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Synopsis

A complete computer aided design (CAD) ksing optimization
methods for the ion optical systems have been dpedl by mixing the
dynamic programming procedure and artificial ingglhce technique. The
relative spherical and chromatic aberrations coieifits were obtained
according to figure of merit for the following optized optical systems:

a. Single-lens design (electrostatic and magnetic).
b. Two-lens system consists of two electrostatic lsnse
c. Three-lens system consists of three electrostatisds.

d. Multi-lens system (electrostatic and magnetic).

Four types of electrostatic lenses and a magnexis inodel were designed
as small as possible of optical properties (i.e finst and third optical
properties), and reconstructions of electrodespahel pieces were plotted in
two and three dimensions graphics by using SIMION 8imulator
depending on the stored database (i.e. knowledge) ddnese lenses are as
follows:

» Unipotential lens 1 (operated in deceleration mode)

» Unipotential lens 2 (operated in acceleration mode)

* |Immersion lens.

» Diaphragm lens.

* Magnetic lens.



Present software has been designed artérmvin Java expert system
shell (JESS) and Visual Basic 6 (VB6) for optimgiand analyzing full
calculation processes, it has called CADION package

The optimized axial potential distributsofor both electrostatic and
magnetic fields according to the constraints hagenbused in the optical
column setup, which are two-lens system, three-yssem and multi-lens
system. Spot size measurements were calculateahio scales, which have
values closed to (3.0) nm applicable in nano teldgyoapplications used in

lithographic systems.

Also, the present work has been suggdesiefinitions and
abbreviations in charged particle optics to be wrssome of the results, as

a verification of the uncertainty principle relatghip like.

Vi
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Nomenclature

AIT- artificial intelligence technique

B, — Magnetic flux density (Tesla)

Bmax — Maximum magnetic flux density (Tesla)

c- Speed of light§3%1C m/s)

Cc — Chromatic aberration coefficient

Cco — Chromatic aberration coefficient at the obgde
Cci — Chromatic aberration coefficient at the imagke
Cs — Spherical aberration coefficient

Cso — Spherical aberration coefficient at the digete
Csi — Spherical aberration coefficient at the imsigie
Csco — Chromatic aberration coefficient of a systéienses at the object
position.

Csso — Spherical aberration coefficient of a systétanses at the object
position.

DPP-dynamic programming procedure

d. — Chromatic aberration disc diameter

d.i — Chromatic aberration disc diameter in the imglgee
ds — Spherical aberration disc diameter

dsi — Spherical aberration disc diameter in the inalgae
d, — Total aberration disc diameter

d —magnetic flux density half width

E — Electrostatic field intensity (Volts / meter)

f — Focal length

fo — Object side focal length

fi — Image side focal length

Xiii



h — Planck's constant (=6.62377 x*{fbule-sec)

J — Total current density (Ampere / mé)er

L — Axial extension of the electrostatic lens (tdéagth of the lens)
L'-Geometrical Parameter

M- Maghnification

M'- Ordinate dimension of the computational grid

m, — Particles rest mass

n — Refractive index

NI- magnetic excitation (Ampere-turns)

NA — Numerical aperture

g — Charge of the particles

r— Radial component of the cylindrical coordinatsteyn [r (z)]

r — Image height

r- Object height

ri' — Slope of the trajectory at the image side

ro - Slope of the trajectory at the object side

u — Electrostatic potential function [U(r, z)]

u — Axial electrostatic potential distribution U (z

u' — First derivative of the axial electrostatieldi distribution U (z)
u" —Second derivative of the axial electrostaatdfdistribution U (z)
U, — Object side potential distribution

Au — Energy spread

v- Velocity of charged particles

z — Image position

Z, — Object position

a- Half acceptance angle

A — Charged particles wavelength
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Chapter One

Introduction

1.1 Introduction on Lithography

Lithography is the process of transferqagterns of geometric shapes in
a mask to a thin layer of radiation — sensitiveanat (called resist) covering
the surface of a semiconductor wafer. Figure luktilates schematically the

lithographic process employed in integrated cirtalirication[Preuss 2002]

Focused lon Beam (FIB) DESIGN

PATTERN GENERATOR

\

MASK
DIRECT WRITE
/ \ / /
LIGHT ION ELECTRON ELECTRON ION X-RAY LIGHT

Figure 1.1shows lithographic process scherffeéuss 2002].




Lithography advancements increased wafey, &nd design innovation
are three main constituents of the technology imgmzents that have kept the
industry on this pace for more than 30 yeftarriott 2001] .Moore's Law
states that the number of devices on a chip dowdslesy 18 monthfMoore
1995]Without the continuous improvements in lithograplgrocess and
equipment technology, personal computers, cell phorand the Internet

would not be in wide spread use today.

