Abstract

Image compression involves reducing the size of image data files, while
retaining necessary information. Compression is a necessary and essential
method for creating image files with manageable and transmittable sizes. There
have been many types of compression algorithms developed. This work
exploits a hybrid image compression based on fractal coding and wavelet

transform.

In the proposed method, the RGB image was transformed into YC,C,

color transform, the goa of this transforming is to prepare the image for
encoding process by eliminating any irrelevant information, then the
compression technique is started by applying the Haar wavelet transform on the
luminance component. The LL approximation subband is recompressed by
applying the Partitioned Iterated Function System (PIFS) on it. The LL sub
band is partitioned into non overlapped range blocks and overlapped domain
blocks (the over lapping is according to the jump step value) using fixed size
square blocks Partitioning. The matching technique is used to find the best
domain block which satisfies the best map to the range block with minimum
error. The detailed subbands (HL, LH and HH) are quantized using a uniform
quantization. A new scheme of Run Length Encoding (RLE) is applied on the
quantized sub bands. The resulted sub bands are coded again using S-Shift
optimizer and S-Shift encoder.

The Chrominance components (Cb and Cr) are also compressed using
Fractal coding with the same technique that used on the LL sub band.
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Chapter Five
Conclusions and Future Work

5.1 Conclusions
In this work, an algorithm based on fractal codamgl wavelet transform
was proposed which led to the development of cossoe algorithms with
high compression ratio.
Many tests were performed to study the affect athemethod on the
compression performance parameters. From the sabiat are mentioned in

chapter four, the following conclusions could bensarized:

1. Block Size: increasing the block size is proportional witre t€GR and
inversely proportional to the PSNR, this is dueléareasing the number of
the range and domain blocks will decrease the fmibtyaof finding the
best domain block that match each range block.

2. Jump step: increasing the jump step value is proportionghwhe CR,
and inversely proportional to the PSNR.

3. Increasing the number of bits needed to store tfsetaNOBO) and scale
(NOBS) parameters is proportional to the PSNR,ianérsely promotional
to the CR.

4. The Quantization parameters "A", "B" and "R": increasing the
guantization parameters led to increasing the GRdacreasing the PSNR.

5. In order to get a good reconstructed image witst lp@ality, neither the
block size nor the jump step must be in a high eslsuch that it's better
that the block size is not more than (4*4) blockedior two wavelet levels,
and (2*2) for three wavelet level . It's also netommended that the jump
step is more that 4 value, although it will increate CR but it will
decrease the PSNR and affect on the quality of¢benstructed image.

6. taking the block size (BS=8) and jump step (JS=d@) €b and Cr
components using Fractal coding will not have higfiect on the quality
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of the reconstructed image as it when applying ono¥hponent, this is
because that Cb and Cr just have the color infoamat

7. The IFS coefficients (scale and offset values) laghly affects on the
compression ratio and PSNR values. They give betmnpression
performance parameters when they are quantized avitigh number of
bits for both scale and offset parameters, sudhNREBS=5, NOBO=7.

5.2 Future Work

1. Choosing another type of wavelet transform sucfia 7 that give a
better compression performance.

2. Choosing another type of block partitioning instedidixed block size
partitioning, such as Quadtree partitioning, Hontzab-Vertical
partitioning, Triangular partitioning.

3. Instead of a exhaustive search mechanism ,a GeA@mithm GA
based on PIFS can be used to find the near opsiolation , it try to
emulate biological evolutionary processes to solegtimization
problems Instead of searching one point at a time .

4. Applying another type of compression method on @t @r instead of

the PIFS, such as Vector quantization.

1)



Chapter Two
Theoretical Background

2.1 Introduction

Image compression has been pushed to the foredfdhe image processing
field. This is largely a result of the rapid growth computer power, the
corresponding growth in the multimedia market, addent of the World Wide
Web which makes the Internet easily accessiblevyeryone.

Compression algorithms development starts with iegpbns to two-
dimensional still images. Because video and telewissignals consist of
consecutive frames of 2-D image data, the developwfecompression methods
for 2-D still data is paramount importance. Aftaese are developed, they are
often extended to vide@lUmb98]

This chapter explains the theoretical concept aigencompression using a
fractal and wavelet Transform, in addition to Ruenfgth Encoding and S-Shift

coding methods.

2.2 Compression methods

Compression method teaks in input X and generatespeesentation Xc
(compressed output) that hopefully requires fews: Bhere is a reconstruction
algorithm that operates on the compressed repisantXc to generate the
reconstruction Y. Based on the requirement of retrantion, data compression
schemes can be divided into two broad classedi(gee (2.1)).

The first is lossless compression, in which Y ientical to X. The other is
lossy compression, wich generally provide much @iglhompression than

lossless compression but makes Y different franAd00]
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Compression

Methods
A 4 A 4
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Figure (2.1): image compression methods [AldOO]

2.2.1 Lossless Compression Methods

The Lossless methods guaranty that the decompressep is absolutely
identical to the image before compression. Thithes case when binary data
such as executables, documents, etc. are comprédseyl need to be exactly

reproduced when decompressgiimO03]
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2.2.1.1 Run Length Encoding (RLE)

It is Simple, intuitive, and fairly effective congssion scheme for
bitmapped graphics. Its main concept is to detepeating pixels on each
row of an image and output them as a pixel coumt piel value pair,
instead of outputting the repeated pixels indivigu&LE encoding does not
do well for stipple patterns or scanned imagesgchvitio not have repeating
pixels in rows the encoding for these types of iesagnay actually be larger
after RLE encoding. Despite this limitation, RLE/ery good for other types
of images, and is supported by the BMP, TIFF, a a® many others.
[MurQ7]

RLE works by reducing the physical size of a repeatstring of
characters. This repeating string, called a rutypgcally encoded into two
bytes. The first byte represents the number ofasttars in the run and is
called the run count. In practice, an encoded rag contain 1 to 128 or 256
characters; the run count usually contains as tineber of characters minus
one (a value in the range of 0 to 127 or 255). 3éwond byte is the value of
the character in the run, which is in the rang® b 255, and is called the
run valueUncompressed, a character run of 15 A characteosdwmrmally
require 15 bytes to store: AAAAAAAAAAAAAAA. Theame string after
RLE encoding would require only two bytes: 15A. Tl code generated to
represent the character string is called an RLEKkgtatlere, the first byte, 15,
Is the run count and contains the number of rapaetit The second byte, A,

Is the run value and contains the actual repeatktevn the runfMur07]

2.2.1.2 Huffman Encoding

Probably the best known coding method based odbglibty statistics is
Huffman coding. D. A. Huffman published a paperl®52 describing a
method of creating a code table for a set of symgolen their probabilities
[Nel9g]
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The method starts by building a list of all the halpet symbols in
descending order of their probabilities. It themstoucts a tree, with a
symbol at every leaf, from the bottom up. Thisesd in steps, where at each
step the two symbols with smallest probabilities selected, added to the top
of the partial tree, deleted from the list, andlaepd with an auxiliary
symbol representing both of them. When the listeaduced to just one
auxiliary symbol (representing the entire alphali&® tree is complete. The
tree is then traversed to determine the codeseo$ymbols. $al04

2.2.1.3 Arithmetic Coding

Arithmetic coding completely takes a stream of inmymbols and
replaces it with a single floating point output raen The longer (and more
complex) message, the more bits are needed inutptonumber, until a
practical method was found to implement this on gotars with fixed sized
registers. The output from an arithmetic codingcpss is a single number
less than 1 and greater than or equal {dl6l198]

As the message becomes longer, the interval netula@gpresent it
becomes smaller and smaller, and the number onbisled to specify that
interval increases. Successive symbols in the agesseduce this interval in
accordance with the probability of that symbol. Tinere likely symbols
reduce the range, and thus add fewer bits to tlssage.[Lou06]

The single number can be uniquely decoded to ctbatexact stream of
symbols that went into its construction. In order donstruct the output
number, the symbols being encoded have a set glitlealassigned to them.
[Nel9g]
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2.2.1.4 Lempel-Ziv-Welch (LZW)

It was developed by Terry Welch in 1984 as an owpd version of the
LZ78 dictionary coding algorithm developed by AbaahLempel and Jacob
Ziv.

Coding starts after the dictionary is initializ8the coder outputs the code
of the longest dictionary entry that matches tharatters at the current
position in the input. It then forms a new entrydppending the input’'s next
character to the current string, and gives thisyeah unused code. These
steps are repeated until there is no more inpue. AW decoder always
maintains the same dictionary as the coder. Itdagk each incoming code,
outputs the corresponding entry, and then, by usiivegsame rule as the

coder, forms a new entry and gives it a cg8&/91]

2.2.2 Lossy Compression Methods
In Lossy method, the result is less than optimhlsTs because results have
certain statistical properties which can be explbiby encoders specifically
designed for them. Also, some of the finer detailhe image can be sacrificed
for the sake of saving a little more bandwidth tmrage space. This also means
that lossy compression techniques can be usedsiartba/KumO03]
Lossy image coding techniques normally have thoeeponents:
image modeling which defines such things as the transformatiobeo
applied to the image
parameter quantization whereby the data generated by the transformation
IS quantized to reduce the amount of information
Encoding, where a code is generated by associating apptepdode

words to the raw data produced by quantizer.
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Each of these components is in some part respensibthe compression.
Image modeling is aimed at the exploitation ofistaial characteristics of the
image (i.e. high correlation, redundancy). Typiedamples are transform
coding methods, in which the data is represented ohfferent domain (for
example, frequency in the case of the Fourier Toans (FT), the Discrete
Cosine Transform (DCT), and so on), where a redumedber of coefficients
contains most of the original information. In marases this first phase does not
result in any loss of information. The aim of quazation is to reduce the
amount of data used to represent the informatiothimvithe new domain.
Encoding is usually error free. It optimizes thpresentation of the information
and may introduce some error detection copi&d97]

In the following sections, a review of the most orant coding schemes for

lossy compression is provided.

2.2.2.1 Vector Quantization (VQ)

Vector Quantization uses a codebook containing | ppadterns with
corresponding indexes on each of them. The magn @fié/Q is to represent
arrays of pixels by an index in the codebook. lis thhay, compression is
achieved because the size of the index is usualhgadl fraction of the block
of pixels.[Xia01]

Here is an intuitive lossy method for image comgi@s by vector
guantization. Analyze a large number of differamnaihing” images and find
the B most common blocks. Build a codebook with thBd@locks into both
encoder and decoder. Each entry of the codeboalbisck. To compress an
image, scan it block by block, and for each blocid fthe codebook entry
that best matches it, and output a pointer toehaty.[Sal04]
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2.2.2.2 Predictive Coding

Predictive coding has been used extensively in @nagmpression.
Predictive image coding algorithms are used prilpato exploit the
correlation between adjacent pixels. They predietvalue of a given pixel
based on the values of the surrounding pixels.tDulee correlation property
among adjacent pixels in image, the use of a pf@doan reduce the amount
of information bits to represent imag&ia01]

The predictor will estimate the value of the inpignal using the previous
elements in the raw data. Then, the error signaichvis the difference
between the actual input signal and the estimaggthk will be forwarded to
the quantizor. At the quantizor, the error sigsajuantized and forwarded to
the receiver through the digital channel. At theereer, the same operation
will be performed. The predictor will estimate tkalue of the incoming
signal and this value is added to the quantizea esfignal to reconstruct the
actual signal plus a quantization errifus04]

This type of lossy image compression techniquaoisas competitive as
transform coding techniques used in modern lossggencompression,
because predictive techniques have low compressaios and worse

reconstructed image quality than those of transfooding.[Xia01]

2.2.2.3 Transform Coding

The process of using a basis to resolve aga@mnto a collection of
weights is called &ransform. [Han99]

A general transform coding scheme involves subdig@dnN xN image
into smallernxn blocks and performing a unitary transform on eaah
image. A unitary transform is a reversible linemnsform whose kernel
describes a set of complete, discrete basic fumetidhe goal of the
transform is to correlate the original signal, &hts correlation generally

results in the signal energy being redistributedmgnonly a small set of
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transform coefficients. In this way, many coeffiti® may be discarded after
quantization and prior to encoding.

