blocks for three color component

(red, blue, green).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
en

er
g

y
o

f t
h

e
ve

rt
ic

al

g
ra

d
ie

n
t

Red

Blue

Green

0.00

2.00

4.00

6.00

8.00

10.00

0 20 40 60 80 100 120140 160180

Frame No.

T
h

e
en

er
g

y
o

f t
h

e
ve

rt
ic

al

g
ra

d
ie

n
t

Red

Blue

Green

Figure (4.28) The results of energy of the vertical gradient
extracted from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 90

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
en

er
g

y
o

f t
h

e
d

ia
g

o
n

al

g
ra

d
ie

n
t Red

Blue

Green

0.00

1.00

2.00

3.00

4.00

5.00

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
en

er
g

y
o

f t
h

e
d

ia
g

o
n

al

g
ra

d
ie

n
t Red

Blue

Green

Figure (4.29) The results of energy of the diagonal
gradient extracted from the static blocks for three color

component (red, blue, green).

Figure (4.30) The results of energy of the diagonal
gradient extracted from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 91

Figure (4.31) The results of contrast1 extracted
from the static blocks for three color component

(red, blue, green).

0.000

0.020

0.040

0.060

0.080

0.100

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
C

o
n

tr
as

t1
 v

al
u

e

Red

Blue

Green

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
C

o
n

tr
as

t1
 v

al
u

e

Red

Blue

Green

Figure (4.32) The results of contrast1 extracted
from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 92

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
C

o
n

tr
as

t2
 v

al
u

e

Red

Blue

Green

0.000

0.200

0.400

0.600

0.800

1.000

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
C

o
n

tr
as

t2
 v

al
u

e
Red

blue

Green

Figure (4.33) The results of contrast2 extracted
from the static blocks for three color component

(red, blue, green).

Figure (4.34) The results of contrast2 extracted
from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 93

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
m

o
d

ifi
ed

 fr
ac

ta
l

d
im

en
si

o
n

 (H
)

Red

Blue

Green

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0 20 40 60 80 100 120 140 160 180

Frame No.

T
h

e
m

o
d

ifi
ed

 fr
ac

ta
l

d
im

en
si

o
n

 (H
)

Red

Blue

Green

Figure (4.35) The results of modified fractal
dimension (H) extracted from the static blocks for

three color component (red, blue, green).

Figure (4.36) The results of modified fractal dimension
(H) extracted from the dynamic blocks for three color

component (red, blue, green).

Chapter Four: Experimental Results 94

4.6 The Results of Feature Analysis

 The above ten features have been calculated for all the frames belong

to each shot in the eleven tested videos, for each shot in the tested videos

the mean of these ten features were determined, then ten video sequences

have been taken from each shot and the same ten features have been

extracted from each video sequence, the number of frames belongs to each

sequence is depending on how many frames in the shot.

A set of tests were conducted to study the effect of the number of the

video frames (used to represent each video shot) on the recognition results

indicate the increase in the number of frames will improve the recognition

efficiency of the adopted features, so each video's shot consist of less than

45 frame is neglected, for this reason in the sixth video sample only first

shot was taken because the two other shots have a small number of frames.

Table (4.9) show the results of Ten values as a prototype the values is for

the mean of the adopted ten features calculated for three randomly selected

sequences belong to the first shot.

4.7 The Results of Power Discrimination

Tables (4.10-14) display the rate of the recognition success and frailer

of the adopted ten features. As seen from the presented results the first

ninth features (mean, standard deviation, skewness, mean absolute

deviation, energy of gradient, contrast1, contrast2) show high successful

rates than other features; all the obtained results refer to indicate that all the

static features except the (modified fractal dimension) have higher

successful recognition rate than the dynamic features.

Chapter Four: Experimental Results 95

Table (4.9) The mean for the ten adopted features calculated for three randomly
selected sequences that belong to shot No.1 (from the sixth video sample).

Dynamic Static

se
q

u
en

ce
 N

o
.1

Features Red Blue Green Red Blue Green
Mean 120.20871 192.20363 168.30032 113.02430 155.67870 142.72464

Std 83.97413 95.22082 94.08603 70.98245 77.88278 78.43591

Mad 72.56188 88.85220 85.85184 59.41537 66.96887 66.87877

Skewness 91.43575 99.40249 99.26940 79.98340 87.86890 87.43938

H-Energy 1.51100 0.83060 1.02048 0.21805 0.09710 0.11462

V-Energy 2.23824 1.80894 1.91750 0.24298 0.10861 0.13780

D-Energy 1.02420 0.61878 0.58675 0.92054 0.70582 0.57362

Contrast-1 0.18613 0.09885 0.12164 0.04489 0.02295 0.02593

Contrast-2 0.40323 0.35704 0.37254 0.29327 0.29230 0.33916

H 0.00191 0.00134 0.00210 0.00150 0.00014 0.00017

Mean 136.70397 195.24983 171.67958 171.09918 187.10038 125.78592

se
q

u
en

ce
 N

o
.2

Std 83.94187 93.25120 95.17006 71.57174 82.98902 82.47166

Mad 72.88498 87.13978 86.56016 60.13697 72.96849 71.00647

Skewness 91.29477 98.33491 100.81112 80.22058 92.22312 91.31607

H-Energy 1.58371 1.00762 1.10951 0.21605 0.08205 0.09376

V-Energy 1.91067 1.58760 1.63680 0.19290 0.11702 0.13226

D-Energy 1.09999 1.31977 0.85354 0.62953 0.62599 0.42133

Contrast-1 0.19413 0.11010 0.13499 0.04516 0.02105 0.02360

Contrast-2 0.37167 0.27818 0.32410 0.33553 0.27735 0.28534

H 0.00247 0.00275 0.00291 0.00225 0.00012 0.00027

Mean 137.82109 198.45694 182.62041 111.25058 164.79339 138.60219

se
q

u
en

ce
 N

o
.3

Std 86.40482 97.26434 99.64530 61.12988 75.35320 70.24007

Mad 74.64823 89.76535 89.69606 49.26038 63.58346 57.18453

Skewness 94.01401 103.78550 106.13080 71.10556 83.79155 80.55727

H-Energy 2.40583 1.45500 1.73911 0.41121 0.10847 0.16685

V-Energy 1.73967 1.22726 1.41940 0.32033 0.20031 0.21742

D-Energy 1.19700 1.31719 0.88988 1.11768 0.60739 0.66620

Contrast-1 0.20483 0.13836 0.16873 0.05963 0.02251 0.03154

Contrast-2 0.44230 0.60149 0.55002 0.27065 0.21431 0.24116

H 0.00278 0.00196 0.00220 0.00277 0.00017 0.00044

Chapter Four: Experimental Results 96

Table (4.10) The best five values of the discrimination power of
each feature alone.

Table (4.21) The best discrimination power values (≥%80) of the
combination of two features.

Table (4.12) The best discrimination power values (≥%91) of the
combination of three features.

Feature No. Successful
Rate %

Failure
Rate %

9 64.79 35.21

5 51.04 48.96

1 49.38 50.62

3 47.08 52.92

2 43.75 56.25

Feature No.
Successful

Rate %

Failure

Rate %

5 9 85.83 14.17

2 7 83.54 16.46

8 9 82.08 17.92

6 9 81.67 18.33

3 7 81.25 18.75

1 9 81.04 18.96

3 5 80.83 19.17

1 5 80.00 20.00

3 9 80.00 20.00

Feature No.
Successful

Rate %

Failure

Rate %

3 5 9 94.79 5.21

2 5 9 93.13 6.87

5 6 9 92.92 7.08

3 7 9 92.50 7.50

5 8 9 92.50 7.50

1 5 6 91.88 8.12

1 6 9 91.46 8.54

2 7 9 91.46 8.54

1 5 9 91.04 8.96

1 7 9 91.04 8.96

Chapter Four: Experimental Results 97

Table (4.13) The best discrimination power values (≥%94)
of the combination of four features.

Table (4.14) The best discrimination power values (≥%95)
of the combination of five features.

Feature No. Successfu
l Rate %

Failure
Rate %

3 5 8 9 96.04 3.96

3 5 7 9 95.83 4.17

1 6 7 9 95.42 4.58

1 5 7 9 95.21 4.79

3 5 6 9 95.21 4.79

2 5 8 9 95.00 5.00

5 6 8 9 95.00 5.00

3 7 8 9 94.79 5.21

1 5 6 7 94.17 5.83

1 5 8 9 94.17 5.83

1 7 8 9 94.17 5.83

Feature No. Successful
Rate %

Failure
Rate %

1 3 5 8 9 96.04 3.96

2 3 5 8 9 96.04 3.96

1 3 5 7 9 95.83 4.17

2 3 5 7 9 95.83 4.17

1 3 5 6 9 95.21 4.79

2 3 5 6 9 95.21 4.79

1 2 5 8 9 95.00 5.00

1 5 6 8 9 95.00 5.00

2 5 6 8 9 95.00 5.00

3 5 6 8 9 95.00 5.00

4 5 6 8 9 95.00 5.00

Chapter Four: Experimental Results 98

4.8 The Results of K-Means Algorithm

Table (4.15) present the results of applying K-means clustering

method, the k-mean method used the features that give a high recognition

success rate, these features are the first nine features for the three color

components (red, blue, green) in the features vector (i.e., mean, standard

deviation, skewness, mean absolute deviation, energy of gradient,

contrast1, contrast2), they are the features extracted from the static blocks

except the (modified fractal dimension), the number of training video

sequences is 490 patterns (i.e. ten sequences are randomly selected from

each of the 49 segmented shots, which are in turn gathered from the eleven

tested video samples).

The number of clusters that used in the K-means algorithm is five

clusters, because the shots in the considered video samples can be

categorized into five types, depending on the events inside the shots.

The results given in table (4.15) shows that most of the ten sequences

that belong to certain shot were clustered within one cluster, except the

sequences belong to shots (6, 12, 41, 43, 44) where %80 of the sequences

belong to each of these shots have been clustered in the same cluster.

Table (4.16) shows the classification results when the number of

clusters was taken four. It is obvious that the failure in classification rate

was increase.

Chapter Four: Experimental Results 99

Table (4.15) The results of K-means algorithm for five clusters.

 Shot No.

Class
No. 1

Class
No. 2

Class
No. 3

Class
No. 4

Class
No.5

1 0 0 0 100% 0
2 100% 0 0 0 0
3 100% 0 0 0 0
4 100% 0 0 0 0
5 0 0 100% 0 0
6 20% 0 0 80% 0
7 100% 0 0 0 0
8 100% 0 0 0 0
9 100% 0 0 0 0

10 100% 0 0 0 0
11 0 0 100% 0 0
12 10% 0 0 90% 0
13 0 0 100% 0 0
14 0 0 0 100% 0
15 0 0 100% 0 0
16 0 0 100% 0 0
17 0 0 100% 0 0
18 0 0 100% 0 0
19 100% 0 0 0 0
20 0 0 100% 0 0
21 0 0 100% 0 0
22 0 0 100% 0 0
23 0 0 100% 0 0
24 0 0 100% 0 0
25 100% 0 0 0 0
26 0 0 0 100% 0
27 0 100% 0 0 0
28 100% 0 0 0 0
29 100% 0 0 0 0
30 100% 0 0 0 0
31 100% 0 0 0 0
32 100% 0 0 0 0
33 0 100% 0 0 0
34 0 100% 0 0 0
35 0 100% 0 0 0
36 0 100% 0 0 0
37 0 0 100% 0 0
38 0 0 0 0 100%
39 0 0 100% 0 0
40 0 0 0 100% 0
41 20% 0 0 80% 0
42 0 0 0 0 100%
43 20% 0 80% 0 0
44 30% 0 70% 0 0
45 0 0 100% 0 0
46 0 0 100% 0 0
47 0 0 0 100% 0
48 0 0 0 0 100%
49 0 0 0 100% 0

Overall
successful

98% 100% 99% 99% 100%

Chapter Four: Experimental Results 100

Table (4.16) The results of K-means algorithm for four clusters.

Shot No.
Class
No. 1

Class
No. 2

Class
No. 3

Class
No. 4

1 100% 0 0 0
2 0 100% 0 0
3 0 100% 0 0
4 0 100% 0 0
5 0 0 0 100%
6 50% 50% 0 0
7 0 100% 0 0
8 0 100% 0 0
9 0 100% 0 0

10 0 100% 0 0
11 0 0 0 100%
12 70% 30% 0 0
13 0 0 0 100%
14 100% 0 0 0
15 0 0 0 100%
16 0 0 0 100%
17 0 0 0 100%
18 0 0 0 100%
19 0 100% 0 0
20 0 0 0 100%
21 0 0 0 100%
22 0 0 0 100%
23 0 0 0 100%
24 0 0 0 100%
25 0 100% 0 0
26 100% 0 0 0
27 0 0 100% 0
28 0 100% 0 0
29 0 100% 0 0
30 0 100% 0 0
31 0 100% 0 0
32 0 100% 0 0
33 0 0 100% 0
34 0 0 100% 0
35 0 0 100% 0
36 0 0 100% 0
37 0 0 0 100%
38 100% 0 0 0
39 0 0 0 100%
40 100% 0 0 0
41 80% 20% 0 0
42 40% 0 0 60%
43 0 20% 0 80%
44 0 30% 0 70%
45 0 0 0 100%
46 0 0 0 100%
47 100% 0 0 0
48 80% 0 0 20%
49 100% 0 0 0

Overall
successful

96% 97% 100% 97%

Chapter One

General Introduction

1.1 Data Mining

Substantial progress in the field of data mining research has been

witnessed in the last few years [Han98]. The Data mining DM (sometimes

called data or knowledge discovery) is the process of analyzing data from

different perspectives and summarizing it into useful information. Data

mining software is one of a number of analytical tools for analyzing data. It

allows users to analyze data from many different dimensions or angles,

categorize it, and summarize the identified relationships. Technically, data

mining is the process of finding correlations or patterns among dozens of

fields in large relational databases.

Data might be one of the most valuable assets of your corporation, but

only if you know how to reveal valuable knowledge hidden in raw data. Data

mining allows you to extract diamonds of knowledge from your historical

data and predict outcomes of future situations. It will help you optimize your

business decisions, increase the value of each customer and communication,

and improve satisfaction of customer with your services [Data05].

Data mining software analyzes relationships and patterns in stored

transaction data based on open-ended user queries. Several types of analytical

software are available: statistical, machine learning, and neural networks.

Generally, four types of relationships are sought [What01]:

1. Classes: Stored data is used to locate data in predetermined groups. For

example, a restaurant chain could mine customer purchase data to

Chapter One: General Introduction 2

determine when customers visit the restaurant and what they typically

order? This information could be used to increase traffic by having daily

specials.

