ABSTRACT

The main theme of thisthesisis oriented toward three objectives.

The first objective, is a study to fuzzy set theory with some basic

properties related to differential equations.

The second objective, is a study and prove of the existence and
uniqueness theorem of fuzzy differential equations using two approaches, the
first is by Brower fixed point theorem and the other by Schauder fixed point
theorem. Furthermore, the analytical and numerical solutions of some namely

fuzzy differentials equations are given.

The third objective, is to study the real life application, which is
modeling and solution of the decay of the biochemical oxygen demand in
water using fuzzy set theory, as well as, the numerical solution and compared

with the exact solution.
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APPENDI X

COMPUTER PROGRAMS

1. Programl1.pas:

program variablestepmethod;
uses

crt,dos;

label

10,20,30,40;

var

UhO0,e,Ut0,Ut00,Ucc,r,Ux0,Utf,UEest,Ux11,Uh00,Ux00,Ux12:real;
LhO,Lt0,Lt00,Lcc,Lx0,Ltf, LEest,Lx11,Lh00,Lx00,Lx12,s:real;

i,j,ss:integer;

begin

clrscr;

Uh0:=0.02; Lh0:=0.02; Ucc:=0; Lcc:=0; e:=0.000001;
Ut0:=0; Lt0:=0; r:=0.2; Utf:=0.02; Ltf:=0.02;
Lx0:=0.75+0.25*r;

Ux0:=1.125- 0.125*r;

writeln('Lx0="',Lx0,"'..... ', 'Ux0=",Ux0) ;
10:

if Ucc<=Utf then

begin

Ux11:=Ux0+Uh0*Ux0;
Uh00:=Uh0/2;

Ux00:=U x0;
fori:=0to 1 do
begin

Ut00:=0t0+1*Uh00;
Ux12:=Ux00+Uh00*Ux00;
Ux00:=Ux12;

end;

UEest:=abs(Ux11- Ux12) ;
writeln('Ux11l=",Ux11,"'..... ', 'Ux12=",0x12) ;
writeln("Ut00=",Ut00,".....",'Uh00=",Uh00,".....",'
end;
readin;
if Lcc<=Ltf then
begin

Lx11:=Lx0+Lh0*Lx0;
Lh00:=Lh0/2;

Lx00:=Lx0;
forj;:=0to 1 do
begin

Lt00:=Lt0+3*Lh00;
ILx12:=Lx00+Lh00*Lx00;

UEest="UEest)



Lx00:=Lx12;

end;
LEest:=abs(Lx11- Lx12) ;
writeln('Lx11l=",Lx11,"'..... ', 'Lx12=",Lx00) ;
writeln('Lh0O0=',Lh00,".....",'Lt00=",Lt00,".....
end;
if (UEest>e) and (LEest>e) then
begin

LhO:=(sqrt ((2*e)/ (sqr (Lh0) *Lx12))) *LhO0;
UhO:=(sgrt((2*e)/ (sqr (Uh0) *Ux12))) *UhO0;
writeln ('LhO new','..... ', 'LhO=",1h0) ;
writeln("UhO new',"..... ', 'UhO=",UhO) ;
goto 10
end
else
begin
LhO:=(sqrt((2*e)/ (sqr (Lh0) *Lx12))) *Lh0;
UhO:=(sgrt((2*e)/ (sqr (Uh0) *Ux12))) *UhO0;
writeln ('LhO new','..... ', 'LhO=",L1Lh0) ;
writeln ('UhO new','..... ', 'Uh0="',UhO0) ;
goto 20
end;
20:
Ucc:=Ut0+UhO;
if Ucc>Utf then
begin
UhO0:=Utf- Uuto;
Ux0:=Ux12;
writeIn("UhON=",Uh0,".....",'Ucc=",Ucc)
end;
Lce:=Lt0+LhO0;
if Lcc>Ltf then
begin
LhO:=Ltf- Lt0;
Lx0:=Lx12;
writeln('LhON=",Lh0,".....",'Lcc=",Lcc)
end;
if Ucc>Utf then goto 30;
if Lcc>Ltf then goto 4 0;
Ut0:=Ut0+UhO;
Lt0:=Lt0+LhO0;
Ux0:=Ux12;
Lx0:=Lx12;
writeln ('UtO=',Ut0,"..... ', 'UhO=",UhO) ;
writeln ("LtO=',Lt0,"..... ', 'Lh0=",LhO0) ;
goto 10;
30:
Ux11:=Ux0+Uh0*Ux0;
if Lcc<=Ltf then
begin
Lt0:=Lt0+LhO0;
Lx0:=Lx12;
writeln ('Lt0="',Lt0);
goto 10
end;

''LEest=",LEest)

writeln(' the end Ux11(Ut0)',"'..... ', 'Ux11(Ut0)=",0Ux11);

goto 40;
40:
Lx11:=Lx0+Lh0*Lx0;
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if Ucc<=Utf then
begin
Ut0:=Ut0+4+UhO0;
Ux0:=Ux12;
writeln ('Ut0="',Ut0);
goto 10
end;
writeln('the end','..... ', 'Lx11(Lt0)=",Lx11);
readIn;
end.

2. Program?.pas:

program Numerica ResultsofEX333;

uses

crt,dos;

var
h,r,Uy0,Uyl,Uyi,Ly0,Lyl,Lyi,Lyn,Uyn,Lz0,Uz0,Lzi,Uz1i,Lzn,Uzn,Ly,Uy:real;
a,g,b,i,j,n,s:integer;

begin

clrscr;

a:=0; b:=1; n:=10; s:=10;
h:=(b- a)/n; r:=0;

repeat

Ly0:=0.75+0.25*r;
Uy0:=1.125- 0.125*r;
writeIn((EXACT RESULT");
Ly:=LyO*exp (1) ;
Uy:=UyO*exp (1) ;
writeln('Ly="',Ly:14:7,'Uy="',0y:14:7);
Lyl:=Ly0+h*Ly0+ (LyO) * (sqr (h) /2) ;
Uyl :=Uy0+h*Uy0+ (Uy0) * (sqgr (h) /2) ;
for i:=2 to (n) do
begin
Lyi:=Ly0+Ly0* (h/3)+Lyl* (4*h/3)+ (Lyl+h*Lyl)* (h/3);
Uyi:=Uy0+Uy0* (h/3)+Uyl* (4*h/3)+ (Uyl+h*Uyl) * (h/3);
LyO:=Lyl; Uy0:=Uyl;
Lyl:=Lyi; Uyl:=Uyi;
end;
writeIn('SIMPSON RESULTY);
writeln('r=',r:6:2,'Lyl0=",Lyl1:14:7,'Uyl0=",Uy1:14:7);
writeIn(EULER RESULTY);
Lz0:=0.75+0.25*r;
Uz0:=1.125- 0.125*r;
for j;:=1to (s) do
begin
Lzi:=Lz0+h*Lz0;
Uzi:=Uz0+h*Uz0;
Lz0:=Lzi; Uz0:=Uzi;
end;
writeln(' r=',r:6:2,'Lz10=",Lz0:14:7,'Uz10=",U0z0:14:7) ;
readin;
r:=r+0.2;
until r>1;
end.



3. Program 3.pas:

program NumericaResultsofEX34;

uses

crt,dos;

var

h,r,Uy0,Uy1,Uyi,Ly0,Ly1,Lyi,Lyn,Uyn,Lz0,Uz0,Lz1,Uz1

,x0,x1,x11l:real;

h1,UwO0,Uw1,Uwi,LwO,Lw1,Lwi,Lwn,Uwn,LvO,UvO,Uv1,Lv1,

x21,x20,x211:real;

a,b,c,d,1i,3,11,31,n,s,nl,sl:integer;

begin

clrscr;

a=-1; b:=0; n:=10; s:=10;

h:=(b- a)/n; r:=0;

c:=0; d:=1; nl:=10; sl:=10;

hl:=(d- c)/nl1;

repeat

Ly0:=sqrt(exp(1))-0.5*(1-r);

Uy0:=sqrt(exp(1))+0.5*(1-r);

writeln ('EXACT RESULT TO x<0');
Ly:=((exp(-1/2)+exp(1/2))/2)*Ly0+((exp(-1/2
Uy:=((exp(-1/2)+exp(1/2))/2)*Uy0+((exp(-1/2
writeln('Ly=",Ly:14:7,'Uy="' ,Uy:14:7);
x1:=a+h;
Lyl:=LyO+h*a*Uy0+ (Ly0) * (sqr (h) /2) * (1+sqgr (a)) ;
Uyl:=Uy0+h*a*Ly0+ (Uy0) * (sgr (h) /2) * (1+sgr (a)) ;

writeIn('"MID- POINT RESULT TO x<0'");
for i:=2 to (n) do
begin
Lyi:=Ly0+2*h*x1*Uyl;
Uyi:=Uy0+2*h *x1*Lyl;

LyO:=Lyl; Uy0:=Uyl;
Lyl:=Lyi; Uyl:=Uyi;
x1:=x1+h;
end;
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,L.zi,Uzi,Lzn,Uzn,Ly,Uy

Lvi,Uvi,Lvn,Uvn,Lw,Uw,

)- exp(1/2))/2)*Uy0;
)- exp(1/2))/2)*Ly0;

writeln('xl="',x1:2:2,'r=",r:6:2,"'Lyl0=",Lyl:14:7,'Uyl0=",0y1:14:7);
writeln ('TRAPIZOIDAL RESULT TO x<0');

Lz0:=sqrt(exp(1))-0.5*(1-r);
Uz0:=sgrt(exp(1))+0.5*(1-r);

Lzl:=Lz0+h*a*Uz0+ (Lz0) * (sqr (h) /2) * (1+sqgr (a)) ;
Uz1:=Uz0+h*a*Lz0+ (Uz0) * (sqgr (h) /2) * (1+sqgr (a)) ;

x0:=a; x11:=x0+h;

for j:=1to (s) do

begin

Lzi:=LzO+h/2*(x11*Uz1+ x0*Uz0) ;
Uzi:=Uz0+h/2* (x11*Lz1+x0*Lz0) ;
Lz0:=Lzl; Uz0:=Uz1;
Lzl:=Lzi; Uz1:=Uzi;
x0:=x11;
x11:=x0+h;

end;

writeln('x1l1l="',x0:2:2,'r=",r:6:2, 'Lz10=",Lzi:14:7,'Uz10=",Uzi:14:7);

LwO:=Ly;
Uw0:=Uy;
writeln ('EXACT RESULT TO x>=0"');
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Lw:=LwO*exp (1/2);

Uw:=UwO*exp (1/2);

writeln('Lw="',Lw:14:7,'Uw=",Uw:14:7);

x21:=c+hl;

Lwl:=Lw0+hl*c*Uw0+ (Lw0) * (sqgr (hl) /2)* (1+sqgr(c)) ;

Uwl :=UwO+hl*c*Lw0+ (Uw0) * (sqr (hl) /2) * (1+sqgr(c)) ;
writeln("MID- POINT RESULT TO x>=0');

foril:=2 to (n1) do

begin

Lwi:=LwO0+2*hl*x21*Lwl;

Uwi:=Uw0+2*hl*x21*Uwl;

LwO:=Lwl; UwO:=Uwl;

Lwl:=Lwi; Uwl:=Uwi;

x21:=x21+h1l;

end;

writeln ('x21="',x21:2:2,"'r=",r:6:2,'Lwl0="',Lw0:14:7,'Uwl0=",U0w0:14:7);

writeln ('TRAPIZOIDAL RESULT TO x>=0"');

Lv0:=Lw0;

Uv0:=Uw0;

Lvl:=Lv0+hl*c*Lv0+ (Lv0) * (sqgr (hl)/2)* (1+sqgr(c)) ;

Uvl:=0Uv0+hl*c*Uv0+ (Uv0) * (sqr (hl) /2) * (1+sqgr(c)) ;

x20:=c; x211:=x20+h1l;

for j1:=1 to (s1) do

begin

Lvi:=Lv0+hl/2* (x211*Uv1+x20*UvO0) ;

Uv 1:=Uv0+hl/2* (x211*Lv1+x20*LvO0) ;

Lv0:=Lvl; Uv0:=0v1l;

Lvl:=Lvi; Uvl:=Uvi;

x20:=x211;
x211:=x20+h1l;
end;

writeln('x211="',x20:2:2,'r=",r:6:2,"'Lv10=",Lvi:14:7,'Uv10=",0vi:14:7);
readin;

r:=r+0.2;
until r>1;
end.

4. Program4.pas;

program NumericaR esultsofEX35;
uses
crt,dos;
var
h,r,Uy0,Uyl,Uyi,Ly0,Lyl,Lyi,Lyn,Uyn,Lz0,Uz0,Lzi,Uzi,Lzn,Uzn,Ly,Uy:real;
Lkl,Lk2,Ukl,Uk2,Lz1,Uz1,Lz2,Uz2:real;
a,g,b,i,j,n,s:integer;
begin
clrscr;
a:=0; b:=1; n:=10; s:=10;
h:=(b- a)/n; r:=0;
repeat
Lk1:=0.540.5*r;
Uk1l:=1.5- 0.5*r;
Lk2:=0.75+0.25*r;
Uk2:=1.25- 0.25*r;



writeln('........... EXACT RESULT............. ;
Ly:=sqgrt (Lk2/Lkl) * (sin (sqrt (Lk1*Lk2)

writeln('Ly=",Ly:14:6,'U y=",Uy:14:6)
writeln('............. FIRST EXPLIST METHOD........ ... "
Ly0:=0;
Uy0:=0;

Lyl:=LyO+h* (Lk2+Lk1l*sqr (Ly0)) ;
Uyl:=Uy0+h* (Uk2+Uk1l*sqr (Uy0)) ;
for i:=2 to (n) do

begin
Lyi:=2*Ly1-LyO+h*(Lk1*sqr(Ly1)- Lkl*sqr (Ly0));
Uyi:=2*Uy1-Uy0+h*(Uk1*sqr(Uy1)- Ukl*sqgr (Uy0)) ;
LyO:=Lyl; Uy0:=Uyl;
Lyl:=Lyi; Uyl:=Uyi;
end;
writeln('r=',r:6:2,'Lyl0=",Lyl:14:6,'Uyl0=",Uyl:14:6);
writeln('........... SCOND EXPLICIT METHOD.......... W)
Lz0:=0;
Uz0:=0;

Lz1l:=Lz0+h* (Lk2+Lkl*sqgr (Lz0));
Uz1:=Uz0+h* (Uk2+Uk1l*sqgr (Uz0)) ;
fori:=2 to (s) do

begin
Lzi:=Lz1+(h/2)*(3*(Lk2+Lk1*sqr(Lz1))- (Lk2+Lkl*sqgr (Lz0))) ;
Uzi:=Uz1+(h/2)*(3*(Uk2+Uk1*sqr(Uz1))-(Uk2+Uk1*sqr(U z0)));
Lz0:=Lzl; Uz0:=Uzl;
Lzl:=Lzi; Uzl:=Uzi;
end;

writeln('r="',r:6:2,'Lz10=",Lz1:14:6,'Uz10=",U0z1:14:6);
readin;

r:=r+0.2;

until r>1;
end.

5. Program5.pas:

program NumericaResultsofEX36;

uses

crt,dos;

var

h,r,Uy0,Uy1,Uyi ,Ly0,Lyl,Lyi,Lyn,Uyn,Ly2,Uy2:real;
a,b,i,j,n:integer;

begin

clrscr;

a:=0; b:=1; n:=10;
h:=(b- a)/n; r:=0;
writeln ('when h=0.1");

forj;=1to 2 do
begin
repeat
Ly0:=0.75+0.25*r;
Uy0:=1.5- 0.5*r;
if sqr(abs(Uy0))>=sqr(abs(Ly0)) then
begin

) /cos (sqrt (Lk1*Lk2)))
Uy:=sqrt (Uk2/Uk1l) * (sin (sqrt (Uk1*Uk2)) /cos (sqrt (Uk1*Uk2)))

r

’
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Lyl:=LyO+h*exp(- sqr (abs (Uy0))) ;
Uyl:=UyO+h*exp(- sgr (abs(Ly0)));
if sqr(abs(Uy1))>=sqr(abs(Ly1)) then

begin
Ly2:=Lyl+h*exp(- sqgr (abs (Uyl))) ;
Uy2:=Uyl+h*exp(-sqr(abs(Lyl)))
end;
for i:=3 to (n) do
begin
if (sgqr(abs(Uy2))>=sqr(abs(Ly2))) and (sqr(abs(Uy1l ))>=sqr(abs(Lyl)))
then
begin
Lyi:=Ly2+(h/12)*(23*exp(-sqr(abs(Uy2)))-16*ex p(-
sqr(abs(Uy1)))+5*exp(- sqr (abs (Uy0)))) ;
Uyi:=Uy2+(h/12)*(23*exp(-sqr(abs(Ly2)))-16*ex p(-
sqr(abs(Lyl)))+5*exp(- sqr (abs (Ly0)))) ;
LyO: =Lyl; UyO0:=Uyl;
Lyl:=Ly2; Uyl:=0Uy2;
Ly2:=Lyi; Uy2:=Uyi
end;
end;
end
else
begin

Lyl:=LyO+h*exp(- sqgr (abs (Ly0))) ;
Uy1:=Uy0+h*exp(- sqr (abs (Uy0))) ;
Ly2:=Lyl+h*exp(- sqr (abs (Lyl)));
Uy2:=Uyl+h*exp(- sqgr (abs (Uyl)));
for i:=3 to (n) do

begin

if (sgr(abs(Uy2))<=sqr(abs(Ly2))) and
(sgr(abs(Uyl))<=sqgr(abs(Ly1))) then

begin
Lyi:=Ly2+(h/12)*(23*exp(-sqr(abs(Ly2)))-16*ex p(-
sqr(abs(Ly1)))+5*exp(- sqr (abs (Ly0)))) ;
Uyi:=Uy2+(h/12)*(23*exp(-sqr(abs(Uy2)))-16*ex p(-
sqr(abs(Uy1)))+5*exp(- sqr (abs (Uy0)))) ;
LyO:=Lyl; Uy0:=Uyl;
Lyl:=Ly2; Uyl:=U0y2;
Ly2:=Lyi; Uy2:=Uyi
end;
end;
end;
if h=0.1 then
begin
end
else
begin
end;
writeln('r=",r:6:2,'Ly10=",Ly0:14:7,'Uy10 =',0Uy0:14:7);
readin;

r:=r+0.2;
until r>1;
n:=20; h:=(b-a)/n; r:=0;
writeln ('when h=0.05");
end;
end.
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CHAPTER ONE

FUZZY SETS

1.1 INTRODUCTION

This chapter has the aim to introduce and illustfatizzy set theory,
therefore, this chapter consists of nine sectiomsection 2 we discuss in
general fuzzy set theory, as well as, it historlzatkground, while in section
3 some of the most important algebraic conceptaedlto fuzzy set theory
are given. In section 4, a very strong notion whiglrelated to fuzzy set
theory will be introduced, which is the conceptoelevel sets which has the
utility of expressing an element that belong to fhezy set. Section 5
introduces the concept of convex fuzzy sets whretrelated to the so called
fuzzy number which is used commonly in fuzzy difetial equations, as well
as, section 6 illustrate. The extension principleiolw has the utility of
extending non-fuzzy concepts to fuzzy set theomptioduced in section 7.

