
II

Abstract

 The amount of information on the Web is growing rapidly, as well as

the number of new users inexperienced in the art of Web research, which

leads to the development of many Web applications called search engines

specialized in helping the user in finding the information needed on the

Web.

 Web site search engine is software used for searching a specific Web

site for a specific query.

 This research aims to develop a Web site search engine that helps the

user to find the most relevant Web pages with the user queries. The

ranking part depends on the word attributes (such as font size, font style,

font color, position of the word in the page, link text, title, header) and

mixed with the indexing part. The index is spread in 36 binary files to

reduce the system resources (Memory and Storage required) and the

inverted index is created by sorting the index using the Improved Quick

and Insertion sort methods to increase the indexing speed. The Lexicon is

designed using a Multilayer structure with 4 layers.

 The ranking part of the proposed Web site search engine based only

on the word attributes, using the link structure of the Web will increase

the ranking efficiency.

 The proposed Web site search engine requires a computer installed as

a server.

 The programming tools used in developing the Web site search engine

are: HyperText Markup Language, Visual Basic Script, Common

Gateway Interface technique, Microsoft Visual Basic 6.0, and Windows

operating system Socket.

Acknowledgment

I would like to express my sincere appreciation to my

research supervisor, Dr. Moaid A. Fadhil, for giving me

the major steps to go on to explore the subject, shearing

with me the ideas in my research “Design and

Implementation of an Internet Search Engine” And

perform the points that I felt were important.

Also I wish to thank, Dr. Ban N. Al-kallak my

supervisor and Dr. Loay A. George for their available

advice and encouragement. Grateful thanks for the Head

of Department of Computer Science Dr. Taha S. Bashaga.

I wish to thank the staff of Computer Science Department

at the AL-Nahrain University for their help.

I would like to say "thank you" to my faithful friends for

supporting and giving me advises.

A-1

Appendix A

The Internet

A.1 How the Internet work [Dav00]

 In order to connect two dissimilar computers, they must be able to speak

the same language. The Arpanet researchers realized this early on and

developed a standard method for these machines to communicate, which they

called Network Control Protocol (NCP). NCP provided a standardized format

for how two different machines would exchange information. The early NCP

was adequate to support further research activities performed by various

researchers connected to the Arpanet, but it soon become apparent that NCP

itself was in need of further research and development.

 At about the same time that Ethernet was being developed in the labs of

Palo Alto, ARPA (Advanced Research Projects Agency, a branch of the U.S.

fedral government) had began funding additional research activities on

computer networks using various underlying methods of transmitting data,

including radio and satellite communication. In 1973, to keep pace with the

development of these new networking strategies, ARPA encouraged research

into a new protocol that would supersede the Network Control Protocol and

allow for host-to-host communication across any of these disparate networks.

 As a result of this effort, a new suite of protocols was developed. This

suite is referred to as the Internet Protocol Suit; however, this name is

typically overshadowed by two of the more famous protocols produced as a

Appendix A: The Internet

A-2

result of this new research: Internet Protocol and Transmission Control

Protocol (TCP/IP). ARPA once again made public the discoveries and the

design of their new TCP/IP.

 This new protocol suite was intended from the beginning to be a network

of networks. This concept was labeled Internetworking, and the actual project

became known as the Internet project.

Therefore, the Internet is not just a single network but a network of networks

that now span the globe.

A.2 Internet Protocol Layers [Dav00]

 The Internet protocol suite is based on four distinct and separate protocol

layers. These layers are defined to work synergistically, allowing messages to

flow cleanly across any number of dissimilar networks.

 In early networks and, indeed, the networks of today, protocols exist for

both the physical layer that connects machines together as well as for the

logical layer that is used to transmit data across the physical layer.

 In the Internet the IP serves as the delivery mechanism that moves these

packets from source to destination. The IP layer routes each packet submitted

to it by the TCP to its final destination. Each packet can be routed through a

different path to reach its destination.

 When discussing Internet communications, it is common to see these two

protocols referred to as TCP/IP because TCP is generally layered on top of

the lower level IP protocol, as shown in the following figure:

Appendix A: The Internet

A-3

 These two protocols exist in top of some physical layer comprising the

actual network hardware, such as Ethernet. At the highest level is some

application layer such as HTTP, FTP, or Telnet.

A.3 The Internet Protocol (IP) [Dav00]

 In order for the various networks connected to the Internet to share data,

they must use a common data format once their messages leave their native

network and travel out onto the Internet. This common format is IP, and any

computer connected to the Internet must format its message according to the

IP.

 IP used what are known as datagrams to transmit data from one machine

to another. A datagram is just a defined way of organizing the information

before it is sent. When a computer on a particular network wishes to send a

message to another machine, it packages an IP datagram and sends it out onto

its local network. The datagram is actually contained in the data field of the

lower-level data frame employed by the particular LAN (Local Area

Network) technology being used.

Application layer Various application protocols such as http, telnet,
Ftp, tftp, bootp, snmp, etc

Transport layer The TCP

Routing layer
The IP and ICMP
protocols

Physical layer
Not specified by the Internet suite, can be most any
independent networking standard (i.e., Ethernet, Token ring,
FDDI)

Appendix A: The Internet

A-4

 IP is known as a connectionless, best-attempt delivery system.

Connectionless means that there is no attempt made to verify that the

destination machine exists before sending the message. Best-attempt delivery

means that although successful delivery of the datagram is important, no

guarantee is provided. If the message is not successfully delivered, no error

status is returned to the sender. The detail of establishing a connection with

the destination machine and verifying delivery are left up to higher-level

protocols that ride on top of the IP delivery system.

A.4 The Transmission Control Protocol (TCP) [Dav00]

 Riding on top of the routing layer is the transport layer, this layer is

responsible for providing more robust delivery than can be provided for by

the connectionless, best-attempt delivery Internet Protocol.

 This layer is where Transmission Control Protocol comes in. TCP is the

layer that applications typically interface with to send and receive message

across the Internet.

 TCP provides for a reliable, connection-oriented data transmission

channel between two programs. These two programs may be running on the

same computer or different machines separated by thousands of miles.

Connection-oriented means a connection is established between the source

and destination machines before any data is sent. Reliable means that data

sent is guaranteed to reach its destination in the order sent or an error will be

returned to the sender.

 Whereas the IP address in as IP datagram specify a particular machine on

the Internet, the source port and destination port fields specify a particular

process on that machine. This allows messages to be sent to specific

applications running on a specific machine.

Appendix A: The Internet

A-5

A.5 The Application Layer [Mer97]

 This layer consists of a number of application protocols, that send its data

to the transport layer (TCP or UDP), the following are some of them.

A.5.1 FTP

 File Transfer Protocol is used for transferring documents and binary files.

FTP uses TCP port 21 for initiating and controlling connections, and TCP

port 20 for data transfer.

A.5.2 Telnet

 It is an application that allows users to log in to (telnet to) a machine and

use the equivalent of a direct console or terminal. Telnet uses TCP port 23.

A.5.3 Gopher

 Gopher is a precursor to HTTP that organizes and presents information in

a text-based menu format. Gopher has been largely obviated by HTTP.

Gopher uses TCP port 70.

A.5.4 Finger

 The Finger Protocol is used to find out information about users on a

particular host, it can also provides information about currently logged-in

users. Finger uses TCP port 79.

A.5.5 SMTP

 Simple mail transfer protocol is the protocol used to transfer email

between mail transport agents (MTA s) over the Internet. ESMTP is a new

extended version of SMTP that supports additional commands for MTA

communication. SMTP uses TCP port 25.

Appendix A: The Internet

A-6

A.5.6 HTTP

 Hypertext transfer protocol is the WWW protocol, and uses TCP port 80.

A.5.7 DNS

 Domain Name Service which uses TCP port 53.

A.6 Internet Addresses

 Every computer connected to the Internet has a unique address in the same

way that every family in a given city can have a unique telephone number

[Dav00].

 IP addresses take the form X.X.X.X, where each X is one byte, such as

152.2.254.81. Every IP address falls into a network, which is a block of IP

addresses grouped for administrative purpose [Mer97].

A.7 Domain Name System (DNS)

 Most users never see or use IP addresses directly because the Domain

Name System (DNS) provides a more meaningful and easier-to-remember

name.

 The host computer converts a DNS name to an IP address in the

background, so you don’t need to know the number [Fri97].

 A DNS name is made up of a domain and one or more subdomains. For

example, marauder.Millersv.edu uses the domain edu (educational

institution) and has two subdomains, millersv and marauder.

The first subdomain is the name of the network (Millersv). The second

subdomain, marauder, is the name of the computer system. If you read this

address backward, it is the educational institution Millersville University,

using the Marauder computer. There can be more than two subdomains

[Fri97].

Appendix A: The Internet

A-7

 DNS performs two functions. It provides lookup services, or name

resolution, to hosts that are trying to find the IP number of a given hostname.

It also provides the database that defines these mappings. Both of these

functions are provided by name servers, which are hosts that provide name

resolution services [Mer97].

B-1

Appendix B

CGI Library

This library is implemented using Visual Basic 6.0 for the proposed Web site

search engine.

Option Explicit

'API Functions

Declare Function GetStdHandle Lib "kernel32" _

 (ByVal nStdHandle As Long) As Long

Declare Function ReadFile Lib "kernel32" _

 (ByVal hFile As Long, _

 lpBuffer As Any, _

 ByVal nNumberOfBytesToRead As Long, _

 lpNumberOfBytesRead As Long, _

 lpOverlapped As Any) As Long

Declare Function WriteFile Lib "kernel32" _

 (ByVal hFile As Long, _

 ByVal lpBuffer As String, _

 ByVal nNumberOfBytesToWrite As Long, _

 lpNumberOfBytesWritten As Long, _

 lpOverlapped As Any) As Long

'Environment Variables

Public CGI_Accept As String

Appendix B: CGI Library

B-2

Public CGI_AuthType As String

Public CGI_ContentLength As String

Public CGI_ContentType As String

Public CGI_GatewayInterface As String

Public CGI_PathInfo As String

Public CGI_PathTranslated As String

Public CGI_QueryString As String

Public CGI_Referer As String

Public CGI_RemoteAddr As String

Public CGI_RemoteHost As String

Public CGI_RemoteIdent As String

Public CGI_RemoteUser As String

Public CGI_RequestMethod As String

Public CGI_ScriptName As String

Public CGI_ServerSoftware As String

Public CGI_ServerName As String

Public CGI_ServerPort As String

Public CGI_ServerProtocol As String

Public CGI_UserAgent As String

'Length of incoming Data

Public lContentLength As Long

'Form's data of the client

Public formData As String

'Record to hold pair values

Type pairsRecord

 Name As String

 Value As String

End Type

'Array to hold pairs and Variable to hold number of pairs

Public pairs() As pairsRecord

Appendix B: CGI Library

B-3

Public pairsNo As Long

'Standard Input AND Standard Output

Public Const STD_INPUT_HANDLE = -10&

Public Const STD_OUTPUT_HANDLE = -11&

Public hStdIn As Long

Public hStdOut As Long

Sub Main()

 Initialize

 GetFormData

 CGI_Main

End Sub

Sub Initialize()

 pairsNo = 0

 hStdIn = GetStdHandle(STD_INPUT_HANDLE)

 hStdOut = GetStdHandle(STD_OUTPUT_HANDLE)

 CGI_Accept = Environ("HTTP_ACCEPT")

 CGI_AuthType = Environ("AUTH_TYPE")

 CGI_ContentLength = Environ("CONTENT_LENGTH")

 CGI_ContentType = Environ("CONTENT_TYPE")

 CGI_GatewayInterface = Environ("GATEWAY_INTERFACE")

 CGI_PathInfo = Environ("PATH_INFO")

 CGI_PathTranslated = Environ("PATH_TRANSLATED")

 CGI_QueryString = Environ("QUERY_STRING")

 CGI_Referer = Environ("HTTP_REFERER")

 CGI_RemoteAddr = Environ("REMOTE_ADDR")

 CGI_RemoteHost = Environ("REMOTE_HOST")

 CGI_RemoteIdent = Environ("REMOTE_IDENT")

 CGI_RemoteUser = Environ("REMOTE_USER")

 CGI_RequestMethod = Environ("REQUEST_METHOD")

 CGI_ScriptName = Environ("SCRIPT_NAME")

Appendix B: CGI Library

B-4

 CGI_ServerSoftware = Environ("SERVER_SOFTWARE")

 CGI_ServerName = Environ("SERVER_NAME")

 CGI_ServerPort = Environ("SERVER_PORT")

 CGI_ServerProtocol = Environ("SERVER_PROTOCOL")

 CGI_UserAgent = Environ("HTTP_USER_AGENT")

 lContentLength = Val(CGI_ContentLength)

End Sub

Sub GetFormData()

 Dim tempBuffer As String

 Dim bytesRead As Long

 If CGI_RequestMethod = "POST" Then

 tempBuffer = String(lContentLength, Chr(0))

 ReadFile hStdIn, ByVal tempBuffer, lContentLength, bytesRead, ByVal 0&

 formData = Left(tempBuffer, bytesRead)

 GetPairs (formData)

 ElseIf CGI_RequestMethod = "GET" Then

 GetPairs (CGI_QueryString)

 Else

 'Put code for other requests like head

 End If

End Sub

Sub GetPairs(data As String)

 Dim pointer As Long

 Dim position As Long

 Dim length As Long

 'If Data = "" Then Exit Sub

 pointer = 1

 Do

Appendix B: CGI Library

B-5

 position = InStr(pointer, data, "=")

 If position = 0 Then Exit Do

 pairsNo = pairsNo + 1

 ReDim Preserve pairs(1 To pairsNo)

 pairs(pairsNo).Name = UCase(DecodeString(Mid(data, pointer, position - pointer)))

 pointer = position + 1

 position = InStr(pointer, data, "&")

 If position = 0 Then

 length = Len(data)

 If pointer > length Then

 pairs(pairsNo).Value = ""

 Else

 pairs(pairsNo).Value = DecodeString(Mid(data, pointer, length))

 End If

 Exit Do

 End If

 pairs(pairsNo).Value = DecodeString(Mid(data, pointer, position - pointer))

 pointer = position + 1

 Loop

End Sub

Function EncodeString(data As String) As String

 Dim pointer As Long

 Dim position As Long

 'convert all (" ") to encoded (spaces)

 pointer = 1

 Do

 position = InStr(pointer, data, " ")

 If position = 0 Then Exit Do

 data = Mid(data, pointer, position - pointer) & "%20" & Mid(data, position + 1)

 pointer = position + 3

 Loop

Appendix B: CGI Library

B-6

 EncodeString = data

End Function

Function DecodeString(data As String) As String

 Dim pointer As Long

 Dim position As Long

 'convert all "+" to " " (space)

 pointer = 1

 Do

 position = InStr(pointer, data, "+")

 If position = 0 Then Exit Do

 Mid(data, position, 1) = " "

 pointer = position + 1

 Loop

 'Convert all %dd to character

 pointer = 1

 Do

 position = InStr(pointer, data, "%")

 If position = 0 Then Exit Do

 Mid(data, position, 1) = Chr("&H" & Mid(data, position + 1, 2))

 data = Left(data, position) & Mid(data, position + 3)

 Loop

 DecodeString = data

End Function

Function GetControlValue(ControlName As String, Value As String) As Boolean

 Dim co As Long

 If pairsNo = 0 Then

 GetControlValue = False

 Exit Function

Appendix B: CGI Library

B-7

 End If

 ControlName = UCase(ControlName)

 For co = 1 To pairsNo

 If ControlName = pairs(co).Name Then

 Value = pairs(co).Value

 GetControlValue = True

 Exit Function

 End If

 Next co

End Function

Sub SendData(data As String)

 Dim lpNumberOfBytesWritten As Long

 data = data & vbCrLf

 WriteFile hStdOut, data, Len(data), lpNumberOfBytesWritten, ByVal 0&

End Sub

Sub SendStatusOK()

 'HTTP Status header

 SendData "Status: 200 OK"

 'HTTP Content type header

 SendData "Content-type: text/html" & vbCrLf

End Sub

Sub SendThunderHed()

 'Head of the results page

 SendData "<HTML><HEAD><TITLE>Results"

 SendData "</TITLE></HEAD><BODY>"

 'Thunder Search Engine Shape

 SendData "<Center></Center>"

 SendData "<Form Name=MainForm Action=/cgi-bin/Search.exe Method=Get>"

 SendData "<Input Type=Text Name=ST size=50 " & "Value=" & hst & ">"

 SendData "<Input Type=Submit Name=Search Value=Search>"

Appendix B: CGI Library

B-8

 SendData "<Input Type=Hidden Name=hst Value=" & hst & ">"

End Sub

Sub SendError(errorTxt As String)

 SendStatusOK

 'Head of the results page

 SendData "<HTML><HEAD><TITLE>Results"

 SendData "</TITLE></HEAD><BODY>"

 'Thunder Search Engine Shape

 SendData "<Center></Center>"

 SendData "<Form Name=MainForm Action=/cgi-bin/Search.exe Method=Get>"

 SendData "<Input Type=Text Name=ST size=50 " & "Value=""""" & ">"

 SendData "<Input Type=Submit Name=Search Value=Search>"

 SendData "<Input Type=Hidden Name=hst Value=""""" & ">"

 SendData "<Input Type=Hidden Name=hfp Value=" & 1 & ">"

 SendData "<Input Type=Hidden Name=hnp Value=" & hnp & ">"

 SendData "<Input Type=Hidden Name=htype Value=1>"

 SendData "</Form>"

 SendData "<HR>"

 SendData "<Center><H2>ERROR</H2></Center>"

 SendData "Text: " & hst & "
"

 SendData errorTxt

End Sub

CCeerrttiiffiiccaattiioonn ooff tthhee EExxaammiinnaattiioonn CCoommmmiitttteeee

We chairman and members of the examination committee, certify that we have
studied the thesis entitled (Development of a Web Site Search Engine) presented by
the student Eihab Ahmed Muhammed Shaker Murjan and examined him in its
contents and in what is related to it, and we have found it worthy to be accepted for
the degree of Master of Science in Computer Science with grade Very Good.

Signature: Signature:

Name: Dr. Imad H. Al-Hussaini Name: Dr. Jamal M. Al-Ethawie

Title: Assistant Professor Title: Lectuerer

Date: / / 2005 Date: / / 2005

 (Chairman) (Member)

 Signature:

 Name: Dr. Ahmed Tariq

 Title: Assistant Professor

 Date: / / 2005

 (Member)

Signature: Signature:

Name: Dr. Moaid A. Fadhil Name: Dr. Ban N. Al-kallak

Title: Senior Rreasercher Title: Lectuerer

Date: / / 2005 Date: / / 2005

 (Supervisor) (Supervisor)

Signature:

Name: Dr. Laith Abdul Aziz Al-Ani

Title: Dean of College of Science

Date: / / 2005

SSuuppeerrvviissoorr CCeerrttiiffiiccaattiioonn

We certify that this thesis was prepared under our supervision at the
Department of Computer Science/College of Science/ Al-Nahrain

University, by Eihab Ahmed Mohammed Shakir as partial fulfillment

of the requirements for the degree of Master of Science in Computer
Science.

Signature: Signature:

Name: Dr. Moaid A. Fadhil Name: Dr. Ban N. Al-kallak

Title: Senior Rreasercher Title: Lectuerer

Date: / / 2005 Date: / / 2005

In view of the available recommendations, I forward this thesis for
debate by the examination committee.

