
 ii

Abstract

There are two main alternatives to compress a video. The first one, usually

called intraframe approach, pretends to remove the spatial redundancy of an image

without destroying important information. These methods are suitable for still image

applications such as multimedia, image database, etc. Nevertheless, in applications

that use a sequence of image, data such as TV scenes, video conferencing etc, time

redundancy can be exploited to increase the compression ratio since consecutive

frames are usually highly correlated. This second group of methods is called

interframe approach, and pretends to remove temporal redundancy. In the second

approach, motion estimation of sequence frames must be computed. In the proposed

work, the interframe approach is implemented.

 In the field of motion estimation for video compression many techniques have

been applied. Block-based motion estimation approaches are the most common

procedures applied using various algorithms. The full search algorithm (FSA)

provides the best performance but at very expensive computational cost. To reduce

this computational requirement, fast search algorithms have been developed, among

them being the conventional three-step algorithm (TSA). In the proposed work OTS,

and TSS methods of ME are implemented in addition to a new developed Hybrid

Method (HM).

The interframe approach select a number of frames that will compress using

compression system that is different than ME techniques, these frames are called

Anchor frames (AF). In the proposed work there are two models that developed for

video coding, the first one develop a compression system that depend on FDCT

transform that a new derivation of DCT, where this transform is speed up through a

new derivation that fully documented in the proposed work, and the second model

develop the Fractal coding as compression system for AF. The disadvantage of

Fractal coding is the expensive time that Fractal needs to complete its search. This

problem is solved in the proposed work through fasting Fractal Search using

distributed system that divide the Fractal search on the total number of Servers that

shared on the network. The proposed work is implemented using Visual Basic 6.0 as a

programming language. The fidelity measure MSE and PSNR are used to check the

result of the whole developed techniques.

Acknowledgment

I would like to express my sincere appreciation to my

research supervisor, Dr. Loay A. George, for giving me the

major steps to go on to explore the subject, shearing with

me the ideas in my research “InterFrame Compression

Using Distributed Systems” And perform the points that I

felt were important.

Also I wish to thank, Dr. Venus W. Samawi, my

supervisor for her valuable advice and encouragement.

Grateful thanks for the Head of Department of Computer

Science Dr. Taha S. Bashaga.

I wish to thank the staff of Computer Science Department

at the AL-Nahrain University for their help.

I would like to say "thank you" to my faithful friend for

supporting and giving me advices.

AVI Files

The Microsoft Audio/Video Interleaved (AVI) file format is a RIFF file

specification used with applications that capture, edit, and playback

audio/video sequences. In general, AVI files contain multiple streams of

different types of data. Most AVI sequences will use both audio and

video streams. A simple variation for an AVI sequence uses video data

and does not require an audio stream. Specialized AVI sequences might

include a control track or MIDI track as an additional data stream. The

control track could control external devices such as an MCI videodisc

player. The MIDI track could play background music for the sequence.

While a specialized sequence requires a specialized control program to

take advantage of all its capabilities, applications that can read and play

AVI sequences can still read and play an AVI sequence in a specialized

file. (These applications ignore the non-AVI data in the specialized file.)

This chapter primarily describes AVI files containing only audio and

video data. This chapter covers the following topics:

• The required chunks of an AVI file

• The optional chunks of an AVI file

• Developing routines to write AVI files

AVI RIFF Form

AVI files use the AVI RIFF form. The AVI RIFF form is identified by

the four-character code “AVI”. All AVI files include two mandatory

LIST chunks. These chunks define the format of the streams and stream

data. AVI files might also include an index chunk. This optional chunk

AVI File Format

Appendix A AVI File Format

 ِ◌(A-2)

specifies the location of data chunks within the file. An AVI file with

these components has the following form:

RIFF ('AVI'

LIST ('hdrl'

.

.

.

)

LIST ('movi'

.

.

.

)

['idx1'<AVI Index>]

)

The LIST chunks and the index chunk are subchunks of the RIFF “AVI”

chunk. The “AVI” chunk identifies the file as an AVI RIFF file. The

LIST “hdrl” chunk defines the format of the data and is the first required

list chunk. The LIST “movi” chunk contains the data for the AVI

sequence and is the second required list chunk. The “idx1” chunk is the

optional index chunk. AVI files must keep these three components in the

proper sequence. The LIST “hdrl” and LIST “movi” chunks use

subchunks for their data. The following example shows the AVI RIFF

form expanded with the chunks needed to complete the LIST “hdrl” and

LIST “movi” chunks:

RIFF ('AVI'

LIST ('hdrl'

'avih'(<Main AVI Header>)

LIST ('strl'

Appendix A AVI File Format

 ِ◌(A-3)

'strh'(<Stream header>)

'strf'(<Stream format>)

'strd'(additional header data)

.

.

.

)

.

.

.

)

LIST ('movi'

{SubChunk | LIST ('rec'

SubChunk1

SubChunk2

.

.

.

)

.

.

.

}

.

.

.

)

['idx1'<AVIIndex>]

)

Appendix A AVI File Format

 ِ◌(A-4)

The following sections describe the chunks contained in the LIST “hdrl”

and LIST “movi” chunks as well as the “idx1” chunk.

Data Structures for AVI Files

Data structures used in the RIFF chunks are defined in the AVIFMT.H

header file. The reference section at the end of this chapter describes the

data structures that can be used for the main AVI header, stream header,

AVIIndex, and palette change chunks.

The Main AVI Header LIST

The file begins with the main header. In the AVI file, this header is

identified with “avih” four-character code. The header contains general

information about the file, such as the number of streams within the file

and the width and height of the AVI sequence. The main header has the

following data structure defined for it:

typedef struct {

DWORD dwMicroSecPerFrame;

DWORD dwMaxBytesPerSec;

DWORD dwReserved1;

DWORD dwFlags;

DWORD dwTotalFrames;

DWORD dwInitialFrames;

DWORD dwStreams;

DWORD dwSuggestedBufferSize;

DWORD dwWidth;

DWORD dwHeight;

DWORD dwScale;

DWORD dwRate;

Appendix A AVI File Format

 ِ◌(A-5)

DWORD dwStart;

DWORD dwLength;

} MainAVIHeader;

The dwMicroSecPerFrame field specifies the period between video

frames. This value indicates the overall timing for the file.

The dwMaxBytesPerSec field specifies the approximate maximum data

rate of the file. This value indicates the number of bytes per second the

system must handle to present an AVI sequence as specified by the other

parameters contained in the main header and stream header chunks.

The dwFlags field contains any flags for the file. The following flags are

defined:

AVIF_HASINDEX

Indicates the AVI file has an “idx1” chunk.

AVIF_MUSTUSEINDEX

Indicates the index should be used to determine the order of presentation

of the data.

AVIF_ISINTERLEAVED

Indicates the AVI file is interleaved.

AVIF_WASCAPTUREFILE

Indicates the AVI file is a specially allocated file used for capturing real-

time video.

AVIF_COPYRIGHTED

Indicates the AVI file contains copyrighted data. The AVIF_HASINDEX

and AVIF_MUSTUSEINDEX flags apply to files with an index chunk.

The AVI_HASINDEX flag indicates an index is present. The

AVIF_MUSTUSEINDEX flag indicates the index should be used to

determine the order of the presentation of the data. When this flag is set,

it implies the physical ordering of the chunks in the file does not

correspond to the presentation order. The AVIF_ISINTERLEAVED flag

Appendix A AVI File Format

 ِ◌(A-6)

indicates the AVI file has been interleaved. The system can stream

interleaved data from a CD-ROM more efficiently than non-interleaved

data. For more information on interleaved files, see “Special Information

for Interleaved Files." The AVIF_WASCAPTUREFILE flag indicates the

AVI file is a specially allocated file used for capturing real-time video.

Typically, capture files have been defragmented by user so video capture

data can be efficiently streamed into the file. If this flag is set, an

application should warn the user before writing over the file with this

flag. The AVIF_COPYRIGHTED flag indicates the AVI file contains

copyrighted data. When this flag is set, applications should not let users

duplicate the file or the data in the file.

The dwTotalFrames field of the main header specifies the total number

of frames of data in file.

The dwInitialFrames is used for interleaved files. If you are creating

interleaved files, specify the number of frames in the file prior to the

initial frame of the AVI sequence in this field.

The dwStreams field specifies the number of streams in the file. For

example, a file with audio and video has 2 streams.

The dwSuggestedBufferSize field specifies the suggested buffer size for

reading the file. Generally, this size should be large enough to contain the

largest chunk in the file. If set to zero, or if it is too small, the playback

software will have to reallocate memory during playback which will

reduce performance. For an interleaved file, the buffer size should be

large enough to read an entire record and not just a chunk.

The dwWidth and dwHeight fields specify the width and height of the

AVI file in pixels. The dwScale and dwRate fields are used to specify

the general time scale that the file will use. In addition to this time scale,

each stream can have its own time scale. The time scale in samples per

second is determined by dividing dwRate by dwScale.

Appendix A AVI File Format

 ِ◌(A-7)

The dwStart and dwLength fields specify the starting time of the AVI

file and the length of the file. The units are defined by dwRate and

dwScale. The dwStart field is usually set to zero.

The Stream Header (“strl”) Chunks

The main header is followed by one or more “strl” chunks. (A “strl”

chunk is required for each data stream.) These chunks contain

information about the streams in the file. Each “strl” chunk must contain

a stream header and stream format chunk. Stream header chunks are

identified by the four-character code “strh” and stream format chunks are

identified with the four-character code “strf”. In addition to the stream

header and stream format chunks, the “strl” chunk might also contain a

stream data chunk. Stream data chunks are identified with the four-

character code “strd”. The stream header has the following data structure

defined for it:

typedef struct {

FOURCC fccType;

FOURCC fccHandler;

DWORD dwFlags;

DWORD dwReserved1;

DWORD dwInitialFrames;

DWORD dwScale;

DWORD dwRate;

DWORD dwStart;

DWORD dwLength;

DWORD dwSuggestedBufferSize;

DWORD dwQuality;

DWORD dwSampleSize;

} AVIStreamHeader;

Appendix A AVI File Format

 ِ◌(A-8)

The stream header specifies the type of data the stream contains, such as

audio or video, by means of a four-character code. The fccType field is

set to “vids” if the stream it specifies contains video data. It is set to

“auds” if it contains audio data.

The fccHandler field contains a four-character code describing the

installable compressor or decompressor used with the data.

The dwFlags field contains any flags for the data stream. The

AVISF_DISABLED flag indicates that the stream data should be

rendered only when explicitly enabled by the user.

The AVISF_VIDEO_PALCHANGES flag indicates palette changes are

embedded in the file.

The dwInitialFrames is used for interleaved files. If you are creating

interleaved files, specify the number of frames in the file prior to the

initial frame of the AVI sequence in this field. The remaining fields

describe the playback characteristics of the stream. These factors include

the playback rate (dwScale and dwRate), the starting time of the

sequence (dwStart), the length of the sequence (dwLength), the size of

the playback buffer (dwSuggestedBuffer), an indicator of the data quality

(dwQuality), and sample size (dwSampleSize). See the reference section

for more information on these fields. Some of the fields in the stream

header structure are also present in the main header structure. The data in

the main header structure applies to the whole file while the data in the

stream header structure applies only to a stream. A stream format (“strf”)

chunk must follow a stream header (“strh”) chunk. The stream format

chunk describes the format of the data in the stream. For video streams,

the information in this chunk is a BITMAPINFO structure (including

palette information if appropriate). For audio streams, the information in

this chunk is a WAVEFORMATEX or PCMWAVEFORMAT structure.

(The WAVEFORMATEX structure is an extended version of the

Appendix A AVI File Format

 ِ◌(A-9)

WAVEFORMAT structure.) For more information on this structure, see

the New Multimedia Data Types and Data Techniques Standards Update.

The “strl” chunk might also contain a stream data (“strd”) chunk. If used,

this chunk follows the stream format chunk. The format and content of

this chunk is defined by installable compression or decompression

drivers. Typically, drivers use this information for configuration.

Applications that read and write RIFF files do not need to decode this

information. They transfer this data to and from a driver as a memory

block. An AVI player associates the stream headers in the LIST “hdrl”

chunk with the stream data in the LIST “movi” chunk by using the order

of the “strl” chunks. The first “strl” chunk applies to stream 0, the second

applies to stream 1, and so forth. For example, if the first “strl” chunk

describes the wave audio data, the wave audio data is contained in stream

0. Similarly, if the second “strl” chunk describes video data, then the

video data is contained in stream 1.

The LIST “movi” Chunk

Following the header information is a LIST “movi” chunk that contains

chunks of the actual data in the streams; that is, the pictures and sounds

themselves. The data chunks can reside directly in the LIST “movi”

chunk or they might be grouped into “rec ” chunks. The “rec ” grouping

implies that the grouped chunks should be read from disk all at once. This

is used only for files specifically interleaved to play from CD-ROM. Like

any RIFF chunk, the data chunks contain a four-character code to identify

the chunk type. The four-character code that identifies each chunk

consists of the stream number and a two-character code that defines the

type of information encapsulated in the chunk. For example, a waveform

chunk is identified by a two-character code of “wb”. If a waveform chunk

corresponded to the second LIST “hdrl” stream description, it would have

Appendix A AVI File Format

 ِ◌(A-10)

a four-character code of “01wb”. Since all the format information is in

the header, the audio data contained in these data chunks does not contain

any information about its format. An audio data chunk has the following

format (the ## in the format represents the stream identifier):

WAVE Bytes '##wb'

BYTE abBytes [];

Video data can be compressed or uncompressed DIBs. An uncompressed

DIB has BI_RGB specified for the biCompression field in its associated

BITMAPINFO structure. A compressed DIB has a value other than

BI_RGB specified in the biCompression field. A data chunk for an

uncompressed DIB contains RGB video data. These chunks are identified

with a two-character code of “db” (db is an abbreviation for DIB bits).

Data chunks for a compressed DIB are identified with a two-character

code of “dc” (dc is an abbreviation for DIB compressed). Neither data

chunk will contain any header information about the DIBs. The data

chunk for an uncompressed DIB has the following form:

DIB Bits '##db'

BYTE abBits [];

The data chunk for a compressed DIB has the following form:

Compressed DIB '##dc'

BYTE abBits [];

Video data chunks can also define new palette entries used to update the

palette during an AVI sequence. These chunks are identified with a two-

character code of “pc” (pc is an abbreviation for palette change). The

following data structure is defined palette information:

typedef struct {

BYTE bFirstEntry;

BYTE bNumEntries;

WORD wFlags;

Appendix A AVI File Format

 ِ◌(A-11)

PALETTEENTRY peNew;

} AVIPALCHANGE;

The bFirstEntry field defines the first entry to change and the

bNumEntries field specifies the number of entries to change. The

peNew field contains the new color entries. If you include palette changes

in a video stream, set the AVITF_VIDEO_PALCHANGES flag in the

dwFlags field of the stream header. This flag indicates that this video

stream contains palette changes and warns the playback software that it

will need to animate the palette.

The “idx1” Chunk

AVI files can have an index chunk after the LIST “movi” chunk. The

index chunk essentially contains a list of the data chunks and their

location in the file. This provides efficient random access to the data

within the file, because an application can locate a particular sound

sequence or video image in a large AVI file without having to scan it.

Index chunks use the four-character code “idx1”. The following data

structure is defined for index entries:

typedef struct {

DWORD ckid;

DWORD dwFlags;

DWORD dwChunkOffset;

DWORD dwChunkLength;

} AVIINDEXENTRY;

The ckid, dwFlags, dwChunkOffset, and dwChunkLength entries are

repeated in the AVI file for each data chunk indexed. If the file is

interleaved, the index will also have these entries for each “rec” chunk.

The “rec” entries should have the AVIIF_LIST flag set and the list type

in the ckid field. The ckid field identifies the data chunk. This field uses

Appendix A AVI File Format

 ِ◌(A-12)

four-character codes for identifying the chunk. The dwFlags field

specifies any flags for the data. The AVIIF_KEYFRAME flag indicates

key frames in the video sequence. Key frames do not need previous video

information to be decompressed. The AVIIF_NOTIME flag indicates a

chunk does not affect the timing of a video stream. For example,

changing palette entries indicated by a palette chunk should occur

between displaying video frames. Thus, if an application needs to

determine the length of a video sequence, it should not use chunks with

the AVIIF_NOTIME flag. In this case, it would ignore a palette chunk.

The AVIIF_LIST flag indicates the current chunk is a LIST chunk. Use

the ckid field to identify the type of LIST chunk. The dwChunkOffset

and dwChunkLength fields specify the position of the chunk and the

length of the chunk. The dwChunkOffset field specifies the position of

the chunk in the file relative to the 'movi' list. The dwChunkLength field

specifies the length of the chunk excluding the eight bytes for the RIFF

header. If you include an index in the RIFF file, set the

AVIF_HASINDEX in the dwFlags field of the AVI header. (This header

is identified by “avih” chunk ID.) This flag indicates that the file has an

index.

1.1 Image and Video Compression [Ama02]

Image compression addresses the problem of reducing the amount

of data required to represent a digital image. In general, image

compression is possible because of the existing redundancy in

uncompressed images. In digital image compression, three basic data

redundancies can be identified and exploited:

1. Coding Redundancy: It occurs when the data used to represent

the image are not utilized in an optimal manner. That is, it occurs

when the gray levels of an image are coded in a way that uses more

codes than absolutely necessary to represent each gray level. For

example, if an 8-bit/pixel image, which allows 256 different

intensity levels, is used to represent a 16-color image, actually only

4-bit/pixel is needed to represent the image. In general, coding

redundancy is perfect when the codes assigned to the set of gray

levels have not been selected to take the full advantage of the

probabilities of gray levels.

2. Inter Pixel Redundancy: It occurs because the adjacent pixels

tend to be highly correlated. This is a result of the fact that in most

images the brightness levels do not change rapidly, but change

gradually, so that adjacent pixels values tend to be relatively close

to each other in value (for video, or motion images), this concept

can be extended to include interframe redundancy (i.e. redundancy

between frames of image data).

Chapter One

Introduction

Introduction apter One Ch 2

3. Psycho-Visual Redundancy: refers to the fact that some

information are more important to the human visual system than

other types of information. For example, we can only perceive

spatial frequencies below about 50 cycles per degree, so that any

higher frequency information is of little interest to us.

1.2 Standard Image Compression Methods [Mic98]
Standardization of still images and video compression techniques

has become a high priority issue, because only a standard can reduce the

high cost and resolve the critical problem of interoperability of

equipment’s from different manufactures.

 The following summaries the most commonly known compression

standards;

JPEG

 The JPEG is the standard developed by Joint Photographic Experts

Group for compressing still pictures (e.g. Photographs). JPEG had

worked toward establishing the first international digital image

compression standard for continuous-tone still image, both grayscale and

color.

MPEG

MPEG (Moving Picture Experts Group) is one of the developments

of international standards for compression, decompression, and

representation of moving pictures and audio.

