
 I

Abstract

Distributed systems are becoming more and more important. Technically

spoken, the sharing of system resources (Hardware (H/W) or Software (S/W)) is

one important motivation in distributed systems. Therefore, a new programming

paradigm for the design and implementation of distributed systems at which

resources can be easily detected and used immediately (i.e. plug and play)

appeared. This service paradigm simplifies the configuration and setup for

devices in computer networks, such that existing and future services work with

one another in a robust, scalable, and flexible manner.

The developed system (SJLS) is a multi-client multi-server distributed

system working on LAN, which has a dynamic nature that enables services to be

added or withdrawn from federated groups of services (devices and software

components) according to demand or changing requirements by the group using

the system. To do so three components are needed: Server (the most important

part of the system, each server contains one or more service provider that is

responsible for offering services either S/W or H/W), Lookup service (the core

component of the system, in which services registered. It contains database

called the Lookup table database to keep services available in the system), and

Client (the part of the system that generates requests for services). These

components communicate with each other by service protocols using Java

programming language. The created system support security level constructed

by enforcement of the security properties already present in Java in addition to

providing new security properties that ensures: authenticity between server and

lookup service(server security), authenticity and authority between client and

lookup service(client security), and authenticity between client and server

(client server security). SJLS provides Leasing Interface, which defines a way

of allocating and freeing resources using a renewable, duration-based module. It

is developed to be reliable by providing a consistent backup copy of the lookup

table.

Finally, to show the capabilities of SJLS, it has been applied on a LAN that

consists of five nodes three of them are Pentium 3 and the other two are Pentium

4 for testing purposes.

This research aims to perform analytical study of plug and play

systems in general, and especially on Jini networking technology.

Finally, a Jini-like system is developed, which includes most of the

facilities provided by Jini system in addition to security model, therefore,

it is called Secure Jini-like System (SJLS).

The developed system (SJLS) is a distributed system (that works on

LAN) which has a dynamic nature that enables services to be added or

with drawn from federated groups of services (devices and software

components) according to demand or changing requirements by the group

using the system. To do so three components are needed:

 Server: arguably the most important concept behind the system,

is to offer services, such that each server contain one or more

service provider that is responsible for offering services. Service

encompasses any useful function that networked devices or

software components provide. A service can be computation,

storage, a communication channel, a printing function, a

hardware device or even another user.

 Lookup service: it is the core component of the system, which is

a special service for registering, finding, and leasing other

services. It contain database called the lookup table database for

services available in the system.

 Client: it is the part of the system that generates requests for

services (S/W or H/W services).

These components communicate with each other by service

protocols using Java programming language. The created system supports

security level that ensures: authenticity between server and Lookup

service, authenticity and authority between client and Lookup service,

finally, authenticity between client and server. This security level is

constructed by enforcement of the security properties already present in

Java in addition to providing new security properties. SJLS is developed

to be reliable by providing a consistent backup copy of the lookup table.

Finally, to show the capabilities of SJLS, we apply it on a LAN that

consists of 5 nodes for testing purposes. Number of nodes (N) can be of

any number.

SJLS characteristics can be summarized as follows:

 Operating system independent, through use of Java.

 Only data can be moved among system participants.

 The need for Lookup service.

 SJLS has its own security model which allows server

authenticity, client authenticity and authority, and client-server

authenticity.

 H/W and S/W services can be added to the system.

Conceptually, Jini provides three things:

 A programming model for distributed systems, including

services, leasing, distributed events, and transactions

 A way to federate and use services

 Middleware interfaces and sample implementations to support

this distributed programming model and federating services

transactions.

Services are the central notion in Jini. Practically any network

accessible resource, both hardware and software, can be turned into a

service. Examples of network accessible services today include email,

authentication, printing, faxing, disk storage, raw data drawn from

sensors embedded in the physical environment or high-level data

providing a person’s location, identity, and general activity. Services in

Jini are grouped together in a loosely coupled collection called a

federation. The core component in a Jini federation is the Lookup

service, a special service for registering, finding, and leasing other

services. The Lookup service assumes that clients and services use or

have access to Java Virtual Machine (JVM) and Remote Method

Invocation (RMI), which represents a standard way of performing

remote procedure calls in Java. These requirements are only for the

Lookup service, though any platform, protocol, and data format can be

used once a client has been connected to a service via the Lookup service.

The concept of leasing is integral to Jini. Leasing gives a client access to

resources for a set period of time. Once the lease expires or is cancelled,

all of the associated resources are returned. This design decision was

made to avoid explicit locking of resources, which may be problematic in

a distributed system given that clients and services may be entering and

leaving at any time. Leases can be exclusive, insuring that exactly one

user can take a lease on a resource at a time, or non-exclusive, allowing

multiple users to use a resource. Jini also provides a distributed event

model. Clients can subscribe to different types of events from remote

sources and be notified of new events. Examples of such a subscription

would be an application being notified when the printer has finished

printing a paper or the printer is out of paper. Transactions are another

part of Jini’s distributed programming model. A transaction is a set of

operations that executes atomically: either all of the operations execute,

or none of them do. Transactions are typically used in the database

domain, but have also proven useful for distributed systems. Jini uses a

specific kind of transaction called a two-phase transaction [Jas00] [Fre00]

[Kei01]. The Jini characteristic can be summarized as follows:

A-7

Appendix A

Java code 1: requesting Lookup service address

 InetAddress group=InetAddress.getByName (address);

 MulticastSocket socketname=new MulticastSocket (portnumber);

 socketname.joingroup(group);

 DatagramPacket DatagramPacketname=new DatagramPacket

(msg.getBytes(),msg.length(), group,portnumber);

 socketname.send (DatagramPacketname);

Java code 2: requesting Lookup service address

ServerSocket sersoc=new ServerSocket(port); //open connection

Socket lookupsoc=sersoc.accept(); // listing

DataInputStream in=new

DataInputStream(lookupsoc.getinputstream());

String address=in.readUTF(); //receiving

// Tokenizing

String Tokenizer stringname=new StringTokenizer(msg,"/");

lookupcompname=Stringname.nextToken();

lookupportno= Stringname.nextToken();

A-7

Java code 3: receiving server request

InetAddress group=InetAddress.getByName (address);

MulticastSocket socketname=new MulticastSocket (portnumber);

socketname.joingroup(group);

byte[]buffer=new byte[];

DatagramPacket DatagramPacketname=new DatagramPacket

(buffer,buffer.length);

socketname.receive (DatagramPacketname);

Java code 4: providing Lookup service address

Socket socketname=new Socket ("Servername", PortNumber);

DataOutputStream out=new DataOutputStream(socketname.

getOutputStream());

String msg="LookupServiceName/PortNumber/";

out.writeUTF(msg);

Java code 5: Tokenization

String Tokenizer stringname=new StringTokenizer(msg,"/");

action=Stringname.nextToken();

service= Stringname.nextToken();

host= Stringname.nextToken();

port= Stringname.nextToken();

lease= Stringname.nextToken();

slevel= Stringname.nextToken();

A-7

Java code 6: Open connection with the lookup table

String url="jdbc:odbc: DataSourceName of the table"

try

 { Class.forName("sun.jdbc.odbc.jdbcOdbc Driver"); }

 catch (java.lng.ClassNotFound Exception e) {print error}

Connection con=DriverManager.getConnection(url);

Java code 7: serving actions

Case action of

• register: the SQLstatement will be

String string="insert into table name values (remaining

values in the service object+status)

Statement stmt=con.createStatement();

ResultSet rst=stmt.executeQuery (string);

• renew:

String string="update tablename set New lease time where

(search conditions for the specified service)

• Cancel:

String string="delete from tablename where (search

conditions for the specified service)

A-7

Java code 8: receiving serving actions

Socket socketname=new Socket ("Clientname", PortNumber);

DataOutputStream out=new DataOutputStream(socketname.

getOutputStream());

String msg="LookupServiceName/PortNumber/";

out.writeUTF(msg);

Java code 9: Tuple selection

String string=”Select * from table name where (service=request

service name)

Statement stmt=con.createstatement ();

ResultSet rst=stmt.executeQuery (string);

Java code 10: getting address

hostname=rst.getobject (2).toString ();

hostportno=rst.getobject(3).toString();

hostportno1=Integer.parsInt (hostportno);

A-7

Java code 11: sending address

Socket clientsocket=new Socket(clientname, clientportno);

DataOutputStream out=new DataOutputStream(socketname.

getOutputStream());

out.writeUTF(hostname);

out.writeInt(hostportno1);

out.close;

clientsocket.close;

Java code 12: signing client reqest

Signature sig = Signature.getInstance("SHA1withDSA");

sig.initSign(privatekey); //server private key

String data=msg.toString(); //the service object

sig.update(data.getBytes());

byte [] sigf;

sigf=sig.sign(); //signing

Java code 13: authentication

Signature sig=Signature.getInstance("SHA-/DSA");

sig.initVerify(publickey); //server public key

boolean clientverified=sig.verify(sigf));

if server verified register service object

else refuse service object

A-7

Java code 14:generating issuerpublickey

String st="\keytool -genkey -alias "+ issuername+ " -keypass "+

issuerpass +" -keystore keystorename -storepass

keystorepass;

File f=new File(filename);

FileOutputStream o=new FileOutputStream(f);

PrintWriter pw=new PrintWriter(o);

pw.print(st);

pw.close() ;

Runtime.getRuntime().exec(filename);

Java code 15: signing certificate

Signature sig = Signature.getInstance("SHA1withDSA");

sig.initSign(privatekey); //issuer private key

String data=certificate.toString(); //the constructed

certificae

sig.update(data.getBytes());

byte[] sigf;

sigf=sig.sign(); //signing

A-7

Java code 16: authentication

Signature sig=Signature.getInstance("SHA-/DSA");

sig.initVerify(publickey); //issuer public key

validation result=sig.verify(sigf));

Java code 17:Tag checking

 int slevel=rst.getObject(number); //get the server security

level

 int clevel=vf.level; // get client trust level

if (vf.level>=slevel) checktag=true;

else checktag=false;

 ���ــــــ�ا�

ام ا����در ��
�� و�� ا������ ا������ ����� ا����ر�� �� ا��� ���(داد أھ��� ا'&%�� ا��ّ$ز!� أ�

ا���$��ة �� أي &%�م
$اء ��&4 أ3+(ة أم �1���0ت �� أھ. ا�
وا�- �� ا'&%�� ا��ّ$ز!� و�*� ھ�*� ظ+*�

9
 �� ����. و��7�8 ا'&%�
3 �0�
 ا��ّ$ز!� 9$� �&�$ذج �1*9

ر 3*��
ام أي ��*
� إ�=�&�� ا����ف وا

��ت . �1$رة ���A��B ��ل ظ+$ره �� ا��%�م

 ھ*7ا �B�! C+*D9*� �*$��� ا'3+*(ة وا��**9
�� ا�0
&�$ذج ا��

��ت�Eت ا��=�F ��%&' ،ي$*H ب$B*
�1 �*�� C��� ��B���Dت ا���$��ة وا����

*-، ��K أن ا��$�B� C*1�H ،

�L9ن أ��ا'&%�� ا����A��B ا���C�P و��Eو�� �+�+� �1$رة !��� و�� O*. ا����*M��� N ھ7ا ا��KE �=�ة . و

1
را
� ا�
 ھ7ه ا'&%�*� وھ*$ &%*�م Jini) �*���9Jini �*�&�=��*� أF*=�ل ا��*�=�ت ا��Q�9 �*�A��B*� إ C=*F

ة ��=**� أن �L**�ف إ�**M ا��%**�م **9
3 �**�
R إن أي M**���1 أي C�P**��ء ا��**�Oأ �**���9��=� ��%**�م
ا��$
- ا�

**

	 وأ�R**�ا �**$��� ،)�E� ��1**7ف �1**$رة ��A��B**�وأR**�ى ���
9**$�� اSJLS (T**BU(ا����� ��Jini���م

�- إ���W 3(ء ا'���� ��B%�م Jiniا��V�+Dت ا��� 9$��ھ� .

 �9$Q� .�SJLS �*ز1*$ن �*� ا��*�=� وھ*$ ذو ط��� �*� �*��*� R*�دم وأ� ��Y�D9 K�E1 1$3$د أ�

 MPB� ف أو�L� �1ن ��
R ي' Y�D� ��=��$اء ��&4 أ3+(ة أو �1���0ت ���� ���P�Bات ا��BZ�E �� د��9

�� ��B%�م
��Dا�� -��
�� وھ� ث���7�8 ذ�] �. �$��� VO. ا���0�
�� أھ. أ3*(اء ا��%*�م(ا���دم�=$&�ت أ

��ت
�D*[$�$ن !*� �*$��� ا��* �*�
�0+(ي ا�� �� ��وھ*$ (����� ا������،)و��R Cدم L9. وا�
 أو أ�

��ت ا���*$��ة 3$ھ� ا��%�م ا�7ي 9�

ة ��1&�ت �L. ��3*- ا��*!�H MB! ي$�E9 K�� ت��
. ��^ �C�0D ا��

��نوأ�L9 ،)�� ا��%�م���ت(ا�
�B� ت��BQر ا�
�C ھ7ه ا'3*(اء �*���_ �*-). وھ$ 3(ء ا��%�م ا�7ي �9

 �P� ام
��
�� و�1

ث L�1 .Java+� 1$ا
�Q �1و�$�$`ت ا��E�*Dا��%*�م ا�� .!
9 �*����D*�$ى �*� ا'

 �P� �� ا���$��ة ��
4O �*� ا��%*�م Java 1$ا
�Q ��ض �$ا�8Zت ا'E�*
���Wc�1 إ�R M*$اص ا�*� ا

��
�d�8 ا�� -� .+B��� ھ$�9 و���VZت ا�(1$ن أ��Oء ���
�� ھ$�9 ا���دم وا����
وأ��Rا . ���L ا����

�&�=��� ھ$�9 ا�
ھ�� اC*�H �*Re ا��*
ء 1*�ي ��$��� إ`
���B� دم وا�(1$ن��B��*F��� C*���� .SJLS د
*E9

*9
0�B� �*B1�H ة
*���ت V*Rل
�� وھ$ أ
B$ب ��0+�(وإ��Pء ا��*

ة ��$��� ا����P*�ض ان 9=*$ن ا��%*�م .

 ����Wن إ)R ��D& 9�$�� �� ا��%�م ^�B! `$��)backup (ت��

ة ��1&�ت ا��!��� .

Chapter Five Application and Results

 ٨٦

CHAPTER FIVE

Application and Results

5.1 Introduction

 This chapter demonstrates the proposed SJLS with its attached security

model. This will be done by presenting several applications that demonstrate in

general how SJLS operates, how services can be added to the system, and how

clients made their requests, all that done in secure manner. The system is tested

by providing file retrieving servers, string manipulation servers, mathematical

operation servers, and printing server (as H/W service). Taking in consideration

that SJLS is a plug-and-play system where services can be attached and

detached to the system in an easy way with security insurance (as will be

illustrated later in this chapter).

The proposed system ensures security by protecting access to Lookup

service from an untrusted servers or clients. It determines whether the server or

the client can access the Lookup service or perform any other privileged

operations. This is done by impose restrictions on the work sequence of the

server and the client, in such away that the server must sign its service object

before sending it to the Lookup service, also the client must decorate its request

with SPKI certificate when decided to register it in the Lookup service, and as

last stage, client and server must perform an authentication protocol before

starting communication. In general the SJLS handles the following situations:

1. On the server side:

 Registering repeated service: when the server tries to register a

service object that already exist in the Lookup service, the received

service object will just be ignored and the server will be notified.

 Registering incomplete service: when the server doesn’t specify all

the information needed for creating a service object and try to

register it, then the Lookup server will not register it, and notify the

server.

Chapter Five Application and Results

 ٨٧

 Refusing improper request: The server request to register, renew, or

cancel service objects (sent to the Lookup service), may be denied in

case the service object is not signed by any known server, or when

the service object is signed by unknown server (i.e. a server that is

not defined for the Lookup service).

2. On the client side:

 The client request unavailable service: in this situation, the client will

be notified that the service does not exist.

 Refusing client request: when the client sent request to the Lookup

service, (asking for the address of the service provider) this request

may be accepted or refused. Refusing request situation resulted from

the request is not decorated with the SPKI certificate (this situation

indicates that the request is not authenticated), the request is decorated

with SPKI certificate, but is not authorized to do the requested action,

or the client request was decorated with SPKI certificate, but its

validity date expired.

 The client request a service which is provided by more than one

server: in this case the Lookup service will choose one of the services

randomly.

5.2 SJLS Application (Services)

To clarify how the proposed Jini-like system operates, how services added

to the system, and how it support security, number of applications are presented

here that perform a collection of services. These include: file retrieving, string

manipulation, arithmetic computation, and hard copy printing. These are some

examples and other services can be built and added to the system.

The first server consists of one service provider performs file retrieving.

The second server has two service providers one for performing computation

operations these are addition, subtraction, multiplication, and division. The

other for performing string manipulations; and the third server contains a

service provider that performs printing operation.

Chapter Five Application and Results

 ٨٨

File retrieving service aids user to retrieve selected files by specifying the

file name. The File Retrieval Service Provider performs file retrieving operation

and the required file will be downloaded to the requested client.

Arithmetic expression computation service helps user to compute

arithmetic expressions. The Expression Computation Service Provider performs

computation operation. It requires four classes: sum, sub, multiply, and divide

classes that perform addition, subtraction, multiplication, and division

respectively.

String manipulation service gives the user the ability to perform string

manipulation. The String Manipulation Service Provider is responsible for

finding string length, string concatenation, and string comparison.

The proposed system has been experimented using LAN of five nodes, with

different operating systems (of windows family) two of type Pentium 4 and the

remaining three of type Pentium 3.

The proposed system is provided with a powerful user interface to simplify

system usage for both servers and clients.

5.3 Server Interface

Server interface is provided to help the service provider to register, renew,

and cancel their services, and waiting for implementing any requested service.

At first when a new server plugged in, a server program frame will appear on

the screen to help the service provider in registering its service, as shown in

figure (5.1).

To register a service, the service provider must select Register, at this time

the three other options will be inactive since service can not be renewed or

cancelled if it is not registered first. As a first stage of registering a service, the

service provider must creates a service object specifying service name, lease

time, security level (presented as drop list to help the server in choosing one of

the listed options High, Medium, or Law), computer name (this field will be

filled automatically), port number (this field will be filled with the default port

number automatically) as shown in figure (5.2).

Chapter Five Application and Results

 ٨٩

Figure (5.1) Server Program

The created service object has to be signed by the server signature before

sending it to the Lookup service, signing process begun when the service

provider click at Sign button.

Figure (5.2) Service Object Creation

Chapter Five Application and Results

 ٩٠

At the completion of the registration, the Lookup service sends results of

registration to the server informing him whether the registration process

complete successfully or not as shown in figure (5.3) .

Figure (5.3) Successful Registration

Registration failure may happen when any of the fallowing reasons happened:

 Authentication failure, this situation occurs when the Lookup service

doesn’t verify the server digital signature as shown in figure (5.4).

Figure (5.4) Authentication Failure Exception

Chapter Five Application and Results

 ٩١

 Repeated service, this situation occurs when the service provider tries to

register an existed service as shown in figure (5.5).

Figure (5.5) Repeated Service Exception

 Incomplete service, this situation occurs when the service provider doesn’t

specify all the information needed in the service object as shown in figure (5.6).

Figure (5.6) Incomplete Service Exception

After the service registration of the service, the server must press Waiting

button to wait for any request from client, also server may need to renew or

Chapter Five Application and Results

 ٩٢

cancel services. To renew a service a Renew button must be selected and the

listed fields must be specified as shown in figure (5.7). The listed fields are

service name (name of the service needed to be renewed), lease time (the new

lease time).

Figure (5.7) Renew Operation

Canceling a service could be done by clicking Cancel button, upon this

service name must be provided to the system, and other information will be

specified automatically as depicted in figure (5.8).

Figure (5.8) Cancel Operation

Chapter Five Application and Results

 ٩٣

The success and failure situations in Renew and Cancel operations are the

same as mentioned for Registration operation.

5.4 Client Interface

When clients attached the system requesting services, the client interface

will help them greatly in doing so. Initially the client must build his request

before sending it to the Lookup service; this request could be prepared by

specifying the information required in the fields listed in figure (5.9) the service

name here advert to the service requested by the client, computer name and port

number will be specified automatically. After specifying the requested service

and before sending it to the Lookup service the client should specify the input

parameters and decorate its request with SPKI certificate, this can be done using

SPKI certificate construction fields. Using these fields the client will be able to

specify the following information: Issuer name (client source), Subject name

(client), Tag (presented as drop list to help the client in choosing one of the

listed options High, Medium, and law), Valid from (the starting date for this

certificate), and Valid to (the ultimate date for this certificate).

Figure (5.9) SPKI Certificate Construction

Lastly, the client must end his certificate with Issuer signature when click

on Sign button.

Chapter Five Application and Results

 ٩٤

When the client request accessing a service received by the Lookup service

and this service exist then it will be verified before accessing the requested

service, consequently access will either permitted or denied. When permit

access situation occurs, the client will be provided with requested service

address as shown in figure (5.10).

Figure (5.10) Permit Client Access

The deny access state occurs in the fallowing situations:

 The client request is not decorated with SPKI certificate. The Lookup

service detects that the client is not authenticated and denies this request.

In this case, the Lookup service checks the request and the checking

process returns that the request is not decorated with SPKI certificate as

shown in figure (5.11).

Chapter Five Application and Results

 ٩٥

Figure (5.11) Request without SPKI Certificate

 The client request is decorated with SPKI certificate, but it was not

authorized to access the requested service. The Lookup service searches

and found the requested service but this service can not be accessed by the

requested client, nevertheless the checking process returns that the

Lookup service is decorated with SPKI certificate, but the authorization

process returns that the requested client is not authorized to perform the

required operation. See figure (5.12).

