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Synopsis 
 
 

        A complete computer aided design (CAD) by using optimization 

methods for the ion optical systems have been developed, by mixing the 

dynamic programming procedure and artificial intelligence technique. The 

relative spherical and chromatic aberrations coefficients were obtained 

according to figure of merit for the following optimized optical systems: 

a. Single-lens design (electrostatic and magnetic).  

b. Two-lens system consists of two electrostatic lenses.  

c. Three-lens system consists of three electrostatic lenses. 

d. Multi-lens system (electrostatic and magnetic). 

 

Four types of electrostatic lenses and a magnetic lens model were designed 

as small as possible of optical properties (i.e. the first and third optical 

properties), and reconstructions of electrodes and pole pieces were plotted in 

two and three dimensions graphics by using SIMION 7.0 simulator 

depending on the stored database (i.e. knowledge base).These lenses are as 

follows: 

• Unipotential lens 1 (operated in deceleration mode). 

• Unipotential lens 2 (operated in acceleration mode). 

• Immersion lens. 

• Diaphragm lens. 

• Magnetic lens. 

 

 

 



 vi

         Present software has been designed and written in Java expert system 

shell (JESS) and Visual Basic 6 (VB6) for optimizing and analyzing full 

calculation processes, it has called CADION package.  

 

         The optimized axial potential distributions for both electrostatic and 

magnetic fields according to the constraints have been used in the optical 

column setup, which are two-lens system, three-lens system and multi-lens 

system. Spot size measurements were calculated in nano scales, which have 

values closed to (3.0) nm applicable in nano technology applications used in 

lithographic systems. 

 

 

            Also, the present work has been suggested definitions and 

abbreviations in charged particle optics to be consider some of the results, as 

a verification of the uncertainty principle relationship like. 
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AIT- artificial intelligence technique 

Bz – Magnetic flux density (Tesla) 

Bmax – Maximum magnetic flux density (Tesla) 

c- Speed of light (≈3×108 m/s) 

Cc – Chromatic aberration coefficient  

Cco – Chromatic aberration coefficient at the object side 

Cci – Chromatic aberration coefficient at the image side 

Cs – Spherical aberration coefficient  

Cso – Spherical aberration coefficient at the object side 

Csi – Spherical aberration coefficient at the image side 

Csco – Chromatic aberration coefficient of a system of lenses at the object 

position. 

Csso – Spherical aberration coefficient of a system of lenses at the object 

position. 

DPP-dynamic programming procedure 

dc – Chromatic aberration disc diameter  

dci – Chromatic aberration disc diameter in the image plane 

ds – Spherical aberration disc diameter  

dsi – Spherical aberration disc diameter in the image plane 

dt – Total aberration disc diameter  

d –magnetic flux density half width 

E – Electrostatic field intensity (Volts / meter) 

f – Focal length  

fo – Object side focal length  

f i – Image side focal length  



 xiv

h – Planck's constant (=6.62377 × 10-34 joule-sec) 

J – Total current density (Ampere / meter2) 

L – Axial extension of the electrostatic lens (total length of the lens) 

L'-Geometrical Parameter 

M- Magnification 

M'- Ordinate dimension of the computational grid 

mo – Particles rest mass 

n – Refractive index 

NI- magnetic excitation (Ampere-turns) 

NA – Numerical aperture 

q – Charge of the particles 

r – Radial component of the cylindrical coordinate system [r (z)] 

ri – Image height 

ro- Object height 

ri' – Slope of the trajectory at the image side 

ro' - Slope of the trajectory at the object side 

u – Electrostatic potential function [U(r, z)] 

u – Axial electrostatic potential distribution U (z)  

u' – First derivative of the axial electrostatic field distribution U (z)  

u'' –Second derivative of the axial electrostatic field distribution U (z)  

uo – Object side potential distribution  

∆u – Energy spread 

v- Velocity of charged particles 

zi – Image position 

zo – Object position 

α- Half acceptance angle 

λ – Charged particles wavelength  



  

 - ١ -

Chapter One 

 

Introduction  

 
 

1.1 Introduction on Lithography   
 

        Lithography is the process of transferring patterns of geometric shapes in 

a mask to a thin layer of radiation – sensitive material (called resist) covering 

the surface of a semiconductor wafer. Figure 1.1 illustrates schematically the 

lithographic process employed in integrated circuit fabrication [Preuss 2002]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 shows lithographic process schemes [Preuss 2002]. 
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         Lithography advancements increased wafer size, and design innovation 

are three main constituents of the technology improvements that have kept the 

industry on this pace for more than 30 years [Harriott 2001] .Moore's Law 

states that the number of devices on a chip doubles every 18 months [Moore 

1995].Without the continuous improvements in lithographic process and 

equipment technology, personal computers, cell phones, and the Internet 

would not be in wide spread use today. 

 

 

           The resolution of an optical lithography system is usually expressed in 

terms of its wavelength λ and numerical aperture (NA) as follows [Huang et 

al 2001]: 

                         Resolution = k1 λ / NA ……………………………………… (1.1) 

where k1 factor is the process-dependent coefficient of the resolution criterion 

for a diffraction limited lens. Ion lithography can achieve higher resolution 

than optical, x-ray, or electron beam lithographic techniques because ions 

undergo no diffraction and scatter much less than electrons [Harriott 2001] .  

         

 

           Recent investigations have demonstrated that devices can be scaled 

down to sub-20 nm and smaller; therefore much shorter wavelength radiation 

needs to be considered for patterning such small features. The electron beam 

or ion beam lithography tools are limited by the aberration of the optical 

design. Theoretically, they can be used as lithography tools at 30 nm mode 

and beyond [Kedzierski et al 2000, Choi et al 2001].  
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        Efforts have been devoted for developing ion projection lithography 

(IPL) in Europe and the United States of America. Figure 1.2 shows that IPL 

uses the same principles as optical steppers with mask patterns being printed 

to resist coated wafer substrates. Multi-electrode electrostatic ion optics is 

implemented to generate a broad ion beam illuminating the reticule and to 

project the image of the stencil mask patterns to the wafer substrate 

[Kaesmaier and Loschner 2000]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 represents European (Ion Projection Lithography)  

[Kaesmaier and Loschner 2000] 

  

 

           Ions are much heavier than electrons; the wavelength of ions can be 

two orders of magnitude shorter than electrons at the same energy. Ion beam 

resolution higher than electron beam may be achieved.  
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          The actual beam size achieved by an ion projector is governed by ion 

source parameters (e.g. virtual source size, and energy spread of the extracted 

ions) and errors of the electrostatic lens system. Another advantage of using 

ions over electrons is that ions experience much reduced backscattering and 

proximity effect. All electrostatic lenses are often used to focus massive 

particles such as ions because round magnetic lenses have rather weak 

focusing properties for ion [Melngailis et al 1998].  

         

 

           In a conventional focused ion beam (FIB) system, a liquid-metal ion 

source (LMIS) is used to deliver current in the range of a few hundred pA into 

a spot size of approximately 50 nm [Melngailis1987]. But those days high-

resolution FIB have been applied in a number of technologically important 

ways [Orloff  1993]: maskless implantation into semiconducting materials; 

lithographic mask repair for visible light and x rays; micromachining to create 

micrometer structures; deposition of materials from the vapor phase by ion-

induced decomposition; modification of integrated circuits; failure analysis as 

part of the integrated circuit manufacturing process; and surface analysis. The 

present investigation will be focused on the first part of a lithographic system 

(FIB) only.    

 

1.2 Electrostatic Lenses 

 

        A conventional optical system consists of several rotationally symmetric 

(round) lenses which enable light to be focused and imaged. Ion optical 

imaging systems also consist of several rotationally symmetric ion lenses that 

enable the ions to be focused and imaged. Similar to a light optical imaging 

system, the action of the ion optical system is to transfer the ion image from 

the object plane to the image plane. Electrostatic lenses are finding increased 
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applications in so many areas of technology, with the aid of electrostatic 

lenses ion probes are employed in ion implantation to change the local 

properties of semiconductors. Furthermore, lenses show great promise in 

modern optoelectronics and lithographic processes [Lencova 1997]. 

 

1.2.1 Classification of electrostatic lenses 

 

          The axial symmetric electrostatic field (rotational symmetry) acts upon 

charged particle beam moving in the near axis region the same way a light 

optical lens acts on a light beam. 

     

          Generally speaking, any electrostatic charged particle lens is any region 

of an axially symmetrical electrostatic field in which there taken place the 

inequality U"(z) ≠0, where U(z) is the axial potential distribution and U"(z)    

is the second derivative of U(z) with respect to z. Therefore, depending on the 

electrode shape, voltages and the distribution of the electrostatic field in front 

and beyond the lens (i.e. the object and image region), such as one can 

classify several kinds of electrostatic lenses. 

            

          According to the charged particle optics, electrostatic lenses are 

classified into groups depend on the relationships between their electrode 

potentials. Such main groups are [Szilagyi 1988]: 

a. The immersion lens: It has two different constant potentials at its sides; 

it can be accelerated or retarded the particles while the beam focused 

and may consist of as few as two electrodes. 

b.  The cathode lens: It can be called immersion objective lens with a field 

abruptly terminated on the object side by the source of the charged 

particles. 
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c.  The unipotential (Einzel) lens: This kind of lens has the same constant 

potential at both sides (the object and image sides).Therefore, the 

energy of charged particles remains unchanged.  

d. The diaphragm (single aperture) lens: This kind of lens has a 

homogeneous field on at least one side. Thus, the potential on one side 

or on both is not constant but increases or decreases linearly. 

e. The foil lens: It consists of thin metal films transparent to the particles 

and possessing discontinuous field distributions.  

 

         Apart from the classification of lenses according to the potential 

distribution one may distinguish one, two and multi electrode 

lenses .Furthermore, can distinguish between strong and weak charged 

particle lenses. 

 

1.2.2 Properties of electrostatic lenses 

            Some of main properties of electrostatic lenses and their important 

features can be summarized as [Hawkes 1989]: 

a) In most non-relative cases the focusing properties as well as the 

aberrations are independent of the quotient of charge to mass (q/m) of 

the particles. Therefore, the electrostatic lenses maybe used for any 

system focusing various ions. 

b) Electrostatic lenses are characterized by their simple electrodes 

fabrication, alignment and small size. The major problem of 

manufacturing is due to electric breakdown and accumulation of 

charges on the insulating surfaces.  

c) The potential ratios have influence on their properties. Therefore, if 

particles of the opposite sign have to be focused, so that the signs of all 

electrode potential must be reversed to arrive at the same properties. 
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d) The most problem with electrostatic lenses is the difficulty of 

evaluation of their properties, because of the large number of 

characteristic parameters. 

 

       Thus, any comparison of the properties of different lenses is very 

difficult, where the lens properties are deployed in the form of tables and 

graphs. Unlike magnetic lenses, no universal design curves are available for 

the electrostatic lenses. Therefore, to select the best lens, a suitable 

dimensionless figure of merit may be constructed for the problem and then to 

choose the lens with the smallest acceptable value of this figure of merit. One 

common requirement of all applications is to reduce the aberration to as small 

as possible [Hawkes 1989].  

    

1.3 Magnetic Lenses  

           Any axially symmetric magnetic field produced by current carrying 

coils with or without ferromagnetic materials or by permanent magnets is 

called a magnetic lens. Manufacturing of magnetic lenses is usually more 

complicated than that of electrostatic lenses. The action of a magnetic lens can 

be understood on the basis of the Lorentz force. Owing to the interaction of 

the radial velocity component of the particle with the longitudinal component 

of the magnetic flux density the velocity acquires an azimuthal component, 

which in turn interacts with the longitudinal component resulting in a radial 

focusing component, as shown in Figure (1.3) [Lencova and Wisselink 

2001] .  

 

          Ferromagnetic materials do not cause any difficulty if the magnetic 

scalar potential can be considered constant on the surfaces of the materials. 

Since the potential field is uniquely determined by Laplace's equation and by 

the potential distribution on the boundaries and there is no difference between 
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the calculations of the magnetic field and that of the corresponding 

electrostatic field [Szilagyi 1988]. 

    

   

Figure 1.3 represents schematic diagrams of the forces in a cylindrical 

magnetic lens [Lencova and Wisselink 2001] 

 

 

            There are three main types of magnetic lenses in any FIB system as 

shown in figure (1.4) [Rollett and Garmestani 2003]:  

 

(a)A multi-layer coil: i.e. an air-core solenoid coil. (Iron free lens) 

(b)A coil enclosed by soft iron plates (containing a gap). 

(c)A coil enclosed by soft iron plates containing a gap and internal soft iron 

pole pieces. 
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                (a)                                  (b)                                  (c) 

 

Figure 1.4 shows schematic diagrams of the three types of magnetic lenses 

(a)A multi-layer coil , (b)A coil enclosed by soft iron plates and (c)A coil enclosed by soft 

iron plates containing a gap [Rollett and Garmestani 2003]. 

 

 

1.3.1 Classification of magnetic lenses models 

 

          It is often desirable to perform a rapid approximate evaluation of lens 

properties without carrying out a detailed analysis. This can be accomplished 

if we have a simple mathematical model for the lens. Magnetic lenses can be 

classified into two basic categories: long lenses with distributed fields and 

short lenses with highly concentrated fields. Several good analytical models 

exist to classify magnetic lenses [Hawkes 1989]: 

 

a. The rectangular model: The simplest possible magnetic lens model is 

that of the equivalent solenoid. The idea is to replace the actual lens 

with a homogeneous field of finite length, which is; of course, 

practically unrealizable but it is very convenient mathematical model. 

b. The step function model: The axial flux density distribution can be 

approximated by a piecewise homogeneous distribution, i.e. by a series 
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of uniform fields of different strengths. The flux density distribution is 

divided into a number of segments and in each segment the flux density 

is assumed to have a constant value. This model is not very accurate but 

its great advantage is its extreme simplicity combined with flexibility.  

c. The piecewise linear model: The accuracy of approximation can be 

increased by using a model based on the replacement of the actual flux 

density distribution with a series of linear segments. The whole analysis 

of the given magnetic lens can be carried out with high accuracy by 

linking together the subsequent trajectory segments continuously. This 

model was successfully used for the synthesis of magnetic lenses. 

d. The spline model: This model has used a quadratic function for each 

segment of the flux density distribution which is equivalent to a 

piecewise cubic approximation of the magnetic scalar potential. 

e. Glaser's Bell-Shaped and Grivet-Lenz models: The axial flux density 

distribution of a typical symmetric short magnetic lens is a bell-shaped 

curve .In practice ferromagnetic materials are used to concentrate the 

field to a small region, the following function has proposed by 

W.Glaser closely approximates the axial flux density distribution of 

such a lens if it is close to saturation.                                                                                                                                                                                                  

                               B (z) = Bmax / 1+ (z/d)2 ………………. (1.2a) 

where Bmax is the maximum flux density distribution, d is determined by the        

shape of the pole piece and the degree of saturation. The model curve is very 

satisfactory at the center of the lens but decreases very slowly at its two edges. 

Nevertheless Grivet-Lenz model proposed the following field model which is 

satisfactory at the edges, and it represents the unsaturated lenses. 

 

B (z) = Bmax /cosh (z/b)………………. (1.2b) 

where Bmax is the maximum flux density distribution, b is determined by the 

the field half-width.         
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1.3.2 Properties of magnetic lenses 

           The lens properties can be determined once the real lens field is 

replaced by an ideal rectangular field of length L .Physically this ideal field is 

that of a solenoid of length S and diameter 2/3 D carrying the same ampere – 

turns NI( excitation) (i.e. number of turns × D.C.current). The diagonal L  of 

the solenoid is related to the real lens geometry by [Lencova 1997]:  

 

                L  = √S2+ (⅔D)2          ………………. (1.3) 

Under non – saturation conditions and according to Ampere's law, the 

maximum magnetic flux density Bmax becomes [Lencova and Wisselink 

2001]:  

                    Bmax = (µo× NI)/ L   ………………. (1.4) 

where L  is geometrical parameter, µo=4π ×10-7 Henry/meter is the 

permeability of free space. Therefore, the magnetic field generated by a 

magnetic lens depends on its shape and excitation NI .  

 

 

           The distinctive feature of magnetic lenses is that their optical 

properties are dependent on the charge to mass ratio of the particles. 

Stationary magnetic fields cannot accelerate charged particles, therefore in the 

absence of electrostatic fields magnetic lenses leave their energy unaltered. So 

that in magnetic lenses the particle trajectories depend on the particles mass, 

where heavy particles are less focused than light ones. The boundaries of long 

lenses are difficult to define, but even in the case of short lenses the object or 

the image or both can be immersed in the field, therefore real properties 

become important in this case. Magnetic lenses are used for forming electron 

probes or highly magnified images of small objects; they can also be utilized 

for energy analysis. The effect of the magnetic field in any magnetic lens on a 
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paraxial beam of charged particles is similar to that of a convex glass lens on a 

beam of light rays [Hawkes 1989]. 