Introduction apter One Ch 3

MPEG-1

The first finalized standard was MPEG-1 (International Standard).

Its goal was to produce video recorder quality output (352×240) using a

bit rate of 1.2 Mbps. Since the uncompressed video alone can run to 77.4

Mbps, getting it down to 1.2 Mbps is not entirely trivial, even at this

lower resolution.

MPEG-2

MPEG-2 (International Standard) was originally designed for

compressing broadcast quality video into 4 to 6 Mbps. Later, MPEG-2

was expanded to support higher resolutions, including HDTV.

MPEG-4

 The third generation of MPEG is based upon the same technique.

Once again, the new project focused on new application usages. The most

important new features of MPEG-4, concerning video compression are

the support of even lower bandwidth consuming applications, e.g. mobile

units, and on the other hand applications with extremely high quality and

almost unlimited bandwidth. The making of studio movies is one such an

example.

1.3 Motion Estimation (ME) for Video Compression [Hyc201]

 Motion estimation (ME) has been a hot research topic for years. It

is the most important part in video compression and coding, it exploits as

much temporal redundancies as possible to reduce the size of the data

required in digital video storage and transmission. Low bit rate video

transmission is impossible without the use of motion estimation.

Although motion estimation is such a useful method in reducing the size

of a coded video sequence, it is computationally intensive which makes

Introduction apter One Ch 4

real-time video coding a difficult task, but not impossible, to be

accomplished. In a typical video encoding system, motion estimation can

take 50%~75% (for the case of full search block matching) of the

computation time. In the past two decades, extensive researches were

conducted to develop motion estimation techniques. Many motion

estimation techniques like pel-recursive techniques, gradient techniques,

frequency domain techniques and block based matching techniques were

evolved. Among these motion estimation techniques, block-based

matching had been widely adopted by international standards such as the

H.261-11, H.263-12, MPEG1-13 and MPEG2-14 due to its effectiveness

and robustness.

 1.4 Block Based Motion Estimation [Hyc201]
 The principle of block based motion estimation in most of the

video standards is that the video image frame is partitioned into blocks,

where each block is the elementary unit. Motion estimation is performed

by matching each block in the current frame against a region in a

reference frame to find the best match. The matching criteria for the best

match is well accepted to be the block in the search region such that the

error or energy of the residue obtained from the subtraction of

corresponding pixels between the blocks is minimized.

1.5 The Goals Factors in Motion Estimation [Moh99]
 Most of the research works have been concentrated on optimizing

the block-based motion estimation technique. As the demand for real-

time video applications (like video recording, video conferencing, video

phone, etc) the needs for video coding had been grown. Fast video

encoding with good compression ratio as well as high signal to noise ratio

Introduction apter One Ch 5

is highly essential. Good compression ratio means reducing the size of the

coded video with little degradation of quality. Motion estimation is

exactly a technique designed to achieve good compression ratio in video

compression. However, speed and quality are often two contradicting

goals. Nowadays, researchers are still actively investigating for an

optimum trade-off between these two factors. Most of the motion

proposed estimation algorithms tends to bias toward speed by sacrificing

visual quality. In view of this, we were motivated to find a good trade-off

between the speed and quality. That is to increase the speed up as much

as possible with good visual results. We focused on the block based

motion estimation technique since it is widely adopted by most

international standards. In this work we have proposed a model to

formulate a method to predict the blocks motion, the suggested ME

method is hybrid, its search mechanism is based on combining the search

ideas utilized in the two standards ME methods.

1.6 Literature survey

Many researches were study the field of image compression; few of

them focus on video compression, some of them are listed below:

Introduction apter One Ch 6

1. H. Y. Chunge, Adaptive Search Center Non-Linear Three Step

Search, 2001, University of Hong Kong [Hyc101]

This research presents a new motion estimation algorithm using

an adaptive search center predicted from its adjacent blocks. It

does not have the problem of being trapped by local minimum,

and is characterized by finding the majority motion vector in

one step. When compared with six other block-based search

algorithms including the full-search and three-step-search, the

new algorithm has an average PSNR very close to that of full

search.

2. Alice Yu, Motion Search Performance using the H.263 Encoder,

1997, EE392c [Ali97]

In this research six different motion search algorithms are

implemented within the context of the baseline H.263 encoder.

This approach allowed considering the motion search

algorithms in two different ways: first, in terms of the prediction

error variance, which is indicative of the entropy of the resulting

information; and, secondly, in terms of overall encoder

performance, which considers how the motion search performs

in an H.263 video system.

The motion searches that considered are:

a. Exhaustive search

b. Two-dimensional logarithmic search

c. Three-step hierarchical search (TSHS)

d. One-at-a-time search (OTS)

e. Full axis search

f. Projection SAD method

3. Amal Abbas Kadhim, H.263 Image Video Compression

[Ama02]

Introduction apter One Ch 7

This project aims to implement the H263 video compression by

developing all the required programs. In this work an adaptive

mechanism was proposed and implemented to handle the time

delay associated with all searching methods. The goal of the

proposed mechanism is to not affect the compression efficiency

and image quality.

4. Marcin Chady, Application of the Bulk Synchronous Parallel

Model in Fractal Image Compression, University of

Birmingham [Mar00]

In this research was present with the results of an investigation into

parallel implementations of fractal image compression algorithms.

In particular, the research addressed the applicability for this

purpose of the new Bulk Synchronous Parallel model. The research

provides a scalable and predictable framework for developing

parallel software, with a reliable and straightforward cost model,

taking advantage of this model to arrive at an optimal parallel

fractal image compression algorithm.

5. Raouf Hamzaoui, Fractal Image Compression, Leipzig

University [Rao01]

The research speed up Fractal searching through using nearest

neighbor search, where Range blocks and domain blocks are

assigned d-dimensional feature vectors such that searching in the

pool of domain blocks can be restricted to the domain blocks

whose feature vectors are the nearest neighbors of the feature

vector of the current domain pool. The research studied the effects

on computation time, image fidelity and compression ratio. The

research showed that there is no need for keeping domains with

low intensity variance in the pool.

Introduction apter One Ch 8

6. Auday Ali H. Al-Dulaimy, Fractal Image Compression [Aud00]
This work aimed to develop FIC. The main scheme of FIC method

was implemented, which lead to a good compression performance

with a significant reduction in coding time. A speeding-up

operation based on a new mathematical approach for determining

the IFS-codes between the range and the domain blocks was

introduced, also the utilization of the parallel processing to perform

the encoding operation was discussed.

1.7 Aim of Thesis

The research aims to design video compression systems that

compress a sequence of video frames into a compact version keeping the

quality of the decompressed sequence of video frames. The designed

video compression systems are mainly constructed by implementing

different compression techniques.

The proposed work aims to develop two different models for video

compression. In the implementation stages most of the well-known

motion search methods are implemented, tested and their performances

are investigated.

In the proposed work, the Fractal image compression (FIC)

technique is implemented, in addition to the DCT (discrete cosine

transform) as an image transform coding technique. Each model

implemented with two different approaches, one for compressing the

anchor frames, and one for compressing the estimated frames using

motion estimation methods.

The first model implemented with compression system based on

DCT transform for anchor frames after developing the DCT transform

through speeding up its computations by a new derivation that eliminate

much of its mathematical operations, and the model use three different

Introduction apter One Ch 9

methods (TSS, OTS, HM) for motion estimation compressing the

estimated frames.

The second model implemented with compression system based on

Fractal Image Compression for anchor frames after developing the FIC

through speeding up its computations by design and implement a

distributed system that will divide the fractal search on the total number

of computers shared on the LAN, and the model use the same motion

estimation methods compressing the estimated frames.

1.8 Thesis Layout

 The work in this thesis is organized as follows:

• Chapter (2): explains the image and video compression techniques

in details including Fractal image compression, and

the methods of Motion Estimation, and show the

importance of distributed systems for speeding up the

implementation of video compression techniques.

• Chapter (3): this chapter includes all the details of the designed

and implemented video compression models. All the

algorithms used in this work are presented.

• Chapter (4): this chapter contains the results of some tests applied

on some samples of movies used as test material in

this work; the used criteria are the fidelity measures

(MSE, PSNR) beside the compression ratios.

• Chapter (5): includes the derived conclusions and some

suggestions for future work.

2.1 Introduction

Image compression had been pushed to the forefront of the image

processing field. As a result of: the rapid growth in computer power, the

corresponding growth in the multimedia market, and the advent of the

World Wide Web which makes the Internet easily accessible for

everyone. Additionally, the advances in video technology, including

high-definition television, had created a demand for new, better, and

faster image compression algorithms. Compression algorithm

development started with applications of two-dimensional (2-D) still

images. Because video and television signals consist of consecutive

frames of 2-D image data, the development of compression methods for

2-D still data is of paramount importance. After the development of

different still image compression schemes, some of them are often

extended to video (motion imaging) [Sco98].

The increasing demand to incorporate video data into

telecommunications services, the corporate environment, the

entertainment industry, and even at home had made digital video

technology a necessity. However, the problem is that still image and

digital video data rates are very large, typically in the range of

150Mbits/sec. Data rates of this magnitude would consume a lot of the

bandwidth, storage and computing resources in the typical personal

computer. For this reason, video compression is needed to reduce the data

to be stored or transmitted through eliminate picture redundancy [Arr97] .

This chapter explores the theoretical concept of image and video

compression, in addition to multimedia networking concepts.

Chapter Two

Image and Video Compression

Image and Video Compression wo TChapter 11

2.2 Image Compression

Compression process takes an input X and generates a representation

XC that hopefully requires fewer bits. While the reconstruction algorithm

operates on the compressed representation XC to generate the

reconstruction Y.

Based on the difference between original and the reconstructed

version, data compression schemes can be divided into two broad classes

(see figure (2.1)).

The first is lossless compression, at which Y is identical to X, while

other is lossy compression, which generally provides much higher

compression than lossless compression but makes Y different from X

[Add00].

Compression
Methods

Lossy Compression
Methods

Lossless Compression
Methods

Vector
Quantization

Predictive
Coding

Fractal Image
compression

Transform
based image
compression

Run length
Encoding

Huffman
Coding

LZW

Arithmetic
Coding

DCT based
transform

Wavelet
Transform

Figure 2.1: The Most Popular Image Compression Meth ods.

Image and Video Compression wo TChapter 12

2.2.1 Lossless Compression Methods

 Lossless compression techniques provide the guarantee that no

pixel difference between the original and the decompressed image, i.e

lossless schemes result in reconstructed data that exactly matches the

original. It is generally used for applications that cannot allow any

difference between the original and reconstructed data. The most popular

lossless compression methods are Run Length coding, S-shift coding,

Huffman coding, Lempel/Ziv algorithms, and arithmetic coding

[Ism02].

A. Run Length Encoding [Sco98, Aud00]

Run length encoding (RLE), sometimes called recurrence coding,

is one of the simplest data compression algorithms. It is effective for

data sets that are comprised of long sequences of a single repeated

character. For instance, text files with large runs of spaces or tabs may

be compressed well with this algorithm. RLE finds runs of repeated

characters in the input stream and replaces them with a three-byte

code. The code consists of a flag character (called a sentinel byte), a

count byte, and the value of repeated characters. For instance, the

string “AAAAAABBBBCCCCC” could be more efficiently stored as

“*6A*4B*5C”, that saves us six bytes. Of course, since it does not

make sense to represent runs less than three characters in length which

may exist in the code. Thus “AAAAAABBCCCDDDD” might be

represented as “*6ABBCCC*4D”.

B. S-Shift Coding [Raf00, Ibr04]

 The idea of this method is to encode the sequence of numbers by

codewords whose bit length is less than the number of bits required to

represent the maximum value of the sequence of numbers to be coded.

The numbers whose values are large may splitted into a sequence of

codewords, by using the formula (2.1):

Image and Video Compression wo TChapter 13

..(2.1).......... Wr nWm X +=

 Where:

 X is the number to be coded.

 n is the number of codeword to be coded.

 Wm is the largest integer value, which must be coded by using a

single codeword.

 Wr is the value of the last codeword used to encode X.

 The values of Wm and Wr are determined by using the following

equations:

)2.2.(..........12Wm b −=

.(2.3).......... Wmmod XWr =

Where b is the number of bits used to represent each single shift

codeword.

 The performance of shift coding is better where the sequence of

numbers has a histogram whose shape is highly peaked. The shift coding

performance is better than especially when the histograms have long tails.

C. Huffman Coding [Pan01]

Huffman coding, developed by D.A. Huffman, is a classical data

compression technique. It has been used in various compression

applications, including image compression. It uses the statistical property

of characters in the source stream and then produces respective codes for

these characters. These codes are of variable code length using an integral

number of bits. The codes for characters having a higher frequency of

occurrence are shorter than those codes for characters having lower

frequency. This simple idea causes a reduction in the average code

length, and thus the overall size of compressed data is smaller than the

Image and Video Compression wo TChapter 14

original. Huffman coding is based on building a binary tree that holds all

characters in the source at its leaf nodes, and with their corresponding

characters' probabilities at the side. The tree is built by going through the

following steps:

1. Each of the characters is initially laid out as leaf node; each leaf

will eventually be connected to the tree. The characters are ranked

according to their weights, which represent the frequencies of their

occurrences in the source.

2. Two nodes with the lowest weights are combined to form a new

node, which is a parent node of these two nodes. This parent node

is then considered as a representative of the two nodes with a

weight equal to the sum of the weights of two nodes. Moreover,

one child, the left, is assigned a "0" and the other, the right child, is

assigned a "1".

3. Nodes are then successively combined as above until a binary tree

containing all of nodes is created.

4. The code representing a given character can be determined by

going from the root of the tree to the leaf node representing the

alphabet. The accumulation of "0" and "1" symbols is the code of

that character.

By using this procedure, the characters are naturally assigned codes

that reflect the frequency distribution. Highly frequent characters will be

given short codes, and infrequent characters will have long codes.

Therefore, the average code length will be reduced.

2.2.2 Lossy Compression Methods

Lossy compression techniques involve some loss of information,

and data cannot be recovered or reconstructed exactly. In some

applications, exact reconstruction is not necessary. For example, it is

Image and Video Compression wo TChapter 15

acceptable that the reconstructed video signal is different from the

original as long as the differences do not result in annoying artifacts.

Generally, lossy compression can produce a higher compression ratio

than is possible with lossless compression. The most popular lossy

compression methods are vector quantization, predictive coding,

transform based image compression and fractal image compression.

This work concerned with Transform Image Compression (TBIC), and

Fractal Image Compression (FIC) [Jan03].

A. Transform Based Image Compression

 Transform based compression implies the most popular and

efficient coding schemes. Combined with other compression techniques

this technique allows efficient transmission, storage, and display of

images that otherwise would be impractical [Pan01].

The basic transform encoding method for image compression

works as follows:

1. Image Transform: Divide the source image into blocks and apply the

transformations to each block.

2. Parameter Quantization: The data generated by the transformation

are quantized to reduce the amount of information. Quantization is

irreversible operation because of its lossy property.

3. Encoding: Encode the results of the quantization. This last step can be

error free by using Run Length encoding or Huffman coding. It can

also be lossy if it optimizes the representation of the information to

further reduce the bit rate.

 The discrete cosine transform (DCT) is a technique for converting a

signal into elementary frequency components. It is widely used in image

compression. It is a popular transform used by the JPEG (Joint

Photographic Experts Group) image compression standard for lossy

compression of images. Since it is used so frequently, DCT is often

Image and Video Compression wo TChapter 16

referred to in the literature as JPEG-DCT. JPEG-DCT is a transform

coding method comprising four steps. The source image is first

partitioned into sub-blocks of size 8×8 pixels in dimension. Then each

block is transformed from spatial domain to frequency domain using a 2D

DCT basis function. The resulting frequency coefficients are quantized

and finally output to a lossless entropy coder. DCT is an efficient image

compression method since it can decorrelate pixels in the image since the

cosine basis is orthogonal, Orthogonal waveforms are waveforms that are

independent of each other and compact most image energy to a few

transformed coefficients. Moreover, DCT coefficients can be loosely

quantized according to some human visual characteristics [Ken02,

Jim99].

B. Fractal Image Compression (FIC)

The application of fractals in image compression was introduced by

M.F. Barnsley and A. Jacquin. FIC is a process to find a small set of

mathematical equations that can describe the image. By sending the

parameters of these equations to the decoder, the original image can be

reconstructed. In general, the theory of fractal compression is based on

the mapping theorem in the mathematics of metric spaces. Analyzing the

image forms the Partitioned Iterated Function System (PIFS), which is

essentially a set of mappings. Those mappings can exploit the redundancy

that is commonly present in most images. This redundancy is related to

the similarity of an image with itself, that is, part A of a certain image is

similar to another part B of the same image, by doing an arbitrary number

of contractive transformations that can bring A and B together. These

contractive transformations are actually common geometrical operations

such as rotation, scaling, skewing and shifting. By applying the resulting

PIFS on an initially blank image iteratively, the original image at the

decoder can be completely regenerated. Since the PIFS often consists of a

small number of parameters, a huge compression ratio can be achieved by

Image and Video Compression wo TChapter 17

representing the original image using these parameters. However, FIC has

its disadvantages since it is usually involves a large amount of matching

and geometric operations (i.e. it is time consuming). The coding process

is so asymmetrical that encoding of an image takes much longer time than

decoding [Mar00].

 In fractal coding, the image to be coded is divided into non-

overlapping range blocks, and larger possibly overlapping domain blocks.

Every range block is expressed as an affine transformed version of one

decimated domain block. Since domain blocks are larger than range

blocks and if the maximum scaling factor is less than 1, this transform is a

contraction. The reconstructed image, obtained by iterations of the

transform ƒ from any initial image, may be constructed to be still close to

the original image [Fcc00].

Fractal image compression takes advantage of the fact that real life

images are to a great extent self-similar. In other words, many parts of the

image can be approximated by transforming another part of the same

image by applying some affine spatial transformation and a (usually

linear) brightness transformation. Based on the theory of fractals, for a

given image S, the compression process tries to find a Partitioned

Iterated Function System (PIFS), W = {wi: i = 1, ..., k}, whose attractor

is a non-overlapping tiling of the image, where each of the “tiles” is

formed by applying a contractive affine transformation wi on a section of

S [Fcc00].

)4.2(..........
1

)d i(
k

i
w iW(S)S U

=
==

Where k is the number of range blocks.

 Where di is an arbitrary section of the image, called domain. The

“tile” approximated by wi (di), is further referred to as range or r i. Each

transformation wi (di) gives the best possible approximation of r i. This is

Image and Video Compression wo TChapter 18

usually measured with the Root Mean Square (RMS) metric of the

following form:

).(2...........2(p))
)d i(w ip

~
d(r(p)))d i(w ir iRMS(5, ∑

∈
−=

Where)(
~

pd represents the brightness of pixel p in the

transformed domain fragment, and r (p) represents the brightness of the

corresponding pixel in the range fragment. For given d and r the optimal

brightness transformation can be found by minimizing the RMS distance.