Also, fuzzy function on fuzzy sets is discussedantion 8.

1.2 FUZZY SETSTHEORY

Fuzzy set theory is a generalization of abstractre®ory; it has a wider
scope of applicability than abstract set theoryalving problems that involve

to some degree subjective evaluation [Kandel, 1986]
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Let X be a space of objects and x be the genegroaht of x, a classical
set A, Al X, is defined as a collection of elements or otgecl] X, such
that each element x can either belong or not tostteA. By defining a
characteristic (or membership) function for eacament x in X, we can
represent a classical set A by a set of ordered (§=j 0) or (x, 1), which
indicates x[J A or x O A, respectively. A fuzzy set express the degree to
which an element belongs to a set. Hence, for soyl a membership
function of a fuzzy set is allowed to have valuesween (0 and 1) which
reflects the degree of membership of an elementhan given set. In

mathematical symbols, the membership functionvemgby;p; : XU - [0,

1], and the fuzzy set (denoted By) in X is defined as a set of ordered pairs
[Zadeh, 1965]:

A ={(x, Hz(x)) I xO X}

Remarks (1.1):

1. Let X be afinite set, a fuzzy set on X is exprelsas:
A= Ha (Xg) X+ g (X0) o + oo+ Pz (X)X
= ZHA(Xi)‘Xi
i=1
When X is not finite, we write:
A = g (%) X+ g (%) P + .
= [uz 09 1%
X

or.
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A ={(x, uz () | xO X}
where the slash (| ) is employed link the elementthe support with
their grades of membership i, and the plus sign (+) or the integral
(j) playing the role of "union" rather than arithneesum of integral

[Zimmermann, 1985].

2. The difference between crisp and fuzzy sets isttteaformer always have
uniqgue membership, where as every fuzzy set hasiteafnumber of
memberships that may represented it.

3. Functions that maps X into the unit interval mayfbezy sets, but they
become fuzzy set when, and only when, they matehesmtuitively

plausible semantic description of imprecise prapsrf the objects in X.
The following example illustrates this remark:

Example (1.1) [Mahmood, 2004]:

Suppose that:
X ={Aseel, Maha, Rula, Hadeel, Rana}

Is a set of women, and thét is a fuzzy set of beautiful women in X. Then
we may have:

A ={(x, Hz(x)) | xO X}
A = beautiful

= Middle | Aseel + not low | Maha + low | Hadeelerywhigh | Rana
+ high | Rula
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where the fuzzy grades labeled middle, low, highaasumed to be fuzzy set

inJ={0, 0.1, 0.2, .., 0.9, 1}1 [0, 1], for example, are expressed as follows:

Mg (X) = f(uy) [+ f(wp) [+ ...+ f(W) | by

= 3wy
i=1

where ywJ J and f(y) stands for the membership function piruthe fuzzy set
M; ().
Middle=0.3|0.3+0.7|04+1|0.5+0.7|0.6 +@%F
Low=1|0+09]|0.1+0.7]0.2+0.4]0.3
High=0.4|0.7+0.7|/0.8+09]09+1|1
Not low=0.1]0.1+0.3|0.2+0.6|0.3

Very high=0.16 | 0.7 + 0.49 [ 0.8 + 0.81| 0.9+ 1| 1

Example (1.2) (Fuzzy set with a discrete non-ordered universe):

Let:
X ={Baghdad, Basra, Mousel}

be the set of certain cities any one that may ahtoméve in, the fuzzy set

A ="Desirable city to live in"

may be described as follows:
A ={(x, uz () | xO X}
Then:

A ={(Baghdad, 0.9), (Basra, 0.8), (Mousel, 0.6)}
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Example (1.3) (Fuzzy set with a discrete ordered universe):

Let:
X={0,1,2,3,4,5, 6}

Be the set of number of children of a family maycheosed to have the fuzzy

set:

B = "desirable number of children in a family"

may be described as follows:
B ={(x, ug(x)) | xO X}
Implies that:

B ={(0,0.1), (1, 0.3), (2,0.7), (3, 1), (4, 0.73, 0.3), (6, 0.1)}

1.2 —

1.0 — ®

0.8 —
- [ ] [ J

0.6 —

H(x)

0.4 —

0.2 —

] L

o771 T T T T T T T 1

Fig.(1.1) Membership function of discrete universe, where t(x) stands for

the membership function on discrete universe.
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Example (1.4) (Fuzzy set with a continuous universe):

Let X = R" be the set of possible ages for human beings, ttieefuzzy

set

C ="About 50 years old"
may be expressed as:

C ={(x, He()) | xO X}
where:

1
4
1+(x —50)
10

H(x) A

Ha(X) =

Fig.(1.2) Membership function on a continuous universe.

1.3 BASIC CONCEPTSOF FUZZY SET [DUBOI S, 1980],
[ZIMERMANN, 1985]

Let X be a space of objects, I8t be a fuzzy set in X, then one can

define the following concepts:
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1. The support ofA in the universal set X is a crisp set, denoted by:

S(A)={x| pz(x) >0,0x0OX}

2. The core (uncleus) of a fuzzy sAtis the set of all points X X, such
that pu; (x) =1.

3. The height of a fuzzy sék is the largest membership grade over X, i.e.,

hgt(A) = Suppj (x).
xOX

4. The crossover point of a fuzzy st is the point in X, whose grade of

membership inA is 0.5.

5. Fuzzy singleton is a fuzzy set whose support imgle point in X, with
H;(x) =a,a (0, 1].

6. A fuzzy setA is called normalized, if its height is 1, otheravii is

subnormal., i.e., hgi) < 1.

Note:

A non-empty fuzzy sefA can always be normalized by letting

Mz (X)
Supu, (x)

XX

Mz (X) =

7. The empty fuzzy sefl and the universal set X are fuzzy sets, where

Ox0OX, Hgs(x) =0 anduy (x) =1, respectively.

8. If A andB are any two fuzzy subsets of X, thAn= B if and only if
Mz (X) = pg(x), OxOX.

10
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9. If A andB are any two fuzzy subsets of X, thAn0 B if and only if
Uz (X) < pg(x), OxOX.

10. A°® (the complement of fuzzy s&) is a fuzzy set whose membership

function is defined by:

“AC(X) =1- IJ'A(X)I OxtdX

11. Given two fuzzy setsA and B, their standard intersectioA, n B, and
standard unionA O B, are fuzzy sets and their membership functions

are defined for simplicity for all XI X, by the equations:
Haog (X) =Max {pz (x), ug(X)}

Hana (0) = Min {11, 15 (0}

Note:

It is important to notice that the only law of caatiction isA 0 A° =
X and the law of excluded middie n A°® = . Both laws are broken for the
fuzzy sets, sincd 0 A® z X andA n A® 20, indeed:0 x O A, such that

U; (X) =a, 0 <a <1, then according to point (7), we have:
”AmAc(X) =Max{a,1-a} #1

”AmAc(X) =Min{a,1-a} #0

11
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1.4 a-CUT SETS [GEOREGE, 1995]

Among the basic concepts in fuzzy set theory isctivecept of am-cut
and it's variant, a strong-cut. Given a fuzzy sef defined on X and any
numbera [ [0, 1], thea-cut, A, (the stronga-cut, Ay.) is the crisp set that

contains all elements of the universal set X, whosenbership grades iA

are greater than or equal to (only greater thamspecified value af.
Ag={x:pz(x) za}, OxOX
A ={x: pz(x) >a}, OxOX
The following properties are satisfied for alll [0, 1]:

1. Ifay,a,0][0, 1], ifa; < ay, thenAo(l O Aaz.

2. (AOB)y=A,0 B,.

o

3. (A N E)a:Aan q

4. A OB givesA, 0 B,.

5. A=BifandonlyifAy= B, Oa O[O0, 1].

Remarks (1.2) [Georege, 1995]:

1. The set of all levels [ [0, 1], that represent distinatcuts of a given

fuzzy setA is called a level set dA.

A(A) ={a | u;(x) =a, for some xJ X}

2. The support ofA is exactly the same as the strangut of A fora =

0, Ao =S(A).

12
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3.  The core ofA is exactly the same as thecut of A fora = 1 (i.e.,

A, =core(A)).

4.  The height ofA may also be viewed as the supremunuadut for

which A, # 0.

1.5 CONVEX FUZZY SETS[GEORGE, 1995]

An important property of fuzzy sets defined oh(Rr some nJ N) is
their convexity; this property is viewed as a gafieation of the classical
concept of convexity of crisp sets. The definitminconvexity for fuzzy set
does not necessarily mean that the membershigidnnof a convex fuzzy

set is also convex function.

Definition (1.1) [George, 1995]:

A fuzzy setA on R is convex if and only if:

Hx (AXg + L=A)X2) = Min{uz (Xq) HE (X2)} ovveeeeeeeieeieieciens (1.1)

for all x;, x, O R, and alli O [0, 1].

Remark (1.3) [George, 1995]:

Assume thatA satisfies equation (1.1), we need to prove thatafty

a O[O0, 1], A is convex. Now, for anyixXo OA  and for any [0, 1], by
equation (1.1).

Hx (Axy + L=A)X5) = Min{uz (X1).Hz (X2)} =2 Min {a, a} =a
e, AX;+(1-A)x, O A, thereforeA, is convex for anyr O [0, 1], A is

convex.

13
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1.6 FUZZY NUMBER [ZIMMERMAN, 1988], [KANDEL, 1986]

A fuzzy numberM is a convex normalized fuzzy skt of the real line
R, such that:

1. There exists exactly one X1 R, with p5(Xg) = 1 (X is called the
mean value oM ).

2. U (x) is piecewise continuous.

Simple examples of fuzzy numbers are approximaielery close to 5,

more or less large, etc. A special case of a fazrgber is an interval.

1.7 THE EXTENSION PRINCIPLE OF FUZZY SETS

One of the most basic concepts of fuzzy set thewnych can be used to
generalize crisp mathematical concepts to fuzzys,set the extension

principle.

Definition (1.2) (The extension principle) [Zimmermann, 1988]:

Let X be a Cartesian product of universes X,, ..., X, and ,&1, ,&2,
;A:r be r-fuzzy sets in X X, ..., X, respectively, f is a mapping from X
to a universe Y (¥ f(X, X2, ..., %)). Then a fuzzy seB in Y is defined by:

B ={(y, Hg(¥)) | y="f(X1, X, -, %), (%0, X, -, %) O X}

where:

Sup Min{u;\l 04 )Mz (x} , if £ (y)z 0
Hg (Y) = § Caxaex P (Y)
0, otherwise

where f' is the inverse image of f.

14
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For r=1, the extension principle, of course, reduces to:

f(A)=H{(x, uz(x)) [ xO X}

where:
Sup py (x), if fH(y)20
Mz (Y) = e
0, otherwise
Example (1.5):

Let X = {1, 2, ..., 6}, A be the comfortable type of house for two
persons and the crisp set Y be the set of typ@o$d, the contact function is

given by f in Fig.(1.4), defined by:
A ={(x, 15 (x))}
={(1, 0.8), (2, 1), (3, 0.6), (4, 0.2)}
Y ={ay, &, &, a}

le e di

2e o
3e o3
de 40 aq
Fig.(1.4).
First for a:

f(a) = {(1, 0.8), (3, 0.6)}

M, (&) =sup{0.8 0.6}= 0.8

15
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Now, for &
(@) ={(2, 1), (4,0.2)}
ur, (8,) =supf{1, 0.2}=1

Similarly, for a;:
f™(ae) ={(4, 0.2)}

M, (83) =0.2

Arranging all:

f(A) = i w(f(A)}

={(a, 0.8), (a, 1), (a, 0.2)}

1.8 FUZZY FUNCTION ON FUZZY SETS [ZIMMERMANN, 1988]

A fuzzy function is a generalization of the conc&ftthe classical
function. A classical function f is a mapping (@spondence) from the
domain D of definition of the function into a spa8ef(D) O S is called the
range of f. Different features of the classical @apt of a function can be
considered to be fuzzy rather than crisp. Therefdiferent "degrees" of

fuzzification of the classical notion of a functiare conceivable:

1. There can be a crisp mapping from a fuzzy set, kvbarries along the
fuzziness of the domain and therefore generategzy fset. The image

of a crisp argument would again be crisp.

2. The mapping itself can be fuzzy, thus blurring thrage of a crisp
argument. Thus, we shall call a fuzzy function. Séheare called
“fuzzifying functions”, [Dubois and Prade, 1980].

16
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3. Ordinary functions can have fuzzy properties ordoastrained by

fuzzy constraints.

Naturally, hybrid types can be considered. We sHaltus our

consideration, however, only on frequently useceases.

Definition (1.3) [Zimmermann, 1985]:

A classicafunctionf : X 0 - Y maps from a fuzzy domair in X into

a fuzzy rangeﬁ in Y if and only if:

OxOX, pg(f(x))z.pz(x)

Given a classical function: X 0 - Y and a fuzzy domairA in X, the

extension principle yields tHazzy rangeﬁwith the membership function

Hz(y)= Sup pz(X)
xOf “H(y)

Hence f is a function according to definition (1.3)

Definition (1.4) [Zimmermann, 1985]:

Let X and Y be universes and P(Ye the set of all fuzzy sets in Y

(power set)f:XD - 5(Y) IS @ mapping, therf is a fuzzy function if and
only if:
Hf oo (Y) = Hg (%), U (x, y) O XxY

wherepls (X,Yy)is the membership function of a fuzzy relation.

17
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Example (1.6):

1. Let X be the set of all workers of a plarit,the daily output, and y be

the number of processed work pieces. A fuzzy fumctiould then be:
f)=y
2. a,bOR X=R,f :x0O- ax0Ob,is a fuzzy function.

3. X =set of all 1-mile runners, = possible recorded timeg,(x) ={y|y

: achieved record times}

18



CHAPTER TWO

THE EXISTENCE AND UNIQUENESS
THEOREM OF FUZZY
DIFFERENTIAL EQUATIONS

2.1 INTRODUCTION

In this chapter, we shall study mathematical modefged by:

(1) =1(t, X(t))}
X(tg) =X

This first-odder fuzzy differential equation withig a fuzzy mapping of t,

f(t, X) a fuzzy function of the crisp variable tchthe fuzzy variable x, an¥

is the fuzzy derivative of x.

Equation (2.1) is called fuzzy Cauchy problem. \Wedduce in section
2 some preliminary concepts related to this thastsin section 3, we prove
the existence and uniqueness theorem of the fuamclty problem (2.1),
where f= IXE" is levelwise continuous function satisfies a gatized

Lipschitz condition.
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2.2 PRELIMINARIES[SONG AND WU, 2000], [PARK AND
HAN, 1999]

Let R(R") denote the family of all non-empty compact consaksets of
R" and define the addition and scalar multiplicatiorP(R") as usual. Let A
and B be two non-empty closed and bounded sub$el.orhe distance

between A and B is defined by the following Haustimetric:

d(A, B) = max {supinf ||a— b||,supinf |[|a=b][} .....ccovrrrrrrerrrrrr (2.2)

b @A

where ||.|| denotes the usual Euclidean norm iheRned by:

la b= (i(a —w]

Then it is clear that (PR"), d) becomes a metric space.

Theorem (2.1) [Park and Han, 1999]:
The metric space (R"), d) is complete and separable.

Remark (2.1):
Some literatures and textbooks use the followinglsglism in fuzzy set

theory, 0 fro the fuzzy set andi(x) for its membership function, therefore

this symbolism will be used here in this chapter domparison with the

existence and uniqueness of non-fuzzy set theory.

Now, we denote:
E"={u:R"0 - [0, 1] | u satisfies (i)-(iv) below}.................... (2.3)

Where:
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(1) U is normal, i.e., there exists apX R" such thatfi (xo) = 1.

(i) O is fuzzy function convex, i.el is convex if it'sa-cuts are
convex,[la O (0, 1].

(i) G is upper semicontinuous, i.e., @scuts are closed] a.

(iv) [0]°=cl{x OR"|u(x) > 0}is compact, sincef[]’ is the smallest

closed set containing {X R" | G (x) > 0}.

For 0 <a <1, denote {i]°={x OR"| 0 (x) = a}, it follows that thea-
level set [i]° O P(R"), for all 0< a < 1, where for allii O E", U is levelwise

continuous.
Now, if g : RxR" O - R"is a function, then according to the Zadeh'’s

extension principle, we can extend g fxE' 0 - E" by the equation:

g(0,v)(z) = Sl(,lp )min{ﬂ (), V (V)} oo 2.4)
z=g(X,y

where g is any relation betweénand V. It is well known that:

9(G,v)(z)= sup min{d (x), V(y)}
z=g(x,y)

Then:

[9(0,V)@)"=[ sup min{T (x), ¥(y)}]*
z=g(x,y)

=[ sup min{[ @ (x)]% [V(Y)]"}]
z=g(x,y)

=g([a I, [vNI)
Hence:

[9(T, )@D)]% = ga 0)I% [V (1% oreereeeeeeeeeeeeeeeeeeeeeeeeeeeeee. 2.%)
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forall G, v OE", 0<a <1 and g is continuous, especially for addition and

scalar multiplication.

We have:
[(O+V)(@2)]" =[ sup min{T(x), ¥(y)}]"
z=g(x.y)
= Sl(Jp)min{[ a1, [vI“N =[a 1" + [V(Y)]*°
z=g(x,y
Also, for kO R
[(kT)(@)]" =1 SU(IO){k a(x)3*
z=g(x
=[ sup {k 0(x)}"]
z=g(x)
= SU(p) [KI°[ @ ()11 = k[ G ()]
z=g(x
Hence, as a result:
[0+ V] =101+ [V]%, [KU]" = K[O]% e (2.6)

wherel, V O E" kOR, O<a < 1.

Theorem (2.2) [Park and Han, 1999]:

If 0 OE", then:
(1) [T]® O P(RY, forall 0<a < 1.
(2) [a]*2O[a]® forall0O<sa;<a,< 1.