The resolution of an optical lithogramystem is usually expressed in
terms of its wavelength and numerical aperturdl;) as follows[Huang et
al 2001}
Resolution =k A /NA ... (1.1)........

wherek; factor is the process-dependent coefficient ofréselution criterion
for a diffraction limited lens. lon lithography cathieve higher resolution
than optical, x-ray, or electron beam lithograptechniques because ions

undergo no diffraction and scatter much less thectrns[Harriott 2001] .

Recent investigations have demonstr#étedl devices can be scaled
down to sub-20 nm and smaller; therefore much ehaevavelength radiation
needs to be considered for patterning such smatilifes. The electron beam
or ion beam lithography tools are limited by theeabtion of the optical
design. Theoretically, they can be used as lithggyaools at 30 nm mode
and beyondKedzierski et al 2000, Choi et al 2001]



Efforts have been devoted for developing mrojection lithography
(IPL) in Europe and the United States of AmeridguFe 1.2 shows that IPL
uses the same principles as optical steppers wagkmatterns being printed
to resist coated wafer substrates. Multi-electretietrostatic ion optics is
implemented to generate a broad ion beam illummigathe reticule and to
project the image of the stencil mask patterns he wafer substrate

[Kaesmaier and Loschner 200Q]
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Figure 1.2represents European (lon Projection Lithography

[Kaesmaier and Loschner 2000]

lons are much heavier than electrons;wiavelength of ions can be
two orders of magnitude shorter than electronfi@tsame energy. lon beam

resolution higher than electron beam may be acHieve



The actual beam size achieved by an rofegtor is governed by ion
source parameters (e.g. virtual source size, aatygrspread of the extracted
lons) and errors of the electrostatic lens sys#nather advantage of using
lons over electrons is that ions experience mudnaed backscattering and
proximity effect.All electrostatic lenses are often used to focusswa
particles such as ions because round magnetic dehaee rather weak

focusing properties for iojMelngailis et al 1998]

In a conventional focused ion beam (Fég3tem, a liquid-metal ion
source (LMIS) is used to deliver current in thegaof a few hundred pA into
a spot size of approximately 50 riMelngailis1987]. But those days high-
resolution FIB have been applied in a number ohrietogically important
ways [Orloff 1993} maskless implantation into semiconducting malgria
lithographic mask repair for visible light and ¥samicromachining to create
micrometer structures; deposition of materials frilv@ vapor phase by ion-
induced decomposition; modification of integrateduits; failure analysis as
part of the integrated circuit manufacturing pra;esid surface analysis. The
present investigation will be focused on the fpatt of a lithographic system
(FIB) only.

1.2 Electrostatic Lenses

A conventional optical system consistsafesal rotationally symmetric
(round) lenses which enable light to be focused enaged. lon optical
iImaging systems also consist of several rotatigr@linmetric ion lenses that
enable the ions to be focused and imaged. Sinular light optical imaging
system, the action of the ion optical system isransfer the ion image from

the object plane to the image plane. Electrostatises are finding increased



applications in so many areas of technology, wite &id of electrostatic
lenses ion probes are employed in ion implantatenchange the local
properties of semiconductors. Furthermore, lendesvsgreat promise in

modern optoelectronics and lithographic procefisescova 1997]

1.2.1 Classification of electrostatic lenses

The axial symmetric electrostatic fietdtétional symmetry) acts upon
charged particle beam moving in the near axis re¢he same way a light

optical lens acts on a light beam.

Generally speaking, any electrostaticgéd particle lens is any region
of an axially symmetrical electrostatic field in mh there taken place the
inequality U"(z)7#0, where U(z) is the axial potential distributiamdaJ"(z)

Is the second derivative of U(z) with respect tdlzerefore, depending on the
electrode shape, voltages and the distributiom@fedectrostatic field in front
and beyond the lens (i.e. the object and imageonggisuch as one can

classify several kinds of electrostatic lenses.

According to the charged particle optiedectrostatic lenses are
classified into groups depend on the relationshipsveen their electrode
potentials. Such main groups §&zilagyi 1988]

a. The immersion lens: It has two different constawteptials at its sides;
it can be accelerated or retarded the particletewthe beam focused
and may consist of as few as two electrodes.

b. The cathode lens: It can be called immersion eljedens with a field
abruptly terminated on the object side by the sewt the charged

particles.



c. The unipotentialEinzel) lens: This kind of lens has the same constant
potential at both sides (the object and image kiflesrefore, the
energy of charged particles remains unchanged.

d. The diaphragm (single aperture) lens: This kind lefis has a
homogeneous field on at least one side. Thus, dkenpal on one side
or on both is not constant but increases or deesdasearly.

e. The foil lens: It consists of thin metal films tsparent to the particles

and possessing discontinuous field distributions.