 

1.4 Historical Review 

          Many researchers attempted the design and optimization of electron 

lenses and systems with minimum aberrations from the early days of charged 

particle optics. Scherzer in 1936 found the best axial potential distribution for 

a weak electrostatic unipotential lens to become as [Septier 1966] ;  

 

            U (z) = Uo [1+C exp (-Sz2)] ………………………. (1.3) 

where z is the optical axis, Uo is the constant potential at both sides of the 

lens, and C and S are constants to be determined from some predefined 

values. In 1937, Rebsch and Schneider found the best potential distribution 

for a weak immersion lens to be [Szilagyi 1988];  

 

                 U (z) = C1 exp (-S1 z
2)] ………………………. (1.4) 

        

 where C1 and S1 are constants to be determined from some predefined values.  

 

         After few years, Plass in 1942 attempted to discover what the shape of 

the electrodes is, in order to produce the potential distribution given by 

equation (1.3) in a reasonably simple way [Septier 1966]. He calculated the 

potential distribution near the axis using the power series expansion; 

 

   U(r, z) = U (z) – (1/4) r2 (d2U(z)/dz2) + (1/64) r4 (d4U(z)/dz4) - ………. (1.5)   

          

        In 1948, Rüdenberg drew the attention to the properties of the 

hyperbolic lenses [Septier 1966]. These lenses are the ideal symmetrical 

einzel lenses where the equation of potential distribution was;  
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                     U(r, z) = C2 (z
2 – 0.5 r2) +S2 …………………………. (1.6) 

where C2 and S2 are constants to be determined from some predefined values. 

 

        The first serious attempt to synthesis thick lenses was made by 

Kasyankov in 1952. He derived a set of high order nonlinear differential 

equations, the solution of which would minimize certain aberration integrals. 

On the other hand, Burfoot  in 1953 attempted to calculate the electrodes 

shape of a lens with quadrupole – octupole symmetry, free of spherical 

aberration [Hawkes 1973]. 

           

         Tretner used in 1959 the technique of calculus of variation to find the 

minimum spherical and chromatic aberrations that could be obtained with 

round magnetic and electrostatic lenses. He used several different constraints 

on the fields to represent the construction resources available. In 1968 Crewe 

et al designed a field emission electron gun under the assumption that the 

axial potential U(z) in the space between the first and the second anode can be 

represented by a cubic polynomial, the coefficients of which were the 

optimization parameter .Later on, Munro  in 1973 showed that this design 

does not represent a true optimum [Munro 1975]. 

 

         Moses [1970, 1971, 1973 and 1974] also used the calculus of variation 

in his work to minimize the values of the spherical and chromatic aberration 

coefficients Cs and Cc respectively; his work was concentrated on magnetic 

lenses only. More recently, Szilagyi [1977, 1978] introduced the dynamic 

programming approach. The integration interval zo ≤ z ≤ zi between object and 

image is dissected into a set of small subintervals .Then starting from the 

object coordinate zo , the integrand of an aberration integral , for instance that 

Cs is minimized under given constraints in each of these subintervals. The 
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result was a piecewise analytic axial field distribution, which is then assumed 

to be the best field [Hawkes and Kasper 1989]. 

 

           Furthermore, systematic investigations of a large number of practically 

feasible axial potential distributions were carried out by [Szilagyi 1983, 1984 

and 1985] with a subsequent reconstruction of the electrode systems 

producing such distribution. In this approach different curve fitting techniques 

and parameterized analytical function are used to find many potential 

distributions with both small spherical and chromatic aberrations. [Martinez 

and Sancho 1983] introduced a new version of the charged density method 

applicable to the analysis of the potential distribution in multi-element 

electrostatic lenses used for focusing charged particles and study of the optical 

properties of four cylinders lens has been carried out. Also, [Kurihara 1985]  

achieved optimization of a focused ion beam system for submicron 

lithography. He employed a four electrode accelerating lens for the condenser 

lens and obtained guidelines for reducing the chromatic aberration coefficients 

by choosing the dominant design parameters and examining their relations to 

the coefficients. 

 

           In 1987, Tang and Sheng made an analysis of the combined 

electrostatic focusing and deflection system using moving object lens concept. 

They developed a practical electrostatic system to give good overall deflection 

aberration performances [Tang and Sheng 1987]. But, [Amos et al 1988] 

introduced an analysis method in the optimization of the properties of micro 

focused ion beam system. Another approach for designing electrostatic lenses 

with given source parameters, first order properties and minimum aberrations 

is based on constrained nonlinear optimization techniques presented by 

[Szilagyi and Szep 1988]. However, Tsumagari et al in 1988 introduced a 

discussion presented on the optimization of the relative displacement in the 
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two lens system with an intermediate beam crossover. They showed that the 

design for crossover beam system was possible with almost the same 

performance as the collimated system in the same magnification conditions 

and short working distances [Tsumagari et al 1988]. 

 

          [Kiss 1989] believed that systematic potential analysis will contribute to 

the development of the techniques of electrostatic lens design. He discussed a 

computerized investigation to find the axially symmetric electrostatic lens 

potential with acceptable first order properties and small spherical aberration. 

 

         [Michiel van der Stam et al 1993] showed that Optimization programs 

are becoming available to support   the designing of complicated lens systems 

in charged particle optics. By exploring the consequences of design decisions 

automatically, they can increase the effectiveness of the designer. Adding that, 

[Raymond 1993] proved that Focused ion beam machines are becoming an 

accepted part of the semiconductor industry. They are used in the repair of 

photo masks and X-ray masks, for direct modification of devices, for failure 

analysis, and for process verification. As the scale of the lithography shrinks, 

the demands on the FIB tool increase accordingly, both in terms of its 

accuracy (for repair and modification) and its resolution (for imaging). One 

key factor that affects these parameters in the FIB column itself, in terms of its 

spot size performance. Many of today's applications demand spot sizes as low 

as 15 nm, at beam currents of 10 - 20 pA. Moreover, [Steve et al 1993] 

described a novel method of determining potentially successful starting 

designs by utilizing an expert systems algorithm which operates on a database 

of previously well-designed optical systems. Also, [Xiaogang Chen et al 

1993] developed a small expert system used in lens design. 
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              Martinez and Sancho in 1995 have used an accurate numerical 

method to calculate the geometric aberrations in electrostatic lenses (three 

cylinder einzel lens). They used an accurate version of the boundary element 

method to solve the Laplace's equation for the given lens geometry and 

potentials [Martinez and Sancho 1995].  

 

       Meanwhile, in 1997 Martinez and Dymnikov investigated the possibility 

of utilizing an electrostatic cylinder lens to focus the beam in microprobes. 

They used new analytical model of the axial potential distribution varying the 

parameters of this distribution and the size of the object aperture diaphragms 

to obtain the minimum spot size at the specimen for a given beam emitted, 

and finding by this way the optimal parameters of the axial potential 

distribution. They applied an accurate version of the integral equation method 

to solve Laplace's equation in order to obtain the parameters of the physical 

model which has the same axial potential distribution as the optimal analytical 

model [Martinez and Dymnikov 1997]. 

 

         In recent years, most of researchers have interested in optimizing optical 

instruments and devices as a nano scale devices. In the Heisenberg 

microscope, the uncertainty principle has been used to determine the spatial 

position of a moving electron in the lateral direction. However, since charged 

particles follow the principle of Heisenberg, it is not possible to find solutions 

to the homogenous wave equation (paraxial ray equation) of electrodynamics 

that do not follow the behavior imposed by the uncertainty principle [Stelzer 

1999]. Moreover, [Sales 1998] has recently shown that the axial lateral gain 

factors are related by a Heisenberg – like relationship. Also, [Stelzer and 

Grill 2000] have estimated the focal spot dimensions according to the same 

relationship. Adding that [Ahmad et al 2002] have introduced a computer 

aided design of an electrostatic FIB system consisting of three electrostatic 
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lenses approximated by the spline lens model. The present work have mixed 

the dynamic programming procedure and artificial intelligence technique 

optimization methods, in order to find FIB system consisting of three 

electrostatic lenses measuring the beam spot size. 

 

1.5 Optimization Method 

          The desire to produce electron and /or ion optical systems with 

prescribed first order properties and as small aberrations as possible is as old 

as electron/ion optics itself [Szilagyi 1988]. 

 

          Optimization is the search for such electron and / or ion optical element 

that would provide the required optical properties with minimum aberrations. 

There are two approaches exist in optimization, namely analysis and 

synthesis. The method of analysis is based on trial and error, so that designer 

starts with certain elements and tries to improve their  performance by 

analyzing the optical properties and varying the geometrical dimensions as 

well as the electric or  magnetic parameters of the lens (system) until a 

satisfactory performance is achieved [Szilagyi 1985] . 

 

          However, many researchers attempted the design and optimization of 

electron lenses and systems according to the analysis method with the aid of 

computer programs. In recent years symbolic computing has become a 

promising aid in different kinds of decision making .Expert systems that have 

built in knowledge in the form of symbolically represented facts and 

rules .The design of optical elements and systems is based on the knowledge 

of simple facts and rules .An expert system for the design of electron/ion 

lenses could work in the following way. As a first step, a database must be 

established to provide efficient representation, storage, and retrieval of large 
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amounts of published information .A user interface would allow the selection 

of a specified set or a range of optical properties as well as some figure of 

merit. The system responds with a list of available lenses with the given 

properties indicating their order of preference based on the given figure of 

merit. Therefore, the system automatically performs the field calculations, and 

ray tracing .Also it determines the optical properties, adds the new 

configuration to the database, and evaluates it on the basis of the preferred 

figure of merit [Steve et al 1993].  

1.6 Aims of the Project 

          In the present work, optimum and analyzed designs of a FIB system 

consists of single, two, three and multi lenses. It has consisted of both 

electrostatic and magnetic lenses which have investigated by adding the 

dynamic programming procedure (DPP) and artificial intelligence technique 

(AIT) in a nano scale measurements. Also, an optimization programming 

developed for getting a setup of optical column in two-lens, three-lens and 

multi-lens systems. Therefore, electrodes and pole pieces have designed and 

plotted in two and three dimensional viewing were simulated for the main lens 

systems. Also spot sizes measurements have been calculated and a suggestion 

of estimations in charged particles optics with mathematical manipulations 

has proposed to get a category based on uncertainty principle.  Thus, synthesis 

procedures within the aid of analytical one under the following conditions 

have five main steps are taken place in this work, those are summarized as: 

 Single-lens design: [electrostatic and magnetic lenses]. 

 Two-lens system: [electrostatic lenses]. 

 Three-lens system: [electrostatic lenses]. 

 Multi-lens system: [electrostatic and magnetic lenses].  

 A suggestion of spot size calculations in terms of the uncertainty 

principle relationship. 
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Chapter Two  
 

Theoretical Considerations  

 

2.1 Motion of Charged Particles in rotationally symmetric Electrostatic 
and Magnetic fields 

 

            In charged – particle optics , rotational symmetry (or axial symmetry 

as it is sometimes called) is of particular interest , since the most common 

charged-particle lenses are round , which means that they are built up from 

rotationally symmetric fields [Hawkes and Kasper 1989]. 

 

             The motion of charged particles in such fields is similar to 

propagation of light through optical lenses. The most suitable coordinate 

system to fields with rotationally symmetry is the cylindrical polar coordinate 

system. The z-axis is the optical axis which represents the axis of symmetry. 

The value of the potential at any point can expressed in terms of the three 

coordinates r, z and θ  i.e. the potential u = u(z,r,θ). The condition for 

rotational symmetry in cylindrical coordinates can be expressed by u(r, z, θ) = 

u(r, z), where the values of r and z uniquely define the value of u, regardless 

of the angle of rotation. In rotationally symmetric space – charge – free fields, 

Laplace's equation is reduced to the following form [Szilagyi 1985]: 

        (1/r) {∂/∂r (r [∂ u /∂r])} + ∂2 u /∂z2 =0    ………………. (2.1) 
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2.1.1 Paraxial-ray equation in electrostatic fields 

          The assumption that the trajectory of charged particles beam has small 

enough inclination angle with respect to the optical axis of the system, to 

allow replacing its tangent by its sine or its arc, greatly simplify the analysis 

of this system. Rays with these properties are referred to as paraxial rays, i.e. 

rays that are close to the axis [Hawkes and Kasper 1989]. 

 

            In many designing lenses and deflectors, paraxial trajectories are dealt 

with, therefore Gaussian dioptrics is a theory of the behavior of paraxial rays 

is being considered. The paraxial ray equation is given by a linear 

homogenous second order differential equation, its solution gives the 

trajectory r=r(z) , for particles moving close to the optical axis in a rotationally 

symmetric electrostatic fields[Szilagyi 1988], as follows: 

    

                 r " + (u' / 2u) r'+ (u"/4u) r = 0 ………………… (2.2) 

 

where u = u(z) is the electrostatic potential distribution in volts along the 

optical axis z, the primes represent differentiation with respect to z. For non – 

relativistic velocities and the absence of any azimuthal velocity components, 

the trajectory of charged particles (ions or electrons) can be treated in the rz 

plane, where in cylindrical coordinates system; r  represents the radial 

component, and z is the axial component of the trajectory along the optical 

axis of a lens. 

 

        The behavior of paraxial rays have two assumptions which are 

considered as [Szilagyi 1988]: 

a. In the power series expansion of the potential function u (r,z) , all terms 

containing powers of ( r ) higher than the first will be neglected .Then 

the potential distribution becomes ;  
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u(r, z) = uo (z)-uo"(z) (r2/4) + uo
"" (z) ( r4/64) - … …………. (2.3) 

 

       This assumption will be used only in the region where the field 

exists. Outside the field the trajectories are straight lines that may 

extend far away from the axis even if they are paraxial inside the field.                                                    

b. The radial and azimuthal velocity components can be neglected in 

comparison with that of the axial one. 

 

2.1.2 Paraxial-ray equation in magnetic fields 

               The paraxial ray equation in axially symmetric magnetic fields can 

be written as [Hawkes and Kasper 1989]: 

              r " (z) + k2 r (z) = 0 ………………… (2.4) 

 

where k2= [q Bz
2
 / 8 m V], Bz - is the axial component of the  magnetic flux 

density , q- is the electric charge ,V-is the accelerating voltage and m is the 

mass of charged particles accelerated through a magnetic field. 

 

         Unlike the behavior of paraxial rays in electrostatic fields, the paraxial 

rays in magnetic fields the distance r  of the ion / electron path from the optical 

axis (compared to the total length of the beam path within the field region) 

should always be so small. Furthermore, the inclination of the beam path to 

the axis is required to be so small that second and higher powers of the 

inclination of the beam path can always be neglected with respect to the first 

power. 
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2.1.3 Numerical determining field potentials 

            The field equation to be solved will be Laplace's equation (2.1).The 

solution of Laplace's equation with specified boundary conditions make it 

possible to determine the potential u(r, z) as a function of coordinates, from 

which the components of the field intensity can be calculated. It is possible to 

obtain an analytic solution; the final expression is often too awkward and 

unsuitable for particular applications. Therefore, the uses of the numerical 

methods (approximate methods) are very useful in solving the charge particle 

optics problems [Ahmad 1993]. 

             There exist a wide variety of approximate methods for solving the 

field equation (field potential); the most common are [Szilagyi 1988]: 

(a) Finite Element Method 

         The finite element method FEM was first used in electron optics by 

Munro 1970, who applied it to the computation of the magnetic field in round 

lenses. Since that time, it is of special interest in charged particle optics. In 

this method the system of algebraic equations reads as Ui = Σj=1
N Aij Uj +Bi , 

the inhomogeneous terms arising from the boundary values of the potential 

are represented by Ui and Bi. The matrix Aij depends on the node coordinates 

and on the partial differential equation (PDE). Aij are derived from a variation 

principle –equivalent with the PDE to be solved. The functional is a volume 

integral as in the electrostatic case [Munro 1975]: 

 

                F = ∫∫∫total volume ½ ∆ U · ∆ U dV …………………………. (2.5)    

 

The above integral depends on the type of coordinates, the potential U, and its 

first derivatives with respect to the coordinates. The field is subdivided into 

triangles, each node being the common vertex of the adjacent triangles. 
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          As shown in figure (2.1), within each triangle the potential is expressed 

by a lower order polynomial of the coordinates. 

 

 

 
 

 
Figure 2.1 represents mesh of the finite element method  

[Munro 1975] 

 
 
 

          With these approximations the potential through out each element is 

uniquely determined by potentials at its vertices. Hence the contribution for 

each element to the value of the functional can be expressed in terms of the 

vertex potential. Minimizing the functional, one yields a set of linear algebraic 

relations, relating the potentials at each vertex and its neighbours, where the 

A ij depending on the coordinates of all vertices involved. This set of linear 

equations is solved to give the potential at each mesh point. 