For a linear brightness transformation of the form

(2.6) O d(p) S d
~

+×=

Where S is the contrast scaling, and O is the luminance shift, the

optimal values of the coefficients, obtained by calculating the following:

)7.2(..........

1 1

2))(()(2

1 1
)()

1
()()(

∑

=
∑

=
−

∑

=
∑

=
∑

=
−

=
n

i

n

i
pidpidn

n

i

n

i
pid

n

i
pidpirpidn

S

and

)8.2..())........
1

()
1

((1
∑

=
−∑

=
=

n

i
pidS

n

i
pir

n
O

 Where n is the number of pixels in the image fragment, d(pi) is

the grey level of the ith pixel in d, and r(pi) is the grey level of the ith

Image and Video Compression wo TChapter 19

pixel in r. These formulas give the following lowest possible RMS error

for d and r.

∑

=
∑

=
∑

=
∑

=
−+∑

=
+−+=

n

i

n

i

n

i

n

i
pirnOO

n

i
pidOpirpidpidSSpir

n
RMS

1 1 1 1
))](2())

1
(2)()(2)(2()(2[

1

 In practice, a given image is typically partitioned into k

rectangular or square range blocks. Each of them is then encoded by

searching for a twice bigger domain block, so that the mapping

transformation is contractive. Before determining the minimum RMS

error between the two blocks should the domain block is decimated, i.e.

“shrunk” by a factor of 2, so that it has the same number of pixels as the

range block. Isometric transformations (i.e. rotation and reflection) of the

domain block are also allowed. Many coding schemes use quad-tree

partitioning, i.e. image blocks are divided recursively into smaller

blocks, if no satisfactory encoding for the mother block can be found.

Another common practice is to classify range and domain blocks into

non-overlapping categories, so that comparisons between incompatible

blocks can be avoided. The final result of all schemes is a chain of fractal

coefficients (such as s and o, displacement, rotation, etc.) assigned to

different parts of the image. When the transformations defined by these

coefficients, are applied repetively to any initial image, they will yield the

compressed image [Mar00].

2.3 Video Compression (3-D Image Compression)

 A video stream can be considered as a sequence of two-

dimensional images, or as a three-dimensional image. By breaking the

stream into a series of blocks in the time direction, the result is three-

……….. (2.9)

Image and Video Compression wo TChapter 20

dimensional image blocks suitable for application of a three-dimensional

version. The video stream may be grayscale or color data. Color streams

are handled in the same manner as color still images. Video compression

is complicated by a number of factors, among these factors is the speed at

which practical decompression may be performed. Another factor in

extending two-dimensional methods to three-dimensional is the fact that

humans perceive motion differently than still images. As in case of still

images, only PSNR results are used to quantify distortion [Sim01].

2.3.1 Video Compression Techn iques [Nic03]

 Video compression technologies can be divided into two groups

depending on the characteristics they use:

• Inter frame compression techniques

• Intra frame compression techniques

Table 2.1 below describes the main algorithms for each group and its

main characteristics.

Table 2.1 – Compression Techniques

 Inter Frame Intra Frame
Technique

Name

MPEG-4 Main Profile,
H.263+, MPEG-x

Wavelet, M-JPEG

Main
Characteristics

Use both spatial
redundancy and

temporal redundancy

Use only spatial
redundancy

The explanation of the characteristics given in the table is:

1. Using only spatial redundancy means that each frame is

compressed separately.

Image and Video Compression wo TChapter 21

2. Using spatial redundancy together with temporal redundancy

means utilizing the similarity between consequent frames and

motion estimations.

 In order to better understand the differences between the different

compression algorithms, it is important to review the conceptual

differences between Inter and Intra frame algorithms.

Intra frame : at which compression algorithms process each frame

separately, without analyzing the correlation between consequent frames

(i.e spatial redundancy). M-JPEG and Wavelet use different methods for

processing the frame and creating a compact presentation of it (either by

filters (in Wavelet), or by a DCT transform (in M-JPEG)).

Inter frame : Interframe processing is the key to exploit and reduce the

temporal redundancy in digital video compression (i.e utilizing the

similarity between consequent frames and motion estimation). Temporal

redundancy exists due to the similarity between the sequential

neighboring frames. In video compression, knowledge of motion helps to

exploit this similarity and remove the temporal redundancy between

neighboring frames in addition to the spatial and spectral redundancies.

Motion estimation (ME) or motion compensation (MC) are the basic

approaches to find out and represent the motion between frames. These

techniques are widely used in video standards including H.26x and

MPEG to achieve high data compression rate.

 Compression algorithms, such as MPEG-4 Main Profile and

H.263+, use temporal redundancy as well as spatial redundancy. It

actually means that these algorithms process consequent frames and

estimate the motion within the frames. Then the algorithm codes only the

difference between the frames instead of the whole frame. This coding

method results in higher video quality per given bit-rate, since the given

bit-rate is used for representing a smaller amount of video data (i.e. the

Image and Video Compression wo TChapter 22

frame difference). This is opposed to compression methods, which code

the whole frame.

2.3.2 Video Compression Structure [Nic03]

 The video coding structure will be build from the original video

data that is represented as sequence of frames, the inter frame

compression technique will divide the whole frames into two types, the

first type consist of the Anchor frames, and the second consist of the

Estimated frames. The Anchor frames are coded (compressed)

independently and separately without any considerations to the

correlations may exist with the neighboring frames, while the estimated

frames are coded (compressed) using motion estimation methods, which

will encode the estimated frames according to the correlations with the

neighboring Anchor frames, as shown in figure 2.2 (video coding

structure).

Anchor
frames

Estimated
Frames

Figure 2.2 (Video coding structure)

Image and Video Compression wo TChapter 23

2.3.3 Video Compression Standards [Arr97, Mic98]

 During the '80s and '90s, Discrete Cosine Transform (DCT) based

compression algorithms and international standards were developed to

alleviate storage and bandwidth limitations imposed by digital still image

and motion video applications. Today there are three DCT-based

standards that are widely used and accepted worldwide:

• JPEG (Joint Photographic Experts Group)

• H.261 (Video codec for audiovisual services)

• MPEG (Motion Picture Experts Group)

Each of these standards is well suited for particular applications: JPEG

for still image compression, H.261 for video conferencing, and MPEG for

high-quality, multimedia systems.

 MPEG was set up in 1988 to develop a set of standard

algorithms for applications that require storage of video and audio on

digital storage media. The basic structure of compression algorithm

proposed by MPEG is simple. An input image is divided into blocks of

8×8 pixels. For a given 8×8 block, we subtract the prediction generated

using the previous frame. The difference between the block being

encoded and the prediction is transformed using a DCT. The transform

coefficients are quantized and transmitted to the receiver [Pan01].

2.3.4 Motion Compensation (MC) and Motion Estimatio n (ME)

Video compression is involved with the removal of the spatial and

temporal redundancies. The most widely used compression schemes are

interframe and intraframe coding. The intraframe compression is a vital

means of exploiting the spatial redundancies and interframe compression

is used for exploiting the temporal redundancies. Due to the slow

movement of videos such as 'head-and shoulders' video sequence, the two

consecutive frames will not have much dramatic scheme change. So the

Image and Video Compression wo TChapter 24

current frame can be predicted from the translation of the previous frame.

The method that is commonly used is Motion Compensation prediction.

Predictive coding is widely used in video transmission, especially for low

bit rate coding. The vital part of the Motion Compensation is Motion

Estimation, which is used for extracting the motion activity that exists

between the frames. Block-Based Matching Algorithms (BMA) are

popular methods for Motion Estimation because of their simplicity and

ease of implementation [Som01].

2.3.4.1 The Slow Movement in Video [Gle01]

 The two frames, shown in figure (2.3) illustrate the slow movement

in video where the frame (a) is the frame number 90 in a video file, and

the frame (b), is the frame number 95 at the same video file, where it

obvious that, there is no dramatic changes, where there is a big similarity

between the two frames, therefore the frame number 95 can be predicted

from the previous frame.

MC involves removing the temporal redundancy. The basic idea

behind motion compensation is to estimate the displacement of objects.

a. Frame number 90 b. Frame number 95

Figure 2.3 Slow Movement in Video

Image and Video Compression wo TChapter 25

The methods used are called motion estimation (ME). Most of the

standard ME methods are block matching methods [Yil02] .

2.3.4.2 Block-Based Motion Estimation Methods

 The block matching is seemingly used by the video compression

standards because it can achieve a good balance between complexity and

coding efficiency. The goal of block matching is to find the best block

from an earlier frame to reconstruct an area of the current frame. The

block matching method can be categorized into frame based block

matching and object based block matching method. There are many ME

techniques used nowadays, the conventional frame based block

matching technique is considered to be the full search or exhaustive

search. This technique is often used for motion searching in relatively

small search ranges due to the heavy computation and extension data

fetching between the frame buffer and ME. In the last decade, many fast-

searching algorithms have been developed to reduce the computation and

data fetching by reducing the number of comparisons between the blocks,

such as the 2-D logarithm, the three-step search (TSS), the orthogonal

search and hierarchical block matching algorithms. Also, there are

proposals for improvements to fixed size block matching techniques by

varying the size of blocks to more accurately match-moving areas known

as variable size block matching (VSBM) methods. Since block MC

causes visible block boundaries to appear in the predicted frame, the

overlapped blocks MC was developed to reduce the blocking artifact

[Dde00].

 The object block of the current frame is placed and moved around

in the previous frame using a specific search strategy. A criterion is

defined to determine how well the object block matches a corresponding

block in the previous frame. These criteria can be the mean squared error

Image and Video Compression wo TChapter 26

(MSE), minimum absolute difference (MAD) or the sum absolute

difference (SAD). Since MSE gives the residual energy in the block

difference, it is used as the criteria for BM ME [Vir99] .

A. Three Steps Search [Hyc101]

The Three Steps Search (TSS) will do three stages of matching, in

each stage it will do eight matching blocks, these eight blocks are the

eight neighbors around the signed block, and determine the best block,

then will do the eight matching blocks around it, and so this matching

will be repeated three times to determine the best block.

 The difference among the three stages is the offset of the eight

blocks from the Macro block (MB), where in the first stage, the offset is

1

Figure 2.4 (c)

4

Figure 2.4 (a)

2

Figure 2.4 (b)

Figure (2.4): Three step search

Image and Video Compression wo TChapter 27

four pixels, in the second stage is two pixels, and in the third stage is

only one pixel shifted, as shown in figure (2.4).

B. Once Time Search (OTS) [Ali97, Kar04]

The Once Time Search (OTS) behaved very differently from most

other searching algorithms in that its behavior is almost entirely

dependent on the sequence. Beyond its operative range, the size of the

search area had little influence on its behavior.

The one at a time search (OTS) first evaluates points within the

search window that are on the same row as the center point. If the center

point is designated as (m, n), then the three positions (m-1, n), (m, n), and

(m+1,n) are evaluated. If the best sum absolute difference (SAD) value

corresponds to the central point, then the horizontal evaluation ends. If

the best point corresponds to one the end points, then the end point

becomes the center point, and three more points are evaluated. This

continues until the best point is found at the center of the three points.

Now the same procedure is conducted in the vertical direction, i.e., at the

points (m, n-1), (m, n) and (m, n+1), beginning at the best point found in

the horizontal search. Finally the method will continue search for the best

SAD but in a diagonal way toward the original centre (first centre). The

result of the diagonal search is the designated best vector location.

Image and Video Compression wo TChapter 28

Figure (2.5) illustrates the three stages for the OTS search, as

indexed on the figure, where at the first, the search will be on the

horizontal axis, either to the left or to the right, as the motion that

numbered (1), the second stage is a motion on the vertical axis for the

new center as the motion number (2) on the figure, and finally, the third

motion is a diagonal motion toward the original center as motion number

(3).

2.4 Multimedia Networking [Jim99, Jud98]

 Although traditional networks still exist for the separate delivery of

voice, data, and video, new networks are often implemented as a

combination of different types of remote communications merged into

one delivery system. Indeed, many legacy networks are seeing the

addition of multimedia applications as the greatest pressure to effective

network throughput.

1 1

2

2

2

2

3
3

3 3

Figure (2.5): OTS Motion estimation

Image and Video Compression wo TChapter 29

 Virtually all modern Web sites contain rich graphic and image

content, and many add simple animation and real-time audio. Real-time,

voice, and video transmission are already feasible over the Internet.

Point-to-point and point-to-multipoint transmission is easily

accomplished for both audio and video, and multipoint conferences can

be provided with little additional equipment. Broadcast, or so-called “net-

cast,” media has begun to provide streaming information content for such

applications as news, financial data, and weather with multimedia.

 Audio and video entertainment “channels” has begun in early on the

Internet. At the present time, while sitting comfortably at the computer,

one can tune in to his favorite jazz, classical, rock, easy listening, or

alternative music from a variety of audio. Special purpose audio feeds are

often available from live concerts. Video servers are now offering image

transmission that includes periodic, still images as well as an increasing

number of full-motion video feeds that may be broadcast to thousands.

2.5 Reasons for Multimedia Distributed Systems [Jud98]

1. Cost-of-Business Requirement: Three basic approaches can be

taken to managing networks.

a. The first, and perhaps most common, is that network

management is a necessary cost of business.

b. It needs to be done to keep the network functioning.

c. Certain expenses and actions must be undertaken.

But as long as these functions are adequately

performed, further spending and efforts are not

justified as network management.

Image and Video Compression wo TChapter 30

2. Ensuring Network Success: The second approach is to view

network management as a significant contribution to the success of

the network. Network management contributes to the value of the

network through the usage optimization of resources. Users of this

approach tend to have a coherent strategy. This approach uses a

large variety of the tools available and deploys them methodically.

3. Maintaining Service Levels: The third approach is to view network

management as a strategic component of maintaining service

levels. Providing new services that are a result of management

capabilities and even providing products to support the business are

all characteristics of this approach to network management.

4. Focus on Services: Another way to characterize these approaches

is to note what uses and business purposes the network supports.

Users of the first approach essentially provide data transmission.

Those who take the second approach provide data services, and

those who take the third approach are able to provide their users

with a comprehensive set of information services. In this sense,

data transmission is the movement of data from an input to an

output location without regard to the content, or value of

information, other than the external values assigned by the

selection of the transport mechanism. The appropriate

measurements for data transmission are the bit error rates, the

packets lost, and the delay through the network.

Services are concerned about issues such as data integrity,

rerouting, and other such service elements that come together to ensure

timely and accurate delivery of the data. The measurements that are more

appropriate to a data service are up time, throughput, effective data rates,

and reachability. Information services deliver value from the network.

Image and Video Compression wo TChapter 31

Through the monitoring, evaluation, and analysis of data transported

through the network, and through specific information related services,

they provide sources of information, as well as provide the service of data

transport. The measures that are appropriate for information service are

accuracy, response times, and consistency.

3.1 Introduction

The rapid growth of digital imaging applications, including

multimedia and high-definition television (HDTV) has increased the need

for effective and standardized image compression techniques. Among the

emerging standards are JPEG (for compression of still images) and MPEG

(for compression of motion video). Both of these standards employ a basic

technique known as the discrete cosine transform (DCT). One of the most

popular applications of DCT is image compression. The implementation of

DCT was developed through a new derivation that fully documented in this

chapter (see FDCT derivation).

Fractal coding is one of the promising image coding techniques,

which provide high compression ratios, many software products start

adopting fractal coding schemes. Blocks of an image are considered as

affine transformations of other blocks taken from the image itself.

Unfortunately, this coding costs too expensive time to complete its

computation. A developed method was proposed in this work to speed up the

standard fractal coding scheme, the proposed design and its implementation

takes the advantages of the distributed system, which more than one

computer is used to perform fractal coding (i.e., distribute the fractal coding

operation on n-computers to speedup the coding operation).

Motion estimation is the process of estimating the motion of moving

objects in a video scene. This is accomplished by determining the motion by

which an object moves from one frame to the next. A given frame in a video

sequence can be predicted from its previous frame by displacing all the

Chapter Three

Video Coding System

Chapter Three Video Coding System 33

moving objects in the previous frame by the estimated motion. Motion

estimation and compensation form a major part in any video coding scheme.

Many techniques are currently used for motion estimation. In the block-

based approaches the most common applied procedure is the block matching

based on various algorithms. Block based motion estimation forms the base

of all video coding schemes. It involves finding a candidate block within a

specified search area in the previous frame that is most similar to the

considered (tested) block in the current frame. In the proposed work,

standard methods OTS and TSS were implemented in addition to a new

design method which represents a hybrid method (HM) combine the two

standard methods for motion estimation.

3.2 Media File

The media file, which is used, as uncompress media file is the AVI

file, where the system takes an AVI file as input media file and produce a

compact file that represents the compressed video file.

The Microsoft AVI file format is a Resource Interchange File Format

(RIFF), it is used with applications that capture, edit, and play back audio-

video sequences. In general, AVI files contain multiple streams of different

types of data. Most AVI sequences use both audio and video streams. A

simple variation for an AVI sequence uses video data and does not require

an audio stream, see appendix-A (AVI file format).

3.3 The Proposed Compressing Systems

 In this work, two models of video coding are proposed and implemented.

With each model, there are two major components: Anchor Frames

Chapter Three Video Coding System 34

Compression (AFC), and Motion Estimation (or compensation) of Frames

(MEF).

1. Model-1: In this model, a compression system based on FDCT

transform was designed to encode Anchor frames. Through its

implementation a new derivation of the original DCT transform (see

section 3.4.6 FDCT Derivation) was adopted. While the Motion

Estimation within Frames (MEF) are compressed using three different

methods of Motion Estimation (ME), two standards methods, i.e

Three Step Search (TSS), and Once Time Search (OTS) methods, in

addition to a new designed hybrid method of Motion Estimation, it is

based on combining some of the steps involved in the two used

standard methods (TSS, and OTS).

2. Model-2: In this model, the compression system depends on Fractal

Image Compression (FIC) technique was utilized to compress Anchor

frames, while the adopted Motion Estimation methods are the same

methods that utilized in the first model. The problem with Fractal

Image Compression (FIC) is in its high computational requirements

(i.e., time consuming), it needs an expensive time to complete Anchor

Frame Compression (AFC). In this work, time consuming problem is

solved by using multiprocessing system (i.e., distribute the fractal

compression job among several PC's connected through LAN) to

perform the fractal process.

Chapter Three Video Coding System 35

3.4 Video Coding Using FDCT (Model1)

 As mentioned before, each model has two major jobs to do, Anchor

Frame Compression (AFC), and Motion Estimation (ME). In this model, the

Anchor Frame Compression uses a new version of DCT transform (FDCT),

while the Motion Estimation uses one of the three Motion search methods

(TSS, OTS, and HM).

Proposed Video Coding Systems

TSS OTS HM

Video Coding using DCT
(model-1)

Video Coding using Fractal
(model-2)

Anchor Frame
Compression Using DCT

Anchor Frame
Compression Using

Fractal

Motion Estimation
(ME)

Figure (3.1) The Proposed Systems Structures

Chapter Three Video Coding System 36

3.4.1 The System Structure of Model1 Coding

 Figure (3.2) illustrates the general coding scheme of the proposed

model-1.

