Abstract

There are two main alternatives to compress a video. The first one, usually
called intraframe approach, pretends to remove the spatial redundancy of an image
without destroying important information. These methods are suitable for still image
applications such as multimedia, image database, etc. Nevertheless, in applications
that use a sequence of image, data such as TV scenes, video conferencing etc, time
redundancy can be exploited to increase the compression ratio since consecutive
frames are usualy highly correlated. This second group of methods is caled
interframe approach, and pretends to remove temporal redundancy. In the second
approach, motion estimation of sequence frames must be computed. In the proposed
work, the interframe approach is implemented.

In the field of motion estimation for video compression many techniques have
been applied. Block-based motion estimation approaches are the most common
procedures applied using various algorithms. The full search agorithm (FSA)
provides the best performance but at very expensive computational cost. To reduce
this computational requirement, fast search algorithms have been developed, among
them being the conventional three-step algorithm (TSA). In the proposed work OTS,
and TSS methods of ME are implemented in addition to a new developed Hybrid
Method (HM).

The interframe approach select a number of frames that will compress using
compression system that is different than ME techniques, these frames are called
Anchor frames (AF). In the proposed work there are two models that developed for
video coding, the first one develop a compression system that depend on FDCT
transform that a new derivation of DCT, where this transform is speed up through a
new derivation that fully documented in the proposed work, and the second model
develop the Fractal coding as compression system for AF. The disadvantage of
Fractal coding is the expensive time that Fractal needs to complete its search. This
problem is solved in the proposed work through fasting Fractal Search using
distributed system that divide the Fractal search on the total number of Servers that
shared on the network. The proposed work isimplemented using Visual Basic 6.0 asa
programming language. The fidelity measure MSE and PSNR are used to check the

result of the whole devel oped techniques.
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“ AVI Eile Format “

AVI Files

The Microsoft Audio/Video Interleaved (AVI) file fmat is a RIFF file
specification used with applications that captuedjt, and playback
audio/video sequences. In general, AVI files cantaultiple streams of
different types of data. Most AVI sequences wileusoth audio and
video streams. A simple variation for an AVI sequeemises video data
and does not require an audio stream. Specialiadds@quences might
include a control track or MIDI track as an addiab data stream. The
control track could control external devices sushaa MCI videodisc
player. The MIDI track could play background mufc the sequence.
While a specialized sequence requires a speciatimatiol program to
take advantage of all its capabilities, applicagitimat can read and play
AVI sequences can still read and play an AVI segaan a specialized
file. (These applications ignore the non-AVI datahe specialized file.)
This chapter primarily describes AVI files contaigi only audio and
video data. This chapter covers the following tepic

* The required chunks of an AVI file

* The optional chunks of an AVI file

» Developing routines to write AVI files

AVI RIFF Form

AVI files use the AVI RIFF form. The AVI RIFF forms identified by
the four-character code “AVI”. All AVI files incluel two mandatory
LIST chunks. These chunks define the format ofdineams and stream

data. AVI files might also include an index chuiikis optional chunk
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specifies the location of data chunks within tHe.fAn AVI file with
these components has the following form:

RIFF (AVI'

LIST ('hdrl’

)
LIST (‘'movi’

)
[idx1'<AVI Index>]

)

The LIST chunks and the index chunk are subchuhkiseoRIFF “AVI”
chunk. The “AVI” chunk identifies the file as an ARIFF file. The
LIST “hdrl” chunk defines the format of the datadas the first required
list chunk. The LIST “movi” chunk contains the dafar the AVI
sequence and is the second required list chunki@iké&” chunk is the
optional index chunk. AVI files must keep theseethcomponents in the
proper sequence. The LIST “hdrl” and LIST “movi” wiks use
subchunks for their data. The following examplevefidhe AVI RIFF
form expanded with the chunks needed to completd IST “hdrl” and
LIST “movi” chunks:

RIFF (AVI

LIST (hdrl’

‘avih'(<Main AVI Header>)

LIST ('strl'

2(A-2)
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'strh’(<Stream header>)
'strf'(<Stream format>)

'strd'(additional header data)

)
LIST (‘'movi’

{SubChunk | LIST ('rec’
SubChunkl
SubChunk?2

)
[idx1'<AVIIndex>]

)

2(A-3)
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The following sections describe the chunks conthinethe LIST “hdrl”

and LIST “movi” chunks as well as the “idx1” chunk.

Data Structures for AVI Files

Data structures used in the RIFF chunks are defim¢de AVIFMT.H
header file. The reference section at the endisfdiiapter describes the
data structures that can be used for the main Addlder, stream header,

AVlindex, and palette change chunks.

The Main AVI Header LIST
The file begins with the main header. In the AMEfithis header is

identified with “avih” four-character code. The ldea contains general
information about the file, such as the numbertdasns within the file
and the width and height of the AVI sequence. Tlannheader has the
following data structure defined for it:

typedef struct {

DWORD dwMicroSecPerFrame;

DWORD dwMaxBytesPerSec;

DWORD dwReservedl;

DWORD dwFlags;

DWORD dwTotalFrames;

DWORD dwiInitialFrames;

DWORD dwStreams;

DWORD dwSuggestedBufferSize;

DWORD dwWidth;

DWORD dwHeight;

DWORD dwScale;

DWORD dwRate;

2(A-4)
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DWORD dwsStart;

DWORD dwLength;

} MainAVIHeader,

The dwMicroSecPerFrame field specifies the period between video
frames. This value indicates the overall timingtfoz file.

The dwMaxBytesPerSedield specifies the approximate maximum data
rate of the file. This value indicates the numbkbytes per second the
system must handle to present an AVI sequenceeasfigol by the other
parameters contained in the main header and stieader chunks.

ThedwFlagsfield contains any flags for the file. The followarlags are

defined:

AVIF_HASINDEX

Indicates the AVI file has an “idx1” chunk.

AVIF_MUSTUSEINDEX

Indicates the index should be used to determin@tter of presentation
of the data.

AVIF_ISINTERLEAVED

Indicates the AVI file is interleaved.

AVIF_ WASCAPTUREFILE

Indicates the AVI file is a specially allocatedefiised for capturing real-
time video.

AVIF_COPYRIGHTED

Indicates the AVI file contains copyrighted dataeTAVIF_HASINDEX
and AVIF_MUSTUSEINDEX flags apply to files with andex chunk.
The AVI_HASINDEX flag indicates an index is presenThe
AVIF_MUSTUSEINDEX flag indicates the index shoule lused to
determine the order of the presentation of the.d&tzen this flag is set,
it implies the physical ordering of the chunks imetfile does not
correspond to the presentation order. The AVIF_THERLEAVED flag

:(A-5)
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indicates the AVI file has been interleaved. Thetem can stream
interleaved data from a CD-ROM more efficiently ih@on-interleaved
data. For more information on interleaved filex $8pecial Information
for Interleaved Files." The AVIF_WASCAPTUREFILE fandicates the
AVI file is a specially allocated file used for ¢apng real-time video.
Typically, capture files have been defragmentedi$sr so video capture
data can be efficiently streamed into the file.thfs flag is set, an
application should warn the user before writing rothee file with this
flag. The AVIF_COPYRIGHTED flag indicates the AVild contains
copyrighted data. When this flag is set, applicatigshould not let users
duplicate the file or the data in the file.

ThedwTotalFrames field of the main header specifies the total number
of frames of data in file.

The dwinitialFrames is used for interleaved files. If you are creating
interleaved files, specify the number of framesthe file prior to the
initial frame of the AVI sequence in this field.

The dwStreams field specifies the number of streams in the fier
example, a file with audio and video has 2 streams.
ThedwSuggestedBufferSizdield specifies the suggested buffer size for
reading the file. Generally, this size should bhgdaenough to contain the
largest chunk in the file. If set to zero, or ifisttoo small, the playback
software will have to reallocate memory during plagk which will
reduce performance. For an interleaved file, th#ebwsize should be
large enough to read an entire record and nogjesunk.

The dwWidth anddwHeight fields specify the width and height of the
AVI file in pixels. ThedwScaleand dwRate fields are used to specify
the general time scale that the file will use. didision to this time scale,
each stream can have its own time scale. The tocake sn samples per

second is determined by dividinigvRate by dwScalk.
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The dwStart anddwLength fields specify the starting time of the AVI
file and the length of the file. The units are defi bydwRate and
dwScak. ThedwStart field is usually set to zero.

The Stream Header (“strl”) Chunks

The main header is followed by one or more “stiiuoks. (A “strl”
chunk is required for each data stream.) These kshucontain
information about the streams in the file. Eachlsthunk must contain
a stream header and stream format chunk. Streacfehehunks are
identified by the four-character code “strh” andeatn format chunks are
identified with the four-character code “strf”. hddition to the stream
header and stream format chunks, the “strl” chumghimalso contain a
stream data chunk. Stream data chunks are idehtfigh the four-
character code “strd”. The stream header has flewiog data structure
defined for it:

typedef struct {

FOURCC fccType;

FOURCC fccHandler;

DWORD dwFlags;

DWORD dwReservedl;

DWORD dwiInitialFrames;

DWORD dwScale;

DWORD dwRate;

DWORD dwsStart;

DWORD dwLength;

DWORD dwSuggestedBufferSize,

DWORD dwQuality;

DWORD dwSampleSize;

} AVIStreamHeader;

(A7)
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The stream header specifies the type of data thamtcontains, such as
audio or video, by means of a four-character cddhe.fccType field is
set to “vids” if the stream it specifies containsleo data. It is set to
“auds” if it contains audio data.

The fccHandler field contains a four-character code describing the
installable compressor or decompressor used wafi#ta.

The dwFlags field contains any flags for the data stream. The
AVISF_DISABLED flag indicates that the stream dasaould be
rendered only when explicitly enabled by the user.

The AVISF_VIDEO_PALCHANGES flag indicates paletteanges are
embedded in the file.

The dwinitialFrames is used for interleaved files. If you are creating
interleaved files, specify the number of framesthe file prior to the
initial frame of the AVI sequence in this field. @hremaining fields
describe the playback characteristics of the strddmase factors include
the playback ratgdwScale and dwRate), the starting time of the
sequencddwStart), the length of the sequen(@wvlLength), the size of
the playback buffe(dwSuggestedBuffe), an indicator of the data quality
(dwQuality), and sample siz@lwSampleSiz). See the reference section
for more information on these fields. Some of tieddf in the stream
header structure are also present in the main hetdeture. The data in
the main header structure applies to the wholewhée the data in the
stream header structure applies only to a streastréam format (“strf”)
chunk must follow a stream header (“strh”) chunkeTstream format
chunk describes the format of the data in the strd#or video streams,
the information in this chunk is a BITMAPINFO sttuce (including
palette information if appropriate). For audio atres, the information in
this chunk is a WAVEFORMATEX or PCMWAVEFORMAT strwze.
(The WAVEFORMATEX structure is an extended versioh the
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WAVEFORMAT structure.) For more information on treucture, see
the New Multimedia Data Types and Data Techniques Standards Update.
The “strl” chunk might also contain a stream dés&rd”) chunk. If used,
this chunk follows the stream format chunk. Thenfat and content of
this chunk is defined by installable compression decompression
drivers. Typically, drivers use this information rfaconfiguration.
Applications that read and write RIFF files do meted to decode this
information. They transfer this data to and frondraver as a memory
block. An AVI player associates the stream headethe LIST “hdrl”
chunk with the stream data in the LIST “movi” chumk using the order
of the “strl” chunks. The first “strl” chunk appsdo stream O, the second
applies to stream 1, and so forth. For exampléheffirst “strl” chunk
describes the wave audio data, the wave audioislatmitained in stream
0. Similarly, if the second “strI” chunk describesgleo data, then the

video data is contained in stream 1.

The LIST “movi” Chunk

Following the header information is a LIST “movihenk that contains
chunks of the actual data in the streams; thahespictures and sounds
themselves. The data chunks can reside directlthenLIST “movi”
chunk or they might be grouped into “rec ” chunkke “rec ” grouping
implies that the grouped chunks should be read ftiistkall at once. This
Is used only for files specifically interleavedplay from CD-ROM. Like
any RIFF chunk, the data chunks contain a fouradtar code to identify
the chunk type. The four-character code that ifiestieach chunk
consists of the stream number and a two-charaote that defines the
type of information encapsulated in the chunk. &mample, a waveform
chunk is identified by a two-character code of “wif’a waveform chunk

corresponded to the second LIST “hdrl” stream dpson, it would have
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a four-character code of “O1wb”. Since all the fatnmformation is in
the header, the audio data contained in thesecateks does not contain
any information about its format. An audio datamkias the following
format (the ## in the format represents the strigimtifier):

WAVE Bytes '##wb'

BYTE abBytes [];

Video data can be compressed or uncompressed BiBsncompressed
DIB has Bl_RGB specified for theCompressionfield in its associated
BITMAPINFO structure. A compressed DIB has a vahtber than
Bl_RGB specified in thebiCompression field. A data chunk for an
uncompressed DIB contains RGB video data. Thesekshare identified
with a two-character code of “db” (db is an abbatian for DIB bits).
Data chunks for a compressed DIB are identifiechvaittwo-character
code of “dc” (dc is an abbreviation for DIB comped). Neither data
chunk will contain any header information about bEs. The data
chunk for an uncompressed DIB has the followingrfor

DIB Bits '##db'

BYTE abBits [];

The data chunk for a compressed DIB has the foligviorm:
Compressed DIB '##dc'

BYTE abBits [];

Video data chunks can also define new paletteemntrsed to update the
palette during an AVI sequence. These chunks antifted with a two-
character code of “pc” (pc is an abbreviation fatepte change). The
following data structure is defined palette infotioa:

typedef struct {

BYTE bFirstEntry;

BYTE bNumEntries;

WORD wkFlags;

2:(A-10)
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PALETTEENTRY peNew;

} AVIPALCHANGE;

The bFirstEntry field defines the first entry to change and the
bNumEntries field specifies the number of entries to changee Th
peNewfield contains the new color entries. If you inciyohlette changes
in a video stream, set the AVITF_VIDEO_ PALCHANGER&J in the
dwFlags field of the stream header. This flag indicates thé video
stream contains palette changes and warns theguk\doftware that it

will need to animate the palette.

The “idx1” Chunk

AVI files can have an index chunk after the LISTdwi chunk. The
index chunk essentially contains a list of the detmnks and their
location in the file. This provides efficient randoaccess to the data
within the file, because an application can locatgarticular sound
sequence or video image in a large AVI file withdwatving to scan it.
Index chunks use the four-character code “idx1"e Tallowing data
structure is defined for index entries:

typedef struct {

DWORD ckid;

DWORD dwFlags;

DWORD dwChunkOffset;

DWORD dwChunkLength;

} AVIINDEXENTRY;

The ckid, dwFlags, dwChunkOffset, anddwChunkLength entries are
repeated in the AVI file for each data chunk index# the file is
interleaved, the index will also have these entfigseach “rec” chunk.
The “rec” entries should have the AVIIF_LIST flagt@and the list type
in theckid field. Theckid field identifies the data chunk. This field uses
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four-character codes for identifying the chunk. THeFlags field
specifies any flags for the data. The AVIIF_KEYFREMlag indicates
key frames in the video sequence. Key frames doeed previous video
information to be decompressed. The AVIIF_NOTIMEdflindicates a
chunk does not affect the timing of a video stredfor example,
changing palette entries indicated by a palettenkhshould occur
between displaying video frames. Thus, if an agpion needs to
determine the length of a video sequence, it shoatduse chunks with
the AVIIF_NOTIME flag. In this case, it would ign®ra palette chunk.
The AVIIF_LIST flag indicates the current chunkad.IST chunk. Use
the ckid field to identify the type of LIST chunk. ThewwChunkOffset
and dwChunkLength fields specify the position of the chunk and the
length of the chunk. ThéwChunkOffset field specifies the position of
the chunk in the file relative to the 'movi' lishedwChunkLength field
specifies the length of the chunk excluding thenelgytes for the RIFF
header. If you include an index in the RIFF filegt sthe
AVIF_HASINDEX in thedwFlagsfield of the AVI header. (This header
Is identified by “avih” chunk ID.) This flag indi¢as that the file has an

index.
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Chapter One

Introduction

1.1 Image and Video Compression [Ama02]

Image compression addresses the problem of redtiotengmount
of data required to represent a digital image. kenegal, image
compression is possible because of the existingunaahcy in
uncompressed images. In digital image compresdluee basic data
redundancies can be identified and exploited:

1. Coding Redundancy: It occurs when the data used to represent
the image are not utilized in an optimal mannermatTihg, it occurs
when the gray levels of an image are coded in athatyuses more
codes than absolutely necessary to represent eaghlayel. For
example, if an 8-bit/pixel image, which allows 2%kfferent
Intensity levels, is used to represent a 16-caot@ge, actually only
4-bit/pixel is needed to represent the image. Inega, coding
redundancy is perfect when the codes assignedeteeh of gray
levels have not been selected to take the full @t of the
probabilities of gray levels.

