
Acknowledgment

I would like to express my sincere gratitude and

appreciation to my supervisor Dr. Taha S. Bashaga for his

guidance, assistance and encouragement through the course of

this project.

Special thanks to all my friends, for supporting and giving

me advises. And the staff of the department of Computer

Science, AL-Nahrain University for their support, interest and

generosity.

Finally, I want to express my gratitude to my beloved

family for encouragement and understanding during the period

of my study.

Appendix A

The WAVE File Format

 The WAVE file format is a subset of Microsoft's RIFF specification for

the storage of multimedia files. A RIFF file starts out with a file header

followed by a sequence of data chunks. A WAVE file is often just a RIFF file

with a single "WAVE" chunk which consists of two sub-chunks -- a "fmt"

chunk specifying the data format and a "data" chunk containing the actual

sample data. Call this form the "Canonical form".

Offset Size Name Description

The canonical WAVE format starts with the RIFF header:

0 4 ChunkID Contains the letters "RIFF" in ASCII form
 (0x52494646 big-endian form).
4 4 Chunk Size 36 + SubChunk2Size, or more precisely:
 4 + (8 + SubChunk1Size) + (8 + SubChunk2Size)
 This is the size of the rest of the chunk
 following this number. This is the size of the
 entire file in bytes minus 8 bytes for the
 two fields not included in this count:
 ChunkID and ChunkSize.
8 4 Format Contains the letters "WAVE"
 (0x57415645 big-endian form).

The "WAVE" format consists of two subchunks: "fmt" and "data":
The "fmt" sub chunk describes the sound data's format:

12 4 Subchunk1ID Contains the letters "fmt"
 (0x666d7420 big-endian form).
16 4 Subchunk1Size 16 for PCM. This is the size of the
 rest of the Subchunk which follows this number.
20 2 AudioFormat PCM = 1 (i.e. Linear quantization)
 Values other than 1 indicate some
 form of compression.
22 2 NumChannels Mono = 1, Stereo = 2, etc.
24 4 SampleRate 8000, 44100, etc.
28 4 ByteRate == SampleRate * NumChannels * BitsPerSample/8
32 2 BlockAlign == NumChannels * BitsPerSample/8
 The number of bytes for one sample including
 all channels. I wonder what happens when
 this number isn't an integer?
34 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.
 2 ExtraParamSize if PCM, then doesn't exist
 X ExtraParams space for extra parameters

The "data" subchunk contains the size of the data and the actual sound:

36 4 Subchunk2ID Contains the letters "data"
 (0x64617461 big-endian form).

40 4 Subchunk2Size == NumSamples * NumChannels *
BitsPerSample/8
 This is the number of bytes in the data.
 You can also think of this as the size
 of the read of the subchunk following this
 number.
44 * Data The actual sound data.

Notes:

• The default byte ordering assumed for WAVE data files is little-
endian. Files written using the big-endian byte ordering scheme have
the identifier RIFX instead of RIFF.

• The sample data must end on an even byte boundary. Whatever that
means.

• 8-bit samples are stored as unsigned bytes, ranging from 0 to 255. 16-
bit samples are stored as 2's-complement signed integers, ranging from
-32768 to 32767.

• There may be additional subchunks in a Wave data stream. If so, each
will have a char [4] SubChunkID, and unsigned long SubChunkSize,
and SubChunkSize amount of data.

• RIFF stands for Resource Interchange File Format.

Appendix B

The BMP File Format

The BMP file structure is very simple and is shown in Figure B.1:

B.1 File Header

Every Windows BMP begins with a BITMAPFILEHEADER structure

whose layout is shown in Table B.1. The main function of this structure is to

serve as the signature that identifies that file format.

Field Name Size in bytes Description

bfType 2 Contains the characters "BM" that identify the file type

bfSize 4 File size

bfReserved1 2 Unused

bfReserved2 2 Unused

bfOffBits 4 Offset to start of pixel data

Three checks can be made to ensure that the file you are reading is in fact

a BMP file:

� The first two bytes of the file must contain the ASCII characters

"B" followed by "M".

� If you are using a file system where you can determine the exact

file size in bytes, you can compare the file size with the value in

the bfSize field.

� The bfReservedl and bfReserved2 fields must be zero.

File Header Image Header Colour Table Pixel Data

Fig B.1 BMP File Format

Table B.1 Bit Map file header structure

The file header also specifies the location of the pixel data in the file. When

decoding a BMP file you must use the bfOffbits field to determine the offset

from the beginning of the file to where the pixel data starts. Most

applications place the pixel data immediately following the

BITMAPINFOHEADER structure or palette, if it is present. However, some

applications place filler bytes between these structures and the pixel data so

you must use the bfOffbits to determine the number of bytes from the

BITMAPFILEHEADER structure to the pixel data.

B.2 Image Header

The image header immediately follows the BITMAPFILEHEADER

structure. It comes in two distinct formats, defined by the

BITMAPINFOHEADER and BITMAPCOREHEADER structures.

BITMAPCOREHEADER represents the OS/2 BMP format and

BITMAPINFOHEADER is the much more common Windows format.

Unfortunately, there is no version field in the BMP definitions. The only

way to determine the type of image structure used in a particular file is to

examine the structure's size field, which is the first 4 bytes of both structure

types. The size of the BITMAPCOREHEADER structure is 12 bytes; the

size of BITMAPINFOHEADER, at least 40 bytes.

The layout of BITMAPINFOHEADER is shown in Table B.2. This

structure gives the dimensions and bit depth of the image and tells if the

image is compressed. Windows 95 supports a BMP format that uses an

enlarged version of this header. Few applications create BMP files using this

format; however; a decoder should be implemented so that it knows that

header sizes can be larger than 40 bytes. The image height is an unsigned

B-2

value. A negative value for the biHeight field specifies that the pixel

data is ordered from the top down rather than the normal bottom up. Images

with a negative biHeight value may not be compressed.

Field Name Size Description

biSize 4 Header size must be at least 40

biWidth 4 Image width

biHeight 4 Image height

biplanes 2 Must be 1

biBitCount 2 Bits per pixel: 1,4,8,16,24, or 32

biCompression 4 Compression type: BI_RGB=0, BI_RLE8=1, BI_RLE4=2, or

BI_BITFIELDS=3

biSizeImage 4 Image size: may be 0 if not compressed

bixPelsPerMeter 4 Preferred resolution in pixels per meter

biyPelsPerMeter 4 Preferred resolution in pixels per meter

biClrUsed 4 Number of entries in the color map that are actually used

biClrImportant 4 Number of significant colors

The BITMAPCOREHEADER structure is the other image header format. Its

layout is shown in Table B.3:

Field Name Size Description

bcSize 4 Header size must be 12

bcWidth 2 Image width

bcHeight 2 Image height

bcPlanes 2 Must be 1

bcBitCount 2 Bit count: 1,4,8, or 24

Table B.2 Bit Map Info Header structure

Table B.3 Bit Map Core Header structure

B-3

Notice that it has fewer fields and that all have analogous fields in the

BITMAPINFOHEADER structure. If the file uses BITMAPCOREHEADE-

R rather than BITMAPINFOHEADER, the pixel data cannot be compressed.

B.3 Color Palette

The color palette immediately follows the file header and can be in one of

three formats. The first two are used to map pixel data to RGB color values

when the bit count is 1, 4, or 8 (biBitCount or bcBitCount fields). For BMP

files in the Windows format, the palette consists of an array of 2 bitcount

RGBQUAD structures (Table B.4). BMP files in OS/2 format use an array

of RGBTRIPLE structures (Table B.5).

Field Name Size Description

rgbBlue 1 Blue color value

rgbGreen 1 Green color value

rgbRed 1 Red color value

rgbReserved 1 Must be zero

Field Name Size Description

rgbtBlue 1 Blue color value

rgbtGreen 1 Green color value

rgbtRed 1 Red color value

Table B.4 BRGBQUAD structure

Table B.5 BRGTRIPLE structure

B-4

Appendix C

AVIFile Structures

C.1 Data Structures for AVI Files

Data structures used in the RIFF chunks are defined in the AVIFMT.H

header file. The reference section describes the data structures that can be

used for the AVI FILE INFO, AVI STREAM INFO. The following

structures are used with AVIFile.

C.1.1 AVIFILEINFO

The AVIFILEINFO structure contains global information for an entire AVI

file.

typedef struct {

 DWORD dwMaxBytesPerSec;

 DWORD dwFlags;

 DWORD dwCaps;

 DWORD dwStreams;

 DWORD dwSuggestedBufferSize;

 DWORD dwWidth;

 DWORD dwHeight;

 DWORD dwScale;

 DWORD dwRate;

 DWORD dwLength;

 DWORD dwEditCount;

 ٢C-2

 char szFileType[64];

} AVIFILEINFO;

Members:

dwMaxBytesPerSec
Approximate maximum data rate of the AVI file.

dwFlags

Applicable flags. The following flags are defined:

AVIFILEINFO_HASINDEX

The AVI file has an index at the end of the file. For good performance,

all AVI files should contain an index.

AVIFILEINFO_MUSTUSEINDEX

The file index contains the playback order for the chunks in the file.

Use the index rather than the physical ordering of the chunks when

playing back the data. This could be used for creating a list of frames

for editing.

AVIFILEINFO_ISINTERLEAVED

The AVI file is interleaved.

AVIFILEINFO_WASCAPTUREFILE

The AVI file is a specially allocated file used for capturing real-time

video. Applications should warn the user before writing over a file

with this flag set because the user probably defragmented this file.

AVIFILEINFO_COPYRIGHTED

The AVI file contains copyrighted data and software. When this flag

is used, software should not permit the data to be duplicated.

dwCaps

Capability flags. The following flags are defined:

 ٣C-3

AVIFILECAPS_CANREAD

An application can open the AVI file with with the read privilege.

AVIFILECAPS_CANWRITE

An application can open the AVI file with the write privilege.

AVIFILECAPS_ALLKEYFRAMES

Every frame in the AVI file is a key frame.

AVIFILECAPS_NOCOMPRESSION

The AVI file does not use a compression method.

dwStreams

Number of streams in the file. For example, a file with audio and

video has at least two streams.

dwSuggestedBufferSize

Suggested buffer size, in bytes, for reading the file. Generally, this

size should be large enough to contain the largest chunk in the file.

For an interleaved file, this size should be large enough to read an

entire record, not just a chunk.

If the buffer size is too small or is set to zero, the playback software

will have to reallocate memory during playback, reducing

performance.

dwWidth

Width, in pixels, of the AVI file.

dwHeight

Height, in pixels, of the AVI file.

dwScale

Time scale applicable for the entire file. Dividing dwRate by

dwScale gives the number of samples per second.

 ٤C-4

Any stream can define its own time scale to supersede the file time

scale.

dwLength

Length of the AVI file. The units are defined by dwRate and dwScale.

dwEditCount

Number of streams that have been added to or deleted from the AVI

file.

szFileType

Null-terminated string containing descriptive information for the file

type.

C.1.2 AVISTREAMINFO

The AVISTREAMINFO structure contains information for a single stream.

typedef struct {

 DWORD fccType;

 DWORD fccHandler;

 DWORD dwFlags;

 DWORD dwCaps;

 WORD wPriority;

 WORD wLanguage;

 DWORD dwScale;

 DWORD dwRate;

 DWORD dwStart;

 DWORD dwLength;

 DWORD dwInitialFrames;

 ٥C-5

 DWORD dwSuggestedBufferSize;

 DWORD dwQuality;

 DWORD dwSampleSize;

 RECT rcFrame;

 DWORD dwEditCount;

 DWORD dwFormatChangeCount;

 char szName[64];

} AVISTREAMINFO;

Members

fccType

Four-character code indicating the stream type. The following

constants have been defined for the data commonly found in AVI

streams:

Constant Description

streamtypeAUDIO Indicates an audio stream.

streamtypeMIDI Indicates a MIDI stream.

streamtypeTEXT Indicates a text stream.

streamtypeVIDEO Indicates a video stream.

fccHandler

Four-character code of the compressor handler that will compress this

video stream when it is saved (for example,

mmioFOURCC('M','S','V','C')). This member is not used for audio

streams.

 ٦C-6

dwFlags

Applicable flags for the stream. The bits in the high-order word of

these flags are specific to the type of data contained in the stream. The

following flags are defined:

AVISTREAMINFO_DISABLED

Indicates this stream should be rendered when explicitly enabled by

the user.

