
 ا�����

����ت وا������، ا��� �� ا���� ا���د ط�ق ������ ��! ا�#�� ا�"��! وا����ر �����ت ا��

ا����%$9 ا��(�$�ح ,$7 ھ$3ه ا6ط�و5$+ ھ$� *$�,%� . ھ3ه ا�����ت، �� 01ل إ-�,+ *��%(�ت)'�'ة ا�%�$�

 +%�:� +��; <�). TCP/IP(ا�ـ وH�F�G'ام ���ذج) B)� +�'1)LAN ا���A ا�#@7 وا�3ي *� *��%(< =

�$$> J%$$�م �$$�,� ا���H +$$�'F,%�ا�F'�$$+ ا�$$> = '$$���ان اG$$�س =�$$B ا����%$$9 ,$$7 ھ$$3ا ا���$$�وع �

+$�'Fا� N$��ت �$� وا�$> ط�$O�ان ا����9$% �$�,� �5��$+ ���%��$�ت . ط��N ا�F'�+ وا��H BP��* 7ـ�:�%B ا��

) LZW(م ط��($+ ا�$ـ H��-$�,+ ا�$> ا�$< �"$�F'،)RSA(ا��#(��$+ �$� 1$0ل *�$O%�ھ� H�F�$G'ام �Q$�م

���$� اول �"$��ى * ST$Uا� +$%��%B ا��J$� ا��"$��Tق �#(��$� ھ$3ا وان =�)�� ����Gار B�J ت�O��STU ا��

 . �� �"����ت ا��� ���%���ت ا��#(��+

�$$$H �$$$= A(%$$$+ ا�#�$$$�ذج �B$$$P ا�$$$ـ) TCP/IP(ان ��$$$�ذج ا�$$$ـ �F� $$$�وع�7 ھ$$$3ا ا��$$$, '$$$���ا��

)IPX/SPX (و)DDP (ج ا�$$> ا��ا��$$7 *:�$$B$$��H��$$< ��:�$$�ج ا�$$> 5��$$+ ا���ا,$$9 ��$$� ، ��ا,$$9 =#$$' ا�

���%+ ا�PV =#' ا�F�G'ام, >�"��.

وا��:$W ,$7 ا��$�د ا����%$+ ا-$�,+) TCP/IP(إن ھ3ا ا��:W ا��(��ح �(�م H'راG+ ���ذج ا�$ـ

إن). sockets(*��%(�ت)'�'ة ا�%< �� 1$0ل اF�$G'ام أ5$'ى و5$'ات رS$H ا����%($�ت ا��$7 *$'=> ا�$ـ

ا�$$> ��$$�ذج ا�$$ـ ’’ �Hو*�V$$�ل �($$B ا���O$$�ت ا�#@$$%+’’ا����%$$9 ا�$$3ي *$$� ا-$$�,�< ,$$7 ھ$$3ا ا���$$�وع ھ$$�

)TCP/IP.(

ا��'ار ا��اH!، و�Q� +$[%H 7$, 3O�م ’’ Jbuilder’’ا�#Q�م H �* 'J#�ءهُ H�F�G'ام ا��T+ ا�����%+

 B%T�ا��’’Windows XP ’’ +$%�:� +��$; 7$, ���Hر �* +%@F; ت��G�5 <�=’’LAN ’’ B�$; <$�=

+���.

Abstract

With the recent growth and development of the Internet and companies

intranets, it has become important to look for ways of developing these

network, by developing new applications or protocols to the network

reference models.

Some protocols, such as TCP/IP (Transmission Control Protocol /

Internet Protocol), are vendor–neutral. Others, such as Novell IPX/SPX

(Internetwork Packet Exchange / Sequenced Packet Exchange) and Apple

Delivery Datagram Protocol (DDP), are tied to specific vendors.

In this thesis, the proposed application is a text file transfer service that

operates on a LAN (Local Area Network) and over TCP/IP networks. The

proposed application is basically a client/server protocol in which a system

running the server accepts commands from a system running a client. The

service allows users to send commands to the server for uploading and

downloading files. The application uses the RSA encryption system to

provide good security for data and LZW (Lempel Ziv Welch)

compression method to reduce the transfer time, which is considered level one

of security.

The proposed research study the TCP/IP protocols and improve a way

of inserting new application (protocol) for the TCP/IP reference model by

using the socket API (Application Programming Interface). The project adds a

text file transfer protocol to the TCP/IP.

The system is build by using Jbuilder version 4 programming language,

and it is implemented in Window XP operating system environment on PCs

linked by LAN as a star topology.

Key Words

Application Programming Interface

Automatic Repeat request

American Standard Code for Information Interchange

Berkeley Software Distributed

Delivery Datagram Protocol

Electronic Mail System

Fiber Distributed Data Interface

File Transfer Protocol

Greatest Common Divisor

Interface Control Information

Internet Protocol

Internetwork Packet Exchange Sequenced Packet Exchange

Local Area Network

Lempel Ziv Welch

Metropolitan Area Network

Management Information Base

Network Interface Card

Personal Computer

Protocol Data Unit

Request For Comment

Remote Procedure Call

Rivest Shamir Adleman

Service Data Unit

Simple Mail Transfer Protocol

Simple Network Management Protocol

Transmission Control Protocol

Transmission Control Protocol Internet Protocol

Transport Layer Interface

Transport Protocol Data Unit

User Datagram Protocol

Wide Area Network

 ١

1-1 Introduction

FTP stands for File Transfer Protocol. It allows people to access files

stored on the FTP server and transfer them to their own computers. This

system allows large files of any type-notably executable and compressed files

to be transferred directly from the Web interface. This is not dramatically

different from existing LAN transfer systems, except that it can be built into

the Web. In fact, it can be invisible to the user, who simply clicks on the name

of the file on a Web page, and the FTP function is launched behind the

scenes.

 FTP is one of the oldest methods for moving files from one computer to

another in the Internet. Before the World Wide Web (WWW) became

famous, the most traffic was generated by this protocol. Today FTP is not so

well known anymore. Instead of putting huge files on a ftp server, people

attach the files to an e-mail and send them this way to an addressee. But that

is not the way it should be done - a reason to teach people a little bit about

FTP. There are a lot of fancy FTP programs available, making the use of FTP

easier. And also Windows supports FTP file up- and download using the

Internet Explorer. That way, FTP is nothing more than moving files from one

folder in another.

 FTP supports both interactive and batch mode. The most users work

interactive with FTP. They are running a FTP-client and establish a

connection to a server to transfer files. Some applications activate FTP

automatically without inputs from the user. In this case the user will only be

informed if the operation was successful or not. When a user uses FTP in the

interactive mode he works either with the command line of FTP or an

 ٢

application with a nice user graphical interface. This way the user is allowed

to drag and drop files instead of using cryptically commands, but internally

the application is also using the FTP commands.

FTP is an Internet file transfer service that operates on the Internet and

over TCP/IP networks. FTP is basically a client/server protocol in which a

system running the FTP server accepts commands from a system running an

FTP client. The service allows users to send commands to the server for

uploading and downloading files. FTP operates among heterogeneous systems

and allows users on one system to interact with another type of system

without regard for the operating systems in place, as long as the network

protocol is TCP/IP. [CIS 99]

1-2 Aim of thesis

 The aim of thesis is to design and implement a file management

protocol for text files and apply it as one application of TCP/IP reference

model.