 

(b) Finite Difference Method 

         The finite difference method was first introduced by Liebmann in 1918 

and thus it is often called "Liebmann's method". The mathematical theory of 

this method is exhaustively studied in many researches. The basic concept of 

the procedure is to subdivide the space within the field under consideration 
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into finite squares or rectangular grids. The potential at each node is related to 

those at four or eight of its nearest neighbours as shown in figure (2.2). 

 

Figure 2.2 represents the grid of the FDM in two dimensions 
[Hawkes and Kasper 1989] 

 

 
 
             There are essentially two different ways of deriving the finite 

difference formula that replaces Laplace's equation namely, the Taylor series 

method and the integral method. Further details on FDM are given in most of 

literatures like [Hawkes and Kasper 1989].  

          One of the simplest classes of parameterized analytical functions is the 

class of high degree polynomials whose coefficients are simple functions of 

the potential values at given locations. One can find excellent imaging field 

distributions even with a personal computer [Hawkes and Kasper 1989]. 

            

 (c) Artificial Intelligence Technique 

          In 1990's symbolic computing has become a promising aid in different 

kinds of decision making and building expert systems. These were the first 

attempts in this technique, programs are appearing that are able to deduce 

rules from a database without actually carrying out numerous amounts of 

numerical calculations [Friedman 2003, Menken 2002]. The design of 

optical elements and systems are based on the knowledge of simple facts and 
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rules, the initial data are laws of electron and/or ion optics and the knowledge 

about existing solutions [Xiaogang et al 1993, Steve et al 1993].  

 

          Present software (CADION )"which stand for computer aided design for 

ions" has adopted this technique with the aid of dynamic programming 

procedure, in order to maintain such smart database (i.e. expert system); the 

system contains database tables impeded inside the subroutines. The synthesis 

procedure of the dynamic programming has used with the aid of this technique 

to achieve such expert system.  

 

 (d) Dynamic Programming 

         Dynamic programming is a mathematical optimization technique used for 

making a series of interrelated decisions. It is start with a small portion of the 

problem and finds the optimal solution for this smaller problem. In contrast to 

other mathematical programming techniques, there is no standard formulation 

of the dynamic programming problem. This kind of programming is a general 

strategy for optimization rather than a specific set of rules. The dynamic 

programming procedure has been successfully applied to different problems of 

electron and ion optics [Ahmad et al 2002, Orloff 1993, Chapra and Canale 

1998, Amos et al 1988]. 

 

          A major distinction among dynamic programming problems is the 

nature of the decision variables. If the decision variable is restricted to integer 

values as in this investigation, the whole problem is to be discrete. If the 

decision variable can take on any real value, the problem is said to be 

continuous. Usually a multi stage decision process is transformed into a series 

of single stage decision processes. It is essentially a recursive optimization 

[Kuester 1973].  
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           In the present work both the artificial intelligence technique and the 

dynamic programming procedure will be used. More details on the synthesis 

procedure will be given in chapter three.  

(e) Cubic spline function  

           A cubic spline function is a third order polynomial used for 

interpolation, curve fitting with continuous first and second derivative. The 

name is derived from the old drafting tool. It is a flexible thin piece of wood 

that was used to generate a smooth curve passing through specific points 

known by nodal points. The spline assumes that shape which minimizes its 

potential energy, and beam theory states that this energy is proportional to the 

integral with respect to the arc length of the square of the curvature, of the 

spline. If the spline is a function of coordinate z and if the slope is small, the 

second derivative approximates the curvarture.Therefore, cubic spline 

function, its first and second derivative can be written as [Burden et al 1981]: 

   

        Fk (z) = Ak + Bk (z-zk-1) + Ck (z-zk-1)
2 + Dk (z-zk-1)

3 

        F'k (z) = Bk + 2Ck (z-zk-1) +3 Dk (z-zk-1)
2                   ………. (2.6)     

        F"k (z) = 2Ck + 6 Dk (z-zk-1)
 

  

where  zk-1 is the coordinates of the k-th interval's left end point , k=1,2,3,….n 

is the number of intervals , A,B,C and D are the coefficients of the spline 

function which are for each region. Fk (z) may approximate the axial potential 

distribution U(z) for both rotationally symmetric electrostatic and magnetic 

lenses.  

 

The continuity conditions for the spline function, its first and second 

derivatives can be rewritten as: 
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        Fk+1 (zk) =  Fk (zk) 

        F'k+1 (zk) = F'k (zk)                   ……………..…….………. (2.7)     

        F"k+1 (zk) = F"k (zk)
 

 

2.2 Light Optics Verses Ion Optics 

 

      There are significant differences between light and ion optics, such as 

[Steve et al 1993]: 

• Radius of Refraction 

          Light optics makes use of sharp transitions of light velocity (e.g. lens 

edges) to refract light. These are very sharp and well defined (by lens shape) 

transitions.  The radius of refraction is infinite everywhere (straight lines) 

except at transition boundaries where it approaches zero (sharp bends). 

          Ion optics make use of electric field intensity and charged particle 

motion in magnetic fields to refract ion trajectories.  This is a distributed 

effect resulting in gradual changes in the radius of refraction.  Desired 

electrostatic/magnetic field shapes are much harder to determine and create 

since they result from complex interactions of electrode/pole shapes, spacing, 

and potentials and can be modified significantly by space charge. 

• Energy (Chromatic) Spreads 

          Visible light varies in energy by less than a factor of two. Ions can vary 

in initial relative energies (or momentum for magnetic) by orders of 

magnitude.  This is why strong initial accelerations are often applied to ions to 

reduce the relative energy spread. 

• Physical Modeling 

          Light optics can be modeled using physical optics benches (interior 

beam shapes can be seen with smoke, screens, or sensors). 
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          Ion optics hardware is generally internally inaccessible and must 

normally be evaluated via end to end measurements.  Numerical simulation 

programs allow the user to create a virtual ion optics bench and look inside 

much like physical light optics benches. 

 

2.3 Uncertainty Principle 

        The motion of charged particles at non relativistic velocities is governed 

by the laws of classical mechanics. Naturally, the wave nature of particles is 

an important limitation for dimensions comparable with the following de 

Broglie wavelength [Yariv 1982]:  

 

                                 λ  = h/mυ  ……………………… (2.8) 

 

where h = 6.62 ×10-34 Js is Planck's constant, m and υ  are the mass and 

velocity of the accelerated particle respectively. In classical mechanics it is 

possible to measure both the velocity and the coordinate of a particle at some 

time without disturbing it. However quantum mechanically the act of 

measurements interferes with the system and modifies it. The resulting 

perturbation is negligible in "large" (classical) systems, but assumes major 

importance in small systems such as atoms, electrons and nucleons. It is a basic 

result of electromagnetic theory (specifically, of the theory of diffraction) that 

the spatial limit of resolution is approximately equal to the wavelength of 

electromagnetic radiation used [Szilagyi 1988].  

 

          Therefore, momentum and position of a charged particle cannot be 

measured simultaneously with arbitrary accuracy. This was due to the fact that 

the uncertainty principle works. The uncertainty relationships are often referred 

to in order to illustrate the constraints on propagating quantum mechanical 
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wave functions. Since position and momentum are the key factors 

characterizing a particle in classical mechanics, it is important to know that the 

corresponding quantum mechanical operators do not commute for a known 

function. Quantum mechanically the position r  and momentum p are 

represented by the following expression [Yariv 1982]: 

 

                                     [ri, pj]= i h δij   ………………. (2.9) 

 where r i =x,y,z  =x ,y or z , and  pj=x,y,z   = px , py  or pz and so on. Thus find that 

the position and momentum as operators of a charge particle do not commute. 

           

        In principle the quantity ∆ z can be used as a measure of the uncertainty 

(fuzziness) in position (along optical path), and ∆ p is a measure of the 

momentum spread; both are related by [Yariv 1982]: 

 

                              ∆p ∆z ≥ h  /2 ……………… (2.10) 

  

where h = h/2π , and all particles are considered under the non-relativistic 

case. Equation (2.10) holds for any physical system. 

 

           Consequently, most of present work results were calculated in a nano 

scale or less of accuracy. To distinguish the final idea and discuss it for more 

precise factors, the aspects have been adopted in this investigation are the 

whole dramatic notions of the uncertainty principle hypothesis.  

             

           Therefore, to select the best lens, a suitable dimensionless figure of 

merit may be constructed for the problem and then to choose the lens with 

smallest acceptable value of an optimized factors. One common requirement 
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of all applications is to reduce the spherical and chromatic aberrations to as 

small as possible.  

 

           It seems then that the absolute figure of merit of any optical system is 

the size of its total aberration disc diameter (dt). Adding that the beam spread 

angle α  can be ascribed to the fact that the charged particles (electrons or 

ions) are confined initially to a distance, which it is corresponding to the total 

aberration disc diameter. Therefore, the transverse momentum spread is ∆p ~ 

h / total aberration disc diameter   (dt), then the spread angle  α  has taken as 

[Yariv 1982]: 

 

        α ~ ∆p / p ~ h / (dt) (2π h /λ) = λ / 2π  dt ………. (2.11) 

           

where p =2π h /λ, λ is the wavelength of the charge particles wave. 

 

           This is a well-known formula, it is approached as a problem in 

electromagnetic theory .Equation (2.11) reflects the Fourier transform 

relationship that exists between the field distribution in the lens plane and the 

far-field distribution of the image spot size .This Fourier transform 

relationship is also the basis for the uncertainty relations in quantum 

mechanics[Shannon and Weaver 1949]. 
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2.4 Definitions of Some Optical Parameters  

           Figure (2.3) shows some of the optical parameters, such as object plane 

zo, the image plane zi, the principal planes and points, the focal points and the 

focal planes. There are so many definitions of such parameters and 

properties .The following steps are summarized some of them [Szilagyi 

1988]; 

� Object side: the side of the lens at which the charged particles enter. 

� Image side: the side of the lens at which the charged particles leave. 

� The object plane zo: The plane at which the physical object is placed or 

a real image is formed from a previous lens, on the object side. 

� The image plane zi: The plane at which a real image of the object plane  

zo is formed, on the image side. 

� The principal points: The planes passing through the intersections and 

perpendicular to the axis are called principal planes. The intersections 

of the principal planes with the optical axis are called principal points. 

� The focal points: A focal point is the image of a bundle of rays incident 

on a lens parallel to the axis. If these rays arrive at the lens from the 

object side, then these rays are collected at the image focal point f i. If 

these parallel rays are incident from the image side, they will be 

collected by the lens at the object focal point fo. The plane 

perpendicular to the optical axis and passing through either fo or f i is 

known as the object or the image focal plane respectively. 
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Figure 2.3 represents the Cardinal Elements (Optical Parameters) of an 

axially symmetric lens (a) Definition of focal point, (b) Definition of principal 

points and (c) Definition of nodal points. 

 

 

� The objective and projector properties : In many cases the charged 

particle beam trajectory crosses the optical axis inside the lens ( strong 

lens ) .It cannot be assumed that the path of the trajectory will be 

rectilinear after crossing the optical axis , because it can still be 

modified by the field until it emerges from the lens. This is illustrated in 

figure (2.4), where the trajectory crosses the axis at the objective focal 

point fobj. The objective focal point, the objective midfocal length, and 

the objective principal point are denoted by fobj, Ofobj, and Pobj 

respectively. The projective focal point  fproj    , the projective principal 

point  Pproj,  and the projective mid focal length Ofproj  are also shown in 



  

 - ٣٣  -

the figure (2.4).For weak lenses , where the intersection of the beam 

with the optical axis occur outside the lens field , the objective and 

projective cardinal points coincide [ El-Kareh and El-Kareh 1970]. 

 

 

 

Figure 2.4 shows the definition of Objective Cardinal Points in a Strong Lens 

 

 

 

 

         There are three magnification conditions under which a lens can be 

operated, namely zero, infinite and finite magnification  .Figure (2.5) shows 

the three conditions, thus magnification in any optical system is the ratio 

between the transverse dimension of the final image and the corresponding 

dimension of the original object, i.e. the magnification (M) as[Munro 1975]: 

              

                M = ri / ro = image height / object height   …………….. (2.12) 

        

 

           As shown in the figure (2.5) these conditions are summarized as 

[Hawkes 1989]: 
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a) Zero magnification condition : In this case the operating conditions is  

zo=-∞ , as an example , the final probe forming lens in a scanning 

electron microscope (SEM) is usually operated in this condition. 

b) Infinite magnification condition: The operating condition is zi=+∞  , as 

an example, the objective lens in a transmission electron microscope 

(TEM) is usually operated in this condition. 

c) Finite magnification condition: The operating condition in which zo and 

zi is at finite distances, as an example, the electrostatic lens in field 

emission gun is usually operated in this condition. 

 

 

 

 

Figure 2.5 shows the magnification conditions 

 

2.5 System of Lenses 

 

           A system of lenses is a combination of several lenses arranged in the 

axial direction and forming an intermediate image of an object in the field free 

regions between them. If the fields of any two consecutive lenses overlap, 
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they must be considered as one single lens. The two most important practical 

reasons to employ a system of lenses are [Szilagyi 1988]:  

i. To allow variations of the magnification over a wide range by changing 

the lens excitations when the object and lenses are all situated at fixed 

locations. 

ii. To provide the possibility of achieving very high or very low 

magnifications. 

 

       To construct the final image of the object, the intermediate image 

produced by the Nth lens will be the object for the (N+1)th lens, where N is 

the ordinal number of the lens in the system . This number is usually small in 

most equipment such as the electron microscopes, and the micro fabrication 

devices, and no more than three lenses are used. In some applications, like in 

particle accelerators, the number of successive focusing elements may be very 

large. So that the fewer the number of lenses is the shorter is the optical 

column , which is equivalent to a much easier practical realization ( better 

mechanical stability , not so complicated alignment , smaller number of power 

supplies, etc.). In the present investigation, different combinations were used 

as a focusing portion of the system. 

 

 

 2.6 Aberration Theorem in Ion Optics 

           Microscopes and other optical instruments are commonly plagued by 

lens errors that distort the image by a variety of mechanisms associated with 

defects (commonly referred to as aberrations) resulting from the spherical 

geometry of lens surfaces. There are three primary sources of non-ideal lens 

action (errors) that are observed in any optical device. 
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          Of the three major classes of lens errors, two are associated with 

the orientation of wave fronts and focal planes with respect to the optical axis. 

These include on-axis lens errors such as chromatic and spherical aberration, 

and the major off-axis errors manifested as coma, astigmatism, and field 

curvature. A third class of aberrations, commonly seen in stereomicroscopes 

that have zoom lens systems, is geometrical distortion, which includes both 

barrel  distortion and pincushion distortion [Michiel et al 1993]. 

 

     Rotationally symmetric electric fields may be generated by systems of 

metallic electrodes that are rotationally symmetrical in geometry and 

configuration and between which appropriate voltages are applied. In these 

electric fields, the equal-potential surfaces are rotationally symmetrical curved 

surfaces, which can be made to focus ion beams.  

           The study of aberrations is of great importance, since they cause 

limitations to the performance of various electron/ion optical elements and 

systems. It is as old as the electron microscope itself, for the first calculations 

of aberration coefficients were made in the early 1930s by Scherzer and 

Glaser. Hence, the operation of axially symmetric electron and ion lenses is 

based on the paraxial theory (first order) which is an approximation theory. 

     Similar to a light optical imaging system, the action of the ion optical 

system is to transfer the ion image from the object plane to the image plane. In 

the paraxial approximation the ion optical system can form an ideal and clear 

image known as the Gaussian image, but when aberration is present the 

image is distorted and unclear. 
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Figure 2.6 shows the ideal imaging Gaussian trajectory 

 

            

          As shown in Figure (2.6), the object is at plane z=za, and its Gaussian 

image plane is located at z=zb.Trajectories passing through the object point 

intersect at an image point are independent of there initial slope (xa', ya'). Thus 

all Gaussian trajectories emitted from an object point Pa (xa,ya) in the object 

plane, regardless of their slope, are focused at a point image Pb (xb, yb) in the 

image plane z=zb [Lencova and Wisselink 2001] . 

 

            Unfortunately, aberration is not the only defect that the image suffers 

from. Other type of defects that due to the fabrication of lenses, such as 

mechanical imperfections and misalignment. The electrostatic repulsion forces 

between particles of the same charge causes a deviation in charged particles 

path. It is another defect, known as the space charge effect, and it is a case of 

charged particle optics alone, that cannot be fond in light optics. 

 

2.6.1 Aberration Coefficients 

         Aberrations are the problem of all image–forming systems. In general, 

they are defined as the departure from the ideal (paraxial) image formation. 
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Sometimes, they are called image defects or imperfections, because their 

presence causes deformation or complete damage to the image features [ El-

Kareh and El-Kareh 1970] . 

