Abstract

Distributed systems are becoming more and more important. Technically
spoken, the sharing of system resources (Hardware (H/W) or Software (S'W)) is
one important motivation in distributed systems. Therefore, a new programming
paradigm for the design and implementation of distributed systems at which
resources can be easily detected and used immediately (i.e. plug and play)
appeared. This service paradigm simplifies the configuration and setup for
devices in computer networks, such that existing and future services work with
one another in arobust, scalable, and flexible manner.

The developed system (SILS) is a multi-client multi-server distributed
system working on LAN, which has a dynamic nature that enables servicesto be
added or withdrawn from federated groups of services (devices and software
components) according to demand or changing requirements by the group using
the system. To do so three components are needed: Server (the most important
part of the system, each server contains one or more service provider that is
responsible for offering services either S'W or H/W), Lookup service (the core
component of the system, in which services registered. It contains database
called the Lookup table database to keep services available in the system), and
Client (the part of the system that generates requests for services). These
components communicate with each other by service protocols using Java
programming language. The created system support security level constructed
by enforcement of the security properties already present in Java in addition to
providing new security properties that ensures: authenticity between server and
lookup service(server security), authenticity and authority between client and
lookup service(client security), and authenticity between client and server
(client server security). SILS provides Leasing | nterface, which defines a way
of allocating and freeing resources using arenewable, duration-based module. It
Is developed to be reliable by providing a consistent backup copy of the lookup
table.

Finaly, to show the capabilities of SILS, it has been applied on a LAN that
consists of five nodes three of them are Pentium 3 and the other two are Pentium
4 for testing purposes.

This research aims to perform analytical study higpand play
systems in general, and especially on Jini netwmgrkechnology.

Finally, a Jini-like system is developed, whichludes most of the
facilities provided by Jini system in addition tecsirity model, therefore,
it is called Secure Jini-like System (SJLS).

The developed system (SJLS) is a distributed systieat works on
LAN) which has a dynamic nature that enables sesvio be added or
with drawn from federated groups of services (deviand software
components) according to demand or changing rememés by the group
using the system. To do so three components acedee

@ Server: arguably the most important concept behind theesyst
Is to offer services, such that each server contam or more
service provider that is responsible for offerimgvéces. Service
encompasses any useful function that networked cdsvior
software components provide. A service can be coation,
storage, a communication channel, a printing famcti a
hardware device or even another user.

€ Lookup service: it is the core component of the system, which is
a special service for registering, finding, andsieg other
services. It contain database called the lookb[etdatabase for
services available in the system.

€ Client: it is the part of the system that generates reigifer
servicedS/W or H/W services).

These components communicate with each other byicser
protocols using Java programming language. Thdenlesystem supports
security level that ensuresuthenticity between server and Lookup
service, authenticity and authority between client and Lookup service,
finally, authenticity between client and server. This security level is
constructed by enforcement of the security properélready present in
Java in addition to providing new security propestiSJLS is developed
to be reliable by providing a consistent backupyooigthe lookup table.

Finally, to show the capabilities of SILS, we applgn a LAN that
consists of 5 nodes for testing purposes. Numb@&odes (N) can be of
any number.

SJLS characteristics can be summarized as follows:
€ Operating system independent, through use of Java.
€ Only data can be moved among system participants.
€ The need for Lookup service.

€ SJLS has its own security model which allows server
authenticity, client authenticity and authority,daalient-server
authenticity.

€ H/W and S/W services can be added to the system.

Conceptually, Jini provides three things:

€ A programming model for distributed systems, inahgd
services, leasing, distributed events, and tramsact

€ A way to federate and use services

€ Middleware interfaces and sample implementationsupport
this distributed programming model and federatirggviees
transactions.

Services are the central notion in Jini. Practycahy network
accessible resource, both hardware and softwarepeaturned into a
service. Examples of network accessible servicdaytanclude email,
authentication, printing, faxing, disk storage, ralata drawn from
sensors embedded in the physical environment oh-lengel data
providing a person’s location, identity, and gehaaivity. Services in
Jini are grouped together in a loosely coupledectibn called a
federation. The core component in a Jini federation is thmkup
service, a special service for registering, finding, arehding other
services. The Lookup service assumes that cliemiissarvices use or
have access tdava Virtual Machine (JVM) and Remote Method

Invocation (RMI), which represents a standard way of performing
remote procedure calls in Java. These requiremam@sonly for the
Lookup service, though any platform, protocol, alada format can be
used once a client has been connected to a seraitee Lookup service.
The concept of leasing is integral to Jini. Leaginges a client access to
resources for a set period of time. Once the leapees or is cancelled,
all of the associated resources are returned. déssgn decision was
made to avoid explicit locking of resources, whinsly be problematic in
a distributed system given that clients and sesvivay be entering and
leaving at any time. Leases can be exclusive, inguhat exactly one
user can take a lease on a resource at a tim&neexclusive, allowing
multiple users to use a resource. Jini also previgdlistributed event
model. Clients can subscribe to different typesswénts from remote
sources and be notified of new events. Examplesuoli a subscription
would be an application being notified when thenfai has finished
printing a paper or the printer is out of paperangactions are another
part of Jini’s distributed programming model.tfansaction is a set of
operations that executes atomically: either althaf operations execute,
or none of them do. Transactions are typically usedhe database
domain, but have also proven useful for distribuggstems. Jini uses a
specific kind of transaction called a two-phasagetion [Jas00] [Fre00]
[KeiO1]. The Jini characteristic can be summariasdollows:

Appendix A

Java code 1: requesting L ookup service address

InetAddress group=InetAddress.getByName (address);
MulticastSocket sockethame=new MulticastSockeportnumber);
socketname.joingroup(group);

DatagramPacket DatagramPacketname=new DatagramPaek
(msg.getBytes(),msg.length(), group,portnumber);

socketname.send (DatagramPacketname);

Java code 2: requesting L ookup service address

ServerSocket sersoc=new ServerSocket(port); /open connectio
Socket lookupsoc=sersoc.accept(); /I listing

DatalnputStream
DatalnputStream(lookupsoc.getinputstream());

String address=in.readUTF(); /lreceiving

Il Tokenizing
String Tokenizer stringname=new StringTokenizer(msg'/");
lookupcompname=Stringname.nextToken();

lookupportno= Stringname.nextToken();

A-7

Java code 3: receiving server request

InetAddress group=InetAddress.getByName (address);
MulticastSocket socketname=new MulticastSocket (wtnumber);
socketname.joingroup(group);

byte[]buffer=new byte[];

DatagramPacket DatagramPacketname=new DatagramPacket
(buffer,buffer.length);

socketname.receive (DatagramPacketname);

Java code 4: providing Lookup service address

Socket socketname=new Socket ("Servername"”, Portnber);

DataOutputStream out=new DataOutputStream(socketnane.
getOutputStream());

String msg="LookupServiceName/PortNumber/",

out.writeUTF(msg);

Java code 5: Tokenization

String Tokenizer stringname=new StringTokenizer(msg'/");

action=Stringname.nextToken();
service= Stringname.nextToken();
host= Stringname.nextToken();
port= Stringname.nextToken();

lease= Stringname.nextToken();

slevel= Stringname.nextToken();

A-7

Java code 6: Open connection with the lookup table

String url="jdbc:odbc: DataSourceName of the tablé'

try
{ Class.forName("sun.jdbc.odbc.jdbcOdbc Driver"); }

catch (java.lng.ClassNotFound Exception e) {prinerror}

Connection con=DriverManager.getConnection(url);

Java code 7: serving actions

Case action of

» register: the SQLstatement will be

String string="insert into table name values (remaning
values in the service object+status)

Statement stmt=con.createStatement();

ResultSet rst=stmt.executeQuery (string);

* renew:

String string="update tablename set New lease tim&here
(search conditions for the specified service)

e Cancel:

String string="delete from tablename where (search
conditions for the specified service)

A-7

Java code 8: receiving serving actions

Socket socketname=new Socket ("Clientname", Portimber);

DataOutputStream out=new DataOutputStream(socketnane.
getOutputStream());

String msg="LookupServiceName/PortNumber/*;

out.writeUTF(msg);

Java code 9: Tuple selection

String string="Select * from table name where (serce=request

service name)
Statement stmt=con.createstatement ();

ResultSet rst=stmt.executeQuery (string);

Java code 10: getting address

hostname=rst.getobject (2).toString ();
hostportno=rst.getobject(3).toString();

hostportnol=Integer.parsint (hostportno);

A-7

Java code 11: sending address

Socket clientsocket=new Socket(clientname, clientgoo);

DataOutputStream out=new DataOutputStream(socketnane.
getOutputStream());

out.writeUTF(hostname);
out.writeInt(hostportnol);
out.close;

clientsocket.close;

Java code 12: signing client regest

Signature sig = Signature.getInstance('""SHA1withDSA");

sig.initSign(privatekey); //server private key

String data=msg.toString(); //the service object
sig.update(data.getBytes());

byte [] sigf;

sigf=sig.sign(); //signing

Java code 13: authentication

Signature sig=Signature.getinstance("SHA-/DSA");
sig.initVerify(publickey); //server public key
boolean clientverified=sig.verify(sigf));

if server verified register service object

else refuse service object

A-7

Java code 14:generating issuerpublickey

String st="\keytool -genkey -alias "+ issuername+ " -keypass "+
issuerpass +" -keystore keystorame -storepass
keystorepass;

File f=new File(filename);

FileOutputStream o=new FileOutputStream(f);
PrintWriter pw=new PrintWriter(0);
pw.print(st);

pw.close() ;

Runtime.getRuntime().exec(filename);

Java code 15: signing certificate

Signature sig = Signature.getInstance("SHA1withDSA");
sig.initSign(privatekey); //issuer private key

String data=certificate.toString(); //the constructed
certificae

sig.update(data.getBytes());

byte[] sigf;
sigf=sig.sign(); //signing

A-7

Java code 16: authentication

Signature sig=Signature.getinstance("SHA-/DSA");
sig.initVerify(publickey); //issuer public key

validation result=sig.verify(sigf));

Java code 17: Tag checking

int slevel=rst.getObject(number); //get the serversecurity
level

int clevel=vf.level; // get client trust level
if (vf.level>=slevel) checktag=true;

else checktag=false;

A-7

Server Program

Server Program

|_Reaister | iting

il
&

Senvice hame

Lease time

Security Level high hd
sigh

|_Register |
Eg

Service name

Lease time

Security Level

Server Program

high -

Server Program

oo EEX

Registration Compelets Successfully

(=]

Server Program

Authentication Failure Exception

(=]

Server Program

[Resister | | Ronow [N Concel

[=I[ES)

Repeated Service Exception

=]

Server Program

Incompelete Service Exception

=]

=
Server Program
Register Waiting Renew Cancel

Senvice hame |
Lease time
Sign

_m

Server Program

e
=

Construct Request

:
Z

Reqguested Service
Service Name

Build Certificate

Issuer
Subject
Tag
\falid From

Walid To

Client Program

Construct Request

Regquested Service Exist

Access Permited

[b |

Client Program

Construct Request

gg

Access Denied

Request Without SPET Certificate

o= |

Client Program

Construct Request

Access Denied
Authorization Failed

0K

Client Program

Construct Request

E;a

Access Denied

Validity Expired

o] |

(5] =] 3

Client Program

Construct Request

Printing Compelet

0K

Client Program

Construct Request ‘

Requested Service
Service Name addition—l

Build Certifig

Issuer] First Number ’\7
SCTE) Second Number

| BN N |

Tag

oK
\alid From
Valid To

|

S

Client Program

Construct Request

3
&

Output Result

[ox |

”

Ddbadl alasiul A4S i)l yies sl Aalil) ey G ST A Tl dakasl) daal ol 3
e Lia e de il Aadai¥) 8 adl sall anl (e e g ol 5 el cilS o g allas (ol 85 58 siall
Sin i ol STy CLIS) RS i e el Taa) B0 pranal g 3n (gme g
Claaall o5 jeal) b sd dlee Jgoy 108 agaad) dandll 3 g0 allaill o) geda Jln 40080 3) gucay
camnn il 8¢5 58 gl Lae Jend Aliitinal) 53 58 gial) cilanaldl () G eclanlall S0 daday
Ganil) &5 (ga g dale B) gum Lgagh A slaa g Jyseill Aalalil) Aadas) 5 S8 Canl) 1an i3 Ll () a9
Al AN Al JISET (e JSCE JiNi i) Jini Al s s Aadai¥l o3 sl Al
Akl) il)] (Saa 3agan dadd (ol) (i o Janniil) oLl L aldat) Saalipal) s il
el jiss (SILS) oma¥) Jini dpsdi alaS 5 55) a5 ¢(Alali 3) pumy 023 A8 (5 a0
AUl diaY) o ddlial we Jini W s Al gl

daph o g 5 A58l (s e STy adlA (e ST 5 0 ransy Gy SILS La ki o
o Alalall ol jusill L e g 5l 5] ClS ol g ali ol il () dadd (Y rand A8l
Aldaill o yal aal (e) A& a5 dpulid i s Gy 53 5 elld gl Uil daddiuall aaalaal)
5 5) Aaddl) (ila o(leadd) 58 65 (e (ol g Aaddll (5 jeae e ST sl aal g anay aala S
58 siall el ases aual by acld e (5 giny Cua landll Jiaa 48y o2l) allail) s sa
e dasi 36l 3aY) i IS (leaall cildlall jaiay o3 aUaill ¢ Ja g8 5) (gl a5 o(aldadl) 3
e (e (5 sie il skl acy Java sl alaiiuly s Aexdl) Y S 5 5 5 Ao 5 Lgatany
aldatll d cfiaatul el gal 52 ALY Java dad S35 8 siall (el cliial sa (a8 Al 5
pal s Aeasll (ide ae aglala ol () 50 30 CilaDla 5 4y g (e 2SUN 5 alall 4 58 (e ST (Cpancad
3053 SILS b Jalad 5Ly sl J8 HAY) Lasasd 458 (e 2SHI (0 3115 p0AT A0S0Y) b 58
adaill ()5S o) i yad L agaaill 418 sae JAA cleaall clall s Saeadl Cglud sa 5 danall 5 gl 30
Sleadl) Slly sac Wl (backup) 4ba) ¢34 4w alaill 4 b g 4gle Y gea

Ghapter ~Sfive Application and Results

CHAPTER FIVE

Application and Results

5.1 Introduction

This chapter demonstrates the proposed SJLS wgithtiached security
model. This will be done by presenting several @ptibns that demonstrate in
generalhow SILS operates, how services can be added to the system, andhow
clients made their requests, all that done in secure manner. The system fiedes
by providingfileretrieving servers, string manipulation servers, mathematical
operation servers, andprinting server (as H/W service). Taking in consideration
that SJLS is a plug-and-play system where servioaas be attached and
detached to the system in an easy way with securgyrance (as will be
illustrated later in this chapter).

The proposed system ensures security by prote@ougss to Lookup
service from an untrusted servers or clients. iewheines whether the server or
the client can access the Lookup service or perfany other privileged
operations. This is done by impose restrictionstlm work sequence of the
server and the client, in such away that the samugst sign its service object
before sending it to the Lookup service, also filent must decorate its request
with SPKI certificate when decided to registemitthe Lookup service, and as
last stage, client and server must perform an atittegion protocol before
starting communication. In general the SJLS hanttiiegollowing situations:

1. Onthesarver side:

© Registering repeated service: when the server tries to register a
service object that already exist in the Lookupriser, the received
service object will just be ignored and the sewirbe notified.

€ Registering incomplete service: when the server doesn’t specify alll
the information needed for creating a service dbpud try to
register it, then the Lookup server will not regrsit, and notify the
server.

AT

Ghapter ~Sfive Application and (Results

€ Refusing improper request: The server request to register, renew, or
cancel service objects (sent to the Lookup seryviogy be denied in
casethe service object is not signed by any known server, or when
the service object is signed by unknown server (i.e. a server that is
not defined for the Lookup service).

2. Ontheclient side:

€ Theclient request unavailable service: in this situation, the client will
be notified that the service does not exist.

€ Refusing client request: when the client sent request to the Lookup

service, (asking for the address of the servicerigen) this request
may be accepted or refused. Refusing requ&stiation resulted from
the request is not decorated with the SPKI certificate (this situation
indicates that the request is not authenticatbed),equest is decorated
with SPKI certificate, but is not authorized to do the requested action,

or the client request was decorated with SPKI certificate, but its
validity date expired.

€ The client request a service which is provided by more than one
server: in this case the Lookup service will choose ohthe services
randomly.

5.2 SJLS Application (Services)

To clarify how the proposed Jini-like system opesathow services added
to the system, and how it support security, nunatbesipplications are presented
here that perform a collection of services. Thestude: file retrieving, string
manipulation, arithmetic computation, and hard cpppnting. These are some
examples and other services can be built and addie system.

The first server consists of one service providerfggmsfile retrieving.
The second server has two service providers on@ddormingcomputation
operations these are addition, subtraction, multiplicationd agivision. The
other for performing string manipulations; and the third server contains a
service provider that perfornmsinting operation.

AY

Ghapter ~Sfive Application and (Results

File retrieving service aids user to retrieve selédiles by specifying the
file name. Thd-ile Retrieval Service Provider performs file retrieving operation
and the required file will be downloaded to theuested client.

Arithmetic expression computation service helps ruse compute
arithmetic expressions. THexpression Computation Service Provider performs
computation operation. It requires four classesn,ssub, multiply, and divide
classes that perform addition, subtraction, mudtgilon, and division
respectively.

String manipulation service gives the user theitgbtb perform string
manipulation. TheString Manipulation Service Provider is responsible for
finding string length, string concatenation, anthgtcomparison.

The proposed system has been experimented usingof Aixe nodes, with
different operating systems (of windows family) tebtype Pentium 4 and the
remaining three of type Pentium 3.

The proposed system is provided with a powerfut ugerface to simplify
system usage for both servers and clients.

5.3 Server Interface

Server interface is provided to help the serviaa/igler to register, renew,
and cancel their services, and waiting for implefimgnany requested service.
At first when a new server plugged in, a servegpam frame will appear on
the screen to help the service provider in regrggeits service, as shown in
figure (5.1).

To register a service, the service provider mulgics®egister, at this time
the three other options will be inactive since gsrwan not be renewed or
cancelled if it is not registered first. As a fisthge of registering a service, the
service provider must createssavice object specifyingservice name, lease
time, security level (presented as drop list to help the server in dngosne of
the listed options High, Medium, or Lawjomputer name (this field will be
filled automatically),port number (this field will be filled with the default port
number automatically) as shown in figure (5.2).

AA

Ghapter ~Sfive Application and (Results

Server Program

Register

Figure (5.1) Server Program

The created service object has to be signed byeneer signature before
sending it to the Lookup service, signing procesgum when the service
provider click atSgn button.

Server Program

Register | Renew |
EES)

Security Level high -
sign

Figure (5.2) Service Object Creation

A4

Ghapter ~Sfive Application and (Results

At the completion of the registration, the Lookwgrsce sends results of
registration to the server informing him whethee thegistration process
complete successfully or not as shown in figur8)(5.

s e

Server Program

Register

£ signing [B9(=1ET)
Registration Compelets Successfully

x|

Figure (5.3) Successful Registration
Registration failure may happen when any of thiewahg reasons happened:

€ Authentication failure, this situation occurs whie Lookup service
doesn't verify the server digital signature as shawfigure (5.4).

e

Server Program

Register

CBEX

Authentication Failure Exception

=1

Figure (5.4) Authentication Failure Exception

9.

Ghapter ~Sfive Application and (Results

€ Repeated service, this situation occurs when tingicgeprovider tries to
register an existed service as shown in figure)(5.5

Register

o=

Repeated Service Exception

x|

Figure (5.5) Repeated Service Exception

€ Incomplete service, this situation occurs whengbevice provider doesn't
specify all the information needed in the servibgot as shown in figure (5.6).

Server Program

Register

CE&X

Incompelete Service Exception

e

Figure (5.6) Incomplete Service Exception

After the service registration of the service, seever must presd/aiting
button to wait for any request from client, alsovee may need to renew or

9

Ghapter ~Sfive Application and (Results

cancel services. To renew a servicBemew button must be selected and the
listed fields must be specified as shown in fig(Be7). The listed fields are
service name (name of the service needed to be renewedse time (the new
lease time)

Server Program

= =1E3)

El._ia

Figure (5.7) Renew Operation

Canceling a service could be done by clickidgncel button, upon this
service name must be provided to the system, amer abformation will be
specified automatically as depicted in figure (5.8)

F@—@

Server Program

=3

Figure (5.8) Cancel Operation

Y

Ghapter ~Sfive Application and (Results

The success and failure situations in Renew and&aperations are the
same as mentioned for Registration operation.

5.4 Client Interface

When clients attached the system requesting servibe client interface
will help them greatly in doing so. Initially thdient must build his request
before sending it to the Lookup service; this refjusould be prepared by
specifying the information required in the fielasteéd in figure (5.9) theervice
name here advert to the service requested by the ¢cenmputer name andport
number will be specified automatically. After specifyinge requested service
and before sending it to the Lookup service thentlshould specify the input
parameters and decorate its request with SPKIficat®, this can be done using
SPKI certificate construction fields. Using thegdds the client will be able to
specify the following informationlssuer name (client source)Subject name
(client), Tag (presented as drop list to help the client in chap®ne of the
listed options High, Medium, and lawyalid from (the starting date for this
certificate), and/alid to (the ultimate date for this certificate).

Client Program

Construct Request
e

Requested Service

Service Name

B

Build Certificate

Figure (5.9) SPKI Certificate Construction

Lastly, the client must end his certificate witsuer signature when click
on Sgn button.

qy

Ghapter ~Sfive Application and (Results

When the client request accessing a service ratd&ye¢he Lookup service
and this service exist then it will be verified bef accessing the requested
service, consequently access will eitpermitted or denied. When permit
access situation occurs, the client will be progtideith requested service
address as shown in figure (5.10).

Client Program

Constiuct Request

= (=13

Reguested Service Exist

Access Permited

k= |

Figure (5.10) Permit Client Access
The deny access state occurs in the fallowing temtiost

€ The client request is not decorated with SPKI certificate. The Lookup
service detects that the client is not authenteicated denies this request.
In this case, the Lookup service checks the reqaedtthe checking
process returns that the request is not decorait&dSKI certificate as
shown in figure (5.11).

q¢

Ghapter ~Sfive Application and (Results

Client Program

Construct Request

Egj

Access Denied

Request Without SPKT Certificate

|_be |

Figure (5.11) Request without SPK| Certificate

© The client request is decorated with SPKI certificate, but it was not
authorized to access the requested service. The Lookup service searches
and found the requested service but this serviceoabe accessed by the
requested client, nevertheless the checking processns that the
Lookup service is decorated with SPKI certificaiat the authorization
process returns that the requested client is nibtoaued to perform the
required operation. See figure (5.12).

Client Program

Constimct Request

E EEX

Access Denied

Authorization Failed

o |

Figure (5.12) un Authorized Client

40

Ghapter ~Sfive Application and (Results

€ Theclient request is decorated with SPKI certificate, it was authorized to
access the requested service, but its validity date expired. The Lookup
service searches and found the requested servidhibiservice can not
be accessed by the requested client, neverthdiesshiecking process
returns that the Lookup service is decorated wlRKISertificate, and the
authorization process returns that the requestettcis authorized to
perform the required operation, but validity checalesurns that this
certificate is out of date. See figure (5.13).