Figure (5.12) un Authorized Client

Chapter Five Application and Results

 ٩٦

 The client request is decorated with SPKI certificate, it was authorized to

access the requested service, but its validity date expired. The Lookup

service searches and found the requested service but this service can not

be accessed by the requested client, nevertheless the checking process

returns that the Lookup service is decorated with SPKI certificate, and the

authorization process returns that the requested client is authorized to

perform the required operation, but validity checks returns that this

certificate is out of date. See figure (5.13).

Figure (5.13) In Valid Certificate

5.5 Examples

 After developing the user interface, some application examples are

presented to demonstrate the capabilities of the proposed system. The

application shows how SJLS printing service which represents H/W service can

be used by other system participants.

The printer (either freshly connected to SJLS or is powered up once it has

been connected to the system) works with one server and at least one client. The

server and service provider have public keys to uniquely identify them on the

network. They will be called first server (FS) and printer service provider (PSP)

for explanation purpose. A client, called printer client (PrC) is related with first

Chapter Five Application and Results

 ٩٧

client source (FCS), is created to communicate with PSP to request the printing

of some information.

The first step after that is to start FS accordingly PSP will be starting too.

PSP offers the network a printer to print any requested information, to do so a

service object describing the printer service must be created, signed (using FS

public key), registered on the Lookup service and later used by clients to be

connected to the service as illustrated in figure (5.14).

Figure (5.14) Registering Printer Service

When printing service registration process completes successfully, i.e.

without any of the exceptions shown in figures (5.4), (5.5), and (5.6), FS must

be in waiting state to wait for any request from all other participants in the

system to use the printer attached to FS.

After starting the server, the client (PrC) can start his execution. The first

thing he will do is build his request, specify his input parameters i.e. file name

and file type to be printed, along with his signed certificate (i.e. SPKI certificate

signed by FCS public key). Then PrC will try to connect to the Lookup service

and ask for access to the printer service.

Chapter Five Application and Results

 ٩٨

If the printer has correctly registered itself on the Lookup service, it will be

possible for the Lookup service to decide whether PrC can access the printer (in

case no one of the exceptions shown in figures (5.11), (5.12), and (5.13) occur)

or not. Once the Lookup service permit PrC to access the service to print the

requested file, the PSP address will be given to PrC. Using the proxy, PrC

contacts PSP.

The first step in the communication is authentication. The client

authenticates himself to the server. This is done using CHAP mentioned in

chapter four. In this case, PrC authenticates himself it PSP. If authentication

successful then communication can continue. Otherwise, it is halted. If the

authentication successful then the client can use the printer as shown in Figure

(5.15).

Figure (5.15) Start of the Printer Application

 After printing client file and a printing complete message will be presented

to the client as shown in figure (5.16).

Chapter Five Application and Results

 ٩٩

Figure (5.16) Printing Complete

After presenting an example application which demonstrates how SJLS

handle H/W service which is the printing service, another example will be

presented to illustrate the steps taken by SJLS to offer a S/W service provided

by the second server (SS) and his computation operations service provider

(COSP). This section describes this application and how to use it, look into the

different components and how they communicate together in secure manner. As

mentioned in the printer example SS and COSP public keys to uniquely identify

in the network.

The computation operations service provider performs arithmetic

operations. It provides the fallowing operations: addition (addition of two

numbers), subtraction (subtraction of two numbers), multiplication

(multiplication of two numbers), division (division of two numbers), and

modules (modes of two numbers).

First of all SS must be started and COSP must registered his service by

creating a service object describing his service (i.e. service name, lease time,

security level) and signing it using SS public key.

Chapter Five Application and Results

 ١٠٠

When registration completes successfully the message shown in figure

(5.17) will appear to COSP.

Figure (5.17) Registering Computation Operations Service

As COSP registered his service any computation operations client (COC) can

get the result of his request. This can be done after COC build his request,

specify his input parameters i.e. first input parameters and second input

parameters, using the frame shown in figure (5.18), along with his signed

certificate (i.e. SPKI certificate signed by COC Source public key). Then COC

will try to connect to the Lookup service and ask for access to the computation

operations application.

Once the Lookup service receive COC request and verify it, search will be

done for the requested service and if it was registered successfully then COC

could be permitted to access COSP by sending its address to COC.

Chapter Five Application and Results

 ١٠١

Figure (5.18) Specifying Input Parameters

The usual step to start communication between client and server is

authentication. Using CHAP checking authenticity will be done between COSP

and COC; if this check succeeds then communication can continue. Otherwise,

it is halted. If authentication successful then the client will get the result of his

request as shown in Figure (5.19).

Figure (5.19) Getting Output Result

Chapter Five Application and Results

 ١٠٢

More than one sever can run on SJLS serving any client and implement

their requests, this example illustrates how SJLS organize running two servers

simultaneously. The first server (FS) contains printer service provider (PSP)

and the second server (SS) contains file retrieving service provider (FRSP).

Each of these servers started separately, and going on all the subsequent

steps separately (i.e. create their service objects, signing them, and sending them

to the Lookup service) if all these steps completes successfully then registration

complete message shown on the preceding examples will appear to PSP and

FRSP.

After registration done PSP and FRSP will stay waiting to any client

request. By their sites clients who want to use any service will prepare their

requests specifying the requested service as shown in the preceding examples

and sending them to the Lookup service.

When PSP or FRSP receive any client request the same steps taken in the

preceding examples will be done (i.e. authentication done if succeed service will

implemented) and output result will be send to the clients.

5.6 Tests and Results

To confirm SJLS performance the following tests have been done:

1. Testing SJLS on LAN consists of four computers all are Pentium 4

running under XP operating system the following result appeared:

• Running one node: in this case the Lookup service, Client, and

Server exist on the same node (i.e. that requested service exists

locally), the average response time is 160 milliseconds.

• Running two nodes: in this case the Lookup service, Client, and

Server distributed on two nodes, the average response time

approximately is 7316 milliseconds.

Chapter Five Application and Results

 ١٠٣

• Running three nodes: here each one of Lookup service, Client,

and Server exist on different node, the average response time

approximately is 7398 milliseconds.

• Running four nodes: here each one of Lookup service, Client, and

Server exist on different node, the average response time

approximately is 7261 milliseconds.

 2. Doing the same tests on LAN consists of five computers two of type

Pentium 4 and three of type Pentium 3 running under Millennium, and

XP operating systems the following result appeared:

• Running one node: the average response time approximately is

167 milliseconds.

• Running two nodes: the average response time approximately is

10411.5 milliseconds.

Running three nodes: the average response time approximately is

10192.5 milliseconds.

Running four nodes: the average response time approximately is

34435.6 milliseconds.

Running five nodes: the average response time approximately is

11311.35 milliseconds.

Chapter Five Application and Results

 ٩٣

CHAPTER FIVE

Application and Results

5.1 Introduction

 This chapter demonstrates the proposed SJLS with its attached security

model. This will be done by presenting several applications that demonstrate in

general how SJLS operates, how services can be added to the system, and how

clients made their requests, all that done in secure manner. The system is tested

by providing file retrieving servers, string manipulation servers, mathematical

operation servers, and printing server (as H/W service). Taking in consideration

that SJLS is a plug-and-play system where services can be attached and

detached to the system in an easy way with security insurance (as will be

illustrated later in this chapter).

The proposed system ensures security by protecting access to Lookup

service from an untrusted servers or clients. It determines whether the server or

the client can access the Lookup service or perform any other privileged

operations. This is done by impose restrictions on the work sequence of the

server and the client, in such away that the server must sign its service object

before sending it to the Lookup service, also the client must decorate its request

with SPKI certificate when decided to register it in the Lookup service, and as

last stage, client and server must perform an authentication protocol before

starting communication. In general the SJLS handles the following situations:

1. On the server side:

 Registering repeated service: when the server tries to register a

service object that already exist in the Lookup service, the received

service object will just be ignored and the server will be notified.

 Registering incomplete service: when the server doesn’t specify all

the information needed for creating a service object and try to

register it, then the Lookup server will not register it, and notify the

server.

Chapter Five Application and Results

 ٩٤

 Refusing improper request: The server request to register, renew, or

cancel service objects (sent to the Lookup service), may be denied in

case the service object is not signed by any known server, or when

the service object is signed by unknown server (i.e. a server that is

not defined for the Lookup service).

2. On the client side:

 The client request unavailable service: in this situation, the client will

be notified that the service does not exist.

 Refusing client request: when the client sent request to the Lookup

service, (asking for the address of the service provider) this request

may be accepted or refused. Refusing request situation resulted from

the request is not decorated with the SPKI certificate (this situation

indicates that the request is not authenticated), the request is decorated

with SPKI certificate, but is not authorized to do the requested action,

or the client request was decorated with SPKI certificate, but its

validity date expired.

 The client request a service which is provided by more than one

server: in this case the Lookup service will choose one of the services

randomly.

5.2 SJLS Application

To clarify how the proposed Jini-like system operates, how services added

to the system, and how it support security, number of applications are presented

here that perform a collection of services. These include: file retrieving, string

manipulation, arithmetic computation, and hard copy printing. These are some

examples and other services can be built and added to the system.

The first server consists of one service provider performs file retrieving.

The second server has two service providers one for performing computation

operations these are addition, subtraction, multiplication, and division. The

other for performing string manipulations; and the third server contains a

service provider that performs printing operation.

Chapter Five Application and Results

 ٩٥

File retrieving service aids user to retrieve selected files by specifying the

file name. The File Retrieval Service Provider performs file retrieving operation

and the required file will be downloaded to the requested client.

Arithmetic expression computation service helps user to compute

arithmetic expressions. The Expression Computation Service Provider performs

computation operation. It requires four classes: sum, sub, multiply, and divide

classes that perform addition, subtraction, multiplication, and division

respectively.

String manipulation service gives the user the ability to perform string

manipulation. The String Manipulation Service Provider is responsible for

finding string length, string concatenation, and string comparison.

The proposed system has been experimented using LAN of five nodes, with

different operating systems (of windows family) two of type Pentium 4 and the

remaining three of type Pentium 3.

The proposed system is provided with a powerful user interface to simplify

system usage for both servers and clients.

5.3 Server Interface

Server interface is provided to help the service provider to register, renew,

and cancel their services, and waiting for implementing any requested service.

At first when a new server plugged in, a server program frame will appear on

the screen to help the service provider in registering its service, as shown in

figure (5.1).

To register a service, the service provider must select Register, at this time

the three other options will be inactive since service can not be renewed or

cancelled if it is not registered first. As a first stage of registering a service, the

service provider must creates a service object specifying service name, lease

time, security level (presented as drop list to help the server in choosing one of

the listed options High, Medium, or Law), computer name (this field will be

filled automatically), port number (this field will be filled with the default port

number automatically) as shown in figure (5.2).

Chapter Five Application and Results

 ٩٦

Figure (5.1) Server Program

The created service object has to be signed by the server signature before

sending it to the Lookup service, signing process begun when the service

provider click at Sign button.

Figure (5.2) Service Object Creation

At the completion of the registration, the Lookup service sends results of

registration to the server informing him whether the registration process

complete successfully or not as shown in figure (5.3) .

Figure (5.3) Successful Registration

Registration failure may happen when any of the fallowing reasons happened:

 Authentication failure, this situation occurs when the Lookup service

doesn’t verify the server digital signature as shown in figure (5.4).

Figure (5.4) Authentication Failure Exception

 Repeated service, this situation occurs when the service provider tries to

register an existed service as shown in figure (5.5).

Figure (5.5) Repeated Service Exception

 Incomplete service, this situation occurs when the service provider doesn’t

specify all the information needed in the service object as shown in figure (5.6).

Chapter Five Application and Results

 ٩٧

Figure (5.6) Incomplete Service Exception

After the service registration of the service, the server must press Waiting

button to wait for any request from client, also server may need to renew or

cancel services. To renew a service a Renew button must be selected and the

listed fields must be specified as shown in figure (5.7). The listed fields are

service name (name of the service needed to be renewed), lease time (the new

lease time).

Figure (5.7) Renew Operation

Canceling a service could be done by clicking Cancel button, upon this

service name must be provided to the system, and other information will be

specified automatically as depicted in figure (5.8).

Figure (5.8) Cancel Operation

The success and failure situations in Renew and Cancel operations are the

same as mentioned for Registration operation.

5.4 Client Interface

When clients attached the system requesting services, the client interface

will help them greatly in doing so. Initially the client must build his request

before sending it to the Lookup service; this request could be prepared by

specifying the information required in the fields listed in figure (5.9) the service

name here advert to the service requested by the client, computer name and port

number will be specified automatically. After specifying the requested service

and before sending it to the Lookup service the client should specify the input

parameters and decorate its request with SPKI certificate, this can be done using

SPKI certificate construction fields. Using these fields the client will be able to

specify the following information: Issuer name (client source), Subject name

(client), Tag (presented as drop list to help the client in choosing one of the

Chapter Five Application and Results

 ٩٨

listed options High, Medium, and law), Valid from (the starting date for this

certificate), and Valid to (the ultimate date for this certificate).

Figure (5.9) SPKI Certificate Construction

Lastly, the client must end his certificate with Issuer signature when click

on Sign button.

When the client request accessing a service received by the Lookup service

and this service exist then it will be verified before accessing the requested

service, consequently access will either permitted or denied. When permit

access situation occurs, the client will be provided with requested service

address as shown in figure (5.10).

Figure (5.10) Permit Client Access

The deny access state occurs in the fallowing situations:

 The client request is not decorated with SPKI certificate. The Lookup

service detects that the client is not authenticated and denies this request.

In this case, the Lookup service checks the request and the checking

process returns that the request is not decorated with SPKI certificate as

shown in figure (5.11).

Figure (5.11) Request without SPKI Certificate

 The client request is decorated with SPKI certificate, but it was not

authorized to access the requested service. The Lookup service searches

and found the requested service but this service can not be accessed by the

requested client, nevertheless the checking process returns that the

Lookup service is decorated with SPKI certificate, but the authorization

Chapter Five Application and Results

 ٩٩

process returns that the requested client is not authorized to perform the

required operation. See figure (5.12).

Figure (5.12) un Authorized Client

 The client request is decorated with SPKI certificate, it was authorized to

access the requested service, but its validity date expired. The Lookup

service searches and found the requested service but this service can not

be accessed by the requested client, nevertheless the checking process

returns that the Lookup service is decorated with SPKI certificate, and the

authorization process returns that the requested client is authorized to

perform the required operation, but validity checks returns that this

certificate is out of date. See figure (5.13).

Figure (5.13) In Valid Certificate

5.5 Examples

 After developing the user interface, some application examples are

presented to demonstrate the capabilities of the proposed system. The

application shows how SJLS printing service which represents H/W service can

be used by other system participants.

The printer (either freshly connected to SJLS or is powered up once it has

been connected to the system) works with one server and at least one client. The

server and service provider have public keys to uniquely identify them on the

network. They will be called first server (FS) and printer service provider (PSP)

for explanation purpose. A client, called printer client (PrC) is related with first

client source (FCS), is created to communicate with PSP to request the printing

of some information.

The first step after that is to start FS accordingly PSP will be starting too.

PSP offers the network a printer to print any requested information, to do so a

service object describing the printer service must be created, signed (using FS

Chapter Five Application and Results

 ١٠٠

public key), registered on the Lookup service and later used by clients to be

connected to the service as illustrated in figure (5.14).

Figure (5.14) Registering Printer Service

When printing service registration process completes successfully, i.e.

without any of the exceptions shown in figures (5.4), (5.5), and (5.6), FS must

be in waiting state to wait for any request from all other participants in the

system to use the printer attached to FS.

After starting the server, the client (PrC) can start his execution. The first

thing he will do is build his request, specify his input parameters i.e. file name

and file type to be printed, along with his signed certificate (i.e. SPKI certificate

signed by FCS public key). Then PrC will try to connect to the Lookup service

and ask for access to the printer service.

If the printer has correctly registered itself on the Lookup service, it will be

possible for the Lookup service to decide whether PrC can access the printer (in

case no one of the exceptions shown in figures (5.11), (5.12), and (5.13) occur)

or not. Once the Lookup service permit PrC to access the service to print the

requested file, the PSP address will be given to PrC. Using the proxy, PrC

contacts PSP.

The first step in the communication is authentication. The client

authenticates himself to the server. This is done using CHAP mentioned in

chapter four. In this case, PrC authenticates himself it PSP. If authentication

successful then communication can continue. Otherwise, it is halted. If the

authentication successful then the client can use the printer as shown in Figure

(5.15).

Figure (5.15) Start of the Printer Application

 After printing client file and a printing complete message will be presented

to the client as shown in figure (5.16).

Chapter Five Application and Results

 ١٠١

Figure (5.16) Printing Complete

After presenting an example application which demonstrates how SJLS

handle H/W service which is the printing service, another example will be

presented to illustrate the steps taken by SJLS to offer a S/W service provided

by the second server (SS) and his computation operations service provider

(COSP). This section describes this application and how to use it, look into the

different components and how they communicate together in secure manner. As

mentioned in the printer example SS and COSP public keys to uniquely identify

in the network.

The computation operations service provider performs arithmetic

operations. It provides the fallowing operations: addition (addition of two

numbers), subtraction (subtraction of two numbers), multiplication

(multiplication of two numbers), division (division of two numbers), and

modules (modes of two numbers).

First of all SS must be started and COSP must registered his service by

creating a service object describing his service (i.e. service name, lease time,

security level) and signing it using SS public key.

When registration completes successfully the message shown in figure

(5.17) will appear to COSP.

Figure (5.17) Registering Computation Operations Service

As COSP registered his service any computation operations client (COC) can

get the result of his request. This can be done after COC build his request,

specify his input parameters i.e. first input parameters and second input

parameters, using the frame shown in figure (5.18), along with his signed

certificate (i.e. SPKI certificate signed by COC Source public key). Then COC

will try to connect to the Lookup service and ask for access to the computation

operations application.

Chapter Five Application and Results

 ١٠٢

Once the Lookup service receive COC request and verify it, search will be

done for the requested service and if it was registered successfully then COC

could be permitted to access COSP by sending its address to COC.

Figure (5.18) Specifying Input Parameters

The usual step to start communication between client and server is

authentication. Using CHAP checking authenticity will be done between COSP

and COC; if this check succeeds then communication can continue. Otherwise,

it is halted. If authentication successful then the client will get the result of his

request as shown in Figure (5.19).

Figure (5.19) Getting Output Result

More than one sever can run on SJLS serving any client and implement

their requests, this example illustrates how SJLS organize running two servers

simultaneously. The first server (FS) contains printer service provider (PSP)

and the second server (SS) contains file retrieving service provider (FRSP).

Each of these servers started separately, and going on all the subsequent

steps separately (i.e. create their service objects, signing them, and sending them

to the Lookup service) if all these steps completes successfully then registration

complete message shown on the preceding examples will appear to PSP and

FRSP.

After registration done PSP and FRSP will stay waiting to any client

request. By their sites clients who want to use any service will prepare their

requests specifying the requested service as shown in the preceding examples

and sending them to the Lookup service.

When PSP or FRSP receive any client request the same steps taken in the

preceding examples will be done (i.e. authentication done if succeed service will

implemented) and output result will be send to the clients.

Chapter Five Application and Results

 ١٠٣

Chapter Four SJLS Design and Implementation

 ٦٤

CHAPTER FOUR

SJLS Design and Implementation

4.1 Introduction

Recently there has been an increase in the development of technologies

(either S/W or H/W) for services discovery. These services are available in

every network ready to be used by any host. Finding the service that meets a

client’s criteria and connecting to a specific service provider requires explicit

knowledge of the service provider, host name or address. To solve this problem,

a dynamic self-discovery mechanism needed where by clients can locate

services without prior knowledge of where the requested service is located, or

which server can meet the client’s specific criteria. The Jini Networking

Technology proposes a specification for providing this capability, enables access

to service in a self-configuring environment [Jav00].

As mentioned before, this research concerned with developing Secure Jini-

Like System (coined as SJLS) that aims to build a secure, plug and play (service

discovery) system. The developed system consists of three main parts: server,

Lookup service, and client at which each of these parts need to be protected from

the other parts. To do so Security model is developed which consists of two

main steps:

 First , protect the Lookup service from being accessed by: an untrusted

service providers using Digital Signature Algorithm (DSA) (before

registering the service object in the lookup table), and an unauthorized

clients using SPKI certificate (before providing the client with the

requested service object)

 Second, when Lookup service verifies client authenticity and provided

him with the service object, the service provider and the client will

check the authenticity of each other before opening connection.

Chapter Four SJLS Design and Implementation

 ٦٥

The proposed SJLS is implemented using Java Language with multithread

technique to support networking and multitasking, and Java Database

Connectivity-Open Database Connectivity (JDBC-ODBC) for managing the

lookup table database.

This chapter describes Java Database Connectivity Application Programming

Interface (JDBC API) before expressing the design concepts and

implementation steps of the proposed SJLS system.

4.2 JDBC API [Sip98]

The JDBC API is a set of specifications that defines how a program

written in Java can communicate and interact with a database. It defines

how the communication is to be carried out and how the application and

database interact with each other. More specifically, the JDBC API defines

how an application makes a connection, communicates with a database,

executes SQL statements, and retrieves query results. JDBC provides a

vehicle for the exchange of SQL between Java applications and database.

Figure (4.1) illustrates the role of the JDBC API.

Figure (4.1) Data Flow model

Application

JDBC

Network

Network

Database Server

Database

SQL result SQL result SQL Query SQL Query

Network

Client

Chapter Four SJLS Design and Implementation

 ٦٦

The JDBC API actually defines two things: The first one, the JDBC API

specifies how information is to be presented to an application; it tells the

application what it can expect from the database. The second one, the JDBC API

defines what the database can expect from that application. Essentially, it

defines the common ground between the database and the application, i.e. it

defines what commands can be executed, how to execute them, and how data

will be formatted. The JDBC API ensures that applications can interact with all

databases in a standard and uniform way. At the heart of the system this is the

JDBC driver. Figure (4.2) shows how the JDBC driver works.

Figure (4.2) JDBC Driver

In the proposed system, JDBC-ODBC Bridge is used, which maps

JDBC call to ODBC driver calls on the client side as shown in figure (4.3).