2. Clusters: Data items are grouped according to logical relationships or

consumer preferences. For example, data can be mined to identify market

segments or consumer affinities.

3. Associations: Data can be mined to identify associations. The beer-

diaper example is an example of associative mining.

4. Sequential patterns: Data is mined to anticipate behavior patterns and

trends. For example, an outdoor equipment retailer could predict the

likelihood of a backpack being purchased based on a consumer's

purchase of sleeping bags and hiking shoes.

Data mining consists of five major elements [What01]:

1. Extract, transform, and load transaction data onto the data warehouse

system.

2. Store and manage the data in a multidimensional database system.

3. Provide data access to business analysts and information technology

professionals.

4. Analyze the data by data mining software.

5. Present the data in a useful format, such as a graph or table.

1.2 Growth of Data Mining

During the last years the data mining issues have been rapidly developed,

the reasons behind this development are [Data05]:

Chapter One: General Introduction 3

1. Growing Data Volume: The main reason for necessity of automated

computer systems for intelligent data analysis is the enormous volume of

existing and newly appearing data that require processing. The amount of

data accumulated each day by various business, scientific, and

governmental organizations around the world is daunting. According to

information from GTE research center, only scientific organizations store

each day about 1 TB (terabyte) of new information. And it is well known

that academic world is by far not the leading supplier of new data. It

becomes impossible for human analysts to cope with such overwhelming

amounts of data.

2. Low Cost of Machine Learning: One additional benefit of using

automated data mining systems is that this process has a much lower cost

than hiring an army of highly trained professional statisticians. While

data mining does not eliminate human participation in solving the task

completely, it significantly simplifies the job and allows an analyst who

is not professional in statistics and programming to manage the process

of extracting knowledge from data.

1.3 Multimedia Data Mining

Multimedia data mining is a subfield of data mining that deals with the

extraction of implicit knowledge, multimedia relationship, or other patterns

not explicitly stored in multimedia data base [Han98].

 Multimedia data (image, audio and video) has been the major focus for

many researchers around the world. Many techniques for representing,

storing, indexing and retrieving multimedia data have been proposed

[Zaia00].

The computer industry has seen a large growth in technology access,

storage and processing fields. This combined with the fact that there are a lot

Chapter One: General Introduction 4

of data to be processed, and they paved the way for analyzing and mining data

to derive potentially useful information. Various fields ranging from

commercial to military want to analyze data in an efficient and fast manner.

Particularly in the area of Multimedia data, images have the stronghold.

However there is a general agreement that sufficient tools are not available for

analysis of images. One of the issues is the effective identification of features

in the images (color, shape and texture) and the other one is extracting them.

One of the difficult tasks is how to know the image domain and obtaining a

priori knowledge of what information is required from the image. This is one

of the reasons behind making the image mining process cannot be completely

automated [Fosc01].

1.4 Literature Survey

Several researches in the multimedia data mining field had been done;

the following are some of these research:

1. Zaiane, et al [Zaia98] they had designed and developed a multimedia

data mining system prototype called (multimediaminer), the system

include the construction of multimedia data cube which facilitated

multiple dimensional analysis of multimedia data, the system is primarily

based on the visual content, and the mined of multiple kinds of

knowledge, including summarization, comparison, classification,

association and clustering.

2. Zaiane, et al [Zaia99] they had designed and implemented

MultiMediaMiner, a system prototype to mine high-level multimedia

information and knowledge from large multimedia repositories like the

WWW. WordNet, a semantic network for English, was used to clean and

transform sets of keywords extracted from Web pages to index

Chapter One: General Introduction 5

multimedia objects contained in these pages. WordNet was also enriched

and used to generate concept hierarchies necessary for interactive

information retrieval and the construction of multi-dimensional data

cubes for multimedia data mining with MultiMediaMiner.

3. Zaïane, et al [Zaia00] they studied methods that mined content-based

associations with recurrent items and with spatial relationships that

extracted from large visual data repositories. A progressive resolution

refinement approach is proposed in which frequent item-sets at rough

resolution levels are mined, and progressively finer resolutions are mined

only on the candidate frequent item-sets derived from mining rough

resolution levels.

4. Foschi, et al [Fosc01] they proposed system that extracted patterns and

derived knowledge from large collections of images, dealt mainly with

identification and extraction of unique features for particular domain.

The aim was to identify the best features and thereby extract relevant

information from the images. They tried various methods of extraction;

the extracted features and the used extraction techniques have been

evaluated. The experimental results showed that the adopted features are

sufficient to identify the patterns of the images. The extracted features

were evaluated for goodness and tested on tested images.

5. Zhang, et al [Zhan01] they had presented a research that highlighted the

need for image mining in view of the rapidly growing amounts of image

data, they pointed out the unique characteristics of image databases that

brought a whole new set of challenging and interesting research issues to

be resolved. Also they examined two frameworks for image mining:

function-driven and information-driven image mining frameworks. They

Chapter One: General Introduction 6

discussed some techniques that are frequently used in the early works in

image mining, namely, object recognition, image retrieval, image

indexing, image classification and clustering, association rule mining and

neural network.

6. Oh and Bandi [Band02] they proposed general framework for real time

video data mining to be applied to the raw videos (like Traffic videos,

surveillance videos, etc.). The system was designed to perform the

following tasks, grouping of input frames into segments, discovering

unknown knowledge and detecting interesting patterns (like motion,

object, colors, etc.), the researchers focused on motion as a feature and

the last task was the clustering of segments using multi-level hierarchical

clustering approach.

7. Datcu and Seidel [Datc02] they presented a system for image

information mining based on modeling the causalities, which link the

image-signal contents to the objects and structures lay within the regions

of interest for the users. The basic idea was to split the process of

information representation into the stages: image feature extraction,

unsupervised grouping in a large number of clusters, data reduction by

parametric modeling the clusters, and supervised learning of user

semantics. (Where instead of being programmed, the system is trained by

a set of examples). The proposed system was a prototyped for inclusion

in a new generation of intelligent satellite ground segment systems, and

several other applications.

8. Ciucu, et al [Ciuc02] they described an application of a scale space

clustering algorithm (melting) for exploration of image information

content. Clustering by melting considers the feature space as a thermo

Chapter One: General Introduction 7

dynamical ensemble and groups the data by minimizing the free energy,

using the temperature as a scale parameter. They developed clustering by

melting for multidimensional data; they proposed and demonstrated a

solution for the initialization of the algorithm.

9. Oh, et al [Band03] they extended their previous work [Band02], to

further address the issue such as how to mine video data, in other words

how to extract previously unknown knowledge and detect interesting

patterns. To extract motions, they used a criteria based on the

accumulation of quantized pixel differences among all frames in a video

segment. They studied how to cluster those segmented pieces by using

the features: the amount and the location of motions. Also they

investigated an algorithm to find whether a segment has normal or

abnormal events and computes the degree of abnormality of a segment,

which represents to what extent a segment is distant from to the existing

segments.

10. Zhu and Wu [Zhu04] they proposed an association-based video

summarization scheme that mined sequential associations from video

data for summary creation. The detected shots of the video were

clustered into visually distinct groups, and then constructed a sequential

sequence by integrating the temporal order and cluster type of each shot.

An association mining scheme is designed to mine sequentially

associated clusters from the sequence, and these clusters are selected as

summary candidates. The system generated the corresponding summary

by selecting representative frames from candidate clusters and assembled

them according to their original temporal order.

Chapter One: General Introduction 8

1.5 Aim of Thesis

The aim of this project is summarized by the following targets:

1. Partition the video data into static and dynamic blocks according to the

level of variability of the pixels belong to each block (across the video

sequences).

2. Segment the video into shots (collection of frames) and find the

boundaries of each shot.

3. Extract two types of features textural and color features form the static

and dynamic blocks.

4. Study the discrimination power of the extracted features (textural and

color) to recognize video sequences from each other.

5. Utilize the k-mean clustering method to classify the video sequences.

6. establish the program required to perform the following tasks:

a. Find the shots boundaries of the video.

b. Segment each frame to static and dynamic blocks.

c. Extract the features.

d. Analysis the discrimination power of the adopted features set.

e. Apply the K-Mean algorithm to classify the video sequences.

1.6 Chapters overview

 In this section, the contents of the individual chapters of this thesis are

briefly reviewed:

1. Chapter two "Theoretical Background" consists of all the methodology

deals with the video classification, details of features extraction (color

and textural features) and the clustering of the video sequences.

Chapter One: General Introduction 9

2. Chapter three "The Proposed System" presents the proposed system

design steps, Like the detection of shots boundaries, the extraction of

the features (color and textural) from the video frames, the finding of

the power discrimination for these features and the use of the K-mean

clustering algorithm to cluster the video sequences.

3. Chapter four "Experimental Results" this chapter display the

experimental results of the work.

4. Chapter five "Conclusion and Future Work" introduce the conclusion

of the experimental results of this work with som recommendation for

the future work.

Chapter Three

Proposed System

3.1 Introduction

This chapter is concerned with the description of the designed and

implemented video classification system. The description will include the

following stages of the proposed system:

decomposition of the colors of each frame in the video, detection of the

scenes changes (shots), classify the blocks of the frames into dynamic and

static, then extract the features from the shots of AVI file, analyze the

extracted features and find the discrimination power of each extracted features

and as a last step apply the K-Means algorithm to establish the video

classification system.

The programming language Microsoft Visual Basic-0.6 had been used to

establish the required programs of this project.

3.2 The System Model

Figure (3.1) illustrates the phases of the proposed video. As it's shown in

the figure, the system model consists of three phases.

 The first phase contains the load of the video stream and decompose the

colors component of each frame into three colors (Red, Green, Blue) then

detect the shots boundaries, the last step is classifying the blocks of the frames

into static and dynamic blocks; the output from this phase are the dynamic

and the static blocks for the three colors (Red, Green, Blue) for each frame in

the shot.

Chapter Three: Proposed System 33

Figure (3.1) The system model

Average
of the
Static
Features
Vectors

Static
Features
Vector

Static DB

Average
of the
Dynamic
Features
Vectors

Dynamic
DB Power Discrimination

Filtered Features
 Vector

Filtered
Features DB

K-means Algorithm

Dynamic
Features
Vector

Static Features
 Analysis

Start and End frames of each Shot

Frames of Color components
(Red, Green, Blue)

Video frames

Load video
stream

Shots Boundaries Detection

(Static / Dynamic) Classification

 Color Decomposition

Features
Extraction

Features
Analysis

Feature Extraction
from Static Blocks

Feature Extraction
from Dynamic Blocks

Dynamic Features
Analysis

Chapter Three: Proposed System 34

 The second phase, use the output of the first phase to extract ten features

for both static and dynamic blocks for the three color components (Red,

Green, Blue) belong to each shot, then analysis these features by computing

the same ten features for some selected number of frames belong to each shot

in the video. Then find the power discrimination for these ten features, the

power was first determined for each single feature alone, then for combination

of features (starting from two to five); the output is a vector of filtered

features that have high discrimination power.

The third and last phase is the clustering phase; the k-means algorithm

has been used to cluster the videos shots.

Eleven AVI video had been used as test sample to implement this

project, and more than 49 shots had been detected, the shots that have small

number of frames have been neglected, so only 49 shots have been used in

our research work.

3.2.1 Load Video stream

Every AVI file contains audio stream and video stream, the audio stream

contains information about the audio part of the AVI file and the video stream

contains information about the video part of the AVI file (like total number of

frames, frame width, frame height). In our work the audio stream had

separated from the video stream by using (VCDCutter V- 4.04) program, then

only the video stream data which had been used in the implementation of the

project.

3.2.2 Color Decomposition

 The video stream data which is contains a sequence of bitmap frames. The

bitmap image consists of two parts header and data, each pixel in the image

data have three color components (Red, Blue and Green), in code list (3.1)

Chapter Three: Proposed System 35

these three components (Red, Blue and Green) have separated and put in the

buffer (Color-array).

3.2.3 Shots Boundaries Detection

In order to detect the video shots boundaries three methods have been

considered, these three algorithms depending on two major elements; the first

one is the mean for all the frames in the video, which is calculated its value

varies in each algorithm. The second element is the relative threshold value

which is varies from video to another.

 To detect a shot, the relative threshold value is multiplied by the overall

mean of the frames in the video to get the absolute threshold value. Then a

Code List (3.1) Decompose Color Component of Video Frames

Input:

 Videono is the video number.

 Image is a record contains the frame color (Red, Blue and Green) information

Output:

 Frames_file (Video No., Frame No.) is a buffer contains the array Color_array

which holds the data of the color components (Red, Blue and Green).

Steps:

 For each frame in the video Xi

 For each pixel in the image X, Y

 Color_array (Xi, 0, X, Y) ← Image (x, y).R

 Color_array (Xi, 1, X, Y) ← Image (x, y).B

 Color_array (Xi, 2, X, Y) ← Image (x, y).G

 End loop X, Y

 Save in buffer named Frame_files (Videono) the array Color_array.

 End loop Xi

Chapter Three: Proposed System 36

compare between the absolute threshold with the mean of each frame, if the

mean of the tested frame is larger than the absolute threshold then a new shot

is detected.

The three methods gave the same results so we considered the first the

result of the first method only in our work.

Code list (3.2) illustrates the steps of the first implemented method to

allocate the shots boundaries (i.e., the start and the end frames numbers); in

this Code List the mean is calculated for the difference between pixels in two

successive frames.

 Code List (3.2) Shots Boundaries Detection-1

Input:

Videono is the video number.

Th is a predefined relative threshold for each video.

Tf is the total number of frames in the video.

Le is the block size.

Output:

 Shot (Video No.) Is a buffer contains the record Shots_Record which holds the start

and end frames numbers of a shot.

Steps:

 From buffer named Frame_file (Videno) the output of code list (3.1) gets the array

named Color_array.