Transform based compression is one of the mostulusgiplications.
Combined with other compression techniques, thehrigjue allows the
efficient transmission, storage, and display ofgesthat otherwise would be
impractical [Xia01]

2.2.2.4 Fractal Coding

The birth of fractal geometry (or rebirth, rathex)usually traced to IBM
Mathematician Benoit B. Mandelbrot and the 1977ligabion of his seminal
Book the Fractal Geometry of Nature. Later in tkeatle Michael Barnsley,
a leading researcher from Georgia Tech, wrote theular book Fractals
Everywhere. He presents the mathematics of Iterftedtions Systems
(IFS), and proves a result known as the Collageofidm. The Collage
Theorem states what an Iterated Function Systent brusike in order to
represent an imaggkomo04]

In Fractal image compression, an image is modeteth@ unique fixed
point of a contractive operator on the space ofgesa This type of image
representation was first proposed by Barnsley wosed the first practical
fractal coder. Fractal coding has since been & wipactive research because
it has opened up a refreshing new view to imagepeession. It leads to
visually pleasing results at high compression gatamd it provides resolution
independent image descriptions.

In fractal compression the image to be encodedaistipned into image
blocks called ranges. Each range is “coded” byfexeace to some other part
of the image and by some transformation paramefBnese parameters
describe how the referenced image part has to jJustad with respect to
contrast and brightness in order to give a goodadmation to the range to
be encodedHar00]
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2.3 Wavelet Transform

The fundamental idea behind wavelets is to anallgeesignal at different
scales or resolutions, which is called multiresolut Wavelets are a class of
functions used to localize a given signal in bgthce and scaling domains. A
family of wavelets can be constructed from a motwawvelet. Compared to
Windowed Fourier analysis, a mother wavelet istehied or compressed to
change the size of the window. In this way, big alats give an approximate
image of the signal, while smaller and smaller ietgezoom in on details.
Therefore, wavelets automatically adapt to bothhilgl-frequency and the low-
frequency components of a signal by different siaésvindows. Any small
change in the wavelet representation produces raspondingly small change
in the original signal, which means local mistakel not influence the entire
transform [Xia01]

Wavelet compression uses band pass filters to a&pan image into images
with low or high spatial frequencies. Low frequenmages are those in which
brightness change is gradual, for example, flatoomded background areas.
Such images appear soft and blurry. Higher frequéaad images are crisp and
sharp edged. To begin the decomposition, the intage are first partitioned
into four sub band labeled as LL1, LH1, HL1, HHhAe tgoal of sub banding
analysis is to transform the source image intor@édtive representation so that
most of the energy is concentrated in lowest fragyesub band and in a few
coefficients, to reduce the correlation and provadaseful data structure. To
obtain the next level of decomposition, the LL1 &and is further decomposed
into the next level of four sub bands and the dgmusition can be continued to
as many levels as needed as shown in figure(2e2)titonstruction is obtained
by applying an inverse operation to that of theotiggosition. Since that most of
the image energy is concentrated in the lowestufaqy sub band. Therefore,

the quality of reconstruction of this sub band pgeeat influence on quality of

AR
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the fully reconstructed image, for this reason sub band has to be coded with

relatively high fidelity.[Kas02]

LL2 | LH2
LL1 LH1 LH1
HL2 | HH2
HL1 HH1 HL1 HH1
(a) First level decomposition (b) second level decomposition

Figure (2.2), 2-Dimensional Wavelet Transform. [Ka82]

Where, L denotes a low band, H denotes a hagld band the subscript denote
the number of the level.

Before talking about Haar wavelet transform, gssential to describe the
kinds of filters that are related to wavelet tramst. [Kap04]

1. High passfilter

In digital signal processing (DSP) terms, the waw&inction is a high
pass filter. A high pass filter allows the highduency components of a
signal through while suppressing the low frequeroynponents. For
example, the differences that are captured by thar kvavelet function
represent high frequency change between an oddraegen value.
2. Low passfilter

In digital signal processing (DSP) terms, the sgpfunction is a low
pass filter. A low pass filter suppresses the litgquency components of

a signal and allows the low frequency componentsuijh. The Haar

Yy
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scaling function calculates the average of an eumh an odd element,
which results in a smoother, low pass signal.
3. Orthogonal (or Orthonormal) Transform

Orthogonal transforms are of interest because theybe used to re-
express a time series in such a way that we caily @asonstruct the
series from its transform. In a loose sense, timéotimation" in the
transform is thus equivalent to the "information"the original series; to
put it in another way, the series and its transfoam be considered to be

two representations of the same mathematical entity

2.3.1 The Haar Transform

The Haar Wavelet function consists of both: lowspasd high pass filters.
The high pass and low pass filters are called #emohposition filters because
they break the image down or decompose the image detailed and
approximation coefficients, respectively. The apmration band (LL) is the
result of applying low pass filter in vertical ahdrizontal directions, the (LH)
band is the result of applying horizontal low pé&sr and vertical high pass
filter, while the (HL) band is the result of hori#al high pass filter and vertical
low pass filter, the (HH) band is resulted fromikhontal and vertical high pass
filter. In this transform eacke x 2) adjacent pixel are picked as group and passed
simultaneously through four filters (LL, HL, LH, HHo obtain the four wavelet
coefficients, the basis of 4-filters could be ded\as follows[Kas02]

Low filter and high filter:

Yy



Chapter Two Theoretical Background

Thus the horizontal low pass filter followed by thertical low pass filter is

equivalent to:

While the horizontal low pass filter followed byrtieal high pass filter is

equivalent to:

LH=%(3(1 _1)= 1(1 _1j ........ (2.5)

2\1 -1

Finally the horizontal high pass filter followed tagrtical high pass filter is:

2.3.2 Forward Haar Wavelet Transform

Forward Haar wavelet transform can be illustratefigure(2.3),where a, b, c
and d are the image pixel values, while A, B, C &ndre the corresponding
wavelet coefficients, w and h are half of the imagelth and height |,
respectivelyKas02]

v¢
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a(x,y) b (x+1,y) A(x, y) = B(x+w, y) =
(a+ b+ c+ d)/2 (at+ b-c-d) /12
c (X, y+1) d (x+1, y+1) Cix, y+ h) = DOk w, y+ h) =
(a-b+ c-d) /2 (a-b-c+d)/2
a.(2>< 2) adjacent pixels b. (forward transform)

Figure (2.3) the forward Haar wavelet transform [Kas02]

2.3.3 Inverse Haar Wavelet Transform

The output of forward Haar wavelet transform is waevelet coefficients of
the (LL, LH, HL and HH) bands. To reconstruct theage, the same four two
dimensional filters have been used. Figure (2.Wjsttate the inverse Haar
wavelet transform, where A, B, C and D are wavedtsfficients, while a, b, c

are the reconstructed pixel valuisas02]

A(X, Y) B(x+1, y) - b (x+w,y)=
a(zf&i/)B+C+D)/2 (A+B-C-D) /2
C(X, y+1) D(X+1, y+1) c (X, y+ h): d (X+ w, y+ h):
(A-B+C-D) /2 (A-B-X+D)/2

Figure (2.4) the inverse Haar wavelet transform [Ka02]

Yo
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2.3.4 Why Wavelet Transform?[zaf02]

Wavelet Transform has several advantages. Hera am@émber of these in

regard to image compression and processing.

1. One of the main features of Wavelet Transform, whg important for
data compression and image processing applicatissits good
decorrelating behavior.

2. Wavelets are localized in both the space (time) srale (frequency)
domains. Hence they can easily detect local featiara signal.

3. Wavelets are based on multi-resolution analysisvéld decomposition
allows analyzing a signal at different resoluti@vdls (scales), which
results in superior objective and subjective pentamce.

4. Wavelets are smooth, which can be characterizedhby number of
vanishing moments. The higher the number of vangmoments, the

better smooth signals can be approximated witlwtneelet basis.

2.4 Fractal definition
It is a rough or fragmented geometric shape thatbeasubdivided in parts,
each of which is (at least approximately) a redisied copy of the wholéhe
term was coined by Mandelbrot and was derived fitoerLatinfractus meaning
broken or fracturedq\Web1]
Mathematically, a set of points whose fractal dimension exceeds its
topological dimensionBou91]
Seven things about Fractal Image Compression:
1. It is a promising new technology, arguably supet® JPEG, but only
with an argument.
2. Itis a lossy compression method.
3. The fractals in Fractal Image Compression areatéer Function

Systems.

¥
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4. 1t is a form of Vector Quantization, one that eays a virtual
codebook.

5. Resolution enhancement is a powerful feature $utot some magical
way of achieving 1000:1 compression.

6. Compression is slow, decompression is fast

2.5 Self-similarity

An important (defining) property of a fractal self-similarity, which refers
to an infinite nesting of structure on all scalgsict self- similarity refers to a
characteristic of a form exhibited when a substectesembles a superstructure
in the same form.

Let's take a look at a common plant, the fern. Téra is typical of many
plants in that it exhibits self similarity. A feonsists of a leaf, which is made
up from many similar, but smaller leaves, each bicW, in turn, is made from
even smaller leaves. The closer we look the motaidee see, figure (2.5).

This is a standard fern we will see the overalhtbef repeating leaves. Each

smaller leaf looks similar to the larger leaf.

Looking a little closer, you can see that thoselslmaves are made up from

even smaller leaves.

Yv
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Figure (2.5) self similarity in fern [Man83]

No matter how close you look, more detail is alwagparent, the same tends
to be true for all fractals. A very simple algonthcan explain an infinitely

complex objectfMan83]

2.6 Some kinds of fractals

There are many different kinds of fractafist section gives an
introduction to some kinds, like the L-system, digavith the Mendelboart
being an example, the “true” Mathematical Fractag] IFS.
2.6.1 L-system

L-systems are a mathematical formalism proposedth®y biologist

Lindenmayer as a foundation for an axiomatic theafy biological
development. More recently, L-systems have founcerseé applications in
computer graphics the basic idea is to define cerpbjects by successively
replacing parts of a simple object using a set @iriting rules or
productions. The rewriting can be carried out remaly. [Och98]

2.6.2 Chaotic Fractals

It is non-linear fractals. This fractal type isno@cted with the theory of
chaos, and its elements are obtained by a simplleemmatical equation. For
visualizing them, each point on the paper or sciserelated to a certain

YA
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number e.g. in the case of the “Mandelbrot sets thia complex number.
This number is then iterated, that means it is usedformula and the new
number resulting from that is then again used & shme formula, which
leads to the next iteration. This sequence of djpers is "similar" to the

work of the "copy-machine" of linear fractals - vitegard to insertion. The
insertion is repeated until the numerical valugsgragch infinity, converge or
fluctuate between several numbers. Depending onrdblelt, the original

point may be colored differentljL.or03]

2.6.3 The “true” Mathematical Fractals

The development of this kind of fractals considtsimple rules a starting
image, the so-called initiator, is replaced by aeotimage, the so called
generator. But nevertheless they are very comphek edways strictly self
similar: it does not matter which part we analyzajways looks exactly like
a scaled down copy of the whole set. The toolsréate such fractals are
called iteration and feedback: Iteration means thatprocedure is repeated

based on the result of the previous siepr03]

2.6.4 Iterated Function System (IFS)

An iterated function system is a collection of aéfitransforms, it can be
of any number of dimensions, but are commonly caegband drawn in two
Dimensions. An IFS fractal is a solution to a reoes set equation. The
fractal is made up of the union of several copiegself, each copy being
transformed by a function hence (functions systeff)e functions are
normally contractive which means they bring potitser together and make
shapes smaller. Hence the shape of an IFS fraxtalade up of several
possibly-overlapping smaller copies of itself, eathwhich is also made up
of copies of itself, infinitum. This is the sourcé its self-similar fractal
nature [And00]
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2.7 Partitioned Iterated Function System(PIFS)

In general, the theory of fractal compression iseldlaon the contraction
mapping in the mathematics of metric spaces. Th&tiBaed Iterated Function
System (PIFS), which is essentially a set of catitba mappings, is formed by
analyzing the image. Those mappings can exploit rdgundancy that is
commonly present in most images. This redundancgléged to the similarity
of an image with itselfFractal encoding techniques rely on the conceat th

parts of an image are very similar to other paftshe same image. More
explicitly, the assumption is that one part of arge can be closely described
by a scaled down copy of some other part of thegerthat has been translated
and/or rotated according to a particular transfeiona In preparation for
encoding, an image is broken up into a set of naarlapping “range” cells (i.e.
image sub regions). The concept behind fractal @ngois that a set of
“domain” cells can be mathematically transformedsmme way to closely
resemble every range cell of the image being cossgie This is pictorially
illustrated in Figure (2.6).

Domain image

Range cells

Mathematical
transformation

b Compare
transformed cell to

range cell

Figure (2.6) the basis of fractal encoding is theotnparison of a set of domain cells

transformed to mach the range cell [Fer02]
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The image to be encoded is broken into a numbeubfimages or range
blocks that cover an image completely in a nondaypg@ing manner. The
domain blocks may arise from a similarly broken damage, or may consist of
a number of unrelated sub images, or may be crdagedsing overlapping
regions of an image. Each of these domain cell$ wvilergo a number of
transformations such as rotations, shrinkage, tensity modifications to more
closely match a given range imagfeer02]

Before the matching stage, domain blocks are toansfd as follows:

» Down sampling each domain block.