Application

JDBC Driver

Database
Libraries

Network

Database

SQL resultSQL resultSQL Query SQL Query

Network

Network

Database ServerClient

Chapter Four SJLS Design and Implementation

 ٦٧

Figure (4.3) JDBC-ODBC Bridge Driver Implementation

4.2.1 The ODBC Standard [Mic8]

ODBC provides means of communicating with a Data Base

Management System (DBMS) using a standard Application Programming

Interface and SQL syntax. ODBC offers this flexibility by providing the

following:

 The ability to use SQL syntax that is based on the X/Open and SQL

Access Group (SAG) SQL specification

 A standard set of error codes that can be returned from an ODBC

function call.

 A standard way of configuring and maintaining the definition of

databases.

 A standard way of connecting to the DBMS

 A standard way of interacting with the DBMS in terms of saving and

retrieving data.

Application

JDBC Driver

ODBC Driver

Network

Database

SQL resultSQL resultSQL Query SQL Query

Network

Network

Database ServerClient

Chapter Four SJLS Design and Implementation

 ٦٨

 A standard way of interfacing with the DBMS in terms of configuring the

database.

 A standard way of disconnecting from the DBMS.

4.2.2 JDBC versus ODBC and other APIs [Grm97]

Microsoft's ODBC (Open Database Connectivity) API is probably the most

widely used programming interface for accessing relational databases. Since it

offers the ability to connect to almost all databases on almost all platforms,

although ODBC can be used from Java, its better to use ODBC with JDBC in

the form of JDBC-ODBC bridge. JDBC is used for the following reasons:

1. ODBC is not appropriate for direct use from Java because it uses a C

interface. Calls from Java to native C code have a number of drawbacks

in the security, implementation, robustness, and automatic probability of

applications.

2. A literal translation of the ODBC C API into a Java API would not be

desirable. For example, Java has no pointers, and ODBC makes copious

use of them. JDBC can be thought as ODBC translated into an object-

oriented interface that is natural for Java programmers.

3. ODBC is hard to learn. It mixes simple and advanced features together,

and it has complex options even for simple queries. JDBC, on the other

hand, was designed to keep simple things while allowing more advanced

capabilities where required.

4. A Java API like JDBC is needed in order to enable a "pure Java"

solution. When ODBC is used, the ODBC driver manager and drivers

must be manually installed on every client machine. When the JDBC

driver is written completely in Java, however, JDBC code is

automatically installable, portable, and secure on all Java platforms from

network computers to mainframes.

In summary, the JDBC API is a natural Java interface to basic SQL

abstraction and concepts. It builds on ODBC rather than starting from scratch.

JDBC retains the basic design features of ODBC; in fact, both interfaces are

Chapter Four SJLS Design and Implementation

 ٦٩

based on X/Open SQL CLI (Call Level Interface). The big difference is that

JDBC builds on and reinforces the style and virtues of Java, and, of course it is

easy to use.

4.3 SJLS Architecture

SJLS designed and implemented to facilitate dynamic network plug and

play system (i.e. Hardware/Software services can come and go easily and

precisely without the need for additional system configuration). This work is

implemented using a heterogeneous local area network (i.e. network nodes have

different types of operating systems Windows XP, and Millennium) at which

SLJS design depends on both the concept of a client-server system and peer-to-

peer system. It consists of multi- servers and multi-clients, each server can

contains one or more services providers, each of which provides at least one

service. As shown in figure (4.4), SJLS mainly consists of five layers, the last

three layers (Java, Operating system, and the network layer) represents the

proposed system environment:

 Network Layer: in this system, Local area network (with TCP/IP

protocol) with spontaneous networking of devices is used.

 Operating System Layer: SJLS could work on different operating

systems (Windows family); the designed system is tested on environment

with XP, and millennium operating systems.

 Java Layer: Java language has a major importance in a distributed

system since it provides efficient support for: platform independency

(since the proposed system is designed to work on heterogeneous

systems), security (policy enforcement, and cryptography architecture),

and interacting and communicating with database through JDBC API.

 SJLS Layer: It is a middleware (layer(s) of software between client and

server processes that deliver the extra functionality [Err97]) which

represents the core of this work. SJLS provides the ability of adding

services and devices with slight modification on the existing system. Its

main components are: Lookup service, server, and client. To make SJLS

Chapter Four SJLS Design and Implementation

 ٧٠

work properly and safely, the system provides different levels of security using

Java support. To provide authentication Digital Signatures are used, and SPKI

for authorization.

 Service/Client Layer: represents the service provider (server) which could

provide hardware or software service, and service consumer (client).

Services Client

SJLS (server, Lookup service, client)

Java

Operating System(XP, Millennium)

Network(TCP/IP)

Figure (4.4) SLJS architecture

 4.4 SJLS Components

SJLS consists of two main parts as shown in figure (4.5):

Chapter Four SJLS Design and Implementation

 ٧١

Figure (4.5) Proposed System Components

 The first part concerned with designing a proposed Jini-like system, and

implementing the proposed system in such a way that the clients and servers

can be connected to the distributed system (LAN) offering Hardware and

Software services.

 The second part concerned with designing a security model for the proposed

system, which is the main objective of the research. The designed security

level is implemented from three point of views:

♦ Server security (Server Authentication): Lookup service should register only

trusted services which will be done by verifying server authenticity. If the

Lookup service does not trust that service, the registration operation

terminates.

♦ Client security (Client Authorization): the Lookup service verifies that the

client request is originated from trusted source by the SPKI certificate of the

client. If not, ignore the request.

♦ Client- server security: ensures secure communication between client and

server (i.e. both of them should authenticate each other).

 4.5 SJLS Design

The proposed SJLS Design consists of three main modules:

Secure Jini-like
system (SJLS)

Jini-like
system (JLS)

 (JLS)

Server Lookup
Service

Client Client
securit

y

Security
model

Server
securit

y

Client-Server
security

Chapter Four SJLS Design and Implementation

 ٧٢

Lookup
service

Client Server

2. A client requests a
service. A server
address is send to
the client and used
to talk to the
server.

1. The service provider
registers a service
object and its
attribute with the
lookup service .

3. The client can then
directly interact with
the service using the
object that was
copied to it.

 Server module

 Lookup service module

 Client module

♦ The server module comprise designing a service provider that register his

services in the Lookup service and implement client requests.

♦ The Lookup service module comprise designing the Lookup service which

is the central part of the proposed system, it is used by every participants in

the network, servers used it to advertise their services while clients use it to

find out which services exist that can satisfy their requests. It is repository

that contains the list of all services exist in the network with their related

information.

♦ The client module is the part that receives requests for services to be

implemented by the server though the Lookup service.

Figure (4.6) shows the general architecture of the proposed SJLS.

Figure (4.6) Interaction among Lookup service, Server and Client.

Chapter Four SJLS Design and Implementation

 ٧٣

4.5.1 Server Design

The service is created by the service provider which runs on a server. A

server may contain one or more service providers. The Service provider

performs the following operations:

 Creates the object that describes the service.

 Registers the service object with Lookup services. After registration, the

service provider could perform one of the following actions:

♦ Renew: means that the service object will be stayed in the Lookup

service for additional time specified in the lease time field.

♦ Cancel: means that the service object needs to be canceled from

the Lookup service.

 Stays alive in a server role, performing various client requests for the

service

The service provider specifies: action (Register, Renew, Cancel),

Servicename (specifies the name of the service), Compname (specifies the

name of the service provider's computer identification), Port (specify the port

number of the given service), leasetime (give the leases duration time) and

security level (determine the server security level which will be either level1,

level2 or level3 at which level1 is the highest security level and so on).

The service provider object is ServiceObject

ServiceObject(action, Servicename, compname, prot ,leasetime,securitylevel).

Service provider should perform the following steps to register the

constructed ServiceObject in the Lookup table:

1. Service provider sends multicast message, which contains the Service

provider address (i.e. its computer name and port number), asking for the

address of a node that contains Lookup service (as illustrated in appendix A,

Java code 1).

Chapter Four SJLS Design and Implementation

 ٧٤

2. The Service provider closes Datagram Socket.

3. The service provider opens a server socket to receive replay from the node

that contains the Lookup service. The Service provider then extracts the

Lookup service computer name and Lookup service port number from

received address using StringTokenizer. Java Code 2 in appendix A

illustrates the specifying (listening, receiving, and tokenizing) Lookup

service address operations.

4. The service provider sends the service object (ServiceObject) parameters as

a string message (shown below) to the Lookup service.

String msg="action/servicename/computername/portnumber/leasetime

/security level";

5. The service provider opens a ServerSocket() and stays alive on that socket

listening for all client requests. When a client request is received, a direct

connection will be established between the client and the service provider to

exchange any parameter needed during the implementation of the requested

service.

4.5.2 Lookup Service Design

Normally the first step in implementing SJLS is to create a database called

lookup table at which each tuple (record) corresponds to a service (i.e.

ServiceObject). Then the Lookup service will register all services received

from service providers in the lookup table (i.e. builds the lookup table). When

client asks for service, the Lookup service sends the service provider address (of

the requested service) to the client. Finally, a direct connection can be opened

between the server and client.

The main components of the Lookup service are Service Registrar and

Client Requester, that are responsible for managing servers and clients

requests simultaneously through using multithreading technique.

Service Registrar responds to the service provider requests for

registering, renewing, and/or canceling a service. It is also responsible for

Chapter Four SJLS Design and Implementation

 ٧٥

checking service lease after service registration operation. While Client

Requester is responsible of manipulating all client requests by searching

the lookup table for the requested service, when found, it sends the service

provider address to the client. Both Service Registrar and Client Requester

could respond to more than one request simultaneously since each service

provider and client has its own thread. These multi-threads are scheduled

under the control of Java compiler. Figure (4.7) shows the main

components of the Lookup service.

Figure (4.7) SJLS Architecture

4.5.2.1 Service Registrar

The Service Registrar is the part of the Lookup service that interacts with the

servers. It manipulates service provider requests (registering, renewing, and

canceling service objects). It is also responsible for lease checking (removes the

service when it expired its leasing time unless it is renewed by its service

provider). The main steps performed by the service registrar are:

1. Server Registrar opens a MulticastSocket to listen for all servers requests for

Lookup service address, (as illustrated in appendix A, Java code 3).

Client1

Client 2

Client 3

Client 4

Client M

Server 1

Server 2

Server 3

Server 4

Server N

Client
Requester

Service
Registrar

Lookup
table
 (DB)

Network

Lookup Service

Chapter Four SJLS Design and Implementation

 ٧٦

2. Wait for any request from service provider, if one received, then open

connection according to the server name and port number (service provider)

specified in the request, sending a replay message (which contains Lookup

service name and port number) as uni-cast message (as illustrated in

appendix A, Java code 4).

3. When service object (ServiceObject) received from the server, the Service

Registrar will extract the information that describes the service from the

received message using String Tokenizer illustrated in appendix A, Java

code 5.

4. Open connection with the lookup table (Database containing the table of the

service objects). See appendix A, Java code 6

5. By using SQL statements, the Service Registrar will implement the required

action specified in the service object. To control the register and renew

actions, a field (called status) will be added to each tuple. The status field

describes the status of the service which will be either "delete" (Delete

means that the service provider does not want this service to stay alive after it

lease finish), and " renew" (renew means that the service provider wants the

service to be renewed for the time specified in the lease field), Java code 7,

appendix A illustrates this operation.

6. After implementing the "register" action, a call to check lease operation

will be executed to start a new thread.

4.5.2.2 Check Lease

A service provider establishes a lease for its service when registering it on a

Lookup service. The lease is an amount of time that a service can guarantees its

presence on the network and its ability to respond to client requests. Before this

time period expired, the service provider should send a lease renewal request for

the Lookup service, otherwise the service will be deleted from the lookup table,

(i.e. will not respond to any client requests any more).

If the service provider decides to end its service and do not want to respond

to any request from client, then a request to cancel its service could be send

Chapter Four SJLS Design and Implementation

 ٧٧

before its lease time expired, or simply wait until its lease time expired and

don’t send any lease renewed. The following steps describe the check lease.

1. When a service registered on Lookup service, a thread will be created and

send to sleep for the time specified in the lease time of the service object.

2. When the thread wakeup, a selection operation is executed to specify the

tuple that satisfies the selection conditions in order to retrieve the status of

the service.

3. Check the status

• If the status is “renew” then change the status to “delete”, and

thread will then sleep for a new lease time duration.

• Else if the status is “delete” then just delete the tuple.

4.5.2.3 Client Requester

The central goal of the proposed SJLS is to apply client requests easily and

precisely. The Client Requester is responsible for implementing all client

requests for services. It receives server address from the Lookup service and

tries to make direct connection with it to satisfy the client's request. The Client

requester behavior is illustrated by the following steps:

1. Client Requester opens a MulticastSocket to listen for all servers requests

for the Lookup service address. If one received, then open a Socket

according to the client name and port number specified in the request, and

sends a message contains Lookup service name and port number as uni-

cast message. Java code 8 appendix A illustrates this operation.

2. When client's request is received, the client requester will tokenize the

received message to extract the requested service name, the client name,

and the client port number (see appendix A, Java code 5).

3. Open connection with the lookup table and select the tuple that matches

the search conditions given in the client request. Appendix A, Java code 9

illustrates the selection operation.

Chapter Four SJLS Design and Implementation

 ٧٨

4. Get the service provider address from the selected tuple. As illustrated in

appendix A Java code 10.

5. Send the service provider address to the client, to allow the client to make a

direct connection with the service provider. The sending operation is shown

in appendix A, Java code 11.

4.5.3 Client Design

The client design is the last piece of the proposed SJLS design. It works

after the Lookup service initiate the system (since it is the part that must work at

first), and the server registers its services in the Lookup service. The client

simply needs to obtain reference to the service provider of the requested service,

i.e. to obtain its address so the client can make a direct connection with the

service provider to implement its requested service. The following steps

describe the client operations:

1. The client sends multicast message asking for the Lookup service

address to the listened ports. The sent message contains the Client

address (i.e. Client computer name and Client port number). The steps

needed to open connection and send message are illustrated in appendix

A, Java code 1.

2. The Client close Datagram Socket

3. The client opens a server socket to receive answer from Lookup service

that contains Lookup service address. The client then extracts the

computer name and port number. This is illustrated in appendix A, Java

code 2.

4. The Client sends a request to the Lookup service asking for a service

String msg=”requestedservice name/client name/clientportno/”;

5. The client opens a server socket listening for any replay from Lookup

service

ServerSocket ser=New ServerSocket (clientportno);

Chapter Four SJLS Design and Implementation

 ٧٩

Authentication

Server

Signing

6. If any replay occurs, the client will take service provider address and

start a direct connection with it to implement its requested service.

4.6 The Proposed Security Model

The security model of the proposed SJLS adds a security features to each of

the server, client, and Lookup service modules. Accordingly, three security

modules are constructed and used by the SJLS modules. These are

 Server security module

 Clint security module

 Client-Server security module

4.6.1 Server Security Module

Server security module is responsible for providing secure interaction

between the server and the Lookup service to ensure that only trusted service

object will be registered at the lookup table. To achieve this, servers must be

authenticated before they contact the Lookup service (i.e. before they register

their service objects in the Lookup service). To achieve that the proposed SJLS

force the servers to sign their requests before sending them to the Lookup

service so that the Lookup service can authenticate them (using DSA) before

sending the server address information to the client as shown in figure (4.8).

Lookup service

Figure (4.8) Server Security Module

1. The service provider
ends its signed service
object

2. The lookup
service checks
server authenticity
before registering
its service object.

Chapter Four SJLS Design and Implementation

 ٨٠

Client

Certification

Lookup service

2. The lookup service
verify client request
before accepting its
request.

Verification

1. The client builds a
certificate for its
request

Since SJLS is a plug-and-play system, servers always change therefore it is

difficult to keep their authentication information. The SJLS identifies the

number of servers (i.e. companies, organization, universities, etc.) with their

authentication information and stores them on the Lookup service. These servers

are considered as trusted sources. Any service object can not be accepted and

registered unless the service provider himself is related to one of these servers

and its request is signed by any one of them. The operation of signing service

object is illustrated in appendix A, Java code 12.

The verification of the service object will be done at the Lookup service

side. The verification operation as shown in appendix A Java code 13, is

implemented using the server public key to perform the process of digital

signature verification. If the server is not verified, then the service object will

not be registered in the Lookup service.

4.6.2 Client Security Module

In the constructed system, different Clients could request services (such as

files to be accessed, loaded, or modified etc) to be implemented. In this case, the

problem is that malicious client can corrupt or steal information from the server

contacts with. This could be avoided using Client security module shown in

figure (4.9) which is responsible for ensuring that only trusted client will be

contact to the desired servers.

Figure (4.9) Client Security Module

Chapter Four SJLS Design and Implementation

 ٨١

 To do so, two phases are needed to construct this module:

 Certification (at client side): is responsible for constructing SPKI

certificates for each client request, signing them, and adding them to its

request before sending it to the Lookup service.

 Verification (at Lookup service side): is responsible for verifying the

received service object (i.e. using the attached signature) before

registering it in the lookup table.

4.6.2.1 Certification

The certification operation is implemented by building SPKI certificate. As

mentioned in chapter three, SPKI is an authorization certificates that bind

capabilities to keys. In the proposed security model, each client request has its

own SPKI certificate, which will be included in its request object. The Lookup

service uses the SPKI certificate to authenticate the specified service.

Accordingly an implementation of the SPKI and its related classes are needed.

The implementation should conform to the SPKI specifications, presented in

chapter three.

The components of the built SPKI certificate are Issuer, Subject, Tag, and

Validity as illustrated in figure (4.10).

Figure (4.10) SPKI class component

• Issuer: An Issuer object is developed to determine the signer of a certificate

and the source (a number of client sources such as companies,

organization, universities, etc, will be identified and each client will

relate to one of them) of empowerment that the certificate is

Issuer Subject

Tag

Validity

SPKI

Chapter Four SJLS Design and Implementation

 ٨٢

communicating to the subject. First of all, a PublicKey will be

generated using keytool and associated to field put in the Issuer field.

Java code 14 in appendix A illustrates the generation of Issuer

PublicKey.

• Subject: A Subject object developed to define the party to whom the

certificate is issued for. The same steps illustrated in appendix A, Java

code 14 are used to generate a PublicKey for the Subject and stored it

in its field.

• Tag: The SPKI certificate definition specifies the Tag field as High, Medium,

and Low. The Tag represents the security level that the client

permitted to deal with it (i.e. the client can only ask for services owned

by servers on the same security level, the client level will be specified

in the Tag field). This will be specified by the issuer (client source).

• Validity: A certificate has a validity conditions. The Validity object specifies

the time period during which the certificate is valid. This means that

Validity dates must be between validfrom and validto (i.e. form

date1 represented as day1, month1, year1 to date3 represented as

day3, month3, year3) and taking in consideration that these dates

must agree with the current date (represented as day2, month2,

year2).

The certificate without a signature is useless and cannot be used to gain

access. Since without the signature, anyone could forge such a certificate. Java

code 15 in appendix A is used to specify the signing certificate algorithm.

4.6.2.2 Verification

When the client sends a request asking the Lookup service for a desired

service, SPKI certificate is built for this request. The following steps are used to

build the SPKI certificate:

1. The SPKI certificate fields (shown in figure 4.11) must be filled up as

follows :

Chapter Four SJLS Design and Implementation

 ٨٣

 Generating a public key for the client source (Issuer) and storing

it in the Issuer field.

 Generating a public key for the client (Subject) and storing it in

the Subject field.

 Determine the permissions given by the client source to the client

and storing them in the Tag field.

 Determine the Validity dates for the specified certificate.

2. Signing the certificate by the Issuer.

3. Send the certificate associated with its request object to the Lookup

service.

Figure (4.11) Certificate Fields

When the service object received by the Lookup service, it must pass

through three levels of verification, these are:

• Authentication level: to verify the authenticity of the client request (see

appendix A, Java code 16), which is created by a client in a specific client

source, the SPKI certificate (which is sended with the request) is used to

identify the client source (Issuer) using the client source signature (since it

is signed by a client source). By this way, if the SPKI certificate cannot be

verified, then the client request can not be authenticated which means it will

be refused.

Authorization

Key1 Key2

Rights

Dates

Issuer Subject

Validity
date

Chapter Four SJLS Design and Implementation

 ٨٤

• Authorization level: The Tag field of the SPKI certificate determines the

permissions (i.e. client trust level) of the client which will be checked against

the server security level to decide whether the client is authorized to perform

the requested action or not (as shown in appendix A, Java code 17).

An important point is that all this should be done during certificate validity

period (specified in the Validity field), otherwise the certificate will be

considered invalid and all the information in it will be useless. Validity check is

illustrated in appendix A Java code 17.

An important point is that all this done during certificate validity period (

specified in the Validity field), otherwise the certificate will be considered

invalid and all the information in it will be useless.

4.6.3 Client-Server Security Module

The last part of SJLS security model is to ensure secure communication

between the server and the client (shown in figure 4.12), which is needed when

the client open connection with the target server and this is done using

Challenge Handshake Authentication Protocol (CHAP). CHAP is an

authentication protocol that used to check user identity and works as follows:

 The system sends to the user a challenge packet containing challenge

value usually a few bytes.

 The user applies a predefined function that takes the challenge value and

the user own password and creates a result. The user sends the result in

the response packet to the system.

 The system does the same. It applies the same function to the password of

the user (known to the system) and the challenge value to create a result.

If the created result is the same as the result sent in the response packet,

access is granted: otherwise, it is denied.

Applying CHAP to the client-server security module of the proposed system

is done using the following steps:

1. The server sends a challenge value to the requested client;

Chapter Four SJLS Design and Implementation

 ٨٥

Client

Server

Network

Challenge value

Result and name

Accept or reject

2. When the client receives the value, it applies it along with its password

to a predefined function and gets a result. This result will be sent to the

server.

3. When the server receives the result it applies it to the same function. If

a matching occurs between the result created and the result sent, the

communication will begin between the client and the server, otherwise

no communication is allowed.