 For each frame in the video Xi

 Count ← 0

 For each block in the frame Ix, Iy

 Xs ← Ix × Le, Xe ← Xs + Le - 1

 Ys ← Iy × Le, Ye ← Ys + Le – 1

 Difference ← 0

 For each color (Red, Blue and Green) C

 For X ← Xs to Xe

 For Y ← Ys to Ye

 Continue

Chapter Three: Proposed System 37

 In code list (3.3) three kind of the overall means have been calculated,

the first is for the absolute difference between the mean of two successive

frames, the second is for the square difference between the mean of two

successive frames, the last one is cubic absolute difference between the mean

of two successive frames, and it is found that the three computed type of

means gave a peak at the same position (frame) approximately, there for only

 Difference ← Difference + Y)X,C,1,y(XiColor_arra - Y)X,C,y(Xi,Color_arra +

 End loop Y

 End loop X

 End loop C

 Mean_Difference (Xi) ← Mean_Difference (Xi) + Difference

 Count ← Count + 1

 End loop Iy, Ix

 Mean_Difference (Xi) ← Mean_Difference (Xi) / Count

 End loop Xi

 For each frame in the video Xi

 Mean ← Mean + Mean_Difference (Xi)

 End loop Xi

 Mean ← Mean / Tf

 B ← 0

 For each frame in the video Xi

 If Mean_ Difference (Xi) > Mean × Th Then

 Shots_Record (Count).Start ← B

 Shots_Record (Count).End ← Xi

 B ← Xi + 1, Count ← Count + 1

 End If

 End loop Xi

 Shots_Record (Count).End ← Tf

 Shots_Record (Count).Start ← B

 Save in buffer named Shots (Videono) the record Shots_Record.

Chapter Three: Proposed System 38

one of them can be used as a criteria to allocate the shots boundaries, or the

sum of the three kinds of the mean of difference could be utilized to define

the absolute threshold value by multiplying the sum of the total means by the

relative threshold value.

 Code List (3.3) Shots Boundaries Detection-2

Input:

Videono is the video number.

Th is a given threshold for each video.

Tf is the total number of frames in the video.

Output:

 Shot2 (Video No.) is a buffer contains the record Shots2_Record which holds the start

and end frames numbers of a shot.

Steps:

 From buffer named Frame_file (Videno) the output of code list (3.1) gets the array

Color_array.

 For each frame in the video Xi

 For each color (Red, Blue, Green) C

 For each pixel in the frame X, Y

 Mean(C, Xi) ← Mean (C, Xi) + Color_array (Xi, C, X, Y)

 End loop X, Y

 Mean(C, Xi) ← Mean (C, Xi) / (H × W)

 End loop C

 End loop Xi

 For each frame in the video Xi

 For each color (Red, Blue, Green) C

 Difference1(C, Xi) ← Xi) (C,Mean - 1) Xi (C,Mean +

 Difference2 (C, Xi) ← (Mean (C, Xi+1) – Mean (C, Xi)) 2

 Difference3 (C, Xi) ← Xi) (C,Mean - 1) Xi (C,Mean + 3

 Continue

Chapter Three: Proposed System 39

In code list (3.4) three overall means had been calculated one for the

absolute difference other for the square difference and the last one for the

cubic absolute difference, the above difference is computed between the mean

of two successive frames, the mean of the frames is computed from the

difference between two neighbor pixels in the frame. and it is found that the

three computed type of means gave a peak at the same position (frame)

approximately, there for only one of them can be used as a criteria to allocate

 Mean_Diff1(C) ← Mean_Diff1 (C) + Difference1(C, Xi)

 Mean_Diff2(C) ← Mean_Diff2 (C) + Difference2(C, Xi)

 Mean_Diff3(C) ← Mean_Diff3 (C) + Difference3(C, Xi)

 End loop C

 End loop Xi

 For each color (Red, Blue, Green) C

 Mean_Diff1(C) ← Mean_Diff1(C)/ Tf

 Mean_Diff2(C) ← Mean_Diff2 (C) / Tf

 Mean_Diff3(C) ← Mean_Diff3 (C) / Tf

 End loop C

 B ← 0

 For each frame in the video Xi

 If Difference1 (0, Xi) > Mean_Diff1 (0) * Th and

 Difference1 (1, Xi) > Mean_Diff1 (1) * Th and

 Difference1 (2, Xi) > Mean_Diff1 (2) * Th Then

 Shots_Record (Count).Start ← B

 Shots_Record (Count).End ← Xi

 B ← Xi + 1, Count ← Count + 1

 End If

 End loop Xi

 Shots_Record (Count).End ← Tf

 Shots_Record (Count).Start ← B

 Save in buffer named Shot2 (Videono) the record Shots_Record.

Chapter Three: Proposed System 40

the shots boundaries, or the sum of the three kinds of the mean of difference

could be utilized to define the absolute threshold value by multiplying the

sum of the total means by the relative threshold value.

Code List (3.4) Shots boundaries Detection-3

Input:

Videono is the video number.

Th is a given threshold for each video.

Tf is the total number of frames in the video.

Output:

 Shot3 (Video No.) is a buffer contains the record Shots3_Record which holds the start

and end frames numbers of a shot.

Steps:

 From buffer named Frame_file (Videno) the output of code list (3.1) gets the array

Color_array.

 For each frame in the video Xi

 Pixel_Diff ← 0

 For each color (Red, Blue, Green) C

 For each pixel in the frame X, Y

 Pixel_Diff ←)Y,X,C,Xi(array_Color)1Y,X,C,Xi(array_Color −+

 Mean_pixel_Diff(C, Xi) ← Mean_pixel_Diff (C, Xi) + Pixel_Diff

 End loop X, Y

 End loop C

 End loop Xi

 Mean_pixel_Diff(C, Xi) ← Mean_pixel_Diff (C, Xi) / (H-1 × W)

 For each frame in the video Xi

 For each color (Red, Blue, Green) C

 Difference1(C, Xi) ← Xi) _Diff(C,Mean_pixel - 1)Xi _Diff(C,Mean_pixel +

 Difference2 (C, Xi) ← (Mean_pixel_Diff(C, Xi+1) – Mean_pixel_Diff(C, Xi)) 2

 Difference3 (C, Xi) ← Xi) _Diff(C,Mean_pixel - 1)Xi _Diff(C,Mean_pixel + 3

 Continue

Chapter Three: Proposed System 41

3.2.4 Static and Dynamic Classification

The blocks belong to each frame had been classified into static and

dynamic blocks, by taking the difference between the two successive frames,

then this difference is compared with the calculated threshold, if the

difference is larger than the threshold then the block is considered as a

 Mean_Diff1 (C) ← Mean_Diff1 (C) + Difference1(C, Xi)

 Mean_Diff2 (C) ← Mean_Diff2 (C) + Difference2(C, Xi)

 Mean_Diff3 (C) ← Mean_Diff3 (C) + Difference3(C, Xi)

 End loop C

 End loop Xi

 For each color (Red, Blue, Green) C

 Mean_Diff1(C) ← Mean_Diff1(C)/ Tf

 Mean_Diff2(C) ← Mean_Diff2 (C) / Tf

 Mean_Diff3(C) ← Mean_Diff3 (C) / Tf

 End loop C

 B ← 0

 For each frame in the video Xi

 If Difference1 (0, Xi) > Mean_Diff1 (0, Xi) * Th And

 Difference1 (1, Xi) > Mean_Diff1 (1, Xi) * Th And

 Difference1 (2, Xi) > Mean_Diff1 (2, Xi) * Th Then

 Shots_Record (Count).Start ← B

 Shots_Record (Count).End ← Xi

 B ← Xi + 1, Count ← Count + 1

 End If

 End loop Xi

 Shots_Record (Count).End ← Tf

 Shots_Record (Count).Start ← B

 Save in buffer named Shot3 (Videono) the record Shots_Record.

Chapter Three: Proposed System 42

dynamic block otherwise it is a static block, code list (3.5) shows the detail of

this classification process.

 Code list (3.5) Classification of Static and Dynamic Blocks

Input:

 Videono is the video number.

 Le is the length of the block.

 Th is a given threshold.

Output:

 Static_Dynamic_records (Videono) is a buffer contains the records Static_record,

Dynamic_record they hold the information about the static blocks and information about

the dynamic blocks.

Steps:

 Threshold = le × le × 3 × Th

 From buffer named Frame_file (Videno) the output of code list (3.1) gets

the array named Color_array.

 For each frame in the shot Xi

 S ← 0

 D ← 0

 For each block in the frame Ix, Iy

 Xs ← Ix × Le

 Xe ← Xs + Le − 1

 Ys ← Iy × Le

 Ye ← Ys + Le – 1

 Difference ← 0

 For each color (Red, Blue and Green) C

 For X ← Xs to Xe

 For Y ← Ys to Ye

Chapter Three: Proposed System 43

 Difference ← Difference + Y)X,C,1,y2(XiColor_arra - Y)X,C,y(Xi,Color_arra +

 End loop Y

 End loop X

 End loop C

If Difference < Threshold Then

 S ← S + 1

 For each color (Red, Blue and Green) C

 Static_record (C, Xi).Scount(S).Xss ← Xs

 Static_record (C, Xi).Scount(S).Xes ← Xe

 Static_record (C, Xi).Scount(S).Yss ← Ys

 Static_record (C, Xi).Scount(S).Yes ← Ye

 End loop C

 Else

 D ← D + 1

 For each color (Red, Blue and Green) C

 Dynamic_record (C, Xi).Dcount (D).Xs ← Xs

 Dynamic_record (C, Xi).Dcount (D).Xe ← Xe

 Dynamic_record (C, Xi).Dcount (D).Ys ← Xs

 Dynamic_record (C, Xi).Dcount (D).Ye ← Xe

 End loop C

 End if

 End loop Ix, Iy

 For each color (Red, Blue and Green) C

 Static_record (C, Xi).Scounter ← S

 Dynamic_record (C, Xi).Dcounter ← D

 End loop C

 End loop Xi

Chapter Three: Proposed System 44

3.2.5 Feature Extraction

First it should be clear that the feature extraction stage was applied three

colors (red, blue and green) on both the static and the dynamic blocks, two

types of features have adopted in our work the histogram features and the

textures features, as mentioned in chapter two. The steps of determining the

color histogram are listed in code list (3.6).

 Code List (3.6) Calculate the Color Histogram

Input:

 Videono is the video number.

Output:

 Hist_S is an array contains color histogram values for the static blocks.

 Hist_D is an array contains color histogram values for the dynamic blocks.

Steps:

 Form buffer named Shot (Videono) the output of code list (3.2) gets the record

Shots_Record.

 For each shot in the video Si

 Bs ← Shots_Record (Si).Start

 Es ← Shots_Record (Si).End

 From buffer named Frame_files (Videono) the output of code list (3.1) gets the array

named Color_array.

 From buffer named Static_Dynamic_Records (Videono) the output of code list (5.3)

gets the records Static_record and Dynamic_record.

 For Xi ← Bs to Es

 For each color (Red, Blue and Green)

 Sc ← Static_record (C, Xi).Scounter

 Dc ← Dynamic_record (C, Xi).Dcounter

 For S ← 1 to Sc

 Xs ← Static_record (C, Xi).Scount(S).Xs

 Xe ← Static_record (C, Xi).Scount(S).Xe

 Ys ← Static_record (C, Xi).Scount(S).Ys

 Ye ← Static_record (C, Xi).Scount(S).Ye

 Continue

Chapter Three: Proposed System 45

Forms the output of Code List (3.6), the following features were

determined:

1. Mean of the color histogram, calculated by using equation (2.6). Code list

(3.7) presents of steps of determining the Mean of the color histogram

values.

 For X ← Xs to Xe

 For y ← Ys to Ye

 Hist_S (C, Color_array (Xi, C, X, Y)) ← Hist_S (Xi, C, Color_array(C, X, Y)) + 1

 End loop Y

 End loop X

 End loop S

 For D ← 1 to Dc

 Xs ← Dynamic_record (C, Xi).Dcount (D).Xs

 Xe ← Dynamic_record (C, Xi).Dcount (D).Xe

 Ys ← Dynamic_record (C, Xi).Dcount (D).Ys

 Ye ← Dynamic_record (C, Xi).Dcount (D).Ye

 For X ← Xs to Xe

 For y ← Ys to Ye

 Co ← Color_array (Xi,C, X, Y)

 Hist_D (Xi, C, Co) ← Hist_D (Xi, C, Co) + 1

 End loop Y

 End loop X

 End loop D

 End loop C

 End loop Xi

 End loop Si

Chapter Three: Proposed System 46

2. Standard Deviation of the color histogram, calculated by using equation

(2.7). Code list (3.8) presents of steps of determining the value of Standard

deviation of color histogram.

Code list (3.7) Calculate the Mean for the Color Histogram

Input:

Videono is the video number.

Output:

 Mean_S is an array contains the mean values for the static blocks.

 Mean_D is an array contains the mean values for the static blocks.

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 For each shot in the video Si

 Bs ← Shots_Record (Si).Start

 Es ← Shots_Record (Si).End

 For Xi ← Bs to Es

Sum_S ← 0, Sum_D ← 0

 Call Calculate the Color Histogram "code list (3.6)".

 For each color (Red, Blue and Green) C

 For Xc ← 0 to 255

 Sum_S ← Sum_S + Hist_S(C, Xc)

 Sum_D ← Sum_D + Hist_D(C, Xc)

 Mean_S (C, Xi) ← Mean_S (C, Xi) + (Xc × Hist_S (C, Xc))

 Mean_D (C, Xi) ← Mean_D (C, Xi) + (Xc × Hist_D (C, Xc))

 End loop Xc

 Mean_S (C, Xi) ← Mean_S (C, Xi) / Sum_S

 Mean_D (C, Xi) ← Mean_D (C, Xi) / Sum_D

 End loop C

 End loop Xi

 End loop Si

Chapter Three: Proposed System 47

3. Mean Absolute Deviation, is calculated by using equation (2.8). Code list

(3.9) presents of steps of determining the value of the mean absolute

deviation.

Code List (3.8) Calculate Standard Deviation of the Color Histogram

Input:

Videono is the video number.

Output:

 Std_S is an array contains the standard deviation values for the static blocks.

 Std_D is an array contains the standard deviation values for the dynamic blocks.

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 For each shot in the video Si

 Bs ← Shots_Record (Si).Start

 Es ← Shots_Record (Si).End

 For Xi ← Bs to Es

 Sum_S ← 0, Sum_D ← 0

 Call Calculate the Color Histogram "code list (3.6)".

 Call Calculate the Mean for the Color Histogram "code list (3.7)".

 For each color (Red, Blue and Green) C

 For Xc ← 0 to 255

 Sum_S ← Sum_S + Hist_S(C, Xc)

 Sum_D ← Sum_D + Hist_D(C, Xc)

 Std_S (C, Xi) ← Std_S (C, Xi) + (Xc − Mean_S(C, Xi)) 2 × Hist_S (C, Xc)

 Std_D (C, Xi) ← Std_D (C, Xi) + (Xc − Mean_D(C, Xi)) 2 × Hist_D (C, Xc)

 End loop Xc

 Std_S (C, Xi) ← Sum_S) / Xi) Std_S(C, (

 Std_S (C, Xi) ← Sum_S) / Xi) Std_S(C, (

 End loop C

 End loop Xi

 End Si

Chapter Three: Proposed System 48

4. Skewness is calculated by using equation (2.9). The skewness is the third

order moment which is defined as the measure asymmetry about the mean.