2. Inter Pixel Redundancy: It occurs because the adjacent pixels
tend to be highly correlated. This is a resulthaf tact that in most
images the brightness levels do not change raphuly, change
gradually, so that adjacent pixels values tendetodbatively close
to each other in value (for video, or motion imggésis concept
can be extended to include interframe redundaneyr@dundancy

between frames of image data).



Chapter One Introduction 2

3. Psycho-Visual Redundancy: refers to the fact that some
information are more important to the human vissytem than
other types of information. For example, we canyopérceive
spatial frequencies below about 50 cycles per degre that any

higher frequency information is of little interestus.

1.2 Standard Image Compression Methods [Mic98]
Standardization of still images and video compressechniques
has become a high priority issue, because onlgradatd can reduce the
high cost and resolve the critical problem of ioperability of
equipment’s from different manufactures.
The following summaries the most commonly knowmpeession

standards;

JPEG

The JPEG is the standard developed by Joint Pragitbgr Experts
Group for compressing still pictures (e.g. Photpbs. JPEG had
worked toward establishing the first internationdigital image
compression standard for continuous-tone still iepdmpth grayscale and

color.

MPEG
MPEG (Moving Picture Experts Group) is one of tleeelopments

of international standards for compression, decesgon, and

representation of moving pictures and audio.
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MPEG-1

The first finalized standard was MPEG-1 (InternaéibStandard).
Its goal was to produce video recorder quality au{352x240) using a
bit rate of 1.2 Mbps. Since the uncompressed valeoe can run to 77.4
Mbps, getting it down to 1.2 Mbps is not entirehial, even at this

lower resolution.

MPEG-2

MPEG-2 (International Standard) was originally desd for
compressing broadcast quality video into 4 to 6 Mdmter, MPEG-2
was expanded to support higher resolutions, inaméiDTV.

MPEG-4

The third generation of MPEG is based upon theestthnique.
Once again, the new project focused on new apitaisages. The most
iImportant new features of MPEG-4, concerning vidempression are
the support of even lower bandwidth consuming apgibns, e.g. mobile
units, and on the other hand applications witheswily high quality and
almost unlimited bandwidth. The making of studiouwes is one such an

example.

1.3 Motion Estimation (ME) for Video Compression [Hyc01]
Motion estimation (ME) has been a hot researpicttor years. It
is the most important part in video compression erding, it exploits as
much temporal redundancies as possible to redeside of the data
required in digital video storage and transmissioow bit rate video
transmission is impossible without the use of motiestimation.
Although motion estimation is such a useful methmodeducing the size

of a coded video sequence, it is computationaligrisive which makes
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real-time video coding a difficult task, but not possible, to be
accomplished. In a typical video encoding systemtion estimation can
take 50%~75% (for the case of full search block amag) of the
computation time. In the past two decades, extensdsearches were
conducted to develop motion estimation techniqugsny motion
estimation techniques like pel-recursive techniggeadient techniques,
frequency domain techniques and block based majdkrhniques were
evolved. Among these motion estimation techniqubkck-based
matching had been widely adopted by internatioteaidards such as the
H.261-11, H.263-12, MPEG1-13 and MPEG2-14 duedeftectiveness

and robustness.

1.4 Block Based Motion Estimation [Hyc?01]

The principle of block based motion estimationnmost of the
video standards is that the video image frame ifitjpaied into blocks,
where each block is the elementary unit. Motiomsion is performed
by matching each block in the current frame agasstegion in a
reference frame to find the best match. The magchiiteria for the best
match is well accepted to be the block in the seaegion such that the
error or energy of the residue obtained from thdtragtion of

corresponding pixels between the blocks is minichize

1.5 The Goals Factors in Motion Estimation [Moh99]

Most of the research works have been concentmatexptimizing
the block-based motion estimation technique. Asdbemand for real-
time video applications (like video recording, vadeonferencing, video
phone, etc) the needs for video coding had beewrgrd-ast video

encoding with good compression ratio as well ak Bignal to noise ratio



Chapter One Introduction 5

Is highly essential. Good compression ratio meadsacing the size of the
coded video with little degradation of quality. Mwt estimation is
exactly a technique designed to achieve good casajme ratio in video
compression. However, speed and quality are often d¢ontradicting
goals. Nowadays, researchers are still activelyestigating for an
optimum trade-off between these two factors. Mosttlee motion
proposed estimation algorithms tends to bias towspekd by sacrificing
visual quality. In view of this, we were motivatexdfind a good trade-off
between the speed and quality. That is to incrédasepeed up as much
as possible with good visual results. We focusedthen block based
motion estimation technique since it is widely a®op by most
international standards. In this work we have psggoa model to
formulate a method to predict the blocks motiore 8uggested ME
method is hybrid, its search mechanism is basetbarbining the search

ideas utilized in the two standards ME methods.

1.6 Literature survey

Many researches were study the field of image cesgmon; few of

them focus on video compression, some of themistesl|below:
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1. H. Y. Chunge, Adaptive Search Center Non-Linear Three Step
Sear ch, 2001, University of Hong Kong [Hyc'01]
This research presents a new motion estimatiorrittigo using
an adaptive search center predicted from its adfdaecks. It
does not have the problem of being trapped by logaimum,
and is characterized by finding the majority motiector in
one step. When compared with six other block-bassach
algorithms including the full-search and three-steprch, the
new algorithm has an average PSNR very close toathfull
search.
2. Alice Yu, Motion Search Performance using the H.263 Encoder,
1997, EE392c [Ali97]
In this research six different motion search alpons are
implemented within the context of the baseline B.2&icoder.
This approach allowed considering the motion search
algorithms in two different ways: first, in termbtbe prediction
error variance, which is indicative of the entragyhe resulting
information; and, secondly, in terms of overall eter
performance, which considers how the motion sepssforms
in an H.263 video system.
The motion searches that considered are:
a. Exhaustive search
b. Two-dimensional logarithmic search
c. Three-step hierarchical search (TSHS)
d. One-at-a-time search (OTS)
e. Full axis search
f. Projection SAD method
3. Amal Abbas Kadhim, H.263 Image Video Compression
[Ama02]
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This project aims to implement the H263 video coespion by
developing all the required programs. In this warkadaptive
mechanism was proposed and implemented to handlé@nie
delay associated with all searching methods. The gb the
proposed mechanism is to not affect the compressianency
and image quality.

4. Marcin Chady, Application of the Bulk Synchronous Parallel
Model in Fractal Image Compression, University of
Birmingham [M ar 00]

In this research was present with the results oheestigation into
parallel implementations of fractal image compmsslgorithms.
In particular, the research addressed the applisaldor this

purpose of the new Bulk Synchronous Parallel moted research
provides a scalable and predictable framework fevetbping
parallel software, with a reliable and straightfards cost model,
taking advantage of this model to arrive at an rogti parallel
fractal image compression algorithm.

5. Raouf Hamzaoui, Fractal Image Compression, Leipzig
University [Rao01]

The research speed up Fractal searching througig usearest
neighbor search, where Range blocks and domaink®lace
assigned d-dimensional feature vectors such thtatisimg in the
pool of domain blocks can be restricted to the donidocks
whose feature vectors are the nearest neighborheoffeature
vector of the current domain pool. The researctistuthe effects
on computation time, image fidelity and compressiaho. The
research showed that there is no need for keepongachs with

low intensity variance in the pool.
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6. Auday Ali H. Al-Dulaimy, Fractal lmage Compression [Aud00]
This work aimed to develop FIC. The main schemEl&f method

was implemented, which lead to a good compresserfopnance
with a significant reduction in coding time. A spegy-up
operation based on a new mathematical approactef@rmining
the IFS-codes between the range and the domairkdblo@as
introduced, also the utilization of the parallebgessing to perform

the encoding operation was discussed.

1.7 Aim of Thesis

The research aims to design video compression ragstiat
compress a sequence of video frames into a compagibn keeping the
qguality of the decompressed sequence of video Bambe designed
video compression systems are mainly constructedniglementing
different compression techniques.

The proposed work aims to develop two different etedor video
compression. In the implementation stages mosthef well-known
motion search methods are implemented, tested read gerformances
are investigated.

In the proposed work, the Fractal image compressieitC)
technique is implemented, in addition to the DCTisqrkete cosine
transform) as an image transform coding technigdach model
implemented with two different approaches, one dompressing the
anchor frames, and one for compressing the estimaiames using
motion estimation methods.

The first model implemented with compression systaamsed on
DCT transform for anchor frames after developing ICT transform
through speeding up its computations by a new dgan that eliminate

much of its mathematical operations, and the model three different
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methods (TSS, OTS, HM) for motion estimation corspiieg the
estimated frames.

The second model implemented with compression sybesed on
Fractal Image Compression for anchor frames aféseldping the FIC
through speeding up its computations by design anglement a
distributed system that will divide the fractal smon the total number
of computers shared on the LAN, and the model bsesame motion

estimation methods compressing the estimated frames

1.8 Thesis Layout
The work in this thesis is organized as follows:

» Chapter (2): explains the image and video compression techaique

In details including Fractal image compression, and
the methods of Motion Estimation, and show the
iImportance of distributed systems for speedinghap t
Implementation of video compression techniques.

« Chapter (3): this chapter includes all the details of the dest
and implemented video compression models. All the

algorithms used in this work are presented.

» Chapter (4): this chapter contains the results of some tegibeab

on some samples of movies used as test material in
this work; the used criteria are the fidelity maasu
(MSE, PSNR) beside the compression ratios.

« Chapter (5): Iincludes the derived conclusions and some

suggestions for future work.



Chapter Two

Image and Video Compression

2.1 Introduction

Image compression had been pushed to the foredfaitie image
processing field. As a result dhe rapid growth in computer power, the
corresponding growth in the multimedia market, andthe advent of the
World Wide Web which makes the Internet easily accessible for
everyone. Additionally, the advances in video technologgcluding
high-definition television, had created a demand rfew, better, and
faster image compression algorithms. Compressiorgorigdhm
development started with applications of two-dimenal (2-D) still
images. Because video and television signals domdisonsecutive
frames of 2-D image data, the development of coegmoa methods for
2-D still data is of paramount importance. Aftee tdevelopment of
different still image compression schemes, somethein are often
extended to video (motion imagingyco98]

The increasing demand to incorporate video datao int
telecommunications services, the corporate enviemmm the
entertainment industry, and even at home had madgaldvideo
technology a necessity. However, the problem i¢ #tid image and
digital video data rates are very large, typicalty the range of
150Mbits/sec. Data rates of this magnitude wouldsomne a lot of the
bandwidth, storage and computing resources in Vpecal personal
computer. For this reason, video compression idexé& reduce the data
to be stored or transmitted through eliminate peet@dundancjArr97] .

This chapter explores the theoretical concept @genand video

compression, in addition to multimedia networkimmgcepts.
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2.2 Image Compression

Compression process takes an input X and genaaatgsesentation
Xc that hopefully requires fewer bits. While the nestuction algorithm
operates on the compressed representation tX generate the
reconstruction Y.

Based on the difference between original and theonstructed
version, data compression schemes can be dividedwo broad classes
(see figure (2.1)).

The first is lossless compression, at which Y entical to X, while
other is lossy compression, which generally prosidauch higher
compression than lossless compression but makedfétemt from X
[AddOO].

Compression

Methods
! |
Lossless Compression Lossy Compression
Methods Methods
Run length Vector
Encoding Quantization
Huffman Predictive
Coding Coding
Arithmetic DCT based | Transform
Coding transform based image |¢
compression
Wavelet
LZW Transform Fractal Image
compression |«

Figure 2.1: The Most Popular Image Compression Meth  ods.
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2.2.1 Lossless Compression Methods

Lossless compression techniques provme guarantee that no
pixel difference between the original and the dgm@ssed image, i.e
lossless schemes result in reconstructed dataetteattly matches the
original. It is generally used for applications tthaannot allow any
difference between the original and reconstructed.dl'he most popular
lossless compression methods B Length coding, S-shift coding,
Huffman coding, Lempel/Ziv algorithms, and arithmetic coding
[Ism02].

A. Run Length Encoding [Sc098, Aud00]

Run length encoding (RLE), sometimes called recuw&ecoding,
Is one of the simplest data compression algorithihss effective for
data sets that are comprised of long sequencessaigée repeated
character. For instance, text files with large rahspaces or tabs may
be compressed well with this algorithm. RLE findss of repeated
characters in the input stream and replaces thettm avithree-byte
code. The code consists of a flag character (calsédntinel byte), a
count byte, and the value of repeated charactass.irfstance, the
string “AAAAAABBBBCCCCC” could be more efficienthstored as
“*6A*4B*5C", that saves us six bytes. Of coursense it does not
make sense to represent runs less than three tdraraclength which
may exist in the code. Thus “AAAAAABBCCCDDDD” mighie
represented as “*6ABBCCC*4D”.

B. S-Shift Coding [Raf00, 1br04]

The idea of this method is to encode the sequehceimbers by
codewords whose bit length is less than the nurobdats required to
represent the maximum value of the sequence of artsmio be coded.
The numbers whose values are large may splittenl ansequence of
codewords, by using the formula (2.1):
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Where:
X is the number to be coded.
n is the number of codeword to be coded.

W, is the largest integer value, which must be cdoledsing a
single codeword.

W, is the value of the last codeword used to encade X

The values oW, andW, are determined by using the following
equations:

Wm=2°-1..... .22
Wr=XmodWm .......... (2.3)

Whereb is the number of bits used to represent each esisigift
codeword.

The performance of shift coding is betterevehthe sequence of
numbers has a histogram whose shape is highly dedke shift coding

performance is better than especially when th@giasims have long tails.

C. Huffman Coding [Pan01]
Huffman coding, developed by D.A. Huffman, is asslaal data

compression technique. It has been used in varicospression
applications, including image compression. It ubesstatistical property
of characters in the source stream and then predespective codes for
these characters. These codes are of variablel@ogi using an integral
number of bits. The codes for characters havinggaen frequency of
occurrence are shorter than those codes for cleasatiaving lower
frequency. This simple idea causes a reductionhe dverage code

length, and thus the overall size of compressed asmaller than the
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original. Huffman coding is based on building aamntree that holds all
characters in the source at its leaf nodes, ankd thiir corresponding
characters' probabilities at the side. The trdmiik by going through the
following steps:

1. Each of the characters is initially laid out asf leade; each leaf
will eventually be connected to the tree. The ctiars are ranked
according to their weights, which represent thguencies of their
occurrences in the source.