Figure (4.12) Client-Server Security

Chapter One Introduction

 ١

CHAPTER ONE

Introduction

1.1 Problem Definition

With Internet spreading, more and more computers are interconnected

which leads to a demand to benefit of the emerging new possibilities. The main

problem is not to be seen as a hardware problem, but as a software problem

since the growing complexity makes it difficult to develop correct programs that

perform the intended tasks. The problems are mainly caused by the following

two characteristics of the systems to be built [Mic99a]:

 The systems are distributed: A system consists of multiple active

participants that are interacting together to perform a certain task. This

interaction is achieved by communication between them.

 The systems are dynamic: The architecture, i.e. the presence of the

components, their arrangement, their implementations and their

interconnections, additionally, the roles they take (for example server,

service, and client) are changing during the runtime of the system. Due to

the need for a high availability of systems, it is often no longer possible to

stop or interrupt them for reconfiguration.

To tackle these problems, suitable programming paradigms, languages and

tools are needed. Middleware technologies such as Common Object Request

Broker Architecture (CORBA) and Distributed Component Object Model

(DCOM) are first approaches in this direction.

 Different technologies are available or under development as a plug and

play systems including: Universal Plug and Play (UPnP) [Jas00] developed in

1995 by Microsoft which is a networking architecture that easily add devices to

a network without device drivers and function flawlessly. It is built on standard

protocols and is independent of operating system, medium, and programming

languages. Salutation [Sal99] introduced in 1996, is another coordination

framework that provides service discovery solution. Salutation aims to be

Chapter One Introduction

 ٢

platform and operating system independent. However, it goes further and also

aims to be network independent. In Salutation, practically everything is

mediated by a Salutation Manager (SLM). In 1998, Bluetooth wireless

technology provides a way for mobile devices to discover and communicate

with other nearby devices called Bluetooth [Eug01]. In this system, as new

devices are brought into range and established devices are taken out of range,

each device is kept aware of the other devices in its neighborhood. Service

Location Protocol (SLP) [Jav00] emerge in 1998, it provides a scalable

framework for the discovery and selection of network services and eliminates

the need for a user to know the name of a network host supporting a service.

Finally, Jini [Rab02] introduced in 1999, its full name is cut it extremely short

from Java Intelligent Network Infrastructure. Jini is spontaneous simplified

networking based on Java. From a consumer's perspective, attaching network

able devices is as easy as plugging in the phone. From the Service Provider's

point of view, Jini will simplify the management of services and the delivery of

services to the end user. This may in turn, generate a whole new set of

networked services, in that the access to networked services for the end user

becomes very simple.

These technologies claim to solve the mentioned problems concerning

distributed system with dynamic configuration. They offer interfaces and

mechanisms for components to announce their own abilities, looking for

services of other components and use these in a dynamic network of interacting

components.

Most distributed plug and play systems have two important characteristics.

They are dynamic due to the fact that system participants "clients and/or

servers" come and go rapidly. They are also unpredictable-administrators might

not know in advance the plugging time, behavior, or requirements of the

participant that plugged into the system. Further, because the different

components of resources and mobile programs may require different levels of

protection, security models must support fine-grained access control [Has00].

Chapter One Introduction

 ٣

1.2 Related Works

Various efforts in developing Jini network technology (concerning security

field and development of Jini-like systems) are introduced during the last few

years. Some of these efforts are:

1. Fredrik Anderson and Magnus Karlsson on their master thesis in 2000

[Fre00] show how to use the fingerprint to authenticate the server

provider and the client. Since two persons implement the security-

solution, their security-model was divided into two parts:

 The service (the server and the proxy) implementation

 The client implementation and the key and fingerprint

Management

In the first part the server has to sign the service, or more exactly

its proxy, it has to be bundled in a specific way. This is done in what

Java calls a .jar-file. A .jar-file is recognized by its .jar extension of the

filename. A .jar-file is one or more. Class-files compressed into one

single file. A .class-file is the result of a compiled source-code, a .java-

file, written in Java. The .jar-file is used in Java for faster transfer of one

or more class-files in network environments. When the proxy’s source

code has been compressed and bundled into a jar-file, it can be digitally

signed with use of one of Java’s standard program, called jarsigner.

When jarsigner signs the .jar-file it also includes the signer’s

Certificate. The Certificate is stored in the .jar-file as a certificate.dsa-

file. By doing this, the .jar-file receiver can extract the certificate from

 the .jar-file. This certificate is self-signed by the server provider using

fingerprint which is used by server and client to authenticate each other.

In the second part the client and the server use this fingerprint. To do that

they need to have the correct fingerprint. This method requires that the

fingerprint have been exchanged between the service user (client) and the

service provider (server) before the service can be used. And the client uses this

fingerprint to make authentication.

Chapter One Introduction

 ٤

2. Hasselmeyer gives another approach to Jini security in 2000 [Per00]. In his

approach, he adds two additional units to Jini architecture these are:

 Certificate Authority (CA).

 Capability Manager (CM).

Certificates provide for authentication of all participants, certificates are used for

access control in the Lookup service. The capability manager administers the

rights for each user. The main concern of his work is to provide security for the

Lookup service (LUS), authenticate all its participants, and determine the access

control for it. This will be done as follows:

When registering a service it calls the LUS proxy's register method with

its certificate (the service used its own certificate for proving its

identity) and its signed capability as additional parameter. The proxy is

rejected if the issuer is not a known CA. The capability is only accepted

if the contained name equals the distinguished name presented during

the authentication phase. The LUS verifies the signature of the

capability using the CM`s public key and checks if the permission is

implied. Upon success, the Lookup service adds the service description

to the LUS, otherwise it rejects the operation.

3. Pasi Eronen showed in his master thesis in 2001 [Pas01] how to incorporate

Simple Public Key Infrastructure (SPKI) into a Jini security solution. The

suggested system provides a security for a client accessing a service and

leaves as a future work providing a security for a Jini service and a Lookup

service. It works as follows:

 When a proxy is downloaded to a client, the client security manager

(which a new unit added to the client in the suggested system) asks the

proxy which service it represents, i.e. for the public key of the service,

and then checks that the proxy was actually signed by this key. After the

verification, a new key pair is generated for the proxy.

The client security manager provides two services for the proxy:

Chapter One Introduction

 ٥

 First: the proxy can ask the security system to sign any piece of data

using the proxy's key (the private key is not given to the 0proxy).

 Second: the proxy can request some permission to be delegated from

the user to the proxy's public key. This delegation is expressed using

SPKI certificate.

4. Fredrik Samson give in his master thesis in 2004 [Fre04] a system

architecture that gives an improvement to the security of Jini network

technology. The first step in the system is normally the creation of the security

policy. The security policy is written using eXtensible Markup Language

(XML).

 Once the policy has been created, the system is started, the security policy is

loaded in memory and then clients can connect to the server. Before they can

use the server, authentication is performed between the client and server.

Authentication is one of the basic security properties that a distributed system

must implement to be secure. In this system, it is performed by the client on

the server and by the server on the client. Only after authentication has

occurred the desired communication begins. The protocol used for

authentication is the Secure Sockets Layer (SSL). The latest version of Java

includes a tool called the Java Authentication and Authorization Service

(JAAS), which offers a method of performing authentication in Java

applications. JAAS offers built-in login modules and offers the possibility of

creating our own login modules. The login module is a description of the

interface of the chosen authentication protocol. In this system a login module

was created that implements the authentication protocol that we have chosen.

This is normally followed by the client requesting a particular action from the

server. If this action is restricted, the server checks the security policy to make

sure that the client is permitted to perform this action. If permission is granted

then the server executes the operation and returns the result. Otherwise, the

action is not executed and the server returns an exception.

Chapter One Introduction

 ٦

5. Steffen Deter and Karsten Sohr introduce on 2000 the Pini technology

[Ste00]. Pini is a Jini-like technology that is simple, small and uses RPC-

technology (Remote Procedure Call) instead of RMI-technology (Remote

Method Invocation). Due to the fact that Jini is based upon RMI and is therefore

on top of RMI, it is impossible to small devices with minimal resources to join

such infrastructures since the use of RMI by Jini wastes resources which are not

available in the aforementioned limited devices. A potential approach to Jini-

enable limited devices is to replace the RMI-technology with the RPC-

technology. By means of this technology it is possible to provide an efficient

mode of communication for Jini components, i.e. services and their proxies.

However it is important to bear in mind, that this technology avoids the major

part of resource waste. A revision of the implementation strategy for this reason

and to adapt the Jini technology to the Kilo Virtual Machine with the Connected

Limited Device Configuration (KVM/CLDC) is necessary.

 The testing ground of this implementation will be the Plant Automation

Based on Distributed Systems project (PABADIS), which is a field of plant

automation that provides interesting case studies to demonstrate the effect of

joining network infrastructures by means of spontaneous networking and agent

technology [Pab00]. On this testing ground often only limited devices and/or

platforms are available. The term “devices” refers to hardware, which often

provides only limited resources in the sense of memory, storage, computational

performance, etc. Platform means the available Java platform, e.g., the available

JDK version is often less than the JDK 1.2, which is required by Jini [Arn99].

1.3 Aim of Research

 The aim of this research is to provide Secure Jini-like System (SJLS)

which is a distributed system (that works on LAN) and has a dynamic nature

that enables services to be added or withdrawn from federated groups of services

(devices and software components) according to demand or changing

requirements by the group using the system. A security model was added to

SJLS to ensure secure interaction among system components.

Chapter One Introduction

 ٧

1.4 Thesis Layout

The thesis organized as six chapters. The chapters are as follows:

Chapter two: Illustrate the definition, architectures, infrastructure,

programming model, services, protocols, and applications

of Jini networking technology.

Chapter three: concerned with exploring the main ideas of distributed

systems and their security techniques, security in Jini,

Simple Public Key (SPKI) Infrastructure and Java

security.

Chapter four: Presents the design and implementation steps towards

SJLS.

Chapter five: Presents SJLS tests and results. Different applications are

provided to test SJLS.

Chapter six: Clarify the conclusions and suggestions for future work.

Chapter Six Conclusions and Future Work

 ١٠٤

CHAPTER SIX

Conclusions and Future Work

6.1 Discussion and Conclusions

 As a result of the system implementation and testing operations one can

notice the following:

1. SJLS is a distributed system that needs to provide a secure inter-process

communication. Therefore, it is implemented with Java programming

language since Java programming language has a large library (API) that

provide network communication tools, multithreading, a simple way to

communicate between processes (interprocess communication through

message passing), in addition to built in security features.

2. SJLS provides a way for instant recognition of new devices in a network

(by providing the ability to register each new service and make it

available to any client for a time period specified by the service provider)

that would seem to make it easier to have an ad-hoc network

environments.

3. SJLS mainly consists of components (Lookup service, servers, and

clients), each of which may perform multiple tasks simultaneously. To

provide multitasking property, multithreaded technique is used at each

component of the SJLS to ensure high response time in serving requests.

4. The most important part of SJLS is lookup table which is implemented as

a database that contains all services plugged to the system. This lookup

table is accessed concurrently by different parties in the system. The

concurrency control of the system is implemented by using Java-Threads,

which have been synchronized explicitly so that no more than one thread

can modify the database at a time. Also this synchronization has been

used to avoid lookup table inconsistency.

5. Since SJLS is implemented with Java language, it inherits all the security

features of Java programming language. But it was found that the Java

Chapter Six Conclusions and Future Work

 ١٠٥

security features are not enough for the security level needed for the

proposed system. Therefore, additional security model is build.

6. To prove client and server authenticity for the Lookup service, Digital

Signature is used. To prove client authority SPKI certificates is used. And

to ensure secure interaction between server and client Challenge-

Handshake Authentication Protocol (CHAP) is used.

7. SJLS is reliable system since it provides two copies of the lookup table

(i.e. backup copy). Due to the existence of more than one copy, lookup

table consistency is maintained by updating the two copies after each

action (register, renew, cancel operation).

8. SJLS give a great support to system adaptability. Since In SJLS, servers

register a description of the services they offer with a special Lookup

service along with a service object that permit clients to avail that service.

Clients will query the lookup server to learn of available services and

obtain the relevant proxy, thereby allowing client/server interaction to be

adapted at runtime.

9. From the fault tolerance point of view, the concept of leases is perhaps the

most important concept of the ones promoted in SJLS. Basically, a lease

is an application specific piece of data that represents dynamic availability

of a remote service. That is, when a node allocates some service to be

used by another node, it creates a lease on it. Each lease has an expiration

time, and if this time ends before renewing it, then the service will not be

available more.

6.2 Suggestions for Future Work

After developing SJLS, several ideas come to mind that may improve the

overall performance. These ideas have been left as recommendations for future

work. These recommendations are:

1. Instead of Sockets (A socket is one endpoint of a two-way communication

link between two programs running on the network); RMI can be used as

Chapter Six Conclusions and Future Work

 ١٠٦

a communication mechanism among system participants. Using RMI

enables the system to move code and data not only data.

2. Providing the system with more than one Lookup service (not only as a

backup) to improve system performance and response time.

3. In a distributed system it is important to obtain consistency between all

parts of the system. This calls for some method to ensure that an operation

is either brought to a consistent and definable state, or not performed at

all, this is accomplished using transaction. Adding transaction part to

SJLS provides it a more consistent behavior.

4. SJLS is implemented on TCP/IP which could be enhanced to work on any

protocol.

5. Testing SJLS on WAN and Internet.

Chapter Three Distributed Systems and their Security

 ٤٠

CHAPTER THREE

Distributed Systems and their

security

3.1 Introduction

Many of the information resources that are available and maintained in

distributed systems have a high intrinsic value for their users. Their security

therefore is of considerable importance because networks provide a potential

avenue of attack to any computer hooked to them. Since, as mentioned in

section (2.2), Jini is a dynamic distributed system built on top of Java.

Therefore, Jini system should be supported with security model to prevent

unauthorized servers from providing illegal services, or illegitimate clients from

making use of the services provided by the system.

This chapter mainly concerned with discussing distributed system

(definitions, advantages, and security), Java security, and Jini security (which

are built on Java security).

3.2 Distributed Systems

Various definitions of distributed systems have been given in the literature

taking in consideration different point of views. Here are some of them [Abr98]

[Geo01] [Fre04]:

A distributed system is a collection of independent computers that

appears to the users of the system as a single computer. This definition has two

aspects: The first one deals with hardware; the machines are autonomous. The

second one deals with software; the users think of the system as a single

computer, both are essential.

Another definition for distributed system is one in which components

located at networked computers communicate and coordinate their actions

only by passing messages. This definition leads to the following characteristics

of distributed systems: concurrency of components, lack of a global clock and

independent failure of components.

Chapter Three Distributed Systems and their Security

 ٤١

Another definition is a distributed system refers to a series of computer

systems located at multiple locations working together in a cooperative fashion

to either offer different services to clients or to work together to accomplish a

specific task. Internet is one of the examples to distributed systems.

The main advantages of the distributed system are:

 Sharing of computer resources: Resources may be managed by servers

and accessed by clients or they may be encapsulated as objects and

accessed by other client objects. Sharing of resources is one of the main

motivations for constructing distributed systems which leads the system

to be:

♦ Economics: multiple small machines offer better

price/performance.

♦ Speed: sharing of computer power speed up computation.

♦ Reliability: if one machine crashes, other can step in.

♦ Flexibility: can spread work across multiple machines.

 Sharing of information: An example is the World Wide Web (www)

that enables worldwide information sharing.

 Peer-to-Peer: Two systems can communicate as equal partners sharing

the processing and control.

The challenges arising from the construction of distributed systems are

[Ron96]:

1. Heterogeneity of its components: The Internet enables users to access

services and run applications over a heterogeneous collection of

computers and network. Heterogeneity (that is, variety and difference)

applies to all of the following:

♦ Networks.

♦ Computer hardware.

♦ Operating systems.

♦ Programming languages.

2. Openness: Openness refers to the ability to plug and play. In theory,

have two equivalent services that follow the same interface contract, and

interchange one with the other.

Chapter Three Distributed Systems and their Security

 ٤٢

3. Security: The four basic goals of a security system are:

♦ Protect information.

♦ Detect an intrusion.

♦ Confine the security breach.

♦ Repair the damage and return the system to a known stable and

secure state.

4. Scalability: The ability to work well when number of users increases.

5. Failure handling: At any one time, many elements of the distributed

system may have failed. If the distributed system is designed correctly,

these failures have little visibility to the customer of the system. This

property is called high availability and is usually realized by replication

of a service over multiple components and by duplication of

information.

6. Concurrency: The situation in which more than one user accesses and

updates the same data at the same time.

3.3 Security in Distributed System

There is a pervasive need for measures to guarantee the privacy, integrity,

and availability of resources in distributed systems. Threats to security generally

fall into three main classes: disclosure of information, denial of service, and

corruption of information. A threat is any potential occurrence, malicious or

otherwise, that can have an undesirable effect on the assets and resources

associated with a computer system.

 Designers of secure distributed systems must cop with exposed service

interfaces and insecure networks in an environment where attackers are likely to

have knowledge of the algorithms used and to deploy computing resources.

Security is related to the notion of dependability. The properties of a dependable

system include availability (Availability is the probability that an item will be

able to fulfill its required function over a stated period of time, or at a given

point in time[Kwa01]), reliability (Reliability is the ability of a system or

Chapter Three Distributed Systems and their Security

 ٤٣

component to perform its required functions under stated conditions for a

specified period of time [Glo90]) , safety and maintainability (Maintainability is

primarily a design parameter defines how long equipment will be down and

unavailable [Rap01]) [Geo01] [Ian03]. For secure systems, this list must be

extended to include the following [Fre04]:

a. Authentication: is the process of proving a user’s identity. Typically, a

server and a client are communicating across a network and before any

kind of sensitive information can be exchanged between the two, they

both need to know exactly with whom they are communicating. To do

that, they perform authentication on each other. The client proves its

identity to the server and the server proves its identity to the client. After

this, they can both decide if they actually want to communicate with the

other or not.

b. Authorization: is the process of giving a client or a service permission

to perform a specific action like executing a piece of code or accessing

certain data. On a network, a client may be trying to access some data on

a server. The client and the server begin by performing authentication on

each other as explained in the previous section. Following that, the

client requests to perform a certain action. The server then checks that

the client is in fact permitted to perform this action. If it finds that the

permission has been given then the server lets the client execute the

desired operation. If the server finds that the permission has not been

given then the server tells the client that the request has been denied and

the sensitive operation is not executed.

c. Confidentiality: is the security property related to protecting data from

being read by unauthorized users. Data must be protected from being

compromised.

d. Integrity: where alterations to a system's assets can only be made in an

authorized way. Data integrity is the security property that guarantees

that data that is read is valid and that it has not been modified by

unauthorized users. If an unauthorized user has somehow managed to

modify the data, then the data has been compromised and cannot be

Chapter Three Distributed Systems and their Security

 ٤٤

considered valid. To prevent data from being modified, a system must

prevent unauthorized users from accessing the data. The authorization

security property does this but this is not enough. A way is needed to prove

the validity of data to users who are reading the data. This is where digital

signatures can be used. Digital signatures are part of the tools explained in

section (3.3). Data is signed so that when a user reads the data, he can verify

that the data is valid using the digital signature.

e. Nonrepudiation: Nonrepudiation prevents either sender or receiver from

denying a transmitted message. Thus, when a message is sent, the receiver

can prove that the message was in fact sent by the alleged sender. Similarly,

when a message is received, the sender can prove that the message was in

fact received by the alleged receiver.

In designing a secure system, one should differentiate between security

policy and security mechanism. A security policy describes precisely which

actions the entities in a system are allowed to take and which ones are

prohibited. Entities include users, services, data, machines etc. Once a security

policy has been defined, it is possible to concentrate on the security

mechanisms by which a policy can be enforced.

Consider the state when a malicious Web applet (applet is a program that

appears embedded in a Web documents) might try to invade the naive user’s

privacy by reading information from the hard disk or by monitoring what the

user types on the keyboard. The applet might also try to modify and delete files,

or even format the hard disk. Furthermore, it could compromise the system

availability by hogging so much memory or other resources that the computer is

stalled, or even crashing the browser or the operating system [McG97]. In this

example access control, or restricting what the applet can do, is one of the most

important means for achieving the goals of confidentiality, integrity and

availability. Access control, in turn, needs authentication to know whom the

entity trying to do something is, authorization to know what the entity is allowed

to do, and cryptography to make forging identity or authorization impossible in

practice. Subsequent subsections cover the basic security terms including

security policy and access control, authorization and delegation, public key

cryptosystems and digital signatures, capabilities and certificates, and trust.

Chapter Three Distributed Systems and their Security

 ٤٥

3.3.1 Public Key Cryptosystems and Digital Signatures
Fundamental to security in distributed system is the use of cryptographics

techniques. Cryptosystems are numerical algorithms that convert normal data

called plaintext into encrypted, unintelligible cipher text, and possibly vice

versa. A public key cryptosystem uses one piece of information, called key, as

input to the encryption function, and another related key as an input to the

decryption function. One of the keys is typically kept private and the other key

is published as shown in figure (3.1) [Sch97].

Figure (3.1) Public Key Cryptosystem

The system of two interrelated keys makes public key cryptosystems

especially good for authentication purposes, as the holder of a private key K-

(private key), let us call UserA, can encrypt a piece of data with the private key,

and publish the data and the resulting cipher text. Anyone can then use the

corresponding public key K+ (public key) to verify that the information was

indeed encrypted using the private key K-. Since the only person knowing the

private key K- is UserA, the verifier knows that UserA indeed once encrypted

the data. If real time authentication is needed, the verifier can generate some

amount of random data, called a challenge that the party that pretends to be

UserA must encrypt. If the response contains the challenge encrypted with the

private key K-, the verifier knows that the party really has access to UserA

private key, and can presume that it is UserA.

The strength of a cryptosystem depends on the algorithm(s) used and the

length of the key(s). Cryptography is generally categorized into strong and weak

cryptography. The difference between these two groups is basically that the

former is believed to be unfeasible to break, while the latter can be broken if the

breaker is willing to put enough effort to it. Of course, what is considered strong

today may be weak in a couple of years as the technology evolves and

Original
plain text

Cipher text Plain text

Public key Private key

Encryption
function

Decryption
function

Chapter Three Distributed Systems and their Security

 ٤٦

Message

Digital
Signature

computers become faster and cheaper, or even tomorrow if a weakness is found

in the algorithm used.