Code list (10.3) presents of steps of determining the values of the skewness.

Code List (3.9) Calculate Mean Absolute Deviation

Input:

 Videono is the video number.

Output:

 Mad_S is an array contains the mean absolute deviation values for the static blocks.

 Mad_D is an array contains the mean absolute deviation values for the dynamic blocks.

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 For each shot in the video Si

Bs ← Shots_Record (Si).Start

Es ← Shots_Record (Si).End

For xi ← BS to Es

 Sum_S ← 0, Sum_D ← 0

 Call Calculate the Color Histogram "code list (3.6)".

 Call Calculate the Mean for the Color Histogram "code list (3.7)".

 For each color (Red, Blue and Green) C

 For Xc ← 0 to 255

 Sum_S ← Sum_S + Hist_S(C, Xc)

 Sum_D ← Sum_D + Hist_D(C, Xc)

 mad_S (C, Xi) ← mad_S (C, Xi) + Xi) Mean_S(C, - Xc × Hist_S (C, Xc)

 mad_D (C, Xi) ← mad_D (C, Xi) + Xi) Mean_D(C, - Xc × Hist_D (C, Xc)

 End loop Xc

 Mad_S (C, Xi) ← Mad_S (C, Xi) / Sum_S

 Mad_D (C, Xi) ← Mad_D (C, Xi) / Sum_D

 End loop C

 End loop Xi

 End loop Si

Chapter Three: Proposed System 49

All the above features are determined by using the color histogram of the

image, the following textural features have been determined:

Code List (3.10) Calculate the Skewness

Input:

Videono is the video number.

Output:

 Sk_S is an array contains the skewness values for the static blocks.

 Sk_D is an array contains the skewness values for the dynamic blocks.

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 For each shot in the video Si

 Bs ← Shots_Record (Si).Start

 Es ← Shots_Record (Si).End

 For Xi ← Bs to Es

 Sum_S ← 0, Sum_D ← 0

 Call Calculate the Color Histogram "code list (3.6)".

 Call Calculate the Mean for the Color Histogram "code list (3.7)".

 For each color (Red, Blue and Green) C

 For Xc ← 0 to 255

 Sum_S ← Sum_S + Hist_S(C, Xc)

 Sum_D ← Sum_D + Hist_D(C, Xc)

 Sk_S (C, Xi) ← Sk_S (C, Xi) +
3

Xi) (C, Mean_S - Xc × Hist_S (C, Xc)

 Sk_D (C, Xi) ← Sk_D (C, Xi) +
3

Xi) (C, Mean_D - Xc × Hist_D (C, Xc)

 End loop Xc

 Sk_S (C, Xi) ← 3 Sum_S / Xi) (C, Sk_S

 Sk_D (C, Xi) ← 3 Sum_D / Xi) (C, Sk_D

 End loop C

 End loop Xi

 End loop Si

Chapter Three: Proposed System 50

1. Energy, the average energy of the gradient image was calculated by using

equation (2.4). Three directions of image differencing have been

determined (horizontal, vertical and diagonal) and considered as the

gradient components. This determination was done on each block in the

frame (both the static and dynamic blocks) and for the three color

components (Red, Blue, Green); the average energy of the gradient image

will result from the summation of the average energy of gradient of the

blocks divided by the number of the blocks. Code list (3.11) illustrates the

steps of determining the values of average energy.

Code List (3.11) Calculate the Average Energy

Input:

 Videono is the video number.

Output:

 Ene_S is an array contains the average energy values for the static blocks.

 Ene_D is an array contains the average energy values for the dynamic blocks

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 From buffer named Frame_files (Videono) the output of code list (3.1) gets the array

Color_array.

 From buffer named Static_Dynamic_Records (Videono) the output of code list (3.5)

gets the records Static_record and Dynamic_record.

 For each shot in the video Si

Bs ← Shots_Record (Si).Start

Es ← Shots_Record (Si).End

 For Xi ← Bs to Es

 For each color (Red, Blue and Green) C

 Sc ← Static_record (C, Xi).Scounter

 Dc ← Dynamic_record (C, Xi).Dcounter

 Continue

Chapter Three: Proposed System 51

 For S ← 1 to Sc

 Xs ← Static_record (C, Xi).Scount(S).Xs

 Xe ← Static_record (C, Xi).Scount(S).Xe

 Ys ← Static_record (C, Xi).Scount(S).Ys

 Ye ← Static_record (C, Xi).Scount(S).Ye

 Call Determine the average energy of the HVD gradient of the sub-blocks "Code

List (3.12)".

 Ene_S(C, Xi, 0) ← Ene_S (C, Xi, 0) + Energy_h

 Ene_S(C, Xi, 1) ← Ene_S (C, Xi, 1) + Energy_v

 Ene_S(C, Xi, 2) ← Ene_S (C, Xi, 2) + Energy_d

 End loop S

 Ene_S(C, Xi, 0) ← Ene_S (C, Xi, 0) / Sc

 Ene_S(C, Xi, 1) ← Ene_S (C, Xi, 1) / Sc

 Ene_S(C, Xi, 2) ← Ene_S (C, Xi, 2) / Sc

 For D ← 1 to Dc

 Xs ← Dynamic_record (C, Xi).Dcount (D).Xs

 Xe ← Dynamic _record (C, Xi).Dcount (D).Xe

 Ys ← Dynamic _record (C, Xi).Dcount (D).Ys

 Ye ← Dynamic _record (C, Xi).Dcount (D).Ye

 Call Determine the average energy of the HVD gradient of the sub-blocks

"Code List (3.12)".

 Ene_D(C, Xi, 0) ← Ene_D (C, Xi, 0) + Energy_h

 Ene_D(C, Xi, 1) ← Ene_D (C, Xi, 1) + Energy_v

 Ene_D(C, Xi, 2) ← Ene_D (C, Xi, 2) + Energy_d

 End loop D

 Ene_D(C, Xi, 0) ← Ene_D (C, Xi, 0) / Dc

 Ene_D(C, Xi, 1) ← Ene_D (C, Xi, 1) / Dc

 Ene_D(C, Xi, 2) ← Ene_D (C, Xi, 2) / Dc

 End loop C

 End loop Xi

End loop Si

 Continue

Chapter Three: Proposed System 52

 Code list (3.12) is established to determine the average energies of the

vertical, horizontal and diagonal components of the gradient, these average

energies are defined as follows:

EH = ∑∑∑
−

=

−

= =

+−
−

1H

0y

2W

0x

2

0c

2))y,1x,c(A)y,x,c(A(
)1W(H3

1
 (3.1)

 EV = ∑∑∑
−

=

−

= =

+−
−

2H

0y

1W

0x

2

0c

2))1y,x,c(A)y,x,c(A(
)1H(W3

1
 (3.2)

ED = ∑∑∑
−

=

−

= =

++−
−−

2H

0y

2W

0x

2

0c

2))1y,1x,c(A)y,x,c(A(
)1W)(1H(3

1
 (3.3)

The above average energies are computed for the static and dynamic sub-

blocks.

Code List (3.12) Determine the average energy of the HVD gradient of the sub-blocks

Input:

 Xs is the x-coordinate of the left side of the sub-block.

 Xe is the x-coordinate of the right side of the sub-block.

 Ys is the y-coordinate of the left side of the sub-block.

 Ye is the y-coordinate of the right side of the sub-block.

 Color_array is an array contains color component data for each frame.

 Xi is the frame index.

Output:

 Energy_h is an array contains the average energy values for horizontal gradient in the

sub-blocks.

 Energy_v is an array contains the average energy values for vertical gradient in the

sub-blocks.

 Energy_d is an array contains the average energy values for diagonal gradient in the

sub-blocks.

Chapter Three: Proposed System 53

Steps:

 Sum1 ← 0

 Sum2 ← 0

 Energy_h ← 0

 Energy_v ← 0

 Energy_d ← 0

 For each color (Red, Blue and Green) C

 For Y ← Ys to Ye – 1

 For X ← Xs to Xe

 Ene_h ← Ene_h + (Color_array (Xi, C, X, Y + 1) – Color_array (Xi, C, X, Y)) 2

 Sum1← Sum1 + 1

 End loop Y

 End loop X

 For Y ← Ys to Ye

 For X ← Xs to Xe - 1

 Ene_v ← Ene_v + (Color_array (Xi, C, X + 1, Y) – Color_array (Xi, C, X, Y)) 2

 End loop X

 End loop Y

 For Y ← Ys to Ye – 1

 For X ← Xs to Xe - 1

 Ene_d ← Ene_d + (Color_array (Xi, C, X + 1, Y + 1) – Color_array (Xi, C, X, Y)) 2

 Sum1← Sum1 + 1

 End loop X

 End loop Y

 Energy_h ← Ene_h/Sum1

 Energy_v ← Ene_v/Sum1

 Energy_d ← Ene_d /Sum2

 End loop C

Chapter Three: Proposed System 54

2. Contrast-1, calculated by using equation (2.2). In order to compute the

contrast the standard deviation of each block (both static and dynamic) is

computed for three color component (Red, Blue, Green) and then take the

average of these values and consider as the standard deviation of the frame

in the same way the average of the block’s mean is computed for each

frame and the contrast is computed by dividing the average of the standard

deviation over the average of the mean for each frame. Code list (3.12)

illustrates the implementation step to determined Contrast-1.

Code List (3.13) Calculate the Contrast-1

Input:

 Videono is the video number.

Output:

 Cont _S is an array contains the contrast values for the static blocks.

 Cont_D is an array contains the contrast values for the dynamic blocks.

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

named Shots_Record.

 From buffer named Frame_files (Videono) the output of code list (3.1) gets the array

named Color_array.

 From buffer named Static_Dynamic_Records (Videono) the output from the code list

(5.3) gets the records Static_record and Dynamic_record

 For each shot in the video Si

 Bs ← Shots_Record (Si).Start

 Es ← Shots_Record (Si).End

 Continue

Chapter Three: Proposed System 55

 For Xi ← Bs to Es

 For each color (Red, Blue and Green) C

 Xe ← Static_record (C, Xi).Scount(S).Xe

 Ys ← Static_record (C, Xi).Scount(S).Ys

 Ye ← Static_record (C, Xi).Scount(S).Ye

 Mean (Xi, C) ← 0

 Sc ← Static_record (C, Xi).Scounter

 Dc ← Dynamic_record (C, Xi).Dcounter

 For S ← 1 to Sc

 Xs ← Static_record (C, Xi).Scount(S).Xs

 Call Determined the Mean and Stander for sub-blocks "Code List (3.14)".

 Mean_S (C, Xi) ← Mean_S (C, Xi) + M_block (C, S)

 Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) + Std_Block (C, S)

 End loop S

 Mean_S (C, Xi) ← Mean_S (C, Xi) /Sc

 Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) / Sc

 Cont_S (C, xi) ← Mean_Std_S (C, Xi) / Mean_S (C, Xi)

 For D ← 1 to Dc

 Xs ← Dynamic_record (C, Xi).Dcount (D).Xs

 Xe ← Dynamic _record (C, Xi).Dcount (D).Xe

 Ys ← Dynamic _record (C, Xi).Dcount (D).Ys

 Ye ← Dynamic _record (C, Xi).Dcount (D).Ye

 Call Determined the Mean and Stander for sub-blocks "Code List (3.14)".

 Mean_D (Xi) ← Mean_D (C, Xi) + M_block (C, D)

 Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) + Std_block (C, D)

 End loop D

 Continue

Chapter Three: Proposed System 56

Code list (3.14), is established to determine the mean and the standard

deviation for each sub-block in the image (whether it is static or dynamic).

 Mean_D (C, Xi) ← Mean_D (C, Xi) / Dc

 Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) / Dc

 Cont_D (C, xi) ← Mean_Std_D (C, Xi) / Mean_D (C, Xi)

 End loop C

 End loop Xi

 End loop Si

Code List (3.14) Determined the Mean and Stander for sub-blocks

Input:

 Xs is the x-coordinate of the left side of the sub-block

 Xe is the x-coordinate of the right side of the sub-block

 Ys is the y-coordinate of the left side of the sub-block

 Ye is the y-coordinate of the right side of the sub-block

 Color_array is an array contains color component data for each frame

 Bi is the block index.

 Xi is the frame index.

 Output:

 Std_block it is an array contains the standard deviation values for the sub-blocks.

 M_block it is an array contains the mean values for the sub-blocks.

Steps:

For each color (Red, Blue and Green) C

 For X ← Xs to Xe

 For Y ← Ys to Ye

 Counter (C) ← Counter (C) + 1

 Continue

Chapter Three: Proposed System 57

3. Contrast-2, it is calculated by using equation (2.3). In order to compute the

contrast minimum pixel value and the maximum pixel value from each

block (both static and dynamic) in the frame is computed and the mid

value for each frame is computed from the average of the minimum and

maximum values of the blocks of each frame. The contrast of each frame

is computed by dividing the summation of the points that are smaller of the

mid value over the summation of the points that are larger than the mid

value. Code list (3.15) shows the implementation steps to determine the

Contrast-2.

 M_block (C, Bi) ← M_block (C, Bi) + Color_arrary (Xi, C, X, Y)

 End loop Y

 End loop X

 M_block (C, Bi) ← M_block (C, Bi) / Counter (C)

 For X ← Xs to Xe

 For Y ← Ys to Ye

 Std_block (C, Bi) ← Std_block (C, Bi) + (Color_arrary (Xi, C, X, Y) – M_block(C, Bi)) ^ 2

 End loop Y

 End loop

 Std_block (C, Bi) ← Counter(C) / Bi) (C,Std_block

End loop C

Code List (3.15) Calculate Contrast-2

Input:

 Videono is the video number.

Output:

 Cont _S is an array contains the contrast values for the static blocks.

 Cont_D is an array contains the contrast values for the dynamic blocks

Steps:

 Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 Continue

Chapter Three: Proposed System 58

 From buffer named Frame_files (Videono) the output of code list (3.1) gets the

array named Color_array.

 From buffer named Static_dynamic_records (Videono) the output of code list (5.3)

gets the records Static_record and Dynamic_record.

