dadAl)

‘)J}LJSO‘)LJ\AJ‘&AML)AC_L\A‘ c&)ﬁY\}QMM\QMJ}Lﬂ\}@)J\M\@
53 s dag kYol bz yall Gkl Leall sayaa cilipda Adlia) IS (e (Sl 528
(TCP/IP A zagai alasinly 5 (LAN) dolae 4805 e adplat o5 (63l 5 oaail) Calal) J85 402s

) Aaaill b g Aandll jisa ol e daing g g i) a8 kel Jae (el)
Ll len i gy el o) Aeaall Clds 15 e clilall Jpeniy Jiati il 5 deaald) il
(LZW) 45y yla andiy a3)) ALSYL ((RSA) aldai aladinls b i JUA (e 4 g8l
s s Jg) ind Jazaall dlee o) 5 13 Lelail (3 jaiuaall i gl) Jalial Ll) Jd Cllal) Jazacal
Al sl Cliball eV Gl e (e

) e g alaill A e aling g 5 i) 18 b 2 aindd) (TCP/IP)) zdsai o
Lae Gl sill s)z liny¥ 40l cJanld) e (380 530l) 2 Uiss)l (DDP) s (IPX/ISPX)
AR die i) Allad 4

A8l A 0lSa) alag) (8 Eosll 5 (TCP/IP) A1 z2sed Al) a5ty = el Casll 13)

o) .(socketd e Al il Jay y clan s saal aladiul J3A (e 49l saas il

| C..J}.A..IL;\ " il clalal) J85 J oS g3 ").A&}).ild\ Jaa @uha\&.at;_ﬂ\ Canlatll
(TCP/IPB

AUl Ly 8 355 e Sl laa¥) ” Jhuilder duse Gl aladiuly sl 5 3 ol
0 e "LAN Aglae 3808 i Lekay) o paid il e "Windows XP' sl

-

Abstract

With the recent growth and development of the mdéand companies
intranets, it has become important to look for waysdeveloping these
network, by developing new applications or protscab the network
reference models.

Some protocols, such as TCP/IP (Transmission Chmtrotocol /
Internet Protocol), are vendor—neutral. Others,hsas Novell IPX/SPX
(Internetwork Packet Exchange / Sequenced Packehafge) and Apple
Delivery Datagram Protocol (DDP), are tied to spesiendors.

In this thesis, the proposed application is a ftiéxtransfer service that
operates on a LAN (Local Area Network) and over MEmetworks. The
proposed application is basically a client/serveatqrol in which a system
running the server accepts commands from a systeming a client. The
service allows users to send commands to the sdoveuploading and
downloading files. The application uses the RSArgmeon system to
provide good security for data and LZW.empel Ziv Welch
compression method to reduce the transfer time;iwilsiconsidered level one
of security.

The proposed research study the TCP/IP protocalsraprove a way
of inserting new application (protocol) for the T/HP reference model by
using the socket API (Application Programming Ifdee). The project adds a
text file transfer protocol to the TCP/IP.

The system is build by using Jbuilder version 4gpaonming language,
and it is implemented in Window XP operating systmironment on PCs

linked by LAN as a star topology.

Key Words

Application Programming Interface
Automatic Repeat request
American Standard Code for Information Interchange
Berkeley Software Distributed
Delivery Datagram Protocol
Electronic Mail System

Fiber Distributed Data Interface
File Transfer Protocol

Greatest Common Divisor
Interface Control Information
Internet Protocol

Internetwork Packet Exchange Sequenced Packet Bgeha

Local Area Network

Lempel Ziv Welch

Metropolitan Area Network
Management Information Base
Network Interface Card
Personal Computer

Protocol Data Unit

Request For Comment
Remote Procedure Call

Rivest Shamir Adleman

Service Data Unit

Simple Mail Transfer Protocol

Simple Network Management Protocol
Transmission Control Protocol

Transmission Control Protocol Internet Protocol
Transport Layer Interface

Transport Protocol Data Unit

User Datagram Protocol

Wide Area Network

1-1 Introduction

FTP stands for File Transfer Protocol. It allowple to access files
stored on the FTP server and transfer them to th&m computers. This
system allows large files of any type-notably exable and compressed files
to be transferred directly from the Web interfag&is is not dramatically
different from existing LAN transfer systems, excéyat it can be built into
the Web. In fact, it can be invisible to the usenp simply clicks on the name
of the file on a Web page, and the FTP functionaisnched behind the

scenes.

FTP is one of the oldest methods for moving fitesn one computer to
another in the Internet. Before the World Wide W@NWWW) became
famous, the most traffic was generated by thisqu@it Today FTP is not so
well known anymore. Instead of putting huge files @ ftp server, people
attach the files to an e-mail and send them thig twaan addressee. But that
IS not the way it should be done - a reason tohtgmople a little bit about
FTP. There are a lot of fancy FTP programs avalailaking the use of FTP
easier. And also Windows supports FTP file up- dogvnload using the
Internet Explorer. That way, FTP is nothing morartimoving files from one

folder in another.

FTP supports both interactive and batch mode. mhbst users work
interactive with FTP. They are running a FTP-cliesmdd establish a
connection to a server to transfer files. Some ieppbns activate FTP
automatically without inputs from the user. In thesse the user will only be
informed if the operation was successful or notewh user uses FTP in the

interactive mode he works either with the commama lof FTP or an

application with a nice user graphical interfackisTway the user is allowed
to drag and drop files instead of using cryptic@bmmands, but internally

the application is also using the FTP commands.

FTP is an Internet file transfer service that ofg@n the Internet and
over TCP/IP networks. FTP is basically a client/semprotocol in which a
system running the FTP server accepts commandsdreystem running an
FTP client. The service allows users to send condsidn the server for
uploading and downloading files. FTP operates animtgrogeneous systems
and allows users on one system to interact withthemotype of system
without regard for the operating systems in plaa®,long as the network
protocol is TCP/IP[CI S 99]

1-2 Aim of thesis

The aim of thesis is to design and implement a filanagement
protocol for text files and apply it as one appiica of TCP/IP reference

model.

1-3 Literature Survey

% In 1990, Sam and Steve [SAM 90] build reference @hodhich
identify the high-level abstractions that underl@odern storage
systems. Their model provides a common terminolagg set of
concepts to allow existing systems to be examimetreew systems to

be discussed and built.

s In 1992, Yassen [YAS 92] designed and build modks text
compression, to reduce the amount of space neewledote files.
Considerable part of his research was dedicatedrttsvfinding a
conclusive single model to cover all types of tkbes, programs, and
Arabic text.

“ In 2000 Esraa [ESR 00] established three authdiaticgrotocols by
HMAC (Key Hashing for Message Authentication Codgstem)

system and RSA public key cryptosystem. To achieweximum

L)

authentication of these protocols, HMAC system sediin the first
stage, which depends on a one-way hash functioractegistic. To
increase authentication, RSA public key cryptosyste used in the
second stage, which depends on the trap—door owefanation. The
use of one—way hash functions in a HMAC system \RSA public
key cryptosystem is to compress any large file iseaure manner

before encrypted with a private key.

% In 2002 Bassam [BAS 02] have designed and impleadeah end-to-

L)

end cryptography software system that works on-lave under
Windows operating system for Ethernet networks, apglied an
encryption algorithm to prove the system capabtiityencrypt/decrypt
packets on-line without crashing the Windows opegatsystem or
effecting network activities. Also, he have desidja@d implemented a
hardware encoder/decoder card to implement theyption algorithm
by hardware and interface this card to end-to-emngptography

software system.

