Abstract

The amount of information on the Web is growing rapidly, as well as
the number of new users inexperienced in the art of Web research, which
leads to the development of many Web applications called search engines
speciaized in helping the user in finding the information needed on the
Web.

Web site search engine is software used for searching a specific Web
site for a specific query.

This research aims to develop a Web site search engine that helps the
user to find the most relevant Web pages with the user queries. The
ranking part depends on the word attributes (such as font size, font style,
font color, position of the word in the page, link text, title, header) and
mixed with the indexing part. The index is spread in 36 binary files to
reduce the system resources (Memory and Storage required) and the
inverted index is created by sorting the index using the Improved Quick
and Insertion sort methods to increase the indexing speed. The Lexicon is
designed using a Multilayer structure with 4 layers.

The ranking part of the proposed Web site search engine based only
on the word attributes, using the link structure of the Web will increase
the ranking efficiency.

The proposed Web site search engine requires a computer installed as
aserver.

The programming tools used in developing the Web site search engine
are. HyperText Markup Language, Visua Basic Script, Common
Gateway Interface technique, Microsoft Visual Basic 6.0, and Windows

operating system Socket.

Acknowledgment

I would [ike to express my sincere appreciation to my
research supervisor, Dr. Moaid A. Fadhil, for giving me
the major steps to go on to explore the subject, shearing
with me the ideas in my research ‘“Design and
Implementation of an Internet Search Engine” And

perform the points that I felt were important.

Also I wish to thank, ©Or. Ban N. Al-Rallak, my
supervisor and Dr. Loay A. George for their available
advice and encouragement. Grateful thanks for the Head

of Department of Computer Science Dr. Taha S. Bashaga.

I wish to thank the staff of Computer Science Department
‘ at the AL-Nahrain University for their help.
) I would like to say "thank you' to my faithful friends for

supporting and giving me advises.

C 9
cf"

b

C

’.ﬂ
(g\>
. J
\

&’JJ

Appendix A

The Internet

A.1 How thelInternet work [Dav00]

In order to connect two dissimilar computeéngy must be able to speak
the same language. The Arpanet researchers redluedearly on and
developed a standard method for these machinestmanicate, which they
called Network Control Protocol (NCP). NCP providedtandardized format
for how two different machines would exchange infation. The early NCP
was adequate to support further research activgeEr$ormed by various
researchers connected to the Arpanet, but it secorbe apparent that NCP
itself was in need of further research and devetgm

At about the same time that Ethernet was bdegloped in the labs of
Palo Alto, ARPA (Advanced Research Projects Ageadyranch of the U.S.
fedral government) had began funding additionalkaesh activities on
computer networks using various underlying methofisransmitting data,
including radio and satellite communication. In 39% keep pace with the
development of these new networking strategies, ABRcouraged research
into a new protocol that would supersede the Nekv@ontrol Protocol and
allow for host-to-host communication across anthese disparate networks.

As a result of this effort, a new suite of toemls was developed. This
suite is referred to as the Internet Protocol Shdwever, this name is

typically overshadowed by two of the more famoustgerols produced as a

A-1

Appendix A: The Internet

result of this new research: Internet Protocol dmdnsmission Control
Protocol (TCP/IP). ARPA once again made public dscoveries and the
design of their new TCP/IP.

This new protocol suite was intended from ltleginning to be a network
of networks. This concept was labeled Internetwagkand the actual project
became known as the Internet project.

Therefore, the Internet is not just a single neknmit a network of networks

that now span the globe.

A.2 Internet Protocol Layers[Dav00]

The Internet protocol suite is based on fastitt and separate protocol
layers. These layers are defined to work syneogikyi, allowing messages to
flow cleanly across any number of dissimilar netgor

In early networks and, indeed, the networks$odfy, protocols exist for
both the physical layer that connects machinestiegeas well as for the
logical layer that is used to transmit data actbeghysical layer.

In the Internet the IP serves as the deliveegchanism that moves these
packets from source to destination. The IP layata® each packet submitted
to it by the TCP to its final destination. Each lggtccan be routed through a
different path to reach its destination.

When discussing Internet communications, ¢dsxmon to see these two
protocols referred to as TCP/IP because TCP isrgliynédayered on top of
the lower level IP protocol, as shown in the foliogvfigure:

A-2

Appendix A: The Internet

Applicaiion laye Various application protocols such as http, telnet,
Ftp, tftp, bootp, snmp, etc

Transport laye The TCP

The IP and ICMP
protocols

Routing layer

- Not specified by the Internet suite, can be mogt an
Physical layer independent networking standard (i.e., Ethernekefaing,
FDDI)

These two protocols exist in top of some ptaislayer comprising the
actual network hardware, such as Ethernet. At tighdst level is some
application layer such as HTTP, FTP, or Telnet.

A.3 Thelnternet Protocol (IP) [Dav00]

In order for the various networks connectedht® Internet to share data,
they must use a common data format once their gesdaave their native
network and travel out onto the Internet. This canrformat is IP, and any
computer connected to the Internet must formamegssage according to the
IP.

IP used what are known as datagrams to trartata from one machine
to another. A datagram is just a defined way ofanrging the information
before it is sent. When a computer on a particaéwork wishes to send a
message to another machine, it packages an IPrdatamnd sends it out onto
its local network. The datagram is actually corgdiin the data field of the
lower-level data frame employed by the particulaANL (Local Area
Network) technology being used.

A-3

Appendix A: The Internet

IP is known as a connectionless, best-atterdplivery system.
Connectionless means that there is no attempt nadeerify that the
destination machine exists before sending the rges&est-attempt delivery
means that although successful delivery of thegdam is important, no
guarantee is provided. If the message is not seftdsdelivered, no error
status is returned to the sender. The detail @béshing a connection with
the destination machine and verifying delivery &# up to higher-level

protocols that ride on top of the IP delivery syste

A.4 The Transmission Control Protocol (TCP) [Dav0(]

Riding on top of the routing layer is the spart layer, this layer is
responsible for providing more robust delivery theam be provided for by
the connectionless, best-attempt delivery IntelRnetocol.

This layer is where Transmission Control Pcotacomes in. TCP is the
layer that applications typically interface with $end and receive message
across the Internet.

TCP provides for a reliable, connection-omehtdata transmission
channel between two programs. These two progranysb@aunning on the
same computer or different machines separateddmséinds of miles.
Connection-oriented means a connection is esta&didletween the source
and destination machines before any data is seltalfRe means that data
sent is guaranteed to reach its destination iroter sent or an error will be
returned to the sender.

Whereas the IP address in as IP datagramfg@eparticular machine on
the Internet, the source port and destination felds specify a particular
process on that machine. This allows messages tsebé to specific

applications running on a specific machine.

A-4

Appendix A: The Internet

A.5 TheApplication Layer [Mer97]

This layer consists of a number of applicatiootocols, that send its data
to the transport layer (TCP or UDP), the followsrg some of them.

AS1 FTP

File Transfer Protocol is used for transfegrdocuments and binary files.
FTP uses TCP port 21 for initiating and controlliognnections, and TCP
port 20 for data transfer.

A.5.2 Telnet

It is an application that allows users to indo (telnet to) a machine and

use the equivalent of a direct console or termifelnet uses TCP port 23.

A.5.3 Gopher

Gopher is a precursor to HTTP that organires@esents information in
a text-based menu format. Gopher has been largelyated by HTTP.
Gopher uses TCP port 70.

A.5.4 Finger
The Finger Protocol is used to find out infatran about users on a
particular host, it can also provides informatidsoat currently logged-in

users. Finger uses TCP port 79.

Ab55 SMTP

Simple mail transfer protocol is the protoased to transfer email
between mail transport agents (MTA s) over thertrde ESMTP is a new
extended version of SMTP that supports additior@hmands for MTA
communication. SMTP uses TCP port 25.

A-5

Appendix A: The Internet

AS56 HTTP
Hypertext transfer protocol is the WWW proth@nd uses TCP port 80.

A.5.7 DNS

Domain Name Service which uses TCP port 53.

A.6 Internet Addresses

Every computer connected to the Internet hasigque address in the same
way that every family in a given city can have aque telephone number
[Dav0Q].

IP addresses take the form X.X.X.X, where e4ds one byte, such as
152.2.254.81. Every IP address falls into a netwuitkich is a block of IP

addresses grouped for administrative purpose [Mer97

A.7 Domain Name System (DNS)

Most users never see or use |IP addressedlylimrause the Domain
Name System (DNS) provides a more meaningful arsieeto-remember
name.

The host computer converts a DNS name to amd®ress in the
background, so you don’'t need to know the numbe9T:

A DNS name is made up of a domain and one arersubdomains. For
example, marauder.Millersv.edu uses the domain ddducational
institution) and has two subdomains, millersv aradander.

The first subdomain is the name of the network Igsv). The second
subdomain, marauder, is the name of the computgersy If you read this
address backward, it is the educational institutMiiersville University,
using the Marauder computer. There can be more tivansubdomains
[Fri97].

A-6

Appendix A: The Internet

DNS performs two functions. It provides lookggrvices, or name
resolution, to hosts that are trying to find thenlinber of a given hostname.
It also provides the database that defines thegspimgs. Both of these
functions are provided by name servers, which asshthat provide name

resolution services [Mer97].

A-7

Appendix B

CGI Library

This library is implemented using Visual Basic tb0the proposed Web site

search engine.

Option Explicit

'‘API Functions

Declare Function GetStdHandle Lib "kernel32"
(ByVal nStdHandle As Long) As Long

Declare Function ReadFile Lib "kernel32" _
(ByVal hFile As Long, _
IpBuffer As Any,
ByVal nNumberOfBytesToRead As Long, _
IpPNumberOfBytesRead As Long, _
IpOverlapped As Any) As Long

Declare Function WriteFile Lib "kernel32"
(ByVal hFile As Long, _
ByVal IpBuffer As String, _
ByVal nNumberOfBytesToWrite As Long, _
IpNumberOfBytesWritten As Long, _
IpOverlapped As Any) As Long

'Environment Variables
Public CGI_Accept As String

B-1

Appendix B: CGI Library

Public CGI_AuthType As String
Public CGI_ContentLength As String
Public CGI_ContentType As String
Public CGI_Gatewaylnterface As String
Public CGI_Pathinfo As String
Public CGI_PathTranslated As String
Public CGI_QueryString As String
Public CGI_Referer As String
Public CGl_RemoteAddr As String
Public CGl_RemoteHost As String
Public CGI_Remoteldent As String
Public CGI_RemoteUser As String
Public CGl_RequestMethod As String
Public CGI_ScriptName As String
Public CGI_ServerSoftware As String
Public CGI_ServerName As String
Public CGI_ServerPort As String
Public CGI_ServerProtocol As String
Public CGI_UserAgent As String

‘Length of incoming Data

Public IContentLength As Long

'Form's data of the client
Public formData As String

'Record to hold pair values
Type pairsRecord

Name As String

Value As String
End Type

‘Array to hold pairs and Variable to hold numbepairs
Public pairs() As pairsRecord

B-2

Appendix B: CGI Library

Public pairsNo As Long

‘Standard Input AND Standard Output

Public Const STD_INPUT_HANDLE =-10&
Public Const STD_OUTPUT_HANDLE =-11&
Public hStdin As Long

Public hStdOut As Long

Sub Main()
Initialize
GetFormData
CGI_Main

End Sub

Sub Initialize()
pairsNo =0

hStdin = GetStdHandle(STD_INPUT_HANDLE)
hStdOut = GetStdHandle(STD_OUTPUT_HANDLE)

CGI_Accept = Environ("HTTP_ACCEPT")
CGI_AuthType = Environ("AUTH_TYPE")
CGI_ContentLength = Environ("CONTENT_LENGTH")
CGI_ContentType = Environ("CONTENT_TYPE")
CGI_Gatewaylinterface = Environ("GATEWAY_INTERFAQE
CGI_Pathinfo = Environ("PATH_INFO")
CGI_PathTranslated = Environ("PATH_TRANSLATED")
CGI_QueryString = Environ("QUERY_STRING")
CGI_Referer = Environ("HTTP_REFERER")
CGI_RemoteAddr = Environ("REMOTE_ADDR")
CGI_RemoteHost = Environ("REMOTE_HOST")
CGI_Remoteldent = Environ("REMOTE_IDENT")
CGI_RemoteUser = Environ("REMOTE_USER")
CGI_RequestMethod = Environ("REQUEST_METHOD")
CGI_ScriptName = Environ("SCRIPT_NAME")

B-3

Appendix B: CGI Library

CGI_ServerSoftware = Environ("SERVER_SOFTWARE")
CGI_ServerName = Environ("SERVER_NAME")
CGI_ServerPort = Environ("SERVER_PORT")
CGI_ServerProtocol = Environ("SERVER_PROTOCOL")
CGI_UserAgent = Environ("HTTP_USER_AGENT")

IContentLength = Val(CGI_ContentLength)
End Sub

Sub GetFormData()
Dim tempBuffer As String
Dim bytesRead As Long

If CGl_RequestMethod = "POST" Then
tempBuffer = String(IContentLength, Chr(0))
ReadFile hStdin, ByVal tempBuffer, IContentLdndytesRead, ByVal 0&
formData = Left(tempBuffer, bytesRead)
GetPairs (formData)

Elself CGl_RequestMethod = "GET" Then
GetPairs (CGIl_QueryString)

Else
'Put code for other requests like head

End If

End Sub

Sub GetPairs(data As String)
Dim pointer As Long
Dim position As Long

Dim length As Long

'If Data = " Then Exit Sub

pointer =1
Do

B-4

Appendix B: CGI Library

position = InStr(pointer, data, "=
If position = 0 Then Exit Do
pairsNo = pairsNo + 1
ReDim Preserve pairs(1 To pairsNo)
pairs(pairsNo).Name = UCase(DecodeString(Mit#daointer, position - pointer)))
pointer = position + 1
position = InStr(pointer, data, "&")
If position = 0 Then
length = Len(data)
If pointer > length Then
pairs(pairsNo).Value ="
Else
pairs(pairsNo).Value = DecodeString(Mid@aiointer, length))
End If
Exit Do
End If
pairs(pairsNo).Value = DecodeString(Mid(datainger, position - pointer))
pointer = position + 1
Loop
End Sub

Function EncodeString(data As String) As String
Dim pointer As Long
Dim position As Long

‘convert all (" ") to encoded (spaces)
pointer =1
Do
position = InStr(pointer, data, " ")
If position = 0 Then Exit Do
data = Mid(data, pointer, position - pointer)%20" & Mid(data, position + 1)
pointer = position + 3

Loop

B-5

Appendix B: CGI Library

EncodeString = data

End Function

Function DecodeString(data As String) As String
Dim pointer As Long
Dim position As Long

‘convert all "+" to " " (space)

pointer = 1

Do
position = InStr(pointer, data, "+")
If position = 0 Then Exit Do
Mid(data, position, 1) =""
pointer = position + 1

Loop

‘Convert all %dd to character
pointer =1
Do
position = InStr(pointer, data, "%")
If position = 0 Then Exit Do

Mid(data, position, 1) = Chr("&H" & Mid(dataogition + 1, 2))
data = Left(data, position) & Mid(data, positi® 3)

Loop

DecodeString = data

End Function

Function GetControlValue(ControIName As String, M&alAs String) As Boolean

Dim co As Long

If pairsNo = 0 Then
GetControlValue = False

Exit Function

B-6

Appendix B: CGI Library

End If
ControIName = UCase(ControlName)
For co =1 To pairsNo
If ControlName = pairs(co).Name Then
Value = pairs(co).Value
GetControlValue = True
Exit Function
End If
Next co

End Function

Sub SendData(data As String)
Dim IpNumberOfBytesWritten As Long

data = data & vbCrLf
WriteFile hStdOut, data, Len(data), [pNumberO#ritten, ByVal 0&
End Sub

Sub SendStatusOK()

'HTTP Status header

SendData "Status: 200 OK"

'HTTP Content type header

SendData "Content-type: text/html" & vbCrLf
End Sub

Sub SendThunderHed()
'Head of the results page
SendData "<HTML><HEAD><TITLE>Results"
SendData "</TITLE></HEAD><BODY>"
‘Thunder Search Engine Shape
SendData "<Center></Cefiter
SendData "<Form Name=MainForm Action=/cgi-birdf®f.exe Method=Get>"
SendData "<Input Type=Text Name=ST size=50 V&alue=" & hst & ">"
SendData "<Input Type=Submit Name=Search Valeard>"

B-7

Appendix B: CGI Library

SendData "<Input Type=Hidden Name=hst Valuesisk & ">"
End Sub

Sub SendError(errorTxt As String)
SendStatusOK
'Head of the results page
SendData "<HTML><HEAD><TITLE>Results"
SendData "</TITLE></HEAD><BODY>"
‘Thunder Search Engine Shape
SendData "<Center></Celiter>
SendData "<Form Name=MainForm Action=/cgi-binf8aaexe Method=Get>"
SendData "<Input Type=Text Name=ST size=50 " &alhe="""" & ">"
SendData "<Input Type=Submit Name=Search Valuar®e"
SendData "<Input Type=Hidden Name=hst Value="&">"

SendData "<Input Type=Hidden Name=hfp Value=" & 1>"
SendData "<Input Type=Hidden Name=hnp Value="n§ I& ">"
SendData "<Input Type=Hidden Name=htype Value=1>"
SendData "</Form>"
SendData "<HR>"
SendData "<Center><H2>ERROR</H2></Center>"
SendData "Text: " & hst & "
"
SendData errorTxt

End Sub

B-8

Certification of the Examination Committee

We chairman and members of the examination committee, certify that we have
studied the thesis entitled (Development of a Web Site Sear ch Engine) presented by
the student Eihab Ahmed Muhammed Shaker Murjan and examined him in its
contents and in what is related to it, and we have found it worthy to be accepted for
the degree of Master of Science in Computer Science with grade Very Good.

Signature: Signature:
Name: Dr. Imad H. Al-Hussaini Name: Dr. Jamal M. Al-Ethawie
Title: Assistant Professor Title: Lectuerer
Date: / /2005 Date: / /2005
(Chairman) (Member)
Signature:

Name: Dr. Ahmed Tariq

Title: Assistant Professor

Date: / /2005
(Member)
Signature: Signature:
Name: Dr. Moaid A. Fadhil Name: Dr. Ban N. Al-kallak
Title: Senior Rreasercher Title: Lectuerer
Date: / /2005 Date: / /2005
(Supervisor) (Supervisor)

Signature:

Name: Dr. Laith Abdul Aziz Al-Ani
Title: Dean of College of Science
Date: / /2005

Supervisor Certification

We certify that this thesis was prepared under our supervision at the
Department of Computer Science/College of Science/ Al-Nahrain
University, by Eihab Ahmed Mohammed Shakir as partia fulfillment
of the requirements for the degree of Master of Science in Computer
Science.

Signature; Signature:

Name: Dr. Moaid A. Fadhil Name: Dr. Ban N. Al-kallak
Title: Senior Rreasercher Title: Lectuerer

Date: / /2005 Date: / /2005

In view of the available recommendations, | forward this thesis for
debate by the examination committee,

Signature:

Name: Dr. Taha S. Bashaga

Title: Head of the Department of Computer Science, Al-Nahrain
University.

Date: / /2005

Chapter One

Introduction

1.1 Introduction

The Web creates new challenges for informatetneval. The amount of
information on the Web is growing rapidly, as wa#l the number of new
users inexperienced in the art of Web researchplPewne likely to surf the
Web using its link graph, often starting with highality human maintained
indices such a¥ahoo! or with search engines. Human maintained listercov
popular topics effectively but are subjective, exgree to build and maintain,
slow to improve, and cannot cover all esoteric dspiAutomated search
engines that rely on keyword matching usually metimo many low quality
matches. To make matters worse, some advertigemm@Etto gain people's
attention by taking measures meant to mislead aatEmnsearch engines
[SL98].

So a real need exist for a search engine daatprovide high quality

search results.

1.2 The Internet
The Internet initiated a communications retiolu where millions of
users send messages, check live video camerasnaggakines, newspapers,

participate in discussion groups spread aroundwibid, and watch video

Chapter One: Introduction \

news segments as routinely as most of people tura t@levision or talk on
the telephone.

It is the Internet that bridges time, distanaed culture. It is where you
can learn about almost any subject and communiwéte almost anyone

almost instantly [Fri96].

1.3 The Physical Internet [Fri97]

A network is a collection of computers linkegether to achieve some
common goal. In most cases, networks allow usesbdoe information. In
many businesses, networks enable one computendonsessages or get
information from another computer. Conceptuallg bhternet is no different
from any other network, except it is bigger.