1-3 Literature Survey

� In 1990, Sam and Steve [SAM 90] build reference model which

identify the high-level abstractions that underlie modern storage

systems. Their model provides a common terminology and set of

concepts to allow existing systems to be examined and new systems to

be discussed and built.

 ٣

� In 1992, Yassen [YAS 92] designed and build models for text

compression, to reduce the amount of space needed to store files.

Considerable part of his research was dedicated towards finding a

conclusive single model to cover all types of text files, programs, and

Arabic text.

� In 2000 Esraa [ESR 00] established three authentication protocols by

HMAC (Key Hashing for Message Authentication Code system)

system and RSA public key cryptosystem. To achieve maximum

authentication of these protocols, HMAC system is used in the first

stage, which depends on a one-way hash function characteristic. To

increase authentication, RSA public key cryptosystem is used in the

second stage, which depends on the trap–door one–way function. The

use of one–way hash functions in a HMAC system with RSA public

key cryptosystem is to compress any large file in a secure manner

before encrypted with a private key.

� In 2002 Bassam [BAS 02] have designed and implemented an end-to-

end cryptography software system that works on-line and under

Windows operating system for Ethernet networks, and applied an

encryption algorithm to prove the system capability to encrypt/decrypt

packets on-line without crashing the Windows operating system or

effecting network activities. Also, he have designed and implemented a

hardware encoder/decoder card to implement the encryption algorithm

by hardware and interface this card to end-to-end cryptography

software system.

 ٤

1-4 Thesis Outline

The contents of individual chapters of this thesis are briefly reviewed.

♦ Chapter two: covers the theoretical basis of networking, RSA public

key cryptosystem, and LZW dictionary compression method.

♦ Chapter three: presents the proposed system architecture, and the

algorithms that used to implement this system.

♦ Chapter four: presents the user interface for the designate system.

♦ Chapter five: introduces conclusions on this work, with

recommendation for future work.

 ٥

2-1 Introduction

 For networks to communicate efficiently, they require a standard, or

protocol. In a general sense, a protocol is an agreed-upon way to

communicate. Network protocols are established rules that enable data to flow

from one Network Interface Card (NIC) to another. Unless the programmers

understand the specific rules applied to network communications, he/she will

not be able to administer a network efficiently. [PAR 99]

2-2 The Need For Protocol Architecture

 When computers, terminals, and/or other data processing devices

exchange data, the procedures involved are the following:

• The source system must either activate the direct data communication

network of the identity of the desired destination system.

• The source system must ascertain that the destination system is

prepared to receive data.

• The file transfer application on the source system must ascertain that

the file management program on the destination system is prepared to

accept and store the file for this particular user.

If the file formats used on the two systems are incompatible, one or the other

system must perform a format translation function. [AND 89]

 In protocol architecture, the modules are arranged in a vertical stack

where complex programs can only be written and verified if they are

decomposed into manageable models. A module is a block of code which is

specified by the action it performs and by the way it interacts with other

modules. The module can be constructed independently of the rest of the

software, as long as it respects the interaction and functions. [JEA 91]

 ٦

2-3 Layered Network Architecture

 To reduce their design complexity, most networks are organized as a

series of layers or levels, each one built upon its predecessor, where each

layer offers certain services to the higher layers, shielding those layers from

the details of how the offered services are actually implemented. [AND 89]

 Typically, a service of layer N is executed by peer protocol entities in

different nodes of a communication network. The messages exchanged by

peer protocol entities of layer N are called layer N Protocol Data Units (N-

PDUs). The messages exchanged by services of layer N are also called layer

N Services Data Units (N-SDUs). Thus, the N+1-PDU is an N-SDU.[JEA 91]

 In figure 2.1,when protocol entity of layer N+1 in A wants to send an

N+1-PDU to a peer protocol entity in B. The protocol entity uses a service

primitive of layer N called an N.request. This request is placed by sending

some Interface Control Information (ICI) to layer N. The ICI specifies the

request type as well as some parameters, such as the addresses of the nodes,

and the protocol entities inside the nodes and, possibly, a description of the

desired quality of the information transfer service. The service provided by

layer N, called the N_SERVICE, eventually sends an N-indication to the

protocol entity in layer N+1 of B. At that time, the protocol entity normally

receives the N+1-PDU. The protocol entity in B later sends an N.response as

a reply to the N.indication. The N.response is another N-SERVICE primitive

which contains parameters that describe the reply to the N.request. This

response eventually gets back to the protocol entities in layer N+1 of A as

N.confirm. [JEA 91]

 ٧

Actual N-1_SERVICE
Communication

 N.requset N.confirm
 N-SERVICE

Node A Node B

Protocol
entity

Protocol
entity

Protocol
entity

Protocol
entity

Protocol
entity

TCP

N+1_PDU

 N-PDUs

(Virtual communication)

Layer N+1

Layer N

Layer N-1 Protocol
entity

Figure 2.1-Layered Architecture

N.indication N.response

 ٨

2-4 Design Issues For The Layers

 Some of the key design issues that occur in computer networking are

presented in several layers, below some important of them:

2-4-1 Connection establishing and terminating

Every layer must have a mechanism for connection establishment.

Since a network normally has many computers, some of which have

multiple processes, a means is needed for a process on one machine to

specify with whom it wants to establish a connection. As a sequence of

having multiple destinations, some form of addressing is needed in order

to specify a specific destination. Closely related to the mechanism for

establishing connections across the network is the mechanism for

terminating them once they are no longer needed. [AND 89]

2-4-2 Rules for data transfer

When data is transmitted between two pieces of equipment, three

analogous modes of operation can be used:

• Simplex: This is used when data is transmitted in one direction only

• Half duplex: This used when the two interconnected devices wish to

exchange information (data) alternately.

Duplex: This is also referred to as full-duplex and is used when data is to be

exchanged between the two connected devices in both directions

simultaneously. [FRE 96]

2-4-3 Error control

 Error control is an important issue because physical communication

circuits are not perfect. [AND 89]

 ٩

 When a computer is transferring blocks of characters (frames) across a

serial data link to another computer, the program in the receiving computer

control procedure automatically without any intervention from the user.

Typically, the receiving computer checks the received frame for possible

transmission errors and then returns a short message (frame) either to

acknowledge its correct receipt or to request that another copy of the frame is

sent. This type of error control is known as Automatic Repeat request (ARQ).

[FRE 96]

2-4-4 Multiplexing

 Multiplexing is the transmission of different flows of information on

the same physical link; flow information means a sequence of packets or a bit

stream sent by one user to another user. One simple way to implement

multiplexing of sequences of packets, called statical multiplexing, is to store

in the same buffer all the packets that need to be transmitted over a given line.

[AND 89]

2-4-5 Routing

 Routing is the process of selecting a path over which to send packets.

Routing includes two types:

• Direct Routing: When two computers on the same network need to

communicate, the packets do not need a router.

• Indirect Routing: If two computers that are not on the same physical

network need to communicate, they must send the Internet Protocol

(IP) packet to a router for delivery. Whenever a router is involved in

communication, the activity is considered indirect routing. [PAR 99]

 ١٠

2-5 TCP/IP Protocol Architecture

 TCP/IP consist of four layers, built on top of a physical layer (hardware

layer), have to date proven sufficient for all practical purposes. Figure 2.2

shows the TCP/IP model layers from top down.