AVISTREAMINFO_FORMATCHANGES

Indicates this video stream contains palette changes. This flag warns

the playback software that it will need to animate the palette.

dwCaps

Capability flags; currently unused.

wPriority

Priority of the stream.

wLanguage

Language of the stream.

dwScale

Time scale applicable for the stream. Dividing dwRate by dwScale

gives the playback rate in number of samples per second.

dwRate

See dwScale.

dwStart

Sample number of the first frame of the AVI file. The units are

defined by dwRate and dwScale. Normally, this is zero, but it can

specify a delay time for a stream that does not start concurrently with

the file.

 ٧C-7

dwLength

Length of this stream. The units are defined by dwRate and dwScale.

dwInitialFrames

Audio skew. This member specifies how much to skew the audio data

ahead of the video frames in interleaved files. Typically, this is about

0.75 seconds.

dwSuggestedBufferSize

Recommended buffer size, in bytes, for the stream. Typically, this

member contains a value corresponding to the largest chunk in the

stream. Using the correct buffer size makes playback more efficient.

Use zero if you do not know the correct buffer size.

dwQuality

Quality indicator of the video data in the stream. Quality is

represented as a number between 0 and 10,000. For compressed data,

this typically represents the value of the quality parameter passed to

the compression software. If set to – 1, drivers use the default quality

value.

dwSampleSize

Size, in bytes, of a single data sample. If the value of this member is

zero, the samples can vary in size and each data sample (such as a

video frame) must be in a separate chunk. A nonzero value indicates

that multiple samples of data can be grouped into a single chunk

within the file.

rcFrame

Dimensions of the video destination rectangle. The values represent

the coordinates of upper left corner, the height, and the width of the

rectangle.

 ٨C-8

dwEditCount

Number of times the stream has been edited. The stream handler

maintains this count.

dwFormatChangeCount

Number of times the stream format has changed. The stream handler

maintains this count.

szName

Null-terminated string containing a description of the stream.

Appendix D

AVIFile Functions

The following functions are used with AVIFile.

1. AVIFileInit

The AVIFileInit function initializes the AVIFile library. The AVIFile

library maintains a count of the number of times it is initialized, but not

the number of times it was released. Use the AVIFileExit function to

release the AVIFile library and decrement the reference count. Call

AVIFileInit before using any other AVIFile functions.

This function supersedes the obsolete AVIStreamInit function.

STDAPI_(VOID) AVIFileInit(VOID);

Parameters: This function takes no parameters.

2. AVIFileExit

The AVIFileExit function exits the AVIFile library and decrements the

reference count for the library.

This function supersedes the obsolete AVIStreamExit function.

STDAPI_(VOID) AVIFileExit(VOID);

Parameters: This function takes no parameters.

3. AVIFileInfo

The AVIFileInfo function obtains information about an AVI file.

STDAPI AVIFileInfo(

 PAVIFILE pfile,

 2D-2

 AVIFILEINFO * pfi,

 LONG lSize

);

 Parameters:
pfile

Handle of an open AVI file.
pfi

Address of the structure used to return file information. Typically,

this parameter points to an AVIFILEINFO structure.

lSize
Size, in bytes, of the structure.

4.AVIFileOpen

The AVIFileOpen function opens an AVI file and returns the address of

a file interface used to access it. The AVIFile library maintains a count of

the number of times a file is opened, but not the number of times it was

released. Use the AVIFileRelease function to release the file and

decrement the count.

STDAPI AVIFileOpen(

 PAVIFILE * ppfile,

 LPCTSTR szFile,

 UINT mode,

 CLSID * pclsidHandler

);

Parameters:

ppfile
Address to contain the new file interface pointer.

szFile
Null-terminated string containing the name of the file to open.

 3D-3

mode
Access mode to use when opening the file. The default access

mode is OF_READ. The following access modes can be specified

with AVIFileOpen:

OF_CREATE

Creates a new file. If the file already exists, it is truncated to

zero length.

OF_SHARE_DENY_NONE

Opens the file nonexclusively. Other processes can open the file

with read or write access. AVIFileOpen fails if another process

has opened the file in compatibility mode.

OF_SHARE_DENY_READ

Opens the file nonexclusively. Other processes can open the file

with write access. AVIFileOpen fails if another process has

opened the file in compatibility mode or has read access to it.

OF_SHARE_DENY_WRITE

Opens the file nonexclusively. Other processes can open the file

with read access. AVIFileOpen fails if another process has

opened the file in compatibility mode or has write access to it.

OF_SHARE_EXCLUSIVE

Opens the file and denies other processes any access to it.

AVIFileOpen fails if any other process has opened the file.

OF_READ

Opens the file for reading.

OF_READWRITE

Opens the file for reading and writing.

OF_WRITE

Opens the file for writing.

 4D-4

pclsidHandler

Address of a class identifier of the standard or custom handler you

want to use. If the value is NULL, the system chooses a handler

from the registry based on the file extension or the RIFF type

specified in the file.

5. AVIFileRelease

The AVIFileRelease function decrements the reference count of an AVI

file interface handle and closes the file if the count reaches zero.

This function supersedes the obsolete AVIFileClose function.

STDAPI_(ULONG) AVIFileRelease(

 PAVIFILE pfile

);

 Parameters:

pfile
Handle of an open AVI file.

6. AVIFileGetStream

The AVIFileGetStream function returns the address of a stream interface

that is associated with a specified AVI file.

STDAPI AVIFileGetStream(

 PAVIFILE pfile,

 PAVISTREAM * ppavi,

 DWORD fccType,

 LONG lParam

);

 5D-5

Parameters:

pfile

Handle of an open AVI file.

ppavi

Address of the new stream interface.

fccType

Four-character code indicating the type of stream to open. Zero

indicates any stream can be opened.

lParam

Count of the stream type. Identifies which occurrence of the

specified stream type to access.

7. AVIStreamInfo

The AVIStreamInfo function obtains stream header information.

STDAPI AVIStreamInfo(

 PAVISTREAM pavi,

 AVISTREAMINFO * psi,

 LONG lSize

);

 Parameters

pavi
Handle of an open stream.

psi
Address of a structure to contain the stream information.

lSize
Size, in bytes, of the structure used for psi.

 6D-6

8. AVIStreamStart

The AVIStreamStart function returns the starting sample number for the

stream.

STDAPI_(LONG) AVIStreamStart(

 PAVISTREAM pavi

);

 Parameters:

pavi

Handle of an open stream.

9. AVIStreamLength

The AVIStreamLength function returns the length of the stream.

STDAPI_(LONG) AVIStreamLength(

 PAVISTREAM pavi

);

Parameters:

pavi
Handle of an open stream.

10. AVIStreamGetFrameOpen

The AVIStreamGetFrameOpen function prepares to decompress video

frames from the specified video stream.

STDAPI_(PGETFRAME) AVIStreamGetFrameOpen(

 PAVISTREAM pavi,

 LPBITMAPINFOHEADER lpbiWanted

);

 7D-7

Parameters:

pavi
Address of the video stream used as the video source.

lpbiWanted
Address of a structure that defines the desired video format.

Specify NULL to use a default format. You can also specify

AVIGETFRAMEF_BESTDISPLAYFMT to decode the frames to

the best format for your display.

11. AVIStreamGetFrame

The AVIStreamGetFrame function returns the address of a

decompressed video frame.

STDAPI_(LPVOID) AVIStreamGetFrame(

 PGETFRAME pgf,

 LONG lPos

);

Parameters:

pgf
Address of a GetFrame object.

lPos
Position, in samples, within the stream of the desired frame.

12. AVIStreamGetFrameClose

The AVIStreamGetFrameClose function releases resources used to

decompress video frames.

STDAPI AVIStreamGetFrameClose(

 PGETFRAME pget

);

 8D-8

 Parameters:

pget
Handle returned from the AVIStreamGetFrameOpen function.

After calling this function, the handle is invalid.

13. AVIFileCreateStream

The AVIFileCreateStream function creates a new stream in an existing

file and creates an interface to the new stream.

STDAPI AVIFileCreateStream(

 PAVIFILE pfile,

 PAVISTREAM * ppavi,

 AVISTREAMINFO * psi

);

Parameters:

pfile
Handle of an open AVI file.

ppavi
Address of the new stream interface.

psi
Address of a structure containing information about the new

stream, including the stream type and its sample rate.

14. AVISaveOptions

The AVISaveOptions function retrieves the save options for a file and

returns them in a buffer.

BOOL AVISaveOptions(

 HWND hwnd,

 UINT uiFlags,

 9D-9

 int nStreams,

 PAVISTREAM * ppavi,

 LPAVICOMPRESSOPTIONS * plpOptions

);

Parameters:

hwnd
Handle of the parent window for the Compression Options dialog

box.

uiFlags

Flags for displaying the Compression Options dialog box. The

following flags are defined:

ICMF_CHOOSE_KEYFRAME

Displays a Key Frame Every dialog box for the video options.

ICMF_CHOOSE_DATARATE

Displays a Data Rate dialog box for the video options.

ICMF_CHOOSE_PREVIEW

Displays a Preview button for the video options. This button

previews the compression by using a frame from the stream.

nStreams

Number of streams that have their options set by the dialog box.

ppavi

Address of an array of stream interface pointers. The nStreams

parameter indicates the number of pointers in the array.

plpOptions

Address of an array of pointers to AVICOMPRESSOPTIONS

structures. These structures hold the compression options set by the

dialog box. The nStreams parameter indicates the number of

pointers in the array.

 10D-10

15. AVISaveOptionsFree

The AVISaveOptionsFree function frees the resources allocated by the

AVISaveOptions function.

LONG AVISaveOptionsFree(

 int nStreams,

 LPAVICOMPRESSOPTIONS *plpOptions

);

Parameters:

nStreams

Count of the AVICOMPRESSOPTIONS structures referenced in

plpOptions.

plpOptions

Address of an array of pointers to AVICOMPRESSOPTIONS

structures. These structures hold the compression options set by the

dialog box. The resources allocated by AVISaveOptions for each

of these structures will be freed.

16. AVIStreamSetFormat

The AVIStreamSetFormat function sets the format of a stream at the

specified position.

STDAPI AVIStreamSetFormat(

 PAVISTREAM pavi,

 LONG lPos,

 LPVOID lpFormat,

 LONG cbFormat

);

 11D-11

Parameters:

pavi

Handle of an open stream.

lPos

Position in the stream to receive the format.

lpFormat

Address of a structure containing the new format.

cbFormat

Size, in bytes, of the block of memory referenced by lpFormat.

17. AVIStreamWrite

The AVIStreamWrite function writes data to a stream.

STDAPI AVIStreamWrite(

 PAVISTREAM pavi,

 LONG lStart,

 LONG lSamples,

 LPVOID lpBuffer,

 LONG cbBuffer,

 DWORD dwFlags,

 LONG * plSampWritten,

 LONG * plBytesWritten

);

Parameters

pavi

Handle of an open stream.

lStart

 12D-12

First sample to write.

lSamples

Number of samples to write.

lpBuffer

Address of a buffer containing the data to write.

cbBuffer

Size of the buffer referenced by lpBuffer.

dwFlags

Flag associated with this data. The following flag is defined:

AVIIF_KEYFRAME

Indicates this data does not rely on preceding data in the file.

plSampWritten

Address to contain the number of samples written. This can be set

to NULL.

plBytesWritten

Address to contain the number of bytes written. This can be set to

NULL.

Chapter Five: Conclusions and Future Work 58

CHAPTER FOUR

Conclusions and Future Work

4.1 Conclusions
From the test results conducted on the proposed system, the following

remarks were derived:

1. Even if the AVI file is very small as video audio file. It is obvious

that the video part consist of a very large number of frames even in

this small such file. One can hide a reasonable large amount of

information, by spreading this information on the video and audio

parts.

2. It is obvious that the transmission time increased according to the

increasing the size of the file, and the security increased in increasing

the cover size to make a compromise between these two factors, and

depend on the application.

3. The security of hided information also depends on the method of

hiding, for example Haar Wavelet Transform is more secure than

Least Significant Bit. But in both cases and since the size of cover is

too large the attacking is very difficult.

4. The output stego file remains of same size as the original file. It is

also dose not effected after hiding the information according to the

subjective measures (seeing and hearing) or the objective measures

(MSE and PSNR) as it appears in the results given in chapter three.

Chapter Five: Conclusions and Future Work 59

4.2 Future Work
During the development of the proposed system, many suggestions for

future work was emerged to increase the system efficiency, among these

suggestions are following:

1. Develop system that used another hiding video file format, image file

format or audio file format.

2. Develop system for hiding video in video by used the same technique

used in proposed system or other techniques.

3. Develop system to make a special program used to split audio from

video.