» Geometric transformations, eight isometrics are smwred, using

equations (2.12.., 2.2.19)

» Scale and shift of luminance value that are contpaiecording to the

minimum mean squared error vallifod95]

Each range image has associated affine transfarmati

a, b, O |u €«
Wi lv|=|c, do O ||v|+]| f ]| ...... (2.7)
0 0 S |z| |0,

Wherea, , b,, ¢, d., e, f, represent the geometric transformation and
S (scale)p, (offset) are the affine transform coefficients.v are the pixel

coordinates andthe gray level.

Where S can be computed as follow:

n n n

nZRDi _ZRZDi
g=_il =1 =1

" S Y (2.8)
n Df—(ZDij

i i=1
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And O can be computed as follow:
n-1 n-1 n-1
2
DiZ_O:R ‘;DiIZ;RDi
1, (o 2
”g D. _( - Duj

n-1

O: i=0

So the transformations are applied to the domelis to find the best map,
in terms of minimizing an error metric, onto thaga cell [Fis95]

If the minimum error between the range cell anddlosest domain cell is
below the designated similarity threshold, the sags considered mapped and
the location of the range cell, the index of thendo that maps to it, and the
transformation parameters are recorded. If ther eassociated with the best
match is greater than the similarity thresholds tlainge cell could be marked as
not being matched or representing an anomalousnggier02]

The error between the range block and theestodomain block is measured

with sum of square error functiom(): [Fis95]

a? = Zn: R2 + SZZn: D> +0°n- ZSZH: R Di—ZOZn: R + ZSOZH: D, .. (2.10)
= i=1 = = =

Where:
* nis the number of pixels in each block.

= R Isthe range block.

= D, Is the transformed domain block.

In order to obtain high compression ratios, ongrall number of blocks are
allowed. Thus, the key point in fractal compressgto partition the image into
a small number of blocks that are similar to otlmage parts under certain
transformations.Many partitioning methods have been proposed facté

image compression; among the most widely known gt successful are

vy
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Fisher's quad tree scheme, Fisher's and Menlovetsizbntal—vertical

Partitions, Fixed size square partitioning and Agidar Partitioning.[Har00]

2.8 Affine Transform

Applying an affine transformation to a uniformlystbrted image can correct
for a range of perspective distortions by transfogrthe measurements from
the ideal coordinates to those actually used.
An affine transformation is an important class dafiear 2-D geometric
transformations which maps variablesg( pixel intensity values located at
position (X,,Y,)in an input image) into new variablesd, (X,,Y,) in an output
image) by applying a linear combination of transkat rotation, scaling

operations[Fis94]

2.9 Fixed size square blocks Partitioning

The simplest possible range partition consisteffixed size square blocks.
This type of block partition is successful in triomen coding of individual
image blocks since an adaptive quantization mesham able to compensate
for the varying “activity” levels of different blds, allocating few bits to blocks
with little detail and many to detailed blocks. ¢ coding based on the
standard block transform, in contrast, is not cépalf§ such adaptation,
representing a significant disadvantage of thig tgpblock partition for fractal
coding. This deficiency may be addressed by intcody adaptively to the
available block transforms, but the usual solut®no introduce an adaptive
partition with large blocks in low detail regionscasmall blocks where there is
significant detail. There is, of course, a tradtlmtween the lower distortion
expected by adapting the partition to the imageertnand the additional bits
required to specify the partition detail¢/oh99]
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2.10 Fidelity Criteria

Fidelity means "how accurately the signal recovered in teeeived
represents the one sampled in the sender".

Quality means "@omposition of the fidelity and the delay usedeplay the
samples. [Saf02]

Methods for image quality evaluation can be clasgifas objective and
subjective measures:

= Objective measure:By objective measures some statistical indices are

calculated to indicate the reconstructed imageityu#lincludes :

1. RMSE: is found by taking the square root of the errquased
divided by the total number of pixels in the imggmean”).
The total error in N*M decompressed image caddfeed as:

P4
LN

Totalerror =3 S [(£G. ) - £'G. 1)) |... (2.12)

i=0

1l
o

The RMSE is computed s follow:

RMSE = /NiMZ Z[(f(i,j)—f‘(i,j))z ]... 212

Where f (i, j) is the original image data and f, ) is the
reconstructed image valyélmb98]

2. PSNR Another quantitative measure is the peak signaleise

ratio (PSNR), based on the root mean square erfothe

reconstructed image. The formula for PSNR is gagifollow:

Ye
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PINR = 10Iog(%] ... (2.13)

» Subjective measuresubjective measure viewers read images directly to
determine their qualitySubjective evaluation by viewers is still a
method commonly used in measuring image qualitye $tabjective
test emphatically examines fidelity and at the sdme considers
image intelligibility. When taking subjective testewer's focus on the
difference between reconstructed image and thenatigmage, they

notice such details where information loss caneoadceptedSaf02]

2.11 Performance Parameters
There are many ways to evaluate the compressiomoa&ttwo of them are:
» Compression Ratio: is the ratio of the original uncompressed imalge f

and the compressed file , its denoted by:

Uncompress FileSze _ Sze,
Compressed FileSze  Sze.

Compressio nRatio = .. (2.14)

And it is often written aSize, : Sze.

This is called a "10:1 compression "or "10 timempeession”, or it can be

stated as "compressing the image to 1/10 its @igilze [Umb98]
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Chapter One
General Introduction

1.1 Introduction

With the growth of the digital technology, the infmation can be transmitted,
manipulated and stored in digital format. Obtainiagd modifying digital
information is much easier than before. So thera &rong need for efficient
ways of transmission this information. Compresssan outstanding solution to
this problem[Qia03]

Data compressioristhe process of converting data filesinto smaller filesfor
efficiency of storage and transmission”. As one of the enabling technologies of
the multimedia revolution, it is a key to rapid gress being made in information
technology. Data compression treats informatiodigital form that is, as binary
numbers represented by bytes of data with vereldaga sets. Large image files
remain a major bottleneck in a distributed envirenin Although increasing the
bandwidth is a possible solution, the relativelgthcost makes this less attractive.
Therefore, compression is a necessary and essemgthlod for creating image
files with manageable and transmittable sizesrdieioto be useful, a compression
algorithm has a corresponding decompression algoritthat, given the
compressed file, reproduces the original file. Ehbeave been many types of
compression algorithms developed. These algoritfathsnto two broad types,
lossless algorithms and lossy algorithms. A losslalgorithm reproduces the
original exactly. A lossy algorithm, as its nameplias, loses some data. Data loss
may be unacceptable in many applications. For el@nbgxt compression must
be lossless because a very small difference cauit iesstatements with totally
different meanings. There are also many situatawhsre loss may be either
unnoticeable or acceptable. In image compression, ekample, the exact
reconstructed value of each sample of the imag®tsecessary. Depending on
the quality required of the reconstructed imageayimg amounts of loss of

information can be acceptefiXia01]
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1.2 Image Compression

Image compression involves reducing the size ofgandata files, while
retaining necessary informatigitumb98g]

The progress of many system operations, such asldading a file, may
also be displayed graphically. Many applicationevpde a graphical user
interface GUI (Graphic User Interface). Computeapinics is used in many
areas in everyday life to convert many types of gem information to images.
Thus, images are important, but they tend to bedinge modern hardware can
display many colors, it is common to have a piegresented internally as a 24-
bit number, where the percentages of red, greeshbére occupy 8 bits each.
Such a 24-bit pixel can specify one of246.78 million colors. As a result, an
image at a resolution of 512x512 that consistsuchixels occupies 786,432
bytes. At a resolution of 1024x1024 it becomes ftones as big, requiring
3,145,728 bytes. This is why image compression isnportant [ Sal04]

1.3 The Principles behind Compression
A common characteristic of most images is thatrtbghboring pixels are
correlated and therefore contain redundant infaonafThe foremost task then
is to find less correlated representation of theagem Two fundamental
components of compression are redundancy andvenety reduction:
1. Redundancy reduction: aims at removing duplication from the signal
source (image/video).
2. Irrelevancy reduction: omits parts of the signal that will not be
noticed by the signal receiver, namely the Humasusl System
(HVS).

In general, three types of redundancy can be ifcksaitt

» Spatial Redundancy or correlation between neighboring pixel values.
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» Spectral Redundancy or correlation between different color planes or
spectral bands.
« Temporal Redundancy or correlation between adjacent frames in a
sequence of images (in video applications).
Image compression research aims at reducing thebeuot bits needed to

represent an image by removing the spatial andirgpeedundancies as much
as possible[Sah04]

1.4 Color Models

There are some color space models including:
1.4.1 Red, Green, Blue (RGB)

RGB is perhaps the most widely used color systemnage formats. It is
an additive system in which varying amounts of ¢oérs red, green, and
blue are added to black to produce new colors. lécagdiles using the RGB
color system represent each pixel as a color tritreee numerical values in
the form (R, G, and B), each representing the amnoured, green, and blue
in the pixel, respectively. For 24-bit color, thepket (0, 0, 0) normally
represents black, and the triplet (255,255,255)esmmts white. When the
three RGB values are set to the same value for ghean(63, 63, 63) or
(191,191,191) the resulting color is a shade oy.did ur07]

142 YUV

The YUV color space is used by the PAL (Phase Adigon Line), NTSC
(National Television System Committeggnd SECAM (Sequential Color
with Memory) composite color video standard, thadgl and White System
uses only the luminance (YY) information; color imf@ation (U and V) was
added in such a way that a black and white recaieeode the additional

color information to display the color picture.
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The conversion from RGB to YUV color model can meanplished

using the following equation$San98]

Y =0.299% R + 0.587 *G + 0.144*B......ooeveveeeeereeeennn, (1.1)
U=-0.147* R - 0.289 *G + 0.436"B........eceveeereeeerennnnn, (1.2)
V=0.615*R-0.515* G- 0. 1 *B...ovevveirereereieeneanns (1.3

The conversion from YUV to RGB color model can d=omplished

using the following equations

R=Y + L14% V i (1.4)
G=Y -0.395*U - 0.581*V......cooeiiiiiiiiiiii e (1.5)
B=Y +2.031%U ..oooiiiiiiiiiii e i (1.6)
143 YC,C,

The YC,C, color space was developed as part of ITU-R BT.a0ind

the development of the world wide digital componetdeo standard.

YC,C, is a scale down and offset version of YUV colpace .Y is defined
to have nominal 8-bit range of (16-23%},and C, are defined to have a

nominal range of (16-240)YC,C, Used in image compression (e.g. JPEG
format).[1tu02]

Conversions the image from RGB t8C,C, color model can be

accomplished with the following equationSh[00]

Y =(0.257* R + 0.504 *G + 0.098 *B) + 16 ..........eevveennns (1.7)
Cp =(-0.148 *R - 0.291 *G + 0.439 *B) + 128 .................. (1.8)
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C, =(0.439*R-0.368*G-0.071*B) + 128 ................. (1.9)

Conversions the image fronYC,C, color model to RGB can be

accomplished with the following equations

R=(1.164 Y+ 0.000*C, + 1.596*C, ) - 16 ....covvverenn.n. (1.10)

G=(1.164Y-0.392 *C, - 0.813*C, ) - 128 ...ovveervieeen, (1.11)

B=(1.164 Y+ 2.017*C,- 0.000*C, ) - 128 .....c0covvrvrrnn, (1.12)
144 Y1Q

It is NTSC Transmission Color Coordinate Systemthie development
of the color television system in the United StatdESC formulated a color
coordinate system for transmission composed ottlhadues, Y, |, Q. The Y
value, called luma, is proportional to the gammeaexied luminance of a
color. The other two components, | and Q, calledeta, jointly describe the
hue and saturation attributes of an image. Theoreafor transmitting the
YIQ components rather than the gamma-corrected ooss directly from
a color camera were two fold: Thesgnal alone could be used with existing
monochrome receivers to display monochrome imaged; it was found
possible to limit the spatial bandwidth oahd Qsignals without noticeable
image degradation. As a result of the latter priypea clever analog
modulation scheme was developed such that the bhdtidwf a color
television carrier could be restricted to the s@aedwidth as a monochrome
carrier.