1-4 Thesis Outline

The contents of individual chapters of this thesesbriefly reviewed.

L4

Chapter two: covers the theoretical basis of networking, RSl

key cryptosystem, and LZW dictionary compressionhoe.

Chapter three: presents the proposed system architecture, aed th
algorithms that used to implement this system.

Chapter four: presents the user interface for the designatersys
Chapter five: introduces conclusions on this work, with

recommendation for future work.

2-1 Introduction

For networks to communicate efficiently, they requa standard, or
protocol. In a general sense, a protocol is an eajupon way to
communicate. Network protocols are establishedsriiat enable data to flow
from one Network Interface Card (NIC) to anothenlé$s the programmers
understand the specific rules applied to networkmanications, he/she will

not be able to administer a network efficienfiPAR 99]

2-2 The Need For Protocol Architecture

When computers, terminals, and/or other data gsiog devices
exchange data, the procedures involved are theWoly:

* The source system must either activate the dira@ dommunication
network of the identity of the desired destinatsystem.

« The source system must ascertain that the destimagystem is
prepared to receive data.

» The file transfer application on the source systaust ascertain that
the file management program on the destinationeayss prepared to
accept and store the file for this particular user.

If the file formats used on the two systems aremmgatible, one or the other
system must perform a format translation funct[émiD 89]

In protocol architecture, the modules areanged in a vertical stack
where complex programs can only be written and fieeriif they are
decomposed intmanageablanodels. A module is a block of code which is
specified by the action it performs and by the wnteracts with other
modules. The module can be constructed indeperydehtthe rest of the

software, as long as it respects the interactiahfanctions[JEA 91]

2-3 Layered Network Architecture

To reduce their design complexity, most networkes @iganized as a
series of layers or levels, each one built upornpredecessor, where each
layer offers certain services to the higher layshselding those layers from

the details of how the offered services are agtualplemented]AND 89]

Typically, a service of layer N is executed by mppmtocol entities in
different nodes of a communication network. The sages exchanged by
peer protocol entities of layer N are called laieProtocol Data Units (N-
PDUs). The messages exchanged by services of Nagee also called layer
N Services Data Units (N-SDUSs). Thus, the N+1-PB@En N-SDUJEA 91]

In figure 2.1,when protocol entity of layer N+1 Anwants to send an
N+1-PDU to a peer protocol entity in B. The protoeatity uses aervice
primitive of layer N called an N.request. This request &c@tl by sending
some Interface Control Information (ICI) to layer WMhe ICI specifies the
request type as well as some parameters, sucle agltiresses of the nodes,
and the protocol entities inside the nodes andsiplys a description of the
desired quality of the information transfer servié@e service provided by
layer N, called the N_SERVICE, eventually sendsNamdication to the
protocol entity in layer N+1 of B. At that time,dlprotocol entity normally
receives the N+1-PDU. The protocol entity in B fadends an N.response as
a reply to the N.indication. The N.response ist@oN-SERVICE primitive
which contains parameters that describe the replghé N.request. This
response eventually gets back to the protocoliestih layer N+1 of A as
N.confirm.[JEA 91]

Protocol
entity

Protocol
entity

Layer N+1 '
----- N+1_PDU """~~~

Protocol
entity

Protocol
entity

(Virtual communication)

Protocol
entity

Protocol

Layer N-1 -
entity

Node A Node B

Figure 2.1-Layered Architecture

2-4 Design Issues For TheLayers

Some of the key design issues that occur in commggvorking are

presented in several layers, below some importattieon:

2-4-1 Connection establishing and ter minating

Every layer must have a mechanism for connectidabéshment.
Since a network normally has many computers, somghoch have
multiple processes, a means is needed for a pracessie machine to
specify with whom it wants to establish a conneattiAs a sequence of
having multiple destinations, some form of addmgss needed in order
to specify a specific destination. Closely relatedthe mechanism for
establishing connections across the network is mhechanism for

terminating them once they are no longer neejgfeldD 89]

2-4-2 Rulesfor datatransfer
When data is transmitted between two pieces of pegemt, three
analogous modes of operation can be used:
» Simplex: This is used when data is transmittednea direction only
» Half duplex: This used when the two interconnedledlices wish to
exchange information (data) alternately.
Duplex: This is also referred to as full-duplex asdised when data is to be
exchanged between the two connected devices in lbthctions
simultaneously[FRE 96]

2-4-3 Error control
Error control is an important issue because physioeamunication

circuits are not perfectAND 89]

When a computer is transferring blocks of charactigames) across a
serial data link to another computer, the progranthe receiving computer
control procedure automatically without any intertien from the user.
Typically, the receiving computer checks the reediframe for possible
transmission errors and then returns a short mesgfigme) either to
acknowledge its correct receipt or to request aimather copy of the frame is
sent. This type of error control is known as Auttm&epeat request (ARQ).
[FRE 96]

2-4-4 Multiplexing

Multiplexing is the transmission of different flovef information on
the same physical link; flow information means qusnce of packets or a bit
stream sent by one user to another user. One sim@ieto implement
multiplexing of sequences of packets, caliatical multiplexingis to store
in the same buffer all the packets that need twaresmitted over a given line.
[AND 89]

2-4-5 Routing
Routing is the process of selecting a path ovachvto send packets.
Routing includes two types:
« Direct Routing: When two computers on the same atweed to
communicate, the packets do not need a router.
* Indirect Routing: If two computers that are not tble same physical
network need to communicate, they must send therdat Protocol
(IP) packet to a router for delivery. Whenever ateo is involved in

communication, the activity is considered indinexiting.[PAR 99]

2-5 TCP/IP Protocol Architecture

TCP/IP consist of four layers, built on top of aypical layer (hardware
layer), have to date proven sufficient for all greed purposes. Figure 2.2

shows the TCP/IP model layers from top down.

Application
Layer

Transport
Layer

Network
Layer

Data Link Figure 2.2 TCP/IP Layers
Layer

Physical
Layer

2-5-1 Application Layer Protocols

This is where the user interacts witte thetwork application. Data is
received as commands from the user and as datalfi@metwork application
on the other end of the connection. TCP/IP appboat communicate in
client/server pairs at this lay¢gPET 99]

The following protocols are used at applicatioyela

« SimpleMail Transfer Protocol (SMTP)

The simple mail transfer protocol provides a baslectronic mail
facility. It provides a mechanism for transferringessages among separate
hosts. Features of SMTP include mailing lists, metueceipts, and
forwarding. The SMTP does not specify the way inalmessages are to be
created; some local editing or native electronid faaility is required. Once
a message received, SMTP accepts the message &ed oee of TCP to
send it to a SMTP module on the other host. ThgetabBMTP module will

make use of a local electronic mail package toestioe incoming message in
a user's mailboXWIL 98]

* FileTransfer Protocol (FTP)

File transfer protocol is a program that allowsdito be copied from
one host to another. Less automatic and transptrehe end user than the
resource sharing protocols; FTP offers the higdegree of interoperability
between hosts. Although FTP requires that filextygied from one host to
another before they can be used, it does allowhasy running TCP/IP to
access a FTP server and exchange data. The twe tmstexchange files
regardless of their operating systems, file stmgtor even character sets in
use.[PET 99]