2. Two nodes with the lowest weights are combinedotonfa new
node, which is a parent node of these two nodes. gdrent node
Is then considered as a representative of the tedes with a
weight equal to the sum of the weights of two nodésreover,
one child, the left, is assigned a "0" and the Qttie right child, is
assigned a "1".

3. Nodes are then successively combined as aboveaubiiiary tree
containing all of nodes is created.

4. The code representing a given character can bendetd by
going from the root of the tree to the leaf nodpresenting the
alphabet. The accumulation of "0" and "1" symbslshe code of
that character.

By using this procedure, the characters are ndyurasigned codes
that reflect the frequency distribution. Highly dreent characters will be
given short codes, and infrequent characters walvehlong codes.

Therefore, the average code length will be reduced.

2.2.2 Lossy Compression Methods

Lossy compression techniques involve some lossfofmation,
and data cannot be recovered or reconstructed lgxdnt some
applications, exact reconstruction is not necesdamy example, it is
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acceptable that the reconstructed video signalifferent from the
original as long as the differences do not resulamnoying artifacts.
Generally, lossy compression can produce a higbewpeession ratio
than is possible with lossless compression. Thet mpopular lossy
compression methods are vector quantization, prediccoding,
transform based image compression and fractal intagepression.
This work concerned with Transform Image Compresg$iBIC), and
Fractal Image Compression (FIC) [Jan03].

A. Transform Based Image Compression
Transform based compression implies thost popular and
efficient coding schemes. Combined with other caapion techniques
this technique allows efficient transmission, sgigraand display of
images that otherwise would be impracti¢zdn01].
The basic transform encoding method for image cesywon
works as follows:

1. Image Transfornt Divide the source image into blocks and apply the
transformations to each block.

2. Parameter Quantization: The data generated by the transformation
are quantized to reduce the amount of informatf@uantization is
irreversible operation because of its lossy prgpert

3. Encoding: Encode the results of the quantization. This leegt san be
error free by using Run Length encoding or Huffnzadling. It can
also be lossy if it optimizes the representatiortha information to
further reduce the bit rate.

The discrete cosine transform (DCT) iecnique for converting a
signal into elementary frequency components. Wigely used in image
compression. It is a popular transform used by #REG (Joint
Photographic Experts Group) image compression atandor lossy
compression of images. Since it is used so fredyeDICT is often
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referred to in the literature as JPEG-DCT. JPEG-O€HR transform
coding method comprising four steps. The sourcegémas first

partitioned into sub-blocks of size 8x8 pixels imdnsion. Then each
block is transformed from spatial domain to frequyedomain using a 2D
DCT basis function. The resulting frequency coéfits are quantized
and finally output to a lossless entropy coder. DE€&n efficient image
compression method since it can decorrelate pirelse image since the
cosine basis is orthogonal, Orthogonal waveforrasnaveforms that are
independent of each other and compact most imageggrio a few

transformed coefficients. Moreover, DCT coefficentan be loosely
guantized according to some human visual charatitesi [Ken02,

Jim99].

B. Fractal Image Compression (FIC)

The application of fractals in image compressiors wdroduced by
M.F. Barnsley and A. Jacquin. FIC is a processind & small set of
mathematical equations that can describe the imBgesending the
parameters of these equations to the decoder,ripma image can be
reconstructed. In general, the theory of fractahgession is based on
the mapping theorem in the mathematics of metracep. Analyzing the
Image forms the Partitioned Iterated Function Sys{PIFS), which is
essentially a set of mappings. Those mappings galoiethe redundancy
that is commonly present in most images. This rdduany is related to
the similarity of an image with itself, that is,rp& of a certain image is
similar to another pai of the same image, by doing an arbitrary number
of contractive transformations that can briAgand B together. These
contractive transformations are actually commonnggtacal operations
such agotation, scaling, skewing andshifting. By applying the resulting
PIFS on an initially blank image iteratively, theiginal image at the
decoder can be completely regenerated. Since #t& éften consists of a
small number of parameters, a huge compressiancati be achieved by
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representing the original image using these paemndtiowever, FIC has
its disadvantages since it is usually involvesrgdaamount of matching
and geometric operations (i.e. it is time consumifi¢pe coding process
Is so asymmetrical that encoding of an image takash longer time than
decoding [Mar00].

In fractal coding, the image to be codsddivided into non-
overlapping range blocks, and larger possibly @amring domain blocks.
Every range block is expressed as an affine tram&fd version of one
decimated domain block. Since domain blocks argelathan range
blocks and if the maximum scaling factor is lesmth, this transform is a
contraction. The reconstructed image, obtained teyations of the
transform f from any initial image, may be congiedcto be still close to
the original image [FccO0Q].

Fractal image compression takes advantage of theHat real life
Images are to a great extent self-similar. In otherds, many parts of the
iImage can be approximated by transforming anotlaet @f the same
image by applying someffine spatial transformation and a (usually
linear) brightness transformation. Based on the theory of fractals, for a
given image S, the compression process tries td &rPartitioned
Iterated Function System (PIFS), W ={w;: i = 1, ..., K} whose attractor
Is a non-overlapping tiling of the image, where reaf the “tiles” is
formed by applying a contractive affine transfonmatw; on a section of
S [Fcc00].

k
S=W(S)=iL=JXVi(di) .......... (2.4)
Wherek is the number of range blocks.

Whered; is an arbitrary section of the image, caltenain. The
“tile” approximated byw; (d)), is further referred to asnge or r;. Each
transformatiorw; (d;) gives the best possible approximatiorr;ofThis is
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usually measured with thRoot Mean Square (RMS) metric of the

following form:

RMS( ri,wi(di)):\/ Y (r(p) —d(P) Zennenr (2.5)
pUwi(dj)

Where d(p) represents the brightness of pixel in the
transformed domain fragment, andp) represents the brightness of the
corresponding pixel in the range fragment. For gigdeandr the optimal
brightness transformation can be found by miningzime RMS distance.

For a linear brightness transformation of the form

d=Sxd(p)+ O ... (2.6)

WhereS is the contrast scaling, ar@lis the luminance shift, the

optimal values of the coefficients, obtained bycakdting the following:

n n n
n¥ d(pjr(pj)- X d(pj) X d(pj)
g=1=1 1=1 N (2.7)

n n
ny d2(pi)-( T d(p;)?
=1 =1

and

1 n n
O==(Zr(p;)=Sd(p;)......... (2.8)
Ni=1 i=1

Wheren is the number of pixels in the image fragmet(p) is
the grey level of theth pixel ind, andr(p) is the grey level of theh
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pixel inr. These formulas give the following lowest possiblM&Rerror

fordandr.

1N, n . n n n
RMS= (12 RHSSEC(R2Z AR (RHOL d)HANC2L H(R)]
i= i= i= 1= =

In practice, a given image is typically partitionanto k
rectangular or squareange blocks. Each of them is then encoded by
searching for a twice biggedomain block, so that the mapping
transformation is contractive. Before determinitgge tminimum RMS
error between the two blocks should the domainklsdecimated, i.e.
“shrunk” by a factor of 2, so that it has the samenber of pixels as the
range block. Isometric transformations (i.e. ratatand reflection) of the
domain block are also allowed. Many coding schemssquad-tree
partitioning, i.e. image blocks are divided recursively intoafier
blocks, if no satisfactory encoding for the motlock can be found.
Another common practice is to classify range anthala blocks into
non-overlapping categories, so that comparisongdest incompatible
blocks can be avoided. The final result of all sobe is a chain of fractal
coefficients (such as and o, displacement, rotation, etc.) assigned to
different parts of the image. When the transforaregidefined by these
coefficients, are applied repetively to any initrabge, they will yield the

compressed image [Mar00].

2.3 Video Compression (3-D Image Compression)
A video stream can be considered as guesee of two-
dimensional images, or as a three-dimensional imBgebreaking the

stream into a series of blocks in the time diractithe result is three-
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dimensional image blocks suitable for applicatiba three-dimensional
version. The video stream may be grayscale or adta. Color streams
are handled in the same manner as color still is\aydeo compression
Is complicated by a number of factors, among thastrs is the speed at
which practical decompression may be performed. thero factor in
extending two-dimensional methods to three-dimearadics the fact that

humans perceive motion differently than still imagAs in case of still

images, only PSNR results are used to quantifpdien [SimO1].

2.3.1 Video Compression Techn iques[Nic03]
Video compression technologies can be ddvidgo two groups
depending on the characteristics they use:
* Inter frame compression techniques
* Intra frame compression techniques
Table 2.1 below describes the main algorithms fachegroup and its

main characteristics.

Table 2.1 — Compression Techniques

Inter Frame Intra Frame
Technique . ,

MPEG-4 Main Profile,
Name H.263+, MPEG-x Wavelet, M-JPEG
Main Use both spatial Use onlv spatial

Characteristics redundancy and ysp
redundancy
temporal redundancy

The explanation of the characteristics given intéie is:
1. Using only spatial redundancy means that each frame is

compressed separately.
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2. Using spatial redundancy together withtemporal redundancy

means utilizing the similarity between consequemimes and
motion estimations.
In order to better understand the déffices between the different
compression algorithms, it is important to reviewe tconceptual
differences between Inter and Intra frame algorghm

Intra_frame : at which compression algorithms process each frame

separately, without analyzing the correlation bemveonsequent frames
(i.e spatial redundancy). M-JPEG and Wavelet uBerdnt methods for
processing the frame and creating a compact prasamof it (either by
filters (in Wavelet), or by a DCT transform (in NRHG)).

Inter frame . Interframe processing is the key to exploit amduce the

temporal redundancy in digital video compressiom (utilizing the

similarity between consequent frames and motioimesion). Temporal

redundancy exists due to the similarity between seguential

neighboring frames. In video compression, knowleglig@motion helps to

exploit this similarity and remove the temporal urdancy between
neighboring frames in addition to the spatial apdcsral redundancies.
Motion estimation (ME) or motion compensation (M&)e the basic
approaches to find out and represent the motiowdsst frames. These
techniques are widely used in video standards dmety H.26x and

MPEG to achieve high data compression rate.

Compression algorithms, such as MPEG-4 Main Proéled
H.263+, use temporal redundancy as well as spatdlndancy. It
actually means that these algorithms process caesédgrames and
estimate the motion within the frames. Then themtlgm codes only the
difference between the frames instead of the whalee. This coding
method results in higher video quality per givetirbte, since the given

bit-rate is used for representing a smaller amafinideo data(i.e. the
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frame difference). This is opposed to compression methods, whicke cod

the whole frame.

2.3.2 Video Compression Structure  [Nic03]

The video coding structure will be build from tbeginal video
data that is represented as sequence of frames,intee frame
compression technique will divide the whole franmg® two types, the
first type consist of thé&nchor frames, and the second consist of the
Estimated frames. The Anchor frames are coded (compressed)
independently and separately without any consigerst to the
correlations may exist with the neighboring frame&kjle the estimated
frames are coded (compressed) using motion estimatethods, which
will encode the estimated frames according to theetations with the

neighboring Anchor frames, as shown in figure 2v&dgo coding

structure).
\X Estimated
\/ Frames
Anchor )
frames

Figure 2.2 (Video coding structure)
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2.3.3 Video Compression Standards [Arr97, Mic98]

During the '80s and '90s, Discrete Codiremsform (DCT) based
compression algorithms and international standarelse developed to
alleviate storage and bandwidth limitations impobgdligital still image
and motion video applications. Today there are e¢hf2CT-based
standards that are widely used and accepted watédwi

» JPEG (Joint Photographic Experts Group)

* H.261 (Video codec for audiovisual services)

« MPEG (Motion Picture Experts Group)
Each of these standards is well suited for pauicabplications: JPEG
for still image compression, H.261 for video coefazing, and MPEG for
high-quality, multimedia systems.

MPEG was set up in 1988 to developsed of standard
algorithms for applications that require storagevafeo and audio on
digital storage media. The basic structure of casgion algorithm
proposed by MPEG is simple. An input image is ddddnto blocks of
8x8 pixels. For a given 8x8 block, we subtract phediction generated
using the previous frame. The difference betweesm biock being
encoded and the prediction is transformed usingCd.Drhe transform

coefficients are quantized and transmitted to doeiver{Pan01].

2.3.4 Motion Compensation (MC) and Motion Estimatio n (ME)
Video compression is involved with the removal lué spatial and
temporal redundancies. The most widely used comeschemes are
interframe and intraframe coding. The intraframenpoession is a vital
means of exploiting the spatial redundancies atefframe compression
Is used for exploiting the temporal redundanciesie o the slow
movement of videos such as ‘head-and shouldeed wedquence, the two

consecutive frames will not have much dramatic sehehange. So the
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current frame can be predicted from the translatiotte previous frame.
The method that is commonly usedstion Compensation prediction.

Predictive coding is widely used in video transmaissespecially for low
bit rate coding. The vital part of the Motion Compation is Motion
Estimation, which is used for extracting the motextivity that exists
between the frames. Block-Based Matching Algorith(BsvIA) are

popular methods for Motion Estimation because eirtsimplicity and

ease of implementation [SomO01].

2.3.4.1 The Slow Movement in Video [Gle01]

The two frames, shown in figure (2.3) illustrate glow movement
in video where the frame (a) is the frame numbem98 video file, and
the frame (b), is the frame number 95 at the saitdeovfile, where it
obvious that, there is no dramatic changes, wheneetis a big similarity
between the two frames, therefore the frame nur@baran be predicted

from the previous frame.

a. Frame number 90 b. Frame number 95

Figure 2.3 Slow Movement in Video

MC involves removing the temporal redundancy. Tlesib idea

behind motion compensation is to estimate the dcgrvhent of objects.
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The methods used are called motion estimation (M#E)st of the
standard ME methods are block matching methydg2] .

2.3.4.2 Block-Based Motion Estimation Methods

The block matching is seemingly used by the vidempression
standards because it can achieve a good balangedretomplexity and
coding efficiency. The goal of block matching isfiod the best block
from an earlier frame to reconstruct an area ofdheent frame. The
block matching method can be categorized into framased block
matching and object based block matching methodrel'lare many ME
techniques used nowadaysne conventional frame based block
matching technique is considered to be the full search xraastive
search. This technique is often used for motionmceéag in relatively
small search ranges due to the heavy computatidneatension data
fetching between the frame buffer and ME. In thst tlecade, many fast-
searching algorithms have been developed to reitheceomputation and
data fetching by reducing the number of comparismieeen the blocks,
such aghe 2-D logarithm, the three-step search (TSS),the orthogonal
search and hierarchical block matching algorithms. Also, there are
proposals for improvements to fixed size block raig techniques by
varying the size of blocks to more accurately matdving areas known
as variable size block matching (VSBM) methods.c8irblock MC
causes visible block boundaries to appear in thglipied frame, the
overlapped blocks MC was developed to reduce tloekirlg artifact
[Dde00].

The object block of the current frame is placed amoved around
in the previous frame using a specific search esgrat A criterion is
defined to determine how well the object block rhata corresponding

block in the previous frame. These criteria carhigemean squared error
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(MSE), minimum absolute difference (MAD) or the suabsolute
difference (SAD). Since MSE gives the residual gpein the block
difference, it is used as the criteria for BM NM&r99] .

A. Three Steps Search [Hyc'01]

The Three Steps Search (TSS) will do three stafjpmatching, in
each stage it will do eight matching blocks, thegght blocks are the
eight neighbors around the signed block, and deterrtihe best block,
then will do the eight matching blocks around ndaso this matching

will be repeated three times to determine the blesk.