The YlQtransformations are given by2ra0l]

Y=0.298 *R + 0.586* G + 0.114 *B.....vvveeerereeieereennn, (113
1= 0.595 R - 0.274 *G - 0.439 *B.....ooevvereeeirereiienenn, (1.14)
Q=0.211*R-0.522 6 +0.311* B..oovvevereeeeee e, (1.15)
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R=1.000* Y+ 0.956 1+ 0.620 Q........00eevvrreriiriieninnnn. (1.16)
G=1.000* Y-0.271*1 -0.648"Q ....ovvoivveeeieiennen, (1.17)
B=1.000* Y+ 1.105° | + 1.702Q ....covvvveeeeeaenaann, (1.18)

1.45 Cyan, Magenta, Yellow, Black (CMYK )

The color printing and color photographic procesaes based on a
subtractive color representation. In color printirige linear RGBcolor
components are transformed to cyan (C), magentadM) yellow Y) inks,
which are overlaid at each pixel on a, usually,tevipaper. The simplest

transformation relationship is:

C=1.0-Ruueveeeireeieieneei . (1.19)
M=1.0-Gvoveeeveeeeeen, (1.20)
Y=1.0-B..voveeeoeieeieee e, (1.21)

R=1.0-Covoveeereeeee e (1.22)
G=10-M...oveee oo, (1.23)
B=10-Y.ooeeoeeeeoreeenean, (1.24)

In high-quality printing systems, the R@&@B-CMY transformations,
which are usually proprietary, involve color compah cross-coupling and
point nonlinearities.

To achieve dark black printing without using exeessamounts of CMY
inks, it is common to add a fourth component, @biak, called the keyK)
or black component. The black component is setqtamal to the smallest

of the CMY components as computed using the following tramsédion:
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Where K, =MIN {1.0-R10-G 1.0- B}

And 0.0<u < 1.0 is the undercolor removal factor afd < b < 1.0is the

blackness factofPra0l]

1.4.6 Hue, Saturation , Value (HSV)

The HSV (Hue, Saturation, and Value) model, alsovkmas HSB (Hue,
Saturation, and Brightness) or HSI is (Hue, satomadnd intensity).

It can be conceived as a property of the surfaftecteng or transmitting
the light. For example, a blue car reflects blue.ndoreover it is also an
attribute of the human perception. The hue whiatssentially the chromatic
component of our perception may again be considasedeak hue or strong
hue. The colorfulness of a color is described & ghturation component.
For example, the color from a single monochromsdtigrce of light, which
produces colors of a single wavelength only, ghhyi saturated, while the
colors comprising hues of different wavelengthsehattle chromic and
have less saturation. The gray colors do not hayédiaes and hence they are
zero saturation or unsaturated. Saturation is @hmeasure of colorfulness or
whiteness in the color perceived. The lightnegsofLintensity (1) or value
(V) essentially provides a measure of the brighdrascolors. This gives a
measure of how much light is reflected from theecbpr how much light is
emitted from a region. It is proportional to thee@lomagnetic energy
radiated by the object. The luminosity (or inteyisgssentially helps human
eye to perceive colofAch05]
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1.5 BMP file

Bitmap files are especially suited for the storagereal-world images;
complex images can be rasterzed in conjunction witleo, scanning, and
photographic equipment and stored in a bitmap farma

Advantages of bitmap files include the following:

1. Bitmap files may be easily created from existingepidata stored in an
array in memory.

2. Retrieving pixel data stored in a bitmap file mdteo be accomplished by
using a set of coordinates that allows the dathet@onceptualized as a
grid.

3. Pixel values may be modified individually or aggmgroups.

Bitmap files, however, do have drawbacks: They ¢ very large,
particularly if the image contains a large numbecalors. Data compression
can shrink the size of pixel data, but the datatrhasexpanded before it can be
used, and this can slow down the reading procels®, Ahe more complex a
bitmap image (large number of colors and minutaifethe less efficient the

compression process will bjéur07]

1.6 Literature Survey
1. Roche S. and Dugelay J-L, [Roc95]:

In this research, the Iterated Function Syster8 {(lvas studied focusing
on two aspects, the first one concerned the definiof the contractive
constraint during the coding stage in order to ems$lbe convergence of the
iterative decoding process, this aspect is impobitathe estimation of the
optimum IFS code of an image, the second one coadethe choice of the
initial image for starting the decoding stage, e optimal choice for the
initial image in the decoding process was consul@reorder to increase the

decoding speed.
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2. Zaki T. ,[Zak97]:

In this research, the lossless data compressionappied for multi
media files (i.e. such as image, audio, text). Tihelemented data
compression algorithms are divided into three madasses: Run Length
Encoding (RLE) techniques, statistical techniqaesl dictionary techniques.
RLE depends on removing the repetition of conseeusymbols. A slight

modification is proposed of repetitions used imd&rd RLE.

3. LiJ.andJay C. K., [Lij99]:

In this research, a hybrid wavelet-fractal coderFQ®Y for image
compression was proposed. The WFC uses the framédactive mapping to
predict the wavelet coefficients of the higher faBon from those of the
lower resolution and then encode the predictionduss with a bitplane
wavelet coder. The fractal prediction was adapyiagiplied only to regions
where the rate saving offered by fractal predicigstifies its overhead. A
rate-distortion criterion was derived to evaludte fractal rate saving and

used to select the optimal fractal parameter setMieC.
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The performance of the proposed WFC has been cedpeth several
typical fractal and wavelet coders. They include tkock based fractal coder
with biorthogonal wavelet and zerotree coding. Tdést images used in the
experiment is the Lena of size 512*512. The pertoroe of block based
fractal coder is not good even compared with JRPHEtBough it outperforms
JPEG at low bit rates, but it can hardly competth wie state of the art

wavelet coders such as EZW by using the biortholgwagelet and zerotree.

9
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4. Al-Dulaimy A. A., [AldOO]:

In this research A development of Fractal Image @@ssion (FIC) was
introduces. The main scheme of fractal compressuas implemented,
which lead to a good compression performance wetfuction in coding
time. A speeding up operation based on a new mattiesh approach for
determining the IFS codes between the range andaidomocks was

introduced.

5. KhalifaO. and Dlay S. , [Kha00]:

A fractal coding scheme in wavelet transform domaas presented in
this research. The combination and links betweersdhtechniques are
investigated. They analyzed the capability of fahcbders to predict wavelet
coefficients where higher frequency sub bands gifiéxi levels coefficients of
wavelet pyramid are described by filtering, decin@tand scaling the
coefficients from lower levels higher frequency 8anThis work explained
the improved fractal coders in wavelet domain anmappses a new mixed
fractal wavelet compression scheme. It had a sa@amf advantage of
simplifying decoding by avoiding iterations andrag saving as compared to
exhaustive searching. Also, it provided new thouigitd the concept of
fractal-wavelet coding.

This research shows that the proposed methddgisly efficient and
fractal coding in wavelet domain exploit repetitioh patterns at different
scales. It significantly reduces the block artifaghd permits reconstruction
in finite number of iterations, thus it reduces thenber of domains to be
searched and the number of computations. Using leagge blocks ensure
high compression ratio to be large as possiblencdgh it result in a high
compression ratio but it has a draw back in peghkadito noise ratio, such
that for every tested image, the PSNR was not rtiane 30, i.e. it produced

a good image compression ratio with high degradati mean square error.

10
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6. Kassim B., [Kas02]:

In this research, a new color image scheme baseduonation coding
methods were proposed, a multilevel block truncatamdes based on
wavelet transform were applied, the vertical andzZomtal Haar filters were
composed to construct four 2-dimensional filtexsshsfilters were applied
directly to image to speed up the implementatiokaér wavelet transform.
Also other scheme was introduced such as: Quadinee adaptive HV

partitioning.

7. Engel D., [Eng03]:

In this research, the approaches of object basedaalaptive image
compression using wavelets were presented. Aftescudsing the basic
principles of the wavelet transform and Zero treeogling in general, a
recent propositions of how to adapt these techsigoearbitrarily shaped
objects and a comparison of different methods iemilementations were
presented. This work showed how object based addytcan be achieved
and how well it performed as compare to other mi#thia an object based
framework. It also presented an image coding fraomkwhat use wavelet

transformation in order to increase compressiofop@ance.

1.7 Aim of thesis

Both wavelet transforms and fractal were utilizedividually to compress
images. In this research, both methods will berabted in hybrid compression
system to compress images. This will help to oveesome of problems which
faced each method separately. Also the hybrid sysi#l take the advantage of
both methods.

11
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1.8 Thesis Layout

In addition to chapter one that gives a generatothiction to the

compression process, this thesis includes otherdoapters:

oD

oD

oI

oI

Chapter 2: Theoretical Background

Describe the basic backgrounds of the image commesmethods
including the lossy and lossless methods, And ttepate deeply into the
conceptual reviews about wavelet transform, fraetatoding and Run
Length Encoding (RLE) methods.

Chapter 3: The Proposed | mage Compression Methods

Provides the proposed image compression systergrdebe implemented
algorithms including: Haar wavelet transform, Fehdmage coding and
other algorithms such as: Color transform, Quatibra RLE and S-Shift

coding with details for each one.

Chapter 4: Performance Measures and Test Result
Describe the performance measures and gives thdtsed some tests

applied on some samples.
Chapter 5. Conclusions and Future Work

Provide the conclusion about this thesis and samggestion scheme for

the future work.

12



Chapter three
The Proposed Image Compression Methods
3.1 Introduction

Recently, in order to achieve satisfactory image aideo quality and fast
transmission in sometimes very low bandwidth ch&rtée demand for high
compression ratios and fast speed in the codingdmedding procedure has
been increased. An algorithm for very high compossf images is proposed
in this chapter. First of all the image is deconmgabghrough a wavelet
transform. Then the low frequency part of the imageoded by using a fractal
coding technique, the other parts of wavelet tramsfis coded by using RLE
method. That led to good image compression perfocmavith respect to peak
signal to noise ratio and compression ratio.

Wavelets are mathematical functions that providey vgood quality
compression at very high ratios because of thalityabo decompose signals
into different scales or resolutions. The Haar vetvigansform splits an image
into a low-resolution version of the image and reseof images that contain the
finer details of the image. Because of this charastic is well suited for
applications where scalability and/or intelligergral degradation is required
(low bit rate image transmission trough a low bamnltlvnetwork for example).
Though not a worldwide approved standard at thisnend over the last years
more and more organizations and groups are focusiugrds the inclusion of
wavelet transforms in new image coding scheiffasd00]

Fractal compression of images attempts to exp#ftssmilarity in images.
Recent results show that performing the fractairmpalgorithm in the wavelet
domain gives better compression results comparealdssic compression
schemes as well as simple fractal coding schemeaube it diminishes the
blocking effect and leads to much more efficiend dagh quantization of the

coding coefficients. However, the simplicity in tbedebook generation and the
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long encoding times lead to rather inefficient iempkentations compared to
wavelet method§And00]

3.2 Compression System

The original image will be colored image which danrepresented as three
band monochrome image data, Typically, colored enage represented by
using 3-principal colors (Red, Green and Blue)tfat it's called RGB image
[Umb9g].

The encoding stage involves the following steps Hr@ summarized as
following:

1. The first step of the encoding system is the preggsing stage that

involved transforming the (RGB) toYC,C, ) color model. The goal of
preprocessing is to prepare the image for encagliagess by eliminating
any irrelevant information.

2. Applying Haar Wavelet Transform on Y component.

3. The approximation subband, which is LL, will be quessed by using
fractal encoding. This is due to that the LL baodtains most of image
information.another reason is that the fractal coding algoritlgives
better compression results compared to classic m@ssN schemes as
well as simple fractal coding schemes becausentnnize the blocking
effect and leads to much more efficient and higlangzation of the
coding coefficients.

4. Applying the uniform quantization on the detaildoband (i.e. LH, HL
and HH) bands to reduce the number of bits neederkpresent the
coefficients of these bands.

5. Applying the Mapping Process on the quantized patars of the wavelet
sub bands (LH, HL and HH) and encoded them by apphRLE
algorithm.
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6. The final encoding step was applying the S-shiftimozer and S-shift
encoder then saving the results.
7. Also applying Fractal coding algorithm te, and C, components by

using the same fractal coding steps that applietilosub band with a

difference in domain creation module, then savirggresult as final step.

LH,HL,H
Figure (3.1) Block diagram of the proposed fompy st MeHoo
% Transform LL

Original Color -
Image Transform Cb, Cr
> Fractal
Coding
Compressed
Cb, Cr
38 Fractal .

Coding
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3.2.1 Color Transform:

The color signal can be seen as a summatiorgbf Intensities of three

primary wavelength bands. Given 24 bits/pixel R@®,can find th&¢ , C,and

C, values using equations (1.7...1.9). Algorithm (Zhpws the steps of the

implemented algorithm.