2-5-1 Application Layer Protocols

 This is where the user interacts with the network application. Data is

received as commands from the user and as data from the network application

on the other end of the connection. TCP/IP applications communicate in

client/server pairs at this layer. [PET 99]

 The following protocols are used at application layer:

• Simple Mail Transfer Protocol (SMTP)

 The simple mail transfer protocol provides a basic electronic mail

facility. It provides a mechanism for transferring messages among separate

hosts. Features of SMTP include mailing lists, return receipts, and

forwarding. The SMTP does not specify the way in which messages are to be

created; some local editing or native electronic mail facility is required. Once

a message received, SMTP accepts the message and makes use of TCP to

send it to a SMTP module on the other host. The target SMTP module will

Application
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Figure 2.2 TCP/IP Layers

 ١١

make use of a local electronic mail package to store the incoming message in

a user's mailbox. [WIL 98]

• File Transfer Protocol (FTP)

 File transfer protocol is a program that allows files to be copied from

one host to another. Less automatic and transparent to the end user than the

resource sharing protocols; FTP offers the highest degree of interoperability

between hosts. Although FTP requires that files be copied from one host to

another before they can be used, it does allow any host running TCP/IP to

access a FTP server and exchange data. The two hosts can exchange files

regardless of their operating systems, file structure, or even character sets in

use. [PET 99]

 FTP offers an efficient and quick way to transfer files because it does not

have the overhead of encoding and decoding data, such as sending files as e-

mail attachments. [PAR 99]

• TELNET

 The client TELNET protocol/process is accessed through the local

operating system either by a user application or, more usually, by a user at a

terminal. It provides services to enable a user to log on to the operating

system of a remote machine. All commands (control characters) and data

entered at the user terminal-or submitted by the user application program are

passed by the local operating system to the client TELNET process which

then passes them, using the reliable stream service provided by TCP, to the

correspondent server TELNET. The latter issues the commands on behalf of

the user, through the local operating system, to the interactive process, as

illustrated in the figure 2.3. [FRE 96]

 ١٢

User
application

process

Operating System

Client TELNET

TCP/IP TCP/IP

Server TELNET

Operating System

Interactive
program/process

Server Host
Terminal user

client host

Message in Network virtual terminal format

Figure 2.3 TELNET client/server interaction scheme

 ١٣

• Simple Network Management Protocol (SNMP)

 Simple network management protocol maintains image of the network

in database called management information base (MIB). The consistency

between the image and the network is maintained by exchanging messages.

When a management application modifies attributes of the object in the

database, messages are sent to the physical device represented by the object to

modify its corresponding attributes. Conversely, the database can learn the

attributes of the physical device by polling the devices periodically or by

having the devices send relevant information about selected events. [JEA 91]

2-5-2 Transport Layer Protocols

 This layer manages the flow of data between two internetwork hosts.

TCP/IP relies on two transport protocols, TCP (Transmission Control

Protocol) for reliable data flow, and UDP (User Datagram Protocol) is a much

simpler protocol that offers no reliability guarantees. [PET 99]

 The header format for TCP, as shown in figure (2.4), which is a

minimum of 20 octets, or 160 bits as follow: [WIL 98]

• The source port and destination port fields identify the applications at

the source and destination systems that are using this connection.

• The sequence, acknowledgment number, and window fields provides

flow control and error control.

• The checksum is a 16-bit frame check sequence used to detect errors in

the TCP segment.

 ١٤

 The UDP provides a connectionless service for application-level

procedure; it does not guarantee delivery, preservation of sequence, or

protection against duplication. UDP enables a procedure to send messages to

other procedures with a minimum of protocol mechanism. [WIL 98]

 The UDP header is always eight bytes long, and consists of four two

-byte fields, its fields as following: [PET 99]

• The first field is the source port number.

• The second field is the destination port number.

• The third field hosts the length of the UDP datagram.

• The fourth field contains a UDP checksum, as illustrated in figure 2.5.

0 Bits 4 10 16 31

Source port

Sequence number

Acknowledgment number

Header
length

Destination port

Window Flags Unused

Urgent pointer Checksum

Options + Padding

Figure 2.4 TCP Header

 ١٥

2-5-3 Network Layer Protocols

Data is moved around the internetwork at this layer. The Internet

Protocol (IP) operates at this layer to route packets across networks

independent of network medium. [PET 99]

 The IP provides a number of core functions and associated procedures

to carry out the various harmonizing functions that are necessary when

interworking across dissimilar networks. These include the following: [FRE

96]

• Fragmentation and reassembly: This concerned the transfer of user

messages across networks/subnets which support smaller packet sizes

than the user data.

• Routing: To perform the routing function, the IP in each source host

must know the location of the internet gateway or local router that is

attached to the same network or subnet. Also, the IP in each gateway

must know the route to be followed to reach other networks or subnets.

IP Header

Destination port number (2 bytes) Source port number (2 bytes)

UDP length (2 bytes) UDP checksum (2 bytes)

Data

Figure 2.5 UDP Header

 ١٦

• Error reporting: When routing or reassembling datagram within a

host or gateway, the IP may discard some datagram. This function is

concerned with reporting such occurrences back to the IP in the source

host and with a number of other reporting functions.

2-5-4 Data Link Layer Protocols

At this layer, also known as the network interface layer, data is transmitted

across a single network. Data from the network layer, which has been routed

appropriately, has arrived at (or has never left) the local network and is

transmitted to its destination. [PET 99]

 This layer is concerned with the exchange of data between an end

system and the network to which it is attached. The sending computer must

provide the network with the address of the destination computer, so that the

network may route the data to the appropriate destination. The sending

computer may wish to invoke certain services, such as priority, that might be

provided by the network. [WIL 98]

2-5-5 Physical Layer Protocols

 The physical layer covers the physical interface between a data

transmission device (e.g. work station, computer) and a transmission medium

or network. This layer is concerned with specifying the characteristics of the

transmission medium, the nature of the signals, the data rate, and related

matters. [WIL 98]

 ١٧

2-6 Client/Server Computing

Most operating systems and networks have basic task-to-task

communication facilities. However, the communications would not

necessarily occur between similar computers. A PC might need to initiate a

conversation with a midrange, or a mainframe might need to communicate

with a PC. This was the interesting twist--how to implement a distributed

processing environment that took advantage of computing power wherever it

was in the network, without requiring all of the computers to use the same

operating system or even the same primary networking services. What formed

as a possible solution to this puzzle was the concept of client/server

computing.

In the client/server scenario, the local computer (PC or a user's session

on a larger computer) acts as the processing client. Associated with the client

is software that provides a universal appearance to the user (be it a graphical,

icon-oriented display, or a menu-oriented display). From that display, you can

select the applications you want to use.

When a user selects an application, the client initiates a conversation

with the server for that application. This might involve communications

across LANs and WANs or simply a call to a local program. Regardless of

where the server resides, the client acts as the front end for the server and

handles the user interface. Thus, the user is not aware of where the application

actually resides. [CIS 99]

2-7 File Servers

Computers that act as shared repositories for files are called file

servers. File servers provide controlled access to which files and other system

 ١٨

resources. The primary purpose of file server software is to synchronize

access to shared resources. This means the server software, in cooperation

with applications programs, makes sure that users have simultaneous file

access where appropriate, while preventing simultaneous access where it is

inappropriate.