Nl N
\

v v

A

A

2y
\

Fiaure 2.4 (a) Figure 2.4 (b)

\'—"—|

N

Fiaure 2.4 (c)

v

Figure (2.4): Three step search

The difference among the three stages is the tofis¢he eight

blocks from the Macro block (MB), where in thest stage, the offset is
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four pixels, in the second stagetwso pixels, and in thehird stageis

only one pixel shifted, as shown in figure (2.4).

B. Once Time Search (OTS) [Ali97, Kar04]

The Once Time Search (OTS) behaved very differently from most
other searching algorithms in that its behavior ailsnost entirely
dependent on the sequence. Beyond its operatige rdhe size of the
search area had little influence on its behavior.

The one at a time search (OTS) first evaluates points within the
search window that are on the same row as thercpotet. If the center
point is designated as (m, n), then the threeipasi{m-1, n), (m, n), and
(m+1,n) are evaluated. If the best sum absoluterdiice (SAD) value
corresponds to the central point, then the horadoavaluation ends. If
the best point corresponds to one the end poihtxy the end point
becomes the center point, and three more pointseaaduated. This
continues until the best point is found at the eemf the three points.
Now the same procedure is conducted in the vedicattion, i.e., at the
points (m, n-1), (m, n) and (m, n+1), beginningha best point found in
the horizontal search. Finally the method will eoué search for the best
SAD but in a diagonal way toward the original cenfirst centre). The

result of the diagonal search is the designatetMaesor location.
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Figure (2.5): OTS Motion estimation

Figure (2.5) illustrates the three stages for thESGsearch, as
indexed on the figure, where at the first, the ceawill be on the
horizontal axis, either to the left or to the riglais the motion that
numbered (1), the second stage is a motion on en@cal axis for the
new center as the motion number (2) on the figang, finally, the third

motion is a diagonal motion toward the original teeras motion number

(3).

2.4 Multimedia Networking [Jim99, Jud98]

Although traditional networks still exisirfthe separate delivery of
voice, data, and video, new networks are often emeinted as a
combination of different types of remote commurimas merged into
one delivery system. Indeed, many legacy netwonks seeing the
addition of multimedia applications as the greatgssssure to effective

network throughput.
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Virtually all modern Web sites contairchrigraphic and image
content, and many add simple animation and rea-anndio. Real-time,
voice, and video transmission are already feastder the Internet.
Point-to-point and  point-to-multipoint  transmissionis  easily
accomplished for both audio and video, and multipaonferences can
be provided with little additional equipment. Broadt, or so-called “net-
cast,” media has begun to provide streaming inftionacontent for such
applications as news, financial data, and weatlidr mwultimedia.

Audio and video entertainment “channelss bagun in early on the
Internet. At the present time, while sitting contédrly at the computer,
one can tune in to his favorite jazz, classicatkroeasy listening, or
alternative music from a variety of audio. Spepmaipose audio feeds are
often available from live concerts. Video servems @mow offering image
transmission that includes periodic, still imageswall as an increasing

number of full-motion video feeds that may be biesd to thousands.

2.5 Reasons for Multimedia Distributed Systems [Jud98]

1. Cost-of-Business Requirement: Three basic approaches can be
taken to managing networks.
a. The first, and perhaps most common, is that network
management is a necessary cost of business.
b. It needs to be done keep the network functioning

c. Certain expenses and actions must be undertaken.

But as long as these functions are adequately
performed, further spending and efforts are not

justified as network management.
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2. Ensuring Network Success. The second approach is to view
network management as a significant contributiothéosuccess of
the network. Network management contributes tovtilae of the
network through the usage optimization of resourtisers of this
approach tend to have a coherent strategy. Thisoaplp uses a
large variety of the tools available and deployshmethodically.

3. Maintaining Service Levels. The third approach is to view network
management as a strategic component of maintaisarygice
levels. Providing new services that are a resulimafhhagement
capabilities and even providing products to supp@tbusiness are
all characteristics of this approach to network aggement.

4. Focus on Services: Another way to characterize these approaches
IS to note what uses and business purposes themkesupports.
Users of the first approach essentially provideadehnsmission.
Those who take the second approach provide datécesr and
those who take the third approach are able to deotheir users
with a comprehensive set of information servicestHis sense,
data transmission is the movement of data frommguti to an
output location without regard to the content, aalue of
information, other than the external values assigmy the
selection of the transport mechanism. The apprtria
measurements for data transmission are the bir eates, the

packets lost, and the delay through the network.

Services are concerned about issues such as deggritiy
rerouting, and other such service elements thatectmgether to ensure
timely and accurate delivery of the data. The mesamants that are more
appropriate to a data service are up time, througjtgffective data rates,

and reachability. Information services deliver \alintom the network.
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Through the monitoring, evaluation, and analysisdafa transported
through the network, and through specific informatrelated services,
they provide sources of information, as well asv/glte the service of data
transport. The measures that are appropriate fornmation service are

accuracy, response times, and consistency.



Chapter Three
Video Coding System

3.1 Introduction

The rapid growth of digital imaging applicationspciuding
multimedia and high-definition television (HDTV) $iancreased the need
for effective and standardized image compressichnigues. Among the
emerging standards are JPEG (for compression Ibfrséiges) and MPEG
(for compression of motion video). Both of thesanslards employ a basic
technique known as the discrete cosine transfor@T(DOne of the most
popular applications of DCT is image compressiame implementation of
DCT was developed through a new derivation thdy fddcumented in this
chapter (see FDCT derivation).

Fractal coding is one of the promising image codiaghniques,
which provide high compression ratios, many sofevgroducts start
adopting fractal coding schemes. Blocks of an image considered as
affine transformations of other blocks taken froime timage itself.
Unfortunately, this coding costs too expensive titee complete its
computation. A developed method was proposed swilork to speed up the
standard fractal coding scheme, the proposed desidnts implementation
takes the advantages of the distributed systemchwimore than one
computer is used to perform fractal coding (i.estridbute the fractal coding
operation on n-computers to speedup the codingatpa).

Motion estimation is the process of estimating riietion of moving
objects in a video scene. This is accomplisheddigrdhining the motion by
which an object moves from one frame to the nexgiven frame in a video
sequence can be predicted from its previous fragneligplacing all the
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moving objects in the previous frame by the estadamotion. Motion
estimation and compensation form a major part ynateo coding scheme.
Many techniques are currently used for motion ediion. In the block-
based approaches the most common applied procesdie block matching
based on various algorithms. Block based motiomesibn forms the base
of all video coding schemes. It involves findingandidate block within a
specified search area in the previous frame thamnast similar to the
considered (tested) block in the current frame.the proposed work,
standard methods OTS and TSS were implementedditicad to a new
design method which represents a hybrid method (ldMhbine the two

standard methods for motion estimation.

3.2 Media File

The media file, which is used, as uncompress midias the AVI
file, where the system takes an AVI file as inpwdia file and produce a
compact file that represents the compressed viteo f

The Microsoft AVI file format is a Resource Inteasige File Format
(RIFF), it is used with applications that captuedit, and play back audio-
video sequences. In general, AVI files contain pldtstreams of different
types of data. Most AVI sequences use both audib \ateo streams. A
simple variation for an AVI sequence uses vide@aatd does not require

an audio stream, see appendix-A (AVI file format).

3.3 The Proposed Compressing Systems

In this work, two models of video coding are pregod and implemented.

With each model, there are two major componentschAn Frames
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Compression (AFC), and Motion Estimation (or congagion) of Frames
(MEF).

1. Model-1: In this model, a compression system based on FDCT
transform was designed to encode Anchor framesouftr its
implementation a new derivation of the original D@&nsform (see
section 3.4.6FDCT Derivatior) was adopted. Whilehe Motion
Estimation within Frames (MEF) are compressed utinge different
methods of Motion Estimation (ME), two standardsthods, i.e
Three Step Search (TSSandOnce Time Search (OT3nethods, in
addition to a new designed hybrid method of Mofitstimation, it is
based on combining some of the steps involved e ttho used
standard methods (TSS, and OTS).

2. Model-2: In this model, the compression system dependsractdt
Image Compression (FIC) technique was utilizedaimgress Anchor
frames, while the adopted Motion Estimation methads the same
methods that utilized in the first model. The psobl with Fractal
Image Compression (FIC) is in its high computatiomeguirements
(i.e., time consuming), it needs an expensive toneomplete Anchor
Frame Compression (AFC). In this work, time conswgrproblem is
solved by using multiprocessing system (i.e., thigte the fractal
compression job among several PC's connected thrdufdN) to

perform the fractal process.
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Proposed Video Coding Systems

A
[ \

Video Coding using DCT Video Coding using Fractal
(model-1) (model-2)

A A
[ A 3\

Anchor Frame Motion Estimation Anchor Frame
Compression Using DCT (ME) Compression Using
Fractal
TSS OTS HM

Figure (3.1) The Proposed Systems Structures

3.4 Video Coding Using FDCT (Modell)

As mentioned before, each model has two major jolbdo, Anchor
Frame Compression (AFC), and Motion Estimation (ME)this model, the
Anchor Frame Compression uses a new version of D&wkform (FDCT),

while the Motion Estimation uses one of the threetibh search methods

(TSS, OTS, and HM).
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3.4.1 The System Structure of Modell Coding

Figure (3.2) illustrates the general coding scherheéhe proposed

model-1.
Open AVl file, Select methoc _
AVI load and encode of Motion Get Frame 0 Video
File file Header Estimation (Anchor frame) Frame
contents
Get 6th Compute Compress
positioned | __ Motion Getthenext5| | Anchor Frame
Frame from the Estimation for Frames Using FDCT

last one 5 frames

Video

Frame .

Video
Frame
Compress Compute
Anc.hor Frame Get the last 5 Motion Get Frame
Using FDCT Frames Estimation for (Anchor frame)
5 frames
No
frames
Coded file

<

Yes

Figure (3.2) The System Structure Modell Coding
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Where

1.

At the first model, the system will load the headérAVI file and
encode it (i.e., Header compression) after redutiegunnecessary
information. The AVI header is a big header, itemxds up to 127 kB,
but after encoding the AVI header using S-shiftogtes, the final size
becomes 30 kB.

. The user will select one of the three-availablehods for motion

estimation (TSS, OTS, or HM).

. After getting a frame compress it as Anchor FraAie)( compute the

Motion Estimation (ME) for the next five sequendesimes, such that
the determined motion estimation depends on theiqare Anchor

frame.

Skip five video frames and get a new video framemessing it as
Anchor Frame, where the skipped five frames withpared with this

Anchor frame to compute their blocks motion.

3.4.2 Strategy of Video Coding

The video frame sequence will be divided into séthames groups,

each group consists of 12 frames, the first andftames in the group are

considered as Anchor frames, and the other framkkdevcompressed by

computing the motion estimation relative to the Amcframes, considering

the last frame is the first frame for the next grdue., the last frame of each

group is shared with the next group).

The motion in the first five estimated frames isaswred relative to

the first Anchor frame, while the motion of lastiemted frames depends on

the last Anchor frame. Figure (3.3) illustrates ¥ieo coding strategy.
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’\g 5 estimated fram
,\’%St 5 estimated fram

Anchor
frames

Figure (3.3) The Video Coding Strategy

3.4.3 Compress Anchor Frame Using FDCT
Figure (3.4) illustrates the implemented compsscheme, based

on fast discrete cosine transform (FDCT), to corsptbe Anchor frames.

(=) O,
Video Color /
frame transform 4’@_' Down 4‘7
\ : Sampling !

Quantization
‘ Quantization FDCT

Quantization @_ FDCT
Run length
Zigzag Encoder \.7

A

Run length
Encoder
Run length
> Zigzag Encoder «
S-Shift Encoder
Coded U,V

S-Shift Encoder

Saving Result
Coded Y S-Shift Encoder N

Figure (3.4) The Com pression Scheme for Anchor Frames Using FDCT

9
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The video frame is a 2D matrix of RGB componefitse involved steps

of the compression scheme could be summarizedlaw$o

1.

In the first step the system will transform theccatomponents (R, G,
and B) to another color domain (i.e., YUV band®g section 3.4.4
(the color transform).

Down sample the U, and V bands using the averaghatie(see
algorithm list 3.2). This is due to the fact themgmnents U, and V
hold 10% of the whole color information of the ineamatrix so this
down sampling will reduce the required system caiapon without

producing significant distortions in colors.

. The result of down sampling for U, and V bandsddifon to the Y

band will DCT transformed using a new derivation fast DCT
transform, see section 3.4.6 (FDCT derivation).

Apply the guantization of the result of FDCT to wed the number of
bits needed to represent DCT coefficients, and #ygly the zigzag
ordering on the quantized FDCT coefficients, aswsh@n algorithm
3.5 (The Image Quantization and Zigzag).

Encode the result of zigzag process using Run teegtoder, see

algorithm 3.6 (Run Length Encoder).

. And finally encode the output of the run length @er using S-shift

encoder, see algorithm 3.7 (Shift Key Encoder), aale the

codeword in the output buffer.
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3.4.4 The Color Transform
This standard is based on converting thé8 B@nds to YUV bands.

Given a 24 bits/pixel RGB signal, we can find thelY, and V values as

follows:
Y =0.299R + 0.587G + 0.114B, .....cvvveiieiiiie e B
U=-0.147R-0.289G + 0.436B, .......c.cevvvviiririnannnn (3.2)
V = 0.615R - 0.515G - 0.11B, ....coooeeeeeeeeeeeeeee e, (3.3)

From this transform, more than 90% of the infoiorat will
concentrate into one band (Y), the remaining inftian will be in the other
two bands. So the Y band is more important fromotier two bands U, and
V. The Color Transform (CT) is utilized in imagengpression schemes,
because it will help to reduce the spectral rednogiaand also to exploit
some of the characteristics of the human visudakayg¢HVS) to improve the
compression performance. Algorithm (3.1) shows tsteps of the

implemented algorithm.

The Colors Transform

Algorithm (3.1) the colors transform
Input: RGB Image (Img) HxW
Output: YUV Image (Rimg) HxW

For i=0 to H-1
For j=0 to W-1
* Compute Y band from Img(i,j), Y =(299*R(i,j)+587*G(i,j)+114*B(i,j))*0.001
e Compute U band from Img(i,j) , U =(-147*R(i,j)-289*G(i,j)+436*B(i,j))*0.001
e Compute V band from Img(i,j) , V =(615*R(i,j)-515*G(i,})-11*B(i,j))*0.001
Next |

Next i
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3.4.5 Image Down Sampling

The goal of this method is to reduce the image ®zguarter %25 of
its original size, and it is done by replacing e&mlr pixels by one pixel,

whose value is the average of the four pixels.

The Down Sampling

Algorithm (3.2) The Down Sampling
Input: YUV Image (Img) H x W
Output: UV Image (UVimg) Dh x Dh

e Dh=Hdiv2
« Dw=Wdiv 2

For i=0 to Dh-1: Id=ix2: ldp=Id+1
For j=0 to Dw-1
o Jd=jx2
e Us=Img(ld, Jd).U+ Img(ldp, Jd).U+ Img(ld, Jd+1).U+ Img(Idp, Jd+1).U
« UVimg(, j).U=Us/4
e Vs=Img(ld, Jd).V+ Img(ldp, Jd).V+ Img(ld, Jd+1).V+ Img(ldp, Jd+1).V
e UVimg(, j).V=Vs/4
Next |
Next i

3.4.6 Fast DCT (a new derivation)

In the proposed work, a fast 8x8 DCT is develofmedpeedup the
DCT execution, the derivation for final equatiomspiemented in the fast
8x8 DCT transform is described in this section. Dlasic idea of speeding
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up the DCT transform is to reduce loops, matherahfloating operations,

and some other factors. The algorithm of FDCT amdform one 8x8 block
Is given in algorithm list (3.3), so the systemlwlivide the 2D image into

8x8 blocks, this transform must applied on the Yaponents, and the down
sampled components of U and V.