 For each shot in the video Si

 Bs ← Shot_Record (Si).Start

 Es ← Shot_Record (Si).End

 For Xi ← Bs to Es

 For each color (Red, Blue and Green) C

 Sc ← Static_record (C, Xi).Scounter

 Dc ← Dynamic_record (C, Xi).Dcounter

 For S ← 1 to Sc

 Xs ← Static_record (C, Xi).Scount(S).Xs

 Xe ← Static_record (C, Xi).Scount(S).Xe

 Ys ← Static_record (C, Xi).Scount(S).Ys

 Ye ← Static_record (C, Xi).Scount(S).Ye

 Call Determined the Min and Max of the Sub-blocks "code List (3.17)".

 M_Min_S (C, Xi) ← M_Min_S (C, Xi) + Min (C, S)

 M_Max_S (C, Xi) ← M_Max_S (C, Xi) + Max (C, S)

 M_Min_S (C, Xi) ← M_Min_S (C, Xi) /Sc

 M_Max_S (C, Xi) ← M_Max_S (C, Xi) / Sc

 Median_S (C) ← (M_Min_S (C, Xi) + M_Max_S (C, Xi)) / 2

 For X ← Xs to Xe

 For Y ← Ys to Ye

 If Color_array (Xi, C, X, Y) > Meadin_S (C) Then

 Small(C) ← Small(C) + Color_array (Xi, C, X, Y)

 Else

 Continue

Chapter Three: Proposed System 59

 Large(C) ← Large(C) + Color_array (Xi, C, X, Y)

 End if

 End loop Y

 End loop X

 End loop S

 Cont_S (C, Xi) ← Smal_S(C) / Large_S(C)

 For D ← 1 to Dc

 Xs ← Dynamic_record (C, Xi).Dcount (D).Xs

 Xe ← Dynamic _record (C, Xi).Dcount (D).Xe

 Ys ← Dynamic _record (C, Xi).Dcount (D).Ys

 Ye ← Dynamic _record (C, Xi).Dcount (D).Ye

 Call Determined the Min and Max of the Sub-blocks "code List (3.17)".

 M_Min_D (C, Xi) ← M_Min_D (C, Xi) + Min (C, D)

 M_Max_D (C, Xi) ← M_Max_D (C, Xi) + Max (C, D)

 M_Min_D (C, Xi) ← M_Min_D (C, Xi) / Dc

 M_Max_D (C, Xi) ← M_Max_D (C, Xi) / Dc

 Median_D (C) ← (M_Min_D (C, Xi) + M_Max_D (C, Xi)) / 2

 Large (C) ← 0, Small (C) ← 0

 For X ← Xs to Xe

 For Y ← Ys to Ye

 If Color_array (Xi, C, X, Y) > Meadin_D (C) Then

 Small(C) ← Small(C) + Color_array (Xi, C, X, Y)

 Else

 Large(C) ← Large(C) + Color_array (Xi, C, X, Y)

 End if

 End loop Y

 End loop X

 End loop D

 Cont_D (C, Xi) ← Smal_D(C) / Large_D(C)

 End loop C

 End loop Xi

End loop Si

Chapter Three: Proposed System 60

 Code list (3.16) computes the minimum and maximum values for each

block in the frame, whether it is static and dynamic blocks.

 Code List (3.17) Determined the Min and Max of the Sub-blocks

Input:

 Xs is the x-coordinate of the left side of the sub-block.

 Xe is the x-coordinate of the right side of the sub-block.

 Ys is the y-coordinate of the left side of the sub-block.

 Ye is the y-coordinate of the right side of the sub-block.

 Color_array is an array contains color component data for each frame.

 Bi is the block index.

 Xi is the frame index.

Output:

 Min it is array of the Minimum values.

 Max it is array for the Maximum values.

Steps:

 For each color (Red, Blue and Green) C

 Min (C, Index) ← Color_array (Xi, C, Xs, Ys)

 Max (C, Index) ← Color_array (Xi, C, Xs, Ys)

 For X ← Xs+1 to Xe

 For Y ← Ys to Ye

 If Min (C, Index) > Color_arrary (C, X, Y) Then

 Min (C, Index) ← Color_arrary (C, X, Y)

 End if

 If Max (C, Index) < Color_arrary (C, X, Y) Then

 Max (C, Index) ← Color_arrary (C, X, Y)

 End if

 End loop Y

 End loop X

 End loop C

Chapter Three: Proposed System 61

4. Modification of Fractal Dimension: one of the important textural feature is

fractal dimension, in this research work a modification (simplified)

method for determination of fractal dimension was implemented, the

modification is proposed to handle the high computational complexity of

the traditional methods for determination of fractal implies the following

steps:

1. Scan the blocks (static/dynamic) and find the mean (g) and standard

deviation (σ) of the pixels values

2. determined the following parameters:

 M1 = g − (α ×σ) (3.4)

 M2 = g + (α ×σ) (3.5)

 Where α was taken (3).

 And apply the following conditions:

 If M1 < 0 then M1=0.

 If M2 >255 then M2=255.

3. determined the following slope value:

p

12
N

M - M
 S= (3.6)

 Where Np is the number of threshold values (Ti) used to categorize the

block's points into dark or bright points.

4. for each threshold value (T1……..TNp)

a. Set the counter ni= 0.

b. Scan all pixels of the blocks (static/dynamic), and for the case

where each scanned pixel has a value larger than Ti increment ni

by 1.

 End for

5. then determined the estimated (approximate) fractal dimension

parameter buy using the following equation:

Chapter Three: Proposed System 62

 H = ()∑ ∑

∑∑∑

−

−
===

22
p

pN

1i

i

pN

1i

pN

1i

ip

iiN

)nlog(i)nlog(iN

 (3.7)

 Code list (3.18) shows how to determine the modification of the fractal

dimension (H).

Code List (3.18) Calculate modification of the fractal dimension (H)

Input:
 Videono is the video number.

 Np is the number of point.

Output:
 Slop_S is an array that contains the slope values for the static blocks.

 Slop_D is an array that contains the slope values for the static blocks.

Steps:

Form buffer named Shots (Videono) the output of code list (3.2) gets the record

Shots_Record.

 From buffer named Frame_files (Videono) the output of code list (3.1) gets the

array named Color_array.

 From buffer named Static_dynamic_records (Videono) the output of code list

(5.3) gets the records Static_record and Dynamic_record.

 For each scenes in the video Si

 Bs ← Shot_Record (Si).Start

 Es ← Shot_Record (Si).End

 For Xi ← Bs to Es

 For each color (Red, Blue and Green) C

 Sc ← Static_record (C, Xi).Scounter

 Dc ← Dynamic_record (C, Xi).Dcounter

 Continue

Chapter Three: Proposed System 63

 For S ← 1 to Sc

 Xs ← Static_record (C, Xi).Scount(S).Xs

 Xe ← Static_record (C, Xi).Scount(S).Xe

 Ys ← Static_record (C, Xi).Scount(S).Ys

 Ye ← Static_record (C, Xi).Scount(S).Ye

 Call Determined the Mean and Stander for sub-blocks "Code List (3.14)".

 Mean_S (C, Xi) ← Mean_S (C, Xi) + M_block (C, S)

 Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) + Std_Block (C, S)

 Mean_S (C, Xi) ← Mean_S (C, Xi) /Sc

 Mean_Std_S (C, Xi) ← Mean_Std_S (C, Xi) / Sc

 Min_S(C, Xi) ← Mean_S (C, Xi) - 3 × Mean_ Std_S (C, Xi)

 Max_S(C, Xi) ← Mean_S (C, Xi) + 3 × Mean_ Std_S (C, Xi)

 If Min_S(C, Xi) < 0 Then

 Min_S(C, Xi) ← 0

 End If

 If Max_S(C, Xi) > 255 Then

 Max_S(C, Xi) ← 255

 End If

 For I ← 1 to Np

 Po_S = Min_S(C, Xi) + (Max_S(C, Xi) – Min_S(C, Xi)) × I / Np

 For X ← Xs toXe

 For Y ← Ys to Ye

 If Color_array (Xi, C, X, Y) ≤ Po_S Then

 PCount_S (C, Xi, I) ← PCount_S (C, Xi, I) + 1

 End If

 End loop Y

 End loop X

 End loop I

 End loop S

 Continue

Chapter Three: Proposed System 64

 For D ← 1 to Dc

 Xs ← Dynamic_record (C, Xi).Dcount (D).Xs

 Xe ← Dynamic _record (C, Xi).Dcount (D).Xe

 Ys ← Dynamic _record (C, Xi).Dcount (D).Ys

 Ye ← Dynamic _record (C, Xi).Dcount (D).Ye

 Call Determined the Mean and Stander for sub-blocks "Code List (3.14)".

 Mean_D (Xi) ← Mean_D (C, Xi) + M_block (C, D)

 Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) + Std_block (C, D)

 Mean_D (C, Xi) ← Mean_D (C, Xi) / Dc

 Mean_Std_D (C, Xi) ← Mean_Std_D (C, Xi) / Dc

 Min_D(C, Xi) ← Mean_D (C, Xi) - 3 × Mean_ Std_D (C, Xi)

 Max_D(C, Xi) ← Mean_D (C, Xi) + 3 × Mean_ Std_D (C, Xi)

 If Min_D (C, Xi) < 0 Then

 Min_D (C, Xi) ← 0

 End If

 If Max_D(C, Xi) > 255 Then

 Max_D(C, Xi) ← 255

 End If

 For I ← 1 to Np

 Po_D = Min_D(C, Xi) + (Max_D(C, Xi) – Min_D(C, Xi)) × I / Np

 For X ← Xs toXe

 For Y ← Ys to Ye

 If Color_array (Xi, C, X, Y) ≤ Po_D Then

 PCount_D (C, Xi, I) ← PCount_D (C, Xi, I) + 1

 End If

 End loop Y

 End loop X

 End loop I

 End loop D

 End loop C

 End loop Xi

 Continue

Chapter Three: Proposed System 65

 For Xi ← Bs to Es

 For each color (Red, Blue and Green) C

 K ← 0

 For I ← 1 to Np

 If PCount_S (C, Xi, I) > 0 Then

 Sum_I ← Sum_I + I

 Sqr_I ← Sqr_I + (I) 2

 Ig ← Ig + I × log (PCount_S(C, Xi, I))

 Cg ← Cg + log (PCount_S(C, Xi, I))

 K ← K + 1

 End If

 End loop I

 If K > 0 Then

 (Sum_I)- Sqr_I Np

Ig Sum_I - Cg Np
 Xi) (C, Slop_S

2×
××←

 End If

 Sum_I ← 0, Sqr_I ←0

 Ig ← 0, Cg ← 0

 K ← 0

 For I ← 1 to Np

 If PCount_D (C, Xi, I) > 0 Then

 Sum_I ← Sum_I + I

 Sqr_I ← Sqr_I + (I) 2

 Ig ← Ig + I × log (PCount_D(C, Xi, I))

 Cg ← Cg + log (PCount_D(C, Xi, I))

 K ← K + 1

 End If

 End loop I

 If K > 0 Then

 (Sum_I)- Sqr_I Np

Ig Sum_I - Cg Np
 Xi) (C, Slop_D

2×

××←

 End If

 End loop C

 End loop Xi

 End loop Si

Chapter Three: Proposed System 66

 3.2.6 Features Analysis

The first step of features analysis is to neglect all shots that have small

number of frames; in our work all the shots that have less than 45 frames have

been neglected. The next step is to select a number that should be less than the

total number of frames in a specific shot, this number refers to the number of

frames in each video sequence, Ten video sequence have been taken from

each shot, in every sequence the list of frames that belongs to that sequence is

determined by the start frame, end frame and the total number of frames in the

specific shot. The same ten features will be recalculated for the list of frames

in every sequence of the shot. The last step is to compute the average of each

feature in each sequence, the results will put in matrix named pattern, it

contains the average of each feature of the entire 49 shots and the indices of

the matrix are the sequence number and the feature number. It should be

known that all the above steps are applied on the three colors (red, blue and

green) and for both static and dynamic blocks.

3.2.7 Power Discrimination

In order to reduce the computation time taken in the K-Means algorithm,

and to improve the classification results, the discrimination power of the

adopted features must be calculated;

 This procedure use three matrices as a major input, first one is the

pattern matrix which is mentioned in the features analysis, the second matrix

is the M_Template matrix (the matrix contains the averages of the features

calculated for all the frames in the entire 49 shots, and indexed by shot

number and feature number), the third matrix is the Std_Template matrix (the

matrix contains the standard deviation of the features calculated for all the

frames in the entire 49 shots, and indexed by shot number and feature

number), all the above matrices are for the three color components (Red,

Chapter Three: Proposed System 67

Blue, Green) and both have 20 features first ten features are for the static

features and the last ten are for the dynamic features.

two types of distance measure had been used the first depends on the

Euclidean distance and the second depending on the city block distance, the

results of the two measures were approximately similar, therefore only one of

them is consider in the next steps of the work.

The procedure of the power discrimination will include five steps, in

the first step every feature is tested alone, the second step is the test of

combination of two features, the third step is the test to the combination of

three features, the fourth step is test to the combination of four features, the

fifth step is test to the combination of five features, only the test of the single

feature and the test of the combination of two features are mentioned in the

code list (3.19).

Code List (3.19) Determined the Power Discrimination

Input:

 Pattern is an array contains means of features that extracted from the video sequence.

 M_Template is an array contains means of features that extracted from the shot's frames.

 Std _Template is an array contains standard deviation of features that extracted from the

shot's frames.

 Index is an array indexed by the video sequence number and contains the shot number.

 Pn is the number of patterns.

 Sn is the number of shots.

 Fn is the number of features.

Output:

 Featues_Power_file1 is a buffer contains two records Feature_Record.Success and

Feature_Record.Failure, they hold the high power discrimination and low power

discrimination rates.

 Featues_Power_file2 is a buffer contains two records Feature_Record.Success2 and

Feature_Record.Failure2 they hold the high power discrimination and low power

discrimination rates.

 Continue

Chapter Three: Proposed System 68

Steps:

 For fi ← 1 to Fn

Fo r P ← 1 to Pn

Min ← 99999999999#

 For S ← 1 to Sn

 Diff ← (Abs (Pattern (P, Fi) – M_Template (S, Fi)) / Std_ Template (S, Fi))

 If Min > Diff Then

 Min ← Diff

 Sm ← S

 End if

 End loop S

 If Sm ← Index (p) Then

 Success (Fi) ← Success (Fi) + 1

 Else

 Failure (Fi) ← Failure (Fi) + 1

 End If

 End loop p

 End loop fi

 Feature_Record.Success (Fi) ← 100 * Success (Fi) / Xr

 Feature_Record.Failure (Fi) ← 100 * Failure (Fi)/ Xr

 For I ← 1 to Nf - 1

 For J ← I + 1 to Fn

 For P ← 1 to Xr

 Mn ← 99999999999#

 For Si ← 1 to Sn

 Diff ← 0

 Diff ← (Abs Pattern (P, I) – M_Template (S, I)) / Std_Template(S, I)) +

 (Abs Pattern (P, J) – M_Template (S, J)) / Std_Template (S, J))

 If Mn > diff Then

 Mn ← Diff

 Sm ← S

 End if

 End loop S

 If Sm ← Index (P) Then

 Continue

Chapter Three: Proposed System 69

3.2.8 K-means Algorithm

The last step of the work is the clustering, the algorithm used in the

clustering is the K-Means algorithm, and the input to the algorithm will be

only the features (for read, blue and green) that give high rate of success after

applied Code List (3.19). Code List (3.20) shows how the K-mean algorithm

has been implemented.