Construct Request

E;a

Access Denied

Validity Expired

o] |

Figure (5.13) In Valid Certificate
5.5 Examples

After developing the user interface, some appboatexamples are
presented to demonstrate the capabilities of thegpgsed system. The
application shows how SJUS8inting service which represents H/W service can
be used by other system participants.

The printer (either freshly connected to SJLS gvasiered up once it has
been connected to the system) works with one sangtiat least one client. The
server and service provider have public keys tauely identify them on the
network. They will be callefirst server (FS) andorinter service provider (PSP)
for explanation purpose. A client, callpdnter client (PrC) is related withirst

4

Ghapter ~Sfive Application and (Results

client source (FCS), is created to communicate with PSP to raghesprinting
of some information.

The first step after that is to start FS accordirfgbP will be starting too.
PSP offers the network a printer to print any reste@ information, to do so a
service object describing the printer service nestreated, signed (using FS
public key), registered on the Lookup service aauerl used by clients to be
connected to the service as illustrated in figré4).

Server Program

[»-‘ii Signing E|@|E]

Registration Compelets Successfully

x|

Figure (5.14) Registering Printer Service

When printing service registration process compglstecessfully, i.e.
without any of the exceptions shown in figures \5(8.5), and (5.6), FS must
be in waiting state to wait for any request frdivother participants in the
system to use the printer attached to FS.

After starting the server, the client (PrC) canrtshas execution. The first
thing he will do is build his request, specify mput parameters i.dile name
andfile typeto be printed, along with his signed certificate.(SPKI certificate
signed by FCS public key). Then PrC will try to oext to the Lookup service
and ask for access to the printer service.

v

Ghapter ~Sfive Application and (Results

If the printer has correctly registered itself be tookup service, it will be
possible for the Lookup service to decide wheth€r €an access the printer (in
case no one of the exceptions shown in figuresl{5(5.12), and (5.13) occur)
or not. Once the Lookup service permit PrC to axths service to print the
requested file, the PSP address will be given ©. Rising the proxy, PrC
contacts PSP.

The first step in the communication is authentaati The client
authenticates himself to the server. This is dosegiCHAP mentioned in
chapter four. In this case, PrC authenticates ¢linis PSP. If authentication
successful then communication can continue. Otlsenwit is halted. If the
authentication successful then the client can kisetinter as shown in Figure
(5.15).

Construct Request

Requested Service Exist

Access Permited

x|

Figure (5.15) Start of the Printer Application

After printing client file and a printing completeessage will be presented
to the client as shown in figure (5.16).

aA

Ghapter ~Sfive Application and (Results

Printing Compelet

0K

Figure (5.16) Printing Complete

After presenting an example application which desti@tes how SJLS
handle H/W service which is therinting service, another example will be
presented to illustrate the steps taken by SJL&fey a S/W service provided
by the second server (SS) and hiscomputation operations service provider
(COSP). This section describes this application fama to use it, look into the
different components and how they communicate t@gah secure manner. As
mentioned in the printer example SS and COSP publys to uniquely identify
in the network.

The computation operations service provider perforrarithmetic
operations. It provides the fallowing operatior@ldition (addition of two
numbers), subtraction (subtraction of two numbers),multiplication
(multiplication of two numbers)divison (division of two numbers), and
modules (modes of two numbers).

First of all SS must be started and COSP must texgid his service by
creating a service object describing his servige §ervice name, lease time,
security level) and signing it using SS public key.

44

Ghapter ~Sfive Application and (Results

When registration completes successfully the messdgwn in figure
(5.17) will appear to COSP.

Server Program

K signing =13

Registration Compelets Successfully

e

Figure (5.17) Registering Computation Oper ations Service

As COSP registered his service any computationatioais client (COC) can
get the result of his request. This can be doner &OC build his request,
specify his input parameters i.@rst input parameters and second input
parameters, using the frame shown in figure (5.18), alonghwitis signed
certificate (i.e. SPKI certificate signed by COCu8m® public key). Then COC
will try to connect to the Lookup service and ask &ccess to the computation
operations application.

Once the Lookup service receive COC request aniflyversearch will be
done for the requested service and if it was regpst successfully then COC
could be permitted to access COSP by sending diead to COC.

A pplication and Results

Requested Service

Service Name addition—l
)

Issuer

Subject

Tag

\alid From

Valid To

B

First Number |
Second Number

Figure (5.18) Specifying Input Parameters

The usual step to start communication between tclamd server is
authentication. Using CHAP checking authenticityl we done between COSP
and COQC,; if this check succeeds then communicat@gncontinue. Otherwise,
it is halted. If authentication successful then ¢hent will get the result of his
request as shown in Figure (5.19).

Client Program

Construet Request

] EEX

Cutput Result

| ox |

Figure (5.19) Getting Output Result

Ghapter ~Sfive Application and (Results

More than one sever can run on SJLS serving amytcAand implement
their requests, this example illustrates how SJtgamize running two servers
simultaneously. Thdirst server (FS) containgprinter service provider (PSP)
and thesecond server (SS) containdileretrieving service provider (FRSP).

Each of these servers started separately, and goingll the subsequent
steps separately (i.e. create their service ohjsigising them, and sending them
to the Lookup service) if all these steps complstexessfully then registration
complete message shown on the preceding exampleappear to PSP and
FRSP.

After registration done PSP and FRSP will stay mgitto any client
request. By their sites clients who want to usg sarvice will prepare their
requests specifying the requested service as siowhe preceding examples
and sending them to the Lookup service.

When PSP or FRSP receive any client request the stps taken in the
preceding examples will be done (i.e. authenticadione if succeed service will
implemented) and output result will be send todirents.

5.6 Tests and Results

To confirm SJLS performance the following testsénbeen done:

1. Testing SJLS on LAN consists of four computeltsase Pentium 4
running under XP operating system the followinguteappeared:

* Running one node: in this case the Lookup sen@ient, and
Server exist on the same node (i.e. that requesstndce exists
locally), the average response time is 160 milbsels.

* Running two nodes: in this case the Lookup sen@mnt, and
Server distributed on two nodes, the average respdmme
approximately is 7316 milliseconds.

Ghapter ~Sfive Application and (Results

* Running three nodes: here each one of Lookup ser@tient,
and Server exist on different node, the averagpores time
approximately is 7398 milliseconds.

* Running four nodes: here each one of Lookup ser@tent, and
Server exist on different node, the average respoise
approximately is 7261 milliseconds.

2. Doing the same tests on LAN consists of fivenpaters two of type
Pentium 4 and three of type Pentium 3 running umdidennium, and
XP operating systems the following result appeared:

* Running one node: the average response time appatedy is
167 milliseconds.

* Running two nodes: the average response time appatly is
10411.5 milliseconds.

Running three nodes: the average response timexpyately is
10192.5 milliseconds.

Running four nodes: the average response time zippately is
34435.6 milliseconds.

Running five nodes: the average response time appately is
11311.35 milliseconds.

Ghapter ~Sfive Application and Results

CHAPTER FIVE

Application and Results

5.1 Introduction

This chapter demonstrates the proposed SJLS wgithtiached security
model. This will be done by presenting several @ptibns that demonstrate in
generalhow SILS operates, how services can be added to the system, andhow
clients made their requests, all that done in secure manner. The system fiedes
by providingfileretrieving servers, string manipulation servers, mathematical
operation servers, andprinting server (as H/W service). Taking in consideration
that SJLS is a plug-and-play system where servioaas be attached and
detached to the system in an easy way with securgyrance (as will be
illustrated later in this chapter).

The proposed system ensures security by prote@ougss to Lookup
service from an untrusted servers or clients. iewheines whether the server or
the client can access the Lookup service or perfany other privileged
operations. This is done by impose restrictionstlm work sequence of the
server and the client, in such away that the samugst sign its service object
before sending it to the Lookup service, also filent must decorate its request
with SPKI certificate when decided to registemitthe Lookup service, and as
last stage, client and server must perform an atittegion protocol before
starting communication. In general the SJLS hanttiiegollowing situations:

1. Onthesarver side:

© Registering repeated service: when the server tries to register a
service object that already exist in the Lookupriser, the received
service object will just be ignored and the sewirbe notified.

€ Registering incomplete service: when the server doesn’t specify alll
the information needed for creating a service dbpud try to
register it, then the Lookup server will not regrsit, and notify the
server.

qy

Ghapter ~Sfive Application and (Results

€ Refusing improper request: The server request to register, renew, or
cancel service objects (sent to the Lookup seryviogy be denied in
casethe service object is not signed by any known server, or when
the service object is signed by unknown server (i.e. a server that is
not defined for the Lookup service).

2. Ontheclient side:

€ Theclient request unavailable service: in this situation, the client will
be notified that the service does not exist.

€ Refusing client request: when the client sent request to the Lookup

service, (asking for the address of the servicerigen) this request
may be accepted or refused. Refusing requ&stiation resulted from
the request is not decorated with the SPKI certificate (this situation
indicates that the request is not authenticatbed),equest is decorated
with SPKI certificate, but is not authorized to do the requested action,

or the client request was decorated with SPKI certificate, but its
validity date expired.

€ The client request a service which is provided by more than one
server: in this case the Lookup service will choose ohthe services
randomly.

5.2 SJLS Application

To clarify how the proposed Jini-like system opesathow services added
to the system, and how it support security, nunatbesipplications are presented
here that perform a collection of services. Thestude: file retrieving, string
manipulation, arithmetic computation, and hard cpppnting. These are some
examples and other services can be built and addie system.

The first server consists of one service providerfggmsfile retrieving.
The second server has two service providers on@ddormingcomputation
operations these are addition, subtraction, multiplicationd agivision. The
other for performing string manipulations; and the third server contains a
service provider that perfornmsinting operation.

q¢

Ghapter ~Sfive Application and (Results

File retrieving service aids user to retrieve selédiles by specifying the
file name. Thd-ile Retrieval Service Provider performs file retrieving operation
and the required file will be downloaded to theuested client.

Arithmetic expression computation service helps ruse compute
arithmetic expressions. THexpression Computation Service Provider performs
computation operation. It requires four classesn,ssub, multiply, and divide
classes that perform addition, subtraction, mudtgilon, and division
respectively.

String manipulation service gives the user theitgbtb perform string
manipulation. TheString Manipulation Service Provider is responsible for
finding string length, string concatenation, anthgtcomparison.

The proposed system has been experimented usingof Aixe nodes, with
different operating systems (of windows family) tebtype Pentium 4 and the
remaining three of type Pentium 3.

The proposed system is provided with a powerfut ugerface to simplify
system usage for both servers and clients.

5.3 Server Interface

Server interface is provided to help the serviaa/igler to register, renew,
and cancel their services, and waiting for implefimgnany requested service.
At first when a new server plugged in, a servegpam frame will appear on
the screen to help the service provider in regrggeits service, as shown in
figure (5.1).

To register a service, the service provider mulgics®egister, at this time
the three other options will be inactive since gsrwan not be renewed or
cancelled if it is not registered first. As a fisthge of registering a service, the
service provider must createssavice object specifyingservice name, lease
time, security level (presented as drop list to help the server in dngosne of
the listed options High, Medium, or Lawjomputer name (this field will be
filled automatically),port number (this field will be filled with the default port
number automatically) as shown in figure (5.2).

40

Ghapter ~Sfive Application and (Results

Figure (5.1) Server Program

The created service object has to be signed byeher signature before
sending it to the Lookup service, signing procesgum when the service
provider click atSgn button.

Figure (5.2) Service Object Creation

At the completion of the registration, the Lookwgnsce sends results of
registration to the server informing him whethee thegistration process
complete successfully or not as shown in figur8)(5.

Figure (5.3) Successful Registration
Registration failure may happen when any of thiefahg reasons happened:

€ Authentication failure, this situation occurs whiie Lookup service
doesn't verify the server digital signature as shawfigure (5.4).

Figure (5.4) Authentication Failure Exception

€ Repeated service, this situation occurs when tingicgeprovider tries to
register an existed service as shown in figure)(5.5

Figure (5.5) Repeated Service Exception

€ Incomplete service, this situation occurs whendbevice provider doesn't
specify all the information needed in the servibgot as shown in figure (5.6).

a1

Ghapter ~Sfive Application and (Results

Figure (5.6) Incomplete Service Exception

After the service registration of the service, seever must presd/aiting
button to wait for any request from client, alsovee may need to renew or
cancel services. To renew a servicRemew button must be selected and the
listed fields must be specified as shown in fig(Be7). The listed fields are
service name (name of the service needed to be renewedse time (the new
lease time)

Figure (5.7) Renew Operation

Canceling a service could be done by clickidgncel button, upon this
service name must be provided to the system, aner abformation will be
specified automatically as depicted in figure (5.8)

Figure (5.8) Cancel Operation

The success and failure situations in Renew and&aperations are the
same as mentioned for Registration operation.

5.4 Client Interface

When clients attached the system requesting servtbe client interface
will help them greatly in doing so. Initially thdient must build his request
before sending it to the Lookup service; this refjusould be prepared by
specifying the information required in the fielasteéd in figure (5.9) theervice
name here advert to the service requested by the ¢clentputer name andport
number will be specified automatically. After specifyinge requested service
and before sending it to the Lookup service thentlshould specify the input
parameters and decorate its request with SPKlficat®, this can be done using
SPKI certificate construction fields. Using thesdds the client will be able to
specify the following informationlssuer name (client source)Subject name
(client), Tag (presented as drop list to help the client in chap®ne of the

v

Ghapter ~Sfive Application and (Results

listed options High, Medium, and lawyalid from (the starting date for this
certificate), and/alid to (the ultimate date for this certificate).

Figure (5.9) SPKI Certificate Construction

Lastly, the client must end his certificate wisuer signature when click
on Sgn button.

When the client request accessing a service ratd&ye¢he Lookup service
and this service exist then it will be verified bef accessing the requested
service, consequently access will eitipermitted or denied. When permit
access situation occurs, the client will be progtideith requested service
address as shown in figure (5.10).

Figure (5.10) Permit Client Access
The deny access state occurs in the fallowing tsitost

€ The client request is not decorated with SPKI certificate. The Lookup
service detects that the client is not authenticatad denies this request.
In this case, the Lookup service checks the reqaedtthe checking
process returns that the request is not decorait&dSKI certificate as
shown in figure (5.11).

Figure (5.11) Request without SPK1 Certificate

€ The client request is decorated with SPKI certificate, but it was not
authorized to access the requested service. The Lookup service searches
and found the requested service but this serviceoabe accessed by the
requested client, nevertheless the checking processns that the
Lookup service is decorated with SPKI certificaiat the authorization

aA

Ghapter ~Sfive Application and (Results

process returns that the requested client is nibtoaued to perform the
required operation. See figure (5.12).

Figure (5.12) un Authorized Client

€ Theclient request is decorated with SPKI certificate, it was authorized to
access the requested service, but its validity date expired. The Lookup
service searches and found the requested servidhibiservice can not
be accessed by the requested client, neverthdiesshiecking process
returns that the Lookup service is decorated witKISertificate, and the
authorization process returns that the requestettcis authorized to
perform the required operation, but validity chedleturns that this
certificate is out of date. See figure (5.13).

Figure (5.13) In Valid Certificate
5.5 Examples

After developing the user interface, some appboatexamples are
presented to demonstrate the capabilities of thegpgsed system. The
application shows how SJL8inting service which represents H/W service can
be used by other system participants.

The printer (either freshly connected to SJLS gvasrered up once it has
been connected to the system) works with one sanetiat least one client. The
server and service provider have public keys tauely identify them on the
network. They will be callefirst server (FS) andorinter service provider (PSP)
for explanation purpose. A client, callpdnter client (PrC) is related withfirst
client source (FCS), is created to communicate with PSP to raghesprinting
of some information.

The first step after that is to start FS accordirfgbP will be starting too.
PSP offers the network a printer to print any rete@ information, to do so a
service object describing the printer service naestreated, signed (using FS

a4

Ghapter ~Sfive Application and (Results

public key), registered on the Lookup service aauerl used by clients to be
connected to the service as illustrated in figbré4).

Figure (5.14) Registering Printer Service

When printing service registration process compglstecessfully, i.e.
without any of the exceptions shown in figures Y5(8.5), and (5.6), FS must
be in waiting state to wait for any request frdivother participants in the
system to use the printer attached to FS.

After starting the server, the client (PrC) carrtshas execution. The first
thing he will do is build his request, specify mput parameters i.dile name
andfile typeto be printed, along with his signed certificate.(SPKI certificate
signed by FCS public key). Then PrC will try to oext to the Lookup service
and ask for access to the printer service.

If the printer has correctly registered itself be tookup service, it will be
possible for the Lookup service to decide whethé€r €an access the printer (in
case no one of the exceptions shown in figuresl}5(5.12), and (5.13) occur)
or not. Once the Lookup service permit PrC to axdhe service to print the
requested file, the PSP address will be given 0. Rising the proxy, PrC
contacts PSP.

The first step in the communication is authentmati The client
authenticates himself to the server. This is dosegiCHAP mentioned in
chapter four. In this case, PrC authenticates dlims PSP. If authentication
successful then communication can continue. Otlserwit is halted. If the
authentication successful then the client can hisetinter as shown in Figure
(5.15).

Figure (5.15) Start of the Printer Application

After printing client file and a printing completeessage will be presented
to the client as shown in figure (5.16).

Ghapter ~Sfive Application and (Results

Figure (5.16) Printing Complete

After presenting an example application which desti@tes how SJLS
handle H/W service which is thgrinting service, another example will be
presented to illustrate the steps taken by SJL&fey a S/W service provided
by the second server (SS) and hiscomputation operations service provider
(COSP). This section describes this application lama to use it, look into the
different components and how they communicate tegah secure manner. As
mentioned in the printer example SS and COSP publys to uniquely identify
in the network.

The computation operations service provider persorrarithmetic
operations. It provides the fallowing operatiorgldition (addition of two
numbers), subtraction (subtraction of two numbers),multiplication
(multiplication of two numbers)divison (division of two numbers), and
modules (modes of two numbers).

First of all SS must be started and COSP must texgd his service by
creating a service object describing his serviee §ervice name, lease time,
security level) and signing it using SS public key.

When registration completes successfully the messdgpwn in figure
(5.17) will appear to COSP.

Figure (5.17) Registering Computation Operations Service

As COSP registered his service any computationatioais client (COC) can
get the result of his request. This can be doner &OC build his request,
specify his input parameters i.@rst input parameters and second input
parameters, using the frame shown in figure (5.18), alonghwitis signed
certificate (i.e. SPKI certificate signed by COCu8m® public key). Then COC
will try to connect to the Lookup service and ask &ccess to the computation
operations application.

Ghapter ~Sfive Application and (Results

Once the Lookup service receive COC request anflyviersearch will be
done for the requested service and if it was regpst successfully then COC
could be permitted to access COSP by sending diead to COC.

Figure (5.18) Specifying Input Parameters

The usual step to start communication between ftcleamd server is
authentication. Using CHAP checking authenticityl we done between COSP
and COQC,; if this check succeeds then communicat@gncontinue. Otherwise,
it is halted. If authentication successful then ¢hent will get the result of his
request as shown in Figure (5.19).

Figure (5.19) Getting Output Result

More than one sever can run on SJLS serving amytcand implement
their requests, this example illustrates how SJtgamize running two servers
simultaneously. Thdirst server (FS) containgprinter service provider (PSP)
and thesecond server (SS) containdileretrieving service provider (FRSP).

Each of these servers started separately, and goingl the subsequent
steps separately (i.e. create their service ohjsigsing them, and sending them
to the Lookup service) if all these steps complstexessfully then registration
complete message shown on the preceding exampleappear to PSP and
FRSP.

After registration done PSP and FRSP will stay mgitto any client
request. By their sites clients who want to usg service will prepare their
requests specifying the requested service as slowhe preceding examples
and sending them to the Lookup service.

When PSP or FRSP receive any client request the séps taken in the
preceding examples will be done (i.e. authenticadione if succeed service will
implemented) and output result will be send todirents.

Ghapter ~Sfive Application and (Results

Ghapter cSfour QEIL QS esign and Smplementation

CHAPTER FOUR

SJLS Design and Implementation

4.1 Introduction

Recently there has been an increase in the develupof technologies
(either S/W or H/W) for services discovery. Theseviees are available in
every network ready to be used by any host. Findegservice that meets a
client’s criteria and connecting to a specific segvprovider requiregxplicit
knowledge of the service provider, host name or address. To solve this problem,
a dynamic self-discovery mechanism needed whereclignts can locate
services without prior knowledge of where the rejee service is located, or
which server can meet the client’s specific créerifhe Jini Networking
Technology proposes a specification for providimg tapability, enables access
to service in a self-configuring environment [Jaj00

As mentioned before, this research concerned vatleldpingSecure Jini-
Like System (coined as SJLS) that aims to build a secure, ahdyplay (service
discovery) system. The developed system consistereé main partsserver,
Lookup service, andclient at which each of these parts need to be protécisd
the other parts. To do so Security model is dewdowhich consists of two
main steps:

@ First, protect the Lookup service from being accessedbyntrusted
service providers using Digital Signature Algorithm (DSA) (before
registering the service object in the lookup tabde)d anunauthorized
clients using SPKI certificate (before providing the clienith the
requested service object)

€ Second when Lookup service verifies client authentigityd provided
him with the service object, the service provided ahe client will
check the authenticity of each other before openomnection.

1¢

Ghapter cSfour QEIL QS esign and Shmplementation

The proposed SJLS is implemented using Java Largueaty multithread
technique to support networking and multitaskingyd aJava Database
Connectivity-Open Database Connectivity (JDBC-ODBG) managing the
lookup table database.

This chapter describes Java Database Connectipiyication Programming
Interface (JDBC API) before expressing the desigoncepts and
implementation steps of the proposed SJLS system.

4.2 JDBC API [Sip98]

The JDBC API is a set of specifications that defil®w a program
written in Java can communicate and interact witthatabase. It defines
how the communication is to be carried out and hlegvapplication and
database interact with each other. More specificle JDBC API defines
how an application makes a connection, communicaités a database,
executes SQL statements, and retrieves query seslidBC provides a
vehicle for the exchange of SQL between Java agpdics and database.
Figure (4.1) illustrates the role of the JDBC API.

Client Database Serv
Applicatior

{} ﬁ
Database
JDBC

<~z _Ir

Network Network

N N

SQL Quer SQL resul SQL resul SQL Quer
< N\ N\
Network

Figure (4.1) Data Flow model

"o

Ghapter cSfour QEIL QS esign and Shmplementation

The JDBC API actually defines two things: The ficste, the JDBC API
specifies how information is to be presented toagplication; it tells the
application what it can expect from the datababse. Second one, the JDBC API
defines what the database can expect from thaticapiph. Essentially, it
defines the common ground between the database¢handpplication, i.e. it
defines what commands can be executed, how to exd&oem, and how data
will be formatted. The JDBC API ensures that agtlans can interact with all
databases in a standard and uniform way. At thet loédahe system this is the
JDBC driver. Figure (4.2) shows how the JDBC driwerks.