File server can also provide various levels of security and access

control, allowing a system manager to designate who has access to what

resources. In this area, there are vast differences in capabilities among various

file server systems.

The efficiency and sophistication of a file server's data management

and retrieval vary widely from one network operating system to another. High

– speed disk access techniques, use of disk caching, and use of proprietary

disk file structures are among the methods used to increase data retrieval

speed. [SUR 95]

2-8 Socket

In a client server model, two application programs, one running on the

local system (a client for example) and the other running on the local system

(a server for example). To standardize network programming, application-

programming interfaces (APIs) have been developed. An API is a set of

declarations, definitions, and procedures followed by programmers to write

client server programs. Among the more common APIs are the Socket

Interface, the Transport Layer Interface (TLI), the Stream Interface, the

Thread Interface, and the Remote Procedure Call (RPC). [BEH 00]

The socket interface to TCP/IP dates from the early BSD (Berkeley

Software Distribution) UNIX systems that first implemented TCP/IP about

 ١٩

1980. It is the primary interface between application programs and the

transport layer. The transport layer is usually in the kernel of operating

systems whereas higher-level protocols are implemented by programs so the

socket interface is usually a set of system calls (although on some systems

like Sun Solaris or Windows Winsock it is a library with slightly different

transport layer system calls below). [CS2 01]

The socket primitives used in Berkeley UNIX for TCP are widely used

for Internet programming. They are listed in figure 2.6 The first four

primitives in the list are executed in that order by servers. The SOCKET

primitive creates a new end point and allocates table space for it within the

transport entity. The parameters of the call specify the addressing format to be

used, the type of service desired, and the protocol. A successful SOCKET call

returns an ordinary file descriptor for use in succeeding calls, the same way an

OPEN call does. [AND 03]

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Figure 2.6 The socket primitives for TCP

 ٢٠

Newly-created sockets do not have network addresses. These are

assigned using the BIND primitive. Once a server has bound an address to a

socket, remote clients can connect to it. The reason for not having the socket

call create an address directly is that some processes care about their address

(e.g., they have been using the same address for years and everyone knows

this address), whereas others do not care. Next comes the LISTEN call, which

allocates-space to queue incoming calls for the case that several clients try to

connect at the same time. To block waiting for an incoming connection, the

server executes an ACCEPT primitive. When a Transport-DPU (TDPU)

asking for a connection arrives, the transport entity creates a new socket with

the same properties as the original one and returns a file descriptor for it. The

server can then fork off a process or thread to handle the connection on the

new socket and go back to waiting for the next connection on the original

socket. ACCEPT returns a normal file descriptor, which can be used for

reading and writing in the standard way, the same as for files. [AND 03]

At client side, a socket must first be created using the SOCKET

primitive, but BIND is not required since the address used does not matter to

the server. The CONNECT primitive blocks the caller and actively starts the

connection process. When it completes (i.e. when the appropriate TPDU is

received from the server), the client process is unblocked and the connection

is established. Both sides can now use SEND and RECV to transmit and

receive data over the full-duplex connection. The standard UNIX READ and

WRITE system calls can also be used if none of the special options of SEND

and RECV are required. Connection release with sockets is symmetric. When

both sides have executed a CLOSE primitive, the connection is released.

[AND 03]

 ٢١

2-9 LAN Architecture

 LAN is typically connects workstations, personal computers, printers,

and other devices. LANs offer computer users many advantages, including

shared access to devices and applications, file exchange between connected

users, and communications between users via electronic mail and other

applications. [BAS 02]

 LANs can be extended by connecting to other similar or dissimilar

LANs, to remote users, or to mainframe computers. This process is generally

referred to as LAN connectivity. LANs of a particular company can be

connected to the LANs of trading partners such as vendors and customers.

[JAM 00]

2-9-1 LAN Topologies

Whether the purpose of the LAN is to interconnect PCs,

minicomputers, or both is almost irrelevant-the first issue is often choosing

the topology of the LAN. This choice dictates the cable, cabling methodology

and the networking software that can operate on the LAN. The three basic

topologies are the ring, star, and bus shown in Figure 2.7.

• Ring: As its name suggests, a ring LAN joins a set of attachment units

together via a series of point-to-point connections between each unit.

Each attachment unit, in turn, interfaces to one or more computers or

computing devices. Information flows from attachment unit to

attachment unit in a single direction, thus forming a ring network.

 ٢٢

Because each PC in a ring network acts as a repeater, performance

degrades with each additional PC. Consequently, this is typically

appropriate only in small networks.

Figure 2.7 LAN Topologies

 ٢٣

Star: In a star LAN, each computer or computer-related device is connected

on a point-to-point link to a central device called a hub. The hub acts as the

LAN traffic manager, setting up communication paths between two devices

seeking to exchange information. This configuration makes it very easy to

isolate problem nodes, and is one of the most common LAN models. It is easy

to install and wire. There is no disruption to the network when connecting or

removing devices.

Bus: The simplest form of bus LAN is a set of computers or devices

connected to a common, linear connection. Under the bus topology,

information is transmitted over the distance of the network, so each computer

can pick up its intended information. Links from the main bus line might

break off into additional linear links with multiple attachments; this type of

bus structure is also referred to as a tree because multiple branches reach out

from the main trunk. It is easy to connect a computer or peripheral to a linear

bus, requires less cable length than a star topology. The entire network shuts

down if there is a break in the main cable. The terminators are required at

both ends of the backbone cable. [JOH 00]

2-9-2 Wireless LAN

A wireless LAN is a cellular computer network that transmits and

receives data with radio signals instead of wires. Wireless LANs are used

increasingly in both home and office environments, and public areas such as

airports, coffee shops and universities. Innovative ways to utilize WLAN

technology are helping people to work and communicate more efficiently.

Increased mobility and the absence of cabling and other fixed infrastructure

have proven to be beneficial for many users.

 ٢٤

Wireless users can use the same applications they use on a wired

network. Wireless adapter cards used on laptop and desktop systems support

the same protocols as Ethernet adapter cards. [DAV 01]

2-10 Cryptography

The discipline relating to the use and development of techniques to

encrypt and decrypt messages is called cryptography. An attempt to break a

specific cryptography technique is called cryptanalysis. Usually it is assumed

that individual only has a copy of an encrypted message when trying to break

a specific technique in order to read the message. The process is often made

easier if the cryptanalyst can obtain the encrypted version of some known

message. The field which covers both cryptography and cryptanalysis is

known as cryptology.

 The process of encryption entails taking a message (often referred to as

plaintext or clear text) and changing it to hide the original meaning from

everybody but the intended recipient(s). Decryption is the process that takes

the encrypted message (now referred to as ciphertext) and restores it the

original message.

This process of changing plaintext to ciphertext and back again requires

that two pair of transformations takes place. These transformations use

mathematical functions which incorporate an additional piece of data known

as the key, to perform the required transformations. The key is kept secret so

that only the intended recipient(s) can decrypt the message. These

transformations can be represented as follows: [ERI 00]

Ciphertext = Encrypt [key] (Plaintext)

Plaintext = Decrypt [key] (Ciphertext)

 ٢٥

2-10-1 public key cryptosystem

Public key algorithms rely on one key for encryption and different but

related key for decryption. These algorithms have the following important

characteristic:

1. It is computationally infeasible to determine the decryption key

given only knowledge of the cryptographic algorithm and the

encryption key.