(3) If{ay} O[O0, 1] is a non-decreasing sequence converging>d, then:

[T]% = [YIOI%K e eeeeesssssssssss 2.7)

k=1
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Conversely, if {A': 0< a < 1} is a family of subsets of Rsatisfying (1)-
(3), then there existslu E", such that:

[U]7 =A% fOr OSSO S T oo, (2.8)
and [01°= [ A% DA% e, (2.9)
O<o<l

Define D : ExE"0 - [0, ») by the following:

D(T,%) = SUPAQT]% [F]%) crrreererereeeeeeeeeseeeeeeeeeeee e eeesene (2.10)

O<a<i

Where d is the Hausdorff metric defined in (2.2)efi it is easy to see that D

is a metric in E Then D satisfies the following:
(1) (E", D) is a complete metric space.
(2)D(G +wW, Vv +W)=D(0,v), foralla, v, w OE".

3)D(k, k¥) = |k| D(@,¥), for all @, v O E" and kO R.
(3) D(

Definition (2.1) [Park and Han, 1999]:

Suppose E [c, d] 0 R be a compact interval, then a mapping At T
E" is called levelwise continuous atl T if the set-valued mapping,f) =

[F(1)]% is continuous at+ t, with respect to the Hausdorff metric d for @l
[0, 1].

Definition (2.2) [Park and Han, 1999]:

Suppose that E [c, d] 0 R be a compact interval, then a mapping
F: TO - E"is strongly measurable if for af O [0, 1], the set-valued
mapping 5:TO — P(R") defined by K(t) = [F(1)]® is Lebesegue measurable
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functions, when RFR") is endowed with the topology generated by the

Hausdorff metric d.

Definition (2.3) [Park and Han, 1999]:
A mapping F : T - E"is called integrably bounded if there exists an

integrable function h, such that |k|h(t), for all xO Fy(t), where T=[c, d] O

R be a compact interval.

Definition (2.4) [Park and Han, 1999]:
Let F : TO - E". The integral of F over T, denoted tj)F(t) or
T

d
jF(t)dt, Is defined levelwise for all 0 & < 1, by:
C

d 4

[ j F(t)dt] = j F (t)dt
C Cc
={ If(t)dt | f: TO -~ R"is Lebesegue measurable
T

selection for B} ....oovvvvvvviiiie (2.11)
A strongly measurable and integrably bounded mappinTO - E"is

said to be integrable over TﬁF(t)dt OE"
T

The proof of the next theorem will be given whishaippeared in [Park
and Han, 1999] without proof:

Theorem (2.3):
If F: TO - E"is strongly measurable and integrably bounded thes

integrable.
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Proof:

Since F is strongly measurable, thep i Lebesegue measurable
functions, when RR") is endowed with the topology generated by the

Hausdorff metric d.

Since F is integrably bounded, then there existsit@grable function h, such
that ||x|k h(t), for all xO Fy(t).

Then by theorem that say (Let FS [ — R bounded measurable function,

then F is integrable)

Then Since [ is Lebesegue measurable function and bounded, Rhes

integrable, i.e.,

[F(®dt= { | F(t)dtj
T T

The last equation is levelwise formula of the im&d- over T

Hence F is integrable over T.=

It is known that, in particular,

0
[ j F(t)dt} = j R (t)dt
T T

Similarly, the next theorem appears in [Park anch,HED99] without

proof, we give the proof for completeness:

Theorem (2.4):
Let F, G: TO - E", be integrable and 0 R. Then:

(i) j (F(t)+ G(t))dt = j F(t)dt + j G(t)dt.
T T T
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(i) [AF(t)dt=A[F(t)dt.
T T

(i) D(F, G) is integrable.

(iv) D([F(t)dt, [G(t)dt) < [D(F,G)(t)dt.
T T T

Proof:

(i) To prove [ (F(t)+ G(t))dt = [F(t)dt + [G(t)dt
T T T

By definition (2.5), we have:

D(F(t)+G(t))dt} {j F(t)dt} {je(t)dt}
T T T
= [F.(®)dt + [G, (t)dt
T T

By equation (2.6), we have:

[(F, )+ G, )t = [F, (Dt + [G, ()t
T T T

In the given theorem, the given idea ttj@ (t)dt and jGa (t)dt are
T T
integrable of E(t) and G(t), respectively, so we know thz(% I F, (t)dt =
T
d
Fa() and— j G, (t)dt = G4(t). Thus:
T

d d d

—| |F, (0)dt+| G, (t)dt| = — | F, (t)dt + — | G, (t)dt

dth 2 (1) 1 a (1) } dti 2 (1) dti o (1)

= Fa(t) + Gu(1)

. d
= a{ 1 (F, (1) + G, (t»dt}
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Hence:

d
ahF(t)dHlG(t)dt} = F(t) + G(t)
d
= E{ i (F(t) + G(t))dt}
(i) To prove j AF(t)dt = A j F(t)dt
T T
By definition (2.5), we have:

{ l AF(t) dt}a = {)\ l F(t) dt}

By equation (2.6), we have:

a

J)\FG (t)dt = )\jFG (t)dt
T T

Then taking the right hand side
d _.d
ah F (t)dt} = )\aiFa (t)dt
d
= AR, () = —JAFG (t)dt
dts
Hence:
d AjF(t)dt = AF(t) = EjAF(t)olt
dt| 1 dts

(iif) To prove D(F, G) is integrable.

By equation (2.10),
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D(F, G)= supd([FI°, [G])

O<a<l

= sup{max{ sup inf |lt—tf|, sup inf ||&—t[}
0O<asl tyqF]° 261" t,G]* Ul

Now, since F and G are integrable, therf fdjd [GT are also integrable

Therefore, [F] - [G]° or [G]" - [F]® is integrable

n
Which implies that)_(t; —t)" is integrable, for each; {1 [F]” and §,
i=1

O[Gl*
Hence |jt— t4|| is integrable, for each @ [F]° and $ O [G]”
Then D(F, G) is integrable.

(iv) To prove that Dj F(t)dt, j G(t)dt) < j D(F,G)(t)dt
T T T
Now:

D(IF(t)dt jc;(t)dt)— sup d[JF (t)dtjGa (t)dt]

O<a<l

sup{max{ sup inf |||t dt- jtzdt|
O<as<l fF)® LG T

sup inf ||jt2dt jtldt|}}
tG]" udF® T

sup{max{ sup inf ||[(t~1t,)dt],
O<as<1 8 a0 B LT (0) R

sup inf || (- t)dt|}
LG uHFOI 7
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< sup{max{ sup inf j||tl—t2||d1,
O<as1 8 109 R (10

sup inf [|It,~ t; ||df}
t,0G(t)* WO T

< [ sup d(E (1).G (1)d

T O<a<1l

= j D(F(t),G(t))dt
A

Hence:

D([F(t)dt, [G(t)dt) < [D(F,G)(t)dt. m
T T T

Theorem (2.5):

Let F: TO — E", be integrable and(@d T, then:

to+p c to+p
j F(t)dt = j F(t)dt + j F(t)dt
to to C
Note (2.1):
Suppose that Al E" and define F: TI - E", by F(s)=A, for all sOT,
then:
to+p
j F(t)dt = pA

to

Theorem (2.6) [Song and Wu, 2000]:

If F: TO - E"is levelwise continuous, then it is strongly meable.

29



Chapter Two The Existence and Uniqueness Theorem of
Fuzzy Differential Equations

Proof:

By the levelwise continuity of F,°Fs continuous with respect to the

Hausdorff metric d for alx [1 [0, 1]
Therefore,FOjl(U) is open for each open U ip(R")

Since every open set il B an interval, then it is measurable
= for any real number a, the set {tT : f(t) > a} is measurable set

= F, is Lebesegue measurable functierF is strongly measurable.m

Definition (2.5) [Bed and Cal, 2004]:

A function R, : E' 0 - P(R") is called Hukuhara differentiable at a

point t, O R" if for h > 0 sufficiently small, we have:

Fa (tg) = fim et 2= (b)

Fa (to)_ Fa (to - h)
h

= |lim
h—?O_

_ im Fa(to *h) = Fy (to)
h-0 h

where the limits of Hukuhara derivative are takenhie metric space (fR"),

d), and K(to + )~ Fa(to) = (3 - b, a - b).

Also, the next theorem appears in [Song and WuQpP@fithout proof:

Theorem (2.7):

If F: TO - E"is level wise continuous. Then it is integrable.
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Proof:

Since F is a levelwise continuous, then we hayésFontinuous on a

compact interval T

Hence F is bounded and by theorem (2.6), F is stronglysuesble

Then F is integrable function, i.e..[ Fy ()dt exist
T
Therefore, by definition (2.6) we have F is intdgeafunction. =

Definition (2.6) [Song and Wu, 2000]:
A mapping F : TO - E"is called differentiable a 1 T, if for anya O

[0, 1], the set valued mapping(B = [F(t)]® is Hukuhara differentiable at a
point t with DF,(t)) and the family {DR(ty) | a O [0, 1]} define a fuzzy
number Hto) O E", which is called the differentiation of F gt t

If F: TO - E"is differentiable att0 T, then we say that' ) is the
fuzzy derivative of Fg) at the pointd

The next theorem appears in [Song and Wu, 200@owt proof:

Theorem (2.8):
Let F: TO — E' be differentiable. Denote &) = [f«(t), q(t)], then f,

and g are differentiable and [§)]® = [f (t),gy (1)].

Proof:

For h > 0, since
Fa(t + h) = Fa(t) = [fa(t + h) = fa(t), Gu(t + )= ga(t)]

Fo(t) = Fa(t = h) = [fa(t) — fa(t =), gu(t) = Gu(t = h)]
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Then since F is differentiable, then:

Fo (t+h) = Fy (1)

Ry (t) = i
at) hlng+ h
— im e (=R ({=h)
h-0 h
_ i Hat+h) =fo (1,94 (t+h) ~gq (1]
h-0* h
im fa®=fa (t=h).gq (t)-ga (t=h)]
h-0~ h
_ {”m fa(t+h) =fo(® ga(t+h)—ga(t)}:
h-o* h hoot h
l:"m fo (1) —fqlt _h)’ im ga(t)—ga(t—h)}
h-0 h h- O h
N {Im fa(t+h) =fa(®) _ | fa®=fa(t=h)
h-o? h hooo h
lim gO((t"'h)_go((t): lim ga(t)—ga(t—h)}
h-o? h hoo h

=[fo().9a (1)]

HenceR, (t)=[F®O1°=[fg(0),05 ()] m

Theorem (2.9) [Song and Wu, 2000]:

If F: TO - E"is differentiable, then it is levelwise continuous
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Proof:

Lett, t + h(O T, with h > 0. Then for ang [ [0, 1], to prove that F is

levelwise continuous, such that:

d(Fy(t + h), R(t)) = d(Re(t + h) = Fq(1), {O})

_ hd(Fa(Hhk)]—Fa(t)’{o}j

< hd(FG (t + h) B FC( (t)

. ,DFy4 (t)j + hd(DFR(t), {0})

< hd( P (t+ hr)] ~Fa () ,DFy (t)j + hd(F(t), 0)

where h is so small that the H-differencgtH h) — F,(t) exists. By the
differentiability, we know that the right hand sidgoes to zero asfH — 0"

and hence F is right continuous levelwise.

The left continuity levelwise is proved similarly.m

Theorem (2.10) [ Song and Wu, 2000]:

Let F: TO - E" be a levelwise continuous. Then for evefy T, the
t
integral G(t)= j F(S)ds is differentiable and' @ = F(t).
a

Proof:

Let a O [0, 1] be fixed. Since F is levelwise continuotisen for

arbitrarye > 0, t, t + hO T and h > 0O, then there exists &, €) > 0, such
that:
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d(Fu(t + h), R(1)) <e

whenever 0 < h 9(a, €). According to theorem (2.7), it is known that<- i
integrable, and by theorem (2.5) gives:

t+h
Galt+ ) - G()= [Fy ©)ds
t

Consequently, by note (2.1) and the property giRB, d), we have:

Ga ('[+ h)— G(x (t) ~ 1 t+h t+h
d( » F, (t)j = Ed[{ = (s)ds,{ E (s)d

t+h
1

< { d(F (). () d

<gd-0as Hl -0

This implies:
I|m GG (t + h) - GC( (t) — Fa(t)
h-o* h
and similarly,
lim Ga (t)_ Ga (t_ h) — Fa(t)
h-0 h

which complete the proof. m

The next theorem appears in [Song and Wu, 2000jowtt proof:

Theorem (2.11):
Let F: TO - E" be differentiable and assume that the derivatiy® 5

integrable over T. Then for eaclisl, we have:

S
F(s)= F(t) + j F LT e (2.12)

to
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Proof:

Since F is differentiable, then by definition (2.6)e have:

m Fo (to +h) —Fy (tp)
-0 h

F (tg) = i
a\'o h
Then we can write this formula as:

Fo(to) = Fa (t°+hr)]_F°‘ (o) s 1o 0

i.e.,
hF 4(tg) = Fa(to + h)— Fy(to) as hd - 0

Then by note (2.1), we have:

t0+h
Folto+ h) = Fo(to) = [ Fy(t)dt, as hd — 0

to

Let s=t; + h, we have:

S
Fu(S) = Fulto) = j R, (D) dt
to

S
= Fi(s)=Falto) + [ Fy (el
to
S a
= [FOF = [F@)I"+ | [FOd
to

Then by definition (2.5), we have:

S
F(s)= F(t) + j F(t)dt. m

to
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Definition (2.7) [Park and Han, 1999]:

A mapping f : XE" 0 - E" is called a levelwise continuous at a point
(to, Xo) O TxE" provided that for any fixed 0 [0, 1] and arbitrarg > 0, there

exists ad(g, a) > 0, such that

A, 3)]%, [F(Eos X0)]%) S € vorererereeeeeeeeeeeeee e s eeeeee e, (2.13)

whenever [t ty| <3(g, a), and d([x{, [x0]*) < (e, a), forall tO T, x O E,
that is for alla I [0, 1].

2.3 THE EXISTENCE AND UNIQUENESS THEOREM OF
FUZZY DIFFERENTIAL EQUATIONS

Assume that f :3E" 0 - E"is a levelwise continuous function, where

the interval I={t: [t —t|<d< a}.

Consider, the fuzzy Cauchy problem (2.1), whggell E". We denote,
J = I1xB(Xo, b), wherea>0, b > 0yXI E,

B(Ko, b)={X 0 E" | D(X,%0) € B} wevrevremeeeeeeseseeeeeeereresreneen, (2.14)

Definition ( 1.8):

A mapping X : | 0 - E" is a solution to the problen¥.Q) if it is

levelwise continuous and satisfies the integrabéiqu:

() = %o + jf(s,i(s))ds, FOF @I LTI evvoveeeeeeee e (2.15)

%]

Returning to the main question of proving the etse and uniqueness

of solutions of (2.15), we outline a plausible nogthof attacking this

36



Chapter Two The Existence and Uniqueness Theorem of
Fuzzy Differential Equations

problem. We start by using the constant functi@g(t) = X, as an
approximation to the solution. We substitute thppraximation into the right

hand side of (2.15) and use the result:

t
Ra(t) = Ko+ [F(s,%(5))
to
as a next approximation to a solution. Then aftebsstuting this
approximationX (t) again into the right hand side of (2.15) toabtwhat we
hope is a still better approximaticiy(t), given by:

Xalt) = Ko+ [f(s,%(s))d

and so on continuing in this process. The goal id a mappingk with the
property that when it is substituted in the righhd side of (2.15) the result is
the same mapping x. If we continue in our approxiomaprocedure, we may
hope that the sequence of functionsX.{)}, called successive
approximations, converges to a limit function witfis property. Under
suitable hypotheses this is the case, and precib&yapproach is used to

prove the existence of the solution of the integrplation (2.15).

We will consider the problem (2.1) first with f domuous on a rectangle:
R={(t, X) | |t-t < a, D(X, Xo) < b}

centered at {f Xo). We assume that f is bounded on R, that is, theigs a

constant M > 0 and L > 0, such that:

d([f(t, %)]°, 0)< M, d([%f(t,f()]“,O) 2 TS (2.16)
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for all a [J [0, 1] and for all points (tX) in R. If (t, X,) and (t,X,) are two
points in R, then by the mean-value theorem, tbgigts a numbar between

X, and %, such that:
[f(t, %2)]" = [f(t, X2)]" = [aixf(t,n)} ([X2]" = [%4]%)
Since the point (1)) is also in R,dﬂaixf(t,n)} ,0] <L, and we obtain:

d([f(t, %2)]% [f(t, %] < LAQ K% [K2]%) werererrerrererrereererseernenn. (2.17)

valid whenever (tX 1) and (t,X,) are in R.

Definition (2.9):

A function [f]* satisfies an inequality of the form (4.17) for &ll X ,),

(t, X,) in a region D is said to satisfy a Lipschitz ctimh in D.

We have already indicated that the use of appraxemgrocedure to
establish the existence of solutions. Now, let wding@ the successive

approximations in the general case by the equations

)~(0(t) = Xo

t
%i(t) = Xo + jf(s,xj_l(s))ds, 120,152, oo @1
to

Before we can do anything with these successiveoappations, we
must show that they are defined properly. This radhat in order to define
Xj on some interval I. We must first know that thenpgs, X;(s)) remains in

the rectangle R for every sin I.
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Lemma (2.1):

Definea to be the smaller of the two positive numbers é [aiv. Then
the successive approximatioRggiven by (2.18) are defined on the interval |

given by [t tp| < d, an on this interval, we have:

D(X;(t), Xo) S M[t—to| <D, j= 0, 1, 2, ... oovrereeeeeeeeeeeseeesnre (2.19)

where M= D(f(t, x), 6), 0 O E", such thalf)(t) =1, for t= 0 and O otherwise
and for any (tX) U .

Proof:

We shall prove this lemma by induction. It is ohwsdor j= 0, let t[I I,
from (2.18), it follows that, for F 1:

to

which proves xt) is levelwise continuous on+tto] < d < a, sinceXy and f

are levelwise continuous.

Moreover, for anyx [J [0, 1], we have:

d(x1" (%Y =d | | f(s%(s))d% ,

t

< jd([f(s,yo(s)j“ (j d

to

<

jd([f(s,xo(s)j“ q o+ ....................................... (2.21)

to

We take the supremum to the two sides of (2.21)haves:
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supd([X1()]% [Xc]%) < sup

O<a<l O<a<l

jd([f(s,xo(s)j“ q o+

to

j;gg dlfsx 6F 9 %

<

Then:

D(X4(t), Xo(t)) <

jD(f(s,s(O (s).9 d}

to

t
jMd < Mt - tq|
to

If |t - to| < , where M= D(f(t, x), 0), 0 O E" and for any (tx) O &

Now, assume that 1 <41 < j is levelwise continuous on-tty| < é and

that:

D(X;-1(t), Xo) S MJt =t S MBS Do (2.23)
If |t - to| < , where M= D(f(t, X), 0), 0 0 E" and for any (tx) O J.