Signature:

Name: Dr. Taha S. Bashaga

Title: Head of the Department of Computer Science, Al-Nahrain

University.

Date: / / 2005

Chapter One

Introduction

1.1 Introduction

 The Web creates new challenges for information retrieval. The amount of

information on the Web is growing rapidly, as well as the number of new

users inexperienced in the art of Web research. People are likely to surf the

Web using its link graph, often starting with high quality human maintained

indices such as Yahoo! or with search engines. Human maintained lists cover

popular topics effectively but are subjective, expensive to build and maintain,

slow to improve, and cannot cover all esoteric topics. Automated search

engines that rely on keyword matching usually return too many low quality

matches. To make matters worse, some advertisers attempt to gain people's

attention by taking measures meant to mislead automated search engines

[SL98].

 So a real need exist for a search engine that can provide high quality

search results.

1.2 The Internet

 The Internet initiated a communications revolution where millions of

users send messages, check live video cameras, read magazines, newspapers,

participate in discussion groups spread around the world, and watch video

Chapter One: Introduction ٢

news segments as routinely as most of people turn on a television or talk on

the telephone.

 It is the Internet that bridges time, distance, and culture. It is where you

can learn about almost any subject and communicate with almost anyone

almost instantly [Fri96].

1.3 The Physical Internet [Fri97]

 A network is a collection of computers linked together to achieve some

common goal. In most cases, networks allow users to share information. In

many businesses, networks enable one computer to send messages or get

information from another computer. Conceptually, the Internet is no different

from any other network, except it is bigger.

 The Internet is a network of networks linked using very precise rules that

allow any computer to connect to and exchange information with other

networks or computers connected to the Inetrnet. Connecting to the Internet

means connecting to tens of thousands of other networks, millions of

individual computers, and tens of millions of other computer users.

1.4 The Soft Internet [Fri97]

 The Internet is a system that uses a communication language, called a

protocol, to enable one computer network to speak to another. During the

1980s a new communication language emerged called Transmission

Control Protocol/Internet Protocol (TCP/IP). TCP/IP became a standard

for the Internet. In short, any computer network could communicate with any

other computer network as long as they both used the TCP/IP standard

protocol.

 The Internet Society is a voluntary organization and is not run by the

government or by any individual. Rather, it is a board that meets to set

Chapter One: Introduction ٣

standards and determine resources. For example, it is the Internet Society,

through the Internet Architecture Board (IAB), that determinees addresses

for users, as well as the rules for accessing and using these addresses. For

more information about the internet, see Appendix A.

1.5 The World Wide Web

 The World Wide Web (WWW), was invented by Tim Berners-Lee in late

1990 while he was working at CERN, the European laboratory for particle

physics. The WWW is a distributed hypermedia environment consisting of

documents from around the world. The documents are linked using a system

known as Hypertext, where elements of one document may be linked to

specific elements of another document. The documents may be located on

any computer connected to the Internet. In this context, the world

“document” is not limited to text but may include video, audio, graphics,

databases, and a host of other tools that can be accessed from any Web

browser [Dav00].

 These documents are created with a special language called Hypertext

Markup Language (HTML). This language allows the full use of

hypermedia including text, images, graphics, sounds and other types of

multimedia. Because HTML is a special language, it requires special

software to access the Web. This type of access program is known as a

Browser [Sab02].

 The Internet has suffered for years from a reputation of being difficult to

learn, hard to use. The WWW has changed all this. The Web has quickly

become the graphical user interface to the Internet.

 A Web site is a location on the WWW. Each Web site contains a Home

page, which is the first document or Web page that users see when they enter

the site. The site might also contain additional documents, files, or Web

pages, which are sometimes called Child pages [Vir01].

Chapter One: Introduction ٤

1.6 Searching the Web

 With so much data on the Internet, it can be difficult, frustrating, and

seemingly impossible to find the exact information needed by the user

[Bibf99].

 Figure (1.1) [Bri00] present the growth of the Web according to a study
presented by Cyveillance, Inc. Cyveillance make predictions regarding future
growth of the Internet based on data collected over an eight-month period of
time.

 Number of unique pages on the Internet: 2.1 billion
 Unique pages added per day: 7.3 million

Figure (1.1) Size and Growth of the Internet

 The Web is enormous and growing at an incredibly fast pace. It has been

said that if the user spent only one minute per page, 10 hours a day, it would

take four-and-a-half years to explore only 1 million Web pages. Thus a real

need exists for some way to search this huge resource [Bibf99].

 A few years ago a number of sites developed a means for locating

information on the Web. These sites collect information on other Web sites

then use a search engine (a piece of software for searching data) to locate

Chapter One: Introduction ٥

matches based on specific criteria. In addition, several of these sites provide

categorical listing of relevant Web sites [Fri96].

1.6.1 Starting Points Pages

 These pages provide a good point of entry for people accessing the Web

for the first time.

 They include lots of links that introduce the user to fundamental Web

concepts, such as “What is a Browser?” the user can also find links to Subject

Trees, Search Engines, Usenet FAQs (Frequently Asked Questions),

Internet documents of all kinds, and “What’s new” documents [Bry96].

1.6.2 Subject Trees [Bry96]

 A subject tree is a subject-oriented catalog of URLs organized by topic. It

is an alphabetically organized list of selected Web resources that is usually

organized with major headings such as Arts and Humanities, Business,

Economy, Government, and the like.

 Within each category are found subheadings, which in turn display pages

listing specific hyperlinks. Because subject trees are manually updated, they

cannot hope to cover all of the Web. No subject tree is complete; it is a really

big pain to keep one of these things updated, but they are very useful because

they are selective; they list only those documents that would likely prove

useful to the user.

1.6.3 Search Engine

 It is a software used to help the Web user to search the Web for a specific

information. According to a recent study sponsored by Realnames

Corporation, 75% of frequent Internet users use search engines to navigate

the Web [Trek01].

Chapter One: Introduction ٦

 The search engine consists of the following parts:

1. Crawler: a program used to download the pages from the Web site and

save it as files on the storage unit. But there are many practical

complications in the crawler: sites may be busy or down during the

crawling time, and come back to life later; pages may be duplicated at

multiple sites; many pages have text that does not conform to the

standards for HTML, HTTP redirection, robot exclusion; some

information is hard to access because it is hidden behinde a form, Flash

animation or script program.

2. Indexer: A search engine’s index is similar to the index in the back of a

book: it is used to find the pages on which a word occures [Isr05]. The

indexer parse all the pages downloaded by the crawler and extract the

words in the pages to build the index. The search engine index could

be very large, so various of compression techniques could be used to

reduce the size of the index.

3. Ranker: it is responsible for ranking the pages and decide which ones

are most relevant to the user needs. There are many features that can be

used to decide which pages contain the most relevant words required

by the user such as (word font size, word font style, word font color,

position of the word in the page).

4. User Interface: provide the interface as a Web page to the user with a

text box and a search button. The user write his/her query in the text

box and click on the search button, then a new page will be displayed

containing the results of the required query.

1.6.4 Web Site Search Engine

 Web site search engine has become increasingly important for the Web

sites of education institutes, government and private companies, because it

Chapter One: Introduction ٧

provides more detailed information that general search engine usually can’t

offer.

 Web site search engines are small compared with the Internet search

engines, while the Internet search engine search the entire Web looking for

answers to the user’s query, the Web site search engine is dedicated to one

Web site, searching only that Web site.

1.7 Literature Survey

1- Isra’a Tahseen Ali Al-Attar [Isr05], “Internet Search Engine Design”:

this work gives a description of the design of Internet search engine

and concentrates on the ranking of the search engine which consists of

two subsystems: a term-based ranking subsystem that assign a rank

score to the Web pages using the TF-IDF (Term Frequency-Inverse

Document Frequency) algorithm and Vector Spreading Activation

algorithm and a link-based ranking subsystem that assigns a rank score

to the Web pages depending on their contained hyperlinks by

implementing an improved PageRank algorithm.

2- Jianlin Cheng [Jia00], “Design and implementation of ICS

(Information and Computer Science) Web Search Engine”: presents

the design of a site-specific search engine called ICS Web search

engine, with a crawler that download about 12,000 pages and a ranker

using the Roberson and Sparck Jones TF-IDF method.

3- Sunny Lam [Sun01], “The Overview of Web Search Engines”: this

paper gives a description of the search engines and information about

the Web characteristics and the difficulties of search in the Web. Also

gives many crawler examples.

4- Sergey Brin and Lawrence Page [SL98], “Google”: present Google, a

prototype of a large-scale search engine which makes heavy use of the

structure present in hypertext, it is designed to crawl and index the

Chapter One: Introduction ٨

Web efficiently and produce much more satisfying search results. This

paper provide an in-depth description of the Google search engine.

5- Allan Heydon and Marc Najork [All99], “Mercator”: this paper

presents Mercator a scalable extensible web crawler, which descripes

all the basics and traps related to designing a crawler and gives many

statistics about the Web.

6- WiseNut [Wis01]: this paper gives a description of the WiseNut search

engine that consists of a crawler (named Zyborg), indexer that extract

keywords and link information, context-sensetive ranking system , and

query server.

1.8 Aim of Thesis

 The objective of this thesis is to develop a Web site search engine to be

used by any Web site by crawling, indexing, and ranking all the Web pages

in that Web site to create the database, in which any user can use the Web

site search engine to find the information nedded for his/her query by

searching the database and return a Web page contains a list of links to all the

pages that contain information about the user query.

1.9 Thesis Layout

 In this section, the contents of individual chapters of the thesis are briefly

reviewed.

� Chapter two: covers the theoretical basis of Web searching with the

parts of the search engine.

� Chapter three: presents the practical work of the Web site search

engine.

� Chapter four: presents the programming languages used in the

proposed Web site search engine, user interface, features, system

Chapter One: Introduction ٩

requirement, experiment and results and tools used in the operation of

the proposed Web site search engine.

� Chapter five: presents the conclusions on this work, with

recommendation for future work.

Chapter Two

Web and Search Engines

2.1 Introduction

 This chapter starts by talking about the Client-Server model, Web servers

and URL which explains how the Web works, then how to create Web pages

using the Web language (HTML) and how to view them using the Browser,

then the Web characteristics and difficulties are explained.

 After describing the Web, the importance of information retrieval, it’s

relationship with the search engines and the difference between information

retrieval and data retrieval are discussed.

 Then the types of search engines are listed, and the problems of search

engines are discussed.

 The last parts of the chapter describe the search engine architecture in

details and give examples for Internet and Web site search engines.

2.2 The Client-Server Model

 The WWW, as with most of the services available today, is based on the

long-standing client-server model illustrated in figure (2.1):

Client

Server

Figure (2.1) Client-Server Model

Client

Client

Chapter Two: Web and Search Engines 11

 In this model there are normally many clients accessing a single server.

One of the principal reasons for using the client-server model is the

consolidation of resources in a central location. The server usually offers

some service that many clients are interested in [Dav00].

2.3 Web Servers

 Web server is a program that makes web pages available to people who

are browsing the web [Bry96].

 It is a program that monitors a particular port on the server computer and

waits for incoming messages. Web server programs are specifically related to

the WWW services that run on the Internet and by default listen to port 80.

 These incoming messages are formatted according to the Hypertext

Transfer Protocol (HTTP). These HTTP messages request information

residing on the Web server’s computer.

 A Web server provides four major functions:

- Serving Web pages.

- Running gateway programs and returning their output.

- Controlling access to the server.

- Monitoring and logging server access statistics [Ric96].

 If the request is for a simple static document that resides on the Web

server computer, the Web server will retrieve the document and return it to

the client that requests it. [Dav00]

 The request may be for a static document that contains some embedded

directives that must first be translated by the Web server before returning the

document. [Dav00]

 Lastly, the request may be to execute a CGI (Common Gateway Interface)

program. The Web server will execute the specified CGI program and make

the data passed from the web client available to the CGI program. When the

Chapter Two: Web and Search Engines 12

CGI program completes, the web server will pass back to the client any

information that was returned by the CGI program [Dav00].

2.4 Uniform Resource Locator (URL)

 URLs are used to point to resources of all types on the WWW, including

HTTP documents.

 A URL is made of protocol part, a server designation (Host name), a

port, and a file (path) designation as shown below.

 http :// www.nsa.gov :[80] /index.html

 Protocol Host name Port Filename

Each page on the Web has it’s own address, which is it’s URL.

2.5 The HTML Language

 Back in the early 80’s, IBM had a pretty good idea that was a little ahead

of its time. This idea was to create documents with titles, addresses, headings,

body text, and other elements that are all very similar from one document to

the next.

 The avenue that IBM explored was to develop a sort of pseudo-computer

language that combines plain text and formatting instructions. Such a

language is called a markup language, and IBM called its version

Generalized Markup Language, or GML. IBM never did much with GML,

so the International Standards Organization (ISO) derived its language

from IBM’s GML but called the new language SGML, for Standard

Generalized Markup Language.

 SGML defines many different types of documents. One of these

documents was the hypertext document. HTML, which stands for Hypertext

Chapter Two: Web and Search Engines 13

Markup Language, is the subset of SGML that defines hypertext documents.

People use the term HTML to refer to both the hypertext document itself

(which is a specific type of SGML document) and the markup language that

you use to create a hypertext document [Ric96].

 Here is the HTML code for a simple Web page:

 <HTML>

 <HEAD> <TITLE>Simple Web Page</TITLE> </HEAD>

 <BODY>

 This is a simple HTML Web page

 </BODY>

 </HTML>

2.6 Browser

 A Web browser is a window onto the WWW. With Web browsers, you

can view Web documents containing integrated or linked graphics, or even

video and audio clips. Browsers also can navigate FTP (File Transfer

Protocol) sites and retrieve software and data files, read Usenet newsgroups,

and send E-Mail messages [Ric96]. Figure (2.2) shows a browser.

 The browser consists of the following main parts:

1- Window body: the contents of the Web page will be displayed in this

part of the browser.

2- Title bar: the title of the Web page will be displayed in this part of the

browser.

3- Address bar: in this part the user can write the address (URL) of the

required Web page, and when the user press enter, the browser will

connect to the server containing that page, request the page, and

download it from the server to the client computer and display it in the

Chapter Two: Web and Search Engines 14

window body of the browser and display the page title in the title bar

of the browser.

4- Toolbar: which contains a number of buttons such as: home, refresh,

stop, back and next.

2.7 Characteristics of the Web

 The most popular formats of Web documents are HTML, followed by GIF

(Graphic Interchange Format) and JPG (Joint Photographic Group) (images

format), ASCII files, Postscript and ASP (Active Server Page). Most HTML

pages are not standard, because they do not comply with HTML

specifications. HTML documents seldom start with a document type

definition. Also they are typically small with an average of 5 KB and a

median of 2 KB [Sun01].

 On average, each HTML page contains one or two images and five to

fifteen hyperlinks. Most of these hyperlinks are local, meaning the associated

Web pages are mostly stored in the same Web server [Sun01].

Back Next Home Refresh Stop

Search

Title bar

Toolbar

Address
bar

Window
body

Figure (2.2) Browser

Chapter Two: Web and Search Engines 15

2.8 Difficulties of the Web

 The Web creates new challenges for the information retrieval. The amount

of information on the Web is growing rapidly as well as the number of new

users inexperienced in the art of Web research [SL98].

 The Web has become increasingly commercial over time, from 1.5% of

.com domain in 1993 to over 60% in 1997. At the same time, search engine

development has moved from the academic domain to the commercial

domain. Today, most search engine developments take place in companies

without technical information to the public. Therefore, it is very difficult to

study today’s search engines [Sun01].

 There are many problems for searching information on the Web, which

can be divided into two classes: The first class contains problems with the

data itself. The second class contains problems regarding how users use the

information retrieval system.

 The problems of the first class are:

• Distributed data: data is distributed widely in the world. It is located

at different sites and platforms. The communication links between

computers vary widely. Plus, there is no topology of data organization.

• High percentage of volatile data: documents can be added or

removed easily in the World Wide Web. Changes to these documents

go unnoticed by others. 40% of Web pages change every month. There

is a very high chance of dangling links [Sun01].

• Large volume: the growth of data is exponential. It poses issues that

are difficult to cope with.

• Unstructured and redundant data: the Web is not exactly a

distributed hypertext. It is impossible to organize and add consistency

to the data and the hyperlinks. Web pages are not well structured and

Chapter Two: Web and Search Engines 16

30% of all Web pages are duplicated. Semantic redundancy can

increase traffic [Sun01].

• Quality of data: a lot of Web pages do not involve any editorial

process. That means data can be false, inaccurate, outdated, or poorly

written.

• Heterogeneous data: data on the Web are heterogeneous. They are

written in different formats, media types, and natural languages.

• Dynamic data: the content of Web document changes dynamically.

The content can be changed by a program such as hit counter that keep

tracks of number of hits.

• Low quality search engines results: automatic search engines that

rely on keyword matching usually return too many low quality

matches. To make matters worse, some advertisers attempt to gain

people’s attention by taking measures meant to mislead automated

search engines.

 The second class of problems deals with interaction between the user and

the search engine, there are two basic problems:

1- How to specify a query: the user needs to know how to pose a query,

so that the results contain relevant information. Here are some of these

problems

• Many users do not understand how to provide a sequence of

words for the search.

• The users may get unexpected answers because the user is not

aware of the input requirement of the search engine. For

example, some search engines are case sensitive.

• Many users do not understand Boolean logic: therefore, the user

cannot perform advanced searching.

Chapter Two: Web and Search Engines 17

• Novice users do not know how to start working with search

engines.

2- How to interpret the results: the user needs to know how to select the

documents from the results.

 Around 85% of users only look at the first page of the results, so relevant

documents might be skipped [Sun01].

2.9 Information Retrieval

 Before the search engine designer can understand search engines, the

search engine designer needs to understand Information Retrieval (IR),

because Web searching is within the field of Information Retrieval [Sun01].

 Search engine is the popular term for Information Retrieval systems.

Since the 1940s, the problem of information storage and retrieval has

attracted an increasing attention. It is simply stated: there is a vast amounts of

information to which accurate and speedy access is becoming ever more

difficult [Sab02].

 Before the Internet was born, information retrieval was just index

searching. For example authors, title, and subjects in library card catalog or

computers. Today, among other things, IR includes modeling, document

classification and categorization, systems architecture, user interface, data

visualization, filtering, and languages. IR deals with the representation,

storage, organization of, and access to information items [Sun01].

 IR aims to provide fast, effective, and efficient methods of representing,

managing, searching, retrieving and presenting such information. Suppose

there is a store of documents and a person (user of the store) have a question

(request or query) to which the answer is a set of documents satisfying the

information needed by the question. The person can obtain the set by reading

all the documents in the store, retaining the relevant documents and

discarding all the others. In a sense, this constitutes perfect retrieval. This

Chapter Two: Web and Search Engines 18

solution is obviously impracticable. A user either does not have the time or

does not wish to spend the time reading the entire document collection, a part

from the fact that it may be physically impossible to do so.

 When high-speed computers became available for non-numerical work,

many thought that a computer would be able to read an entire document

collection to extract the relevant documents. It soon became apparent that

using the natural language text of a document not only caused input and

storage problems, but also left unsolved the intellectual problem of

characterizing the document content. But automatic characterization in which

the software attempts to duplicate the human process of reading was very

sticky problem indeed. More specifically, reading involves attempting to

extract information, both syntactic and semantic, from the text and using it

to decide whether each document is relevant or not to a particular request.