 

 a. Spherical Aberration 

         When the rays are monochromatic, which occur when the laws of 

refraction and reflection are applied to mathematically correct surfaces and 

which are not consequences of material inhomogeneity or fabrication errors 

are as follows [El-Kareh and El-Kareh 1970]:  

1. Spherical aberration  

2. Coma  

3. Astigmatism  

4. Field curvature  

5. Distortion 

 

         Deformed image is not clear because of one of these aberrations, which 

are mostly taken place a mixture of them. This classification is arranged in a 

descending manner according to their extent of influence in the deformation 

of image features. They are called “geometrical aberrations” because each 

kind has a geometrical origin.    

 

           The calculation of the spherical aberration coefficient can be performed 

in two different ways. A straight forward approach is to retain the cubic terms 

in the paraxial ray equation (2.3) and evaluate the difference between the 

accurate ray equation, and the paraxial trajectory originating at the object 

point. The spherical aberration coefficient (Cs) can be expressed in terms of 

integration involving knowledge of the paraxial trajectory and the value of the 

axial electrostatic potential .This procedure is commonly known as the 

trajectory method [Lawson 1977]. On the contrary, a general perturbation 
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theory may be developed, known as the eiknal method or method 

characteristic function [Hawkes and Kasper 1989]. The coefficient of 

spherical aberration referred to the object space Cso is represented by the 

following equation [Szilagyi 1985]: 

                 Cso = (1/16 r'o
4 Uo

1/2) ∫
i

o

z

z
{[5/4(U"/U)  2 +5/24(U'/U) 4]r4 + 

14/3(U'/U) 3r'r3-3/2(U'/U) 2 r'2r2 }U 1/2 dz ……………………………(2.13)  

 

where Cso = spherical aberration coefficient in the object side, U = U (z),  

r = r (z) and Uo is the object side potential. 

 

          As shown in Figure (2.7), the focusing action of the fields in the region 

farther from the axis is stronger than that in the region nearer to the axis. The 

image position z'b for the marginal off-axis trajectories will be in front of the 

Gaussian focus and further from the Gaussian image plane than the position 

zb for paraxial trajectories. The minimum radius of the beam δs, which is used 

to characterize spherical aberration, proportional to the third power of the 

angular aperture αa in the object plane. In electron or ion optical imaging 

devices, the ultimate resolution is limited mainly by the spherical aberration 

which is the only nonzero geometrical aberration at the axis and therefore the 

most harmful. It can be decreased by reduction of αa [El-Kareh and El-

Kareh 1970]. 
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Figure 2.7 represents the spherical aberration [El-Kareh and El-Kareh 1970] 

 

 

          As a result, in any charged – particle optics as well as in classical optics, 

the aperture aberration (spherical aberration or stop aperture) is by far the 

most important, because it limits the resolution of electron microscopes and 

the smallness of the probes of microanalysers.These aberrations are 

characterized by the values of the deviations ∆x and ∆y from the point of the 

image formed by the paraxial beam [Septier 1966].  

 
               The radius of the stop aperture (ra) is proportional to the tangent of 

the aperture angle α (half acceptance angle).Since α is very small (i.e. tan (α) 

= α in radians).Thus, it would get the disc formula as [El-Kareh and El-

Kareh 1970]; 

    
                          ds = Cs α3 …………………… (2.14)                   
  
where ds, Cs is the diameter of the spherical aberration disc and its coefficient 

respectively. As it has seen, the spherical aberration coefficient of the 

focusing device depends primarily on the diameter of the aperture. 



  

 - ٤١  -

          On the other hand, the spherical aberration will cause blurring in the 

formed image if the angle α is not very small. To evaluate the aberration disc 

for a very small angle α  , it makes the easiest way for getting such 

indications .Since , the aperture of the system ( electrical lenses ) have multi 

frames representations in the whole space[Michael 2005]. Mainly, the present 

work results have given this value the proper indication of uncertainty 

relationship. 

 

b.Chromatic Aberration 

         Chromatic aberration in light optics arises from the fact that light of 

different colors (wavelength λ) is refracted with different strength. In ion 

optics, the ions passing through a lens with different energies will be refracted 

differently.  First-order chromatic aberration is proportional to the fractional 

energy spread, ∆U/U, at the image plane, and to the first power of α or r.         

In rotationally symmetric electron lenses, chromatic aberration cannot be 

completely eliminated, but it can be reduced by increasing the acceleration 

voltage [Michael 2005]. 

  

       In summary, geometrical aberrations have a functional dependence of the 

form αi rj, where α = beam half angle at the image plane, r = off-axis distance 

at the image plane, First-order chromatic aberration are proportional to the 

fractional energy spread, ∆U/U, at the image plane, and to the first power of α  

 or r. As in the figure (2.8) a simple principals of the chromatic aberration 

defect in light optics is shown [ El-Kareh and El-Kareh 1970] . 
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Figure 2.8 represents the chromatic aberration 

 

 

          Since the charged particle wavelength λ is inversely proportional to the 

square root of the accelerating voltage U, the accelerating voltage must be 

very stable to have a narrow spread of wavelengths (i.e. energies). If ∆U 

denotes the departure from the desired accelerating voltage, then ∆U/U must 

not be greater than 5×10-5 in high resolution instruments [Hawkes 1972]. This 

ratio is known as a relative energy spread which is positive number, usually 

given as the characteristic parameter of the source. The chromatic aberration 

then can be reduced in two different ways; either by reducing the relative 

energy spread of the source or by reducing the aberration coefficient of the 

lens. 

 

              The chromatic aberration coefficient Cco is defined by the following 

equation [Szilagyi 1985]: 

    Cco = (Uo
1/2 / r'o

2) ∫
i

o

z

z
{(U'/2U) r'r + (U"/4U)r2}U -1/2 dz …………… (2.15)   

where  zi is the axial coordinate of the image space, zo    is the axial coordinate 

of the object coordinate, r and r' are the solution of the paraxial ray equation 

and U is the electrostatic potential distribution along the optical axis . 

 

White light 
Red beam 

Blue beam 



  

 - ٤٣  -

          The chromatic aberration results from the dependence of the optical 

parameters of the charged – particle lenses on the energy of the beam being 

focused. If the angle of convergence of the rays is α, then the radius of least 

confusion dc (i.e. diameter of chromatic aberration disc), is given by [Ahmad 

1993]: 

 

                 
         dc = α [∆f / ∆p] ∆p = α f [p/f] [∆f / ∆p] ∆p/p ………. (2.16) 
 
where p and ∆p are the momentum and the change in momentum of the 

incident parallel beam of free charged particles respectively, and (f) is the 

focal length of a perfect lens . 

But the coefficient of chromatic aberration Cc is given by[Lawson 1977] ; 

   
        Cc/f = (1/2) (p/f) (∆f / ∆p) …………………… (2.17) 
 
Then the disc can be written as: 
 
                       dc = 2 Cc α ∆p/p ………………. (2.18) 
 
Since the present work deals with the non-relativistic case; the disc may get 

the new definition [Lawson 1977]: 

 
                         dc = Cc α (∆U / U) ………………. (2.19) 
 
where U is the potential energy through which the charged – particles have 

been accelerated to reach the momentum p, and ∆U refers to half the total 

energy spread in the beam. It can be seen from the above equation that dc is 

proportional to the initial slope of the outermost ray and the relative energy 

spread (∆U / U). From equations (2.14) and (2.19) one notes that at low values 

of the acceptance angle the performance of the optical system is limited by its 

chromatic aberration, where at larger apertures spherical aberration becomes 
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the dominant limiting factor.The total diameter of the aberration disc dt  is 

given by[Szilagyi and Szep 1988] : 

   

               dt = √  ds
2
 + dc

2                    ………………. (2.20) 
 
 
 
2.6.2 Aberration of System of Lenses 
 
          According to the case of axial aberration (i.e. aberration due to paraxial 

approximation), the expression for any particular aberration coefficient of the 

lens system contains the corresponding coefficients of the individual lenses, 

and they do not depend on the off-axis aberration coefficients of the individual 

lenses [Szilagyi 1988].   

  

          The spherical aberration coefficients of the system referred to the object 

can be expressed as[Szilagyi 1988]: 

   

Csso = C'so+ {[U (zo)-Uo]/ [U (zm)-Uo]}
3/2 C"so / M'4  

        = C'so + {[U (zo)-Uo]/ [U (zi)-Uo]}
3/2 C"si / M4 ……………. (2.21) 

where zm is the coordinate of the intermediate image, M' is the magnification 

of the first lens in the system of two lenses, M is the total magnification. 

 

           It is clear that the first expression contains only coefficients referred to 

the object, while the overall magnification M appears in the second 

expression. In the case of two lenses with M' is infinitely large and M" 

(magnification of the second lens) is zero, only C'so and C"si are finite. 

Therefore, the second part of the above equation must be used, and the 

magnification of the system is given by [Szilagyi 1985-1988]:  
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 M = - f"1 / f'2 = - (n1 f"2)/ (n2 f'1) = - 21 / UU . (f"2 / f"1) ….. (2.22) 

where f'1 and f"1 are the object side and image side focal lengths of the first 

lens in the system, and f'2 and f"2 are the object and image side focal lengths 

of the second lens in the system respectively. Hence, n1  and n2  are the 

refractive index of the lens. The spherical aberration for the system is thus 

given by the following equation: 

           Csso = C'so ∞ - (f'1 / f"2) C"si (M=0) / M ………………… (2.23) 

        

 

           The spherical aberration coefficient will be smaller incase of infinite 

magnification .It is easy to generalize the above result for a chain of lenses by 

simply considering combinations of lens pairs as single lenses and using the 

procedure sequentially .By the same method , similar expression with some 

differences exist in determining the chromatic aberration coefficient . The 

chromatic aberration coefficients of the system referred to the object can be 

expressed by the following equation [Szilagyi 1988]. 

 

        Csco = C'co+ {[U (zo)-Uo]/ [U (zm)-Uo]}
3/2 C"co / M'4  

                = C'co + {[U (zo)-Uo]/ [U (zm)-Uo]}
3/2 C"ci / M4 …………. (2.24) 

where the coefficients C'co and C"co are functions of the magnifications M' 

and M", respectively. The magnification M" on the other hand, depends on the 

separation of the two lenses from each other. Therefore, the chromatic 

aberration coefficient of the compound lens is a complicated function of the 

system parameters. For a system the chromatic aberration coefficients are 

given as follows: 

               Csco = C'co ∞ - M (f'1 / f"2)
3 C"ci (M=0) ………………… (2.25) 
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          The spherical aberration disc diameter in the image plane can be written 

in the following form: 

                dsi = M" dsi1 + dsi2 ………………………………….. (2.26) 

where,dsi1= M' C'so tan3 (α1) is the spherical aberration disc diameter of the 

first lens and  dsi2 = M" C'so tan3 (α2) is the spherical aberration disc diameter 

of the second lens α1 and α2 are the acceptance half angle of the charged 

particles for the first and second lenses respectively . 

 

       The chromatic aberration disc diameter is given by: 

                dci = M" dci1 + dci2 ………………………………….. (2.27) 

 

where, dci1= M' C'co tan (α1) ∆Uo / {2[U (zo)-Uo]} is the chromatic aberration 

disc diameter of the first lens and  dci2 = M" C'co tan (α2) ∆Uo / {2[U(zm)-Uo]}  

is the chromatic aberration disc diameter of the second lens. 

 

       The energy spread ∆Uo expressed in electron volts, thus the above 

relationships indicate that the diameter of spherical (or chromatic) aberration 

disc of the system is the sum of the diameter of the spherical (or chromatic) 

aberration disc of the first lens magnified by the second lens and the diameter 

of the spherical (or chromatic) aberration disc of the second lens. The 

diameters of the spherical and chromatic aberration discs determine the 

diameter of the total aberration disc [Szilagyi 1988]: 

 

               dti = √  dsi
2
 + dci

2                    ………………. (2.28) 
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2.7 Figures of Merit 

           There are many design problems (for different applications) in which 

the conditions (geometrical and electrical or magnetic parameters) can be 

varied to optimize the quality of this design (the final image).The number of 

these geometrical and electrical parameters may be quite high , where the 

requirement of different applications may be totally different [Ahmad 1993]. 

            

           Therefore, to select the best lens, a suitable dimensionless figure of 

merit may be constructed for the problem and then to choose the lens with the 

smallest acceptable value of this figure of merit. One common requirement of 

all applications is to reduce the aberration to as small as possible. It seems 

then that the absolute figure of merit of an optical system is the size of its 

aberration disc. By using the known scaling laws (scaling down) one can 

make the aberration disc as small as possible. A reasonable suggestion has 

been made by relating the radius of aberration disc to another quantity that has 

the same dimension (dimension of length). Other factors can be used when 

selecting the figures of merit , for comparison of different lenses one may 

choose quantities like , the length of the lens field ( field from zo to zi ), the 

object or the image –side focal length (fo to fi respectively), the probe radius 

etc. Important factors are the dependence of the size of the aberration disc on 

the magnification. Therefore, according to [Szilagyi 1988] the aberration 

coefficients of different lenses with equal refractive powers must be compared 

for the case of infinite magnification at equal maximum fields or potential 

ratios , or one can use for each problem its own individual: the figures of merit 

[Harting and Read 1976].In this investigation the figures of merit taken into 

consideration are the relative spherical aberration coefficient Cs/f and the 

relative chromatic aberration coefficient Cc/f which give a dimensionless 

quantity. 
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2.8 Image Analysis by spot diagrams 

           A spot diagram is a collection of ray data resulting from tracing a large 

number of rays from a single object point through several aperture 

coordinates. The aperture coordinates are normally set up to form a square 

grid in the entrance pupil. Spot diagrams can be processed in a variety of ways 

to provide either geometrical or diffraction analyses of optical images. 

Although spot diagrams involve ray tracing, many aspects of spot diagram 

analysis involve considerations of statistics or numerical analysis that have 

little to do with the techniques used to trace rays. The image of a point by a 

lens that is not diffraction limited is often described by its geometrical spot 

size, defined to be the root mean square (i.e. rms) spot radius (not diameter). 

The rms spot size is defined as the square root of the variance of the 

distribution. This quantity does not indicate the fractional energy in the spot, it 

has an intuitive appeal and its square is widely used in optimization merit 

functions [Forbes 1988]. Calculating the spot size is thus a matter of 

considerable importance in present optical design software.  

          Rays should be spaced so that each ray represents an equal element of 

solid angle. Various patterns have been used, including circular patterns and 

square grids, neither of which is particularly accurate. In addition, the 

reference point on the image surface must be taken as the centroid of the 

distribution, not the intersection of the chief ray, so that asymmetries in the 

image are properly accounted for. The spot size to be defined by an integral 

equation that represents the limit that would be obtained if the number of rays 

traced approached infinity. Then, if the object point is located at a distance h 

from the axis, and the pupil intersection point is described using polar 

coordinates, one has the following expression for the mean square spot size as 

follows [Sinclair & McLaughlin 1989] : 
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   ..................... (2.29) 

where σ2(h) is the rms (i.e. root mean square) spot size and h is the distance 

from the axis of an object point. Figure (2.9) is shown the essential quantities 

included in spot size determination [Sinclair & McLaughlin 1989] . 

 

 

Figure 2.9 shows the principal spot diagram parameters 
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             The grid used to set up the aperture coordinates of rays in the spot 

diagram is determined by the value of the number of aperture divisions across 

the diameter of the entrance pupil. For systems that have a large numerical 

aperture on the object side, the grid cells are equally spaced in numerical 

aperture, not in entrance pupil coordinates. Figure (2.10) shows the grid 

pattern used in the present work for 10 aperture divisions. The number of 

aperture divisions is not restricted to integer values, but is a continuous 

parameter that determines the size of grid cells in the spot diagram [Hawkes 

and Kasper 1989].  

 

Figure 2.10 represents the grid pattern 
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Chapter Three  
 

Computations and Analysis  

 

The following conditions have been used in the present work for both electric 

and magnetic lenses as follows: 

• Non – relativistic velocities (low energy beams) are assumed for 

charged particles, and just paraxial trajectories are taken into account. 

• The space charge effects are assumed negligible, that is satisfying 

exactly Laplace's equation. 

• The aberrations due to the source of charged particles have been 

neglected. 

• Machining inaccuracies and asymmetries in lens shape are neglected. 

• The initial velocities of charged particles have been neglected. 

     And for magnetic lenses considerations only the following conditions: 

o The influence of any currents is negligible. 

o The relative permeability of the magnetic material can be considered 

infinite. 