Algorithm (3.1) the Color Transform

« Input: pic() =RGB Image,WxH)
* Output: pic2() =YCbCr ImageWxH)
 Method:
For each Columny (y=0, 1... h-1)
For each row x (x=0, 1... w-1)
= Compute Y component from pic(X,y)
Y= (0.257 * pic(x, y).R + 0.504 * pic(x).G + 0.098 *pic(x, y).B) + 16

= Compute Cb band from pic(x,y)

C, =(-0.148 * pic(x, y).R - 0.291 * pic(x, y).G +48B9 *pic(x, y).B) + 128

» Compute Cr band from pic(Xx,y)
C, = (0.439 * pic(x, y).R - 0.368 * pic(X, y).G - 0.07pic(X, y).B) + 128
End loop x
End loop y
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3.2.2 Forward Haar Wavelet Transform

In the proposed work, the first step of encodinggstwas applying the
Haar Wavelet Transform on Y component. The Haar &é\function consists
of both: low pass and high pass filters. The ifputthis algorithm was the Y
component which is 2D arr@¢/xH) , and the out put was the wavelet
coefficients in 4-sub bands (LL, LH, HL, and HH) st represented also in 2D
array, See Algorithm (3.2).

Algorithm (3.2) the Forward Haar Wavelet Transform

« Input: pic2()=YC,C, ImagewsxH)

Wilevel= level of wavelet transform
* Output: Wimage() = 2D array, wavelet coefficiere<H)

* Method:
Set pic2 () to wimage ()
Setwtemp =W
Set htemp =H
For each wavelet level | (1 = 1... wlevel)
= Setw2 =wtemp /2
= Seth2 =htemp /2
For each Columny (y=0, 1... h2-1)
= Setyy=2*y
= Set Yp=yy+1
For each row x (x=0, 1... w2-1)
= Set xx=2*X
= Set Xp=xx+1
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» Compute tempimage for (X, y) coordinate
tempimage = (wimage (xx, yy) + wimage (Xp, yy) +

wimage (xx,Yp) + wimage (Xp, Yp)) /4

» Compute tempimage for (x + w2, y) coordinates
tempimage =(wimage (xx, yy) + wireagp, yy) —
wima@e,Yp)- wimage (Xp, Yp)) / 4

» Compute tempimage for (x, y + h2) coordinates

tempimage= (wimage (xx, yy) - wigea(Xp, yy) +
wimage (xx, Yp)- wimage (Xp, Yp))/ 4

» Compute tempimage for(x + w2, y + h2) coordinates
tempimage= (wim&ge, yy) - wimage (Xp, yy) —
vage (xx,Yp) + wimage (Xp, Yp)) /4

End loop x
End loop y

For each Columny (y=0...h - 1)
For each Row x (x=0...w-1)
» Set wimage(x, y) = tempimage(X, y)
End loop x
End loop y
= Setwtemp = w2
» Set htemp =h2

End loop |
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3.2.3 Fractal Encoding

The first step in fractal encoding is to partitiie image into a set of non-
overlapping regions referred to &ange Blocks (R...., R) where n is the
number of range block (see algorithm (3.3)), arsktaof overlapping regions
referred to aDomain blocks (D,...., D,)where m is the number of domain
blocks (see algorithm (3.4), algorithm (3.5)), bofhdomain and range blocks
are of the same sizd). After partitioning stage, a matching techniqud e

start such that, for each range block search teedmmain block which satisfy
the best map to this range block with minimum €see algorithm (3.6)). The
results will be (S, O, Sym, X and Y coordinatesj, which called IFS

coefficients, see figure (3.2).

Range partitioning > Partitioned
ranae
: i: Domain Domain Partitio_ned
Creation [~ | partitioning _’
IFS
Coefficients

Figure (3.2) Fractal Encoding stages

y

Matching [¢
technique |e
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3.2.3.1 Range partitioning

In this research, a fixed size partitioning wasligppbecause it requires less
computational time than other partitioning methodss was done by choosing

the block size as an input, so the image will badéd into non overlapped
Range blocks each of them is of d&e&B;. The choice of the block size is

affect on the quality of the reconstructed image.

If the block size was big then the time consuminiy e reduced while the
quality of the reconstructed image will be decre@age the largest image region
leads the minimum number of partitions). But if thleck size was small then
the time consuming will be increased and the qualitl be increased because
the image quality may be improved by more searcbhmgverall the image (i.e.
the smallest image region leads to determine theimen number of
partitions). In this research the block size takakie 2, 4 and 8. The LL sub
band diminutions are (Widd Hgtt)

Algorithm (3.3) Range Partitioning

e Input: LL()=LL subband
Bs =block size
« Output: Rinfo () = 1D array of range blocks coordinatésine R,

R, =number of range blocks
* Method:
Setys=0
SetR,=0

Set Widd =w 2"

Set Hgtt = h PV
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While (ys + Bs-l) < widd
= Setxs=0

While (xs +Bs-1) < hgtt

=  Set Rinfo of x coordinate to xs

» Set Rinfo of y coordinate to ys

* IncrementR, by "1"
= Increment xs by By"
End Loop xs

= Increment ys by Bg"
End loop ys

3.2.3.2 Domain Creation
In this module ,a two dimensional array was creatalted (domain), the

domain matrix has different width and height siiteesize was reduced to %25
from original image size, it is done by replacirarle four pixel x2 ) by one
pixel which is the average of these four pixelse Tiew image will be of size
(Wh x Hh) i.e.:-

Wh=(Widd/2) ..o, (3.1)

And
Hh = (Htt/2) oo e, (3.2)
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Algorithm (3.4) Domain Creation

e Input: LL() =LL sub band

e Output: domain( ) =down sampled (WhHh)

* Method:
Setys=0
Setdy=0
Setsum =0
While ys < Hh
= Setxs=0
" setdx=0
While xs < Wh
= Compute the sum for every four pixels:
Sum=LL (xs,ys)+LL(xs+1,ys)+LL(xs,ys¥+4LL
(xs+1,ys +1)
» Set domain (dx, dy) =sum/4
* Increment dx by "1"
* Increment xs by "2"

End loop xs

3.2.3.3 Domain Partitioning
In this module the fixed size partitioning also dige partition the domain
space intalomain blocks, with the same size of range blocks thd#<Bs, but

in overlapping way. The overlapping blocks lead toany possible domain
blocks, which lead to obtain a good approximatibime jump step indicates the
number of pixel to be start from the previous ottes is include the X-

coordinate and Y-coordinate. For example, if thagm size was 8, and the
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Bs=4 and the jump step =2, then the overlapping Hoekl be horizontally
then vertically partitioned, See figure (3.3).

a7

(a) 4%4 block size (b) first Jump (c) Second Jump

(d) Third jump
Figure (3.3) domain partitioning for block size =4, jump step =2

The jump step must be greater than zero and kessdr equal to the block
size. If the jump step was greater than block dilzen this will lead to non
overlapping blocks.

If the jump step was small, then the domain blogkkbe increased and that
leads to a good approximations and high qualityt Buwill lead to high
encoding time, since searching a large number ohailo blocks is time

consuming. Algorithm (3.5) shows the steps of donpartitioning.
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Algorithm (3.5) Domain Partitioning

e Input: domain() = 2D array (Wk Hh)
JStep = Jump step

e Output: Dinfo() = 1D array of domain blocks coordinatésiae D,
D, =number of domain blocks

e Method:
Set Ys =0

SetD,=0
While (ys +B;-1) < Hh
= Setxs=0
While (xs +8;-1) < Wh
Set Dinfo of x coordinate to xs

Set Dinfo of y coordinate to ys

IncrementD, by "1"

* [ncrement xs by " JStep"
End Loop xs
* Incrementys by " JStep"
End Loop ys

3.2.3.4 Matching Technique

The image to be encoded was partitioned into narlapping range blocks
"R" and overlapped domain blocks "D". The encodentfinds a best domain

block D of the same image for every range bloclathrer words, trying to find a

part of the image that looks similarRo Such that a transformation &% is a
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good approximation of the range blo¢k, then compute the scale and offset

values to find the error between the transformechalo block and the range
block.

If the best match between the range block andrémsformed domain block
still has an error measurement that is greater tharsimilarity threshold, the
algorithm will continue with other domain cell amd-evaluation continues
similarly with each of these blocks. Until findirige best domain block with

minimum error. Algorithm (3.6) shows the steps odtahing technique, the

(original) image referred to the LL sub barf¢}, or C, components.

Algorithm (3.6) Matching Technique

* Input: Rinfo () = 1D array of range blocks coordinates
Dinfo () = 1D array of domain bks coordinates
Original () = 2D array originalcpi
R, = number of Range blocks

D, = number of Domain blocks

B = block size
* Output: S, O, X, Y, Sym =IFS Coefficients for each randgeck
* Method:
For Each Range blodR (i=0, 1...R,)

» Get range block coordinates from Rinfo()
» Get range block from original

» Set the range block rangetemp () =original ()

For Each Domain blodR, (j=0, 1...D,)
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» Get domain block coordinates from Dinfo( )
= Set domain block domaintemp () =Domain ()
For Sym=0to 7
Set D as Symmetric affine transform of domaintersipg
equations (3.3 ... 3.10).
Compute the 38" value of (D, rangetemp) using equation (2.8)

Compute theé S quantized" using equation (3.11).

Compute the O" value of (D, rangetemp) using equation (2.p).

Compute theé O quantized" using equation (3.12).
Compute the Error value between (D, rangetemp gusguation
(2.10).
If the Error < Minimum Error then
A Set Minimum Error = Error
A Save S, O, Sym, X, Y coordinates for the transfarme
Domain block position.
End if
End loop Sym
End loop |

End loop i

3.2.3.5 Affine Transform
The Affine transformation is a composition of idéntreflection, rotation,
with three different degreefd=is95]
1. Identity case:
D(X, ¥) =dOmMain(X, ¥)...eouuenien e e e e 33
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2. Rotation +90:

D(X, y) =domain(yYBs-X)....ccocviiiiiiiiii i (3.4)
3. Rotation +180:
D(x, y) =domain Bs-x, Bs-y)....oooiii (3.5)
4. Rotation +270:
D(X, y) =domainBs-y, X).....cccoooiiiiiiii (3.6)
5. Reflection case:
D(X,y) =domainBs-X, ¥)....oooviii (3.7)
6. Reflection and Rotation -90:
D(x, y) = domainBs-y, Bs-X)......ooooiiii (3.8)
7. Reflection and Rotation -180:
D(X, y) =domain (XBs-y)....cccoiiiiiiiiiiii (3.9)
8. Reflection and Rotation -270:
D(X, Y) =domain (Y, X) ... cueeuieniiiaeie e e e (B0)

Reflection Ref+ Rotation -90 Ref+ Rotation -180 Ref+ Rotation -270

Figure (3.4) Theeight isometrics transform
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3.2.3.6 Fractal Quantization

After getting the IFS coefficients for each rafeck, these coefficients are
quantized by a method which tends to suppress higbguency elements and
reduce the number of bits required for each caefiic(i.e. S, O). So uniform
guantization was performed to quantize the scatk @iset coordinates. the

scale coefficient was quantized using following &tpn:

2NOBS—1 _1
=round| —— |x S
S (MaxszJ ....................... (3.11)

While the Offset coefficient was quantized usinlipfeing equation:

- MinO
Oq = round 0 X (ZNOBO —l) ........ (3.12)
MaxO — MinO

Where:

» Sis the Scale value

» g is the quantized Scale value

» O is the Offset value

» Qqis the quantized Offset value

= NOBO is the number of bits assigned to Offset

= NOBSIs the number of bits assigned to Scale

» MaxSis the maximum value for the Scale coefficient
» MaxO is the maximum value for the Offset coefficient

= MiIinO is the minimum value for the Offset coefficient

3.2.4 Fractal Encoding for G and C

The same fractal matching technique was used ftir ©9 and C. but with
difference in domain creation module; Such thateiad of down sampling each
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four pixels (i.e. each 2 adjacent pixels) the donpartitioned for each 16 pixels
(i.e. each 4 adjacent pixels) to one pixel whodaerss the average of these 16
pixels, this was due to th&, andC components have less information than Y

component.

ys+4xs +4

sum = > > a(i, j) (3.13)

j=ysi=xs

Algorithm (3.7) Domain Creation for Cb, CR

« Input: a() = (Wx H) Il (a) is eithdg, or C

e Qutput: domain () = down sampled (Wh Hh)
* Method:
Setys=0,dy=0,sum=0
While ys < Hh
= Setxs=0
»setdx=0
While xs < Wh
A Compute the sum for every 16 pixels using equgttohl)
A Set domain (dx, dy) =sum/ 16
A Increment dx by "1"
A Increment xs by "4"
End Loop xs
* Increment dy by " 1"
* Incrementys by " 4"

End Loop ys
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3.2.5 Quantization

It refers to the process of approximating the continuous set of valuesin
the image data with a finite (small) set of values'.