The difficulty is not only knowing how to extract the information but also

how to use it to decide relevance.

 The automatic retrieval strategy is used to retrieve all the relevant

documents at the same time retrieving as few of the non-relevant as possible.

 In IR, the kind of search used is not the usual kind where the result of the

search is clear-cut, either yes, the item is present, or no, the item is absent. IR

is interested in search strategies in which the documents retrieved may be

more or less relevant to the request.

2.10 Information Retrieval and Data Retrieval

 Many users may not be able to distinguish between Data Retrieval (DR)

and Information Retrieval (IR).

 There is a difference between IR and DR. In DR, the result of a query

must be accurate: it should return the exact match tuples of the query, no

more and no less. If there is no change to the database, the result of a query

executed at different times should be the same. On the other hand, IR can be

Chapter Two: Web and Search Engines 19

inaccurate as long as the error is insignificant. The main reason for this

difference is that IR usually deals with natural language text, which is not

always well structured and could be semantically ambiguous. DR deals with

data that has a well-defined structure and semantics (e.g. a relational

database). In addition, DR cannot provide a solution given a subject or topic

but IR is able to do so [Sun01].

2.11 Types of Search Engines [Art05]

 There are three main types of search engines:

-Directory-Based Search Services

 For Directory-Based Search Services, the primary frame of reference is

the subject matter. The site listings are compiled and reviewed manually.

For example, Yahoo, the best-known Internet Directory, dedicates staff to

review and categorize site suggestions and then adds them to a specific

directory on Yahoo. The directory structure is hierarchical and starts with a

general subject heading such as dentistry. Successive sub headings are more

specific. For example under Dentistry topical areas such as dental implants,

fluoridation, amalgam, organizations, orthodontics, and tooth whitening are

included. These databases are comparatively small and the frequency of the

updating is relatively low. Examples of Directory-Based Search Services are:

Infoseek, Magellan.

-True Search Engine

 In contrast, the unmanned Search Engine completely automates the

process of indexing the sites and totally removes the human component. A

software robot called a spider or crawler gathers sites from across the web as

it scans pages and connects to associated links. One particular advantage is

Chapter Two: Web and Search Engines 20

that the spider will automatically return to the same site periodically to check

for new content or new pages.

 The results from this "spidering" are then saved in the engines index and

serve as the basis to orient each query. Given the automation process and the

size of the Internet, these indices grow to upwards of 250 to 500 million

pages. These efficiencies enable the search engine to cover a wide variety

and number of sites that are maintained current through regular visits by the

robot. The information may not be as exacting and the quantities may be

voluminous compared to a directory-based site. Examples of Search Engines

are: Google, Altavista

-Hybrid Search Engines

 Some search engines also maintain an associated directory. To be included

in a search engine's directory. Examples are: Yahoo.

2.12 The problem with today’s Search Engines

 If the users type a few keywords in most of today’s search engines they

will retrieve pages that, in principle at least, are relevant to their query. This

often results in the retrieval of thousands of Web pages that are related to the

query only by the fact that the keyword appears somewhere on each of those

pages.

 For people with slow Internet connections, this quantity of information is

overwhelming. Most are unwilling to wait for pages and pages of results to

download. Those that do wait are left with the task of sorting through results

one-by-one to find the information they want.

 Frustrated Internet searchers will abandon sites that don't offer a

satisfactory search experience, according to surveys. Berrier Associates

found that 44 percent of users say they are frustrated with search engine use

Chapter Two: Web and Search Engines 21

and where unable to find what they are looking for, most users will try

another search engine [Wis01].

 Because simple keyword matching often returns thousands of results,

most search engines sort pages based on where (position) the keyword

appears on the page, giving more weight to pages in which the keyword

appears in the title, at the top of the page or in the Meta tag - the HTML code

that describes the content of a Web page. One such sorting method is known

as "collection frequency weighting".

2.13 Architecture of Search Engine

 The search engine usually consists of the following parts:

1- Crawling Part: in which all the Web pages are downloaded from the

Web site and saved as files in the storage unit.

2- Indexing Part: in this part all the Web pages saved by the crawler are

parsed to extract all the words to create the index.

3- Ranking Part: in which all the words in the Web pages are assigned a

specific score.

4- User Interface Part: this part is responsible for interacting with the user

and provide the interface required for collecting the user query and

provide the results for the user.

5- Searching Part: this part is responsible for searching the lexicon for the

user query and returns the results to the user.

 Figure (2.3) shows the architecture of search engine.

Interface Users

Web Crawler

Indexer

Index Ranker Searcher

Figure (2.3) Search Engine Architecture

Chapter Two: Web and Search Engines 22

2.14 Crawling Part

 The first step to create the search engine is to download all the Web pages

of the Web site into the storage unit in the computer where the search engine

will work on (Server).

 Web crawling is a process to collect all the Web pages that are interested

to search engine [Jia00].

 Crawlers are also called robots, spiders, worms, wanderers, walkers, and

knowbots. The first crawler, Wanderer was developed by Matthew Gray in

1993. Due to the competitive nature of the search engine business, the

designs of these crawlers have not been publicly described. There are several

crawling techniques available in public. The simplest one is to start with a set

of URLs and from that extracts other URLs recursively in breadth-first or

depth-first manner [Sun01].

 The crawler consists of a URL list, downloading program and a URL

extractor. Before running the crawler, the crawler designer will have to

initialize the URL list with some URLs (Home page and other frequently

requested URLs). The downloading program contains a pointer that points to

one of the links in the URL list, which will be initialized to zero. When the

crawler start running, the downloading program will increase the pointer by

one and check if there is a link at the pointed position in the URL list. If there

is a link, then the downloading program will request to download that link

from the Internet and save it as a file on the storage unit. If there was no link

then this means that there are no new links in the URL list, which is the end

of the crawling process. After downloading a page from the Internet, it will

be send to the URL extractor, which will extract all the links inside it and

these links will be added to the URL list, but without duplicates (only the

new links are added). The crawler complete it’s work when there will be no

more new links to be added to the URL list and the pointer of the

Chapter Two: Web and Search Engines 23

downloading program cross the last location in the URL list. Figure (2.4)

shows the whole process:

 Running a Web crawler is a challenging task. There are tricky

performance and reliability issues and even more importantly, there are social

issues [SL98].

 The design of a good crawler presents many challenges. Externally, the

crawler must avoid overloading Web sites or network links as it goes about

its business. Internally, the crawler must deal with huge volumes of data.

Unless it has unlimited computing resources and unlimited time, it must

carefully decide what URLs to scan and in what order [JHL98].

 One of the problems that the crawler needs to cope with is that Web pages

change dynamically, so the page that the index points to may not exist

Web Site

Storage Unit
URL

Extractor

Request for
Page

Returning
Page

Returning URL

Request
for URL

Add
new

URLs

Save
pages on
Storage

unit
Send to

Extractor

Figure (2.4) Crawling process

Start

Initialize the
URL list

List of the
most popular

pages

URL
List

Downloading
Function

Chapter Two: Web and Search Engines 24

anymore. Many search engines keep track of date, and shows the date to the

query result.

2.14.1 Crawling Techniques

 There are two policies used to traverse Web pages. The first one is

breadth-first policy. It looks at all the pages linked by the current page and

so on. The coverage will be wide but shallow. This may cause the Web server

to have many rapid requests. The second is depth-first policy. We follow the

first link of a page and we do the same on that page until we cannot go

deeper. After that, it returns recursively. The advantage of using depth-first

search is deep and space complexity is cheaper. But the disadvantage of

using it is narrow.

 Consider the Web site shown in figure (2.5)

 If the crawler is using a breadth-first policy then the pages will be

downloaded in the order (Home, Page1, Page2, Page3, Page4, Page5, Page6,

Page7, Page8, Page9, Page10, Page11).

Home

Page1 Page2 Page3

Page9 Page4 Page5 Page6 Page7 Page8

Page10 Page11

Figure (2.5) Website example

Chapter Two: Web and Search Engines 25

 If the crawler is using a depth-first policy then the pages will be

downloaded in the order (Home, Page1, Page4, Page5, Page10, Page11,

Page6, Page2, Page7, Page8, Page3, Page9).

2.14.2 Crawler Types

 Crawlers are widely used today and there are many types of crawlers, the

following are some of them:

1- Crawlers for the major search engines like AltaVista, InfoSeek, Excite,

and Lycos attempt to visit most text pages, in order to build content

indexes.

2- Crawlers that visit many pages looking for certain types of information

(e.g. email addresses).

3- Personal crawlers that scan for pages of interest to a particular user.

2.15 Indexing Part

 Indexing part is the most complicated and critical step in building the

search engine. Simply, the indexer is used for parsing the web documents

downloaded by the crawler to extract words and any features about these

words (such as position in the page, font style, font color, and font size) to

build the index (database) of the search engine.

 Most indices use variants of inverted index files and lexicons. An inverted

index file is a list of sorted words and their features; the inverted index can be

created by sorting the index by word IDs.

 The lexicon is a list of sorted words with pointers to the inverted index

file. To find a word, the lexicon will be searched for that word and the results

can be found from the inverted index file at the location pointed by the

pointer in the lexicon list.

Chapter Two: Web and Search Engines 26

Table (2.1.a) Page1

Table (2.1.b) Page2

Table (2.1.c) Page3

 Consider a Website consisting of 3 pages (Page1, Page2, and Page3) as

shown in figure (2.6). Each page contains 3 words as shown in table (2.1.a),

table (2.1.b), and table (2.1.c). Each table contains the words that occur in the

page with their positions.

Word Position

Home 1

Table 6

Car 12

Word Position

Table 1

Car 7

Plane 11

Word Position

Car 1

Train 5

Plane 11

Website

Page1 Page2 Page3

Figure (2.6) Simple Website

Chapter Two: Web and Search Engines 27

Table (2.2) Page IDs

Table (2.3) Word IDs

Table (2.4) Index

 To index this Website, two tables are needed; table (2.2) for page IDs and

table (2.3) for word IDs.

Page Name Page ID

Page1 P1

Page2 P2

Page3 P3

Word Word ID

Car W1

Train W2

Plane W3

Home W4

Table W5

 Then the index will be as shown in table (2.4)

Page ID Word ID Position

P1 W1 1

P1 W2 5

P1 W3 11

P2 W4 1

P2 W5 6

P2 W1 12

P3 W5 1

P3 W1 7

P3 W3 11

Chapter Two: Web and Search Engines 28

Table (2.5) Inverted Index

Table (2.6) Lexicon

 The inverted index is created by sorting the index by word IDs and

position as shown in table (2.5)

Record

Number
Word ID Page ID Position

1 W1 P1 1

2 W1 P3 7

3 W1 P2 12

4 W2 P1 5

5 W3 P1 11

6 W3 P3 11

7 W4 P2 1

8 W5 P3 1

9 W5 P2 6

 The lexicon is the data structure used to search the Website will be as

shown in table (2.6)

Word ID Number of pages Pointer to inverted index

W1 3 1

W2 1 4

W3 2 5

W4 1 7

W5 2 8

 To search for the word car, use table 2.3 to get the word ID, which is W1.

By searching the lexicon for W1, the results will be 3 pages containing W1

Chapter Two: Web and Search Engines 29

and these pages found in the inverted index (table 2.5) starting from record

number 1 to record number 3.

2.15.1 Indexing Steps

 The indexing part consists of a number of steps that are different from

search engine to another, but here are the general steps that can be found in

most of the search engines:

� Parsing: In this step, each Web page is parsed into pure text without

html tags. The pure text of each web page is used as the document to

match against the user’s query in the search part. In some search

engines (as in the ICS Web search engine [Jia00]) the title of the Web

pages is extracted out and used as the description of the Web link in

the hitlist returned to user.

� Deleting stop words: This step helps save system resources (such

as storage in hard disk and memory) by eliminating from further

processing, as well as potential matching, those terms that have little

value in finding useful documents in response to a customer's query.

This step used to matter much more than it does now when memory

has become so much cheaper and systems so much faster, but since

stop words may comprise up to 40 percent of text words in a

document, it still has some significance. A stop word list typically

consists of those word classes known to convey little substantive

meaning, such as articles (a, the), conjunctions (and, but), interjections

(oh, but), prepositions (in, over), pronouns (he, it), and forms of the "to

be" verb (is, are). To delete stop words, an algorithm compares index

term candidates in the documents against a stop word list and

eliminates certain terms from inclusion in the index for searching

[Eli01]. A full list of stop words for general text is shown in table (2.7)

Chapter Two: Web and Search Engines 30

A both few important Much parted since under

about but find In Must parting small until

Above by finds interest My parts smaller up

across c first interested Myself per smallest upon

After came for interesting N perhaps so us

Again can four interests Necessary place some use

against cannot from Into Need places somebody uses

All case full Is Needed point someone used

almost cases fully It Needing pointed something v

Alone certain further Its Needs pointing somewhere very

Along certainly furthered Itself Never points state w

already clear furthering J New possible states want

also clearly furthers Just Newer present still wanted

although come g K Newest presented such wanting

always could gave Keep Next presenting sure wants

among d general Keeps No presents t was

an did generally Kind Non problem take way

and differ get Knew Not problems taken ways

another different gets Know Nobody put than we

any differently give Known Noone puts that well

anybody do given Knows Nothing q the wells

anyone does gives L Now quite their went

anything done go Large nowhere r them were

anywhere down going Largely number rather then what

are downed good Last numbers really there when

area downing goods Later o right therefore where

areas downs got Latest of room these whether

around during great Least off rooms they which

as e greater Less often s thing while

ask each greatest let old said things who

at early group lets older same think whole

away either grouping like oldest saw thinks whose

Table (2.7) Stop Word List [Wil03]

Chapter Two: Web and Search Engines 31

b end groups likely on say this why

back ended h long once says those will

backed ending had longer one second though with

backing ends has longest only seconds thought within

backs enough have m open see thoughts without

be even having made opened sees three work

because evenly he make opening seem through worked

become ever her making opens seemed thus working

becomes every herself man or seeming to works

became everybody here many order seems today would

been everyone high me ordered several together y

before everything higher member ordering shall too year

began everywhere highest members orders she took years

behind f him men other should toward yet

being face himself might others show turn you

beings faces his more our showed turned young

best fact how most out showing turning younger

better facts however mostly over shows turns youngest

between far i mr p side two your

big felt if mrs part sides u yours

� Term Stemming: Stemming removes word suffixes, perhaps

recursively in layer after layer of processing. The process has two

goals. In terms of efficiency, stemming reduces the number of unique

words in the index, which in turn reduces the storage space required

for the index and speeds up the search process. In terms of

effectiveness, stemming improves recall by reducing all forms of the

word to a base or stemmed form. For example, if a user asks for

analyze, they may also want documents which contain analysis,

analyzing, analyzer, analyzes, and analyzed. Therefore, the document

processor stems document terms to analy- so that documents which

include various forms of analy- will have equal likelihood of being

Chapter Two: Web and Search Engines 32

retrieved; this would not occur if the engine only indexed variant forms

separately and required the user to enter all. Of course, stemming does

have a downside. It may negatively affect precision in that all forms of

a stem will match, when, in fact, a successful query for the user would

have come from matching only the word form actually used in the

query [Eli01].

� Extract index entries: In this step the lexical tokens are generated

from the remaining entries from the original document.

� Term weight assignment: Weights are assigned to terms in the

index file. The more sophisticated the search engine, the more complex

the weighting scheme. Measuring the frequency of occurrence of a

term in the document creates more sophisticated weighting. Extensive

experience in information retrieval research over many years has

clearly demonstrated that the optimal weighting comes from use of

"TF/IDF". This algorithm measures the frequency of occurrence of

each term within a document. Then it compares that frequency against

the frequency of occurrence in the entire database.

� Create index: The index or inverted file is the internal data structure

that stores the index information and that will be searched for each

query. Inverted files range from a simple listing of every alpha-

numeric sequence in a set of documents/pages being indexed along

with the overall identifying numbers of the documents in which the

sequence occurs, to a more linguistically complex list of entries, the

TF/IDF weights, and pointers to where inside each document the term

occurs. The more complete the information in the index, the better the

search results [Eli01]. Inverted index is a mapping from keyword to the

documents in which it appears [Jia00].

Chapter Two: Web and Search Engines 33

2.16 Ranking Part

 Web ranking is very important to the searching quality of the search

engine. Ideally the web page more relevant to user’s query should have

higher rank in the hitlist [Jia00].

 Having determined which subset of documents or pages matches the

query requirements to some degree, a similarity score is computed between

the query and each document/page based on the scoring algorithm used by

the system. Scoring algorithms rankings are based on the presence/absence of

query term(s), term frequency, Boolean logic fulfillment, or query term

weights. Some search engines use scoring algorithms not based on document

contents, but rather, on relations among documents or past retrieval history of

documents/pages.

 After computing the similarity of each document in the subset of

documents, the system presents an ordered list to the user. The sophistication

of the ordering of the documents again depends on the model the system

uses, as well as the richness of the document and query weighting

mechanisms. For example, search engines that only require the presence of

any alpha-numeric string from the query occurring anywhere, in any order, in

a document would produce a very different ranking than one by a search

engine that performed linguistically correct phrasing for both document and

query representation.

 Ranking is the heart of the search engine. In order to produce a good

search engine, the search engine designer needs to know how to rank pages

properly for the result documents. Today, most search engines use variations

of the Boolean or vector model to do ranking. Recall that search engines do

not allow access to the text, but only the indices, because it is too expensive

in terms of time and space. So, when searching, ranking must use indices

while not accessing the text. Besides that, there are also other difficulties as

well. There might be too many relevant pages for a simple query [Sun01].

Chapter Two: Web and Search Engines 34

2.16.1 Difficulties in Determining Relevancy

 Basing the rank of a Web page solely on the content of the page itself and

in particular the content of the Meta tag, which does not even appear as part

of the text of the page can cause problems for search engines. This is because

savvy Web page authors can use a technique known as spamming, repeating

a “hot” keyword many times in the title or the Meta tag to raise the rank of

the page without adding any value to the content of that page. In an attempt

to avoid falling victim to spamming, many search engines severely penalize

pages that appear to be using this technique. Inevitably, legitimate pages are

often unduly penalized. Recently, some search engines have begun to rely on

the valuable information buried in the structure of the Web itself to rank

pages in a more objective way.

2.16.2 Document Features

 There are many document features that make a good match to a query,

here are the most of them:

� Term frequency: How frequently a query term appears in a document

is one of the good methods in determining a document’s relevance to a

query. But in several situations this method fail, because many words

have multiple meanings, they are polysemous. Many of the non-

relevant documents presented to users result from matching the right

word, but with the wrong meaning.

� Location of term: Many search engines give preference to words

found in the title or lead paragraph or in the metadata of a document.

Some studies show that the location in which a term occurs in a

document or on a page indicates its significance to the document

[Eli01].

Chapter Two: Web and Search Engines 35

� Link: Usually describes better a page than the page itself and makes

possible to index non-text content. The link is associated not only to

the page where it is found, but the one it points to. The only problem

with this feature is that the destination of these links is not verified, so

they may even not exist.