 

3.1 Electrostatic and Magnetic spline lenses  

             The cubic spline model is the smoothest interpolating function, so that 

it is quite obvious to use it as a simple model for the representation of 

complicated axial potential distributions. The cubic spline is not the only 

possibility; fifth – or higher –order splines can also be used. The distribution 

along the length L is divided into N intervals by the following cubic 

polynomial: 
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        Uk (z) = ak + bk (zk-zk-1) + ck (zk-zk-1)
2 + dk (zk-zk-1)

3 

        U'k (z) = bk + 2ck (zk-zk-1) +3 dk (zk-zk-1)
2                   ………. (3.1)     

        U"k (z) = 2ck + 6 dk (zk-zk-1) 

 

where U(z) represents the approximated potential distribution for either 

electrostatic or magnetic lens, U'k (z) and U"k (z) are the first and second 

derivatives with respect to z respectively. From the continuity conditions one 

may write equation (2.7) as follows [Szilagyi 1987, 1988]: 

 

        Uk+1 (zk) =  Uk (zk) 

        U'k+1 (zk) = U'k (zk)                   ……………..…….………. (3.2)     

        U"k+1 (zk) = U"k (zk) 

 

Thus, the coefficients of the spline function can be interrelated by the 

following relationships: 

 

        ak+1 = ak + bk h + ck h
2 + dk h

3 

        bk+1 = bk + 2ck h +3dk h
2                   ……………….. (3.3)     

        ck+1  = 2ck + 6dk h 

 

where h = zk – zk-1 is the length of each interval. It is important to remember 

that the discontinuity of the third derivative and the undefined higher 

derivatives do not cause any problem since one can calculate all the optical 

properties including the aberrations by using the first two derivatives only. 
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3.2 Optimization by dynamic programming procedure (DPP) with the 

aid of artificial intelligence technique (AIT) 

           It is aimed at finding the potential distribution that minimizes the 

aberration integral, at the same time satisfying the differential equation of the 

paraxial rays, and also the constraints imposed by practical requirements.            

By consider the rectangular computational grid as shown in the figure (3.1). It 

defines the domain of existence for the sought distribution function. It is 

limited by the maximum allowable value of the field strength or its 

derivatives. The axial extension is defined by the given length L ,which is 

divided into N equal regions each of which is denoted by k and a length 

interval h = zk – zk-1   = constant ,so that [Ahmad et al 2002]; 

 

              ∆z = zk – zk-1 = L /N =const …………………………. (3.4)                      

                          

 where k = 1, 2, 3… N is the ordinal number of the given region. 

 

               W(z)/∆W 

z/∆z 

Figure 3.1 computational grids for the dynamic programming procedure 
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        This will lead to approximate the unknown distribution U (z) or one of 

its derivatives by a straight line in each region. If W (z) denotes the piecewise 

linear function, then for magnetic lenses one can assume that W (z) = B (z), 

which is equivalent to the piecewise linear model, while electrostatic lenses 

can take W (z) = Ez (z). But the effective approach may to use for the 

piecewise linear function W (z) the highest derivative that appears in the 

aberration integral. Also, assume further that W(z) can take only 2|M |+1 

different values at the boundaries of the regions, where M  represents the 

ordinate dimension of the computational grid. Thus this problem has been 

reduced to that to finding N×(2|M |+1) intersection points of the computational 

grid that will provide the linear segments for the optimized function U (z).The 

present work seeks for a systematic investigation of lenses by varying the 

basic parameters of their potential distribution in the process of construction 

of the spline model. This procedure can be done according to either of the 

following two basic strategies [Szilagyi 1988]: 

1) Considering a class of splines with a fixed number of intervals. 

2) Approximating a certain class of potential distributions by different 

splines. 

      

           Consequently, the paraxial ray equation can be solved in each interval 

numerically. The continuity of the solution requires that the initial values for 

the particle trajectory and its first derivative for each region must be equal to 

their corresponding final values in the preceding region. The contribution of 

each region to the aberration integral can be calculated numerically using 

Simpson's rule. The ordinate dimension of the nodal points at the beginning 

and at the end of each interval is represented by j and i respectively. Then the 

initial and terminal values of the second derivative function in the k-th region 

are given by:  
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                          U"(zk-1) = j ∆U" 

                          U"( zk) = i ∆U"         ……………. (3.5)                      

 

 

where ∆U" is the minimum amount of change of the second derivative, given 

by: 

 

  ∆U"= δ / M    ,     δ: is a priori given number.          ………….. (3.6) 

                             

To ensure the continuity of the spline as well as of its first and second 

derivatives at each of the N-1 nodes, equation (3.3) must be satisfied for the 

coefficients where h is the equivalent as ∆z in equation (3.4).Four coefficients 

of the spline function have to be calculated for each interval. The coefficients 

ck and dk are expressed in terms of i and j as follows [Ahmad et al 2002, 

Harriott2001]:  

 

                       ck = j ∆U" / 2,  dk = (i-j) ∆U" / 6 …………….. (3.7) 

 

While ak is the magnitude of the potential at the starting point, bk represents 

the magnitude of the first derivative of the potential function at the starting 

point of the k-th interval. For the first interval (i.e. k=1) the four coefficients 

were calculated from these definitions, and they were stored in one database 

to revaluated as a part of an expert system. While for the successive intervals 

a, b and c coefficients were calculated from the continuity conditions of the 

spline function and its first and second derivatives. The coefficient d is 

determined by varying the values of i and j. By using artificial intelligence 

technique, an expert system has been established with database list of the 
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entered coefficients to minimize the optical properties according to figures of 

merit. 

         Indeed the present investigation was trying to reconstruct exactly the 

same function that is the subject of our investigation, the spline function. . For 

N intervals there are 4N coefficients , where 3(N-1) of them are calculated 

from the continuity conditions and two of them kept fixed to determine the 

initial magnitude of the potential and to ensure the zero slope condition at the 

beginning of the first interval. Then the remaining N+1 free coefficient are 

varied to search for sub-intervals of sets of coefficients that would be stored in 

unique database of the expert system, which it provides the best and optimum 

optical properties.  

 

3.3 The Synthesis Procedure 

           Optimization by synthesis has always been one of the most ambitious 

goals of charged-particle optics. This approach is based on the fact that in any 

imaging field, it's first and third – order properties are totally determined by 

some axial functions [Ahmad 1993]. 

  

            The axial electrostatic and magnetic scalar potential distribution U(z) 

is represented by a cubic spline function. That is, the solution will be in the 

form of a spline lens. The axial length L of the distribution is divided into N 

equal regions, each denoted by k, where k =1, 2, 3 …, N. For each k-th 

interval, the potential distribution, and its first and second derivatives are 

expressed in the form of a cubic polynomial (equation 3.1). The constraints 

are formulated according to the pre-assigned requirements of the problem. 

Then the objective function that is to be minimized is selected. This function 

will be the coefficient of aberration, which is the most important rule into the 

present work rule-based system called a knowledge base of the expert system.  
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          In the present procedure of our work, a database was established to 

provide storage and retrieval of calculated optical properties (i.e. spherical and 

chromatic aberration coefficients) and optimized potential distributions (i.e. 

electrostatic and magnetic) according to dynamic programming procedure. An 

expert system has been built according to artificial intelligence technique, 

which is called rule-based system [Friedman 2003]. It maintains a collection 

of knowledge nuggets called facts. This collection is known as the knowledge 

base, which is our relational database. 

  

          By using a Jess 6.1 (i.e. Java Expert System Shell-version 6.1) 

programming language and a class modules in VB 6 (i.e. visual basic studio - 

version 6) the present work expert system has been created and setting up the 

user interface. Jess is a tool for building a type of intelligent software called 

expert systems. An expert system is a set of rules that can be repeatedly 

applied to a collection of facts. It is spherically intended to model human 

expertise or knowledge [Menken 2002]. 

 

         A specific set of optical properties (i.e. spherical and chromatic 

aberration coefficients) have been selected according to figures of merit and 

the spline functions (i.e. electrostatic and magnetic potential distributions)with 

their coefficient sets equation ((3.1) and (3.3)) were stored into our knowledge 

base. Our rule based expert system written in Jess is a data-driven program 

where the facts are the data stored in our knowledge base that stimulate 

execution via the inference engine. This engine decides which rules should be 

executed and when [Menken 2002]. Therefore, the present expert system 

automatically performs the field calculation and ray tracing, depending to the 

stored data base (i.e. jess knowledge base) and the following two factors: 

1. The facts of the function to be analyzed (i.e. electrostatic and 

magnetic potential distribution). 
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2. The rule of dynamic programming procedure solutions, which obey 

the given constraints. 

 

Thus, an important rule has been used in our procedure (i.e. jess rule based 

system) is the typical dynamic programming recursive formulation as 

[Kuester and Mize 1973]: 

                    Fn (n, s, x) = g |R (n, s, x), F*
n-1(s')| …………… (3.8) 

where n is an integer denoting the stage of the problem, s is an integer 

denoting the state of the system at n, s' is an integer denoting the state of the 

system at stage n-1 resulting from the decision x, x is the decision being 

evaluated at stage n , R(n,s,x) is the immediate return associated with making 

decision x at stage n when the state of the system is s , F*n-1(s') is the return 

associated with an optimal sequence of the decision at stage n-1 when the 

state is s' and g is the minimal function.  

 

          In the present investigation, the function of F*
n-1(s') will be added to 

R(n,s,x) but on the first stage (i.e. n =1) this term of the function will be 

omitted. At each stage, the results of the recursive formulation are calculated 

for all feasible values of x, and the optimal decisions are returned for 

subsequent use. Dynamic programming starts with a small portion of the 

problem and finds the optimal solution for this part. It then gradually enlarges 

the problem, finding the current optimal solutions from the preceding one, 

until the original problem is solved in its entirety. Considering the recursive 

relation expressed in equation (3.8), the objective function may take the 

following form [Ahmad et al 2002]: 

                      Gik = min | Fijk + Gj (k-1)| …………………. (3.9) 

where Fijk is the contribution of the k-th region to the aberration integral, Gik is 

the coefficient of aberration, and Gj (k-1) is the optimized intermediate value of 

the aberration integral.  
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        The coefficients of the spline function are varied, and then the potential 

and its first and second derivatives are calculated. The paraxial ray equation is 

solved numerically using the fourth order Runge – Kutta method  under pre-

assigned initial conditions of r and r' , where r is the radial component of the 

ion trajectory and r' is its slope when the beam enters the lens field. After 

solving the paraxial ray equation, the constraints should be fulfilled, in order 

to determine the required optical properties (e.g. focal length, maximum 

electrostatic and magnetic potential and aberration coefficients).The 

aberration integrals can be solved numerically by using Simpson rule 

[Chapra and Canale 1998]. 

 

           Among the different values of the coefficients, a minimum is selected 

according to the rules equation ((3.8) and (3.9)) of the knowledge base of our 

expert system. The database stored in the expert system searches over each k-

th interval for a set of spline coefficients equation (3.3) that would lead to the 

axial distribution U(z) for both electrostatic and magnetic potentials, which 

gives a minimum aberration under the given constraints. 

 

          Our expert system in the present investigation which has responded to 

the SELECT statement is being used as one of the SQL (i.e. structure query 

language) statements in our programming, which is embedded in the 

ANALYZER  program. Also, a search engine was created according to a 

given constraints, in order to get an optimum preference as the given figure of 

merit. 
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3.4 Constraints and Optimization 

           It is important that the magnitude of the potential, its first and second 

derivatives and the particles trajectory with its gradients along the optical axis, 

should be carefully taken into account in determining the optimum potential 

distribution. The present optimization procedure is carried out under these 

constraints, and results are determined after fulfilling the given conditions, 

that will limit the potential distribution and its derivatives as follows: 

                    

                         U1<U (z) <U2 ……………… (3.10) 

                         

                          |U'(z)|<U1' ………………… (3.11) 

 

                           |U'(z)| < U1" ………………. (3.12) 

 

where U1 , U2 , U1' and U1" are selected values which stored in the database 

(i.e. jess - rule knowledge base system) as facts of our expert system to be 

evaluated. The potential distribution should be such that the beam trajectory 

would intersect the optical axis outside the effective lens field. Hence, this 

requirement can be formulated as follows:     

  

     r (z) > 0 where   0 < z < L , where L: the axial length  …… (3.13) 

 

              The problem of finding the constraints which can be easily fulfilled 

in the presence of other requirements such as maximum value of the potential 

function will be encountered. This problem is originated from the 

optimization procedure itself since the distribution is always brought back to 

the trivial case when one tries to give it a particular shape [Ahmad et al 2002, 

Harriott 2001 and Amos et al 1988].  
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3.5 Computational Grid 

          The rectangular grid is introduced to define the domain of existence of 

the solution for the distribution with the aid of dynamic programming and 

artificial intelligence techniques. Then two, out of four of the spline 

coefficients namely ck and dk are related with the variation of the ordinate 

position of the nodal points of the grid along the distribution at each interval. 

The variation of ck coefficients at the first interval (i.e. k=1) and all the dk 

coefficients along the distribution are governed by the variations of i and j as 

in equation (3.7).These coefficients are restricted by the domain and the rate 

of change at which the magnitude of the second derivative function varies. 

Instead of testing an infinite number of coefficients for the spline function that 

may fulfill the given requirements , 2|M|+1 set of them for each nodal point at 

each interval is examined and the ith fulfills the requirements were selected 

and stored in the database (i.e. jess knowledge base)of our expert system. The 

result is 2|M|+1 sets of coefficients for each of the N intervals. 

 

             Our procedure in the present work starts at k=1 with the initial 

condition Gj0 = 0, which expresses the simple fact that the contribution of the 

region beyond the object to the aberration integral is zero. Therefore, the 

search in the first region is reduced to comparing different Fij1 values 

(equation 3.9). The full procedure starts with determining the solution of the 

paraxial ray equation and the contribution to the aberration integral for each 

stored database pair (i, j) values. For each i the corresponding j value that 

minimizes Fij1 is selected and stored as unique database in the jess-knowledge 

base with the terminal values of the solution of the paraxial ray equation. 

After having done this for each of the 2|M|+1 possible values of i for the first 

interval, the procedure is repeated for the second interval keeping in 

knowledge base (i.e. rule-based expert system) that the recursion relation of 
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the minimized objective function equation (3.9) is not trivial anymore and 

what was i for the first interval becomes j for the second interval. 

 

          This procedure is performed from one interval to another recursively 

toward the image space until reaching the end of the computational grid 

(k=N). It will give rise to a maximum of 2|M|+1 optimum distribution, and the 

one that fulfills the requirements is selected by using jess (i.e. java expert 

system shell) language compromised with SQL (i.e. structure query language) 

statements of our expert system. 

 

           Figures (3.2) and (3.3) are shown the computational grid for the 

dynamic programming procedure with the aid of artificial intelligence 

technique. They defined the domain of existence of the solution for the sought 

distribution function W(z) (i.e. the spline function equation (3.1) for both 

electrostatic and magnetic potential distributions). The abscissa of those 

figures represents the axial extension of the lens along which it's potential and 

field distribution exists. The ordinate shows the position of the nodal points 

where the axes of the grid intersect. These points control and fix the value of 

the spline function coefficients and consequently the potential and electric or 

magnetic field values, to be consistent with the given constraints.  

 

          The dynamic programming procedure examines each nodal point at the 

end of each sub-interval with all other points at the beginning of the same 

interval. By using artificial intelligence technique, the automatic search for the 

set of the spline coefficients that lead finally to the minimum value of the 

aberration integral. This procedure may inter-relate the two nodal points in 

particular that fulfill the aim of the search and discard the others. It may also 

occur that some of optimized solutions cut out due to the fact that last nodal 

point in the particular solution in the kth  interval either doesn't permit an 
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optimum solution in the next interval (i.e. (k+1)th  interval) or it cannot satisfy 

the given constraints. The optimum solution that was extracted from among 

similar ones is the solution that satisfies the design requirements (i.e. the jess 

rule knowledge base equations (3.8) and (3.9)) and all given constraints. It 

could choose a particular solution starting from the last nodal point which 

existed in the solution and tracing it back by using the jess rule knowledge 

base, until reaching the initial nodal point. 

 

           The computational grid has been taken and defined over twenty 

intervals only for the present work. This is one of the difficulties to 

incorporate one of synthesis procedure (i.e. dynamic programming procedure 

in our work) into our expert system. Basically, the knowledge base (i.e. 

database of our rule-based system) has limited capacity of memory stored in 

the personal computer hard drive. It may overcome this difficulty by using 

another type of jess as a programming language for determining the expert 

system. This may happen in future by take very sophisticated programming 

language called sweet jess [Grosof et al 2002].    

       

Our expert system requirements are depending on three main steps: the speed 

in the processing unit (i.e. CPU speed 2.5 or more MHz), the capacity of the 

personal computer random accessing memory (i.e. RAM ~ 512 full caches) 

and operation system availability (i.e. windows XP (pack 2) or server2003).   
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Figure (3.2) represents computational grid of the DPP with the aid of AIT 

for electrostatic lenses defined over twenty sub-intervals. 
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Figure (3.3) represents computational grid of the DPP with the aid of AIT 

for magnetic lenses defined over twenty sub-intervals. 
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3.6 Simulation Software Description 

          Two software packages have been used to design the focusing lenses 

that can be used in the ion beam lithography system. One is called CADION 

package, and the other is a SIMION simulator.   