The Internet is a network of networks linkesihg very precise rules that
allow any computer to connect to and exchange médion with other
networks or computers connected to the Inetrnatn€cting to the Internet
means connecting to tens of thousands of otheranksymillions of

individual computers, and tens of millions of otkemputer users.

1.4 The Soft Internet [Fri97]

The Internet is a system that uses a commuminckanguage, called a
protocol, to enable one computer network to speak to andithging the
1980s a new communication language emerged cafladsmission
Control Protocol/Internet Protocol (TCP/IP). TCP/IP became a standard
for the Internet. In short, any computer networklldccommunicate with any
other computer network as long as they both used @P/IP standard
protocol.

Thelnternet Society is a voluntary organization and is not run by the

government or by any individual. Rather, it is aafubthat meets to set

Chapter One: Introduction v

standards and determine resources. For examplke thie Internet Society,
through thd nternet Architecture Board (IAB), that determinees addresses
for users, as well as the rules for accessing ampuhese addresses. For
more information about the internet, see Appendix A

1.5 The World Wide Web

The World Wide WebWWW), was invented byfim Berners-Lee in late
1990 while he was working &ERN, the European laboratory for particle
physics. The WWW is a distributed hypermedia environmemsisting of
documents from around the world. The documentsisked using a system
known asHypertext, where elements of one document may be linked to
specific elements of another document. The docusnerdy be located on
any computer connected to the Internet. In thistedn the world
“‘document” is not limited to text but may included&o, audio, graphics,
databases, and a host of other tools that can tessed from any Web
browser [DavO00].

These documents are created with a speciguége calledHypertext
Markup Language (HTML). This language allows the full use of
hypermedia including text, images, graphics, souadd other types of
multimedia. Because HTML is a special language reduires special
software to access the Web. This type of accesgrqumo is known as a
Browser [Sab02].

The Internet has suffered for years from ait&yon of being difficult to
learn, hard to use. The WWW has changed all thi® Web has quickly
become the graphical user interface to the Internet

A Web site is a location on the WWW. Each gk contains @&ome
page, which is the first document or Web page that sisee when they enter
the site. The site might also contain additionatudoents, files, or Web

pages, which are sometimes calighild pages [Vir01].

Chapter One: Introduction ¢

1.6 Searching the Web

With so much data on the Internet, it can Hécdlt, frustrating, and
seemingly impossible to find the exact informatioeeded by the user
[Bibf99].

Figure (1.1) [BriOO] present the growth of théeeb according to a study
presented bZyveillance, Inc. Cyveillance make predictions regarding future
growth of the Internet based on data collected aveeight-month period of
time.

Number of unique pages on the Internetbilibn
Unique pages added per day: 7.3 million

Growth of the Internet

4.500,000,000
4,000,000,000
3,500,000,000
3,000,000,000
2.500,000,000

2,000,000,000
1,500,000,000
1,000,000,000

500,000,000

o T T T T T
Aug-82 Dec-88 Mar-00 Jun-00 Oet-00 Jan-01 Apa-1

Internet Pages in Billions

Figure (1.1) Size and Growth of the Internet

The Web is enormous and growing at an incheddst pace. It has been
said that if the user spent only one minute peepa@ hours a day, it would
take four-and-a-half years to explore only 1 millid/eb pages. Thus a real
need exists for some way to search this huge res¢Bibf99].

A few years ago a number of sites developemheans for locating
information on the Web. These sites collect infdioraon other Web sites

then use a search engine (a piece of softwareefarcking data) to locate

Chapter One: Introduction o

matches based on specific criteria. In additioness of these sites provide

categorical listing of relevant Web sites [Fri96].

1.6.1 Starting Points Pages

These pages provide a good point of entrypgople accessing the Web
for the first time.

They include lots of links that introduce thser to fundamental Web
concepts, such as “What is a Browser?” the useatsanfind links to Subject
Trees, Search Engines, UseneAQs (Frequently Asked Questions),

Internet documents of all kinds, and “What’s newtdments [Bry96].

1.6.2 Subject Trees [Bry96]

A subject tree is a subject-oriented catalbgRLs organized by topic. It
Is an alphabetically organized list of selected Wefources that is usually
organized with major headings such as Arts and Hhitea, Business,
Economy, Government, and the like.

Within each category are found subheadingsciwim turn display pages
listing specific hyperlinks. Because subject traes manually updated, they
cannot hope to cover all of the Web. No subje@ tsecomplete; it is a really
big pain to keep one of these things updated,Hmyt &re very useful because
they are selective; they list only those documehgt would likely prove

useful to the user.

1.6.3 Search Engine
It is a software used to help the Web usaetrch the Web for a specific
information. According to a recent study sponsdrg&eal names

Corporation, 75% of frequent Internet users usecheangines to navigate
the Web [Trek01].

Chapter One: Introduction 1

The search engine consists of the followingspa

1. Crawler: a program used to download the pages fhenWeb site and
save it as files on the storage unit. But there meny practical
complications in the crawler: sites may be busydown during the
crawling time, and come back to life later; pages/rbe duplicated at
multiple sites; many pages have text that doescooform to the
standards for HTML, HTTP redirection, robot exchrsi some
information is hard to access because it is hidsdmnde a form, Flash
animation or script program.

2. Indexer: A search engine’s index is similar to itieex in the back of a
book: it is used to find the pages on which a waedures [Isr05]. The
indexer parse all the pages downloaded by the eraavid extract the
words in the pages to build the index. The seangine index could
be very large, so various of compression techniquesd be used to
reduce the size of the index.

3. Ranker: it is responsible for ranking the pages @&cide which ones
are most relevant to the user needs. There are featwyres that can be
used to decide which pages contain the most relevards required
by the user such as (word font size, word fontestwlord font color,
position of the word in the page).

4. User Interface: provide the interface as a Web paghe user with a
text box and a search button. The user write hisjoery in the text
box and click on the search button, then a new paljde displayed

containing the results of the required query.

1.6.4 Web Site Search Engine

Web site search engine has become increasimgigrtant for the Web

sites of education institutes, government and pei\@mpanies, because it

Chapter One: Introduction \

provides more detailed information that generalde&ngine usually can'’t

offer.

Web site search engines are small compared thi Internet search

engines, while the Internet search engine searlettire Web looking for

answers to the user’s query, the Web site seargimems dedicated to one

Web site, searching only that Web site.

1.7 Literature Survey

1-

Isra’a Tahseen Ali Al-Attar [Isr05], “Internet Seér Engine Design”:
this work gives a description of the design okinet search engine
and concentrates on the ranking of the search emwgmch consists of
two subsystems: a term-based ranking subsystematsgn a rank
score to the Web pages using the TF-IDF (Term Feqyinverse
Document Frequency) algorithm and Vector Spreadiagivation
algorithm and a link-based ranking subsystem thsigas a rank score
to the Web pages depending on their contained hgker by
implementing an improved PageRank algorithm.

Jianlin Cheng [Jia00], “Design and implementatiorf €CS
(Information and Computer Science) Web Search HEigipresents
the design of a site-specific search engine cali@8 Web search
engine, with a crawler that download about 12,080gs and a ranker
using the Roberson and Sparck Jones TF-IDF method.

Sunny Lam [Sun01], “The Overview of Web Search BEegi: this
paper gives a description of the search enginesrdadnation about
the Web characteristics and the difficulties ofrekan the Web. Also
gives many crawler examples.

Sergey Brin and Lawrence Page [SL98], “Google”spreé Google, a
prototype of a large-scale search engine which smakavy use of the

structure present in hypertext, it is designed riowvt and index the

Chapter One: Introduction A

Web efficiently and produce much more satisfyingrek results. This
paper provide an in-depth description of the Gosglarch engine.

5- Allan Heydon and Marc Najork [AlI99], “Mercator”:.his paper
presents Mercator a scalable extensible web crawleich descripes
all the basics and traps related to designing wleraand gives many
statistics about the Web.

6- WiseNut [Wis01]: this paper gives a descriptiorthad WiseNut search
engine that consists of a crawler (hamed Zyborg)exer that extract
keywords and link information, context-sensetivekiag system , and

query server.

1.8 Aim of Thesis

The objective of this thesis is to develop ab/gite search engine to be
used by any Web site by crawling, indexing, andiran all the Web pages
in that Web site to create the database, in whighuser can use the Web
site search engine to find the information nedded His/her query by
searching the database and return a Web page moatéist of links to all the

pages that contain information about the user query

1.9 Thesis Layout
In this section, the contents of individuaapters of the thesis are briefly
reviewed.
= Chapter two: covers the theoretical basis of Web searching thie
parts of the search engine.
» Chapter three: presents the practical work of the Web site dearc
engine.
» Chapter four: presents the programming languages used in the

proposed Web site search engine, user interfacurés, system

Chapter One: Introduction q

requirement, experiment and results and tools uséue operation of
the proposed Web site search engine.
» Chapter five: presents the conclusions on this work, with

recommendation for future work.

Chapter Two

Web and Search Engines

2.1 Introduction

This chapter starts by talking about the Gl®erver model, Web servers
and URL which explains how the Web works, then howreate Web pages
using the Web language (HTML) and how to view the&smg the Browser,
then the Web characteristics and difficulties aq@aned.

After describing the Web, the importance dibimation retrieval, it's
relationship with the search engines and the diffee between information
retrieval and data retrieval are discussed.

Then the types of search engines are listed,tlae problems of search
engines are discussed.

The last parts of the chapter describe theckeangine architecture in

details and give examples for Internet and Websstech engines.
2.2 The Client-Server Model

The WWW, as with most of the services avadaiolday, is based on the

long-standing client-server model illustrated guifie (2.1):

Client \
Client

Figure (2.1) Client-Server M odel

A
A 4

Server

Client

Chapter Two: Web and Search Engines 11

In this model there are normally many clieatgessing a single server.
One of the principal reasons for using the cli@arirer model is the
consolidation of resources in a central locatiohe Berver usually offers

some service that many clients are interested av(D].

2.3 Web Servers

Web server is a program that makes web pagatable to people who
are browsing the web [Bry96].

It is a program that monitors a particulartpmr the server computer and
waits for incoming messages. Web server programsecifically related to
the WWW services that run on the Internet and bgultlisten to port 80.

These incoming messages are formatted accprttinthe Hypertext
Transfer Protocol (HTTP). These HTTP messages stqudormation
residing on the Web server’s computer.

A Web server provides four major functions:

- Serving Web pages.

- Running gateway programs and returning their output
- Controlling access to the server.

- Monitoring and logging server access statistice9R].

If the request is for a simple static documtvat resides on the Web
server computer, the Web server will retrieve tbeuwnent and return it to
the client that requests it. [Dav00]

The request may be for a static document ¢batains some embedded
directives that must first be translated by the \Wetver before returning the
document. [Dav00]

Lastly, the request may be to execute a CGh(@on Gateway Interface)
program. The Web server will execute the speci@€al program and make
the data passed from the web client available @0G&| program. When the

Chapter Two: Web and Search Engines 12

CGI program completes, the web server will passkkiacthe client any
information that was returned by the CGI prograra\J00].

2.4 Uniform Resource Locator (URL)

URLSs are used to point to resources of alesypn the WWW, including
HTTP documents.
A URL is made ofprotocol part, aserver designation (Host name), a

port, and a file(path) designation as shown below.

http :// www.nsa.gov:[80] /index.html

v v IR

Protocol Host name Port Filename

Each page on the Web has it's own address, whiitls i9RL.

2.5 The HTML Language

Back in the early 80’s, IBM had a pretty gadda that was a little ahead
of its time. This idea was to create documents vlins, addresses, headings,
body text, and other elements that are all verylainfrom one document to
the next.

The avenue that IBM explored was to develgor of pseudo-computer
language that combines plain text and formattingtructions. Such a
language is called a markup language, and IBM daliis version
Generalized Markup Language, or GML. IBM never did much with GML,
so thelnternational Standards Organization (ISO) derived its language
from IBM’'s GML but called the new languagéGML, for Standard
Generalized Markup Language.

SGML defines many different types of documen®ne of these
documents was the hypertext document. HTML, whieimds for Hypertext

Chapter Two: Web and Search Engines 13

Markup Language, is the subset of SGML that defimgsertext documents.
People use the term HTML to refer to both the higé¢rdocument itself
(which is a specific type of SGML document) and tharkup language that
you use to create a hypertext document [Ric96].

Here is the HTML code for a simple Web page:
<HTML>
<HEAD> <TITLE>Simple Web Page</TITLE> </HEAD>
<BODY>

This is a simple HTML Web page
</BODY>
</HTML>

2.6 Browser

A Web browser is avindow onto the WWW. With Web browsers, you
can view Web documents containing integrated deelihgraphics, or even
video and audio clips. Browsers also can navigaié (File Transfer
Protocol) sites and retrieve software and data files, tdsshet newsgroups,
and sendE-Mail messages [Ric96]. Figure (2.2) shows a browser.

The browser consists of the following maintgar

1- Window body: the contents of the Web page will isplhyed in this

part of the browser.

2- Title bar: the title of the Web page will be disgdd in this part of the

browser.

3- Address bar: in this part the user can write théresb (URL) of the

required Web page, and when the user press ehtethrowser will
connect to the server containing that page, reqthestpage, and

download it from the server to the client computed display it in the

Chapter Two: Web and Search Engines 14

window body of the browser and display the pade it the title bar
of the browser.
4- Toolbar: which contains a number of buttons suchhase, refresh,

stop, back and next.

« Title bar
Back Next Home Refresh Stop |+ Toolbar
Searcl
™~ Address
bar
P Window
body

Figure (2.2) Browser

2.7 Characteristics of the Web

The most popular formats of Web documentd-amelL, followed by GIF
(Graphic Interchange Format) and JPG (Joint Phapdgc Group) (images
format), ASCII files, Postscript and ASP (Activer®&s Page). Most HTML
pages are not standard, because they do not comly HTML
specifications. HTML documents seldom start with dacument type
definition. Also they are typically small with arvexage of 5 KB and a
median of 2 KB [Sun01].

On average, each HTML page contains one oritmages and five to
fifteen hyperlinks. Most of these hyperlinks aredh meaning the associated
Web pages are mostly stored in the same Web s&ur01].

Chapter Two: Web and Search Engines 15

2.8 Difficulties of the Web

The Web creates new challenges for the infoomaetrieval. The amount
of information on the Web is growing rapidly as het the number of new
users inexperienced in the art of Web research§5L9

The Web has become increasingly commercial owee, from 1.5% of
.com domain in 1993 to over 60% in 1997. At the sdamme, search engine
development has moved from tlaeademic domain to the commercial
domain. Today, most search engine developments take jplacempanies
without technical information to the public. Theyed, it is very difficult to
study today’s search engines [Sun01].

There are many problems for searching infoignabn the Web, which
can be divided into two classes: The first classtaias problems with the
data itself. The second class contains problems reggrdowusers use the
information retrieval system.

The problems of the first class are:

» Distributed data: data is distributed widely in the world. It ischted
at different sites and platforms. The communicatimks between
computers vary widely. Plus, there is no topolofglata organization.

* High percentage of volatile data: documents can be added or
removed easily in the World Wide Web. Changes &s¢hdocuments
go unnoticed by others. 40% of Web pages changs eventh. There
Is a very high chance of dangling links [SunO1].

» Large volume: the growth of data is exponential. It poses issinat
are difficult to cope with.

* Unstructured and redundant data: the Web is not exactly a
distributed hypertext. It is impossible to organa&ed add consistency
to the data and the hyperlinks. Web pages are ebtsivuctured and

Chapter Two: Web and Search Engines 16

30% of all Web pages are duplicated. Semantic mahcy can
increase traffic [Sun01].

* Quality of data: a lot of Web pages do not involve any editorial
process. That means data can be false, inaccoratigted, or poorly
written.

» Heterogeneous data: data on the Web are heterogeneous. They are
written in different formats, media types, and maktlanguages.

* Dynamic data: the content of Web document changes dynamically.
The content can be changed by a program such asumter that keep
tracks of number of hits.

* Low quality search engines results. automatic search engines that
rely on keyword matching usually return too many Iguality
matches. To make matters worse, some advertiseEs@t to gain
people’s attention by taking measures meant toeaslautomated

search engines.

The second class of problems deals with iotena between the user and

the search engine, there are two basic problems:

1- How to specify a query: the user needs to know how to pose a query,
so that the results contain relevant informatioareHare some of these
problems

* Many users do not understand how to provide a seguef
words for the search.

* The users may get unexpected answers becausedhés usot
aware of the input requirement of the search enghmr
example, some search engines are case sensitive.

* Many users do not understand Boolean logic: thezethe user

cannot perform advanced searching.

Chapter Two: Web and Search Engines 17

* Novice users do not know how to start working wssarch
engines.
2- How to interpret theresults: the user needs to know how to select the
documents from the results.
Around 85% of users only look at the first eayf the results, so relevant

documents might be skipped [Sun01].

2.9 Information Retrieval

Before the search engine designer can unaerstaarch engines, the
search engine designer needs to understafhol mation Retrieval (IR),
because Web searching is within the field of Infation Retrieval [Sun01].

Search engine is the popular term for InforomtRetrieval systems.
Since the 1940s, the problem of information storamel retrieval has
attracted an increasing attention. It is simplyextathere is a vast amounts of
information to which accurate and speedy accedse®ming ever more
difficult [Sab02].

Before the Internet was born, information iexal was just index
searching. For example authors, title, and subjectibrary card catalog or
computers. Today, among other things, IR includexiefing, document
classification and categorization, systems archite¢ user interface, data
visualization, filtering, and languages. IR dealghwthe representation,
storage, organization of, and access to informatems [Sun01].

IR aims to provide fast, effective, and etfiti methods of representing,
managing, searching, retrieving and presenting saofdrmation. Suppose
there is a store of documents and a person (useedtore) have a question
(request or query) to which the answer is a setaoluments satisfying the
information needed by the question. The persornobtaézin the set by reading
all the documents in the store, retaining the m@evdocuments and

discarding all the others. In a sense, this cartssit perfect retrieval. This

Chapter Two: Web and Search Engines 18

solution is obviously impracticable. A user eitligres not have the time or
does not wish to spend the time reading the edaoeiment collection, a part
from the fact that it may be physically impossitdelo so.

When high-speed computers became availabladiemumerical work,
many thought that a computer would be able to @acdentire document
collection to extract the relevant documents. brsdecame apparent that
using the natural language text of a document mb¢f oaused input and
storage problems, but also left unsolved the imtélial problem of
characterizing the document content. But auton@htaracterization in which
the software attempts to duplicate the human psoogégeading was very
sticky problem indeed. More specifically, readimyalves attempting to
extract information, botlsyntactic andsemantic, from the text and using it
to decide whether each document is relevant ortaat particular request.
The difficulty is not only knowing how to extradte information but also
how to use it to decide relevance.

The automatic retrieval strategy is used ttieee all the relevant
documents at the same time retrieving as few ohtrerelevant as possible.

In IR, the kind of search used is not the Ukiral where the result of the
search is clear-cut, either yes, the item is ptesemo, the item is absent. IR
Is interested in search strategies in which theunh@nts retrieved may be

more or less relevant to the request.

2.10 Information Retrieval and Data Retrieval

Many users may not be able to distinguish betwData Retrieval (DR)
and Information Retrieval (IR).

There is a difference between IR and DR. In, B¢ result of a query
must be accurate: it should return the exact maiples of the query, no
more and no less. If there is no change to thebda® the result of a query

executed at different times should be the sameth®mther hand, IR can be

Chapter Two: Web and Search Engines 19

inaccurate as long as the error is insignificarite Tmain reason for this
difference is that IR usually deals with naturaigaage text, which is not
always well structured and could be semanticallpigoous. DR deals with
data that has a well-defined structure and sensarnicg. a relational
database). In addition, DR cannot provide a salugjiven a subject or topic
but IR is able to do so [SunO1].

2.11 Types of Search Engines [Art05]

There are three main types of search engines:

-Directory-Based Search Services

For Directory-Based Search Services, the pginiame of reference is
the subject matter. The site listings are compded reviewed manually.
For example, Yahoo, the best-known Internet Dinggtdedicates staff to
review and categorize site suggestions and theis #uein to a specific
directory on Yahoo. The directory structure is arehical and starts with a
general subject heading such as dentistry. Sugeessb headings are more
specific. For example under Dentistry topical arsach as dental implants,
fluoridation, amalgam, organizations, orthodontiasgd tooth whitening are
included. These databases are comparatively smdlkthe frequency of the
updating is relatively low. Examples of Directorasd Search Services are:
Infoseek, Magellan.