From (2.18), we deduce tha(tx is levelwise continuous on+tty| < o,

since x0 and f are levelwise continuous. Then:

d(%,O1% [%l) = d [ [T, (s»o% ,
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t

< j ol([f(s,3<j_l )] c) d:

to

jd([f(s,xj_l ()] q d}

to

<

Upon taking the supremum on two sides, yields:

t

et

0

sup d([x;()]% [Xd") <

O<a<l

By definition of D, we have:
D(Xn(t), K0) S MIt = to] S MBS D cvoeeeeeeeeee e (2.24)
If |t - to| < 3, where M= D(f(t, X), 0), 0 O E", for any (t,X) 0 &.

This establishes the lemmam

Now, in order to explain the choice &fin lemma (2.1), we observe that

the condition d([f(t,x)]%, 0)< M for a O [0, 1] implies that a solutio% of
(2.1) can not cross the lines of slope M a through the initial point
Xo). The relation (2.19) established in the above nbamsay that the

successive approximationsdo not cross these lines either. The length of the

interval | depends on where these lines meet ttiamgle R. If they meet the
vertical sides of the rectangle (Fig.(2.1)), them defined = a, while if they
meet the top and bottom of the rectangle (Fig.j2tBen we defin® = b/M.
In either case, all the successive approximatie@mam in the triangles

indicated in the figures.
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One can now state and prove the existence and emegs theorem for a

solution of a fuzzy differential equation.

(tn.zptb) (to.=pth)
: tnan
-------------- eETie e (ta, %) s--msepamass ot (B Ha, %))
to.x0) i
Cf=a ; ci=h/I
le——— I ——— T
Fig.(2.1) Fig.(2.2)
Theorem (2.12):

Assume that:
(i) A mappingf:d0 - E"is level wise continuous.

(i) For any pair (tX), (t, ¥) O &, f satisfied contraction condition, such that:

SIS S (7)1 T [( . S 572 [ (2.25)

where (< L < 1 is a given constant and for amy] [0, 1].
Then there exists a unique solutign= X (t) of (2.1) defined on the interval:

[t= o] £ 3= MIN{A, BIMY .o (2.26)

where M= D(f(t, X), 6), 0 0 E", such tha@(t) =1, for t= 0 and O otherwise
for any (t,X) O L.

Moreover, there exists a fuzzy set-valued mapgilg] — E", such that

D(Xq(t), X (1)) 0 - 0on [t=1| < d, as nJ — oo, with [Xo]° =0,a O [0, 1].
Proof:

Lemma (2.1) shows that, consequently, we concliode{& .(t)} consists

of levelwise continuous mappings or [f| < 8, such that:
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(t, %i(0) O, [t=to] 8, 1 =1, 2, cor oo (2.27)

Let us prove that there exists a fuzzy set-valuagping x : IJ — E" such

that D(X n(t), X (t)) O - O uniformly on |t tp| <, as nl] — oo,

Now, for j=2, from (2.18)

Ko(t) = Ko + Jf(s,i(s))ds ....................................................... (2.28)

%]

From (2.20) and (2.28), we have:

AR, [,001) = d[[f f(sfxl(s»d% !J f(s:y (s))dH

to

< j d([f (s, % )P, [F(5,% (SN )t (2.29)

for anya O [0, 1].

According to the condition (2.25), we obtain:

jd([f (5. % (SHI [ (s.% () )ds=< de([il(S)]“ [Xo]")ds
Whicho implies to: 0

d([%2(0]% [X1(D]%) < j.Ld([il(S)]" [Xo])ds

and hence:

t

supd([X2(t)]°, [X1(D)]) < sup J.Ld([il(s)]a [Xol")ds

O<a<i O<a<i
to

<L [ supd(py ()T Do I )t
tOOSO(sl
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By the definition of D, we obtains:

D(X(t), X1(t)) <L j DIEAQ A 1o ST (2.30)

to

Now, we can apply inequality (2.22) in the rightadaside of (2.30) to give:

D(R(t), %a(t) < ML [[s~ 1, |
62

=|\/|L|t'2t|0|2 SML s (2.31)

Starting from (2.22) and (2.31), assume that:

D(Xn(t), Xna(t)) < ML™? Pl

and let us prove that such an inequality hold<€Xgx ,.1(t), X n(t)).

Indeed, from (2.18) and condition (2.25), it follewhat:

[ts.%, (s»o% [ |t (s))d}

to

d([Xn+2®]%, [Xa(D]) = d

< [d1f (s, %, (F [F(5. %2 (S)F )

< j LA(R  (S)® [% (S ) AS v (2.33)

Hence:
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O<a<i O=<o<l

supd([Rna(®1%, [X:(O1%) < L | sup d([x, (S)F s ()1 )

then the definition of D yields:

to

According to (2.32)

L — _ n+1
D(Xn+1(t), Xn(t)) < L"M J‘Mds = Man
n! (n+1)!
to
6n+1
ML = e, (2.35)
(n+1)!

forn=1, 2, ... and |t ty| < d.

® n+1
It follows from (2.35) that the seriei%((;?l)l is dominated on the
n=0 '

(Lé) n+1
(n+1)!

interval |t— to| <a by the series of positive constanl%sZ , Which is
n=0

converges to (M/L)(exp@ - 1).

(o]

By the comparison test, the seriez
n=0

M(Lé) n+1

L (n+1) converges (in fact,

uniformly) on |t— to| < .

In view of the left hand side of (2.35), this ingdithe supremum distance

(and uniform) convergence orHt| < & of the seriesZ[f(nﬂ(t) -, (1)]
n=0
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Since we can replace the sequenkg(f)} and the series:

00

xo+§:pga)—xmﬂo] .......................................................... (2.36)
n=1
by:
Ko() = Ko+ [K1(t) = Kol + +v + [K() = Krra(D)]evererrererrrrrrnn (2.37)

because they have the same convergence properties.

From (2.37), &, (t)} is converge uniformly to every( | to a function of t,

we call x(t).

Now, from (2.37) according to the convergence aoteof Weierstrass,
it follows that (2.37) having the general ter(t) — X -1(t), so DX (1),

Xn-1()) O - O uniformly on |t to] < das nlJ — oo.
Since X -1 IS levelwise continuous on the closed interval |

Hence, there exists a fuzzy set-valued mapping!| O - E", where x is
levelwise continuous on closed interval I, sucht tbéx (t), x(t)) 0 - O

uniformly on |t—to| <, as N[l - o

From (2.25), we get:
d([f(t, Xa()]°%, [ft, % (N < Ld([ X1 [X DY) coreeerreeiirennne (2.28)

since (t,X (t)) O % and for anya [ [0, 1], we take the supremum to the two

sides of equation (2.38), to get:

sup d([f(t, Xn()]° [f(t, X ())]) <L supd([Xa]% [X 1))

O<a<i O<a<l

By the definition of D, we get D(f(tX (1)), f(t, X (t))) < LD(Xn(t), X (1))

0 - 0 uniformly on |t to] < d as nJ - . Hence:

DI 0) TR 1)) N I o O (2.39)
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Taking (2.39) into account, from (2.18), we obtdor,n] — o

() = %o+ j TR0 ) 1 (2.40)

to
Consequently, there is at least one levelwise nanotis solution of (2.1)

We want to prove now that this solution is unidilmat is, from:

§ ()= %o+ j TRV ) 1 T (2.41)

to
on [t—to| < 9§, it follows that D (t), ¥ (t)) = O.

Indeed, from (2.18) and (2.41), we obtain:

t

A1y OF, %019 = d [ | f(s,y(s))o% l [t (s))d}

to

< [d(f (s, YO [F (5%, (SN )

< j RO I O ) 1: (2.42)
foranya [0, 1], n=1, 2, ... Hence:

supd([y O1°, [Xa®]) < [ L sup dAV(S)F B ()T )

O<a<i O<as<l

Then from the definition of D, one get:

D(¥(1), Xa(t) <L j D(F(S), %, (S))ds N=1,2, c.ovoereeane. (2.43)

%]
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But, since (t,y(t)) O J, then y(t)[ B(X o, b), we have D§(t), Xo) < b on |t—
to] < 9, ¥ (t) being solution of (2.41). It follows from (2.13vhen n= 1, that:

D(Y(®), %2() < L [ D(5(s),% (5)c

t
< Lbj AS = L[t = o] covvvrereeeeeeeee e, 2.44)

%]

on |t— to| < 6. Now, assume hat it is true for:
C o alt=t I
D(V(t), Xn(t)) <bL DT (2.45)

On the interval [t to| < 0. From:

D(Y (0, Knwa(®) < L [ DF(S),X, (s))d

n+1| t- to |n+1

(n+1)!
Consequently, (2.45) holds for any n, which leaxdhe conclusion that:

D(§ (1), %n(0)) = D(K(D), Ka(0) T = O ceoreeeeeereeeeeeeeereeeseeeeeeeens (2.47)

On the interval [t to] < d as n[J — o, which implies that:
DY), X () =0,on|t—d<dasnld - oo, i.e.,y(t) =X (1), 11.(2.48)

From (2.48) we have (2.1) have a unigue solutiom.
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2.4 EXISTENCE AND UNIQUENESS THEOREM USING
SCHAUDER FIXED POINT THEOREM

In this section, we shall take the fuzzy initialu@problem as defined in
section (2.1) by equation (2.1). Here, we shallestae existence theorem in

different approach using Schauer fixed point theore

Now, as it is previously defined in section (2.8)nsider a rectangular

region R which is a subset off" consisting of all (tx (t)), such that:
R={(t, X ) ||t—tol<a, DX, C)SD}.rrrriiiiiiiiiiiiiiieee (2.49)

Where c is a point of 'Hn-space), b > 0, each fixed throughout this secti
Let a fuzzy function f(t,x (t)) be a levelwise continuous in R, and consider
the following fuzzy differential equation as in §ea one.
(1) e { (P (1 ) I PRRURRRRRRR (2.50)
dt
we seek about a solution of (2.50) subject to tizey initial condition:

X (1) = CfOr t= 0 e (2.51)

which exists for t in = [t — to| < a, for some a > 0 and for which (s, x(s))
remains in the rectangular region R for each s Wé shall call this problem
the forward problem. In the backward problem, oeeks a solution on an
interval —a < |t — to| for a > 0. However, replacing t byt in (2.50) and
converts a backward problem to a forward problerth whe right hand
member—f(t, X(t)). Thus it is sufficient to direct all our attgon to the
forward problem. We remark that there is no losg@ferality in assuming

that the initial value c is given for=tO0.
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The forward fuzzy initial value problem is equivatdo the problem of
evaluating the solution of the integral equatiomlagiously done in definition
(2.9)

X(t)=c+ If(s,i(s))ds, a2 S D (2.52)
0

It is instructive to consider a solution of (2.529 a fixed point of a
certain transformation. To this end, define for redevelwise continuous

mapping x(t) (defined on I, with values in the eegjular region R), the

transformation:
t
T(% (M) =c+ jf(s,i(s))ds ..................................................... (2.53)
0
Then:
T S TR (L) i e (2.54)

is a levelwise continuous (set-valued) function ahd for sufficiently small t
remains in R. Since the fuzzy function f(t, x(§)levelwise continuous, then

it is necessarily bounded in R as in equation (2 Hiénce, let M be such that
D(f(t, X(£)), O)S M e e (2.55)

for each (t,X) O R and for alla O [0, 1]. Then from (5.4) and (6.4), we

obtain

t
D(y, ¢)=D(T(x (), c)< ID(f (s,%(s)),0)ds
0
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so long as (sx (s)) is in R, and letting:

Then (2.56) implies that O, c) < b for [t— ty| < @, so long ax (t) satisfies
D(X(t), c) < b, for |t— ty| < a. This is to say that the set S, consisting bf al
levelwise continuous fuzzy functions= (t) with values in R for [t to| < b, is

mapped into itself by the transformation (2.54)s 8alled an invariant set of

transformation.

A solution of the integral equation (2.52) is aefikpoint of T, i.e., a
solution of the differential equation is a fixedipoof %(s) = T(x (s)) and
clearly that belongs to S. If it can be shown thate exists at least one fixed
point of T, then a solution of the fuzzy initial value prambleexists. If T
possesses exactly one fixed point, the solutiorthef fuzzy initial value

problem is unique.

It is typical in fixed point problems to considé&rative procedures. One
selects some member of S (arbitrary), &d¥, and defines recursively ¥ =
T, x@=7T ), ..., x®=7(x¥), ... The sequencg ©, x @,
..., generally wanders about in S and may or not Veayes". Numerous
devise might be employed to increase the changesrofergence, improve
on the starting poink ), average at each step or over several steps, etc.

In the present case, the iterates are known agssige approximations,
from which the process receives its name. Typicale chooses as a first
approximationk © = c, i.e., the constant initial value itself. Alttgiy this is

not essential and often represents a very pooralapproximation.

For completeness purpose, the statement of Schéxeeémpoint theorem

will be given.
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Theorem (2.13) (Schauer Fixed Point Theorem) [Al-Hamaiwand, 2001]:

Let M be a non-empty, closed, bounded and convex sobseBanach

space X, and suppose: M O - M is a compact operator, théh has a

fixed point.

Since the region R is non-empty, closed, boundetl amvex subset
from IXE" and since (E D) is complete metric space, ther,(B) is complete

normed space from that we havée,(B) is a Banach space.

Also, since (RR"), d) is metric space and [(t)]* O P(R"), O a O [0,
1], 0 x (t) O E", then [R}, O P(R", O a O [0, 1]. Clearly from the definition
of the region R that [R]is bounded[J a O [0, 1], which implies that [R]is
relatively compact for altx [1 [0, 1]. Hence the fuzzy region R is relatively

compact.

Also, the operatorT : R O — R is compact operator since it maps
bounded region into relatively compact region. Thgntheorem (2.13) we
haveT has a fixed point from the definition of S, we carite T such that
T:S0 - S.

After that, the next theorem can be stated whicthésexistence of a

solution of fuzzy differential equation.

Theorem (2.14):

Let k@ bein S, i.e., let® be a levelwise continuous and satisfyxty|,

c)<b, ie., (t,x?) OR, for |t- to| < a. Define inductively for k 0, 1, ...:

t
26Dt = T (x9) = ¢ + j £(5, %9 (S)) S (2.58)
0
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If f(t, X (t)) is a Lipschitz function, i.e., if there exdsa constant L > 0O,

such that:

D(f(t, X (1), f(t, § (©)) < LD(X (1), T (1) ervrererrrrerrrrererrerererernens. (2.59)

For (t, X (t)) and (t,¥ (t)) in R and for anyx I [0, 1]. Then the sequence

© @ .. converges to a solution of fuzzy initial valpeoblem (2.50)-
(2.51).

Proof:

First, we note from (2.58) fork O that:
t
x O(ty=c+ jf(s, X (s))ds
0
Hence:
t
(% @ _ g (O))(t)= c— % (O)(t) + jf(s’;((o) (s))ds
0
Then by (2.57),
t
D()~( (1), % (O)) < D(C, X (O)) + J.D(f (S,X(O) (S))ao) d:
0

S D A+ MEE 2D oo (2.60)

fort O I, from (2.58) for k= 1, we obtain:
t
x®m=c+ju&%36»m
0

Then subtracting “(t) from % @(t) gives:
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t t
(%@ - % O)(t)= j f(s,xV (s)) ds - j £(s,X9 (s)) ds
0 0
therefore, from (2.57), we obtain:
t t
D(x @, x @) = D[ j f(s,x® (s))ds:[ F(sTHO) (s))d}
0 0

t
< j D(f(s.X9 (5)).f(s %% (5)) d

0

Since each (st (s)) and (sx @?(s)) is in R, for €1 I, we have using (2.59):
t

D(x @, x W) < I LD (x @(s), @ (s)) d

0

With together with (2.60), yields:

t
D(x @, x W) <L j 2DdS = 28(ML) oo e (2.61)
0

fortd I.

More generally, we have that for k > 0,

D(x ® x ®y =D _[ f(s,x® (s))ds:‘. HE S (s))d]
0 0

< jD(f(s,X(k) (s)), f (s, ¥ (s)) d
0

and sincex ®(s) andx “(s) lying in R for S 1, w have using (2.59), that:
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t
D(x ®V, g ®) < | j D(%M(), D () Be.orrorrrrorrrv (2.62)
0
For tO I. Now if:
< ey o (k1) (L)
B R T — (2.63)

For tO I, then:

t
2bl¢ 4

o (k+l)qy o (K
D(x ©(s), % ¥(s))< =

for t O I, but (2.64) is (2.63) with k replaced by k + ddasince (2.61) is
(2.63) for k=2, we have (by mathematical induction) that (216dys for all

k> 2. Now for k= 2, p > 0, we have:
D()~( (k+p) % (k)) — D()~( (k+p) 4 % (k+p-1) 4 L+ X (k+1) % (k+p-1) 4 O+ % (k))
< D()~( (k+P)1 % (k+P‘1)) + D()~( (k+I0‘1)1 % (k+P‘2)) + .+ D()~( (k+1)1 % (k))

which together with (2.63) implies that:

D(% 9, % ©) < pp| (LD (LOTPE | (LD "
(K+p-D! (k+p-2)! k!

< Zb{(La)k + (La)k+1 +:|
kI (k+1)!

< Zbé.a (La)k
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k
with [La| < 1, then for ¢ 0| < b. But lim {Zbe"a (LS) } = 0, and so (2.65)

k—>0°

implies that the sequence@, x @, ..., converges (in the sense of Cauchy)
uniformly on |t— 0| < b. Clearly, then, if we denote by x the limit, \Wwave
from (2.58):

N k - o0

t
2 = limx®* = ¢ + fim ff(s,x(") (s))ds
0

t
=c+ |f(s, lim %) (s))ds
0

Since the convergence is uniform far t, and f is uniformly continuous.
Thus, the theorem is proved.