Apart from the classification of lensescacling to the potential
distribution one may distinguish one, two and mukilectrode
lenses .Furthermore, can distinguish between stiamd) weak charged

particle lenses.

1.2.2 Properties of electrostatic lenses
Some of main properties of electrostéinses and their important
features can be summarizedldawkes 1989]

a) In most non-relative cases the focusing properéisswell as the
aberrations are independent of the quotient ofgghém mass (g/m) of
the particles. Therefore, the electrostatic lemsaybe used for any
system focusing various ions.

b) Electrostatic lenses are characterized by theirpleimelectrodes
fabrication, alignment and small size. The majorobbem of
manufacturing is due to electric breakdown and wexdation of
charges on the insulating surfaces.

c) The potential ratios have influence on their prtipsr Therefore, if
particles of the opposite sign have to be focusedhat the signs of all
electrode potential must be reversed to arrivee@same properties.



d) The most problem with electrostatic lenses is th#icdlty of
evaluation of their properties, because of the damumber of

characteristic parameters.

Thus, any comparison of the properties dfecBhnt lenses is very
difficult, where the lens properties are deployadthe form of tables and
graphs. Unlike magnetic lenses, no universal desigmes are available for
the electrostatic lenses. Therefore, to select lest lens, a suitable
dimensionless figure of merit may be constructeadtie problem and then to
choose the lens with the smallest acceptable \@ltias figure of merit. One
common requirement of all applications is to redtn@eaberration to as small
as possibl¢Hawkes 1989]

1.3 Magnetic Lenses

Any axially symmetric magnetic field pieced by current carrying
coils with or without ferromagnetic materials or pgrmanent magnets is
called a magnetic lens. Manufacturing of magneticseés is usually more
complicated than that of electrostatic lenses. atton of a magnetic lens can
be understood on the basis of therentz force. Owing to the interaction of
the radial velocity component of the particle wiitle longitudinal component
of the magnetic flux density the velocity acquiees azimuthal component,
which in turn interacts with the longitudinal conmamt resulting in a radial
focusing component, as shown in Figure (UB¢ncova and Wisselink
2001].

Ferromagnetic materials do not cause difficulty if the magnetic
scalar potential can be considered constant orsuhfaces of the materials.
Since the potential field is uniquely determinedUayplace's equation and by

the potential distribution on the boundaries areddhs no difference between



the calculations of the magnetic field and that tbeé corresponding
electrostatic fieldSzilagyi 1988]

v
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elecirons spiraling down the axis ¥ L ] ¥ the B field:
Monazxial electrons will esxperience a force bath dowm B, = longitudinal EOEE,
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down the axas feel equal radial forces from all sides of
thelens. The unequal force felt by the off-aas
glectrons causes spiralling ahout the optic axs
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Figure 1.3represents schematic diagrams of the forces yhiradcical

magnetic lenfiencova and Wisselink 2001]

There are three main types of magnetises in any FIB system as
shown in figure (1.4)Rollett and Garmestani 2003]

(a)A multi-layer coil: i.e. an air-core solenoidilcglron free lens)
(b)A coil enclosed by soft iron plates (containangap).

(c)A coil enclosed by soft iron plates containingag and internal soft iron
pole pieces.



(@) (b) ()

Figure 1.4 shows schematic diagrams of the three types ofmetagenses

(a)A multi-layer coil, (b)A coil enclosed by soft iron plateasd(c)A coil enclosed by soft

iron plates containing a gdRollett and Garmestani 2003]

1.3.1 Classification of magnetic lenses models

It is often desirable to perform a rapgproximate evaluation of lens
properties without carrying out a detailed analy$isis can be accomplished
if we have a simple mathematical model for the I&nagnetic lenses can be
classified into two basic categories: long lenséh wistributed fields and
short lenses with highly concentrated fields. Savgood analytical models

exist to classify magnetic lensg$awkes 1989]

a. The rectangular model The simplest possible magnetic lens model is
that of the equivalent solenoid. The idea is tdaep the actual lens
with a homogeneous field of finite length, which isf course,
practically unrealizable but it is very conveniemthematical model.

b. The step function model The axial flux density distribution can be

approximated by a piecewise homogeneous distributie. by a series



of uniform fields of different strengths. The flabensity distribution is
divided into a number of segments and in each segthe flux density
Is assumed to have a constant value. This moaeitigery accurate but
its great advantage is its extreme simplicity camediwith flexibility.