Current public key cryptosystems have one fundamental drawback: they are

relatively slow. Therefore, they are usually used for encrypting and decrypting

only relatively small amounts of data. If a party would like to authenticate a

large amount of information, digital signatures could be used for diminishing the

amount of data to be encrypted. A digital signature usually involves two

processes, one performed by the signer called digital signature creation and the

other by the receiver of the digital signature called digital signature verification.

 Digital signature creation is accomplished by two steps: First, a one-way

function, called a hash, is applied to the original message. The output is a bit

string of fixed length, usually a lot shorter than the original message, and its

value depends on every bit of the original message so that even only slightly

different messages result in completely different outputs. The hash functions

should have the following properties. They are collision-free: it is

computationally infeasible to find two different messages that have the same

hash and they are one-way: given a message hash, it is computationally

infeasible to find any message with the same hash value.

In the second step of digital signature creation, the hash value is encrypted

with the private key to produce the final signature. Figure (3.2) [Dsg96] depicts

the process of digital signature creation.

Figure (3.2) Creation Digital Signature

Signing
Function

Message Hash
Function Hash

Result

Private
Key

Chapter Three Distributed Systems and their Security

 ٤٧

On the other hand, verification of digital signature, as illustrated in figure

(3.3) [Dsg96], is accomplished by computing a new hash result of the original

message by means of the same hash function used to create the digital signature.

Then, using the public key and the new hash result, the verifier checks: (1)

whether the digital signature was created using the corresponding private key;

and (2) whether the newly computed hash result matches the original hash result

which was transformed into the digital signature during the signing process. The

verification software will confirm the digital signature as a verified if: (1) the

signer’s private key was used to digitally sign the message, which is known to

be the case if the signer’s public key was used to verify the signature because

the signer’s public key will verify only a digital signature created with the

signer’s private key; and (2) the message was unaltered, which is known to be

the case if the hash result computed by the verifier is identical to the hash result

extracted from the digital signature during the verification process.

Figure (3.3) Verification of Digital Signature

3.3.2 Certificates

 Loren kohnfelder 1978, an electrical engineering from MIT invented a new

construct [Jer00]: a digitally signed data record containing a name and a public

key. He called this new construct a certificate. It has an issuer and a subject and

because it was digitally signed, such a certificate could be held non-trusted

parties and passed around from person to person.

From signer

Message

Digital
Signature

Hash
Function

Hash
 Result

Verify
Function Valid Y/N?

Public Key Any one can verify

Chapter Three Distributed Systems and their Security

 ٤٨

 Certificates can be classified into two types identity certificates and

authorization certificates. Identity certificates bind a human readable name to

a key, i.e. it transmits some identifying information that the issuer knows about

the subject. The most popular example of it is X.509 [Itu97]. Authorization

certificates are used to express what the principals (users) are allowed to do.

They bind capabilities to keys, and thus certify authorization. Examples of

authorization certificates include PolicyMaker (A trust-management system

provides standard, general-purpose mechanisms for specifying application

security policies and credentials) [Mat96], its successor KeyNote (KeyNote is a

simple and flexible trust-management system designed to work well for a

variety of large- and small- scale Internet-based applications) [Mat99] and

Simple Public Key Infrastructure (SPKI) [Carl99]. Authorization certificates

have issuer, subject and validity just as identity certificates. The main

differences are the possible authorization and delegation fields. The

authorization field specifies what rights are delegated to the subject of the

certificate. The delegation field, if the certificate type has one, specifies whether

the subject has the right to further delegate the rights given in the authorization

field of the certificate.

3.3.3 Access control
 Access control refers to the action of deciding which operations are

permitted and which operations are not permitted depending on the access rights

the requesting principal has. In distributed systems, controlling access to

resources is based on the system and the techniques by which it is implemented;

capabilities and Access Control Lists (ACL) are examples of these techniques.

An ACL is a security token associated with a specific object (or group of

objects) that lists those subjects that may act on the object(s), and the specific

actions each subject might perform on the object(s). In practice, many ACL

based systems allow groups of subjects to be specified. A capability, on the

other hand, is a security token associated with a subject that lists a number of

permissions. Each permission defines one or more objects, and an action or a set

of actions that the subject may perform on the object [Amo94] [Lan89].

Chapter Three Distributed Systems and their Security

 ٤٩

It is clear, from the definition, that both ACL and capability must be

protected from unauthorized modification. In a way, thus, they are both

themselves objects in the access control system, and the subjects power to

modify them must be limited. This creates a chicken and egg problem, which is

usually resolved by including a number of implicit immutable ACL or capability

modification right in the system.

3.3.4 Credentials

 Credentials are a set of evidence provide by a principal when requesting

access to resource. In the simplest case, a certificate from a relevant authority

stating the principal's identity is sufficient, and this would be used to check the

principal's permissions in an access control list, this is often all that required or

provided , but the concept can be generalized to deal with many more subtle

requirements.

3.4 Simple Public Key Infrastructure (SPKI) [Pas00] [Sar05]

The Simple Public Key Infrastructure (SPKI) is an authorization certificate

infrastructure being standardized by the IETF. An SPKI certificate has five

security related attributes: issuer, subject, delegation, tag, and validity, often

represented as a 5-tuple (I, S, D, T, V). Issuer is the public key of the principal

who issued the certificate, and the whole certificate is signed by the

corresponding secret key to establish authenticity. Subject is the public key of

the recipient of the permissions. Delegation is a boolean flag telling whether the

subject may authorize other users or not. Tag is a service-specific field which

describes the permissions included in the certificate, and validity describes the

conditions under which the certificate is valid (for example, the time of

expiration). When using authorization certificates, the permissions are typically

granted by issuing the administrator of a service a certificate which gives a

permission to delegate any service related permissions. The administrator may

then delegate subsets of the permissions by issuing new authorization

certificates. The new certificates may or may not include the delegation

Chapter Three Distributed Systems and their Security

 ٥٠

permission. Each certificate is signed by the issuer so that the authenticity of the

certificate can be confirmed.

The user is authorized by a certificate chain beginning from the first issuer,

and ending to the last grantee or subject. Typically, the last certificate within a

sequence is an identity or permission certificate, giving some identity or

application specific authority to the final subject. The final certificate is

preceded by zero or more delegation certificates, passing the naming or

permission authorization. As example that demonstrate this chain, suppose the

server S wants to verify that the user U has the right to access the service.

Traditionally this has been accomplished by using an identity scheme and a

separate ACL stored into the server. However, when using SPKI certificates the

ACL is unnecessary.

In this example, the server S is administered by a policy administrator PAs.

Typically, the PA may be the security officer of the organization owning the

server S. This relationship is represented digitally as a trust certificate signed

with key Ks, denoting that the server S (unconditionally) trusts on the policy

administrator PAs. This policy administrator, on its behalf, delegates a right to

grant access to the server to the policy administrator of the user's organization,

PAu. PAu in turn grants the user U a right to access the server S. This situation

is displayed in figure (3.4).

Chapter Three Distributed Systems and their Security

 ٥١

Figure (3.4) Basic Authorization Certificate Loop

3.5 Security in Jini [Fre04] [Has00]

Jini network technology uses the Java programming language and therefore

inherits all the security features of this language. However this is not enough.

Jini still lacks in security. For example, the data that is sent across the Jini

networks is not protected by default. Third party users can listen on the network

to see what is going on. The lookup service is very vulnerable to attack. If it

falls, the network cannot be used anymore.

The main security concern within the Jini architecture is the use of

dynamically downloaded proxies. Since Jini architecture differs from

traditional" client-server systems like CORBA or the World-Wide Web, the

major difference is: in all these systems the client permanently contains the code

for communicating with a server. The protocol code is part of the client and

therefore part of the client's trusted computing base. If a client needs some kind

of security (like authentication or integrity), it can choose to use any protocol

that provides the required security properties. The Jini is fundamentally

different; Jini clients do not implement any network protocol at all. They rather

rely on the service's proxy object to perform the communication with the server.

Chapter Three Distributed Systems and their Security

 ٥٢

This object originates from some (usually untrusted) source on the network,

which provide great flexibility but present a security risk for the server. Some

mechanisms is needed to protect lookup service and client since each one of

them does not know what the code of the proxy is doing. Another security point

is protecting servers, lookup service, and clients from each one other.

Since as mentioned above, Jini inherits all Java security features, therefore,

it is important to explore the security features of Java technology.

3.6 Java Security

Java programming language was first introduced in 1995. It has a major

importance in a highly distributed and interconnected world. It is a secure

programming language; it was built with security in mind and has been tested

and improved over the years. Java also provides efficient support for mobile

code, something that is very interesting for distributed systems. Also, Java is

portable across different computer platforms and operating systems [Qus98].

3.6.1 Java Language for Distributed System

Java was developed at Sun Microsystems. Work on Java originally began

with the goal of creating a platform independent language. The original intent

was to use C++, but as work progressed in this direction, the Java developers

realized that creating their own language rather than extending C++
 would better

serve them. Java is an object-oriented programming language that has the

attributes illustrated below [Wal96]:

♦ Simple Java’s developers deliberately left out many of the unnecessary

features of other high-level programming languages. For example,

Java does not support pointer math, implicit type casting, structures or

unions, operator overloading, templates, header fields, or multiple

inheritance.

♦ Object-oriented just like C++
, Java uses classes to organize code into

logical modules. At runtime, a program creates objects from the

classes. Java classes can inherit from other classes, but multiple

inheritances, where in a class inherit methods and fields from more

than one class, is not allowed.

Chapter Three Distributed Systems and their Security

 ٥٣

♦ Compile. Before running a program written in the Java language, the

Java compiler must compile the program. The complication results in a

“byte-code” file that, while similar to a machine-code file, can be

executed under any operating system that has a Java interpreter. This

interpreter reads in the byte-code file, and translates the byte-code

command into machine-language commands that can be directly

executed by the machine that’s running the Java program. The Java is

both a compiled and interpreted language.

♦ Multi-threaded. Java programs can contain multiple threads of

execution, which enables programs to handle several tasks

concurrently. For example a multi-threaded program can render an

image on the screen in one thread while continuing to accept keyboard

input from the user in the main thread. All applications have at least

one thread, which represents the program’s main path of execution.

♦ Garbage collection. Java program do their own garbage collection,

which means that programs are not required to delete objects that they

allocate in memory. This relieves programmers of virtually all memory

–management problems.

♦ Robust. Because the Java interpreter checks all system access

performed within a program, Java program cannot crash the system.

Instead, when a serious errors is discovered. Java programs create an

exception. This exception can be captured and managed by the

program without any risk of bringing down the system.

♦ Secure. Java is a secure language and the security features of Java

system have been discussed in section (3.6).

♦ Well-understood. The Java language is based upon technology that’s

been developed over many years. For this reason, Java can be quickly

and easily understood by anyone, which has experience with modern

programming language such as C++.

The Multithreading supported in Java revolves around the concept of a

thread. A thread is a single stream of execution within a process. A process is a

Chapter Three Distributed Systems and their Security

 ٥٤

program executing with its own address space. Java is multitasking system,

meaning that it supports many processes running concurrently in their own

address spaces. Making user more familiar with the term multitasking, which

describes a scenario very similar to multiprogramming. A thread is a sequence

of code executing within the context of a process. As a matter of fact, threads

cannot execute on their own; they require the overhead of a parent process to

run. For example, word processors may have a thread in the background

automatically checking the spelling of what is being written, while another

thread may be automatically saving changes to the document. Like word

processing, each application (process) may call many threads to perform any

number of tasks. The possible states that a thread might be in and the triggers

that can cause the thread’s state to change are shown in figure (3.5).

Figure (3.5) Living thread states

In Java thread library, there are many functions that control the moving

threads form state to state. Some of these functions are:

1. Yield: move from running state to ready state.

2. Suspend: move from running to suspend state.

3. Resume: move from suspend to ready state.

4. Wait: move from running to wait state.

5. Notify: move form wait to ready state.

• Running the state that all threads aspire to.

• Various waiting states Waiting, Sleeping, Suspended, and
Blocked.

• Ready Not waiting for anything except the CPU.

Running

Ready

Suspended Sleeping Blocked

Chapter Three Distributed Systems and their Security

 ٥٥

6. Sleep: move form running to wait state and then move to ready state after

specific time (in millisecond, or in millisecond and nanosecond).

Every thread has a priority, an integer from 1 to 10. Threads with

higher priority get preference over threads with lower priority. The thread

scheduler considers the priority when it decides which ready thread should

select. If a thread in running state then, it does not leave the CPU until

some cause (i.e. wait for read, call function Yield, call function suspend or

call function wait) changes the thread state (i.e. from running state to

ready, block, wait or suspend state). In this case, the scheduler chooses

another thread from ready state according its priority (selects the high

priority thread), then it use First in First out (FIFO) technique with equal

priority threads.

The security architecture of Java can be considered to consist of the

following components [Gon99] [Dan00] [Yng04]:

 Java language and platform: type safety and isolation.

 Recourses access control: policy and enforcement.

 Cryptography architecture.

3.6.2 Java language and platform: type safety and isolation

The basic building blocks in the Java security model are a set of language

specific rules. These built-in features preserve the type safety and prevent a

program from accessing or modifying random locations in the memory of the

hosting machine. Every object reference and primitive entity in Java has an

access level. Fields and methods provided by Java can be declared as:

 Private: The entity can be accessed by code in its own class (class is a

template or blueprint for objects). The program is defined by using one

or more classes. Every Java program has at least one class and

programs are contained inside a class definition enclosed in blocks.

The class can contain data decelerations and method decelerations.

Chapter Three Distributed Systems and their Security

 ٥٦

 Package: The entity can be accessed by code in its own class, or the

same package (package is a collection of classes, it provide a convenient

way to organize classes).

 Protected: The entity can be accessed by code in its own class, the same

package, or a direct subclass.

 Public: The entity can be accessed by code in any class

Based on the definition of access levels, six Java language rules are

formulated [Joh01]:

1. Access levels are strictly enforced: In Java, a private entity cannot

be treated as anything but private.

2. Code cannot access arbitrary memory locations: Java does not have

the notion of a pointer. This makes it easier to enforce this rule. This is

not always the case in other programming languages. In C, work around

the security model could be done by directly scanning the memory,

looking for entities that are not necessarily have permission to access.

3. Entities marked with the final identifier cannot be changed: The final

identifier is specifying a variable, method or class that needs not to be

changed.

4. Variables may not be used before they have been initialized: A

variable points to some location in the memory of the host. If it could be

used before initialization, then specifying a large collection of variables

and read the data stored previously in those areas will be possible. This

would basically lead to the situation that random memory locations could

be read. Java deals with this by forcing programmers to initialize local

variables before usage, and by automatically initializing instance variables

(e.g. class variables) to default values (most often by a reference to the

special null identifier).

5. Accessing array bounds outside an initial data set: The primary goal

for this mechanism is to enable developers to write programs that have

fewer bugs and are more robust, but it has security benefits as well. If

their is an ability to write outside an array, one could be in position to

overwrite elements residing next to his array in memory. Needless to say,

this could become a major threat in terms of security.

Chapter Three Distributed Systems and their Security

 ٥٧

6. Objects cannot be arbitrarily cast into other objects: Because Java is a

strongly typed language, each data value is associated with a particular

type. Sometimes it is helpful or necessary to convert a data value of one

type to another type. Casting is the most general form of conversion in

Java. If a conversion can be accomplished at all in a Java program, it can

be accomplished using a cast.

The constructs responsible for enforcing these rules are the compiler and

the bytecode verifier. The first line of defense is the compiler. During

compilation, every rule but 5 & 6 is checked; this mechanism cannot enforce

checking of array bounds or all cases of illegal casts. These checks will be

completed at runtime. The problem with casting arises when two objects are not

known to be unrelated, for example:

Object maybeCar = myVector.elementAt (0);

Car ferrari = (Car) maybeCar;

There is no way for the compiler to know whether the object returned from

the vector indeed is a car, or just something posing as a car.

In addition to type safety, untrusted code needs to be isolated. In java, the

isolation is provided by class loaders. Class loaders are responsible for mapping

class names (e.g. " java. Lang. string") to the corresponding bytecode, and

loading the bytecode from a file or from the network. The mapping is context-

dependent: there can be two classes with different class loaders. The class

loaders are themselves written in Java, and programmers can write new class

loaders, if necessary. Class loaders also interact with type safety. Because there

can be more than one class with the same name, reference to names must be

consistently, i.e., in a way which preservers type safety.

 3.6.3 Resource Access Control

The resource access control framework is responsible for controlling access

to valuable system resource, such as the file system. This part of the

infrastructure has considerably evolved during the history of Java. In the original

Java version, Java Dynamic Kit 1.0(JDK 1.0) has very strict security

mechanisms [Sun97] shown in figure (3.6). The execution of the code on the

virtual machine is divided into two types, local code and remote code. Local

Chapter Three Distributed Systems and their Security

 ٥٨

code is the code that originates from the machine where it is to be executed and

remote code is the code that originates from outside the machine where it is to

be executed. Obviously, remote code is the one most likely to be dangerous so it

must be executed with caution. Security in JDK 1.0 works using the sandbox

model, which encapsulates the remote code to execute it with limited access to

the system’s resources. The local code on the other hand is executed with full

access to the system’s resources. The sandbox refers to the virtual box that

contains the code and executes it while at the same time preventing it from

accessing resources outside of the sandbox.

Figure (3.6) JDK 1.0 Security Model

The sandbox model as described above was found to be too restrictive. It

was sometimes necessary and still secure for remote code to have the same

access rights as local code. A new security model was introduced later in JDK

1.1 to improve the Java security model. In this new model, the code is divided

into three parts instead of two. The local code is still present with full system

access but there are now two types of remote code, signed remote code and

unsigned remote code. Signed remote code refers to code signed with a trusted

signature. The code still originates from outside the machine where it is to be

executed but this time it is signed. If the system recognizes the signature and

trusts it then it lets the code execute itself with full access just like local code.

Unsigned remote code or code that is signed by untrusted signatures is executed

in the original sandbox.

Chapter Three Distributed Systems and their Security

 ٥٩

To further improve security in the language, a new more powerful security

model was introduced in JDK 1.2 [Goe97]. This was a very big improvement.

The older security models only had two types of code execution environments,

“full access” and “restricted access”. Full access gave to code complete access

to the system and severely restricted the execution of the remote code but only

in one way and it was not simple to modify the permissions of code executed in

the sandbox. It became necessary to change this. The new model introduced the

protection domain. The protection domain refers to a virtual box similar to the

sandbox in which code is placed to be executed safely within its permissions.

This lets the system create custom sandboxes. Figure (3.7) shows three

protection domains. One sandbox can give to code some permission while

another sandbox gives to code different permissions. These sandboxes are the

protection domains. They are created by examining the code’s origin and

signature.

Figure (3.7): JDK 1.2 Security Model

Conceptually, to set up a sandbox in Java the following elements needed

[Ian03]:

Chapter Three Distributed Systems and their Security

 ٦٠

 A predefined set of sensitive actions code can perform

 A way of binding these actions to specific segments of code

 A control centre responsible for allowing or refusing code

to perform sensitive operations

To create the protection domains, the administrator of the system writes

policy files, which contain permissions. In the policy file, the administrator

specifies who is affected by the policies using either the origin of the code or the

signature of the code or both. Then any one can writes a series of permissions

for that code. When the code arrives, its signature and its origin are examined to

see if they are affected by the security policies of the machine. If they are, a

protection domain is created and the code is executed inside it.

JDK 1.2 is not the latest version but most of it is still in use today. There is

one improvement worth mentioning that was put into SDK 1.4 (the next major

version of Java after JDK 1.2). JDK 1.2 uses the origin of the code and the

signature of the code to perform access control, SDK 1.4 adds the element of the

identity of who is executing the code. To decide if access should be given or not,

the system still checks the origin and the signature of code, but it also checks

who is executing the code. This can be a human user or a machine connected to

the system. Depending on who is executing the code, permissions can be

different. This is the security tool called a Java Authentication and Authorization

Service (JAAS) [Sun99b].

The abstract class java.security.Permission defines a permission

in Java. Every class is associated with a set of permissions. By default, classes in

the core Java API can perform any action. A class able to do anything is

associated with the special java.security.AllPermission class. The

permissions can be chosen from a list of predefined permissions, such as

java.io.FilePermission and java.net.SocketPermission, or

one could define his own by extending the java.security.Permission

class, or more commonly the java.security.BasicPermission class.

The language provides the administrator with a permission consisting of three

elements:

Chapter Three Distributed Systems and their Security

 ٦١

1. Type: the name of the particular Java class implementing the

permission. This attribute is required.

2. Name: based on the type of the permission. A name associated with

permission to a file is the name of the target directory or file. Much

permission doesn't have a name entry, e.g. the AllPermission class.

3. Actions: an optional list of entries describing what can be done to the

target. File permission may specify that a file can be read, written or

deleted.

A permission to read files in the directory "/Users/public/shared/" would be

specified as:

Permission java.security.FilePermission

"/Users/public/shared/", "read";

A code source encapsulates information about where a class was loaded

from and who signed the class. Both entries are optional. The location is

specified as a Uniform Resource Locater (URL) (file- or network-based), and is

called the code base. In Java, the java.security.CodeSource class

defines code sources.

A protection domain defines a mapping between permissions and code

sources, i.e. it contains information about what a code source is allowed to do.

This contract glues together the ability to perform sensitive operations with

specific segments of code. In terms of Java, a protection domain is an instance

of the java.security.ProtectionDomain class. Each class can only be associated

with one protection domain, and classes in the core API belongs to the special

system protection domain. The description of protection domains is done

through the use of policy files.

A policy file relates permissions to code sources. The JVM can use any

number of policy files, but two are used by default:

 Global policy file.

 User-specific policy file

It is important to note that giving code permission to perform some action,

doesn't necessarily mean that the environment on the executing host will allow

that action. Deleting critical system files will not typically be permitted, unless

Chapter Three Distributed Systems and their Security

 ٦٢

the user has administrator privileges. In determining if a class should be allowed

to carry out a sensitive operation, the underlying operating system and the class'

policy files must be consulted. This is the job of the access controller; it

controls the security policy of an application. Prior to the Java 2 release, this

responsibility fell on the security manager. This mechanism still exists, in order

to accommodate all the programs developed before the introduction of the Java

2 platform [Fre04].