Client Database Serve

Application

T T 3

JDBC Driver Databast¢

~r AP

Database
Libraries

s~z _Ir

Network Network

N N

SQL Query SQL result SQL result SQL Query
< N\ N\
Network

Figure (4.2) JDBC Driver

In the proposed system, JDBC-ODBC Bridge is usedichv maps
JDBC call to ODBC driver calls on the client sideshown in figure (4.3).

1

Chapter cSfour

QEIL QS esign and Shmplementation

Client

Application

<5

{}

JDBC Driver

<5

{}

ODBC Diriver

>

{}

Network

N

SQL Que

o

ry
N/

SQL result

Database Serve

Databast¢

Network

N

SQL result
A

SQL Query

B Network

Figure (4.3) JDBC-ODBC Bridge Driver Implementation

4.2.1 The ODBC Standard [Mic8]

ODBC provides means of communicating with a Data Base

Management System (DBMSusing a standard\pplication Programming

Interface andSQL syntax ODBC offers this flexibility by providing the

following:

€ The ability to use SQL syntax that is based onXH@pen and SQL
Access Group (SAG) SQL specification

€ A standard set of error codes that can be retufrem an ODBC

function call.

€ A standard way of configuring and maintaining thefinition of

databases.

€ A standard way of connecting to the DBMS

€ A standard way of interacting with the DBMS in termf saving and
retrieving data.

Ghapter cSfour QEIL QS esign and Shmplementation

€ A standard way of interfacing with the DBMS in terf configuring the
database.

€ A standard way of disconnecting from the DBMS.
4.2.2 JDBC versus ODBC and other APIs [Grm97]

Microsoft's ODBC (Open Database Connectivity) A#probably the most
widely used programming interface for accessingti@hal databases. Since it
offers the ability to connect to almost all datesa®n almost all platforms,
although ODBC can be used from Java, its betterseoODBC with JDBC in
the form of JDBC-ODBC bridge. JDBC is used for thiowing reasons:

1. ODBC is not appropriate for direct use from Javaaose it uses a C
interface. Calls from Java to native C code hameraber of drawbacks
in the security, implementation, robustness, artddraatic probability of
applications.

2. A literal translation of the ODBT API into a Java APl would not be
desirable. For example, Java has no pointers, &t8iCOmakes copious
use of them. JDBC can be thought as ODBC translatedan object-
oriented interface that is natural for Java prognems.

3. ODBC is hard to learn. It mixes simple and advarfeadures together,
and it has complex options even for simple quedB8C, on the other
hand, was designed to keep simple things whilevalg more advanced
capabilities where required.

4. A Java API like JDBC is needed in order to enablépare Java"
solution. When ODBC is used, the ODBC driver managed drivers
must be manually installed on every client machiéen the JDBC
driver is written completely in Java, however, JDB€bde is
automatically installable, portable, and securalbdava platforms from
network computers to mainframes.

In summary, the JDBC API is a natural Java intexfag basic SQL
abstraction and concepts. It builds on ODBC rathan starting from scratch.
JDBC retains the basic design features of ODBCfaat, both interfaces are

A

Ghapter cSfour QEIL QS esign and Shmplementation

based on X/Open SQL CLI (Call Level Interface). Thg difference is that
JDBC builds on and reinforces the style and virtole3ava, and, of course it is
easy to use.

4.3 SJLS Architecture

SJLS designed and implemented to facilitate dynameiovork plug and
play system (i.e. Hardware/Software services camec@nd go easily and
precisely without the need for additional systemfiguration). This work is
implemented using a heterogeneous local area nletfiver network nodes have
different types of operating systefdéndows XP, and Millennium) at which
SLJS design depends on both the concept of a-d@mer system and peer-to-
peer system. It consists of multi- servers and iraliénts, each server can
contains one or more services providers, each afhwprovides at least one
service. As shown in figure (4.4), SILS mainly agstssof five layers, the last
three layers (Java, Operating system, and the mletayer) represents the
proposed system environment:

€ Network Layer: in this system, Local area network (with TCP/IP
protocol) with spontaneous networking of devicegssd.

€ Operating System Layer SJLS could work on different operating
systems (Windows family); the designed systemstet&on environment
with XP, and millennium operating systems.

€ Java Layer. Java language has a major importance in a digéib
system since it provides efficient support fptatform independency
(since the proposed system is designed to work eterdgeneous
systems)security (policy enforcement, and cryptography architegture
and interacting and communicating with databasauginJDBC API.

€ SJLS Layer: It is a middleware (layer(s) of software betwetiant and
server processes that deliver the extra functipndkrr97]) which
represents the core of this work. SJLS providesatéty of adding
services and devices with slight modification oa #xisting system. Its
main components are: Lookup service, server, ardtcllTo make SJLS

14

Ghapter cSfour QEIL QS esign and Shmplementation

work properly and safely, the system provides d#fifie levels of security using
Java support. To provide authentication Digitarfaitures are used, and SPKI

for authorization.

€ Service/Client Layer: represents thervice provider (server) which could
provide hardware or software service, aadice consumer (client).

Services Client

SJLS (server, Lookup service, client

Java

Operating System(XP, Millennium)

Network(TCP/IP)

Figure (4.4) SLJS architecture
4.4 SJLS Components

SJLS consists of two main parts as shown in figdre):

Ghapter cSfour QEIL QS esign and Shmplementation

Secure Jini-like
system (SJLS)
[

Jini-like Security
system (JLS) model

Server Lookup Client Client Server Client-Server
Service securit securit security

Figure (4.5) Proposed System Components

€ The first part concerned with designing a proposed Jini-like eaystand
implementing the proposed system in such a wayth®atlients and servers
can be connected to the distributed system (LAN@rofg Hardware and
Software services.

€ The second partconcerned with designing a security model forgrmposed
system, which is the main objective of the reseaitie designed security
level is implemented from three point of views:

¢ Server security (Server Authentication): Lookup service should register only
trusted services which will be done by verifyingves authenticity. If the
Lookup service does not trust that service, theistegion operation
terminates.

¢ Client security (Client Authorization): the Lookup service verifies that the
client request is originated from trusted sourcehgySPKI certificate of the
client. If not, ignore the request.

¢ Client- server security: ensures secure communication between client and
server (i.e. both of them should authenticate edicér).

4.5 SJLS Design

The proposed SJLS Design consists of three mairulesd

A

Ghapter cSfour QEIL QS esign and Shmplementation

€ Server module
€ Lookup service module
€ Client module

¢ The server modulecomprise designing a service provider that register
services in the Lookup service and implement cliegquests.

¢ The Lookup service modulecomprise designing the Lookup service which
Is the central part of the proposed system, iseduby every participants in
the network, servers used it to advertise thewises while clients use it to
find out which services exist that can satisfy threguests. It is repository
that contains the list of all services exist in tietwork with their related
information.

¢ The client module is the part that receives requests for servicebeo
implementedoy the server though the Lookup service.

Figure (4.6) shows the general architecture optioposed SJILS.

Lookup
service

2. A client requests a 1. The service provider
service. A server registers a service
address is send to object and its
the client and used attribute with the
to talk to the lookup service .
server.

|

3. The client can then
directly interact with
the service using the
object that was
copied toit.

Figure (4.6) Interaction among Lookup service, Serr and Client.

vy

Ghapter cSfour QEIL QS esign and Shmplementation

4.5.1 Server Design

The service is created by the service provider wiiims on a server. A
server may contain one or more service providefse Bervice provider
performs the following operations:

€ Creates the object that describes the service.

€ Registers the service object with Lookup services. Afterisegtion, the
service provider could perform one of the followiagfions:

¢ Renew: means that the service object will be stayedhéltookup
service for additional time specified in the letisge field.

¢ Cancel: means that the service object needs to be cahtem
the Lookup service.

€ Stays alive in a server role, performing various clieatjuests for the
service

The service provider specifiesaction (Register, Renew, Cancdl),
Servicename (specifies the name of the servic€pmpname (specifies the
name of the service provider's computer identiiicgt Port (specify the port
number of the given servicelgasetime (give the leases duration time) and
security level (determine the server security level which will &éher leve,
level or leve at which level is the highest security level and so.on)

The service provider object &erviceObject
ServiceObjectaction, Servicename compname prot leasetime,securitylevel

Service provider should perform the following stefs register the
constructedserviceObjectin the Lookup table:

1. Service provider sends multicast message, whichtaocm the Service
provider address (i.e. its computer name and pomb®r), asking for the
address of a node that contalirmokup service (as illustrated in appendix A,
Java code 1).

vy

Ghapter cSfour QEIL QS esign and Shmplementation

2. The Service provider closes Datagram Socket.

3. The service provider opens a server socket toveaeplay from the node
that contains the Lookup service. The Service plavithen extracts the
Lookup service computer name and Lookup service port number from
received address usin§tringTokenizer. Java Code 2 in appendix A
illustrates the specifying (listening, receivingndatokenizing) Lookup
service address operations.

4. The service provider sends the service objget\iceObjec) parameters as
a string message (shown below) to the Lookup servic

String msg="action/servicename/computername/portnurber/leasetime
/security level";

5. The service provider opensServerSocket()and stays alive on that socket
listening for all client requests. When a clienuest is received, a direct
connection will be established between the client the service provider to
exchange any parameter needed during the impletrentaf the requested
service.

4.5.2 Lookup Service Design

Normally the first step in implementing SJLS iscteate a database called
lookup table at which each tuple (record) corresponds to aiceryi.e.
ServiceObjec). Then the Lookup service will register all seescreceived
from service providers in the lookup table (i.eilds the lookup table). When
client asks for service, the Lookup service sehdsservice provider address (of
the requested service) to the client. Finally, r@ati connection can be opened
between the server and client.

The main components of the Lookup serviceSmreice Registrar and
Client Requester, that are responsible for managing servers arehtsli
requests simultaneously through using multithreguéigchnique.

Service Registrar responds to the service provider requests for
registering, renewing, and/or canceling a sendice. also responsible for

V¢

Ghapter cSfour QEIL QS esign and Shmplementation

checking service lease after service registratiparation. WhileClient
Requester is responsible of manipulating all client requdsyssearching
the lookup table for the requested service, whemdp it sends the service
provider address to the client. B&@#rvice Registrar andClient Requester
could respond to more than one request simultahesuse each service
provider and client has its own thread. These ntlfeads are scheduled
under the control of Java compiler. Figure (4.7)oveh the main
components of the Lookup service.

Client] Server !

Client 2 - - Server .
Client Service

Requester| | Registrar

Client & \ / Server .

Client ¢ Server -

Client M Lookup Service

Server

Network

Figure (4.7) SJLS Architecture
4.5.2.1 Service Registrar

The Service Registrar is the part of the Lookupiserthat interacts with the
servers. Itmanipulates service provider requests (registering, renewing, and
canceling service objects). It is also respondiméease checking (removes the
service when it expired its leasing time unlesssirenewed by its service
provider). The main steps performed by the semaggstrar are:

1. Server Registrar opens a MulticastSocket to ligbemll servers requests for
Lookup service address, (as illustrated in appeAgdidava code 3).

Ve

Ghapter cSfour QEIL QS esign and Shmplementation

2. Wait for any request from service provider, if orexeived, then open
connection according to the server name and panbeu (service provider)
specified in the request, sending a replay mesgalgeh contains Lookup
service name and port number) as uni-cast messageill{strated in
appendix A, Java code 4).

3. When service objectSérviceObject) received from the server, the Service
Registrar will extract the information that desesbthe service from the
received message usirgjring Tokenizer illustrated in appendix A, Java
code 5.

4. Open connection with the lookup table (Databaséatoimg the table of the
service objects). See appendix A, Java code 6

5. By using SQL statements, the Service Registrarimiilement the required
action specified in the service object. To contiw register and renew
actions, a field (called status) will be added &sletuple. The status field
describes the status of the service which will fibee "delete" (Delete
means that the service provider does not wans#rdgce to stay alive after it
lease finish), and' renew" (renew means that the service provider wants the
service to be renewed for the time specified inldase field), Java code 7,
appendix A illustrates this operation.

6. After implementing the'register" action, a call tacheck leaseoperation
will be executed to start a new thread.

4.5.2.2 Check Lease

A service provider establishes a lease for itsisenwhen registering it on a
Lookup service. Théease is an amount of time that a service can guarantees
presence on the network and its ability to responclient requests. Before this
time period expired, the service provider shouladsa lease renewal request for
the Lookup service, otherwise the service will leéeted from the lookup table,
(i.e. will not respond to any client requests arora.

If the service provider decides to end its seraied do not want to respond
to any request from client, then a request to dam€eservice could be send

va

Ghapter cSfour QEIL QS esign and Shmplementation

before its lease time expired, or simply wait urnitsl lease time expired and
don’t send any lease renewed. The following ste&sebe the check lease.

1. When a service registered on Lookup service, athvéll be created and
send to sleep for the time specified in the lease bf the service object.

2. When the thread wakeup, a selection operationeswgrd to specify the
tuple that satisfies the selection conditions mheotto retrieve the status of
the service.

3. Check the status

» If the status is‘renew” then change the status tdefeté’, and
thread will then sleep for a new lease time dumatio

» Else if the status idelete” then just delete the tuple.
4.5.2.3 Client Requester

The central goal of the proposed SJLS is to apleytcrequests easily and
precisely. The Client Requester is responsible ifoplementing all client
requests for services. It receives server addmess the Lookup service and
tries to make direct connection with it to satiffie client's request. The Client
requester behavior is illustrated by the followsigps:

1. Client Requester opens a MulticastSocket to ligpemll servers requests
for the Lookup service address. If one receive@ntiopen a Socket
according to the client name and port number sggekin the request, and
sends a message contains Lookup service name andypober as uni-
cast message. Java code 8 appendix A illustratespleration.

2. When client's request is received, the client retgrewill tokenize the
received message to extract the requested seraroe,rthe client name,
and the client port number (see appendix A, Jada &).

3. Open connection with the lookup table and seleetttiple that matches
the search conditions given in the client requégpendix A, Java code 9
illustrates the selection operation.

vy

Ghapter cSfour QEIL QS esign and Shmplementation

4. Get the service provider address from the seletipte. As illustrated in
appendix A Java code 10.

5. Send the service provider address to the clierd|ltav the client to make a
direct connection with the service provider. Thedieg operation is shown
in appendix A, Java code 11.

4.5.3 Client Design

The client design is the last piece of the propdS&dS design. It works
after the Lookup service initiate the system (simce the part that must work at
first), and the server registers its services i@ tlookup service. The client
simply needs to obtain reference to the servicgigen of the requested service,
l.e. to obtain its address so the client can makirect connection with the
service provider to implement its requested servi€ke following steps
describe the client operations:

1.

The client sends multicast message asking for tbeklyp service
address to the listened ports. The sent messagaim®rthe Client
address (i.eClient computer name andClient port number). The steps
needed to open connection and send message ateaiiéa in appendix
A, Java code 1.

The Client close Datagram Socket

. The client opens a server socket to receive anSwer Lookup service

that containsLookup service address. The client then extracts the
computer name andport number. This is illustrated in appendix A, Java
code 2.

The Client sends a request to the Lookup senskmng for a service
String msg="requestedservice name/client name/cli¢portno/”;

The client opens a server socket listening for mptay from Lookup
service

ServerSocket ser=New ServerSocket (clientportno);

VA

Ghapter cSfour QEIL QS esign and Shmplementation

6. If any replay occurs, the client will take servigmvider address and
start a direct connection with it to implementrggguested service.

4.6 The Proposed Security Model

The security model of the proposed SJLS adds aiseteatures to each of
the server, client, and Lookup service modules. ofdingly, three security
modules are constructed and used by the SJLS nwoduiese are

€ Server security module
€ Clint security module

€ Client-Server security module
4.6.1 Server Security Module

Server security module is responsible for providsgcure interaction
between the server and the Lookup service to erthateonly trusted service
object will be registered at the lookup table. Tahiave this, servers must be
authenticated before they contact the Lookup ser(iie. before they register
their service objects in the Lookup service). Thiaee that the proposed SJLS
force the servers to sign their requests before sending them to the Lookup
service so that the Lookup service can authenticate them (using DSA) before
sending the server address information to the client as shown in figure (4.8).

Lookup service

2. The lookup
service checks
server authenticity
before registering
its service obiec

1. The service provider
ends its signed service
object

Figure (4.8) Server Security Module

va

Ghapter cSfour QEIL QS esign and Shmplementation

Since SJLS is a plug-and-play system, servers alwhgnge therefore it is
difficult to keep their authentication informatiofhe SJLS identifies the
number of servers (i.e. companies, organization, universities, etc.) with their
authentication information and stores them on the Lookup service. These servers
are considered as trusted sources. Any servicetobgn not be accepted and
registered unless the service provider himseltiated to one of these servers
and its request is signed by any one of them. dperation of signing service
object is illustrated in appendix A, Java code 12.

The verification of the service object will be doatthe Lookup service
side. The verification operation as shown in apiperA Java code 13, is
implemented using the server public key to perfdhea process of digital
signature verification. If the server is not vedf, then the service object will
not be registered in the Lookup service.

4.6.2 Client Security Module

In the constructed system, different Clients caelgluest services (such as
files to be accessed, loaded, or modified etcetoriplemented. In this case, the
problem is that malicious client can corrupt orasiaformation from the server
contacts with. This could be avoided using Cliee¢usity module shown in
figure (4.9) which is responsible for ensuring toaty trusted client will be
contact to the desired servers.

Lookup service

2. The lookup service
verify client request
before accepting its
request.

1. The client builds a
Client certificate for its
request

Figure (4.9) Client Security Module

Ghapter cSfour QEIL QS esign and Shmplementation

To do so, two phases are needed to construatiibisile:

€ Certification (at client side): is responsible for constructingPKI
certificates for each client request, signing thamg adding them to its
request before sending it to theokup service.

€ Verification (at Lookup service side): is responsible for verifying the
received service object (i.e. using the attachegnadure) before
registering it in the lookup table.

4.6.2.1 Certification

The certification operation is implemented by bunfd SPKI certificate. As
mentioned in chapter three, SPKI is an authoripatertificates that bind
capabilities to keys. In the proposed security moelgch client request has its
own SPKI certificate, which will be included in itsquest object. The Lookup
service uses the SPKI certificate to authenticdie specified service.
Accordingly an implementation of the SPKI and iated classes are needed.
The implementation should conform to the SPKI sfpeations, presented in
chapter three.

The components of the built SPKI certificate es®ier, Subject, Tag and
Validity as illustrated in figure (4.10).

SPKI

Issuer Subject

Tag

Validity

Figure (4.10) SPKI class component

* |ssuer: An Issuer object is developed to determine the signer oéréifcate
and the source (a number of client sources sucltoaspanies,
organization, universities, etc, will be identifiathd each client will
relate to one of them) of empowerment that the ifcste is

AN

Ghapter cSfour QEIL QS esign and Shmplementation

communicating to the subject. First of all, RublicKey will be
generated usingeytool and associated to field put in thssuer field.
Java code 14 in appendix A illustrates the germmabf |ssuer
PublicKey.

» Subject: A Subject object developed to define the party to whom the
certificate is issued for. The same steps illusttah appendix A, Java
code 14 are used to generateublicKey for the Subject and stored it
in its field.

» Tag: The SPKI certificate definition specifies tfag field asHigh, Medium,
and Low. The Tag represents the security level that the client
permitted to deal with it (i.e. the client can oalk for services owned
by servers on the same security level, the clievellwill be specified
in theTag field). This will be specified by the issuer (cltesource).

« Validity: A certificate has a validity conditions. Thalidity object specifies
the time period during which the certificate isigallhis means that
Validity dates must be betwearalidfrom and validto (i.e. form
datel represented as dayl, monthl, yeardate3 represented as
day3, month3, year3nd taking in consideration that these dates
must agree with theurrent date (represented as day2, month2,
year2).

The certificate without @ignature is useless and cannot be used to gain
access. Since without tlsggnature, anyone could forge such a certificate. Java
code 15 in appendix A is used to specify the sigmertificate algorithm.

4.6.2.2 Verification

When the client sends a request asking the Lookuyice for a desired
service, SPKI certificate is built for this requeBhe following steps are used to
build the SPKI certificate:

1. The SPKI certificate fields (shown in figure 4.Irhust be filled up as
follows :

AY

Ghapter cSfour QEIL QS esign and Shmplementation

€ Generating a public key for the client sourtssifer) and storing
it in the Issuer field.

© Generating a public key for the clierBupject) and storing it in
the Subject field.

€ Determine the permissions given by the client setocthe client
and storing them in th&ag field.

€ Determine the Validity dates for the specified ifieste.
2. Signing the certificate by thesuer.

3. Send the certificate associated with its requegeovlio the Lookup
service.

Authorization —»

Validity

T— date

Figure (4.11) Certificate Fields

When the service object received by the Lookup iseyvit must pass
through three levels of verification, these are:

» Authentication level: to verify the authenticity of the client requdsee
appendix A, Java code 16), which is created byiemtin a specific client
source, the SPKI certificate (which is sended with request) is used to
identify the client sourcd ¢suer) using the client source signature (since it
is signed by a client source). By this way, if ®eKI certificate cannot be

verified, then the client request can not be autbated which means it will
be refused.

AY

Ghapter cSfour QEIL QS esign and Shmplementation

» Authorization level: The Tag field of the SPKI certificate determines the
permissions (i.e. client trust level) of the clievitich will be checked against
the server security level to decide whether thentlis authorized to perform
the requested action or not (as shown in appendda@a code 17).

An important point is that all this should be dahe&ing certificate validity
period (specified in thevalidity field), otherwise the certificate will be
considered invalid and all the information in iiMae useless. Validity check is
illustrated in appendix A Java code 17.

An important point is that all this done during tderate validity period (
specified in theValidity field), otherwise the certificate will be considdr
invalid and all the information in it will be ussle

4.6.3 Client-Server Security Module

The last part of SILS security model is to ens@weuie communication
between the server and the client (shown in figui®), which is needed when
the client open connection with the target served #his is done using
Challenge Handshake Authentication Protocol (CHAP).CHAP is an
authentication protocol that used to check usertifeand works as follows:

€ The system sends to the user a challenge packéticiog challenge
value usually a few bytes.

€ The user applies a predefined function that takeschallenge value and
the user own password and creates a result. Thesands the result in
the response packet to the system.

€ The system does the same. It applies the samedurtotthe password of
the user (known to the system) and the challengesvta create a result.
If the created result is the same as the resuttisghe response packet,
access is granted: otherwise, it is denied.

Applying CHAP to the client-server security modolethe proposed system
Is done using the following steps:

1. The server sends a challenge value to the requelstadt

A

Ghapter cSfour QEIL QS esign and Shmplementation

2. When the client receives the value, it appliedahg with its password

to a predefined function and gets a result. Thssiltewill be sent to the
server.

3. When the server receives the result it appliés the same function. If
a matching occurs between the result created amdeult sent, the

communication will begin between the client and skeever, otherwise
no communication is allowed.

Network

Client < > Server

Challenae valu

Result and nan

Accenpt or reiec

Figure (4.12) Client-Server Security

Ao

Chapter One Sntroduction

CHAPTER ONE

Introduction

1.1 Problem Definition

With Internet spreading, more and more computees iaterconnected
which leads to a demand benefit of the emerging new possibilities. The main
problem is not to be seen as a hardware problema®wa software problem
since the growing complexity makes it difficultdevelop correct programs that
perform the intended tasks. The problems are maalsed by the following
two characteristics of the systems to be built P3ia]:

© The systems are distributed: A system consists of multiple active
participants that are interacting together to penfa certain task. This
interaction is achieved by communication betwee&mth

€ The systems are dynamic: The architecture, i.e. the presence of the
components, their arrangement, their implementaticend their
interconnections, additionally, the roles they tdi@ example server,
service, and client) are changing during the ruatohthe system. Due to
the need for a high availability of systems, ibien no longer possible to
stop or interrupt them for reconfiguration.