3.6.1 Computer Aided Design for ION system (CADION) 

        The increasing demand for smaller structures for fundamental physics 

research as well as for faster and higher density electronic circuits pushed the 

fabrication technology in recent years to dimensions in the nanometer-scale 

region. For the fabrication of structures with extremely small details both 

pattern definition and pattern transfer play a crucial role. The ion-beam 

lithography system is widely used for the pattern definition [Romijn and van 

der Drift 1988]. As will be shown in the present work, a simulation and 

optimization procedure have used to design lenses with relatively large overall 

dimensions of the order of a few millimeters and of a medium resolution of 

the order of (30 – 100) nm. 

           The term optimization covers a wide range of methods of finding an 

optimal solution to a problem through the use of a computer.  Optimization 

usually consists of two components: 

 1. A program as one package that produces an ultimate output given inputs 

such as data and parameters. 

 2. A measure of how good the solution is, that is termed as one of the 

following: objective function; criteria; goodness of fit.  

 

           Therefore, a computer programs have been written and used as a 

powerful techniques in the present work. These subroutines comprise one full 

package called (CADION) which is stand for (Computer Aided Design for 

ION system) .This package has been described as a class module program 
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written in visual basic-6 studio and designed as one simulator for getting a full 

simulation of whole processes. This program has been called (CADION 

Simulator package), which comprises many subroutines as follows:  

 

a- Accomplished program for the fourth order Runge –Kutta method, also 

this is used for computing trajectories when the initial conditions are given. 

The full details and outputs are given in a tabulated form (set of data) inside 

the PC stored as one database. 

b- Accomplished program to analyze all set of stored data, which can be 

given with many results. This program is called (CADION ANALYZER ), it 

analyses all optimized field distributions (i.e. electrostatic and magnetic 

fields), and it has an ability to select the best formulae fitted to the 

optimization procedure (i.e. dynamic programming).This analyzer is 

involving both techniques i.e. artificial intelligence and dynamic 

programming. Also it is a search engine depending on the SQL database 

statements (i.e. SELECT statement).The programming language is classified 

into two categories: [JESS – java expert system shell and visual basic studio 6 

as it to make the user interface], this program is a knowledge base with search 

and SQL server connector for the expert system used. (see section 3.3) and 

(see the appendix)  

c- Accomplished program for computing spherical and chromatic aberration 

coefficients, this is done by using Simpson’s rule integration method.  

d-  Accomplished program to draw (2 and 3 Dimensions) all kind of inputs as 

optimized field distributions (both electrostatic and magnetic fields). 

e- Accomplished program to convert and read all outputs into another 

application, Visual Basic Application programs as an Excel sheets were used 

in this investigation [Chapra and Canale 1998]. This program has a search 

engine to facilitate work with multi formulae that could be stored in the 

Analyzer database.  
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f- Accomplished program to calculate and plot all outputs into another GUIs, 

aberration spot size diagrams were plotted and analyzed in this investigation.  

 

            The inputs of the programs processed and analyzed the values of the 

optimized potential distribution U (z) for both (the field E (z) and B (z) 

distributions). Otherwise, the outputs obtained the axial potential distributions 

and their first and second derivatives respectively. 

  

Consequently, the above cases are clearly studied within more accurate 

investigations. These multi times iterations and testing examinations are 

composed in the present work, as well as the comparisons have been imposed 

in all results and outputs. This work may lead to get new estimations and 

predictions in the charged particle optics; also it may give a raise to consider 

most of the results as prospective aspect for entering the non classical 

technology – the nano technology. 

 

 

             The conditions associated with the required system  are given at two 

different values of z ( i.e. boundary conditions zo and zi) .Since the system is 

linear , the dynamic programming accompanied with artificial intelligence 

technique methods are the better choice to be taken .These methods are 

adopted in this work when the values of the axial potential are pre-specified at 

zo and zi .It is seem worthwhile to state that by the above procedures , one can 

determine the axial potential distributions required to produce a suitable 

trajectories. The Runge-Kutta (RK) method of the fourth order is used to 

solve the system equations which can be given the trajectories under the given 

constraints. 
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           Once the tests have been completed and overwhelming the standard 

field distributions, the CADION analyzer has been used to give the best 

distributions within a specific parameters according to the initial conditions zo 

to zi; the range of the optical axis was (-10 to 10) mm by an increment of (0.1) 

mm per each step.  

 

            Therefore, according to the aim of this work the investigations have 

been classified into two categories:- 

 

 Electrostatic field distributions (the designing  of electrostatic 

lenses ) 

 Magnetic field distributions ( the designing of a magnetic 

lens ) 

 

       The spherical and chromatic aberration coefficients have been calculated 

within the CADION simulations, which gives the main indications of the best 

electrode design of each model .Four different cases in electrostatic lenses and 

two cases in magnetic lenses have been investigated in this work. Many 

factors and variables have to be calculated to make sure any of results among 

the others were corrected. Also, the dynamic program is used for those factors 

in optimizing process supported by artificial intelligence technique. So that, 

considerable amount of errors have obtained were neglected in the 

accumulation of data. Obviously, most of the formulae have taken the 

optimized results from the CADION simulator subroutines. 
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3.6.2 ION and electron optics SIMulation package (SIMION) 

           Instead of using Munro's programs [Munro 1975] for checking up the 

present work results and analyzed them into more accurate values, the well     

known and more updating simulator SIMION 7.0 package has been used, by 

which is the latest version for getting precise values and excellent optimized   

formulae. Present work results were imported into this simulator as a stored   

database; full computerized manipulation has been applied to get same precise 

results as in CADION package simulations, as well as plotting and                  

configuring electrodes / pole - pieces in three dimensions graphs.   

 

       SIMION 3D version 7.0 is a Windows PC based ion optics simulation 

program designed to study and analyze ion optics in both two and three          

dimensional modes or views. Electrostatic and magnetic potential arrays can   

be studied with this software to determine their effect on ion trajectories. It      

incorporates an ion optics workbench strategy that allows you to size, orient , 

and position .The original version of SIMION was an electrostatic lens           

analysis and design program developed by McGilvery  at Latrobe                   

University Bundoora Victoria, Australia, 1977.   

 

          SIMION for the PC was   developed at the Idaho National Engineering 

Laboratory.SIMION utilizes potential arrays to define electrostatic and          

magnetic fields.  These arrays can be either electrostatic or magnetic. Also it is 

an     array of points organized so that the points form equally-spaced square 

(2D-two dimensions) or cubic (3D-three dimensions) grids.  Equally-spaced  

means that all points are equal distances from their nearest neighbor 

points. To summarize the present work plan as a brief flow chart, describing 

the optimization procedures with all input and outputs, figure (3.3) shows the 

flow chart of the optimization steps for the present investigation.   
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Figure (3.3) represents the optimization schematic diagram of the present 
work software. 
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3.7 Reconstruction of electrodes and pole pieces  
 
 
         Once the axial field distributions of highly favorable optical properties are 

determined, the next step is to find the electrodes profile that would generate 

such distributions. An assumption is made that the higher derivatives of the 

potential function which do not appear anywhere in the expressions of the focal 

properties should not affect the potential distribution either. The procedure is 

elementary, it may add an assumption that "the higher derivatives at the 

boundaries of the regions". Setting the potential equal to U for an arbitrary point 

with coordinates r and z situated in the kth region, and then the equation of an 

equipotential surface is obtained to be as follows [Szilagyi 1984 and 1988]: 

    

                        r2 = 4(U (z) – U)/U" (z) ………………… (3.14) 

  

where U (z) is the cubic function. Both U (z) and second derivative U" (z) have 

different expressions for each region but they are both continuous functions for 

the entire length of the optical system. By using this simple formula given in 

equation (3.14) , one would be able to reconstruct the equipotential surfaces and 

thus the electrodes and/or pole pieces that will provide the same functions 

U(z) , U'(z) and U"(z) , and thus the same first order properties and third order 

aberrations as the original theoretical distribution obtained from the 

optimization technique. 

 

          The electrodes (pole pieces) constructions were built from the potential 

distribution by using the approximated series of the potential equation (eq.3.1). 

The final electrodes shapes have represented equipotential surfaces according to 

ad-hoc assumption. SIMION simulator is used to find such representations of 

electrodes (pole pieces).The finite size of the physical system is a limitation to 

the accuracy of reconstruction because the electrodes must be cut somewhere at 
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a finite distance from the axis to limit the maximum value of (r ) to a realistic 

size, usually half of the total length of the focusing element. Thus parts of the 

electrodes (or pole piece) are omitted.  

 

3.8 Spot Diagrams and Spot size 

          Having computed the aberration coefficients, it is useful to be able to plot 

the shape of the aberrated beam at various locations in the image plane, in the 

form of spot diagrams. Those diagrams are very simple to generate, it could 

take a bundle of rays uniformly distributed in the aperture plane. The spot size 

depends on the aberration coefficients of the lens which in turn, depend on the 

magnification, the potential at the target, and the half acceptance angle α 

subtended by the cone of particles at the spot. Then probe disc radius rii can be 

added in quadrature as [Szilagyi 1984 and 1988]: 

 

              r2ii = r2gi + (rsi/4) 2 + (rci)
 2 + (rai)

 2 ………………….. (3.15) 

 

where the radii of the Gaussian image (rgi), (rsi and rci) are the spherical and 

chromatic aberration discs radii and (rai) is the Airy disk, respectively. The 

formulae of each component in equation (3.15) are described as follows: 

• rgi= (I/bi)
1/2 / (π α) ……………………………… (3.15.a) 

• rsi=M Cso tan3 (α)   ………………………………..(3.15.b) 

• rci=M Cco tan (α) ∆Uo / {2 [U(zo)-Uo]} …………… (3.15.c) 

• rai=0.6 λi / sin (α)      ……………………………… (3.15.d) 

 

where the I is the total current of the Gaussian beam and bi is the value of the 

brightness at the image, M is the magnification and (Cso and Cco) are the object-

side spherical and chromatic aberration coefficients, respectively. Also, ∆Uo is 
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the total energy spread of the beam and λi is the wavelength at the image plane 

and α is the half acceptance angle of the ion beam. 

 

        Since the ion source was not included in the present investigation aims, 

CADION package software has been neglected [rgi] and [rai]. Therefore, it uses 

enhanced spot diagrams that contain angles and path lengths in addition to the 

intersection coordinates of rays with the image surface. This enables the 

subroutines to carry out focus-shifting operations without tracing additional 

rays. Spot diagrams in this code are stored in memory (i.e. jess rule-base [the 

knowledge base] of our expert system), making computations of image 

evaluations that may use them very fast. The diameter of the beam transmitted 

through the system in computing a spot diagram is normally determined by the 

entrance beam radii.  

 

       Therefore, the probe radius to determine the spot size (i.e. equation (3.15)) 

has been rewritten as follows: 

 

              r2ii = (rsi/4) 2 + (rci)
 2          ……….………………….. (3.16) 
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Chapter Four 

Results and Discussion 
  

        Both electrostatic and magnetic lenses have been investigated in the 

present work in two, three and multi-lens system. The axial potential (or field) 

distributions were optimized by using the combined dynamic programming 

procedure (DPP) and artificial intelligence technique (AIT), figure (4.1) shows 

a schematic diagram of our investigation.  

 

         The paraxial ray equation was solved numerically by using Runge- Kutta 

method. The aberration integrals (spherical and chromatic) were solved by 

using the numerical integration method of Simpson's rule. The optical 

properties (i.e. the aberration coefficients, focal cardinal points) have been 

investigated under infinite magnification condition. Also, they were normalized 

in order to be able to make a meaningful comparison among all results. The 

present analysis and optimization procedures are considered a nano scale 

features, which is included by the given results accuracy limitations of the 

written dynamic program package (i.e. CADION package).These limitations are 

determined by the following characteristics: 

• Numbers precision is fifteen digits (i.e. 15 digits). 

• Number of iterations allowed are up to (32767) times. 

• Largest allowed positive number is (1.79769*10308). 

• Smallest allowed negative number is (2.22507*10-308). 

• Largest allowed negative number is (-1*10-307). 

• Smallest allowed positive number is (2.29*10-308). 
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Figure (4.1) shows the schematic diagram of our work 

Start 

The dynamic programming procedure 
 

Using the cubic spline model to find the optimized 
formulae and parameters of the dynamic coefficients 

according to the given constraints, by applying  
(The class module of the visual basic studio 6) -VB 6 

1 

Artificial intelligence technique 
 

Building a huge data base which represents as a 
knowledge base (KB1)of a rule – based engine to 

make our "expert system", by using 
 (Java expert system shell)-JESS 6.1 

  

2 

SIMION 7.0 3D has been used to draw three dimension graphics of the electrodes and 
pole pieces, and the optimized design, which they imported from the saved knowledge 
base (i.e. database).  
Visual basic application program is converting the stored data into (*.xls) files and 
calculate and draw spot size diagrams.  

Mixing both methods 1 and 2 together to find our work optimization 
method according to the given rules and constraints, this package has 

the ability to search through the knowledge base by using – jess 
engine .Which is extracted all the optimum formulae according to the 

given figure of merit (i.e. as small as spherical and chromatic aberration 
coefficients), and saving those data (KB) as (*.txt ) files in our data base. 

(See chapter 3).CADION package 
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4.1 Single lens design 

         Simulations with different parameters have given the spherical and 

chromatic aberration decreased. The half acceptance angle α has a value = 

5×10-3 rad and the relative accelerating voltage ∆u/u for ion beam focused is 

taken the value =5×10-5 for very high resolving power instruments [Hawkes 

1972]. 

 

4.1.1 Electrostatic lenses 

The axial potential distributions along with first and second derivatives were 

investigated according to the cubic spline model by using the dynamic 

programming procedure for twenty intervals. These distributions have been 

used to make a comparison for getting the minimum optical properties to the 

optimized axial potential distributions were obtained by using the dynamic 

programming procedure with the aid of artificial intelligence technique. The 

results of this procedure are shown in figures (4.2),(4.3),(4.4) and (4.5). 
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Figure (4.2) the relative axial potential distribution and its first and second derivatives u(z) 
and u'(z) for unipotential lens (1) operated in deceleration mode obtained by the dynamic 
programming procedure. 
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Figure (4.3) the axial potential distribution and its first and second derivatives u(z)and u'(z) 
for unipotential lens (2) operated in acceleration mode obtained by the dynamic 
programming procedure. 
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Figure (4.4) the axial potential distribution and its first and second derivatives u(z) and u'(z) 
for immersion lens obtained by the dynamic programming procedure. 
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Figure (4.5) the axial potential distribution and its first and second derivatives u(z) and u'(z) 
for diaphragm lens obtained by the dynamic programming procedure. 

 

Table (4.1) summarized the dynamic parameters of the axial potential 

distributions which were investigated by using the dynamic programming 

procedure according to the cubic spline model for the given electrostatic lenses. 

 
 

Table (4.1) the axial potential distributions cubic spline coefficients of the 
given electrostatic lenses by using the dynamic programming procedure. 

Lens Type 
Cubic spline 
coefficients 

a b c d 
unipotential lens (1) 100 0.1 2.0 15 

unipotential lens (2) 0.8 0.001 1.0 0.1 
immersion lens 0.5 2.0 1.0 0.0 

diaphragm lens 0.8 0.009 2.0 0.04 
 
         The four types of the optimum axial potential distributions with its first 

derivative for the electrostatic lenses have been determined by using the 

dynamic programming procedure and artificial intelligence technique operated 
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with the acceleration and deceleration modes depending on the given 

constraints equations (3.10),(3.11) and (3.12) respectively, are shown in figures 

(4.6, 4.7, 4.8 and 4.9) .The table (4.2) has given the optimized formulae and 

their dynamic parameters, which has been obtained by the dynamic 

programming procedure and artificial intelligence technique.  

 

 

Table (4.2) the optimized axial potential distributions with their dynamic 
parameters of the given electrostatic lenses by using DPP with the aid of AIT. 
 