-True Search Engine

In contrast, the unmanned Search Engine cdeipleautomates the
process of indexing the sites and totally remoweshuman component. A
software robot called a spider or crawler gath#es $rom across the web as

it scans pages and connects to associated linkg. p@rticular advantage is

Chapter Two: Web and Search Engines 20

that the spider will automatically return to thengasite periodically to check
for new content or new pages.

The results from this "spidering” are theneshin the engines index and
serve as the basis to orient each query. Giveaultmmation process and the
size of the Internet, these indices grow to upwaf250 to 500 million
pages. These efficiencies enable the search etginever a wide variety
and number of sites that are maintained curreoutfir regular visits by the
robot. The information may not be as exacting #red quantities may be
voluminous compared to a directory-based site. xasnof Search Engines

are: Google, Altavista

-Hybrid Search Engines
Some search engines also maintain an assbcaéeetory. To be included

In a search engine's directory. Examples are: Yahoo

2.12 The problem with today’s Search Engines

If the users type a few keywords in most afays search engines they
will retrieve pages that, in principle at leasg aglevant to their query. This
often results in the retrieval of thousands of \Walges that are related to the
guery only by the fact that the keyword appearsesainere on each of those
pages.

For people with slow Internet connectionss ttpuantity of information is
overwhelming. Most are unwilling to wait for pagasd pages of results to
download. Those that do wait are left with the taEkorting through results
one-by-one to find the information they want.

Frustrated Internet searchers will abandomssithat don't offer a
satisfactory search experience, according to ssrvBgrrier Associates

found that 44 percent of users say they are frigstravith search engine use

Chapter Two: Web and Search Engines 21

and where unable to find what they are looking fogst users will try
another search engine [Wis01].

Because simple keyword matching often retutmmusands of results,
most search engines sort pages based on wherdidppdhe keyword
appears on the page, giving more weight to pageshich the keyword
appears in the title, at the top of the page d¢heMeta tag - the HTML code
that describes the content of a Web page. One sarting method is known

as "collection frequency weighting".

2.13 Architecture of Search Engine

The search engine usually consists of theviolig parts:

1- Crawling Part: in which all the Web pages are deadkd from the
Web site and saved as files in the storage unit.

2- Indexing Part: in this part all the Web pages sdwedhe crawler are
parsed to extract all the words to create the index

3- Ranking Part: in which all the words in the Web gm@re assigned a
specific score.

4- User Interface Part: this part is responsible ideriacting with the user
and provide the interface required for collectihg tuser query and
provide the results for the user.

5- Searching Part: this part is responsible for seagctine lexicon for the
user query and returns the results to the user.

Figure (2.3) shows the architecture of seardline.

Searcher | Ranker < Index |
— I ndexer
Users «———»| Interface
Web :‘. Crawler
/V

Figure (2.3) Search Engine Architecture

Chapter Two: Web and Search Engines 22

2.14 Crawling Part

The first step to create the search engite download all the Web pages
of the Web site into the storage unit in the coraputhere the search engine
will work on (Server).

Web crawling is a process to collect all thebApages that are interested
to search engine [Jia00].

Crawlers are also called robots, spiders, wonranderers, walkers, and
knowbots. The first crawleiMVanderer was developed biatthew Gray in
1993. Due to the competitive nature of the seampine business, the
designs of these crawlers have not been publidgrieed. There are several
crawling techniques available in public. The sinsplene is to start with a set
of URLs and from that extracts other URLs recurgivia breadth-first or
depth-first manner [Sun01].

The crawler consists of a URL list, downloagiprogram and a URL
extractor. Before running the crawler, the crawdesigner will have to
initialize the URL list with some URLs (Home pagedaother frequently
requested URLS). The downloading program contaipsimter that points to
one of the links in the URL list, which will be tralized to zero. When the
crawler start running, the downloading program wittrease the pointer by
one and check if there is a link at the pointedtmrsin the URL list. If there
Is a link, then the downloading program will requts download that link
from the Internet and save it as a file on theagjerunit. If there was no link
then this means that there are no new links inJRe list, which is the end
of the crawling process. After downloading a paganfthe Internet, it will
be send to the URL extractor, which will extradt thke links inside it and
these links will be added to the URL list, but with duplicates (only the
new links are added). The crawler complete it'skmehen there will be no
more new links to be added to the URL list and pwnter of the

Chapter Two: Web and Search Engines

23

downloading program cross the last location in tHeL list. Figure (2.4)

shows the whole process:

Web Site

Request for
Page

Returning URL

List of the Start

most popular |¢——
pages

Initializethe
URL list

Returning
Page

URL

Downloading
Function

Save
pageson
Stl?:]ﬁge Send to
Extractor

Request
for URL

l

) List

A

Add
new
URLs

e

URL
Extractor

Figure (2.4) Crawling process

Running a Web crawler is a challenging taskeré are tricky

performance and reliability issues and even mopmoimantly, there are social
issues [SL98].
The design of a good crawler presents manyiesigees. Externally, the

crawler must avoid overloading Web sites or netwlorks as it goes about

its business. Internally, the crawler must deahwitige volumes of data.

Unless it has unlimited computing resources andmitdd time, it must

carefully decide what URLs to scan and in what ofdidL98].

One of the problems that the crawler need®p®e with is that Web pages

change dynamically, so the page that the indextpdm may not exist

Chapter Two: Web and Search Engines 24

anymore. Many search engines keep track of dateshows the date to the

guery result.

2.14.1 Crawling Techniques

There are two policies used to traverse WetpepaThe first one is
breadth-first policy. It looks at all the pages linked by the curreagg and
so on. The coverage will be wide but shallow. Thay cause the Web server
to have many rapid requests. The secorm®psh-first policy. We follow the
first link of a page and we do the same on thatepagtil we cannot go
deeper. After that, it returns recursively. The atege of using depth-first
search is deep and space complexity is cheapertHgutlisadvantage of
using it is narrow.

Consider the Web site shown in figure (2.5)

Home
A 4 A 4 A 4
Pagel Page2 Page3
v v v v v v
Paged Page5 Page6 Page7 Page8 Page9
A 4 A 4
PagelO Pagell

Figure (2.5) Website example

If the crawler is using a breadth-first politjen the pages will be
downloaded in the order (Home, Pagel, Page2, P&ge@4, Page5, Page6,
Page7, Page8, Page9, Pagel0, Pagell).

Chapter Two: Web and Search Engines 25

If the crawler is using a depth-first policheh the pages will be
downloaded in the order (Home, Pagel, Page4, Pdgmie10, Pagell,
Page6, Page2, Page7, Page8, Page3, Page9).

2.14.2 Crawler Types

Crawlers are widely used today and there aryntypes of crawlers, the

following are some of them:

1- Crawlers for the major search engines like Alta¥/ishfoSeek, Excite,
and Lycos attempt to visit most text pages, in ptdebuild content
indexes.

2- Crawlers that visit many pages looking for certgqpes of information
(e.g. email addresses).

3- Personal crawlers that scan for pages of inteoestgarticular user.

2.15 Indexing Part

Indexing part is the most complicated andiaaitstep in building the
search engine. Simply, the indexer is used foripgrthe web documents
downloaded by the crawler to extract words and fajures about these
words (such as position in the page, font stylat fwlor, and font size) to
build the index (database) of the search engine.

Most indices use variants of inverted indéasfiand lexicons. An inverted
index file is a list of sorted words and their fgas; the inverted index can be
created by sorting the index by word IDs.

The lexicon is a list of sorted words with qerrs to the inverted index
file. To find a word, the lexicon will be searchied that word and the results
can be found from the inverted index file at theakon pointed by the

pointer in the lexicon list.

Chapter Two: Web and Search Engines 26

Consider a Website consisting of 3 pages (Pagage2, and Page3) as
shown in figure (2.6). Each page contains 3 wosdsteown in table (2.1.a),
table (2.1.b), and table (2.1.c). Each table costthe words that occur in the
page with their positions.

Website

Pagel

A 4

Page2

Figure (2.6) Simple Website

Table (2.1.a) Pagel

A 4

Page3

Word | Postion
Car 1

Train 5

Plane 11

Table (2.1.b) Page2

Word | Postion

Home 1

Table 6
Car 12

Table (2.1.c) Page3

Word | Position

Table 1
Car 7

Plane 11

Chapter Two: Web and Search Engines 27

To index this Website, two tables are needed; table (2.2) for page IDs and
table (2.3) for word IDs.

Table (2.2) Page|Ds

Page Name Page D
Pagel P1
Page2 P2
Page3 P3

Table (2.3) Word IDs

Word Word ID
Car w1
Train W2
Plane W3
Home W4
Table W5

Then the index will be as shown in table (2.4)

Table (2.4) Index

Page D Word ID Position
P1 Wi 1
P1 W2 5
P1 W3 11
P2 W4 1
P2 W5 6
P2 w1 12
P3 W5 1
P3 W1 7
P3 W3 11

Chapter Two: Web and Search Engines 28

The inverted index is created by sorting thdek by word IDs and

position as shown in table (2.5)

Table (2.5) Inverted Index

Record

Number Word ID Page D Position
1 W1 P1 1
2 W1 P3 7
3 W1 P2 12
4 W2 P1 5
5 W3 P1 11
6 W3 P3 11
7 W4 P2 1
8 W5 P3 1
9 W5 P2 6

The lexicon is the data structure used tockedine Website will be as
shown in table (2.6)

Table (2.6) Lexicon

Word ID | Number of pages | Pointer to inverted index
W1 3 1
W2 1 4
W3 2 5
Wz 1 7
W5 2 8

To search for the word car, use table 2.3etalge word ID, which is W1.
By searching the lexicon for W1, the results w#l ® pages containing W1

Chapter Two: Web and Search Engines 29

and these pages found in the inverted index (taldg starting from record

number 1 to record number 3.

2.15.1 Indexing Steps
The indexing part consists of a number of std@at are different from
search engine to another, but here are the gestefas that can be found in
most of the search engines:
= Parsing: In this step, each Web page is parsed into putentiéixout
html tags. The pure text of each web page is usetieadocument to
match against the user’'s query in the search parsome search
engines (as in the ICS Web search engine [JiaB8]jitle of the Web
pages is extracted out and used as the descrigtidme Web link in
the hitlist returned to user.
= Deleting stop words: This step helps save system resources (such
as storage in hard disk and memory) by eliminatiram further
processing, as well as potential matching, thosagdhat have little
value in finding useful documents in response wustomer's query.
This step used to matter much more than it does wben memory
has become so much cheaper and systems so mueh fast since
stop words may comprise up to 40 percent of textdaoin a
document, it still has some significance. A stoprdvbst typically
consists of those word classes known to convele lsubstantive
meaning, such as articles, {he), conjunctions dnd, but), interjections
(oh, but), prepositionsi(, over), pronounslte, it), and forms of the "to
be" verb (s, are). To delete stop words, an algorithm comparesxnde
term candidates in the documents against a stopd viet and
eliminates certain terms from inclusion in the d®r searching

[EliO1]. A full list of stop words for general texd shown in table (2.7)

Chapter Two: Web and Search Engines 30
Table (2.7) Stop Word List [Wil03]

A both few important Much parted since under
about but find In Must parting small until
Above by finds interest My parts smaller up
across c first interested | Myself per smallest upon
After came for interesting N perhaps SO us
Again can four interests Necessary | place some use
against cannot from Into Need places somebody uses

All case full Is Needed point someone used
almost cases fully It Needing pointed | something %
Alone certain further Its Needs pointing 'somewhere| very
Along certainly | furthered Itself Never points state w
already clear furthering J New possible states want
also clearly furthers Just Newer present still wanted

although come g K Newest | presented such wanting
always could gave Keep Next presenting sure wants
among d general Keeps No presents t was
an did generally Kind Non problem take way
and differ get Knew Not problems taken ways
another | different gets Know Nobody put than we
any differently give Known Noone puts that well
anybody do given Knows Nothing q the wells
anyone does gives L Now quite their went
anything done go Large nowhere r them were
anywhere down going Largely number rather then what
are downed good Last numbers really there when
area downing goods Later o] right therefore where
areas downs got Latest of room these whether
around during great Least off rooms they which
as e greater Less often S thing while
ask each greatest let old said things who
at early group lets older same think whole
away either grouping like oldest saw thinks whose

Chapter Two:

Web and Search Engines

31

b
back
backed
backing
backs
be
because
become
becomes
became
been
before
began
behind
being
beings
best
better
between
big

end groups
ended h
ending had
ends has
enough have
even having
evenly he
ever her
every herself
everybody here
everyone high
everything | higher
everywhere | highest
f him
face himself
faces his
fact how
facts however

far [
felt if

likely
long
longer
longest
m
made
make
making
man
many
me
member
members
men
might
more
most
mostly
mr
mrs

on
once
one
only
open
opened
opening
opens
or
order
ordered
ordering
orders
other
others
our
out
over

p
part

say
says
second
seconds
see
sees
seem
seemed
seeming
seems
several
shall
she
should
show
showed
showing
shows
side
sides

this
those
though

thought
thoughts

three

through

thus
to
today

together

too
took
toward
turn
turned
turning
turns
two
u

why
will
with
within
without
work
worked
working
works
would
y
year
years
yet
you
young
younger
youngest
your
yours

= Term Stemming: Stemming removes word suffixes, perhaps

recursively in layer after layer of processing. Tpmcess has two

goals. In terms of efficiency, stemming reducesrthmber of unique

words in the index, which in turn reduces the gerapace required

for the index and speeds up the search processterims of

effectiveness, stemming improves recall by reduahdorms of the

word to a base or stemmed form. For example, ifser uasks for

analyze, they may also want documents which contamalyss,

analyzing, analyzer, analyzes, andanalyzed. Therefore, the document

processor stems document termsataly- so that documents which

include various forms oénaly- will have equal likelihood of being

Chapter Two: Web and Search Engines 32

retrieved; this would not occur if the engine omlglexed variant forms
separately and required the user to enter all.oOfse, stemming does
have a downside. It may negatively affect precisiothat all forms of
a stem will match, when, in fact, a successful gder the user would
have come from matching only the word form actualged in the
query [EliO1].

= Extract index entries. In this step the lexical tokens are generated
from the remaining entries from the original docume

= Term weight assignment: Weights are assigned to terms in the
index file. The more sophisticated the search endhre more complex
the weighting scheme. Measuring the frequency aluoence of a
term in the document creates more sophisticateghtiag. Extensive
experience in information retrieval research oveinyn years has
clearly demonstrated that the optimal weighting esnfrom use of
"TF/IDF". This algorithm measures the frequencyoatturrence of
each term within a document. Then it comparesftieguency against
the frequency of occurrence in the entire database.

= Createindex: The index or inverted file is the internal dataisture
that stores the index information and that will dearched for each
qguery. Inverted files range from a simple listing every alpha-
numeric sequence in a set of documents/pages hediexed along
with the overall identifying numbers of the docurnsem which the
sequence occurs, to a more linguistically compisikdf entries, the
TF/IDF weights, and pointers to where inside eastudent the term
occurs. The more complete the information in trdex) the better the
search results [ElO1]. Inverted index is a mapghogn keyword to the
documents in which it appears [Jia00].

Chapter Two: Web and Search Engines 33

2.16 Ranking Part

Web ranking is very important to the searchmqglity of the search
engine. ldeally the web page more relevant to asguery should have
higher rank in the hitlist [Jia00].

Having determined which subset of documentsgpages matches the
guery requirements to some degree, a similarityes computed between
the query and each document/page based on thexgagorithm used by
the system. Scoring algorithms rankings are basdti@presence/absence of
qguery term(s), term frequency, Boolean logic firgnt, or query term
weights. Some search engines use scoring algorittomnbased on document
contents, but rather, on relations among docun@amsst retrieval history of
documents/pages.

After computing the similarity of each docurhein the subset of
documents, the system presents an ordered lisetader. The sophistication
of the ordering of the documents again dependshenntodel the system
uses, as well as the richness of the document aretyqweighting
mechanisms. For example, search engines that eglyire the presence of
any alpha-numeric string from the query occurringvehere, in any order, in
a document would produce a very different rankingnt one by a search
engine that performed linguistically correct phngsfor both document and
guery representation.

Ranking is the heart of the search engineortter to produce a good
search engine, the search engine designer neda®to how to rank pages
properly for the result documents. Today, most@deangines use variations
of the Boolean or vector model to do ranking. Rleitedt search engines do
not allow access to the text, but only the indides;ause it is too expensive
In terms of time and space. So, when searchingimgmust use indices
while not accessing the text. Besides that, thezeakso other difficulties as

well. There might be too many relevant pages feingle query [Sun01].

Chapter Two: Web and Search Engines 34

2.16.1 Difficulties in Determining Relevancy

Basing the rank of a Web page solely on theerd of the page itself and
in particular the content of the Meta tag, whicleslmot even appear as part
of the text of the page can cause problems fockeargines. This is because
savvy Web page authors can use a technique knowpassming, repeating
a “hot” keyword many times in the title or the Md#ay to raise the rank of
the page without adding any value to the conterihaf page. In an attempt
to avoid falling victim to spamming, many searclyiees severely penalize
pages that appear to be using this technique.thidyj legitimate pages are
often unduly penalized. Recently, some search esdnave begun to rely on
the valuable information buried in the structuretioé Web itself to rank

pages in a more objective way.

2.16.2 Document Features

There are many document features that makeod gratch to a query,

here are the most of them:

» Term frequency: How frequently a query term appears in a document
Is one of the good methods in determining a doctisyeglevance to a
guery. But in several situations this method fadcause many words
have multiple meanings, they are polysemous. Mahyhe non-
relevant documents presented to users result frabcihmg the right
word, but with the wrong meaning.

» Location of term: Many search engines give preference to words
found in the title or lead paragraph or in the rdata of a document.
Some studies show that the location in which a tecours in a
document or on a page indicates its significanceh® document
[EliO1].

Chapter Two: Web and Search Engines 35

» Link: Usually describes better a page than the pagi asd makes
possible to index non-text content. The link isocassted not only to
the page where it is found, but the one it pointsThe only problem
with this feature is that the destination of thiusks is not verified, so
they may even not exist.

» Date of Publication: Some search engines assume that the more recent
the information is, the more likely that it will heseful or relevant to
the user. The engines therefore present resultarbeg with the most
recent to the less current [EliO1].

» Length: Some search engines take the length of the page In
consideration.

» Presentation of words. Some search engines use the attributes of the

word as features like font size, font color, anatfetyle.

2.17 User Interface Part

The user interface of search engines consiistgee phases:

1- Query interface: provide the interface betweenuber and the search
engine so that the user can write his/her querysand it to the search
engine.

2- Query processor: which is responsible for parsireggguery for search
terms and perform some error checking.

3- Answer interface: which provide the results for tger or what is

known as the hitlist.

2.17.1 Query Interface
Every query that result in a huge number & hmpossible to fit on one
screen cannot be called a successful query. Thathysit's necessary to

create an interface with a larger configurabilioy tiser to use, giving it a

Chapter Two: Web and Search Engines 36

certain level of freedom to modify it by its ownets and wishes. Because of
the fact that creating a user-accessible crawlewldvbbe unpractical, and
allowing user access to main search engine databaskl be contra
productive, interface remains as the only seardinenelement that can be
offered to user as a tool. On the other hand, gethiat a large number of
users are beginners, the search engine interfamédshave its simple form
as well [Pet98].

A simple query interface page is shown inffeg(2.7), which consists of a

text box and a search button.

Welcometo Search Engine

Query field Sear ch button

Figure (2.7) Query interface

There are two types of query interface:

1- Basic query interface

2- Complex query interface

The basic query interface is a box where aiesgce of words is entered.
The sequence of words entered into different seamhines produces
different results. For example, AltaVista performmsearch by the union of
these words, whereas, HotBot performs a searcihdyntersection of these
words (all words must appear in the result docus)d®un01].

Some search engines support complex quersfasts including Boolean
operators (AND, OR, NOT) and other features, suliplrase search (like

Chapter Two: Web and Search Engines 37

“Text”), proximity search, URL searches, title s#ardate range, and data

types search.

2.17.2 Query Processor

In query processing, a humber of operatiorsparformed on the input
text (from the user) to transform it into a formdenstandable by the search
engine.
The following steps are the possible operationgearéd on the input text

» Tokenizing: As soon as a user inputs a query, the search engist
tokenize the query stream, i.e., break it down iatwerstandable
segments. Usually a token is defined as an alphanarstring that
occurs between white space and/or punctuation.