Figure (3.2) The System Structure Model1 Coding

No

Video
Frame

Video
Frame

Coded file

Video
Frame

Open AVI file,
load and encode

file Header
contents

Select method
of Motion
Estimation

Get Frame 0

(Anchor frame)

Compress
Anchor Frame
Using FDCT

Compute
Motion

Estimation for
5 frames

Get 6th
positioned

Frame from the
last one

AVI
File

Get the next 5

Frames

Compress
Anchor Frame
Using FDCT

Compute
Motion

Estimation for
5 frames

Get the last 5

Frames

Get Frame

(Anchor frame)

Yes

End of
frames

Chapter Three Video Coding System 37

Where

1. At the first model, the system will load the header of AVI file and

encode it (i.e., Header compression) after reducing the unnecessary

information. The AVI header is a big header, it extends up to 127 kB,

but after encoding the AVI header using S-shift encoder, the final size

becomes 30 kB.

2. The user will select one of the three-available methods for motion

estimation (TSS, OTS, or HM).

3. After getting a frame compress it as Anchor Frame (AF), compute the

Motion Estimation (ME) for the next five sequenced frames, such that

the determined motion estimation depends on the previous Anchor

frame.

4. Skip five video frames and get a new video frame compressing it as

Anchor Frame, where the skipped five frames will compared with this

Anchor frame to compute their blocks motion.

3.4.2 Strategy of Video Coding

The video frame sequence will be divided into sets of frames groups,

each group consists of 12 frames, the first and last frames in the group are

considered as Anchor frames, and the other frames will be compressed by

computing the motion estimation relative to the Anchor frames, considering

the last frame is the first frame for the next group (i.e., the last frame of each

group is shared with the next group).

The motion in the first five estimated frames is measured relative to

the first Anchor frame, while the motion of last estimated frames depends on

the last Anchor frame. Figure (3.3) illustrates the video coding strategy.

Chapter Three Video Coding System 38

3.4.3 Compress Anchor Frame Using FDCT

 Figure (3.4) illustrates the implemented compression scheme, based

on fast discrete cosine transform (FDCT), to compress the Anchor frames.

Anchor
frames

First 5 estimated frames

Last 5 estimated frames

Figure (3.3) The Video Coding Strategy

Figure (3.4) The Com pression Scheme for Anchor Frames Using FDCT

B

G

R

Color
transform

V

U

Y

Down
Sampling

Vd

Ud

Yt

Udt

Vdt

QY

QU

QV

ZQY

ZQU

ZQV RV

RU

RY

Coded U,V

Coded Y
Saving Result

Video
frame

S-Shift Encoder

S-Shift Encoder

S-Shift Encoder

Zigzag

Zigzag

Zigzag

Run length
Encoder

Run length
Encoder

Run length
Encoder

FDCT

FDCT

FDCT

Quantization

Quantization

Quantization

Chapter Three Video Coding System 39

 The video frame is a 2D matrix of RGB components. The involved steps

of the compression scheme could be summarized as follows:

1. In the first step the system will transform the color components (R, G,

and B) to another color domain (i.e., YUV bands), see section 3.4.4

(the color transform).

2. Down sample the U, and V bands using the average method (see

algorithm list 3.2). This is due to the fact the components U, and V

hold 10% of the whole color information of the image matrix so this

down sampling will reduce the required system computation without

producing significant distortions in colors.

3. The result of down sampling for U, and V bands in addition to the Y

band will DCT transformed using a new derivation of fast DCT

transform, see section 3.4.6 (FDCT derivation).

4. Apply the quantization of the result of FDCT to reduce the number of

bits needed to represent DCT coefficients, and then apply the zigzag

ordering on the quantized FDCT coefficients, as shown in algorithm

3.5 (The Image Quantization and Zigzag).

5. Encode the result of zigzag process using Run length encoder, see

algorithm 3.6 (Run Length Encoder).

6. And finally encode the output of the run length encoder using S-shift

encoder, see algorithm 3.7 (Shift Key Encoder), and save the

codeword in the output buffer.

Chapter Three Video Coding System 40

3.4.4 The Color Transform

 This standard is based on converting the RGB bands to YUV bands.

Given a 24 bits/pixel RGB signal, we can find the Y, U, and V values as

follows:

 Y = 0.299R + 0.587G + 0.114B, ………………………… (3.1)

 U = -0.147R - 0.289G + 0.436B, …………………….…… (3.2)

 V = 0.615R - 0.515G - 0.11B, ……………………. ……… (3.3)

 From this transform, more than 90% of the information will

concentrate into one band (Y), the remaining information will be in the other

two bands. So the Y band is more important from the other two bands U, and

V. The Color Transform (CT) is utilized in image compression schemes,

because it will help to reduce the spectral redundancy, and also to exploit

some of the characteristics of the human visual system (HVS) to improve the

compression performance. Algorithm (3.1) shows the steps of the

implemented algorithm.

The Colors Transform

Algorithm (3.1) the colors transform

Input: RGB Image (Img) H×W

Output: YUV Image (Rimg) H×W

For i=0 to H-1

 For j=0 to W-1

• Compute Y band from Img(i,j), Y =(299*R(i,j)+587*G(i,j)+114*B(i,j))*0.001

• Compute U band from Img(i,j) , U =(-147*R(i,j)-289*G(i,j)+436*B(i,j))*0.001

• Compute V band from Img(i,j) , V =(615*R(i,j)-515*G(i,j)-11*B(i,j))*0.001

 Next j

Next i

Chapter Three Video Coding System 41

3.4.5 Image Down Sampling

 The goal of this method is to reduce the image size to quarter %25 of

its original size, and it is done by replacing each four pixels by one pixel,

whose value is the average of the four pixels.

The Down Sampling

3.4.6 Fast DCT (a new derivation)

 In the proposed work, a fast 8×8 DCT is developed to speedup the

DCT execution, the derivation for final equations implemented in the fast

8×8 DCT transform is described in this section. The basic idea of speeding

Algorithm (3.2) The Down Sampling

Input: YUV Image (Img) H × W

Output: UV Image (UVimg) Dh × Dh

• Dh=H div 2

• Dw=W div 2

For i=0 to Dh-1: Id=i×2: Idp=Id+1

 For j=0 to Dw-1

• Jd=j×2

• Us=Img(Id, Jd).U+ Img(Idp, Jd).U+ Img(Id, Jd+1).U+ Img(Idp, Jd+1).U

• UVimg(i, j).U=Us/4

• Vs=Img(Id, Jd).V+ Img(Idp, Jd).V+ Img(Id, Jd+1).V+ Img(Idp, Jd+1).V

• UVimg(i, j).V=Vs/4

 Next j

Next i

Chapter Three Video Coding System 42

up the DCT transform is to reduce loops, mathematical floating operations,

and some other factors. The algorithm of FDCT to transform one 8×8 block

is given in algorithm list (3.3), so the system will divide the 2D image into

8×8 blocks, this transform must applied on the Y-components, and the down

sampled components of U and V.

 The DCT transform is one of the important image transforms, which

used in verity image applications, but the disadvantage of the DCT

transform is its long encoding/decoding time, so it is important to make this

transform faster. In this work, a new implementation of fast 8×8 DCT

(FDCT) transform is considered.

 The basic idea of speeding up the DCT transform is to reduce loops,

mathematical operations, and some other factors.

A. The Standard DCT Transform

 The equation of 1D cosine transform is given as follows

)4.3.(..........)
2

)12(
cos()()()(

1

0
∑

−

=

+=
N

x
N

xu
xfuCuF

π







=

≠

=

0
1

0
2

)(
uif

N

uif
N

uC

Chapter Three Video Coding System 43

For the case N=8, the above DCT equation could by simplified into

equations (3.5):

F (0)=(σ0 ƒ0 + σ1 ƒ1 + σ2 ƒ2 + σ3 ƒ3 + σ4 ƒ4 + σ5 ƒ5 + σ6 ƒ6 + σ7 ƒ7)/R

F (1)= (ς0 ƒ0 + ς 1 ƒ1 + ς 2 ƒ2 + ς 3 ƒ3 + ς 4 ƒ4 + ς 5 ƒ5 + ς 6 ƒ6 + ς 7 ƒ7)/R

F (2)= (υ0 ƒ0 + υ 1 ƒ1 + υ 2 ƒ2 + υ 3 ƒ3 + υ 4 ƒ4 + υ 5 ƒ5 + υ 6 ƒ6 + υ 7 ƒ7)/R

F (3)= (φ 0 ƒ0 + φ 1 ƒ1 + φ 2 ƒ2 + φ 3 ƒ3 + φ 4 ƒ4 + φ 5 ƒ5 + φ 6 ƒ6 + φ7 ƒ7)/R

F (4)= (ψ0 ƒ0 + ψ1 ƒ1 + ψ2 ƒ2 + ψ 3 ƒ3 + ψ 4 ƒ4 + ψ 5 ƒ5 + ψ 6 ƒ6 + ψ 7 ƒ7)/R

F (5)= (α 0 ƒ0 + α 1 ƒ1 + α 2 ƒ2 + α 3 ƒ3 + α 4 ƒ4 + α 5 ƒ5 + α 6 ƒ6 + α7 ƒ7)/R

F (6)= (β0 ƒ0 + β 1 ƒ1 + β 2 ƒ2 + β 3 ƒ3 + β 4 ƒ4 + β 5 ƒ5 + β 6 ƒ6 + β 7 ƒ7)/R

F (7)= (δ 0 ƒ0 + δ 1 ƒ1 + δ 2 ƒ2 + δ 3 ƒ3 + δ 4 ƒ4 + δ 5 ƒ5 + δ 6 ƒ6 + δ7 ƒ7)/R

Where

σi = round(C(0) ×COS(0)× R)

ςi = round(C(1) ×COS(((2×i+1) ×π)/16) × R)

υi= round(C(2) ×COS ((2× (2×i+1) ×π)/16) × R)

φi= round(C(3) ×COS ((3× (2×i+1) ×π)/16) × R)

ψi= round(C(4) ×COS ((4× (2×i+1) ×π)/16) × R)

αi= round(C(5) ×COS ((5× (2×i+1) ×π)/16) × R)

βi= round(C(6) ×COS ((6× (2×i+1) ×π)/16) × R)

δi= round(C(7) ×COS ((7× (2×i+1) ×π)/16) × R)

Where R is the accuracy number, which represents the accuracy

needed after the decimal point. The purpose of this factor is to convert the

coefficients from real numbers to integer numbers, because the execution of

mathematical operations deals with integer numbers (i.e., integer operations)

are faster than those deal with real numbers (floating point operations) in

computers.

Chapter Three Video Coding System 44

The values of the parameters (σi, ςi, υi…. δi) are shown the following table:

i 0 1 2 3 4 5 6 7

σi 500 500 500 500 500 500 500 500

ςi 347 294 197 69 -69 -196 -294 -347

υi 327 135 -135 -326 -327 -136 134 326

φi 294 -69 -347 -197 196 347 70 -293

ψi 250 -250 -250 249 251 -249 -251 249

αi 197 -347 68 295 -293 -71 347 -194

βi 135 -327 326 -134 -137 328 -326 132

δi 69 -197 295 -347 346 -292 194 -65

So, it could be noticed that:

1. σ0= σ1= σ2= σ3= σ4= σ5= σ6= σ7= 500

2. ς0=347, ς1=294, ς2=197, ς3=69, ς4=-ς3, ς5= -ς2, ς6= -ς1, ς7= -ς0

3. υ0=327, υ1=135, υ2= -υ1, υ3= -υ0, υ4= -υ0, υ5= - υ1, υ6=υ1, υ7=υ0

4. φ0= ς1, φ1= -ς3, φ2= -ς0, φ3= -ς2, φ4= ς2, φ5= ς0, φ6= ς3, φ7= -ς1

5. ψ0=250, ψ1= -ψ0, ψ2= -ψ0, ψ3= ψ0, ψ4= ψ0, ψ5= -ψ0, ψ6= - ψ0, ψ7= ψ0

6. α0= ς2, α1= -ς0, α2= ς3, α3= ς1, α4= -ς1, α5= -ς3, α6= ς0 , α7= -ς2

7. β0= υ1, β1= -υ0, β2= υ0, β3= -υ1, β4= -υ1, β5= υ0, β6= -υ0, β7= υ1

8. δ0= ς3, δ1=-ς2, δ2= ς1, δ3= -ς0, δ4= ς0, δ5= -ς1, δ6= ς2, δ7= -ς3

Note: the comparing coefficients are performed ignoring small errors

Table 3.1 : 8×8 DCT Coefficients Values With R=1000

Chapter Three Video Coding System 45

So we can rewrite the system (3.5) into equations (3.6) as follow:

F (0)= (σ0 ƒ0 + σ0 ƒ1 + σ0 ƒ2 + σ0 ƒ3 + σ0 ƒ4 + σ0 ƒ5 + σ0 ƒ6 + σ0 ƒ7)/R

F (1)= (ς0 ƒ0 + ς1 ƒ1 + ς2ƒ2 + ς 3 ƒ3 - ς 3 ƒ4 - ς 2 ƒ5 - ς1 ƒ6 - ς0ƒ7)/R

F (2)= (υ0ƒ0 + υ1ƒ1 - υ 1 ƒ2 - υ0ƒ3 - υ0ƒ4 - υ1 ƒ5 + υ 1 ƒ6 + υ0ƒ7)/R

F (3)= (ς1 ƒ0 - ς3 ƒ1 - ς0 ƒ2 - ς2 ƒ3 + ς2 ƒ4 + ς0 ƒ5 + ς3 ƒ6 - ς1 ƒ7)/R

F (4)= (ψ0ƒ0 - ψ0ƒ1 - ψ0ƒ2 + ψ0ƒ3 + ψ0ƒ4 - ψ0ƒ5 - ψ0ƒ6 + ψ0ƒ7)/R

F (5)= (ς2ƒ0 - ς0ƒ1 + ς3ƒ2 + ς1 ƒ3 - ς1ƒ4 - ς3ƒ5 + ς0ƒ6 - ς2ƒ7)/R

F (6)= (υ1ƒ0 - υ0ƒ1 + υ0ƒ2 - υ1ƒ3 - υ1ƒ4 + υ0ƒ5 - υ0ƒ6 + υ1ƒ7)/R

F (7)= (ς3 ƒ0 - ς2ƒ1 + ς1ƒ2 - ς0ƒ3 + ς0ƒ4 - ς1ƒ5 + ς2ƒ6 - ς3ƒ7)/R

And we can to simplify the system (3.6) to system (3.7) as follow:

F (0)= σ0 (ƒ0+ƒ1+ƒ2+ƒ3+ƒ4+ƒ5+ƒ6+ƒ7)/R

F (1)= [ς0 (ƒ0-ƒ7) + ς1 (ƒ1-ƒ6) + ς2 (ƒ2-ƒ5) + ς3 (ƒ3-ƒ4)]/R

F (2)= [υ0 (ƒ0-ƒ3-ƒ4+ƒ7) + υ1 (ƒ1-ƒ2-ƒ5+ƒ6)]/R

F (3)= [ς1 (ƒ0-ƒ7) - ς3 (ƒ1-ƒ6) - ς0 (ƒ2-ƒ5) - ς2 (ƒ3-ƒ4)]/R

F (4)= [ψ0 (ƒ0-ƒ1-ƒ2+ƒ3+ƒ4-ƒ5-ƒ6+ƒ7)]/R

F (5)= [ς2 (ƒ0-ƒ7)- ς0 (ƒ1-ƒ6) + ς3 (ƒ2-ƒ5) + ς1 (ƒ3-ƒ4)]/R

F (6)= [υ1 (ƒ0-ƒ3-ƒ4+ƒ7) + υ0 (ƒ2-ƒ1+ƒ5-ƒ6)]/R

F (7)= [ς3 (ƒ0-ƒ7) - ς2 (ƒ1-ƒ6) + ς1 (ƒ2-ƒ5) - ς0 (ƒ3-ƒ4)]/R

Now suppose that:

U1=ƒ0+ƒ7

U2=ƒ3+ƒ4

U3=ƒ1+ƒ6

U4=ƒ2+ƒ5

Chapter Three Video Coding System 46

V1=U1+U2

V2=U3+U4

V3=U1-U2

V4=U3-U4

V5=ƒ0-ƒ7

V6=ƒ1-ƒ6

V7=ƒ2-ƒ5

V8=ƒ3-ƒ4

Substituting the equations (V1, V2 … V8) in equations (3.7) will lead to

system (3.8):

F (0)= σ0 (V1+ V2)/R

F (1)= [ς0 V5 + ς1V6 + ς2 V7 + ς3 V8]/R

F (2)= [υ0V3 + υ1 V4]/R

F (3)= [ς1V5 – ς3V6 - ς0V7 – ς2 V8]/R

F (4)= ψ0(V1- V2)/R

F (5)= [ς2V5 - ς0V6 + ς3V7 + ς1V8]/R

F (6)= [υ1V3 – υ0V4]/R

F (7)= [ς3V5 - ς2V6 + ς1V7 – ς0V8]/R

Chapter Three Video Coding System 47

The FDCT for One 8×8 Block

B. Inverse DCT (IDCT)

 The equation of inverse DCT is:

)9.3........(..........)
2

)12(
cos()()()(

1

0
∑

−

=

+=
N

x
N

xu
xFuCuf

π







=

≠

=

0
1

0
2

)(
uif

N

uif
N

uC

Algorithm (3.3) The FDCT for One 8×8 Block

Input: Gray Block (GB) 8×8

Output: DCT Block (DB) 8×8

For i=0 to 7

• Load gray vector from the ith row of GB, ƒ(0).. ƒ(7)

• Compute shared variables, V1..V8

• Compute DCT coefficients σ0, ς0, ς1, ς2, ς3, υ0, υ1, ψ0

• Compute DCT vector, F(0)..F(7) using system (3.8)

• for r=0 to 7: TMP(r, i)=F(r): next r

 Next i

For i=0 to 7

• Load TMP vector from the ith column of TMP Block, ƒ(0).. ƒ(7)

• Compute shared variables, V1..V8

• Compute DCT coefficients σ0, ς0, ς1, ς2, ς3, υ0, υ1, ψ0

• Compute DCT vector, F(0)..F(7) using system(3.8)

• for r=0 to 7: DB(i, r)=F(r): next r

 Next i

Chapter Three Video Coding System 48

 For simplification of IFDCT we can follow same procedure like that

used with FDCT, where for the case N=8, the above IDCT equation could

by simplified into equations (3.10):