In addition, some algorithms such as RSA, also exhibit the following

characteristic:

2. Either of the two related keys can be used for encryption, with the

other used for decryption.

The essential steps for public key encryption process are following:

1. Each end system in a network generates a pair of keys to be used for

encryption and decryption of messages that it will receive.

2. Each system publishes its encryption key by placing it in a public

register or file. This is the public key. The companion key kept

private.

3. If A wishes to send a message to B, it encrypts the message using

B's public key.

4. When B receives the message, B decrypts it using B's private. No

other recipient can decrypt the message because only B knows B's

private key. [WIL 99]

2-10-2 RSA public key encryption

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir and

L. Adleman, was the first public key cryptosystem and is still the most

important. Its security is closed related to the difficulty of finding the

 ٢٦

factorization of a composite positive integer that is the product of two large

primes. [JOH 01]

• Key Generation Algorithm

Each entity creates an RSA public key and corresponding private key as

shown in table 2-1.

Each entity A will do the following:

1. Generate two large random (and distinct) primes p & q, each

roughly the same size.

2. Compute n = p.q and Ø (n) = (p-1) (q-1).

3. Select a random integer e, 1< e < Ø (n), such that gcd (e, Ø (n)) = 1.

4. compute the unique integer d, 1< d < Ø (n), such that e d ≡1 (mod Ø

(n)).

5. A’s public key is (n, e); A’s private key is d.

• RSA Public key Encryption and Decryption

B encrypts a message m from A, which A decrypts.

1. Encryption – B will do the following:

a. Obtain A’s authentic public key (n, e).

b. Represent the message as an integer m in the interval [0, n-1].

c. Compute c = me mod n.

2. Decryption – to recover plaintext m from c, A will do the following:

a. Use the private key d to recover m = cd mod n. [AME 97]

 ٢٧

p q Ø (n) n e d

7 47 276 329 127 163

11 37 360 407 317 293

13 29 336 377 19 283

19 47 828 893 217 145

19 23 396 437 49 97

31 37 1080 1147 403 67

31 29 840 899 457 193

37 41 1440 1517 677 653

41 43 1680 1763 1061 1661

43 37 1512 1591 737 1313

2-11 Data Compression

 Those who use compression software are familiar with terms such as

zip, implode, stuffit, diet, and squeeze. These are names of programs or

methods for compressing data, names chosen to imply compression.

However, such names do not reflect the true nature of data compression.

Compressing data is not done by staffing or squeezing it, but by removing,

any redundancy cannot be compression. Data with redundancy can be

compressed. Data without any redundancy cannot be compressed.

 The first type of data is text. Text is an important example of computer

data. Many computer applications, such as word processing and software

compilation, are nonnumeric; they deal with data whose elementary

Table 2-1 RSA key

 ٢٨

components are characters of text. The computer can store and process only

binary information (zeros and ones), so each character of text must be

assigned a binary code. Present day computers use the ASCII code, although

more and more computers use the new Unicode. ASCII is a fixed size code

where each character is assigned an 8 bit code (the code itself occupies seven

of the eight bits, and the eighth is parity, designed to increase the reliability of

the code). A fixed size code is a natural choice because it makes it easy for

software applications to handle characters of text. On the other hand, a fixed

size code is inherently redundant.

 In a file of random text, each character is occurred approximately the

same number of times. However, files used in practice are rarely random.

They contain meaningful text, and the typical English text certain letters, such

as "E", "T", and "A" are common, whereas other letters, such as "Z" and "Q"

are rare. This explains why the ACII is redundant and points the way to

eliminated the redundancy. ASCII is redundant because it assigned to each

character, common of rare the same number (eight) of bits. Removing

redundancy can be done by assigning variable size code to the characters with

short codes assigned to the common characters and long codes assigned to the

rare once. This is precisely who Huffman coding works.

 The second type of common computer data is digital images. A digital

image is rectangular array of colored dots, called pixels. Each pixel is

represented in the computer by its color code. In order to simplify the

software applications that handle images, the pixels are of the same size. The

size of a pixel depends on the number of colors in the images, and this

number is normally a power of two. If they are 2k colors in (n) images, then

each pixel is a (k bit) number.

 ٢٩

 There are two types of redundancy in a digital image. The first type is

similar to redundancy in text. In any particular images certain color may

dominate, while others may be infrequent. This redundancy can be removed

by assigning variable size codes to the pixels, as is done with text. The other

type of the redundancy is much more important and is the result of the pixel

correlation.

 The compressor or encoder is a program that compresses the raw data

in the input file and increases an output file with compressed (low

redundancy) data. The decomposer or decoder converts in the opposite

direction. The term encoding is very general and has wide meaning. The term

codec is sometimes used to describe both the encoder and decoder. [DAV 02]

2-11-1 Dictionary Methods

Statistical compression methods use a statistical model of the data,

so the quality of compression they achieve depends on how the good that

model is. Dictionary – based compression methods don’t use a statistical

model, nor do they use a variable – size codes. Instead they select strings of

symbols and encode each string as a token using a dictionary. The dictionary

holds strings of symbols and it may be static or dynamic. The former is

permanent, sometimes allowing the addition of strings but no deletions,

whereas the latter holds strings previously found in the input file, allowing for

additions and deletions of strings as new input is read. [DAV 02]

 ٣٠

2-11-2 LZW

The original Lempel Ziv approach to data compression was first

published in 1977. Terry Welch’s refinements to the algorithm were

published in 1984. the algorithm is surprisingly simple. In a nutshell, LZW

compression replaces strings of characters with single codes. It does not do

any analysis of the incoming text. Instead, it just adds every new string of

characters it sees to a table of strings. Compression occurs when a single code

is output instead of a string of characters. The code that the LZW algorithm

outputs can be of any arbitrary length, but it must have more bits in it than a

single character. [MAR 89]

 The main feature of LZW method is eliminating the second field of a

token. An LZW token consists of a pointer to the dictionary. The data

structure for the dictionary is a tree. The LZW method starts by initializing

the dictionary to all the symbols in the alphabet. In the common case of 8 bit

symbols, the first 256 entries of the dictionary (entries 0 through 255) are

occupied before any data is input. Because the dictionary is initialized, the

next input symbol will always be found in the dictionary. This is why an

LZW token can consist of just a pointer and does not have to contain a

symbol code as in old version. The principle of LZW is that the encoder

inputs symbols one by one and accumulates them in a string I. As long as I is

found in the dictionary, the process continues. At a certain point, adding the

next symbol x causes the search to fail; string I is in the dictionary but string

Ix (symbol x append to I) is not. At this point the encoder

1. Outputs the dictionary pointer that points to string I.

 ٣١

2. Saves string Ix (which is now called a phrase) in the next available

dictionary entry.

3. Initialize string I to symbol x.

 Figure 2.8 is a pseudo code listing of the algorithm. The λ denotes the

empty string and <<a, b>> denotes the concatenation of strings a and b.

 The line "append <<di, ch>> to the dictionary" is of special interest. It

is clear that in practice, the dictionary may fill up. This line should therefore

include a test for a full dictionary and certain actions for the case where it is

full.