« Uniform Quantization: if the input range is divided into levels of equal
spacinglt can be specified by its lower bound and the siee.
e Non Uniform Quantization: else where.

The Uniform Quantization was used to code the foanwed wavelet
coefficients sub bands (LH, HL and HH) to achieeg&tdr compression result. It
was also applied to reduce the number of bits neestore these sub bands
coefficients [KumO3]

In this research a quantization function was useddétermine the

guantization stepQstep" for each coefficients c(x, y) as follow:

| (x, y) = round [((:g(;—e’py)] ................... (3.14)

Where theQstep for LH andHL sub bands is:

Qstep = Ax ROY (3.15)

While theQstep for HH sub band is:

Qstep = Ax RO YxB . (3.16)

Wheren is the number of wavelet levels.
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3.2.6 M apping Process

Before the mapping process, a transformation fremdimensional arrays to
one dimensional vector was applied on the detaldibands (i.e. LH, HL and
HH), see figure (3.5). In mapping process eachevalill be mapped to be
positive, the following mapping equation had besedito convert the signed

integer into positive integers:

L 2 X ifx 20
A
Where, X represents the signed integer value ofjttantization index. This
type of the mapping insure that all coefficientduea are mapped to positive
integers, and to keep the optimal number of bitxded to be used by RLE and
shift coder as small as possible , so that thegiam of the coded coefficients

is highly peaked into zero.

(0,0)] (1,0) | (2,0) (3,9%
Ig_o,l) (1,1) ] (2,1) ] (3,1y
\

Figure (3.5) convert 2-D array to 1-D vector
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Algorithm (3.8) Mapping Process

|nput: a() = 2D array /I (a) indicates the (lHH, and HH)
(x1, x2, y1, y2)= the sub band coordinates
Output: z( ) =1D array indicates the 1-Dvector

Z,= length of the vector

M ethod:
SetZ,=0
Flag=0
For each Columny (y=yl... y2)
» If flag = 0 Then
Xs=x1, xe = x2, stp =1, flag=1
Else
Xs=x2, xe = x1, stp =-1, flag=0
End if
» For each row X (X=Xs...xe step stp)
A If (a(x, y)) >=0 Then
Z (£) =2*a(x.y)
Else
Z4L,)=2*(Abs (a(x, y))) + 1
End If
A Increment Zn by "1"

End loop x
End loop y
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3.2.7RLE

RLE consists of the process of searching for reggkatins of zeros in an
input stream, and replacing them by a run courtt $hat, it first check the start
type, i.e., the first value in the input streamt ivas zero then evaluate the start
type to zero followed by its count, if it was nogra then evaluate the start type
to one followed by the non zero number. The alparitontinue searching for

each adjacent zeros and replacing them with itatc@ee figure bellow:

o001 0 0 003 0011 00

-

0314 3 2 1 0 1 2

1

Start type
Figure (3.6) Examplesof the RLE

The out put will be:
1. Bit "0" (because the first number is zero).
Word "3" (three zeros).
Word "1" (the non zero number is one).
Word "4" (because there are four zeros after nurohe).
Word "3" (the non zero number is three).
Word "2" (because there are two zeros after nurtiivee).
Word "1" (the non zero number is one).

Word "0" (because there is no zeros after numbe}.on

© 0 N o g A~ WD

Word "1" (the non zero number is one).

10Word "2" (because there are two zeros after nurabey.
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Algorithm (3.9) RLE

» Input: z() =1D array indicates the Zigzag vector

Zn= length of the zigzag vector
* OQutput: enc() =1D array of encoded vector
encl= length of the encodedteec
 Method:
Setencl=0
If (z(0) = 0) Then
enc (0) = 0: typ = 0: counter = 1: end
Else
enc (0) = 1: enc(1) = z(0): typ = 1cen 2
End If
Foreachl(I=1 ..Zn-1)
= If (z(I) = 0) Then
If typ =0 Then
A Increment counter by "1"
Else
A Setcounter=1
A Settyp=0
End If
Else
If typ =0 Then
A Set enc (encl) = counter
Increment encl by "1"
Setenc (encl)=z(l)
Increment encl by "1"
Settyp=1
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Else

A Setenc (encl)=0

A Increment encl by "1"

A Set enc(encl) = z(I)

A Increment encl by "1"
End If
End If
» If (I=2n-1) Then
If (z (I) =0) Then
A Set enc (encl) = counter
A Increment encl "1"
End If
End loop |

3.2.8 S-Shift Optimizer

The mechanism applied to compute the optimal leAgthin bits of the shift
codewords is based on scanning all possible lengtaging from "2" bits and
proceeding more till the numbers "k"; which reprasdie minimum number of
bits required to represent the maximum coefficialtie "L" in the set of RLE
parameters. This number "k" is considered as thgtle"in bits" of the second
"auxiliary" codeword. The scan method was appleetest all possible value of
bits that can be assigned to the first "shortestlegvord, so the length range of
the first codeword is [2, K].

The scanning mechanism implies iteration over afigible numbers of bits
"b" that can be assigned to the first codeword;efmch possible number of bits
"b" the total number of bits "T" required to encdtie encoded coefficients is

determined by the following equation:
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K =[L0g 5(L) |ueroeeoee oo (3. 18)
T=bY His()+K D HS() ... 3. 19)

Then the value of "b" which leads to the lowested®ined value of "T" is
considered as the optimal length of the first coalelvAlgorithm (3, 10) shows
the steps to compute the optimal length of thet sbifieword.

Algorithm (3.10) S-Shift optimizer

» Input: enc() =1D array of encoded vector
Encl = length of the encoded vecto
» Qutput: maxnobits, optbits = number of the required bits
 Method:
* Find the maximum value
A Set max =enc (sl) /l for odd s1=1, even s1=2
A Foreachl(I=s2...encl-1Step2) //fdds2=3, even s2=4

If max < enc () Then max = efjc (

End loop |

= Compute the number of bits required to representAX number
A maxnobits = Log(Max0) / Log(2)
A If (2 » maxnobits) < max Then

Increment maxnolys'1"
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=  Compute the histogram for the encoded vector
A Foreachl(l=1...encl-1)
Setx =enc (I)
Set His (x) = His(x) + 1
End loop |

= Shift coding optimizer to compute the numberegfuired bits
( maxnobits, optbits)
A Set maxtotal = maxnobits *encl
A Set optbits = maxnobits
A Foreach | (I=2 ...maxnobits — 1)
Setrange=2"1-1
Set totbits = 0

For each | (j =0... max)

If | < range The
Setthits = totbits + | * His (j)
Else
totbitgatbits + (I + maxnobits) * his(j)
End If
End loop j
If totbits < maxtotal Then
maxtotal = totbits
optbits = |
End If
End loop |
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3.2.9 S-Shift Coding
The S-Shift Coding process is illustrated in algon (3.11), the algorithm

steps is in general, i.e. for odd and even indexes.

Algorithm (3.11) S-Shift Coding

e Input: enc () = 1D array of encoded RL vector.
Encl = length of the encoded vector.
maxnobits, optbits = number of tequired bits
e OQOutput: S ()= 1D array of encoded S-Shift
totallall = total number of bits
« Method:
Set max = (2 ™ optbits) — 1
Forl(I=1...encl-1)
» If enc(1) <max Then
A Set S(1)=enc (I) as an integer has a lengttb{ts) bits
A Set totallall = totallall + optbits
Else
A Set S(I)= (enc (I)-max) as an integer has lengtaxmobits)
bits
A Set totallall = totallall + maxnobits
End If

End loop |
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3.3 Decompression System

The Summarized Decompression stages can be iledtmafigure (3.7)

P

Coded Fractal Decoding
Figurg (3. Cb.Cr lagram of the decompression mgthod
Coded
Parameters . .
S-Shift Decoding
CodedY Y

Fractal Decoding

Dequantization |, lpverse | RL Decoding
Mapping

A

1 vy 77 e I AV4 I 1 v 7 e~ I Ch Cr
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3.3.1 S-Shift Decoding
The S-Shift decoding process is illustrated in atgm (3.12), the algorithm

steps is in general, i.e. for odd and even indexes.

Algorithm (3.12) S-Shift Decoding

e Input: S ()= 1D array of encoded S-Shift.
Encl = length of the encoded vector.
maxnobits, optbits = number of tbquired bits
e OQutput: SD ()= 1D array of Decoded vector
+ Method:
Set max = (2 ™ optbits) — 1
Forl(I=1...encl—-1)
S () =get bits (optbits)
» If S(I) <max Then
A Set SD(I1)=enc(l)
Else
A Set SD()= (enc (I)+max) as an integer has length
maxnobits bits
End If

End loop |

3.3.2 Run Length Decoding

The Run Length decoding steps are illustratederfélowing algorithm:
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Algorithm (3.13) Run Length Decoding

e Input: SD() =1D array 1D array of Decoded S-Shift vecto

e Output: RD() =1D array of decoded RL
Decl= length of decoded vector

* Method:
If (SD (0)=0) Then Settyp=0
Else Settyp=1
End If
Setdecl=0,setl=1
While | <= (encl - 1)
If (SD (I) =0) Then
* Increment | by "1"
= Set RD (decl) = SD (I)
» Increment decl by "1"
Else
If typ =0 Then
» Set Counter = Sd(l)
» Forj=0to counter-1
A Set RD (decl) =0
A Increment decl by "1"
End loop |
= Settyp=1
Else
» Set RD (decl) = SD (I)
» Increment decl by "1"
= Settyp=0
End If
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End If

Increment | by "1"

End loop |

3.3.3 Inverse mapping Process

The inverse mapping process steps are illustratddllaw:

Algorithm (3.14) I nver se Mapping Processes

e Input: RD() =1D array /l RD() indicates ith¢d, HL and HH)
(x1, x2, y1, y2 )= the sub band coordinates
o Output: DZ() =2D arrayrepresent the reconstructed sub bands (L
HL, and HH) From RLE decoding
* Method:
Set Flag=0
Set I1=1
For each Columny (y=yl... y)
= If flag = 0 Then
Xs=x1, xe = x2, stp =1, flag=1
Else
Xs=x2, xe = x1, stp =-1, flag=0
End if
» For each row X (X=Xs...xe step stp)
A If (RD(1)) mod 2= 0) Then
DZ(x,y) = RD (I)/2
Else
DZ(x,y)=- ((RD (I)/ 2) + 1)

A Increment | by "1"

End loop x, End loop y
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Chapter Three The Proposed | mage Compression Methods

3.3.4 Deguantization

As mentioned in section (3.2.5), a uniform quaniorawas applied on the
sub bands (LH, HL and HH).The dequantized sub baadde calculated by
multiplying theQstep with the sub band matrix.

C'(x,y) = Qstep x | (x, y) ............................ (3.20)

Where theQstep explained in equations (3.15) and (3.16)

3.3.5 Fractal Decoding
The fractal decoding steps include:
A. Dequantization

The reconstructed Scale coefficient was producedgushe following

equation:
_ 2
Sdg = S % Maxs(m ....................... (3.21)

While the reconstructed offset coefficient was proebs using the following
equation:

Odqg = Oq x Ma;O —MinO MinO (3.22)

NOBO _ 1 ...............

Where:
» 3qis the Quantized Scale value
» Sdq is the Dequantized Scale value
» Qqis the Quantized Offset value
» (Odq is the Dequantized Offset value
= NOBO is the number of bits assigned to Offset
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NOBS is the number of bits assigned to Scale

MaxS is the maximum value for the Scale coefficient

MaxO is the maximum value for the Offset coefficient

MinO is the minimum value for the Offset coefficient

B. Decoding steps

The first step in Fractal decoding was to geneasterbitrary array which
has the same size of domain, and initialize itdz/alues, then for each Range
block, get the IFS coefficients (coordinates xof)he matched domain block to
get this block from the initialized domain matrike rest of IFS coefficients (S,
O, Sym) were applied on the domain block to get Rezonstructed Range

block using the following equation:

Rf (X, y) = Sym(Dom(x, y))x3dg+0Odq ............... (3.23)

Where:
» Sdqis the Dequantized Scale value
» QOdqis the Dequantized Offset value

= Symis the symmetry case

these steps were applied on each Range block tihngeeconstructed image
which has the same size of the original image. rElsalt was down sampled to
create the new domain. This process was appliet ilerative manner repeats

the affine reconstruction again until getting thraf reconstructed image.
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Algorithm (3.15) Fractal Decoding

* lnput: S, O, X, Y, Sym =IFS Coefficients for each rantych
R,= number of Range blocks

* OQutput: Rf ()=2D array represented the Reconstructedj@na
* Method:

For each columny (y=0, 1...Hh-1)

For each row x(x=0, 1...Wh-1)
» Set domain(x, y) =0
End loop x
End loopy

For each Iteration (Iteration=0, 1... 10)
= For each Range blocdR (i=0, 1...R,))

Get IFS Coefficients (Sym, S, O, X and y)
Compute thé Sdg" using equation (3.21).