ƒ(0)=(σ0 F0 + σ1 F1 + σ2 F2 + σ3 F3 + σ4 F4 + σ5 F5 + σ6 F6 + σ7 F7)/R

ƒ(1)=(ς0 F0 + ς1 F1 + ς2 F2 + ς3 F3 + ς4 F4 + ς5 F5 + ς6 F6 + ς7 F7)/R

ƒ(2)=(υ0 F0 + υ 1 F1 + υ 2 F2 + υ 3 F3 + υ 4 F4 + υ 5 F5 + υ 6 F6 + υ 7 F7)/R

ƒ(3)=(φ0 F0 + φ1 F1 + φ2 F2 + φ3 F3 + φ4 F4 + φ5 F5 + φ6 F6 + φ7 F7)/R

ƒ(4)= (ψ0 F0 + ψ1 F1 + ψ2 F2 + ψ3 F3 + ψ4 F4 + ψ5 F5 + ψ6 F6 + ψ7 F7)/R

ƒ(5)= (α0 F0 + α1 F1 + α2 F2 + α3 F3 + α4 F4 + α5 F5 + α6 F6 + α7 F7)/R

ƒ(6)= (β0 F0 + β1 F1 + β2 F2 + β3 F3 + β4 F4 + β5 F5 + β6 F6 + β7 F7)/R

ƒ(7)= (δ0 F0 + δ1 F1 + δ2 F2 + δ3 F3 + δ4 F4 + δ5 F5 + δ6 F6 + δ7 F7)/R

Where

σi = round(C(i)×COS((u× π)/16) ×R)

ςi = round(C(i) ×COS((3×u×π)/16) ×R)

υi= round(C(i) × COS((5×u×π)/16) ×R)

φi= round(C(i) × COS((7×u×π)/16) ×R)

ψi= round(C(i) × COS((9×u×π)/16) ×R)

αi= round(C(i) × COS((11×u×π)/16) ×R)

βi= round(C(i) × COS((13×u×π)/16) ×R)

δi= round(C(i) × COS((15×u×π)/16) ×R)

And we obtain that:

U1=F0+F7

U2= F3+ F4

U3=F1+F6

U4=F2+F5

Chapter Three Video Coding System 49

V1=U1+U2

V2=U3+U4

V3=U1-U2

V4=U3-U4

V5=F0-F7

V6=F1-F6

V7=F2-F5

V8=F3-F4

Where this will make the system (3.11) as the following:

ƒ(0)= σ0 (V1+ V2)/R

ƒ(1)= [ς0 V5 + ς1V6 + ς2 V7 + ς3 V8]/R

ƒ(2)= [υ0V3 + υ1 V4]/R

ƒ(3)= [ς1V5 – ς3V6 - ς0V7 – ς2 V8]/R

ƒ(4)= ψ0(V1- V2)/R

ƒ(5)= [ς2V5 - ς0V6 + ς3V7 + ς1V8]/R

ƒ(6)= [υ1V3 – υ0V4]/R

ƒ(7)= [ς3V5 - ς2V6 + ς1V7 – ς0V8]/R

Chapter Three Video Coding System 50

The Inverse Fast DCT (IFDCT)

3.4.7 Quantization and Coding

FDCT-based image compression relies on two techniques to reduce

the data required to represent the image, the first is the quantization of the

image's FDCT coefficients; the second is coding the quantized coefficients.

 Quantization is the process of reducing the number of possible values of

a quantity, thereby reducing the number of bits needed to represent it.

Coding is a technique for representing the quantized data as compactly as

possible.

Algorithm (3.4) The Inverse Fast DCT (IFDCT)

Input: DCT Block (DB) 8×8

Output: Gray Block (GB) 8×8

For i=0 to 7

• Load DCT vector from the ith row of DB, F(0).. F(7)

• Compute shared variables, V1..V8

• Compute DCT coefficients σ0, ς0, ς1, ς2, ς3, υ0, υ1, ψ0

• Compute DCT vector, ƒ(0).. ƒ(7) using system (3.11)

• For r=0 to 7: TMP(r, i)= ƒ(r): next r

 Next i

For i=0 to 7

• Load TMP vector from the ith column of TMP Block, F(0).. F(7)

• Compute shared variables, V1..V8

• Compute DCT coefficients σ0, ς0, ς1, ς2, ς3, υ0, υ1, ψ0

• Compute DCT vector, ƒ(0).. ƒ(7) using system (3.11)

• For r=0 to 7: GB(i, r)= ƒ(r): next r

 Next i

Chapter Three Video Coding System 51

 In this proposed work, a function to determine the quantization step

used to quantize DCT coefficients. A uniform quantization was adopted. The

quantization step (Qstep) for each coefficient C(u, v) was determined by using

the function:

Qstep (u, v)=1+ϕ×(u+v) ……………(3.12)

 Where ϕ is a quality factor of range (2…8).

So, the quantization is determined by using the following equation:

)13.3......(....................)
),(

),(
(),(

vuQ

vuC
roundvuQ

step
I =

In this work the Zigzag ordering process, Run length, and S-Shift

coding a compressed data for the Anchor frame. The Zigzag process is the

conversion of 2D quantized FDCT coefficients to one-dimensional vector

but in Zigzag way, figure (3.5) illustrates the followed zigzag path.

(0,0) (0,1)

(1,0) (1,1)

Figure (3.5) Zigzag Process

Chapter Three Video Coding System 52

Image Quantization and Zigzag

Algorithm (3.5) Image Quantization and Zigzag
Input: Image (Img) H×W
Output: Zigzag vector (ZV)

Zindex=0 // Zigzag index
HB=H/8: WB=W/8 // Number of Blocks
For i=0 to HB-1
 For j=0 to WB-1

 // Quantization
 Ib=i*8: Jb=j*8
 For r=0 to 7
 Ip=Ib+r
 For c=0 to 7
 QI(Ip, Jb+c)= round(Img (Ip, Jb+c)/ Qstep (r, c))
 Next c
 Next r
 // Zigzag
r=0: c=0: ZV(Zindex)= QI(Ib, Jb)
For it=1 to 3
 r=0
 For k=c to 0 step -1
 Zindex=Zindex+1
 ZV(Zindex)= QI(Ib+r, Jb+k): r=r+1
 Next k
 c=0
 For k=r to 0 step -1
 Zindex=Zindex+1
 ZV(Zindex)= QI(Ib+k, Jb+c): c=c+1
 Next k
 Next it
 r=0
 For it=1 to 4
 For k=r to 7
 Zindex=Zindex+1
 ZV(Zindex)= QI(Ib+k, Jb+j): c=c+1
 Next k
 c=c+2: r=7
 For k=c to 7
 Zindex=Zindex+1
 ZV(Zindex)= QI(Ib+r, Jb+k): r=r+1
 Next k
 r=r+2: c=k-1
 Next it

 Next j
Next i

Chapter Three Video Coding System 53

Run Length Encoder

3.4.8 Shift Key Encoder

 The input data is an array of run length pairs (run and value), where

the shift key encoder will encode each cell separately, and the encoded data

is registered in Wb buffer and each eight bits in this Wb buffer will

converted to byte and saved in the output buffer.

Algorithm (3.6) Run Length Encoder

Input: One-dimensional zigzag array ZA of length Zmax
Output: One-dimensional array RA of length Rl

• Set Rl=0
• Set Zcount=0

 While Zcount < Zmax

 While ZA (Zcount) <> 0

 RA (Rl) = ZA (Zcount)
 Zcount = Zcount + 1
 Rl=Rl+ 1

 Wend
Count = 0

 While ZA (Zcount) = 0
 Count = Count + 1
 Zcount = Zcount + 1

 Wend
 RA (Rl) = 0
 RA (Rl+ 1) = Count
 Rl=Rl+ 2
 Wend

Chapter Three Video Coding System 54

Shift Key Encoder algorithm

3.4.9 Video Motion Estimation

As mentioned in chapter two, two standard methods (OTS and TSS)

for motion estimation were implemented, also a new method for motion

estimation was suggested, a hybrid method utilize both steps that followed

the two standard methods (OTS, and TSS).

Algorithm (3.7) Shift Key Encoder

Input: One-dimensional coded array RA of length Rl
Output: Coded data of zeros and ones

• Set M equal to the max codeword // Wb

For i=1 to Rl

• Set X=RA (i)
• If X>0 then

 S=1
 add S value to the output buffer as single bit
 else
 S=0
 add S value to the output buffer as single bit

 end if
• X=abs(X)

 While X >M

• Save M in the output buffer as single codeword
• X=X-M

 Wend
 If X>0 then
 add X bits to the output buffer as single codeword
 else
 add zero bits to the output buffer as single codeword
 end if

 Next i

Chapter Three Video Coding System 55

3.4.9.1 Hybrid Motion Estimation

The suggested Hybrid Method (HM) features are those of the two

standard methods. As mentioned in chapter two, the two methods (OTS,

TSS) has three stages for completing the block search, in the suggested

Hybrid Method (HM), there are also three stages, the steps of first stage in

the HM is the steps of 1st stage of TSS followed by the steps of the first stage

of OTS, and a similar procedure is followed in the second and third stages of

HM. After doing the first stage of TSS, the suggested HM will complete its

stage by implementing the steps of the first stage of OTS method for

searching block position in horizontal direction. While in the second stage of

HM the first stage of TSS is followed by implementing the steps of OTS to

do searching in the vertical direction, and finally after the final stage of TSS

is completed OTS searching in the diagonal direction will performed.

3.4.9.2 Computing Motion Estimation and Coding

 Figure (3.6) illustrates the general scheme of the motion estimation

with the coding technique.

Yes

Figure (3.6) General Scheme of Motion Estimation an d Coding

Sign the last frame
as reference

Get new video
frame

Video
frame

Estimation
complete End

No

Compute Motion
Estimation

Estimated
frame

Encoding Estimated
frame using S-shift

Video
frame

Coded
frame

Color
transform

Chapter Three Video Coding System 56

Where

1. At first the system will transform the video frame to its YUV

components, where the estimation is implemented on Y band only

because this Y band represents 90% of the whole information.

2. Then the system computes the Motion Estimation of the video frame

depending on the motion estimation technique selected by the user.

The first computation of motion estimation depends on the Anchor

frame as a reference frame for computing the shift (motion vector) of

the estimated frame.

3. For each estimated frame the S-shift encoder will applied encode the

estimated frame (see algorithm 3.7).

4. If the number of estimated frames reaches five frames, the system will

finish its motion for the input group of frames, and then the system

will replace the reference (Anchor) frame and start the motion

estimation for the next groups of frames.

5. Finally we will get a new video frame to be estimated.

Chapter Three Video Coding System 57

OTS Motion Estimation Method

 The algorithm list (3.8) illustrates the steps of implementing OTS

motion estimation method.

Algorithm (3.8) OTS Motion Estimation
Input: Video frame of H × W
Output: Estimated frame

• Set D equal to the dimension of the single block
• Set NBH= H div D
• Set NBW= W div D

For r=0 to NBH-1 step D

 For c=0 to NBW-1 step D

• Compute the absolute difference (AD) for block whose control coordinates
are (r, c+1), (r, c-1) in the reference frame

- If AD of (r, c+1) is smaller than AD of (r, c-1) then
 Continue searching for smaller AD in the right hand side of

the original block (r,c)
 Else

 Continue searching for smaller AD in the left hand side of
the original block (r,c)

• Compute the absolute difference (AD) for block whose control coordinates
are (r+1, c), (r-1, c) in the reference frame

- If AD of (r+1, c) is smaller than AD of (r-1, c) then
 Continue searching for smaller AD in the Down ward of the

original block (r,c)
 Else

 Continue searching for smaller AD in the Up ward of the
original block (r,c)

• Searching smaller AD on diagonal way

 Next c

 Next r

Chapter Three Video Coding System 58

TSS Motion Estimation Method

 The algorithm list (3.9) illustrates the steps of implementing TSS

motion estimation method.

Algorithm (3.9) TSS Motion Estimation

Input: Video frame of H × W

Output: Estimated frame

• Set D equal to the dimension of a single block

• Set NBH= H div D

• Set NBW= W div D

For r=0 to NBH-1 step D

 For c=0 to NBW-1 step D

• Loop searching smaller AD on the eight neighbors surrounding the

center (r, c) with offset shift equal to four pixels.

• Loop searching smaller AD on the eight neighbors for the new

coordinate of the last small AD with offset equal to two pixels.

• Loop searching smaller AD on the eight neighbors for the new

coordinate of the last small AD with offset equal to one pixel.

 Next c

 Next r

Chapter Three Video Coding System 59

HM Motion Estimation

 The algorithm list (3.10) illustrates the steps of implementing HM

motion estimation method.

Algorithm (3.10) HM Motion Estimation

Input: Video frame of H X W

Output: Estimated frame

• Set D equal to the dimension of a single block

• Set NBH= H div D

• Set NBW= W div D

For r=0 to NBH-1 step D

 For c=0 to NBW-1 step D

• Loop searching smaller AD on the eight neighbors for the coordinate (r, c)

with offset equal to four pixels.

• Compute absolute difference (AD) for coordinates (nr, nc+1), (nr, nc-1)

- If AD of (nr, nc+1) is the smaller then

 Continue searching for smaller AD right ward

 Else

 Continue searching for smaller AD left ward

• Loop searching for smaller AD on the eight neighbors for the new coordinate

of the last AD with offset equal to two pixels.

• Compute absolute difference (AD) for coordinates (nr+1, nc), (nr-1, nc)

- If AD of (nr+1, nc) is the smaller then

 Continue searching for smaller AD downward

 Else

 Continue searching for smaller AD upward

• Loop searching for smaller AD on the eight neighbors for the new coordinate

of the last AD with offset equal to one pixel.

• Searching for smaller AD in diagonal direction

 Next c

 Next r

Chapter Three Video Coding System 60

3.5 Video Decoding Using FDCT (Model1)

 Figure (3.7) illustrates the major scheme of video decoding system.

Video Decoding System

 The algorithm list (3.11) shows the implemented major stages of the

decoding modules.

Algorithm (3.11) Video Decoding System

Input: Coded video file
Output: Decoded AVI file

• Open coded file and extract its header
• Get code frame (for the Anchor frame)
• Construct the Anchor frame
While (Not end of file)

• Get the code frames for the next 5 frames
• Decode the motion estimation code to construct the next 5 frames
• Get the code frames for the next 5 frames
• Get code frame (for the Anchor frame)
• Construct the Anchor frame
• Decode the motion estimation code to construct the next 5 frames

 Wend

Figure (3.7) Video Decoding System (Major Scheme)

Construct the
Anchor frame

Decode the motion
estimation code to
construct the next

5 frames

Get the code
frame for the
next frame

Open coded
file and

extract its
header

Get the first
code frame

(Anchor frame)

Coded
file

End
file

Decoded
AVI file

No

Yes

Get the code
frames for the
next 5 frames

Get the code
frames for the

next five frames

Construct the
Anchor frame

Decode the motion
estimation code to
construct the next

5 frames

Chapter Three Video Coding System 61

3.5.1 Decode Anchor Frame Using IFDCT

 Figure (3.8) illustrates the decoding scheme for Anchors frame using

FDCT.

Figure (3.8): Decode Anchor Frame Using FDCT

U

Up Sampling

IFDCT

Dequantization

Dezigzag

Color
Detransform V

Y

Vt

Ut

Yt

Vdt

Udt

QY

QU

QV

ZQY

ZQV

ZQU

RV

RU

RY
S-Shift Decoder

S-Shift Decoder

Coded Y

Coded
Anchor
frame

Coded U,V

G

B

R

Decoded video
frame

Run length
Decoder

Run length
Decoder

Run length
Decoder

Dezigzag

Dezigzag

Dequantization

Dequantization

IFDCT

IFDCT

Up Sampling

Chapter Three Video Coding System 62

Shift Key Decoder

 The algorithm list (3.12) illustrates the implementation steps of the

shift key decoding stage.

Algorithm (3.12) Shift Key Decoder

Input: Binary sequence of zeros and ones (the shift key codes)

Output: One-decimal constructed array RA of length Rl

• Set M equal to the max sample (M=7 in this implementation)

• Set Nbit equal to the number of bits for M (3 bits in this case)

 For i=1 to Rl

• Get S= the first bit of the binary sequence // S means sign bit

• Set R=0

• Set V= the value of the first Nbit of binary sequence

• Shift the binary sequence Nbit bits to the left

• While V=M

• R=R+V

• Set V= the value of the first Nbit of binary sequence

• Shift binary sequence Nbit bits to the left

• Wend

• If S=0 then

 RA(i)=R

 Else

 RA(i)=-R

 Next i

Chapter Three Video Coding System 63

Run Length Decoder

 The algorithm list (3.13) illustrates the implementation steps of the

run length decoding stage.

Algorithm (3.13) Run length Decoder

Input: One-dimensional array RA of length Rl

Output: One-dimensional zigzagged array ZA of length Zmax

• Set Rcount=0

• Set Zcount=0

 While Rcount < Rl

 If RA(Rcount)=0 then

 N=RA(Rcount +1)

 For i=1 to N

 ZA(Zcount)=0

 Zcount=Zcount+1

 Next i

 Rcount=Rcount+2

 Else

 ZA(Zcount)=RA(Rcount)

 Zcount=Zcount+1

 Rcount=Rcount+1

 End if

 Wend

Chapter Three Video Coding System 64

Image Dequantization and Dezigzag

 The algorithm list (3.14) illustrates the implementation steps of the

dezigzag and dequantization stage.

Algorithm (3.14) Image Dequantization and Dezigzag
Input: Zigzag vector (ZV)
Output: Image (Img) H×W

Zindex=0 // Zigzag index
HB=H div 8: WB=W div 8 // Number of Blocks
For i=0 to HB-1
 For j=0 to WB-1

 Ib=i*8: Jb=j*8
 // Dezigzag
r=0: c=0: QI(Ib, Jb)=ZV(Zindex)
For it=1 to 3
 r=0
 For k=c to 0 step -1
 Zindex=Zindex+1
 QI(Ib+r, Jb+k)=ZV(Zindex): r=r+1
 Next k
 c=0
 For k=r to 0 step -1
 Zindex=Zindex+1
 QI(Ib+k, Jb+c)=ZV(Zindex): c=c+1
 Next k
 Next it
 r=0
 For it=1 to 4
 For k=r to 7
 Zindex=Zindex+1
 QI(Ib+k, Jb+j)=ZV(Zindex): c=c+1
 Next k
 c=c+2: r=7
 For k=c to 7
 Zindex=Zindex+1
 QI(Ib+r, Jb+k)=ZV(Zindex): r=r+1
 Next k
 r=r+2: c=k-1
 Next it
 // Dequantization

 For r=0 to 7
 Ip=Ib+r
 For c=0 to 7
 Img (Ip, Jb+c)=round(QI(Ip, Jb+c)* Qstep (r, c))
 Next c
 Next r

 Next j
Next i

Chapter Three Video Coding System 65

3.5.2 The Image Upsampling

 The goal of this algorithm is to enlarge the image 4 times, and this

goal was done by duplicating each pixel in the image four times.

The Upsampling

 The algorithm list (3.15) illustrates the implementation steps of

upsampling both U and V color components.