4. Develop system that used other hiding methods like (DCT, spread

spectrum, etc).

5. Develop system to encrypt the secret data before the hiding process;

this will lead to more immunity against extracting attacks.

Chapter One: Introduction 1

CHAPTER ONE

Introduction

Security system is one of the most important subjects that take a wide

range of importance in many fields, one of which is computer field. In

computer system, security is an important issue for data protection. A more

powerful and secure systems were needed to protect the transmitted data

from being attacked by intruders. Information hiding is one of the powerful

secure mechanisms [Sed01]. Steganography is the art and science of hiding

information such that its presence cannot be detected [Cac98].

Through the history, the word Steganography comes from the Greek

steganos (covered or secret) and graphy (writing or drawing) and means,

literally, covered writing and multitude of methods and variations have been

used to hide information [Wat01].

The onset of computer technology and the Internet has given new life to

steganography and the creative methods with which it is employed.

Computer-based steganography techniques introduce changes to digital

carriers to embed information foreign to the native carriers. Since 1995,

interest in steganography methods and tools as applied to digital media has

exploded [Joh01].

With the change in technology, steganography has transformed into

modern steganography. Modern steganography is the ability to hide

information in an electronic source of data that appears to be above

suspicion to the naked eye [Dor03].

Chapter One: Introduction 2

1.1 Some Application of Information Hiding
There are a number of applications driving interest in the subject of

information hiding: [Kat00] [Pet99]

• Military and intelligence agencies require unobtrusive

communications. Even if the content is encrypted, the detection of a

signal on a modern battleeld may lead rapidly to an attack on the

signaller

• Criminals also place great value on unobtrusive communications.

Their preferred technologies include prepaid mobile phones, mobile

phones which have been modified to change their identity frequently,

and hacked corporate switchboards through which calls can be

rerouted.

• Law enforcement and counter intelligence agencies are interested in

understanding these technologies and their weaknesses, so as to

detect and trace hidden messages.

• Recent attempts by some governments to limit online free speech and

the civilian use of cryptography have spurred people concerned about

liberties to develop techniques for anonymous communications on

the net.

• Schemes for digital elections and digital cash make use of

anonymous communication techniques.

• Marketers use email forgery techniques to send out huge numbers of

unsolicited messages while avoiding responses from angry users.

Chapter One: Introduction 3

1.2 Literature Survey
Several researches in the information-hiding field tried to insert an

additional robust and invisible data into different digital media to achieve a

specific type of protection, this survey is limited to the researches that are

concerned with steganography. Some of these are summarized below:

• A. Westfeld and G. Wolf (1998) described a steganographic system,

which embeds secret messages into a video stream. Examine the

signal path, which typically includes discrete cosine transformation

(DCT) based, lossy compression. Result is the technical realization of

a steganographic algorithm whose security is established by

indeterminism within the signal path.

• J. J. Chae and B. S. Manjunath (1999) propose a video data

embedding scheme in which the embedded signature data is

reconstructed without knowing the original host video. The proposed

method enables high rate of data embedding and is robust to motion

compensated coding, such as MPEG- 2. Embedding is based on

texture masking and utilizes a multi- dimensional lattice structure for

encoding signature information. Signature data is embedded in

individual video frames using the block DCT. The embedded frames

are then MPEG- 2 coded. At the receiver, both the host and signature

images are recovered from the embedded bit stream.

• F. Adel (2000) used the two LSBs insertion in many ways (in

selecting the embedding positions) such as hopping, sequencing, and

hiding in edges of the images. Cryptography also used to encipher the

message before it is being embedded in the cover image. A good

capacity, approximately quarter image size was obtained.

Chapter One: Introduction 4

• C. John (2003) an article about hiding text in the bitmap frames of

uncompressed AVI files. This article is about extracting these bitmaps

and re-building the stream, in order to hide a message in the video. To

hide a message, open a bitmap file, then enter a password or select a

key file. This password or key will be treated as a stream of bytes

specifying the space between two changed pixels. When enter the

secret message, the application writes the length of the message in

bytes into the first pixel. After that it reads a byte from the message,

reads another byte from the key, and calculates the coordinates of the

pixel to use for the message-byte. It increments or resets the color

component index, to switch between the R, G and B components.

Then it replaces the R, G or B component of the pixel (according to

the color component index) with the message-byte, and repeats the

procedure with the next byte of the message.

• S. N. Merchant, A. Harchandani, S. Dua, H. Donde, I. Sunesara

(2003) This paper proposes a novel video watermarking technique to

embed a digital watermark in video data using integer- to- integer

discrete wavelet transform. The watermark is embedded in the lowest

frequency components of each frame. The method exploits features of

the human visual system. The watermark can be extracted directly

from the decoded video without access to the original video.

Experimental results have indicated that the method is robust against

mpeg encoding and re- encoding. It is also perceived that the method

is effective against statistical attacks.

• H. J. Mohammed (2004) used the wavelet transform with sorting to

embed the image in the cover to increase stego-image robustness

against attackers. The embedded image is reduced before hiding into

Chapter One: Introduction 5

the cover in order to increase the capacity of the stego system. The

redection used is wavelet-based technique with thresholing. To

increase system security, wavelet packet algorithm is also used. The

random sorting of the subbands prior to embedded is used so that the

sorting order is sent as a message-driven key.

• M. J. Jawad (2005) used an audio in audio steganography system, in

the proposed system the secret data in the first stage transformed using

wavelet transform and then the result and coefficient have to be coded

using one of the three coding methods (fixed length encoding method,

S-shift coding method and hybrid coding method). In the next stage

the embedded stage where the output of coding data (a stream of bits)

is embedded in the cover data. Three embedding methods were

implemented in this proposed system (least significant bit insertion in

wavelet transform domain, two least bits insertion in time domain

with recovery technique and hiding in audible part).

1.3 Research Objectives
This work aims to design and implement digital AVI steganography

through inserting additional information into the original digital audio\video.

An audio\video data embedding scheme in which the embedded signature

data is reconstructed without knowing the original host audio\video. The

proposed method enables high rate of data embedding and is robust to

motion compensated coding. In this work three types of embedding data

were used (text, audio and image). This data is embedded in individual video

frames using two hiding methods; they are:

Chapter One: Introduction 6

• Spatial Domain Embedding: One of the widely known

steganography algorithms is based on modifying the least significant

bit layer of video frames or audio, hence known as the LSB technique.

This technique makes use of the fact that the least significant bits

could be changed without causing a significant effect on the video

frames as well as audio. Although the image seems unchanged

visually after the LSBs are modified, the statistical properties of the

video frames as well as audio changes significantly.

• Transform Domain Embedding: Another category for embedding

techniques for which a number of algorithms have been proposed is

the transform domain-embedding category. The techniques that are

currently being used with video frames can be generalized for use

with wavelet transforms

1.5 Thesis Layout
The follows are the outline of the thesis contents:

Chapter One: Includes an introduction to information hiding and literature

review to the related steganography work.

Chapter Two: Introduces a background to information hiding, methods of

steganography, wavelet transformation with its types, uses and benefits.

Chapter Three: Presents the proposed system design steps, and the

practical work implementing these steps. Each practical step is discussed

Chapter One: Introduction 7

with its related algorithm. Explores and discusses the experimental results of

each steganography approach

Chapter Four: Gives some concluding remarks and suggestions for future

work.

.

Chapter Three: System Design and Implementation 30

CHAPTER THREE

System Design and Implementation

3.1 Introduction
The main idea of the steganography that described in chapter two is

the art of hiding secret message in a host media. Several types of media

could be used as host media for hiding secret message. The multimedia

steganography (in which the host media is an AVI file) is the aim of this

project.

This chapter concerned with the description of the design and

implementation part of this project. The description will include how treat

with the AVI file. Also, for the steganography methods will be discussed.

Finally, since for each steganography technique an appropriate extraction

technique is needed, therefore the implemented extraction will also be

described.

3.2 The Overall System Model
The overall system model can be described as shown in Fig. 3.1 into

five main part as follows: -

• Input cover and message files

• Hiding information

• Stego file

• Extraction

• Secret file

Chapter Three: System Design and Implementation 31

Fig. 3.1 The Overall System Model

Input
Message

and Cover
files

Hiding
information Stego file Extraction

Secret file

Hide overhead
in audio

Build overhead
information

Stego video Stego audio

Stego AVI
File

Input message
File

Input video
audio AVI File

Convert the input
file into number of

blocks
Video part Audio part

Hiding
information

Fig. 3.2 Video audio information hiding

Chapter Three: System Design and Implementation 32

3.2.1 Input cover and message files

The actual process of the steganography usually involves two classes

of files- cover files and message files.

A. Cover files:

The type of cover file is an AVI file stands for Audio Video

Interleave. The AVI file contains the video and audio streams. The main

Fig. 3.3 Extraction

Extract overhead
information

Overhead
information

Extraction of the
hiding information

Input Stego AVI
File

Video part Audio part

Secret File

Chapter Three: System Design and Implementation 33

idea is to separate audio part and video part into two separates files and

hides deferent information in each of them. This process described by:

• The Video part stored on separate file as uncompressed stream

of frames of images only (without the audio), the characteristics

of the images in the video file are describe to as 32 bits per

pixel format has the most significant byte of the pixel set to

zero. Then 8 bits for red, 8 bits for green, 8 bits for blue, and 8

bits for reserved. This is RGB8 32 bits. The video stream is

divided into frames each stored in separation file as bitmap file,

this process done by algorithm (3.1).

INPUT

AVI file or AVI video file

OUTPUT

Save no. of BMP file in special directory

Firstframe // Position of the first video frame

Numframes // Number of frames in video stream

Begin

Open AVI file for read

Read AVI header

Set Firstframe = start stream from header

Set Numframe = length stream from header

Loop For i = Firstframe To (Numframes - 1) + Firstframe

 Read frame (i)

 Convert frame (i) to BMP image file

 Store BMP image file in temporary folder

End Loop

End

Algorithm 3.1 Divided frames into separated BMP files

Chapter Three: System Design and Implementation 34

• The Audio part of the Microsoft AVI is separated as WAV

(Windows Audio Visual) type format. After the separation of

the audio it is stored in WAV file often contains single

“WAVE” chunk, which consists of two subchunks, a format

(fmt) subchunk specifies the file format and the (data) subchunk

containing the actual data samples. Algorithm (3.2) used to

open WAV file.

B. Message file:

In the project used unlimited message size can be hidden in the

cover. Three types of messages can be used, there are:

I. Text file:

The technique of the text file is a variation of characters. When to be

hide in the cover must convert character value (ASCII code) to binary

code. Algorithm (3.3) presents the steps of open TXT file.

INPUT

WAV file

OUTPUT

X () // Array of one dimension

 Szfile // size of array

Begin

Open WAV file for read

Read WAV header

Read Szfile

Read the data byte by byte and stored them in array X

End

Algorithm 3.2 Open WAV file

Chapter Three: System Design and Implementation 35

II. Image file:

The secret image is considered file of type BMP. The BMP starts out

with header followed by a sequence of byte. The size of BMP header is

54 bytes and the data of the image is beginning from the byte 55 to the

end of the image size. The characteristics of the image is described as 24

per pixel, each pixel have three bands (Red, Green and Blue) each band

size is one byte. To hide this data in the cover each byte of the data must

converted to binary code. Algorithm (3.4) presents the steps of open BMP

file.

III. Audio file:

The considered secret audio files are of type WAV. The WAV starts

out with header followed by a sequence of bytes. The WAV header is 44

bytes and the data of the audio is beginning from the byte 45 to the end of

the audio size. The data sample is 8 bits and mono channel. For hiding

INPUT

 Text file

OUTPUT

X () // Array of one dimension

 Szfile // size of array

Begin

Open Text file for read

 Read Szfile

 Read the data byte by byte and stored them in array X

End

Algorithm 3.3 Open Text file

Chapter Three: System Design and Implementation 36

this data in the cover each byte must convert to binary code. Algorithm

(3.2) presents the steps of open WAV file.

The array of secret bytes that got from the three previous algorithms

must converted to binary ASCII code by using in algorithm (3.5).

3.2.2 Hiding information

 This section will describe the hiding of secret message into AVI

cover; it is done in three steps:

A. Preparation step: Before implementing the hiding process a number

of steps, are needed to be done:

• Choose the method of hiding in the video stream.

INPUT

 BMP file

OUTPUT

X () // Array of one dimension

 Szfile // size of array

Begin

Open BMP file for read

Read BMP header

Read Szfile

Read the data byte by byte and stored them in array X

End

Algorithm 3.4 Open BMP file

Chapter Three: System Design and Implementation 37

• Compute the minimum number of frames needed to be used for

hiding the given secret messages.