» Parsing: Since users may employ special operators in ttheary,
including Boolean, adjacency, or proximity operafothe system
needs to parse the query first into query terms @merators. These
operators may occur in the form of reserved puricmge.g., equation
marks) or reserved terms in specialized format.,(&ND, OR). At
this point, a search engine may take the list @rguerms and search
them against the inverted file. In fact, this i€ thoint at which the
majority of publicly available search engines perfdhe search.

= Stop list and stemming: Some search engines will go further and
stop-list and stem the query. The stop list mighb aontain words
from commonly occurring querying phrases, such ‘&gl like
information about”. However, since most publiclyadable search
engines encourage very short queries, as evidenadbd size of query
window provided, the engines may drop these twosste

» Creating the query: How each particular search engine creates a

guery representation depends on how the systemito@stching. At

Chapter Two: Web and Search Engines 38

this point, a search engine may take the queryesgmtation and
perform the search against the inverted file.

» Query term weighting: (assuming more than one query term). The
final step in query processing involves computingighits for the
terms in the query. Sometimes the user controgsstap by indicating
either how much to weight each term or simply whigtm or concept
in the query matters most and magppear in each retrieved document
to ensure relevance. Leaving the weighting up t® tiser is not
common, because research has shown that userotapanicularly
good at determining the relative importance of &ermtheir queries.
They can't make this determination for severaloessFirst, they don't
know what else exists in the database, and docurtenis are
weighted by being compared to the database as Eewbecond, most
users seek information about an unfamiliar subjsatthey may not
know the correct terminology. Few search enginggdement system-
based query weighting, but some do an implicit Wigy by treating
the first term(s) in a query as having higher gigance. The engines
use this information to provide a list of documépages to the user
[Eli01].

After this final step the query is searchediagt the inverted file of

documents.

2.17.3 Answer Interface

Answer interface or result page or hitlisaiBst of links to web pages that
contains the input text of the user. Search engisaslly return pages in the
order of relevance to the query. In other wordg thost relevant pages
appear on the top of the list. Typically, each lesuatry in the list includes a
title of the page, an URL, a brief summary, a saejate, and a written

language.

Chapter Two: Web and Search Engines 39

2.18 Searching Part

Searching the inverted file for documents ngethe query requirements,
referred to simply as "matching".

How systems carry out their search and magcHumctions differs
according to which theoretical model of informaticetrieval underlies the
system’s design philosophy [EIi01].

While the computational processing requiredsiople, unweighted, non-
Boolean query matching is far simpler than when ith@del is an NLP
(natural language processing) -based query withiwegghted, Boolean
model, it also follows that the simpler the docutr@presentation, the query
representation, and the matching algorithm, the ledevant the results,
except for very simple queries, such as one-woah-ambiguous queries
seeking the most generally known information [EJi0O1

The keywords in the query are matched ag#mstnverted index to find
all the documents ID’s that contains the keywordgen id is used to look up
the URL and in some search engines the title ottmeesponding Web pages

and return the results to the ranking procedure.

2.19 Search Engines Examples
Two examples will be given for search engiras/nternet search engine

and a Web site search engine.

-Internet Search Engine (Google) [Sun01]
The Google search engine (www.google.com) iheases the structure
present in hypertext. It claims that it produceidseesults than other search

engines todayl he architecture is shown in the Figure (2.8).

Chapter Two: Web and Search Engines 40

Figure (2.8) Google Architecture

The URL Server sends lists of URLs to be fettby the crawlers. The
crawlers download pages according to the list agnd sthe downloaded
pages to the Store Server. The Store Server copgwdlse pages and stores
them in the repository. Every Web page has an adsdcdD number called a
doclID, which is assigned whenever a new URL isgrhaut of a Web page.
The index performs an indexing function. It readse trepository,
uncompresses the documents, and parses them. &gelispconverted into a
Set of word occurrences called hits. The hits aontaformation about a
word: position in document, an approximation oftfsize, and capitalization.
The indexer distributes these hits into a set afféls” and creates a partially
sorted forward index (like bucket sort). It parsed all the links in every

Web page and stores important information abouinthe an anchors file.

Chapter Two: Web and Search Engines 41

The anchors file contains information about whexehelink points from and
to and the text of the link. After that, the URLd®éser reads the anchors file
and converts relative URLSs into absolute URLs amtlirn into doclID. It puts
the anchor text into the forward index, associatgd the doclID. It generates
a links database for storing links and doclDs. Taabase is used to
compute PageRanks for all the documents. The Statkes the barrels and
resorts them by wordID instead of doclID in ordergenerate the inverted
index. Also, the Sorter produces a list of wordlBxsd offsets into the
inverted index. A program called DumpLexicon taki@s list together with
the lexicon produced by the indexer and generatesnalexicon to be used
by the searcher. The searcher is run by a Web rsanc uses the lexicon
built by DumpLexicon together with the inverted @xdand the PageRanks to

answer gueries.

-Web Site Search Engine (ICS) [Jia00]

In order to facilitate user’s surfing expegenon their Web sites, many
Institutes either license the searching tools frgemeral search engine
companies such a&oogle or create their own primitive search engines.
Neither of these two options is ideal in some daseause licensing search
engine usually costs a lot of money and the seagchuality of self-created
primitive search engine is not satisfactory du¢hmlack of the expertise of
applying modern technologies of building searchim®galthough these kind
of technologies are available to public due to maasgarcher’s hard work in

the field of information retrieval in several deeadJia00].

Figure (2.9) represents the architecture of the\N&Eb site search engine.

Chapter Two: Web and Search Engines 42

Crawler
/v Sear cher
vl Repository includes: Parser
{html, text, index, links,
v titles, doc length}
Ranker
I ndexer

Figure (2.9) ICS Architecture

The crawler downloaded the web pages and séeedhw web pages into
the main repository. Each web page is saved asdwidual file. Each web
page is assigned a unique id and the mappings éetthie web link and id is
stored in a big file (links.txt). The parser parsash html file into pure text
file and the tile of the web page is also extracidte mapping between web
id and title are stored in one file (titles.txt)ivén the parsed text files, the
FOA indexer extracts the tokens from the text filgem the tokens using
Porter stemmer and generate keywords, and thentlseasxt files to create
posting data structure for keywords. The invertadeking is stored in
Invertedindex.txt. The web Ul is used for userubrsit the queries to search
engine and receive the search results from raeen the user’'s query, the
search engine converts the query to keywords, maehguery against the
inverted index and retrieve the documents contgitive keyword, and then
pass the web page id, web links, and titles toearikhe ranker will rank the
web pages according the similarity between web @agkuser’'s query and
return the web links and titles to Ul. Web Ul pretsethe results to user.

Chapter Three

Development of Web Site Search

Engine

3.1 Introduction

The concern of this work is to develop a Wéb search engine. This
chapter begins by explaining the architecture efgloposed Web site search
engine by dividing it in to two parts: Off-Line gpand the On-Line part, then
explain each part in details.

3.2 Architecture of Web Site Search Engine
The architecture of the proposed Web sitecbeangine is shown in
figure (3.1).
The Web site search engine consists of twtsptreOff-Line part and
theOn-Line part.
The Off-Line part consists of
1- Crawler: which will download all the pages in theeb\site (Except for
the non-HTML pages) and stores them as files irstbeage unit.
2- Indexer: which will parse all the files (pages) abewaded by the
crawler and index all the words in these files éptcthe stop words)
and sort them to create the inverted index, theaterthe lexicon. The

ranking is part of the indexing part.

Chapter Three: Development of Web Site Search Engine

45

Start
Downloac l

\
—
/

Lexicon

L

Crawler » URL List
Store Pages :
Word List
Storage Get Pages| Indexer | | Indexing
Unit and and | Index
Ranker ranking

A 4

Inverted
Index and
Lexicon
Builder

Inverted
Index

A

Sorn

Figure (3.2) Off-Line Part

The Off-Line part is implemented on the seasigine server and

represent the first part as shown in figure (3X4;Line means that till this

moment the search engine is not ready to servesdes.

On-Line part consists of

1- Search Engine Interface: which consists of a Welpe paontaining a

text box and a button (search button), so thatudex can write the

guery in the text box and click on the search buttostart searching

for the query and return the results. When the wsite the address of

the search engine on the address bar of the br@amsepress enter, the

browser will display the search engine Web pagealdwnloading it

from the server of the search engine to the ctentputer (user).
2- CGI script: when the user click on the search utd the search

engine Web page, the client computer will connedhe computer of

the search engine and request to execute the Cipt et the search

engine. The CGlI script will perform a query protegso check the

guery and if there are no errors, the CGI scrigk pass the query to

Chapter Three: Development of Web Site Search Engine 46

the SES (Search Engine Server) using the CGI-SE&MH®N
Gateway Interface-Search Engine Server) protocol.

3- SES: a program that runs on the server computtireo§earch engine
and waits for requests from any search engine C@pbts When the
SES receives a request from a CGI script, the SHSsearch the
lexicon for the query and send the results to t €Cript, which will
send them to the client computer (user).

The On-Line part is shown in figure (3.3)

Request to download the Search Engine Web page

Download Search

1 .
Engine Web page Search Engine Web page
Browser | 3 SendQuery |
. ~ CGil script
Search Engine - _
Web page ¢ CGI-SES
Return Results v protocol
SES
Client Computer _
Lexicon

Search Engine
Server Computer

Figure (3.3) On-Line Part

In general, the Web site search engine cansfdbur parts:
1- Crawler

2- Indexer and ranker

3- Interface

4- Searcher

Chapter Three: Development of Web Site Search Engine a7

3.3 Crawler

The crawler consists of five parts; in thetfipart the information related
to the crawling process is initialized, this infation is important to know
every thing about the crawling results. In the selcpart the data structure
that contains the links to be downloaded from theb\gite, which is called
the URL List, is initialized with theURL Startup File links. Then the
downloading and extracting part begin by downlogdine pages from the
URL List, save them as files on the storage unitraet other links from
them and add them to the URL List. In the Fourtht ghe crawling
information is saved in a file named tGeawler Results File.Then the URL
List is saved in a two files, one for the succdbsidownloaded links called
the True URL List and the other for the unsuccessfully downloadekisli
called theFalse URL List.

A study byCompaq systems research center [MarOl], examines the
average page quality over time of pages downloaldeithg a Web crawl of
328 million unique pages, it shows that travergimgy Web graph in breadth-
first search order is a good crawling strategyjtdends to discover high-
guality pages early on the crawl. So the bread#t-fiearch order was used in

the crawler of the proposed Web site search engine.

Figure (3.4) represents the five parts of the ceawl

Chapter Three: Development of Web Site Search Engine 48

Initialize the crawler
information part

\ 4

Initialize the URL list
part

A 4

Downloading pages

and extracting links
part

\ 4

Save crawling
information part

A4

Save the crawler list
part

Figure (3.4) Crawling Parts

3.3.1 Initializing the Crawler Information

The first step in the crawler is to initializee information about the
crawling operation. The information of the crawlipgocess contains the
following variables, which will be initialized tcezo.

* File number: each link from the URL List after downloaded woik
saved as a file in the storage unit, each file neegns with the string
“page” and ends with a number, the first file nanpadeQ the second
pageland so on, this variable represent the numbeheffite and

increased by one each time a new page is downloaded

Chapter Three: Development of Web Site Search Engine 49

Downloaded pagesthis variable keeps track of the number of links
successfully downloaded.

External links: this variable keeps track of the number of externa
links.

Non-HTML files: this variable keeps track of the number of filegtt
are not an html pages, like image files, sound file-Mail addresses,
etc.

Connection error: this variable keeps track of the number of failed
connections.

Download error: this variable keeps track of the number of failed
downloading operations.

Save error: this variable keeps track of the number of ermrsurs

during saving the pages on the storage unit.

If an error occurs during the initialization of the information of éh

crawling process, avarning messagewill be shown and the program will

continue, because the initialization of the infotima is not a critical issue.

3.3.2 Initializing the URL list

The second part is used to initialize the URist, but before the

Initialization, a text file called theJRL Startup File should be created by the

administrator of the search engine, which contdimes most popular Web

pages including the Home Page. The pages namazemio the file must
be without the WWW " or “HTTP://” and without théVeb site nameonly
the remaining string of the page name. The namest i@l separated by
spaces. The URL List is initialized by the linkstie URL Startup file.

Chapter Three: Development of Web Site Search Engine 50

The URL List is ainary search treeimplemented as dynamic array

of records and each record represent a link inJRé& List, which contains

the following fields:

URL name: which hold the name of the link withoudTTP://"

“WWW.” and without thesite namebecause they are known and if

and

stored will take a large space, so only the remgimame is hold. For
the link

then

example if we have
“http://www.microsoft.products.new.html”
“http://www.microsoft” will be left and only“products.new.html”
will be stored as the name of the link.

Left link: a 4 bytes variable, which point to the link in thedt
direction as in the binary search tree.

Right link: a 4 bytes variable, which point to the link in thght
direction as in the binary search tree.

Downloading flag: a 2 bytes variable, which represent the statulseof
link, if this link is downloaded successfully thigmwill be true, if not it

will be false.

Table (3.1) represents an example of a URLWith 5 links:

Table (3.1) URL List

Cell URL name Downloading| Left link Right link
number flag
0 Index.html True 2 1
1 Products.html | False 3 Null
2 About.htm True Null Null
3 Map.html True Null 4
4 News.htm False Null Null

Chapter Three: Development of Web Site Search Engine 51

Two variables are used to keep track of thé UIR: one is the'Current
Link” which keeps track of the current link that is ®sdownloaded and the
other variable is th&Last Link” which always points to the last link in the
URL list. The “Current Link” variable is initializeto point to the first link in
the URL list which is location zero in the URL Liahd the “Last Link”
variable is initialized to point to the last link the URL list.

If anerror occur during the initialization of the URL list exitical error
messagels shown and the program ends execution becauseaitcritical

error, not a simple error.

3.3.3 Downloading Pages and Extracting Links

This part begins by downloading links from thRL list one by one and
after each page is downloaded successfully alllitiies in that page is
extracted out and only tHeml or htm links is added as a new links in the
URL list if they are not already there. The crawfimishes his work when
there is no more links to be extracted and the &irkink point to the Last
Link. Figure (3.5) represents this part:

. R tP i
Web Site « equest Fage URL List
First Link [«—— Start
Download Current Link
A\ 4 -
Buffer W Last Link)
J Add new links
Save Page
v
Storage Unit Extract Links | Unks | Filter Links

Figure (3.5) Crawling Process

Chapter Three: Development of Web Site Search Engine 52

Algorithm (3.1) is thamain algorithm for crawling the Web pages

Algorithm (3.1)

Name : main crawling algorithm
Input : Pages of Web site
Output : Downloaded Pages

assign DownloadedPages the value 0
assign FileNumber the value 0
assign SaveErrors the value 0
assign DownloadedErrors the value 0
assign ConnectionErros the value 0
while (current link is less than or equal to last link) do
(add “HTTP://"” followed by Web site name to the current link
if (Web page downloaded correctly in memory)
then (if (Web page saved correctly on storage unit)
then (assign DownloadedPages the value DownloadedPages + 1
assign FileNumber the value FileNumber + 1
Execute algorithm 3.7 with Buffer containing the page as
input)
else (assign SaveErrors the value SaveErrors + 1)
)
else if (Web page could not be downloaded)
then (assign DownloadedErrors the value DownloadedErrors + 1)

else (assign ConnectionErrors the value ConnectionErrors + 1)

)

Algorithms (3.2) is used fokdding New Link to the URL List

Algorithm (3.2)

Name : Add New URL Link
Input : Link, URL list
Output : True or False

assign N the value 0
assign Condition the value “True”

assign ReturnValue the value “True”

Chapter Three: Development of Web Site Search Engine

53

Algorithm 3.2- (Continue)
while (Condition equal to “"True”) do
(if (Link equal to the link of the Nth entry in URL list)
then (assign Condition the value “False”
assign ReturnValue the value “False”)
else if (Link less than link of the Nth entry in URL list)
then (if (left link of Nth entry in URL list equal to Null)
then (add Link as the left link of the Nth entry in URL list)
else (assign N the value of left link of the Nth entry in URL list)
)
else if (Link greater than link of the Nth entry in URL list)
then (if (right link of the Nth entry in URL list equal to Null)
then (add Link as the right link of the Nth entry in URL list)
else (assign N the value of right link of the Nth entry in URL list)
)
)

return the value ReturnValue

Algorithm (3.3) is used foExtracting a Token from the Web page

Algorithm (3.3)

Name : Get HTML Token
Input : Buffer containing the page, N (Pointer)
Output : HTML token

assign Token the value Null

assign N the value N + 1

while (Nth entry in Buffer equal to “"Space” or "=" or “"Quotation” or “Asciil3”
or "Asciil0” and N is less than the length of the page) do

(assign N the value N + 1)

while (Nth entry in Buffer not equal to ">" and “Space” and “"=" and
“Quotation” and “Ascii1l3” and N is less than the length of the page) do

(assign Token the value of Token + Nth entry in Buffer

assign N the value N + 1)

Convert Token to lower case

return the value Token

Chapter Three: Development of Web Site Search Engine

54

Algorithm (3.4) is used foExtracting a Link from the Web page

Algorithm (3.4)

Name : Get URL Link
Input : Buffer containing the page, Html Token, N (pointer)
Output : URL link

assign Link the value Null

While (Nth entry in Buffer not equal to “>" and Link not equal to Token and N
Less than the length of the page) do

(Execute algorithm 3.3 with Buffer containing the page, N as input

assign Link the Output of algorithm 3.3)

if (Link equal to Token)

then (Execute algorithm 3.3 with Buffer containing the page, N as input

assign Link the Output of algorithm 3.3
return the value of Link)

else (return the value Null)

Algorithm (3.5) is used foFiltering a Link

Algorithm (3.5)

Name : Filter URL Link
Input : URL Link, Web site name, BaseLink
Output : Filtered URL Link if the Link is internal

or 1" if the Link is external

or 2" if the Link is not a HTML or HTM file

assign LinkLen the value number of characters in Link
assign SitelLen the value number of characters in Web site name
if (LinkLen less than 5) then (return the value "2")
if (last 5 characters of Link not equal to “.html” and last 4 characters of Link
not equal to ".htm”) then (return the value "2")
assign Nu the value 1
if (first 7 characters of Link equal to "HTTP://")
then (assign Nu the value 8
if (characters form Nu to Nu + 4 of Link equal to "WWW.")

then (assign Nu the value 12)

Chapter Three: Development of Web Site Search Engine 55

Algorithm 3.5- (Continue)

else if (first 4 characters of Link equal to "WWW.")
then (assign Nu the value 5)
if (Nu equal to 1)
then (if (BaselLink equal to “1")
then (return the value “1”)
else (return the value BaselLink + Link)
)
else (if (characters from Nu to Nu + SiteLen in Link equal to Web site name)
then (assign Nu the value Nu + SiteLen + 1
return the value characters from Nu to LinkLen in Link)

else (return the value "1")

)

Algorithm (3.6) is used fofiltering a base link

Algorithm (3.6)

Name : Filter Base Link
Input : Base Link, Web site name
Output : Filtered Base Link if the Base Link is internal

or 1" if the Base Link is external

assign BaselinkLen the value length of BaselLink
assign Nu the value 1
if (first 7 characters of BaseLink equal to "HTTP://")
then (assign Nu the value 8
if (characters form Nu to Nu + 4 of BaselLink equal to "WWW.")
then (assign Nu the value 12)
)
else if (first 4 characters of BaselLink equal to "WWW.")
then (assign Nu the value 5)
if (Nu equal to 1)
then (if (BaselLink equal to “1")
then (return the value “1")
else (return the value BaselLink + Link)

)

Chapter Three: Development of Web Site Search Engine 56

Algorithm 3.6- (Continue)

else (if (characters from Nu to Nu + SiteLen equal to Web site name)
then (assign Nu the value Nu + SiteLen + 1
return the value characters from Nu to BaselLinkLen in BaseLink)

else (return the value "1")

)

Algorithm (3.7) is used foExtracting Links from the Web page

Algorithm (3.7)

Name : HTML Link Extractor
Input : Buffer containing the HTML page
Output : HTML or HTM Links

assign Baselink the value Null
assign N the value -1
assign PagelLen the value length of the page
while (N less than Pagelen)
(assign N the value N + 1
if (Nth entry in Buffer equal to “<” and Nth + 1 entry in Buffer not equal to
“Space”)
then (Execute algorithm 3.3 with Buffer, N as input
assign HtmlToken the output of algorithm 3.3
Execute one of the following blocks according to the value of HtmlIToken
Case 1: HtmlIToken equal to "base”
(Execute algorithm 3.4 with Buffer, “href”, N as input
assign Link the output of algorithm 3.4
if (Link not equal to Null)
then (Execute algorithm 3.6 with Link, Web site name
assign BaselLink the output of algorithm 3.6)