Lens Type 
Optimized Axial Potential 

Distribution Formula 

Dynamic Parameters 
Of Sub-intervals 

a b c d 
unipotential lens (1) a*tanh (b*z^c) +d 80 0.04 2 12 

unipotential lens (2) a*exp (-b*z^c)/cosh(z-d) 0.9 3 5 0 

immersion lens a*tanh(b*z^c)+d 0.5 1.5 1 0 

diaphragm lens a*tanh (b*z^c) +d 0.9 0.008 2 0.01 
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Figure (4.6) the optimum axial potential distribution and its first derivative u(z) 
and u'(z) for unipotential lens (1) operated in deceleration mode obtained by the 
dynamic programming procedure and artificial intelligence technique. 
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Figure (4.7) the optimum axial potential distribution and its first derivative u(z) 
and u'(z) for unipotential lens (2) operated in acceleration mode obtained by the 
dynamic programming procedure and artificial intelligence technique. 
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Figure (4.8) the optimum axial potential distribution and its first derivative u(z) 
and u'(z) for immersion lens obtained by the dynamic programming procedure 
and artificial intelligence technique. 
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Figure (4.9) the optimum axial potential distribution and its first derivative u(z) 
and u'(z) for diaphragm lens obtained by the dynamic programming procedure 
and artificial intelligence technique. 
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Figure (4.10) shows the trajectories along the relative optical axis for the 

optimized electrostatic lenses under infinite magnification condition.  
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Figure (4.10) the ion beam trajectories of electrostatic lenses computed by 
using dynamic programming and artificial intelligence technique under infinite 
magnification condition of the four types of lenses. 
 
 
         The following figures (4.11, 4.12, 4.13 and 4.14) show the relative 

spherical and chromatic aberration coefficients [Cs/fo and Cc/fo] against relative 

values of potential ratio U(z)/Uo for the optimized electrostatic lenses. 
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Figure (4.11) the relative spherical and chromatic aberration coefficients of the 
unipotential lens (1) for a potential ratio U (z) /Uo. 
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Figure (4.12) the relative spherical and chromatic aberration coefficients of the 
unipotential lens (2) for a potential ratio U (z) /Uo. 
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Figure (4.13) the relative spherical and chromatic aberration coefficients of the 
immersion lens for a potential ratio U (z) /Uo. 
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Figure (4.14) the relative spherical and chromatic aberration coefficients of the 
diaphragm lens for a potential ratio U (z) /Uo. 
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4.1.2 Electrode reconstruction  

         The electrodes reconstruction processes have been made within the 

following four types of optimized electrostatic lenses obtained by the dynamic 

programming procedure with the aid of artificial intelligence technique as 

follows:- 

• Unipotential lens (1)  operated in deceleration mode , fig.(4.15) 

• Unipotential lens (2 ) operated in acceleration mode ,fig.(4.16) 

• Diaphragm lens ,fig.(4.17) 

The following figures (4.15), (4.16) and (4.17) show three-electrode lens of the 

optimized axial potential distributions in two dimension profiles. SIMION 7.0 

simulator has plotted the configurations of such graphs in three dimensions. 

Figures (4.18), (4.19) and (4.20) give those electrodes of the optimized lenses 

(unipotential lens (1), unipotential lens (2) and diaphragm lens), respectively. 
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Figure (4.15) the electrodes profile for a three-electrode unipotential lens (1) at 
energies 0.92U(o), 0.12U(o) and 0.92U(o) respectively. 
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Figure (4.16) the electrodes profile for a three-electrode unipotential lens (2) at 
energies 0.006U(o), 0.9U(o) and 0.006U(o) respectively. 

 

Figure (4.17) the electrodes profile for a three-electrode diaphragm lens at 
energies U(o), 0.002U(o) and 0.608U(o) respectively. 
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(a) 

 

(b) 

Figure (4.18) three-electrode profile for unipotential lens (1) by using SIMION 
7[(a) total profile and (b)cross section]. 
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(a) 

 
(b) 

 
Figure (4.19) three-electrode profile for unipotential lens (2) by using SIMION 
7[(a) total profile and (b)cross section]. 
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(a) 

 
(b) 

 
Figure (4.20) three-electrode profile for diaphragm lens by using SIMION 7[(a) 
total profile and (b)cross section]. 
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         The immersion lens with an optimized axial potential distribution as in 

figure (4.8) would get two electrodes taken the potential at the range amount of 

about U(o) and 0.5 U(o) respectively. Figures (4.21) and (4.22)  show our the 

immersion two electrodes lens profile (i.e. two dimensions profile) ,as well as 

three dimensions graphic electrodes shape has been plotted by using SIMION 7. 
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Figure (4.21) the electrodes profile for a two-electrode immersion lens at 
energies U(o) and 0.5U(o) respectively. 
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(a) 

 

(b) 

Figure (4.22) two-electrode profile for immersion lens  by using SIMION 7[(a) 
total profile and (b)cross section]. 
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4.1.3 Magnetic lens design 
 
        In present work only one case of a magnetic lens has been designed. The 

optical properties (i.e. the relative spherical and chromatic aberration 

coefficients) are characterized by the dimensionless parameter (k2d2), where k2 

as in paraxial ray equation (2.4) and d is the field half-width, in which is 

determined by the shape of the pole pieces and by the degree of saturation. The 

axial flux density distribution was optimized like Grivet-Lenz model for 

magnetic lenses, which it can be used for the description of unsaturated lenses.  

   

         The optimized formula of the axial magnetic field distribution (i.e. the 

axial flux density distribution B(z)) was obtained by using the dynamic 

programming procedure with the aid of artificial intelligence technique included 

in CADION package. Figure (4.23) and table (4.3) are shown the optimized 

field distribution with its first derivative and its optimized formula respectively. 

The maximum value has been taken in our work for the axial flux density 

distribution Bmax is equal to (6.0) mTesla. For future work optimization will be 

done to get a formula depending on the magnetic permeability µ in 

ferromagnetic materials as a function of the optical axis and radial.  

  

Table (4.3) the optimized magnetic lens formula with its dynamic parameters 
by using DPP and AIT.  

Lens Type 
Optimized Flux 

density Distribution 
Formula 

Dynamic Parameters 

a b c d 

magnetic lens (1) 
 a*sech (z^c/ b) +d Bmax 2.0 1.0 0 
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Figure (4.23) the optimum axial magnetic flux density distribution B(z) with its 
first derivative for the given magnetic lens (1) obtained by the dynamic 
programming procedure and artificial intelligence technique. 
 

 

 

Figure (4.24) shows the trajectory along the relative optical axis for the 

optimized magnetic field obtained in table (4.3). Figure (4.25) shows the 

relative spherical and chromatic aberration coefficients Cs/fo and Cc/fo -

respectively, as a function as the dimensionless parameter k2d2 which related to 

the half-width d for the optimized magnetic field. Table (4.4) gives the values 

of the relative aberration coefficients and the dimensionless parameter k2d2. 
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Figure (4.24) the ion beam trajectories of magnetic lens (1) under infinite 
magnification condition. 
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Figure (4.25) the relative spherical and chromatic aberration coefficients of the 
optimized magnetic lens (1) related to the dimensionless parameter k2d2. 
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Table (4.4) the relative spherical and chromatic aberration coefficients of the 
optimized magnetic lens (1) and the dimensionless parameter k2d2. 
 

Cs / f o Cc / f o k2d2 
1.00 1.00 0.00 
0.82 0.71 1.00 
0.69 0.67 2.00 
0.60 0.62 3.00 
0.52 0.60 4.00 
0.44 0.58 5.00 
0.38 0.57 6.00 
0.33 0.55 7.00 
0.28 0.55 8.00 
0.24 0.54 9.00 
0.22 0.53 10.00 
0.22 0.52 11.00 
0.22 0.52 12.00 
0.22 0.52 13.00 
0.22 0.52 14.00 
0.22 0.52 15.00 
0.22 0.52 16.00 
0.22 0.52 17.00 
0.22 0.52 18.00 
0.22 0.52 19.00 
0.22 0.52 20.00 
0.22 0.52 21.00 
0.22 0.52 22.00 
0.22 0.52 23.00 
0.22 0.52 24.00 
0.22 0.52 25.00 
0.22 0.52 26.00 
0.22 0.52 27.00 
0.22 0.52 28.00 
0.22 0.52 29.00 
0.22 0.52 30.00 
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4.1.4 Pole pieces reconstruction 

 

          The pole pieces reconstruction has taken the same analyzed procedure by 

using SIMION 7. The following figures (4.26) and (4.27) show the profiles of 

the pole pieces of the optimized magnetic field in two and three dimensions 

respectively.  

 

 

 

Figure (4.26) the two dimension profile of a pole piece for a magnetic lens (1) 
with NI = 96 ampere-turns. 
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(a) 
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(b) 

Figure (4.27) (a) three dimensions graph of the pole piece of a magnetic lens 
(1). (b) The optimized pole piece profile of a magnetic lens (1). 
         

To make a comparison of the optimum magnetic lens (1), figure (4.28) shows 

the axial magnetic flux density distribution B(z) with its first derivative for the 
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Glaser's model (i.e. magnetic lens (2)).Table (4.5) gives the magnetic lens (2) 

formula with its dynamic parameters obtained by using CADION package.   
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Figure (4.28) the magnetic flux density distributions B(z) for both magnetic 
lens (1) and (2). 
 

 
 
Table (4.5) the magnetic field (2) formula with its dynamic parameters by using 
CADION package. 

 

 

 

 

 

 

Lens Type Flux density 
Distribution Formula  

Dynamic Parameters 
a b c d 

magnetic lens (2) 
 

a/[1+((z/b)^c)+d] 
 

Bmax 2.0 2.0 0 
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To summarize the optimized results obtained in the single-lens design for the 

aberration discs diameters (ds –spherical aberration disc diameter, dc – 

chromatic aberration disc diameter and dt– total aberration disc diameter),   

table (4.6) gives the values in micro scale (µm) under the infinite magnification 

condition. In which they were calculated depending on equations (2.14, 2.19 

and 2.20 respectively) by choosing the minimum values (i.e. figure of merit) of 

the given relative spherical and chromatic aberration coefficients (Cs/fo and 

Cc/fo) of the optimized lenses. 

 
 
 
 
Table (4.6) the minimum optical properties in a single-lens under infinite 
magnification conditions.  
 

 
relative aberration 

coefficients 
aberration discs diameter 

(µm) 

Lens Types Cs/fo Cc/fo 
spherical 

ds 
chromatic 

dc 
total 
dt 

Unipotential -1 1.50 0.70 0.19 0.18 0.26 

Unipotential- 2 1.25 1.10 0.16 0.28 0.32 

Immersion 0.60 4.56 0.08 1.14 1.14 

Diaphragm 3.40 2.24 0.43 0.56 0.70 

Magnetic lens -1 0.22 0.52 0.03 0.13 0.133 
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4.2 Two-lens system 

 

        The two-lens system is constructed from the optimized electrostatic lenses 

that have been used the dynamic programming procedure and artificial 

intelligence technique. Furthermore has to be done for improving the ion beam 

collimated design to achieve smaller spot size.  

 

         However, if the first lens is operated under zero magnification and the 

second lens is operated under infinite magnification, one would have a 

telescopic lens system with a beam cross over between the two electrostatic 

lenses. It should be noted that when operating the first lens under infinite 

magnification and the second lens under zero magnification the combined 

lenses act as a demagnifying system, which has been considered in our 

investigation. The axial potential distribution is determined with their first and 

second derivatives of a given two - lens system forming two collimated beams 

as follows: 

1. Unipotential lens (1) [einzel] lens is operated under infinite 

magnification condition – immersion lens is operated under zero 

magnification condition. 

2.  Diaphragm lens is operated under infinite magnification condition – 

immersion lens is operated under zero magnification condition. 

 

         Figures (4.29 and 4.30) show the ion beam trajectory for a given two- lens 

systems (i.e. 1 and 2) with its collimated beam between focusing elements 

obtained by using dynamic programming procedure with the aid of artificial 

intelligence technique. The gap between the two fields is a field free region 

which is traversed by the ion beam as straight lines. The ion beam leaves the 

left hand side field and enters the right hand side field along a path parallel to 
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the optical axis. An axial extension for the field free region is important to 

prevent an interaction between the two fields and loss of energy associated with 

the charged particles which both would affect the optical properties of the 

whole system. 
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Figure (4.29) the ion beam trajectory for a two-lens system (1). 
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Collimated ion beam of a two lens system 2
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Figure (4.30) the ion beam trajectory for a two-lens system (2). 
 

 

 

         The given ion beam columns have been optimized and analyzed by using 

the dynamic programming procedure and artificial intelligence technique 

included in CADION package. Figures (4.31 and 4.32) show the electrodes 

configuration plotted in three dimensions by using SIMION 7 simulator of the 

two ion beam columns, respectively.   
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Figure (4.31) the electrodes configuration for a two-lens system (1) with 
collimated beam between focusing elements. 
 

 

Figure (4.32) the electrodes configuration for a two-lens system (2) with 
collimated beam between focusing elements.  

 



  

 - ١٠٥ -

         The relative optical properties of these two systems (i.e. system (1) and 

(2)) are given in tables (4.7 and 4.8), respectively. The relative aberration 

coefficients are taken in terms of the image-side focal length of the second lens, 

by which it’s the overall image-side focal length of the system. The spherical, 

chromatic and total aberration discs (dsi, dci and dti) are calculated with the aid 

of equations (2.26, 2.27 and 2.28), respectively.   

 
 

  
 

Table (4.7) the relative optical properties for a two-lens system (1) with 
collimated beam between focusing elements. 
 

DEMAGNIFICATON CONDITION FOR TWO LENSES 
SYSTEM -1 

relative optical 
properties einzel lens immersion 

lens The system 

magnification infinite   zero -0.553 

Ui/Uo 1.545 2.70  2.70  

f i/L  infinite   1.082  1.082  

fo/L 1.48  infinite   1.48   

Csi/f i ---  6.22  ---  

Cso/fo 1.50  ---  5.30  

Cci/f i  --- 0.541  ---  

Cco/fo 0.70  ---   3.30 

dsi(µm) ---  0.08  1.702  

dso(µm)  0.19  --- ---  

dci(µm) ---  1.14  1.365  

dco(µm)  0.18 ---  ---  

dti(µm) --- 1.142 1.703 

dto(µm) 0.26 --- --- 
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Table (4.8) the relative optical properties for a two-lens system (2) with 
collimated beam between focusing elements.  
 

DEMAGNIFICATON CONDITION FOR TWO LENSES 
SYSTEM -2 

relative optical 
properties 

diaphragm 
lens 

immersion 
lens The system 

magnification infinite   zero -0.98  

Ui/Uo 0.846 2.70  2.70 

f i/L  infinite   1.082 1.082   

fo/L 0.618 infinite   0.618 

Csi/f i ---  6.22  ---  

Cso/fo 3.40 ---  5.33 

Cci/f i  --- 0.541  ---  

Cco/fo 2.24 ---  5.51 

dsi(µm) ---  0.08  1.31 

dso(µm) 0.43  --- ---  

dci(µm) ---  1.14  0.763 

dco(µm) 0.56 ---  ---  

dti(µm) --- 1.142 0.764 

dto(µm) 0.70 --- --- 
 

 

       The aberration discs diameters over the beam angles α (5, 10,30,50,75 and 

100) mrad of the given two-lens system are shown in figure (4.33) ,which is 

given the variations of contours over the beam angles of such an optical 

column. While; the percentage distribution of the aberration disc densities along 

the given optical column of the same beam angles range are shown in figure 

(4.34). 
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Figure (4.33) two-lens system aberration discs contours versus the beam angle 
α. 
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Figure (4.34) the two-lens system aberration disc densities percentage 
distribution versus the beam angle α. 
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4.3 Three-lens system 

           Demagnification of the beam size in the image plane is one of the most 

requirements of focused ion beam, which should be associated with low 

aberrations. The ion beam systems consisting of three lenses with a beam 

crossover take the following setup. 

 

4.3.1 Column setup 

          The axial potential distribution is determined with their first and second 

derivatives of a given two-lens system for ion collimated beam, which is 

forming three lenses with a beam crossover as follows: 

1. Unipotential lens (1) [einzel] lens operates under infinite magnification 

condition – immersion lens operates under zero magnification condition- 

Diaphragm lens operates under finite magnification condition. 

2. Diaphragm lens operates under infinite magnification condition – 

immersion lens operates under zero magnification condition- Diaphragm 

lens operates under finite magnification condition. 

 

 

         Likewise, the two-lens system selectivity the third lens or the right hand 

side of the given columns operates under finite magnification condition, as they 

are shown in figures (4.35) and (4.36), respectively. 
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Figure (4.35) the ion beam trajectory for a three-lens system (1). 

Collimated ion beam of three lens system 2
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Figure (4.36) the ion beam trajectory for a three-lens system (2). 
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         The relative optical properties of the given three - lens systems are listed 

in tables (4.9) and (4.10), also those properties have been obtained using the 

equations (2.26, 2.27 and 2.28),which they were used to  calculate the spherical, 

chromatic and total aberration discs (dsi, dci and dti).  The relative aberration 

coefficients are taken in terms of the image-side focal length of the second lens, 

by which it’s the overall image-side focal length of the system.  

 

  

 

Table (4.9) the relative optical properties for a three-lens system (1). 
 