• Choose the number of frames to be used as a cover such that it is

greater than or equal the minimum number of frames computed in

previous step. Algorithm (3.6) illustrates all these steps.

• Convert the sequential counter of the frame index randomly by

using a random Key generation it is amplitude is the number of

available frames. Algorithm (3.7) illustrated the random

generation.

INPUT

X () // Array of one dimension represent the secret data

N // number of characters

OUTPUT

B () // Array of one dimension represent the binary code of data

IB // the size of B array

Begin

Set IB=0

Loop For i=0 to N-1

 Set bits = 1

 Loop For k=0 to 7

 If (X (i) AND bits) Then arrbit (IB) = 0 Else arrbits (IB) = 1

 Set bits = bits*2

 Set IB = IB +1

 End Loop

End Loop

End

Algorithm 3.5 converting the secret message into binary ASCII code

Chapter Three: System Design and Implementation 38

• Divided the message data into number of block that this division

suitable to the number of video frames. Each block will be hidden

in one frame.

B. Video step: Hiding secret data into the video stream by using two

methods mentioned in chapter two:

I. Least Significant Bit Embedding: This hiding approach is

described in section 2.3.2.A, it is one of the basic and easily

implemented image steganography approaches, this is done by

hiding one bit from the secret ASCII code data into one pixel of the

cover, the given bit hidden at the blue byte of this pixel. This is

presented in algorithm (3.8).

INPUT

Mtype // Method types used in project

 Szdata// The size of secret binary code data

OUTPUT

Noimg // Number of images used as cover

Begin

If Mtype=0 then // LSB method

Szimg= W * H

If Mtype =1 then // Wavelet method

Szimg = (W/2) * (H/2)

Minimg= Szdata / Szimg

Input Noimg limited from Minimg to Numframe

End

Algorithm 3.6 Choose the number of frames

Chapter Three: System Design and Implementation 39

INPUT

Key // Key number (obtain from algorithm 3.6)

 Numframes // Number of frames in video stream

OUTPUT

R() // Arry of index as random

Begin

Loop i=1 to Tindex

 R(i) = i

End Loop

Loop i = Tindex down to 1

 j = i * Rnd

 Swap (R (i), R (j))

End Loop

End

Algorithm 3.7 Random Generation

INPUT

Framedata() // data of frame cover

Blkdata() // block of message data

 szblk // size of block

OUTPUT

Framedata() // data of stego image

Begin
Loop s=1 to szblk

Framedata(s).blue = Framedata(s).blue And 254

Framedata(s).blue = Framedata(s).blue Or Blkdata(s)

End Loop

End

Algorithm 3.8 Least Significant Bit Embedded

Chapter Three: System Design and Implementation 40

II. Haar Wavelet Transform: The Haar transform is the simplest

wavelet transforms, but even this simple method illustrates the

power of the wavelet transform. This method is described in

section 2.4.2 and hiding is done on the blue bytes of each frame.

The method computes the wavelet transform of the image by

alternating between rows and columns. The first step is to calculate

averages and differences for all the rows (just one iteration, not the

entire wavelet transform). This creates averages in the left half of

the image and differences in the right half. The second step is to

calculate averages and differences for all the columns, which result

in averages in the top-left quadrant of the image and differences in

elsewhere. This process obtains from section 2.4.2 and illustrated

in algorithm (3.10).

INPUT

Realdata() // data of frame cover as real type

H // Height of frame

 W // Width of frame

OUTPUT

Realdata() // data of wavelet

Begin

Loop for r =1 to W

 Algorithm (3.10) Call WTstep (row r of Realdata, W)

End loop

Loop for c = H to 1

 Algorithm (3.10) Call WTstep (column c of Realdata, H)

End loop

End

Algorithm 3.9 Haar Wavelet Transform

Chapter Three: System Design and Implementation 41

The result of the algorithm (3.10) is four subbands, The most

interesting is the upper left subband, denoted by LL. Then the secret

data will be hidden in the upper left subband, that hiding one bit into

one coefficient by using a hiding mechanism, that changed the secret

bit and summation the result with the coefficient. This is illustrated

in algorithm (3.11).

After done the algorithm (3.11) returned the subbands to the original

frame this process obtain also from section 2.4.2. This process

illustrated in algorithm (3.13).

INPUT

Datavector() // vector of data refers as row or column

Szvector // size of vector

OUTPUT

Datavector()// data of wavelet

Begin
Loop k =1 to Szvector/2

 DV(k) = (Datavector(2*k-1) + Datavector(2*k))/2

 DV(Szvector/2+k) = (Datavector(2*k-1) - Datavector(2*k))/ 2

End Loop

Datavector = DV

End

Algorithm 3.10 WTstep

Chapter Three: System Design and Implementation 42

INPUT

LL() // data of upper left subband

Blkdata() // block of message data

 szblk // size of block

 OUTPUT

LL() // data of upper left subband

Begin

Set Step=8

Loop s=1 to szblk

 If Blkdata(s) = 0 then Blkdata(s)= - factor

 If Blkdata(s) = 1 then Blkdata(s) = factor

 If LL(s)<0 thensign = -1 Else sign = 1

 LL(s) = ABS (LL(s))

 LL(s) = step* round (LL(s) / step)

 LL(s) = LL(s)+ Blkdata(s)

 LL(s) = sign*LL(s)

End Loop

End

Algorithm 3.11 Hide secret data in LL subband

Chapter Three: System Design and Implementation 43

INPUT

Realdata() // data of frame cover as real type

H // Height of frame

 W // Width of frame

OUTPUT

Realdata()// data of wavelet

Begin

Loop for c=H to 1

 Algorithm (3.13) Call WRrstep (column c of Realdata, H)

End loop

Loop for r=1 to W

 Algorithm (3.13) Call WRstep (row r of Realdata, W)

End loop

End

Algorithm 3.12 Haar Wavelet Reconstruct

INPUT

Datavector() // vector of data refers as row or column

Szvector // size of vector

OUTPUT

Datavector()// data of wavelet

Begin

Loop k=1 to Szvector/2

 DV(2*k-1) = (Datavector (k) + Datavector (Szvector /2+k))/ 2

 DV(2*k) = (Datavector (k) - Datavector (Szvector /2+k))/ 2

End Loop

Datavector = DV

End

Algorithm 3.13 WRstep

Chapter Three: System Design and Implementation 44

C. Audio step: The third step in the hiding process is to hide the

overhead information. The overhead information is hidden in the fixed

way in an audio of the AVI file (by using Least Significant Bit). The

construction of the overhead information by using fixed number of bits as

following:

1 bit Referred to the type of hiding methods

2 bits Referred to the type of message files

32 bits Referred to the number of frames used as cover

If the message file is text:

32 bits Referred to the size of file

If the message file is image:

32 bits Referred to the width of image file

32 bits Referred to the height of image file

If the message file is audio:

32 bits Referred to the size of file

2 bits Referred to the samples rate

INPUT

audiodata() // data of audio cover

overh() // Overhead data

szh // size of the overhead data

OUTPUT

audiodata()// data of stego audio

Begin
Loop s=1 to szh

audiodata(s) = audiodata(s) And 254

audiodata(s) = audiodata(s) Or overh(s)

End Loop

End

Algorithm 3.14 Least Significant Bit Embedded in audio

Chapter Three: System Design and Implementation 45

3.2.3 Stego File

After implementing all steps of hiding, the next process is to rebuilt

the video stream from the sequence of BMP images by using AVI

functions that present in VB6. This process is illustrated in algorithm

(3.15). At the beginning, the program builds the header of the video

stream and put it in the stego-video. Then, it put the header of each frame

and the data one by one. After embedding the last frame the application

closes both video files, deletes the temporary bitmap file.

After this step the video stream should merged with audio stream to

construct the stego AVI file.

INPUT

Number of BMP file in special directory

Firstframe // Position of the first video frame

Numframes // Number of frames in video stream

OUTPUT

Fname of stego video file

Begin

Open Fname for write

Built AVI header

Built frame header

Loop For i = Firstframe To (Numframes - 1) + Firstframe

 Write header in video file

 Write the data of BMP image file as data of frame in video

 Delete the BMP image file from temporary folder

End Loop

End

Algorithm 3.15 Construct the Video stream

Chapter Three: System Design and Implementation 46

3.2.4 Extraction

It is the art of extracting the hidden data embedded in the AVI carrier

file. To accomplish this task, the user who receives the AVI file must

divided it into Video and Audio, and extract the overhead information

from audio file to arrived to the positions of the secret message. That can

illustrate in algorithm (3.16).

From the overhead can determine the type of message, type of

method and number of frames to be used as cover. From the number of

frames can get the number of block and the size of each block. The

number of frames also represents the first frame cover and from it can get

the next frame and so on.

The video file will open by used the algorithm (3.1). and the audio

file opened by the algorithm (3.2).

INPUT

audiodata() // data of audio cover

szh // size of the overhead data

OUTPUT

overh() // Overhead data

Begin

Loop s=1 to szh

 overh(s) = audiodata(s) And 1

End Loop

End

Algorithm 3.16 Least Significant Bit Extraction From Audio

Chapter Three: System Design and Implementation 47

 Since every method has its own corresponding method to extract

secret data from its host video file:

I. Least Significant Bit Extraction: in this method the data

extracted from the LS2Bs from frame data portion bytes. An

extraction method was build to extract the data sequentially being

embedded in the host video. The number of bits extracted from byte

of frame data portion depends on the number of bits being embedded

in this byte. This process illustrate in algorithm (3.17).

II. Haar Wavelet Reconstruction: This extraction method was

done in two steps:

• Used the algorithm (3.10) to convert each frame into four subband.

INPUT

Framedata() // data of frame cover

 szblk // size of block

OUTPUT

Blkdata() // block of message data

Begin

Loop s=1 to szblk

 Blkdata(s) = Framedata(s).blue And 1

End Loop

End

Algorithm 3.17 Least Significant Bit Extraction

Chapter Three: System Design and Implementation 48

• Extract the secret data from the upper left subband by using the

extraction module, that make round to each coefficient and get

different between the coefficient and its rounded, and then check

the difference if it is greater than zero then the bit refers to 1

otherwise refers to zero. This process as illustrated in algorithm

(3.18). The number of bits extracted from subband depends on the

number of bits being embedded in this subband.

INPUT

LL() // data of upper left subband

 szblk // size of block

OUTPUT

Blkdata() // block of message data

Begin

Set Step=8

Loop s=1 to szblk

 LL(s) = ABS (LL(s))

 LLn(s) = step* round (LL(s) / step)

 BD = LL(s) - LLn(s)

 If BD <= 0 then Blkdata(s) = 0 else Blkdata(s) = 1

End Loop

End

Algorithm 3.18 Extracted secret data from LL subband

Chapter Three: System Design and Implementation 49

3.2.5 Secret File

In this section the blocks that as an output from the previous section.

After that merge the blocks and convert each eight bits to form one byte

as illustrated in algorithm (3.19), and constructed the block of bytes that

saved in file.

At the beginning of the extraction stage the type of secret message is

determine then the file of secret message is created, (of same type like the

original):

• For text file type convert each byte to characters and put in the file.

As illustrated in algorithm (3.20).

• For image file type built the header of BMP image file and then put

the header in the file followed by the data. Constructed this process

is illustrate in algorithm (3.21).

A detailed description of the BMP file format is presented in appendix

(B).

• In audio file type built the header of Wav type and at the first put

the header in the file and then the data. As illustrated in algorithm

(3.22).

A detailed description of the WAV file format is presented in

appendix (A).

Chapter Three: System Design and Implementation 50

INPUT

B () // Array of one dimension represent the binary code of data

IB // the size of B array (in bits)

OUTPUT

X () // Array of one dimension represent the secret data

N // number of characters

Begin

Set Bcount = 0

Set N = 0

Loop while (Bcount < IB)

 Set bits = 1

 Set X (N) = 0

Loop For k = 0 to 7

 X(N) = X(N) + B(k) * bits

 Set bits = bits * 2

 End Loop

 N = N + 1

 Bcount = Bcount + 8

End Loop While

End

Algorithm 3.19 convert binary ASCII code to byte value

Chapter Three: System Design and Implementation 51

INPUT

X () // Array of one dimension represent the secret data

szx // size of array X

OUTPUT

 The Text file

Begin

Open Text file for write

Loop For i=1 to szx

 CH=convert (X (i)) to character

 Write the CH in Text file

End Loop

End

Algorithm 3.20 Create Text file

INPUT

X () // Array of one dimension represent the secret data

szx // size of array X

OUTPUT

The BMP file

Begin

Open BMP file for write

Write BMP header

Loop For i=1 to szx

 Write X (i) in BMP file

End Loop

End

Algorithm 3.21 Create BMP file

Chapter Three: System Design and Implementation 52

3.3 Experimental Result & System Evaluation

Most steganography systems require that the communication must

be invisible, such that an expected attacker cannot know if there is an

embedded message inside the stego-object. In fact, imperceptibility of the

stego AVI reflects how much it is affected due to the embedding process,

in other word, imperceptibility can be decided by measuring that effect.