� Date of Publication: Some search engines assume that the more recent

the information is, the more likely that it will be useful or relevant to

the user. The engines therefore present results beginning with the most

recent to the less current [Eli01].

� Length: Some search engines take the length of the page in

consideration.

� Presentation of words: Some search engines use the attributes of the

word as features like font size, font color, and font style.

2.17 User Interface Part

 The user interface of search engines consists of three phases:

1- Query interface: provide the interface between the user and the search

engine so that the user can write his/her query and send it to the search

engine.

2- Query processor: which is responsible for parsing the query for search

terms and perform some error checking.

3- Answer interface: which provide the results for the user or what is

known as the hitlist.

2.17.1 Query Interface

 Every query that result in a huge number of hits impossible to fit on one

screen cannot be called a successful query. That is why it’s necessary to

create an interface with a larger configurability for user to use, giving it a

Chapter Two: Web and Search Engines 36

certain level of freedom to modify it by its own needs and wishes. Because of

the fact that creating a user-accessible crawler would be unpractical, and

allowing user access to main search engine database could be contra

productive, interface remains as the only search engine element that can be

offered to user as a tool. On the other hand, seeing that a large number of

users are beginners, the search engine interface should have its simple form

as well [Pet98].

 A simple query interface page is shown in figure (2.7), which consists of a

text box and a search button.

There are two types of query interface:

1- Basic query interface

2- Complex query interface

 The basic query interface is a box where a sequence of words is entered.

The sequence of words entered into different search engines produces

different results. For example, AltaVista performs a search by the union of

these words, whereas, HotBot performs a search by the intersection of these

words (all words must appear in the result documents) [Sun01].

 Some search engines support complex query interface, including Boolean

operators (AND, OR, NOT) and other features, such as phrase search (like

Query field Search button

Welcome to Search Engine

Figure (2.7) Query interface

Chapter Two: Web and Search Engines 37

“Text”), proximity search, URL searches, title search, date range, and data

types search.

2.17.2 Query Processor

 In query processing, a number of operations are performed on the input

text (from the user) to transform it into a form understandable by the search

engine.

The following steps are the possible operation performed on the input text

� Tokenizing: As soon as a user inputs a query, the search engine must

tokenize the query stream, i.e., break it down into understandable

segments. Usually a token is defined as an alphanumeric string that

occurs between white space and/or punctuation.

� Parsing: Since users may employ special operators in their query,

including Boolean, adjacency, or proximity operators, the system

needs to parse the query first into query terms and operators. These

operators may occur in the form of reserved punctuation (e.g., equation

marks) or reserved terms in specialized formats (e.g., AND, OR). At

this point, a search engine may take the list of query terms and search

them against the inverted file. In fact, this is the point at which the

majority of publicly available search engines perform the search.

� Stop list and stemming: Some search engines will go further and

stop-list and stem the query. The stop list might also contain words

from commonly occurring querying phrases, such as, “I’d like

information about”. However, since most publicly available search

engines encourage very short queries, as evidenced in the size of query

window provided, the engines may drop these two steps.

� Creating the query: How each particular search engine creates a

query representation depends on how the system does its matching. At

Chapter Two: Web and Search Engines 38

this point, a search engine may take the query representation and

perform the search against the inverted file.

� Query term weighting: (assuming more than one query term). The

final step in query processing involves computing weights for the

terms in the query. Sometimes the user controls this step by indicating

either how much to weight each term or simply which term or concept

in the query matters most and must appear in each retrieved document

to ensure relevance. Leaving the weighting up to the user is not

common, because research has shown that users are not particularly

good at determining the relative importance of terms in their queries.

They can't make this determination for several reasons. First, they don't

know what else exists in the database, and document terms are

weighted by being compared to the database as a whole. Second, most

users seek information about an unfamiliar subject, so they may not

know the correct terminology. Few search engines implement system-

based query weighting, but some do an implicit weighting by treating

the first term(s) in a query as having higher significance. The engines

use this information to provide a list of documents/pages to the user

[Eli01].

 After this final step the query is searched against the inverted file of

documents.

2.17.3 Answer Interface

 Answer interface or result page or hitlist is a list of links to web pages that

contains the input text of the user. Search engines usually return pages in the

order of relevance to the query. In other words, the most relevant pages

appear on the top of the list. Typically, each result entry in the list includes a

title of the page, an URL, a brief summary, a size, a date, and a written

language.

Chapter Two: Web and Search Engines 39

2.18 Searching Part

 Searching the inverted file for documents meeting the query requirements,

referred to simply as "matching".

 How systems carry out their search and matching functions differs

according to which theoretical model of information retrieval underlies the

system’s design philosophy [Eli01].

 While the computational processing required for simple, unweighted, non-

Boolean query matching is far simpler than when the model is an NLP

(natural language processing) -based query within a weighted, Boolean

model, it also follows that the simpler the document representation, the query

representation, and the matching algorithm, the less relevant the results,

except for very simple queries, such as one-word, non-ambiguous queries

seeking the most generally known information [Eli01].

 The keywords in the query are matched against the inverted index to find

all the documents ID’s that contains the keywords. Then id is used to look up

the URL and in some search engines the title of the corresponding Web pages

and return the results to the ranking procedure.

2.19 Search Engines Examples

 Two examples will be given for search engines, an Internet search engine

and a Web site search engine.

-Internet Search Engine (Google) [Sun01]

 The Google search engine (www.google.com) heavily uses the structure

present in hypertext. It claims that it produces better results than other search

engines today. The architecture is shown in the Figure (2.8).

Chapter Two: Web and Search Engines 40

 The URL Server sends lists of URLs to be fetched by the crawlers. The

crawlers download pages according to the list and send the downloaded

pages to the Store Server. The Store Server compresses the pages and stores

them in the repository. Every Web page has an associated ID number called a

docID, which is assigned whenever a new URL is parsed out of a Web page.

The index performs an indexing function. It reads the repository,

uncompresses the documents, and parses them. Each page is converted into a

Set of word occurrences called hits. The hits contain information about a

word: position in document, an approximation of font size, and capitalization.

The indexer distributes these hits into a set of “barrels” and creates a partially

sorted forward index (like bucket sort). It parses out all the links in every

Web page and stores important information about them in an anchors file.

Figure (2.8) Google Architecture

Chapter Two: Web and Search Engines 41

The anchors file contains information about where each link points from and

to and the text of the link. After that, the URL Resolver reads the anchors file

and converts relative URLs into absolute URLs and in turn into docID. It puts

the anchor text into the forward index, associated with the docID. It generates

a links database for storing links and docIDs. The database is used to

compute PageRanks for all the documents. The Sorter takes the barrels and

resorts them by wordID instead of docID in order to generate the inverted

index. Also, the Sorter produces a list of wordIDs and offsets into the

inverted index. A program called DumpLexicon takes this list together with

the lexicon produced by the indexer and generates a new lexicon to be used

by the searcher. The searcher is run by a Web server and uses the lexicon

built by DumpLexicon together with the inverted index and the PageRanks to

answer queries.

-Web Site Search Engine (ICS) [Jia00]

 In order to facilitate user’s surfing experience on their Web sites, many

institutes either license the searching tools from general search engine

companies such as Google or create their own primitive search engines.

Neither of these two options is ideal in some case because licensing search

engine usually costs a lot of money and the searching quality of self-created

primitive search engine is not satisfactory due to the lack of the expertise of

applying modern technologies of building search engine, although these kind

of technologies are available to public due to many researcher’s hard work in

the field of information retrieval in several decades [Jia00].

Figure (2.9) represents the architecture of the ICS Web site search engine.

Chapter Two: Web and Search Engines 42

 The crawler downloaded the web pages and saved the raw web pages into

the main repository. Each web page is saved as an individual file. Each web

page is assigned a unique id and the mappings between the web link and id is

stored in a big file (links.txt). The parser parses each html file into pure text

file and the tile of the web page is also extracted. The mapping between web

id and title are stored in one file (titles.txt). Given the parsed text files, the

FOA indexer extracts the tokens from the text files, stem the tokens using

Porter stemmer and generate keywords, and then scan the text files to create

posting data structure for keywords. The inverted indexing is stored in

InvertedIndex.txt. The web UI is used for user to submit the queries to search

engine and receive the search results from ranker. Given the user’s query, the

search engine converts the query to keywords, match the query against the

inverted index and retrieve the documents containing the keyword, and then

pass the web page id, web links, and titles to ranker. The ranker will rank the

web pages according the similarity between web page and user’s query and

return the web links and titles to UI. Web UI presents the results to user.

UI

Searcher

Ranker

Repository includes:
{html, text, index, links,
titles, doc length}

Crawler

Parser

Indexer

Figure (2.9) ICS Architecture

Chapter Three

Development of Web Site Search

Engine

3.1 Introduction

 The concern of this work is to develop a Web site search engine. This

chapter begins by explaining the architecture of the proposed Web site search

engine by dividing it in to two parts: Off-Line part and the On-Line part, then

explain each part in details.

3.2 Architecture of Web Site Search Engine

 The architecture of the proposed Web site search engine is shown in

figure (3.1).

 The Web site search engine consists of two parts: the Off-Line part and

the On-Line part.

 The Off-Line part consists of

1- Crawler: which will download all the pages in the Web site (Except for

the non-HTML pages) and stores them as files in the storage unit.

2- Indexer: which will parse all the files (pages) downloaded by the

crawler and index all the words in these files (except the stop words)

and sort them to create the inverted index, then create the lexicon. The

ranking is part of the indexing part.

Chapter Three: Development of Web Site Search Engine 45

 The Off-Line part is implemented on the search engine server and

represent the first part as shown in figure (3.2), Off-Line means that till this

moment the search engine is not ready to serve the users.

 On-Line part consists of

1- Search Engine Interface: which consists of a Web page containing a

text box and a button (search button), so that the user can write the

query in the text box and click on the search button to start searching

for the query and return the results. When the user write the address of

the search engine on the address bar of the browser and press enter, the

browser will display the search engine Web page by downloading it

from the server of the search engine to the client computer (user).

2- CGI script: when the user click on the search button of the search

engine Web page, the client computer will connect to the computer of

the search engine and request to execute the CGI script of the search

engine. The CGI script will perform a query processing to check the

query and if there are no errors, the CGI script will pass the query to

Figure (3.2) Off-Line Part

Start

Indexing
and

ranking

Get Pages

Download

Sort

Crawler

Storage
Unit

Store Pages

Indexer
and

Ranker
Index

Inverted
Index and
Lexicon
Builder

Lexicon

Web
Site URL List

Word List

Inverted
Index

Chapter Three: Development of Web Site Search Engine 46

the SES (Search Engine Server) using the CGI-SES (Common

Gateway Interface-Search Engine Server) protocol.

3- SES: a program that runs on the server computer of the search engine

and waits for requests from any search engine CGI script. When the

SES receives a request from a CGI script, the SES will search the

lexicon for the query and send the results to the CGI script, which will

send them to the client computer (user).

 The On-Line part is shown in figure (3.3)

 In general, the Web site search engine consists of four parts:

1- Crawler

2- Indexer and ranker

3- Interface

4- Searcher

Return Results

Download Search
Engine Web page

Send Query

Client Computer

Search Engine Web page

CGI script

CGI-SES
protocol

Figure (3.3) On-Line Part

Request to download the Search Engine Web page

Browser

Search Engine
Web page

1 2

3

4 5
6

SES

Lexicon

Search Engine
Server Computer

Chapter Three: Development of Web Site Search Engine 47

3.3 Crawler

 The crawler consists of five parts; in the first part the information related

to the crawling process is initialized, this information is important to know

every thing about the crawling results. In the second part the data structure

that contains the links to be downloaded from the Web site, which is called

the URL List, is initialized with the URL Startup File links. Then the

downloading and extracting part begin by downloading the pages from the

URL List, save them as files on the storage unit, extract other links from

them and add them to the URL List. In the Fourth part the crawling

information is saved in a file named the Crawler Results File. Then the URL

List is saved in a two files, one for the successfully downloaded links called

the True URL List and the other for the unsuccessfully downloaded links

called the False URL List.

 A study by Compaq systems research center [Mar01], examines the

average page quality over time of pages downloaded during a Web crawl of

328 million unique pages, it shows that traversing the Web graph in breadth-

first search order is a good crawling strategy, as it tends to discover high-

quality pages early on the crawl. So the breadth-first search order was used in

the crawler of the proposed Web site search engine.

Figure (3.4) represents the five parts of the crawler.

Chapter Three: Development of Web Site Search Engine 48

3.3.1 Initializing the Crawler Information

 The first step in the crawler is to initialize the information about the

crawling operation. The information of the crawling process contains the

following variables, which will be initialized to zero.

• File number: each link from the URL List after downloaded will be

saved as a file in the storage unit, each file name begins with the string

“page” and ends with a number, the first file named page0, the second

page1 and so on, this variable represent the number of the file and

increased by one each time a new page is downloaded.

Initialize the crawler
information part

Initialize the URL list
part

Downloading pages
and extracting links

part

Save crawling
information part

Save the crawler list
part

Figure (3.4) Crawling Parts

Start

End

Chapter Three: Development of Web Site Search Engine 49

• Downloaded pages: this variable keeps track of the number of links

successfully downloaded.

• External links: this variable keeps track of the number of external

links.

• Non-HTML files: this variable keeps track of the number of files that

are not an html pages, like image files, sound files, E-Mail addresses,

etc.

• Connection error: this variable keeps track of the number of failed

connections.

• Download error: this variable keeps track of the number of failed

downloading operations.

• Save error: this variable keeps track of the number of errors occurs

during saving the pages on the storage unit.

 If an error occurs during the initialization of the information of the

crawling process, a warning message will be shown and the program will

continue, because the initialization of the information is not a critical issue.

3.3.2 Initializing the URL list

 The second part is used to initialize the URL List, but before the

initialization, a text file called the URL Startup File should be created by the

administrator of the search engine, which contains the most popular Web

pages including the Home Page. The pages names entered into the file must

be without the “WWW ” or “HTTP://” and without the Web site name only

the remaining string of the page name. The names must be separated by

spaces. The URL List is initialized by the links in the URL Startup file.

Chapter Three: Development of Web Site Search Engine 50

 The URL List is a binary search tree implemented as a dynamic array

of records and each record represent a link in the URL List, which contains

the following fields:

• URL name: which hold the name of the link without “HTTP://” and

“WWW. ” and without the site name because they are known and if

stored will take a large space, so only the remaining name is hold. For

example if we have the link

“http://www.microsoft.products.new.html” then

“http://www.microsoft” will be left and only “products.new.html”

will be stored as the name of the link.

• Left link: a 4 bytes variable, which point to the link in the left

direction as in the binary search tree.

• Right link: a 4 bytes variable, which point to the link in the right

direction as in the binary search tree.

• Downloading flag: a 2 bytes variable, which represent the status of the

link, if this link is downloaded successfully then it will be true, if not it

will be false.

 Table (3.1) represents an example of a URL List with 5 links:

Cell

number

URL name Downloading

flag

Left link Right link

0 Index.html True 2 1

1 Products.html False 3 Null

2 About.htm True Null Null

3 Map.html True Null 4

4 News.htm False Null Null

Table (3.1) URL List

Chapter Three: Development of Web Site Search Engine 51

 Two variables are used to keep track of the URL list: one is the “Current

Link” which keeps track of the current link that is to be downloaded and the

other variable is the “Last Link” which always points to the last link in the

URL list. The “Current Link” variable is initialized to point to the first link in

the URL list which is location zero in the URL List and the “Last Link”

variable is initialized to point to the last link in the URL list.

 If an error occur during the initialization of the URL list a critical error

message is shown and the program ends execution because it is a critical

error, not a simple error.

3.3.3 Downloading Pages and Extracting Links

 This part begins by downloading links from the URL list one by one and

after each page is downloaded successfully all the links in that page is

extracted out and only the html or htm links is added as a new links in the

URL list if they are not already there. The crawler finishes his work when

there is no more links to be extracted and the Current Link point to the Last

Link. Figure (3.5) represents this part:

Start
Web Site

Storage Unit

Buffer

Download

Request Page

Save Page

Extract Links

Add new links

Figure (3.5) Crawling Process

URL List

Links Filter Links

First Link

Current Link

Last Link

Chapter Three: Development of Web Site Search Engine 52

Algorithm (3.1) is the main algorithm for crawling the Web pages

Algorithms (3.2) is used for Adding New Link to the URL List

Algorithm (3.2)

Name : Add New URL Link

Input : Link, URL list

Output : True or False

assign N the value 0

assign Condition the value “True”

assign ReturnValue the value “True”

Algorithm (3.1)

Name : main crawling algorithm

Input : Pages of Web site

Output : Downloaded Pages

assign DownloadedPages the value 0

assign FileNumber the value 0

assign SaveErrors the value 0

assign DownloadedErrors the value 0

assign ConnectionErros the value 0

while (current link is less than or equal to last link) do

(add “HTTP://” followed by Web site name to the current link

 if (Web page downloaded correctly in memory)

 then (if (Web page saved correctly on storage unit)

 then (assign DownloadedPages the value DownloadedPages + 1

 assign FileNumber the value FileNumber + 1

 Execute algorithm 3.7 with Buffer containing the page as

 input)

 else (assign SaveErrors the value SaveErrors + 1)

)

 else if (Web page could not be downloaded)

 then (assign DownloadedErrors the value DownloadedErrors + 1)

 else (assign ConnectionErrors the value ConnectionErrors + 1)

)

Chapter Three: Development of Web Site Search Engine 53

Algorithm (3.3) is used for Extracting a Token from the Web page

Algorithm (3.3)

Name : Get HTML Token

Input : Buffer containing the page, N (Pointer)

Output : HTML token

assign Token the value Null

assign N the value N + 1

while (Nth entry in Buffer equal to “Space” or “=” or “Quotation” or “Ascii13”

 or “Ascii10” and N is less than the length of the page) do

(assign N the value N + 1)

while (Nth entry in Buffer not equal to “>” and “Space” and “=” and

 “Quotation” and “Ascii13” and N is less than the length of the page) do

(assign Token the value of Token + Nth entry in Buffer

 assign N the value N + 1)

Convert Token to lower case

return the value Token

Algorithm 3.2- (Continue)

while (Condition equal to “True”) do

(if (Link equal to the link of the Nth entry in URL list)

 then (assign Condition the value “False”

 assign ReturnValue the value “False”)

 else if (Link less than link of the Nth entry in URL list)

 then (if (left link of Nth entry in URL list equal to Null)

 then (add Link as the left link of the Nth entry in URL list)

 else (assign N the value of left link of the Nth entry in URL list)

)

 else if (Link greater than link of the Nth entry in URL list)

 then (if (right link of the Nth entry in URL list equal to Null)

 then (add Link as the right link of the Nth entry in URL list)

 else (assign N the value of right link of the Nth entry in URL list)

)

)

return the value ReturnValue

Chapter Three: Development of Web Site Search Engine 54

Algorithm (3.4) is used for Extracting a Link from the Web page

Algorithm (3.5) is used for Filtering a Link

Algorithm (3.4)

Name : Get URL Link

Input : Buffer containing the page, Html Token, N (pointer)