Chapter Three: Development of Web Site Search Engine

57

Algorithm 3.7- (Continue)

A\ /4

Case 2: HtmIToken equal to “a” or “area” or “link”
(Execute algorithm 3.4 with Buffer, “href”, N as input
assign Link the output of algorithm 3.4
if (Link not equal to Null)

input
assign Link the output of algorithm 3.5
if (Link equal to “1")
then (assign ExternallLinks the value ExternallLinks + 1)
else if (Link equal to “2")
then (assign NonHtmlFiles the value NonHtmlFiles + 1)
else (Execute algorithm 3.2 with Link, URL list as input))
)
Case 3: HtmlIToken equal to “q”
(Execute algorithm 3.4 with Buffer, “cite”, N as input
assign Link the output of algorithm 3.4
if (Link not equal to Null)

input
assign Link the output of algorithm 3.5
if (Link equal to "1")

then (assign ExternallLinks the value ExternalLinks + 1)
else if (Link equal to "2")

then (assign NonHtmlFiles the value NonHtmlFiles + 1)
else (Execute algorithm 3.2 with Link, URL list as input))

)

Case 4: HtmlIToken equal to “img”
(Execute algorithm 3.4 with Buffer, “longdesc”, N as input
assign Link the output of algorithm 3.4

if (Link not equal to Null)

input
assign Link the output of algorithm 3.5
if (Link equal to “"1")
then (assign ExternallLinks the value ExternallLinks + 1)
else if (Link equal to “2")
then (assign NonHtmlFiles the value NonHtmlFiles + 1)

else (Execute algorithm 3.2 with Link, URL list as input))

then (Execute algorithm 3.5 with Link, Web site nhame, BaselLink as

then (Execute algorithm 3.5 with Link, Web site name, BaseLink as

then (Execute algorithm 3.5 with Link, Web site name, BaselLink as

Chapter Three: Development of Web Site Search Engine 58

Algorithm 3.7- (Continue)

Case 5: HtmIToken equal to “iframe”
(Execute algorithm 3.4 with Buffer, “src”, N as input
assign Link the output of algorithm 3.4
if (Link not equal to Null)
then (Execute algorithm 3.5 with Link, Web site nhame, BaselLink as
input
assign Link the output of algorithm 3.5
if (Link equal to “1")
then (assign ExternallLinks the value ExternallLinks + 1)
else if (Link equal to “2")
then (assign NonHtmlFiles the value NonHtmlFiles + 1)
else (Execute algorithm 3.2 with Link, URL list as input))
)
Case 6: HtmIToken equal to “frame”
(assign HtmlToken the value Null
while (Nth entry in Buffer not equal to ">" and HtmIToken not equal
to "src” and HtmIToken not equal to “longdesc” and N less
than Pagelen) do
(Execute algorithm 3.3 with Buffer, N as input
assign HtmlIToken the output of algorithm 3.3)
if (HtmlToken equal to “src” or HtmIToken equal to “longdesc”)
then(Execute algorithm 3.3 with Buffer, N as input
assign Link the output of algorithm 3.3
if (Link not equal to Null)
then (Execute algorithm 3.5 with Link, Web site name, BaseLink
as input
assign Link the output of algorithm 3.5
if (Link equal to "1")
then (assign ExternallLinks the value Externallinks + 1)
else if (Link equal to “2")
then (assign NonHtmlFiles the value NonHtmlFiles + 1)

else (Execute algorithm 3.2 with Link, URL list as input))

Chapter Three: Development of Web Site Search Engine 59

3.3.4 Saving the Crawling Information

In this part the information about the craglioperation is saved in a file
named the&Crawler Results File

If an error occurs during the saving operation of the crawling
information, awarning messageis shown and the program continues

because it is not a critical error.

3.3.5 Saving the Crawler List

When the crawler finish his job, The URL listill contain the
successfully downloaded links and the links that mot downloaded due to
some error. Then the URL list will be divided intwo lists: one for the
successfully downloaded links called fhieie URL List and another for the
unsuccessfully downloaded links called Badse URL List. Each list will be
saved on a file with headerand the header contains two variables:

* Type: which is a 2 bytes variable that is either truepfesent the
downloaded list) or false (represent the list vitie links that are not
downloaded).

 Number of items: a 4 bytes variable, which contains the number of
items in the list.

The two lists are lists of string, which reggat the URL link name, table
(3.2) present an example of a True URL List filel aable (3.3) present an
example of a False URL List file taken from tabl&.3

Table (3.2) True URL list file

2 Bytes True)
4 Bytes 3 ~— Header
10 Bytes Index.html —
9 Bytes About.htm ~— List of links
8 Bytes Map.html
_

Chapter Three: Development of Web Site Search Engine 60

Table (3.3) False URL list file

2 Bytes False
4 Bytes 5 Header

13 Bytes Products.html
8 Bytes News.htm

List of links

If anerror occur during the saving operation of the crawling liitsie
and false lists), aritical error message is shown and the program end

execution.

3.4 Indexer and Ranker
The indexer consists of the following three parts:
= Create the index
= Create the inverted index
= Create the lexicon
The ranking part is mixed with the indexingtp®uring indexing, each

word will have a rank status (priority).

3.4.1 Creating the Index

In this part all the word are extracted frdre pages that are downloaded
during the crawling part and all the words excéyet $top words are indexed
in the search engine database

Figure (3.6) shows the indexing parts:

Chapter Three: Development of Web Site Search Engine 61

Create the stop word
list

\ 4

Initialize the index
files

Initialize the indexer
information

Initialize the Word
List

A 4

Start indexing

A 4

Save indexing
information

A 4

Save the word list

Figure (3.6) Indexing Parts

-Create the Stop Word List

The stop words are the words that are not rlapbto the search engine
like (to, is, are, etc.).

In this part the stop word list is createdstfithe administrator of the
search engine creates a text file containing tlo@ stords separated by
spaces. Then th8top Word List is initialized with the words of the stop

word text file.

Chapter Three: Development of Web Site Search Engine 62

The Stop Word List is Binary search treeimplemented as dynamic
array of records; each record represent a stop word hwhantains the
following fields:
» Stop Word: represent the stop word, which is a string.
» Left Link: 2 bytes variable represent the left link in thepSWord
List.

* Right Link: 2 bytes variable represent the right link in thepStVord
List.

The Stop Word file containsHeader, which consists of:

* Type: 4 bytes variable represent the type of the lidtictv will be
“Stop”.

* Number of items: 2 bytes variable represent the number of stop svord

in the list.

The stop word list used in this work is shawmable (3.4)

Table (3.4) Stop Word List

[a about an are
as at be by com
for from how in is
It of on or that
the this to was what
when where who will with
WWW

After initializing the Stop Word List with theords in the stop word text
file, the Stop Word List is saved on the storagi as a file then loaded at

the beginning of the indexing operation into thenmoey.

Chapter Three: Development of Web Site Search Engine 63

-Initialize the Index Files
The index files from A to Z (AindexFile.IF, BilexFile.IF, etc.) and from
0 to 9 (OIndexFile.IF, 1IndexFile.IF, etc.); are opened and initialized to Null.
All the words that have the same first letter aaeesl in the same file that
named on that first letter, for example the worck,(cup, coffee) are saved
in the CindexFile.IF file.
The index file is a file of records, and eaebord contains the following
fields:
* Word ID: 4 bytes variable represent the id of one of thlexed
words.
* Page ID:4 bytes variable represent the id of the page wiherevord
occur.
» Position: 4 bytes variable represent the position wherevbrel occurs
in the page.
* Rank Status: 2 bytes variable represent the rank status ofvtire
(priority of the word).

-Initialize the Indexer Information

In this part the information related to thedeming operation are
initialized, these information are only thmindexed Files Number During
the indexing operation an error may occur and nig&y may not indexed so

this variable is important to know how many filee aot indexed.

-Initialize the Word List

The Word List will contain all the words thatcur in the Web pages. The
Word List is abinary search tree implemented as a@ynamic array of
records and each record contains the followingi$el

* Word: represents the word as a string.

Chapter Three: Development of Web Site Search Engine 64

Number: the number of occurrences for the word in all\teb
pages.
Left Link: represents the left link of the binary search.tree

Right Link: represents the right link of the binary search.tre

-Start Indexing

For each Web page, load it from the storagé tonthe memory then

parses the page looking for words. For each woitlis not part of theStop
Word List, add the word to th&/ord List, if it is already in the Word List

then increase the number of occurrences for thatl wthe Word List will

return an ID for the word after inserting it. Thadd the word to théndex

List with its rank status and it's ID.

The Index List is a binary search tree impletaed as a dynamic array of

records, and each record contains the followingdie

Word: represents the word as a string.

Word ID: 4 bytes variable represents the ID of the word.

Position: 4 bytes variable represents the position of ocages for the
word in the page.

Rank Status: 4 bytes variable represents the priority for troedy

Left Link: 4 bytes variable represents the left link for bimeary
search tree.

Right Link: 4 bytes variable represents the right link forhiery
search tree.

After finish the work with the current pagays the words from the Index

List into the Index Files, each word in its corrbadex File.

The following are the algorithms used in the indeppart:

Algorithm (3.8) is used for extracting a word frdhe file.

Chapter Three: Development of Web Site Search Engine 65

Algorithm (3.8)

Name : Get Word
Input : Buffer containing the page, N (pointer)
Output : Word

assign Word the value Nth entry in Buffer

assign N the value N + 1

while ((Nth entry in Buffer greater than or equal to “a” and
Nth entry in Buffer less than or equal to “z") or
(Nth entry in Buffer greater than or equal to "A” and
Nth entry in Buffer less than or equal to “Z") or
(Nth entry in Buffer greater than or equal to “0” and
Nth entry in Buffer less than or equal to "9”) and N less than
PagelLen) do

(assign Word the value Word + Nth entry in Buffer

assign N the value N + 1)

Convert Word to upper case

return the value Word

Algorithm (3.9) is the parser algorithm.

Algorithm (3.9)

Name : Parser
Input : Buffer containing the Web page
Output : List of words with their rank status

assign N the value 0

assign RankStatus the value 1

assign PagelLen the value length of the page

while (N less than PagelLen) do

(while (Nth entry in Buffer equal to “Space” or “Ascii13” or “Asciil0” and N less
than Pagelen) do

(assign N the value N + 1)

if (Nth entry in Buffer equal to “<” and Nth+1 entry in Buffer equal to “/")

then (assign N the value N + 1

Chapter Three: Development of Web Site Search Engine 66

Algorithm 3.9- (Continue)

Execute algorithm 3.3 with Buffer, N as input

assign Token the output of algorithm 3.3

Execute one of the following blocks according to the value of Token

Case 1: Token equal to "b” or “strong” or “blink”
(assign RankStatus the value RankStatus - 4)

Case 2: Token equal to “i” or “u” or “s” or “strike” or “code” or “samp” or
“var” or “em” or “blockquote” or “tt” or “cite” or “address” or
“sub” or “sup” or “kbd”
(assign RankStatus the value RankStatus - 2)

Case 3: Token equal to "big”
(assign RankStatus the value RankStatus - 12)

Case 4: Token equal to "marquee”
(assign RankStatus the value RankStatus - 6)

Case 5: Token equal to “title”
(assign RankStatus the value RankStatus - 128)

Case 6: Token equal to “a”
(assign RankStatus the value RankStatus - 64)

Case 7: Token equal to “h1” or “*h2” or *h3” or “*h4” or “h5” or “*h6”
(assign RankStatus the value RankStatus - 32)

Case 8: Token equal to “font”
(assign RankStatus the value RankStatus - 8)

while (Nth entry in Buffer not equal to ">" and N less than PagelLen) do

(assign N the value N + 1)

assign N the value N + 1

)

else if (Nth entry in Buffer equal to "<” and Nth+1 entry in Buffer not equal to
“Space”)
then (Execute algorithm 3.3 with Buffer, N as input

assign Token the output of algorithm 3.3

Execute one of the following blocks according to the value of Token

Case 1: Token equal to "b” or “strong” or “blink”
(assign RankStatus the value RankStatus - 4)

Case 2: Token equal to "i” or “u” or “s” or “strike” or “code” or “samp” or
“var” or “em” or “blockquote” or “tt” or “cite” or “address” or
“sub” or “sup” or “kbd”
(assign RankStatus the value RankStatus + 2)

Case 3: Token equal to "big”
(assign RankStatus the value RankStatus + 12)

Chapter Three: Development of Web Site Search Engine 67

Algorithm 3.9- (Continue)
Case 4: Token equal to "marquee”
(assign RankStatus the value RankStatus + 6)
Case 5: Token equal to “title”
(assign RankStatus the value RankStatus + 128)
Case 6: Token equal to "a”
(assign RankStatus the value RankStatus + 64)
Case 7: Token equal to “h1” or "*h2” or “*h3"” or “*h4” or “*h5” or “*h6”
(assign RankStatus the value RankStatus + 32)
Case 8: Token equal to “font”
(assign RankStatus the value RankStatus + 8)
while (Nth entry in Buffer not equal to “">" and N less than PagelLen) do
(assign N the value N + 1)
assign N the value N + 1
)
else if ((Nth entry in Buffer greater than 64 and Nth entry in Buffer less than
91) or (Nth entry in Buffer greater than 96 and Nth entry in Buffer
less than 123) or (Nth entry in Buffer greater than 47 and Nth entry in
Buffer less than 58))
then (Execute algorithm 3.8 with Buffer, N as input
assign Word the output of algorithm 3.8
if (Word is not a stop word)
then (add Word in the word list)
)

else (assign N the value N + 1)

)

Algorithm (3.10) is the main indexing algorithm.

Algorithm (3.10)

Name : Main indexing algorithm
Input : HTML Pages
Output : Index Files

assign PageNo the value 0

assign UnidexedPages the value 0

Chapter Three: Development of Web Site Search Engine 68

Algorithm 3.10 - (Continue)
repeat
(if (page loaded in memory correctly)
then (parse the page and put all the information relative to them in a list
save extracted words from list to all index files)
else (assign UnidexedPages the value UnidexedPages + 1)
assign PageNo the value PageNo + 1

)

until (PageNo greater than number of crawled pages)

The ranking status for each word depends enctraracteristics of the
word, which are: font attributes (size, color, e}ylthe position of the word in
the page and the status of the word (is it a kim&ther page?).

The ranking part is mixed with the indexingtpauring indexing, some
HTML Tags (commands) will affect the word rank ggats shown in table

(3.5):

Table (3.5) Tags Ranking

Tag Description Rank Score
B, STRONG, and
Change the word style 4
BLINK
I,U, S, STRIKE,
CODE, SAMP, VAR,
EM, BLOCKQUOTE , Change the word style 2

TT, CITE, ADDRESS
SUB, SUPandKBD

BIG Change the word style and size 12
Convert the word to a scrolling
MARQUEE 6
word

TITLE Change the word to a title 128

Chapter Three: Development of Web Site Search Engine 69

A Change the word to a link 64
H1, H2, H3, H4, H5 _
Change the word to a heading 32
andH6
Change the word font style, color,
FONT _ 8
or size

-Save Indexing Information
In this part, the indexing information is sdwven a file; this information
represents the number of unindexed pages. The rfdene will be

“IindexFilesInfo.lIF1".

-Save the Word List
In this part the Word List is saved on a fidich contains &deader, and
this header is as follows:
» Type: 8 bytes variable that represents the type ofitagwhich is a
Word List file ("WordList”).
* Number of items: 4 bytes variable that represents the number wisite
in the Word List.
The Word List is saved without the Left Link anatRight Link, only the
Word and the Number of occurrences.

3.4.2 Creating the Inverted Index

In this part each index file is loaded inte themory and sorted using the
Improved Quick sort and Insertion sort methods then the index file is
saved back to the storage unit.

Algorithm (3.11) is the improved quick sort algbnt:
Algorithm (3.11)

Name : Improved Quick Sort
Input : Buffer containing the Index file, Left pointer, Right pointer
Output : Sorted index file

Chapter Three: Development of Web Site Search Engine 70

Algorithm 3.11- (Continue)
If (Left less than Right)
then (assign] the value Left
assign K the value Right
if (Word of entry Left in Buffer less than the Word of entry Right in Buffer)
then (swap between Left and Right records of Buffer)
else if (Word of entry Left in Buffer equal to the Word of entry Right in
Buffer)
then (if (RankStatus of of entry Left in Buffer less than RankStatus of
Entry Right in Buffer)
then (swap between Left and Right records of Buffer))
repeat
(
repeat (assign J the value J + 1)
until (Word of Jth entry in Buffer less than Word of entry Left in Buffer
or (Word of Jth entry in Buffer equal to Word of entry Left in
Buffer and RankStatus of Jth entry in Buffer less than or equal to
RankStatus of entry Left in Buffer))
repeat (assign K the value K - 1)
until (Word of Kth entry in Buffer greater than Word of entry Left in
Buffer or (Word of Kth entry in Buffer equal to Word of entry Left
In Buffer and RankStatus of Kth entry in Buffer greater than or
equal to RankStatus of entry Left in Buffer))
if (J less than K)
then (swap between record of Jth entry and record of Kth entry in
Buffer)
) until (J greater than K)
swap between record of entry Left and record of Kth entry in Buffer
if ((K - Left) greater than 10)
then (Execute algorithm 3.11 with Buffer, Left, K - 1 as input)
if ((Right - K) greater than 10)
then (Execute algorithm 3.11 with Buffer, K + 1, Right as input)

Chapter Three: Development of Web Site Search Engine 71

Algorithm (3.12) is the Insertion Sort algorithm

Algorithm (3.12)

Name : Insertion Sort
Input : Buffer containing the index file, First pointer, Last pointer

Output : Sorted index file

assign K the value Last - 1
repeat (assign] the valueK + 1
assign Save the value record of Kth entry in Buffer
assign Flag the value "True”
while (J less than Last and Flag equal to “"True”) do
(if (Word of Save record less than Word of Jth entry in Buffer)
then (assign Jth - 1 entry in Buffer the value of Jth entry in Buffer
assign J the value J + 1)
else if (Word of Save record equal to Word of Jth entry in Buffer)
then (if (RankStatus of Save record less than RankStatus of Jth
entry in Buffer)
then (assign Jth - 1 entry in Buffer the value of Jth entry in
Buffer
assign J the value] + 1)
else (assign Flag the value “False”))
else (assign Flag the value “False”)
)
if (Word of Save record less than Word of Jth entry in Buffer)
then (assign Jth - 1 entry in Buffer the value of Jth entry in Buffer
assign] the value J + 1)
else if (Word of Save record equal to Word of Jth entry in Buffer)
then (if (RankStatus of Save record less than RankStatus of Jth
entry in Buffer)
then (assign Jth - 1 entry in Buffer the value of Jth entry in
Buffer
assign] the value] + 1))
assign Jth - 1 entry in Buffer the value of Save
assign K the value of K - 1
) until (K less than 1)

Chapter Three: Development of Web Site Search Engine 72

3.4.3 Creating the Lexicon

The lexicon is a MultiLayer structure consistgl layers, Each layer is an

array of records and each record is 4 bytes variaked to point to the

position of the word in the inverted index file€thumber of the record in the

inverted index file), these layers are:

* Layerl: one dimension array that contains pointers tthallwords
with only one character like the word “A”.

» Layer2: two dimension array that contains pointers taredlwords
with only two characters like the word “TV”.

» Layer3: three dimension array that contains pointers tthellwords
with only three characters like the word “Car”.

» Layer4: four dimension array that contains pointers tdladlwords

with only four characters like the word “Card”.

Algorithm (3.13) is used for building the lexiconcacalled for each inverted

index file.