 Figure 2-7 The LZW Algorithm

For i: = 0 to 255 do

 append i as a 1-symbol string to the dictionary;

append λ to the dictionary;

di : = dictionary index of λ ;

repeat

 read (ch);

 if <<di, ch>> is in the dictionary then

 di := dictionary index of <<di, ch>>;

 else

 output (di);

 append <<di, ch>> to the dictionary;

 di : = dictionary index of ch;

 endif

until end of input;

 ٣٢

 Since the first 256 entries of the dictionary are occupied right from the

start, pointers to the dictionary have to be longer than 8 bits. A simple

implementation would typically use 16 bit pointers, which allow for a 64k-

entry dictionary (where 64 k = 216 = 65,536). Such a dictionary will, of

course, fill up very quickly in all but the smallest compression jobs. Another

interesting fact about LZW is that strings in the dictionary become only one

character longer at a time. It therefore takes a long time to get long strings in

the dictionary and thus a chance to achieve really good compression.

 ٣٣

3-1 Introduction

Assuming everyone involved in the technology has done his or her job

well, the only thing users want to know about are the applications they can

use with their networked systems. The most important TCP/IP applications

now in use are probably the Word Wide Web and electronic mail. However,

there are many other applications available in the TCP/IP protocol suite.

Some of them were designed for use by network managers and administrator,

and others were designed to be used by end users. Most are described in RFCs

(Request for Comment), and the ones deemed useful have been implemented

on different platforms and improved over time.

Applications are usually implemented in pairs: the client side and the

server side. To be useful, an application must be widely implemented both by

network managers as a service on network servers and by users as a client

program running on networked workstations.

One of the most basic network applications is the ability to manage files

on remote systems. The ability to copy, delete, and move such files

continues to be important despite the growing popularity of other

applications. The proposed protocol uses TCP for reliability. The proposed

protocol moves data between any two hosts independent of operating

system file commands and file type or character representation. Data file

on an IBM mainframe, using the EBCDIC character set, can be transferred

to a Windows PC, Macintosh, or Unix workstation as ASCII files, without

any special treatment or need for conversion. [JEA 91]

 ٣٤

3-2 The Proposed System

The proposed system consists of two subsystems as illustrates in figure

3.1, the client and server systems. It is implemented using java programming

language, because java runtime implementations currently available link very

tightly with platform-native communications libraries that do most of the

difficult, speed-and-memory-intensive work of communication. The java

APIs provide a convenient consistent wrapper for these various platforms so

that it works on any platform that supports the required java APIs. Java

provides two types of sockets TCP and UDP and the proposed system uses

TCP socket API.

Reply

Request

Reply

Request

Server

Client 0

Client 1

Client N

Figure 3.1 client server system

 ٣٥

3-2-1 Client System

It is running on the local machine requesting service from a server. A

client program is finite, which means it is started by the user and terminates

when the service is completed. A client opens the communication channel

using the IP address of the remote host and well-known port address of the

specific server program running on that machine. After a channel of

communication is opened, the client sends its request and receives a response.

Although the request-response part may be repeated several times, the whole

process is finite and eventually comes to the end. At this moment, the client

closes the communication channel with an active close. The client performed

a connection to the server used socket API at specified port number, and

server name as shown in algorithem 3-1.

3-2-2 Server System

A server is a program running on the remote machine providing

services to the clients. When it started, it opens the door for incoming requests

from clients, but it never initiates a service until it is requested to do so. A

server program is an infinite program. When it started, it runs infinitely unless

a problem arises. It waits for incoming requests from clients. When requests

arrived, it respond to the requests concurrently. Server process uses socket

API for accept connection with clients at specified port number as illustrated

in algorithm 3-2 and it consists of the following operations:-

Algorithm 3-1 client connection

Socket=new (ServerName,portNo)
DataOutputStream =new (Socket.getOutputStream())
DataInputStream =new (Socket.getInputStream())

 ٣٦

a. Get Request

The server process receives request from any client, which means a

connection to that server, and serving it as a thread (thread is a light weight

process), each request consists of user id, file name, and operation as

shown in algorithm 3-3.

b. Process Request

This step checks if that request is acceptable in logic, as shown in

algorithm 3-4. Moreover, it checks if the requestor client is authorized to

perform this type of request, as it will be illustrated in security section.

begin
read user id
read file name
read operation

end

Algorithm 3-3 get request

Begin
ServerSocket(portNo)
while(flag)
ServerSocket.accept()
get request from client
if request rejected then send error message
else send back acknowledgment and serve request

end

Algorithm 3-2 server process

 ٣٧

c. Send Acknowledgement

After receiving a request from a client, the server checks if the client is

authorized to access file, if it is so, then it send back an acknowledgment

announcing that it is ready to accept the arguments, otherwise it tells him

that his request is reject and terminate.

Another acknowledgment is send to the client when the server finish

processing its request and it will terminate the process.

d. Receive Arguments

If the request is accepted then the server receive the client’s arguments

for processing.

begin
check does the file not exist (for create request)

return true
check does the file exist and can read (for read request)

return true
check does the file exist and can deleted (for delete request)

return true
check does the file exist and can updated (for update request)

return true
otherwise return false

end

Algorithm 3-4 possible request

 ٣٨

3-2-3 Server Modules

The server program consists of three modules as shown in figure 3-2:-

• Manager

It represents the head process of the server program, so when a request

from any client is received then, it creates a new separate thread to serve

that request.

• Controller

For each serving request, there is only one controller, which is

responsible for controlling the connection and data communication for the

client that sent a request.

• Service Provider

It is consists of many sub modules where each one of them is

responsible for providing specific function such as create file, read file,

modify file, delete file, generate security key, encrypt data, and decrypt

data.

 ٣٩

Manager process

Controller

1

Controller

n

Controller

٢

Server

Data Base

Create file Read file

Modify file Delete file
Generate Key

Encrypt Data Decrypt Data
Service Provider

Modules

n threads

1 process

Figure 3-2 Server System

To LAN

 ٤٠

3-3 The Operations of Protocol

 The proposed system provides four main file operations to be performed on

file, they are as follows:-

1. create file.

2. read file.

3. modify file.

4. delete file.

In the client side, the data will be compressed before transfer, and it will

be saved in server database as a compressed version. Also each file could be

encrypted in the sending side and decrypted in the receiving side.

3-3-1 Create File

This operation permits the client to create a new file in the server

database, the file must have new name, different from other files. Each

created file created must have its individual properties, which some of them

are set by creator such as access list, account number, and available

operations, more properties are illustrated in the virtual file attributes section.

In the server side the blocks of data will be saved in new file as shown in

algorithm 3-5.

begin
do
 read block of data from client

 save bock in a buffer

while more block

write blocks from buffer to the new file

read file attributes from client

write file attributes in database

end

Algorithm 3-5 create file

 ٤١

3-3-2 Read File

This operation enables the user to read a file from the server database

and save it in his local database with the name that he desired. When the user

is authorized to read file, he will get the file. In the server side after data being

transferred to client, the virtual file attributes will be modified as shown in

algorithm 3-6.

3-3-3 Modify File

This operation permits the user to modify any file in the server

database, (when he authorized to do this operation on this file). In the server

side this operation is like create file operation, except instead of create new

virtual file attributes, it will modify it.

begin
open buffer for read

while other block

begin

 read block from file

 add block to buffer

end

while buffer not empty

begin

 read block from buffer

 send block to client

end

assign last file read to client id

assign last date and time of the reading file to the current date and time

end

Algorithm 3-6 read file

 ٤٢

3-3-4 Delete File

This operation enables the user to remove file from the server database,

when he is authorized and this operation is permitted to be done on this file.