To tackle these problems, suitable programmingdignas, languages and
tools are needed. Middleware technologies such amanin Object Request
Broker Architecture (CORBA) and Distributed Component Object Model
(DCOM) are first approaches in this direction.

Different technologies are available or undervelopment as a plug and
play systems includingJniversal Plug and Play (UPnP) [Jas00] developed in
1995 by Microsoft which is a networking architeeuhat easily add devices to
a network without device drivers and function flagdly. It is built on standard
protocols and is independent of operating systesdiumm, and programming
languages.Salutation [Sal99] introduced in 1996, is another coordinatio
framework that provides service discovery solutio®alutation aims to be

Chapter One Shtroduction

platform and operating system independent. Howavegoes further and also
aims to be network independent. In Salutation, toralkly everything is
mediated by a Salutation Manager (SLM). In 19%8uetooth wireless
technology provides a way for mobile devices tocov®r and communicate
with other nearby devices call®luetooth [Eug01]. In this system, as new
devices are brought into range and establishedceg\are taken out of range,
each device is kept aware of the other devicedsimeighborhoodService
Location Protocol (SLP) [JavOO] emerge in 1998, it provides a scalable
framework for the discovery and selection of netwservices and eliminates
the need for a user to know the name of a netwost bupporting a service.
Finally, Jini [Rab02] introduced in 1999, its full name is cuextremely short
from Java Intelligent Network Infrastructure. Jini is spontaneous simplified
networking based on Java. From a consumer's pérgpeattaching network
able devices is as easy as plugging in the phamen he Service Provider's
point of view, Jini will simplify the management sérvices and the delivery of
services to the end user. This may in turn, geaeeatwhole new set of
networked services, in that the access to netwoserdices for the end user
becomes very simple.

These technologies claim to solve the mentioned problems concerning
distributed system with dynamic configuration. They offer interfaces and
mechanisms for components to announce their owfitieki looking for
services ofther components and use these in a dynamic netwforiteracting
components.

Most distributed plug and play systems have twoadrtgnt characteristics.
They are dynamic due to the fact that system ppaints "clients and/or
servers" come and go rapidly. They are also unpt&olie-administrators might
not know in advance the plugging time, behavior,requirements of the
participant that plugged into the system. Furthbecause the different
components of resources and mobile programs mayresdifferent levels of
protection, security models must support fine-gediaccess control [Has00].

Chapter One Shtroduction

1.2 Related Works

Various efforts in developing Jini network techrgpfqconcerning security
field and development of Jini-like systems) areadticed during the last few
years. Some of these efforts are:

1. Fredrik Anderson and Magnus Karlsson on their miasiesis in 2000
[Fre00] show how to use the fingerprint to autheate the server

provider and the client. Since two persons implemée security-
solution, their security-model was divided into tparts:

€ The service (the server and the proxy) implememati

€ The client implementation and the key and fingepri
Management

In thefirst part the server has to sign the service, or more gxactl
its proxy, it has to be bundled in a specific walis is done in what
Java calls ajar-file. A .jar-file is recognized by its .jar extension of the
filename. A .jar-file is one or more. Class-files compressed into one
single file. A.class-fileis the result of a compiled source-code, a .java-
file, written in Java. The .jar-file is used in daor faster transfer of one
or more class-files in network environments. Whiea proxy’s source
code has been compressed and bundled into agartfdan be digitally
signed with use of one of Java’'s standard progreatied jarsigner.
When jarsigner signs the .jar-file it also includes the signer’s
Certificate. The Certificate is stored in thar-file as acertificate.dsa-
file. By doing this, the .jar-file receiver can extrdot certificate from

the .jar-file. This certificate is self-signed ke server provider using
fingerprint which is used by server and client ih@nticate each other.

In thesecond part the client and the server use this fingerprintdbahat
they need to have the correct fingerprint. This hodt requires that the
fingerprint have been exchanged between the semwses (client) and the
service provider (server) before the service candsel. And the client uses this
fingerprint to make authentication.

Chapter One Shtroduction

2. Hasselmeyer gives another approach to Jini sgaari000 [Per00]. In his
approach, he adds two additional units to Jiniiéecture these are:

© Certificate Authority (CA).
€ Capability Manager (CM).

Certificates provide for authentication of all paigants, certificates are used for
access control in the Lookup service. The capgbmanager administers the
rights for each user. The main concern of his wero provide security for the
Lookup service (LUS), authenticate all its partasips, and determine the access
control for it. This will be done as follows:

When registering a service it calls the LUS proxgtgister method with
its certificate (the service used its own certifecdor proving its

identity) and its signed capability as additionarpmeter. The proxy is
rejected if the issuer is not a known CA. The cdjpplis only accepted
if the contained name equals the distinguished nprasented during
the authentication phase. The LUS verifies the aige of the

capability using the CM's public key and checkthd permission is
implied. Upon success, the Lookup service addsehdace description
to the LUS, otherwise it rejects the operation.

3. Pasi Eronen showed in his master thesis in 20040[H&ow to incorporate
Simple Public Key InfrastructureSPK1) into a Jini security solution. The
suggested system provides a security for a clienessing a service and
leaves as a future work providing a security falira service and a Lookup
service. It works as follows:

When a proxy is downloaded to a client, the clissturity manager

(which a new unit added to the client in the sutgpesystem) asks the
proxy which service it represents, i.e. for the lmukey of the service,

and then checks that the proxy was actually sidnethis key. After the

verification, a new key pair is generated for thiexy.

The client security manager provides two servioeshHe proxy:

Chapter One Shtroduction

€ First: the proxy can ask the security system ta sigy piece of data
using the proxy's key (the private key is not git@mthe Oproxy).

€ Second: the proxy can request some permission tielegated from
the user to the proxy's public key. This delegatsexpressed using
SPKI certificate.

4. Fredrik Samson give in his master thesis in 200de(&] a system
architecture that gives an improvement to the sgcwf Jini network
technology. The first step in the system is noryidde creation of the security
policy. The security policy is written using eXtdrle Markup Language
(XML).

Once the policy has been created, the systemarigdt the security policy is
loaded in memory and then clients can connectdcénver. Before they can
use the server, authentication is performed betwhenclient and server.
Authentication is one of the basic security prapsrthat a distributed system
must implement to be secure. In this system, geidormed by the client on
the server and by the server on the client. Ontgrauthentication has
occurred the desired communication begins. The opobt used for
authentication is the Secure Sockets Layer (SShé. [atest version of Java
includes a tool called the Java Authentication #adhorization Service
(JAAS), which offers a method of performing authemion in Java
applications. JAAS offers built-in login modulesdaoffers the possibility of
creating our own login modules. The login moduleaislescription of the
interface of the chosen authentication protocothla system a login module
was created that implements the authenticatioropabtthat we have chosen.
This is normally followed by the client requestiagarticular action from the
server. If this action is restricted, the servezalts the security policy to make
sure that the client is permitted to perform tlaamn. If permission is granted
then the server executes the operation and retbemsesult. Otherwise, the
action is not executed and the server returns eapton.

Chapter One Shtroduction

5. Steffen Deter and Karsten Sohr introduce on 2089 Rini technology
[Ste00]. Pini is a Jini-like technology that is gile, small and uses RPC-
technology (Remote Procedure Call) instead of R&d¢hhology (Remote
Method Invocation). Due to the fact that Jini isé&ad upon RMI and is therefore
on top of RMI, it is impossible to small deviceshviminimal resources to join
such infrastructures since the use of RMI by Jiast®s resources which are not
available in the aforementioned limited devicesp&ential approach to Jini-
enable limited devices is to replace the RMI-tedbgy with the RPC-
technology. By means of this technology it is pbkesito provide an efficient
mode of communication for Jini components, i.eviees and their proxies.
However it is important to bear in mind, that tkeghnology avoids the major
part of resource waste. A revision of the impleragah strategy for this reason
and to adapt the Jini technology to the Kilo Viftieachine with the Connected
Limited Device Configuration (KVM/CLDC) is necesgar

The testing ground of this implementation will thee Plant Automation
Based on Distributed Systems project (PABADIS), akhis a field of plant
automation that provides interesting case studedemonstrate the effect of
joining network infrastructures by means of spoatars networking and agent
technology [Pab00]. On this testing ground oftety dmited devices and/or
platforms are available. The term “devices” refeyshardware, which often
provides only limited resources in the sense of omgpstorage, computational
performance, etc. Platform means the available pkatéorm, e.g., the available
JDK version is often less than the JDK 1.2, whiheiquired by Jini [Arn99].

1.3 Aim of Research

The aim of this research is to provi@ecure Jini-like Syste(8JLS)
which is a distributed system (that works on LAMN)Yahas a dynamic nature
that enables services to be added or withdrawn feal®arated groups of services
(devices and software components) according to ddmar changing
requirements by the group using the system. A ggcorodel was added to
SJLS to ensure secure interaction among systemamenys.

Chapter One Shtroduction

1.4 Thesis Layout
The thesis organized as six chapters. The chaateras follows:

Chapter two: lllustrate the definition, architectures, infrastiure,
programming model, services, protocols, and appioa
of Jini networking technology.

Chapter three: concerned with exploring the main ideas of distieiou

systems and their security techniques, securityim,
Simple Public Key (SPKI) Infrastructure and Java
security.

Chapter four: Presents the design and implementation steps teward
SJLS.

Chapter five: Presents SJLS tests and results. Different apjitatare
provided to test SJLS.

Chapter six: Clarify the conclusions and suggestions for futuoek.

Ghapter Qbiz Conclusions and ~sfuture CWork

CHAPTER SIX

Conclusions and Future Work

6.1 Discussion and Conclusions

As aresult of the system implementation and testing operations one can

notice the following:

1.

SILS is a distributed system that needs to provide a secure inter-process
communication. Therefore, it is implemented with Java programming
language since Java programming language has a large library (API) that
provide network communication tools, multithreading, a simple way to
communicate between processes (interprocess communication through
message passing), in addition to built in security features.

SILS provides away for instant recognition of new devices in a network
(by providing the ability to register each new service and make it
available to any client for atime period specified by the service provider)
that would seem to make it easier to have an ad-hoc network
environments.

SILS mainly consists of components (Lookup service, servers, and
clients), each of which may perform multiple tasks simultaneously. To
provide multitasking property, multithreaded technique is used at each
component of the SIL S to ensure high response time in serving requests.

The most important part of SILS islookup table which isimplemented as
a database that contains all services plugged to the system. This lookup
table is accessed concurrently by different parties in the system. The
concurrency control of the system is implemented by using Java-Threads,
which have been synchronized explicitly so that no more than one thread
can modify the database at a time. Also this synchronization has been
used to avoid lookup table inconsistency.

Since SILSis implemented with Java language, it inherits all the security
features of Java programming language. But it was found that the Java

Vo £

Ghapter Qbiz Conclusions and ~sfuture (W ork

security features are not enough for the security level needed for the
proposed system. Therefore, additional security model is build.

6. To prove client and server authenticity for the Lookup service, Digital
Signature is used. To prove client authority SPKI certificatesis used. And
to ensure secure interaction between server and client Challenge-
Handshake Authentication Protocol (CHAP) is used.

7. SILS is reliable system since it provides two copies of the lookup table
(i.e. backup copy). Due to the existence of more than one copy, lookup
table consistency is maintained by updating the two copies after each
action (register, renew, cancel operation).

8. SILS give a great support to system adaptability. Since In SILS, servers
register a description of the services they offer with a special Lookup
service along with a service object that permit clients to avail that service.
Clients will query the lookup server to learn of available services and
obtain the relevant proxy, thereby alowing client/server interaction to be
adapted at runtime.

9. From the fault tolerance point of view, the concept of leases is perhaps the
most important concept of the ones promoted in SILS. Basically, a lease
Is an application specific piece of datathat represents dynamic availability
of a remote service. That is, when a node allocates some service to be
used by another node, it creates alease on it. Each lease has an expiration
time, and if this time ends before renewing it, then the service will not be
available more.

6.2 Suggestions for Future Work

After developing SILS, several ideas come to mind that may improve the
overall performance. These ideas have been left as recommendations for future
work. These recommendations are;

1. Instead of Sockets (A socket is one endpoint of atwo-way communication
link between two programs running on the network); RMI can be used as

Ghapter Qbiz Conclusions and ~sfuture (W ork

a communication mechanism among system participants. Using RMI
enables the system to move code and data not only data.

2. Providing the system with more than one Lookup service (not only as a
backup) to improve system performance and response time.

3. In adistributed system it is important to obtain consistency between all
parts of the system. This calls for some method to ensure that an operation
IS either brought to a consistent and definable state, or not performed at
al, this is accomplished using transaction. Adding transaction part to
SILS providesit amore consistent behavior.

4. SILSisimplemented on TCP/IP which could be enhanced to work on any
protocol.

5. Testing SILS on WAN and Internet.

Ghapter Chree istributed ystoms and their OBecurity

CHAPTER THREE

Distributed Systems and their
security

3.1 Introduction

Many of the information resources that are avadadhd maintained in
distributed systems have a high intrinsic value tfair users. Their security
therefore is of considerable importance becauseanks provide a potential
avenue of attack to any computer hooked to themceSias mentioned in
section (2.2), Jini is a dynamic distributed systémilt on top of Java.
Therefore, Jini system should be supported withusigc model to prevent
unauthorized servers from providing illegal sersicar illegitimate clients from
making use of the services provided by the system.

This chapter mainly concerned with discussing itigted system
(definitions, advantages, and security), Java #gcuwand Jini security (which
are built on Java security).

3.2 Distributed Systems

Various definitions of distributed systems haverbgwen in the literature
taking in consideration different point of viewsettd are some of them [Abr98]
[Geo01] [Fre04]:

A distributed system is a collection of independent computers that
appearsto the users of the system as a single computer. This definition has two
aspects: The first one deals with hardware; thenmas are autonomous. The
second one deals with software; the users thinkhef system as a single
computer, both are essential.

Another definition for distributed system @e in which components
located at networked computers communicate and coordinate their actions
only by passing messages. This definition leads to the following characteast
of distributed systemsoncurrency of components, lack of a global clock and
independent failure of components.

Ghapter Chree istributed ystoms and their OBecurity

Another definition isa distributed system refers to a series of computer
systems located at multiple locations working together in a cooperative fashion
to either offer different servicesto clients or to work together to accomplish a
specific task. Internet is one of the examples to distributedesys.
The main advantages of the distributed system are:
€ Sharing of computer resources: Resources may be managed by servers
and accessed by clients or they may be encapsutestenbjects and
accessed by other client objects. Sharing of ressus one of the main
motivations for constructing distributed systemsclHeads the system
to be:
¢ Economics. multiple small machines offer Dbetter
price/performance.
¢ Speed: sharing of computer power speed up computation.
+ Raédliability: if one machine crashes, other can step in.
¢ Flexibility: can spread work across multiple machines.
€ Sharing of information: An example is the World Wide Web (www)
that enables worldwide information sharing.
€ Peer-to-Peer: Two systems can communicate as equal partnersnghari
the processing and control.

The challenges arising from the construction oftridiated systems are
[Ron96]:

1. Heterogeneity of its components: The Internet enables users to access
services and run applications over a heterogenamligection of
computers and network. Heterogeneity (that is,efprand difference)
applies to all of the following:

¢ Networks.

¢ Computer hardware.

¢ Operating systems.

¢ Programming languages.

2. Openness. Openness refers to the ability to plug and playtheory,
have two equivalent services that follow the samierface contract, and
interchange one with the other.

A

Ghapter Chree istributed ystoms and their OBecurity

3. Security: The four basic goals of a security system are:

L4

¢
¢
¢

Protect information.

Detect an intrusion.

Confine the security breach.

Repair the damage and return the system to a kretalvle and
secure state.

4. Scalability: The ability to work well when number of users e@ses.

5. Failure handling: At any one time, many elements of the distributed
system may have failed. If the distributed systerdasigned correctly,
these failures have little visibility to the custenof the system. This
property is called high availability and is usualk®alized by replication
of a service over multiple components and by dapln of
information.

6. Concurrency: The situation in which more than one user acceasd
updates the same data at the same time.

3.3 Security in Distributed System

There is a pervasive need for measures to guarémearivacy, integrity,

and availability of resources in distributed sysienireats to security generally

fall into three main classes: disclosure of infotior® denial of service, and

corruption of information. A threat is any poteht@currence, malicious or

otherwise, that can have an undesirable effecthen assets and resources

associated with a computer system.

Designers of secure distributed systems must cdip @xposed service

interfaces and insecure networks in an environwetre attackers are likely to

have knowledge of the algorithms used and to deptmyputing resources.

Security is related to the notion ddpendability. The properties of dependable

system include availability (Availability is the givability that an item will be

able to fulfill its required function over a statpdriod of time, or at a given

point in time[KwaO01l]), reliability (Reliability isthe ability of a system or

¢y

Ghapter Chree istributed ystoms and their OBecurity

component to perform its required functions undetesl conditions for a
specified period of time [Glo90]) , safety and ntainability (Maintainability is

primarily a design parameter defines how long eapeipt will be down and
unavailable [Rap01]) [Geo01] [lan03]. For securstems, this list must be
extended to include the following [Fre04]:

a. Authentication: is the process of proving a user’s identity. Tgtly, a
server and a client are communicating across aanktand before any
kind of sensitive information can be exchanged betwthe two, they
both need to know exactly with whom they are comicating. To do
that, they perform authentication on each othee €hent proves its
identity to the server and the server proves gsiidly to the client. After
this, they can both decide if they actually wantéonmunicate with the
other or not.

b. Authorization: is the process of giving a client or a servicenpssion
to perform a specific action like executing a pieteode or accessing
certain data. On a network, a client may be trymmgccess some data on
a server. The client and the server begin by peiifoy authentication on
each other as explained in the previous sectioflowimg that, the
client requests to perform a certain action. Theesethen checks that
the client is in fact permitted to perform thisiant If it finds that the
permission has been given then the server letcltet execute the
desired operation. If the server finds that themesion has not been
given then the server tells the client that theiest) has been denied and
the sensitive operation is not executed.

c. Confidentiality: is the security property related to protectingadaom
being read by unauthorized users. Data must beegsat from being
compromised

d. Integrity: where alterations to a system's assets can enlgdue in an
authorized way.Data integrity is the security property that guaeas
that data that is read is valid and that it has lbe¢n modified by
unauthorized users. If an unauthorized user haslsowm managed to
modify the data, then the data has been compronasedcannot be

¢y

Ghapter Chree istributed ystoms and their OBecurity

considered valid. To prevent data from being medifia system must

prevent unauthorized users from accessing the da&authorization
security property does this but this is not enouWglvay is needed to prove
the validity of data to users who are reading thadThis iswhere digital
signatures can be used. Digital signatures areqgbdlte tools explained in
section (3.3). Data is signed so that when a esats the data, he can verify
that the data is valid using the digital signature

e. Nonrepudiation: Nonrepudiation prevents either sender or receivemf

denying a transmitted message. Thus, when a messagat, the receiver
can prove that the message was in fact sent bglbged sender. Similarly,
when a message is received, the sender can pratéhth message was in
fact received by the alleged receiver.

In designing a secure system, one should diffeantbetweersecurity
policy andsecurity mechanism. A security policy describes precisely which
actions the entities in a system are allowed tce takd which ones are
prohibited. Entities include users, services, datachines etc. Once a security
policy has been defined, it is possible to con@tatron the security
mechanisms by which a policy can be enforced.

Consider the state when a malicious Web appletléapgpa program that
appears embedded in a Web documents) might trpvade the naive user’s
privacy by reading information from the hard disklyy monitoring what the
user types on the keyboard. The applet might ajstmtmodify and delete files,
or even format the hard disk. Furthermore, it coattmpromise the system
availability by hogging so much memory or otherowases that the computer is
stalled, or even crashing the browser or the opgraystem [McG97]. In this
example access control, or restricting what thdeaman do, is one of the most
important means for achieving the goals of confiddity, integrity and
availability. Access control, in turn, needs autieation to know whom the
entity trying to do something is, authorizatiorktmw what the entity is allowed
to do, and cryptography to make forging identityaathorization impossible in
practice. Subsequent subsections cover the basigritye terms including
security policy and access control, authorization aelegation, public key
cryptosystems and digital signatures, capabildies certificates, and trust.

¢¢

Ghapter Chree istributed ystoms and their OBecurity

3.3.1 Public Key Cryptosystems and Digital Signatures

Fundamental to security in distributed system & uke of cryptographics
techniques. Cryptosystems are numerical algorittimas convert normal data
called plaintext into encrypted, unintelligible bgr text, and possibly vice
versa. A public key cryptosystem uses one piedafofmation, called key, as
input to the encryption function, and another edakey as an input to the
decryption function. One of the keys is typicallgpk private and the other key
Is published as shown in figure (3.1) [Sch97].

Public key Private key

Plain tex| Encryption | CiPher text | pecryption
function "] function

— Qriginal
plain tex

Figure (3.1) Public Key Cryptosystem

The system of two interrelated keys makes publig keyptosystems
especially good for authentication purposes, ashtiider of a private key K-
(private key), let us call UserA, can encrypt acpief data with the private key,
and publish the data and the resulting cipher tériyone can then use the
corresponding public key K+ (public key) to verifiyat the information was
indeed encrypted using the private key K-. Sin@dhly person knowing the
private key K- is UserA, the verifier knows thatdd& indeed once encrypted
the data. If real time authentication is needed, \arifier can generate some
amount of random data, called a challenge thatptr¢y that pretends to be
UserA must encrypt. If the response contains trelemge encrypted with the
private key K-, the verifier knows that the pargally has access to UserA
private key, and can presume that it is UserA.

The strength of a cryptosystem depends on the ifligas) used and the
length of the key(s). Cryptography is generallyegatized into strong and weak
cryptography. The difference between these two ggols basically that the
former is believed to be unfeasible to break, wthkelatter can be broken if the
breaker is willing to put enough effort to it. Gfurse, what is considered strong
today may be weak in a couple of years as the t#ofgyp evolves and

¢0

Ghapter Chree istributed ystoms and their OBecurity

computers become faster and cheaper, or even tomdra weakness is found
in the algorithm used.

Current public key cryptosystems have one fundaateimawback: they are
relatively slow. Therefore, they are usually useddncrypting and decrypting
only relatively small amounts of data. If a partpud like to authenticate a
large amount of information, digital signatures Iddoe used for diminishing the
amount of data to be encrypted. A digital signatuseially involves two
processes, one performed by the signer calledatligignature creation and the
other by the receiver of the digital signatureedldigital signature verification.

Digital signature creation is accomplished by tsteps: First, a one-way
function, called a hash, is applied to the origimessage. The output is a bit
string of fixed length, usually a lot shorter thdre original message, and its
value depends on every bit of the original messagéhat even only slightly
different messages result in completely differeatpats. The hash functions
should have the following properties. They are ismh-free: it is
computationally infeasible to find two different ssages that have the same
hash and they are one-way:. given a message hash, abmputationally
infeasible to find any message with the same hagrev

In the second step of digital signature creatiba,lash value is encrypted
with the private key to produce the final signatigure (3.2) [Dsg96] depicts
the process of digital signature creation.