In the proposed stego-system, the MSE and PSNR measurement is

adopted.

The test will be done on the two types of methods by using three

different types of secret files (text, image, audio) and AVI cover files. At

the beginning of the project separate the AVI file into audio and video

INPUT

X () // Array of one dimension represent the secret data

 szx // size of array X

OUTPUT

The WAV file

Begin

Open WAV file for Write

Write WAV header

Loop For i=1 to Szx

 Write X (i) in WAV file

End Loop

End

Algorithm 3.22 Create WAV file

Chapter Three: System Design and Implementation 53

streams by using “Ulead Media Studio Pro 6.0”. Then the test will be

done after embedding on video and audio stream.

• In the first case study: the test done on the two AVI cover file and

five samples of secret file. The first one is text whose size is 6.92KB,

two image samples were used, the type of each one are BMP 24bits

true color, the first one (PIC1) 256×256 pixels and the size is

192KB, and the second one (PIC2) 352×240 pixels and the size is

247KB. For audio two samples were used for testing (speech, music)

both are WAV type PCM, mono, 8bits. The speech is 8sample rate

and the size 37.8KB, and the music sample has 22050sample rate

and the size is150KB.

For AVI cover, two samples were used (AVI1, AVI2) they have

same format but differ in number of frames and in audio format, in

AVI1 the video stream has 75 frames and its size is 29.0 MB, the

audio stream has 22050 sample rate, stereo, 16bits and the size is

258KB. In AVI2 the video stream has 117 frames and its size is

45.2MB, the audio stream has 16000sample rate, stereo, 8bits and its

size is 146KB.

The two types of hiding methods were used to hide in video, they are

(Least significant bit, Haar Wavelet transformed), in first hiding

method the hiding is done in the least position is performed, while in

the second method used one level wavelet decompose. The method

were used to hide in audio, it is least significant bit that hides limited

block of data in limited bytes.

The results are shown in two tables (3.1 and 3.2), table (3.1) for

video stream and table (3.2) for audio stream.

Chapter Three: System Design and Implementation 54

Method

type

Cover

video

file

Secret
file

Size of
secret

file

Number

of frame

used

Cover-Stego_cover

MSE PSNR

LSB

AVI1

29MB

Text 6.92KB 1 1.123 47.627
PIC1 192KB 16 1.941 45.250
PIC2 247KB 21 1.898 45.349
Speech 37.8KB 4 1.526 46.296
Music 150KB 13 1.873 45.405

AVI2

45.2MB

Text 6.92KB 1 1.107 47.691
PIC1 192KB 16 1.945 45.241
PIC2 247KB 21 1.835 45.494
Speech 37.8KB 4 1.522 46.308
Music 150KB 13 1.872 45.407

HWT

AVI1

29MB

Text 6.92KB 3 2.316 44.483
PIC1 192KB 63 3.158 43.136
PIC2 247KB The cover size is not enough
Speech 37.8KB 13 3.009 43.346
Music 150KB 49 3.120 43.188

AVI2

45.2MB

Text 6.92KB 3 2.212 44.683
PIC1 192KB 63 3.217 43.056
PIC2 247KB 81 2.867 43.557
Speech 37.8KB 13 3.062 43.272
Music 150KB 49 3.184 43.102

Method

type

Cover

audio

file

Overhead
data

Number

of frame

used

Cover-Stego_cover

MSE PSNR

LSB
AVI1

256KB

Text 1 0.000034 92.814
PIC1 16 0.000049 91.217
PIC2 21 0.000042 91.943
Speech 4 0.000038 92.357
Music 13 0.000053 90.896

Table (3.1) the test results for the hiding methods in video stream

Table (3.2) the test results for the hiding method in audio stream

Chapter Three: System Design and Implementation 55

AVI2

146KB

Text 1 0.000013 96.875
PIC1 16 0.000008 89.093
PIC2 21 0.000073 89.471
Speech 4 0.000087 88.746
Music 13 0.000094 88.424

HWT

AVI1

258KB

Text 3 0.000008 99.400
PIC1 63 0.000023 94.575
PIC2 The cover size is not enough
Speech 13 0.000011 97.585
Music 49 0.000019 95.367

AVI2

146KB

Text 3 0.000013 96.875
PIC1 63 0.000004 92.104
PIC2 81 0.000002 95.114
Speech 13 0.000002 95.114
Music 49 0.000034 92.896

• In the second case study: same samples of AVI files were used in

addition to the five secret files, but the difference is in distributing

the secret data file on fit plus ten frames. And show the different

results.

Method

type

Cover

video

file

Secret
file

Size of
secret

file

Number

of frame

used

Cover-

Stego_cover

MSE PSNR

LSB

AVI1

29MB

Text 6.92KB 11 0.101 58.109
PIC1 192KB 26 1.196 47.353
PIC2 247KB 31 1.282 47.052
Speech 37.8KB 14 0.437 51.722
Music 150KB 23 1.059 47.883

AVI2

45.2MB

Text 6.92KB 11 0.102 58.045
PIC1 192KB 26 1.205 47.321
PIC2 247KB 31 1.264 47.112
Speech 37.8KB 14 0.439 51.706
Music 150KB 23 1.060 47.876

Table (3.3) the test results for the hiding methods in video by adding 10
frames

Chapter Three: System Design and Implementation 56

HWT

AVI1

29MB

Text 6.92KB 13 0.541 50.801
PIC1 192KB 73 2.728 43.772

PIC2 247KB
The cover size is not

enough
Speech 37.8KB 23 1.668 45.856
Music 150KB 59 2.592 43.995

AVI2

45.2MB

Text 6.92KB 13 0.537 50.832
PIC1 192KB 73 2.789 43.676
PIC2 247KB 91 2.551 44.064
Speech 37.8KB 23 1.722 45.771
Music 150KB 59 2.636 43.922

Method

type

Cover

audio

file

Overh
ead
data

Number

of frame

used

Cover-Stego_cover

MSE PSNR

LSB

AVI1

256KB

Text 1 0.000034 92.814
PIC1 16 0.000049 91.217
PIC2 21 0.000042 91.943
Speech 4 0.000038 92.357
Music 13 0.000053 90.896

AVI2

146KB

Text 1 0.000013 96.875
PIC1 16 0.000008 89.093
PIC2 21 0.000073 89.471
Speech 4 0.000087 88.746
Music 13 0.000094 88.424

H WT

AVI1

258KB

Text 3 0.000008 99.400
PIC1 63 0.000023 94.575
PIC2 The cover size is not enough
Speech 13 0.000011 97.585
Music 49 0.000019 95.367

AVI2

146KB

Text 3 0.000013 96.875
PIC1 63 0.000004 92.104
PIC2 81 0.000002 95.114
Speech 13 0.000002 95.114
Music 49 0.000034 92.896

Table (3.4) the test results for the hiding methods in audio

Chapter Three: System Design and Implementation 57

3.4 Results Discussion

From the table of results (3.1, 3.2, 3.3, 3.4) the following points are

notice:

1. In the first step, the AVI file separated into video and audio parts.

This video part consider as streams of images, so the method of

hiding information used in this project is to hide the given

information into these image frames. So the selected method of

hiding as it appears in the tables are the Least Significant Bit and

Haar Wavelet Transform.

Three types of information (text, image, audio) are used to hide

into the video stream. The computation started by calculating the

minimum number of frames that enough to hide the given

information. This number of frames depends on the method of

hiding and the size of information to be hided. Then to increase

the security and robustness of the method, the number of frames

is increased if there are enough extra unused frames.

From the tables it appears for both methods of hiding the MSE

reduced and the PSNR increased when the number of frame used

are increased, but even with the minimum number of frames the

MSE are reasonably small and PSNR are reasonably large,

because the cover size are large in comparison to the hided

information.

2. On the other audio part small size of data will be hidden, this

hided data in this part is so important. So to increase the security

either by chosen for example a random location or encrypted the

hidden data.

Chapter Two:Steganography Concept 8

CHAPTER TWO

Steganography Concept

2.1 Introduction
Information hiding in digital images, video or audio had drawn much

attention in recent years. Some auxiliary information is implicitly combined

with a piece of multimedia data, i. e. the host signal, to form a composite

signal for certain interesting applications [Jay03].

Data hiding techniques should be capable of embedding data in a host

signal with the following restrictions and features [Pol01]:

• The host signal should be non-objectionally degraded and the

embedded data should be minimally perceptible. That means is

the observer should not be able to notice the presence of the data

even if it were perceptible.

• The embedded data should be directly encoded into the media

rather than into a header or a wrapper so that the data remain

intact across varying data file formats.

• The embedded data should be immune to modifications ranging

from intentional and intelligent attempts at removal to anticipated

manipulations. e.g. channel noise, re-sampling, cropping, etc…

• Asymmetrical coding of the embedded data is desirable since the

purpose of data hiding is to keep the data in the host signal but

not necessarily to make the data difficult to access.

• The embedded data should be self clocking or arbitrarily re-

entrant. This ensures that the embedded data can be recovered

even when only fragments of information are available.

Chapter Two:Steganography Concept 9

Both Steganography and Watermarking describe techniques that are

used to imperceptibility convey information by embedding it into the cover-

data [Kaz01]. Digital steganography has become increasingly used in recent

years. Steganography literally means, “Covered writing” and includes the

methods of transmitting secret messages through cover carriers in such a

manner that the existence of the embedded messages is undetectable

[Civ01].

2.2 Steganography
Steganography is the art of hiding and transmitting data through

apparently innocuous carriers in an effort to conceal the existence of the

data. Though steganography is an ancient craft, the onset of computer

technology has given it a new life. Computer-based steganographic

techniques introduce changes to digital covers to embed information foreign

to the native covers. Such information may be communicated in the form of

text, binary files, or provide additional information about the cover and its

owner such as digital watermarks or fingerprints [Wat01].

 It differs from digital watermarking for its information different

requirements on imperceptibility (including both visual and statistical

imperceptibility), robustness (robust imperceptibility against cover

modifications), security (how easy it is to break the message), and capacity

(how much information can be embedded hidden in a certain media).

Steganography needs to achieve large capacity, high security level, and high

imperceptibility, but does not have to be robust against cover modifications.

While digital watermarking has relatively low requirements on security and

capacity, it must be robust against imperceptibility, both faults (e. g. noise)

Chapter Two:Steganography Concept 10

and malicious faults (e. g. attacks like accidental scaling of the

cover)[Sny02].

2.2.1 Steganography Model

Most applications of steganography follow one general principle,

illustrated in Fig. 2.1. Alice (in the field of cryptography, communication

protocols usually involve two fictional characters named Alice and Bob or

use a name whose first character matches the first letter of their role (e.g.

Wendy the warden)), who wants to share a secret message M with Bob,

randomly chooses (using private random source r) a harmless message C,

called cover-object, which can be transmitted to Bob without raising

suspicion, and embeds the secret message into C, probably by using a key K,

called stego-key. Alice therefore changes the cover C to a stego-object S.

This must be done in a very careful way, so that a third party, knowing only

the apparently harmless message S, cannot detect the existence of the secret

[Kat00].

Reconstructed
Message

E

Key K Key K

Warden

Insecure Channel

Key Generation Facility

Stego S

D

Cover C

Message M

Randomness r

Fig. 2.1 Schematic description of steganography

Chapter Two:Steganography Concept 11

Cover-object: refers to the object used as the carrier to embed messages

into. Many different objects have been employed to embed messages into for

example images, audio, and video as well as file structures, and html pages

to name a few. Stego-object: refers to the object, which is carrying a hidden

message. So given a cover object, and a messages the goal of the

steganographer is to produce a stego object which would carry the message.

Alice then transmits S over an insecure channel to Bob and hopes that

Wendy will not notice the embedded message. Bob can reconstruct M since

the embedding method used by Alice is known and Bob has access to the

key K used in the embedding process [Kha04].

A third party watching the communication should not be able to decide

whether the sender is active in the sense that the sender sends covers

containing secret message rather than covers without additional information.