 Success2 (I, J) ← Success2 (I, J) + 1

 Else

 Failure2 (I, J) ← Failure2 (I, J) + 1

 End If

 End loop P

 End loop J

 End loop I

 Feature_Record.Success2 (I, J) ← 100 * Success2 (I, J) / Xr

 Feature_Record.Failure2 (I, J) ← 100 * Failure2 (I, J)/ Xr

 Save in buffered named Featues_Power_file1 the records Feature_Record.Success

and Feature_Record.Failure.

 Save in buffered named Featues_Power_file2 the records Feature_Record.Success2

and Feature_Record.Failure2.

 Code List (3.20) Implement the K-Means Algorithm

Input:

 Cntr is an array contains the centriods.

 Pn is the number of the videos sequence.

 Cn is the number of centriode.

 Fn is the number of features.

 Feature is an array contains the features that have high rate of power discrimination.

Output:

 Success array contains the successful rate for the features.

 Failure array contains the failure rate for the features.

Steps:

 Flag ← 1

 Continue

Chapter Three: Proposed System 70

 While Flag ← 1

 Cc ← 0, Cm ← 0

 Max = -99999999999#

 For Pi ← 1 to Pn

 Min = 99999999999#

 For Ci ← 1 to Cn

 Diff ← 0

 For Fi ← 1 to Fn

 Diff ← Diff + (Cntr (Ci, Fi) – Feature (Pi, Fi)) 2

 End loop Fi

 If Min > Diff Then

 Min ← Diff

 Cc ← Ci

 End If

 End loop Ci

 Count (Cc) ← Count (Cc) + 1

 Clust (Cc).Counter (Count (Cc)) ← Pi

 If Max < Count (Cc) Then

 Max ← Count (Cc)

 Cm ← Cc

 End If

 End loop Pi

 For Ci ← 1 to Cn

 For C ← 1 to Count (Ci)

 Pi ← Clust (Ci).Counter (C)

 For Fi ← 1 to Fn

 Scntr (Fi) ← Scntr (Fi) + Feature (Pi, Fi)

 End loop Fi

 End loop C

 For Fi ← 1 to Fn

 Ocntr (Ci, Fi) ← Ocntr (Ci, Fi)

 Cntr (Ci, Fi) ← Scntr (Fi)

 Continue

Chapter Three: Proposed System 71

 Scntr (Fi) ← 0

 Cntr(Ci, Fi) ← Cntr(Ci, Fi) / Count(Ci)

 End loop Fi

 End loop Ci

 Flag2 ← 0

 For Ci ← 1 to Cn

 If Count (Ci) ← 0 Then

 Flag2 ← 1, Flag ← 1

 For Fi ← 1 to Fn

 Cntr (Ci, Fi) ← Cntr (Cm, Fi) × 0.95

 Cntr (Cm, Fi) ← Cntr (Cm, Fi) × 1.05

 End loop Fi

 End If

 End loop Ci

 If Flag2 ← 0 Then

 Flag ← 0

 For Ci ← 1 to Cn

 For Fi ← 1 to Fn

 If (Cntr (Ci, Fi) – Ocntr (Ci, Fi)) ≤ 0.00001 Then

 Else

 Flag ← 1

 End If

 End loop Fi

 End loop Ci

 End If

 End while loop

 Chapter Two

 Theoretical Background

2.1 Introduction

Fields ranging from commercial to military are needed to analyze

data in an efficient and fast manner. And due to the digitization of data

and advances in technology, it has become extremely easy to obtain and

store large quantities of data, particularly multimedia data (video, image,

audio). Multimedia data mining is a sub field of data mining that deal

with the extraction of implicit knowledge, multimedia relationship, or

other patterns, not explicitly stored in multimedia database. Feature

selection and extraction is the pre-processing step of multimedia data

mining. Obviously this is a critical step in the entire scenario of

multimedia data mining.

2.2 Video Segmentation

Video, whether digital or analog, consists of a series of individual

frames displayed at a constant rate (the effect of which is to give the

illusion of motion) along with an associated audio track [Smea99].

generally, there are three types of videos; the produced, the raw, and the

medical video. The examples of produced video are movies, news videos,

dramas...etc. And, those of raw video are traffic videos, surveillance

videos…etc. Ultra sound videos including echocardiogram can be an

example of the medical videos; these different types of videos need to be

Chapter Two: Theoretical Background 11

treated differently to achieve these missing parts due to their different

characteristics [Band02].

To allow any kind of content-based navigation of video, the material

has first to be broken up into constituent elements and structured. For

video, these elements are shots and scenes. A shot is defined as the video

resulting from a continuous recording by a single camera. A scene is

made up of multiple shots, while a television broadcast of a program

consists of a collection of scenes. For studio broadcasts (for example the

news transmitted live), it is fairly easy to break the program up as the

boundaries between shots so these boundaries are hard. However, many

television programs and most films use special post-production

techniques to soften the boundaries, thus making them easier for the

human eye, but more difficult to detect automatically [Smea99].

There are four major types of boundaries between shots [Gorm99,

Smea00]:

1. Cut: This is a hard boundary and occurs when there is a complete

change of shot over a span of two consecutive frames. This is

commonly used in live or in studio transmissions.

2. Fade: There are two types of fade, a fade-out and a fade-in. A

fade-out occurs when the picture gradually fades to a dot or black

screen, while a fade-in occurs when the picture is gradually

displayed from a black screen. Both these effects occur over a few

frames, e.g. 12 frames for a half-second fade-out.

3. Dissolve: This is the simultaneous occurrence of a fade-out and a

fade-in, the two frames being superimposed on each other over a

fixed duration of, say, 1/2 second (12 frames). This can be used in

live in-studio transmissions.

Chapter Two: Theoretical Background 12

4. Wipe: This effect is like a virtual line going across the screen

clearing one picture as it brings in another, again occurring over a

few frames. It was particularly common in early TV (such as the

Batman series, but it still used).

Each of these post-production and live techniques makes the

automatic detection of shot boundaries in video a non-trivial task.

A number of techniques have been tried in shot boundary detection

with varying degrees of success. Some of these techniques are pixel

differences between adjacent frames, color histograms method which

compares the intensity or color histograms between adjacent frames, and

the edges detection in adjacent frames. Each of these techniques is known

to work well for different transition types, e.g. frame comparison based

on colors works well on cuts, but not on fades or dissolves, while edge

detection handles wipes and dissolves quite well [Smea00, Zhon00].

In general, the most widely used basic unit in produced videos (i.e.,

movies, news videos) is a shot which is defined as collections of frames

recorded from a single camera operation. Raw videos are usually

recorded from a single fixed camera or multiple cameras with very

limited camera motion without any camera on-off. Therefore, the concept

of the shot is not relevant since whole video would be a shot by the above

definition [Band02].

2.3 Scene Changes Detection

Shot based indexing techniques have been widely used to organize

video data. Scene change detection is the most commonly used method to

segment image sequences into coherent units for video indexing. A shot

is a sequence of contiguous frames that are recorded from a camera.

Chapter Two: Theoretical Background 13

There is usually one continuous action within a shot, with no major

change of scene content. However, there are still many different changes

in a video (e.g. object motion, lighting change and camera motion), it is a

nontrivial task to accurately detect scene changes. Furthermore, the

cinematic techniques used between scenes, such as dissolves, fade and

wipes, produce gradual scene changes that are harder to detect. Scene cut

detection algorithms have been studied since the early 90’s [Zhon00]. The

basic method is to measure the pixel difference frame-to-frame in terms

of intensity or color. The number of changed pixels is counted and if the

number exceeds a certain percentage, a scene cut is detected. This method

is not robust due to the camera and object motions that can cause large

pixel value differences. Color histograms have been used to overcome the

problem, as color distributions in successive frames are not significantly

affected by camera or object motions. Assume Hi is an N-bin color

histogram extracted from frame i, the frame difference is defined as

[Fern03]:

∑
=

+−=
n

j
iii jHjHD

1
1)()((2.1)

If D i is larger than a given threshold, a scene cut is detected at the

frame i+1.

Although color histogram difference is good for direct scene

changes, gradual transitions such as fade-in, fade-out, dissolve and wipe

cannot be accurately detected in the same way.

The edge detection method is used to solve this problem; this method

is based on detecting edges in two adjacent images and comparing them.

By detecting the appearance of intensity edges in a frame that are far

away from the intensity edges in the previous frame, it should be possible

Chapter Two: Theoretical Background 14

to detect and classify the four different types of shot breaks [Smea99,

Gorm99].

2.4 Motion Estimation

A lot of information can be extracted from time varying sequences of

images, often more easily than from static images. For example,

camouflaged objects are only easily seen when they move. Moreover, the

relative sizes and position of objects are more easily determined when the

objects move. The analysis of visual motion divides into two stages:

1. The measurement of the motion

2. The use of motion data to segment the scene into distinct objects,

and to extract information, about the shape and motion of the

objects.

There are two types of motion to consider: movement in the scene

with a static camera, and movement of the camera. Since motion is

relative anyway, these types of motion should be the same.

However, this is not always the case, since if the scene moves

relative to the illumination, shadow effects need to be dealt with. Also,

specularities can cause relative motion within the scene [Comp87].

The Motion estimation has been wildly used in many applications of

video processing since it provides the most essential information for an

image sequence; Motion estimation is defined as the process which

generates the motion vectors that determine the differences between the

blocks of the current frame and the blocks of the previous frame

[Kuan03]. One of the most common methods of motion estimation is the

Block Matching (BM); the block matching is a standard technique for

encoding motion in video sequences. It aims at detecting the motion

Chapter Two: Theoretical Background 15

between two images in a block-wise sense. The blocks are usually

defined by dividing the image frame into non-overlapping square parts

[Gyao03, Watk94, Bolt06]. This method work on a sequence of frames,

the current frame is predicted from a previous frame known as reference

frame. The current frame is divided into macro blocks, typically 16 x 16

pixels in size. This choice of size is a good trade-off between accuracy

and computational cost. However, motion estimation techniques may

choose different block sizes, and may vary the size of the blocks within a

given frame. Each macro block is compared to a macro block in the

reference frame using some error measure, if there is no motion between

fields, there will be high correlation between the pixel values. However,

in the case of motion, the same or similar pixel values will be elsewhere

and it will be necessary to search for them by moving the search block to

all possible locations in the search area, and the best matching macro

block is selected. A vector denoting the displacement of the macro block

in the reference frame with respect to the macro block in the current

frame is determined. This vector is known as motion vector [Moti00].

Different error measures can bee used for motion estimation. Among

others, the sum of absolute differences (SAD) and the minimum squared

error (MSE) are commonly used [Bane00].

2.5 Image Mining

Image mining deals with extraction of implicit knowledge, image

data relationship or other patterns are not explicitly stored in images;

image mining methodology uses ideas from computer vision, image

processing, image retrieval, data mining, machine learning, databases and

AI [Zhan01]. The fundamental challenge in image mining is to determine

how low-level, pixel representation contained in an image or an image

Chapter Two: Theoretical Background 16

sequence can be effectively and efficiently processed to identify high-

level spatial objects and relationships; typical image mining process

involves preprocessing, transformations and feature extraction, mining (to

discover significant patterns out of extracted features), evaluation and

interpretation and establishment of the final knowledge. Various

techniques have been utilized to image mining; they include object

recognition, learning, clustering and classification. For example,

Association rule mining is a well known data mining technique that aims

to find interesting patterns in very large databases. Some preliminary

work has been done to apply association rule mining on sets of images to

find interesting patterns [Mali05].

Clearly, image mining is different from low-level computer vision

and image processing techniques because the focus of image mining is in

extraction of patterns from large collection of images, whereas the focus

of computer vision and image processing techniques is in understanding

and/or extracting specific features from a single image. While there seems

to be some overlaps between image mining and content-based retrieval

(both are dealing with large collection of images). The content-base

retrieval requires the image search engine to find the set of images from a

given image collection that is similar to the given query image [Haup02];

the image mining goes beyond the problem of retrieving relevant images.

In image mining, the goal is the discovery of image patterns that are

significant in a given collection of images. Perhaps, the most common

misconception of image mining is that image mining is nothing more than

just applying existing data mining algorithms on images; this is certainly

not true because there are important differences between relational

databases versus image databases [Zhan01]:

Chapter Two: Theoretical Background 17

1. Absolute versus relative values. In relational databases, the data

values are semantically meaningful. For example, age is 35 is well

understood. However, in image databases, the data values

themselves may not be significant unless the context supports them.

For example, a grey scale value of 46 could appear darker than a

grey scale value of 87 if the surrounding context pixels values are all

very bright.

2. Spatial information (Independent versus dependent position).

Another important difference between relational databases and

image databases is that the implicit spatial information is critical for

interpretation of image contents but there is no such requirement in

relational databases. As a result, image miners try to overcome this

problem by extracting position-independent features from images

first before attempting to mine useful patterns from the images.

3. Unique versus multiple interpretations. A third important

difference deals with image characteristics of having multiple

interpretations for the same visual patterns. The traditional data

mining algorithm of associating a pattern to a class (interpretation)

will not work well here. A new class of discovery algorithms is

needed to cater to the special needs in mining useful patterns from

images.

2.6 Color Image

Color is a property of light that is determined by its wavelength or

by its composition as a blend of several wavelengths. The range of visible

wavelengths of light is known as the visible spectrum, or simply the

spectrum. The term color may also refer to a property of objects or

Chapter Two: Theoretical Background 18

materials, determined by which wavelengths of light they reflect,

transmit, or emit. Typically only features of the composition of light that

are detectable by humans are included, so color may also be considered as

a psychological phenomenon [Colo06].

It is possible to construct almost all visible colors by combining the

three primary colors (red, green and blue), because the human eye has

only three different color receptors, each of them sensible to one of the

three colors. Different combinations in the stimulation of the receptors

enable the human eye to distinguish approximately 350000 colors

[Colo03].