Output : URL link

assign Link the value Null

While (Nth entry in Buffer not equal to “>” and Link not equal to Token and N

 Less than the length of the page) do

(Execute algorithm 3.3 with Buffer containing the page, N as input

 assign Link the Output of algorithm 3.3)

if (Link equal to Token)

 then (Execute algorithm 3.3 with Buffer containing the page, N as input

 assign Link the Output of algorithm 3.3

 return the value of Link)

else (return the value Null)

Algorithm (3.5)

Name : Filter URL Link

Input : URL Link, Web site name, BaseLink

Output : Filtered URL Link if the Link is internal

 or “1” if the Link is external

 or “2” if the Link is not a HTML or HTM file

assign LinkLen the value number of characters in Link

assign SiteLen the value number of characters in Web site name

if (LinkLen less than 5) then (return the value “2”)

if (last 5 characters of Link not equal to “.html” and last 4 characters of Link

 not equal to “.htm”) then (return the value “2”)

assign Nu the value 1

if (first 7 characters of Link equal to “HTTP://”)

 then (assign Nu the value 8

 if (characters form Nu to Nu + 4 of Link equal to “WWW.”)

 then (assign Nu the value 12)

)

Chapter Three: Development of Web Site Search Engine 55

Algorithm (3.6) is used for Filtering a base link

Algorithm (3.6)

Name : Filter Base Link

Input : Base Link, Web site name

Output : Filtered Base Link if the Base Link is internal

 or “1” if the Base Link is external

assign BaseLinkLen the value length of BaseLink

assign Nu the value 1

if (first 7 characters of BaseLink equal to “HTTP://”)

 then (assign Nu the value 8

 if (characters form Nu to Nu + 4 of BaseLink equal to “WWW.”)

 then (assign Nu the value 12)

)

else if (first 4 characters of BaseLink equal to “WWW.”)

 then (assign Nu the value 5)

if (Nu equal to 1)

 then (if (BaseLink equal to “1”)

 then (return the value ”1”)

 else (return the value BaseLink + Link)

)

Algorithm 3.5- (Continue)

else if (first 4 characters of Link equal to “WWW.”)

 then (assign Nu the value 5)

if (Nu equal to 1)

 then (if (BaseLink equal to “1”)

 then (return the value ”1”)

 else (return the value BaseLink + Link)

)

else (if (characters from Nu to Nu + SiteLen in Link equal to Web site name)

 then (assign Nu the value Nu + SiteLen + 1

 return the value characters from Nu to LinkLen in Link)

 else (return the value “1”)

)

Chapter Three: Development of Web Site Search Engine 56

Algorithm (3.7) is used for Extracting Links from the Web page

Algorithm (3.7)

Name : HTML Link Extractor

Input : Buffer containing the HTML page

Output : HTML or HTM Links

assign BaseLink the value Null

assign N the value –1

assign PageLen the value length of the page

while (N less than PageLen)

(assign N the value N + 1

 if (Nth entry in Buffer equal to “<” and Nth + 1 entry in Buffer not equal to

 “Space”)

 then (Execute algorithm 3.3 with Buffer, N as input

 assign HtmlToken the output of algorithm 3.3

 Execute one of the following blocks according to the value of HtmlToken

 Case 1: HtmlToken equal to “base”

 (Execute algorithm 3.4 with Buffer, “href”, N as input

 assign Link the output of algorithm 3.4

 if (Link not equal to Null)

 then (Execute algorithm 3.6 with Link, Web site name

 assign BaseLink the output of algorithm 3.6)

)

Algorithm 3.6- (Continue)

else (if (characters from Nu to Nu + SiteLen equal to Web site name)

 then (assign Nu the value Nu + SiteLen + 1

 return the value characters from Nu to BaseLinkLen in BaseLink)

 else (return the value “1”)

)

Chapter Three: Development of Web Site Search Engine 57

Algorithm 3.7- (Continue)

Case 2: HtmlToken equal to “a” or “area” or “link”

 (Execute algorithm 3.4 with Buffer, “href”, N as input

 assign Link the output of algorithm 3.4

 if (Link not equal to Null)

 then (Execute algorithm 3.5 with Link, Web site name, BaseLink as

 input

 assign Link the output of algorithm 3.5

 if (Link equal to “1”)

 then (assign ExternalLinks the value ExternalLinks + 1)

 else if (Link equal to “2”)

 then (assign NonHtmlFiles the value NonHtmlFiles + 1)

 else (Execute algorithm 3.2 with Link, URL list as input))

)

Case 3: HtmlToken equal to “q”

 (Execute algorithm 3.4 with Buffer, “cite”, N as input

 assign Link the output of algorithm 3.4

 if (Link not equal to Null)

 then (Execute algorithm 3.5 with Link, Web site name, BaseLink as

 input

 assign Link the output of algorithm 3.5

 if (Link equal to “1”)

 then (assign ExternalLinks the value ExternalLinks + 1)

 else if (Link equal to “2”)

 then (assign NonHtmlFiles the value NonHtmlFiles + 1)

 else (Execute algorithm 3.2 with Link, URL list as input))

)

Case 4: HtmlToken equal to “img”

 (Execute algorithm 3.4 with Buffer, “longdesc”, N as input

 assign Link the output of algorithm 3.4

 if (Link not equal to Null)

 then (Execute algorithm 3.5 with Link, Web site name, BaseLink as

 input

 assign Link the output of algorithm 3.5

 if (Link equal to “1”)

 then (assign ExternalLinks the value ExternalLinks + 1)

 else if (Link equal to “2”)

 then (assign NonHtmlFiles the value NonHtmlFiles + 1)

 else (Execute algorithm 3.2 with Link, URL list as input))

)

Chapter Three: Development of Web Site Search Engine 58

Algorithm 3.7- (Continue)

Case 5: HtmlToken equal to “iframe”

 (Execute algorithm 3.4 with Buffer, “src”, N as input

 assign Link the output of algorithm 3.4

 if (Link not equal to Null)

 then (Execute algorithm 3.5 with Link, Web site name, BaseLink as

 input

 assign Link the output of algorithm 3.5

 if (Link equal to “1”)

 then (assign ExternalLinks the value ExternalLinks + 1)

 else if (Link equal to “2”)

 then (assign NonHtmlFiles the value NonHtmlFiles + 1)

 else (Execute algorithm 3.2 with Link, URL list as input))

)

Case 6: HtmlToken equal to “frame”

 (assign HtmlToken the value Null

 while (Nth entry in Buffer not equal to “>” and HtmlToken not equal

 to “src” and HtmlToken not equal to “longdesc” and N less

 than PageLen) do

 (Execute algorithm 3.3 with Buffer, N as input

 assign HtmlToken the output of algorithm 3.3)

 if (HtmlToken equal to “src” or HtmlToken equal to “longdesc”)

 then(Execute algorithm 3.3 with Buffer, N as input

 assign Link the output of algorithm 3.3

 if (Link not equal to Null)

 then (Execute algorithm 3.5 with Link, Web site name, BaseLink

 as input

 assign Link the output of algorithm 3.5

 if (Link equal to “1”)

 then (assign ExternalLinks the value ExternalLinks + 1)

 else if (Link equal to “2”)

 then (assign NonHtmlFiles the value NonHtmlFiles + 1)

 else (Execute algorithm 3.2 with Link, URL list as input))

)

)

)

Chapter Three: Development of Web Site Search Engine 59

3.3.4 Saving the Crawling Information

 In this part the information about the crawling operation is saved in a file

named the Crawler Results File.

 If an error occurs during the saving operation of the crawling

information, a warning message is shown and the program continues

because it is not a critical error.

3.3.5 Saving the Crawler List

 When the crawler finish his job, The URL list will contain the

successfully downloaded links and the links that are not downloaded due to

some error. Then the URL list will be divided into two lists: one for the

successfully downloaded links called the True URL List and another for the

unsuccessfully downloaded links called the False URL List. Each list will be

saved on a file with a header and the header contains two variables:

• Type: which is a 2 bytes variable that is either true (represent the

downloaded list) or false (represent the list with the links that are not

downloaded).

• Number of items: a 4 bytes variable, which contains the number of

items in the list.

 The two lists are lists of string, which represent the URL link name, table

(3.2) present an example of a True URL List file and table (3.3) present an

example of a False URL List file taken from table 3.1.

2 Bytes True

4 Bytes 3

10 Bytes Index.html

9 Bytes About.htm

8 Bytes Map.html

Table (3.2) True URL list file

Header

List of links

Chapter Three: Development of Web Site Search Engine 60

2 Bytes False

4 Bytes 2

13 Bytes Products.html

8 Bytes News.htm

 If an error occur during the saving operation of the crawling lists (true

and false lists), a critical error message is shown and the program end

execution.

3.4 Indexer and Ranker

The indexer consists of the following three parts:

� Create the index

� Create the inverted index

� Create the lexicon

 The ranking part is mixed with the indexing part. During indexing, each

word will have a rank status (priority).

3.4.1 Creating the Index

 In this part all the word are extracted from the pages that are downloaded

during the crawling part and all the words except the stop words are indexed

in the search engine database.

 Figure (3.6) shows the indexing parts:

Table (3.3) False URL list file

Header

List of links

Chapter Three: Development of Web Site Search Engine 61

-Create the Stop Word List

 The stop words are the words that are not important to the search engine

like (to, is, are, etc.).

 In this part the stop word list is created, first the administrator of the

search engine creates a text file containing the stop words separated by

spaces. Then the Stop Word List is initialized with the words of the stop

word text file.

Create the stop word
list

Initialize the index
files

Initialize the indexer
information

Start indexing

Save indexing
information

Save the word list

Figure (3.6) Indexing Parts

Initialize the Word
List

Start

End

Chapter Three: Development of Web Site Search Engine 62

 The Stop Word List is a binary search tree implemented as a dynamic

array of records; each record represent a stop word which contains the

following fields:

• Stop Word: represent the stop word, which is a string.

• Left Link: 2 bytes variable represent the left link in the Stop Word

List.

• Right Link: 2 bytes variable represent the right link in the Stop Word

List.

 The Stop Word file contains a Header, which consists of:

• Type: 4 bytes variable represent the type of the list, which will be

“Stop”.

• Number of items: 2 bytes variable represent the number of stop words

in the list.

 The stop word list used in this work is shown in table (3.4)

i a about an are

as at be by com

for from how in is

It of on or that

the this to was what

when where who will with

www

 After initializing the Stop Word List with the words in the stop word text

file, the Stop Word List is saved on the storage unit as a file then loaded at

the beginning of the indexing operation into the memory.

Table (3.4) Stop Word List

Chapter Three: Development of Web Site Search Engine 63

-Initialize the Index Files

 The index files from A to Z (AindexFile.IF, BindexFile.IF, etc.) and from

0 to 9 (0IndexFile.IF, 1IndexFile.IF, etc.); are opened and initialized to Null.

All the words that have the same first letter are saved in the same file that

named on that first letter, for example the words (car, cup, coffee) are saved

in the CindexFile.IF file.

 The index file is a file of records, and each record contains the following

fields:

• Word ID: 4 bytes variable represent the id of one of the indexed

words.

• Page ID: 4 bytes variable represent the id of the page where the word

occur.

• Position: 4 bytes variable represent the position where the word occurs

in the page.

• Rank Status: 2 bytes variable represent the rank status of the word

(priority of the word).

-Initialize the Indexer Information

 In this part the information related to the indexing operation are

initialized, these information are only the Unindexed Files Number. During

the indexing operation an error may occur and many files may not indexed so

this variable is important to know how many files are not indexed.

-Initialize the Word List

 The Word List will contain all the words that occur in the Web pages. The

Word List is a binary search tree implemented as a dynamic array of

records and each record contains the following fields:

• Word: represents the word as a string.

Chapter Three: Development of Web Site Search Engine 64

• Number: the number of occurrences for the word in all the Web

pages.

• Left Link: represents the left link of the binary search tree.

• Right Link: represents the right link of the binary search tree.

-Start Indexing

 For each Web page, load it from the storage unit to the memory then

parses the page looking for words. For each word, if it is not part of the Stop

Word List, add the word to the Word List, if it is already in the Word List

then increase the number of occurrences for that word. The Word List will

return an ID for the word after inserting it. Then add the word to the Index

List with its rank status and it’s ID.

 The Index List is a binary search tree implemented as a dynamic array of

records, and each record contains the following fields:

• Word: represents the word as a string.

• Word ID: 4 bytes variable represents the ID of the word.

• Position: 4 bytes variable represents the position of occurrences for the

word in the page.

• Rank Status: 4 bytes variable represents the priority for the word.

• Left Link: 4 bytes variable represents the left link for the binary

search tree.

• Right Link: 4 bytes variable represents the right link for the binary

search tree.

 After finish the work with the current page, save the words from the Index

List into the Index Files, each word in its correct Index File.

The following are the algorithms used in the indexing part:

Algorithm (3.8) is used for extracting a word from the file.

Chapter Three: Development of Web Site Search Engine 65

Algorithm (3.9) is the parser algorithm.

Algorithm (3.8)

Name : Get Word

Input : Buffer containing the page, N (pointer)

Output : Word

assign Word the value Nth entry in Buffer

assign N the value N + 1

while ((Nth entry in Buffer greater than or equal to “a” and

 Nth entry in Buffer less than or equal to “z”) or

 (Nth entry in Buffer greater than or equal to “A” and

 Nth entry in Buffer less than or equal to “Z”) or

 (Nth entry in Buffer greater than or equal to “0” and

 Nth entry in Buffer less than or equal to “9”) and N less than

 PageLen) do

(assign Word the value Word + Nth entry in Buffer

 assign N the value N + 1)

Convert Word to upper case

return the value Word

Algorithm (3.9)

Name : Parser

Input : Buffer containing the Web page

Output : List of words with their rank status

assign N the value 0

assign RankStatus the value 1

assign PageLen the value length of the page

while (N less than PageLen) do

(while (Nth entry in Buffer equal to “Space” or “Ascii13” or “Ascii10” and N less

 than PageLen) do

 (assign N the value N + 1)

 if (Nth entry in Buffer equal to “<” and Nth+1 entry in Buffer equal to “/”)

 then (assign N the value N + 1

Chapter Three: Development of Web Site Search Engine 66

Algorithm 3.9- (Continue)

 Execute algorithm 3.3 with Buffer, N as input

 assign Token the output of algorithm 3.3

 Execute one of the following blocks according to the value of Token

 Case 1: Token equal to “b” or “strong” or “blink”

 (assign RankStatus the value RankStatus - 4)

 Case 2: Token equal to “i” or “u” or “s” or “strike” or “code” or “samp” or

 “var” or “em” or “blockquote” or “tt” or “cite” or “address” or

 “sub” or “sup” or “kbd”

 (assign RankStatus the value RankStatus - 2)

 Case 3: Token equal to “big”

 (assign RankStatus the value RankStatus - 12)

 Case 4: Token equal to “marquee”

 (assign RankStatus the value RankStatus - 6)

 Case 5: Token equal to “title”

 (assign RankStatus the value RankStatus - 128)

 Case 6: Token equal to “a”

 (assign RankStatus the value RankStatus - 64)

 Case 7: Token equal to “h1” or “h2” or “h3” or “h4” or “h5” or “h6”

 (assign RankStatus the value RankStatus - 32)

 Case 8: Token equal to “font”

 (assign RankStatus the value RankStatus - 8)

 while (Nth entry in Buffer not equal to “>” and N less than PageLen) do

 (assign N the value N + 1)

 assign N the value N + 1

)

 else if (Nth entry in Buffer equal to “<” and Nth+1 entry in Buffer not equal to

 “Space”)

 then (Execute algorithm 3.3 with Buffer, N as input

 assign Token the output of algorithm 3.3

 Execute one of the following blocks according to the value of Token

 Case 1: Token equal to “b” or “strong” or “blink”

 (assign RankStatus the value RankStatus - 4)

 Case 2: Token equal to “i” or “u” or “s” or “strike” or “code” or “samp” or

 “var” or “em” or “blockquote” or “tt” or “cite” or “address” or

 “sub” or “sup” or “kbd”

 (assign RankStatus the value RankStatus + 2)

 Case 3: Token equal to “big”

 (assign RankStatus the value RankStatus + 12)

Chapter Three: Development of Web Site Search Engine 67

Algorithm (3.10) is the main indexing algorithm.

Algorithm (3.10)

Name : Main indexing algorithm

Input : HTML Pages

Output : Index Files

assign PageNo the value 0

assign UnidexedPages the value 0

Algorithm 3.9- (Continue)

 Case 4: Token equal to “marquee”

 (assign RankStatus the value RankStatus + 6)

 Case 5: Token equal to “title”

 (assign RankStatus the value RankStatus + 128)

 Case 6: Token equal to “a”

 (assign RankStatus the value RankStatus + 64)

 Case 7: Token equal to “h1” or “h2” or “h3” or “h4” or “h5” or “h6”

 (assign RankStatus the value RankStatus + 32)

 Case 8: Token equal to “font”

 (assign RankStatus the value RankStatus + 8)

 while (Nth entry in Buffer not equal to “>” and N less than PageLen) do

 (assign N the value N + 1)

 assign N the value N + 1

)

 else if ((Nth entry in Buffer greater than 64 and Nth entry in Buffer less than

 91) or (Nth entry in Buffer greater than 96 and Nth entry in Buffer

 less than 123) or (Nth entry in Buffer greater than 47 and Nth entry in

 Buffer less than 58))

 then (Execute algorithm 3.8 with Buffer, N as input

 assign Word the output of algorithm 3.8

 if (Word is not a stop word)

 then (add Word in the word list)

)

 else (assign N the value N + 1)

)

Chapter Three: Development of Web Site Search Engine 68

 The ranking status for each word depends on the characteristics of the

word, which are: font attributes (size, color, style), the position of the word in

the page and the status of the word (is it a link to other page?).

 The ranking part is mixed with the indexing part, during indexing, some

HTML Tags (commands) will affect the word rank status as shown in table

(3.5):

Tag Description Rank Score

B, STRONG, and

BLINK
Change the word style 4

I , U, S, STRIKE ,

CODE, SAMP, VAR ,

EM , BLOCKQUOTE ,

TT , CITE , ADDRESS,

SUB, SUP and KBD

Change the word style 2

BIG Change the word style and size 12

MARQUEE
Convert the word to a scrolling

word
6

TITLE Change the word to a title 128

Table (3.5) Tags Ranking

Algorithm 3.10 – (Continue)

repeat

(if (page loaded in memory correctly)

 then (parse the page and put all the information relative to them in a list

 save extracted words from list to all index files)

 else (assign UnidexedPages the value UnidexedPages + 1)

assign PageNo the value PageNo + 1

)

until (PageNo greater than number of crawled pages)

Chapter Three: Development of Web Site Search Engine 69

A Change the word to a link 64

H1, H2, H3, H4, H5

and H6
Change the word to a heading 32

FONT
Change the word font style, color,

or size
8

-Save Indexing Information

 In this part, the indexing information is saved on a file; this information

represents the number of unindexed pages. The file name will be

“ indexFilesInfo.IFI ”.

-Save the Word List

 In this part the Word List is saved on a file, which contains a header, and

this header is as follows:

• Type: 8 bytes variable that represents the type of the file, which is a

Word List file (“WordList”).

• Number of items: 4 bytes variable that represents the number of items

in the Word List.

The Word List is saved without the Left Link and the Right Link, only the

Word and the Number of occurrences.

3.4.2 Creating the Inverted Index

 In this part each index file is loaded into the memory and sorted using the

Improved Quick sort and Insertion sort methods then the index file is

saved back to the storage unit.