Algorithm (3.15) The Upsampling

Input: UV Image (UVimg) Dh × Dh

Output: YUV Image (img) H × W

• H=Dh × 2

• W=Dw × 2

For i=0 to Dh-1: Id=i×2: Idp= Id+1

 For j=0 to Dw-1

• Jd=j×2

• img(Id, Jd).U=Uvimg(Id,Jd).U: img(Id, Jd).V=Uvimg(I d,Jd).V

• img(Idp, Jd).U=Uvimg(Id,Jd).U: img(Idp, Jd).V=Uvimg (Id,Jd).V

• img(Id, Jd+1).U=Uvimg(Id,Jd).U: img(Id, Jd+1).V=Uvimg(Id,Jd).V

• img(Idp, Jd+1).U=Uvimg(Id,Jd).U: img(Idp, Jd+1).V=Uvimg(Id,Jd).V

 Next j

Next i

Chapter Three Video Coding System 66

The Color Detransformation

3.5.3 Extract Motion Estimation with Decoding

 Figure (3.9) illustrates the scheme of extracting motion estimation

and the scheme of its decoding.

Algorithm (3.16) The Color Detransformation

Input: YUV Image (Rimg) H×W

Output: RGB Image (Img) H×W

For i=0 to H-1

 For j=0 to W-1

• Compute R band from YUVImg(i, j), R=Y+1.140*V

• Compute G band from YUVImg(i, j), G=Y–(395*U-581*V)*0.001

• Compute B band from YUVImg(i, j), B=Y+2.032*U

 Next j

Next i

Figure (3.9) Extract Motion Estimation with Decodin g

Frames
reconstruction

complete

End
Yes

No

Compression
Code for video

frames
Detransform frame

using color transform

Decode Motion
Estimation

Estimated
motion

parameters

Decode frame using
S-shift Decoder

Get next reconstructed
reference (Anchor)

frame

Get compression
code for another

video frame

Reconstructed
Video frame

Compression
Code for

video frame

Chapter Three Video Coding System 67

Decode Motion Estimation

Algorithm (3.17) Decode Motion Estimation

Input: Estimated frames (Ef) of Dw × Dh blocks each block of ∆x, ∆y coordinates,

and reference frame (Rf) of H × W.

Output: Transformed video frame (Tf) of H × W pixels (YUV)

• Set N= the Block dimension

Rdh=Dh-1: Rdw=Dw-1: No=N-1

For i = 0 To Rdh

 For j = 0 To Rdw

 Id=i*N: Jd=j*N

 For r = 0 To No

 Idp=Id+r: Rd= Id+Ef(i, j). ∆x+r: Cd=Jd+ Ef(i, j). ∆y
 For c = 0 To No

• Tf(Idp, Jd + c).Y = Rf(Rd, Cd+c).Y

• Tf(Idp, Id + c).U = Rf(Rd, Cd+c).U

• Tf(Idp, Id + c).V = Rf(Rd, Cd+c).V

 Next c

 Next r

 Next j

Next i

Chapter Three Video Coding System 68

3.6 The System Structure of Model2 Coding

 Figure (3.10) illustrates the general scheme of Model-2 (Fractal).

In this model the same strategy that followed in model1 is used, but

the difference between them is that the compression system of the Anchor

frame coding is implemented using the fractal coding.

Figure (3.10) The System Structure Model2 Coding

No

Video
Frame

Video
Frame

Coded file

Video
Frame

Open AVI file,
load and encode

file Header
contents

Select method
of Motion
Estimation

Get Frame 0

(Anchor frame)

Compress
Anchor Frame
Using Fractal

Compute
Motion

Estimation for
5 frames

Get 6th
positioned

Frame from the
last one

AVI
File

Get the next 5

Frames

Compress
Anchor Frame
Using Fractal

Compute
Motion

Estimation for
5 frames

Get the last 5

Frames

Get Frame

(Anchor frame)

Yes

End of
frames

Chapter Three Video Coding System 69

3.6.1 Compress Anchor Frame Using Fractal Coding

 In this work, the video frame first is transformed from RGB bands to

YUV bands using Color Transform (CT) (algorithm list 3.1), then both the U

and V bands are downsampled by 2 using average method. The Y band is

remained without downsampling because it represents 90% from the total

information of the original video frame, where any reduction on this band

will affect the quality of the original video frame. Figure (3.11) illustrates

the scheme of Anchor Frame compression using fractal method. Where Y,

Ut, and Vt are the range blocks that represent the input bands for the Fractal

compression machine, and the result represent the compressed Anchor

frame.

• Down sampling: in this process the input band will be reduced to ¼

its size (number of pixels), where each four pixels values will reduced

to their one average value (see algorithm 3.2).

Figure (3.11) Anchor Frame Compression Using Fracta l Coding

Fractal

Compression

using

distributed

system Down

sampling

Down

sampling

V

U

Y

Ut

Vt

Video

frame

R

G

B

Coded
frame

Chapter Three Video Coding System 70

3.6.2 Fractal Compression Using Distributed System

In this process the input band, the range, will be partitioned into a

number non-overlapped blocks, and the same range will be down sampled to

create the domain that will be also partitioned to number of blocks, each

block have the same size of the range block, then execute the matching

technique. The matching technique will match each range block with all

domain blocks to find the best domain block that approximate the range

block using the affine transform with eight symmetry cases, and finally

record the scale, offset, symmetry, and the x, y coordinates of the best

matched domain block, (see figure (3.14)).

The problem with the fractal coding is the expensive time needed to

complete its computation; the distributed system is one of the solutions that

could be used to speed up the fractal coding. The distributed system was

Figure (3.12) Fractal Compression using Partitionin g System

Client Side Servers Side

Fractal coding for the
range partition 1

Coded
frame

Partitioning
process with

down
sampling

Y

Ut

Vt

Fractal coding for the
range partition 2

Fractal coding for the
range partition N

Chapter Three Video Coding System 71

adopted in this work to solve this problem. One of the computers will be

responsible for computing the domain blocks, divide the range blocks and

send the partitions to other computers, where each of these computers will

perform the required matching tasks on the blocks of the received range

partition.

3.6.3 Network Communication and Network Model

 The communication between the client and servers is done through the

Socket Interprocess communication. In this work the developed distributed

system is based on the star model as shown in figure (3.13), where single

client computer exist, while other computers are utilized as servers.

Client

Server 2

Server 1

Server 3

Server 4

Server 5

Server 6

Figure (3.13) Distributed system based on star mode l

Chapter Three Video Coding System 72

3.6.4 Fractal Coding for One Partition

The first step in this scheme is to partitioning the range into a number

of non-overlapped blocks, the same step will be done with the domain,

where the domain is also partitioned into a number of non-overlapped

blocks, after the partitioning process the algorithm will start the matching

stage (see figure 3.14). The output results of the matching process (i.e. S, O,

Sym, x, and y coordinates) are quantized using fractal quantization (see

algorithm list 3.19). Finally the quantized factors will be coded using

Bitwise coding technique (see algorithm list 3.20).

Figure (3.14) Fractal coding using one range partit ion

Coded
partition

Partitioning

S,O,Sym,X,Y

Partitioning
Partitioned

Range
Matching
technique

Range

Domain Partitioned
Domain

Bitwi se coding
technique

quantization

Chapter Three Video Coding System 73

Fractal Matching Technique
 The algorithm list (3.18) illustrates the implemented steps of the

fractal matching stage.

3.6.5 Affine Transform (Symmetry Cases)

 In this work the following eight symmetry cases were implemented:

1. Identity case: Γ1(x, y)=R(x, y) ……….………….…(3.14)

2. Rotation 90: Γ2(x, y)=R(S-y, x) …………..…………(3.15)

3. Rotation 180: Γ3(x, y)=R(S-x, S-y) ……..…..………(3.16)

4. Rotation 270: Γ4(x, y)=R(y, S-x) ………………..…(3.17)

Algorithm (3.18) Fractal Matching technique

Input: Rb is the array of range blocks, Rn is the number of range blocks, Db is

the array of domain blocks, Dn is the number of domain blocks.
Output: S, O, x and y coordinates of each Range Block.

• TH is a fractal threshold // TH=6 gives an acceptable quality
For i = 1 To Rn

• Rb[i] is the ith range block.

 For j = 1 To Dn

• Db[j] is the jth domain block.
 For Sym=1 to 8

• Set D as the Sym affine transform of Db[j] using
equations (3.14…3.21).

• Compute the S of (Rb[i], D) using equation (2.3).
• Compute the O of (Rb[i], D) using equation (2.4).
• Compute the Error between (Rb[i], D) using equation

(2.5).
• If the error < TH then exit loops

 Next s
 Next j
Next i

• Output the S, O, Sym x, and y of the Domain Block with smaller Error.

Chapter Three Video Coding System 74

5. Reflection: Γ5(x, y)=R(S-x, y) …………………..(3.18)

6. Reflection and Rotation 90: Γ6(x, y)=R(S-y, S-x) …(3.19)

7. Reflection and Rotation 180: Γ7(x, y)=R(x, S-y) ….(3.20)

8. Reflection and Rotation 270: Γ8(x, y)=R(y, x) ….…(3.21)

Where S is the Block Size.

3.6.6 Fractal Quantization

Reducing the number of possible values of the fractal factors (i.e.

scale, offset coefficients) is very important to get compression, so a uniform

quantization was performed to quantized the scale and offset coefficients,

also quantization was used to reduce the number of bits required to encode

the coordinates of the domain blocks, where the jump step value was used as

the quantization step. The scale coefficient was quantized by using the

following equation.

)22.3.........(....,.........)
2

12
(

−×=
n

Max
q S

S
roundS

Where n is the number the bits assigned to encode the scale coefficient, and

SMax is the maximum allowed value for scale. The offset coefficient was

quantized using the following equation.

)23.3.........(..)),.......12((−×
−

−
= m

MinMax

Min
q OO

OO
roundO

Where m is the number of bits, OMax is the maximum allowed offset value,

and OMin is the minimum allowed offset value. While the X, and Y

coordinates will quantized using the following equation.

Chapter Three Video Coding System 75

)24.3..(....................,.........
j

q S

C
C =

Where Sj is the jump Size, and C is either the x or y coordinate, Cq is the

correspond quantization index.

Fractal Quantization
 The algorithm list (3.19) illustrates the steps of quantization of the

fractal coefficients.

Algorithm (3.19) Fractal Quantization

Input: Fb[] is a single array of length Fn of fractal blocks coefficients (S, O, and (X, Y)

coordinates).

Output: QFb[] is a single array of length Fn of fractal blocks quantized coefficients (Sq,

Oq, and (Xq, Yq) coordinates.

 For i = 1 To Rn

• Fb[i] is the ith fractal Block coefficients.

• Compute the Quantized scale (Sq) of QFb[i] from Fb[i] using equation (3.22).

• Compute the Quantized offset of QFb[i] from Fb[i] using equation (3.23).

• Compute the Quantized (Xq, Yq) coordinates of QFb[i] from Fb[i] using equation

(3.24).

Next i

Chapter Three Video Coding System 76

Bitwise Coding Technique
 The algorithm list (3.20) shows the steps of saving the fractal

coefficients in the storage buffer.

3.7 Video Decoding Using Fractal (Model2)

 The decoder system for model2 follow the same strategy of the

decoder of model1 (see figure 3.7), but the difference is that the decoding of

the Anchor frame uses the fractal decoding. The major scheme of fractal

decoding is shown in figure (3.15).

Algorithm (3.20) Bitwise Coding

Input: Qn is the number of quantized S, O coefficients, (X, Y) coordinates, and

Sym (symmetry) case.
Output: Rn coded buffer of 4B size.

For i = 1 To Qn

• Q[i] is the ith Quantized Block.
• St[i] is the ith storage buffer of 4B size.
• Encode X, and Y coordinates in the storage buffer as a sequence of 7

bits for each, respectively.
• Encode Symmetry case in the storage buffer as a sequence of 3 bits.
• Encode the S factor in the storage buffer as a sequence of 7 bits.
• Encode the O factor in the storage buffer as a sequence of 8 bits.

Next i

Figure (3.15) Anchor Frame Decoding Using Fractal T echnique

The
Codeword

sets

Reconstructed
Fractal

parameters

Quantized
fractal

coefficients

Bitwise
decoding

Fractal
Dequantization

Fractal Image
Decoding

Upsampling

Upsampling

Ut

Vt

U

V

R

G

B

Y

Reconstructed
Anchor frame

Chapter Three Video Coding System 77

At first read the codeword sets from the compression stream and decode

them using Bitwise decoder (see algorithm list 3.21), where the results of

this decoding stage are the quantization indices of the fractal coefficients

(i.e. S, O, Sym, X, and Y), the reconstructed fractal coefficients are

produced by using Dequantization process (see algorithm list 3.22). The

results of the dequantization are the sets of reconstructed (quantized) fractal

coefficients. Each set consist of the fractal coefficients for the three

compressed bands Y, and downsampled Ut and Vt bands, See figure 3.15.

• Reconstruction of Video Frame: this process will reconstruct the

image bands (Y, Ut, and Vt) by applying the affine transform using

the quantized fractal coefficients, see figure 3.16.

• Upsampling: In this process the Ut and Vt are upsampled to

produce U and V bands, where each value in Ut and Vt bands will be

duplicated four times.

• Color Detransform: In this detransform the Y , U , and V bands

will be detransformed to the R , G , and B bands to produce the video

frame (see algorithm list 3.16).

Chapter Three Video Coding System 78

Bitwise Decoder
 The algorithm list (3.21) shows the steps of extracting the fractal

coefficients from the storage buffer.

3.7.1 Dequantization of Fractal Coefficients

 The reconstructed scale coefficients could produce by using the

following equation, that can be concluded form equation (3.22).

)25.3(..........,.........
12

2

−
××=

nMaxqr SSS

Where n is the number of the bits used to encode the quantization scale

coefficients, and SMax is the maximum allowed value for the scale

coefficient. The Offset can be dequantized using equation (3.26) that

concluded from equation (3.23).

Algorithm (3.21) Bitwise Coding

Input: Qn is the number of coded storage buffer of 4B size.
Output: Qn is the number of decoded (quantized) S, O coefficients, (X, Y)

coordinates, and Sym (symmetry) case.

For i = 1 To Qn

• Get St[i] is the ith storage buffer.
• Q[i] is the ith decoded (quantized) S, O coefficients, (X, Y) coordinates,

and Sym (symmetry) case.
• Assemble the X, and Y coordinates indices using 7 bits (for each) loaded

from the storage buffer.
• Assemble the Symmetry index using 3 bits.
• Assemble the quantization scale index using 7 bits.
• Assemble the quantization offset index using 8 bits.

Next i

Chapter Three Video Coding System 79

)26.3....(,.........
12

Minn
MinMax

qr O
OO

OO +
−

−
×=

 Where n is the number of the bits used to encode the quantization

offset coefficients, OMax is the maximum allowed value for the offset

coefficient, and OMin is the minimum allowed offset coefficient. While the

X, and Y coordinates can be dequantized by using equation (3.27) which is

concluded from equation (3.24).

)27.3.(..........,.........SCC qr ×=

Where S is the Block Size.

Dequantization of Fractal Coefficients

 The algorithm list (3.22) illustrates the steps of the fractal coefficients

dequantization stage.

Algorithm (3.22) Dequantization of Fractal Coefficients

Input: Qn is the number of the quantization indices of the Scale, Offset, and (X, Y)

coordinates.
Output: Qn is the number of the dequantized (reconstructed) Scale, Offset, and (X,

Y) coordinates.

For i = 1 To Qn

• Get Q[i] is the ith Range Block.
• Compute the Dequantized Scale using equation (3.25).
• Compute the Dequantized Offset using equation (3.26).
• Compute the Dequantized (X, Y) coordinates using equation (3.27).

Next i

Chapter Three Video Coding System 80

3.7.2 Fractal Image Decoding

 Figure (3.16) shows the major scheme of the video frame

reconstruction process by using fractal image decoding.

In this stage decode the reconstructed sets of affine (fractal)

coefficients will applied on the domain pool (which will initialized

arbitrarily) in an iterative manner for five iterations. At the first iteration

the scheme will apply the affine transform using an initial domain which

can be a 2D array of any numbers, where each pixel of x and y

coordinates of the range block will be computed by using the following

equation:

R(xr+x, yr+y)=Sym(D(x+xd, y+yd))*S+O,……………….(3.28)

Where

 xr, yr are the coordinates of the top-left corner of the reconstructed block

 xd, yd are the coordinates of the top-left corner of the domain block.

Figure (3.16) Video Frame Reconstruction using Frac tal decoding

reconstructed
Range blocks

Reconstruct Range
blocks using the new

domain

Down sampling New
domain

Reconstruct Range
blocks by applying the
Affine coefficients on

the initial domain

Compressed
channel

Initial
domain

Yes End of
iterations

No

Reconstructed
video frame

Chapter Three Video Coding System 81

Sym(D(x+xd, y+yd)) is the pixel of (x+xd, y+yd) coordinates in the domain

block after transforming it using inverse mapping for the Sym case, S is the

scale value, and O is the offset value. The result of the whole affine

reconstruction process will be downsampled to create a new domain, and

then repeat the affine reconstruction again (but use the new domain) for five

iterations (See figure 3.16).

3.7.3 Symmetry Decoding (Symmetry cases)

 As above mentioned the fractal encoder had used eight symmetry cases,

the decoder system had implemented the inverse of the symmetry cases, and

as the following:

1. Identity case: R(x, y)= Γ(x, y). ………………..…….…(3.29)

2. Rotation 90: R(x, y)= Γ(y, S- x) ……………………….(3.30)

3. Rotation 180: R(x, y)= Γ(S-x, S-y) ……….……………(3.31)

4. Rotation 270: R(x, y)= Γ(S-y, x) ……………………….(3.32)

5. Reflection: R(x, y)= Γ(S-x, y) ……………………..….…(3.33)

6. Reflection and Rotation 90: R(x, y)= Γ(S-y, S-x) ……..(3.34)

7. Reflection and Rotation 180: R(x, y)= Γ(x, S-y) ………(3.35)

8. Reflection and Rotation 270: R(x, y)= Γ(y, x) …………(3.36)

Where S is the Block size.

4.1 Introduction

This chapter is developed to study the compression performance of

the three searching methods of motion estimation (TSS, OTS, and Hybrid

method) and the two different compression techniques of Anchor frames are

investigated by performing set of suitable objective fidelity measures (such

as MSE, PSNR, etc) on five different video sequences that are taken as

testing samples. Each video sequence consists of different numbers of

frames ranging from 26 to 126 frames.

The developed systems are implemented using Visual Basic language

(ver 6.0) under Windows Me and Xp operating systems. The systems are

executed using IBM personal computer (processor Pentium4 1.5 GigaHz),

zero cash. Since A distributed system is needed to implement the fractal

model, therefore LAN with switch hub and LAN-cards of speed 100 Mbs

are used.