FTP offers an efficient and quick way to trandflss because it does not
have the overhead of encoding and decoding dath, asisending files as e-
mail attachmentgPAR 99]

o TELNET

The client TELNET protocol/process is accesseduph the local
operating system either by a user application arenusually, by a user at a
terminal. It provides services to enable a uselotp on to the operating
system of a remote machine. All commands (conth@racters) and data
entered at the user terminal-or submitted by tle application program are
passed by the local operating system to the cl&UtNET process which
then passes them, using the reliable stream sepvaaded by TCP, to the
correspondent server TELNET. The latter issuesctmmands on behalf of
the user, through the local operating system, &itheractive process, as
illustrated in the figure 2.3FRE 96]

AR

Terminal user
client host
A

Server Host

application

process program/process

Interactive

_________ oo

Operating Systemi

Message in Network virtual terminal format

Figure 2.3 TELNET client/server interaction scheme

« Simple Network Management Protocol (SNMP)

Simple network management protocol maintains in@fg@e network
in database called management information base XMIBe consistency
between the image and the network is maintainedXajpanging messages.
When a management application modifies attributeshe object in the
database, messages are sent to the physical depresented by the object to
modify its corresponding attributes. Converselye thatabase can learn the
attributes of the physical device by polling thevides periodically or by
having the devices send relevant information alkeldcted eventfJEA 91]

2-5-2 Transport Layer Protocols

This layer manages the flow of data between twermetwork hosts.
TCP/IP relies on two transport protocols, TCP (Braission Control
Protocol) for reliable data flow, and UDP (User &gam Protocol) is a much

simpler protocol that offers no reliability guaraes [PET 99]

The header format for TCP, as shown in figure)(2which is a
minimum of 20 octets, or 160 bits as follofVIL 98]
» The source port and destination port fields idgritile applications at
the source and destination systems that are usisgdnnection.
 The sequence, acknowledgment number, and windddsfigrovides
flow control and error control.
* The checksum is a 16-bit frame check sequencetosagetect errors in

the TCP segment.

'Y

Bits 0 4 10 16 31

Source port Destination port

Sequence number

Acknowledgment number

Header Unused Flags Window
lenatt

Checksum Urgent pointer

Options + Padding

Figure 2.4 TCP Header

The UDP provides a connectionless service for iepjpbdn-level
procedure; it does not guarantee delivery, preservaof sequence, or
protection against duplication. UDP enables a ptooeto send messages to

other procedures with a minimum of protocol mechamjWIL 98]

The UDP header is always eight bytes long, andistsof four two
-byte fields, its fields as followingPET 99]
* The first field is the source port number.
* The second field is the destination port number.
* The third field hosts the length of the UDP dasagr
» The fourth field contains a UDP checksum, as ithisd in figure 2.5.

V¢

IP Header

Source port number (2 bytes) Destination port number (2 bytes)

UDP length (2 bytes) UDP checksum (2 bytes)

Data

Figure 2.5 UDP Header

2-5-3 Network Layer Protocols

Data is moved around the internetwork at this layére Internet
Protocol (IP) operates at this layer to route ptkacross networks

independent of network mediufiPET 99]

The IP provides a number of core functions and@ated procedures
to carry out the various harmonizing functions tlaaé necessary when
interworking across dissimilar networks. Theseudel the following[FRE
96]

» Fragmentation and reassembly: This concerned the transfer of user
messages across networks/subnets which supporiesipatket sizes
than the user data.

* Routing: To perform the routing function, the IP in eaduike host
must know the location of the internet gatewayamal router that is
attached to the same network or subnet. Also, Bhim leach gateway
must know the route to be followed to reach othletworks or subnets.

Vo

 Error reporting: When routing or reassembling datagram within a
host or gateway, the IP may discard some datagfam. function is
concerned with reporting such occurrences backedR in the source

host and with a number of other reporting functions

2-5-4 Data Link Layer Protocols

At this layer, also known as timetwork interface layedata is transmitted
across a single network. Data from the networkrawhich has been routed
appropriately, has arrived at (or has never ldig tocal network and is
transmitted to its destinatiofPET 99]

This layer is concerned with the exchange of dmBwveen an end
system and the network to which it is attached. 3éeding computer must
provide the network with the address of the desbnacomputer, so that the
network may route the data to the appropriate Wastn. The sending
computer may wish to invoke certain services, aglpriority, that might be
provided by the networfWIL 98]

2-5-5 Physical Layer Protocols

The physical layer covers the physical interfacéawben a data
transmission device (e.g. work station, computed a transmission medium
or network. This layer is concerned with specifythg characteristics of the
transmission medium, the nature of the signals,dai rate, and related
matters[WIL 98]

A 1

2-6 Client/Server Computing

Most operating systems and networks have basic-ttatksk
communication facilities. However, the communicato would not
necessarily occur between similar computers. A Rghtmeed to initiate a
conversation with a midrange, or a mainframe migé¢d to communicate
with a PC. This was the interesting twist--how taplement a distributed
processing environment that took advantage of caomgpyower wherever it
was in the network, without requiring all of thengouters to use the same
operating system or even the same primary netwgrkanvices. What formed
as a possible solution to this puzzle was the qunad client/server

computing.

In the client/server scenario, the local compuRsL Or a user's session
on a larger computer) acts as the processing chasociated with the client
Is software that provides a universal appearantecaser (be it a graphical,
icon-oriented display, or a menu-oriented displ&y®m that display, you can
select the applications you want to use.

When a user selects an application, the clieniateis a conversation
with the server for that application. This mightvatve communications
across LANs and WANSs or simply a call to a locabgnam. Regardless of
where the server resides, the client acts as the &nd for the server and
handles the user interface. Thus, the user iswateaof where the application
actually resideq.CI S 99]

2-7 File Servers

Computers that act as shared repositories for fies called file

servers. File servers provide controlled accesghich files and other system

VY

resources. The primary purpose of file server saféwis to synchronize
access to shared resources. This means the seftwarg, in cooperation
with applications programs, makes sure that usexs lsimultaneous file
access where appropriate, while preventing simetiea access where it is

inappropriate.

File server can also provide various levels of sgcuand access
control, allowing a system manager to designate wae access to what
resources. In this area, there are vast differeimcegpabilities among various

file server systems.