And by using Lipshcitz condition, then uniquenesssatisfied in the same

manner. |
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CHAPTER THREE

LINEAR MULTISTEP METHODS FOR
SOLVING FUZZY DIFFERENTIAL
EQUATIONS

3.1 INTRODUCTION

Numerical and approximate methods, may be sometirties most
suitable methods for solving differential equatioaad in particular fuzzy
differential equations. Therefore, this chaptersisis of studying the general
linear multistep methods for solving fuzzy diffeti@h equations. This
consists of seven sections. In section 2, we dsstimear multistep methods,
while in section 3, the order of linear multistegethrods is discussed. In
section 4, the theory of general linear multistegthod is presented. Also, in
section 5, a modified approach for solving fuzzyfedential equations
numerically, which is the variable step size metiddch has the utility of
improving the accuracy of the results? Section és@nts the analytical
methods for solving fuzzy differential equationsdfly, section 7 presents
some examples to illustrate the numerical solutadnfuzzy differential

equation.
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3.2 GENERAL LINEAR MULTISTEP METHODS

Consider the fuzzy initial value problem for a dendjrst order fuzzy
differential equation:
y'(x) =f(x,¥(x)), ¥(a)=n

then the r-level equation, such that:

[V'T =X, ¥)]r [V @) = IN]r o (3.1)

We seek the solution in the range<a < b, where a and b are finite, and
assume that the differential equation satisfies @kistence an unigqueness
theorem that illustrated in chapter two, i.e., ttta& problem has a unique

continuously differentiable solution, which we dhadicate it by [y (x)], =
[y (1), ¥ (0] rafo, 1].

Consider the sequence of pointg{gefined by x =a + nh, =0, 1, ...
The parameter h, which will always be regarded @sstant, except where

otherwise indicated, is called the step length.

An essential property of the majority computatiomaéthods for the
solution of (3.1) is that of discretization; that we seek an approximate
solution not on the continuous intervat x < b, but on the discrete point set
{Xn|n=0, 1, ..., (b-a)/h}. Let [y,], be an approximation to the theoretical
solution at x, that is, to F(x.)]., and let Fulr = [f (X0, V0] If @
computational method for determining the sequeh§eg]{} takes the form of
a linear relationship betwee® [, [f ol j =0, 1, ..., k. We call it a linear

multistep method of step number k, or a lineardpshethod.

The general linear multistep method may thus béewrias:

on
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k k
D aFnale TN Bfaals oo (3.2)
j=0 j=0

In the case of lower and upper solutions, equat{®®) can be

decomposed into:

k k
D AT (N =hD iR (1)
j=0 j=0
and e —— (3.3)

k k
D 09, (0=h> BGy (D
j=0 =0

whereaq;, cx]f, B; and B]f are constants to be determined. It is assumeaith¥at

0 and af( # 0 and that not both af, and3y are zero in the same time. Also,
not both of a, and B, are zero. The arbitrariness will be removed by

assuming throughout this chapter by lettng= 1 andO(T( = 1. Hence, (3.3)

can be written equivalently as:

k k-1
Vo) = DD BiF (0= 0% (1)
j=0 j=0
and (3.4)

k k-1
() = Y _BiGo (=D 0 ¥ . (1)
j=0

=0

Remarks (3.1):

1. Such equations are so difficult to handle theoadliichan are non-linear

fuzzy differential equations, but they have pradti@advantage of

o9
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permitting us to compute the sequencg Jf} numerically. In order to
do this, one must first supply a set of startintues, [Yol. [V -

[ V«-1]r (supply by using any one step method).

2. The two equations in (3.4) are explicif@if=0 andBT( =0, and implicit
if B # 0 andp, # 0.

3. For a given step number k, implicit methods camiagle more accurate
than explicit ones, moreover, enjoy more favoraitddility properties.

4. In (3.4) each equation is a k-step method and eaehcontain 2k + 1

unknowns.

3.3 THE ORDER OF LINEAR MULTISTEP METHOD

From here, and for simplicity, the discussion Wi given for the upper

solution ¥ (x; r), in which a similar manner is satisfied foe lower case.

Associated with the linear multistep method (3d&fine respectively the

linear difference operator L by:
J— k JE— —_—
L(Y(x; r); h)= Z[cxjy(x +jh;r) =hB; ' (X +jhn] e (3.5)
i=0
where ¥ (x; r) is an arbitrary function, continuously difémtiable on [a, b].
Expanding the test functiop(x + jh; r) and its derivativg'(x + jh; r) as

a Taylor series about x, and collecting similantgin (3.5), gives:

L(Y(; 1); h)=Coy (x; 1) + Ghy D0 n) + .+ Gy D0 1) + ..
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where G, 1=0, 1, ..., are constants.

A simple calculation yields the following formularfthe constant {in

terms of the coefficients; andp;:

[k

Zcx i g=0
j=0

k _aq _no1
ZO:|:((£ c(j+((qul)!|3j},q>0
J

Definition (3.1):

The difference operators (3.5) and the associatedd multistep method

(3.3) are said to be of order p ifin (3.79€C, = ... = G, =0, but G, #0.

Remarks (3.2):

1. The upper local truncation error af.xof the method (3.3) is defined to
be the expression §((X.; r); h). This is given by (3.5) where ¥(x; r) is
the upper theoretical solution of the initial vajueblem (3.1).

2. The terms G.h*"'§®(x,: r) is called the principle upper local

truncation error., where p is the order of the rodtnd G, is called the

upper error constant.

3. The errorY (Xt 1) =V nadr) = Bnsk IS the upper global truncation error

or accumulated upper local truncation error.

7
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The necessary and sufficient conditions for LMMhtave an order p can
be studied by using two associated polynomialschviaire given in the next

definition.

Definition (3.2):

The first characteristic polynomial of the LMM ipper case in (3.3) is
given by:

k
p(s) = ZO(J'SJ = oS + oS+ L+
j=0

while the second characteristic polynomial is gitagn

k
0(s)= D BiS =BeS + BaS™ + .. +o
i=0

Also, it is important to notice that d(s) is given, then one can find a
unique polynomiap(s) of degree k, such that the method has an qriek.
Again, reminding that the last results and defoms are also satisfied and

could be similarly defined and discussed for theeiocase solutiofy (x; r) of

the fuzzy differential equation (3.1).
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3.4 THEORY OF GENERAL LINEAR MULTISTEP METHOD

3.4.1 Classification of LMM:

Consider the LMM in upper case, and according &rtots of the first

characteristic polynomigd(s), and whether it is explicit or implicit.

If the roots ofp(s) equals 1 and 0, then the methods are calleghér
Adam's type, and if the LMM is explicit, then itésalled of upper Adam
Bashforth type, while if it is implicit, then i isalled of upper Adam
Moulton type, i.e., in upper Adam's methods, weehthe following:

p(s)= s - g
=g Hs-1)=0
Similarly, one can make this also on lower Adamethads.

If the roots ofp(s) equals-1, 0 and 1, then the methods are called of
upper Nystrom type, if it is explicit and if the thed is implicit, then it

is called of upper Milne-Simpson type, and therefor
p(s) =8 - &2
=44 -1)
=d4s-1)(s + 1)

One can make this similarly in lower case.

3.4.2 Derivation of Some Linear Multistep Methods:

Any specific linear multistep method may be deriveda number of

different ways, most important of way will be giveaxt in details:

T
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(i) Derivation Through Taylor Expansion:

This method could be considered as most simpledtaddor derivation
of some LMM.

Consider the Taylor series expansion §dx, + h; r) about ¥

2
¥ (Xn + h: )= §(xn; 1) + hy O(xq; 1) + %ﬁ(z)(xn; DA cee e, (3.8)

if we truncate this expansion after two terms amassitute fory @(x; r) from

the fuzzy differential equation (3.1), we have:
§ X+ h; U § (s 1) + hFOg, § (i 1), § (X0 1), (3.9))

a relation which is in truncation error given by:

2 3

LT PN | T W
oY (Xn; r)+§y (Xns 1) F eer e e (3.10)

Equation (3.9) express an approximate relation ®éemnexact values of
the solution of equation (3.1). Also, we can intetgt as an exact relation

between approximate value of the solution of equa(3.1). By replacing

¥ (Xn; 1) @and ¥ (x, + h; 1) by ¥ o(r) and ¥ ,.4(r), respectively, yielding:

T e1() = T 1) F OB e (3.11)

which is an upper explicit linear one step metHods, in fact, upper Euler's

method.

In the same way, one can get lower Euler's methbd; can be
considered as the simplest of all LMM's. The eassociated with eq.(3.11)
as expressed in eq.(3.10) (multiplied by +1-&raccording to the sense of
definition of error) and is called the upper lotahcation error or upper local

discretization error.

£
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Consider now Taylor series expansi§rx, + h; r) andy (x, - h; r)

about x, and subtracting the two expansions, we get:

3
¥ (Xn + h; 1)= (X0 = h; )= 2hy D(x; 1) + % VO 1) + ...

Arguing as previously yields the associated LMM
Y1) = ¥ o-a(r) = 2hRy(1)

This can be brought into the standard form (3.3ydplacing n by n + 1, to

give:

§n+2(r) - Vn(r) = 2hF;.4(r)

This is the upper Mid-Point rule, and in the sanag getting lower Mid-
Point rule.

The upper local truncation error is:

3

% T90) + ..

Similar techniques can be used to derive any LMM @v¥en
specification. Thus in order to find the most aeterone-step implicit

method,
§sa(r) + Ao n(r) = hB1Fnsa(r) + BoFn(1)
then the associated approximate relationship:
¥ (%0 + h; 1) #0067 (s 1) U h[BLY B (xy + h; 1) +BoY P(xo; N].... (3.12)

and choosingnO, 1, B0 so as to make the approximation as accurate as

possible.
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Now, expansiory (x, + h; r) andy ®(x, + h; r) and substituting in (3.12)

and collecting the terms on the left hand side gjive

Co¥ (Xn;)+Cih Y DX +Ch? T @(xiN+Ch* T B xin)+... 1 0.... (3.13)

1 1 1
WhereQ=1+ao,C1=1—[31—BO,CZ=E—Bland Q=E—E[31.

Thus, in order to make the approximation in (3.53) accurate as
: 1 1
possible, one can choogge=-1,03: =B = E' Then G takes the valuel—z.

Therefore, the implicit one-step method is now gibg:

= = h
Ynea(r) = §n(r) = E(Fnﬂ(r) + Fy(1)
This is the upper Trapezoidal rule with upper Idcahcation error given by:

1 .—
i_h3~(3) Xn + “a
oY (Xn)

We can derive all of the above rules in lower caseng similar

approach.

The most difficulties of this method of derivatienthat it leaves some

unanswered questions.
If one take Taylor series expansion in upper amgefccases about, X h
and if we get the same values for the coefficiemisf3;, 0(*; and [3J

respectively. Do we get the same values for thdficants in the infinite
series representing the upper local truncationreamd the lower local
truncation error ?. How to remove the ambiguitythad sign in the upper and

lower truncation errors ?.

7
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(if) Derivation through numerical integration:
Consider the identity:

Xn+2

Y (Xnez 1) = Y (Xn 1) = j (7A€ 1 @)1

Hence, replacing/’ (x; r) by F(x, ¥ (x, 1), ¥ (x, 1)) in the integrand. If our
aim is to derive, say, a linear two-step methodntthe available data for the
approximation evaluation of the integral will beetlwalues Fr), F.:(r),

Fno(r).

Let p(x) be the unique polynomial of degree twognag through the
three points (X, Kr)), (Xn+1, Fn+1(r)) and (%+2, Fas2(r)). By the Newton-
Gregory forward interpolation formula:

a(a-1)

P() = p(n +ah) = Fy(r) + abF (1) + ——

N?FA(r)

hence making the approximation:

Xn+2 Xn+2
[ Fosndx i [ peodx
Xn Xn

2
= (IR, +anF, (1) + %o((o( ~ AR ()] dx
0

=h@mo+mam+§ﬁam)

and expandingAF,(r) and A’F.(r) in terms of K(r), Fa(r), Fur) and
substituting in (3.11), gives:

imm—§40=gmmm+4ado+am)

v
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which is the upper Simpson's rule. Thus replacthfl) by the identity:
Xn+2

Y Xwz 1) = YO D= [ F0x1)dx

Xn+1

and replacingy'(x) by p(x), defined as above, then the following roelthill

be derived:
~ ~ h
YneoAr) = Vnear) = 1_2(5Fn+2(r) + 8Fh+a(r) — Fa(1))

which is the two-steps upper Adam-Moulton method.

Clearly, this technique can be used to derive anyubclass of LMM's
consisting of those methods for whieh=1,0;=-1,a;=0,i=0, 1, ..., j-

1,j+1, ..., k-1,and jz k.

The importance of such technique is such that tabdéishes a link

between the concepts of polynomial interpolatiod BNIM's.

Other methods for derivations are also presentdderatures, such as
the derivation through interpolation (see [Lamd&T 3], [Atkinson, 1989]).

3.4.3 Consistency, Convergence and Zero StabilftizFloMM's:
A basic property which we shall demand of an aaidptLMM is that

the numerical solution §,(x;r)} and {¥n(x;r)} generated by the method

converges, in some sense to the theoretical snlsut%(x;r), Y(X:r),

respectively, as the step length h tends to zedlondn - « and x, fixed. In
converting this intuitive concept into a precisémigon, the following points

must be kept in mind:

I.  Itis inappropriate to consider n as remainingdixeéhile h( - O.

A
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ii.  The definition must take into account of the aduhi#il starting values for

the upper and lower solutions ofy, V¥, ..., Yk-1, Which must be

supplied by using any one-step method, wherk

lii. If the term convergent is to be applied to the LMNEN the convergence
property must hold for all fuzzy initial value muken fold for all fuzzy

initial value problems:
y(X) = f(X, y(X)), y(XO) = yo

Subjected to the hypothesis of the existence amguaness theorem of

fuzzy differential equation to be satisfied.

The next definition is of great importance in datien of some LMM’s.

Definition (3.3):

The LMM is said to be consistent with the fuzzyiadivalue problem:
y'(x) =f(x, ¥(x)), ¥(Xo) = Yo
if it has an order g 1, to the two ordinary initial value problems:

yin =fx, 7. 9), 9(X0.1) = ¥,
¥y (x;r) =g(x, 2 ¥), ¥(Xq.1) = 9

Is consistent methods implieg €C, =0, but G# 0 in upper case an@}, =

C, =0, butC, # 0 in lower case, or

Zk:aj =0 and Zk:jaj =Zk:[3j
i=0 i=0 =0
Zk:a’; =0 and Zk:ja’; =Zk:[3’;
i=0 i=0 =0
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Lemma (3.1):

Consider the upper LMM (3.3), with the first andt@ed characteristic
polynomialsp(d;(u)) anda(d;(u)), respectively, then:

0(9;(u))
P'(3;(u))— uo' (§; (u))

oj(u) =

Proof:

Let &(u), O j =1, 2, ..., n; be the roots of the first characteristic
polynomial, such than(d;(u)) = 0, then using Maclurian series expansion, we

have:

2O GAO
1 2!

gi(u) = (0) +
truncation after the second term, we have:
g(u) = §(0) + wj(€),, 0 <€ <u
Now, to findd';(u), since the method is consistent, then:
P(§(u)) — uo(§(u)) =0
Then:
P'(§(u))dj(u) — uo’ (§(u))g(u) ~ o(§(u)) = 0
= &j(u)(p'(§(u)) — ua' (§(u))) = o(§(u))

0(9;(u))
P'(9;(u)) — o' (§; (u))

= &j(u)=

Also, in the same way we can prove for lower LMM3(3with the first and

second characteristic polynomig@i$d ;(u)) ando (& ;(u)), respectively. =
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Definition (3.4):

The LMM is said to be zero-stable (0-stable) ifcdlthe roots (zerosy's
(57s), i=1,2, ...k of p(s) = 0 (') = 0) satisfy §| < 1 (B < 1),
respectively, and; (5;) have a multiple zeros @f (s) @ (s)), respectively,
then §| < 1 (Bl < 1).

Theorem (3.1):

Assume the consistency conditions, then the LMMosvergent if and

only if the zero-stability conditions are satisfied
Proof:
For the if direction.

Suppose that the method in upper and lower caseeogent. To prove it

is zero-stable in the upper and lower cases|§ks, 1 and ¢*j| <1

For simplicity, consider the problem' = 0, y¥(0) = 0, then for upper and

lower cases, we have respectively:
§'(N=0,9(0;1=0
y'(N=0,¥9(0;1=0
which has the exact solutio§gx; r) = 0 andy (x; r) = 0, respectively.

The LMM takes the forms:
k —_—
Zajyn+j(r) =0, whereo, =1
j=0

and

v
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k

Za?gnﬂ.(r) =0, wherea, =1

Then:
Vi) = Zcx T2 (5 [OOSR (3.15)
T = D 00T (1) oo (3.16)

Then the solutiony(r) and y(r) will depends onyo(r), ¥1(r), ..., V(")

and yo(r), ¥a(r), ..., Yx-a(r), respectively, which are chosen to satisfy:

Na(h) = Max |, (010 = 0,85 M = 0 oo (3.17)
No(h) = Max |, ()10 = 0,8 M = 0 oo (3.18)

For contrary, suppose that at least one of thesrobtthe characteristic
equationsp(s) andp*(s*) of equations (3.15) and (3.16) respectivelg a

greater than one, i.e;|[s 1 and f$| > 1

Then the solution of the finite difference equasigB.15) and (3.16) are given
by:

¥u()=h@)" and ¥.()=h@))"
Then conditions (3.17) and (3.18) are satisfiedtic solution, i.e.,

ni(h) = Max |3, (0|

= Max |h@,) |

Osn<k-1

=h Max [, [

Osnsk-1

=hp/"0 - 0,ashd] -~ 0

vy



Chapter Three—— Linear Multistep Methods f&@olving Fuzzy Differential Equations

Similarly:
n(h) - 0Oashl - 0

But the sequence of numerical solutiofy,{r)} and {¥n(r)} does not

converge, since:
Max [Y(x,:) =, (NI and Max| y(x,:n)= 3, (1) [=hig, ™"

Consider h= (b — a)/N(h)= b / N(h). Then by using L'Hospital’'s rule, we

have:

lim B|a'>j [ = imbN |3, ' = oo
hoo N N

and similarly:

N o Q-
lim—|3 ' =
N -
h—>0

which says that the numerical solutions converge &md does not converges
to the exact solution\:((x;r) = 0, Y(x;r) = 0, respectively, which is a
contradiction.

Hence the method is zero-stable.

Conversely, suppose that the LMM is zero-stable. pfove it is

convergence.
For simplicity, consider the fuzzy differential edion ' =AYy, y(0)=1

Then the problems related to this fuzzy differdrgiguation in r-level sets of

solutions are given by:

FGr) =AY, 3(0;r) =1, ifA <0

14
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and
§'(x;r) =Ay(x;r), §(0;r) =1,ifA <0

To show that the termBy(Ah)]" and Cq[d o(Ah)]" in its general solutions:

Ya() = 2G5O0

n(r) = Zc’; [5, (\h)T

will be converge to the exact solutiong(x;r) = &% Y(:r) = &%
respectively on [0, b]. The remaining term$dAh)]", and G[&;(Ah)]", j =
1, 2, ..., k=1, converge to zero ash- 0.