4.2 Fidelity Criteria

Generally, fidelity criteria can be divided into two classes:

(1) Objective Fidelity Criteria: this kind of criteria borrowed from

digital signal processing and information theory, they provide

equations that can be used to measure the amount of error in the

reconstructed (decompressed) frame. The objective criteria, although

Chapter Four

Tests and Results

Chapter Four Tests and Results 83

widely used, are not necessarily correlated with the perception of

frame quality. However, they are useful as a relative measure in

comparing between different versions of the same frame. Commonly

used objective measures are the mean-square error (MSE), the peak

signal-to noise ratio (PSNR). The error between the original

(uncompressed) pixel value and the reconstructed (decompressed)

pixel value can be defined as:

 Where I(r, c) is the pixel value of the original frame at the (r,c) location

^

I (r, c) is the pixel value of the decompressed frame at the same

location (r,c),

Next, the total absolute error can be defined in an (H×W) decompressed

frame as:

)2.4........(..........),(ˆ),(
1

0

1

0
∑∑

−

=

−

=

−=
H

r

W

c

crIcrIErrorTotal

 The mean-square error is found by taking the error squared divided

by the total number of pixels in the frame.

)3.4...(....................)),(ˆ),((
1 1

0

1

0

2
∑∑

−

=

−

=

−
×

=
H

r

W

c

crIcrI
HW

MSE

 From quality point of view, the smaller value of the MSE means

better compressed frame (compared with the original one). Alternatively,

(4.1)....................c)(r,Ic)I(r,c) error(r,
^

−=

Chapter Four Tests and Results 84

with the Peak-signal-to-noise (PSNR), larger number implies better

frame. The PSNR considers the decompressed frame to be the “signal”

and the MSE as the “noise”. The Peak-signal-to-noise ratio in dbcan be

defined as:

Where L is the number of gray levels (e.g., for 8 bits per pixel L=256)

 (2) Subjective Fidelity Criteria[Scott98]: this kind of criteria requires

the definition of a qualitative scale to assess frame quality. This scale can

then be used by human test subjects to determine frame fidelity.

 Two main types of subjective measurements exist. The first is

referred to as impairment tests, where the viewers score the frames in

terms of how bad they are.

The second is referred to as quality tests, where the viewers score

the frames in terms of how good they are.

4.3 Performance Parameters

Although many key parameters were utilized in the literature for

performance evaluation of various compression methods, in this research

two key parameters are utilized (compression ratio and compression time).

4.3.1 Compression Ratio (Cr)

It is the degree of video file size (data) reduction due to compression

process. This ratio represents the size of the original uncompressed video

)4.4.......(..........

c)]I(r,c)(r,Î[
HW

1

1)(L
10logP

1H

0r

2
1W

0c

2

10

∑∑
−

=

−

=

−
×

−=SNR

Chapter Four Tests and Results 85

file to the size of the overall compressed data file (using equation

4.5)[Scott98].

The (Cr) parameter is an indicator for the compactness ability of the

compression process.

4.3.2 Compression Time (Ct).

It is the overall time required to perform the compression process for

all the blocks of the uncompressed frames. For the suggested method, the

overall required time includes the time required to obtain parameters of the

blocks in addition to searching time.

The minimization of searching time is considered as the most cost

criteria, which will indicate the efficiency of the matching mechanism, and

compression technique.

4.4 Test Samples

 To evaluate the performance of the suggested compression methods,

five different video sequences are taken. The first frame of each video

sequence is shown in figure (4.1). These five video samples have different

number of video frames ranging from 26 to 126 video frames, at which each

frame is of size 352×288. Sample 1 has 26 frames, sample 2 has 51 frames,

sample 3 has 76 frames, sample 4 has 91 frames, and sample 5 has 126

frames.

)5.4.......(..........
sizefileCompressed

sizefileedUncompress
Cr =

Chapter Four Tests and Results 86

First frame of video
sample 1

First frame of video
sample 2

First frame of video
sample 3

First frame of video
sample 4

First frame of video
sample 5

Figure (4.1) The Video Samples Frames

Chapter Four Tests and Results 87

4.5 Testing Strategy

 The testing operation is implemented on five video samples; each

one contains two types of frames, Anchor (A) and Predictive (P) frames.

Testing parameters for the five testing samples are illustrated in six tables

(from table 4.1 to table 4.6). The first three tables show the performance

parameters of the first model (FDCT) at which each table is concerned with

one of the three motion estimation methods (OTS, TSS, and HM), while the

other three tables show the performance parameters of the second model

(fractal) considering the three motion estimation methods (OTS, TSS, and

HM) respectively.

4.6 Test Results

 The testing tables of FDCT model (the first three tables from table 4.1

to table 4.3) consists of three main parts, the first is Anchor Frames (AF)

measurement which illustrate the MSE, PSNR, compression time, number

of Anchor frames (NO. field), in addition to the compression ratio for the

tested video sample. Each field of MSE, PSNR and compression time are

calculated for the total anchor frames of the tested sample (All field) in

addition to the average for one frame (Avg. field).

 The second is Estimated Frames (EF) , this part of the table have the

same fields of the first part but for the estimated frames.

The third part is All Frames, this part have the total number of

frames, average PSNR for one frame, average MSE for one frame,

compression ratio for the overall coded video file, in addition to the

compression time for the total frames (Anchor and Estimated) and the

average time for one frame.

Chapter Four Tests and Results 88

 The second three tables (from table 4.4 to table 4.6) concerning

fractal model have the same specifications in addition to the field which

represents the number of servers used for fractal coding since fractal model

is implemented using distributed system.

Chapter Four Tests and results

95

From the testing results of the two models (shown in tables 4.1 to

4.6), one can notice the following:

1. The testing results of the Anchor frames for the first model using

FDCT technique are very good results compared with the Anchor

frame method used in fractal model. This idea is obvious through

the results in the testing tables, where PSNR of the Anchor frames

in these tables show the high quality of the decoded frames in the

FDCT tables. Although the testing results (specially the PSNR) of

the Anchor frames for the second model (using Fractal

compression technique) show the success of the fractal

compression technique (i.e. its fidelity measures are acceptable).

2. The execution time of the Anchor frames using FDCT technique is

less than the time required for the fractal technique (i.e., the

compression system using FDCT is faster than compression system

using Fractal technique).

3. The cost of the Fractal technique is very expensive from time point

of view, where in the testing results of tables 4.4, 4.5, and 4.6 the

fractal technique is implemented using seven computer servers,

while the compression system using FDCT technique does not

need these servers, only a single machine is enough to obtain

results within acceptable time.

4. All the PSNR, and MSE fidelity measures of all the motion

estimation techniques (OTS, TSS, and Hybrid methods) are

acceptable results noticing that:

• The quality measures of the OTS method (shown in table

4.1) are better than the quality measures of TSS method

taking in consideration that the OTS method needs more

execution time (i.e. OTS slower than TSS method).

Chapter Four Tests and results

96

• TSS method is the best one from execution time point of

view, therefore it is suitable for real time systems. From

quality measures point of view, it gives acceptable but less

quality than the other methods.

• Hybrid method is the best one according to its quality

measure and this is clear from the PSNR, and MSE fidelity

measures but on the other hand, it need more execution time.

5. The quality measures of all the motion estimation techniques that

depends on a decoded Anchor frames using FDCT technique are

improved (i.e. better) since the quality measures of the decoded

frames using FDCT technique have better quality than the Anchor

frames used with fractal technique.

4.8 Subjective Samples Testing

 To evaluate the suggested compression methods (for the two

models) subjectively, six study frames are chosen, four of them are used

for Anchor frames testing, while other two frames are used to show the

testing results for motion estimation methods. The following notes

summarize the subjective test:

1. Figure (4.2) shows Anchor frames subjective testing; four Anchor

frames are taken in this figure, the testing shows the successful

results of these Anchor frames that tested subjectively in addition

to their objective tests.

2. Figures 4.3, 4.4, 4.5 shows the success of subjective testing for two

video frames that compressed using TSS, OTS, and HM motion

estimation method, respectively. Since the difference between the

original and the decompressed frames are imperceptible.

Chapter Four Tests and results

97

Anchor Frame 352×288
Time 1 sec

CR=11
PSNR=41.33

FDCT

Anchor Frame 352×288
Time 1.04 sec

CR=9.428
PSNR=41.06

FDCT

Anchor Frame
Time 50.9 sec

Using 7 Servers
CR=10.673

PSNR=28.741
Fractal

Anchor Frame
Time 51.1 sec

Using 7 Servers
CR=10.673
PSNR=28.8

Fractal

Figure (4.2) Subjective and Objective Anchor Frames Testing

Chapter Four Tests and results

98

Estimated Frame 4×4 blocks
Three Step Method

CR=42.671
PSNR=21.71

Time =0.898 sec

Estimated Frame 4×4 blocks
Three Step Method

CR=42.671
PSNR=21.99

Time =0.857 sec

Figure (4.3) Subjective and Objective Estimated Frames
Testing of TSS method

Estimated Frame 4×4 blocks
OTS Method
CR=42.671

PSNR=22.8826
Time =1.088 sec

Estimated Frame 4×4 blocks
OTS Method
CR=42.671

PSNR=22.99
Time =1.078 sec

Figure (4.4) Subjective and Objective Estimated Frames
Testing of OTS method

Chapter Four Tests and results

99

Estimated Frame 4×4 blocks
Hybrid Method

CR=42.671
PSNR=23.812

Time =1.297 sec

Estimated Frame 4×4 blocks
Hybrid Method

CR=42.671
PSNR=23.39

Time =1.126 sec

Figure (4.5) Subjective and Objective Estimated Frames
Testing of HM method

 89

Samples

Anchor Frames (AF) Estimated Frames (EF) All Frames

No.

Time for

AF/Sec.

PSNR of

AF

MSE of

AF
Cr. NO.

Time for

EF/Sec.

PSNR of

EF
MSE of EF

Cr. No.
Time/Sec.

Average

PSNR

Average

MSE

CR.

All Avg. All Avg. All Avg. All Avg. All Avg. All Avg. All Avg.

S1 3 3 1 123.9 41.3 14.7 4.9 10.8 23 23 1 520.2 22.6 8182.8 355.8 42.7 26 26 1 24.8 315.3 32.3

S2 5 4.5 0.9 206.2 41.2 24.7 4.9 10.5 46 50 1.1 1056.9 23 15075.8 327.7 42.7 51 54.4 1.1 24.8 296.1 34.3

S3 7 6.6 0.9 288.7 41.3 34.4 4.9 11 69 82 1.2 1599.4 23.1 21574.4 312.7 42.7 76 88.6 1.2 24.8 284.3 35

S4 10 11 1.1 412.9 41.3 48.7 4.9 10.9 91 113 1.2 2045.9 22.5 33408.2 367.1 42.7 101 124 1.2 24.3 331.3 34.8

S5 12 12 1 495.8 41.3 58.1 4.8 10.4 114 142 1.3 2595 22.8 39238.1 344.2 42.7 126 154 1.2 24.5 311.9 35.2

Table (4.1): Test Samples Using First Model (FDCT) With OTS Method

 90

Samples

Anchor Frames (AF) Estimated Frames (EF) All Frames

No.

Time for

AF/Sec.

PSNR of

AF
MSE of AF

Cr. NO.

Time for

EF/Sec.

PSNR of

EF
MSE of EF

Cr. No.

Time/Sec.

Average

PSNR

Average

MSE

CR.

All Avg. All Avg. All Avg. All Avg. All Avg. All Avg. All Avg.

S1 3 3 1 123.9 41.3 14.7 4.9 10.8 23 19.3 0.8 488.6 21.2 11237.9 488.6 42.7 26 22.3 0.9 23.6 432.8 32.3

S2 5 4.5 0.9 206.2 41.2 24.7 4.9 10.5 46 36.6 0.8 995.2 21.6 20533.9 446.4 42.7 51 41.1 0.8 23.6 403.1 34.3

S3 7 6.6 0.9 288.7 41.3 34.4 4.9 11 69 55.9 0.8 1478.9 21.4 32251.4 467.4 42.7 76 62.5 0.8 23.3 424.8 35

S4 10 11 1.1 412.9 41.3 48.7 4.9 10.9 91 75.1 0.8 1924.2 21.1 45459.4 499.6 42.7 101 86.1 0.9 23.1 450.6 34.8

S5 12 12 1 495.8 41.3 58 4.8 10.4 114 91.3 0.8 2478.9 21.7 49600.6 435.1 42.7 126 103.3 0.8 23.6 394.1 35.2

Table (4.2): Test Samples Using First Model (FDCT) With TSS Method

 91

Samples

Anchor Frames (AF) Estimated Frames (EF) All Frames

No.

Time for

AF/Sec.

PSNR of

AF

MSE of

AF
Cr. NO.

Time for

EF/Sec.

PSNR of

EF
MSE of EF

Cr. No.

Time/Sec. Average

PSNR

Average

MSE

CR.

All Avg. All Avg. All Avg. All Avg. All Avg. All
Avg.

 All Avg.

S1 3 3 1 123.9 41.3 14.7 4.9 10.8 23 25.3 1.1 533.5 23.2 7163.4 311.5 42.7 26 28.3 1.1 25.3 276.1 32.3

S2 5 4.5 0.9 206.2 41.2 24.7 4.9 10.5 46 54.6 1.2 1068 23.2 14256.5 309.9 42.7 51 59 1.2 25 280 34.3

S3 7 6.6 0.9 288.7 41.3 34.4 4.9 11 69 86.8 1.3 1590.6 23.1 22221 322 42.7 76 93.4 1.2 24.8 292.8 35

S4 10 11 1.1 412.9 41.3 48.7 4.9 10.9 91 114.8 1.3 2102.9 23.1 28920.9 317.8 42.7 101 125.8 1.3 24.9 286.8 34.8

S5 12 12 1 495.8 41.3 58 4.8 10.4 114 145.4 1.3 2597.9 22.8 39007.6 342.2 42.7 126 157.4 1.3 24.6 310 35.2

Table (4.3): Test Samples Using First Model (FDCT) With Hybrid Method

 92

Samples
No.of

Servers

Anchor Frames (AF) Estimated Frames (EF) All Frames

No.of

Frames

Time for

AF/Sec.

PSNR of

AF

MSE of

AF
Cr. NO.

Time for

EF/Sec.

PSNR of

EF
MSE of EF

Cr. No.

Time/Sec.

Average

PSNR

Average

MSE

CR.

All Avg. All Avg. All
Avg.

All Avg. All Avg. All Avg. All Avg.

S1 7 3 114 38 81.5 27.2 375 125 10.7 23 25.3 1.1 503.4 21.9 9683 421 42.7 26 139.3 5.4 22.5 386.8 34.3

S2 7 5 185 37 134.8 27 655 131 10.7 46 50.8 1.1 991.3 21.6 20930 455 42.7 51 235.8 4.6 22.1 423.2 34.8

S3 7 7 262.5 37.5 191.6 27.4 833 119 10.7 69 82.1 1.2 1483.1 21.5 31809 461 42.7 76 344.6 4.5 22 429.5 35.3

S4 7 10 383 38.3 275.2 27.5 1150 115 10.7 91 113.8 1.3 1981.6 21.8 39312 432 42.7 101 496.8 4.9 22.3 400.6 35.9

S5 7 12 460.8 38.4 320.8 26.7 1656 138 10.7 114 143.1 1.3 2463.4 21.6 51186 449 42.7 126 603.7 4.8 22.1 419.4 36.1

Table (4.4): Test Samples Using Second Model (Fractal) With OTS Method

 93

Samples
No.of

Servers

Anchor Frames (AF) Estimated Frames (EF) All Frames

No.of

Frames

Time for

AF/Sec.

PSNR of

AF

MSE of

AF
Cr. NO.

Time for

EF/Sec.
PSNR of EF MSE of EF

Cr. No.

Time/Sec.

Average

PSNR

Average

MSE

CR.

All Avg. All Avg. All
Avg.

All Avg. All Avg. All Avg. All Avg.

S1 7 3 114 38 81.5 27.2 375 125 10.7 23 20.9 0.9 477.8 20.8 12512 544 42.7 26 134.9 5.2 21.5 495.7 34.3

S2 7 5 185 37 134.8 27 655 131 10.7 46 45.8 1 958.2 20.8 24702 537 42.7 51 230.8 4.5 21.4 497.2 34.8

S3 7 7 262.5 37.5 191.6 27.4 833 119 10.7 69 62.2 1 1423.2 20.6 38847 563 42.7 76 324.7 4.3 21.3 522.1 35.3

S4 7 10 383 38.3 275.2 27.5 1150 115 10.7 91 82.4 1 1871.4 20.6 51961 571 42.7 101 465.4 4.6 21.2 525 35.9

S5 7 12 460.8 38.4 320.8 26.7 1656 138 10.7 114 106.1 1 2346.1 20.6 64866 569 42.7 126 566.9 4.5 21.2 528 36.1

Table (4.5): Test Samples Using Second Model (Fractal) With TSS Method

 94

Samples
No.of

Servers

Anchor Frames (AF) Estimated Frames (EF) All Frames

No.of

Frames

Time for

AF/Sec.

PSNR of

AF

MSE of

AF
Cr. NO.

Time for

EF/Sec.

PSNR of

EF
MSE of EF

Cr. No.

Time/Sec.

Average

PSNR

Average

MSE

CR.

All Avg. All Avg. All Avg. All Avg. All Avg. All Avg. All Avg.

S1 7 3 114 38 81.5 27.2 375 125 10.7 23 27.6 1.2 515 22.4 8625 375 42.7 26 141.6 5.4 23 346.2 34.3

S2 7 5 185 37 134.8 27 655 131 10.7 46 54.8 1.2 1026 22.3 17526 381 42.7 51 239.8 4.7 22.9 356.5 34.8

S3 7 7 262.5 37.5 191.6 27.4 833 119 10.7 69 86.9 1.3 1553.9 22.5 25116 364 42.7 76 349.4 4.6 23 341.4 35.3

S4 7 10 383 38.3 275.2 27.5 1150 115 10.7 91 115.7 1.3 2057 22.6 32487 357 42.7 101 498.7 4.9 23.1 333 35.9

S5 7 12 460.8 38.4 320.8 26.7 1656 138 10.7 114 147.7 1.3 2574.1 22.6 40926 359 42.7 126 608.5 4.8 23 338 36.1

Table (4.6): Test Samples Using Second Model (Fractal) With Hybrid Method

5.1 Introduction

This chapter is dedicated to present some derived conclusion and a list

of proposals for future work related to the research work discussed in the

thesis.

5.2 Conclusions

From the results presented in the previous chapters, some remarks

related to the behavior and performance of the two suggested models AFC

and MEC are stimulated. A summary of some important conclusions could

be presented as follows: -

1. The compression system using FDCT of the first Model is better

quality than the compression system using Fractal coding, and this

idea is shown from the results of SNR and PSNR that mentioned in

chapter four.

2. The compression system using FDCT is faster than the compression

system using Fractal coding.

3. The new developed version of FDCT is faster than the classical

version of DCT, and has a very good quality (see appendix A FDCT

derivation).

4. The Motion Estimation using Block Matching techniques is a suitable

approach for video coding, and all the ME encoders have the same

ME decoder.