The efficiency and sophistication of a file sersettata management
and retrieval vary widely from one network opergtgystem to another. High
— speed disk access techniques, use of disk cachmpuse of proprietary
disk file structures are among the methods usenhdrease data retrieval
speed|[SUR 95]

2-8 Socket

In a client server model, two application prograomse running on the
local system (a client for example) and the otluaning on the local system
(a server for example). To standardize network @nogning, application-
programming interfaces (APIs) have been developged APl is a set of
declarations, definitions, and procedures folloviegdprogrammers to write
client server programs. Among the more common A#&is the Socket
Interface, the Transport Layer Interface (TLI), tB&eam Interface, the
Thread Interface, and the Remote Procedure CalC{RBEH 00]

The socket interface to TCP/IP dates from the eB®PD [Berkeley
Software Distribution) UNIX systems that first implemented TCP/IP about

YA

1980. It is the primary interface between applmatiprograms and the
transport layer. The transport layer is usuallytie kernel of operating
systems whereas higher-level protocols are impléadeby programs so the
socket interface is usually a set of system callhg¢ugh on some systems
like Sun Solaris or Windows Winsock it is a libramth slightly different
transport layer system calls belo\Wg.S2 01]

The socket primitives used in Berkeley UNIX for TG widely used
for Internet programming. They are listed in figuPe6 The first four
primitives in the list are executed in that ordgr dervers. The SOCKET
primitive creates a new end point and allocatetetapace for it within the
transport entity. The parameters of the call spabi¢ addressing format to be
used, the type of service desired, and the protécsticcessful SOCKET call
returns an ordinary file descriptor for use in seming calls, the same way an
OPEN call doedAND 03]

Primitive | Meaning

SOCKET | Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connectiange queue size

ACCEPT | Block the caller until a connection atteraptves

CONNECT| Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE | Receive some data from the connection

CLOSE Release the connection

Figure 2.6 The socket primitives for TCP

14

Newly-created sockets do not have network addresElesese are
assigned using the BIND primitive. Once a servey Ibaund an address to a
socket, remote clients can connect to it. The reésonot having the socket
call create an address directly is that some psesesare about their address
(e.g., they have been using the same address &os wad everyone knows
this address), whereas others do not care. Nex¢sdine LISTEN call, which
allocates-space to queue incoming calls for the daat several clients try to
connect at the same time. To block waiting for @oming connection, the
server executes an ACCEPT primitive. When a TraridppU (TDPU)
asking for a connection arrives, the transporttgtieates a new socket with
the same properties as the original one and retufihs descriptor for it. The
server can then fork off a process or thread talleathe connection on the
new socket and go back to waiting for the next eation on the original
socket. ACCEPT returns a normal file descriptor,joclvhcan be used for

reading and writing in the standard way, the sasn®@files.[AND 03]

At client side, a socket must first be created gisthe SOCKET
primitive, but BIND is not required since the adsbeised does not matter to
the server. The CONNECT primitive blocks the caded actively starts the
connection process. When it completes (i.e. whenagbpropriate TPDU is
received from the server), the client process ldacked and the connection
Is established. Both sides can now use SEND andWR#&Cransmit and
receive data over the full-duplex connection. Ttamdard UNIX READ and
WRITE system calls can also be used if none opexial options of SEND
and RECV are required. Connection release withetsak symmetric. When
both sides have executed a CLOSE primitive, theneoton is released.
[AND 03]

2-9 LAN Architecture

LAN is typically connects workstations, personahmputers, printers,
and other devices. LANs offer computer users matwaatages, including
shared access to devices and applications, filaagge between connected
users, and communications between users via etectmmail and other
applications[BAS 02]

LANs can be extended by connecting to other smuladissimilar
LANS, to remote users, or to mainframe computebhss process is generally
referred to as LAN connectivity. LANs of a partiaulcompany can be
connected to the LANs of trading partners such exsders and customers.
[JAM 00]

2-9-1 LAN Topologies

Whether the purpose of the LAN is to interconnecCsP
minicomputers, or both is almost irrelevant-thetfiissue is often choosing
the topology of the LAN. This choice dictates tlable, cabling methodology
and the networking software that can operate onLthd. The three basic

topologies are the ring, star, and bus shown inr€i@.7.

* Ring: As its name suggests, a ring LAN joins a set @fdhitnent units
together via a series of point-to-point connectibesveen each unit.
Each attachment unit, in turn, interfaces to onenore computers or
computing devices. Information flows from attachinemnit to

attachment unit in a single direction, thus formiaging network.

A\

Because each PC in a ring network acts as a repgadormance
degrades with each additional PC. Consequenths i typically

appropriate only in small networks.

Star

Bus or Tres

Figure 2.7 LAN Topologies

Yy

Star: In a star LAN, each computer or computer-relatedageis connected
on a point-to-point link to a central device calledhub. The hub acts as the
LAN traffic manager, setting up communication palbietween two devices
seeking to exchange information. This configuratioakes it very easy to
isolate problem nodes, and is one of the most camitAdN models. It is easy
to install and wire. There is no disruption to tretwork when connecting or

removing devices.

Bus. The simplest form of bus LAN is a set of computersdevices
connected to a common, linear connection. Under e topology,
information is transmitted over the distance of nleéwvork, so each computer
can pick up its intended information. Links frometimain bus line might
break off into additional linear links with multglattachments; this type of
bus structure is also referred to as a tree becautigple branches reach out
from the main trunk. It is easy to connect a corapot peripheral to a linear
bus, requires less cable length than a star togoldge entire network shuts
down if there is a break in the main cable. Thenteators are required at
both ends of the backbone caljEOH 00]

2-9-2 Wireless LAN

A wireless LAN is a cellular computer network thahnsmits and
receives data with radio signals instead of wir&¥ireless LANs are used
increasingly in both home and office environmeats] public areas such as
airports, coffee shops and universities. Innovainesys to utilize WLAN
technology are helping people to work and commuaicaore efficiently.
Increased mobility and the absence of cabling ahdrdixed infrastructure

have proven to be beneficial for many users.

Yy

Wireless users can use the same applications teeyon a wired
network. Wireless adapter cards used on laptopdasétop systems support
the same protocols as Ethernet adapter cgbdsv 01]

2-10 Cryptography

The discipline relating to the use and developn@ntechniques to
encrypt and decrypt messages is called cryptografpmyattempt to break a
specific cryptography technique is called cryptgsial Usually it is assumed
that individual only has a copy of an encrypted sage when trying to break
a specific technique in order to read the messBige.process is often made
easier if the cryptanalyst can obtain the encryptesion of some known
message. The field which covers both cryptographg eryptanalysis is

known as cryptology.

The process of encryption entails taking a mesgaften referred to as
plaintext or clear text) and changing it to hide triginal meaning from
everybody but the intended recipient(s). Decrypi®the process that takes
the encrypted message (now referred to as ciphigréexd restores it the

original message.

This process of changing plaintext to ciphertext back again requires
that two pair of transformations takes place. Thasasformations use
mathematical functions which incorporate an adddigiece of data known
as the key, to perform the required transformatidine key is kept secret so
that only the intended recipient(s) can decrypt tmessage. These
transformations can be represented as follpiaRi 00]

Ciphertext = Encrypfey; (Plaintext)
Plaintext = Decrypjey; (Ciphertext)

Y¢

2-10-1 public key cryptosystem

Public key algorithms rely on one key for encryptand different but
related key for decryption. These algorithms hawe following important
characteristic:

1. It is computationally infeasible to determine thecgption key
given only knowledge of the cryptographic algoritrend the
encryption key.

In addition, some algorithms such as RSA, also ekhihe following
characteristic:

2. Either of the two related keys can be used forygimn, with the
other used for decryption.

The essential steps for public key encryption pseaae following:

1. Each end system in a network generates a pairysftoebe used for
encryption and decryption of messages that itnetkive.

2. Each system publishes its encryption key by plading a public
register or file. This is the public key. The comjmm key kept
private.