Expandingdy(Ah), for simplicity the proof will be given for thiewer case

and similar argument could be carried for the upgsese of solution, using

Taylor’'s theorem:
Bo(Ah) = 8(0) + M &, (0) + O()
Then by lemma, we have:

0(9;(u))

5;(u)=— e
p'(9;(u)) — uo' (6; (u))

Hence:

6! (0) — 0-(60(0))
O p(8,(0)) - 0% 0’ (3, (0))

_ 0(8(0))
0'(85(0))

Ve
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k
Sincep(dy(0)) = Zajéé, (0), if 39(0) = 1, then by using consistency condition,
j=0

k
we havep(1) = ) a;8},(0) = Co =0.
j=0

Hencedy(0) = 1 is a root
Now, sincedy(0) = 1. Then:

o) _
P'(D)

5o(0) = 1

k k
Sincea(1) = ) b; andp'(8(0)) = > ja;85*(0)
j=0 j=0

k
P'(1)= ) ja
j=0
By consistency conditiond&=C; =0

Hence G = ijai B ibj = 0, then ijaj = ibj, which implies to
=0 j=0 j=0 i=0
p'(1) = o(1). Therefored, (0) =1
Hence:
So(Ah) = 1 +Ah + O(H)
=" - O() + O(H)
g

Therefore:

ye
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[Be(A)]" U [ = &M= e

Hence:

Max 0 -0 as ] - 0.

0<x,<b

[3,(h)]" - &%

Now, we have to show tha{Cl —» 1 as hiJ - 0. The coefficients of §&h),
Cy(h), ..., G1(h) satisfy the linear system:

Co+ Cr+ ... + Gy = Yolr)

Co[Bo(A)] + Ci[&(AD)] + ... + GealB-a(AD)] = (1)
Co[SoAN) + GBI + ... + Gea[BaAh)] ™ = §,4(r)

The initial valuesyy(r), ¥,(r), ..., ¥,_4(r) depends on h and are assumed to

satisfy the following:

n(h) = Max | =%, (] 0 - 0 as 1 - 0
O<nsk-1
which implies that:\imof/n(r) =1

The coefficient G can be obtained by using Cramer’s rule to soleeatove

linear system.
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Jo(r) 1 - 1
ya(r) O - Oy
oo D) 37 - 3
0 1 1 ... 1
O O v Oy
gt . Bl

and as i1 — 0, we have:

1 1 1
% & Oy

I S SR =

°" 11 1 1
60 61 6k—1
& & - 8]

Hence GO - 1 as hd - 0 and therefore the sequencg,(r)} converges
to y(x;r) = &>
Similarly, we can prove that the sequence of loa@utions {y, (r)}

converges tgy(x;r) = d*as hd - 0.

Hence the method is convergem
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3.4.4 Linear Multistep Methods for Solving Fuzzy firential Equations:

Consider a first order fuzzy initial value problegiven by:

¥'(x) =f(x,¥(x)), xO[x,, b]}
¥(X0) = Yo

where ¥ is a fuzzy function of x, f(xy(x)) is a fuzzy function of the crisp
variable x, and the fuzzy variable and ¥’ is the fuzzy derivative of and

¥ (Xo) = Yo is a triangular or a triangular shaped fuzzy numbe

The r-level set ofy (x) for x 0 [Xo, b] is [y (X)]: = [¥ (x; 1), ¥(x; 1)]. Also

(9" =[¥'(x; 1), ¥'(x; )], and
[f(x, 01 = £, §(x); 1), F(x, ¥(x); )]
=[G(x ¥, V), F(x. ¥, ¥)]
Because of’ =f(x, §), we have:
F'06 1) =1(X, FX); 1) =GX, JO 1), TG ) crvereirireieeienne, (3.20)

6N =1 (700 N =F YOG 1), TG 1), (3.21)
Also:

[9 ()] =[Yolr =[Yor), Yol)]

VA
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By using the extension principle, we have the mesibp function:

fX, §00)(S)= SUP{ gy (0 18% F0X, T (3.22)

so the fuzzy number f(X (x)). Hence, it follows that:

[f(x, §OI =[Ex, §0: 1), £ (% () DL rO[0, 1o, (3.23)
where:

£ (%, §00; 1) = min {f0¢, U) [ UD [T 00T Herrreeemeeeeeereiereesenreeens (3.24)

T, §00; 1) = max {f(x, u) | U0 [T O] erreeremereermrerereeeeerneenns (3.25)

In equation (3.19), we take f to be continuous fiomc satisfying the
Lipschitz condition which is the sufficient conaiti for the existence of a
unique solution of equation (3.19) as we previowplained this in chapter
two.

Now, let Y = [Y¥, Y] be the exact solution angl = [y, ¥] be the
approximate solution of the fuzzy initial value plem (3.19). Let:"

[YOlL =[Y (1), Y(x;n)]

[§01 =101, ¥(x; )]

Also, the value of r throughout each step is ungkdn The exact and

approximate solution at,xdenoted respectively for alln0, 1, ..., N, by:
Yol =[Yn (1), Ya(x; )]

(90001 = [¥n (X 1), ¥ (X; 1)]

The grid points at which the step of the soluti®ealculated through the
step length = (x — %) / N and therefore,ix xo + ih, i=0, 1, ..., N. By using

the general form of linear multistep method (3t43 obtained that:
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Kk —
Yok ()= 0D BiG (X Yo (1), Yo (1) -
j=0

k-1
DAY (1) + O(H) e (3.26)

j=0

and

~ k ~ -
YVork (0= DY BiF(Rosj s Yo (1), Yo (0) -

=0

k-1 —
DAY (1) + O() e (3.27)
j=0

Also, the approximate solution is given by:

k k-1
zn+k(r) = hZBJG(Xn+J l}ln+j (r)yyn+j (r))_ Zajz n+J(I') ............ (328)
j=0 i=0
and
_ K _ k-l
Voek (1) = DB F s I (053 (M= D0 (1) oo (3.29)
j=0 j=0
The next lemma can be applied to study the conwvesgef our method.
Lemma (3.2):

Let a sequence of non-negative numi{gys} 'ﬁzo satisfying:

k k
D Woii <D AW +B,n=0,1, ..., N-j,j=1,2, ...,k
= j=1

for some given positive constants A and B. Then:
k k k An+j—1 _1

D Worja < D AW, + BZﬁ .................................. (3.30)

J:]_ J:]_ J:l
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Proof:
With A # 1 and Bz 1 and if we take F 1, then:
Wit SAWL+B, Nn=0, 1, ..., N= Lo, (3.3lal

Then using mathematical induction, it can be pribn:

n —
Wa< ADWo+ BA T e (3.31b1)

Suppose that the inequality is true for 0, then:

W, < ADW, + B(Lj

ol
1-A
and for n= N - 2, then with A= Ag:

AN-2 —1}

Wyo < AJ W, + B( =i

Now, to prove it is true for & N —1. Then:
Wn< AgWy-, + B

Wy1< AgWy + B

N-2 _
< Af(AN2W, + B[u)) +B

N-1_
= AN tw, + g A1
A-1

Then equation (3.31b1l) is true for alk@, 1, ..., N-1.

Similarly, in the same manner, we can get:

A
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WhioS AW+ B, n=0, 1, .., N2 (3.31a2)
Then:
n+l _
Wit £ AT, + B(A 11j ............................................. (3.31b2)
and
Whis< AW+ B, n=0,1, ..., NF3 . (331&3)
Then:
n+2 _
Wino< AT2Wo+ Bl AL 3.31b3)
A-1
and so on until F k. Hence, we have:
Wik S AWhaer B, n=0, 1, o0, NP K e, (3.31ak)
Then:
kel An+k—1 _1
Wi € ARy Wo + B T DL | (3.31bk)

Now, we summing all equations from (3.31al) to {a}3 and summing
all equations from (3.31b1) to (3.31bk), yields:

k k
D Woii <D AW +B,n=0,1, ..., N-j,j=1,2, ...,k
= j=1

Then:

Kk k N k An+j—1 -1
n+j-

ZWn+j_l£ZAj_1 ]WO+BZ—A -

= = =

AY
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Lemma (3.3):

Let a sequence of numbdi/ } \, and{V } N, satisfying:

k k-1

Wod € DA max {Whul, [Vasl} + D Bj Wyl + C e (3.32)
=0 j=0
k k-1

Vaud < DA max {Wal, Vasil} + D Bj Vol + Cvvvvve (3.33)
j=0 j=0

for some given positive constantsahd B and C, and denote
Un=|Wo| + [V, n=0,1, ..., N-j
Then:

[Z(Aj +Bj)j”+j
k _

K (2(A; +B.) )™ 1- 2A
TEDY 2B e [2C ) k
| 1-2A, 1-2A ) 5 (Z(Aj+Bj))_1

1_ 2Ak

Proof:

Summing equations (3.32) with equation (3.33), &eeh

k k-1
[Woerd+Voed € 2> A max{Wa, Vo) + > B} (Wo#[Vouf) + 2C
=0 =0

Then:

k-1 k-1
Un+k < ZZAJ max{lwnﬂ'l, |Vn+j|}+228j (an+k|+|Vn+j|)+2Ak(Un+k)+2C

=0 =0
k-1

<2) (Aj+B)) Unyj +2A(Unw) + 2C
j=0

k-1
2) (A, +B)U,,,
i=0 2C

< +
1_ 2Ak 1_ 2Ak

AL



Chapter Three—— Linear Multistep Methods f&@olving Fuzzy Differential Equations

Using lemma (3.2)
2(A;+B))

n+j
k-1 k-1 n+j k-1 -
2(A; +B;) 2C [ 1-2A j
Unﬂ-sE(—J ’j u0+( k

1- 2A 1-2A ) 5 (Z(Aj+Bj))_1

=0 =0
1_ 2Ak

Hence:

2(A +B) "
k-1 n+j k-1 J : -1
Un+j52£2(Aj+Bj)j u0+( 2C j 1-2A,
1-2A, 1-2A ) 5 (Z(Aj+Bj))_1
1_2Ak

j=0

Forallj=0,1,...,k-1andr=0,1,...,N. =

Theorem (3.2):

Let F(x, u, v) and G(x, u, v) belong td(€) and let the partial derivative

of F and G be bounded over K, where:
K={(x,u,V) [ %<X<b,—0 <V <0, -0 < U <o0}
Then, for arbitrary fixed r : < r < 1, the general linear multistep

approximates§y converges to the exact solutioné(x;r) and \:((x;r)

uniformly in x.
Proof:

As in ordinary differential equations, it is suf@at to show that:
lim gy (r) =Y(xir) and im § (1 =Y(x:r) .

Then using the general form of linear multistephoel to get an approximate

solution, such that:

Aé
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Kk k-1
Tnek(0) = DY BIFX T (0T )= D 0T (1) o (3.34)
=0 j=0
k . _ k-1 o
ek ) = 1D BiGo s (% T (0,30 (D)= D 0T i () v (3.35)
=0 i=0

to get the exact solution, such that:

~ k ~ -
York (0= DY BiF(osj s Yo (1), Yo (0) -

=0
k-1 = h2: _
DAY + ?Y"(En) .......................................... (3.36)
=0

k —
Yoek (1) = DD BiGraj (1 Yo (1), Y (0) =

=0

k-1 . h2 _
DAY ) + ?\_("(gn) .......................................... (3.37)
j=0

where, % < €,,, &n < X%k, consequently, we subtract (3.3.6) from (3.34) and
also (3.37) from (3.35), we have:

— _ K _ -
?n+k (I’) - yn+k(r) =h ZBJ I:(Xn+j 'Xn+j(r)1Yn+j(r)) -
j=0
k _ k1 _
D BiF e Ve (1) (D) | = D0 Y1) +
j=0 j=0

k-1 _ hzr _
D a0 + ?Y"(En) ........................... (3.38)
j=0

and

Ne
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Kk _
Yok () = Tne) = ) D BiG s, Yoy (1), Yoy (M) -
i=0

k k-1
D BiG X Yo (DT (D) | = D 0¥ () +
j=0 j=0

k-1 . h2 .
D aiF () + 7\_{"@) .......................... (3.39)
=0

For simplicity, we let:

Wik = Yo (0 = Vo) and Vo= Y (0 = Y (1)

Then equations (3.38) and (3.39) takes the form:

k —
Wasd = 0By | [F Oy Yo 0 Ve (1) = F O304 (). e O | +
i=0

=<1

"(&n)

= — h2
Vo0 =T ()] +

k-1
Z“ j
=0

k k-1 2 _

h =

<Lh Y B, max{Vo, Whalt + D a; [Wasl +—-M
=0

i=0 j
and
K ~ = —
Vool = 0 By | |80t T (1) Yoss 1) = G (ks S (1. ey (0 | +
j=0
= h2 V4l
Zaj ‘Vn+j +—Y (én)‘
: 2
j=0
k k-1 h2 .
<LhD B max{Vd, Whl} + 30 [V + -
1=0 1=0
where:

AT
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I<h
I

max | Y" (x;r)(
Xg<x<b

M = max f("(x;r){

Xo<X<b

and L > 0 is the Lipschitz constant. Then:

k k-1 2 _
he =
Woad € Lh D B; (Vi + Msil) + D 01 [Wal + TM (3.40)
j=0 i=0
k k-1 H2
Vil < LW By (Vo] + W) + D015 Vol + =W (3.41)
j=0 j=0

By lemma (3.3), we have:

k10 2hLB. + 20, )] 25
|Wn+k|5 Z( ] lj | UO | + M

<\ 1-2hLB, 1-2hLB,

2hLB; + 20j)""
S
S\ 1-2hLB,

Z LZhLBj + 20(1-]
-1

=0
1- 2hLB,

k-1 n+j ~
VoS Z(ZhLBJ’ ' 2“") |Up | + (M]
| 1-2hLB, 1- 2hKB,

2hLB; + 20\
ki 1- 2hLB,

e 2hLB; + 20 _1
1- 2hLB,

where |Y| = |Wy| + [Vo|. In particular, we take AN, with N = (b — X)/h, and
since W, =V, =0, then we obtain:

AY
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9:§Q +j
(2h|_|3j+2ajj( h j’
Mol oM S 1200,
1-2hlB, 4  (2hLBj+2q;)_
1-2hLB,

-1

b_XO

(ZhLBj + 20, j(h]ﬂ
k-1

Vil M § 1- 2hLB,
WS onLB, £ (2hLB-+2a-)
J_O J J —_

1- 2hLB,

-1

and if h(O - 0, we get W.« O - 0, Vywx O - 0, which completes the proof

of the theorem. m

3.5VARIABLE STEP SIZE METHOD FOR SOLVING
FUZZY DIFFERENTIAL EQUATIONS

As it is known from the usual methods of numerigablysis, the step
size is fixed during the approach of solution, &iilt there are some methods

for reducing the local truncation error such asvéueable step-size methods.

In all fixed step-size methods the local truncagoror will depends on x
and on the numerical method used. But, in variagbép-size methods, we
shall find an approximation to the solution at anpo; for the initial value

problem:
y'(x) =f(x, ¥(x)), x T 1 = [Xo, b]
¥ (X0) = Vo

those are accurate to within a specified tolerance.

AA
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Therefore, it turns out the for reasonable effecegtimates of the step-
size it is required to attain a specified upperldouncation error and lower
local truncation error (tolerance) which can be found that uses only the
order of the upper local truncation error and loWeeal truncation error. And
do not require further knowledge about of the etesm. The variable step-
size method which will be considered here, is bagssh comparison of the
estimates of the one and two step methods of saoluthis application to
upper and lowean-level values) of the value of x at some time atediby the
numerical method with upper local truncation erterm and lower local
truncation error term. Those are of the fociP** and ch”**, wheretT and ¢

are unknown constant and p is the order of the oaeth

Suppose that we started with initial conditiojps and ¥, , with step-

size k. Using the numerical method to find the soluti@g@(xo+ho) and
§2)(x, +h,) using the step-size Iandh? respectively.

That application to lowemn-level case in the same way, similarly, let:
Eest = 195 (Xo + o) = ¥52 (X0 + o), ho = Noig,
If E. <&, then there is no problem and we can consjd@(x, +h,) as the
solution at ¥ + hy,. Otherwise if Eest > ¢, then we need to find another

estimation of the step- size saydf which will produce arE., < €. If this

approximation was accepted then this value@f Will be used as fin the
next step; if not, then it will be used asdnd we repeat similarly as above.

We apply as above to the lowetlevel case similarly.

A common question may arise, which is how to fipg,R In this work,
a new criterion has been developed for estimatiegupper local truncation

error and lower local truncation error, which cohtthe step- size. The

A9
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problem of error estimation is the most importaraiypem that faces the user
while using variable step-size method. To undedstae concept of the error
especially, the upper local truncation error andldolocal truncation error,
Taylor series expansion can be used, such that,

2 h p+l

= = = h =n h p+ +
J,(x+h)=9, +hy, +?ya o — y(p)+—( etk PD+O(H*?)

Therefore, the upper local truncation error of ordemust satisfy the

condition:

hP*
‘ Yo x| <€

(p +1)'

So, to estimate this quantity, we need to eval§fté’ (x,) which is a higher

order derivative at the point,.xUsing the same analysis with the new step-

sizeah Taylor series expansion may be written as:

_ _ B 2 HYP
Yo (X +ah)=y, +ahy, +(cxh) 7o+ ;. (ah)” ) 7 +
(Gh) S (p+tl) +
ye + O(H™)
(p+1)!

which must satisfy the condition that:

@ Sy )

(p+1)! O S (3.42)

using some elementary manipulation. Equation (3d&y be rewritten as:

ptl

hP* (IO+1)( )
(pp?e Y
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Clearly,we canfind a andgetthenewstep-sizesuchthathpe,=0hgg, i.€.,

1
_ | e(p+1! |pH
Nnew = {hgﬂr gp”)(xn)} D10 vttt (3.43)

Similarly, we apply the above criteria to the lowetevel case in the

same approach.

Example (3.1):

The above process will be illustrated by evaluaangapproximation to

tolerance error§(0.02)} to within an accuracy of 2 0.000001, for the first

order fuzzy differential equation:
¥'(x) = ¥(x), ¥(0) = (0.75 + 0.25r, 1.125 0.125r), xJ [0, 1], r=0.2

The Euler method will be used and hencelpn equation (3.43) in the

upper and lower cases, withH hf) =0.02. In order to solve this problem, we

evaluatey”(x) and y'(X), in upper and lower cases, which are respectively
¥ (x) =) = ¥'(x) = ¥ (x) = ¥(x)
and
y(x) = 3(x) = §'(x) = ¥(x) = y(x)
one can also notice that:
09(xn,1) = LT (1)
0*9(Xp.1) = (1N Y (x,,.1)

which implies that:
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Y (X, 1) = Fn(r) = 2954(r) + Fno(r)

29" (X0s1) = 9 (1) = 2904(r) + F0a(1)

Upon executing the (progl.pas) program, we getdbalts presented in

table (3.1):

Table (3.1).