A
A
A Compute thé Odq" using equation (3.22).
A

Get Domain blockDom" from "domain" according to X and Y
coordinates from IFS Coefficients

Applying the affine transformation o®dm" according to the
"Sym' case
A Compute the Reconstructed Image Rf(X, y) using saqu@.23)
End loopR

» Compute the domain by down sampling the Recongtdugnge block
Rf (x,y)

End loop Iteration
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3.3.6 Inverse Haar Waveet Transform

The inverse haar wavelet transform steps are kswfol

Algorithm (3.16) the | nverse Haar Wavelet Transform

* Input: Rf( )= reconstructed image from Fractal decoding

Dz( = represent the reconstructed sub bands (LH,adt,HH)
From RLE decoding

Wilevel= level of wavelet transfor

* Output: Rwave( ) = the reconstructed image
* Method:

Assign the sub bands arrays (Rf, Dz) to ongimngRwave )
Set wtemp = w
Set htemp =h
For each wavelet level j (j = 1... wlevel)
= Set wtemp = wtemp / 2

» Set htemp = htemp /2
End loop |

For each wavelet level (i = 1... wlevel)
= Set W2 = wtemp * 2
» Set H2 = htemp * 2
For each Columny (y=0, 1... htemp-1)
= Setyy=2%*y
= Set Yp=yy+1
For each Row x (x=0, 1... wtefjp-
A Set xx=2%*x

A Set Xp=xx+1

A Compute tempimage for (xx, yy) coordinate

—
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tempimage = (Rwave (X, y) + Rwave (x + wtemp, y)+

Rwave (x, y + htemp) + Rwave (x + mfe y + htemp))

A Compute tempimage for (Xp, yy) coordinate
tempimage = (Rwave (x, y) + Rwave (x + wtemp, y) -

Rwave (X, y + htemp) - Rwave (x ‘emp, y + htemp))

A Compute tempimage for (xx, yp) coordinate
tempimage = (Rwave (X, y) - Rwave (x + wtemp, y) +

Rwave (X, y + htemp) - Rwave (x ‘emp, y + htemp))

A Compute tempimage for (xx, yp) coordinate
tempimage = (Rwave (X, y) - Rwave (x + wtemp, y) -
Rwave (x, y + htemp) + Rwave (x “emp, y + htemp))
End loop x
End loop y
For each Columny (y=0, 1... h2-1)
For each Row x (x=0, 1... w2-1)

= Set Rwave (x,y) =tempimage (X,y)

End loop x

End loop y
= Setwtemp = W2
= Set htemp = H2
End loop |
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3.3.7 Inverse Color Transform

The YC,C, color model was transformed to RGB using equations

(1.10...1.12). The inverse color transform stepsaaréollow:

Algorithm (3.17) the Color Detransform

e Input : pic3() = the reconstructed image // YCbCr
* Output: Recimage( ) RGB ImageWwxH)

* Method:

For each Columny (y=0, 1... h-1)

For each Row x (x=0, 1... w-1)

= Compute R color from pic3(x, y)

R=1.164 * (pic3(x, y).y - 16)0 * (pic3(x, y).C, - 128) + 1.596

* (pic3(x, Y, - 128)

» Compute G color from pic3(X, y)
G=1.164 * (pic3(x, y).y - 16D.392 * (pic3(x, y).C, - 128) -
0.813 * (pic3(x, W, - 128)

= Compute B color from pic3(x, y)

B=1.164 * (yuv(x, y).y - 16) + 2D * (yuv(x, y). C, - 128) -128

End loop x
End loop y
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Table (4.6): Theeffect of Block Size on the Reconstructed Hakam I mage

BS Y Component Cb Component Cr Component
Cb, Cr

of Y

5.158 | 41.005 | 8.067 ]| 0.837] 48.899 | 1.454 || 0.925 | 48.468 | 1.454 | 8.993 ] 38.591] 2.001

57.154130.560 ] 8.565 1.452] 46.511) 5.817 | 1.694 | 45.841 | 5.817 | 80.652 ) 29.064 | 6.514
5.158 | 41.005 | 8.067 || 2.526 | 44.105 | 23.269 || 3.6015 | 42.565 | 23.269 || 13.924 | 36.692 | 14.292

Table (4.7): Theeffect of Block Size on the Reconstructed Girl Image

es | sor Cb Component
of v J Cb. Cr PSNR

7.995 139.10214.385]0.980 | 48.218 ] 1.453 | 1.534 |46.272 ] 1.451 | 13.346] 36.877] 1.869
86.916 | 28.739 | 4530 2.494 ] 44.160 ] 5.804 | 4.838 | 41.283 | 5.779 | 99.883 | 27.343 | 5.300
7.995 ] 39.102 ] 4.385] 6.051 | 40.312 | 23.161 | 13.951 ] 36.684 | 22.934 J| 30.890 ] 33.232 ] 9.530

Table (4.8): The effect of Block Size on the Reconstructed Hor ses I mage

ss [ ssa
9| [en e ZENE

6.445] 0.870 | 48.731 | 1.454 | 0.803|49.080] 1.454 | 9.962
2.049145.014 | 5.817 | 1.783| 45.617 | 5.817 | 55.474
6.445] 5.013] 41.129 | 23.269 ] 4.282 | 41.814 | 23.269 | 18.815
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Chapter Four Performance measures and Test Results

4.2.2 Block sizetests
In this test, different block sizes were implemenba three different images.
From the wavelet level tests that mentioned betbig] level wavelet transform
gave better performance parameters i.e., MSE, PSBiRppression Ratio,
which seems to be acceptable. The input parametens taken as follow (see
table (49)).
Table (4.5): Input Parametersfor different Block sizes

= o = [ ] ]

B I I I A

From tables (4.6...4.8) we can see that the incrgasiblock size affects on
increasing of the MSE so the PSNR will be decreat®d is undesirable for
compression performance parameter, but the CRbeilhcreased. So the first
test with (BS=2) gives better performance paramsetgth better image quality
for Y component, while for Cb and Cr components (B&=8) gives better

compression ratio.
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Wavelet level=3

Block sizefor Y component=2

Block size for Cb and Cr components=8
Jump step=2

NOBO=7, NOBS=5

A=6,B=1.7, R=0.4

PSNR=36.692

CR=14.292

Figure (4.2) thereconstructed RGB Hakam image
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9.854 13.642 14.292

Compression Ratio
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Figure (4.3) Compression ratio versus PSNR of suggested method for Hakam image

Wavelet level=3

Block sizefor Y component=2

Block size for Cb and Cr components=8
Jump step=2

NOBO=7, NOBS=5

A=6,B=1.7, R=0.4

PSNR=33.232

CR=9.530

Figure (4.4) thereconstructed RGB Girl image
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Figure (4.5) Compression ratio versus PSNR of suggested method for Girl image

Wavelet level=3

Block sizefor Y component=2

Block size for Cb and Cr components=8
Jump step=2

NOBO=7, NOBS=5

A=6,B=1.7, R=0.4

PSNR=35.385

CR=12.443

Figure (4.6) thereconstructed RGB Hor sesimage
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Figure (4.7) Compression ratio versus PSNR of suggested method for Hor sesimage
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Table (4.14): The Fractal Quantization test on the Reconstructed Hakam I mage

Y Component Cb Component Cr Component
NOBS || NOBO

PSNR PSNR PSNR PSNR
6.659 | 39.896 | 8.099 || 3.466 | 42.731 | 24.377 5.083 | 41.068 | 24.357 | 18.624 | 35.429 | 14.595
5.158 | 41.005 | 8.067 | 2.526 | 44.105 | 23.269 || 3.6015 | 42.565 | 23.269 || 13.924 | 36.692 | 14.292
4.284 ] 41.811 | 8.003 || 2.039 | 45.034 | 21.330| 2.997 | 43.362] 21.330] 11.529 | 37.512 | 13.717
Table (4.15): The Fractal Quantization test on the Reconstructed Girl Image

=

10.093 ] 38.090 | 4.394 | 7.129 | 39.600 | 24.222 | 14.911 | 36.395 | 23.799 | 36.002 | 32.567 | 9.650
7.995 139.102 | 4.385]6.051 | 40.312 | 23.161 | 13.951 ] 36.684 | 22.934 || 30.890 | 33.232 ] 9.530
7.099 | 39.618 | 4.367 | 5.619 | 40.634 | 21.233 | 13.484 | 36.832 | 21.070 | 29.028 | 33.502 | 9.272

Table (4.16): The Fractal Quantization test on the Reconstructed Hor ses Image

7.062 ] 39.641 ] 6.464 || 5.933 | 40.397 ]| 24.296 || 5.266 | 40.915 | 24.336 || 22.544 | 34.600 | 12.661
5.989140.357 ] 6.445]5.013 1 41.129 | 23.269 ]| 4.282 ] 41.814 | 23.269 || 18.815 | 35.385 ] 12.443
5.093 ] 41.060 | 6.404 ] 4.547 ] 41.553 ] 21.330 ] 3.804 | 42.327 | 21.330 ]| 16.515 | 35.951 | 12.005
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Chapter Four Performance measures and Test Results

4.2.4 Fractal Quantization tests
In these tests, different NOBO and NOBS values waken. The input

parameters are as follow:

Table (4.13) Input parametersfor different NOBS and NOBO values

From tables (4.14...4.16) we can see that the incrg&s NOBO and NOBS
value affects on decreasing of the MSE so the P&NIFbe increased; this is
desirable for compression performance parametéthkuCR will be decreased.

When NOBS is = 5, NOBO =7 it gives better perforoc@parameters.



Table (4.10): The effect of Jump step on the Reconstructed Hakam Image

41.693 ] 8.004 || 2.526 | 44.105 ] 23.269 | 3.6015 | 42.565 | 23.269 | 12.851 ]| 37.041 | 14.226
41.005] 8.067 | 2.526 1 44.105] 23.269 | 3.6015 | 42.565 | 23.269 ] 13.924 | 36.692 | 14.292
40.0201 8.131] 2.526 1 44.105 ] 23.269 | 3.6015 | 42.565 | 23.269 || 15.566 | 36.209 | 14.359

40.042 ] 4.367 6.051 | 40.312 ] 23.161 || 13.951 ] 36.684 | 22.934 | 28.690 | 33.553 | 9.501
39.102 | 4.3856.051 ] 40.312 ] 23.161 | 13.951 ] 36.684 | 22.934 | 30.890 | 33.232 | 9.530
36.414 | 4.404 ] 6.051 ] 40.312 ] 23.161 | 13.951 ] 36.684 | 22.934 | 39.909 | 32.120 | 9.560

41,2221 6.405] 5.013 1 41.129 | 23.269 | 4.282 | 41.814 | 23.269 | 17.326 | 35.743 | 12.392
40.357 ] 6.445]5.013 1 41.129 ] 23.269] 4.282 | 41.814 ]| 23.269 | 18.815] 35.385 ] 12.443
38.863 ] 6.486 ] 5.013 1 41.129 ] 23.269] 4.282 | 41.814 | 23.269 | 22.130 ] 34.680 | 12.493
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4.2.3 Jump Step tests

In this test, different Jump step values were iim@eted on three different
images. From the block size tests that mentionddrewe will take (BS=2)
which gave better performance parameters i.e., MR, CR, and seems to

be acceptable. The other input parameters wera takéollow (see table (4.9)).