3. If A wishes to send a message to B, it encryptsnieesage using
B's public key.

4. When B receives the message, B decrypts it usiagpBvate. No
other recipient can decrypt the message becaugeBokhows B's
private keyJWIL 99]

2-10-2 RSA public key encryption
The RSA cryptosystem, named after its inventorRiRest, A. Shamir and

L. Adleman, was the first public key cryptosystemdais still the most
important. Its security is closed related to théidilty of finding the

Yo

factorization of a composite positive integer tizathe product of two large
primes.[JOH 01]

e Key Generation Algorithm

Each entity creates an RSA public key and corredipgnprivate key as
shown in table 2-1.
Each entity A will do the following:
1. Generate two large random (and distinct) prinpes:. ¢, each
roughly the same size.
2. Computen =p.g andd (n) = (p-1) (-1).
3. Select a random integeyr1<e <@ (n), such thagcd (e, G (n)) = 1.
4. compute the unique integdy 1<d <@ (n), such thae d=1 (modd
(n)).
5. A’s public key is (, €); A’s private key id.

¢ RSA Public key Encryption and Decryption
B encrypts a message m from A, which A decrypts.
1. Encryption — B will do the following:
a. Obtain A’s authentic public key(e).
b. Represent the message as an intagerthe interval [On-1].
c. Computec =m°mod n
2. Decryption — to recover plaintert fromc, A will do the following:
a. Use the private keg to recovem=c"mod n [AME 97]

A\l

p q dm)|n e d

7 47 276 329 127 163
11 37 360 407 317 293
13 29 336 | 377 19 283
19 47 828 893 217 145
19 23 396 437 49 97
31 37 1080 | 1147| 403 67
31 29 840 | 899 | 457 193
37 41 1440 | 1517| 677 653
41 43 1680 | 17/63| 1061f 1661
43 37 1512 | 1591| 737 1313

2-11 Data Compression

Those who use compression software are familighh v@rms such as
zip, implode, stuffit, diet, and squeeze. These raames of programs or
methods for compressing data, names chosen to ingplypression.
However, such names do not reflect the true natfirdata compression.
Compressing data is not done by staffing or squeeitj but by removing,
any redundancy cannot be compression. Data witluneahcy can be

compressed. Data without any redundancy cannobimpiessed.

The first type of data is text. Text is an impattaxample of computer
data. Many computer applications, such as word ggsiog and software

compilation, are nonnumeric; they deal with dataoséh elementary

Table 2-1 RSA key

Yv

components are characters of text. The computestar and process only
binary information (zeros and ones), so each charaof text must be
assigned a binary code. Present day computerhas&SCll code, although
more and more computers use the new Unicode. ASGIfixed size code
where each character is assigned an 8 bit codedatie itself occupies seven
of the eight bits, and the eighth is parity, desmjto increase the reliability of
the code). A fixed size code is a natural choiceabse it makes it easy for
software applications to handle characters of ®©xtthe other hand, a fixed

size code is inherently redundant.

In a file of random text, each character is ocatdirapproximately the
same number of times. However, files used in practére rarely random.
They contain meaningful text, and the typical Eslgliext certain letters, such
as "E", "T", and "A" are common, whereas otherelett such as "Z" and "Q"
are rare. This explains why the ACII is redundantl goints the way to
eliminated the redundancy. ASCII is redundant bseat assigned to each
character, common of rare the same number (eighthbits. Removing
redundancy can be done by assigning variable side t the characters with
short codes assigned to the common character®oagatbdes assigned to the

rare once. This is precisely who Huffman coding kgor

The second type of common computer data is digitages. A digital
image is rectangular array of colored dots, caltexkels. Each pixel is
represented in the computer by its color code. fdeio to simplify the
software applications that handle images, the piaet of the same size. The
size of a pixel depends on the number of colorshm images, and this
number is normally a power of two. If they arfec@lors in (n) images, then

each pixel is a (k bit) number.

YA

There are two types of redundancy in a digitalgenarhe first type is
similar to redundancy in text. In any particularages certain color may
dominate, while others may be infrequent. This netduncy can be removed
by assigning variable size codes to the pixelss @one with text. The other
type of the redundancy is much more important anithé result of the pixel

correlation.

The compressor or encoder is a program that casgsethe raw data
in the input file and increases an output file witompressed (low
redundancy) data. The decomposer or decoder cenwerthe opposite
direction. The term encoding is very general anglvm@e meaning. The term
codec is sometimes used to describe both the enaadedecode[DAV 02]

2-11-1 Dictionary M ethods

Statistical compression methods use a statisticaletof the data,
so the quality of compression they achieve dep@amdfiow the good that
model is. Dictionary — based compression methodstdge a statistical
model, nor do they use a variable — size codegseddsthey select strings of
symbols and encode each string as a token usingiandry. The dictionary
holds strings of symbols and it may be static onadgic. The former is
permanent, sometimes allowing the addition of ggirbut no deletions,
whereas the latter holds strings previously founthe input file, allowing for
additions and deletions of strings as new inpu¢asl. [DAV 02]

¥4

2-11-2LZW

The original Lempel Ziv approach to data comprasswas first
published in 1977. Terry Welch’'s refinements to thkyorithm were
published in 1984. the algorithm is surprisinglyngle. In a nutshell, LZW
compression replaces strings of characters withlesioodes. It does not do
any analysis of the incoming text. Instead, it jadtls every new string of
characters it sees to a table of strings. Commessicurs when a single code
Is output instead of a string of characters. Thaecthhat the LZW algorithm
outputs can be of any arbitrary length, but it mheste more bits in it than a
single charactefM AR 89]

The main feature of LZW method is eliminating second field of a
token. An LZW token consists of a pointer to thetidnary. The data
structure for the dictionary is a tree. The LZW hwat starts by initializing
the dictionary to all the symbols in the alphalethe common case of 8 bit
symbols, the first 256 entries of the dictionarmpt(ees 0 through 255) are
occupied before any data is input. Because theodanty is initialized, the
next input symbol will always be found in the dastary. This is why an
LZW token can consist of just a pointer and doet lmave to contain a
symbol code as in old version. The principle of L48Vthat the encoder
inputs symbols one by one and accumulates thensinrg |. As long as | is
found in the dictionary, the process continuesaAsertain point, adding the
next symbol x causes the search to fail; strirgihithe dictionary but string
Ix (symbol x append to) is not. At this point teecoder
1. Outputs the dictionary pointer that points to gjrin

2. Saves string Ix (which is now called a phrase) he nhext available
dictionary entry.

3. Initialize string | to symbol x.

Figure 2.8 is a pseudo code listing of the alponitTheA denotes the

empty string and <<a, b>> denotes the concatenafistrings a and b.

The line "append <<di, ch>> to the dictionary'bisspecial interest. It
Is clear that in practice, the dictionary may @if). This line should therefore
include a test for a full dictionary and certairti@acs for the case where it is
full.

Fori: =0 to 255 do
append i as a 1-symbol string to the dictignar
append/ to the dictionary;
di : = dictionary index of1;
repeat
read (ch);
if <<di, ch>> is in the dictionary then
di := dictionary index of <<di, ch>>;
else
output (di);
append <<di, ch>> to the dictionary;
di : = dictionary index of ch;
endif

until end of input;

Figure 2-7 The LZW Algorithm

AR

Since the first 256 entries of the dictionary aceupied right from the
start, pointers to the dictionary have to be lontf&an 8 bits. A simple
implementation would typically use 16 bit pointewdiich allow for a 64k-
entry dictionary (where 64 k ='2= 65,536). Such a dictionary will, of
course, fill up very quickly in all but the smallesmpression jobs. Another
interesting fact about LZW is that strings in thetidnary become only one
character longer at a time. It therefore takesng kome to get long strings in

the dictionary and thus a chance to achieve rgalbd compression.