Numerical Results of Example (3.1).

1.12200E+00

0.02

1.33504E-03

1.33504E-03

1.10146E+0

1.10146E+0

4.90148E-(

3504E-03

1.34750E-03

1.10295E+0

1.10295E+0

5.00000E-(

4753E-03

2.69409E-03

1.10443E+0

D

1.10443E+0

5.00000E-(

7

4653E-03

4.03978E-03

1.10592E+0

D

1.10592E+0

5.00001E-(

7

4563E-03

5.38456E-03

1.10741E+0

D

1.10741E+0

5.00000E-(

7

447 3E-03

6.72844E-03

1.10890E+0

D

1.10890E+0

4.99998E-(

7

438BE-03

8.07141E-03

1.11039E+0

D

1.11039E+0

4.99998E-(

7

429BE-03

9.413491-03

1.11188E+0

D

1.11188E+0

4.99998E-(

7

420BE-03

1.07546E-02

1.11337E+0

D

1.113377E+0

5.00000E-

D7

34117E-03

1.20949E-02

1.11486E+0

D

1.114867E+0

5.00000E-

D7

34027E-03

1.34343E-02

1.11636E+0

D

1.116361E+0

5.00000E-

D7

339B7E-03

1.47728E-02

1.11785E+0

D

1.117856E+0

5.00000E-

D7

33848E-03

1.61103E-02

1.11939E+0

D

1.119351E+0

5.00000E-

D7

33758E-03

1.74470E-02

1.12084E+0

1.120848E+0

5.00001E-

D7

33669E-03

1.87828E-02

1.12234E+0

1.12234E+0

5.00001E-(

7

3583E-03

0.02

1.12371E+00

1.1237E+00

qir

4.157E-07

1.21711E-(
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0

8.16000E-01

0.02

1.56548E-03

1.565483E-03

8.01252E-01

8.01252E-0

4.90148E-

D7 565U8E-03

1.57990E-03

1.57990E-03

8.02518E-01

8.025192E-Q

5.000001E

+07.579902E-03

1.57865E-03

3.15855E-03

8.03786E-01

8.037866E-(

5.00000E-

D7 578B5E-03

1.57741E-03

4.73596E-03

8.05054E-01

8.05055E-0

5.00000E-

D7  7785E-03

1.57616E-03

6.31213E-03

8.06323E-01

8.06324E-0

5.00000E-

D7  761L6E-03

1.57492E-03

7.88705E-03

8.07594E-01

8.07594E-0

4.99999E-

D7  74DBE-03

1.57368E-03

9.46074E-03

8.08865E-01

8.08866E-0

4.99999E-

D7  73BSE-03

1.57244E-03

1.10331E-02

8.10138E-01

8.10138E-0

5.00000E-

D7 72U49E-03

1.57121E-03

1.26044E-02

8.11411E-01

8.11412E-0

5.00000E-

D7 71PB3E-03

1.56998E-03

1.41743E-02

8.12685E-01

8.12686E-0

5.00001E-

D7  69BSE-03

1.56874E-03

1.57431E-02

8.13961E-01

8.13961E-0

5.00000E-

D7  6874E-03

1.56751E-03

1.73106E-02

8.152377E-01

8.15238E-0

4.99999E-

07 567b19E-03

1.566291E-03

1.8876E-02

8.16515E-01

8.16515E-0]

5.00000E-

D7 6P8B-03

1.12304E-03

0.02

8.17432E-01

8.174E-01

4.794E-07

3.6 ANALYTIC SOLUTION OF LINEAR FUZZY

1.1230494E

DIFFERENTIAL EQUATIONS [WUHAIB, 2005],
[PEARSON, 1997]

Consider the system:

G/ 0) = AT (X), T(0) = F0rrrrerererereereereseeeseseeseesseeseseesseeseeeeee (3.44)

where §'(x) = ? A:R'0 - R, ¥ is afuzzy mapping : R"O - [0, 1],
X
wherey is a vector made up of n-fuzzy mapping.

Each element of the vectgrin (3.44) at the intervals x written as:

500 = [TF 0, TX00L K =1, 2, ooy M (3.45)

It is shown that the evaluation of the system (Beggh be described by
2n differential equations for the end points of treiables (3.45), this for

each given x and value of r of course, the complgerview have to be built

iy
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up numerically by interpolation or some other meafise equation for the

end points of the intervals are given by:

9(x) = min{ (AT, : ¥ D[, ()., (<0}
§K(x) = max{ (AU), U O[5 ()3 (x)} ................................... (3.46)
9 0= 5, % (0)=

n
where (Al = Zaij‘ is the K" row of Al.
=

The vector field in (3.44) is linear, and so thédwing rule applies in
(3.46):

n
T (X) = D 8GT o (3.47)
j=L

where:

~ .
. y.(x), if a420
(%), if a;<0

and
FrO) = D 8T (3.48)
=1

where:

y :{ﬂ(x), if 2,20
~j .
3_/r(x), if a,<0

Equations (3.47) and (3.48) are called the paracnequations.

9¢
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Representation by complex numbers:
This approach is based on the following criteri@, éach variable in

(3.44), therefore, there are two equations of yipe (3.47) and (3.48), which

could be written out explicity.

However, we propose a slightly more compact reprasen of the

same thing by passing to the filed of complex nursbe

Define new variables n complex form:

g(z) =¥ +igs
e is just the identity operation and g correspaids flip about the diagonal

in the complex plane. We notice thatge and §= e if k is even and“g g if

k is odd. It is easily verified that:

(ng) ¥ = (gn)z forn OR

and we extend g to vectors via:

2]

Using (3.49) and the two operators (3.50), it islyaeasy to se that
equations (3.47) and (3.48) can be written as:

=1
ZI’

=BZ;, Zf(0) = Zy covveeeeeieeeneenene e (3.51)

where the elements of the matrix B are determimednhfthose of A as

follows:

90
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ea , a= (
by = S (3.52)
93, g < (
The solution of (3.51) is then given by
Z, (X) ZeXP(XB) Z, oo (3.53)

The problem is therefore to calculate the exporéwfi the matrix B, where
certain elements are multiplied by the flip operg&52). This can be done
for small values of x by first of all writing theatrix B as the sum of two
matrices, one of which is multiplied by the operagpand the other by g, for

example:
B=eC+gD
Now, for small x, we have:

exp(xB) z,, = exp(x(eC + gD))z,,
= exp(xeC) exp(ng)ZrO + O(X) erriieeeeeeeeiiiie e (3.54)

where O(Xx) is a function of x, such thla'amOO(x)/x =0.
X =

The first part on the right hand side exp(xeC)impty the standard
matrix exponential, because e is the identity dperdor the second part
exp(xgD), we note that“e= e if k is even and“g= g if it is odd and then

proceed to calculate the formal series of exp (xgD)

8 X% 2 X3 3 5
exp(ng)zrO =|1+xgD+—D"+=—gD +...|Z

o

21 3l
2 3
= [I +X p2 +] 7+ (XD +X—D3+...]gzr
2! 0 3l 0

= cosh(xD)ZrO + sinh(xD)gZrO .............................. (3.55)
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Combining (3.54) with (3.55), the solution (3.58) Emall x is then given by:

Z (x)= exp(xC)(cosh(xD)zro + sinh(xD)ngO)

letting:
P (X) =eXP(XC)COSN(XD) ..evvvriniiiieeee e (3.56)
W(X) = exp(XC)SINN(XD) ..coeeeeiiiiiieeeeeeeie e (3.57)

and so in component form, one have:
2, (X) = 04() 2, +Wg(x)g2)
Then by (3.49) this reduces to:
00 +IT5(%) = dg0(FL () + 15 () + WgO(TL () +iFL (x))

and in other words:

00 = 00 ¥h () +Wig(x) TL () oo (3.58)
50 = 00 T2 () + W0 F2 (X) v 59)

Example (3.2):

Consider the linear systefn = Ay, where A= { 0

1 e
} with initial

values to bey*(0) about 1 and/%(0) about-1, which are fuzzy numbers and

using membership function defined by setting, faaraple,

0, x<0
uyl(x)= 2x—x?, 0< X< 2
0
0, X>2

v
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and
0, X>-2
uyz(x) ={-2x-%x%, —-2<x<0
0
0, x>0

Thus, for rJ [0, 1], we can represent the initial condition as:
[96]: =[¥5,. V5,1 =[1 - ~v1-r,1+1-r]
(961 =195 . 96 1=[-1-~1-r, -1 +~1-r]

Now, to solve the above system, first we use eqoat(3.52) to have:

5= [g(—l) e(1)} _ [—i 1 }
e(0) gE2) 0 -2i

o of*[5 2|

=eC+gD

Using equations (3.56), (3.57) at8.2, we have:

0 1.08166

1.020066 0.21621
¢(0.2)= { i

-0.201333 -0.08213
1(0.2)=

0 —0.41060

So, if we let for simplicity:

a=1l-+Vl1-r,b=1++vJl1-r,c=-1-+J1-randd=-1++J1-r

Then using equations (3.58), (3.59) to have the $alutions given by:

9A
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z%(0.2)= 1.020066a + 0.216231¢c0.201333b- 0.082133d

¥+ (0.2)= 1.020066b + 0.21621:30.201333a 0.082133c

§2 (0.2)= 1.0810666¢ 0.410666d

f/rz (0.2)=-0.4106666¢C + 1.080666d

For example, if = 0.1, then & 0.0513167, = 1.94867, = —1.94868 and
d=-0.051317.

5.4 (0.2)=-0.7570682
¥54 (0.2)=2.126394

92, (0.2)=-2.085526

¥2,(0.2)=0.744773

3.7NUMERICAL RESULTS

In this section, some numerical examples are ptedeas an illustration

to the numerical methods discussed in the lastosesct

For each example, numerical and theoretical rearkspresented in

tables in order to give a good comparison betwbkemndsults.

3.7.1 Examples of Linear Fuzzy Differential Equatis:

First, in this subsection, we will present someneglkes in linear case,

I.e., examples of LFDE.

94
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Example (3.3):

Consider the fuzzy initial value problem:
y'(x)=y(), x0[0, 1]
¥«0)=(0.75 + 0.25r, 1.125 0.125r), 11 [0, 1]
The parametric form of (x) in this case is given by:
OGN =906 and §'0G )= (X 1) o, (3.60)
with initial condition are given for all [f[0, 1] by:
¥(0;1)=0.75 + 0.25r
¥(0; 1) = 1.125- 0.125r
The exact solution could be evaluated easily as:
Y (x) = €*79(0.75 + 0.25r)
Y (x) = € 79(1.125- 0.125r)
atx=1and ¥ =0, we get:
Y (1;1) = (0.75 + 0.25r)e
Y (1;1) = (1.125- 0.125r)e
Using Euler method given by:

Inea(r) = ¥alr) + hGDx, 9(r), ¥(1)]

Y nea(r) = §ulr) + hFx, §a(r), ¥a(n)]
Using equations (3.60) with (3.61), we get:
Ynea(r) = ¥n(r) + hyo(r)

§n+1(r) = ):/n(r) + h):/n(r)
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and Simpson method
Iusd1) = Jl0) = 2 [CMKasar F) + 20G 0, F). Tolr). Tol0) +
2hF 0%, (1), TolD] + 4G (e, i), Trea)) + G
RORT0)
JusdD) = Fl) = 2 [FDws (1) + 20G 4, (1) Tl Folt) + 20F s,

IulD), IaO)] + 4F 01, Yrea(r), Yea)) + FO §(r), ¥lr)]

Using (3.60) with (3.62), to have:

§nealr) = Y1) = 2( §o(1) + 209 o(1) + 49 near) + ¥(1)

T edl) = Jnlr) = g@n(r) + 20 o(1) + 4T na(F) + (1)

with:

2

2 J— J— —_— J—
1=Zo+h¥o+h7§’o and y1=y0+hyo+h?yo

[\

as the initial value with ko0.1.

The results are presented in table (3.2) afterywayrour the computer

program (program?2.pas).
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Euler results
(). ¥()

(1.945307, 2.91796)

Table (3.2)
Results of example (3.3) with &0.1.

Simpson results

(). ¥()

(2.036928, 3.05539

Exact results
(Y®), ()

(2.0383D58067)

(2.074994, 2.853117)

(2.172723, 2.98749

@523, 2.99011)

(2.204681, 2.788273)

(2.308518, 2.91959

(539, 2.922153)

(2.334368, 2.72343)

(2.444314, 2.85169

(218462.854196)

(2.464055, 2.658586)

(2.580109, 2.7838(

2)

@868, 2.786239)

(2.593742, 2.593742)

1.00 —

_ + Simpson
O Exact
@® Euler

0.80 —

0.60 —

0.40 —

(2.715904, 2.7159(

4)

8282, 2.718282

0.00 , i

1.60 2.00

2.40 2.80

Y (X;r)

Figure (3.1) Analytical and Numerical Results of ample (3.3).

1.¢



Chapter Three—— Linear Multistep Methods f&@olving Fuzzy Differential Equations

Example (3.4):

In order to solve the FIVP:
y'(x)=xy(x), x[-1, 1]
with initial condition in parametric form:
¥(-1)= (Y0 ¥r0)
= (\Je -0.5(1- 1), e + 0.5(1- 1))

The method of solution will be discussed for x ar@l then for xx 0 as

the following cases show:

a. If x <0: The parametric form in this case:
y'ocn=xy () and §'0;r)=xy(xr

with initial conditions are:

Y-1;n=¥0 and Y(-1;1)= Vo

The unique solution is given by:

2 _ 2 2 _ 2\
Y (X; r):cos}{x 2X0j2r0+sim‘£x Zxojyro

_A+B_ _A-B

N
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For x=0, % =-1, one get:

_ ~1/2 , /2 ~1/2 _ /2 _ _
Y (0; r):gyr(ﬁiyro: Y o
2 = 2
— ~1/2 , A2 -1/2 _ /2 —
Y(O, r):%ym'k%zro: YrO

and using these numbers as initial conditionsHerrtext step.

b. If x = 0: The parametric are given by:
' n=xyx;r and y'(x;r)=xy(x;r)

with initial conditions arey o, Yo

The unique solution atx 0 is:

To get method approximation, we dividel| 1] into (even number) N

with equally spaced subintervals. In the numeredtulations, we use:

. 2
910 = §o + hxTo + h? (1+x2)¥0

<

J— 2 —_—
1(N = Yo+ hxyo+ h? (1+x5)Yo
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as initial value of two step method.

Now, upon carrying the midpoint method, such that:
Yalr) = §alr) + 2hG(er, Yroa(r), Vinear))
o) = Tolr) + 20F Cras, Trea(P), F o)
when % = 0. Then:
Yoeor) = Y1) + 20%41 Y (1)
G 1) = §ulr) + 206415 (1)
In case of x< 0. Then:
Fsal1) = Tolr) + 20617 near)
Fnelr) = ¥lr) + 2041 ¥ nea(r)
and trapizodal method, given by:

Yua(r) = ¥(r) + g[G(Xnﬂ’ Inear), ¥nea(n) + G, I0(r), Inl0))]

Fooi) = Fl) + DIFGnss, Jresl0) T + F F), Tl
when X, = 0:

yn+1(r) = Zn(r) + g[xnﬂy nea(r) + Xny n(N]

Jooi) = Tl + D laT 1) + X0 (0]
when % < 0, one have:

ymm=gxo+gmmimm+xﬁdm

Foni) = Fl) + D nsa Y1) + X0 0]
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The results are presented in table (3.3), whenand in table (3.4)

when x= 0 using the computer program (program3.pas).

Table (3.3)
Results of example (3.4) with 50.1, for %, <0

Mid point results

(0.1741345, 1.831501

Trapizoidal results

Exact results

(0.4982622, 1.876977)

(0.3398712, 1.665765

(0.6361336, 1.739105) 34(15115, 1.659489)

(0.5056078, 1.500028

(0.7740051, 1.601234) 5088836, 1.494616|

(0.6713445, 1.334291

|

(0.9118765, 1.4633p62) 67(IR557, 1.329744]

(0.8370812, 1.168555

(1.049748, 1.325491) 31879, 1.164872]

(1.002818, 1.002818

1.00 —

(1.187619, 1.187619)

+ Mid point
= O Exact
M Trapizoidal

0.80 —

0.60 —

0.00

0.00 0.40

I ' I '
0.80 1.20
Y (X;r)

1.60 2.00

Figure (3.2) Analytical and Numerical Results of ample (3.4).
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Table (3.4)
Results of example (3.4) with 50.1, for %, =0

Mid point results Trapizoidal results Exact results

(0.2627423, 2.729096)  (1.031197, 2.90632)
(0.5093776, 2.48246)  (1.218709, 2.718808)
(0.756013, 2.235825)  (1.406222, 2.531295)
(1.002648, 1.98919)|  (1.593734, 2.343783)  (D6652.192378)
(1.249284, 1.742554)  (1.781246, 2.156271) @893, 1.92055)
(1495919, 1.495919)  (1.968758, 1.968758)  @U&4, 1.648721)

+ Mid point
O Exact
€ Trapizoidal

0.00 ¥ I: T I T éT T |
0.00 1.00 2.00 3.00 4.00
Y (X;r)

Figure (3.3) Analytical and Numerical Results of ample (3.4).
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3.7.2Non-Linear FuzzyDifferential Equations[Buckly and Feuring, 2000]:

In some cases, it may be happen that a fuzzy diffeal equation

appears in non-linear form as:

V') = FX, T(X), K), T(0) = & oo (3.63)

wherek = (k4, ko, ..., k;) be a vector of triangular fuzzy numbers, and x is
in some interval | (closed and bounded) contairaagp. Therefore, in order
to find the solution (3.63), the following remankdalemma will be introduced

first:

Remark (3.3) [Buckly and Feuring, 2000]:
For y(x) to be a solution to the fuzzy initial value ptem, we need that

y'(x) to be exists with the restriction equation &@.6wust be hold.

To check equation (3.63), we must first compute §i(t k). The r-level

of f(x, ¥, k) which can be found as follows:

[fO6, ¥, KDL= GG 1), FOG D] e eeeee e, (3.64)
with:

GO r)=min {f(X, y, K) | YO [¥0)]r KO [K]F eoreerreereerienenne. (3.65)

F(x; 1) = max {f(x, y, k) | yO [¥0)]r KO [K]} ooveerrenrerieennnee, (3.66)

For xO I, r O [0, 1]. It is said thaty(x) is a solution of equation (3.63) if
y'(x) exists and
y'xrn=G(;r) and VR G I (6o ) JE T (3.67)

§O;1)=Cy () and F(0; 1= Cy(r)cemerrrieirrrcieercieceinee, (3)68

1 e/



Chapter Three—— Linear Multistep Methods f&@olving Fuzzy Differential Equations

where [C], = [C, (1), C,(1)].