Message

Message -
Digital

Signature

Private
Key

Figure (3.2) Creation Digital Signature

£

Ghapter Chree istributed ystoms and their OBecurity

On the other hand, verification of digital sign&uas illustrated in figure
(3.3) [Dsg96], is accomplished by computing a neshresult of the original
message by means of the same hash function useedai® the digital signature.
Then, using the public key and the new hash rethudt,verifier checks: (1)
whether the digital signature was created usingctiteesponding private key;
and (2) whether the newly computed hash resultmeatthe original hash result
which was transformed into the digital signaturemy the signing process. The
verification software will confirm the digital sigwure as a verified if: (1) the
signer’s private key was used to digitally sign thessage, which is known to
be the case if the signer’s public key was usedetdfy the signature because
the signer’'s public key will verify only a digitadignature created with the
signer’s private key; and (2) the message was unaltered, which is known to be
the case if the hash result computed by the verdiedentical to the hash result
extracted from the digital signature during thefiGation process.

Message [Hash
"\ Functio

From signe

Digital
Signature

Any one can verify Public Key

Figure (3.3) Verification of Digital Signature

3.3.2 Certificates

Loren kohnfelder 1978, an electrical engineerimgfMIT invented a new
construct [Jer00]: a digitally signed data recoodteining a name and a public
key. He called this new constructeatificate. It has an issuer and a subject and
because it was digitally signed, such a certificadeld be held non-trusted
parties and passed around from person to person.

¢V

Ghapter Chree istributed ystoms and their OBecurity

Certificates can be classified into two typedentity certificates and
authorization certificates. |dentity certificates bind a human readable name to
a key, i.e. it transmits some identifying infornaatithat the issuer knows about
the subject. The most popular example of it is 2.5@u97]. Authorization
certificates are used to express what the principals (usersaliowed to do.
They bind capabilities to keys, and thus certifithaazation. Examples of
authorization certificates include PolicyMaker (Audt-management system
provides standard, general-purpose mechanisms gecifging application
security policies and credentials) [Mat96], its segsor KeyNote (KeyNote is a
simple and flexible trust-management system desligioe work well for a
variety of large- and small- scale Internet-baseglieations) [Mat99] and
Simple Public Key Infrastructure (SPKI) [Carl99].uthorization certificates
have issuer, subject and validity just as idenitgrtificates. The main
differences are the possible authorization and gddien fields. The
authorization field specifies what rights are daleg to the subject of the
certificate. The delegation field, if the certifiedype has one, specifies whether
the subject has the right to further delegate iffies given in the authorization
field of the certificate.

3.3.3 Access control
Access control refers to the action of deciding ahoperations are
permitted and which operations are not permittguedding on the access rights
the requesting principal hasn distributed systems, controlling access to
resources is based on the system and the techrbguelsich it is implemented;
capabilities andAccess Control Lists (ACL) are examples of these techniques.
An ACL is a security token associated with a speabject (or group of

objects) that lists those subjects that may acthenobject(s), and the specific
actions each subject might perform on the object(s)practice, many ACL
based systems allow groups of subjects to be specih capability, on the
other hand, is a security token associated withgest that lists a number of
permissions. Each permission defines one or mgeets) and an action or a set

of actions that the subject may perform on the cljygmo94] [Lan89].

¢ A

Ghapter Chree istributed ystoms and their OBecurity

It is clear, from the definition, that both ACL amdpability must be
protected from unauthorized modification. In a wdlus, they are both
themselves objects in the access control systeih,tlad subjects power to
modify them must be limited. This creates a chicad egg problem, which is
usually resolved by including a number of implioimutable ACL or capability

modification right in the system.

3.3.4 Credentials

Credentials are a set of evidence provide by acipah when requesting
access to resource. In the simplest case, a catéfifrom a relevant authority
stating the principal's identity is sufficient, atids would be used to check the
principal's permissions in an access control figg is often all that required or
provided , but the concept can be generalized & @e&h many more subtle
requirements.

3.4 Simple Public Key Infrastructure (SPKI) [Pas00] [Sar05]

The Simple Public Key Infrastructure (SPKI) is arntheorization certificate
infrastructure being standardized by the IETF. APKE certificate has five
security related attributesssuer, subject, delegation, tag, and validity, often
represented as a 5-tuple §, D, T, V). Issuer is the public key of the principal
who issued the certificate, and the whole certiicas signed by the
corresponding secret key to establish authenticliybject is the public key of
the recipient of the permissionBelegation is a boolean flag telling whether the
subject may authorize other users or A@y is a service-specific field which
describes the permissions included in the certdicandvalidity describes the
conditions under which the certificate is valid r(fexample, the time of
expiration). When using authorization certificatdee permissions are typically
granted by issuing the administrator of a serviceedificate which gives a
permission to delegate any service related peramssiThe administrator may
then delegate subsets of the permissions by issuiegy authorization
certificates. The new certificates may or may netlude the delegation

¢9

Ghapter Chree istributed ystoms and their OBecurity

permission. Each certificate is signed by the issoghat the authenticity of the
certificate can be confirmed.

The user is authorized by a certificate chain bagip from the first issuer,
and ending to the last grantee or subject. Typic#ble last certificate within a
sequence is an identity or permission certifica®ing some identity or
application specific authority to the final subjedthe final certificate is
preceded by zero or more delegation certificatesssipg the naming or
permission authorization. As example that demotestifais chain, suppose the
server S wants to verify that the user U has tgatrio access the service.
Traditionally this has been accomplished by usingidentity scheme and a
separate ACL stored into the server. However, wistng SPKI certificates the
ACL is unnecessary.

In this example, the server S is administered pplacy administrator PAs.
Typically, the PA may be the security officer oktlrganization owning the
server S. This relationship is represented digital a trust certificate signed
with key Ks, denoting that the server S (uncondgiby) trusts on the policy
administrator PAs. This policy administrator, os ltehalf, delegates a right to
grant access to the server to the policy adminatef the user's organization,
PAu. PAu in turn grants the user U a right to asdbe server S. This situation
is displayed in figure (3.4).

Ghapter Chree istributed ystoms and their OBecurity

(PAs, PAu, may delegate User's

Poliey admin
Key. PAu

limited access to server, time

constraint)

iSEIf' PAs, may delegate, access (PAu, User, no delegate, access

to server, time constraint]

to server, time constraint]

[ssuer

Sarver Prove possession of user key

Eey. Self

Figure (3.4) Basic Authorization Certificate L oop

3.5 Security in Jini [Fre04] [Has00]

Jini network technology uses the Java programnanguage and therefore
inherits all the security features of this languagewever this is not enough.
Jini still lacks in security. For example, the da#tat is sent across the Jini
networks is not protected by default. Third parsens can listen on the network
to see what is going on. The lookup service is weryerable to attack. If it
falls, the network cannot be used anymore.

The main security concern within the Jini archikeet is the use of
dynamically downloaded proxiesSince Jini architecture differs from
traditional” client-server systems like CORBA orthVorld-Wide Web, the
major difference isin all these systems the client permanently contains the code
for communicating with a server. The protocol code is part of the client and
therefore part of the client's trusted computingebdf a client needs some kind
of security (like authentication or integrity),aan choose to use any protocol
that provides the required security properties. T is fundamentally
different; Jini clients do not implement any netlwgrotocol at all. They rather
rely on the service's proxy object to perform tbenmunication with the server.

e\

Ghapter Chree istributed ystoms and their OBecurity

This object originates from some (usually untrustedurce on the network,
which provide great flexibility but present a saturisk for the server. Some
mechanisms is needed to protect lookup servicecliadt since each one of
them does not know what the code of the proxy ingloAnother security point
IS protecting servers, lookup service, and cliéms each one other.

Since as mentioned above, Jini inherits all Jacardg features, therefore,
it is important to explore the security featureda¥a technology.

3.6 Java Security

Java programming language was first introduced 9851 It has a major
importance in a highly distributed and interconedctvorld It is a secure
programming language; it was built with securitynmnind and has been tested
and improved over the years. Java also providesiexft support for mobile
code, something that is very interesting for digtted systems. Also, Java is
portable across different computer platforms angrajing systems [Qus98].

3.6.1 Java Language for Distributed System

Java was developed at Sun Microsystems. Work oa daginally began
with the goal of creating a platform independemiglaage. The original intent
was to use C, but as work progressed in this direction, theaJdevelopers
realized that creating their own language rathan textending € would better
serve them. Java is an object-oriented programnlanguage that has the
attributes illustrated below [Wal96]:

¢ Simple Java’'s developers deliberately left out many efuhnecessary
features of other high-level programming languadgés. example,
Java does not support pointer math, implicit tyastiag, structures or
unions, operator overloading, templates, headddsfieor multiple
inheritance.

¢ Object-oriented just like C* Java uses classes to organize code into
logical modules. At runtime, a program creates aBjefrom the
classes. Java classes can inherit from other cladsg multiple
inheritances, where in a class inherit methods fegids from more
than one class, is not allowed.

oy

Ghapter Chree istributed ystoms and their OBecurity

¢ Compile. Before running a program written in the Java lagg) the
Java compiler must compile the program. The corapba results in a
“byte-code” file that, while similar to a machinede file, can be
executed under any operating system that has aid@rareter. This
interpreter reads in the byte-code file, and tratesl the byte-code
command into machine-language commands that carditestly
executed by the machine that's running the Javgrpm. The Java is
both a compiled and interpreted language.

¢ Multi-threaded. Java programs can contain multiple threads of
execution, which enables programs to handle sevdaaks
concurrently. For example a multi-threaded progrean render an
image on the screen in one thread while contintoraccept keyboard
input from the user in the main thread. All appiicas have at least
one thread, which represents the program’s maim glaxecution.

¢ Garbage collection. Java program do their own garbage collection,
which means that programs are not required to eelefects that they
allocate in memory. This relieves programmers dbmily all memory
—management problems.

¢ Robust. Because the Java interpreter checks all systenesacc
performed within a program, Java program cannagictae system.
Instead, when a serious errors is discovered. Jeograms create an
exception. This exception can be captured and neamhdwyy the
program without any risk of bringing down the syste

¢ Secure. Java is a secure language and the security featirdava
system have been discussed in section (3.6).

¢ Wael-understood. The Java language is based upon technology that’s
been developed over many years. For this reaswa,cin be quickly
and easily understood by anyone, which has expsrignth modern
programming language such a%.C

The Multithreading supported in Java revolves adotine concept of a
thread. Athread is a single stream of execution within a procésprocessis a

oy

Ghapter Chree istributed ystoms and their OBecurity

program executing with its own address space. Javaultitasking system,
meaning that it supports many processes runninguraently in their own
address spaces. Making user more familiar withténen multitasking, which
describes a scenario very similar to multiprograngniA thread is a sequence
of code executing within the context of a procéss.a matter of fact, threads
cannot execute on their own; they require the aeadhof a parent process to
run. For example, word processors may have a thmeathe background
automatically checking the spelling of what is lgewritten, while another
thread may be automatically saving changes to theurdent. Like word
processing, each application (process) may callyntreads to perform any
number of tasks. The possible states that a threglt be in and the triggers
that can cause the thread’s state to change annshdigure (3.5).

g

Suspended Sleeping Blocked

' ://
Ready

* Running the state that all threads aspire to.

e Various waiting states Waiting, Sleeping, Suspended, and
Blocked.

» Ready Not waiting for anything except the CPU.

Figure (3.5) Living thread states

In Java thread library, there are many functioreg tontrol the moving
threads form state to state. Some of these fursaos

1. Yield: move from running state to ready state.
Suspend: move from running to suspend state.
Resume: move from suspend to ready state.

Wait: move from running to wait state.

o & 0D

Notify: move form wait to ready state.

o¢

Ghapter Chree istributed ystoms and their OBecurity

6. Sleep: move form running to wait state and then movestaly state after
specific time (in millisecond, or in milliseconddnanosecond).

Every thread has a priority, an integer from 1 @ Threads with
higher priority get preference over threads witlweo priority. The thread
scheduler considers the priority when it decidegineady thread should
select. If a thread in running state then, it does leave the CPU until
some cause (i.e. wait for read, call function Yjadll function suspend or
call function wait) changes the thread state {rem running state to
ready, block, wait or suspend state). In this cése,scheduler chooses
another thread from ready state according its pyidselects the high
priority thread), then it use First in First oukP) technique with equal
priority threads.

The security architecture of Java can be consideécedtonsist of the
following components [Gon99] [Dan00] [YngO04]:
€ Java language and platform: type safety and iswiati
€ Recourses access control: policy and enforcement.
€ Cryptography architecture.

3.6.2 Java language and platform: type safety and isolation

The basic building blocks in the Java security nh@de a set of language
specific rules. These built-in features presernwe type safety and prevent a
program from accessing or modifying random locaiam the memory of the
hosting machine. Every object reference and prumaigentity in Java has an
access level. Fields and methods provided by Java can be aecks:

€ Private: The entity can be accessed by code in its owssdelass is a

template or blueprint for objects). The progrardesined by using one
or more classes. Every Java program has at leastctass and
programs are contained inside a class definitiotlosed in blocks.
The class can contain data decelerations and meelerations.

X

Ghapter Chree istributed ystoms and their OBecurity

€ Package: The entity can be accessed by code in its owssclar the
same package (package is a collection of clagga®\ide a convenient
way to organize classes).

© Protected: The entity can be accessed by code in its owsscthe same
package, or a direct subclass.

€ Public: The entity can be accessed by code in any class

Based on the definition of access levels, six Jmaaguage rules are
formulated[JohO01]:

1. Access levelsare strictly enforced: In Java, a private entity cannot
be treated as anything but private.

2. Code cannot access arbitrary memory locations. Java does not have
the notion of a pointer. This makes it easier toee this rule. This is
not always the case in other programming langudgeS, work around
the security model could be done by directly scagnihe memory,
looking for entities that are not necessarily hpgemission to access.

3. Entities marked with the final identifier cannot be changed: Thefinal
identifier is specifying a variable, method or slakat needs not to be
changed.

4. Variables may not be used before they have been initialized: A
variable points to some location in the memoryhaf host. If it could be
used before initialization, then specifying a laglection of variables
and read the data stored previously in those amdbbe possible. This
would basically lead to the situation that randoemmry locations could
be read. Java deals with this by forcing programnsnterinitialize local
variables before usage, and by automatically imtiay instance variables
(e.g. class variables) to default values (mostnofig a reference to the
special null identifier).

5. Accessing array bounds outside an initial data set: The primary goal
for this mechanism is to enable developers to woitegrams that have
fewer bugs and are more robust, but it has sechetefits as well. If
their is an ability to write outside an array, armuld be in position to
overwrite elements residing next to his array immogy. Needless to say,
this could become a major threat in terms of séguri

o

Ghapter Chree istributed ystoms and their OBecurity

6. Objectscannot be arbitrarily cast into other objects. Because Java is a
strongly typed language, each data value is adsdciaith a particular
type. Sometimes it is helpful or necessary to canaelata value of one
type to another type. Casting is the most genenah fof conversion in
Java. If a conversion can be accomplished at allJava program, it can
be accomplished using a cast.

The constructs responsible for enforcing thesesrale the compiler and
the bytecode verifier. The first line of defense tlee compiler. During
compilation, every rule but 5 & 6 is checked; tmgchanism cannot enforce
checking of array bounds or all cases of illegadtg€aThese checks will be
completed at runtime. The problem with castingesi@hen two objects are not
known to be unrelated, for example:

Object maybeCar = myVector.elementAt (0);

Car ferrari= (Car) maybecCar;

There is no way for the compiler to know whethexr tibject returned from
the vector indeed is a car, or just something gpasa car.

In addition to type safety, untrusted code needsetésolated. In java, the
isolation is providedy class loaders. Class loaders are responsibladpping
class names (e.g. "java. Lang. string") to theresponding bytecode, and
loading the bytecode from a file or from the netwoFhe mapping is context-
dependent: there can be two classes with diffectads loaders. The class
loaders are themselves written in Java, and prageasican write new class
loaders, if necessary. Class loaders also intevilettype safety. Because there
can be more than one class with the same nameemete to names must be
consistently, i.e., in a way which preservers tyatety.

3.6.3 Resource Access Control

The resource access control framework is respanfblcontrolling access
to valuable system resource, such as the file systéhis part of the
infrastructure has considerably evolved duringhiséory of Java. Ithe original
Java version, Java Dynamic Kit 1.0(JDKO) has very strict security
mechanisms [Sun97] shown in figure (3.6). The etienuof the code on the
virtual machine is divided into two types, localdeoand remote code. Local

oV

Ghapter Chree istributed ystoms and their OBecurity

code is the code that originates from the machinerevit is to be executed and
remote code is the code that originates from oat# machine where it is to
be executed. Obviously, remote code is the one hke$y to be dangerous so it
must be executed with caution. Security in JDK Wwdrks using the sandbox
model, which encapsulates the remote code to exacutith limited access to
the system’s resources. The local code on the dihed is executed with full
access to the system’s resources. The sandboss riefethe virtual box that
contains the code and executes it while at the dame preventing it from
accessing resources outside of the sandbox.

The chent’s local code has access to
the system’s resources. It 15 executed
outside of the sandbox.

The remote code 15
executed mside the
sandbox; access is very
restricted.

The network contains
code and sends it to
chients.

Figure (3.6) JDK 1.0 Security Model

The sandbox model as described above was found todrestrictive. It
was sometimes necessary and still secure for recwde to have the same
access rights as local code. A new security mo@el mwtroduced later in JDK
1.1 to improve the Java security model. In this meadel, the code is divided
into three parts instead of two. The local codstils present with full system
access but there are now two types of remote cgsigaged remote code and
unsigned remote code. Signed remote code refarsde signed with a trusted
signature. The code still originates from outside machine where it is to be
executed but this time it is signed. If the syst@mognizes the signature and
trusts it then it lets the code execute itself vith access just like local code.
Unsigned remote code or code that is signed bysi@d signatures is executed
in the original sandbox.

oA

Ghapter Chree istributed ystoms and their OBecurity

To further improve security in the language, a megre powerful security
model was introduced in JDK 1.2 [Goe97]. This wagesy big improvement.
The older security models only had two types ofecegecution environments,
“full access” and “restricted access”. Full accgase to code complete access
to the system and severely restricted the executidhe remote code but only
in one way and it was not simple to modify the pesmons of code executed in
the sandbox. It became necessary to change thesn@w model introduced the
protection domain. The protection domain refera tartual box similar to the
sandbox in which code is placed to be executedysafi¢hin its permissions.
This lets the system create custom sandboxes. &i@817) shows three
protection domains. One sandbox can give to codweespermission while
another sandbox gives to code different permissidhsse sandboxes are the
protection domains. They are created by examinimg ¢ode’s origin and
signature

The client’s local code has access to the
system’s resources.

Each protection domain can restrict each
downloaded code’s execution differently to
satisty different secunty policies.

Protection Protection Protection
domain domain domain

Rl
N |/

The network contains
code and sends it to
clients.

Figure (3.7): JDK 1.2 Security Model

Conceptually, to set up a sandbox in Java the fatlg elements needed
[lan03]:

o4

Ghapter Chree istributed ystoms and their OBecurity

€ A predefined set of sensitive actions code caroperf

€ A way of binding these actions to specific segmefitsode

€ A control centre responsible for allowing or refugi code
to perform sensitive operations

To create the protection domains, the administrafothe system writes
policy files, which contain permissions. In the ipylfile, the administrator
specifies who is affectdaly the policies using either the origin of the cod¢he
signature of the code or both. Then any one catesva series of permissions
for that code. When the code arrives, its signatmckits origin are examined to
see if they are affected by the security policieshe machine. If they are, a
protection domain is created and the code is erdauside it.

JDK 1.2 is not the latest version but most of #til in use today. There is
one improvement worth mentioning that was put 8K 1.4 (the next major
version of Java after JDK 1.2). JDK 1.2 uses thgimrof the code and the
signature of the code to perform access controk $2 adds the element of the
identity of who is executing the code. To decidadatess should be given or not,
the system still checks the origin and the sigratifrcode, but it also checks
who is executing the code. This can be a humanarsgmachine connected to
the system. Depending on who is executing the cpeéenissions can be
different. This is the security tool called a J&wghentication and Authorization
Service (JAASISun99b].

The abstract clagsava. securi ty. Perm ssi on defines germission
in Java. Every class is associated with a setwhigsions. By default, classes in
the core Java API can perform any action. A cldsie & do anything is
associated with the speciphva. security. Al |l Per m ssi on class. The
permissions can be chosen from a list of predefipedmissions, such as
java.io. Fil ePerm ssion andj ava. net. Socket Per m ssi on, or
one could define his own by extending fjreva. security. Perm ssi on
class, or more commonly theava. security. Basi cPer m ssi on class.
The language provides the administrator with a ssion consisting of three
elements:

Ghapter Chree istributed ystoms and their OBecurity

1. Type: the name of the particular Java class implementihg
permission. This attribute is required.

2. Name: based on the type of the permission. A name &gsdcwith
permission to a file is the name of the targetaosy or file. Much
permission doesn't have a name entry, e.g. tHeP&r m ssi on class.

3. Actions: an optional list of entries describing what cando®ae to the
target. File permission may specify that a file dsnread, written or
deleted.

A permission to read files in the directory "/Ugptsblic/shared/" would be
specified as:

Per m ssi on java.security. Fil ePerm ssion

"/ Users/public/shared/", "read";

A code source encapsulates information about where a class wadet
from and who signed the class. Both entries aréowpt The location is
specified as a Uniform Resource Locater (URL) {fde network-based), and is
called the code base. In Java, fhava. security. CodeSour ce class
defines code sources.

A protection domain defines a mapping between permissions and code
sources, i.e. it contains information about whabéde source is allowed to do.
This contract glues together the ability to perfosensitive operations with
specific segments of code. In terms of Java, aeptioin domain is an instance
of the java.security.ProtectionDomain class. Edelssccan only be associated
with one protection domain, and classes in the édtebelongs to the special
system protection domain. The description of priddec domains is done
through the use gdolicy files.

A policy file relates permissions to code sourcHse JVM can use any
number of policy files, but two are used by default

€ Global policy file.

@ User-specific policy file

It is important to note that giving code permissiorperform some action,
doesn't necessarily mean that the environment @rexlecuting host will allow
that action. Deleting critical system files will ttypically be permitted, unless

R

Ghapter Chree istributed ystoms and their OBecurity

the user has administrator privileges. In detemgni a class should be allowed
to carry out a sensitive operation, the underlypgrating system and the class'
policy files must be consulted. This is the job tbé access controller; it
controls the security policy of an application.dPrto the Java 2 release, this
responsibility fell on theecurity manager. This mechanism still exists, in order
to accommodate all the programs developed bef@@enthoduction of the Java
2 platform [Fre04].