Yy

3-1 Introduction

Assuming everyone involved in the technology hasediois or her job
well, the only thing users want to know about dre &pplications they can
use with their networked systems. The most imporfa@@P/IP applications
now in use are probably the Word Wide Web and edaat mail. However,
there are many other applications available in Ti@&P/IP protocol suite.
Some of them were designed for use by network nemsagnd administrator,
and others were designed to be used by end usest.dve described in RFCs
(Request for Comment), and the ones deemed usa¥el heen implemented

on different platforms and improved over time.

Applications are usually implemented in pairs: ttient side and the
server side. To be useful, an application must ioely implemented both by
network managers as a service on network servaerdgprusers as a client

program running on networked workstations.

One of the most basic network applications is thiéitya to manage files
on remote systems. The ability to copy, delete, ama/e such files
continues to be important despite the growing pappyl of other
applications. The proposed protocol uses TCP fahidity. The proposed
protocol moves data between any two hosts indepenolie operating
system file commands and file type or characteresgntation. Data file
on an IBM mainframe, using the EBCDIC charactey c&h be transferred
to a Windows PC, Macintosh, or Unix workstationA&ClI files, without

any special treatment or need for conversidBA 91]

Yy

3-2 TheProposed System

The proposed system consists of two subsystembBuatrates in figure
3.1, the client and server systems. It is implee@nising java programming
language, because java runtime implementationgictlyravailable link very
tightly with platform-native communications libras that do most of the
difficult, speed-and-memory-intensive work of commuation. The java
APIs provide a convenient consistent wrapper fesévarious platforms so
that it works on any platform that supports theursgg java APIs. Java
provides two types of sockets TCP and UDP and tbpgsed system uses
TCP socket API.

Request

Figure 3.1 client server system

Ye

3-2-1 Client System

It is running on the local machine requesting sEnfrom a server. A
client program is finite, which means it is startgdthe user and terminates
when the service is completed. A client opens th@munication channel
using the IP address of the remote host and welwknport address of the
specific server program running on that machineteiAfa channel of
communication is opened, the client sends its reigaued receives a response.
Although the request-response part may be repesatesial times, the whole
process is finite and eventually comes to the &tdhis moment, the client
closes the communication channel with an activeecld he client performed
a connection to the server used socket API atifsgpegort number, and

server name as shown in algorithem 3-1.

Socket=new (ServerName,portNo)
DataOutputStream =new (Socket.getOutputStream())
DatalnputStream =new (Socket.getinputStream())

Algorithm 3-1 client connection

3-2-2 Server System
A server is a program running on the remote machonaviding

services to the clients. When it started, it ogesdoor for incoming requests
from clients, but it never initiates a service uittis requested to do so. A
server program is an infinite program. When ittst@dy it runs infinitely unless
a problem arises. It waits for incoming requestenficlients. When requests
arrived, it respond to the requests concurrentgrv& process uses socket
API for accept connection with clients at specifgat number as illustrated

in algorithm 3-2 and it consists of the followingeyations:-

Yo

Begin

ServerSocket(portNo)

while(flag)

ServerSocket.accept()

get request from client

if request rejected then send error message
else send back acknowledgment and serve request

end

Algorithm 3-2 server process

a. Get Request
The server process receives request from any cheimch means a
connection to that server, and serving it as ath(éhread is a light weight

process), each request consists of user id, fileenand operation as

shown in algorithm 3-3.

begin
read user id
read file name
read operation

end

Algorithm 3-3 get request

b. Process Request
This step checks if that request is acceptableogic)] as shown in
algorithm 3-4. Moreover, it checks if the requestent is authorized to

perform this type of request, as it will be illiegrd in security section.

A

begin

check does the file not exist (for create request)
return true
check does the file exist and can read (for read request)

return true

check does the file exist and can deleted (for delete request)
return true

check does the file exist and can updated (for update request)
return true

otherwise return false

end

Algorithm 3-4 possible request

c. Send Acknowledgement
After receiving a request from a client, the semteecks if the client is
authorized to access file, if it is so, then itddrack an acknowledgment
announcing that it is ready to accept the argumentterwise it tells him
that his request is reject and terminate.
Another acknowledgment is send to the client when gerver finish

processing its request and it will terminate thecpss.
d. Recelve Arguments

If the request is accepted then the server red¢berelient’'s arguments

for processing.

A%

3-2-3 Server Modules

The server program consists of three modules asrshofigure 3-2:-
* Manager
It represents the head process of the server pmp@@when a request
from any client is received then, it creates a separate thread to serve

that request.

e Controller
For each serving request, there is only one cdatrowhich is
responsible for controlling the connection and daamunication for the

client that sent a request.

e ServiceProvider
It is consists of many sub modules where each dneéhem is
responsible for providing specific function suchcaisate file, read file,
modify file, delete file, generate security keycept data, and decrypt

data.

YA

To LAN

{}

Manager process

1 process
\
Controller | ---cccccooo Controller > n threads
Y n
A A
1 T
v
Decrypt Data Encrypt Data
Create file Read file
) Generate Ke ()
Modify file [y} Delete file

N
N

Server

Data Base

~_

Figure 3-2 Server System

Y4

3-3 The Operations of Protocol

The proposed system provides four main file ojema to be performed on

file, they are as follows:-

1. create file.

2. read file.

3. modify file.

4. delete file.

In the client side, the data will be compresseaiefransfer, and it will
be saved in server database as a compressed veéisoreach file could be
encrypted in the sending side and decrypted imebeiving side.

3-3-1 CreateFile

This operation permits the client to create a ndw ih the server
database, the file must have new name, differemm fother files. Each
created file created must have its individual props, which some of them
are set by creator such axcess list, account numbeand available
operations more properties are illustrated in the virtudd attributes section.
In the server side the blocks of data will be sawvedew file as shown in

algorithm 3-5.

begin
do
read block of data from client

save bock in a buffer
while more block
write blocks from buffer to the new file
read file attributes from client

write file attributes in database

end

Algorithm 3-5 create file

3-3-2 Read File

This operation enables the user to read a file filmenserver database
and save it in his local database with the nameh@alesired. When the user
Is authorized to read file, he will get the fila.the server side after data being
transferred to client, the virtual file attributesll be modified as shown in

algorithm 3-6.

begin
open buffer for read

while other block
begin
read block from file
add block to buffer
end
while buffer not empty
begin
read block from buffer
send block to client
end
assign last file read to client id
assign last date and time of the reading file to the current date and time

end

Algorithm 3-6 read file

3-3-3 Modify File

This operation permits the user to modify any fifte the server
database, (when he authorized to do this operatiothis file). In the server
side this operation is likereate fileoperation, except instead of create new

virtual file attributes, it will modify it.

&)

3-3-4 Delete File

This operation enables the user to remove file flloenserver database,

when he is authorized and this operation is péechito be done on this file.

3-4 The Security of Protocol

The proposed system security includes two stepshaxtication

Access and Data Encryption.

3-4-1 Authentication Access

It helps the owner of a file to specify the numbérclients that can
access this file and the type of access for edehThere are three types of
access:-

1. Read group: this group contains the clients whoread the file.
2. Modify group: this group contains the clients whamenodify the file.