Algorithm (3.13)

Name : Building the lexicon
Input : Buffer containing the inverted index file

Output : lexicon

assign Max the value number of words in the index file
assign N the value 1
while (N less than or equal to Max) do
(assign Word the value of Word of Nth entry in index file
assign FirstRecordNu the value N

assign N the value N + 1

assign Flag the value "True”

while (N less than or equal to Max and Flag equal to "True”) do
(if (Word equal to Word of Nth entry in index file)

then (assign N the value N + 1)
else (assign Flag the value “False”))

Chapter Three: Development of Web Site Search Engine /3

Algorithm 3.13 (Continue)

If (Word is only one character long)
then (assign Layerl with index (Word) the value FirstRecordNu)
else if (Word is only two characters long)
then (assign Layer2 with index (first character, second character) the value
FirstRecordNu)
else if (Word is only three characters long)
then (assign Layer3 with index (first character, second character, third character)
the value FirstRecordNu)
else if (Word is only four characters long)
then (assign Layer4 with index (first character, second character, third haracter,
fourth character) the value FirstRecordNu)
assign Flag the value “True”
while (N less than Max and Flag equal to “True”) do
(if (first four character of word equal to first four character of word of Nth entry in
index file)
then (assign N the value N + 1)

else (assign Flag the value “False”))

3.5 Interface

The interface of the search engine is a sirigdd page consists of a text
box for entering the query and a button for sendnegQuery to the Web site.
When the user enter the query into the text box @ik on the search
button, the query will be send to the Web site semvhich will run the
Search.exe CGI program to receive the query, thenQGI program will
check the query for errors, and if there was angrethe CGI program will
send an error message back to the client. If nor emas found, the CGI
program will convert each AND to * and each OR tomake a connection
with the search engine server using the CGI-SE®g@oband send the query

to the search engine server as shown in figurg.(3.7

Chapter Three: Development of Web Site Search Engine 4

Send Quer .
Query -~ CGl script
Query Field
| |
\ 4
P Query Optimizer
Client Computer Yes
(User) Any
Send an error message Errors
to the client
No
Using CGI-SES
protocol, open
connection with the
search engine server
and send the Query

Search Engine
Computer Server

Figure (3.7) User-CGl Interface

3.6 Searcher

The searcher is the Search Engine Server (8&%)is responsible for
serving any requests from the CGI programs by dougfhe request, receive
the query, search for the query and return thelteediack to the CGI
program, which will return the results to the ctighrough the Web site
server.

When the SES starts running, it loads thectaxi the word list, the URL
list into the memory, then wait for any requestsfrCGIl programs.

When a request arrives, the SES will acceptrdguest by making a
connection, take the query and search for the wordlse query. There are
two types of query that the SES can search for:

Chapter Three: Development of Web Site Search Engine 75

* Normal Query: which contains one word, the SES search for th@lwo

in its lexicon.

* Boolean Query:which contains Boolean operators (AND, OR) like
(Car and station), the SES will create an arragoointers and search
for each word, increment the counter for that p&ytor each word.
For example if we are searching for the query @war Station) then
we will search for the word “Car” and incrementtak counters with
an index equal to the page ID where that word wasad, then search
for the word “Station” and increment all the cousteith an index
equal to the page ID where that word was found) #ilethe counters
that contains the number 2 (number of words irginery) will

represent a page ID where the two words appears in.

For example if we want to search for the wdid/” then all the
occurrences of that word will be found in the Terdile because it starts
with a T letter. But we don’t know the number oéthrst record in the T
index file where the TV word will be found and thember of occurrences
for that word. The second layer of the lexicon wihtain the number of the
first record in the T index file and in that recos@ will find the ID of the
word so that we can supply it to the word list tet ghe number of
occurrences for the word. So the word “TV” will Bund in the T inverted
index file starting at the record with the numbaurid in the second layer and
ending at the record with the number (first recotdnber + number of

occurrences for the word) as shown in figure (3.8).

Chapter Three: Development of Web Site Search Engine

76

Second Layer
Index File
A A
TV » T > v First Record :
» TV
7 7 TV
0 0 » TV
9 9
Last
Record
Word
ID
Plus First Record
Number -1
A
Word List
Number of
occurrences .)
3 ID ¢

Figure (3.8) Searching-Phasel

All the records found in the index file comtiaig the words “TV” will also

contain the page ID where these words occur, setpage IDs will be used
to retrieve the URLs string from the URL List areturn these URLSs to the

CGlI program which will return them after orderirigetn to the client as the

final results as shown in figure (3.9).

Chapter Three: Development of Web Site Search Engine 77

URL List Start
Get the pages
_ URL’s for these Pages ID’s
Pages URL Pages ID’s found in
URL's |« String the index
file
Return the pages
URL'’s to the CGI
program
A 4
CGl » Client
program Return the URL'’s after
ordering them as results

to the Client through the
Server

Figure (3.9) Searching-Phase2

3.7 The CGI-SES Protocol

The CGl talks to the SES using a protocol Wt design for this project;
this protocol is used for sending and receiving w@mds and data between
both of them.

When the CGI program receives a request fioenuiser for searching a
specific text, the CGI program will send thist page number, number of
pages requiredand thetext required to the SES separated by spaces using
theWinsock (a Socket Technique used by windows) connection.

The SES will respond with one of the followimgssages:

1. “ERROR: text”: send back to the CGI program if amewas
found in the data coming from the CGI program, &edt” is a

description for the error.

Chapter Three: Development of Web Site Search Engine /8

2. “NOT FOUND": send back to the CGI program if theeuguery
was not found in the search engine database.

3. “FOUND NuOfResults FirstPage LastPage URL1 URL2 ...”
send back to the CGI program if the user query Wwasd,
where NuOfResults represent the number of resutsd,
FirstPage and LastPage are like “from FirstPagkastPage”,
for example if the number of results to be dispthyethe screen
are 10 results, the user search for some wordhfoffitst time
and the search database contain 30 results thefR¢g@lts will
be 30, FirstPage will be 1 and LastPage will bewlltich means
the search engine found 30 results and this messagains the
results from 1 to 10 and the URL1 ... URL1O0 is thellB®ings

for these results.

The CGI will receive the message from the SB& respond to the client
according to the contents of the message by gengratHTML page on the
fly and send it to the client.

Chapter 4

Web Site Search Engine

Operation

4.1 Introduction

This chapter consists of 6 parts, the firgt paplains the programming
languages used in developing the Web site seargimesnthe second part
explain how to run and use the proposed Web sdecBesngine, the third
part list the features of the proposed Web sitecbeangine, the forth part
discuss the system requirement, the fifth partudiscthe experiment and
results, and the last part show the tools used th@hWVeb site search engine,
which helps the Web site search engine administtataheck the search
engine operations.

4.2 Programming languages

Visual Basic was used as the main programming language for
implementing the crawler and the indexer.

VBScript andHTML were used as the programming languages in the
implementation of the user interface.

CGI (Common Gateway | nterface) was used in implementing the script

(program) that is called by the Web site server.

Chapter 4: Web Site Search Engine Operation 80

The search engine is one of the new topiasomputer science, the first
search engine was designed in 1995, building aseargine is a challenging
task requiring a lots of reading and learning margw subjects and
techniques, so the time was the master factonsnptioject leaving little time
for learning a visual language and being familiathwt’'s techniques and
especially the Internet techniques. Visual Basis used because it is simple,
easy to learn than the other visual languagesjngawots of time for the
project design.

HTML is the basic language for building Welgea so it has been used,
and VBScript is alient-side scripting language that is very simple and very
close to the Visual Basic programming language.

CGl is theserver-side scripting language that was used because of its
capabilities than the other server-side scriptemgglages likéASP (Active
Server Page) and PHP (Personal Home Page). Appendix B contains an

entire CGl library designed and written in visuaklz for this work.

4.3 User Interface

The project is divided into 3 parts: the Cranwthe Indexer and the Search
Engine Server (SES), each one have it's own interfdo put the search
engine on line, the Search Engine AdministratorASEust crawl the Web
site, index the pages to build the index, invertetex, and the lexicon then

run the SES, which will be ready for receiving aeguest.

4.3.1 Crawler User Interface
To start the crawling process, first the SEAstmenter some information
to the crawler program, which is:
* Output Path: the crawler needs this path to store the true Uftlfile
(TrueURLList.cul), the false URL list file (FalseUWRist.cul) and the

Chapter 4: Web Site Search Engine Operation 81

crawling results file (CrawlerResults.CR). For exdento set the
output path to “c:\", click oroptions, chooseSet Output Path then

write in the text box “c:\” as shown in figure (4.1
x|

Click To Start Crawling

f(f'r’i?k' M

Crawler-Output Path

ﬁEttthptPth

Figure (4.1) Crawler-Output Path
 URL Startup File: a text tfile that must be created by the SEA twest

the most popular pages URL’s including the HomeepBlldRL. The

URLs must be separated by spaces. To set the gathis$ file to the

crawler, fromoptions chooseSet URL Startup File and write the path
for this file in the text box and click on ok.

o Site Address: which represent the site name of the Web site. Fo
example if the Web site name was http://www.mysdm, from
options chooseSet the Site Address and write “mysite” in the textbox
and click on ok.

 URL Prefix: which is the prefix of the URL, for example the URL
prefix for the site http://www.mysite.com is “htffj; to set this option
then choos&et the URL Prefix from Options and write “http://”.

A special directory must be created in the pQutPath and named
“DownloadedPages’; all the Web pages will be store in that diregtofo
start the crawling process, click on gpeder button on the crawler form.

Chapter 4: Web Site Search Engine Operation 82

To see the results of the crawling operat@dmoseShow Results from
Results and write the path for the crawler results filel atick on ok and the

results will be shown as in figure (4.2).

| L Crawls

Optiongs |

=

E &

Mumber of Pages :

5 awling
Mumber of Downloaded Pages : I

Murber of External Links : I u ﬁ

Muraber of Mon HTML Links @ ID

Mumber of Connection Emars I d

Mumber of Downloaded Erors © I u

Mumber of Save Erors ; ID

_ o |

To view the true Figure (4.2) Crawling Results the crawler, use the

A

Crawling List Viewer program and click omset Crawling List then enter
the name of the crawling list file in the text bamd click on ok as shown in

figure (4.3) and the results in figure (4.4).

m =i0}x]
Crawled Li%ks Information Get Crawling

=] List

_ et |
|

|

Eindier the Crawie: Lixt file name 1\
Lowen | (T

-
| C:Froject VT Cameter ¥ 3 Tes\ TnueUiR Lt cod :‘
£l

Figure (4.3) Crawling List Viewer

Chapter 4: Web Site Search Engine Operation 83

M‘ =10} x|
Crawled Links Information i

thunderdoc s fonme el =
thunderdocs/chapber | Aohapber him
thinderdecs fohepber 27 chapbe 2 bl
thunderdocs/chapter] o1 1, ke
thunsderdocs/chapberl /o1 2 el
thunderdocs chapbe 1/ 3 el
thunderdoce/chapberlfpl 4 kel
thunderdocefchapbed /15 el
thunderdocs/chapber]/p1 6 bl
thumderdoc s chapbe 1/l 7 bl
thunderdocschapber /a1 71 kmd
thunderdocschapber1/p1 72 imi
thundendoci/chapbsl.pl T2 hitml
thursderdecs'chapte], /ol 74 biml =
thunderdocschapbe) /p1 8 htmi
thunderdoc s/ chapberl/p1 9 e
thunderdoce/chapte1/p1 10Uhiml

Type = Teus

Bl of Links = 45

thunderdocs.chapber 2 p 2 bl
thunderdecs.chapber 2023 bl
Hhunderdocschapbe 27024 hhml
thundardoe s, chapher 2 525 himd
Hrunderdocs/chapte 2/p2E bl

tianderdocs chapter 2027 bl
thunderdocschaptes 27/p29 Himd = \
F

L]

Figure (4.4) Crawling List Viewer-Results
4.3.2 Indexer user Interiace

To run the indexer, first the SEA must crahtestop word list, which is a
text file containing the stop words separated lgcsep. Then the SEA must
convert the stop words text file to a stop wordgedde by selectingBuild
Stop Words File from theBuild menu and write the stop words text file
name in the text box then write the filename of ntleev stop words data file

in the other text box as shown in figure (4.5) égdre (4.6).
& Indexer =0l x|

Buld Optionz

Indexer : Building Stop words file

X
Enter the filename of the stop wards best file m

Cancel

D:%Project Wi ndexser WahStopha'ards. bt

Figure (4.5) Indexer-Stop word text file

Chapter 4: Web Site Search Engine Operation 84

Build Optionz

Indexer : Building Stop words file

X
Enter the filename of the new stop words data file
Cancel

O 4Project W ndexer WahStopList, 5wl

Figure (4.6) Indexer-Stop word datafile
Now the SEA will have to set the Work PathseyectingSet Work Path

from Options then write the work path in the text box and clak ok as

shown in figure (4.7).

Build Options

Start Indexinn I
Indexer : Work path x|
Enter the woark path
Cancel |

Figure (4.7) Indexer-Work Path

The SEA have to set the stop list file namesélgctingSet Stop List file

name from Options as shown in figure (4.8).

Chapter 4: Web Site Search Engine Operation 85

O i

Buld Optionz

1

Indexer : Stop list Fil x|
Enter the Stop list file name 0k |

Canicel

I E:%Project WYEh ndeser Vahstoplist, 5wl

L B

Figure (4.8) Indexer-Stop List

TheDownloadedPages directory and thdrueURLList file must be in
the same Work Path for the indexer. ThelexFiles directory must be
created in the Work Path. To run the indexer, ainlStart 1ndexing button
then after finishing the indexing process clicktbe Build Inverted Index

Button to build the inverted index and the lexicon.

4.3.3 Search Engine Server User Interface

The SES is responsible for serving all theuests coming from the
clients. To put the SES on line, the SEA must chdoisange Path from
Options to set the path to the folder (directory) thatteows the lexicon file,

URL list file, word list file, inverted index fileas shown in figure (4.9).

Chapter 4: Web Site Search Engine Operation 86

% Search Engine Server - O] x|

Optionz

L3

Bun The Search Engine Server

Path x|
Enter the Fath
Cancel |

D:4Praject Whall Testss

Figure (4.9) SES

To run the SES click on tun The Search Engine Server button to

put the SES on line and ready to any request.

4.3.4 Search Engine Web page Interface

The search engine Web page consists of a(thgader), text box, search
button, and three links as shown in figure (4.10).

N Home Pagn - Hacrosdt Indemet Explors = =101 =

|| B Bt Y Fpeosln Dook el
= = B i Bl T [L -ér_-l’:‘JE

:;nlﬂ.iauil_?‘_immhm =] 6o | |k ™
=

Thunder

Samech

» About Thunder
= Preferences

& Diocumensahon

|

Figure (4.10) Search Engine Web page

Chapter 4: Web Site Search Engine Operation 87

The About page is used to give a descriptlmutathe search engine as
shown in figure (4.11)

2 Homs Page - Microzolt Inteimnet Fuplur-'
| Ee Edt Yiew Fgwoitst Tooks Help

| bk - = - @ () G| QSewch (alFavosiee (PHatoy |5 B D1~ = R
[[E s __=llom

Thunder "

Thunder 12 a Web site search engine designed by Eihab A, Mujan one of the
students of Al-Nahrain Unversity. =l
Thumder search engme have the following feabures:

1. Mot Case Sensetive
2 Make a Deep Crawhng

2 Fuelndas tha etnm wnrde feeaen tha wday

[&] Done [[5 My Cormputsr 7

Figure (4.11) About page

The Preferences page is used to change thieanwhresults per page as
shown in figure (4.12)

':illw Pags - Micioeoft Inlenmet Emlurvnr
| He Edt Vew Fpestss Jok Heb
|+ - - DD A Boewch aiFeveses Fhinc | - o B - 512.
Iﬂdﬁhﬂm E'xﬁelums..Hni J E’"Bﬂ | l.l'.i’-l”

Thunder ﬂ

Preferences

..lgl KE

Eesults per page I_

Figure (4.12) Preferences page

Chapter 4: Web Site Search Engine Operation 838

The documentation page give the documentatidime proposed system

as a web site.

4.4 Features

There are many features a search engine can &ad the following are

the most used features:

1. Case Sensitive: the proposed system is not case sensitive, bechus
the search engine is case sensitive then manytgesilllbe put aside
because they are capital or small which will redigenumber of
results.

2. Deep Crawling: the proposed system makes a deep crawling and
downloads all the pages it can access (excepkferreal and non-html
links).

3. Stop Word Indexing: the proposed system excludes stop words from
the index as a way to save storage space andéd sipethe search
process.

4. Use of Metatags: the proposed system excludes meta tags from the
index because many Web page designers put manyoke\yhat are
not related to the page in the meta tags to giee gages a higher
ranking (priority).

5. Linkstext indexing: the proposed system indexes the links text.

6. Ranking: the proposed system uses the word frequency, word
position, font attributes (size, color, style), atters (if the word is a
link, title or a heading) to rank words.

7. Spelling Correction, Stemming, and Abbreviation support: some
search engines have a spelling correction (typ&meaitic and the
search engine will search for the correct word,clvhs matlematic),
stemming (type swim and the search engine willdetor swim,

swims or swimming), and abbreviation support (typ@nd the search

Chapter 4: Web Site Search Engine Operation 89

engine will search for Al or Atrtificial Intelliger®). The proposed
system does not use spelling correction, stemmiradpbreviation.

8. Filter support: the proposed system has a filter used to ignore
downloading the external and non-html links.

9. Advance Search: the proposed system support advance searching by
providing Boolean search.

10.Support for Language: the proposed system search only English

words.

4.5 System Requirement

There are two types of system requirement: HardRaeuirement and

Software Requirement.

4.5.1 Hardware Requirement

The proposed Web site search engine requires online on the Internet
or at least be implemented on a network.

To give an idea about the Hardware requirerogétite server computer
required for running the Web site search enginescier the following

example:

The number of Web page in a Web site var@as fiens of pages to a
maximum of about 1,000,000 pages. In this exantb&eworst case
(Maximum) will be taken.

Consider a Web site with 1,000,000 Web pages; the average length of
URL string is 40 characters (URL string is like the.html”,
“products/new/newitems.htm”, “welcome.html”,

“buildings/rooms/tables/newtables.htm”, and the)ikaverage size of page s

Chapter 4: Web Site Search Engine Operation 90

1KB, average number of words in each page is 100 vwaverage number of
characters in a word is 10 characters.

There are two parts in the search engine
Off-Line part:

The Off-Line part consists of the crawler dinel indexer.

Crawler:

-Memory Requirement: the crawler requires memory space for the URL list
during running time.
Memory space required by the crawler = (average &izJRL string + 10) *
number of pages to be downloaded
= (40 + 10) * 1000,000
= 50,000,000 Bytes
=48 MB
The number 10 in the equation is the sum @&yigs for the left link, 4
Bytes for the right link, and 2 Bytes for the statf the URL link
(downloaded or not).
-Disk Requirement: the crawler requires disk space to store the U&lahd
the downloaded pages (store as files).
Disk space required for storing the URL list = Gverage size of URL string
* number of pages to be downloaded
=6 + 40 * 1000,000
= 40,000,00 Bytes
=39 MB
Disk space required for storing the downloaded pageumber of pages to
be downloaded * average page size
= 1000,000 * 1024
= 1,024,000,000 Bytes
=977 MB

Chapter 4: Web Site Search Engine Operation 91

Disk space required by the crawler = Disk spaceired for the URL list +
Disk space required for the downloaded pages

=39 MB + 977 MB

= 1016 MB (about 1 GB)

| ndexer:

The indexer consists of two parts: building thdex and building the

inverted index and lexicon.

Building theindex:
-Memory Requirement:

Building the index requires memory space herword list and additional
memory space for another word list that will bestbin the disk and also
used in building the inverted index and lexicon.

According to many research papers, the numbewnrds in English
language + scientific words is about 1000,000 wees [Ask01]).

Memory space required for word listl= (average wszeé + 12) * number of
unique words in the Web site
= (10 + 12) * 1000,000
= 22,000,000
=21 MB
The number 12 in the equation is the sum @&yis for the left link, 4
Bytes for the right link, and 4 Bytes for the numbé&word occurrences.
Memory space required for word list2 = (averagedasize + 4) * number of
pages to be downloaded
= (10 + 4) * 1000,000
= 14,000,000 Bytes
=14 MB

Chapter 4: Web Site Search Engine Operation 92

The number 4 in the equation is 4 Bytes ferntbmber of word
occurrences.
Memory space required to build the index = memgace required for word
listl + memory space required for word list2
=21 MB + 14 MB
=35MB
-Disk Requirement:
Building the index requires disk space fortlal 36 index files (size of
index), and for the word list.
Disk space required for storing the word list =glaage word size + 4) *
number of pages to be downloaded
=14 * 1000,000
= 14,000,000 Bytes
=14 MB
Disk space required for storing the index = 14 &rage number of words in
page * number of pages to be downloaded
=14 * 100 * 1000,000
= 1,400,000,000 Bytes
= 1336 MB
Disk space required for the indexer = disk spageired for storing the word
list + disk space required for storing the index
=14 MB + 1336 MB
= 1350 MB

Building theinverted index and lexicon:
-Memory Requirement:

Building the inverted index and lexicon regsimemory space for
holding one of the index files to sort it, word3reated while building the

index (14 MB), and the multilayer structure usedtfe lexicon.