3.6.4 Cryptography

Cryptography is fundamental to security in disttdal systems.
Cryptography involves encrypting a message betasesent (so that it remains
private) and decrypting it upon arrival before & fead. Encryption and
decryption are accomplished by using cryptograpmethods parameterized by
keys with the following properties:

€ Algorithm is publicly known
€ Key is held private

Cryptography enables us to defend from three tgpastacks:

a. Theinterception of the message: The user may be able to intercept the
message but will only see unintelligible data (ss|eof course the users
know the key, which is rather unlikely).

b. Modification of the message: this is even more difficult since the user
will have to be able to decrypt the data, then riyatiand also properly
encrypt it again so the receiver thinks it comesnfithe original sender
and does not suspect that it has been modified.

c. Insertion into the message: Here again, the user will have to be able to
decipher the message and encrypt it again i.e.usex is capable of
modifying a message and insert data into it.

A cryptosystem is a system in which encryption and decryption are
performed in association with the transmitting aadeiving functions. There
are three main categories for encryption:

a. Secret Key (symmetric cryptosystem): Single key is used to encrypt

and decrypt information. Keys can be created imaber of ways e.g.

1Y

Ghapter Chree istributed ystoms and their OBecurity

they can be generated once and used over and gar @ they can be
generated for each session. A good example of rmamsjyric
cryptosystem algorithm is Data Encryption Stand&és).

b. Public/Private Key (asymmetric cryptosystem): In asymmetric
cryptosystem (or better known a@siblic-key systems), the keys for
encryption and decryption are different but togefioem a unique pair.
These complementary keys for digital signaturesemmed theorivate
key and thepublic Key. The private key is known only to the sender
and it is used to create the digital signature. Pphblic key is more
widely known and is used by a relying party to auticate the digital
signature. Although many people may know the pukdéig of a given
sender (signer) and use it to verify that sendagsature, they cannot
discover that sender's private key. The processr@dting a digital
signature grivate key) is accomplished by the sender. The verification
of the digital signature is performed by the reeeiwof the digital
signature. One popular example, of a public-keyesyss RSA named
from the inventors (Rivest, Shamir and Adleman 1978

MDS5 is a good example of a hash function. The MIgpathm takes as
input a message of arbitrary length and producesoaput a 128-bit
“fingerprint" or "message digest" of the input. it conjectured that it is
computationally infeasible to produce two messdgesng the same message
digest, or to produce any message having a givecifsgd target message
digest. The MD5 algorithm is intended for digitadrsature applications, where
a large file must be "compressed" in a secure nmabe®re being encrypted
with a private (secret) key under a public-key togystem such as RSA.

In essence, hash functions are a way to veafg integrity, and are much
more reliable than checksum and many other commas#g methods [lan03].

1y

Ghapter Ciwo ini HNevworking Cechnology

CHAPTER TWO
Jini Networking Technology

2.1 Plug and Play Systems

Plug and play systems are designed to offer intesfand mechanisms for
components to announce their own abilities, lookfng services of other
components and use these imymamic network of interacting components.
Among the plug and play systems mentioned abdwe, system is the most
popular one. It provides an open solution for nekwoteroperability issues in a
distributed computing environment. This means thiait has the capability of:
finding and connecting services and devices on a network, creating reliable
sets of services out of unreliable parts, including the network itself, and
dealing with networks that are very large or last very long time. Accordingly,
Jini is chosen to be studied and all the menticadsale plug and play systems
will be discussed with respect to Jini charactesst

2.1.1 Universal Plug and Play (UPnP) [Jas00] [Mic99b] [Mic01]

Universal Plug and Play (UPnP) is a coordinati@amiework that is mainly
created by Microsoft who started using in referemoetheir Windows 95
product, aims for zero-configuration networkingd#vices. Unlike Jini, UPnP
currently does not have a strong notion of servitestead, it targets a lower
level than Jini, addressing basic networking arstalery issues. Furthermore,
UPNP does not currently address how to use senkarsexample, UPnP will
help finding a printer, but not use it. It is ptatih and operating system
independent, which gives developers the possilititghoose the best platform
for their device. The platform independence is mes by using the
Transmission Control Protocol/Interne Protocol (TI€P Furthermore, it uses
already standardized and reliable Internet-mechais=or example, small
Hyper Text Transfer Protocol (HTTP) servers areduse send information
about the device to the user of the service. Thacgeinformation is transmitted
in an already standardized form, as an eXtensibéekivp Language (XML-

Ghapter Ciwo ini HNevworking Cechnology

page). To be able to use services at different atimgr systems, different
Application Programming Interfaces (APIs) are us@dndors only have to
apply different APIs to be able to use their sersiat different operating
systems without the need of rewriting the deviaag e code. UPNnP is made to
bring easy-to-use to home and office environmelitss to be used in local
networks as well as at the global Internet. Onéopbphical difference between
UPNnP and Jini lies in how services are defined. M# Jini relies on well-
defined Java interfaces for services, UPnP dependstandard protocols and
data formats, with the specific API, implementatiand programming language
for handling the protocol and data format left &mle specific device. This leads
to another philosophical difference. Java’'s phifgsohas always been “Write
Once Run Anywhere.” Jini follows this philosophy ligving proxies to services
be downloaded onto clients. This approach canndaken with UPnP, since
platforms may be different. With Jini, there isoaver overhead to use a service,
since the proxy to the service can be downloadezttly. In contrast, the APIs
and implementation have to be developed for eaekifsp device. However,
proponents of UPnP claim that this leads to mdrabie code, since it has been
tested on that specific platform, which may notile case for the Jini service.
An UPnP community consists of Client Components,a$nObjects and
Directories. Directory servers (also called proxare able to store object
announcement and respond to client discovery réguddirectories are
providing the ability to answer on behalf of di#eat objects within the network.
The directory server makes UPnP scalable; it waska coordinator at the local
network and as a global discovery mechanism, wbisters the entire Internet.

Smart Objects are devices, which are providing sé&me of services
within the network. When appearing in the netwdnkyt are sending out an
announcement packet in the network. If a directsrgresent, the smart object
knows it does not need to answer any discoveryastgufrom clients, because it
knows the directory server will take care of themd answer them. But if there
isn't any directory server within the network it stuhandle all discovery
requests to see if the discovery matches the gxieeriof its service.

Discovery is made by sending out discovery packtcovery packets are
sent with the Simple Service Discovery Protocol@8§ which is constructed

Ghapter Ciwo ini HNevworking Cechnology

to discover devices in Internet Protocol (IP) netw&SDP uses User Datagram
Protocol UDP- and TCP-based HTTP to discover sesvic

UPNP is constructed to work in server-less netwofkerefore, all Smart
Objects must be able to provide the capabilitiesessgary if there is no
discovery server within the network. This meang thay all have to be able to
answer Service Discovery requests and they must &dowilt in HTTP server to
be able to respond to requests.

UPnP does not define any programming model. The¥efdevices are
operating system and program language independenget devices (Smart
Objects) to interact with each other, specific ARApplication Programming
Interface) can be used. The usage of APIs allodsvice to interact with other
devices running at different operating systems. ARealso allows the usage of
different transport mediums. This means that tlsealiery protocol does not
have to run over IP based transport mediuhiie characteristics of UPnP are
summarized below:

4 Built on reliable, well-known technology.
€ No code is moved around or being downloaded.
€ The ability to use non-IP based networks.

€ Device-interaction only through API or XML pagesthwiXSL (Style
Sheets).

€ The UPnP has quite high demands on hardware. Ateingnmtation of
Simple Discovery takes 4 Kbytes of code. The hagdlof HTTP
activities requires about 20 Kbytes of code anddinaces also need to
implement the TCP/IP stack to support transpomatithe devices also
have to implement the domain service that allom®raated naming
and generation of addresses, which takes anothdébftes of code.
Totally 64 Kbytes of code is needed only to be dbleun as an UPnP
device.

Ghapter Ciwo ini HNevworking Cechnology

2.1.2 Salutation [Sal99] [Rek]

Salutation is another coordination framework. Tingt foublic release was
in January 31, 1996 of its first version. Like Jamd UPnP, Salutation aims to
be platform and operating system independent. Hew&alutation goes further
and also aims to be network independent. ThatigeiUPnP, Salutation does
not rely on HTTP and TCP/IP. In Salutation, praaitic everything is mediated
by a Salutation Manager (SLM).

The SLM provide four basic tasks these are:

1. Service Registry: The SLM contains a Registry to The Salutation
Manager contains Registry to hold information about Services. The
minimum requirement for the Registry is to storéoimation about
services connected to the Salutation Manager. Témsgces may reside
in the local Salutation Equipment or may connecttite Salutation
Manager via Remote Procedure Calls.

2. Service Discovery: The Salutation Manager can discover other remote
Salutation Managers and determine the Servicesstexgd there.
Service Discovery is performed by comparing a required Services
type(s), as specified by the local Salutation M&nawith the Service
type(s) available on a remote Salutation Managemd&e Procedure
Calls are used to transmit the required Service(g)pfrom the local
Salutation Manager to the remote Salutation Manager to transmit
the response from the remote Salutation Managtretéocal Salutation
Manager, through manipulation of the specificatidmequired Service
type(s).

3. Service Availability: The Salutation Manager can periodically check
the availability of a Service. The local Salutatidianager requests the
appropriate Salutation Manager to performParailability Check. The
Availability Check is performed by exchanging Reen&rocedure Call
messages between the Salutation Managers. The dperio the
Availability Check is specifiable.

AR

Ghapter Ciwo ini HNevworking Cechnology

4. Service Session Management: When a Client wants to use a Service
provided by Salutation Equipment, the Salutatiom&tger can establish
a virtual data pipe between a Client and a Servides is called a
Service Session. Commands, responses and data are exchanged betwee
Clients and Services on these data pipes in bloceked M essages.
Messages have a defined format and are exchangsel andefined
protocol.

A service is broken up into a set of functionaltsnFunctional units are
defined by the Salutation technical committee, andently include such things
as printing, faxing, storage, address book, scheglubnd voice mail. Each
functional unit is associated with a set of prededi attributes. Thus, a service
can be described in terms of the functional unitsas, as well as the specific
values of the attributes. Furthermore, each funefiounit also defines a
Standard protocol, data format, API, and eventbdaaised. Its characteristics
can be summarized as follows:

€ Operating system independent.

€ Salutation allows user authentication using a igeand password
scheme.

€ Structured descriptions of services as functiorrtsy which in turn
contain attribute records. Functional units idgntifype" or "features"
of a service. Attributes provide much more detaill amenable to
powerful queries. Standard functional unit defonis allow easier
interoperability.

2.1.3 Bluetooth SDP [Jap99] [Eug01]

Bluetooth Formed in February 1998 by mobile telephand computing
leaders Ericsson, IBM, Intel, Nokia, and Toshibhe Bluetooth special interest
group (SIG) is designing a royalty-free, technolgggcification.

Bluetooth is a wireless connection device, whiclussng radio waves to
connect different devices. To be able to conndterdint Bluetooth devices, it
has a built in discovery protocol, the Bluetoothrv&= Discovery Protocol
(SDP). SDP addresses discovery specifically foBluetooth environment. It is

VY

Ghapter Ciwo ini HNevworking Cechnology

designed to find services available from or throBglretooth devices. SDP does
not define any method for accessing the servicesbd@ able to access the
devices, other service discovery methods suclngdlPnP or SLP can be used.
While SDP can coexist with these other servicealiscy protocols, it does not
require them. Other ways to access the servicetraigh be used depending on
the service. In Bluetooth environments, found smwican be accessed using
other Bluetooth specific protocols.

SDP servers maintain a database with informati@utbxisting services
within the Bluetooth network. The server also resjsto request on an existing
connection. SDP clients can search for servicea specific class or for a
specific service. Clients can also provide theigtib browse available services.
SDP service is any feature usable by another de@iervices can be searched
for as a specific class of services or it can @deed for from browsers. The
following is a summary of Bluetooth SDP:

€ Fast and hardware cheap.
€ Works only between Bluetooth devices.

© SDP does not care about security. It does onlyvatlevices to locate
other devices within the Bluetooth environment

2.1.4 Service Location Protocol (SLP) [Jav00] [Ope99]

In the late 1980s, a working group on the InteEmgineering Task Force
(IETF) begins on the subject of service locationlBmetworks, although they
made some progress, they did not seem to be enpteghst in making IP easy
to use, and the SLP effort moved slowly. When Apgileped Mac OS 8.5 in
mid-1998, it brought the SLP effort which is stdrigearly ten years earlier to
fruition. Mac OS 8.5 included the Network Servitexation (NSL) Manager,
an APl which enables services to register throughogols like SLP and client-
side applications to browse for and initiate acctsssuch services. NSL
provides a plug-in architecture for service locatid’he principal plug-in
included by Apple with Mac OS 8.5 was an SLP versloplug-in. With the
explosion of interest in the Internet and Intermedirk on SLP has been
reinvigorated. SLP version 2 has been completedl@®©. Like Jini, SLP

'Y

Ghapter Ciwo ini HNevworking Cechnology

provides a framework to allow networking applicasoto discover the
existence, location, and configuration of networksetvices in enterprise
networks

It makes use of three entities tBervice Agent (SA) acts on behalf of
service provider to disseminate information abdbet Ibcation and attributes of
the servicesDirectory Agent (DA) its primary function is to implement a
repository of services where the clients can lowk darticular services given
particular attributes. A DA catches the advertisetsiefrom SAs collects
information from the advertisements of SAs andiespbn behalf of SAs to UAs
when they request a particular servitlser Agent (UA) acts on behalf of a
client to acquire service information. It looks fand required services with
particular characteristics by sending queries alsmrvices to the DAs or
directly to the SAs. The advantages of SLP are ithatsimple to implement,
OS independent. However, SLP is only a string-bgsedocol for discovery
purposes, which does not address communication gntloa desegregated
devices. On the other hand, Jini is flexible in iempenting any service and it is
OS independent because of the JVM. Jini has amais strength the ability to
move code, although this ability can be regarded dsawback since moving a
small piece of code can involve a lot of traffictie network.

SLP is constructed to work over TCP/IP. To be ablevork, it needs that
the basic IP protocols are supported in the netwsirkh as: Multicast, TCP/IP
and/or UDP/IP, Preferably DHCP shall exist in tledéwork. A summary of SLP
characteristics is given below:

€ Operating system independent.

€ Simple protocol, therefore simple to implement.

€ Doesn't specify anything about how the servicescagated

€ Provides only a simple way to discover service$how to use them.

€ The built in security is not complete, but some usig-related
considerations have been taken. The authenticatiolblems are taken
care of in the SLP protocol. To authenticate sewin SLP for instance
certificates may be used. There is a field in the Specification where

V¢

Ghapter Ciwo ini HNevworking Cechnology

the authentication block is located. Observe thet does not provide
any kind of access control of services, only a waynake certain that
the service comes from the service provider it notad to be.
Furthermore, there is nothing specified on how ¢benmunication is
supposed to be secured

2.2 Jini System

Jini is a distributed system that consists of atanex of different but related
elements. It is strongly related to Java prograngmanguage; although many of
its principles can be implemented equally well ihew languages. The history of
Jini is largely the history of Java. Jini fulfillde original Java vision of
consumer-oriented groups of electronic deviceschinging data. Java evolved
from a language called Oak. Oak was designed byMBarosystems in 1990 to
serve as a portable way to write programs for emibeédorocessors. In 1994
engineers Patrick Naughton and Jonathan PayneStonmwrote a Web browser
using Oak. This browser, named WebRunner, latearnecthe foundation for
the HotJava browser. HotJava had the unique aliditdownload executable
programs from Web servers and execute them invadao These programs are
called applets. Although Java got its start instoner electronics, it was the
ability to build applets that propelled it into tbemputing industry. Realizing
that the original Java concept is still compellimggroup of Sun engineers
recognized the need for continuing developmenth&lgh Java enables moving
code from machine to machine, problems exist therhger implementing
constellations of easily administrated devices. sThequires mechanisms
normally not associated with desktop computing.esehmechanisms for such
devices are as follows [Lai0O0]:

€ A robust software infrastructure.
€ The ability to dynamically configure additional dess and peripherals.
€ The ability to share components without reconfi¢jora

The Jini characteristics can be summarized asvistio

€ Operating system independence through the usaggvaf

\o

Ghapter Ciwo ini HNevworking Cechnology

€ Any kind of services can be implemented, largeifigity of the service
implementation.

€ The need of a Lookup Service.
€ The requirements of Java.

€ Its security is native to Java & RMI. Jini does rssem to define
anything more.

A Jini system is a distributed system based ondéa of federating groups
of users and the resources required by those aseshown in figure (2.1)
[KesO1]. The overall goal is to turn the networkoina flexible, easily
administered tool on which resources can be foynauman and computational
clients. Resources can be implementecidser hardware devices, software
programs, or a combination of thetwo. The focus of the system is to make the
network more dynamic entity that better reflecte thynamic nature of the
workgroup by enabling the ability to add and dekevices flexibly.

Application

Jini Technaology

Java Technology

Operating ~ System

MNetwork Transport

Figure (2.1) overview of Jini architecture

A Jini system consists of the following parts:

€ A set of components that provide an infrastructéme federating
services in a distributed system.

€ A programming model that supports and encouragethduction of
reliable distributed services.

1

Ghapter Ciwo ini HNevworking Cechnology

€ Services that can be made part of a Jini federatibmch offer
functionality to any other member of the federatwinile thesepieces
are separable and distinct, they are interrelatieel;components that
make up the Jini infrastructure make use of the pmegramming
model; services that reside within the infrastruetalso use that model,
and the programming model is well supported by comepts in the
infrastructure.

The end goals of the system span a number of diffemudiences; these
goals include the following:

€ Enabling users to share services and resourcesaovemork.

€ Providing easy access to resources anywhere ometveork while
allowing the network location of the user to change

€ Providing programmers with tools and programmindtguas that
allow the development of robust and secure disteithsystems.

€ Simplifying the task of building, maintaining, aadtering a network
of devices, software, and users.

The Jini infrastructure provides mechanisms dewices, services, and
users to join and detach from a network. Joining intod deaving a Jini
grouping is an easy and natural, often automatcimence. Jini groups are far
more dynamic than is currently possible in netwdrgeoups where configuring
a network is a centralized function done by hanth[&].

It is environmental assumption assumed that eathekhnology-enabled
device has some memory and processing power. BewiBout processing
power or memory may be connected to a Jini systarh,those devices are
controlled by another piece of hardware and/orveat, called groxy, that
presents the device to the Jini system and whsghificontains both processing
power and memory.

The Jini system is Java-technology centered atlwtiie Jini architecture
gains much of its simplicity from assuming thatagvogramming language is
the implementation language for components. Thdityabio dynamically
download and run code is central to the Jini aeclitre. However, Java-centric
nature of the Jini architecture depends on Javécagipn environment rather

AR

Ghapter Ciwo ini HNevworking Cechnology

than on Java programming language. Any programntamguage can be
supported by a Jini system if it has a compilett {x@duces compliant byte
codes for Java programming language [Sun99a].

This chapter is concerned with describing the thtaarchitecture of Jini
system and its components.

2.3 Jini Architecture

The purpose of the Jini architecture isféderate groups of devices and
software components into a single, dynamic distadusystem. The resulting
federation provides the simplicity of access, ed#sadministration, and support
for sharing that are provided by a large monolithystem while retaining the
flexibility, uniform response, and control providég a personal computer or
workstation.

The architecture of a single Jini system is tamjdte the workgroup at
which members of the federation are assumed teagrdasic notions afust,
administration, identification andpolicy. It is possible to federate Jini systems
themselves for larger organizations. A Jini systrauld not be thought of as
sets of clients and servers, users and programsy@m programs and files.
Instead, a Jini system consists of services thateacollected together for the
performance of a particular task.It provides mechanisms foservice
construction, lookup, andcommunication; it is use in a distributed system.
Examples of services includetevices such as printers, displays, or disks;
software such as applications or utilitiegyformation such as databases and
files; andusers of the system.

The components of the Jini system as shown in dig{#.2) can be
segmented into three categories [KeiO1]:

1. Infrastructure: The infrastructure is the set of components thabkes
building a federated Jini system.

2. Programming model: The programming model is a set of interfaces that
enables the construction of reliable servicespiticlg those that are part
of the infrastructure and those that join into fibgeration.

A

Ghapter Ciwo ini HNevworking Cechnology

3. Services: The services are the entities within the federation

Network Services . .
(user defined services) [HCEIEWE Devices services

‘]I ni Programming model

Leasing , Events , Transactions

infrastructure Discovery/Join, Lookup , distributed security

r

Java platform<

Figure (2.2) components of Jini system

These three categories, though distinct and selgai@ie entangled to such
an extent that the distinction between them camsgl@rred. Moreover, it is
possible to build systems that have some of thetiomality of the Jini system
with variants on the categories or without all thied them. But a Jini system
gains its full power because it isgstem built with the particular infrastructure
and programming models described, based on theomodf a service.
Decoupling the segments within the architectureved| legacy code to be
changed minimally to take part in a Jini systemvédtheless, the full power of
a Jini system will be available only to new sersgitkat are constructed using
the integrated model.

A Jini system can be seen as a network extensiameofinfrastructure,
programming model and services that made Javaddminsuccessful in single
machine case, figure (2.3) shows the main categofidini system.

V4

Ghapter Ciwo ini HNevworking Cechnology

Services Programming Infrastructure
model
Printing Leasing Lookup service
Jini Mathematical Transactions Discovery/join
Operations Events Distributed security

Figure (2.3) Main categories of Jini system
2.3.1 Services

Service is the most important concept within the Jini @edture. A service
IS an entity that can be used by a person, a pmggoa another service which
may be acomputation, storage, a communication channel to another user, a
Softwar e filter, a hardware device, or another user. Example of service is
printing a document [Sco00].

The Jini technology infrastructure and programmingdel are built to
enable services to be offered and found in the owdtwederation. These
services make use of the infrastructure to make takach other, discover each
other, and to announce their presence to otheincgesnand users. Services
appear programmatically as objects written in Jauagramming language,
perhaps made up of other objects. It has an irdettaat defines the operations
that can be requested from that service. Someesktinterfaces are intended to
be used by programs, while others are intendea tab by the receiver so that
the service can interact with a user. The typehef $ervice determines the
interfaces that make up that service and also eé¢fia set of methods that can
be used to access the service. A single servicebmayplemented by using
other services (i.e. services may make use of cdefices and a client of one
service may itself be a service with clients ofatgn). The dynamic nature of a
Jini system enables services to be added or wavrdfrom a federation at any
time according to demand, need, or the changingirements of the workgroup
using the system. These services communicate vathih @ther by using a
service protocol, which is a set of interfaces tenitin Java Programming
Language. The set of such protocols is open entlkd. base Jini systems

Ghapter Ciwo ini HNevworking Cechnology

consist of a small number of such protocols whiaHing critical service
interaction.

2.3.2 Programming Model

Both the infrastructure and the services that g infrastructure are
computational entities that exist in the physiaali'onment of the Jini system.
However, services also constitute a set of intedacwhich define
communication protocols that can be used by thacs and the infrastructure
to communicate between themselves. These interftade=n together, make up
the distributed extension of the standard Javarproging language model that
constitutes the Jini programming model. Among titerfaces that make up the
Jini programming model are the following:

€ Leasing Interfaces, which defines a way of allocating and freeing
resources using a renewable, duration-based model.

€ Event and Notification I nterfaces, which are an extension of the event
model used by JavaBeans™ components to the digtdl@nvironment,
enable event-based communication between Jini tdopy-enabled
services.