3. Delete group: this group contains the clients wéaio delete the file.

In the proposed system, the owner of the file Wwdl added to the three
groups automatically. For the client, to accessfdayn the server database,
he must be authorized (itd which is a string previously added to the all

groups) to access operation.

3-4-2 Data Encryption

The proposed system uses RSA public key methoddoyet the data
before transfer it. It consists of two main opemas:- ciphering and
deciphering. For transferring data from client &rver, the data will be
encrypted in the client side and decrypted in #wer side and vice versa.
Mathematically, encryption and decryption are naffecent (just in

arguments), and can be solved by ugpower modfunction as illustrated in

&y

algorithm 3-7. In the Public encryption, two key® aised, public key for
ciphering and private key for deciphering. The kgeyeration is done in the

side who received data.

powerMod (base, power, modNumber)
begin
let base, power, modNumber are integers.
computes n, where base A n > modNumber
computes i, as
while (power > = n)
i=i+|
power = power-|
If i=0
return base AP Mod modNumber
Else
begin
Kl=base®n Mod modeNumber
for counter= 1 to i
array[counter]=kl
for counter = | to i
P = power-n
If P>0 then
begin
K2 = base *p Mod modNumber
add k2 as new cell in array
end
mul=1,j=0
do
begin
mul = mul * array [j]
if mul > = modNumber then
begin
k = mul Mod modNumber
AddCell(k)
Mul = |
end
j++
end
while j< array length
return mul Mod modNumber
end

end

Algorithm 3-7 power mod

&y

3-5 The Compression of Protocol

In the proposed system, the file is compressech@usZW method)
before transferring, and it will be saved in thevee as compressed version,
when any client want it for manipulation, the clignll decompress the file in

its side. The compressing operation reduces taaite as shown in table 3-1.

Origin file size in kb File size after compressin
1.03 1.00

2.06 1.59

4.13 2.51

8.26 3.87

16.05 5.93

33.00 8.01

66.01 13.05

132.00 20.00

Tables 3-1 Size of file

The advantage of compressing file is to reduaedike that minimize
time transfer for that file. When file compressigslnew size will depends on

the nature of that file.

Algorithm 3-8 illustrates the decompress operatishere the decoder
starts with the first entries of its dictionarytialized to all the symbols of the
alphabet (256 entries). It then reads its inp@astr (which consists of pointers
to the dictionary) and uses each pointer to reg¢riemcompress symbols from
its dictionary and write them on its output stre#inalso builds its dictionary in

the same way as the encoder.

123

begin
for i= 0 to 255
append i as |-symbol to dictionary
read old_code
output old_code
ch=old_code
while more input character
read new_code
if new_code is not in dictionary
ST= get translation of old_code
ST= ST+ch
else ST= get translation of new_code
output ST
ch=first character in ST
add old_code+ch to translation table
old code = new-code

end

Algorithm 3-8 decompress

3-6 The Synchronization of Protocol

To synchronize access to server database, thersemlades two
shared data structure:-
1-Lock List

It is an array of elements, each element refera fide name. The
request needs one specific file to serve it, winenfile is in Lock List, then
the request will blocked, until the specified feit from the Lock List. When
the request is create file, then it will insert file name in the Lock List to

prevent any other client to create, read, modifydJalete a file with identical

¢0o

name. When the request is modify file, then theifigel file name will insert
to the Lock List to prevent any client to requdstim addition, delete file
request will insert the file to the Lock List. Thequest will remove the file
(after insert it) from the Lock List when completefihe operations of
inserting and removing are performed critically.
2-Read List

It is an array of objects, each object consisiz file name and a List of
client’s id, those who are reading the file, asvaman figure 3-3. Each read

request will insert the file to the Read List, whemmplete, it will remove it.

objectl R :
> file name
object?2
) clientl
object3
) client 2
client n
object n
Reading List

Figure 3-3 Reading List

So, when clientl reading filel, the operation @itieg is done by copy all
blocks of filel to bufferl, then clientl read frdyafferl, and when client2
wants to modify filel, it will write new data togtbuffer2 and after complete,

the data will written to filel, during this if cie3 wants to read filel then:

1

1. If client2 not finish, client3 will read from buffé, as shown in figure 3-13
a.

2. If client2 and clientl are finish, then client3 lWapen new buffer3 to read
from it, but when client2 finish and clientl noni§h, then waiting until

clientl finish, then open new buffer, as shownguife 3-13 b.

Filel — clientl

Bufferl .
— client3
Buffer2 — client2

Reading List
(a)
Filel Bufferl — clientl
Buffer? <«— client2
Buffer3 — Client3
Reading List
(b)

Figure 3-4 client synchronization

1A%

3-7 Virtual FileAttributes

All files have attributes that describes them. Eanlst have a name r,

and a size telling how much storage it currentlgupges. Figure 3.3

shows the proposed system virtual file store attab. Each attribute has

name, type, and value.

Some attributes are created when the file is etckand are forever

frozen thereafter. Others can be explicitly changgdser operations. Still

other (e.g., time of last modification) are autowlty maintained by the

file server.

Although most of last the attributes are straigiviard, a few of them

require some comment. TiAdlowed Operationattribute allows the creator

of a file to specify, for example, that some opersa are not valid on this file.

Access Contraotletermines who may access the file, and how.

Attribute Type Set at file created User changeahl€hange by server

File Name String Yes Yes No
Allowed Operation Boolean Yes No No
Access Control List No Yes No
Account Number Integer Yes Yes No
Time and Date of file creation Time Yes No No
Time and Date of last file modifier| Time Yes No Yes
Time and Date of last file read Time Yes No Yes
Owner User ID Yes No No
Last Modifier (user ID) User ID Yes No Yes
Last Reader User ID Yes No Yes
Last Attribute Modifier User ID Yes No Yes
Size Longint Yes No Yes

Figure 3.5 File Virtual Attributes

EA

4-1 Proposed TFTP Interface
The proposed system includes two sides of transfer,

1. Client side.
2. Server side.
For each side there are some windows, which aprigethe user to get good

interaction with the protocol.

4-2 Client Side
After starting up the system, the user must enterdy) which specify

its limitations for accessing files, then the usan choose the type of data
transfer either secure transfer or none secursfggras shown in figure 4.1,
which is called security frame. It contains a tégtd for user id and two

check boxes for secure transfer or not.

Figure 4.1 The Security Frame

€9

When the system getting the useérand the transfer type (secure or not),
another frame with the main operations will be a&ppd, these are:
1. Create file
2. Read file
3. Modify file
4. Delete file

After executing any operation, a message indicae duccess of

operation or an error message with its error typleappear.

4-2-1 Create New File Operation
At this operation, the user must fill some informatabout the new

file, as shown in figure 4-3.
e FileName
For this bottom, the user can choose an existiegfom the open menu,

see figure 4-2.

e Account Number
It is the second field and the user can fill itvayting the account number

at a text field, as shown in figure 4-3.

= °| @ 8] & B

3 .bessl

3 .borand

=3 ibuilder?

3 Application Data
J Cookies

] Deskiop

T Favorites

3 Local Settings

3 My Docurments
= biean L

File name: | | Open

Files of tyne: | All Files () vH Cancel |

Figure 4.2 Open Menu

Allowed Operations

Three check boxes for read, update, and removel dmukpecified to the
chosen file name. When the check box is chosen themll be in
highlighted, as shown in figure 4-3.