Algorithm (3.11) is the improved quick sort algorithm:

Algorithm (3.11)

Name : Improved Quick Sort

Input : Buffer containing the Index file, Left pointer, Right pointer

Output : Sorted index file

Chapter Three: Development of Web Site Search Engine 70

Algorithm 3.11- (Continue)

If (Left less than Right)

 then (assign J the value Left

 assign K the value Right

 if (Word of entry Left in Buffer less than the Word of entry Right in Buffer)

 then (swap between Left and Right records of Buffer)

 else if (Word of entry Left in Buffer equal to the Word of entry Right in

 Buffer)

 then (if (RankStatus of of entry Left in Buffer less than RankStatus of

 Entry Right in Buffer)

 then (swap between Left and Right records of Buffer))

 repeat

 (

 repeat (assign J the value J + 1)

 until (Word of Jth entry in Buffer less than Word of entry Left in Buffer

 or (Word of Jth entry in Buffer equal to Word of entry Left in

 Buffer and RankStatus of Jth entry in Buffer less than or equal to

 RankStatus of entry Left in Buffer))

 repeat (assign K the value K - 1)

 until (Word of Kth entry in Buffer greater than Word of entry Left in

 Buffer or (Word of Kth entry in Buffer equal to Word of entry Left

 In Buffer and RankStatus of Kth entry in Buffer greater than or

 equal to RankStatus of entry Left in Buffer))

 if (J less than K)

 then (swap between record of Jth entry and record of Kth entry in

 Buffer)

) until (J greater than K)

 swap between record of entry Left and record of Kth entry in Buffer

 if ((K - Left) greater than 10)

 then (Execute algorithm 3.11 with Buffer, Left, K - 1 as input)

 if ((Right - K) greater than 10)

 then (Execute algorithm 3.11 with Buffer, K + 1, Right as input)

)

Chapter Three: Development of Web Site Search Engine 71

Algorithm (3.12) is the Insertion Sort algorithm

Algorithm (3.12)

Name : Insertion Sort

Input : Buffer containing the index file, First pointer, Last pointer

Output : Sorted index file

assign K the value Last – 1

repeat (assign J the value K + 1

 assign Save the value record of Kth entry in Buffer

 assign Flag the value “True”

 while (J less than Last and Flag equal to “True”) do

 (if (Word of Save record less than Word of Jth entry in Buffer)

 then (assign Jth – 1 entry in Buffer the value of Jth entry in Buffer

 assign J the value J + 1)

 else if (Word of Save record equal to Word of Jth entry in Buffer)

 then (if (RankStatus of Save record less than RankStatus of Jth

 entry in Buffer)

 then (assign Jth – 1 entry in Buffer the value of Jth entry in

 Buffer

 assign J the value J + 1)

 else (assign Flag the value “False”))

 else (assign Flag the value “False”)

)

 if (Word of Save record less than Word of Jth entry in Buffer)

 then (assign Jth – 1 entry in Buffer the value of Jth entry in Buffer

 assign J the value J + 1)

 else if (Word of Save record equal to Word of Jth entry in Buffer)

 then (if (RankStatus of Save record less than RankStatus of Jth

 entry in Buffer)

 then (assign Jth – 1 entry in Buffer the value of Jth entry in

 Buffer

 assign J the value J + 1))

 assign Jth – 1 entry in Buffer the value of Save

 assign K the value of K - 1

) until (K less than 1)

Chapter Three: Development of Web Site Search Engine 72

3.4.3 Creating the Lexicon

 The lexicon is a MultiLayer structure consists of 4 layers, Each layer is an

array of records and each record is 4 bytes variable used to point to the

position of the word in the inverted index file (the number of the record in the

inverted index file), these layers are:

• Layer1: one dimension array that contains pointers to all the words

with only one character like the word “A”.

• Layer2: two dimension array that contains pointers to all the words

with only two characters like the word “TV”.

• Layer3: three dimension array that contains pointers to all the words

with only three characters like the word “Car”.

• Layer4: four dimension array that contains pointers to all the words

with only four characters like the word “Card”.

Algorithm (3.13) is used for building the lexicon and called for each inverted

index file.

Algorithm (3.13)

Name : Building the lexicon

Input : Buffer containing the inverted index file

Output : lexicon

assign Max the value number of words in the index file

assign N the value 1

while (N less than or equal to Max) do

(assign Word the value of Word of Nth entry in index file

 assign FirstRecordNu the value N

 assign N the value N + 1

 assign Flag the value “True”

 while (N less than or equal to Max and Flag equal to “True”) do

 (if (Word equal to Word of Nth entry in index file)

 then (assign N the value N + 1)

 else (assign Flag the value “False”))

Chapter Three: Development of Web Site Search Engine 73

3.5 Interface

 The interface of the search engine is a simple Web page consists of a text

box for entering the query and a button for sending the Query to the Web site.

When the user enter the query into the text box and click on the search

button, the query will be send to the Web site server which will run the

Search.exe CGI program to receive the query, then the CGI program will

check the query for errors, and if there was any error, the CGI program will

send an error message back to the client. If no error was found, the CGI

program will convert each AND to * and each OR to +, make a connection

with the search engine server using the CGI-SES protocol and send the query

to the search engine server as shown in figure (3.7).

Algorithm 3.13 (Continue)

 If (Word is only one character long)

 then (assign Layer1 with index (Word) the value FirstRecordNu)

 else if (Word is only two characters long)

 then (assign Layer2 with index (first character, second character) the value

 FirstRecordNu)

 else if (Word is only three characters long)

 then (assign Layer3 with index (first character, second character, third character)

 the value FirstRecordNu)

 else if (Word is only four characters long)

 then (assign Layer4 with index (first character, second character, third haracter,

 fourth character) the value FirstRecordNu)

 assign Flag the value “True”

 while (N less than Max and Flag equal to “True”) do

 (if (first four character of word equal to first four character of word of Nth entry in

 index file)

 then (assign N the value N + 1)

 else (assign Flag the value “False”))

)

Chapter Three: Development of Web Site Search Engine 74

3.6 Searcher

 The searcher is the Search Engine Server (SES) that is responsible for

serving any requests from the CGI programs by accepting the request, receive

the query, search for the query and return the results back to the CGI

program, which will return the results to the client through the Web site

server.

 When the SES starts running, it loads the lexicon, the word list, the URL

list into the memory, then wait for any requests from CGI programs.

 When a request arrives, the SES will accept the request by making a

connection, take the query and search for the words in the query. There are

two types of query that the SES can search for:

Search Engine
Computer Server

Client Computer
(User)

Send an error message
to the client

Send Query

Using CGI-SES
protocol, open

connection with the
search engine server
and send the Query

Figure (3.7) User-CGI Interface

Search

Query Field
CGI script

Query Optimizer

Yes
Any

Errors

No

Chapter Three: Development of Web Site Search Engine 75

• Normal Query: which contains one word, the SES search for the word

in its lexicon.

• Boolean Query: which contains Boolean operators (AND, OR) like

(Car and station), the SES will create an array of counters and search

for each word, increment the counter for that page ID for each word.

For example if we are searching for the query (Car and Station) then

we will search for the word “Car” and increment all the counters with

an index equal to the page ID where that word was found, then search

for the word “Station” and increment all the counters with an index

equal to the page ID where that word was found, then all the counters

that contains the number 2 (number of words in the query) will

represent a page ID where the two words appears in.

 For example if we want to search for the word “TV” then all the

occurrences of that word will be found in the T index file because it starts

with a T letter. But we don’t know the number of the first record in the T

index file where the TV word will be found and the number of occurrences

for that word. The second layer of the lexicon will contain the number of the

first record in the T index file and in that record we will find the ID of the

word so that we can supply it to the word list to get the number of

occurrences for the word. So the word “TV” will be found in the T inverted

index file starting at the record with the number found in the second layer and

ending at the record with the number (first record number + number of

occurrences for the word) as shown in figure (3.8).

Chapter Three: Development of Web Site Search Engine 76

 All the records found in the index file containing the words “TV” will also

contain the page ID where these words occur, so these page IDs will be used

to retrieve the URLs string from the URL List and return these URLs to the

CGI program which will return them after ordering them to the client as the

final results as shown in figure (3.9).

A
.
.
.
T
.
Z
0
.
.
.
9

A
.
.
.
V
.
Z
0
.
.
.
9

TV

Second Layer

.

.

.

.
TV
TV
TV
.
.
.

Index File

First Record

Word
ID

Number of
occurrences

. .

. .
3 ID
. .
. .
. .
. .
. .

Plus First Record
Number -1

Word List

Last
Record

Figure (3.8) Searching-Phase1

Chapter Three: Development of Web Site Search Engine 77

3.7 The CGI-SES Protocol

 The CGI talks to the SES using a protocol that was design for this project;

this protocol is used for sending and receiving commands and data between

both of them.

 When the CGI program receives a request from the user for searching a

specific text, the CGI program will send the first page number, number of

pages required and the text required to the SES separated by spaces using

the Winsock (a Socket Technique used by windows) connection.

 The SES will respond with one of the following messages:

1. “ERROR: text”: send back to the CGI program if an error was

found in the data coming from the CGI program, and “text” is a

description for the error.

Start

Pages ID’s
found in
the index

file

Pages
URL’s

Get the pages
URL’s for these

Pages ID’s

CGI

program

Return the pages
URL’s to the CGI

program

Client

.

.
URL
String

.

.

.

URL List

Return the URL’s after
ordering them as results
to the Client through the

Server

Figure (3.9) Searching-Phase2

Chapter Three: Development of Web Site Search Engine 78

2. “NOT FOUND”: send back to the CGI program if the user query

was not found in the search engine database.

3. “FOUND NuOfResults FirstPage LastPage URL1 URL2 …”:

send back to the CGI program if the user query was found,

where NuOfResults represent the number of results found,

FirstPage and LastPage are like “from FirstPage to LastPage”,

for example if the number of results to be displayed in the screen

are 10 results, the user search for some word for the first time

and the search database contain 30 results then NuOfResults will

be 30, FirstPage will be 1 and LastPage will be 10, which means

the search engine found 30 results and this message contains the

results from 1 to 10 and the URL1 … URL10 is the URL strings

for these results.

 The CGI will receive the message from the SES and respond to the client

according to the contents of the message by generating a HTML page on the

fly and send it to the client.

Chapter 4

Web Site Search Engine

Operation

4.1 Introduction

 This chapter consists of 6 parts, the first part explains the programming

languages used in developing the Web site search engine, the second part

explain how to run and use the proposed Web site search engine, the third

part list the features of the proposed Web site search engine, the forth part

discuss the system requirement, the fifth part discuss the experiment and

results, and the last part show the tools used with the Web site search engine,

which helps the Web site search engine administrator to check the search

engine operations.

4.2 Programming languages

 Visual Basic was used as the main programming language for

implementing the crawler and the indexer.

 VBScript and HTML were used as the programming languages in the

implementation of the user interface.

 CGI (Common Gateway Interface) was used in implementing the script

(program) that is called by the Web site server.

Chapter 4: Web Site Search Engine Operation 80

 The search engine is one of the new topics in computer science, the first

search engine was designed in 1995, building a search engine is a challenging

task requiring a lots of reading and learning many new subjects and

techniques, so the time was the master factor in this project leaving little time

for learning a visual language and being familiar with it’s techniques and

especially the Internet techniques. Visual Basic was used because it is simple,

easy to learn than the other visual languages, leaving lots of time for the

project design.

 HTML is the basic language for building Web pages so it has been used,

and VBScript is a client-side scripting language that is very simple and very

close to the Visual Basic programming language.

 CGI is the server-side scripting language that was used because of its

capabilities than the other server-side scripting languages like ASP (Active

Server Page) and PHP (Personal Home Page). Appendix B contains an

entire CGI library designed and written in visual basic for this work.

4.3 User Interface

 The project is divided into 3 parts: the Crawler, the Indexer and the Search

Engine Server (SES), each one have it’s own interface. To put the search

engine on line, the Search Engine Administrator (SEA) must crawl the Web

site, index the pages to build the index, inverted index, and the lexicon then

run the SES, which will be ready for receiving any request.

4.3.1 Crawler User Interface

 To start the crawling process, first the SEA must enter some information

to the crawler program, which is:

• Output Path: the crawler needs this path to store the true URL list file

(TrueURLList.cul), the false URL list file (FalseURLList.cul) and the

Chapter 4: Web Site Search Engine Operation 81

crawling results file (CrawlerResults.CR). For example to set the

output path to “c:\”, click on options, choose Set Output Path then

write in the text box “c:\” as shown in figure (4.1).

• URL Startup File: a text file that must be created by the SEA to store

the most popular pages URL’s including the Home page URL. The

URLs must be separated by spaces. To set the path for this file to the

crawler, from options choose Set URL Startup File and write the path

for this file in the text box and click on ok.

• Site Address: which represent the site name of the Web site. For

example if the Web site name was http://www.mysite.com, from

options choose Set the Site Address and write “mysite” in the textbox

and click on ok.

• URL Prefix: which is the prefix of the URL, for example the URL

prefix for the site http://www.mysite.com is “http://”, to set this option

then choose Set the URL Prefix from Options and write “http://”.

 A special directory must be created in the Output Path and named

“DownloadedPages”; all the Web pages will be store in that directory. To

start the crawling process, click on the spider button on the crawler form.

Figure (4.1) Crawler-Output Path

Chapter 4: Web Site Search Engine Operation 82

 To see the results of the crawling operation, choose Show Results from

Results and write the path for the crawler results file and click on ok and the

results will be shown as in figure (4.2).

 To view the true or false crawling list created by the crawler, use the

Crawling List Viewer program and click on Get Crawling List then enter

the name of the crawling list file in the text box and click on ok as shown in

figure (4.3) and the results in figure (4.4).

Figure (4.2) Crawling Results

Figure (4.3) Crawling List Viewer

Chapter 4: Web Site Search Engine Operation 83

4.3.2 Indexer User Interface

 To run the indexer, first the SEA must create the stop word list, which is a

text file containing the stop words separated by spaces. Then the SEA must

convert the stop words text file to a stop words data file by selecting Build

Stop Words File from the Build menu and write the stop words text file

name in the text box then write the filename of the new stop words data file

in the other text box as shown in figure (4.5) and figure (4.6).

Figure (4.4) Crawling List Viewer-Results

Figure (4.5) Indexer-Stop word text file

Chapter 4: Web Site Search Engine Operation 84

 Now the SEA will have to set the Work Path by selecting Set Work Path

from Options then write the work path in the text box and click on ok as

shown in figure (4.7).

 The SEA have to set the stop list file name by selecting Set Stop List file

name from Options as shown in figure (4.8).

Figure (4.6) Indexer-Stop word data file

Figure (4.7) Indexer-Work Path

Chapter 4: Web Site Search Engine Operation 85

 The DownloadedPages directory and the TrueURLList file must be in

the same Work Path for the indexer. The IndexFiles directory must be

created in the Work Path. To run the indexer, click on Start Indexing button

then after finishing the indexing process click on the Build Inverted Index

Button to build the inverted index and the lexicon.

4.3.3 Search Engine Server User Interface

 The SES is responsible for serving all the requests coming from the

clients. To put the SES on line, the SEA must choose Change Path from

Options to set the path to the folder (directory) that contains the lexicon file,

URL list file, word list file, inverted index files as shown in figure (4.9).

Figure (4.8) Indexer-Stop List

Chapter 4: Web Site Search Engine Operation 86

 To run the SES click on the Run The Search Engine Server button to

put the SES on line and ready to any request.

4.3.4 Search Engine Web page Interface

 The search engine Web page consists of a logo (thunder), text box, search

button, and three links as shown in figure (4.10).

Figure (4.9) SES

Figure (4.10) Search Engine Web page

Chapter 4: Web Site Search Engine Operation 87

 The About page is used to give a description about the search engine as

shown in figure (4.11)

 The Preferences page is used to change the number of results per page as

shown in figure (4.12)

Figure (4.11) About page

Figure (4.12) Preferences page

Chapter 4: Web Site Search Engine Operation 88

 The documentation page give the documentation of the proposed system

as a web site.

4.4 Features

 There are many features a search engine can have, and the following are

the most used features:

1. Case Sensitive: the proposed system is not case sensitive, because if

the search engine is case sensitive then many results will be put aside

because they are capital or small which will reduce the number of

results.

2. Deep Crawling: the proposed system makes a deep crawling and

downloads all the pages it can access (except for external and non-html

links).

3. Stop Word Indexing: the proposed system excludes stop words from

the index as a way to save storage space and to speed up the search

process.

4. Use of Meta tags: the proposed system excludes meta tags from the

index because many Web page designers put many keyword that are

not related to the page in the meta tags to give their pages a higher

ranking (priority).

5. Links text indexing: the proposed system indexes the links text.

6. Ranking: the proposed system uses the word frequency, word

position, font attributes (size, color, style), and others (if the word is a

link, title or a heading) to rank words.

7. Spelling Correction, Stemming, and Abbreviation support: some

search engines have a spelling correction (type mathmatic and the

search engine will search for the correct word, which is mathematic),

stemming (type swim and the search engine will search for swim,

swims or swimming), and abbreviation support (type AI and the search

Chapter 4: Web Site Search Engine Operation 89

engine will search for AI or Artificial Intelligence). The proposed

system does not use spelling correction, stemming or abbreviation.

8. Filter support: the proposed system has a filter used to ignore

downloading the external and non-html links.

9. Advance Search: the proposed system support advance searching by

providing Boolean search.

10. Support for Language: the proposed system search only English

words.

4.5 System Requirement

There are two types of system requirement: Hardware Requirement and

Software Requirement.

4.5.1 Hardware Requirement

 The proposed Web site search engine requires to be online on the Internet

or at least be implemented on a network.

 To give an idea about the Hardware requirement of the server computer

required for running the Web site search engine. Consider the following

example:

 The number of Web page in a Web site varies from tens of pages to a

maximum of about 1,000,000 pages. In this example, the worst case

(Maximum) will be taken.

 Consider a Web site with 1,000,000 Web pages; the average length of

URL string is 40 characters (URL string is like “home.html”,

“products/new/newitems.htm”, “welcome.html”,

“buildings/rooms/tables/newtables.htm”, and the like), average size of page s

Chapter 4: Web Site Search Engine Operation 90

1KB, average number of words in each page is 100 word, average number of

characters in a word is 10 characters.

 There are two parts in the search engine

Off-Line part:

 The Off-Line part consists of the crawler and the indexer.

Crawler:

-Memory Requirement: the crawler requires memory space for the URL list

during running time.

Memory space required by the crawler = (average size of URL string + 10) *

number of pages to be downloaded

 = (40 + 10) * 1000,000

 = 50,000,000 Bytes

 = 48 MB

 The number 10 in the equation is the sum of: 4 Bytes for the left link, 4

Bytes for the right link, and 2 Bytes for the status of the URL link

(downloaded or not).

-Disk Requirement: the crawler requires disk space to store the URL list and

the downloaded pages (store as files).