€ Transaction Interfaces, which enable entities to cooperate in such a
way that either all of the changes made to thegemecur atomically or
none of these changes occur.

2.3.2.1 Leasing Interfaces [Sun00a] [Sun02]

Leasing is a particular style of programming fostdbuted systems and
applications in which a resource is offered by obgect in a distributed system
and used by a second object in that system, ised on a notion of granting a
use to the resource for certain period of time tbahegotiated by the two
objects when access to the resource is first régdesd given. Such a grant is
known as dease and is meant to be similar to the notion of a leased in
everyday life.

Leases are either exclusive or non-excluskseclusive leases ensure that
no one else may take a lease on the resource dimengeriod of the lease;
nonexclusive leases allow multiple users to share a resource. It isthe only
time-based mechanism used in software; there der ohechanisms such as

Y

Ghapter Ciwo ini HNevworking Cechnology

time-to-live, ping intervals, andkeep-alive. Leasing is not meant to replace
these other techniques, but rather to enhanceethefdools available to the

programmer of distributed system®istributed systems differ fundamentally
from non-distributed systems in that there areasibms in which different parts

of a cooperating group are unable to communicatkeerebecause one of the
members of the group has crashed or because theecon between the

members in the group has failed. This partial failcan happen at any time and
can be intermittent or long-lasting.

The possibility of partial failure greatly compltea the construction of
distributed systems in which components of theesysthat are not co-located
provide resources or other services to each ofifer.programming model that
Is used most often in non-distributed computingyimch resources and services
are granted until explicitly freed or given up,ogen to failures caused by the
inability to successfully make the explicit callsat cancels the use of the
resource or system. Failure of this sort of systam result in resources never
being freed, in services being delivered long dfterrecipient of the service has
forgotten that the service was requested, andsouree consumption that can
grow without bounds. To avoid these problems, @onodf a lease introduced.
Rather than granting services or resources urdil ¢ginant has been explicitly
cancelled by the party to which the grant was madeased resource or service
grant is time based. When the time for the leaseelkgired, the service ends or
the resource is freed. The time period for thedeasletermined when the lease
is first granted, using a request/response formegfotiation between the party
wanting the lease and the lease grantor. Leasesbmagnewed or cancelled
before they expire by the holder of the lease,mufse of no action (or in case
of a network or participant failure), the lease @ynexpires. When a lease
expires, both the holder of the lease and the grasftthe lease know that the
service or resource has been reclaimed. Thereusnber of characteristics that
are important for understanding what a lease isvémeh it is appropriate to use
one. Among these characteristics are:

€ A lease is a time period during which the granfathe lease ensures (to
the best of the grantor’s abilities) that the holdkthe lease will have
access to some resource. The time period of tise le@n be determined

Yy

Ghapter Ciwo ini HNevworking Cechnology

solely by the lease grantor, or can be a periduhed that is negotiated
between the holders of the lease and the granttreofease. Duration
negotiation need not be multi-round; it often sug8 for the requestor to
indicate the time desired and the grantor to rethm actual time of
grant.

€ During the period of a lease, a lease can be dadcbly the entity
granting the lease. Such a cancellation allowgthator of the lease to
clean up any resources associated with the lease.

€ A lease holder can request that a lease be ren&hedienewal period
can be for a different time than the original leas® is also subject to
negotiation with the grantor of the lease. The gmamay renew the
lease for the requested period or a shorter penaoday refuse to renew
the lease at all. However, when renewing a leasegthntor cannot,
unless explicitly requested to do so, shorten thatdn of the lease so
that it expires before it would have if it had nm¢en renewed. A
renewed lease is just like any other lease artde#f subject to renewal.

€ A lease can expire. If a lease period has elaps#dne renewals, the
lease expires, and any resources associated witledise may be freed
by the lease grantor. Both the grantor and thedrade obliged to act as
though the leased agreement is no longer in fdrbe. expiration of a
lease is similar to the cancellation of a leasecepk that no
communication is necessary between the lease haldérthe lease
grantor. Leasing is part of a programming modelldailding reliable
distributed applications. In particular, leasin@iway of ensuring that a
uniform response to failure, forgetting, or disi@st is guaranteed,
allowing agreements to be made that can thendgetten without the
possibility of unbounded resource consumption, @ediding a flexible
mechanism for duration-based agreement.

2.3.2.2 Event and Notification Interfaces [Sun01a]

Events are common programming model used for nogfiromponents
that something interesting has happened, suchaagh@ user has given some
input or another component’s state has changawgrams based on an object

Yy

Ghapter Ciwo ini HNevworking Cechnology

that is reacting to change of state somewheredmitBe object are common in a
single address space. Such programs are oftenfarsederactive applications
in which user actions are modeled as events to lwbiber objects in the
program react. Delivery of sud¢bcal eventsis assumed to beell ordered, very
fast, predictable, andreliable. Further, the entity that is interested in thengve
assumed to always want to know about the eventoas as the event has
occurred. The same style of programming is usefdistributed systems, where
the object reacting to an event is in different JVperhaps on a different
physical machine from the one on which the evemuoed. Just as in the
single-JVM case, the logic of such programs is rofteactive, with actions
occurring in response to some change in statehthsitoccurred elsewhere. A
distributed event system has a different set ofasttaristics and requirements
than a single-address-space event system. Noioicabf events from remote
objects may arrive in different orders or from drént clients, or may not arrive
at all. The time it takes for a notification toiger may be long (in comparison to
the time for computation at either the object tieterated the notification or the
object interested in the notification). There maydacasions in which the object
wishing the event notification does not wish to dadlvat notification as soon as
possible, but only on some schedule determinednbyrécipient. There may
even be times when the object that registereddastan the event is not the
object to which a notification of the event shoble sent. Unlike the single-
address-space notion of an event, a distributedteannot be guaranteed to be
delivered in a timely fashion. Because of the gmbses of network delays or
failures, the notification of an event may be dethyndefinitely and even lost in
case of a distributed system.

Java has specified an event model with JavaBetressigndard component
model for Java). This model has been extended ifdrilsited events in Jini,
with some slight changes to accommodate Jini'sridiged nature. Basically
three concrete objects involved in a Jini distrdglievent systems as shown in
figure (2.4) these are:

€ The object that registers interest in an event
€ The object in which an event occurs (event gengrato
€ The recipient of event notifications (remote euéstener)

Y¢

Ghapter Ciwo ini HNevworking Cechnology

1_The remote event listner registers
interest in a particular kind of

event with the event generator

Event
Remote event Famote ereni
listner object object Zenerator

object

2_ The event generator fires a
remote event to indicate that an

event of that kind has occured

Figure (2.4): Threeobjectsinvolved in Jini distributed event system

An event generator is an object that has some kinds of abstract state
changes that might be of interest to other objaais$ allows other objects to
register interest in those events. This is theathfeat will generate notifications
when events of this kind occur, sending those watibns to the event listeners
that were indicated as targets in the calls thgistered interest in that kind of
event. Aremote event listener is an object that is interested in the occurrerice o
some kinds of events in some other object. The niajaction of a remote event
listener is to receive notifications of the occage of an event in some other
object (or set of objects). Aemote event is an object that is passed from an
event generator to a remote event listener to atdithat an event of a particular
kind has occurred. At minimum, a remote event dastanformation about the
kind of event that has occurred, a reference tootbject in which the event
occurred, and a sequence number allowing identidicaof the particular
instance of the event.A notification will also include an object that was
supplied by the object that registered intereshenkind of event as part of the
registration call.

2.3.2.3 Transactions Interfaces

Transactions are a fundamental tool for many kinflscomputing. A
transaction allows a set of operations to be grdupesuch a way that they
either all succeed or all fail; further, the opemas in the set appear from outside
the transaction to occur simultaneously [SunO2hn$actional behavior are
especially important in distributed computing, wdhehey provide means for
enforcing consistency over a set of operations o @r more remote

Yo

Ghapter Ciwo ini HNevworking Cechnology

participants. If all the participants are membdra transaction, one response to
a remote failure is to abort the transaction, thgrensuring that no partial
results are written. Jini provides the interfacesassary to coordinatetao-
phase commit, a special kind of transaction used for distridutensactions (a
one-phase commit is a transaction for a non-distributed systemp #no-phase
commit protocol defines the communication pattetinat allow distributed
objects and resources to wrap a set of operatroeadh a way that they appear
to be a single operation. The protocol requires anager that will enable
consistent resolution of the operations by a guasthat all participants will
eventually know whether they should commit the apens (roll forward) or
abort them (roll backward).

The two-phase commit protocol is designed to enabjects to provide
ACID (Atomicity, Consistency, lIsolation, and Durhty) properties. The
default transaction semantics define one way tsgue these properties. The
ACID properties are [Wha05]:

€ Atomicity: All the operations grouped under a transaction oocuone
of them do. The protocol allows participants tocdiger which of these
alternatives is expected by the other participantsthe protocol.
However, it is up to the individual object to deteme whether it wishes
to operate in concert with the other participants.

€ Consistency: The completion of a transaction must leave theesysh a
consistent state. Consistency includes issues knawiy to humans,
such as that an employee should always have a mandde
enforcement of consistency is outside of the reafnthe transaction
itself-a transaction is a tool to allow consistergayarantees and not
itself a guarantor of consistency.

€ Isolation: Ongoing transactions should not affect each other.
Participants in a transaction should see only i¢gliate states resulting
from the operations of their own transaction, & intermediate states
of other transactions. The protocol allows paratipg objects to know
what operations are being done within the scopea dfansaction.
However, it is up to the individual object to det@me if such operations

i

Ghapter Ciwo ini HNevworking Cechnology

are to be reflected only within the scope of tl@saction or can be seen
by others who are not participating in the transact

€ Durability: The results of a transaction should be as persisterthe
entity on which the transaction commits. Howevechsguarantees are
up to the implementation of the object.

The dependency on the participant’'s implementatfon the ACID
properties is the greatest difference betweentosphase commit protocol and
more traditional transaction processing systemshSystems attempt to ensure
that the ACID properties are met and go to considertrouble to ensure that no
participant can violate any of the properties.

This approach differs for both philosophical andagbical reasons. The
philosophical reason is centered on a basic tenfetolgect-oriented
programming, at which the implementation of an obghould be hidden from
any part of the system outside the object. Ensutimg ACID properties
generally requires that an object’'s implementaticorrespond to certain
patterns. It is believed that if these properties r'eeded, the object (or, more
precisely, the programmer implementing the objeat) know best how to
guarantee the properties. For this reason, the geans solely concerned with
completing transactions properly. Clients and pgréints must agree on
semantics separately. The practical reason foirigate ACID properties up to
the object is that there are situations in whicly @eme of the ACID properties
make sense, but that can still make use of thepfnase commit protocol. A
group of transient objects might wish to group tacf@perations in such a way
that they appear atomic; in such a situation it esalitle sense to require that
the operations be durable. An object might wardrtable the monitoring of the
state of some long running transactions; such maong would violate to all of
these properties limits the use of such a protocol.

Committing a transaction requires each participanbte, where a vote is
either prepared (ready to commit)nhot changed (read-only), oraborted (the
transaction should be aborted). If all participamtde “prepared” or “not
changed,” the transaction manager will tell eactefared” participant tooll
forward, thus committing the changes. Participants thatd/dtet changed”

Yv

Ghapter Ciwo ini HNevworking Cechnology

need do nothing more. If the transaction is evertall, the participants are told
to roll back any changes made under the transaction.

In Jini the transaction takes place as followg:st, multiple transaction
participants join a transaction manager as showfgure (2.5). Second, once
all of the transaction participants have joine@, two-phase commit can begin
as shown in figure (2.6). The first part of the tplmase commit consists of the
transaction manager telling every participant tepare. This causes all of the
participants to execute but not store any changesBvery participant also
returns a message, eitlenepared (ready to commit)not changed (read-only),
or aborted (the transaction should be aborted). At this pdim, second part of
the two-phase commit begins. If every participagtums Prepared, the
transaction manager will tell each “prepared” maoant toroll forward, then
the transaction can be committed, and the tramsactanager sends a commit
message to every participant. However, if any p@@int returngbort, then the
entire transaction must be aborted, and the trénsamanager sends abort
message to every participant, the participantdadeto roll back any changes
made under the transaction. Any participants teatisanot changed message
are ignored in the rest of the transaction [Jas00].

Transaction
Manager

Transaction Transaction Transaction
Participant Participant Participant

Figure (2.5): Joining a transaction manager .

YA

Ghapter Ciwo ini HNevworking Cechnology

Transaction Returns

M anager " Prepared"
" Abort", or

"Not changed”

Transaction Transaction Transaction
Participant Participant Participant

Figure (2.6): Two Phases commits protocol

A transactioncompletes when any entity eithecommits or aborts the
transaction. If a transaction commits successfthign all operations performed
under that transaction will complete. Aborting ansaction means that all
operations performed under that transaction witlesy never to have happened.

2.3.3 Infrastructure [Sun99a] [Sun00a] [Sun01b]

The Jini technology infrastructure defines the miali Jini technology core.
The infrastructure includes the following: @istributed security system,
integrated into RMI, which extends Java platforsesurity model to the world
of distributed systems. Tluescovery and join protocols, service protocols that
allow services (both hardware and software) toalisc, become part of, and
advertise supplied services to the other membetiseofederation. Theookup
service, which serves as a repository of services on wialthlini services
registered. Entries in the Lookup service are dbjewritten in Java
programming language; these objects can be dowatbad part of a lookup
operation and act as local proxies to the senhe¢ placed the code into the
Lookup service.

2.3.3.1 Lookup service

Services are found and resolved blyamkup service. The Lookup service
Is the central bootstrapping mechanism for theesysind provides the major
point of contact between the system and userseofyistem such that all Jini

Ya

Ghapter Ciwo ini HNevworking Cechnology

services register themselves on a Lookup servickadndini clients use the
Lookup service to find services [Fre04]. In precisems, a Lookup service
maps interfaces indicating the functionality praddby a service to sets of
objects that implement the service. In additionsadiptive entries associated
with a service allow more fine-grained selectiorsefvices based on properties
understandable to people. Objects in a LookupisErmay include other
Lookup services; this provides hierarchical lookEprther, a Lookup service
may contain objects that encapsulate other namingli@ctory services,
providing a way for bridges to be built betweenra lookup service and other
forms of Lookup service. Of course, references dmalLookup service may be
placed in these other naming and directory serymewiding means for clients
of those services to gain access to a Jini sysheservice is added to a Lookup
service by a pair of protocols calleidscovery andjoin, first the service locates
an appropriate Lookup service (by using thscovery protocol), and then it
joins it (by using th¢oin protocol).

2.3.3.2 Discovery/Join

The details of the service architecture are besterstood once the Jini
Discovery/Join and Jini Lookup protocols are préseénThese protocols are the
heart of Jini system. Discovery occurs when a serig looking for a Lookup
service with which to register. Join occurs wheseevice has located a Lookup
service and wishes to join it. Lookup occurs whethent or user needs to locate
and invoke a service described by its interfacee tyvritten in Java
programming language) and possibly other attribuldse discovery process
shown in figure (2.7)

A serviceprovider seeks

L ookup service
a Lookup service

Service
Provider

Clients
! Service Object

Service

Figure (2.7) Discovery

Y.

Ghapter Ciwo ini HNevworking Cechnology

Jini discovery/join is the process of adding a mento a Jini system. A
service provider is the originator of the servi@ device or software, for
example).

© First, the service provider locates a Lookup senby multicasting a

request on the local network for any Lookup sewite identify
themselves as shown in figure (2.7).

€ Then, a service object for the service is loaded ihe Lookup service
shown in figure (2.8). This service object contalldva programming
language interface for the service, including thethads that users and
applications will invoke to execute the servicengiovith any other
descriptive attributes.

A service provider registers

. . Lookup
a service object (proxy) Service

and its service attribute Service Object

with a Lookup service Service Attributes

Client Service
Provider

Service Object

Service Attributes

Figure (2.8) Join

Services must be able to find a Lookup service; v@r, a service may
delegate the task of finding a Lookup service thia party. The service is now
ready to be looked up and used as shown in thesfi(f.9).

Y

Ghapter Ciwo ini HNevworking Cechnology

A client requests a service py
Java programming languape
type and, perhaps, other

Lookup
¢

service attributes. A copy p| Service Object
t
L

Service

the service object is moved
the client and used by t
client to talk to the service

D :
[Service Attributes

Client Service
Provider

Service Object

Figure (2.9) Lookup

A client locates an appropriate service by its i is, by its interface
written in Java programming language-along withcdpsive attributes that are
used in a user interface for the Lookup service 3érvice object is loaded into
the client. The final stage is to invoke the sezyias shown in the following
diagram (Figure 2.10).

The client interacts p—
directly with the Service
service provider via —)
the service object Service Object
(proxy) Service Attributes

Client Service
Provider

Service Object

Figure (2.10) L ookup

The service object’'s methods may implement a peiyabtocol between
itself and the original service provider. Differantplementations of the same
service interface can use completely differentractgon protocols.

When a device is plugged in, the two protocols-aigty and join occurs
[KesO1]:

vy

Ghapter Ciwo ini HNevworking Cechnology

A. Discovery Protocols

There are three related discovery protocols, eaebigded with
different purposes. They are:

1. The multicast request protocol: is employed by entities that wish to
discover nearby Lookup services as shown in figRrel).

Figure (2.11) multicast discovery protocol. Discovering entity (D) sendsa
multicast message. L ookup services (L) respond, while services do not react.

The stepstaken by the discovering entity are:

€ The discovering entity (the service or applicatianl send packets to
the well known multicast network endpoint on whitlie multicast
request service operates looking for Lookup sesvighis is typically
done shortly after the discovering entity has sthnip), this packet is
sent to multiple recipients, similar to a broadcdistontains, the IP-
address of the discovering entity.

€ The Lookup service establishes a TCP-connectiothéodiscovering
entity and sends it its service object.

2. The Multicast Announcement Protocol: The multicast announcement
protocol shown in figure (2.12) is used by Jini kap services to announce
their availability to interested parties within riaést radius, this is typically
done when the Lookup service starts, but also gesadly during normal
operation, during network malfunction, a serviceapplication may "loose"
Lookup services, because it can not connect to .th€he multicast
announcement protocol gives the discovering endity opportunity to

Yy

Ghapter Ciwo ini HNevworking Cechnology

(re)discover the Lookup service. The details of fmotocol are simple. The
entity that runs the Lookup service takes the foihg steps:
€ It constructs a datagram socket object; set ugnad $o the well known
multicast end point on which the multicast annoumeet service
operates.

€ Application and services obtained from this, pat¢ketservice ID of the
Lookup service, which allows them to determine Wketor not they

already know this Lookup service.
€ It multicast announcement packet at intervals. [Ength of the interval
IS not mandated.

Figure (2.12) The multicast announcement protocol. The Lookup service (L)
announces its presencein the networ k. Discovering entities (D) that do not
already know this L ookup service, will ask it for its service object.

An entity that wishes to listen for multicast annoements performs the
following set of steps:

€ It establishes a set of service IDs of Lookup smwifrom which it has
already heard, using the set discovered by usiagrhlticast request
protocol as the initial contents of this set.

€ It binds a datagram socket to the well-known maktcendpoint on
which the multicast announcement service operatebs Istens for
incoming multicast announcements.

€ For each announcement received, it determines whétle service ID
in that announcement is in the set from which & ameady heard. If so,

Ye

Ghapter Ciwo ini HNevworking Cechnology

or if the announcement is for a group that is rfeb@rest, it ignores the
announcement. Otherwise, it performs unicast degousing the host
computer and port number in the announcement t@imktreference to
the announced Lookup service, and then adds thiecedD to the set
from which it has already heard.

3. The Unicast Discovery Protocol: The last discovery protocol, called
Unicast discovery as shown in figure (2.13), iuged by applications or
services that want to discover Lookup services¢hanot be reached using
a multicast packet. These are the Lookup servitasare, network wise,
further away. The protocol assumes that the disooyeentity already
knows the IP- address of the Lookup service it waatdiscover. This IP-
address typically has to be provided by a netwadkniaistrator. The
discovering entity simply connects to the Lookupseee, using the known
IP-address. The Lookup service then sends its gembject using this

connection.

Figure (2.13) The unicast-discovery protocol. The discovering entity (D) connects
to a specific Lookup service (L) that sendsits service object.

B. Join Protocol
This protocol makes use of the discovery prototolprovide a standard
sequence of steps that services should perform whenare starting up
and registering themselves with a Lookup serviseservice must maintain
certain items of state across restarts and crashese items are as follows:

Ghapter Ciwo ini HNevworking Cechnology

€ Service ID. A new service will not have been assiya service ID, so
this will be not being set when a service is sthffier the first time.
After a service has been assigned a service IDugt continue to use it
across all Lookup services.

€ A set of attributes that describes the service'skup service entry.

€ A set of groups in which the service wishes to ipmrate. For most
services this set will initially contain a singlatey: the empty string
(which denotes the public group).

€ A set of specific Lookup services to register witlhis set will usually
be empty for new services.

Note that “new service” means the one that has méeafore been
registered, not one that is being started agaionerthat has been moved from
one network to another. For each member of thefsgbtecific Lookup services
to register with, the service attempts to perfomrcast discovery of each one
and to register with each one. If any fails to o¥sp the implementer may
choose either retry or to give up, but the non-eesiing Lookup service should
not be automatically removed from the set if anlangentation decides to give
up. To perform group joining, if the set of groufesjoin is not empty, the
service performs multicast discovery and registeth each of the Lookup
services that either respond to requests or aneoth&nselves as members of
one or more of the groups the service should jélre unicast and multicast
discovery steps detailed previously do not needpitoceed in any strict
sequence. The registering service must registesdhee sets of attributes with
each Lookup service, and must use a single seliaross all registrations.
Once a service has registered with a Lookup seritigeriodically renews the
lease on its registration. A lease with a particlleokup service is cancelled
only if the registering service is instructed toegister itself. If a service cannot
communicate with a particular Lookup service, theom it takes depends on its
relation to that Lookup service. If the Lookup seevis in the persistent set of
specific Lookup services to join, the service matsempt to reregister with that
Lookup service. If the Lookup service was discodarsing multicast discovery,
it is safe for the registering service to forgebatbit and wait a subsequent
multicast announcement.

1

Ghapter Ciwo ini HNevworking Cechnology

2.4 Applications of Jini Technology

Jini is Java (actually an application of Java tetbgy), which itself is a
programming environment from Sun. To keep technielgtraight, think of
Java as a platform strategy. Jini is a networktesgra Java promotes "write
once, run anywhere." Jini promotes easy networkneotions and object
linking. Jini strength's is in spontaneous netwagkiit's not designed for long-
lived networks; it's designed for network wherenfyg come and go. The
possibilities for applications of the Jini softwaaee far too numerous to list.
Because of Jini's versatility and compatibility Witvirtually any type of
software or hardware, the scope of Jini’s use béllas broad as the technology
industry. Below are few examples of how Jini isdis@®w and can be used in
the future [Jam02]:

1. 80,000 developers have signed up for a Jini lic€ingke2002), which
provides them with a development kit and allows rfesearch and
development use and limited testing. If a compaagta/ to sell its Jini
product or use the technology in a production emment, it must
pass Sun's compatibility tests to receive a comiaidrcense, which is
free of charge. So far, 75 companies have acquo@mmercial
licenses and are using Jini for live applicatiomsny in the health
care, financial and telecommunication sectors.