Formally, if an observer has access to the cover-objects transmitted between

both communication parties, the observer should not be able to decide which

cover-object contains secret information. Thus, the security of invisible

communication lies mainly in the inability to distinguish cover-object from

stego-object. Obviously, a cover should not be used twice, since an attacker

who has access to two “versions” of one cover can easily detect and possibly

reconstruct the message. To avoid accidental reuse, both sender and receiver

should destroy all covers they have already used for information transfer

[Kat00].

2.2.2 Steganography vs. Cryptography

Steganography is not the same as cryptography. In cryptography, the

structure of a message is changed to render it meaningless and unintelligible

Chapter Two:Steganography Concept 12

unless the decryption key is available. Cryptography makes no attempt to

disguise or hide the encoded message. Steganography does not alter the

structure of the secret message, but hides it inside a cover. It is possible to

combine the two techniques by encrypting a message using cryptography

and then hiding the encrypted message using steganography. The resulting

stego-image can be transmitted without revealing that secret information is

being exchanged. Furthermore, even if an attacker were to defeat the

steganographic technique and detect the message from the stego-image,

there would still the need for the cryptographic decoding key to decipher the

encrypted message [Lin03].

2.2.3 Application of Steganography [Lin03]

There are many applications for digital steganography, including

copyright protection, feature tagging, and secret communications.

Copyright Protection: A secret copyright notice or watermark can be

embedded inside an image to identify it as intellectual property. This is the

watermarking scenario where the message is the watermark. The

“watermark” can be a relatively complicated structure. In addition, when an

image is sold or distributed an identification of the recipient and time stamp

can be embedded to identify potential pirates. A watermark can also serve to

detect whether the image has been subsequently modified. Detection of an

embedded watermark is performed by a statistical, correlation, or similarity

test, or by measuring other quantity characteristic to the watermark in a

stego- image. The insertion and analysis of watermarks to protect

copyrighted material is responsible for the recent surge of interest in digital

steganography and data embedding.

Chapter Two:Steganography Concept 13

Feature Tagging: Captions, annotations, time stamps, and other

descriptive elements can be embedded inside an image, such as the names of

individuals in a photo or locations in a map. Copying the stego- image also

copies all of the embedded features and only parties who possess the

decoding stego- key will be able to extract and view the features. In an

image database, keywords can be embedded to facilitate search engines. If

the image is a frame of a video sequence, timing markers can be embedded

in the image for synchronization with audio. The number of times an image

has been viewed can be embedded for “pay- per-view” applications.

Secret Communications: In many situations, transmitting a

cryptographic message draws unwanted attention. The use of cryptographic

technology may be restricted or forbidden by law. However, the use

steganography does not advertise covert communication and therefore

avoids scrutiny of the sender, message, and recipient. A trade secret,

blueprint, or other sensitive information can be transmitted without alerting

potential attackers or eavesdroppers.

2.3 Steganography in AVI file
In modern time, digital images, audio files, and streaming video have

become carries for hidden information, while our networks are high-speed

delivery channels [Hos03].

AVI stands for Audio Video Interleave. It a special case of the RIFF

(Resource Interchange File Format). Microsoft defines AVI. AVI is the most

common format for audio video data used in computer [Mcg97].

Chapter Two:Steganography Concept 14

2.3.1 Video steganography

The video stream in an AVI file is nothing more than a sequence of

bitmaps. Video steganography is not too different from image

steganography. It can be said that video steganography is a derivative of

image steganography; this is because video is made up of a series of images

that are transmitted. So whatever techniques (and attacks) can be applied to

images also apply for videos [Pot03].

The embedded information must be perceptually invisible to ensure

high visual quality. By embedding the information directly into the pixels of

each frame, rather than as a header of the file, the information will not be so

easily lost when the video format is changed or the video is cropped, etc.

Furthermore, if independent files are used, they may require synchronization

during playback, may easily be separated, or additional storage space could

be required.

Since a video sequence can be broken down into a series of still images,

we will begin our discussion by presenting a robust technique for image

steganography [Lan00].

2.3.2 Image steganography

Information can be hidden many different ways in images. To hide

information, straight message may encode every bit of information in the

image insertion or selectively embed the message in “noisy” areas that draw

less attention— those areas where there is a great deal of natural color

variation. The message may also be scattered randomly throughout the

image. Redundant pattern encoding “wallpapers” the cover image with the

Chapter Two:Steganography Concept 15

message. A number of ways exist to hide information in images. Common

approaches include digital

• Least significant bit insertion

• Masking and filtering

•Transformation technique

Each of these techniques can be applied, with varying degrees of

success, to different image files [Joh98][Sel00].

A. Least significant bit insertion [Joh98][Sel00]

Least significant bit (LSB) insertion is a common, simple approach to

embedding information in a cover file. Unfortunately, it is vulnerable to

even a slight image manipulation. Converting an image from a format like

GIF or BMP, which reconstructs the original message exactly (lossless

compression) to a JPEG, which does not (lossy compression), and then back

could destroy the information hidden in the LSBs.

24- bit images to hide an image in the LSBs of each byte of a 24- bit

image, you can store 3 bits in each pixel. A 1024 x 768 image has the

potential to hide a total of 2,359,296 bits (294,912 bytes) If you compress

the message to be hidden before you embed it, you can hide a large amount

of information. To the human eye, the resulting stego- image information

will look identical to the cover image. For example, the letter A can be

hidden in three (assuming no compression). For example if the original

raster pixels data for 3 pixels (9 bytes) are:

(00100111 11101001 11001000)

(00100111 11001000 11101001)

(11001000 00100111 11101001)

Chapter Two:Steganography Concept 16

The binary value for A is 10000011. Inserting the binary value for A in the

three pixels would result in

(00100111 11101000 11001000)

(00100110 11001000 11101000)

(11001000 00100111 11101001)

The underlined bits are the only three actually changed in the 8 bytes used.

On average, LSB requires that only half the bits in an image be changed.

You can hide data in the least and second least significant bits and still the

human eye would not be able to discern it.

8- bit images are not as forgiving to LSB manipulation because of

color limitations. Steganography software authors have devised several

approaches—some are more successful than others— to hide information in

8- bit images. First, the cover image must be more selected so that the stego-

image will not broadcast carefully the existence of an embedded message.

When information is inserted into the LSBs of the raster data, the

pointers to the color entries in the palette are changed. In an abbreviated

example, a simple four- color palette of white, red, blue, and green has

corresponding palette position entries of 0 (00), 1 (01), 2 (10), and 3 (11),

respectively. The raster values of four adjacent pixels of white, white, blue,

and blue are 00 00 10 10. Hiding the binary value 1010 for the number 10

changes the raster data to 01 00 11 10, which is red, white, green, blue.

These gross changes in the image are visible and clearly highlight the

weakness of using 8- bit images. On the other hand, there is little visible

difference noticed between adjacent gray values.

Chapter Two:Steganography Concept 17

B. Masking and filtering [Joh98]

Masking and filtering techniques, usually restricted to 24- bit and gray-

scale images, hide information by marking an image, in a manner similar to

paper watermarks. Traditional steganography conceals information;

Watermarks extend information and become an attribute of the cover image.

Digital watermarks may include such information as copyright, ownership,

or license. In steganography, the object of communication is the hidden

message. In digital watermarks, the object of communication is the cover.

Masking is more robust than LSB insertion with respect to

compression, cropping, and some image processing. Masking techniques

embed information in significant areas so that the hidden message is more

integral to the cover image than just hiding it in the “noise ” level. This

makes it more suitable than LSB with, for instance, lossy JPEG images.

C. Transformation technique

Another class of techniques is embedding the message by modulating

coefficients in a transform domain, such as the Discrete- Cosine Transform

(DCT) (used in JPEG compression), Discrete Fourier Transform, or Wavelet

Transform. Transform techniques can offer superior robustness against lossy

compression because they are designed to resist or exploit the methods of

popular lossy compression algorithms. An example of a transform- based

steganographic system is the “Jpeg- Jsteg” software, which embeds the

message by modulating DCT coefficients of the stego- image based upon

bits of the message and the round- off error during quantization. Transform-

based steganography also typically offer increased robustness to scaling and

Chapter Two:Steganography Concept 18

rotations or cropping, depending on the invariant properties of a particular

transform [Lin03].

2.3.3 Audio steganography

 Because of the range of the human auditory system (HAS), data hiding

in audio signals is especially challenging. The HAS perceives over a range

of power greater than one billion to one and range of frequencies greater

than one thousand to one. Also, the auditory system is very sensitive to

additive random noise. Any disturbances in a sound file can be detected as

low as one part in ten million (80 dB below ambient level). However, while

the HAS has a large dynamic range, it has a fairly small differential range-

large sounds tend to drown quiet sounds. When performing data hiding on

audio, one must exploit the weaknesses of the HAS, while at the same time

being aware of the extreme sensitivity of the human auditory system. The

method of the encoded message in audio is:

A. Low bit encoding: is the simplest way to embed data into other

data structures. By replacing the least significant bit (LSB) of each sampling

point by a coded binary string (see Fig. 2.2), we can encode a large amount

of data in an audio signal. Ideally the channel capacity is 1 kb per second per

kHz; so for example, the channel capacity would be 44 kbps in a 44 kHz

sampled sequence. Unfortunately, this introduces audible noise.

The major disadvantage of this method is poor immunity to

manipulation. Encoded information can be destroyed by channel noise,

resembling, etc., unless it is encoded using redundancy techniques. In order

to be robust, these techniques reduce the data rate which could result in the

Chapter Two:Steganography Concept 19

requirement of a host of higher magnitude, often by one to two orders of

magnitude. In practice, this method is useful only in physical storage and

closed digital-to-digital environment [Pol01].

B. Phase coding: The phase coding method works by substituting

the phase of an initial audio segment with a reference phase that represents

the data. The phase of subsequent segments is adjusted in order to preserve

the relative phase between segments. The phase coding, is one of the most

1 1 1 0 0 0 1 0

0 0 0 0 0 0 0 1

0 1 1 1 1 0 0 1

0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

1 0 1 0 1 0 0 0

0

1

0

0

0

0

0

1

Sampling data
(8-bit)

Hidden data
Character ‘A’

Fig. 2.2 Encoding character ‘A’ in a stream of audio samples

Chapter Two:Steganography Concept 20

effective coding methods in terms of the signal to perceived noise ratio.

When the phase relation between each frequency components is dramatically

changed, noticeable phase dispersion will be occur. However, as long as the

modification of the phase is sufficiently small an inaudible coding can be

achieved. The phase coding method works by substituting the phase of an

initial audio segment with a reference phase that represents the

data[Rab04][Sel00].

C. Spread spectrum: Most communication channels try to concentrate

audio data in as narrow a region of the frequency spectrum as possible in

order to conserve bandwidth and power. When using a spread spectrum

technique, however, the encoded data is spread across as much of the

frequency spectrum as possible. One particular method is the Direct

Sequence Spread Spectrum (DSSS) encoding, spreads the signal by

multiplying it by a certain maximal length pseudorandom sequence, known

as a chip. The sampling rate of the host signal is used as the chip rate for

coding. The calculation of the start and end quanta for phase locking

purposes is taken care of by the discrete sampled nature of the host signal.

As a result, a higher chip rate and, therefore, a higher associated data rate are

possible. However, unlike phase coding, DSSS does introduce additive

random noise to the sound [Rab04].

D. Echo data hiding: Echo data hiding embeds data into a host signal

by introducing an echo. The data are hidden by varying three parameters of

the echo, these are: initial amplitude, decay rate and offset, or delay

characteristics. As the offset between the original and the echo decreases, the

two signals blend. At a certain point, the human ear cannot distinguish

Chapter Two:Steganography Concept 21

between the two signals and the echo is merely heard as added resonance.

This point depends on factors such as the quality of the original recording,

the type of sound and the listener [Pol01][Sel00].

2.4 Wavelet Transforms [Han98]
Wavelet transforms are based on a relatively new concept. There is a

push toward the use of wavelets in signal processing and analysis in place of

(or in addition to) the Discrete Cosine Transform (DCT), which is used in

the JPEG standard for image compression. Recently, many algorithms have

been proposed to use wavelets for image compression. The techniques that

are currently being used in working with images can be generalized for use

with wavelet transforms. The involve d wavelet algorithms is the simple

wavelet transform called the Haar transform

2.4.1 Discrete Wavelet Transform (DWT)

The DWT has a scaling function and a wavelet function associated with

it. The scaling function can be implemented using a low pass filter and is to

create the scaling coefficients that represent the signal approximation. The

wavelet function can be implemented as a high pass filter and is used to

create the wavelet coefficients that represent the signal details. If the DWT is

used by scaling and shifting by powers of two, the signal will be well

represented and the decomposition will be efficient and easy to compute. In

order to apply the DWT to images, combinational of the filters

(combinations of the scaling function and the wavelet function) are used first

along the rows and then along the columns to produce unique subbands

[Jac03].