Disk space required for storing the URL list = 6 + average size of URL string

* number of pages to be downloaded

 = 6 + 40 * 1000,000

 = 40,000,00 Bytes

 = 39 MB

Disk space required for storing the downloaded pages = number of pages to

be downloaded * average page size

 = 1000,000 * 1024

 = 1,024,000,000 Bytes

 = 977 MB

Chapter 4: Web Site Search Engine Operation 91

Disk space required by the crawler = Disk space required for the URL list +

Disk space required for the downloaded pages

 = 39 MB + 977 MB

 = 1016 MB (about 1 GB)

Indexer:

 The indexer consists of two parts: building the index and building the

inverted index and lexicon.

Building the index:

-Memory Requirement:

 Building the index requires memory space for the word list and additional

memory space for another word list that will be stored in the disk and also

used in building the inverted index and lexicon.

 According to many research papers, the number of words in English

language + scientific words is about 1000,000 word (see [Ask01]).

Memory space required for word list1= (average word size + 12) * number of

unique words in the Web site

 = (10 + 12) * 1000,000

 = 22,000,000

 = 21 MB

 The number 12 in the equation is the sum of: 4 Bytes for the left link, 4

Bytes for the right link, and 4 Bytes for the number of word occurrences.

Memory space required for word list2 = (average word size + 4) * number of

pages to be downloaded

 = (10 + 4) * 1000,000

 = 14,000,000 Bytes

 = 14 MB

Chapter 4: Web Site Search Engine Operation 92

 The number 4 in the equation is 4 Bytes for the number of word

occurrences.

Memory space required to build the index = memory space required for word

list1 + memory space required for word list2

 = 21 MB + 14 MB

 = 35 MB

-Disk Requirement:

 Building the index requires disk space for all the 36 index files (size of

index), and for the word list.

Disk space required for storing the word list = (average word size + 4) *

number of pages to be downloaded

 = 14 * 1000,000

 = 14,000,000 Bytes

 = 14 MB

Disk space required for storing the index = 14 * average number of words in

page * number of pages to be downloaded

 = 14 * 100 * 1000,000

 = 1,400,000,000 Bytes

 = 1336 MB

Disk space required for the indexer = disk space required for storing the word

list + disk space required for storing the index

 = 14 MB + 1336 MB

 = 1350 MB

Building the inverted index and lexicon:

-Memory Requirement:

 Building the inverted index and lexicon requires memory space for

holding one of the index files to sort it, word list2 created while building the

index (14 MB), and the multilayer structure used for the lexicon.

Chapter 4: Web Site Search Engine Operation 93

Memory space required by the multilayer structure requires = (36 + 362 + 363

+ 364) * 4

 = 6,910,416 MB

 = 7 MB

 The index is spread in to 36 files, which means that theoretically, each file

size = index size / 36

 = 1336 MB / 36

 = 38 MB

 But according to English language statistics, the words that begins with

the letter ‘e’ take 11% of the number of English words as shown in table (4.1)

[Ask05]

E 11.1607% 56.88 M 3.0129% 15.36

A 8.4966% 43.31 H 3.0034% 15.31

R 7.5809% 38.64 G 2.4705% 12.59

I 7.5448% 38.45 B 2.0720% 10.56

O 7.1635% 36.51 F 1.8121% 9.24

T 6.9509% 35.43 Y 1.7779% 9.06

N 6.6544% 33.92 W 1.2899% 6.57

S 5.7351% 29.23 K 1.1016% 5.61

L 5.4893% 27.98 V 1.0074% 5.13

C 4.5388% 23.13 X 0.2902% 1.48

U 3.6308% 18.51 Z 0.2722% 1.39

D 3.3844% 17.25 J 0.1965% 1.00

P 3.1671% 16.14 Q 0.1962% (1)

 Which means, that the index files will not be equal in size, in which the

‘e’ index file could be the largest index file according to table (4.1), which

takes 11% of the index.

Largest index file size = index size * 11%

Table (4.1) Letter frequency distributions in English

Chapter 4: Web Site Search Engine Operation 94

 = 1336 MB * 11%

 = 147 MB

Memory space required for building the inverted index and lexicon:

= 147 MB + 14 MB + 7 MB

= 168 MB

-Disk Requirement:

 Building the inverted index and lexicon requires disk space for storing the

lexicon.

Disk space required for building the inverted index and lexicon = 7 MB

Memory required for the Off-Line phase = 168 MB

Disk space required for the Off-Line phase = disk space required for the

crawler + disk space required for the indexer

 = 1016 MB + (1350 MB + 7 MB)

 = 2373 MB

On-Line part:

 The On-Line phase consists of two parts: the searcher and the user

interface page.

Searcher:

 The searcher runs on the server-side (server computer).

-Memory Requirement:

 The searcher requires memory space for lexicon, the word list, and the

URL list.

Memory space required for the searcher = 7 MB + 14 MB + 39 MB

 = 60 MB

Chapter 4: Web Site Search Engine Operation 95

-Disk Requirement:

 No disk space required.

User interface pages:

 The user interface pages are viewed by the user in the client-side (user

computer).

-Memory Requirement:

 Only few Kilobytes are required for the Web site search engine Web page

and for the results Web page.

-Disk Requirement:

 No disk space required.

Full Hardware Requirement:

 Server computer with 168 MB (256 MB) of memory and 2373 MB (3 GB)

of disk space.

4.5.2 Software Requirement

 The user side (it is the user computer) requires any Internet browser to

open the Web site search engine page and to browse the results of the search.

4.6 Experiment and Results

 Evaluating of search results is to measure how well the returned results

meet the user’s particular information need. Precision metric will be used to

evaluate the performance of the proposed system.

Precision: the precision is to measure how much of what the users see is

relevant. This measure is defines as:

Chapter 4: Web Site Search Engine Operation 96

Precision =
R

C

 Where C is the number of relevant documents retrieved by the search

engine. R is the number of documents retrieved by the search engine.

 For example, if the user search for the word “car”, and the results contain

40 pages, 20 of them are relevant then

Precision = =
40

20 = 0.5 or 50%

 For testing the proposed system, a Web site is created, which contains the

first two chapter of this thesis (Chapter1 and Chapter2), this Web site is

implemented on a local server, crawled, and indexed, which contains 45

pages. 5 different queries were tested and evaluated using the precision of the

first 10 retrieved results. The results are shown in table (4.2).

Query Results Precision

1. Internet

1, 2, 3, 9, 10 very Relevant

5, 6, 8 Relevant

4,7 Irrelevant

80%

2. Crawler

1, 2, 3, 7, 8, 9, 10 very

Relevant

4, 5, 6 Relevant

100%

3. Search and Engine

1, 2, 3, 7, 8 very Relevant

4, 5, 9 Relevant

6, 10 Irrelevant

80%

4- HTML

1, 3, 4, 6, 9, 10 very

Relevant

2, 5, 7, 8 Relevant

100%

5- Search and Query

1, 7, 8, 10 very Relevant

2, 5 Relevant

3, 4, 6, 9 Irrelevant

60%

Table (4.2) Experiment results

Chapter 4: Web Site Search Engine Operation 97

4.7 Tools

 Two tools are designed to be used with the proposed Web site search

engine: URL list viewer and Word list viewer.

 URL list viewer is a crawler tool used for displaying the URL list

generated by the crawler, this tool is shown in figure (4.13).

 Word list viewer is an indexer tool used for displaying the Word list

generated by the indexer, this tool is shown in figure (4.14).

Figure (4.13) URL List Viewer

Chapter 4: Web Site Search Engine Operation 98

 Figure (4.14) Word List Viewer

Chapter 5

Conclusions and Future Works

5.1 Conclusions

1- The index is spread in 36 files, which reduce the sort time and memory

space required to build the inverted index.

2- The lexicon is created using a multilayer structure with 4 layers instead

of the binary search tree.

3- The ranking part based only on the word attributes of the pages, which

can be more efficient if the structure of the web (links) are used.

5.2 Suggestions for Future Works

1. Research on the user needs, the problems they face when using the

search engine and all the ideas they have or want to be in the search

engine.

2. Research on finding the best stop words to be used in the search

engine.

3. Develop a NLP query interface for the search engine.

4. Develop a search engine that index non-html documents like PDF,

Microsoft Word and other types of documents.

5. Design a search engine with a different interface technique between the

client request and the search program that is faster than the socket

interface.

6. Develop a ranking algorithm using the structure of the web (links).

Dedication

 I dedicate my work to all the

researchers and scientists who use the

science to make the world a better place.

 To all the people who sacrifice in their

lives for a better future for their country

and for their children.

 To my country as a simple gift, to my

mother, to my sister, to my family.

Eihab

Keywords

Internet, Soft Internet, Web, WWW (World Wide Web), Web site Search
engine, Crawler, Indexer, Searcher, Visual Basic, CGI (Common
Gateway Interface), HTML (Hyper Text Markup Language), Browser,
Web Growth, Starting Point Pages, Subject Trees, URL (Uniform
Resource Locator), TCP/IP (Transmission Control Protocol/Internet
Protocol), Client-Server Model, Web Servers, HTTP (Hyper Text
Transfer Protocol), IR (Information Retrieval), DR (Data Retrieval),
Characteristics of the Web, Difficulties of the Web, Types of search
engines, Architecture of search engine, search engine user interface.

 III

List of Abbreviations

Abbreviation Meaning

AI Artificial Intelligence

ARPA Advanced Research Projects Agency

ASP Active Server Page

BOOTP Boot Strap Protocol

CERN European laboratory for particle physics

CGI Common Gateway Interface

CGI-SES Common Gateway Interface-Search Engine Server

DNS Domain Name System

DR Data Retrieval

E-Mail Electronic Mail

ESMTP Extended Simple Mail Transfer Protocol

FAQs Frequently Asked Questions

FDDI Fiber Distributed Data Interface

FTP File Transfer Protocol

GIF Graphic Interchange Format

GML Generalized Markup Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IAB Internet Architecture Board

ICMP Internet Control Message Protocol

ICS Information and Computer Science

IP Internet Protocol

IR Information Retrieval

 IV

ISO International Standards Organization

JPG Joint Photographic Group

LAN Local Area Network

MTA Mail Transport Agents

NCP Network Control Protocol

NLP Natural Language Processing

PDF Portable Document Format

PHP Personal Home Page

SEA Search Engine Administrator

SES Search Engine Server

SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TF-IDF Term Frequency-Inverse Document Frequency

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

WWW World Wide Web

Chapter Three: Develpment of Web Site Search Engine

44

Start

Indexing
and

ranking

Get Pages

Download

Crawler

Storage
Unit

Store Pages

Indexer
and

Ranker
Index

Lexicon

Internet URL List

Word List

Sort

Inverted
Index

Query
CGI User

Results

Error in query

Query has no errors SES

Return
results

Inverted
Index and
Lexicon
Builder

Figure (3.1) Proposed Web Site Search Engine Architecture

Design and
Implementation of

an an

Internet Search
Engine

Introduction

The amount of information on the Web is growing rapidly,
as well as the number of new users inexperienced in the art
of Web research. The Web is enormous and growing at an
incredibly fast pace. It has been said that if the user spent
only one minute per page, 10 hours a day, it would take
four-and-a-half years to explore only 1 million Web pages.
Thus a real need exists for some way to search this huge Thus a real need exists for some way to search this huge
resource.

Difficulties of the Web

The Web creates new challenges for the information
retrieval. And these problems are:

1- Distributed data: data is distributed widely in the
world. It is located at different sites and platforms.

The communication links between computers vary
widely. Plus, there is no topology of data organization.

2- Large volume: the growth of data is exponential. It
poses issues that are difficult to cope with.

3- High percentage of volatile data: documents can be
added or removed easily in the World Wide Web.
Changes to these documents go unnoticed by others. 40%
of Web pages change every month. There is a very high of Web pages change every month. There is a very high
chance of dangling links.

4- Unstructured and redundant data: the Web is not
exactly a distributed hypertext. It is impossible to
organize and add consistency to the data and the
hyperlinks. Web pages are not well structured and 30% of
all Web pages are duplicated. Semantic redundancy can
increase traffic.

5- Quality of data: a lot of Web pages do not involve any
editorial process. That means data can be false, inaccurate,
outdated, or poorly written.

6- Heterogeneous data: data on the Web are
heterogeneous. They are written in different formats, media
types, and natural languages.

7- Dynamic data: the content of Web document changes
dynamically. The content can be changed by a program dynamically. The content can be changed by a program
such as hit counter that keep tracks of number of hits.

Web Search Solutions

There are three main solutions for searching the Web:

1- Starting Points Pages

These pages provide a good point of entry for people
accessing the Web for the first time. They include lots of
links that introduce the user to fundamental Web concepts,
suchas“What is a Browser?”,the usercanalsofind linkssuchas“What is a Browser?”,the usercanalsofind links
to Subject Trees, Search Engines, UsenetFAQs
(Frequently Asked Questions), Internet documents of all
kinds, and “What’s new” documents.

2- Subject Trees

A subject tree is a subject-oriented catalog of URLs
organized by topic. It is an alphabetically organized list of
selected Web resources that is usually organized with

major headings such as Arts and Humanities, Business,
Economy, Government, and the like.

3- Search Engines

A search engine is a software used to crawl the Web for
downloading the Web pages, index them, rank themand
build a database for these pages ready to be searched for
satisfying the user queries.

There are two types of search engine on the Web:

1- Web Site Search Engine

2- Internet Search Engine

While the Internet search engine search the entire Web
looking for answers to user’s query, the Web Site search
engine is dedicated to one Web Site, searching only that
Web Site.

Web Site Search Engine

The Web Site search engine consists of the following
components:

1- Crawler

2- Indexer

3- Ranker3- Ranker

4- Searcher

The Web Site search engine can be divided in to two
phases:

1- Off-Line phase

2- On-Line phase

Off-Line phase

The crawler is responsible for downloading all the pages in
the Web Site (Except for the non-HTML pages) and store
them as files in the storage unit. The crawler consists of a

Crawler

The Off-Line phase consists of:

them as files in the storage unit. The crawler consists of a
URL list, downloading program and a URL extractor.
Before running the crawler, the crawler designer will have
to initialize the URL list with some URLs (Home page and
other frequently requested URLs) as shown in the figure in
the next slide.

Start
Internet

Storage Unit

Buffer in the
memory

Download

Request Page

Save Page

Extract Links

Add new links

URL List

Links Filter Links

First Link

Current Link

Last Link

Storage Unit Extract Links Links Filter Links

Indexer

The indexer is responsible for parsing all the files (pages)
downloaded by the crawler and index all the words in these
files (except the stop words) and sort them to create the
inverted index, then create the lexicon. The ranking is part
of the indexing phase.

Tag Description Rank Score

B, STRONG, and BLINK Change the word style 4

I, U, S, STRIKE, CODE,
SAMP, VAR, EM,

BLOCKQUOTE, TT,
CITE, ADDRESS, SUB,

SUP and KBD

Change the word style 2

BIG Change the word style and size 12

MARQUEE Convert the word to a scrolling word 6

TITLE Change the word to a title 128

A Change the word to a link 64

H1, H2, H3, H4, H5 and
H6

Change the word to a heading 32

FONT Change the word font style, color, or size 8

Start

Download

Crawler

Lexicon

Internet URL List

Off-Line means that till this moment the search engine is
not ready to serve the users. The Off-Line phase is
implemented on the search engine server computer and
represent the first phase as shown in the following figure:

Indexing
and

ranking

Get Pages
Sort

Crawler

Storage
Unit

Store Pages

Indexer
and

Ranker
Index

Inverted
Index and
Lexicon
Builder

Internet URL List

Word List

Inverted
Index

On-Line phase

The On-Line phase consists of:

Search Engine Interface

which consists of a Web page containing a text box and a
button (search button), so that the user can write the query
in the text box and click on the search button to start in the text box and click on the search button to start
searching for the query and return the results. When the
user write the address of the search engine on the address
bar of the browser and press enter, the browser will display
the search engine Web page by downloading it from the
server of the search engine to the client computer (user).

The following figure is the user interface of the search
engine:

CGI script

when the user click on the search button of the search
engine Web page, the client computer will connect to the
computer of the search engine and request to execute the
CGI script of the search engine. The CGI script will
perform a query processing to check the query and if there
are no errors, the CGI script will pass the query to the SES
(Search Engine Server) using the CGI-SES (Common (Search Engine Server) using the CGI-SES (Common
Gateway Interface-Search Engine Server) protocol.

A program that runs on the server computer of the search
engine and waits for requests from any search engine CGI
script. When the SES receives a request from a CGI script,
the SES will search the lexicon for the query and send the
results to the CGI script, which will send them to the client
computer (user).

SES (Search Engine Server)

The On-Line phase is shown in the following figure:

Download Search
Engine Web page

Send Query

Search Engine Web page

CGI script

Request to download the Search Engine Web page

Browser

Search Engine Web

1 2

3

Return Results

Client Computer

CGI-SES
protocol

Search Engine Web
page

4 5

6

SES

Lexicon

Search Engine Server
Computer

Conclusions

1- The crawler uses only one list with two pointers to keep
track of the downloading process, which will add some
extra speed over crawlers that uses two lists.

2- The index is spread in 36 files, which reduce the sort
time and memory space required to build the inverted
index.index.

3- The lexicon is created using a multilayer structure with 4
layers instead of the binary search tree, which provide a
very fast access to the words required in the search process.

4- Using only a ranking system based on the word
attributes on the page does not give the required results; the
structure of the web (links) should be used to give more
power to the ranking system.

Suggestions for Future Work

1- Research on the user needs, the problems they face when
using the search engine and all the ideas they have or want
to be in the search engine.

2- Research on finding the best stop words to be used in the
search engine.

3- Research on spelling correction, stemming, abbreviation 3- Research on spelling correction, stemming, abbreviation
and phrase search features.

4- Develop a NLP query interface for the search engine.

5- Develop a search engine that index non-html documents
like PDF, Microsoft Word and other types of documents.

6- Design a search engine with a different interface
technique between the client request and the search
program that is faster than the socket interface.

7- Add the title and date of publication to the URL list to
this proposed system.

8- Design a search engine capable of searching in more
than one language.

9- Design an Internet Crawler.

10- Develop a ranking algorithm using the structure of the
web (links).web (links).

11- Develop a search engine that search for images
(Content Based Image Retrieval).

Thank you

ForFor

your listening

Design and
Implementation of

an an

Internet Search
Engine

Introduction

The amount of information on the Web is growing rapidly,
as well as the number of new users inexperienced in the art
of Web research. The Web is enormous and growing at an
incredibly fast pace. It has been said that if the user spent
only one minute per page, 10 hours a day, it would take
four-and-a-half years to explore only 1 million Web pages.
Thus a real need exists for some way to search this huge Thus a real need exists for some way to search this huge
resource.

Difficulties of the Web

The Web creates new challenges for the information
retrieval. And these problems are:

1- Distributed data: data is distributed widely in the
world. It is located at different sites and platforms.

The communication links between computers vary
widely. Plus, there is no topology of data organization.

2- Large volume: the growth of data is exponential. It
poses issues that are difficult to cope with.

3- High percentage of volatile data: documents can be
added or removed easily in the World Wide Web.
Changes to these documents go unnoticed by others. 40%
of Web pages change every month. There is a very high of Web pages change every month. There is a very high
chance of dangling links.

4- Unstructured and redundant data: the Web is not
exactly a distributed hypertext. It is impossible to
organize and add consistency to the data and the
hyperlinks. Web pages are not well structured and 30% of
all Web pages are duplicated. Semantic redundancy can
increase traffic.

5- Quality of data: a lot of Web pages do not involve any
editorial process. That means data can be false, inaccurate,
outdated, or poorly written.