2. Montreal-based Newtrade Technologies, provides iewdale and
services to the travel industry, and created amerooking engine
that links distributors such as travel agencies wibtels, car rental
companies and other suppliers. Newtrade usesalong with Java,
XML (eXtensible Markup Language) and a J2EE (Javanfrprise
Edition) server, to integrate its customers' diggacomputer systems
in a way that allows them to place reservations aosiform
transactions in real time over the Web.

3. While hotel chains and other large corporations us@ technologies
such as Sun's Java Message Service, which aréveglatostly to
purchase and support, Jini plays a vital role omecting hundreds of
smaller establishments whose Information Technology)

Yv

Ghapter Ciwo ini HNevworking Cechnology

infrastructure may be no more than a single DO%¢d3C. These
smaller systems may go online and offline unpredbigt, and their IP
addresses are frequently changed by Internet serproviders,
creating the type of "dynamic" networks that Suyssdini is designed
for. Jini overcomes these problems, because abilgy to locate and
communicate with other Jini-based computers overnde network.
What Jini provides an efficient, cost-effectiveidety mechanism for
all this interaction between the clients and bac#f-gystems [Jan05].

4. Eko Systems, in Fairfax, Virginia, uses Jini to\pde hospitals with a
system for automatically collecting data about @ from
anesthesiology machines, ventilators and other itadspquipment.
The devices send this data to a Jini-enabled 'icigastation” where
medical staff also enters other patient care in&tiom. The data is
uploaded to a Java server, which in turn is coratetd the hospital's
main IT infrastructure for use in customer billingggistration and
other applications.

5. Jini is used throughout the system, allowing mdda=vices to be
dynamically configured when they are connectechtorietwork, and
ensuring that patient data is routed to the appatgpiocation. Eko
picked Jini because of its stability, accordind:tbmiston, and because
it makes it easier to monitor and update the systamotely. Eko has
deployed its system in two hospitals to date, \piins to outfit three
more by the end of the year.

6. A car will be able to be connected to the Jini r@iwto avoid
congested traffic areas, find directions to desitoms and even locate
available parking.

7. Users, while on a trip, will be able to programith€ideocassette
recorder (VCR) at home to record the local newa tward drive and
then view it the next day wherever they are invioeld.

8. Kitchen appliances will be able to hook into locaility companies
through the Internet in order to track usage pastéo provide more
accurate billing and customer service.

YA

Ghapter Ciwo ini HNevworking Cechnology

0.

10.

11.

Travelers will be able to more easily access thermet while away
from home.

Appliance repairmen will be able to repair housdramppliances from
remote locations based on diagnostics they runhenmachine over
the Internet.

People will be able to participate in a multitudeservices via their
cell phones, including buying music, reserving iagl tickets and
receiving news.

Y4

Table of Contents

Abstract |
Table of Contents |
List of Abbreviations VI

Chapter One: Introduction

1.1 Problem Definition...........cccoooeeiiiiiiiiin e, 1.
1.2Related WOrkS.o, 3
1.3AIM Of RESEAICN......ci it e 6
1.ATheSIS layOuUl.o e e e, 7

Chapter Two: Jini Networ king Technology

2.1Plug and Play Systems...........ccccoiiiiiiiiiiiii e, 8
2.1.1 Universal Plug and Play (UPnP..................... 8
2.1.2 Salutation..........cooi i 11
2.1.3 Bluetooth SDP.........ccoiii 12
2.1.4 Service Location Protocol (SLP)..........ccoovevvennin. 13

2.2JIN1E SYSEM ...t 15

2.3 Jini ArchiteCture...... ..o oi i 18
2.3.1 SEIVICES. ..ttt it it 20
2.3.2 Programming Model.............ccccoiiii i, 21

2.3.2.1 Leasing Interfaces..........ccccovev i iiiiieenn, 21

2.3.2.2 Event and Notification Interfaces................... 23

2.3.2.3 Transaction Interfaces............cccceeeeniiiineneenn. 25

2.3.3 INfrastructure...........ooooeiiii s 29
2.3.3.1 LOOKUP SerVICE......ccevveiiii et 29
2.3.3.2 DISCOVEIY/JOIN...cuuiiiiiiiiiie s eeeeee e 30
2.4 Applications of Jini Technology..........cceeeeeiiiiiiiiiiinnnnnee, 37

Chapter Three: Distributed Systems and their

Security
3.1 INrOAUCTION....cceeeeeeeee e 40,
3.2 Distributed Systems..........ooovviiiiii e 40
3.3 Security in Distributed Systems.........occeeeeeiiiiiiiiiiiiiieieeennn 42
3.3.1 Public key Cryptosystems and Digital Signegur....... 45
3.3.2 CertifiCates.uuuurrrriiriieeesmmmmme et 47
3.3.3 ACCESS CONLIOL......ccciie e 48
3.3.4 Credentials. ... 49
3.4 Simple Public Key Infrastructure.........ccceeveveeiiininenvennnnnn. 49
3.5 SECUNMLY 1N JINEciiiiiiiiiiiiiiiiee e 51
3.6 JAVA SECUNMLY....uuuiiiiiieiiiee et e e 52

3.6.1 Java Language for Distributed System....................52
3.6.2 Java Language and Platform: type safety soidtion...55
3.6.3 Resource Access CoNtrol............ooceeemmmmeeeeeiiiinneeeeennns 57

3.6.4 Cryptography......ccooeeiiiiiiiiieeeee 62

Chapter Four: SILS Design and I mplementation

4.1 INTrOAUCTION. ..o e 64.
4.2 IJDBEC AP 65
4.2.1 The ODBC Standard...........oouveuiis e 67

4.2.2 JDBC versus ODBC and other APIs.......cccccce.............68

4.3 SILS ArChiteCtUre......ccooiiiiiiiiie e 69

4.4 SILS COMPONENTS....uiiiiiiiieieeiie e ieeee e e e e 70

4.5 SILS DESIGN...cceiiiiieeieei et emmmmme et 71
4.5.1 Server DeSIgN.....cocccvieiie e eee et o e e e e e e e e e 73
4.5.2 Lookup Service DeSign........cccovvvevicmmmmmeeevriee e 74

4.5.2.1 Service RegiStrar...........cccuuuum s s eeeevvvvnnenennenn [D

4.5.2.2 CheCK Lease.........coeeiiieieeiiiiiiiiicceeee e, 76
4.5.2.3 Client ReqUEeSEer.........cccoevvvevt o 77

4.5.3 ClIient DeSIGN.......uuiiiiiiiiiiii et cmmmm e et e e e e 78
4.6 The Proposed Security Model............coeevveeiiiiiiiiiiiiiieieeen, 79
4.6.1 Sever Security Module............oiiiicceemrn e 79
4.6.2 Client Security Module................. e eeeeeiiiiineeeeeennns 80
4.6.2.1 Certification............cccccoumrmmmmmenniiiiiiiiieieeeeeeeeee 81
4.6.2.2 Verification...........ooooviiiiiii oo 82

4.6.3 Client-Server Security Module..........ccccceoevvviininnn, 84

Chapter Five: Application and Results

LST% B [21100 Yo (U Tox o] o TR TP 86

5.2 SILS APPHCALiON.......iiiiiiiiiiie et et e e 87

5.3 Server INTEITACE.o e e 88

5.4 CleNt INTEITACE. ... e 93
5.5 EXAMPIES...coviiii i 96
5.6 TestsS and RESUILS.......ooieee e 102
Chapter Six: Conclusions and Future Work

6.1 Discussion and CONCIUSIONS........oeueeveeeeeeieeeeeee e eeeenns 104

6.2 Suggestions for Future Work.............commeeeeeeeviiiniennnnnn... 105

REfE ONCES ... e, 107

APPENAIX A oo, A-1

ACID
ACL
API

CA

CLI

CM
COC
CORBA
COSP

DA
DCOM
DES
DSA
FCS
FRSP
FS
HTTP

IETF
P
T

List of Abbreviations

Atomicity, Consistency, Isolation and Durability

Access Control List

Application Programming Interface
Certificate Authority

Call Leve Interface

Capability Manager

Computations Operations Client
Common Object Request Broker
Computation Operations Service Provider
Delegation

Directory Agent

Distributed Component Object Model
Data Encryption Standard

Digital Signature Algorithm

First Client Source

File Retrieving Service Provider

First Server

Hyper Text Transfer Protocol

| ssuer

Internet Engineering Task Force
Internet Protocol

Information Technology

VI

JAAS

JDBC-ODBC

JDK
JINI
JVM
J2EE
KVM
CLDC
LUS
NSL
OS
PABADIS
PrC
PSP
RMI
RPC
RSA
S

SA
SDP
SIG
SILS
SLP
SPK

Java Authentication and Authorization Service

Java Database Connectivity-Open Database Connectivity

Java Dynamic Kit

Java Intelligent Network Infrastructure
Java Vertical Machine

Java 2 Enterprise Edition

Kilo Virtua Machine

Connected Limited Device Configuration
Look Up Service

Network Service Location

Operating System

Plant Automation Based on Distributed Systems
Printer Client

Printer Service Provider

Remote Method Invocation

Remote Procedure Call

Rivest Shamir and Adleman

Subject

Service Agent

Service Discovery Protocol

Specia Interset Group

Secure Jini-Like System

Service Location Protocol

Simple Public Key Infrastructure

Structured Query Language

VI

SSDP

TCP
UA
UDP
UPnP
URL

XML

Second Server

Simple Service Discovery Protocol
Tag

Transmission Control Protocol
User Agent

User Datagram Protocol

Universal Plug and Play

Uniform Resource Locater
Validity

eXtensible Markup Language

VIl

References

© [Abr98] Abraham Silberschatz and Peter Bear GalOperating
System Concepts'Fifth edition, Addison-Wesley Publishing
Company, 1998.

€ [Amo94] E. AmorosoFundamentals of Computer Security Techndlpgy
Prentice-Hall, 1994.
€ [Arn99] K. Arnold, B. O'Sullivan, R. W. Scheifleand J. Waldo, A.
Wollrath,"The Jini Specification"Addison Wesley, 1999.
€ [Car99] Carl Ellison'SPKI requirements'RFC 2692, IETF, 1999.

€ [Dan00] Y.Daniel LiandgJava Programming with JBuilder 3'Prentic-
Hall, 2000.

€ [Dsg96] "Digital Signature Guidelines" American Bar Association,
available at http://www.abanet.org/scitech/ee/isg/odf 1999.

€ [Err97] Errol Simmon, "Middleware Definition” PC Networking,
available at
http://www.scit.wlv.ac.uk/~jphb/comms/espptl/inddrl, 1997.

€ [Eug01] Eugene A. GryazinnService Discovery in BluetoothGroup
for Robotics and Virtual Reality, Department of Cauter
Science, Helsinki University of Technology, 2001.

€ [Fre00] Fredrik Anderson and Magnus Karlsst®ecure Jini Services
in Ad Hoc Networks" as Master of Science Thesis, Royal
Institute of Technology (KTH), Stockholm, 2000.

© [Fre04] Fredrik SamsoriAlternative Java Security Policy Modelas
Master of Science Thesis, 2004.

€ [Ge097] George Aggelis'Security Issues Surrounding Programming
Languages for Mobile Codg" available at
http://portal.acm.org/ciation.cfm?id=50613097

€ [Geo01] George Coulouris, Jean Dollimore, and Timdberg,
"Distributed Systems concepts and desighéarson Education
Limited, Third edition, 2001.

€ [Glo90] Glossary Term, "Reliability", available at
http://www.sei.cmu.edu/str/indexes/glossary/relibbhtml,
1990.

€ [Gon99] Li Gong! Inside Java2 Platform Security: Architecture, API
design, and Implementation"Addison Wesley Publishing
Company, 1999.

€ [Grm97] Graham Hamilton, Rick Cattell, Maydene Hés "JDBC
Database Access with Java“"Addison-Wesley Publishing
Company, 1997.

€ [Has00] B. Hashii, S. Malabarba, R. Pand&ypporting Reconfigurable
Security Policies for Mobile Programms"available at
http://www.citeseer.ist.psu.edu/hashii0O0/supporhimi, 2000.

€ [1an03] lan Taylor, "Lecture 7:Jini", available at
http://users.cs.cf.ac.uk/l.J.Grimstead/RAVE/bibkygiry.htm)
2003.

€ [Jam02] James NiccoldiThree Years on, can Sun's Jini mesh with Web
services; available at
http://www.itworld.com/AppDev/2668/020205jini2002.

€ [Jap99] Jaap Haartsen, Warren Allen, Jon InoO¥af, J. Joeressen, and
Mahmoud Naghshineh,” Bluetooth: Vision, Goals, and
Architecture’, available at
http://www.cs.huiji.ac.il/course/2003/postpc/docséless _and B
luetooth/Jaap Haarsten_etal.pt®99.

€ [Jas00] Jason I. Hong)An Overview of the Jini Coordination
Framework’, Group for User Interface Research, Computer
Science Division, University of California, Berkg|eCA 94720-
1776 USA +1 510 643-7354, 2000

€ [Jav00] Javier Govea and Michel Barbea@Gomparison of Bandwidth
Usage: Service Location Protocol and Jini'available at

http://www.scs.carleton.ca/~barbeau/publication8TR 00 O
6.pdf, 2000.

€ [Jer00] Jeremy HyltohRisces User Manual" available at
http://www.cnri.reston.va.us/software/pisces/mammetl, 2001.

€ [Jini] Arches Academic Resources for Computing biigher Education
Services, "Jini_Arch", available at
http://www.arches.uga.edu/~pannikes/jini_App.html
€ [Joh01] John Lewis and William LoftusJava Software Solutions
Foundation of Program Design"Addison-Wesley Publishing
Company, Second Edition, 2001.
€ [Kei01] W. Keith Edwards,Core Jini", Second Edition, Published by
Prentic-Hall, 2001.
© [Kes01] Kees-Jan DijkzeulJini: Middleware solution of the future?"
available at http://www.aas.nl/pdf/dijkzeul jinifp@001.
€ [Kwa01] Kwaliteg's Web Site,"What is Availability’, available at
http://www.kwaliteg.co.za/maintenance/Availabiliyml, 20001.
€ [Lai00] Lai Olstad, Javier Ramirez, Clint Brady)ycaBruce McHollan,
"Jini Technology: Impromptu Networking and its Impaon
Telecommunicationg" available at
http://tiger.twoson.edu/users/chaung6/jini_1,#{f00.
€ [Lan89] C. Landau. “Security in a Secure CapabiligsBd System”,

Operating Systems Review, pp 2-4. Available at
http://www.cis.upenn.edu/~KeyKOS/Security.htrhd89.

€ [Mar05] Mariva H. Aviram, "Sun's Magic Lamp" available at
http://www.javaworld.com/javaworld/jw 07 javaoneijip.html
, 2005.

€ [Mat96] Matt Blaze, Joan Feigenbaum, and Jack L4dgcentralized
Trust Management" In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, Oakland, Califor1996.

€ [Mat99] Matt Blaze, Joan Feigenbaum, Jhon loanniaisl Angelos D.
Keromytis."The KeyNote trust-management system version 2"
RFC 2704, IETF, 1999.

€ [McG97]G. McGraw, E. Felten.Java Security: Hostile Applets, Holes, and
Antidotes, John Wiley & Sons, New York, 1997.

€ [Mic98] MIC Company,"Visual C++ Bible", MIC, Second edition, Part
111 MFC_ODBC, 1998.

€ [Mic99a] Michael Fahrmair, Chris Salzmann, and kil
Schoenmakers;CARP@-Managing Dynamic Jini Systems"
available at
http://www.waston.ibm.com/middleware2000/wip papsas
pat.pdf, November 15, 1999.

€ [Mic99b] Microsoft Corporation, "Universal Plug and Play:
Background; available at
http://www.upnp.org/resorces/UPnPbkgnd.html, 1999.

€ [Mic00] Michael Morgan;'A Brief Look into Universal Plug and Play"
available at http://www.ece.msstate.edu/~jwbru2e01.

€ [Ope99] Open Door The Service Location Protocol and Macintosh"
Open Door Network Inc, 1999.

€ [Pab00] PABADIS ConsortiuniPlant Automation Based on Distributed
Systems"available at http://www.pabadis.orZ000.

€ [Pas00] Pasi Eronen, Johannes Lehtinen, Jukkangittiand Pekka

Nikander, " Extending Jini with Decentralized Trust
Management" available at
http:/www.niksulahut.fi/~peronen/publications/opesia 2000.
pdf, 2000.

© [Pas01] Pasi EroneriSecurity in The Jini Networking Technology: A
Decentralized Trust Management Approaca'Master Thesis,
Helsinki University of Technology, Department of iGputer
Science and Engineering, 2001.

€ [Per00] Peer Hasselmeyer, Roger Kehr, and Marcq Viohde-offs in a
Secure Jini Service ArchitectureCopyright Springer Verlag,
Munich Germany, 2000.

AR

€ [Qus98] Qusay H. MahmoudpDistributed Progtamming with Java",
Manning Publications, Greenwich, CT, USA, 1998.

€ [Rab02] Rabul Gupta, Summet Talwr, Dbarma P. Agitaiini Home

Networking: A step toward Pervasive Computjngniversity
of Cincinnati, 2002.

€ [Rap01] Raptor Software,'Section-1 Maintability;’ Barringer and
Associate, Inc., available at
http://www.barringerl.com/jul01prb.htr2001.

€ [Rek] Rekesh JohriUpNp, Jini, and Salutation-A Look at Some Popular
Coordination Framework for Future Network Devices"
available at http://www.cswl.com/whitepaper/techipgtml

€ [Ron96] Ronald L. Rivest and Butter LampsofSDSI-A Simple
Distributed Security Infrastructure” available at
http://theory.lcs.mit.edu/~cis/Sdsi.htMi996.

© [Sal99] Salutation Consortium Inc.,"Salutation Architecture
Specification (Part-1)"available at http://www.salutation.qrg
1999.

€ [Sar05] Sarab M. Hameed, "Design and Implemematib a Secure
Distributed Agent System", a Thesis submitted ® liistitute
Informatics for higher studies for PhD degree Q20

€ [Sch97] B. Schneier.Applied Cryptography, Algorithms, Protocols and
Source Code in'CSecond Edition, John Wiley & Sons, 1997.

€ [Sco00] Scott Oaks and Henry Worigini in a Nutshell! O'Reilly &
Associates Inc, 2000.

© [Sip98] Siple M. D. "The Complete Guide to Jav®atabase
Programming’; McGraw-Hill Companies Inc., U.S.A., 1998

€ [Ste00] Steffen Deter and Karsten Solrini-A Jini-like Plug&Play
Technology for the KVM/CLDGC"Springer-Verlag, London,
2000.

€ [Sun97] Sun MicrosystemsQuestions about Access Control in JDK
1.1", available at http://archieves.java.sun.cas97.

€ [Sun99a] Sun Microsystems,"Jini Architecture Specifications"
available at
http:/www.cs.princeton.edu/courses/archive/fall8887b/docs/
lcdocl O/specs/arch/Arch.pdf999.

€ [Sun99b] Sun MicrosystemsJini Technology Architectural Overview"
available at ttp://www.sun.com/jini/whitepaperskatecture.pdf
1999.

€ [Sun00a] Sun Microsystems:The Community resource for Jini
Technology, available at htt://www.sun.com/jir2000.

€ [Sun00b] Sun Microsystem$]ini Networking Technology'available at
http://www.sun.com/software/jinni/whitepapers/jinkecovervi

ew.pdf 2000.
€ [Sun01]Sun Microsystems, "Jini Technology Core Platform
Specification;’ available at

http://www.sun.com/software/jini/specs/corel 2,#{f01.

€ [Sun02] Sun Microsystem&Qverview of the Jini Design'available at
http://java.sun.com/docs/books/jini/download/jimitp 2002.

€ [Wal96] Walnum Clayton,"Java By Example"Que Corrporation ,

1996.
€ [Wha05] Whatis.com'’atomicity, consistency, isolation, and durability
available at

http://whatis.techtarget.com/definition/0.289898%i
gci213756.html|2005.

€ [Yng04] Yngve Espelid and Lars-Helg Netlari@he Fundementals of
Java Security," available at
http://www.nowires.org/Thesis_pdf/LarsHelgN.pab04.

VY

) (L e se,
s,
‘ %\\%\ o 3#5{'9«/:&{ s
R

As:

~N
B

3

= s

N \)NlVERs"vy
R

o

Republic of Iraq
Al-Nahrain University

College of sciences

I'mplementation of Secure
Jini-Like System

A THESIS
SUBMITTED TO THE
COLLEGE OF SCIENCE, AL-NAHRAIN UNIVERSITY
IN PARTIAL FULLFILLMENT OF THE REQUIREMENT
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF
SCIENCE IN COMPUTER SCEINCE

BY

SUHA HAMEED NAIF
(B.Sc. 1992)
(M.Sc. 1996)

SUPERVISORS
DR.LAMIA H. KHALID DR. VENUSW. SAMAWI

December 2005 Thee-Alkudaa 1426

Acknowledgment

First of al, praise isto my GOD who enabled me to achieve
this research work.

| would like to express my gratitude and appreciation to my
supervisors Dr. Lamia H. Khalid and Dr. Venus W. Samawi for
their valuable guidance, supervision and untiring efforts during the
course of thiswork.

Special thanks to the College of Science, dean of the college
for the continuous support and encouragement during the period of
my studies.

Grateful thanks for the Head of Department of Computer
Science Dr. Taha S. Bashaga, staff and employees.

Finally, my specia thanks to Mrs. Susan Al-Nagshabandi,
Miss Suhad Al-Ezzi, Mr. Nawfal Abdul Sattar, Mr. Samer
Sami, and Dr. Sarab M. Hameed.

Dedication

To the person who taught me the real
meaning of fighting to make dreams
come true.

To my dear husband Ahmed

To my dear parents who prepared me
to be what I am

To my flowers: Meena and Deena
To my dear brothers

Suha

el gas sl Al g

il el Galels ST ale¥ celilagn
gl g olell

glagll AUl yroem

@)l A s4ea

i G) Axala
m‘w\ o sladl 4418

sy s il el i
JINI
daala < egM‘%SuJ)LﬁAZUMJ
A Ja cilllaia (a5 S (gl
Gllall ale & ddudd 5) giga
J& (4
dgu Sl Le..u.t
(1957 e g 1<)
(Va1 ale iala)

198 piall

EPR LK AllA Jola glial
S 9lam 1139

VEYT il (50 Yoo JN oS

	Microsoft Word - Abstract.pdf
	Microsoft Word - aim.pdf
	Microsoft Word - appendix1.pdf
	Microsoft Word - appendix2.pdf
	Microsoft Word - arabic Abstract.pdf
	Microsoft Word - CHAPTER five.pdf
	Microsoft Word - CHAPTER five1.pdf
	Microsoft Word - CHAPTER four.pdf
	Microsoft Word - chapter one.pdf
	Microsoft Word - CHAPTER SIX.pdf
	Microsoft Word - CHAPTER three.pdf
	Microsoft Word - CHAPTER Two.pdf
	Microsoft Word - Contents.pdf
	Microsoft Word - list of abriviation.pdf
	Microsoft Word - References.pdf
	Microsoft Word - Tittle.pdf