Chapter Two:Steganography Concept 22

The LL subband is produced by low pass filtering along the rows and

columns and is commonly referred to as a course approximation of the

image because the edges tend to smooth out. The LH subband is produced

by low pass filtering along the rows and high pass filtering along columns,

thus capturing the horizontal edges. The HL subband is produced by high

pass filtering along the rows and low pass filtering along columns, thus

capturing the vertical edges. The HH subband is produced by high pass

filtering along the rows and columns, thus capturing the diagonal edges. The

LH, HL and HH subbands together are called the detail subbands. These

subbands are shown in Fig 2.3. By repeating the process on the LL subband,

additional scales are produced. In this context scales are synonymous to the

detail subbands [Jac03].

The equations for discrete wavelet decomposition and discrete wavelet

reconstruction will show in the next two sections.

LL

HH

HL

LH

 Fig 2.3 The four subbands wavelet transform image.

Chapter Two:Steganography Concept 23

• Discrete Wavelet Decomposition [Bur98]

A signal x of length N can be decomposed in any level to give a coarser

approximation of the signal in the next level. The approximation coefficients

at level j is given by:

 ∑ +−=
m

j mckmhk)()2()(c 1j (2.1)

 ∑ +−=
m

j mckmgk)()2()(d 1j (2.2)

Where c are called the scaling function or the approximation

coefficients and d are called the wavelet or the details coefficients. h , g are

both finite even length discrete values wavelet filters are called the

decomposition low-pass and high-pass wavelet filters respectively.

Assuming that c with the highest resolution subscript is the original

input signal. At each stage of the decompositions (2.1) and (2.2), the length

of the resulting signals jc and jd is half the length of 1+jc because of the

down-sampling process after each time in which the decomposition occurs.

The down-sampler (sometimes called a sampler or decimator) takes a

signal x(n) as an input and produces an output y(n)=x(2n). The down-

sampler is symbolically shown in Fig. 2.4.

In down-sampling, there is clearly the possibility of losing information

since half of the data is discarded. The scale-j coefficients are filtered with

the two low-pass h and high-pass g filters, after which down-sampling

gives the next coarser scaling and wavelet coefficients. Both of them, having

x(n) x(2n) 2

Fig 2.4 The Down-Sampler

Chapter Two:Steganography Concept 24

lengths equal to half the length of the input signal. In (Fig. 2.5), the

decomposition process is depicted for two decomposition stages.

• Discrete Wavelet Reconstruction [Bur98]

A signal considered at a resolution j+1, can be reconstructed from the

combination of the scaling function and wavelet coefficients at a coarser

resolution j. This can be written as:

 ∑ ∑ −+−=+
m m

jjj mkgmdmkhmckc)2()()2()()(1 (2.3)

Where h , g are both finite even length discrete values wavelet filters

called the reconstruction low-pass and high-pass wavelet filters respectively

and are derived directly from the low-pass and high-pass decomposition

filters.

At each stage of the reconstruction process (2.3), the length of the

resulting signals 1+jc equals to the sum of the length of both jc and jd

because of the up-sampling process after each time in which the

reconstruction occurs.

The up-sampling means that the input to the filter has zeros inserted

between each of the original terms. In other words y(2n)=x(n) and

y(2n+1)=0.

Cj+1

↓2

g

h

↓2

g

h

↓2

↓2

Cj

dj

Cj-1

dj-1

Fig 2.5 Two-Stage decomposition process

Chapter Two:Steganography Concept 25

The input signal is stretched to twice its original length and zeros are

inserted. The up-sampler is symbolically shown in Fig. 2.6.

In (Fig. 2.7), the reconstruction process is depicted for two

reconstruction stages.

2.4.2 Haar Wavelet Transform [Sal00]

The Haar transform is one of the simplest transforms in wavelet

mathematics. The Decomposition and Reconstruction phases are described

by:

• Decomposition (DHWT): Given an image I: [1, Mr] × [1, Mc] where

Mr, Mc is the numbers of rows and columns. The DHWT and RHWT

for a one-dimensional signal can be also described in the form of two-

dimensional signal. The DHWT and RHWT for two dimensional

images can be similarly defined by implementing the one dimensional

DHWT and RHWT for each dimension Mr and Mc separately: DHWT

Mc [DHWT M r [I (M r, Mc)]], Consider the value of two neighboring

pixels in each row (and the same on the column) I(2i-1) and I(2i). The

x(2n) x(n) 2

Fig 2.6 The Up-Sampler

↑2 g

h ↑2

g

h ↑2

↑2

Fig 2.7 Two-Stage reconstruction process

cj-1

dj-1

cj

dj

cj+1

Chapter Two:Steganography Concept 26

DHWT maps the original image I onto a low pass image L and high

pass image H.

2
)2()12()(

2
)2()12()(

iIiIiH

iIiIiL

−−=

+−= For i=1 to vector length/2 (2.4)

• Reconstruction (RHWT): The reconstructed HWT equation are

2
)()()2(

2
)()()12(

iHiLiI

iHiLiI

−=

+=− For i=1 to vector length/2 (2.5)

2.5 Fidelity Measures [Toz03]
The well known image quality measure; Mean Square Error (MSE) and

Peak Signal to Noise Ratio (PSNR) have been used in order to objectively

evaluate the performance of the proposed method.

The MSE is found by taking the summation of the square of the

difference original (image, audio) and the stego(image or audio) and finally

dividing it by the total number of samples as shown below:

 2

1

1
∑
=

−= 







size

i iSiOsizeMSE
 (2.7)

Where size is the total number of the samples in the horizontal and

vertical dimension of the image. Oi represent the original (image or audio)

and Si represent the stego(image or audio).

The quality image of PSNR is defined with:

Chapter Two:Steganography Concept 27

















=
MSN
I

PSNR
2
max

10
log10 (2.8)

Where Imax is equal to 255 for 8 bit.

2.6 AVI File
The Microsoft Audio/Video Interleaved (AVI) file format is a Resource

Interchange File Format (RIFF) file specification used with applications that

capture, edit, and playback audio/video sequences. In general, AVI files

contain multiple streams of different types of data. Most AVI sequences will

use both audio and video streams. A simple variation for an AVI sequence

uses video data and does not require an audio stream. Specialized AVI

sequences might include a control track or Musical Instrument Digital

Interface (MIDI) track as an additional data stream. The control track could

control external devices such as an Media Control Interface (MCI) videodisc

player. The MIDI track could play background music for the sequence.

While a specialized sequence requires a specialized control program to take

advantage of all its capabilities, applications that can read and play AVI

sequences can still read and play an AVI sequence in a specialized file.

(These applications ignore the non-AVI data in the specialized file.) [Avi99]

2.6.1 RIFF Files [Mcg97]

 RIFF files are built from

 (1) RIFF Form Header

Chapter Two:Steganography Concept 28

 'RIFF' (4 byte file size) 'xxxx' (data)

 where 'xxxx' identifies the specialization (or form)

 of RIFF. 'AVI ' for AVI files.

 where the data is the rest of the file. The

 data is comprised of chunks and lists. Chunks

 and lists are defined immediately below.

 (2) A Chunk

 (4 byte identifier) (4 byte chunk size) (data)

 The 4 byte identifier is a human readable sequence

 of four characters such as 'JUNK' or 'idx1'

 (3) A List

 'LIST' (4 byte list size) (4 byte list identifier) (data)
 where the 4 byte identifier is a human readable

 sequence of four characters such as 'rec ' or

 'movi'

 where the data is comprised of LISTS or CHUNKS.

2.6.2 AVI RIFF Form

AVI files use the AVI RIFF form. The AVI RIFF form is identified by

the four-character code "AVI ". All AVI files include two mandatory LIST

chunks. These chunks define the format of the streams and stream data. AVI

files might also include an index chunk. This optional chunk specifies the

location of data chunks within the file. An AVI file with these components

has the following form:

Chapter Two:Steganography Concept 29

RIFF ('AVI '

 LIST ('hdrl'

 .

 .

 .

)

 LIST ('movi'

 .

 .

 .

)

 ['idx1'<AVI Index>]

)

The LIST chunks and the index chunk are subchunks of the RIFF "AVI

" chunk. The "AVI " chunk identifies the file as an AVI RIFF file. The LIST

"hdrl" chunk defines the format of the data and is the first required list

chunk. The LIST "movi" chunk contains the data for the AVI sequence and

is the second required list chunk. The "idx1" chunk is the optional index

chunk. AVI files must keep these three components in the proper sequence.

The LIST "hdrl" and LIST "movi" chunks use subchunks for their data

[Avi99]. A detailed description of AVI file structure is present in appendix

(C).

 IV

Table of Contents

Content Page

Abstract I

List of abbreviations II

List of Symbols III

Table of contents IV

Chapter One: Introduction 1

1.1 Some Application of Information Hiding 2

1.2 Literate Survey 3

1.3 Research Objectives 5

1.4 Thesis Layout 6

Chapter Two: Theoretical Concept 8

2.1 Introduction 8

2.2 Steganography 9

2.2.1 Steganography Model 10

2.2.2 Steganography vs. Cryptography 11

2.2.3 Application of Steganography 12

2.3 Steganography in AVI file 13

2.3.1 Video Steganography 14

2.3.2 Image Steganography 14

2.3.3 Audio Steganography 18

2.4 Wavelet Transforms 21

2.4.1 Discrete Wavelet Transform 21

2.4.2 Haar Wavelet Transform 25

2.5 Fidelity Measures 26

2.6 AVI File 27

2.6.1 RIFF Files 28

 V

2.6.2 AVI RIFF File 28

Chapter Three: System Design and Implementation 30

3.1 Introduction 30

3.2 The Overall System Model 30

3.2.1 Input Cover and Message File 31

3.2.2 Hiding Information 36

3.2.3 Stego File 45

3.2.4 Extraction 46

3.2.5 Secret File 49

3.3 Experimental Result and System Evaluation 52

3.3.1 Results Discussion 57

Chapter Four: Conclusions and Future Work 58

4.1 Conclusions 58

4.2 Future Work 59

Refrence

Appendix A: The WAV File Format

Appendix B: The BMP File Format

Appendix C: The AVIFile Structure

Appendix D: The AVIFile Functions

Information

Name: Ghessaq Hussein Ali Al-Anbaki

Al-Nahrain University, College of Science, Computer Science
Dept.

Discussion Date: 8/9/2005

M.Sc. Thesis

Thesis Title: Steganography in AVI Files

Supervisors: Dr. Taha Saadon Bashaga

Address: District 883 / Lane 49 /House No. 20
 Al-Jihad Square – Baghdad – Iraq.

Phone No.: Ground : 5546361
 Mobile : 07702659571

 II

List of Abbreviations
AVI Audio Video Interleave

BMP Bit-Map image file

dB decibell

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DSSS Direct sequence spread spectrum

DHWT Decomposition Haar Wavelet Transform

DWT Discrete Wavelet Transform

GIF Graphics Interchange Format

HAS Human Auditory System

hdrl header list

HH high high pass filtring

HL high low pass filtring

idxl index list

JPEG Joint Photographic Experts Group

JPEG-2000 Joint Photographic Experts Group 2000

LH low high pass filtring

LL low low pass filtring

LSB Least Significant Bit

LS2B Least Significant second Bit

MCI Media Control Interface

MIDI Musical Instrument Digital Interface

mod Modulus

MPEG Motion Pictures Experts Group

MSE Mean Square Error

PCM Pulse Code Modulation

PSNR Peak Signal-to-Noise Ratio

RGB Red Green Blue

RHWT Reconstruction Haar Wavelet Transform

RIFF Resource Interchange File Format

WAV Windows Audio Visual

WT Wavelet Transform

 III

List of Symbols
c Approximation coefficient

C Cover-object

d Details coefficient

g High-pass filter

h Low-pass filter

H High pass image

I(Mr, Mc) Two dimensional images

K Stego-key

L Low pass image

mi ith message bit

Mc Numbers of columns

Mr Numbers of rows

x[n], y[n] Discrete signals

References

[Bur98] C. S. Burrus, R. A. Gopinath, and H. Guo, “ Introduction to

Wavelets and Wavelet Transforms: A Primer”, Prentice Hall,

Inc., 1998.