Table (4.9): Input Parametersfor different Jump Step values

B K I I

From tables (4.10...4.12) we can see that the incrgas Jump step value
had a little affect on increasing the MSE and dasireg the PSNR,; this also had
a little affect on CR which will be increased whewrreasing the jump step

value.
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Table (4.2): The effect of Wavelet levels on the Reconstructed Hakam I mage

PSNR PSNR

2.517]44.121 | 4.577 ) 2.526 | 44.105 | 23.269 | 3.6015 | 42.565 | 23.269 | 10.382 ] 37.967| 9.854
3.790 | 42.343 | 7.465 2.526 | 44.105 | 23.269 || 3.6015 | 42.565 | 23.269 | 12.067 | 37.314| 13.642
5.158 | 41.005 | 8.067 || 2.526 | 44.105 | 23.269 | 3.6015 | 42.565 | 23.269 | 13.924 | 36.692 | 14.292

Table (4.3): The effect of Wavelet levels on the Reconstructed Girl Image

WL Y Component Cb Component Cr Component
PSNR PSNR PSNR PSNR

3.511( 6.051 ] 40.312 | 23.161 || 13.951 | 36.684 | 22.934 | 25.571 ] 34.053 | 8.073
4.396 || 6.051 | 40.312 | 23.161 || 13.951 | 36.684 | 22.934 | 28.219 | 33.625 | 9.546
4.385] 6.051 | 40.312 ] 23.161 || 13.951 | 36.684 | 22.934 | 30.890 | 33.232 | 9.530

Table (4.4): The effect of Wavelet levels on the Reconstructed Horses Image

Y Component Cb Component
PSNR PSNR

2.857 1435714151 5.013 ] 41.129 | 23.269 || 4.282 | 41.814 | 23.269 | 14.554
4.584 ] 41.517] 6.081 | 5.013 | 41.129 | 23.269 || 4.282 | 41.814 | 23.269 | 16.901
5.989 | 40.357 | 6.445 ] 5.013 | 41.129 | 23.269 | 4.282 | 41.814 ] 23.269 | 18.815
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Chapter Four

Performance Measures and Test Result

4.1 Introduction

Many aspects have been used to study visual pevoet has been shown
that the human visual perception system is semsttivchanges in luminance
rather than the absolute luminance values themsebsed that perception is
most sensitive to mid-frequencies and less sersitivhigh frequencies in the
image. This chapter, attempted to evaluate botleatbp and subjective
methods for an acceptable degree of the reconsttuchages for different

compression tests.

4.2 Tests and Results

To evaluate the performance of the proposed comjmesmethods, a
picture was taken in size (26856). It is of 24 bits/pixel RGB signal, and it

was transformed tdC,C, signal.

Many tests were accomplished to find the best imqauameters that give
the best compression performance results.

The testing consists of four main columns; thet fose is that Wavelet,
PIFS, Uniform Quantization, RLE and S-Shift codeersv applied on Y
component. The second and the third columns apphédPIFS on Cb and Cr
components, the last is the RGB signal; this coluhas the average

performance parameters.

Each column has its performance parameters, whidhde:
= "CR" Compression Ratio.
» "PSNR" Peak Signal to Noise Ratio.
= "MSE" Mean Square Error.



Chapter Four Performance measures and Test Results

The input parameters are:
= "WL" Wavelet Level.
= "BS" Block Size.
= "JS" Jump Step.
= "NOBO" Number of Bits need for the Offset.
= "NOBS" Number of Bits need for the Scale.
= "A""B" and "R" are the Quantization Parameters.

(@) Original Hakam image (b) Original Girl Image

(c) Original Horsesimage
Figure (4.1) theoriginal RGB images (uncompr essed)
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4.2.1 Wavelet Level tests

The first test the Wavelet level test and it iplagal on three pictures; Hakam

horses and girl.

In this test, the wavelet transform levels wereetakWL=1, 2 and 3) .The
effect of these levels can be notice on three impages .the other parameters
were fixed and illustrated in table (4.1), for Yngoonent the(Bs=2 and JS=2)
while Cb and Cr components the (Bs=8 and JS=4).

Table (4.1): theinput parametersfor different Wavelet levels

I ) ) B

K I I I A

From tables (4.2...4.4) we can see that the incrgasinwavelet levels
affects on increasing of the MSE so the PSNR wdl decreased; this is
undesirable for compression performance paramdtet,the CR will be
increased. So the third level gives better peréoroe parameters with better

image quality.
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Table (4.18): Theeffect of Quantization parameter " A" on the Reconstructed Hakam I mage

Y Component Cb Component Cr Component

M SE

42.601

5.054

2.526

44.105

23.269

3.601

42.565

23.269

11.818

37.405

10.570

8.067

36.692

5.158
6.181

41.005
40.220

2.526

10.711 ] 2.526

44.105
44.105

23.269
23.269

Cb Component

3.601
3.601

42.565
42.565

23.269

13.924

23.269 || 15.236

Cr Component

36.301

14.292
16.731

40.982

2.953

6.051

40.312

23.161

13.951

36.684

22.934

27.200

33.784

7.053

39.102

13.951

9.530

37.984

4.385

6.051

5.957 ] 6.051

4.351

5.013

40.312
40.312

41.129

23.161

23.161 ] 13.951

23.269

4.282

36.684
36.684

41.814

22.934

23.269

30.890

22.9341 34.128

16.397

33.232
32.799

35.983

11.782

9.501

6.445

5.013

41.129

4.282

12.443

8.687 | 5.013

41.129

23.269

23.269 | 4.282

AY

41.814
41.814

23.269

23.269 || 20.207

18.815

35.385
35.075

14.921
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4.2.5 Quantization tests

In these tests, different values were taken fohep@ntization parameters
(A, B and R).

1. "A" tests: Theinput parametersare asfollow:

Table (4.17) Input parametersfor different " A" parameter values

From tables (4.18...4.20) we can see that the incrgas "A" value affects
on increasing of the MSE so the PSNR will be dexda but it still with
acceptable range, at the same time the CR wilhbeeased, so we can see that

when (A=6) it gives better compression performgmaeameters.
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Table (4.22): Theeffect of Quantization parameter " B" on the Reconstructed Hakam I mage

Y Component Cb Component Cr Component

23.269 | 4.282

23.269 ] 18.672

23.269 || 4.282

23.269 18.815

15
1.7] 5.989
2 | 6.128

6.549 ] 5.013

23.269 | 4.282

Ao

23.269 ] 19.001
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2. "B" tests: Theinput parametersare asfollow:

Table (4.21) Input parametersfor different " B" parameter values

From tables (4.22...4.24) we can see that the incrgas "B" value affects
on increasing of the MSE so the PSNR will be deswdaat the same time the
CR will be increased until it reach value which sloeot affects on the
performance parameters, unlike the "A" parametaas ltas a big affects on the
performance parameters. It is obvious when (B=it.gives better compression

performance parameters.
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Table (4.26): The effect of Quantization parameter " R" on the Reconstructed Hakam I mage

PSNR PSNR

0.4] 5.158 | 41.005 | 8.067 | 2.526 | 44.105 | 23.269 | 3.601 | 42.565 | 23.269 || 13.924 | 36.692 | 14.292
0.5 | 5.362 | 40.837 | 9.341 | 2.526 | 44.105 | 23.269 | 3.601 | 42.565 | 23.269 || 14.127 | 36.630 | 15.544
0.7 | 6.541 ] 39.974 | 10.210 2.526 | 44.105 | 23.269 || 3.601 | 42.565 | 23.269 ] 15.833 | 36.134 | 16.313
Table (4.27): Theeffect of Quantization parameter " R" on the Reconstructed Girl Image

| o e e T e e e
I 7.995 | 39.102 | 4.385] 6.051 | 40.312 | 23.161 || 13.951 | 36.684 | 22.934 || 30.890 | 33.232 ] 9.530

8.324 | 38.927 ] 4.812] 6.051 ] 40.312] 23.161 ] 13.951 | 36.684 | 22.934 }{ 31.381 | 33.164 | 10.184
0.7 ] 10.120 | 38.078 | 5.214 ] 6.051 ] 40.312 | 23.161 ] 13.951 ] 36.684 | 22.934 ] 33.643 | 32.861 | 10.770

Table (4.28): Theeffect of Quantization parameter " R" on the Reconstructed Hor ses | mage

0.4]/5.989140.357| 6445 5.013 | 41.129 | 23.269 | 4.282 | 41.814 ] 23.269 | 18.815 | 35.385 | 12.443
6.106 | 40.272 ) 7.383 ]| 5.013 | 41.129 | 23.269 || 4.282 | 41.814 | 23.269 || 18.804 | 35.388 | 13.550
0.7 ]| 7.392] 39.442] 7.985] 5.013 | 41.129 ] 23.269 | 4.282 ] 41.814 ] 23.269 ] 20.977 | 34.913 | 14.206
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Chapter Four Performance measures and Test Results

3. "R" tests: Theinput parametersare asfollow:

Table (4.25) Input parametersfor different " R" parameter values

B I I I

From tables (4.26...4.28) we can see that the whérQO'R it gives better

compression performance parameters
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Appendix
The BMP File Format

The BMP file structure is very simple and is shawfigure (1):

File Header Image Headey Color Table Pixel Data

Figure (1): BMP File Format

o File Header
Every window BMP begins withBI TMAPFILEHEADER structure

whose layout is shown in table (1). The main funrcof this table is to serve as

the signature that identifies that file format.

Table (1): Bit Map File header structure

Field Name | Sizein Byte Description

bfType 2 Contains the characters "BM" that identify
the file type

bfSize 4 File size

BfReservedl 2 unused

BfReserved2 2 unused

bfOftbits 4 Offset to start of pixel data

Three checks can be made to ensure that the fieay® reading is in fact a
BMP file:
1. The first two bytes of the file must contain the @& characters "B"

followed by "M".



2. If you are using a file system where you can detegnthe exact file size
in bytes, you can compare the file size with vatuthe bfSize field.

3. The bfReservedl and bfReserved? fields must be zero

The file header also specifies the location ofggh@| data in the file. When
decoding a BMP file you must use the bfOffbits &testmine the offset from the
begging of the file to where the pixel data staM®st applications place the
pixel data immediately following th& EMAPINFOHEADER structure or
palette, if it is present. However, some appligailace filter bytes between
these structures and pixel data so you must usefibits to determine the
number of bytes from thel TM APFILEHEADER structure to the pixel data.

* Image Header
The image header immediately follows thH& TMAPFILEHEADER
structure .t comes | two distinct formats, definedy the
BITMAPINFOHEADER andBITMAPPCOREHEADER structures.
BITMAPPCOREHEADER represents the OS/2 BMP format and
BITMAPINFOHEADER is the much more common windows format.

Unfortunately, the re is no version field in the BMefinitions. The only way to

determine the type of image structure used in @adr file is to examine the
structure's size field, which is the first 4 bytédoth structure types. The size of
the BITMAPPCOREHEADER structure is 12 bytes; the size of the
BITMAPINFOHEADER, at least 40 bytes.

The layout oBI TMAPINFOHEADER is shown in table (2).thios structure
gives the dimensions and bit depth of the image w@tld if the image is
compressed .window 95 supports a BMP format thes as enlarged version of
this header. Few applications create BMP files gigms format; however; a
decoder should be implemented so that it knowshbatler sizes can be larger
than 40 bytes. The image height is an unsignedeva#linegative value for the
biHeight field specifies that the pixel data is eredd from the top down rather



than the normal bottom up. Image with a negativéemht value may not be

compressed.
Table (2): Bit Map Info Header structure
Field Name Sizein Description
Byte
biSize 4 Header size must be at least 40
biwidth 4 Image width
biHeight 4 Image height
biplanes 2 Must be 1
biBitCount 2 B?it per pixel
biCompression | 4 Compression Type:
Bl_RGB=0,Bl_RLE8=1,Bl_RLE4=2 or
Bl_BIFIELDS=3
biSizelmage 4 Image size: maybe zero if not congaes
bixPelPerMeter| 4 Preferred resolution in pixels deter
biyPelsPerMeter4 Preferred resolution in pixels per Meter
biClrUsed 4 Number of entries in the color map tuat
actually used
biClrimportant | 4 Number of significant colors




TheBITMAPPCOREHEADER structure is the other image header format.

Its layout is shown in table (3).

Table (3): Bit Map CoreHeader structure

Field Name | Sizein Byte Description
bcSize 4 Header size must be 12
bcWidth 2 Image Width

bcHeight 2 Image Height

bcPlanes 2 Must be 1

bcBitCount | 2 Bit Count:1,4,8 or 24

Notice that it has fewer fields and that all havelagous fields in the
BITMAPINFOHEADER structure. If the file uses
BITMAPPCOREHEADER rather thanBITMAPINFOHEADER, the pixel

data can not be compressed.

» Color Palette

The color palette immediately follows the file dea and can be in one of

three formats. The first two are used to map pdagh to RGB color values
when the bit count is 1, 4, or 8 (biBitCount or li€B®unt fields). For BMP files
in the windows format, the palette consists of mayaof 2 bitcount RGBQUAD
structures, see table (4) .BMP file in OS/2 forms¢ an array of RGBTRPLE

structures, see table (5).



Table (4): RGBQUAD structure

Field Name | Sizein Byte Description
rgbBlue 1 Blue color value
rgbGreen 1 Green color value
rgbRed 1 Red color value
rgbReserved, 1 Must be zero

Table (5): RGBTRIPLE structure
Field Name | Sizein Byte Description
rgbBlue 1 Blue color value
rgbGreen 1 Green color value
rgbRed 1 Red color value
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