5. The OTS method of ME is better quality than TSS method of ME,

but the OTS method is slower than TSS method.

6. The new proposed HM of ME has very good results of Frame quality.

Chapter Five
Conclusions and Future Work

Chapter Five Conclusions and Future Work 101

7. Fractal coding using distributed systems is faster than Fractal coding

on a single machine, and make it more suitable for image

compression.

8. Increasing Fractal threshold will decreasing Frame quality, while

decreasing Fractal threshold will increase Frame quality.

9. The developed distributed system topology is a good topology for

Fractal coding that divide the Fractal search on the total numbers of

the shared servers.

5.3 Future Work

1. Redesign and implement the first Model of video coding but using

Wavelate transform alternative to FDCT.

2. Develop the video coding systems through adding interpolated frames

that will increase quality of estimated frames.

3. Develop the second Model of video coding (using Fractal coding) and

fasting the Fractal coding using dual processors computers.

4. Develop a new distributed system for video coding speeding up AFC

and MEF together.

List of Abbreviations ـــ iii

List of abbreviations

Abbreviation Meaning
AD Absolute Difference

AF Anchor Frame
AFC Anchor Frame Compression

AVI Audio/Video Interleaved
BBM Boundary Block Matching

BM Block Matching

BMA Block based Matching Algorithm
C Coordinate

CD-ROM Compact Disk-Read Only Memory

Cq Quantized Coordinate
Cr Reconstructed Coordinate

CT Color Transform

DCT Discrete Cosine Transform
FC Fractal Computation

FDCT Fast Discrete Cosine Transform

FIC Fractal Image Compression
FSA Full Search Algorithm

HDTV High Definition Television

HM Hybrid Method
IFDCT Inverse Fast Discrete Cosine Transform

IFS Iterated Function System

IP Internet Protocol

IT Information Technology

JPEG Joint Photographic Expert Group

LAN Local Area Network

MAD Minimum Absolute Difference

MAE Mean Absolute Error
MB Macro Blocks

MC Motion Compensation

List of Abbreviations ـــ iv

ME Motion Estimation
MEF Motion Estimated Frame

MPEG Moving Picture Expert Group

MSE Mean Squared Error
MVF Motion Vector Field

O Offset

Oq Quantized Offset
Or Reconstructed Offset

OTS Once Time Search

PIFS Partitioned Iterated Function System

PSNR Peak Signal to Noise Ratio

RGB Red Green Blue

RIFF Resource Interchange File Format

RLE Run Length Encoding

RMS Root Mean Square

S Scale

SAD Sum Absolute Difference

SNR Signal to Noise Ratio

Sq Quantized Scale

Sr Reconstructed Scale

Sym Symmetry

TSA Three Step Algorithm

TSS Three Step Search
VSBM Variable Size Block Matching

WAN Wide Area Network

WWW World Wide Web

Referencesــ ـ

• [Add00] Addel J., Lossy and Lossless Image
Compression, 2000, Prentice Hall PTR

• [Ako00] A. Kokaram, A New Global Motion
Estimation Algorithm and Its Application
to Retrieval in Sports Events, Msc. Thesis,
2000, University of Dublin2 (Ireland)

• [Ali97] Alice Yu, Motion Search Performance
using the H.263 Encoder, 1997, Prentice
Hall PTR

• [Ama02] Amal Abbas Kadhim, H.263 Image Video
Compression, 2002, Msc. Thesis,
University of Technology

• [Arr97] Array Microsystem, An Introduction to
Video Compression, 1997, Prentice Hall
PTR

• [Aud00] Auday Ali H. Al-Dulaimy, Fractal Image
Compression with Fasting Approaches,
2000, Msc. Thesis, Al-Nahrain University

• [Dde00] D. Demirdjian, Motion Estimation from
Disparity Images, Msc. Thesis, 2000,
University of Cambridge

• [Fad04] Fadhil Salman Abed Al-Qasi, Adaptive
Fractal Image Compression, 2004, Phd.
Thesis, University of Technology

• [Fcc00] F. C. Cesbron, Multiresolution Fractal
Coding of Still Images,Ph.d Thesis, 2000,
The European Platform of the Georgia
Institute of Technology

• [Gle01] Glen G. Langdon, Lossless Image
Compression, Paper, 2001, University of

Referencesــ ـ

California

• [Hyc101] H. Y. Chunge, Adaptive Search Center
Non-Linear Three Step Search, Paper,
2001, University of Hong Kong

• [Hyc201] H. Y. Chung, Fast Motion Estimation With
Search Center Prediction, Paper, 2001,
University of Hong Kong

• [Ibr04] Ibraheem Nadher Ibraheem, Image
Compression using Wavelate Transform,
2004, Msc. Thesis, Baghdad University

• [Ism02] Ismail Avcibas, A Progressive
Lossless/Near-Lossless Image
Compression, 2002, IEEE Signal
Processing Letters

• [Jan03] Jan Bormans, Multimedia Image
Compression, 2003, IMEC Kapeldreef Inc.

• [Jim99] Jim Trulove, Multimedia Networking
Handbook, 1999, CRC Press LLC

• [Jud98] Judith Jeffcoate, Multimedia in Practice,
1998, Prentice Hall of India

• [Kar04] Karin R. Gastreich, OTS/Duke
Undergraduate Semester Abroad Program,
2004, book, University of Costa Rica

• [Ken02] Ken Cabeen, Image Compression and The
Discrete Cosine Transform, 2002, College
of the Redwoods

• [Mar00] Marcin Chady, Application of The Bulk
Synchronous Parallel Model in Fractal
Image Compression, Paper, 2000,
University of Birmingham

Referencesــ ـ

• [Mic98] Michael Orzessek, ATM & MPEG-2
Integrating Digital Video into Broadband
Networks, 1998, Prentice Hall PTR

• [Moh99] Mohamed Alkanhal, Correlation Based
Search Algorithms for Motion Estimation,
Msc. Thesis, Book, 1999, Carnegie Mellon
University

• [Nic03] Nicorsin F., Video Compression
Technologies, 2003, NIC Inc.

• [Pan01] Panrong Xiao, Image Compression By
Wavelate Transform, 2001, Msc. Thesis,
East Tennessee State University

• [Raf00] Rafael C. Gonzalez, Digital Image
Processing, 2000, Addison-Wesley

• [Rao01] Raouf Hamzaoui, Fractal Image
Compression, 2001,Leipzig University

• [Sco98] Scott E. Umbaugh, Computer Vision and
Image Processing, 1998, Prentice Hall PTR

• [Sfe01] S. Feyrer, Parallel Image Processing, 2001,
Msc. Thesis, Verlag Berlin

• [Sim01] Simon K. Alexander, Two-and Three
Dimensional Coding Schemes for Wavelet
and Fractal-Wavelet Image Compression,
2001, University of Waterloo

Referencesــ ـ

• [Som01] Somphob Soongsathitanon, A New
Orthogonal Logarithmic Search Algorithm
for Fixed Block-Based Motion Estimation
for Video Coding, 2001, University of
Newcastle Upon Tyne

• [Tod00] Todd Lammle, Cisco Certificated Network
Associate, Book, 2000, SYBEX Inc.

• [Vir99] Virginie RUIZ, Motion Estimation
Through Approximated Densities, 1999,
University of Patras (Greece)

• [Yil02] Yi Liang, Phase-Correlation Motion
Estimation, 2002, Stanford University

 v

Table of Contents

Chapter One Introduction
1.1 Image and Video Compression 1
 1. Coding Redundancy 1
 2. Inter Pixel Redundancy 1
 3. Psych-Visual Redundancy 2
1.2 Standard Image Compression 2
 JPEG 2
 MPEG 2
 MPEG-1 3
 MPEG-2 3
 MPEG-4 3
1.3 Motion Estimation for Video Compression 3
1.4 Block Based Motion Estimation 4
1.5 The Goals Factors in Motion Estimation 4
1.6 Literature Survey 5
1.7 Aim of Thesis 8
1.8 Thesis Layout 9

Chapter Two Image and Video Compression
2.1 Introduction 10
2.2 Image Compression 11
 2.2.1 Lossless Compression Methods 12
 A. Run Length Encoding 12
 B. S-Shift Coding 12
 C. Huffman Coding 13
 2.2.2 Lossy Compression Methods 14
 A. Transform Based Image Compression 15
 B. Fractal Image Compression 16
2.3 Video Compression 19
 2.3.1 Video Compression Techniques 20
 2.3.2 Video Compression Structure 22
 2.3.3 Video Compression Standards 23
 2.3.4 Motion Compensation and Motion Estimation 23
 2.3.4.1 The Slow Movement in Video 24
 2.3.4.2 Block-Based Motion Estimation Methods 25
 A. Three Step Search (TSS) 26
 B. Once Time Search (OTS) 27
2.4 Multimedia Networking 28

 vi

 2.5 Reasons for Multimedia Distributed Systems 29

Chapter Three Video Coding Systems
3.1 Introduction 32
3.2 Media File 33
3.3 The Proposed Compressing Systems 33
 1. Model-1 34
 2. Model-2 34
3.4 Video Coding Using FDCT 35
 3.4.1 The System Structure of Model1 Coding 36
 3.4.2 Strategy of Video Coding 37
 3.4.3 Compress Anchor Frame Using FDCT 38
 3.4.4 The Color Transform 40
 3.4.5 Image Downsampling 41
 3.4.6 Fast DCT (a new derivation) 41
 A. The Standard DCT transform 42
 B. Inverse DCT (IDCT) 47
 3.4.7 Quantization and Coding 50
 3.4.8 Shift Key Encoder 53
 3.4.9 Video Motion Estimation 54
 3.4.9.1 Hybrid Motion Estimation 55
 3.4.9.2 Computing Motion Estimation with Coding 55
3.5 Video Decoding Using FDCT (Model-1) 60
 3.5.1 Decode Anchor Frame Using IFDCT 61
 3.5.2 The Image Up Sampling 65
 3.5.3 Extract Motion Estimation with Decoding 66
3.6 The System Structure of Model-2 Coding 68
 3.6.1 Compress Anchor Frame Using Fractal Coding 69
 3.6.2 Fractal Compression Using Distributed Systems 70
 3.6.3 Network Communication and Network Model 71
 3.6.4 Fractal Coding for One Partition 72
 3.6.5 Affine Transform (Symmetry Cases) 73
 3.6.6 Fractal Quantization 74
3.7 Video Decoding Using Fractal (Model-2) 76
 3.7.1 Dequantization of Fractal Coefficients 78
 3.7.2 Fractal Image Decoding 80
 3.7.3 Symmetry Decoding (Symmetry Cases) 81

Chapter Four Tests and Results
4.1 Introduction 82
4.2 Fidelity Criteria 82
 1. Objective Fidelity Criteria 82
 2. Subject Fidelity Criteria 84

 vii

4.3 Performance Parameters 84
 4.3.1 Compression Ratio (Cr) 84
 4.3.2 Compression Time (Ct) 85
4.4 Test Samples 85
4.5 Testing Strategy 87
4.6 Test Results 87
4.7 Subjective Samples Testing 96

Chapter Five Conclusions and Future Work
5.1 Introduction 100
5.2 Conclusions 100
5.3 Future Work 101

Appendix A (AVI File Format)

References

Republic of Iraq
Ministry of High Education
Al-Nahrain University
College of Science

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER

SCIENCE/COLLEGE OF SCIENCE, Al-NAHRAIN
UNIVERSITY IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SCIENCE

By

Dhiah Eadan Jabor
dhiaheadan@yahoo.com

(B.Sc. 2002)

SUPERVISORS

Dr. Venus W. Samawi

Dr. Loay A. George

Thi Al-Hija 1425

Januray 2005

Interframe Compression using

Distributed Systems

 ا�
���ت ا��������

Video Coding
Video Compression
Image Compression
Lossy Compression
Lossless Compression
Video Frames
Intra Frame Compression
Inter Frame Compression
Fractal Coding
Fractal Compression
Fractal Image Compression FIC
Discrete Cosine Transform
Image Transform
Motion Estimation
Motion Compensation
Three Step Search TSS
Once Time Search OTS
Fractal Quantization
DCT Quantization
Anchor Frame
Estimated Frame

و �'&��% �$���) intraframe approach(ا�#" ا!�� �� ا�ول ����دةً ����� ,ھ���ك ������ن ر������ن ����
 ا��������

ا�&����5دة !��4 ا����3رة و ����ون ا�"���12 �$��� ا�&'$����0ت) spatial redundancy(ا��/�.����ل-�� ارات أزا���()

@�ا���� ا�/��#���ت ،)multimedia("'���دة ھ��<هِ ا�:�� ق ��7��0/(�":/����9ت ا����3رة ا���8"��(��80% ا������7
 ا�&. ا���0�6(

E�0 . أ��B، ا�/��#��ت ا�"$��ز��(، ا���3ر ا�&""��'�(!�4 ا�":/���9ت ا�"�4)��"�Dم . ا����)� ا!4، أ��B ا�" A�0، ا��3ر�(

�"G�9H ا����Aدة !�4 #��/(ا����
 و��6<ا ا���/Temporal redundancy(F(ا�"�&/�رال اتا�&&-E أزا�()- ار

 !� ���ا�#" ا�&K&���(ا���#�8(E�0 ھ�<هِ ا�:� ق)����. &""��'�(���دةً 0" ا�:�(�I %-�J/�� !2ن ا��3ر ا��������(ا�

)interframe approach (ف)-�� ارات>��M ���$� %��&'(4ا�"�&/���رال وھ��)temporal redundancy .(4��!

)�I Hا� E��&D(ب���M �"��)��#�8ا�)���&K&ا�)motion estimation ()$��$�"&م !�4 ا�. �$��3ر ا��������(ا���O�

).interframe approach(ا�#"� ! �� أ�"&�دا�&'"&�)�

)I Hا� E�&D(%9M 4!)motion estimation (ل��K&4 ھ�<ا ا��!)��8 ة 0:/�9I ا������� ھ���ك)����9ت
أن . ���

E��0 أ�8I ط�� ق ا�'&��% ا�&:/E��&D()Block based motion estimation (P��$"D0 4��!)�9 ا���I H(ا�-"4�$

)��! أ!��% أ#�Kز��(و�-���6 ذات Full Search Algorithm ()��$I(رز��0(ا�/S�H ا�-��R %�0ا. ا��Dارز��0ت

ھ����ك �Rارز����0ت �S��H ��7 �'(@���)���):�� ھ��� و�R ���6�0ارز���0(، �"9$���% 0":$/���ت ا�����Hب. I)������M/��� ة

 Once Time(ط �9(ا�/SH ا�4�0A اV#4 ، !4 ا���Oم ا�&'"&�). Three Step Algorithm(ا�D:�ات ا��8ث

Search(، ات ا���8ث��:Dا� S�H�)�9� وط)Three Step Search ()�I Hا� E��&D(ل��K0 4�! ھ�>����(��(��@

��W!(أ�� ا�: �9(ا���K6(ا�&:�رة ا����Kة ��)Hybrid Method.(

)�"4�9 ���د E�0 ا���3ر ا��������(ا�"�"�� 4� �W��D"�72� �6:ام #��Oم) K0)interframe approach&���(ط� ق

���-�
���W)��I Hا� E���&D(�����9ت(E��� ً����$"D0 ن ،)ر ا�& ���7ة ا������������X �����(ا�&�"���9ة)ھ��<هِ ا����3ر ا���������

)Anchor Frames .(ا�������، !�4 ا��&��ذج
��W ض ��):�� ھ&�� � �م ا�&'"&�� ھ���ك #&�ذ��5ن @��)��O4 ا��!

 �'"&� �$�)��H% ا�F�K)&�م ا�&� ع �W م�O# ��:(�(ول��/��رة ��E أ.�"�9ق ����5 ا�<ي ھ��) FDCT(ا

أ��0 ا��&��ذج ، و @�)�)�G��1 ھ�<ا ا�.�"�9ق ��0�I %-�J% !�4 ا�'&�% ا�&'"&��،)DCT(�"��H% ا�F�K)&�م ا�"9$��ي

 ا�"���W م���O# ����:(]ِ����R E��0 �)�� ���9! 4#���8ا�A���0 4��^�AK(ا�Fractal Coding (ر���X
ا�&���"�Dم �����

�I&��ل ا�/S�H �^�ا�E0"�A��0 AK ا���$/��ت ا�&���5دة !�4 ا. ا�& �7ة ا�������(]�5�"H� ا��<ي P�$-&4 ھ�� ا��@�_ ا�

ھ<هِ ا�&�(��@)$-�J� K��'0"��6 !�4 ا����Oم ا�&'"&�� ��R E�0ل)�� �` ا�/S�H ا��D"�72� 4�^�AKام ا�#O&�(. ا�&:$�ب

ا�"4 7"�9� ا�/SH ا��AK^4 �$� ��د ا��HاF�7 ا�-$4 ا�&J" ك !�4 ا�distributed systems ()-/�J(ا�&�ز�(

)��� أ�D"��7ام 0'���ل ا�I . 2��:D$���(� ���K0(���9�٦٫٠)���)�����< ا�����Oم ا�&'"&��� ��D"��72ام !����Kال �����0�D" . a(ا�&���

I&'����0ت ����Mب د@��(ا��"����f ا�&�"PSNR (E��0)��3$D(و #���/(ا�.���رة أ���� ا�"MSE(، e����J(ا�" ��'��4

 .ا�"���9ت ا�-$�(ا�&:�رة !4 ا���Oم ا�&'"&�

 ا�����

 ا���
ور�� ا��را���

 وزارة ا�����م ا����
 و ا���ث ا����

 ����� ا��
ر�ن

 ر����
 ��ر�ن	�د	� ا�� ��م ��وم ا������ت ��
�	�� ا�

���ر �� ��وم �

زء 	ن 	�ط���ت ��ل در
� ا�	�
 ا������ت

 	ن ��ل
 "��ء ��دان
�ر

�٢٠٠٢���ور�وس
�	�� ا���ر�ن ((

 أ'راف

�ؤي أدور
ورج. د

���وس وز�ر �	�وي. د

٢٠٠٥���ون ا�,���

 �
١٤٢٥ذي ا��

�� ا�
	� ا������
 ����ر ا���

 ا���ز�� ا���������ام ب�

	Microsoft Word - Abstract.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - ApendixA.pdf
	Microsoft Word - CHAPTER1.pdf
	Microsoft Word - CHAPTER2.pdf
	Microsoft Word - CHAPTER3.pdf
	Microsoft Word - Chapter4.pdf
	Microsoft Word - chapter4Notes.pdf
	Microsoft Word - chapter4Tables.pdf
	Microsoft Word - CHAPTER5.pdf
	Microsoft Word - List of abbreviations.pdf
	Microsoft Word - references.pdf
	Microsoft Word - tableofcontetnts.pdf
	Microsoft Word - Title.pdf
	Microsoft Word - الكلمات الإفتتاحية.pdf
	Microsoft Word - خلاصة.pdf
	Microsoft Word - عنوان.pdf