3.6.4 Cryptography

Cryptography is fundamental to security in distributed systems.

Cryptography involves encrypting a message before it is sent (so that it remains

private) and decrypting it upon arrival before it is read. Encryption and

decryption are accomplished by using cryptographic methods parameterized by

keys with the following properties:

 Algorithm is publicly known

 Key is held private

Cryptography enables us to defend from three types of attacks:

a. The interception of the message: The user may be able to intercept the

message but will only see unintelligible data (unless, of course the users

know the key, which is rather unlikely).

b. Modification of the message: this is even more difficult since the user

will have to be able to decrypt the data, then modify it and also properly

encrypt it again so the receiver thinks it comes from the original sender

and does not suspect that it has been modified.

c. Insertion into the message: Here again, the user will have to be able to

decipher the message and encrypt it again i.e. if a user is capable of

modifying a message and insert data into it.

A cryptosystem is a system in which encryption and decryption are

performed in association with the transmitting and receiving functions. There

are three main categories for encryption:

a. Secret Key (symmetric cryptosystem): Single key is used to encrypt

and decrypt information. Keys can be created in a number of ways e.g.

Chapter Three Distributed Systems and their Security

 ٦٣

they can be generated once and used over and over again or they can be

generated for each session. A good example of a symmetric

cryptosystem algorithm is Data Encryption Standard (DES).

b. Public/Private Key (asymmetric cryptosystem): In asymmetric

cryptosystem (or better known as public-key systems), the keys for

encryption and decryption are different but together form a unique pair.

These complementary keys for digital signatures are termed the private

key and the public Key. The private key is known only to the sender

and it is used to create the digital signature. The public key is more

widely known and is used by a relying party to authenticate the digital

signature. Although many people may know the public key of a given

sender (signer) and use it to verify that sender's signature, they cannot

discover that sender's private key. The process of creating a digital

signature (private key) is accomplished by the sender. The verification

of the digital signature is performed by the receiver of the digital

signature. One popular example, of a public-key system is RSA named

from the inventors (Rivest, Shamir and Adleman 1978).

MD5 is a good example of a hash function. The MD5 algorithm takes as

input a message of arbitrary length and produces as output a 128-bit

"fingerprint" or "message digest" of the input. It is conjectured that it is

computationally infeasible to produce two messages having the same message

digest, or to produce any message having a given specified target message

digest. The MD5 algorithm is intended for digital signature applications, where

a large file must be "compressed" in a secure manner before being encrypted

with a private (secret) key under a public-key cryptosystem such as RSA.

In essence, hash functions are a way to verify data integrity, and are much

more reliable than checksum and many other commonly used methods [Ian03].

Chapter Two Jini Networking Technology

 ٨

CHAPTER TWO

Jini Networking Technology

2.1 Plug and Play Systems

Plug and play systems are designed to offer interfaces and mechanisms for

components to announce their own abilities, looking for services of other

components and use these in a dynamic network of interacting components.

Among the plug and play systems mentioned above, Jini system is the most

popular one. It provides an open solution for network interoperability issues in a

distributed computing environment. This means that Jini has the capability of:

finding and connecting services and devices on a network, creating reliable

sets of services out of unreliable parts, including the network itself, and

dealing with networks that are very large or last very long time. Accordingly,

Jini is chosen to be studied and all the mentioned above plug and play systems

will be discussed with respect to Jini characteristics.

2.1.1 Universal Plug and Play (UPnP) [Jas00] [Mic99b] [Mic01]

Universal Plug and Play (UPnP) is a coordination framework that is mainly

created by Microsoft who started using in reference to their Windows 95

product, aims for zero-configuration networking of devices. Unlike Jini, UPnP

currently does not have a strong notion of services. Instead, it targets a lower

level than Jini, addressing basic networking and discovery issues. Furthermore,

UPnP does not currently address how to use services. For example, UPnP will

help finding a printer, but not use it. It is platform and operating system

independent, which gives developers the possibility to choose the best platform

for their device. The platform independence is provided by using the

Transmission Control Protocol/Interne Protocol (TCP/IP). Furthermore, it uses

already standardized and reliable Internet-mechanisms. For example, small

Hyper Text Transfer Protocol (HTTP) servers are used to send information

about the device to the user of the service. The service information is transmitted

in an already standardized form, as an eXtensible Markup Language (XML-

Chapter Two Jini Networking Technology

 ٩

page). To be able to use services at different operating systems, different

Application Programming Interfaces (APIs) are used. Vendors only have to

apply different APIs to be able to use their services at different operating

systems without the need of rewriting the devices source code. UPnP is made to

bring easy-to-use to home and office environments. It is to be used in local

networks as well as at the global Internet. One philosophical difference between

UPnP and Jini lies in how services are defined. Whereas Jini relies on well-

defined Java interfaces for services, UPnP depends on standard protocols and

data formats, with the specific API, implementation, and programming language

for handling the protocol and data format left to each specific device. This leads

to another philosophical difference. Java’s philosophy has always been “Write

Once Run Anywhere.” Jini follows this philosophy by having proxies to services

be downloaded onto clients. This approach cannot be taken with UPnP, since

platforms may be different. With Jini, there is a lower overhead to use a service,

since the proxy to the service can be downloaded directly. In contrast, the APIs

and implementation have to be developed for each specific device. However,

proponents of UPnP claim that this leads to more reliable code, since it has been

tested on that specific platform, which may not be the case for the Jini service.

An UPnP community consists of Client Components, Smart Objects and

Directories. Directory servers (also called proxy) are able to store object

announcement and respond to client discovery requests. Directories are

providing the ability to answer on behalf of different objects within the network.

The directory server makes UPnP scalable; it works as a coordinator at the local

network and as a global discovery mechanism, which covers the entire Internet.

Smart Objects are devices, which are providing some kind of services

within the network. When appearing in the network they are sending out an

announcement packet in the network. If a directory is present, the smart object

knows it does not need to answer any discovery requests from clients, because it

knows the directory server will take care of them and answer them. But if there

isn’t any directory server within the network it must handle all discovery

requests to see if the discovery matches the description of its service.

Discovery is made by sending out discovery packets. Discovery packets are

sent with the Simple Service Discovery Protocol (SSDP), which is constructed

Chapter Two Jini Networking Technology

 ١٠

to discover devices in Internet Protocol (IP) network. SSDP uses User Datagram

Protocol UDP- and TCP-based HTTP to discover services.

UPnP is constructed to work in server-less networks. Therefore, all Smart

Objects must be able to provide the capabilities necessary if there is no

discovery server within the network. This means that they all have to be able to

answer Service Discovery requests and they must have a built in HTTP server to

be able to respond to requests.

UPnP does not define any programming model. Therefore, devices are

operating system and program language independent. To get devices (Smart

Objects) to interact with each other, specific APIs (Application Programming

Interface) can be used. The usage of APIs allows a device to interact with other

devices running at different operating systems. The API also allows the usage of

different transport mediums. This means that the discovery protocol does not

have to run over IP based transport mediums. The characteristics of UPnP are

summarized below:

 Built on reliable, well-known technology.

 No code is moved around or being downloaded.

 The ability to use non-IP based networks.

 Device-interaction only through API or XML pages with XSL (Style

Sheets).

 The UPnP has quite high demands on hardware. An implementation of

Simple Discovery takes 4 Kbytes of code. The handling of HTTP

activities requires about 20 Kbytes of code and the devices also need to

implement the TCP/IP stack to support transportation. The devices also

have to implement the domain service that allows automated naming

and generation of addresses, which takes another 40 Kbytes of code.

Totally 64 Kbytes of code is needed only to be able to run as an UPnP

device.

Chapter Two Jini Networking Technology

 ١١

2.1.2 Salutation [Sal99] [Rek]

Salutation is another coordination framework. The first public release was

in January 31, 1996 of its first version. Like Jini and UPnP, Salutation aims to

be platform and operating system independent. However, Salutation goes further

and also aims to be network independent. That is, unlike UPnP, Salutation does

not rely on HTTP and TCP/IP. In Salutation, practically everything is mediated

by a Salutation Manager (SLM).

The SLM provide four basic tasks these are:

1. Service Registry: The SLM contains a Registry to The Salutation

Manager contains a Registry to hold information about Services. The

minimum requirement for the Registry is to store information about

services connected to the Salutation Manager. These services may reside

in the local Salutation Equipment or may connect to the Salutation

Manager via Remote Procedure Calls.

2. Service Discovery: The Salutation Manager can discover other remote

Salutation Managers and determine the Services registered there.

Service Discovery is performed by comparing a required Services

type(s), as specified by the local Salutation Manager, with the Service

type(s) available on a remote Salutation Manager. Remote Procedure

Calls are used to transmit the required Service type(s) from the local

Salutation Manager to the remote Salutation Manager and to transmit

the response from the remote Salutation Manager to the local Salutation

Manager, through manipulation of the specification of required Service

type(s).

3. Service Availability: The Salutation Manager can periodically check

the availability of a Service. The local Salutation Manager requests the

appropriate Salutation Manager to perform an Availability Check. The

Availability Check is performed by exchanging Remote Procedure Call

messages between the Salutation Managers. The period of the

Availability Check is specifiable.

Chapter Two Jini Networking Technology

 ١٢

4. Service Session Management: When a Client wants to use a Service

provided by Salutation Equipment, the Salutation Manager can establish

a virtual data pipe between a Client and a Service. This is called a

Service Session. Commands, responses and data are exchanged between

Clients and Services on these data pipes in blocks called Messages.

Messages have a defined format and are exchanged under a defined

protocol.

A service is broken up into a set of functional units. Functional units are

defined by the Salutation technical committee, and currently include such things

as printing, faxing, storage, address book, scheduling, and voice mail. Each

functional unit is associated with a set of predefined attributes. Thus, a service

can be described in terms of the functional units it has, as well as the specific

values of the attributes. Furthermore, each functional unit also defines a

Standard protocol, data format, API, and events to be used. Its characteristics

can be summarized as follows:

 Operating system independent.

 Salutation allows user authentication using a user-id and password

scheme.

 Structured descriptions of services as functional units, which in turn

contain attribute records. Functional units identify "type" or "features"

of a service. Attributes provide much more detail. All amenable to

powerful queries. Standard functional unit definitions allow easier

interoperability.

2.1.3 Bluetooth SDP [Jap99] [Eug01]

Bluetooth Formed in February 1998 by mobile telephony and computing

leaders Ericsson, IBM, Intel, Nokia, and Toshiba. The Bluetooth special interest

group (SIG) is designing a royalty-free, technology specification.

Bluetooth is a wireless connection device, which is using radio waves to

connect different devices. To be able to connect different Bluetooth devices, it

has a built in discovery protocol, the Bluetooth Service Discovery Protocol

(SDP). SDP addresses discovery specifically for the Bluetooth environment. It is

Chapter Two Jini Networking Technology

 ١٣

designed to find services available from or through Bluetooth devices. SDP does

not define any method for accessing the services. To be able to access the

devices, other service discovery methods such as Jini, UPnP or SLP can be used.

While SDP can coexist with these other service discovery protocols, it does not

require them. Other ways to access the service might also be used depending on

the service. In Bluetooth environments, found services can be accessed using

other Bluetooth specific protocols.

SDP servers maintain a database with information about existing services

within the Bluetooth network. The server also responds to request on an existing

connection. SDP clients can search for services in a specific class or for a

specific service. Clients can also provide the ability to browse available services.

SDP service is any feature usable by another device. Services can be searched

for as a specific class of services or it can be searched for from browsers. The

following is a summary of Bluetooth SDP:

 Fast and hardware cheap.

 Works only between Bluetooth devices.

 SDP does not care about security. It does only allow devices to locate

other devices within the Bluetooth environment.

2.1.4 Service Location Protocol (SLP) [Jav00] [Ope99]

In the late 1980s, a working group on the Internet Engineering Task Force

(IETF) begins on the subject of service location on IP networks, although they

made some progress, they did not seem to be enough interest in making IP easy

to use, and the SLP effort moved slowly. When Apple shipped Mac OS 8.5 in

mid-1998, it brought the SLP effort which is started nearly ten years earlier to

fruition. Mac OS 8.5 included the Network Services Location (NSL) Manager,

an API which enables services to register through protocols like SLP and client-

side applications to browse for and initiate access to such services. NSL

provides a plug-in architecture for service location. The principal plug-in

included by Apple with Mac OS 8.5 was an SLP version 1 plug-in. With the

explosion of interest in the Internet and Internet work on SLP has been

reinvigorated. SLP version 2 has been completed on 1999. Like Jini, SLP

Chapter Two Jini Networking Technology

 ١٤

provides a framework to allow networking applications to discover the

existence, location, and configuration of networked services in enterprise

networks.

It makes use of three entities the Service Agent (SA) acts on behalf of

service provider to disseminate information about the location and attributes of

the services. Directory Agent (DA) its primary function is to implement a

repository of services where the clients can look for particular services given

particular attributes. A DA catches the advertisements from SAs collects

information from the advertisements of SAs and replies on behalf of SAs to UAs

when they request a particular service. User Agent (UA) acts on behalf of a

client to acquire service information. It looks for and required services with

particular characteristics by sending queries about services to the DAs or

directly to the SAs. The advantages of SLP are that it is simple to implement,

OS independent. However, SLP is only a string-based protocol for discovery

purposes, which does not address communication among the desegregated

devices. On the other hand, Jini is flexible in implementing any service and it is

OS independent because of the JVM. Jini has as its main strength the ability to

move code, although this ability can be regarded as a drawback since moving a

small piece of code can involve a lot of traffic in the network.

SLP is constructed to work over TCP/IP. To be able to work, it needs that

the basic IP protocols are supported in the network, such as: Multicast, TCP/IP

and/or UDP/IP, Preferably DHCP shall exist in the network. A summary of SLP

characteristics is given below:

 Operating system independent.

 Simple protocol, therefore simple to implement.

 Doesn’t specify anything about how the services are created

 Provides only a simple way to discover services, not how to use them.

 The built in security is not complete, but some security-related

considerations have been taken. The authentication problems are taken

care of in the SLP protocol. To authenticate services in SLP for instance

certificates may be used. There is a field in the SLP specification where

Chapter Two Jini Networking Technology

 ١٥

the authentication block is located. Observe that this does not provide

any kind of access control of services, only a way to make certain that

the service comes from the service provider it claimed to be.

Furthermore, there is nothing specified on how the communication is

supposed to be secured.

2.2 Jini System

Jini is a distributed system that consists of a mixture of different but related

elements. It is strongly related to Java programming language; although many of

its principles can be implemented equally well in other languages. The history of

Jini is largely the history of Java. Jini fulfills the original Java vision of

consumer-oriented groups of electronic devices interchanging data. Java evolved

from a language called Oak. Oak was designed by Sun Microsystems in 1990 to

serve as a portable way to write programs for embedded processors. In 1994

engineers Patrick Naughton and Jonathan Payne from Sun wrote a Web browser

using Oak. This browser, named WebRunner, later became the foundation for

the HotJava browser. HotJava had the unique ability to download executable

programs from Web servers and execute them in a browser. These programs are

called applets. Although Java got its start in consumer electronics, it was the

ability to build applets that propelled it into the computing industry. Realizing

that the original Java concept is still compelling, a group of Sun engineers

recognized the need for continuing development. Although Java enables moving

code from machine to machine, problems exist that hamper implementing

constellations of easily administrated devices. This requires mechanisms

normally not associated with desktop computing. These mechanisms for such

devices are as follows [Lai00]:

 A robust software infrastructure.

 The ability to dynamically configure additional devices and peripherals.

 The ability to share components without reconfiguration.

The Jini characteristics can be summarized as follows:

 Operating system independence through the usage of Java.

Chapter Two Jini Networking Technology

 ١٦

 Any kind of services can be implemented, large flexibility of the service

implementation.

 The need of a Lookup Service.

 The requirements of Java.

 Its security is native to Java & RMI. Jini does not seem to define

anything more.

A Jini system is a distributed system based on the idea of federating groups

of users and the resources required by those users as shown in figure (2.1)

[Kes01]. The overall goal is to turn the network into a flexible, easily

administered tool on which resources can be found by human and computational

clients. Resources can be implemented as either hardware devices, software

programs, or a combination of the two. The focus of the system is to make the

network more dynamic entity that better reflects the dynamic nature of the

workgroup by enabling the ability to add and delete services flexibly.

Figure (2.1) overview of Jini architecture

A Jini system consists of the following parts:

 A set of components that provide an infrastructure for federating

services in a distributed system.

 A programming model that supports and encourages the production of

reliable distributed services.

Chapter Two Jini Networking Technology

 ١٧

 Services that can be made part of a Jini federation which offer

functionality to any other member of the federation while these pieces

are separable and distinct, they are interrelated; the components that

make up the Jini infrastructure make use of the Jini programming

model; services that reside within the infrastructure also use that model;

and the programming model is well supported by components in the

infrastructure.

The end goals of the system span a number of different audiences; these

goals include the following:

 Enabling users to share services and resources over a network.

 Providing easy access to resources anywhere on the network while

allowing the network location of the user to change.

 Providing programmers with tools and programming patterns that

allow the development of robust and secure distributed systems.

 Simplifying the task of building, maintaining, and altering a network

of devices, software, and users.

The Jini infrastructure provides mechanisms for devices, services, and

users to join and detach from a network. Joining into and leaving a Jini

grouping is an easy and natural, often automatic occurrence. Jini groups are far

more dynamic than is currently possible in networked groups where configuring

a network is a centralized function done by hand [Sun02].

It is environmental assumption assumed that each Jini technology-enabled

device has some memory and processing power. Devices without processing

power or memory may be connected to a Jini system, but those devices are

controlled by another piece of hardware and/or software, called a proxy, that

presents the device to the Jini system and which itself contains both processing

power and memory.

The Jini system is Java-technology centered at which the Jini architecture

gains much of its simplicity from assuming that Java programming language is

the implementation language for components. The ability to dynamically

download and run code is central to the Jini architecture. However, Java-centric

nature of the Jini architecture depends on Java application environment rather

Chapter Two Jini Networking Technology

 ١٨

than on Java programming language. Any programming language can be

supported by a Jini system if it has a compiler that produces compliant byte

codes for Java programming language [Sun99a].

This chapter is concerned with describing the detailed architecture of Jini

system and its components.

2.3 Jini Architecture

The purpose of the Jini architecture is to federate groups of devices and

software components into a single, dynamic distributed system. The resulting

federation provides the simplicity of access, ease of administration, and support

for sharing that are provided by a large monolithic system while retaining the

flexibility, uniform response, and control provided by a personal computer or

workstation.

The architecture of a single Jini system is targeted to the workgroup at

which members of the federation are assumed to agree on basic notions of trust,

administration, identification and policy. It is possible to federate Jini systems

themselves for larger organizations. A Jini system should not be thought of as

sets of clients and servers, users and programs, or even programs and files.

Instead, a Jini system consists of services that can be collected together for the

performance of a particular task. It provides mechanisms for service

construction, lookup, and communication; it is use in a distributed system.

Examples of services include: devices such as printers, displays, or disks;

software such as applications or utilities; information such as databases and

files; and users of the system.

The components of the Jini system as shown in figure (2.2) can be

segmented into three categories [Kei01]:

1. Infrastructure: The infrastructure is the set of components that enables

building a federated Jini system.

2. Programming model: The programming model is a set of interfaces that

enables the construction of reliable services, including those that are part

of the infrastructure and those that join into the federation.

Chapter Two Jini Networking Technology

 ١٩

3. Services: The services are the entities within the federation.

Figure (2.2) components of Jini system

These three categories, though distinct and separable, are entangled to such

an extent that the distinction between them can seem blurred. Moreover, it is

possible to build systems that have some of the functionality of the Jini system

with variants on the categories or without all three of them. But a Jini system

gains its full power because it is a system built with the particular infrastructure

and programming models described, based on the notion of a service.

Decoupling the segments within the architecture allows legacy code to be

changed minimally to take part in a Jini system. Nevertheless, the full power of

a Jini system will be available only to new services that are constructed using

the integrated model.

A Jini system can be seen as a network extension of the infrastructure,

programming model and services that made Java technology successful in single

machine case, figure (2.3) shows the main categories of Jini system.

Sparc PPC x86

Solaris Mac Windows

Java Java Java

Leasing , Events , Transactions
Jini

Network Services
(user defined services)

Discovery/Join , Lookup , distributed security

RMI

Devices servicesPrograms

Java platform

infrastructure

Programming model

Chapter Two Jini Networking Technology

 ٢٠

Services

Programming

model

Infrastructure

Jini

Printing

Mathematical

Operations

Leasing

Transactions

Events

Lookup service

Discovery/join

Distributed security

Figure (2.3) Main categories of Jini system

2.3.1 Services

Service is the most important concept within the Jini architecture. A service

is an entity that can be used by a person, a program, or another service which

may be a computation, storage, a communication channel to another user, a

Software filter, a hardware device, or another user. Example of service is

printing a document [Sco00].

The Jini technology infrastructure and programming model are built to

enable services to be offered and found in the network federation. These

services make use of the infrastructure to make calls to each other, discover each

other, and to announce their presence to other services and users. Services

appear programmatically as objects written in Java programming language,

perhaps made up of other objects. It has an interface that defines the operations

that can be requested from that service. Some of these interfaces are intended to

be used by programs, while others are intended to be run by the receiver so that

the service can interact with a user. The type of the service determines the

interfaces that make up that service and also define the set of methods that can

be used to access the service. A single service may be implemented by using

other services (i.e. services may make use of other services and a client of one

service may itself be a service with clients of its own). The dynamic nature of a

Jini system enables services to be added or with drawn from a federation at any

time according to demand, need, or the changing requirements of the workgroup

using the system. These services communicate with each other by using a

service protocol, which is a set of interfaces written in Java Programming

Language. The set of such protocols is open ended. The base Jini systems

Chapter Two Jini Networking Technology

 ٢١

consist of a small number of such protocols which define critical service

interaction.