DEMAGNIFICATON CONDITION FOR THREE LENSES 
SYSTEM - 1 

relative optical 
properties einzel lens immersion 

lens 
diaphragm 

lens 
The 

system 
magnification infinite   zero -0.999 -0.403 

Ui/Uo 1.545 2.70  1.545 --- 

f i/L  infinite   1.082 0.244 0.244 

fo/L 1.48  infinite   0.244 0.50 

Csi/f i ---  6.22  5.67 ---  

Cso/fo 1.50  ---  --- 5.04 

Cci/f i  --- 0.541  0.63 ---  

Cco/fo 0.70  ---  --- 4.32 

dsi(µm) ---  0.08  1.80 8.788 

dso(µm)  0.19  --- --- ---  

dci(µm) ---  1.14  8.910 9.393 

dco(µm)  0.18 ---  --- ---  

dti(µm) --- 1.142 8.912 9.396 

dto(µm) 0.26 --- --- --- 
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Table (4.10) the relative optical properties for a three-lens system (2). 
 

DEMAGNIFICATON CONDITION FOR THREE LENSES 
SYSTEM - 2 

relative optical 
properties 

diaphragm 
lens 

immersion 
lens 

diaphragm 
lens 

The 
system 

magnification infinite   zero -0.999 -0.400  

Ui/Uo 0.846 2.70  0.846 --- 

f i/L  infinite   1.082 0.244 0.244 

fo/L 0.618 infinite   0.244 0.51 

Csi/f i ---  6.22  5.67 ---  

Cso/fo 3.40 ---  --- 4.927 

Cci/f i  --- 0.541  0.63 ---  

Cco/fo 2.24 ---  --- 1.036 

dsi(µm) ---  0.08  1.80 2.247 

dso(µm) 0.43  --- --- ---  

dci(µm) ---  1.14  8.910 1.774 

dco(µm) 0.56 ---  --- ---  

dti(µm) --- 1.142 8.912 1.78 

dto(µm) 0.70 --- --- --- 
 

 

4.3.2 Beam spot size measurement 

 
           According to the principles and methods in section 2.8, and using 

equation (3.16), using the software (i.e. CADION package) the spot size has 

been calculated. Figure (4.37) shows the spot size calculations for a range of 

beam angles [5, 10,30,50,75, and 100] mrad of the given ion beam three-lens 

systems. From these results one can distinguish the nano scale optimization 

which is very useful for FIB designing. 
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Figure (4.37) the axial spot size measurements versus the beam angle for three-
lens systems (1& 2). 
 

 
        However over the same range of ion beam angles (5, 10,30,50,75 and 100) 

mrad, one see that the spot size measurements are given the distribution of the 

ions concentration through the image side. As it seen from the figure (4.37) the 

spot size would get smaller with small beam angles, consequently the reduction 

of aperture defects may take the right process. Figure (4.38) shows the variation 

of the ions distribution of that concentration for different ion beam angles.  
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         Also, it has shown at beam angle 100 mrad the spot size is (110 nm) and 

(112 nm), while at the beam angle of high resolved system are taken the values 

(3.0 nm) and (3.01 nm), respectively. This might be a good indication to get the 

optimum reduction for the aberrations inside the given systems. 
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Figure (4.38) Ions distributions in percentage versus the beam angle for a three-
lens systems (1& 2). 
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4.4 Multi-lens system  

 

          A multi-lens system may have an acceptable form over a range of three 

collimated beam systems (1, 2 and 3), which are determined by using the 

optimized formulae as follows: 

1. Unipotential lens (1) [einzel] lens operates under infinite magnification 

condition – magnetic lens (1) operates under zero magnification condition. 

2. Diaphragm lens operates under infinite magnification condition – 

magnetic lens (1) operates under zero magnification condition. 

3. Immersion lens operates under infinite magnification condition – 

magnetic lens (1) operates under zero magnification condition. 

 

 

           Figures (4.39, 4.40 and 4.41) show the ion beam trajectory for the multi- 

lens systems (i.e. 1,2 and 3) with its collimated beam between focusing 

elements obtained by using dynamic programming procedure with the aid of 

artificial intelligence technique. Our software (i.e. CADION package) has an 

ability to perform multi-lens designs with minimized aberrations. 
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Figure (4.39) the ion beam trajectory for a multi-lens system (1). 
 

Collimated ion beam of multi lens system 2

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 0 0 0 0 0 1 1 1 1 1 1

relative optical axis z/L

re
la

tiv
e 

ra
di

al
 d

is
pl

ac
em

en
t

Diaphragm lens magnetic lens 

0.0    0.10    0.20   0.30   0.40   0.50   0.60   0.70   0.80   0.90   1.0

 
Figure (4.40) the ion beam trajectory for a multi-lens system (2). 
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Collimated ion beam of multi lens system 3
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Figure (4.41) the ion beam trajectory for a multi-lens system (3). 
 

 

 

           The following tables (4.11), (4.12) and (4.13) are given the relative 

optical properties of the multi-lens systems (1, 2 and 3), respectively. However, 

relative aberration coefficients are taken in terms of the image-side focal length 

of the second lens, by which it’s the overall image-side focal length of the 

system. Also, the spherical, chromatic and total aberration discs (dsi, dci and dti) 

are calculated with the aid of equations (2.26, 2.27 and 2.28), respectively.   
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Table (4.11) the relative optical properties for a multi-lens system (1) with 
collimated beam between focusing elements.  
 
 

DEMAGNIFICATON CONDITION FOR MULTI-LENS 
SYSTEM -1 

relative optical 
properties 

einzel lens magnetic 
lens (1) 

The system 

magnification infinite   zero -0.763 

Ui/Uo 1.545 1.66  1.66  

f i/L  infinite  2.01 2.01  

fo/L 1.48   infinite  1.48   

Csi/f i ---  0.52  ---  

Cso/fo 1.50  ---  6.316 

Cci/f i  --- 0.22 ---  

Cco/fo 0.70  ---  1.077  

dsi(µm) ---  0.03  0.07 

dso(µm)  0.19  --- ---  

dci(µm) ---  0.14  0.106 

dco(µm)  0.18 ---  ---  

dti(µm) --- 0.141 0.107 

dto(µm) 0.26 --- --- 
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Table (4.12) the relative optical properties for a multi-lens system (2) with 
collimated beam between focusing elements.  
 
 

DEMAGNIFICATON CONDITION FOR MULTI- LENS 
SYSTEM -2 

relative optical 
properties 

diaphragm 
lens 

magnetic 
lens (1) The system 

magnification infinite   zero -0.433 

Ui/Uo 0.846 1.66  1.66 

f i/L  infinite  2.01 2.01   

fo/L 0.618 infinite   0.618 

Csi/f i ---  0.52  ---  

Cso/fo 3.40 ---  4.94 

Cci/f i  --- 0.22 ---  

Cco/fo 2.24 ---  1.41 

dsi(µm) ---  0.03  0.054 

dso(µm) 0.43  --- ---  

dci(µm) ---  0.14  0.0768 

dco(µm) 0.56 ---  ---  

dti(µm) --- 0.141 0.0772 

dto(µm) 0.70 --- --- 
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Table (4.13) the relative optical properties for a multi-lens system (3) with 
collimated beam between focusing elements. 
  
 

DEMAGNIFICATON CONDITION FOR MULTI- LENS 
SYSTEM -3 

relative optical 
properties 

immersion 
lens 

magnetic 
lens (1) The system 

magnification infinite   zero -0.541 

Ui/Uo 0.53 1.66  1.66 

f i/L  infinite  2.01 2.01   

fo/L 2.10 infinite   2.10 

Csi/f i ---  0.52  ---  

Cso/fo 0.60 ---  0.76 

Cci/f i  --- 0.22 ---  

Cco/fo 4.56 ---  3.55 

dsi(µm) ---  0.03  0.049 

dso(µm) 0.08  --- ---  

dci(µm) ---  0.14  0.0701 

dco(µm) 1.140 ---  ---  

dti(µm) --- 0.141 0.0703 

dto(µm) 1.142 --- --- 
 

 

4.5 A suggested estimations in charged particles optics 

           According to the principals and formulae in chapter 2, section 2.3 and 

optical properties representations, a suggested mathematical approach has been 

used in this investigation. Nevertheless, the most significant optical properties 

have to be examined by multi tests and iteration methods .For the first sought to 

the lenses were designed according to the optimized potentials, most of their 

spherical and chromatic aberration coefficients have values near to reach 

Planck's constant. However, these values are much more closely to the nano 
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scale considerations. In charged – particle optics as well as in classical optics, 

the aperture aberration (spherical aberration or stop aperture) is by far the most 

important, because it limits the resolution of electron microscopes and the 

smallness of the probes of microanalysers. These aberrations are characterized 

by the values of the deviations ∆x and ∆y from the point of the image formed 

by the paraxial beam [Septier 1966].  

 

          The radius of the stop aperture (ra) is proportional to the tangent of the 

aperture angle α (half acceptance angle).Since α is very small (i.e. tan (α) ~ α in 

radians).Thus, it would get the disc formula as [El-Kareh and El-Kareh 1970]; 

                          ds = Cs α3 …………………… (4.1)  
                  
where ds and Cs are the diameter spherical aberration disc and its coefficient, 

respectively. Also , the spherical aberration coefficient of the focusing device 

depends primarily on the diameter of the aperture .On the other hand , the 

spherical aberration will cause blurring in the formed image if the angle  α  is 

not very small. Mainly, the present work results have given this value the 

proper indication of uncertainty relationship like. To evaluate the aberration 

disc for a very small angle α, it makes the easiest way for getting such 

indications. Thus, changing in measuring the position of the incident and 

reflected rays will appear in the spherical aberration coefficient Cs. 

 

           In micro scale systems this might take place many times, and the effect 

of smallness the angle α it could be neglected .So that the equation (4.1) may 

rewritten as a definition of the spherical aberration coefficient Cs according to 

eikonal method  as follows[Hawkes and Kasper 1989]: 

                              Cs = ∆ ds (space) / α3 …………… (4.2) 

 



  

 - ١٢١ -

The sign of the spherical aberration is always positive such that rays remote 

from the axis focus more strongly than rays close to it. It has shown that in the 

absence of space charges in the region through which the trajectories pass, the 

formula of the aberration can be expressed as the sum of squared terms, so that 

the sign cannot be changed, in particular the aberration cannot be made zero 

[Szilagyi 1988]. As a micro scale point of view, the spherical aberration disc is 

a function of space for various trajectories of the charged particle. 

 

            On the other hand, the chromatic aberration results from the dependence 

of the optical parameters of the charged – particle lenses on the energy of the 

beam being focused. Depending on the whole formulae of chapter 2 upon the 

definitions of chromatic aberration disc diameter dc, then the disc can be written 

as: 

                       dc = 2 Cc α ∆p/p ………………. (4.3) 
 
where dc, Cc is the diameter chromatic aberration disc and its coefficient 

respectively. Since the present work deals with the non-relativistic case; the 

disc may get the new definition [Lawson 1977]: 

 

                    dc = Cc α (∆u / u) ………………. (4.4) 
 
where U is the potential energy through which the charged – particles have been 

accelerated to reach the momentum p, and ∆U refers to half the total energy 

spread in the beam. It can be seen from the above equation that dc is 

proportional to the initial slope of the outermost ray and the relative energy 

spread (∆u / u). 

 

            From equations (4.1) through (4.4) one notes that at low values of the 

acceptance angle the performance of the optical system is limited by its 

chromatic aberration, where at larger apertures spherical aberration becomes the 
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dominant limiting factor [Szilagyi and Szep 1988].In the sub micro scale the 

chromatic aberration disc dc has appeared like a function of momentum in a 

space along optical axis-z. This will give us a strong indication for the non-

commutative approaches, since the energy spread (∆u/u) has relative expression 

within estimated fields or potentials in the optical systems. Equation (4.4) 

becomes more fitted to the case in sub micro systems, and the chromatic 

aberration coefficient Cc may be considered as in eikonal method [Hawkes 

and Kasper 1989] as follows: 

 

              Cc = ∆dc (momentum) / α (∆u / u) …………………… (4.5) 

 

           Once the limitations of non commutative operations have been fixed , the 

uncertainty principle relationship like for the aberrations ( spherical and 

chromatic)discs may take place .In terms of the above indications , most of 

present work results (i.e. the spherical and chromatic aberration coefficients) 

may have explained strongly enough . 

 

          A consideration of the aberration theorem as a part of the uncertainty 

principle has raised the similarity for finding charged – particles along optical 

path. Hence, the probability of finding those particles with a specific amount of 

energy, diffracted from the edges of the target (object) in an optical system. 

Therefore, the quantization of electrostatic lenses have dominantly worked at 

micro or nano scale only. The aspects of verification according to the strong 

principle of the uncertainty relationship like have done. 

 

 

        It may be raised in different models (lenses) but not for all kinds. The 

present work tables are giving the most estimated results, as new configurations 

of doing the fuzziness systems like [Stelzer and Grill 2000].Our work could 
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lead to get suggested aspects and hypothesis in the charged particle optics, also 

it may give a raise to consider most of the results as suggested estimations for 

entering the non classical technology. Obviously, the values of the aberration 

coefficients and discs are showing a significant behavior of the uncertainty 

relationship like. According to the uncertainty principle (chapter 2), and 

equation (2.9) this approach will lead to new idea , which has been considered 

for improving the design of mesoscopic optical lenses and it may take such 

manipulation as: 

 
 [∆ds (space) / α3]. [∆ dc (momentum)/ α (∆u / u)] = i h δij  ……… (4.6) 
 
where [∆ds (space) / α3] represents the position of the charged particles along 

the optical path, and [∆dc (momentum)/ α (∆u / u)] represents the momentum of 

the charged particles accelerated through the optical column. This formula (i.e. 

equation (4.6)) leads to get a new aspect in optical systems, and it could be 

rewritten as: 

 
        [ds. dc ] / [α

4 (∆u/u)] = i h δij  ………………….. (4.7) 
              
 
          One can see from the equation (4.7), that a small angle α total amount of 

aberration discs has become very large. The only exception is about the range 

of energy spread (∆u/u); this is a well-known formula for the micro scale 

conditions. It would be the success of non commutative approach for both 

aberration discs (spherical and chromatic) as well.  
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   Chapter Five 
 

Conclusions and Suggestions for Future Work 
 

5.1 Conclusions 

             The present investigation has clearly used optimization methods by 

mixing the dynamic programming procedure and the artificial intelligence 

technique, to find a simulator, packed in one program.  

        

Our work achievements have been summarized as follows: 

• The single-lens design electrodes and optimized formulae for obtaining 

axial potential for four types of electrostatic lenses and a magnetic lens as 

in tables (4.2) and (4.3). 

• Get minimum optical properties of relative aberration coefficients, and 

then calculate the aberration disc diameters as summarized in table (4.6).   

• Setting up an optical column as follows: 

o Two-lens system as in figures (4.29) and (4.30).  

o Three-lens system as in figures (4.35) and (4.36). 

o Multi-lens system as in figures (4.39), (4.40) and (4.41). 

• Nano scale measurements of spot size diameter, focusing ions in the 

image plane have values are very useful for getting FIB designing (figure 

(4.37)). Over a range of ion beam angles (5, 10,30,50,75 and 100) mrad, 

the results were summarized as follows: 

o System (1)-have values [3.0, 14.0, 47.0 and 110.0] nm.  

o System (2) - have values [3.01, 13.9, 47.2 and 112.0] nm.  

• Suggesting mathematical manipulations for the aberration coefficients 

basing on the uncertainty principle hypothesis. 



  

 - ١٢٥ -

• Artificial intelligence has promise for building FIB in charged particle 

optics.  

 

 

 

5.2 Suggestions for Future work 

             Plenty of projects and investigations may be suggested for further work 

upon the designing , optimizing , analyzing and reconstructed new lens systems 

(electrostatic and/or magnetic) holding for nano optical ion and electron lens 

column. Such suggestions are listed as follows: 

1. Considering the effect of the magnetic permeability µ as a dominant 

factor in magnetic lens systems. 

2. Investigating the design of the optical column and lens systems where 

the relativistic charged particle velocities and the space charge effects 

are taken into account. 

3. Design a quantum-lens system. 

4. Design a quadrapole's deflectors and mirrors. 
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Appendix   
The program CADION Analyzer is the main significant optimizer" expert 
system"; the steps are configured as included in the following flowchart:  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Calculate partial derivatives f'ij , f" ij 

Solve the (potential) equations 
Paraxial ray equation 

Evaluate new individual functions fi 

Start 

Read data 
Jess –rule based system 

Set new values and parameters 
taking new constraints 

 

A Data stored 
Knowledge-base 

 

B 

Evaluate individual functions fi 
Fn (n, s, x) = g |R (n, s, x), F*n-1(s')| 

 

Set initial values 
Gik = min | Fijk  + Gj (k-1)| 
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Figure (A) shows CADION analyzer "expert system" flowchart. 
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&� ���/� �9J Hث � . ت����1# � � ��� .��ـــ�ت >4�����Gت! 
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