The DCT transform is one of the important imagasforms, which
used in verity image applications, but the disateg®e of the DCT
transform is its long encoding/decoding time, si8 important to make this
transform faster. In this work, a new implementatiof fast 8x8 DCT
(FDCT) transform is considered.

The basic idea of speeding up the DCT transfermo ireduce loops,

mathematical operations, and some other factors.

A. The Standard DCT Transform

The equation of 1D cosine transform is given ds\s

uQx+Dn

F(u)= C(u)z f(xX)cos(———) .nnnnn.. (34)
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For the case N=8, the above DCT equation couldrbpldied into
equations (3.5):

F (0)=0Cofo+oifi +o2f2 +03f3 +04fs +o5f5 +06f6 +07f7)/R
F(1)=6Gofo +c1fr tcafatcafs tgafs tosfs tgefe t<7f7)/R
F(2)=0ofotvifitvafatvsfs tvafs +vsfs +vefe +v7f7)/R
FQ)=@ofotoifitoafatroafatoafs +0sfs +0efe+¢7f7)/R
F@A)=Wofotvifitvefotvyafstyafatysfs+yefetyrfr)/R
F(O)=0@oforarifitazfotaszfatasfs tasfstasfe +o7f7)/R
F(6)=Qofo t+Bufr +P2f2+PBsfs +BafatPsfs+PefetP7f7)R
F(7)=0ofo +31f1+02f2+383f3 +84fs +05fs +36f6 +07f7)/R

Where

oi = round( C(0) xCOS(0)x R)

¢i = round( C(1) xCOS(((2xi+1)m®/16) x R )
vi=round( C(2) xCOS ( (2x (2xi+1)wy/16) x R)
ei=round( C(3) xCOS ( (3% (2xi+1)m)/16) x R )
yi= round( C(4) xCOS ((4x (2xi+1)m)/16) x R)
ai= round( C(5) xCOS ((5x (2xi+1)my/16) x R)
Bi= round( C(6) xCOS ((6x (2xi+1)m)/16) x R)
di= round( C(7) xCOS ((7x (2xi+1)my/16) x R)

Where R is the accuracy number, which represerdsattturacy
needed after the decimal point. The purpose offta®or is to convert the
coefficients from real numbers to integer numbbegause the execution of
mathematical operations deals with integer numpers integer operations)
are faster than those deal with real numbers (figgboint operations) in

computers.
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The values of the parametess, €, v;.... ;) are shown the following table:

Table 3.1 : 8x8 DCT Coefficients Values With R=1000
i 10 1 2 3 4 5 6 7

Ci | 500 500 500 500 500 500 500 500

G| 347 294 197 69 -69 -196 -294 -347
V; | 327 135 -135 -326 -327 -136 134 326
Qi|294 -69 -347 -197 196 347 70 -293
Pi| 250 -250 -250 249 251 -249 -251 249
a; | 197 -347 68 295 -293 -71 347 -194

Bi 135 -327 326 -134 -137 328 -326 132

0, | 69 -197 295 -347 346 -292 194 -65

So, it could be noticed that:

00= 01= 0= 03= 04= 05= 6= 67=500

Go=347, 1=294,,=197,63=69,¢4=-G3,G5= G2, G6= ~G1, G7= G0
V9=327,01=135,V,= -01, V3= Vg, V4= Vg, V5= - V1, Vg=V1, V7=Vg

Po= G1, P1= -G3, P2= ~Co, P3= -G2, P4= G2, P5= Go, P6= G3, P7= -C1
VYo=250,y1= Yo, Y2= -Yo, Y3= Yo, Y4= Yo, Y5= “Yo, V6= - Yo, Y7= Yo
0Olo= G2, 0l1= -Co, Ol2= G3, 03= Gy, Ol4= -Gy, Os= -C3, Olg= Co, 07— ~C2

Bo: V1, [31: -V, [32: V0, [33: V1, [34: V1, [35: Vo, [36: -V, [37: V1

© N o g bk 0w NP

d0= G3, 01=-Go, 2= G1, 03= -G, 04= Co, O5=-C1, 0= G2, 7= -C3

Note the comparing coefficients are performed ignosnwall errors
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So we can rewrite the system (3.5) into equati8r®) @s follow:

F(0)=0ofotocof1 toof2 +oofs +oofa +o0fs +00fs +00f7)/R
F(1)=6ofo +*cufi tf2 tosfs -gafa -cafs -cufe -cf7)/R
F (2)= bofo +vifi -vifz -vofz -vofs -vifs +vife +vof7)/R
F@3)=6ifo -6af1 -cof2 -c2fs +c2fs +cfs +cfe -c1f7)/R
F (4)= Wofo -wof1 -Wof2 +Wofs +wofsa -Wofs - Wofs +wof7)/R
F(5)=6Gafo -cof1 tcaf2 *cifs -cfa -cafs + cofse - c2f7)/R
F (6)=01fo -vofi +vofz -vifs -vifs + vofs - vofe + vif7)/R
F(7)=Gfo -cof1 tafz - ofs +6fs -afs + cfe - caf7)/R

And we can to simplify the system (3.6) to syst@i7) as follow:

F (0)=00 (fotfitfotfatfatfstfetf7)/R

F (1)= ko (fo-f7) + 61 (f1-fe) + c2 (f2-fs) + s (fa-f4)l/R
F (2)= o (fo-fa-fatf7) +v1 (fr-f2-fstfe)l/R

F (3)= 1 (fo-f7) - g3 (f1-fe) - o (f2-f5) - c2 (fa-f2)l/R
F (4)= o (fo-fr-fatfstfafsfet IR

F (5)= k2 (fo-f7)- co(f1-fe) + 3 (f-fs) +cu (fs-f4)IR
F (6)= o1 (fo-fa-fatf7) +vo (f-f1tfs-fe)l/IR

F (7)= s (fo-f7) - g2 (f1-fe) *+ c1 (f-fs) - co (fs-f4)IR

Now suppose that:
Ul=fotf;
U2=f3+f4
U3=f1t+fe
Ud=f,+f5
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V1=U1l+U2
V2=U3+U4
V3=U1-U2
V4=U3-U4
V5=fo-f7
V6=f1-fe
V7= fs
V8=fs-f4

Substituting the equations (V1, V2 ... V8) in equaid3.7) will lead to
system (3.8):

F (0)=00 (V1+ V2)/R

F (1)=[co V5 +¢1V6 + V7 + 3 VB]/R
F (2)= poV3 +v, V4]/R

F (3)= [c1V5 —3V6 - V7 —¢, V8]/R
F (4)=yo(V1- V2)/R

F (5)=[c2V5 - V6 +c3V7 + ¢ V8]/R
F (6)= V3 —voV4]/R

F (7)= [gaV5 - ©uV6 + ¢ V7 —¢oV8]/R
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The FEDCT for One 8x8 Block

Algorithm (3.3) The FDCT for One 8x8 Block
Input: Gray Block (GB) 8x8
Output: DCT Block (DB) 8x8

Fori=0to 7
» Load gray vector from the ith row of GB, f(0).. f(7

Compute shared variables, V1..V8

Compute DCT coefficientssO0, <0, ¢1, ¢2, ¢3, v0, v1, yO
Compute DCT vector, F(0)..F(7) using system (3.8)
for r=0to 7: TMP(r, i)=F(r): next r

Next i
Fori=0to 7
* Load TMP vector from the ith column of TMP Block, f(0).. f(7)
» Compute shared variables, V1..V8
* Compute DCT coefficientss0, 0, ¢1, g2, g3, v0, v1, w0
e Compute DCT vector, F(0)..F(7) using system(3.8)
o forr=0to 7: DB(i, r)=F(r): nextr
Next i

B. Inverse DCT (IDCT)
The equation of inverse DCT is:

f(u) = C(u)z F(x)cos(u(2X+1)ﬂ) .................. (39)
il if u20
AU =4"5 |
— ifu=0
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For simplification of IFDCT we can follow same pealure like that
used with FDCT, where for the case N=8, the ab®@@Tl equation could
by simplified into equations (3.10):

f(0)=coFo+o1F1 +0,F +03F3 +04F; +osFs +ogFs +07F7)/R
f(D)=oFo +aF1 +Fo+gFs +caFy +csFs +ceFs +c7F7)/R
f(2)=oFo+viFi+v,F+v3F; +vF +vs5Fs +veFs +v7F7)/R
f(3)=(@oFo+ @1 F1 + 2 Fo+ @3F3 + o4 F4 +@sFs + pgFs + 97 F7)/R
f(4)=(oFo+yiF1 +yo Fo + ysFs +yaFa + ysFs + ye Fs + w7 F7)/R
f(5)= @oFo+toaiFy +oxF +ozF3 +ogFy +asFs +agFs +07F7)/R
f(6)= BoFo +PiFy +PoF2+PsFs +PaFs+PsFs + PsFs + B7F)/R
f(7)= GoFo +8.F1 +8,F,+83F3 +8,F, +85F5 +36Fs +8;F7)/IR

Where

ol = round( C(i)xCOS((u)/16) xR )

¢i = round( C(i) xCOS((3xum)/16) xR )

vi= round( C(i) x COS((5xur)/16) xR )

¢i= round( C(i) x COS((7xux)/16) xR )

yi= round( C(i) x COS((9xux)/16) xR )

ai= round( C(i) x COS((11xun/16) xR )
Bi=round( C(i) x COS((13xun/16) xR)
di= round( C(i) x COS((15xun/16) xR)

And we obtain that:
Ul=Ry+F;
U2=rK+F,
U3=F+F¢
Ud=F+Fs
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V1=U1+U2
V2=U3+U4
V3=U1-U2
V4=U3-U4
V5=F¢F;
V6=F-Fg
V7=F»-Fs
V8=Fs-F,

Where this will make the system (3.11) as the foilhy:
f(0)=00 (V1+ V2)/R

f(1)=leo V5 +¢1V6 + ¢, V7 + 3 VE]/R

f(2)= [voV3 + v V4]/IR

f(3)= [c1V5 —¢3V6 - oV7 —¢, VB]/R

f(4)=yo(V1- V2)/R

f(5)= [c2V5 - V6 + V7 + ¢ V8)/R

f(6)= V3 —voV4])/R

f(7)=[caV5 - V6 + V7 —goV8)IR
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The Inverse Fast DCT (IEFDCT)

Algorithm (3.4) The Inverse Fast DCT (IFDCT)
Input: DCT Block (DB) 8x8
Output: Gray Block (GB) 8x8
Fori=Oto 7
* Load DCT vector from the ith row of DB, F(0).. F(7)

e Compute shared variables, V1..V8
* Compute DCT coefficientss0, 0, g1, g2, g3, v0, v1, w0
e Compute DCT vector, f(0).. f(7) using system (3.11)
e Forr=0to 7: TMP(r, i)= f(r): nextr

Next i

Fori=Oto 7
* Load TMP vector from the ith column of TMP Block, F(0).. F(7)
» Compute shared variables, V1..V8
e Compute DCT coefficientss0, ¢0, g1, ¢2, 3, v0, v1, yO
e Compute DCT vector, f(0).. f(7) using system (3.11)
e Forr=0to 7: GB(i, r)= f(r): nextr

Next i

3.4.7 Quantization and Coding
FDCT-based image compression relies on two teclesiqa reduce
the data required to represent the image, theifirgtequantizationof the
image's FDCT coefficients; the secona@aslingthe quantized coefficients.
Quantization is the process of reducing the nunobg@ossible values of
a quantity, thereby reducing the number of bitsdedeto represent it.
Coding is a technique for representing the quadt&ta as compactly as

possible.
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In this proposed work, a function to determine tjuantization step
used to quantize DCT coefficients. A uniform quaation was adopted. The
quantization step (§p for each coefficient C(u, v) was determined byngs

the function:

Qstep (U, V)=14X(UHV) ovven, (3.12)
Wherg is a quality factor of range (2...8).

So, the quantization is determined by using thiedohg equation:

C(u,v)
Qsep (U, V)

Q (u,v) =round( ) e @13

In this work the Zigzag ordering process, Run langind S-Shift
coding a compressed data for the Anchor frame. Zigeag process is the
conversion of 2D quantized FDCT coefficients to -dimaensional vector

but in Zigzag way, figure (3.5) illustrates theléoVed zigzag path.
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Figure (3.5) Zigzag Process
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Image Quantization and Zigzaq

Algorithm (3.5) Image Quantization and Zigze
Input: Image (Img) HxW
Output: Zigzag vector (ZV)

Zindex=0 //Zigzag index
HB=H/8: WB=W/8 // Number of Blocks
For i=0 to HB-1
For j=0 to WB-1
Quantization
Ib=i*8: Jb=j*8
Forr=0to 7
Ip=Ib+r
Forc=0to 7
QIp, Jb+c)= round(Img (Ip, IJb+cC)/ Qstep (I, C))
Next c
Next r
Higzag
r=0: ¢=0: ZV(Zindex)= Q,(Ib, Jb)
Forit=1to 3
r=0
For k=cto O step -1
Zindex=Zindex+1
Z\(Zindex)= Ib+r, Jb+k): r=r+1
Next k
c=0
For k=rto O step -1
Zindex=Zindex+1
ZV(Zindex)= Ib+k, Jb+c): c=c+1

Next k
Next it
r=0
Forit=1to 4
For k=rto 7
Zindex=Zindex+1
ZV(Zindex)= Ib+k, Jb+j): c=c+1
Next k
c=c+2: r=7
Fork=cto 7
Zindex=Zindex+1
Z\(Zindex)= Ib+r, Jb+k): r=r+1
Next k
r=r+2: c=k-1
Next it
Next j

Next i
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Run Length Encoder

Algorithm (3.6) Run Length Encoder

Input: One-dimensional zigzag array ZA of length Zmax
Output: One-dimensional array RA of length RI

« SetRI=0
e Set Zcount=0

While Zcount < Zmax

While ZA (Zcount) <> 0
RA (RI) = ZA (Zcount)
Zcount = Zcount + 1
RI=RI+ 1

Wend

Count=0

While ZA (Zcount) =0
Count = Count + 1
Zcount = Zcount + 1

Wend

RA(RI)=0

RA (RI+ 1) = Count

RI=RI+ 2

Wend

3.4.8 Shift Key Encoder

The input data is an array of run length pairs @nd value), where
the shift key encoder will encode each cell sepiyaand the encoded data
Is registered in Wb buffer and each eight bits his tWb buffer will
converted to byte and saved in the output buffer.
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Shift Key Encoder algorithm

Algorithm (3.7) Shift Key Encoder

Input: One-dimensional coded array RA of length RI
Output: Coded data of zeros and ones

* Set M equal to the max codeword // Wb

For i=1 to RI
* Set X=RA (i)
o If X>0 then
S=1
add S value to the output bief as single bit
else
S=0
add S value to the output bief as single bit
end if
e X=abs(X)

While X >M

* Save M in the output buffer as single codeword
o X=X-M

Wend
If X>0 then
add X bits to the output buffeas single codeword

else
add zero bits to the output fier as single codeword

end if

Next i

3.4.9 Video Motion Estimation

As mentioned in chapter two, two standard meth@IBS and TSS)
for motion estimation were implemented, also a maathod for motion
estimation was suggested, a hybrid method utilizi Isteps that followed
the two standard methods (OTS, and TSS).
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3.4.9.1 Hybrid Motion Estimation

The suggested Hybrid Method (HM) features are thafséhe two
standard methods. As mentioned in chapter two,tiilee methods (OTS,
TSS) has three stages for completing the blockckean the suggested
Hybrid Method (HM), there are also three stages,dteps of first stage in
the HM is the steps of*lstage of TSS followed by the steps of the firagyest
of OTS, and a similar procedure is followed in sleeond and third stages of
HM. After doing the first stage of TSS, the suggdstiM will complete its
stage by implementing the steps of the first stagegDTS method for
searching block position in horizontal directionhMg in the second stage of
HM the first stage of TSS is followed by implemeagtithe steps of OTS to
do searching in the vertical direction, and finafyer the final stage of TSS

Is completed OTS searching in the diagonal directdl performed.