2.3.2 Programming Model

Both the infrastructure and the services that use that infrastructure are

computational entities that exist in the physical environment of the Jini system.

However, services also constitute a set of interfaces which define

communication protocols that can be used by the services and the infrastructure

to communicate between themselves. These interfaces, taken together, make up

the distributed extension of the standard Java programming language model that

constitutes the Jini programming model. Among the interfaces that make up the

Jini programming model are the following:

 Leasing Interfaces, which defines a way of allocating and freeing

resources using a renewable, duration-based model.

 Event and Notification Interfaces, which are an extension of the event

model used by JavaBeans™ components to the distributed environment,

enable event-based communication between Jini technology-enabled

services.

 Transaction Interfaces, which enable entities to cooperate in such a

way that either all of the changes made to the group occur atomically or

none of these changes occur.

2.3.2.1 Leasing Interfaces [Sun00a] [Sun02]

Leasing is a particular style of programming for distributed systems and

applications in which a resource is offered by one object in a distributed system

and used by a second object in that system, it is based on a notion of granting a

use to the resource for certain period of time that is negotiated by the two

objects when access to the resource is first requested and given. Such a grant is

known as a lease and is meant to be similar to the notion of a lease used in

everyday life.

Leases are either exclusive or non-exclusive. Exclusive leases ensure that

no one else may take a lease on the resource during the period of the lease;

nonexclusive leases allow multiple users to share a resource. It is not the only

time-based mechanism used in software; there are other mechanisms such as

Chapter Two Jini Networking Technology

 ٢٢

time-to-live, ping intervals, and keep-alive. Leasing is not meant to replace

these other techniques, but rather to enhance the set of tools available to the

programmer of distributed systems. Distributed systems differ fundamentally

from non-distributed systems in that there are situations in which different parts

of a cooperating group are unable to communicate, either because one of the

members of the group has crashed or because the connection between the

members in the group has failed. This partial failure can happen at any time and

can be intermittent or long-lasting.

The possibility of partial failure greatly complicates the construction of

distributed systems in which components of the system that are not co-located

provide resources or other services to each other. The programming model that

is used most often in non-distributed computing, in which resources and services

are granted until explicitly freed or given up, is open to failures caused by the

inability to successfully make the explicit calls that cancels the use of the

resource or system. Failure of this sort of system can result in resources never

being freed, in services being delivered long after the recipient of the service has

forgotten that the service was requested, and in resource consumption that can

grow without bounds. To avoid these problems, a notion of a lease introduced.

Rather than granting services or resources until that grant has been explicitly

cancelled by the party to which the grant was made, a leased resource or service

grant is time based. When the time for the lease has expired, the service ends or

the resource is freed. The time period for the lease is determined when the lease

is first granted, using a request/response form of negotiation between the party

wanting the lease and the lease grantor. Leases may be renewed or cancelled

before they expire by the holder of the lease, but in case of no action (or in case

of a network or participant failure), the lease simply expires. When a lease

expires, both the holder of the lease and the grantor of the lease know that the

service or resource has been reclaimed. There are number of characteristics that

are important for understanding what a lease is and when it is appropriate to use

one. Among these characteristics are:

 A lease is a time period during which the grantor of the lease ensures (to

the best of the grantor’s abilities) that the holder of the lease will have

access to some resource. The time period of the lease can be determined

Chapter Two Jini Networking Technology

 ٢٣

solely by the lease grantor, or can be a period of time that is negotiated

between the holders of the lease and the grantor of the lease. Duration

negotiation need not be multi-round; it often suffices for the requestor to

indicate the time desired and the grantor to return the actual time of

grant.

 During the period of a lease, a lease can be cancelled by the entity

granting the lease. Such a cancellation allows the grantor of the lease to

clean up any resources associated with the lease.

 A lease holder can request that a lease be renewed. The renewal period

can be for a different time than the original lease, and is also subject to

negotiation with the grantor of the lease. The grantor may renew the

lease for the requested period or a shorter period or may refuse to renew

the lease at all. However, when renewing a lease the grantor cannot,

unless explicitly requested to do so, shorten the duration of the lease so

that it expires before it would have if it had not been renewed. A

renewed lease is just like any other lease and is itself subject to renewal.

 A lease can expire. If a lease period has elapsed with no renewals, the

lease expires, and any resources associated with the lease may be freed

by the lease grantor. Both the grantor and the holder are obliged to act as

though the leased agreement is no longer in force. The expiration of a

lease is similar to the cancellation of a lease, except that no

communication is necessary between the lease holder and the lease

grantor. Leasing is part of a programming model for building reliable

distributed applications. In particular, leasing is a way of ensuring that a

uniform response to failure, forgetting, or disinterest is guaranteed,

allowing agreements to be made that can then be forgotten without the

possibility of unbounded resource consumption, and providing a flexible

mechanism for duration-based agreement.

2.3.2.2 Event and Notification Interfaces [Sun01a]

Events are common programming model used for notifying components

that something interesting has happened, such as that the user has given some

input or another component’s state has changed. Programs based on an object

Chapter Two Jini Networking Technology

 ٢٤

that is reacting to change of state somewhere outside the object are common in a

single address space. Such programs are often used for interactive applications

in which user actions are modeled as events to which other objects in the

program react. Delivery of such local events is assumed to be well ordered, very

fast, predictable, and reliable. Further, the entity that is interested in the event is

assumed to always want to know about the event as soon as the event has

occurred. The same style of programming is useful in distributed systems, where

the object reacting to an event is in different JVM, perhaps on a different

physical machine from the one on which the event occurred. Just as in the

single-JVM case, the logic of such programs is often reactive, with actions

occurring in response to some change in state that has occurred elsewhere. A

distributed event system has a different set of characteristics and requirements

than a single-address-space event system. Notifications of events from remote

objects may arrive in different orders or from different clients, or may not arrive

at all. The time it takes for a notification to arrive may be long (in comparison to

the time for computation at either the object that generated the notification or the

object interested in the notification). There may be occasions in which the object

wishing the event notification does not wish to have that notification as soon as

possible, but only on some schedule determined by the recipient. There may

even be times when the object that registered interest in the event is not the

object to which a notification of the event should be sent. Unlike the single-

address-space notion of an event, a distributed event cannot be guaranteed to be

delivered in a timely fashion. Because of the possibilities of network delays or

failures, the notification of an event may be delayed indefinitely and even lost in

case of a distributed system.

Java has specified an event model with JavaBeans, (the standard component

model for Java). This model has been extended for distributed events in Jini,

with some slight changes to accommodate Jini’s distributed nature. Basically

three concrete objects involved in a Jini distributed event systems as shown in

figure (2.4) these are:

 The object that registers interest in an event

 The object in which an event occurs (event generator)

 The recipient of event notifications (remote event listener)

Chapter Two Jini Networking Technology

 ٢٥

Figure (2.4): Three objects involved in Jini distributed event system

An event generator is an object that has some kinds of abstract state

changes that might be of interest to other objects and allows other objects to

register interest in those events. This is the object that will generate notifications

when events of this kind occur, sending those notifications to the event listeners

that were indicated as targets in the calls that registered interest in that kind of

event. A remote event listener is an object that is interested in the occurrence of

some kinds of events in some other object. The major function of a remote event

listener is to receive notifications of the occurrence of an event in some other

object (or set of objects). A remote event is an object that is passed from an

event generator to a remote event listener to indicate that an event of a particular

kind has occurred. At minimum, a remote event contains information about the

kind of event that has occurred, a reference to the object in which the event

occurred, and a sequence number allowing identification of the particular

instance of the event. A notification will also include an object that was

supplied by the object that registered interest in the kind of event as part of the

registration call.

2.3.2.3 Transactions Interfaces

Transactions are a fundamental tool for many kinds of computing. A

transaction allows a set of operations to be grouped in such a way that they

either all succeed or all fail; further, the operations in the set appear from outside

the transaction to occur simultaneously [Sun02]. Transactional behavior are

especially important in distributed computing, where they provide means for

enforcing consistency over a set of operations on one or more remote

Chapter Two Jini Networking Technology

 ٢٦

participants. If all the participants are members of a transaction, one response to

a remote failure is to abort the transaction, thereby ensuring that no partial

results are written. Jini provides the interfaces necessary to coordinate a two-

phase commit, a special kind of transaction used for distributed transactions (a

one-phase commit is a transaction for a non-distributed system). The two-phase

commit protocol defines the communication patterns that allow distributed

objects and resources to wrap a set of operations in such a way that they appear

to be a single operation. The protocol requires a manager that will enable

consistent resolution of the operations by a guarantee that all participants will

eventually know whether they should commit the operations (roll forward) or

abort them (roll backward).

The two-phase commit protocol is designed to enable objects to provide

ACID (Atomicity, Consistency, Isolation, and Durability) properties. The

default transaction semantics define one way to preserve these properties. The

ACID properties are [Wha05]:

 Atomicity: All the operations grouped under a transaction occur or none

of them do. The protocol allows participants to discover which of these

alternatives is expected by the other participants in the protocol.

However, it is up to the individual object to determine whether it wishes

to operate in concert with the other participants.

 Consistency: The completion of a transaction must leave the system in a

consistent state. Consistency includes issues known only to humans,

such as that an employee should always have a manager. The

enforcement of consistency is outside of the realm of the transaction

itself-a transaction is a tool to allow consistency guarantees and not

itself a guarantor of consistency.

 Isolation: Ongoing transactions should not affect each other.

Participants in a transaction should see only intermediate states resulting

from the operations of their own transaction, not the intermediate states

of other transactions. The protocol allows participating objects to know

what operations are being done within the scope of a transaction.

However, it is up to the individual object to determine if such operations

Chapter Two Jini Networking Technology

 ٢٧

are to be reflected only within the scope of the transaction or can be seen

by others who are not participating in the transaction.

 Durability: The results of a transaction should be as persistent as the

entity on which the transaction commits. However, such guarantees are

up to the implementation of the object.

The dependency on the participant’s implementation for the ACID

properties is the greatest difference between this two-phase commit protocol and

more traditional transaction processing systems. Such systems attempt to ensure

that the ACID properties are met and go to considerable trouble to ensure that no

participant can violate any of the properties.

This approach differs for both philosophical and practical reasons. The

philosophical reason is centered on a basic tenet of object-oriented

programming, at which the implementation of an object should be hidden from

any part of the system outside the object. Ensuring the ACID properties

generally requires that an object’s implementation correspond to certain

patterns. It is believed that if these properties are needed, the object (or, more

precisely, the programmer implementing the object) will know best how to

guarantee the properties. For this reason, the manager is solely concerned with

completing transactions properly. Clients and participants must agree on

semantics separately. The practical reason for leaving the ACID properties up to

the object is that there are situations in which only some of the ACID properties

make sense, but that can still make use of the two-phase commit protocol. A

group of transient objects might wish to group a set of operations in such a way

that they appear atomic; in such a situation it makes little sense to require that

the operations be durable. An object might want to enable the monitoring of the

state of some long running transactions; such monitoring would violate to all of

these properties limits the use of such a protocol.

Committing a transaction requires each participant to vote, where a vote is

either prepared (ready to commit), not changed (read-only), or aborted (the

transaction should be aborted). If all participants vote “prepared” or “not

changed,” the transaction manager will tell each “prepared” participant to roll

forward, thus committing the changes. Participants that voted “not changed”

Chapter Two Jini Networking Technology

 ٢٨

Transaction
Participant

Transaction
Manager Join

Transaction
Participant

Transaction
Participant

need do nothing more. If the transaction is ever aborted, the participants are told

to roll back any changes made under the transaction.

In Jini the transaction takes place as follows: First, multiple transaction

participants join a transaction manager as shown in figure (2.5). Second, once

all of the transaction participants have joined, the two-phase commit can begin

as shown in figure (2.6). The first part of the two-phase commit consists of the

transaction manager telling every participant to prepare. This causes all of the

participants to execute but not store any changes yet. Every participant also

returns a message, either Prepared (ready to commit), not changed (read-only),

or aborted (the transaction should be aborted). At this point, the second part of

the two-phase commit begins. If every participant returns Prepared, the

transaction manager will tell each “prepared” participant to roll forward, then

the transaction can be committed, and the transaction manager sends a commit

message to every participant. However, if any participant returns abort, then the

entire transaction must be aborted, and the transaction manager sends an abort

message to every participant, the participants are told to roll back any changes

made under the transaction. Any participants that send a not changed message

are ignored in the rest of the transaction [Jas00].

Figure (2.5): Joining a transaction manager.

Chapter Two Jini Networking Technology

 ٢٩

Transaction
Participant

Transaction
Manager Prepare

Transaction
Participant

Transaction
Participant

Figure (2.6): Two Phases commits protocol

A transaction completes when any entity either commits or aborts the

transaction. If a transaction commits successfully, then all operations performed

under that transaction will complete. Aborting a transaction means that all

operations performed under that transaction will appear never to have happened.

2.3.3 Infrastructure [Sun99a] [Sun00a] [Sun01b]

The Jini technology infrastructure defines the minimal Jini technology core.

The infrastructure includes the following: A distributed security system,

integrated into RMI, which extends Java platform’s security model to the world

of distributed systems. The discovery and join protocols, service protocols that

allow services (both hardware and software) to discover, become part of, and

advertise supplied services to the other members of the federation. The Lookup

service, which serves as a repository of services on which all Jini services

registered. Entries in the Lookup service are objects written in Java

programming language; these objects can be downloaded as part of a lookup

operation and act as local proxies to the service that placed the code into the

Lookup service.

2.3.3.1 Lookup service

Services are found and resolved by a Lookup service. The Lookup service

is the central bootstrapping mechanism for the system and provides the major

point of contact between the system and users of the system such that all Jini

Returns
"Prepared"
"Abort", or
"Not changed"

Chapter Two Jini Networking Technology

 ٣٠

services register themselves on a Lookup service and all Jini clients use the

Lookup service to find services [Fre04]. In precise terms, a Lookup service

maps interfaces indicating the functionality provided by a service to sets of

objects that implement the service. In addition, descriptive entries associated

with a service allow more fine-grained selection of services based on properties

understandable to people. Objects in a Lookup service may include other

Lookup services; this provides hierarchical lookup. Further, a Lookup service

may contain objects that encapsulate other naming or directory services,

providing a way for bridges to be built between a Jini Lookup service and other

forms of Lookup service. Of course, references to a Jini Lookup service may be

placed in these other naming and directory services, providing means for clients

of those services to gain access to a Jini system. A service is added to a Lookup

service by a pair of protocols called discovery and join, first the service locates

an appropriate Lookup service (by using the discovery protocol), and then it

joins it (by using the join protocol).

2.3.3.2 Discovery/Join

The details of the service architecture are best understood once the Jini

Discovery/Join and Jini Lookup protocols are presented. These protocols are the

heart of Jini system. Discovery occurs when a service is looking for a Lookup

service with which to register. Join occurs when a service has located a Lookup

service and wishes to join it. Lookup occurs when a client or user needs to locate

and invoke a service described by its interface type (written in Java

programming language) and possibly other attributes. The discovery process

shown in figure (2.7)

Figure (2.7) Discovery

Lookup service

Clients

Service
Provider

Service Object

Service

A service provider seeks

a Lookup service

Chapter Two Jini Networking Technology

 ٣١

Jini discovery/join is the process of adding a service to a Jini system. A

service provider is the originator of the service (a device or software, for

example).

 First, the service provider locates a Lookup service by multicasting a

request on the local network for any Lookup services to identify

themselves as shown in figure (2.7).

 Then, a service object for the service is loaded into the Lookup service

shown in figure (2.8). This service object contains Java programming

language interface for the service, including the methods that users and

applications will invoke to execute the service along with any other

descriptive attributes.

Figure (2.8) Join

Services must be able to find a Lookup service; however, a service may

delegate the task of finding a Lookup service to a third party. The service is now

ready to be looked up and used as shown in the figure (2.9).

 A service provider registers

a service object (proxy)

and its service attribute

with a Lookup service

Chapter Two Jini Networking Technology

 ٣٢

Figure (2.9) Lookup

A client locates an appropriate service by its type-that is, by its interface

written in Java programming language-along with descriptive attributes that are

used in a user interface for the Lookup service. The service object is loaded into

the client. The final stage is to invoke the service, as shown in the following

diagram (Figure 2.10).

Figure (2.10) Lookup

The service object’s methods may implement a private protocol between

itself and the original service provider. Different implementations of the same

service interface can use completely different interaction protocols.

When a device is plugged in, the two protocols-discovery and join occurs

[Kes01]:

A client requests a service by
Java programming language
type and, perhaps, other
service attributes. A copy of
the service object is moved to
the client and used by the
client to talk to the service

The client interacts
directly with the
service provider via
the service object
(proxy)

Chapter Two Jini Networking Technology

 ٣٣

 A. Discovery Protocols

 There are three related discovery protocols, each designed with

different purposes. They are:

1. The multicast request protocol: is employed by entities that wish to

discover nearby Lookup services as shown in figure (2.11).

Figure (2.11) multicast discovery protocol. Discovering entity (D) sends a

multicast message. Lookup services (L) respond, while services do not react.

The steps taken by the discovering entity are:

 The discovering entity (the service or application) will send packets to

the well known multicast network endpoint on which the multicast

request service operates looking for Lookup services (this is typically

done shortly after the discovering entity has started up), this packet is

sent to multiple recipients, similar to a broadcast. It contains, the IP-

address of the discovering entity.

 The Lookup service establishes a TCP-connection to the discovering

entity and sends it its service object.

2. The Multicast Announcement Protocol: The multicast announcement

protocol shown in figure (2.12) is used by Jini Lookup services to announce

their availability to interested parties within multicast radius, this is typically

done when the Lookup service starts, but also periodically during normal

operation, during network malfunction, a service or application may "loose"

Lookup services, because it can not connect to them. The multicast

announcement protocol gives the discovering entity an opportunity to

L

L

L D

Chapter Two Jini Networking Technology

 ٣٤

(re)discover the Lookup service. The details of this protocol are simple. The

entity that runs the Lookup service takes the following steps:

 It constructs a datagram socket object; set up to send to the well known

multicast end point on which the multicast announcement service

operates.

 Application and services obtained from this, packet the service ID of the

Lookup service, which allows them to determine whether or not they

already know this Lookup service.

 It multicast announcement packet at intervals. The length of the interval

is not mandated.

Figure (2.12) The multicast announcement protocol. The Lookup service (L)

announces its presence in the network. Discovering entities (D) that do not

already know this Lookup service, will ask it for its service object.

An entity that wishes to listen for multicast announcements performs the

following set of steps:

 It establishes a set of service IDs of Lookup services from which it has

already heard, using the set discovered by using the multicast request

protocol as the initial contents of this set.

 It binds a datagram socket to the well-known multicast endpoint on

which the multicast announcement service operates and listens for

incoming multicast announcements.

 For each announcement received, it determines whether the service ID

in that announcement is in the set from which it has already heard. If so,

D
D

D

D

D L

Chapter Two Jini Networking Technology

 ٣٥

or if the announcement is for a group that is not of interest, it ignores the

announcement. Otherwise, it performs unicast discovery using the host

computer and port number in the announcement to obtain a reference to

the announced Lookup service, and then adds this service ID to the set

from which it has already heard.

3. The Unicast Discovery Protocol: The last discovery protocol, called

Unicast discovery as shown in figure (2.13), it is used by applications or

services that want to discover Lookup services that cannot be reached using

a multicast packet. These are the Lookup services that are, network wise,

further away. The protocol assumes that the discovering entity already

knows the IP- address of the Lookup service it wants to discover. This IP-

address typically has to be provided by a network administrator. The

discovering entity simply connects to the Lookup service, using the known

IP-address. The Lookup service then sends its service object using this

connection.

Figure (2.13) The unicast-discovery protocol. The discovering entity (D) connects

to a specific Lookup service (L) that sends its service object.

B. Join Protocol

This protocol makes use of the discovery protocols to provide a standard

sequence of steps that services should perform when they are starting up

and registering themselves with a Lookup service. A service must maintain

certain items of state across restarts and crashes. These items are as follows:

L
L

L

L

L D

Chapter Two Jini Networking Technology

 ٣٦

 Service ID. A new service will not have been assigned a service ID, so

this will be not being set when a service is started for the first time.

After a service has been assigned a service ID, it must continue to use it

across all Lookup services.

 A set of attributes that describes the service’s Lookup service entry.

 A set of groups in which the service wishes to participate. For most

services this set will initially contain a single entry: the empty string

(which denotes the public group).

 A set of specific Lookup services to register with. This set will usually

be empty for new services.

Note that “new service” means the one that has never before been

registered, not one that is being started again or one that has been moved from

one network to another. For each member of the set of specific Lookup services

to register with, the service attempts to perform unicast discovery of each one

and to register with each one. If any fails to respond, the implementer may

choose either retry or to give up, but the non-responding Lookup service should

not be automatically removed from the set if an implementation decides to give

up. To perform group joining, if the set of groups to join is not empty, the

service performs multicast discovery and registers with each of the Lookup

services that either respond to requests or announce themselves as members of

one or more of the groups the service should join. The unicast and multicast

discovery steps detailed previously do not need to proceed in any strict

sequence. The registering service must register the same sets of attributes with

each Lookup service, and must use a single service ID across all registrations.

Once a service has registered with a Lookup service, it periodically renews the

lease on its registration. A lease with a particular Lookup service is cancelled

only if the registering service is instructed to unregister itself. If a service cannot

communicate with a particular Lookup service, the action it takes depends on its

relation to that Lookup service. If the Lookup service is in the persistent set of

specific Lookup services to join, the service must attempt to reregister with that

Lookup service. If the Lookup service was discovered using multicast discovery,

it is safe for the registering service to forget about it and wait a subsequent

multicast announcement.

Chapter Two Jini Networking Technology

 ٣٧

2.4 Applications of Jini Technology

Jini is Java (actually an application of Java technology), which itself is a

programming environment from Sun. To keep technologies straight, think of

Java as a platform strategy. Jini is a network strategy. Java promotes "write

once, run anywhere." Jini promotes easy network connections and object

linking. Jini strength's is in spontaneous networking, it's not designed for long-

lived networks; it's designed for network where things come and go. The

possibilities for applications of the Jini software are far too numerous to list.