[Cac98] C. Cachin, “An Information – Theoretical Model for

Steganography”, MIT Laboratory for computer science, 545

Technology Square, Cambridge, MA 02139, USA, May-13-1998.

[Cha00] J. J. Chae and B. S. Manjunath, “Data Hiding in Video”,

Department of Electrical and Computer Engineering, University

of California, Santa Barbara, 2000.

 [Civ01] P. Civicioglu and M. Alci, “Hiding Information in Images”,

Erciyes University, 38039, Kayseri, Turkey, 2001.

[Dor03] Dorian A. Flowers,” Steganography ”, Xavier University of

Louisiana, Computer Science and Computer Engineering, 1

Drexel Drive, Campus Box 50, 504.520.5248, 2003.

[Han98] Han-Yang Lo, S. Topiwala, J. Wang,” Wavelet Based

Steganography and Watermarking”, Cornell University,

Computer Science Department, Multimedia: CS 631,spring 1998.

[Hos03] C. Hosmer and C. Hyde, “Common Sense Security for

Common Businesses”, The Security Journal, Volume 4 – summer

2003 Edition.

[Jac03] J. T. Jackson, G. H. Gunsch, R. L. Claypoole and G. B.

Lampnt , “Blind Steganography Detection Using a

Computational Immune System: A Work in Progress”,

International Journal of Digital Evidence, Winter 2003, Issue 1,

Volume4.

[Jaw05] M. J. Jawad, “Hiding Audio in Audio Using Wavelet

Transform”, M.Sc. Thesis, Computer Science Dept., College of

Science, Al-Nahrain University, Baghdad, Iraq, 2005.

[Jay03] C. C. Jay Kuo and Po- Chyi Su, “Steganography in JPEG2000

Compressed Images”, IEEE Transactions on Consumer

Electronics, Vol. 49, No. 4, NOVEMBER 2003

[Joh98] N.F. Johnson and S. Jajodia, “Exploring Steganography:seeing

the unseen”, Computing Practice, George Mason University,

February 1998.

[Joh01] N. F. Johnson, Z. Duric , and S. Jajodia, ”Information Hiding:

Steganography and Watermarking-Attacks and Counter-

measures”, Kluwer Academic Publishers, 2001.

[Joh03] C. John, “Steganography IV-Reading and Writing AVI files”,

2003.

 http://www.rahul.net/The Code Project - Steganography IV -

Reading and Writing AVI files - C# Programming.htm

[Kat00] S. Katzenbeisser, and F. A. Petitcolas, “Information Hiding

Techniques for Steganography and Digital Watermarking”,

Artech House, London, 2000.

[Kaz01] G. Kazakeviciute, R. Rosenbaum, “Information Hiding on

Wavelet Based Schemes Under Considration of JPEG2000”,

University of Rostock, Department of Computer Science,

Institute of Computer Graphics Rostock, June 2001.

[Kha04] M. Kharrazi, H. T. Sencar and Nasir Memon, “Image

Steganography: Concepts and Practice”, Polytechnic University,

Brooklyn, NY 11201, USA, April 22, 2004.

[Lan00] D. E. Lane, “Video- in- Video Data Hiding”, Department of

Electrical and Computer Engineering University of California

Santa Barbara, CA 93106- 9560, 2000.

[Lin03] E. T. Lin, and E. J. Delp, “A Review of Data Hiding in Digital

Images”, Video and Images Processing Laboratory (VIPER),

School of Electrical and Computer Engineering, Purdue

University, West Lafayette, Indiana, 2003.

[Mcg97] J. F. McGowan, ”AVI Overview”, 1997.

 http://www.rahul.net/jfm

[Mer03] S. N. Merchant, A. Harchandani, S. Dua, H. Donde, I.

Sunesara,“Watermarking of Video Data Using Integer- to-

Integer Discrete Wavelet Transform”, Dept. of Electrical

Engineering and of I. T. Engineering, 2003.

[Moh04] H. J. Mohammed, “Wavelet Based Information Hiding and

Compression Techniques”, M.Sc. Thesis, Computer Science

Dept., College of Science, Al-Nahrain University, Baghdad, Iraq,

2004.

[Pet99] F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn,

“Information Hiding –A Survey”, proceeding of IEEE special

issue on protection of multimedia control, 87(7): 1067-1078, July

1999.

http://www.cl.cam.ac.uk/~fapp2/publications/ieee99-

infohiding.pdf

[Pol01] A. D. Polpitiya and W. J. Khan, “Information Hiding in Audio

Files with Encryption”, Washington University, USA, Version

1.0, November 2001.

http://www.netra.wustl.edu/~adpol/courses/cs502/project/REPOR

T.pdf

[Pot03] V. Potdar and E. Chang, “Visibly Invisible: Ciphertext as a

Steganographic Carrier”, School of Information System, Curtin

University of Technology Perth, Western Australia, 6845, 2003

 http://www.ceebi.research.cbs.curtin.edu.au

[Rab04] K. Rabah, “Steganography- The Art of Hiding Data”,

Department of Physics, Eastern Mediterranean University,

Information Technology Journal 3 (3): 245- 269, 2004.

[Sal00] D. Salomon, “Data Compression”, Department of computer

science, California State University, Northridge, New York 2000.

[Sed01] F. A. Seddeq, “Image Steganography by Using Least Significant

Bit Insertion Method”, M.Sc. Thesis, Computer Science Dept.,

College of Science, Al-Nahrain University, Baghdad, Iraq, 2001.

[Sel00] D. Sellars, “An Introduction to Steganography”, An internet

Survey,2000.

http://www.cs.uct.ac.za/courses/CS400W/NIS/paper99/dsellars/st

ego.pdf

[Sny02] W. E. Snyder, W. A. Sander and H. Qi, “Blind Consistency

Based Steganography for Information Hiding in Digital Media”,

AMSRL- RO- T U. S. Army Research Office, PO Box 12211,

Research Triangle Park, NC 27709- 2211, ECE Department The

University of Tennessee Knoxville, TN 37996, 2002.

[Toz03] F. G. Toz, H. M. Palancioglu, E. Besdok, “Hidden

Communication in Frequency Domain for Information

Exchange”, ITU, Civil Engineering Faculty, 80626 Maslak

Istanbul, Turkey, Erciyes University, Engineering Faculty,

Geodesy and Photogrammetry Dept., Kayseri, Turkey, 2003.

[Wat01] J. Watkins, “Steganography - Messages Hidden in Bits”,

Multimedia Systems Coursework, Department of Electronics and

Computer Science, University of Southampton, SO17 1BJ, UK,

December-15-2001.

[Wes98] A.Westfelf and G. Wolf, “Steganography in a Video

Conferencing System”, Dresden University of Technology,

Germany. 1998.

[Avi99] “AVI Files”, an Internet Survey, 1999.

http://www.user.tu_chemnitz.de/ ~noe/ video_zeng/

avi_docu/avi.htm

Republic of Iraq
Ministry of Higher Education
AL-Nahrain University
College of Science
Department of Computer Science

Steganography in AVI Files

A THESIS SUBMITTED TO THE COLLEGE OF SCIENCE OF
AL-NAHRAIN UNIVERSITY IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE IN COMPUTER SCIENCE

By

Ghessaq Hussein Ali Al - Anbaki

(B.Sc. 2002)

SUPERVISOR

Dr. Taha S. Bashaga

Jamad Al-akher 1426 July 2005

 الخلاصة

أخفاء المعلومات هو فن أخفاء و أرسال البيانات خلال ناقلات تبدو طبيعية في

 أو صوت صورةنص أو أعتمد في هذا البحث أخفاء . محاولة لأخفاء وجود البيانات

 .(AVI)من نوع متعدد الوسائط ملففي

 الفديو و، ملف الى جزئين (AVI)يتم فصل ، في الخطوة الاولى من هذا البحث

جزء الفديو هو عبارة عن سيل من الهياكل الصورية تأخذ كل واحدة على . الصوت

الخطوة التالية يتم اختيار . (BMP)هيئة صور و تخزن في فايل منفصل من نوع

و يتم قطع المعلومات السرية الى ، عدد الهياكل الصورية لغرض استخدامها كغطاء

ولزيادة الأمنية ، يكل صوري واحدبناءا على اخفاء كل قطعة في ه عدد من القطع

 .يتم اختيار الهياكل الصورية المستخدمة للاخفاء بصورة عشوائية

) الثنائيات الاقل اهمية(الطريقة الاولى ، هناك طريقتين تم استخدامها للاخفاء

نظام (و الطريقة الثانية ، و هي مثال من طرق الاخفاء في المجال المتسلسل

تم . هي مثال من طرق الاخفاء في المجال الانتقاليو) التحويل الموجي هار

في الثماني لاخفاء ثنائيات (LSB)استخدام طريقة الحشر في الثنائي الاقل اهمية

و من ثم استخدام نفس هذه (BMP)البيانات داخل ثمانيات الصور التي من نوع

التحويل الموجي لزيادة امنية النظام. البيانات في استخراج بيانات الرسالة من الصور

لتقوية الملف المحتوي على (Haar Wavelet Transform)هار

 .البيانات ضد الهجوم

الثنائيات الاقل (في جزء الصوت يتم اخفاء معلومات خاصة باستخدام طريقة

).اهمية

 ,MSE)النظام المقترح تم اختباره باستخدام مقياسيين معلويين قياسية

PSNR) ، ية في اختبار النظام المقترح اظهرت قيم جيدة ل كل المقاييس المعلو

PSNR) و) ديسي بيل للصوت ٩٠ديسي بيل للفديو و اكثر من ٤٥اكثر من

أما البيانات المسترجعة . هذه النسبة تزداد بزيادة عدد الهياكل التي تستخدم كغطاء

 .فكانت هي نفسها البيانات السرية التي تم اخفاءها

 جمهورية العراق

 وزارة التعليم العالي

 جامعة النهرين

 كلية العلوم

 قسم علوم الحاسبات

�� ا�����ت ا��و��
 ا��ور�
 ا���ء ا����و��ت

 ا���دا��

 رسالة

مقدمةالى كلية العلوم في جامعة النهرين كجزء من متطلبات نيل شهادة الماجستير

 في علومالحاسوب

 مقدمة من قبل

 العنبكي غسق حسين علي

)٢٠٠٢بكلوريوس علوم الحاسبات (

 المشرف

 طه سعدون باشاغا. د

 ١٤٢٦جماد الاخرة ٢٠٠٥تموز

ت ا��������
 ا���

	� ا������ :ا��� ��
� �
�

���ت، �	�� ا��	�م، ����� ا��������
	�م ا� �

 ���
٨/٩/٢٠٠٥ :�
ر�� ا���

	�م �����ت ��&
���

 ا'-�ء ا�(�	���ت .� ا�(-�ت ا�+�,�� ا�+�ر�� ا�(&)ا'	� :���ان ا�ط�و��

 ط5 ��)ون ���1�2. د :ا����ف

 .ا���اق -2>)اد - �� ا�;��د/ ٢٠ر � ا�)ار / ٤٩ز �ق / ٨٨٣�	� � :ا����ان

 �
 ٥٥٤٦٣٦١ار=� :ر�� ا�!
 @��2��٠٧٧٠٢٦٥٩٥٧١

desktop

[.ShellClassInfo]
LocalizedResourceName=@%SystemRoot%\system32\shell32.dll,-21815

Page 1

	Microsoft Word - ACK_2.pdf
	Microsoft Word - App-A_2.pdf
	Microsoft Word - Appendix A_2.pdf
	Microsoft Word - Appendix B_2.pdf
	Microsoft Word - Appendix C_2.pdf
	Microsoft Word - Appendix D_2.pdf
	Microsoft Word - CH11_2.pdf
	Microsoft Word - ch22_2.pdf
	Microsoft Word - ch33_2.pdf
	Microsoft Word - ch44_2.pdf
	Microsoft Word - Chapter four_2.pdf
	Microsoft Word - Chapter one_2.pdf
	Microsoft Word - Chapter three_2.pdf
	Microsoft Word - Chapter two_2.pdf
	Microsoft Word - Contents_2.pdf
	Microsoft Word - Information_2.pdf
	Microsoft Word - List of Abreviations_2.pdf
	Microsoft Word - List of Symbols_2.pdf
	Microsoft Word - References_2.pdf
	Microsoft Word - Title_1.pdf
	Microsoft Word - الخلاصة_1.pdf
	Microsoft Word - العنوان.pdf
	Microsoft Word - المعلومات لشخصية.pdf
	desktop - Notepad.pdf