3-4 The Security of Protocol

The proposed system security includes two steps:-Authentication

Access and Data Encryption.

3-4-1 Authentication Access

It helps the owner of a file to specify the number of clients that can

access this file and the type of access for each file. There are three types of

access:-

1. Read group: this group contains the clients who can read the file.

2. Modify group: this group contains the clients who can modify the file.

3. Delete group: this group contains the clients who can delete the file.

In the proposed system, the owner of the file will be added to the three

groups automatically. For the client, to access any file in the server database,

he must be authorized (its id which is a string previously added to the all

groups) to access operation.

3-4-2 Data Encryption

The proposed system uses RSA public key method to encrypt the data

before transfer it. It consists of two main operations:- ciphering and

deciphering. For transferring data from client to server, the data will be

encrypted in the client side and decrypted in the server side and vice versa.

Mathematically, encryption and decryption are not different (just in

arguments), and can be solved by using power mod function as illustrated in

 ٤٣

algorithm 3-7. In the Public encryption, two keys are used, public key for

ciphering and private key for deciphering. The key generation is done in the

side who received data.

powerMod (base, power, modNumber)
begin

let base, power, modNumber are integers.
computes n, where base ^ n > modNumber
computes i, as

 while (power > = n)
i = i + 1
power = power-1

 If i = 0
 return base ^ power Mod modNumber
 Else
 begin
 K1=base^n Mod modeNumber

for counter= 1 to i
 array[counter]=k1

 for counter = 1 to i
 P = power-n

 If P > 0 then
 begin

 K2 = base ^p Mod modNumber
 add k2 as new cell in array
 end
 mul = 1 , j = 0
 do
 begin

mul = mul * array [j]
 if mul > = modNumber then
 begin
 k = mul Mod modNumber
 AddCell(k)
 Mul = 1
 end
 j++
 end
 while j< array length
 return mul Mod modNumber
 end

end

Algorithm 3-7 power mod

 ٤٤

3-5 The Compression of Protocol

In the proposed system, the file is compressed (using LZW method)

before transferring, and it will be saved in the server as compressed version,

when any client want it for manipulation, the client will decompress the file in

its side. The compressing operation reduces the file size as shown in table 3-1.

 The advantage of compressing file is to reduce file size that minimize

time transfer for that file. When file compressed, its new size will depends on

the nature of that file.

 Algorithm 3-8 illustrates the decompress operation, where the decoder

starts with the first entries of its dictionary initialized to all the symbols of the

alphabet (256 entries). It then reads its input stream (which consists of pointers

to the dictionary) and uses each pointer to retrieve uncompress symbols from

its dictionary and write them on its output stream. It also builds its dictionary in

the same way as the encoder.

Origin file size in kb File size after compress in kb
1.03 1.00
2.06 1.59
4.13 2.51
8.26 3.87
16.05 5.93
33.00 8.01
66.01 13.05
132.00 20.00

Tables 3-1 Size of file

 ٤٥

3-6 The Synchronization of Protocol

To synchronize access to server database, the server includes two

shared data structure:-

1-Lock List

It is an array of elements, each element refers to a file name. The

request needs one specific file to serve it, when the file is in Lock List, then

the request will blocked, until the specified file exit from the Lock List. When

the request is create file, then it will insert the file name in the Lock List to

prevent any other client to create, read, modify, or delete a file with identical

begin

for i= 0 to 255

 append i as 1-symbol to dictionary

read old_code

output old_code

ch= old_code

while more input character

 read new_code

 if new_code is not in dictionary

 ST= get translation of old_code

 ST= ST+ch

 else ST= get translation of new_code

 output ST

 ch= first character in ST

 add old_code+ch to translation table

 old_code = new-code

end

Algorithm 3-8 decompress

 ٤٦

name. When the request is modify file, then the specified file name will insert

to the Lock List to prevent any client to request it. In addition, delete file

request will insert the file to the Lock List. The request will remove the file

(after insert it) from the Lock List when completed. The operations of

inserting and removing are performed critically.

2-Read List

It is an array of objects, each object consists of a file name and a List of

client’s id, those who are reading the file, as shown in figure 3-3. Each read

request will insert the file to the Read List, when complete, it will remove it.

So, when client1 reading file1, the operation of reading is done by copy all

blocks of file1 to buffer1, then client1 read from buffer1, and when client2

wants to modify file1, it will write new data to the buffer2 and after complete,

the data will written to file1, during this if client3 wants to read file1 then:

file name

client1

client 2
.
.
.

client n

object1

object2

object3

.

.

.

object n

Reading List

Figure 3-3 Reading List

 ٤٧

1. If client2 not finish, client3 will read from buffer1, as shown in figure 3-13

a.

2. If client2 and client1 are finish, then client3 will open new buffer3 to read

from it, but when client2 finish and client1 not finish, then waiting until

client1 finish, then open new buffer, as shown in figure 3-13 b.

Figure 3-4 client synchronization

Buffer1

Buffer2

client1

client3

client2

(a)

File1

Reading List

Buffer1

Buffer2

Buffer3

client1

client2

client3

File1

Reading List
(b)

 ٤٨

3-7 Virtual File Attributes

All files have attributes that describes them. Each must have a name r,

and a size telling how much storage it currently occupies. Figure 3.3

shows the proposed system virtual file store attributes. Each attribute has

name, type, and value.

 Some attributes are created when the file is created, and are forever

frozen thereafter. Others can be explicitly changed by user operations. Still

other (e.g., time of last modification) are automatically maintained by the

file server.

 Although most of last the attributes are straightforward, a few of them

require some comment. The Allowed Operations attribute allows the creator

of a file to specify, for example, that some operations are not valid on this file.

Access Control determines who may access the file, and how.

Attribute Type Set at file created User changeable Change by server

File Name String Yes Yes No

Allowed Operation Boolean Yes No No

Access Control List No Yes No

Account Number Integer Yes Yes No

Time and Date of file creation Time Yes No No

Time and Date of last file modifier Time Yes No Yes

Time and Date of last file read Time Yes No Yes

Owner User ID Yes No No

Last Modifier (user ID) User ID Yes No Yes

Last Reader User ID Yes No Yes

Last Attribute Modifier User ID Yes No Yes

Size LongInt Yes No Yes

Figure 3.5 File Virtual Attributes

 ٤٩

4-1 Proposed TFTP Interface
The proposed system includes two sides of transfer,

1. Client side.

2. Server side.

For each side there are some windows, which are helping the user to get good

interaction with the protocol.

4-2 Client Side
After starting up the system, the user must enter his id, which specify

its limitations for accessing files, then the user can choose the type of data

transfer either secure transfer or none secure transfer, as shown in figure 4.1,

which is called security frame. It contains a text field for user id and two

check boxes for secure transfer or not.

Figure 4.1 The Security Frame

 ٥٠

When the system getting the user id and the transfer type (secure or not),

another frame with the main operations will be appeared, these are:

1. Create file

2. Read file

3. Modify file

4. Delete file

After executing any operation, a message indicate the success of

operation or an error message with its error type will appear.

4-2-1 Create New File Operation
At this operation, the user must fill some information about the new

file, as shown in figure 4-3.

• File Name

For this bottom, the user can choose an existing file from the open menu,

see figure 4-2.

• Account Number

It is the second field and the user can fill it by writing the account number

at a text field, as shown in figure 4-3.