Lemma (3.4) [Buckly and Feuring, 2000]:

Assume thaty'(x) exists for x[I. Then the solution ig/ (X) if:

foralli=1, 2, ..., n. If equation (3.69) does not hold oraen (3.70) does

not hold for some i, thely (x) does not solve the FIVP, where f is the first

order ordinary differential equation, and g is timque solution of f.
Proof:

Let us assume that there is only one k and that% <0 and% <0.

The proof% >0 and% > 0 is similar and therefore omitted.

Since@ <0 and@ > 0, we have:
ok oc

706 1) = g(x, k(r), C1(0), 0 1) = g(x, k1), Co(n)

Also, becauseal >0 and% < 0, we see that:

oy

G(x; N =1(x, y(x;n), k(). Fo; N=1(x, J(x: 1), k()
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Now, y = g(X, k, c¢) is the unique solution of ¥ f(x, y, k) and y(0) c,

which implies that:
g (X, K, €)=1(X, g(X, K, €), K) et (3.71)

and

Assumingy'(x) exists, we see that:
y'(06 N =g(x k@), C1)
= f(x, 9%, (1), C1(r), k(1)
=G(x; 1)

and y(0; r) = g(0, k1), C1(n) = C4(r), and also

¥'(x: 1) =g k), Cxr)
=f(x, g(x, k (1), Ca1), k (1)
=F()
andy(0; 1) = g(0, k (r), C(r)) = Cx(r), for all r0 [0, 1] and X I.

Hence equations (3.67) and (3.68) in remark (308) h

Now, consider the situation, where equation (3.69)3.70) does not
hold. Let us only look at one case, whéfi@y < 0 (assum@ég/dc > 0,0f/ok >
0, 0g/dk > 0). Then, we have:

G(x; ) =f(x, (x; 1), k(r),

FoG 1) =f(x, 506 1), k1),

11.
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g 1 =gx, k(), Ca(r)

F06 1) =g(x, (1), Co(r)

The part one of equation (3.67) becomes

y'(: N =d(x k (r), Cy(r) =G(x; n

= f(x, g(x, K (1), Con), k(1))

which is not true. m

Example (3.5):

Consider the non-homogeneous, non-linear ordinangiai value

problem:
Y ZKaY? + Koy Y(0) T 0 e, (3.73)
where K, k; > 0. The solution is given by:

Y =9(X, K, Ko, ©) = AAN(WX) oo (3.74)
on I =10, 1], with w= \/k;k, andA = \/k,/k; .

Now, consider the corresponding fuzzy initial vajr@blem with k 4,
k, > 0. We calculateY (x) using lemma (3.4), i.e., sinag/dk, > 0 and
dg/ok, > 0.

FOG 1) = A () BN (1)X) veoveeeeeieieeeeee s (3.75)

TG 1) = A(E) CANE (D)X) v eemee e (3.76)
with A(r) = yKo(r)/Ki(r), A = \/Ez(f)/ﬁl(f), W (r) = Kk (Nk,(r) and
W (r) =k (N)k,(r) , with:
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[k4];=[0.5 + 0.5r, 1.5 0.51]
[k]; =[0.75 + 0.25r, 1.25 0.25r]

The r-level sets of/'(x) are:

F'(X; 1) = Kp(r) SEE(W (1)X) cvvoveveierieieieeee e (3.77)

T'(6: 1) = Rp(F) SEC(W (F)X) vverrveereeeeeeeeeeeeeeeeeses e eeeme e (3.78)

which defines a fuzzy number.

The results are presented in the following tablernupsing the following

explicit method:

z n(r)_zz n+1(r)+z n+2AN)=N[G (41, z nea(), f’ n+1(1) =G (X, z n(1), f’ 10))

(=29 ns1(N)+ ¥ ns1)=h[F (a2, ¥ 1), ¥ (1) =F (%, ¥ (1), ¥ n(1))]
Then from equations (3.77) and (3.78), we have:

§'06 1) = Ko (1) + ky (1) 92(r)

§'06 1) = ko) + k(1) T20)
Now, from (3.80) and (3.79), one have:
Fnedr) = 2 na(r) = 7o) + (R, () + Ky (0 52,(0) - (R, (0) + Ky ()
52 ()]
= 2§ nea(r) = §() + hIK, (0 2,00 - K, (Y2 (O]
F ) = 25 noal) = Flr) + DI(Ko (1) + Ky (1 F2,4(0) = (Ky(1) + Ky (1)
§2()]

= 2§ puaf) = o) + DIk (1) T21 (1) = Ko (DT ()]



Chapter Three—— Linear Multistep Methods f&@olving Fuzzy Differential Equations

and also, using the another explicit method giwen b

Vo)=Y nea(r) = 2[3G(Xn+1, Yna(r), ¥ nsa(r) = G(%, ¥n(h), ¥a(N)]

3:/n+2(r)_§/n+1(r) = g[SF(Xml’ Zn+1(r)1 ):/n+1(r)) — F(%, Zn(r)1 ?n(r))]

Then from (3.80) and (3.81), we get:

Ynealr) = Ynua(r) + 2[3(& (1) + ko (1) Fea() = (Ko () + Ky (1) 92 ()]

Fred) = Fes) + 213K 0) + Ky ) Foual0) = (Ro0) + Ky () T2 ()
Using ¥o(r) =0, ¥o(r) = 0, and

9a(r) = Fo) + hko() + ks (1) 75.0)

94() = o) + hiko(r) + Ky (1) 95 ()

as an initial conditions in the above explicit nuetb.

The results are presented in table (3.5) usingcthraputer program
(program4.pas)

Table (3.5. Numerical and Exact results of examp&5).

First explicit results

(). ¥()

Second explicit results
(@), ¥()

Exact results

(Y. ¥()

(0.8398467, 2.597979)

(0.855959, 3.31776

7) (8260, 4.469125

(0.926897, 2.258159)

(0.9512431, 2.7396

32) 5@5038, 3.285743]

(1.023628, 1.981418)

(1.059543, 2.3083

3)  (46912.591944)

(1.132181, 1.752413)

(1.184381, 1.97694

5) (@806, 2.133143)

(1.255272, 1.5601)

(1.330517, 1.71555

4)  (1.8623.805155)

(1.396394, 1.396394)

(1.5045, 1.5045)

(1.557457408)
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1.00 —
- + Exact
O First IM

0.80 — ¢ Second IM

0.60 —

0.40 —

0.20 —

0.00 4 ; i ; o I 4 I
0.00 1.00 2.00 3.00 4.00 5.00

Y (X;r)

Figure (3.4) Results of Example (3.5).

Example (3.6):

Consider the non-linear FIVP:

700 = 7™ y(0)=(0.75 + 0.25r, 1.5 0.5r)

over the interval [0, 1].

The parametric equations are:

' (x; 1) = exp{-{max(Iy (x; )|, ¥ (x; D)}

' (x; 1) = exp{-[min(1y (x; )|, [y (; NI}
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with the initial condition § (0; 1), ¥(0; r)). This example could not be solved

analytically, therefore numerical methods will beed for different values of

step size h.

Using Adam-Bashforth method:

) = Jedr) = 151236000 Ired), Foelr) = 16G s, Jrea),
Fea(1)) +5 G0y (1), Tl
Foed) = Foedr) = 15 [23F (0 Jrec), FiedT) = 16FGhs, Fo),

¥ n4(r) + 5F0 ¥a(r), ¥a())]

Now, take equations (3.82) and (3.83), to have:

Ynea(r) = Ynear) + %[ZBeXp{—[max(ly n20G D], [V 206 DI} =
16exp{-[max(1§ nea(%; NI, [¥nea; DT} +
5 exp{-max(Iy n(X; N, [¥n (% NP

Fnsalr) = Yrer) + 1—2[23exp{—[min(| Y ned; O, [ ne2; DI -

16exp{-[min (1Y ns1( DI [Fnea06; DD+

Bexp{-Imin (¥ n(X; NI, [¥n (6 DY
with using Eular method as an initial condition¢lsuhat:

Ynea(r) = ¥a(r) + hexpi-max(§a(X; NI, [¥20x; DI}
Vnea() = ¥a(r) + hexpi-[min(¥n(X; NI, [¥n(x; NDI}

forn=0, 1.
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The results are presented in table (3.6) usingcthraputer program

(programe6.pas).

Table (3.6) Numerical results of example(3.6) usiAgam’s method.

Adam-Bashforth resultswith h =0.1 | Adam-Bashforth resultswith h =0.05
y( () yo 0!
0.7962322 1.93692 0.7971708
0.8666981 1.795828 0.8690056
0.9441779 1.653868 0.9487784
1.029957 1.511592 1.03812

1.124981 1.369808 1.138298
1.229553 1.229553 1.249807

04 0.8 12 16 20 24
Y(x;r) [ex3.6]

Figure (3.5) Numerical results of example (3.6)



CHAPTER FOUR

MODELING AND SOLUTION OF THE
DECAY OF THE BIOCHEMICAL
OXYGEN DEMAND IN WATER

3.1 INTRODUCTION

A very important physical-chemical parameter of aevatis the
concentration of dissolved oxygen necessary foiailg equatic organisms.
In this chapter, we have proposed a fuzzy modeesxribe the decay of the
dissolved oxygen concentration in water using fudéferential equations,
the classic analytic solution of which is well know/Ve use variable steps
method to obtain an approximate solution of aniahwalue problem of a

fuzzy linear ordinary differential equation modejidecay.

We compare numerical results with the fuzzy analgblution for the
similar fuzzy differential equations. With wide spd public interest in the
quality of the environment, an quality in partiaylanany researchers have
increased their work in the analysis and modeliigth® more general
problem of external effects or externalities. Ugydhe external (i.e., cost or
benefit) is transferred to the affected party tiglosome complex series of

physical, chemical or biological process.
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Water quality is usually measured by the deviabbmhe concentration
levels of certain chemicals or materials from dasifevels. Some of the
typical concentrations that are considered importe dissolved oxygen
level, dissolved oxygen deficit (DOD), heat concatibn (temperature level)
and concentration of various chemicals. All rivester concentration can be
altered by mixing the river flow with influent flosvof various concentration,
the new concentration being a weighted average hef ihfluent and

mainstream concentrations.

Historically, the dissolved oxygen level has bele® tommon measure
of water quality. Recently, however, thermal potat has become
increasingly important not only because of its ciesffects on equatic life but

also because of its direct affects on the dissotwggen level.

However, these studies and models don’t take iotownt the vagueness
and uncertainty present in parameters or on thesunement process. In this
sense, we propose a fuzzy model in order to gigepitoblem a mathematical

treatment.

4.2 THE PROBLEM DISCRIPTION AND ITS
MATHEMATICAL MODEL

The model for the biochemical oxygen demand candéscribed as

follows.
Assume that:

L =0 1= (1.4)

dt
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where B is the biochemical oxygen demand (mg/Lthatfixed river section,
k is the constant deoxygenation rate®@0(days"). In this river section and
By is the initial condition at the biochemical oxygdemand. Data collection,
as well as, the adopted method, is nearly alwafectaid by vagueness and
uncertainty, brought about by the measurement psycelue to the
subjectivity in the adopted method, as well as uheertainty in the initial
condition. In this way, in order to give a matheitwt treatment to the
problem, the use of fuzzy systems may be seem a&ssantial tool for the
analysis and understanding of the studied phenoniéraaefore, we adopted
the fuzziness process. For the first approach,idenag the initial condition
as a fuzzy set, we will adopt, for the model ddxetiby equation (4.1). The

following fuzzy ordinary differential equation ibtained:

J' () = ~KF(X) T(0) = T T E e veeeen (4.2)

where §'(x) is Hukuhara's derivativey : R" 0 — E and x, kI R". In other

words, [y1° =[[ V1% [V2]°] is a closed interval.

The parametric form of equation (4.2) be such that:

[Y2001" =Ky L0151V (0] " Hy ,}50 sas<l }
[V2001" =Ky )]y £0)]“ Hy ;}50 sa<l

where [y1(X)]* and [y,(x)]° are thea-level of the solution for moment x,

[V10]® and [J2g]® are thea-level of .

For eacha, the analytic solution of the system described(4) is

given by:
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e— kx

~ o — [ylo]a _[y 2(] i A kx [yN 1]) i 'l'[yN Joa
I
o rova — ool” 1Y ad " e Y b HY L1
e

e— kx

these solution are tleelevel of fuzzy solutiony (x).

For the system given by (4.4), we define for mometite diameter of

The interval [[y.(X)]% .[V2(X)]?], for the a-level, o O (0, 1], as

following:
diam[[y1()1*, [72001°1 = [¥2(x)]* = [¥2(x)]"
= ([ V20" = [V 100N covoeieieeeeeeeen, (5.4)
wherea [ (0, 1] and X1 [0, b].

Thus, we may note that the diameters. At emdtvel are increasing in
time. This may be interpreted as the increasinp®funcertainty to go by the

time, which is, in fact, reasonable.

4.3 NUEMRICAL METHOD

In order to obtain a numerical approximation foe tolution of each
equation, given in system (4.3), we replace therval [0, b] for a previously
defined b > 0, by the set 0%, < x; < ... <X, = b} of discreet equally spaced
grid points with fixed a, we then use a numerical scheme for the

approximation using variable step method.

In the simulation, we consider as the initial camad, the biochemical

oxygen demand of about 100 mg/L described by thevitng fuzzy set:
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Y0990 it 90 < y(x) <100
(5 () = 1119V it 160< y(x)< 110
0, otherwise

for all y(x) OR.

For the constant deoxygenating rate, we us@®l038 day" and the time
interval that we considered was [0, 30] days, wihations h= 0.3 and the
results are sketched in figure (4.1) below.

The results of the exact solution are presentddgare (4.1) with using
implicit Euler method withe = 0.233, while the results of numerical results

obtained using variable step size method are predem Figure (4.2).

LB B

(Bt

Figure (4.1) Exact Results of example (4.1).
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0.4
(IRE] 0a
nr 0R
. 06 A 05 E-
D 0.5 04 =
o
2 - 0.2
0.2 W 0.1
o1 - 0
1] ?{3{}
& P 5
. WD o =l Q;.}:‘n
fda&*&) R - 25 A

Figure (4.2) Numerical results of example (4.1).
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CONCLUSIONS AND RECOMMINDATIONS

1.

From the present study, we can conclude the following:

Exact solution of fuzzy differential equations, may be some times so

difficult to evaluated, especially in non-linear cases.

Parametric equations are so useful in solving fuzzy differential

equations.

As it is expected, there is a very strong relationship between fuzzy
differential equations and it level sets in ordinary form (parametric

form).

Also, we can recommend the following for future work:

Studying existence and uniqueness theorem of fuzzy differential
eguations using, such as Burbakee fixed point theorem, Amann and
Tersaki fixed point theorem, etc.

Extending the work of this thesis to study the solution of fuzzy partial
differential equations, numerically and analytically.

Studying other real life problem, in which the governing mathemetical
modeling is fuzzy differential equations.

Studying fuzzy differential equations using other definition for
differentiation, such as Goetschel-Voxman derivative, Seikkala
derivative and Puri-Ralescu derivative, etc., (see [Buckley and Feuring,
2000].
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INTRODUCTION

Most or our traditional tools for forma modeling reasoning and
computing are crisp, deterministic, and precise in character, by crisp, we
mean dichotomous, that is, yes or no type rather than more or less type. In
conventional dual logic, for instance, statement can be true or false and
nothing in between. In set theory, an element can either belong to a set or not,
precision assumes that the parameters of a model represent exactly either our
perception of a phenomena modeling or the futures of the real system that has
been modeled. Generally, precison aso implies that the model is

unequivocal, that is, that it contains no ambiguities.

Certainty eventually indicates that we assume the structures and
parameters of the model to be definitely known, and that there are no adopts
about their values or their accuracy. If the model under consideration is a
formal model [Zimmerman, 1980, p.127], that is, if it does not pretend to
model reality adequately, then the model assumptions are in a sense arbitrary,
that is, the model builder that can freely decide which model characteristics
he chooses. If, however the model or theory asserts to be factual [Popper,
1959], [Zimmerman, 1980], that is, conclusions drawn from these model have
a bearing or reality and they are supposed to model reality adequately, then
the modeling language has to be suited to model the characteristics of the
situation under study appropriately.

Zadeh in 1965, introduced the notion of fuzzy set provided a convenient
point of departure for the construction of a conceptual frame work which
parallels in many respects, the frame used in the case of ordinary system , but

in more genera than the later and, rotationally, many prove to nave a much



I ntroduction

reader scope of applicability, particularly in the field of pattern classification
and information processing. Essentially, such aframe work provides a natural
way of dealing with problems in which the source of imprecision of classical

membership rather than the presence of random variables.
This thesis consists of four chapters.

Chapter on, entitled (Fuzzy set) introduces a basic concepts and
definitions including definitions of fuzzy sets, basic properties and algebraic

operations, membership function, level sets, fuzzy number.

Chapter two, entitled (The existence and uniqueness of fuzzy differential
eguations), which discussed in details, with proofs of existence and
uniqueness theorem of fuzzy differential equation, in which the fuzziness
occurs in the initial condition, and therefore in the solution of the fuzzy
differential equation.

In chapter three, entitled (Linear multistep methods for solving fuzzy
differential equations) discussion on the numerical solution of fuzzy
differential equation using linear multistep method, as well as, derivation of
some numerical methods and proving its convergence and stability, whenever
the consistency condition is satisfied, in addition, variable step size method is
also discussed for fuzzy set theory, the method efficiency is compared with
the other results.

In chapter four, entitled (Modeling and solution of the decay of the
biochemical oxygen demanding), a real life problem, which is the decay of
biochemical oxygen demand in water in which it is introduced and discussed,
as well as, its mathematical modeling using fuzzy set theory and therefore,
solving the problem using the variable step method derived in chapter three,
the results had proven its efficiency and compared with exact results.
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The result of the numerical examples are given either in tabulated form

or graphically and its comparison with the exact results, when it is necessary.

Computer programs are written in PASCAL language which arelisted in
appendix, while the computer software which are listed in appendix, while the
computer software used to sketch the results the (GRAPH FOR WIN),
(TABLE CURVE 3D, V.4.0).

All the results are executed in micro personal computer Pentium 4,
processor (Celeron 2.4 MHz) located at the Department of Mathematics and
Computer Applications, College of Science, Al-Nahrain University.
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