Because of Jini’s versatility and compatibility with virtually any type of

software or hardware, the scope of Jini’s use will be as broad as the technology

industry. Below are few examples of how Jini is used now and can be used in

the future [Jam02]:

1. 80,000 developers have signed up for a Jini license (Till 2002), which

provides them with a development kit and allows for research and

development use and limited testing. If a company wants to sell its Jini

product or use the technology in a production environment, it must

pass Sun's compatibility tests to receive a commercial license, which is

free of charge. So far, 75 companies have acquired commercial

licenses and are using Jini for live applications, many in the health

care, financial and telecommunication sectors.

2. Montreal-based Newtrade Technologies, provides middleware and

services to the travel industry, and created an online booking engine

that links distributors such as travel agencies with hotels, car rental

companies and other suppliers. Newtrade uses Jini, along with Java,

XML (eXtensible Markup Language) and a J2EE (Java 2 Enterprise

Edition) server, to integrate its customers' disparate computer systems

in a way that allows them to place reservations and perform

transactions in real time over the Web.

3. While hotel chains and other large corporations can use technologies

such as Sun's Java Message Service, which are relatively costly to

purchase and support, Jini plays a vital role for connecting hundreds of

smaller establishments whose Information Technology (IT)

Chapter Two Jini Networking Technology

 ٣٨

infrastructure may be no more than a single DOS-based PC. These

smaller systems may go online and offline unpredictably, and their IP

addresses are frequently changed by Internet service providers,

creating the type of "dynamic" networks that Sun says Jini is designed

for. Jini overcomes these problems, because of its ability to locate and

communicate with other Jini-based computers over a wide network.

What Jini provides an efficient, cost-effective delivery mechanism for

all this interaction between the clients and back-end systems [Jan05].

4. Eko Systems, in Fairfax, Virginia, uses Jini to provide hospitals with a

system for automatically collecting data about patients from

anesthesiology machines, ventilators and other hospital equipment.

The devices send this data to a Jini-enabled "charting station" where

medical staff also enters other patient care information. The data is

uploaded to a Java server, which in turn is connected to the hospital's

main IT infrastructure for use in customer billing, registration and

other applications.

5. Jini is used throughout the system, allowing medical devices to be

dynamically configured when they are connected to the network, and

ensuring that patient data is routed to the appropriate location. Eko

picked Jini because of its stability, according to Edmiston, and because

it makes it easier to monitor and update the system remotely. Eko has

deployed its system in two hospitals to date, with plans to outfit three

more by the end of the year.

6. A car will be able to be connected to the Jini network to avoid

congested traffic areas, find directions to destinations and even locate

available parking.

7. Users, while on a trip, will be able to program their Videocassette

recorder (VCR) at home to record the local news to a hard drive and

then view it the next day wherever they are in the world.

8. Kitchen appliances will be able to hook into local utility companies

through the Internet in order to track usage patterns to provide more

accurate billing and customer service.

Chapter Two Jini Networking Technology

 ٣٩

9. Travelers will be able to more easily access the internet while away

from home.

10. Appliance repairmen will be able to repair household appliances from

remote locations based on diagnostics they run on the machine over

the Internet.

11. People will be able to participate in a multitude of services via their

cell phones, including buying music, reserving airline tickets and

receiving news.

 II

Table of Contents

Abstract I

Table of Contents II

List of Abbreviations VI

Chapter One: Introduction

1.1 Problem Definition.....................……………………..1

1.2 Related Works……………………………………………….3

1.3 Aim of Research……………………………………………..6

1.4 Thesis layout………………………………………………...7

Chapter Two: Jini Networking Technology

2.1Plug and Play Systems…………………………………..8

2.1.1 Universal Plug and Play (UPnP)……………………8

2.1.2 Salutation……………………………………………...11

2.1.3 Bluetooth SDP………………………………………...12

2.1.4 Service Location Protocol (SLP)……………………...13

2.2 Jini System………………………………………..........15

2.3 Jini Architecture……………………………………………18

2.3.1 Services……………………………………………….20

2.3.2 Programming Model………………………………….21

2.3.2.1 Leasing Interfaces………………………..........21

 III

2.3.2.2 Event and Notification Interfaces……………….23

2.3.2.3 Transaction Interfaces..25

2.3.3 Infrastructure..29

2.3.3.1 Lookup Service...29

2.3.3.2 Discovery/Join..30

2.4 Applications of Jini Technology...37

Chapter Three: Distributed Systems and their

Security

3.1 Introduction...40

3.2 Distributed Systems..40

3.3 Security in Distributed Systems..42

3.3.1 Public key Cryptosystems and Digital Signatures..........45

3.3.2 Certificates..47

3.3.3 Access control...48

3.3.4 Credentials..49

3.4 Simple Public Key Infrastructure..49

3.5 Security in Jini...51

3.6 Java Security..52

3.6.1 Java Language for Distributed System............................52

3.6.2 Java Language and Platform: type safety and isolation...55

3.6.3 Resource Access Control...57

3.6.4 Cryptography...62

 IV

Chapter Four: SJLS Design and Implementation

4.1 Introduction..64

4.2 JDBC API...65

4.2.1 The ODBC Standard...67

4.2.2 JDBC versus ODBC and other APIs.................................68

4.3 SJLS Architecture..69

4.4 SJLS Components..70

4.5 SJLS Design...71

4.5.1 Server Design..73

4.5.2 Lookup Service Design...74

4.5.2.1 Service Registrar..75

4.5.2.2 Check Lease...76

4.5.2.3 Client Requester...77

4.5.3 Client Design..78

4.6 The Proposed Security Model..79

4.6.1 Sever Security Module...79

4.6.2 Client Security Module..80

4.6.2.1 Certification...81

4.6.2.2 Verification..82

4.6.3 Client-Server Security Module...84

Chapter Five: Application and Results

5.1 Introduction...86

5.2 SJLS Application..87

 V

5.3 Server Interface...88

5.4 Client Interface..93

5.5 Examples...96

5.6 Tests and Results..102

Chapter Six: Conclusions and Future Work

6.1 Discussion and Conclusions..104

6.2 Suggestions for Future Work...105

References..107

Appendix A..A-1

 VI

List of Abbreviations

ACID Atomicity, Consistency, Isolation and Durability

ACL Access Control List

API Application Programming Interface

CA Certificate Authority

CLI Call Level Interface

CM Capability Manager

COC Computations Operations Client

CORBA Common Object Request Broker

COSP Computation Operations Service Provider

D Delegation

DA Directory Agent

DCOM Distributed Component Object Model

DES Data Encryption Standard

DSA Digital Signature Algorithm

FCS First Client Source

FRSP File Retrieving Service Provider

FS First Server

HTTP Hyper Text Transfer Protocol

I Issuer

IETF Internet Engineering Task Force

IP Internet Protocol

IT Information Technology

 VII

JAAS Java Authentication and Authorization Service

JDBC-ODBC Java Database Connectivity-Open Database Connectivity

JDK Java Dynamic Kit

JINI Java Intelligent Network Infrastructure

JVM Java Vertical Machine

J2EE Java 2 Enterprise Edition

KVM Kilo Virtual Machine

CLDC Connected Limited Device Configuration

LUS Look Up Service

NSL Network Service Location

OS Operating System

PABADIS Plant Automation Based on Distributed Systems

PrC Printer Client

PSP Printer Service Provider

RMI Remote Method Invocation

RPC Remote Procedure Call

RSA Rivest Shamir and Adleman

S Subject

SA Service Agent

SDP Service Discovery Protocol

SIG Special Interset Group

SJLS Secure Jini-Like System

SLP Service Location Protocol

SPKI Simple Public Key Infrastructure

SQL Structured Query Language

 VIII

SS Second Server

SSDP Simple Service Discovery Protocol

T Tag

TCP Transmission Control Protocol

UA User Agent

UDP User Datagram Protocol

UPnP Universal Plug and Play

URL Uniform Resource Locater

V Validity

XML eXtensible Markup Language

 IX

١٠٧

References

 [Abr98] Abraham Silberschatz and Peter Bear Galvin, "Operating

System Concepts", Fifth edition, Addison-Wesley Publishing

Company, 1998.

 [Amo94] E. Amoroso”Fundamentals of Computer Security Technology”,

Prentice-Hall, 1994.

 [Arn99] K. Arnold, B. O’Sullivan, R. W. Scheifler, and J. Waldo, A.

Wollrath, "The Jini Specification", Addison Wesley, 1999.

 [Car99] Carl Ellison, "SPKI requirements", RFC 2692, IETF, 1999.

 [Dan00] Y.Daniel Liang,"Java Programming with JBuilder 3", Prentic-

Hall, 2000.

 [Dsg96] "Digital Signature Guidelines", American Bar Association,

available at http://www.abanet.org/scitech/ee/ise/dsg.pdf, 1999.

 [Err97] Errol Simmon, "Middleware Definition", PC Networking,

available at

http://www.scit.wlv.ac.uk/~jphb/comms/esppt1/index.html, 1997.

 [Eug01] Eugene A. Gryazin, "Service Discovery in Bluetooth", Group

for Robotics and Virtual Reality, Department of Computer

Science, Helsinki University of Technology, 2001.

 [Fre00] Fredrik Anderson and Magnus Karlsson, "Secure Jini Services

in Ad Hoc Networks", as Master of Science Thesis, Royal

Institute of Technology (KTH), Stockholm, 2000.

 [Fre04] Fredrik Samson, "Alternative Java Security Policy Model", as

Master of Science Thesis, 2004.

 [Geo97] George Aggelis, "Security Issues Surrounding Programming

Languages for Mobile Code", available at

http://portal.acm.org/ciation.cfm?id=506137, 1997

١٠٨

 [Geo01] George Coulouris, Jean Dollimore, and Tim Kindberg,

"Distributed Systems concepts and design", Pearson Education

Limited, Third edition, 2001.

 [Glo90] Glossary Term, "Reliability", available at

http://www.sei.cmu.edu/str/indexes/glossary/reliability.html,

1990.

 [Gon99] Li Gong," Inside Java2 Platform Security: Architecture, API

design, and Implementation", Addison Wesley Publishing

Company, 1999.

 [Grm97] Graham Hamilton, Rick Cattell, Maydene Fisher, "JDBC

Database Access with Java", Addison-Wesley Publishing

Company, 1997.

 [Has00] B. Hashii, S. Malabarba, R. Pandey, "Supporting Reconfigurable

Security Policies for Mobile Programms", available at

http://www.citeseer.ist.psu.edu/hashii00/supporting.htmi, 2000.

 [Ian03] Ian Taylor, "Lecture 7:Jini", available at

http://users.cs.cf.ac.uk/I.J.Grimstead/RAVE/biblography.html,

2003.

 [Jam02] James Niccolai, "Three Years on, can Sun's Jini mesh with Web

services", available at

http://www.itworld.com/AppDev/2668/020205jini, 2002.

 [Jap99] Jaap Haartsen, Warren Allen, Jon Inouye, Olaf J. Joeressen, and

Mahmoud Naghshineh, " Bluetooth: Vision, Goals, and

Architecture", available at

http://www.cs.huji.ac.il/course/2003/postpc/docs/wireless_and_B

luetooth/Jaap_Haarsten_etal.pdf, 1999.

 [Jas00] Jason I. Hong, "An Overview of the Jini Coordination

Framework", Group for User Interface Research, Computer

Science Division, University of California, Berkeley, CA 94720-

1776 USA +1 510 643-7354, 2000

 [Jav00] Javier Govea and Michel Barbeau, " Comparison of Bandwidth

Usage: Service Location Protocol and Jini", available at

١٠٩

http://www.scs.carleton.ca/~barbeau/publications/2000/TR_00_0

6.pdf, 2000.

 [Jer00] Jeremy Hylton,"Pisces User Manual", available at

http://www.cnri.reston.va.us/software/pisces/manual.pdf , 2001.

 [Jini] Arches Academic Resources for Computing and Higher Education

Services, "Jini_Arch", available at

http://www.arches.uga.edu/~pannikes/jini_App.html.

 [Joh01] John Lewis and William Loftus, "Java Software Solutions

Foundation of Program Design", Addison-Wesley Publishing

Company, Second Edition, 2001.

 [Kei01] W. Keith Edwards, "Core Jini", Second Edition, Published by

Prentic-Hall, 2001.

 [Kes01] Kees-Jan Dijkzeul, "Jini: Middleware solution of the future?"

available at http://www.aas.nl/pdf/dijkzeul_jini.pdf, 2001.

 [Kwa01] Kwaliteg's Web Site, "What is Availability", available at

http://www.kwaliteg.co.za/maintenance/Availability.html, 20001.

 [Lai00] Lai Olstad, Javier Ramirez, Clint Brady, and Bruce McHollan,

"Jini Technology: Impromptu Networking and its Impact on

Telecommunications", available at

http://tiger.twoson.edu/users/chaung6/jini_1.pdf, 2000.

 [Lan89] C. Landau. “Security in a Secure Capability-Based System”,

Operating Systems Review, pp 2-4. Available at

http://www.cis.upenn.edu/~KeyKOS/Security.html, 1989.

 [Mar05] Mariva H. Aviram, "Sun's Magic Lamp", available at

http://www.javaworld.com/javaworld/jw_07_javaone_jini_p.html

, 2005.

 [Mat96] Matt Blaze, Joan Feigenbaum, and Jack Lacy, "Decentralized

Trust Management", In Proceedings of the 1996 IEEE

Symposium on Security and Privacy, Oakland, California, 1996.

 [Mat99] Matt Blaze, Joan Feigenbaum, Jhon Ioannidis, and Angelos D.

Keromytis. "The KeyNote trust-management system version 2",

RFC 2704, IETF, 1999.

١١٠

 [McG97]G. McGraw, E. Felten. “Java Security: Hostile Applets, Holes, and

Antidotes”, John Wiley & Sons, New York, 1997.

 [Mic98] MIC Company, "Visual C++ Bible", MIC, Second edition, Part

111 MFC_ODBC, 1998.

 [Mic99a] Michael Fahrmair, Chris Salzmann, and Maurice

Schoenmakers, "CARP@-Managing Dynamic Jini Systems",

available at

http://www.waston.ibm.com/middleware2000/wip_papers/cara

pat.pdf , November 15, 1999.

 [Mic99b] Microsoft Corporation, "Universal Plug and Play:

Background", available at

http://www.upnp.org/resorces/UPnPbkgnd.html, 1999.

 [Mic00] Michael Morgan, "A Brief Look into Universal Plug and Play",

available at http://www.ece.msstate.edu/~jwbruce , 2001.

 [Ope99] Open Door, "The Service Location Protocol and Macintosh",

Open Door Network Inc, 1999.

 [Pab00] PABADIS Consortium, "Plant Automation Based on Distributed

Systems", available at http://www.pabadis.org, 2000.

 [Pas00] Pasi Eronen, Johannes Lehtinen, Jukka Zitting, and Pekka

Nikander, " Extending Jini with Decentralized Trust

Management", available at

http:/www.niksulahut.fi/~peronen/publications/openarch_2000.

pdf, 2000.

 [Pas01] Pasi Eronen, "Security in The Jini Networking Technology: A

Decentralized Trust Management Approach", a Master Thesis,

Helsinki University of Technology, Department of Computer

Science and Engineering, 2001.

 [Per00] Peer Hasselmeyer, Roger Kehr, and Marco Vob, "Trade-offs in a

Secure Jini Service Architecture", Copyright Springer Verlag,

Munich Germany, 2000.

١١١

 [Qus98] Qusay H. Mahmoud, "Distributed Progtamming with Java",

Manning Publications, Greenwich, CT, USA, 1998.

 [Rab02] Rabul Gupta, Summet Talwr, Dbarma P. Agrawal, "Jini Home

Networking: A step toward Pervasive Computing", University

of Cincinnati, 2002.

 [Rap01] Raptor Software, "Section-1 Maintability", Barringer and

Associate, Inc., available at

http://www.barringer1.com/jul01prb.html, 2001.

 [Rek] Rekesh John, "UpNp, Jini, and Salutation-A Look at Some Popular

Coordination Framework for Future Network Devices",

available at http://www.cswl.com/whitepaper/tech/upnp.html.

 [Ron96] Ronald L. Rivest and Butter Lampson, "SDSI-A Simple

Distributed Security Infrastructure", available at

http://theory.lcs.mit.edu/~cis/Sdsi.html, 1996.

 [Sal99] Salutation Consortium Inc., "Salutation Architecture

Specification (Part-1)", available at http://www.salutation.org,

1999.

 [Sar05] Sarab M. Hameed, "Design and Implementation of a Secure

Distributed Agent System", a Thesis submitted to the Institute

Informatics for higher studies for PhD degree , 2005.

 [Sch97] B. Schneier. “Applied Cryptography, Algorithms, Protocols and

Source Code in C”, Second Edition, John Wiley & Sons, 1997.

 [Sco00] Scott Oaks and Henry Wong, "Jini in a Nutshell", O'Reilly &

Associates Inc, 2000.

 [Sip98] Siple M. D. ,"The Complete Guide to Java Database

Programming", McGraw-Hill Companies Inc., U.S.A., 1998

 [Ste00] Steffen Deter and Karsten Sohr, "Pini-A Jini-like Plug&Play

Technology for the KVM/CLDC", Springer-Verlag, London,

2000.

 [Sun97] Sun Microsystems, "Questions about Access Control in JDK

1.1", available at http://archieves.java.sun.com, 1997.

١١٢

 [Sun99a] Sun Microsystems, "Jini Architecture Specifications",

available at

http:/www.cs.princeton.edu/courses/archive/fall99/cs597b/docs/

jcdoc1_0/specs/arch/Arch.pdf, 1999.

 [Sun99b] Sun Microsystems, "Jini Technology Architectural Overview",

available at ttp://www.sun.com/jini/whitepapers/architecture.pdf,

1999.

 [Sun00a] Sun Microsystems, "The Community resource for Jini

Technology", available at htt://www.sun.com/jini, 2000.

 [Sun00b] Sun Microsystems, "Jini Networking Technology", available at

http://www.sun.com/software/jinni/whitepapers/jini_execovervi

ew.pdf, 2000.

 [Sun01]Sun Microsystems, "Jini Technology Core Platform

Specification", available at

http://www.sun.com/software/jini/specs/core1_2.pdf, 2001.

 [Sun02] Sun Microsystems, "Overview of the Jini Design", available at

http://java.sun.com/docs/books/jini/download/jini.pdf, 2002.

 [Wal96] Walnum Clayton, "Java By Example", Que Corrporation ,

1996.

 [Wha05] Whatis.com, "atomicity, consistency, isolation, and durability",

available at

http://whatis.techtarget.com/definition/0.289893.sid9-

gci213756.html, 2005.

 [Yng04] Yngve Espelid and Lars-Helg Netland, "The Fundementals of

Java Security", available at

http://www.nowires.org/Thesis_pdf/LarsHelgN.pdf, 2004.

١١٣

 Republic of Iraq
Al-Nahrain University

 College of sciences

Implementation of Secure
Jini-Like System

A THESIS
SUBMITTED TO THE

COLLEGE OF SCIENCE, AL-NAHRAIN UNIVERSITY
IN PARTIAL FULLFILLMENT OF THE REQUIREMENT
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF

SCIENCE IN COMPUTER SCEINCE

BY
SUHA HAMEED NAIF

(B.Sc. 1992)
(M.Sc. 1996)

SUPERVISORS
DR. LAMIA H. KHALID DR. VENUS W. SAMAWI

 December 2005 Thee-Alkudaa 1426

Acknowledgment

First of all, praise is to my GOD who enabled me to achieve

this research work.

I would like to express my gratitude and appreciation to my

supervisors Dr. Lamia H. Khalid and Dr. Venus W. Samawi for
their valuable guidance, supervision and untiring efforts during the
course of this work.

Special thanks to the College of Science, dean of the college

for the continuous support and encouragement during the period of
my studies.

Grateful thanks for the Head of Department of Computer

Science Dr. Taha S. Bashaga, staff and employees.

Finally, my special thanks to Mrs. Susan Al-Naqshabandi,

Miss Suhad Al-Ezzi, Mr. Nawfal Abdul Sattar, Mr. Samer
Sami, and Dr. Sarab M. Hameed.

Dedication

To the person who taught me the real
meaning of fighting to make dreams
come true.

To my dear husband Ahmed

To my dear parents who prepared me
to be what I am

To my flowers: Meena and Deena

To my dear brothers

Suha

 بسـم االله الرحمن الرحيم

 أنتماعلمتنا انك إلاسبحانك لاعلم لنا

 العليم الحكيم

 صدق االله العظيم

 ا�
	اق����ر�

 ا���	�� ���

 ا�
��م ���

 تنفيذ نظام أمني شبيه بنظام

JINI

����� ، ���� ا���وم إ�
�	د�� ر����
ا���ر�ن ��زء �ن ��ط���ت ��ل در��

 د��وراه "��#� "! �م ا������ت

 �ن %�ل
�� ���د ���ف�

)١٩٩٢ ����ور�وس �م(

)������١٩٩٦ر �م (

 ا��)ر"ون

"��وس .د ����ء ��"ظ (��د.د
 وز�ر ���وي

 ١٤٢٦ذي ا��
�ة ٢٠٠٥
	��ن ا�ول

	Microsoft Word - Abstract.pdf
	Microsoft Word - aim.pdf
	Microsoft Word - appendix1.pdf
	Microsoft Word - appendix2.pdf
	Microsoft Word - arabic Abstract.pdf
	Microsoft Word - CHAPTER five.pdf
	Microsoft Word - CHAPTER five1.pdf
	Microsoft Word - CHAPTER four.pdf
	Microsoft Word - chapter one.pdf
	Microsoft Word - CHAPTER SIX.pdf
	Microsoft Word - CHAPTER three.pdf
	Microsoft Word - CHAPTER Two.pdf
	Microsoft Word - Contents.pdf
	Microsoft Word - list of abriviation.pdf
	Microsoft Word - References.pdf
	Microsoft Word - Tittle.pdf