 ٥١

• Allowed Operations

Three check boxes for read, update, and remove could be specified to the

chosen file name. When the check box is chosen then it will be in

highlighted, as shown in figure 4-3.

• Display Access List

There are three lists, each of them represents the set of users who they can

perform the specific operation on the selected file, as shown in figure 4-3.

Figure 4.2 Open Menu

 ٥٢

• Add new Element

This bottom is clicked when there is new client, additional information is

needed to complete this operation such as client id, user properties and the

client permitted operation by selecting one or more of the three operation

bottoms, as shown in figure 4-4.

Figure 4.3 Filling Main Frame

 ٥٣

4-2-2 Read File Operation
For reading a file from a server database and saving it in the client side,

the user must select the name of the file which is saved in server data base,

then choose the file location and write new name for file at save menu, as

shown in figure 4-5.

Figure 4.4 client permitted operations

 ٥٤

4-2-3 Modify File Operation
To modify the data of a file at server database, the user select a file

name, the server must check if this user has the authenticity for updating, if

so, the user will be able for updating and then saving the file, otherwise error

message will appear, as shown in figure 4-5.

4-2-4 Delete File Operation
To delete any file from server database the user must write the name of

the file to be deleted at a text field, which is appeared in the frame, as shown

in the figure 4-6.

4-3 Server Side
In the server side, the interface contains only one main frame that

includes Lock List, which contains the names of the locked files which cannot

be accessed by any client. It also contains information about the current

requests as user id, operation name, and file name, as illustrated in figure 4-7.

desktop.ini

Figure 4-5 Save Menu

 ٥٥

Figure 4-6 Delete Operation Interface

Figure 4-7 Server Frame

Lock List

 ٥٦

The server frame includes a Show File Header bottom that enables the

user to show file virtual attributes. When a Show File Header bottom is

chosen then one bottom and one text field will appear. The text field used to

display the file name, and the bottom used to choose the file name from server

database, as shown in figure 4-8.

Figure 4-8 Display File Attribute

Lock List

 ٥٧

5-1 Conclusions

1. The proposed protocol has a security for access the data and for

data transfer, so it increase security measurement over time.

2. The proposed protocol use one of the new data compression

method which is LZW that is efficient since it does not need to

pass the string table to the decompress code, also it provides a

compression rate so minimizing transferring time.

3. The proposed protocol is a one application of the TCP/IP

reference model, it is linked with it by using socket API, and it

has the most properties that TCP/IP provides to its application, in

addition to the encryption, decryption, and compression

capabilities.

5-2 Future Works

1. Develop the protocol to transfer all file types such as image files.

2. Work on distributed database and using more than one server.

3. Build a new protocol on the UDP.

 ٥٨

 [AME 97]

Menezes, P. Oorschot and S. Vanstone,’’ Hand book of

applied cryptography’’, by CRC press, 1997.

[AND 03]

Andrew S. Tanenbaum,’’ Computer Networks’’, Fourth

Edition, Prentice Hall, 2003.

[AND 89]

Andrew S. Tanenbaum,’’ Computer Networks’’, Second

Edition, Prentice-Hall International, 1989.

 [BAS 02]

Bassam S. S.,’’ Design and Implementation of an Online

Cryptography System for LANs’’, MSc. Thesis , Saddam

University, college of Engineering, 2002.

[BEH 00]

Behrouz A. Forouzan and Sophia Chung Fegan,’’ TCP/IP

protocol suit’’, McGraw-Hill, 2000.

[CIS 99]

Cisco Networking Academy Program English-Semester

Online curriculum, CD collection Release Version 2.0

copyright Cisco system, 1999.

 ٥٩

[CS2 01]

CS2 & N2 NETWORKS NOTES 2000-2001,’’ Network

programming with sockets & TCP/IP’’.

[DAV 02]

David Salomon,’’ A Guide to Data Compression Methods’’,

Springer –Verlage New York, 2002.

[DAV 01]

David A.,’’ Local Area Networks’’, Third Edition, Prentice

Hall, 2001.

 [DAV 89]
David H.,’’ Local Area Network Architecture’’, Addison –
Wesley, 1989.

[ERI 00]

Eric A. Fisch And Gregory B. White,’’ Secure Computers

And Networks’’, Prentice by CRC, 2000.

[ESR 00]

AL-Namemi E. I. S.,’’ Using Hashing and RSA Algorithms

for Log-in Authentication’’, MSc. Thesis, Saddam

University college of Science, 2000.

[FRE 96]

Fred Halsall,’’ Data Communications, Computer Networks

and Open Systems’’, Fourth Edition, Addison-Wesley,

1996.

 ٦٠

[JAM 00]

James E. and Philip T.,’’ Local Area Networks’’, Second

Edition, Jone Wiley and sons, 2000.

[JEA 91]

Jean Watrand,’’ Communication Networks’’, Addison–Wesley,

1991.

[JOH 01]

Johannes A. Buchmann,’’ Introduction to cryptography’’,

Springer, 2001.

[JOH 00]

John E. and Dan W.,’’ Managing Multivendor Networks’’,

Macmillan, Computer Publishing USA, 2000.

[MAR 89]

Mark Nelson,’’ LZW Data Compression’’, 1989,

http:/www.dogma.net/markn/articles/lzw/lzw.htm

[PAR 99]

Partrick T. and James S., ICII (Internet Certification

Institute International),’’ Network Fundamentals Book1’’,

1999.

[PET 99]

Pete L.,’’ TCP/IP Clearly Explained’’, Third edition, printed

by Academic Press, 1999.

 ٦١

[SAM 90]

Sam C. and Steve M.,” Mass Storage System Reference

Model: Version 4”, Developed by the IEEE Technical

Committee on Mass Storage Systems and Technology,

١٩٩٠.

[SUR 95]

Suresh Basandra,’’ Local area network’’, Galgotia

Publications pvt. Ltd, 1995.

 [WIL 99]

W. Stallings,’’ Cryptography and network security’’, second

edition, Prentice hall, 1999.

[WIL 98]

W. Stallings,’’ High-Speed Networks: TCP/IP and ATM

Design Principles’’, Prentice-Hall, 1998.

[YAS 92]

Yassen T.,’’ Text Compression Computer Models’’, MSc.

Thesis, Saddam University college of Science, 1992.

� ����د ��� ��
� ا��
ك: ا�� ا������ Saif Mahmood Khlaf

 ا�����ب / ا����م : ا���
� وا����

 ٧دار – ١٢ز'�ق – ����٩ –$��
� ا��#�"
� –!�! : ا����ان

 ٠٣٠٫٤٦٣٤٠١: ر'� ا�.�-�

 ٠٧٩٠٢١٩٦٥٨٢: ر'� ا���!�4

 saif463@yahoo.com : ا�:48# ا��9"8و7$

 saif.shareefy.gmail

 :>��ان ا9ط8و��

B ��� ا���� ا��7A !��"@#ام $��ذج ا�ـ :�- C
D�-و �
�A-)TCP/IP(

Design and Implementation of Text File Transfer Protocol Using
TCP/IP Reference Model

 �E'��ا�� F4٢٠٠٥/ ٥/ ٣١: -�ر

	Microsoft Word - الخلاصة والكلمات المفتاحية.pdf
	Microsoft Word - الفصول.pdf
	Microsoft Word - معلومات.pdf