3.4.9.2 Computing Motion Estimation and Coding
Figure (3.6) illustrates the general scheme ofrtioéion estimation

with the coding technique.

Compute Motion . Estimated ,| Encoding Estimated

Estimation frame frame usina S-shift

Video,|  Color
frame transform

Coded
End frame

Estimation
complete

Sign the last frame
as referenci

Video Get new videa
frame frame

Figure (3.6) General Scheme of Motion Estimation an  d Coding
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Where

1.

At first the system will transform the video frante its YUV
components, where the estimation is implementedy dmand only
because this Y band represents 90% of the whadenation.

. Then the system computes the Motion Estimatiorhefwideo frame

depending on the motion estimation technique ssdebly the user.
The first computation of motion estimation depeiwasthe Anchor
frame as a reference frame for computing the éméttion vector) of

the estimated frame.

. For each estimated frame the S-shift encoder wliad encode the

estimated frame (see algorithm 3.7).

If the number of estimated frames reaches five ésrthe system will
finish its motion for the input group of frames,dathen the system
will replace the reference (Anchor) frame and st motion

estimation for the next groups of frames.

. Finally we will get a new video frame to be estiatht
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OTS Motion Estimation Method
The algorithm list (3.8) illustrates the stepsimiplementing OTS

motion estimation method.

Algorithm (3.8) OTS Motion Estimation
Input: Video frame of H x W
Output: Estimated frame

» Set D equal to the dimension of the single block
 SetNBH=HdivD
 SetNBW=WdivD

For r=0 to NBH-1 step D
For c=0 to NBW-1 step D

» Compute the absolute difference (AD) for block whas control coordinates
are (r, c+1), (r, c-1) in the reference frame
- If AD of (r, c+1) is smaller than AD of (r, c-1) then
Continue searching for smaller AD in theight hand side of
the original block (r,c)
Else
Continue searching for smaller AD in théeft hand side of
the original block (r,c)
» Compute the absolute difference (AD) for block whas control coordinates
are (r+1, c), (r-1, c) in the reference frame
- If AD of (r+1, c) is smaller than AD of (r-1, c) then
Continue searching for smaller AD in th&own ward of the
original block (r,c)
Else
Continue searching for smaller AD in théJp ward of the
original block (r,c)
» Searching smaller AD on diagonal way

Next c

Next r
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TSS Motion Estimation Method
The algorithm list (3.9) illustrates the steps iwiplementing TSS

motion estimation method.

Algorithm (3.9) TSS Motion Estimation

Input: Video frame of H x W

Output: Estimated frame

» Set D equal to the dimension of a single block
* SetNBH=HdivD
+ Set NBW=WdivD

For r=0 to NBH-1 step D
For c=0 to NBW-1 step D

» Loop searching smaller AD on the eight neighbors stounding the
center (r, c) with offset shift equal to four pixes.
* Loop searching smaller AD on the eight neighbors fahe new
coordinate of the last small AD with offset equald two pixels.
» Loop searching smaller AD on the eight neighbors fahe new
coordinate of the last small AD with offset equald one pixel.
Next c

Next r
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HM Motion Estimation

The algorithm list (3.10) illustrates the stepsimplementing HM

motion estimation method.

Algorithm (3.10) HM Motion Estimation

Input: Video frame of H X W
Output: Estimated frame

» Set D equal to the dimension of a single block
e SetNBH=HdivD
+ Set NBW=WdivD

For r=0 to NBH-1 step D
For c=0 to NBW-1 step D
* Loop searching smaller AD on the eight neighbors fahe coordinate (r, c)
with offset equal to four pixels.
» Compute absolute difference (AD) for coordinates (n nc+1), (nr, nc-1)
- If AD of (nr, nc+1) is the smaller then
Continue searching for smaller AD right vard
Else
Continue searching for smaller AD left wal
* Loop searching for smaller AD on the eight neighba for the new coordinate
of the last AD with offset equal to two pixels.
» Compute absolute difference (AD) for coordinates (1, nc), (nr-1, nc)
- If AD of (nr+1, nc) is the smaller then
Continue searching for smaller AD downwat
Else
Continue searching for smaller AD upward
* Loop searching for smaller AD on the eight neighba for the new coordinate
of the last AD with offset equal to one pixel.
» Searching for smaller AD in diagonal direction

Next c
Next r
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3.5 Video Decoding Using FDCT (Modell)

Figure (3.7) illustrates the major scheme of videooding system.

Open coded -
Coded file and Get the first Construct the
fle™™| extractits [ codeframe *  Anchor frame
header (Anchor frame)
Get the code Decode the motion Get the code
frames for the estimation code to frames for the
next five frames consérlfjct the next next 5 frames
rames
No
Decode the motion
Get the code Construct the estimation code to
frame for the Anchor frame construct the next
next frame 5 frames
Yes
Decodec

Figure (3.7) Video Decoding System (Major Scheme) AV file

Video Decoding System

The algorithm list (3.11) shows the implementedamatages of the

decoding modules.

Algorithm (3.11) Video Decoding Syst¢

Input: Coded video file
Output: Decoded AV file

* Open coded file and extract its header
* Get code frame (for the Anchor frame)
« Construct the Anchor frame
While (Not end of file)
e Get the code frames for the next 5 frames
Decode the motion estimation code to construct theext 5 frames
Get the code frames for the next 5 frames
Get code frame (for the Anchor frame)
Construct the Anchor frame
Decode the motion estimation code to construct theext 5 frames

Wend
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3.5.1 Decode Anchor Frame Using IFDCT

Figure (3.8) illustrates the decoding scheme fochors frame using

FDCT.

Coded
Anchor
frame

Coded Y

Coded U,V

S-Shift Decodel

S-Shift Decodel

: Run length
Dezigzag <— Decoder

. Run length
Dezigzag Decodgr

Dezigzag Run length
Decoder

Dequantization

Up Sampling

Dequantization

Up Sampling

G-

fo!

A 4

Decoded vide«

Dequantization

o

IFDCT

N

frame’

Color
Detransform

(=

A

IFDCT

IFDCT

A

\@._

Figure (3.8): Decode Anchor Frame Using FDCT
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Shift Key Decoder
The algorithm list (3.12) illustrates the implertagion steps of the

shift key decoding stage.

Algorithm (3.12) Shift Key Decoder

Input: Binary sequence of zeros and ones (the shikey codes)
Output: One-decimal constructed array RA of lengthRI

* Set M equal to the max sample (M=7 in this implemdation)
» Set Nbit equal to the number of bits for M (3 bitsin this case)
For i=1to RI
* Get S= the first bit of the binary sequence // S nams sign bit
» SetR=0
* Set V= the value of the first Nbit of binary sequeone
» Shift the binary sequence Nbit bits to the left
* While V=M
* R=R+V
* Set V= the value of the first Nbit of binary sequeoe

« Shift binary sequence Nbit bits to the left

* Wend
* If S=0 then
RA()=R
Else
RA()=-R

Next i
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Run Length Decoder

The algorithm list (3.13) illustrates the implertaion steps of the

run length decoding stage.

Algorithm (3.13) Run length Decoder

Input: One-dimensional array RA of length RI

Output: One-dimensional zigzagged array ZA of lendt Zmax

* Set Rcount=0
* Set Zcount=0
While Rcount <RI
If RA(Rcount)=0 then
N=RA(Rcount +1)
Fori=1to N
ZA(Zcount)=0
Zcount=Zcount+1
Next i
Rcount=Rcount+2
Else
ZA(Zcount)=RA(Rcount)
Zcount=Zcount+1
Rcount=Rcount+1
End if
Wend
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Image Dequantization and Dezigzaq

The algorithm list (3.14) illustrates the implertaion steps of the

dezigzag and dequantization stage.

Algorithm (3.14) Image Dequantization and Dezigz
Input: Zigzag vector (ZV)
Output: Image (Img) HxW

Zindex=0 Zigzag index
HB=H div 8: WB=W div8 //Number of Blocks
For i=0 to HB-1
For j=0 to WB-1
Ib=i*8: Jb=j*8
Dkzigzag
r=0: ¢=0: Q(Ib, Jb)=2ZV(Zindex)
Forit=1to 3
r=0

For k=cto O step -1
Zindex=Zindex+1
QIb+r, Jb+k)=2V(Zindex): r=r+1
Next k
c=0
For k=rto O step -1
Zindex=Zindex+1
QIb+k, Jb+c)=2V(Zindex): c=c+1
Next k
Next it
r=0
Forit=1to 4
Fork=rto 7
Zindex=Zindex+1
QIb+k, Jb+))=2V(Zindex): c=c+1
Next k
c=c+2: r=7
Fork=cto 7
Zindex=Zindex+1
QIb+r, Jb+k)=2V(Zindex): r=r+1
Next k
r=r+2: c=k-1
Next it
// Dequantization

Forr=0Oto 7
Ip=Ib+r
Forc=0to 7

Img (Ip, Jb+c)=round(QXIp, Jb+c)* Qstep (I, C) )

Next c

Next r

Next ]
Next i
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3.5.2 The Image Upsampling
The goal of this algorithm is to enlarge the im@gemes, and this

goal was done by duplicating each pixel in the ienBor times.

The Upsampling

The algorithm list (3.15) illustrates the implertegion steps of

upsampling both U and V color components.

Algorithm (3.15) The Upsampling
Input: UV Image (UVimg) Dh x Dh
Output: YUV Image (img) H x W

e H=Dhx?2

e W=Dw x 2
For i=0 to Dh-1: Id=ix2: ldp= Id+1

For j=0 to Dw-1

o Jd=jx2
img(ld, Jd).U=Uvimg(ld,Jd).U: img(ld, Jd).V=Uvimg(l d,Jd).V
img(ldp, Jd).U=Uvimg(ld,Jd).U: img(ldp, Jd).V=Uvimg (Id,Jd).V
img(ld, Jd+1).U=Uvimg(ld,Jd).U: img(ld, Jd+1).V=Uvimg(ld,Jd).V
img(ldp, Jd+1).U=Uvimg(ld,Jd).U: img(ldp, Jd+1).V=Uvimg(ld,Jd).V

Next |
Next i
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The Color Detransformation

Algorithm (3.16) The Color Detransformation
Input: YUV Image (Rimg) HxW
Output: RGB Image (Img) HxW
For i=0 to H-1
For j=0 to W-1
* Compute R band from YUVImg(, j), R=Y+1.140*V
* Compute G band from YUVImg(i, j), G=Y—-(395*U-581*V)*0.001
» Compute B band from YUVImg(i, j), B=Y+2.032*U
Next |
Next i

3.5.3 Extract Motion Estimation with Decoding
Figure (3.9) illustrates the scheme of extractingtion estimation

and the scheme of its decoding.

. Estimated
. Decod(_a frame using motion Decode Motion
Compressiol S-shift Decoder parameters Estimation
Code for video 1
frames

Detransform frame
using color transform

Reconstructed
Video frame

Frames
reconstruction
complete

Yes
Enc

Compression Get compressior Get next reconstructed
Code for code for another 1, reference (Anchor)
video frame video frame frame

Figure (3.9) Extract Motion Estimation with Decodin g
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Decode Motion Estimation

Algorithm (3.17) Decode Motion Estimation

Input: Estimated frames (Ef) of Dw x Dh blocks eaclblock of Ax, Ay coordinates,
and reference frame (Rf) of H x W.
Output: Transformed video frame (Tf) of H x W pixels (YUV)

» Set N= the Block dimension
Rdh=Dh-1: Rdw=Dw-1: No=N-1
Fori=0To Rdh
Forj=0 To Rdw
[d=i*N: Jd=j*N
Forr=0To No

I[dp=Id+r: Rd= Id+Ef(i, j). Ax+r: Cd=Jd+ Ef(i, j). Ay
Forc=0To No

e Tf(Idp, Jd + c).Y = Rf(Rd, Cd+c).Y
« Tf(Idp, Id + ¢).U = Rf(Rd, Cd+c).U
o Tf(Idp, Id + ¢).V = Rf(Rd, Cd+c).V
Next c
Next r
Next j
Next i
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3.6 The System Structure of Model2 Coding
Figure (3.10) illustrates the general scheme ofi®@ (Fractal).

Open AV file, Select method .
AV load and encode| ,|  of Motion Get Frame 0 Video
File file Header Estimation (Anchor frame) Frame
contents
Get 6th Compute Compress
positioned | Motion Getthe next5|,_ | Anchor Frame
Frame from the Estimation for Frames Using Fractal
last cne 5 frames
Video
Frame Video
Frame
Compress Compute
Anghor Frame Get the last 5 Motion Get Frame
Using Fractal Frames Estimation for (Anchor frame)
5 frames

Coded file

Figure (3.10) The System Structure Model2 Coding

In this model the same strategy that followed indedd is used, but

the difference between them is that the compressystem of the Anchor

frame coding is implemented using the fractal cgdin




Chapter Three Video Coding System 69

3.6.1 Compress Anchor Frame Using Fractal Coding

In this work, the video frame first is trémsned from RGB bands to
YUV bands using Color Transform (CT) (algorithnt [8s1), then both the U
and V bands are downsampled by 2 using averageothelthe Y band is
remained without downsampling because it repres@ds from the total
information of the original video frame, where amguction on this band
will affect the quality of the original video fram€&igure (3.11) illustrates
the scheme of Anchor Frame compression using frast¢hod. Where Y,
Ut, and Vt are the range blocks that represeninjmat bands for the Fractal
compression machine, and the result represent timepressed Anchor

Fractal

~(v)
4’@_’ Down Compression _’Coded
|, .
sampling using frame

frame.
distributed

Video @
—> ——»
frame
Down @ system
sampling

Figure (3.11) Anchor Frame Compression Using Fracta | Coding

Color transform

* Down sampling: in this process the input band will be reduced to %
its size (number of pixels), where each four pixelkies will reduced

to their one average value (see algorithm 3.2).
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3.6.2 Fractal Compression Using Distributed System

In this process the input band, the range, willpbetitioned into a
number non-overlapped blocks, and the same rangbexdown sampled to
create the domain that will be also partitionedntomber of blocks, each
block have the same size of the range block, thestute the matching
technigue. The matching technique will match eaamge block with all
domain blocks to find the best domain block thapragimate the range
block using the affine transform with eight symmgetases, and finally
record the scale, offset, symmetry, and the x, grdioates of the best
matched domain block, (see figure (3.14)).

Fractal coding for the
range partition 1

% Partitioning Fractal coding for the
"] process with / range partition 2
| down |

Vi:-» sampling

Fractal coding for the
range partition N

Client Sid¢

Figure (3.12) Fractal Compression using Partitionin g System

The problem with the fractal coding is the expeadime needed to
complete its computation; the distributed systerans of the solutions that
could be used to speed up the fractal coding. Tiskeiltlited system was
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adopted in this work to solve this problem. Onetted computers will be
responsible for computing the domain blocks, divike range blocks and
send the partitions to other computers, where eatchese computers will
perform the required matching tasks on the blodkshe received range

partition.

3.6.3 Network Communication and Network Model

The communication between the client and servetsng through the
Socket Interprocess communication. In this workdeeeloped distributed
system is based on the star model as shown irefi@it3), where single

client computer exist, while other computers arkzet as servers.