Display Access List

There are three lists, each of them representsethef users who they can

perform the specific operation on the selected &éiteshown in figure 4-3.

o)

SIEREERES Thumbs.db

ACc. Mo

Allowed Operation

Update [|
Remove [

Upd ate Arcess Lis Delete Access List

ok cancel

Figure 4.3 Filling Main Frame

* Add new Element
This bottom is clicked when there is new clientliidnal information is
needed to complete this operation such as clientsier properties and the

client permitted operation by selecting one or nafréhe three operation
bottoms, as shown in figure 4-4.

oy

User 1D

Lser Properties

m 3

Figure 4.4 client permitted operations

4-2-2 Read File Operation
For reading a file from a server database and gavin the client side,

the user must select the name of the file whickased in server data base,
then choose the file location and write new naprefife at save menu, as

shown in figure 4-5.

oy

Input File Name | desktop.ini

—— ~| [[#] (O]
1 .hess0 =
1 .horland B3
3 jhuilder? .
[Application Data |2
1 Cookies
Cd Deskiop
1 Favorites
3 Local Settings

= ea.

File name: |mv_\fersinn.ini| | Save

Files of type: | AllFiles (%) v| | cancel |

Figure 4-5 Save Menu

4-2-3 M odify File Operation
To modify the data of a file at server database, uker select a file

name, the server must check if this user has theeaticity for updating, if
so, the user will be able for updating and thenrgathe file, otherwise error

message will appear, as shown in figure 4-5.

4-2-4 Delete File Operation
To delete any file from server database the usest mirite the name of

the file to be deleted at a text field, which ipagred in the frame, as shown
in the figure 4-6.

4-3 Server Side
In the server side, the interface contains only or@n frame that

includes Lock List, which contains the names ofltduked files which cannot
be accessed by any client. It also contains infaomaabout the current

requests as user id, operation name, and file nasnéustrated in figure 4-7.

o¢

Create File
Modify File
Fead File

Delete File

Enter file name:

| ok | | cancel |

ok cancel exit

Figure 4-6 Delete Operation Interface

Server

Show File Header

Lock List User ID File Hame Operation

Figure 4-7 Server Frame

00

The server frame includes a Show File Header bott@henables the
user to show file virtual attributes. When a Shoile FHeader bottom is
chosen then one bottom and one text field will app&he text field used to
display the file name, and the bottom used to chdles file name from server

database, as shown in figure 4-8.

Server

Lock List User ID File Name Operation

Figure 4-8 Display File Attribute

hS

5-1 Conclusions

1. The proposed protocol has a security for accessldbee and for
data transfer, so it increase security measuremasittime.

2. The proposed protocol use one of the new data cEssjEn
method which is LZW that is efficient since it dosst need to
pass the string table to the decompress code,itafgovides a
compression rate so minimizing transferring time.

3. The proposed protocol is a one application of theP/P
reference model, it is linked with it by using setlAPI, and it
has the most properties that TCP/IP provides tapfdication, in
addition to the encryption, decryption, and comgi@s

capabilities.

5-2 FutureWorks

1. Develop the protocol to transfer all file typessas image files.
2. Work on distributed database and using more tharserver.

3. Build a new protocol on the UDP.

oy

[AND 03]

[AND 89]

[BAS02]

[BEH 00]

[CIS99]

[AME 97]
Menezes, P. Oorschot and S. Vanstone,” Hand bdok o

applied cryptography”, by CRC press, 1997.

Andrew S. Tanenbaum,” Computer Networks”, Fourth
Edition, Prentice Hall, 2003.

Andrew S. Tanenbaum,” Computer Networks”, Second

Edition, Prentice-Hall International, 1989.

Bassam S. S.,” Design and Implementation of anir@nl
Cryptography System for LANs”, MSc. Thesis , Sadd

University, college of Engineering, 2002.

Behrouz A. Forouzan and Sophia Chung Fegan,” TEP/I
protocol suit”, McGraw-Hill, 2000.

Cisco Networking Academy Program English-Semester
Online curriculum, CD collection Release VersiorD 2.

copyright Cisco system, 1999.

oA

[CS2 01]

[DAV 02]

[DAV 01]

[DAV 89]

[ERI 00]

[ESR 00]

[FRE 96]

CS2 & N2 NETWORKS NOTES 2000-2001,” Network
programming with sockets & TCP/IP".

David Salomon,” A Guide to Data Compression Metsigd
Springer —Verlage New York, 2002

David A.,” Local Area Networks”, Third Edition, fentice
Hall, 2001.

David H.,” Local Area Network Architecture”, Adg8pn —
Wesley, 1989.

Eric A. Fisch And Gregory B. White,” Secure Comerg
And Networks”, Prentice by CRC, 2000.

AL-Namemi E. I. S.,” Using Hashing and RSA Algdnmhs
for Log-in Authentication”, MSc. Thesis, Saddam

University college of Science, 2000.

Fred Halsall,” Data Communications, Computer Netkgo
and Open Systems”, Fourth Edition, Addison-Wesley,
1996.

o4

[JAM 00]

[JEA 91]

James E. and Philip T.,” Local Area Networks”, cead
Edition, Jone Wiley and sons, 2000.

Jean Watrand,” Communication Networks”, Addisone¥ley,
1991.

[JOH 01]

[JOH 00]

[MAR 89]

[PAR 99]

[PET 99

Johannes A. Buchmann,” Introduction to cryptogrgph
Springer, 2001.

John E. and Dan W.,” Managing Multivendor Netwdtks
Macmillan, Computer Publishing USA, 2000.

Mark Nelson,” LZW Data Compression”, 1989,

http:/www.dogma.net/markn/articles/lzw/lzw.htm

Partrick T. and James S., ICIl (Internet Certificat
Institute International),” Network Fundamentals dkd”,
1999.

Pete L.,” TCP/IP Clearly Explained”, Third editig printed
by Academic Press, 1999.

[SAM 9(]
Sam C. and Steve M.,” Mass Storage System Reference
Model: Version 4”, Developed by the IEEE Technical

Committee on Mass Storage Systems and Technology,
Y44

[SUR 95]
Suresh Basandra,” Local area network”, Galgotia
Publications pvt. Ltd, 1995.

[WIL 99]
W. Stallings,” Cryptography and network securifysecond
edition, Prentice hall, 1999.

[WIL 98]
W. Stallings, High-Speed Networks: TCP/IP and ATM
Design Principles”, Prentice-Hall, 1998

[YAS92]

Yassen T.,” Text Compression Computer Models”, &1S

Thesis, Saddam University college of Science, 1992.

AR

Saif Mahmood Khlaf = @Bl s Cala 5 sana o 1llall aul
Gsmlall [slall 7 andll g 440K
Vo=)Y G5 — 9 Alae — dsianall Aali— UG ¢ ol sial)
YL ETTE Y sl
PYALYYATOAY ¢ sl i
saif463@yahoo.com s SV &

saif.shareefy.gmail
Dda g kY Ol sie

(TCP/IP) 1 3505 alaindy pacaill il Jii] (Gaba 3 5 ppancs

Design and Implementation of Text File Transfer t®tol Using
TCP/IP Reference Model

	Microsoft Word - الخلاصة والكلمات المفتاحية.pdf
	Microsoft Word - الفصول.pdf
	Microsoft Word - معلومات.pdf