Chapter 4: Web Site Search Engine Operation 93

Memory space required by the multilayer structesguires = (36 + 36+ 36’
+ 36" * 4
= 600416 MB
=7 MB
The index is spread in to 36 files, which neetrat theoretically, each file
size = index size / 36
= 1336 MB / 36
=38 MB
But according to English language statisties,words that begins with
the letter ‘e’ take 11% of the number of Englishrdgas shown in table (4.1)
[AskO5]

Table (4.1) Letter frequency distributionsin English

11.1607% |56.88 /M 3.0129% |15.36
8.4966% |43.31 H 3.0034% 15.31
7.5809% 38.64 G 2.4705% 12.59
7.5448% 38.45 B 2.0720% |10.56
7.1635% |36.51 |F |1.8121% 9.24
6.9509% 3543 'Y 1.7779% |9.06
6.6544% |33.92 W 1.2899% |6.57
5.7351% |29.23 K 1.1016% |5.61
5.4893% |27.98 |V 1.0074% |5.13
4.5388% 23.13 X |0.2902% 1.48
3.6308% |18.51 |Z 0.2722% |1.39
3.3844% (17.25'J 0.1965% |1.00
3.1671% 16.14 Q |0.1962% |(1)

T O Colrrln Z 40|~ |0 > m

Which means, that the index files will notdggual in size, in which the
‘e’ index file could be the largest index file acdimg to table (4.1), which
takes 11% of the index.

Largest index file size = index size * 11%

Chapter 4: Web Site Search Engine Operation 94

= 1336 MB * 11%
= 147 MB
Memory space required for building the invertedexend lexicon:
=147 MB + 14 MB + 7 MB
= 168 MB
-Disk Requirement:
Building the inverted index and lexicon reggidisk space for storing the
lexicon.

Disk space required for building the inverted in@exl lexicon = 7 MB

Memory required for the Off-Line phase = 168 MB
Disk space required for the Off-Line phase = digkce required for the
crawler + disk space required for the indexer
= 1016 MB + (1350 MB + 7 MB)
= 2373 MB

On-Linepart:

The On-Line phase consists of two parts: dsecher and the user
interface page.
Sear cher:

The searcher runs on the server-side (seorapater).
-Memory Requirement:

The searcher requires memory space for lexib@word list, and the
URL list.
Memory space required for the searcher = 7 MB MB4+ 39 MB

=60 MB

Chapter 4: Web Site Search Engine Operation 95

-Disk Requirement:

No disk space required.

User interface pages:

The user interface pages are viewed by theingke client-side (user
computer).
-Memory Requirement:

Only few Kilobytes are required for the Wetesearch engine Web page
and for the results Web page.
-Disk Requirement:

No disk space required.

Full Hardwar e Requirement:
Server computer with 168 MB (256 MB) of memand 2373 MB (3 GB)

of disk space.

4.5.2 Software Requirement

The user side (it is the user computer) rexguany Internet browser to

open the Web site search engine page and to bitbesesults of the search.

4.6 Experiment and Results

Evaluating of search results is to measure WwelWthe returned results
meet the user’s particular information need. Precisetric will be used to

evaluate the performance of the proposed system.

Precision: the precision is to measure how much of what feesisee is

relevant. This measure is defines as:

Chapter 4: Web Site Search Engine Operation 96

Precision =%

Where C is the number of relevant documertgexed by the search
engine. R is the number of documents retrievedbysearch engine.
For example, if the user search for the waalt™, and the results contain

40 pages, 20 of them are relevant then
Precision = % = 0.5 0r 50%

For testing the proposed system, a Web stteested, which contains the
first two chapter of this thesis (Chapterl and G&c), this Web site is
implemented on a local server, crawled, and indew#xth contains 45
pages. 5 different queries were tested and evalustiag the precision of the
first 10 retrieved results. The results are shawmable (4.2).

Table (4.2) Experiment results

Query Results Precision

—

1,2,3,9, 10 very Relevan
1. Internet 5, 6, 8 Relevant 80%
4.7 Irrelevant

1,2,3,7,8,9, 10 very
2. Crawler Relevant 100%
4,5, 6 Relevant

1,2, 3,7, 8 very Relevant
3. Search and Engine 4, 5, 9 Relevant 80%

6, 10 Irrelevant

1,3,4,6,9, 10 very
4- HTML Relevant 100%
2,5, 7, 8 Relevant

1,7, 8, 10 very Relevant
5- Search and Query 2, 5 Relevant 60%
3,4, 6, 9 Irrelevant

Chapter 4: Web Site Search Engine Operation 97

4.7 Tools

Two tools are designed to be used with thegsed Web site search
engine: URL list viewer and Word list viewer.

URL list viewer is a crawler tool used forplesying the URL list
generated by the crawler, this tool is shown inrfgg(4.13).

Word list viewer is an indexer tool used fpdiaying the Word list
generated by the indexer, this tool is shown inrkg(4.14).

~ipi x|

Crawled Links Information

thunderdocs/home. html :_] Tupe=True
thunderdocs/chapter /chapter]_html Mu of Links = 45
thunderdocs/chapter?/chapter2 html
thunderdocs/chapter1/p11 hitml
thunderdocs/chapter! /pl 2. himl
thunderdocs/chapter! /pl 3 html
thunderdocs/chapter] /pl 4. html
thunderdocs/chapter1/p15.himl
thunderdocs/chapter! /p16.himl
thunderdocs/chapter! /p1 7 _html
thunderdocs/chapter! /p171 html
thunderdocs/chapter1/p172 hitml
thunderdocs/chapter1/p17 3. himl
thunderdocs/chapter1 /p1 74 hitml
thunderdocs/chapter! /p1 8 html
thunderdocs/chapter!/pl 3 html
thunderdocs/chapter1/p11 0L html
thunderdocs/chapters/p21 . html
thunderdocs/chapter2/p22_html
thunderdocs/chapter2/p23. hitml
thunderdocs/chapter2/p24. hitml
thunderdocs/chapter2/p25. html
thunderdocs/chapter2/p26._html
thunderdocs/chapter2/p27 _html
thunderdocs/chapter2/p28. himl

4]

Figure (4.13) URL List Viewer

Chapter 4: Web Site Search Engine Operation

. Word List Viewer 10| x|

List fo Words
Mu ‘word Occurrences — [%

0 THUNDER 5
1 DOCUMENTATION 3
2 HOME 52 :
3 PAGE 61
4 WEB 152 . Open Word |
5 SITE 30 List

E SEARCH 162
7 ENGINE 73

3 WELCOME 45
9 CHAPTERT 31 Exit |
10 CHAPTERZ 53

11 INFORMATION 54
12 COMTALCT 1

13 US 4

14 2005 1

15 INTRODUCTION B
16 INTERMET &0

17 PHYSICAL 4

18 SOFT 4

19 WORLD 10

20 WwWIDE 7

M SITES 18 x

Figure(4.14) Word List Viewer

5.1
1-

2-

3-

Chapter 5

Conclusions and Future Works

Conclusions

The index is spread in 36 files, which reduce the sort time and memory
space required to build the inverted index.

The lexicon is created using a multilayer structure with 4 layers instead
of the binary search tree.

The ranking part based only on the word attributes of the pages, which
can be more efficient if the structure of the web (links) are used.

Suggestions for Future Works

Research on the user needs, the problems they face when using the
search engine and all the ideas they have or want to be in the search
engine.

Research on finding the best stop words to be used in the search
engine.

3. Develop aNLP query interface for the search engine.

4. Develop a search engine that index non-html documents like PDF,

Microsoft Word and other types of documents.

Design a search engine with adifferent interface technique between the
client request and the search program that is faster than the socket
interface.

Develop aranking algorithm using the structure of the web (links).

Dedication

I dedicate my work, to all the
researchers and scientists who use the
science to make the world a better place.

To all the people who sacrifice in their
lives for a better future for their country
and for their children.

To my country as a simple gift, to my

~) mothet, to my sistet, to my family.

o

‘CJJ
c‘\
R
-) Kl Eihab
< C Q@)
79 - =X

Keywords

Internet, Soft Internet, Web, WWW (World Wide Web), Web site Search
engine, Crawler, Indexer, Searcher, Visua Basic, CGlI (Common
Gateway Interface), HTML (Hyper Text Markup Language), Browser,
Web Growth, Starting Point Pages, Subject Trees, URL (Uniform
Resource Locator), TCP/IP (Transmission Control Protocol/Internet
Protocol), Client-Server Model, Web Servers, HTTP (Hyper Text
Transfer Protocol), IR (Information Retrieval), DR (Data Retrieval),
Characteristics of the Web, Difficulties of the Web, Types of search
engines, Architecture of search engine, search engine user interface.

List of Abbreviations

Abbreviation M eaning
Al Artificial Intelligence
ARPA Advanced Research Projects Agency
ASP Active Server Page
BOOTP Boot Strap Protocol
CERN European laboratory for particle physics
Cal Common Gateway Interface
CGI-SES Common Gateway |nterface-Search Engine Server
DNS Domain Name System
DR Data Retrieval
E-Mail Electronic Mall
ESMTP Extended Simple Mail Transfer Protocol
FAQs Frequently Asked Questions
FDDI Fiber Distributed Data Interface
FTP File Transfer Protocol
GIF Graphic Interchange Format
GML Generalized Markup Language
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
|IAB Internet Architecture Board
ICMP Internet Control Message Protocol
ICS Information and Computer Science
IP Internet Protocol

IR

Information Retrieval

1SO

International Standards Organization

JPG Joint Photographic Group
LAN Loca AreaNetwork
MTA Mail Transport Agents
NCP Network Control Protocol
NLP Natural Language Processing
PDF Portable Document Format
PHP Personal Home Page
SEA Search Engine Administrator
SES Search Engine Server
SGML Standard Generalized Markup Language
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
TCP Transmission Control Protocol
TF-IDF Term Frequency-Inverse Document Frequency
TFTP Trivial File Transfer Protocol
UDP User Datagram Protocol
URL Uniform Resource Locator
WWWwW World Wide Web

Chapter Three: Develpment of Web Site Search Engine 44

Start
Download l » goeg |Query hasno errors
= il
Crawler » URL List Error in query
/
Store Pages
Word List Query v
] J CGl |« User
. » Inverted Return i
Get Pages | Indexer | | Indexing Index and results Results
and angl » Index » Lexicon
Ranker ranking Builder
Sort
A
| nverted
I ndex
A A
L exicon

Figure (3.1) Proposed Web Site Search Engine Architecture

Design and
Implementation of
an

Internet Search
Engine

Introduction

The amount of information on the Web is growing rapidly,
as well as the number of new users inexperienced in the art
of Web research. The Web is enormous and growing at an
iIncredibly fast pace. It has been said that if the user spent
only one minute per page, 10 hours a day, it would take
four-and-a-half years to explore only 1 million Web pages.
Thus a real need exists for some way to search this
resource.

Difficulties of the Web

The Web creates new challenges for the information
retrieval. And these problems are:

1- Distributed data: data is distributed widely in the
world. It is located at different sites and platforms.

The communication links between computers vary
widely. Plus, there is no topology of data organization.

2- Large volume: the growth of data is exponential. It
poses issues that are difficult to cope with.

3- High percentage of volatile data: documents can be
added or removed easily in the World Wide WeDb.

Changes to these documents go unnoticed by others. 40%
of Web pages change every month. There is a very
chance of dangling links.

4- Unstructured and redundant data: the Web is not
exactly a distributed hypertext. It is impossible to
organize and add consistency to the data and the
hyperlinks. Web pages are not well structured and 30% of
all Web pages are duplicated. Semantic redundancy can
Increase traffic.

5- Quality of data: a lot of Web pages do not involve any
editorial process. That means data can be false, inaccurate,
outdated, or poorly written.

6- Heterogeneous data: data on the Web are
heterogeneous. They are written in different formats, media
types, and natural languages.

/- Dynamic data: the content of Web document changes
dynamically. The content can be changed by a pro:
such as hit counter that keep tracks of number of hits.

Web Search Solutions

There are three main solutions for searching the Web:
1- Starting Points Pages

These pages provide a good point of entry for people
accessing the Web for the first time. They include lots of
links that introduce the user to fundamental Web concepts,
sucl a< “What is a Browser?” the use car alsc find links

to Subject Trees, Search Engines, UsenefAQs
(Freguently Asked Questions), Internet documents of all
kinds, and “What's new” documents.

2- Subject Trees

A subject tree is a subject-oriented catalog of URLs
organized by topic. It is an alphabetically organized list of
selected Web resources that is usually organized with

major headings such as Arts and Humanities, Business,
Economy, Government, and the like

3- Search Engines

A search engine is a software used to crawl the Web for
downloading the Web pages, index them, rank theamd

build a database for these pages ready to be searched for
satisfying the user queries.

There are two types of search engine on the Web:
1- Web Site Search Engine
2- Internet Search Engine

While the Internet search engine search the entire Web
looking for answers to user’s query, the Web Site search
engine is dedicated to one Web Site, searching only that
Web Site.

Web Site Search Engine

The Web Site search engine consists of the following
components:

1- Crawler
2- Indexer
3- Ranke

4- Searcher

The Web Site search engine can be divided in to two
phases:

1- Off-Line phase
2- On-Line phase

Off-Line phase

The Off-Line phase consists of:

Crawler

The crawler is responsible for downloading all the pages in
the Web Site (Except for the non-HTML pages) and store
them as files in the storage unit. The crawler consist:

URL list, downloading program and a URL extractor.
Before running the crawler, the crawler designer will have
to initialize the URL list with some URLs (Home page and
other frequently requested URLS) as shown in the figure In
the next slide.

Request Page

I nter net .

URL List

Download

A 4

[Buffer in the W

memory J

Save Page

\4

First Link [«—— Start

Current Link

Last Link ~

Add new links

Extract Links

Links

A 4

Indexer

Filter Links

The indexer is responsible for parsing all the files (pages)
downloaded by the crawler and index all the words in these
files (except the stop words) and sort them to create the
Inverted index, then create the lexicon. The ranking is part

of the indexing phase.

Tag

B, STRONG, andBLINK

I,U, S, STRIKE, CODE,
SAMP, VAR, EM,
BLOCKQUOTE, TT,
CITE, ADDRESS, SUB,
SUP andK BD

BIG

MARQUEE

TITLE

A

H1, H2, H3, H4, H5 and
H6

FONT

Description

Change the word style

Change the word style

Change the word style and size

Convert the word to a scrolling word

Change the word to a title

Change the word to a link

Change the word to a heading

Change the word font style, color, or size

Rank Score

12

128

64

32

Off-Line means that till this moment the search engine is
not ready to serve the users. The Off-Line phase is
Implemented on the search engine server computer and
represent the first phase as shown in the following figure:

Start

Download l L exicon

\
Internet Crawler > URL List
/

y

Inverted

I ndex
Store Pages

Word List
v) _|—' Inverted [—
Indexer Indexing

L} ' " "'I
4 Get Pages Index and
Storgge and and Index |——» Lexicon =ort
Unit Ranker ranking ~ Builder

On-Line phase

The On-Line phase consists of:

Search Engine Interface

which consists of a Web page containing a text box and a
button (search button), so that the user can write the query
In the text box and click on the search button to

searching for the query and return the results. When the
user write the address of the search engine on the address
bar of the browser and press enter, the browser will display
the search engine Web page by downloading it from the
server of the search engine to the client computer (user).

The following figure is the user interface of the search

engine:

<} Home Page - Microsoft Internet Explorer =10] x|
J Eile Edit “iew Favoites Tools Help ﬁ
d= Bocl - = - @ @ e | @Search (] Favaortes < # Histary | %v = @ -]% E%

|
J.-’-‘-._dl:lrsssr E:“Home. htrnl j o Go JLinks 2
=1

Thunder

s
mearch |

o About Thunder

s Preferences

e Dlocumentation

=
4

I_ I_ i@ by Computer

CGl script

when the user click on the search button of the search
engine Web page, the client computer will connect to the
computer of the search engine and request to execute the
CGl script of the search engine. The CGI script will
perform a query processing to check the query and if there
are no errors, the CGl script will pass the query to the SES
(Search Engine Server) using the -SES (Commoil
Gateway Interface-Search Engine Server) protocol.

SES (Search Engine Server)

A program that runs on the server computer of the search
engine and waits for requests from any search engine CGl
script. When the SES recelives a request from a CGI script,
the SES will search the lexicon for the query and send the
results to the CGl script, which will send them to the client
computer (user).

The On-Line phase is shown in the following figure:

Request to download the Search Engine Web page

Download Search

1 2 .
SISl Search Engine Web page
Browser 3 Send Query
i N > CGlI script
Search Engine Web

6 7§

Page) CGI-SES

Return Results ! protocol
SES
Client Computer
Lexicon

Search Engine Server
Computer

Conclusions

1- The crawler uses only one list with two pointers to keep
track of the downloading process, which will add some
extra speed over crawlers that uses two lists.

2- The index is spread in 36 files, which reduce the sort
time and memory space required to build the inverted
iIndex

3- The lexicon is created using a multilayer structure with 4
layers instead of the binary search tree, which provide a
very fast access to the words required in the search process.

4- Using only a ranking system based on the word

attributes on the page does not give the required results; the
structure of the web (links) should be used to give more
power to the ranking system.

Suggestions for Future Work

1- Research on the user needs, the problems they face when
using the search engine and all the ideas they have or want
to be in the search engine.

2- Research on finding the best stop words to be used in the
search engine.

3- Research on spelling correction, stemming, abbrevi
and phrase search features.

4- Develop a NLP query interface for the search engine.

5- Develop a search engine that index non-html documents
like PDF, Microsoft Word and other types of documents.

6- Design a search engine with a different interface
technique between the client request and the search
program that is faster than the socket interface.

/- Add the title and date of publication to the URL list to
this proposed system.

8- Design a search engine capable of searching in more
than one language.

9- Design an Internet Crawler.

10- Develop a ranking algorithm using the structure of the
web (links)

11- Develop a search engine that search for images
(Content Based Image Retrieval).

Thank you
Fol

your listening

Design and
Implementation of
an

Internet Search
Engine

Introduction

The amount of information on the Web is growing rapidly,
as well as the number of new users inexperienced in the art
of Web research. The Web is enormous and growing at an
iIncredibly fast pace. It has been said that if the user spent
only one minute per page, 10 hours a day, it would take
four-and-a-half years to explore only 1 million Web pages.
Thus a real need exists for some way to search this
resource.

Difficulties of the Web

The Web creates new challenges for the information
retrieval. And these problems are:

1- Distributed data: data is distributed widely in the
world. It is located at different sites and platforms.

The communication links between computers vary
widely. Plus, there is no topology of data organization.

2- Large volume: the growth of data is exponential. It
poses issues that are difficult to cope with.

3- High percentage of volatile data: documents can be
added or removed easily in the World Wide WeDb.

Changes to these documents go unnoticed by others. 40%
of Web pages change every month. There is a very
chance of dangling links.

4- Unstructured and redundant data: the Web is not
exactly a distributed hypertext. It is impossible to
organize and add consistency to the data and the
hyperlinks. Web pages are not well structured and 30% of
all Web pages are duplicated. Semantic redundancy can
Increase traffic.

5- Quality of data: a lot of Web pages do not involve any
editorial process. That means data can be false, inaccurate,
outdated, or poorly written.

6- Heterogeneous data: data on the Web are
heterogeneous. They are written in different formats, media
types, and natural languages.

/- Dynamic data: the content of Web document changes
dynamically. The content can be changed by a pro:
such as hit counter that keep tracks of number of hits.

Web Search Solutions

There are three main solutions for searching the Web:
1- Starting Points Pages

These pages provide a good point of entry for people
accessing the Web for the first time. They include lots of
links that introduce the user to fundamental Web concepts,
sucl a< “What is a Browser?” the use car alsc find links

to Subject Trees, Search Engines, UsenefAQs
(Freguently Asked Questions), Internet documents of all
kinds, and “What's new” documents.

2- Subject Trees

A subject tree is a subject-oriented catalog of URLs
organized by topic. It is an alphabetically organized list of
selected Web resources that is usually organized with

major headings such as Arts and Humanities, Business,
Economy, Government, and the like

3- Search Engines

A search engine is a software used to crawl the Web for
downloading the Web pages, index them, rank theamd

build a database for these pages ready to be searched for
satisfying the user queries.