Server 1

Server 6

Server 4

Figure (3.13) Distributed system based on star mode |
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3.6.4 Fractal Coding for One Partition

The first step in this scheme is to partitioning tange into a number
of non-overlapped blocks, the same step will beedath the domain,
where the domain is also partitioned into a numbkemon-overlapped
blocks, after the partitioning process the algonittvill start the matching
stage (see figure 3.14). The output results ofb&ching process (i.e. S, O,
Sym, X, and y coordinates) are quantized usingtdraguantization (see
algorithm list 3.19). Finally the quantized factorsll be coded using

Bitwise coding technique (see algorithm list 3.20).

: S,0,Sym, X,Y
Range o Partitioned Matching
— 1 Partitioning Range technique
Domain I Partitioned i ati
+ Partitioning Domain guantization

Coded Bitwi se coding
partition™ |  technique

Figure (3.14) Fractal coding using one range partit  ion
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Fractal Matching Technigue
The algorithm list (3.18) illustrates the implertesh steps of the

fractal matching stage.

Algorithm (3.18) Fractal Matching techniqu

Input: Rb is the array of range blocks, Rn is the mmber of range blocks, Db is
the array of domain blocks, Dn is the number of dorain blocks.
Output: S, O, x and y coordinates of each Range Bik.

* TH is a fractal threshold //TH=6 gives an acceptable quality
Fori=1ToRn
* RD[i] is the ith range block.

Forj=1ToDn

e Db[j] is the jth domain block.
For Sym=11to 8
» Set D as the Sym affine transform of Db[j] using
equations (3.14...3.21).
e Compute the S of (RbJi], D) using equation (2.3).
* Compute the O of (RDbJi], D) using equation (2.4).
» Compute the Error between (Rb[i], D) using equation
(2.5).
* If the error < TH then exit loops
Next s
Next |
Next i
e Qutput the S, O, Sym x, and y of the Domain Block ith smaller Error.

3.6.5 Affine Transform (Symmetry Cases)
In this work the following eight symmetry cases &venplemented:

1. Identity case: T1(X, Y)=R(X, Y) .cevviriviiiiiiiiiinnnn (3.14)
2. Rotation 90: T2(X, Y)=R(S-Y, X) «veviiiiiiiiiiiieanne, (3.15)
3. Rotation 180: T'3(X, Y)=R(S-X, S-Y) «eeviiiiiiiiiniennen (3.16)

4. Rotation 270: T4(X, Y)=R(Y, S-X) ....ovviviiiiniiinnnns (3.17)
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5. Reflection: I'5(X, Y)=R(S-X,¥) ..cecvvvivivvinnen.....(3.18)
6. Reflection and Rotation 90I'6(X, y)=R(S-y, S-x) ...(3.19)
7. Reflection and Rotation 180:T7(x, y)=R(x, S-y) ....(3.20)
8. Reflection and Rotation 2701°8(x, y)=R(y, X) ....... (3.21)
Where S is the Block Size.

3.6.6 Fractal Quantization

Reducing the number of possible values of the diafzctors (i.e.
scale, offset coefficients) is very important td gempression, so a uniform
guantization was performed to quantized the scatk @fset coefficients,
also quantization was used to reduce the numbbit®fequired to encode
the coordinates of the domain blocks, where thepjstap value was used as
the guantization steplhe scale coefficient was quantized by using the

following equation.

S
= round ) N T T T 322
Sq ( Swiax 2 ) (322

Wheren is the number the bits assigned to encode the scaifficient, and
Svax IS the maximum allowed value for scale. The offse¢fficient was

guantized using the following equation.

O_OMin

Max Min

O, = round( X2M=1D), e 323

q

Wherem is the number of bit¥uay IS the maximum allowed offset value,
and Oy, is the minimum allowed offset value. While the #nd Y

coordinates will quantized using the following etjoia
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Where§ is the jump Size, an@ is either the x or y coordinat€, is the

correspond guantization index.

Fractal Quantization
The algorithm list (3.19) illustrates the stepsqofantization of the

fractal coefficients.

Algorithm (3.19) Fractal Quantization
Input: Fb[] is a single array of length Fn of fractal blocks coefficients (S, O, and (X, Y)
coordinates).
Output: QFb[] is a single array of length Fn of fractal blocks quantized coefficients (§
Oq, and (Xq, Yq) coordinates.
Fori=1ToRn
* FDbl[i] is the ith fractal Block coefficients.
» Compute the Quantized scale (g of QFbI[i] from Fbl[i] using equation (3.22).
» Compute the Quantized offset of QFDb[i] from Fb[i] using equation (3.23).
» Compute the Quantized (%, Yq) coordinates of QFDb[i] from Fb[i] using equation
(3.24).
Next i
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Bitwise Coding Technique
The algorithm list (3.20) shows the steps of sgvihe fractal

coefficients in the storage buffer.
Algorithm (3.20) Bitwise Coding

Input: Qn is the number of quantized S, O coefficiats, (X, Y) coordinates, and
Sym (symmetry) case.
Output: Rn coded buffer of 4B size.

Fori=1ToQn

e QIi] is the ith Quantized Block.

« St[i] is the ith storage buffer of 4B size.

* Encode X, and Y coordinates in the storage buffersaa sequence of 7

bits for each, respectively.

* Encode Symmetry case in the storage buffer as a sesnce of 3 bits.

* Encode the S factor in the storage buffer as a seguce of 7 bits.

* Encode the O factor in the storage buffer as a sequce of 8 bits.
Next i

3.7 Video Decoding Using Fractal (Model2)

The decoder system for model2 follow #e&me strategy of the
decoder of modell (see figure 3.7), but the diffeesis that the decoding of
the Anchor frame uses the fractal decoding. Theomsgheme of fractal

decoding is shown in figure (3.15).

. ;’he . Bitwise R Q]Lcjanf[izled Fractal Rec'grr;s(,:tglcted
odewor i racta Dequantization
sets decoding coefficients q parameters
= L Y
=
=
Reconstructed E Upsampling | Fractal Image
Anchor frame = Decoding
=
S
= ,_@ Upsampling
-

Figure (3.15) Anchor Frame Decoding Using Fractal T  echnique
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At first read the codeword sets from the compressioeam and decode
them using Bitwise decoder (see algorithm list B.2dhere the results of
this decoding stage are the quantization indicetheffractal coefficients
(,e. S, O, Sym, X, and Y), the reconstructed fhatoefficients are
produced by using Dequantization process (see idigorist 3.22). The
results of the dequantization are the sets of oacted (quantized) fractal
coefficients. Each set consist of the fractal dosfiits for the three
compressed bands Y, and downsampled Ut and Vt b&edsfigure 3.15.
* Reconstruction of Video Frame: this process will reconstruct the
image bands (Y, Ut, and Vt) by applying the affinensform using
the quantized fractal coefficients, see figure 3.16

e Upsampling: In this process the Ut and Vt are upsampled to
produceu andV bands, where each value in Ut and Vt bands will be
duplicated four times.

» Color Detransform: In this detransform the’, U, andVv bands

will be detransformed to the, G, andB bands to produce the video

frame (see algorithm list 3.16).
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Bitwise Decoder
The algorithm list (3.21) shows the steps of esting the fractal

coefficients from the storage buffer.
Algorithm (3.21) Bitwise Coding

Input: Qn is the number of coded storage buffer o#iB size.
Output: Qn is the number of decoded (quantized) SO coefficients, (X, Y)
coordinates, and Sym (symmetry) case.

Fori=1ToQn
* Get St[i] is the ith storage buffer.
e QJi]is the ith decoded (quantized) S, O coefficidn, (X, Y) coordinates,
and Sym (symmetry) case.
» Assemble the X, and Y coordinates indices using t® (for each) loaded
from the storage buffer.
* Assemble the Symmetry index using 3 bits.
» Assemble the quantization scale index using 7 bits.
» Assemble the quantization offset index using 8 bits
Next i

3.7.1 Dequantization of Fractal Coefficients
The reconstructed scale coefficients could prodbgeusing the

following equation, that can be concluded form eigua(3.22).

S = Sy X Syiax X2 (325)

2" -1
Wheren is the number of the bits used to encode the qaitn scale
coefficients, andSy.x IS the maximum allowed value for the scale
coefficient. The Offset can be dequantized usingaggn (3.26) that

concluded from equation (3.23).
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OMax _OMin
a 2" -1

T o R (326)

Wheren is the number of the bits used to encode the @adiun
offset coefficients,Oy. IS the maximum allowed value for the offset
coefficient, andOy;, i1s the minimum allowed offset coefficient. Whileet
X, and Y coordinates can be dequantized by usingtezn (3.27) which is
concluded from equation (3.24).

WhereS is the Block Size.

Deqguantization of Fractal Coefficients

The algorithm list (3.22) illustrates the stepshef fractal coefficients

dequantization stage.

Algorithm (3.22) Dequantization of Fractal Coeffients

Input: Qn is the number of the quantization indicesof the Scale, Offset, and (X, Y)
coordinates.

Output: Qn is the number of the dequantized (recortsucted) Scale, Offset, and (X,
Y) coordinates.

Fori=1ToQn

* Get QJi] is the ith Range Block.

» Compute the Dequantized Scale using equation (3.25)

« Compute the Dequantized Offset using equation (3.26

» Compute the Dequantized (X, Y) coordinates using egtion (3.27).
Next i
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3.7.2 Fractal Image Decoding

Figure (3.16) shows the major scheme of the videame

reconstruction process by using fractal image diecpd

Compressed R R
channel econstruct Range :
»{ blocks by applying the rsconsnumed Down sampling New
- e ange blocks .
Affine coefficients on domain
Initial the initial domain
domain
Reconstruct Range
Reconstructe:  Yes End of blocks using the new
viden frami iterations domain
Figure (3.16) Video Frame Reconstruction using Frac  tal decoding
In this stage decode the reconstructed sets oheaffffractal)
coefficients will applied on the domain pool (whiahill initialized
arbitrarily) in an iterative manner for five itei@ts. At the first iteration
the scheme will apply the affine transform usingratial domain which
can be a 2D array of any numbers, where each mkex and y
coordinates of the range block will be computedubing the following
equation:
R(X+X, Yi+y)=SymD(X+Xq, Y+Yg))*StO,..c.ccoiiiinnes (3.28)
Where

X, Yy are the coordinates of the top-left corner ofrde®nstructed block

X4, Yg @re the coordinates of the top-left corner ofdbmain block.




Chapter Three Video Coding System 81

Sym(D(x+Xg, Y+Yq)) is the pixel of (x+¥, y+yy) coordinates in the domain
block after transforming it using inverse mappingtheSym case, S is the
scale value, and O is the offset value. The reduhie whole affine
reconstruction process will be downsampled to eraatew domain, and
then repeat the affine reconstruction again (batthe new domain) for five

iterations (See figure 3.16).

3.7.3 Symmetry Decoding (Symmetry cases)
As above mentioned the fractal encoderusad eight symmetry cases,
the decoder system had implemented the inverdeeadytmmetry cases, and

as the following:

1. Identity case: R(X, Y)=T(X, V). cevreiiiiiiiiiiiiiiee e, (3.29)
2. Rotation 90: R(X, ¥)=T(Y, S-X) «evvviiiiiiiiiiiiiiaenes (3.30)
3. Rotation 180: R(X, Y)=T(S-X, S-Y) ceviiiiiiiiiiiiiniennes (3.31)
4. Rotation 270: R(X, Y)=T(S-Y, X) «cveviiiiiiiiiiiiie e (3.32)
5. Reflection: R(X, Y)=T(S-X, YY) coeeviiiiiiiii i (3.33)
6. Reflection and Rotation 90:R(x, y)=I'(S-y, S-X) ........ (3.34)
7. Reflection and Rotation 180: R(x, y)=I'(X, S-y) ......... (3.35)
8. Reflection and Rotation 270:R(Xx, y)=T'(y, X) ............ (3.36)

Where S is the Block size.



Chapter Four

Tests and Results

4.1 Introduction

This chapter is developed to study the comprespanformance of
the three searching methods of motion estimatiddS(TOTS, and Hybrid
method) and the two different compression techriagqpfeéAnchor frames are
investigated by performing set of suitable objextidelity measures (such
as MSE, PSNR, etc) on five different video sequsntmat are taken as
testing samples. Each video sequence consists figretit numbers of
frames ranging from 26 to 126 frames.

The developed systems are implemented using VBasic language
(ver 6.0) under Windows Me and Xp operating systentme systems are
executed using IBM personal computer (processotiltaa 1.5 GigaHz),
zero cash. Since A distributed system is needednptement the fractal

model, therefore LAN with switch hub and LAN-cardd speed 100 Mbs
are used.

4.2 Fidelity Criteria

Generally, fidelity criteria can be divided intodwlasses:

(1) Objective Fiddlity Criteria: this kind of criteria borrowed from

digital signal processing and information theorjzeyt provide
equations that can be used to measure the amouatraf in the

reconstructed (decompressed) frame. The objectiteria, although
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widely used, are not necessarily correlated with plrerception of
frame quality. However, they are useful as a netatmeasure in
comparing between different versions of the sarasmé&. Commonly
used objective measures are the mean-square MEE)( the peak
signal-to noise ratio (PSNR). The error between treginal
(uncompressed) pixel value and the reconstructetofdpressed)
pixel value can be defined as:

AN

error(r, ¢) = I(r, ) = I1(r, C) wrvvvrrrrrirrrrnnns (4.1)

Where I(r, c) is the pixel value of the origiriilme at the (r,c) location

| (r, c) is the pixel value of the decompressed framde same
location (r,c),

Next, the total absolute error can be defined W) decompressed

frame as:
H-1W-1
Total Error = ZZ‘I (r,c)- ) (r, c)‘ ................. 4.2
r=0 c=0

The mean-square error is found by taking the esquared divided

by the total number of pixels in the frame.

H-1wW-1

MSEz—ZZ(I () - 43

r=0 c=0

From quality point of view, the smaller value betMSE means
better compressed frame (compared with the origina). Alternatively,
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with the Peak-signal-to-noise (PSNR), larger numbaplies better
frame. The PSNR considers the decompressed frarhe the “signal’

and the MSE as the “noise”. The Peak-signal-toeosio in dbcan be

defined as:
L-1Y
PSNR=10log, ; H—1\$V—1 Y 44)
1 _ 2
WxH;;[I(r,c) I(r,c)]

Where L is the number of gray levels (e.g., foit8 per pixel L=256)

(2) Subjective Fidelity Criteria[Scott98]: this kind of criteria requires
the definition of a qualitative scale to assesm&ajuality. This scale can

then be used by human test subjects to determaneeffidelity.

Two main types of subjective measurements exike Tirst is
referred to as impairment tests, where the viewemse the frames in
terms of how bad they are.

The second is referred to as quality tests, whegeviewers score
the frames in terms of how good they are.

4.3 Performance Parameters
Although many key parameters were utilized in therature for
performance evaluation of various compression natho this research

two key parameters are utilizecbnpression ratio andcompression time).

4.3.1 Compression Ratio (C,)

It is the degree of video file size (data) reduttiue to compression

process. This ratio represents the size of thamaiigincompressed video
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file to the size of the overall compressed data fijusing equation
4.5) Scott98].

c = JUncompressed file sze (4.5)

Compressed file size

The (G) parameter is an indicator for the compactnesktyabif the

compression process.

4.3.2 Compression Time (Cy).

It is the overall time required to perform the copgsion process for
all the blocks of the uncompressed frames. Forstiggested method, the
overall required time includes the time requiredbdain parameters of the
blocks in addition to searching time.

The minimization of searching time is consideredtltes most cost
criteria, which will indicate the efficiency of thematching mechanism, and

compression technique.