RGB color model is an additive model in which red, green and blue

(often used in additive light models) are combined in various ways to

reproduce other colors. The name of the model and the abbreviation

"RGB" come from the three primary colors: Red, Green and Blue. These

three colors should not be confused with the primary pigments of red,

blue and yellow, known in the art world as "primary colors" [Rgb06].

Color image is a digital image that includes color information for

each pixel. Color image can be modeled as three-band monochrome

image data, where each band of data corresponds to different color. The

actual information stored in the digital image data is the brightness

information in each spectral band. When the image is to be presented the

corresponding brightness information is displayed on the screen by

picture elements that emit light energy corresponding to that particular

color. Any typical color image is represented as red, green, blue, or RGB

images. Using the 8-bit monochrome standard as a model, the

corresponding color would have 24 bits/pixel, where 8-bits for each of the

three color bands (red, green, blue). Figure (2.1) illustrates the typical

RGB color image. Figure (2.2) illustrates that, in addition to referring to a

row or column as a vector, we can refer to the red, green, blue value as a

Chapter Two: Theoretical Background 19

color pixel vector (R, G, B)[Umba98].

Figure (2.1) A typical RGB color image can be thought as three separate images:

IR(r,c), IG(r,c) and IB(r,c) [Umba98].

Figure (2.2) A color pixel vector consists of the red, green, blue pixel values

(R, G, B) at one given row/column pixel coordinate (r,c) [Umba98].

2.7 Color and Textural Features

Feature (content) extraction is the basis of content-based image

retrieval. In a broad sense, features may include both text-based features

a. Color image

 b. Red IR(r,c) c. Green IG(r,c) d. Blue IB(r,c)

(r,c)

Chapter Two: Theoretical Background 20

(key words, annotations) and visual features (color, texture, shape, faces).

The features can be further classified as general features and domain-

specific features. The former include color, texture, and shape features

while the latter is application-dependent and may include, for example,

features related to geometry of human faces and finger prints. Because of

perception subjectivity, there is no single best representation for a given

feature. For any given feature there exist multiple representations which

characterize the feature from different perspectives [Rui99]. Among the

general types of features are the following two important types:

1. Texture feature refers to the visual patterns that have properties of

homogeneity that do not result from the presence of only a single color

or intensity. It is an innate property of virtually all surfaces, including

clouds, trees, bricks, hair, and fabric. It contains important information

about the structural arrangement of surfaces and their relationship to

the surrounding environment [Rui99]. The statistical methods for

feature extraction are one of the early methods proposed in the

literatures; they used to detect texels and the relationship among them.

Some statistical quantities (like entropy, correlation, energy, contrast)

have been utilized to describe the statistical behavior of the textural

image [Wazi99].

Energy tells us something about how the gray levels are

distributed; it is usually determined by using the following:

 Energy = ()()()∑
)c,r(

2c,rID (2.2)

Where D is the difference between two pixels value and I (r, c) is

the pixel value.

Chapter Two: Theoretical Background 21

 Contrast is very important measure in the image processing which

often determined the quality of an image [Abdu96]; Different

mathematical definitions for contrast were appeared in the literatures

the most popular definitions are: Contrast, is the difference in visual

properties that makes an object (or its representation in an image)

distinguishable from other objects and from the background. Other

definition of contrast is the relative difference in intensity between an

image point and its surroundings.

High contrast means the difference is great; low contrast, means

the difference is little (e.g., image is mostly made up of gray areas,

lacking white and/or black areas). In visual perception of the real

world, contrast is determined by the difference in the color and

brightness of the object and other objects within the same field of view

[Cont06].

The following equations represent how to compute the contrast:

 C1 =
m

σ
 (2.3)

 C2=
∑

∑

∈

∈

2

1

B)c,r(

B)c,r(

)c,r(I

)c,r(I

 (2.4)

Where m is the mean, σ is the standard deviation, B1 is the set of

pixels whose values are larger than the median of the block, B2 is the

set of pixels whose values are smallest than the median of the block

and I (r, c) is the pixel value.

Chapter Two: Theoretical Background 22

2. Color features are most widely used as visual features in image

retrieval. They relatively robust to background complication and

independent of image size and orientation, the color histogram are one

of the most important color features. Besides the color histogram

(which is the most commonly used color feature representation),

several other color feature representations have been applied in image

retrieval, including color moments and color sets [Rui99].

2.8 Histogram Feature

Color histogram of an image is produced first by dividing the colors

in the image into a number of bins, and counting the number of image

pixels in each bin. The idea was proposed by Michael Swain and Dana

Ballard in 1991 and is primarily used in situations where speed of

processing is a factor in the choice of algorithm. Color histograms are a

flexible constructs that can be built from images in various color spaces,

whether RGB, or any other color space of any dimension [Rui99].

The most popularly used features are the color histogram features

because the color histogram is computationally efficient and generally

insensitive to small changes in camera position [Zhan02]. The histogram

is a statistically based feature, where it is used as a model of the

probability distribution of the gray levels [Umba98]. First order statistical

features are extracted from the histograms of the three color channels

(RGB) and the grey level histogram [Mari04].

These statistical features describe the gray level histogram without

considering spatial independence [Mien02]. The first-order histogram

probability is [Umba98]:

Chapter Two: Theoretical Background 23

M

gn
gP

)(
)(= (2.5)

Where M is the number of pixels in the image or sub image (if the

entire image is under consideration then M=N2 for an N×N image), and

n(g) is the number of pixels at gray-level g. Some of the features based on

the first-order histogram probability are: Mean, Variance, Median,

Skewness, Kurtosis, and Energy [Mien02].

The mean is the average values, so it tells us something about the

general brightness of the image. The mean can be defined as [Umba98]:

∑
−

=
=

1L

0g
gP(g)g (2.6)

The standard deviation which is also known as the square root of the

variance tells us something about the contrast. And it is defined as

follows [Umba98]:

∑
−

=
−=σ

1L

0g

2
g)g(P)gg((2.7)

The mean absolute deviation MAD is the average of the difference

between pixels values and the average value [Umba98]:

∑
−

=
−=

1L

0g

)g(P)gg(MAD (2.8)

Chapter Two: Theoretical Background 24

The shape of the boundary segment can be described quantitatively

by using the moments; the nth moment of g about its mean can be defined

as [Gonz92]:

)g(P)gg()r(M
1L

0g

n
n ∑

−

=
−= (2.9)

The second moment measures the spread of the curve about the

mean value of g and the third moment measures its symmetry with

reference to the mean. Both moment representations may used

simultaneously to describe a boundary segment [Gonz92].

Since the color images consist of three color planes (red, blue,

green), so it can be treated as three gray-scale images. This approach

allows us to use any of the previously defined histogram features for three

times, one for each color component.

2.9 Clustering

Clustering is unsupervised learning of a hidden data concept, it

implies the division of data into groups of similar objects. Each group,

called cluster, consists of objects that are similar between themselves and

dissimilar to objects of other groups. Clustering differs from classification

in that there is no target variable for clustering. The clustering task does

not try to classify, estimate, or predict the value of a target variable.

Instead, clustering algorithms seek to segment the entire data set into

relatively homogeneous subgroups or clusters, where the similarity of the

records within the cluster is maximized and the similarity to records

outside the cluster is minimized [Laro04].

Chapter Two: Theoretical Background 25

Clustering is one of the most important tasks performed in Data

Mining applications. A clustering algorithm attempts to find natural

groups of components (or data) based on some similarity. The clustering

algorithm also finds the centroid (like center of mass or center of gravity)

of a group of data sets. To determine cluster membership, most

algorithms evaluate a distance between a point and the cluster centroids.

The output from a clustering algorithm is a statistical description of the

clusters, centroids and the number of components in each cluster. There is

more than one way to measure a distance. The most commonly used

distance is the Euclidean measure, generally, the distance between the

two points (in the feature space) is taken as a common metric to assess

the similarity among the components of a population.

The Euclidian distance measure between two points's p= (p1, p2...)

and q = (q1, q2...) is [Ciuc02]:

∑
=

−=
k

1t

2
tt)qp(d (2.10)

Various clustering concepts have been appeared in the literature;

they can be grouped into two classes according to the type of the

partitioning structure imposed on the data:

1. Hierarchical clustering: the hierarchical approach produces a

nested series of partitions consisting of clusters either disjoint or

included one into the other [Peng04]. In hierarchical clustering the

input data are not partitioned into the desired number of classes in a

single step. Instead, a series of successive partitions of data are

performed until the final number of clusters is obtained [Cuic02]. An

example of hierarchical clustering algorithms is [Andr02]:

Chapter Two: Theoretical Background 26

a. Agglomerative: algorithms start with each object being a

separate cluster itself, and successively merge groups according

to a distance measure. The clustering may stop when all objects

are in a single group or at any other point the user wants.

b. Divisive algorithms follow the opposite strategy. They start with

one group of all objects and successively split groups into

smaller ones, until each object falls in one cluster, or as desired.

Divisive approaches divide the data objects in disjoint groups at

every step, and follow the same Patterns until all objects fall

into a separate cluster.

In general, hierarchical algorithms can not provide optimal

partitions for their criterion.

2. Nonhierarchical clustering (partitional clustering) [Andr02]:

partitional clustering algorithm constructs partitions of the data,

where each cluster optimizes a clustering criterion, such as the

minimization of the sum of squared distance from the mean within

each cluster.

One of the issues with such algorithms is their high complexity,

as some of them exhaustively enumerate all possible groupings and

try to find the global optimum. Even for a small number of objects,

the number of partitions is huge. That’s why; common solutions start

with an initial, usually random, partition and proceed with its

refinement. A better practice would be to run the partitional

algorithm for different sets of initial k points (considered as

representatives), and investigate whether all solutions lead to the

same final partition. Partitional Clustering algorithms try to locally

improve a certain criterion. First, they compute the values of the

Chapter Two: Theoretical Background 27

similarity or distance, they order the results, and pick the one that

optimizes the criterion.

Some of partitional clustering algorithms include the first ones

that appeared in the Data Mining Community [Andr02]:

a. PAM (Partitioning Around Medoids)

b. K-means

PAM is an extension to k-means, intended to handle outliers

efficiently. Instead of cluster centers, it chooses to represent each cluster

by its medoid. A medoid is the most centrally located object inside a

cluster, the computational complexity of PAM is very large for large data.

K-means is an iterative, non-hierarchical algorithm for clustering

very large data sets. It was developed in 1967 by J.B. MacQueen

[Hohl01].

The algorithm starts by partitioning the input points into k initial sets,

either at random or using some heuristic data. It then calculates the mean

point, or centroid, of each set. It constructs a new partition by associating

each point with the closest centroid. Then the centroids are recalculated

for the new clusters, and these steps are repeated by alternate application

of these two steps until convergence, which is obtained when the points

no longer switch clusters (or alternatively centroids are no longer

changed). The algorithm has remained extremely popular because it

converges extremely quickly in practice. In fact, many have observed that

the number of iterations is typically much less than the number of points.

The quality of the final solution depends largely on the initial set of

clusters, and may, in practice, be much poorer than the global optimum.

Since the algorithm is extremely fast, a common method is to run the

algorithm several times and return the best clustering found.

Chapter Two: Theoretical Background 28

Another main drawback of the algorithm is that it has to be told the

number of clusters k to find. If the data is not naturally clustered, you get

some strange results. Also, the algorithm works well only when spherical

clusters are naturally available in data [Kmea06].

The main advantages of this algorithm are its simplicity and speed

which allows it to run on large datasets. Its disadvantage is that it does

not yield the same result with each run, since the resulting clusters

depend on the initial random assignments. It maximizes inter-cluster

variance and minimizes intra-cluster variance, but does not ensure that the

result has a global minimum of variance [Andr02].

The steps of the classic K-means clustering algorithm are [Peng04]:

1. Choose k cluster centers randomly generated in a domain

containing all the points,

2. Assign each point to the closest cluster center,

3. Recompute the cluster centers using the current cluster

memberships,

4. If the convergence criterion is met then stop; otherwise go to step

2.

2.10 AVI File [Msdn98]

The Microsoft audio-video interleaved (AVI) file format is a

resource interchange file format (RIFF) file specification used with

applications that capture, edit, and play back audio-video sequences. In

general, AVI files contain multiple streams of different types of data.

Most AVI sequences use both audio and video streams. A simple

variation for an AVI sequence uses video data and does not hold an audio

stream.

Chapter Two: Theoretical Background 29

AVI files use the AVI RIFF format. The AVI RIFF formation is

identified by the FOURCC (four-character code) 'AVI '. All AVI files

include two mandatory LIST chunks. These chunks define the format of

the stream and stream data. AVI files might also include an index chunk.

This optional chunk specifies the location of data chunks within the file.

Figure (2.3) shows the typical structure of an AVI file with these

components.

Figure (2.3) The AVI file chunks [Msdn98]

The LIST chunks and the index chunk are subchunks of the RIFF

'AVI ' chunk. The 'AVI ' chunk identifies the file as an AVI RIFF file.

The LIST 'hdrl' chunk defines the format of the data and usually is the

first required LIST sub-chunk. The LIST 'movi' chunk contains the data

for the AVI sequence and is the second required LIST sub-chunk. The

'idx1' sub-chunk is the index chunk. AVI files must keep these three

components in the proper sequence.

Figure (2.4) show an example of the AVI RIFF form expanded with

the chunks needed to complete the LIST 'hdrl' and LIST 'movi' chunks.

For more details about the AVI file format see the appendix (A).

RIFF 'AVI'

LIST 'hdrl'

LIST 'movi'

['idx1'<AVI Index>]

Chapter Two: Theoretical Background 30

Figure (2.4) The LIST 'hdrl' and LIST 'movi' chunks [Msdn98]

2.11 Image File Format

In computer graphics, types of image data are divided into two

primary categories: Bitmap and vector. Bitmap images are represented by

the RGB color image model, where the pixel data {IR(r,c), IG(r,c), IB(r,c)}

stored successively in the file [Umba98].

The bitmap structure defines the type, width, height, color format,

and bit values of a bitmap [Msdn98].

RIFF 'AVI'

LIST ('hdrl')

LIST 'movi'

 ['idx1'<AVI Index>]

'avih'(<Main AVI Header>)

LIST ('strl')

'strh'(Stream header)

'strf '(Stream format)

'strd'(additional header data)

'strn'(Stream name)

{SubChunk | LIST ('rec ')}

 SubChunk1

SubChunk2

Chapter Two: Theoretical Background 31

Every BMP file consists of three parts; First part is the header which

begins with a bitmapfileheader which contains information about file

type and size also it specifies the location of the pixel data in the file.