There are two types of search engine on the Web:
1- Web Site Search Engine
2- Internet Search Engine

While the Internet search engine search the entire Web
looking for answers to user’s query, the Web Site search
engine is dedicated to one Web Site, searching only that
Web Site.

Web Site Search Engine

The Web Site search engine consists of the following
components:

1- Crawler
2- Indexer
3- Ranke

4- Searcher

The Web Site search engine can be divided in to two
phases:

1- Off-Line phase
2- On-Line phase

Off-Line phase

The Off-Line phase consists of:

Crawler

The crawler is responsible for downloading all the pages in
the Web Site (Except for the non-HTML pages) and store
them as files in the storage unit. The crawler consist:

URL list, downloading program and a URL extractor.
Before running the crawler, the crawler designer will have
to initialize the URL list with some URLs (Home page and
other frequently requested URLS) as shown in the figure In
the next slide.

Request Page

I nter net .

URL List

Download

A 4

[Buffer in the W

memory J

Save Page

\4

First Link [«—— Start

Current Link

Last Link ~

Add new links

Extract Links

Links

A 4

Indexer

Filter Links

The indexer is responsible for parsing all the files (pages)
downloaded by the crawler and index all the words in these
files (except the stop words) and sort them to create the
Inverted index, then create the lexicon. The ranking is part

of the indexing phase.

Tag

B, STRONG, andBLINK

I,U, S, STRIKE, CODE,
SAMP, VAR, EM,
BLOCKQUOTE, TT,
CITE, ADDRESS, SUB,
SUP andK BD

BIG

MARQUEE

TITLE

A

H1, H2, H3, H4, H5 and
H6

FONT

Description

Change the word style

Change the word style

Change the word style and size

Convert the word to a scrolling word

Change the word to a title

Change the word to a link

Change the word to a heading

Change the word font style, color, or size

Rank Score

12

128

64

32

Off-Line means that till this moment the search engine is
not ready to serve the users. The Off-Line phase is
Implemented on the search engine server computer and
represent the first phase as shown in the following figure:

Start

Download l L exicon

\
Internet Crawler > URL List
/

y

Inverted

I ndex
Store Pages

Word List
v) _|—' Inverted [—
Indexer Indexing

L} ' " "'I
4 Get Pages Index and
Storgge and and Index |——» Lexicon =ort
Unit Ranker ranking ~ Builder

On-Line phase

The On-Line phase consists of:

Search Engine Interface

which consists of a Web page containing a text box and a
button (search button), so that the user can write the query
In the text box and click on the search button to

searching for the query and return the results. When the
user write the address of the search engine on the address
bar of the browser and press enter, the browser will display
the search engine Web page by downloading it from the
server of the search engine to the client computer (user).

The following figure is the user interface of the search

engine:

<} Home Page - Microsoft Internet Explorer =10] x|
J Eile Edit “iew Favoites Tools Help ﬁ
d= Bocl - = - @ @ e | @Search (] Favaortes < # Histary | %v = @ -]% E%

|
J.-’-‘-._dl:lrsssr E:“Home. htrnl j o Go JLinks 2
=1

Thunder

s
mearch |

o About Thunder

s Preferences

e Dlocumentation

=
4

I_ I_ i@ by Computer

CGl script

when the user click on the search button of the search
engine Web page, the client computer will connect to the
computer of the search engine and request to execute the
CGl script of the search engine. The CGI script will
perform a query processing to check the query and if there
are no errors, the CGl script will pass the query to the SES
(Search Engine Server) using the -SES (Commoil
Gateway Interface-Search Engine Server) protocol.

SES (Search Engine Server)

A program that runs on the server computer of the search
engine and waits for requests from any search engine CGl
script. When the SES recelives a request from a CGI script,
the SES will search the lexicon for the query and send the
results to the CGl script, which will send them to the client
computer (user).

The On-Line phase is shown in the following figure:

Request to download the Search Engine Web page

Download Search

1 2 .
SISl Search Engine Web page
Browser 3 Send Query
i N > CGlI script
Search Engine Web

6 7§

Page) CGI-SES

Return Results ! protocol
SES
Client Computer
Lexicon

Search Engine Server
Computer

Conclusions

1- The crawler uses only one list with two pointers to keep
track of the downloading process, which will add some
extra speed over crawlers that uses two lists.

2- The index is spread in 36 files, which reduce the sort
time and memory space required to build the inverted
iIndex

3- The lexicon is created using a multilayer structure with 4
layers instead of the binary search tree, which provide a
very fast access to the words required in the search process.

4- Using only a ranking system based on the word

attributes on the page does not give the required results; the
structure of the web (links) should be used to give more
power to the ranking system.

Suggestions for Future Work

1- Research on the user needs, the problems they face when
using the search engine and all the ideas they have or want
to be in the search engine.

2- Research on finding the best stop words to be used in the
search engine.

3- Research on spelling correction, stemming, abbrevi
and phrase search features.

4- Develop a NLP query interface for the search engine.

5- Develop a search engine that index non-html documents
like PDF, Microsoft Word and other types of documents.

6- Design a search engine with a different interface
technique between the client request and the search
program that is faster than the socket interface.

/- Add the title and date of publication to the URL list to
this proposed system.

8- Design a search engine capable of searching in more
than one language.

9- Design an Internet Crawler.

10- Develop a ranking algorithm using the structure of the
web (links)

11- Develop a search engine that search for images
(Content Based Image Retrieval).

Thank you
Fol

your listening

References

[AllI99] Allan Heydon and Marc Najork, “Mercator: 8calable,
Extensible Web Crawler”, Compaq System ResearcheC,et£99,
Available at
http://research.compag.com/src/mercator/papers/wapgr.html
[ArtO5] Articles, “Search Engine Types”, 2005, papgailable at
http://www.thejcdp.com

[AskO1] Ask Jeeves, “Number of words in Englishdaage”,
2001, paper available http://www.tm.wc.ask.com

[Ask05] Ask Oxford, “frequency of the letters oktlalphabet in
English”, 2005, paper available at
http://www.askoxford.com/asktheexperts/fag/aboutistfrequenc
y?view=uk

[Bibf99] Internet Certification Institute Internatal, “Basic
Internet Business Fundamentals”, 1999.

[Bri00] Brian H. Murray, "Sizing the Internet”, Cgiulance, Inc,
2000. Available at
http://www.cyveillance.com/web/downloads/Sizing theernet.p
df

[Bry96] Bryan Pfaffenberger, “Netscape Navigatd, 3urfing the
web and exploring the Internet”, AP Profession@ba.

[Dav00] David Maggiano, “CGI programming with TclAddison-
Wesley, 2000.

[EliO1] Elizabeth Liddy, “How a Search Engine WatkSchool of
Information Studies, Syracuse University, 2001. ilalde at
http://www.infotoday.com/searcher/may01/liddy.htm

[Fri96] Fritz J. Erickson and John A. Vonk, “Effect Internet”,
Irwin McGraw-Hill, 1996.

[Fri97] Fritz J. Erickson and John A. Vonk, “NetpeaNavigator
and the World Wide Web”, Irwin McGraw-Hill, 1997.

References

» [IsrO5] Isra’a Tahseen Ali Al-Attar, M.Sc. thestfternet Search
Engine Design”, 2005.

» [JHL98] Junghoo Cho, Hector Garcia-Molina, LawreRage,
“Efficient Crawling Through URL Ordering”, Departmeof
Computer Science, Stanford University. Available at
http://decweb.ethz.ch/www7/1919/com1919.htm

* [Jia00] Jianlin Cheng, “Design and implementatiohnG5 Web
Search Engine”, information and Computer Scienceaienent,
University of California, Irvine, 2000. Available a
http://contact.ics.edu/download/cheng-report.pdf

» [Mar01] Marc Najork, Janet L. Wiener, “Breadth-fisearch
crawling yields high-quality pages”, Compaq Systétesearch
Center, 2001, Available at http://www10.org/cdroapprs/208/

» [Pet98] Petar Perkovic, “Search engines: do yoalsfieeir
language? A search for ideal interface”, Faculti?bilosophy,
Department of information science, 1998.

* [Ric96] Rick Stout, “The World Wide Web CompletefBence”,
Osborne McGraw-Hill, 1996.

» [Sab02] Saba Abdul Khaliq Abdullah Al-Khadady, M. $uesis,
“Internet and Arabic search engines”, 2002.

» [SL98] Sergey Brin and Lawrence Page, “The Anataing
Large-Scale Hypertextual Web Search Engine”, Coempstience
Department, Stanford University, 1998. Availablép://www-
db.stanford.edu/~backrub/google.html

* [Sun01] Sunny Lam, “The Overview of Web Search Begf,
Department of Computer Science, University of WaterOntario
Canada, February, 9,2001. Available at
http://db.uwaterloo.ca/~tozsu/courses/cs748t/swigemny.pdf

» [Trek01] “Introduction to TREK (Text Retrieval Carence)”,
2001. Available ahttp://www210.org/cdrom/papers/317/nodel.html

References

o [Vir01] *Virtualis Glossary”, Virtualis Systems, 2001. Awble at
http://www.virtualis.com/quides_glossary.htmi

» [Wil03] WilsonWeb Stop Words paper. Available at
http://www.hwwilson.com/default.cfm

* [Wis01] “WiseNut Search Engine White Paper”, Sepien?001.
Available athttp://www.wisenut.com/pdf/wisenutwhitepaper.pdf

Table of Contents

ABSTRACT e e nnr e e e I
LIST OF ABBREVIATIONS ... 11
TABLE OF CONTENTS ...t \
CHAPTER ONE: INTRODUCTION......cccee e 1
I 1 1 o o [Tod 1 o o SRR 1
1.2 The INTEINEL.. ... 1
1.3 The Physical INternetouuiiiceeeeeee e 2...
1.4 The SOft INTEINETeeeiiiiiii e 2
1.5 The World Wide WED ... 3
1.6 Searching the WeDcoooi v 4...
1.6.1 Starting POINtS PAJESceevvverrririiaeereeeeeeeeeeeeeerrar e e e e eaaseeeeeeeeeeaeeeeees 5
1.6.2 SUDJECE TIEES ... ciiiiiiiiiiiiiiiii s ettt eetett e a e e s e e e e e e e e e eeeeeeeenneaeeeeesnnnees 5
RS I Y= Y= 1ol o I =1 T[] = 5
1.6.4 Web Site Search ENQINe...........uuveemeee e 6
1.7 LILErature SUIVEYcciceeeieeiiiie s et s e e e e ee et e e e e e e eeannna e ean 7.
1.8 AIM Of THESIS. ...t e 8
1.9 TNESIS LAYOUL....uuuuiiieiiiiiiiiiie ettt e e e e e e eannee 8
CHAPTER TWO: WEB AND SEARCH ENGINES..........ccccoveen..e. 10
P20 R 0] o Yo [¥ Tod 1 o o ISR 10
2.2 The Client-Server Modelooiiiiieeeiiiiiceeee e 10
2.3 WED SEIVEIS ...ttt ettt eeeeanaee 11
2.4 Uniform Resource Locator (URL).........coieiiiiiiii e 12
2.5 The HTML LanQUAageccoeeeiiiiiiii i eeeeeeie e 12

A N = (011 AT <] TR 13

2.7 Characteristics of the WeDoou e 14
2.8 Difficulties of the WEDoooiii e, 15
2.9 Information Retrieval............cooooviieeeei e, 7.1
2.10 Information Retrieval and Data Retrieval....................cccceeeeeenn. 18
2.11 Types of Search ENQINES e eeeeeeviiiiieeeeeeeeiiinnaeeeeen 19
2.12 The Problem with today’s Search ENgin€S.ccce...ovvovveeevevvinnnnnnn. 20
2.13 Architecture of Search ENginNe........ccccoeevvviiiiiiiiiiieeiie e, 21
2.14 Crawling Partccoooiviiiiiiis s eee e 22
2.14.1 Crawling TECRNIQUESuuueiiii e eeeeeee e 24
2.14.2 CraWler TYPES .. oottt e e e e e e e e e e e e eeeeeeeesennnnesenennes 25
2.15 INdexing Part........coooo e 25
2.15.1 INAEXING STEPS...cciiieiiirirnnnnnns s s s s e e e e e e e e e e e aeeeeeeeeetebasana e s aeeeaeaaaaeeeeas 29
2.16 RaNKING Partooovviiii e 33
2.16.1 Difficulties in Determining RelevancCycccccceeeeevveevveveeiiiiicieeennn 34.
2.16.2 DOCUMENT FEAIUIEScevuiieiiii s ceemmmmme et e et e e e e e e e eeneeneanes 34
2.17 User Interface Partooiicomemmmeeeee e 35.
2.17.1 QUENY INTEITACEceeeieeeeeeeeet et e e e e e e e e e e e e e e eea et eennnneeenenne 35
2.17.2 QUETY PIOCESSONceiiiiieeeeeiiiieeeeeeee e ettt e e e e et et e e e e e eeaa e e e e e eeemmnsneeas 37
2.17.3 ANSWET INEITACEcceeiiii e e 38
2.18 Searching Part ... 39
2.19 Search Engines EXamples........ccooovviiiiiiiiiiiiiece e 39
CHAPTER THREE: DEVELOPMENT OF WEB SITE SEARCH
ENGINEottt et e e e nreas 43
G 700 A 0 g0 T 11 [ox 1[0 o SRR 43
3.2 Architecture of Web Site Search Engine...........ooceeeviiiiiivinnnnnnnn. 43
G TG O > 111V [PSSR 47
3.3.1 Initializing the Crawler INnformationccc..ccoooeeeeiiiiiiieeiicce e 48
3.3.2 Initializing the URL LIStuoiiiiiiieeeiiiieie et 49
3.3.3 Downloading Pages and Extracting LINKS............cccoevvviiiiiiiiiiiiiiiciieee e, 51
3.3.4 Saving the Crawling INformation.......cccee.oooooeieiiiiiiiiii e 59
3.3.5 Saving the Crawler LIStuuuicceeerieieeiiiiiicese s e e e e e e e e eeeeeeeee e 59

3.4 Indexer and RaANKEY ... e, Q.6

3.4.1 Creating the INAEXuuuuii it e e eeeneeeeeeees 60

3.4.2 Creating the INVerted INAEXcomeeeeeeeeeeeeieiieieeiiiinne e eeeeeens 69

3.4.3 Creating the LEXICONuuuiiiiiciee e 72
S5 INEITACE .ovveii et e — 73
3.6 SCAICNETcciiiii i et — 74
3.7 The CGI-SES ProtoCol..........ccoouvuviiimmmmme e 77

CHAPTER FOUR: WEB SITE SEARCH ENGINE OPERATION.79

v I 1Y (0T (1o [o I PSPPI 79
4.2 Programming LanNQUAGEScoeeveeeerimmmmmmme e eeeeeeriineeeeneeeinnnnneeeaeeens 79
4.3 USEr INterfacCe......cov i 80
4.3.1 Crawler User INterfaceooiiieeeeeeiiiee e 80
4.3.2 Indexer USEr INtEITACE.............. ettt e e 83
4.3.3 Search Engine Server User INterfacecccc.uuvvvveiiiiiiiiieieeeeeiiieeeeiiiiis 85
4.3.4 Search Engine Web page Interfaceccooeeeevvvviieciiiiiiiieeeeeeeceeeeeiiies 86
4.4 FRATUIES ... ettt ettt et e e e e et e e e e e e e e e e e e n e eaes 88
4.5 System ReqUIrEMENTuuiii it 89
4.5.1 Hardware ReqUIrEMENTuuuuiiiiieieee ettt e e e e eeee s 89
4.5.2 Software ReqUIFEMENTccoeiiis e e e e e e e e e e aeeeenees 95
4.6 Experiment and ReSUILSoiviiiiiiiiiiii e 95
A 10T £ 97
CHAPTER FIVE: CONCLUSIONSAND FUTURE WORKS......... 99
5.1 CONCIUSIONSciiiiiiiiie et e e e e e e et e e e e eaaennan Q9
5.2 Suggestions for Future WOrksoeceeerieiiiiiiiieeeeeeiiie e 99
REFERENCES........ o et 100
APPENDIX A: THE INTERNET ... A-1
APPENDIX B: CGI LIBRARY ..ottt B-1

VIl

“-{lsugm\‘“

Republic of Irag
Al-Nahrain University

College of Science

Developement of a Web Site
Search Engine

A THESIS
SUBMITTED TO THE
COLLEGE OF SCIENCE, AI-NAHRAIN UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE IN
COMPUTER SCIENCE

By
Eihab Ahmed M ohammed Shakir
(B.Sc. 2002)

SUPERVISORS

Dr. Moaid A. Fadhil Dr. Ban N. Al-kallak

March 2005 Moharam 1425

Wy EN|

22a] ALl dan gy S Ao G Y Al e 3o sa gall Gl slaall AneS
o ESH Haghat (I (ga) Lee AN 8 Canll Jlae (B 3080 agual®) (readisll
o paainall Biclie b daradidl Cuadd) S jaa and S A0 Aalil) il
ASuill e (e 4 slhaall il glrall alal

e Sbuadind o AN (A Gma @ ge (B Conll padi i g 5p @ pall Cing e

gla yiul 4 axdiud)l acliy adgall Ciny @l jas araal) Cingy Gl 13 ol
Oe Jamuall o all ey (peddiiall J8 (e dediall Gl jladinl) ae dildae SY) Ciladial)
daiall L3 4K Gl cball o5l dadll § g adll aaa Jla) A i e ol
il 8 A jedly palall ¢) e mede 1 5 (Uald Olsie 5 lsie (i) Ga
A LS o(Bysthaall Al Ban g 5 5 SIAN) alaill jabias (e JlEl (B YU) e yedl)
Ll o pud) s il (8 pla aladiuly G sedll s 5 Bk e paSlaall G gdll arenal
sl o3 A yedll Aoy 334 3 b5 (Quick and Insertion sort methods) Jsay)
lida Ay) (e 0 sSh lilall damia JSa aladiuly g saldll

OSan Al Clia e Jaid ading 7 il agall iny & ma b addial) () alis
i s A5S Bal 31 s Y1 ASuE 8 3 sa sall ol)Y JSsel) alasiin)

)52V aladi o3 LS (S Jamy sl Slea callaly 7 il ad gl sy & e)
HyperText Markup Language, Visual Basic Script, Common :4dull daa 5l
Gateway Interface technique, Microsoft Visual Basic 6.0, and Windows
operating system Socket.

il e al s
‘ﬁ,ﬁ.ﬁ" Ay

2
e ‘

‘»;F.

e, .
f‘_m..g .'mi‘»

A) 4y) ggand
alad) Gl g Madl adailh 5515 g
Gl daala

puNAARAy,

Aligygan®

éﬂ\&ﬁﬂyﬁ#

s
asle A fualdl da)y o Cllhie (e ¢ jaS
Slualall

8
(Yoo ¥ el dndla (s siSy)

sl il

S i oy Lo EBBURTRTEVRN

VEY0 o jaa Yovo il

O e SLE dess dea g Z(w&‘

Ei habmurjan@yah0.com ;s S & 5l
OOYEVYY [oa V) ailell o8
YY) 0AT] sanall Caila o

Yo i)+ 3l 3/ATY Aagfalgall oa il sial
/0/¥ + v o Azl fy)

desktop

[.shellclassInfo]
LocalizedResourceName=0@%SystemRoot%\system32\shel132.d11,-21815

Page 1

	Microsoft Word - abstract.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - Appendix A.pdf
	Microsoft Word - AppendixB.pdf
	Microsoft Word - CERTIFICATE of Examination.pdf
	Microsoft Word - CERTIFICATE.pdf
	Microsoft Word - Chapter1.pdf
	Microsoft Word - Chapter2.pdf
	Microsoft Word - Chapter3.pdf
	Microsoft Word - Chapter4.pdf
	Microsoft Word - Chapter5.pdf
	Microsoft Word - Dedication.pdf
	Microsoft Word - Keywords.pdf
	Microsoft Word - List of Abbreviations.pdf
	Microsoft Word - overall structure.pdf
	Microsoft PowerPoint - Project-Presentation [Compatibility Mode].pdf
	Microsoft PowerPoint - Project-Presentation [Read-Only] [Compatibility Mode].pdf
	Microsoft Word - References.pdf
	Microsoft Word - Table of Contents.pdf
	Microsoft Word - Title.pdf
	Microsoft Word - الخلاصة.pdf
	Microsoft Word - عنوان.pdf
	Microsoft Word - معلومات.pdf
	desktop - Notepad.pdf