4.4 Test Samples

To evaluate the performance of the suggested assjon methods,
five different video sequences are taken. The firgsine of each video
sequence is shown in figure (4.1). These five vidamples have different
number of video frames ranging from 26 to 126 viftames, at which each
frame is of size 35288. Sample 1 has 26 frames, sample 2 has 51 frames
sample 3 has 76 frames, sample 4 has 91 framessangle 5 has 126

frames.
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First frame of video First frame of video
sample 1 sample 2

First frame of video First frame of video
sample 3 sample 4

First frame of video
sample 5

Figure (4.1) The Video Samples Frames
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4.5 Testing Strategy

The testing operation is implemented on fivdea samples; each
one contains two types of framesychor (A) and Predictive (P) frames.
Testing parameters for the five testing samplesillugtrated in six tables
(from table 4.1 to table 4.6). The first three &mbkhow the performance
parameters of the first model (FDCT) at which etatile is concerned with
one of the three motion estimation methods (OTS, &d HM), while the
other three tables show the performance paramefetise second model
(fractal) considering the three motion estimatioetimds (OTS, TSS, and
HM) respectively.

4.6 Test Results

The testing tables of FDCT model (the first thia@agles from table 4.1
to table 4.3) consists of three main parts, th& fs8 Anchor Frames (AF)
measurement which illustrate tihdSE, PSNR, compression time, number
of Anchor frames (NO. field), in addition to tlvempression ratio for the
tested video sample. Each field MSE, PSNR and compression time are
calculated for the total anchor frames of the tegample (All field) in
addition to the average for one frame (Avg. field).

The second iEstimated Frames (EF) , this part of the table have the
same fields of the first part but for the estimdtagnes.

The third part isAll Frames, this part have the total number of
frames, average PSNR for one frame, average MSEof@m frame,
compression ratio for the overall coded video fiie, addition to the
compression time for the total frames (Anchor and Estimated) and th

average time for one frame.
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The second three tables (from table 4.4 to taby doncerning
fractal model have the same specifications in &mldito the field which
represents the number of servers used for fraotdihg since fractal model

Is implemented using distributed system.
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From the testing results of the two models (shown in tables 4.1 to

4.6), one can notice the following:

1. The testing results of the Anchor frames for the first model using
FDCT technique are very good results compared with the Anchor
frame method used in fractal model. This idea is obvious through
the results in the testing tables, where PSNR of the Anchor frames
in these tables show the high quality of the decoded frames in the
FDCT tables. Although the testing results (specially the PSNR) of
the Anchor frames for the second model (using Fractal
compression technique) show the success of the fractal
compression technique (i.e. its fidelity measures are acceptable).

2. The execution time of the Anchor frames using FDCT technique is
less than the time required for the fractal technique (i.e., the
compression system using FDCT is faster than compression system
using Fractal technique).

3. The cost of the Fractal technique is very expensive from time point
of view, where in the testing results of tables 4.4, 4.5, and 4.6 the
fractal technique is implemented using seven computer servers,
while the compression system using FDCT technique does not
need these servers, only a single machine is enough to obtain
results within acceptable time.

4. All the PSNR, and MSE fidelity measures of all the motion
estimation techniques (OTS, TSS, and Hybrid methods) are
acceptable results noticing that:

* The quality measures of the OTS method (shown in table
4.1) are better than the quality measures of TSS method
taking in consideration that the OTS method needs more
execution time (i.e. OTS slower than TSS method).
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* TSS method is the best one from execution time point of
view, therefore it is suitable for real time systems. From
guality measures point of view, it gives acceptable but less
guality than the other methods.

* Hybrid method is the best one according to its quality
measure and this is clear from the PSNR, and MSE fidelity
measures but on the other hand, it need more execution time.

5. The quality measures of all the motion estimation techniques that
depends on a decoded Anchor frames using FDCT technique are
improved (i.e. better) since the quality measures of the decoded
frames using FDCT technique have better quality than the Anchor
frames used with fractal technique.

4.8 Subjective Samples Testing

To evaluate the suggested compression methods (for the two
models) subjectively, six study frames are chosen, four of them are used
for Anchor frames testing, while other two frames are used to show the
testing results for motion estimation methods. The following notes
summarize the subjective test:

1. Figure (4.2) shows Anchor frames subjective testing; four Anchor
frames are taken in this figure, the testing shows the successful
results of these Anchor frames that tested subjectively in addition
to their objective tests.

2. Figures 4.3, 4.4, 4.5 shows the success of subjective testing for two
video frames that compressed using TSS, OTS, and HM motion
estimation method, respectively. Since the difference between the

original and the decompressed frames are imperceptible.
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Anchor Frame 352x288
Time 1 sec
CR=11
PSNR=41.33
FDCT

Trial Versiun!

Anchor Frame 352x288
Time 1.04 sec
CR=9.428
PSNR=41.06
FDCT

Anchor Frame
Time 50.9 sec
Using 7 Servers
CR=10.673
PSNR=28.741
Fractal

Anchor Frame
Time 51.1 sec
Using 7 Servers
CR=10.673
PSNR=28.8
Fractal

Figure (4.2) Subjective and Objective Anchor Frames Testing
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Estimated Frame 4x4 blocks
Three Step Method
CR=42.671
PSNR=21.71
Time =0.898 sec

Estimated Frame 4x4 blocks
Three Step Method
CR=42.671
PSNR=21.99
Time =0.857 sec

Figure (4.3) Subjective and Objective Estimated Frames
Testing of TSS method

Estimated Frame 4x4 blocks
OTS Method
CR=42.671
PSNR=22.8826
Time =1.088 sec

Estimated Frame 4x4 blocks
OTS Method
CR=42.671
PSNR=22.99

Time =1.078 s€

Figure (4.4) Subjective and Objective Estimated Frames

Testing of OTS method
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Estimated Frame 4x4 blocks
Hybrid Method
CR=42.671
PSNR=23.812
Time =1.297 sec

Estimated Frame 4x4 blocks
Hybrid Method
CR=42.671
PSNR=23.39

Time =1.126 €C

Figure (4.5) Subjective and Objective Estimated Frames

Testing of HM method
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Table (4.1): Test Samples Using First Model (FDCT) With OTS Method

3 3 1 1239 | 413 | 147 | 49 | 108 | 23 23 1 520.2 | 226 | 81828 | 3558 | 427 | 26 26 1 24.8 3153 32.3
5 | 45| 09 | 2062 | 412 | 247 | 49 | 105 | 46 50 | 1.1 | 10569 | 23 | 15075.8 | 327.7 | 427 | 51 | 544 | 11 24.8 296.1 34.3
7 66| 09 2837|413 (344 | 49 | 11 69 82 | 1.2 | 15994 | 23.1 | 215744 | 3127 | 427 | 76 | 886 | 1.2 24.8 284.3 35

10 | 11 | 1.1 | 4129 | 413|487 | 49 | 109 | 91 | 113 | 1.2 | 20459 | 225 | 334082 | 367.1 | 427 | 101 | 124 | 1.2 24.3 3313 34.8
12 | 12 1 | 4958|413 |581| 48 | 104 | 114 | 142 | 13 | 2595 | 228 | 39238.1 | 3442 | 427 | 126 | 154 | 1.2 24.5 3119 35.2




Table (4.2): Test Samples Using First Model (FDCT) With TSS Method
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3 3 1 1239 | 413 | 147 49 | 108 23 19.3 0.8 488.6 | 21.2 | 11237.9 | 488.6 | 427 | 26 | 223 | 0.9 236 432.8 32.3
5 4.5 09 | 2062 | 412 | 247 49 | 105 46 36.6 0.8 995.2 | 21.6 | 20533.9 | 446.4 | 427 | 51 | 411 | 0.8 236 403.1 34.3
7 6.6 09 | 2887 | 413 | 344 4.9 11 69 55.9 0.8 14789 | 214 | 322514 | 4674 | 427 | 76 | 625 | 0.8 233 424.8 35

10 11 11 | 4129 | 41.3 | 487 49 | 109 91 75.1 0.8 19242 | 21.1 | 454594 | 499.6 | 427 | 101 | 86.1 | 0.9 231 450.6 34.8
12 12 1 495.8 | 41.3 58 48 | 104 | 114 91.3 0.8 2478.9 | 21.7 | 49600.6 | 435.1 | 427 | 126 | 1033 | 0.8 236 394.1 35.2




Table (4.3): Test Samples Using First Model (FDCT) With Hybrid Method
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3 3 1 |1239 (413|147 | 49 | 108 | 23 253 | 1.1 | 5335 | 232 | 71634 | 3115|427 | 26 | 283 | 11 253 276.1 32.3
5 | 45| 09 | 2062 | 412 | 247 | 49 | 105 | 46 546 | 1.2 | 1068 | 23.2 | 14256.5 | 309.9 | 427 | 51 59 12 25 280 34.3
7 | 66| 09 |2887 (413|344 | 49 | 11 69 86.8 | 1.3 | 1590.6 | 231 | 22221 322 | 427 | 76 | 934 | 1.2 248 292.8 35

10 | 11| 11 | 4129 | 413|487 | 49 | 109 | 91 | 1148 | 13 | 21029 | 23.1 | 289209 | 317.8 | 427 | 101 | 1258 | 1.3 249 286.8 34.8
12 | 12 1 | 4958|413 | 58 | 48 | 104 | 114 | 1454 | 1.3 | 25979 | 22.8 | 39007.6 | 342.2 | 427 | 126 | 1574 | 1.3 24.6 310 35.2




Table (4.4): Test Samples Using Second Model (Fractal) With OTS Method
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3 114 | 38 | 815 | 272 | 375 | 125 | 107 | 23 | 253 | 1.1 | 5034 | 219 | 9683 421 | 427 | 26 | 1393 | 54 225 386.8 343
5 185 | 37 | 1348 | 27 | 655 | 131 | 107 | 46 | 508 | 11 | 991.3 | 216 | 20930 | 455 | 427 | 51 | 2358 | 46 221 4232 34.8
7 2625 | 375 | 1916 | 27.4 | 833 | 119 | 107 | 69 | 821 | 12 | 14831 | 215 | 31809 | 461 | 427 | 76 | 3446 | 45 2 4295 35.3
10 383 | 383 | 2752 | 275 | 1150 | 115 | 107 | 91 | 1138 | 13 | 19816 | 21.8 | 39312 | 432 | 427 | 101 | 496.8 | 49 223 400.6 35.9
12 460.8 | 384 | 3208 | 26.7 | 1656 | 138 | 107 | 114 | 1431 | 13 | 24634 | 216 | 51186 | 449 | 427 | 126 | 603.7 | 4.8 221 419.4 36.1




Table (4.5): Test Samples Using Second Model (Fractal) With TSS Method
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3 114 38 815 | 272 | 375 125 | 10.7 | 23 209 0.9 477.8 20.8 12512 544 42.7 26 | 1349 | 52 215 495.7 343
5 185 37 | 1348 | 27 655 131 | 10.7 | 46 458 1 958.2 20.8 24702 537 427 51 | 2308 | 45 21.4 497.2 34.8
7 2625 | 375 | 1916 | 274 | 833 119 | 10.7 | 69 62.2 1 14232 | 206 | 38847 563 42.7 76 | 3247 | 43 21.3 522.1 35.3
10 383 | 383 | 2752 | 275 | 1150 | 115 | 10.7 | 91 824 1 18714 | 206 | 51961 571 427 | 101 | 4654 | 4.6 21.2 525 35.9
12 4608 | 384 | 3208 | 26.7 | 1656 | 138 | 10.7 | 114 | 106.1 1 2346.1 | 20.6 64866 569 427 | 126 | 5669 | 4.5 21.2 528 36.1




Table (4.6): Test Samples Using Second Model (Fractal) With Hybrid Method
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3 114 38 815 | 272 | 375 125 | 107 23 276 | 12 515 224 8625 375 427 26 | 1416 | 54 23 346.2 34.3
5 185 37 | 1348 | 27 655 131 | 10.7 46 548 | 12 1026 | 22.3 | 17526 381 42.7 51 | 2398 | 47 22.9 356.5 34.8
7 2625 | 375 | 1916 | 274 | 833 119 | 107 69 869 | 1.3 | 15539 | 225 | 25116 364 427 76 | 3494 | 46 23 3414 35.3
10 383 | 383 | 2752 | 275 | 1150 | 115 | 107 91 | 1157 | 1.3 2057 | 22.6 | 32487 357 427 | 101 | 498.7 | 49 231 333 35.9
12 4608 | 384 | 3208 | 26.7 | 1656 | 138 | 10.7 | 114 | 147.7 | 1.3 | 2574.1 | 22.6 | 40926 359 427 | 126 | 6085 | 48 23 338 36.1




Chapter Five
Conclusions and Future Work

5.1 Introduction

This chapter is dedicated to present some derived conclusion and alist

of proposals for future work related to the research work discussed in the

thesis.

5.2 Conclusions

From the results presented in the previous chapters, some remarks

related to the behavior and performance of the two suggested models AFC

and MEC are stimulated. A summary of some important conclusions could

be presented as follows: -

1.

The compression system using FDCT of the first Model is better
guality than the compression system using Fractal coding, and this
idea is shown from the results of SNR and PSNR that mentioned in
chapter four.

The compression system using FDCT is faster than the compression
system using Fractal coding.

The new developed version of FDCT is faster than the classical
version of DCT, and has a very good quality (see appendix A FDCT
derivation).

The Motion Estimation using Block Matching techniquesis asuitable
approach for video coding, and all the ME encoders have the same
ME decoder.

The OTS method of ME is better quality than TSS method of ME,
but the OTS method is slower than TSS method.

The new proposed HM of ME has very good results of Frame quality.
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7. Fractal coding using distributed systems is faster than Fractal coding
on a single machine, and make it more suitable for image
compression.

8. Increasing Fractal threshold will decreasing Frame quality, while
decreasing Fractal threshold will increase Frame quality.

9. The developed distributed system topology is a good topology for
Fractal coding that divide the Fractal search on the total numbers of

the shared servers.

5.3 Future Work

1. Redesign and implement the first Model of video coding but using
Wavelate transform alternative to FDCT.

2. Develop the video coding systems through adding interpolated frames
that will increase quality of estimated frames.

3. Deveop the second Model of video coding (using Fractal coding) and
fasting the Fractal coding using dual processors computers.

4. Develop a new distributed system for video coding speeding up AFC
and M EF together.



List of Abbreviations

List of abbreviations

Abbreviation

AD

FDCT
FIC
FSA
HDTV
HM
IFDCT
IFS

IP

JPEG
LAN
MAD
MAE
MB
MC

Absolute Difference

Anchor Frame

Anchor Frame Compression
Audio/Video Interleaved
Boundary Block Matching

Block Matching

Block based Matching Algorithm
Coordinate

Compact Disk-Read Only Memory
Quantized Coordinate
Reconstructed Coordinate

Color Transform

Discrete Cosine Transform
Fractal Computation

Fast Discrete Cosine Transform
Fractal Image Compression

Full Search Algorithm

High Definition Television
Hybrid Method

Inverse Fast Discrete Cosine Transform
Iterated Function System

Internet Protocol

Information Technology

Joint Photographic Expert Group
Local AreaNetwork

Minimum Absolute Difference
Mean Absolute Error

Macro Blocks

Motion Compensation



List of Abbreviations

ME
MEF
MPEG
MSE
MVF

VSBM
WAN

Motion Estimation

Motion Estimated Frame
Moving Picture Expert Group
Mean Sguared Error

Motion Vector Field

Offset

Quantized Offset
Reconstructed Offset

Once Time Search

Partitioned Iterated Function System
Peak Signal to Noise Ratio
Red Green Blue

Resource Interchange File Format
Run Length Encoding

Root Mean Square

Scale

Sum Absolute Difference
Signal to Noise Ratio
Quantized Scale
Reconstructed Scale
Symmetry

Three Step Algorithm

Three Step Search

Variable Size Block Matching
Wide Area Network

World Wide Web
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