Image header followed the bitmapheaderfile, the image header contains

information about the image (like width, height), second part is the color

palette (if it is exists) which is followed the file header and it contains

information about colors value of the image pixel, and last part is the

image data (represent the pixels values).

Most of the types of file format fall into the category of Bitmap

images some of the format uses compression, so that the I(r,c) values are

not directly available until the file is decompressed. some of more

complex file formats, the header may contain information about the type

of compression used and any other necessary parameters to create the

image, I(r,c). For more information about the image file format see the

appendix (B).

Signature:
Name: Dr. Imad H. Al- Hussaini
Title: Assistant Professor
Date: / / 2006

(Chairman)

Signature:
Name: Dr. Laith A. Al Ani
Title: Dean of College of Science
Date: / / 2006

Signature:
Name: Dr. Loay A. George
Title: Senior Researcher
Date: / / 2006

(Supervisor)

Signature:
Name: Dr. Ali Abid D. Al- Zuky
Title: Assistant Professor
Date: / / 2006

(Member)

Signature:
Name: Dr. Taha S. Bashaga
Title: Lecturer
Date: / / 2006

(Member)

Certification of the Examination Committee

We chairman and members of the examination committee, certify that we
have study the thesis entitle (Video Data Mining Using Color and
Textural Features Analysis) presented by the student Hind Ali Al-Kitt
and examined her its content and in what is related to it, we have found it
worthy to be accepted for the degree of Master of Science in Computer
Science.g

References

[Abdu96]

L. Abdul Aziz, "Classification of digital Satellites image", (PhD)

Thesis, College of Science, Al-Nahrain University, Iraq, 1996.

[Andr02]

P. Andritsos, "Data Clustering Techniques" Paper, Department of

Computer Science, University of Toronto, Canada, 2002.

[Band02]

 J. Oh and B. Bandi, "Multimedia Data Mining Framework for Raw

Video Sequences", In Proc. of ACM Third International Workshop on

Multimedia Data Mining (MDM/KDD2002), Edmonton, Alberta,

Canada, 2002.

[Band03]

 J. Oh, J. Lee, S. Kote, and B. Bandi, "Multimedia Data Mining

Framework for Raw Video Sequences", Department of Computer

Science and Engineering, University of Texas at Arlington, 2003.

[Bane00]

S. Banerjee, "Motion Estimation and Compensation of H.263 Video",

Technical report, Department of Electrical and Computer Engineering,

University of Texas, 2000.

[Bolt06]

S. Boltz, E. Wolsztynski, E. Debreuve, E. Thierry, M. Barlaud and L.

Pronzato, "A Minimum-Entropy Procedure for Robust Motion

Estimation", In proceedings, International Conference on Image

Processing – ICIP, Atlanta, Georgia, USA, 2006.

[Chan99]

Y. Rui, T. Huang, S. Chang, " Image Retrieval: Current Techniques,

Promising Directions, and Open Issues", Journal of Visual

Communication and Image Representation 10, 39–62, 1999.

[Ciuc02]

M. Ciucu, P. Heas, M. Datcu and J. Tilton, "Scale Space Exploration

for Mining Image Information Content", In Proc. of ACM Third

International Workshop on Multimedia Data Mining

(MDM/KDD2002), Edmonton, Alberta, Canada, 2002.

[Colo03]

 "Color Images", 2003

 http://homepages.inf.ed.ac.uk/rbf/HIPR2/Glossary-Color Images.htm

[Colo06]

 "Color", 2006

 http://en.wikipedia.org/wiki/Color

[Comp87]

 "Computer Vision IT412", School of Computer Science, Software

Engineering 1987

 http://www.undergraduate.csse.uwa.edu.au/courses/233.412

[Cont06]

 "Contrast (vision)", 2006

 http://en.wikipedia.org/wiki/Contrast_(vision)

[Data05]

 "Data mining", internet survey 2005

 http://www.megaputer.com/dm/dm101.php3#whyuse.

[Datc02]

M. Datcu, K. Seidel, "An Innovative Concept for Image Information

Mining", In Proc. of ACM Third International Workshop on Multimedia

Data Mining (MDM/KDD2002), Edmonton, Alberta, Canada, 2002.

[Fern03]

J. mas and G. Fernandez, "Video Shot Boundary Detection Based on

Color Histogram", paper, Digital Television Center La Salle School of

Engineering, Ramon Llull University, Spain, 2003.

[Fosc01]

 P. Foschi, D. Kolippakkam, H. Liu and A. Mandvikar, "Feature

Extraction for Image Mining", Workshop on Multimedia Information

Systems, DOCIS Documents in Computing and Information Science,

2001.

[Gonz92]

R. Gonzalez and R. Woods, "Digital Image Processing", Addison

Wesley Publishing Company, 1992.

[Gorm99]

G. Gormley, "Scene Break Detection & Classification in Digital Video

Sequences", Technical Report, School of Electronic Engineering,

Dublin City University, Ireland, 1999.

[Gyao03]

A. Gyaourova, C. Kamath, S. Cheung, "Block matching for object

tracking", research, Department of Energy's (DOE), Office of Scientific

and Technical Information (OSTI), 2003.

[Han98]

O. Zaiane, J. Han, Z. Li, J. Hou, "Mining multimedia data", Proceedings

CASCON'98: Meeting of Minds, Toronto, Canada, 83-96 1998.

[Haup02]

A. Hauptmann, R. Yan, Y. Qi, R. Jin, M. Christel, M. Derthick, M.

Chen, R. Baron and W. Lin, "Video Classification and Retrieval with

the Informedia Digital Video Library System", paper, NIST Special

Publication: SP500-251, The Eleventh Text Retrieval Conference

(TREC), 2002.

[Hohl01]

B. Hohlt, "Pthread Parallel K-means", CS267 Applications of Parallel

Computing, UC Berkeley, 2001.

[Kmea06]

 "K-means algorithm", 2006

 http://en.wikipedia.org/wiki/K-means_algorithm

[Kuan03]

W. Kuang Li and S. Hong Lai,

"Integrated video shot segmentation

algorithm", research, Department of Computer Science, National Tsing-

Hua University, Taiwan, 2003.

[Laro04]

D. Larose, "Discovering Knowledge in Data: An Introduction to Data

Mining", Published by John Wiley & Sons, Inc., 2004.

[Mali05]

H. Malik, "iARM: Image Association Rule Mining Language", COMS

W4115: Programming Languages and Translators, Department of

Computer Science, Columbia University, 2005.

[Mari04]

N. Marios, P. Constantinos, P. Marios, T.Vasilios, K. Efthyvoulos and

K. Dimitris, "Multiscale Texture Feature Variability Analysis in Images

during Laparoscopy under Different Viewing Positions", Medical

Informatics Laboratory, Department of Computer Science, University of

Cyprus, 2004.

[Mien02]

A. Miene, T. Hermes, G. Ioannidis, R. Fathi, and O. Herzog,

"Automatic Shot Boundary Detection and Classification of Indoor and

Outdoor Scenes", paper, NIST Special Publication:SP 500-251,The

Eleventh Text Retrieval Conference (TREC), 2002.

[Msdn98]

 MSDN Library, Visual Studio 6.0 release, 1998

[Moti00]

 "Welcome to the Motion Estimation Tutorial", 2000,

http://stargate.ecn.purdue.edu/~ips/tutorials/me/ .

[Peng04]

 J. Peng and Y. Xia, "A new theoretical framework for K-means-type

Clustering", Advanced Optimization Lab, Department of Computing

and Software, McMaster University, 2004.

[Rgb06]

 "RGB color model", 2006

http://en.wikipedia.org/wiki/RGB_color_model

[Smea99]

A. Smeaton, J. Gilvarry, G. Gormley, B. Tobin S. Marlow and N.

Murphy, "An Evaluation of Alternative Techniques for Automatic

Detection of Shot Boundaries in Digital Video", Paper, Centre for

Digital Video Processing, Dublin City University, Ireland, 1999.

 [Smea00]

A. Smeaton, P. Browne, N. Murphy, N. O’Connor, S. Marlow and C.

Berrut, "Evaluating and Combining Digital Video Shot Boundary

Detection Algorithms" paper, Centre for Digital Video Processing,

Dublin City University, Ireland, 2000.

[Umb98]

 S. Umbaugh, "Computer Vision and Image Processing- A Practical

Approach Using CVIP Tools", Prentice-Hall, Inc., 1998.

[Watk94]

J. Watkinson, "The Engineer’s Guide to Motion Compensation",

Published by Snell and Wilcox Ltd. Durford Mill, Petersfield

Hampshire GU13 5AZ, 1994.

[Wazi99]

V. Wazir, "An Investigation into the use of neural network in texture

classification", (PhD) Thesis, college of Science, Al-Nahrain

University, Iraq, 1999.

[What01]

 "What is data mining", An internet survey 2001

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/

palace/datamining.htm

[Zaia98]

O. Zaiane, J. han and Z. Nian, "multimediaminer: A System prototype

for multimedia data mining", Proceedings of ACM-SIGMOD

International Conference on Management of Data, pp. 581 – 583, 1998.

[Zaia99]

 O. Zaiane , E. and J. Han, "Word Taxonomy for On-line Visual Asset

Management and Mining", Fourth International Workshop on

Application of Natural Language to Information Systems, pp 271-276,

Klagenfurt, Austria,, 1999.

[Zaia00]

O. Zaiane, J. Han and H. Zhu, "Mining Recurrent Items in Multimedia

with Progressive Resolution refinement", Int. Conf. on Data

Engineering (ICDE'2000), pp. 461-470, San Diego, CA, 2000.

[Zhan01]

J. Zhang, W. Hsu and M. Lee, "Image Mining: Issues, Frameworks and

Techniques", Proceedings of the Second International Workshop on

Multimedia Data Mining (MDM/KDD'2001), in conjunction with ACM

SIGKDD conference. San Francisco, USA, 2001.

[Zhan02]

R. Zhang, Z. Mark and T. Watson, "A Clustering Based Approach to

Efficient Image Retrieval", 14th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI'02) p. 339, 2002.

[Zhon00]

 D. Zhong and S. Chang, "Video Shot Detection Combining Multiple

Visual Features", research, Department of Electrical Engineering,

Columbia University, 2000.

[Zhu04]

 X. Zhu and X. Wu, "Sequential Association Mining for Video

Summarization", research, Department of Computer Science, University

of Vermont, 2004.

Republic of Iraq
Ministry of Higher Education and scientific research
Al- Nahrain University

Video Data Mining Using
Color and Textural Features

Analysis

A Thesis

Submitted to the

College of Science, Al-Nahrain University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

By

Hind Ali Hussain Al-Kitt

(B.Sc.2003)

Supervisor

Dr. Loay A. George

 2006 1247

 Table of contents

Chapter One: General Introduction

1.1 Data Mining 1

1.2 Growth of Data Mining 2

1.3 Multimedia Data Mining 3

1.4 Literature Survey 4

1.5 Aim of thesis 8

1.6 Chapters Overview 8

Chapter Two: Theoretical Background

2.1 Introduction 10

2.2 Video Segmentation 10

2.3 Scenes Changes Detection 12

2.4 Motion Estimation 14

2.5 Image Mining 15

2.6 Color Image 17

2.7 Color And Texture Features 19

2.8 Histogram Features 22

2.9 Clustering 24

2.10 AVI File 28

2.11 Image File Format 30

Chapter Three: Proposed System

3.1 Introduction 32

3.2 The System Model 32

3.2.1 Load Video Stream 34

3.2.2 Color Decomposition 34

3.2.3 Shot Boundaries Detection 35

3.2.4 Static and Dynamic Classification 41

3.2.5 Features Extraction 44

3.2.6 Feature Analysis 66

3.2.7 Power Discrimination 66

3.2.8 K-Means Algorithm 69

Chapter Four: Experimental Results

4.1 Introduction 72

4.2 Videos Test Sample 72

4.3 The Results of Shot Boundaries Detection 74

4.4 The Results of Static and Dynamic Classification 82

4.5 The Results of Features Extraction 83

4.6 The Results of Feature Analysis 94

4.7 The Results of Power discrimination 94

4.8 The Results of K-Means Algorithm 98

Chapter Five: Conclusions and Suggestions

5.1 Conclusions 101

5.2 Suggestions 103

References 104

 ءا�ه�ا

� ا	�
	�� ا��
 ��وا ��ا	� �
 وا����

� ���اً � �	 ������
� �	

ت"! و�$%�

 ��	
ا	� روح ا)'��ة ا	�
��ه
 - ��� ����ا	,+ ��

0 ا	�ا/.��"��

 ھ�د

�ـ�ـــــ� �
 ا
	�ــ� ا
	�ـــ�ـ�

 ن أ�رِ �ِ ا�روحُ لِ �ُ ا�روحِ نِ
َ وَ 	���و�كَ
 	 ً �ِ إ� �َ ِ◌ �ما��ِ نَ م �ِ 	�ُ �� أو�ِ وَ ��رَ

 ��ق � ا
��ـ��

 ا#�راء�ورة
)٨٥(آ	$

 وا���� ا��	�� وزارة ا�
�	�� ا�����
 ����� ا������

�	�� ا��	�م

ا	���� �������ل ����ت ا	����� ��
�� وا	�������� ا	��� �	 !�� ا	�"

�	�� ا��	�م � ����� ا������ �,+ء �� �
(��ت '�& %��دة، ر"��� �! �� إ�

�م ا���"��ت 	- �. ��
 ا����/

 م� $#!

 ھ� -	� 2/�� ا�01

��15�ر��س

2003

 ا���7ف

�رج �9ي ادوار. د�

desktop

[.ShellClassInfo]
LocalizedResourceName=@%SystemRoot%\system32\shell32.dll,-21815

Page 1

	Microsoft Word - Abstract عربي_1.pdf
	Microsoft Word - Abstract_1.pdf
	Microsoft Word - Acknowledgment_1.pdf
	Microsoft Word - Appendices_1.pdf
	Microsoft Word - Certification_1.pdf
	Microsoft Word - Chapter Five_1.pdf
	Microsoft Word - Chapter Four.pdf
	Microsoft Word - Chapter One.pdf
	Microsoft Word - Chapter Three.pdf
	Microsoft Word - Chapter Two.pdf
	Microsoft Word - exam.pdf
	Microsoft Word - References.pdf
	Microsoft Word - Republic of Iraq.pdf
	Microsoft Word - Table of contents.pdf
	Microsoft Word - الاهداء.pdf
	Microsoft Word - الاية.pdf
	Microsoft Word - وزارة التعليم العالي.pdf
	desktop - Notepad.pdf