6- Heterogeneous data: data on the Web are
heterogeneous. They are written in different formats, media
types, and natural languages.

7- Dynamic data: the content of Web document changes
dynamically. The content can be changed by a program dynamically. The content can be changed by a program
such as hit counter that keep tracks of number of hits.

Web Search Solutions

There are three main solutions for searching the Web:

1- Starting Points Pages

These pages provide a good point of entry for people
accessing the Web for the first time. They include lots of
links that introduce the user to fundamental Web concepts,
suchas“What is a Browser?”,the usercanalsofind linkssuchas“What is a Browser?”,the usercanalsofind links
to Subject Trees, Search Engines, UsenetFAQs
(Frequently Asked Questions), Internet documents of all
kinds, and “What’s new” documents.

2- Subject Trees

A subject tree is a subject-oriented catalog of URLs
organized by topic. It is an alphabetically organized list of
selected Web resources that is usually organized with

major headings such as Arts and Humanities, Business,
Economy, Government, and the like.

3- Search Engines

A search engine is a software used to crawl the Web for
downloading the Web pages, index them, rank themand
build a database for these pages ready to be searched for
satisfying the user queries.

There are two types of search engine on the Web:

1- Web Site Search Engine

2- Internet Search Engine

While the Internet search engine search the entire Web
looking for answers to user’s query, the Web Site search
engine is dedicated to one Web Site, searching only that
Web Site.

Web Site Search Engine

The Web Site search engine consists of the following
components:

1- Crawler

2- Indexer

3- Ranker3- Ranker

4- Searcher

The Web Site search engine can be divided in to two
phases:

1- Off-Line phase

2- On-Line phase

Off-Line phase

The crawler is responsible for downloading all the pages in
the Web Site (Except for the non-HTML pages) and store
them as files in the storage unit. The crawler consists of a

Crawler

The Off-Line phase consists of:

them as files in the storage unit. The crawler consists of a
URL list, downloading program and a URL extractor.
Before running the crawler, the crawler designer will have
to initialize the URL list with some URLs (Home page and
other frequently requested URLs) as shown in the figure in
the next slide.

Start
Internet

Storage Unit

Buffer in the
memory

Download

Request Page

Save Page

Extract Links

Add new links

URL List

Links Filter Links

First Link

Current Link

Last Link

Storage Unit Extract Links Links Filter Links

Indexer

The indexer is responsible for parsing all the files (pages)
downloaded by the crawler and index all the words in these
files (except the stop words) and sort them to create the
inverted index, then create the lexicon. The ranking is part
of the indexing phase.

Tag Description Rank Score

B, STRONG, and BLINK Change the word style 4

I, U, S, STRIKE, CODE,
SAMP, VAR, EM,

BLOCKQUOTE, TT,
CITE, ADDRESS, SUB,

SUP and KBD

Change the word style 2

BIG Change the word style and size 12

MARQUEE Convert the word to a scrolling word 6

TITLE Change the word to a title 128

A Change the word to a link 64

H1, H2, H3, H4, H5 and
H6

Change the word to a heading 32

FONT Change the word font style, color, or size 8

Start

Download

Crawler

Lexicon

Internet URL List

Off-Line means that till this moment the search engine is
not ready to serve the users. The Off-Line phase is
implemented on the search engine server computer and
represent the first phase as shown in the following figure:

Indexing
and

ranking

Get Pages
Sort

Crawler

Storage
Unit

Store Pages

Indexer
and

Ranker
Index

Inverted
Index and
Lexicon
Builder

Internet URL List

Word List

Inverted
Index

On-Line phase

The On-Line phase consists of:

Search Engine Interface

which consists of a Web page containing a text box and a
button (search button), so that the user can write the query
in the text box and click on the search button to start in the text box and click on the search button to start
searching for the query and return the results. When the
user write the address of the search engine on the address
bar of the browser and press enter, the browser will display
the search engine Web page by downloading it from the
server of the search engine to the client computer (user).

The following figure is the user interface of the search
engine:

CGI script

when the user click on the search button of the search
engine Web page, the client computer will connect to the
computer of the search engine and request to execute the
CGI script of the search engine. The CGI script will
perform a query processing to check the query and if there
are no errors, the CGI script will pass the query to the SES
(Search Engine Server) using the CGI-SES (Common (Search Engine Server) using the CGI-SES (Common
Gateway Interface-Search Engine Server) protocol.

A program that runs on the server computer of the search
engine and waits for requests from any search engine CGI
script. When the SES receives a request from a CGI script,
the SES will search the lexicon for the query and send the
results to the CGI script, which will send them to the client
computer (user).

SES (Search Engine Server)

The On-Line phase is shown in the following figure:

Download Search
Engine Web page

Send Query

Search Engine Web page

CGI script

Request to download the Search Engine Web page

Browser

Search Engine Web

1 2

3

Return Results

Client Computer

CGI-SES
protocol

Search Engine Web
page

4 5

6

SES

Lexicon

Search Engine Server
Computer

Conclusions

1- The crawler uses only one list with two pointers to keep
track of the downloading process, which will add some
extra speed over crawlers that uses two lists.

2- The index is spread in 36 files, which reduce the sort
time and memory space required to build the inverted
index.index.

3- The lexicon is created using a multilayer structure with 4
layers instead of the binary search tree, which provide a
very fast access to the words required in the search process.

4- Using only a ranking system based on the word
attributes on the page does not give the required results; the
structure of the web (links) should be used to give more
power to the ranking system.

Suggestions for Future Work

1- Research on the user needs, the problems they face when
using the search engine and all the ideas they have or want
to be in the search engine.

2- Research on finding the best stop words to be used in the
search engine.

3- Research on spelling correction, stemming, abbreviation 3- Research on spelling correction, stemming, abbreviation
and phrase search features.

4- Develop a NLP query interface for the search engine.

5- Develop a search engine that index non-html documents
like PDF, Microsoft Word and other types of documents.

6- Design a search engine with a different interface
technique between the client request and the search
program that is faster than the socket interface.

7- Add the title and date of publication to the URL list to
this proposed system.

8- Design a search engine capable of searching in more
than one language.

9- Design an Internet Crawler.

10- Develop a ranking algorithm using the structure of the
web (links).web (links).

11- Develop a search engine that search for images
(Content Based Image Retrieval).

Thank you

ForFor

your listening

References

• [All99] Allan Heydon and Marc Najork, “Mercator: A Scalable,
Extensible Web Crawler”, Compaq System Research Center, 1999,
Available at
http://research.compaq.com/src/mercator/papers/www/paper.html

• [Art05] Articles, “Search Engine Types”, 2005, paper available at
http://www.thejcdp.com

• [Ask01] Ask Jeeves, “Number of words in English language”,

2001, paper available at http://www.tm.wc.ask.com

• [Ask05] Ask Oxford, “frequency of the letters of the alphabet in
English”, 2005, paper available at
http://www.askoxford.com/asktheexperts/faq/aboutwords/frequenc
y?view=uk

• [Bibf99] Internet Certification Institute International, “Basic

Internet Business Fundamentals”, 1999.

• [Bri00] Brian H. Murray, "Sizing the Internet", Cyveillance, Inc,

2000. Available at
http://www.cyveillance.com/web/downloads/Sizing_the_Internet.p
df

• [Bry96] Bryan Pfaffenberger, “Netscape Navigator 3.0, surfing the

web and exploring the Internet”, AP Professional, 1996.

• [Dav00] David Maggiano, “CGI programming with Tcl”, Addison-
Wesley, 2000.

• [Eli01] Elizabeth Liddy, “How a Search Engine Works”, School of

Information Studies, Syracuse University, 2001. Available at
http://www.infotoday.com/searcher/may01/liddy.htm

• [Fri96] Fritz J. Erickson and John A. Vonk, “Effective Internet”,

Irwin McGraw-Hill, 1996.

• [Fri97] Fritz J. Erickson and John A. Vonk, “Netscape Navigator
and the World Wide Web”, Irwin McGraw-Hill, 1997.

References

• [Isr05] Isra’a Tahseen Ali Al-Attar, M.Sc. thesis, “Internet Search

Engine Design”, 2005.

• [JHL98] Junghoo Cho, Hector Garcia-Molina, Lawrence Page,
“Efficient Crawling Through URL Ordering”, Department of
Computer Science, Stanford University. Available at
http://decweb.ethz.ch/www7/1919/com1919.htm

• [Jia00] Jianlin Cheng, “Design and implementation of ICS Web

Search Engine”, information and Computer Science Department,
University of California, Irvine, 2000. Available at
http://contact.ics.edu/download/cheng-report.pdf

• [Mar01] Marc Najork, Janet L. Wiener, “Breadth-first search

crawling yields high-quality pages”, Compaq Systems Research
Center, 2001, Available at http://www10.org/cdrom/papers/208/

• [Pet98] Petar Perkovic, “Search engines: do you speak their

language? A search for ideal interface”, Faculty of Philosophy,
Department of information science, 1998.

• [Ric96] Rick Stout, “The World Wide Web Complete Reference”,

Osborne McGraw-Hill, 1996.

• [Sab02] Saba Abdul Khaliq Abdullah Al-Khadady, M.Sc. thesis,

“Internet and Arabic search engines”, 2002.

• [SL98] Sergey Brin and Lawrence Page, “The Anatomy of a
Large-Scale Hypertextual Web Search Engine”, Computer Science
Department, Stanford University, 1998. Available at http://www-
db.stanford.edu/~backrub/google.html

• [Sun01] Sunny Lam, “The Overview of Web Search Engines”,

Department of Computer Science, University of Waterloo, Ontario
Canada, February, 9,2001. Available at
http://db.uwaterloo.ca/~tozsu/courses/cs748t/surveys/sunny.pdf

• [Trek01] “Introduction to TREK (Text Retrieval Conference)”,

2001. Available at http://www10.org/cdrom/papers/317/node1.html

References

• [Vir01] “ Virtualis Glossary”, Virtualis Systems, 2001. Available at
http://www.virtualis.com/guides_glossary.html

• [Wil03] WilsonWeb Stop Words paper. Available at

http://www.hwwilson.com/default.cfm

• [Wis01] “WiseNut Search Engine White Paper”, September 2001.
Available at http://www.wisenut.com/pdf/wisenutwhitepaper.pdf

 V

Table of Contents

ABSTRACT ... II

LIST OF ABBREVIATIONS ... III

TABLE OF CONTENTS .. V

CHAPTER ONE: INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 The Internet ... 1

1.3 The Physical Internet .. 2

1.4 The Soft Internet ... 2

1.5 The World Wide Web ... 3

1.6 Searching the Web .. 4
1.6.1 Starting points pages ... 5
1.6.2 Subject Trees ... 5
1.6.3 Search Engine ... 5
1.6.4 Web Site Search Engine .. 6

1.7 Literature Survey .. 7

1.8 Aim of Thesis .. 8

1.9 Thesis Layout .. 8

CHAPTER TWO: WEB AND SEARCH ENGINES 10

2.1 Introduction ... 10

2.2 The Client-Server Model .. 10

2.3 Web Servers .. 11

2.4 Uniform Resource Locator (URL) .. 12

2.5 The HTML Language ... 12

 VI

2.6 Browser ... 13

2.7 Characteristics of the Web .. 14

2.8 Difficulties of the Web ... 15

2.9 Information Retrieval .. 17

2.10 Information Retrieval and Data Retrieval .. 18

2.11 Types of Search Engines .. 19

2.12 The Problem with today’s Search Engines 20

2.13 Architecture of Search Engine .. 21

2.14 Crawling Part .. 22
2.14.1 Crawling Techniques .. 24
2.14.2 Crawler Types ... 25

2.15 Indexing Part ... 25
2.15.1 Indexing Steps ... 29

2.16 Ranking Part ... 33
2.16.1 Difficulties in Determining Relevancy ... 34
2.16.2 Document Features ... 34

2.17 User Interface Part .. 35
2.17.1 Query Interface ... 35
2.17.2 Query Processor .. 37
2.17.3 Answer Interface ... 38

2.18 Searching Part ... 39

2.19 Search Engines Examples ... 39

CHAPTER THREE: DEVELOPMENT OF WEB SITE SEARCH
ENGINE ... 43

3.1 Introduction ... 43

3.2 Architecture of Web Site Search Engine .. 43

3.3 Crawler .. 47
3.3.1 Initializing the Crawler Information ... 48
3.3.2 Initializing the URL List ... 49
3.3.3 Downloading Pages and Extracting Links .. 51
3.3.4 Saving the Crawling Information .. 59
3.3.5 Saving the Crawler List .. 59

 VII

3.4 Indexer and Ranker ... 60
3.4.1 Creating the Index ... 60
3.4.2 Creating the Inverted Index .. 69
3.4.3 Creating the Lexicon ... 72

3.5 Interface .. 73

3.6 Searcher ... 74

3.7 The CGI-SES Protocol.. 77

CHAPTER FOUR: WEB SITE SEARCH ENGINE OPERATION . 79

4.1 Introduction ... 79

4.2 Programming Languages .. 79

4.3 User Interface .. 80
4.3.1 Crawler User Interface .. 80
4.3.2 Indexer User Interface ... 83
4.3.3 Search Engine Server User Interface .. 85
4.3.4 Search Engine Web page Interface ... 86

4.4 Features ... 88

4.5 System Requirement ... 89
4.5.1 Hardware Requirement ... 89
4.5.2 Software Requirement .. 95

4.6 Experiment and Results .. 95

4.7 Tools ... 97

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORKS 99

5.1 Conclusions ... 99

5.2 Suggestions for Future Works .. 99

REFERENCES .. 100

APPENDIX A: THE INTERNET .. A-1

APPENDIX B: CGI LIBRARY ... B-1

Republic of Iraq
Al-Nahrain University
College of Science

A THESIS
SUBMITTED TO THE

COLLEGE OF SCIENCE, Al-NAHRAIN UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SCIENCE

By

Eihab Ahmed Mohammed Shakir
 (B.Sc. 2002)

SUPERVISORS

Dr. Ban N. Al-kallak

Dr. Moaid A. Fadhil

Moharam 1425

March 2005

Developement of a Web Site

Search Engine

 ا�����

 ��ا ��
� ���� ا������� ��داد ���� ��ا*#(� �%�د ، ان &!�� ا�!%� $#ت ا�! � دة

$!# ادى ا�� �8 �� ا���7� $5 ، ا�!���6$�5 ا��+ �01234 ا����ة (+ $/#ل ا��-, (+ ا�����

ا��3��8#ت ا��#�� �#����� و ا��+ �6!� $-�&#ت ا��-, ا�!���22 (+ #6$��ة ا�!���6م (+

� ا������� 5$ �� � .ا�/#د ا�!%� $#ت ا�!8

 $%�5 (+ ا����� �5 ا
�=6#ر 5�%$ > $ +) ,-�� .$-�ك �-, ا�! <
 ھ ���#$? ����6م �

#6�� ا�!���6م (+ ا
���#ع �
> !�ان ھDا ا��-, ��1ف ا�� �2!�0 $-�ك �-, �

�%�!� ا�/�ء ا�!E6ل �5 .��$�5ا�2=-#ت ا�&7� �3�#8$ $
 ا�
�=6#رات ا�!�3$� $5 <�� ا�!�6

 �!�� �=#ت ا���� G��ا�)H0 ا��/I �7$ ،Hع ا�� � ،Hا�2=-�، � ن ا�� +) �!�، $�#ن ا��

�0 �0�63 . و ھ $�$? $
 ا�/�ء ا��#ص �#�=1�
�) و �4 ان M#ص، �4 ان، �K ار��#ط+

 �3��� $5 $2#در ا�Q4#م ٣٦ا�=1�س ا���� ��#)) �&!# �0 ،)��ا�Dا&�ة و و�Iة ا���ن ا�!8

�5 ط��G���� R ا�=1�س �#
���ام ط���3+ ا�����G ا�6��
 ا�!-�46 S&#%!2!�0 ا�=1�س ا��

�� ا�=1�
�) Quick and Insertion sort methods(و ا�دM#ل �
�0 �2!�0 . وذ�T ���#دة

 .ا�3#$ س �#
���ام ھ��� $�%�د ا�3�8#ت ��� ن $5 ار�%� ط�3#ت

� �=#ت ا���!��Q#م ا���G ا�!���6م �� H3) �!�%� ا�!�3�ح
$!�5 ، (+ $-�ك �-, ا�! <

G��م ا�#Q� �W#=& #دة�ام ا����1 ا�ر��#ط+ ا�! � د (+ ���� ا������� �����
 .ا

 ب �%!� &�#دم #I 1#ز� G�ا�دوات &!# �0 ا
���ام ،ان $-�ك �-, ا�! <
 ا�!�3�ح ��8

 HyperText Markup Language, Visual Basic Script, Common: ا���$/�� ا��#���

Gateway Interface technique, Microsoft Visual Basic 6.0, and Windows

operating system Socket.

 ا���
ور�� ا��را���

 وزارة ا�����م ا����
 و ا���ث ا����

 ����� ا��
ر�ن

 ر����
 ��ر�ن	�د	� ا�� ��م ��وم ا������ت ��
�	�� ا�

���ر �� ��وم �

زء 	ن 	�ط���ت ��ل در
� ا�	�
 ا������ت

 	ن ��ل
 إ���ب أ�	د 	�	د "��ر

�٢٠٠٢���ور�وس
�	�� ا���ر�ن ((

فأ"را

	ؤ�د ��د ا�رزاق. د

��ن �د�م ا��-ك. د

٢٠٠٥اذَار

١٤٢٥	�رم

	�ك
	� ا����� �����

 ���� 	���ن: ا�����	
 ا���ب ا��
 Eihabmurjan@yahoo.com: ا����
 ا�����و��

�� ٥٥٢٤٧٢٢: ر � ا����� ا�ر
 ٠٧٩٠٢١٩٠٥٨٩: ر � ھ��� ا����&ل

 ٢٥دار /١٠ز �ق /٨٩١	�01 /�� ا�/��د: ا�-,&ان
 ٢٠٠٥/٥/٩: ��ر�5 ا��,� 04

desktop

[.ShellClassInfo]
LocalizedResourceName=@%SystemRoot%\system32\shell32.dll,-21815

Page 1

	Microsoft Word - abstract.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - Appendix A.pdf
	Microsoft Word - AppendixB.pdf
	Microsoft Word - CERTIFICATE of Examination.pdf
	Microsoft Word - CERTIFICATE.pdf
	Microsoft Word - Chapter1.pdf
	Microsoft Word - Chapter2.pdf
	Microsoft Word - Chapter3.pdf
	Microsoft Word - Chapter4.pdf
	Microsoft Word - Chapter5.pdf
	Microsoft Word - Dedication.pdf
	Microsoft Word - Keywords.pdf
	Microsoft Word - List of Abbreviations.pdf
	Microsoft Word - overall structure.pdf
	Microsoft PowerPoint - Project-Presentation [Compatibility Mode].pdf
	Microsoft PowerPoint - Project-Presentation [Read-Only] [Compatibility Mode].pdf
	Microsoft Word - References.pdf
	Microsoft Word - Table of Contents.pdf
	Microsoft Word - Title.pdf
	Microsoft Word - الخلاصة.pdf
	Microsoft Word - عنوان.pdf
	Microsoft Word - معلومات.pdf
	desktop - Notepad.pdf