c. The piecewise linear model The accuracy of approximation can be
increased by using a model based on the replacevhéime actual flux
density distribution with a series of linear segtseifhe whole analysis
of the given magnetic lens can be carried out \Witfh accuracy by
linking together the subsequent trajectory segmenitsinuously. This
model was successfully used for the synthesis gin@iic lenses.

d. The spline model This model has used a quadratic function for each
segment of the flux density distribution which iguevalent to a
piecewise cubic approximation of the magnetic sqaddential.

e. Glaser's Bell-Shaped and Grivet-Lenz modelsThe axial flux density
distribution of a typical symmetric short magndé&as is a bell-shaped
curve .In practice ferromagnetic materials are usedoncentrate the
field to a small region, the following function hgwoposed by
W.Glaser closely approximates the axial flux densitstribution of
such a lens if it is close to saturation.

B (2) =B/ 1+ (Z/dY eoeieieen (1.2a)
whereB .« IS the maximum flux density distributiod,is determined by the
shape of the pole piece and the degree of sataraflee model curve is very
satisfactory at the center of the lens but decsease slowly at its two edges.
Nevertheless Grivet-Lenz model proposed the folhgafield model which is
satisfactory at the edges, and it represents thaturated lenses.

B (z) = Bnax/cosh (z/D)................... (1.2b)
whereBhax IS the maximum flux density distributiob,is determined by the
the field half-width.



1.3.2 Properties of magnetic lenses

The lens properties can be determined once the leeal field is
replaced by an ideal rectangular field of lengtRhysically this ideal field is
that of a solenoid of length and diameter 2/® carrying the same ampere —
turnsNI( excitation) (i.e. number of turns x D.C.current). The diagdnaif

the solenoid is related to the real lens geometijy.éncova 1997]

L =V CADY oo, (1.3)

Under non — saturation conditions and accordingAtopere's law, the
maximum magnetic flux densitB..x becomes[Lencova and Wisselink
2001}

Bmax = (MoX NI)/ L oo, (1.4)
where L is geometrical parameteni,=4r x10’ Henry/meter is the
permeability of free space. Therefore, the magnééld generated by a

magnetic lens depends on its shape and excitilfion

The distinctive feature of magnetic lenses is thatir optical
properties are dependent on the charge to mass ohtithe particles.
Stationary magnetic fields cannot accelerate cligpgeticles, therefore in the
absence of electrostatic fields magnetic lensegldzeir energy unaltered. So
that in magnetic lenses the particle trajectoriegethd on the particles mass,
where heavy particles are less focused than ligas oThe boundaries of long
lenses are difficult to define, but even in theecasshort lenses the object or
the image or both can be immersed in the fieldrefloge real properties
become important in this case. Magnetic lensesised for forming electron
probes or highly magnified images of small objethgy can also be utilized

for energy analysis. The effect of the magnetildfie any magnetic lens on a

-V -



paraxial beam of charged particles is similar &t tf a convex glass lens on a
beam of light ray$Hawkes 1989]

1.4 Historical Review

Many researchers attempted the designagtidnization of electron
lenses and systems with minimum aberrations frametirly days of charged
particle opticsScherzerin 1936 found the best axial potential distribatfor

a weak electrostatic unipotential lens to becon{&aptier 1966];

U(2) = Y[L+C eXp (-SD] «ovvvveeeeeeieeeeeins (1.3)
where z is the optical axis, Us the constant potential at both sides of the
lens, and C and S are constants to be determiroed $ome predefined
values. In 1937Rebsch and Schneidefound the best potential distribution

for a weak immersion lens to pezilagyi 1988]

U@)=CeXP (-SD)] eveeeaaaieaaaiaee, (1.4)

where G and S are constants to be determined from some predkviakies.

After few yearsPlassin 1942 attempted to discover what the shape of
the electrodes is, in order to produce the potenlistribution given by
equation (1.3) in a reasonably simple Wagptier 1966] He calculated the

potential distribution near the axis using the pogeries expansion;

u(r, z) = U (z) — (1/14)7(d?U(2)/dD) + (1/64) F (d"U(2)/dD) - .......... (1.5)

In 1948, Rudenberg drew the attention to the properties of the
hyperbolic lense4Septier 1966] These lenses are the ideal symmetrical

einzel lenses where the equation of potentialibigion was;

-VY -



U 2)=0Z =050+ coenieeeeie e, (1.6)

where G and $ are constants to be determined from some predkfiakies.

The first serious attempt to synthesis kKhienses was made by
Kasyankov in 1952. He derived a set of high order nonlinddferential
equations, the solution of which would minimizetaer aberration integrals.
On the other handBurfoot in 1953 attempted to calculate the electrodes
shape of a lens with quadrupole — octupole symmdtee of spherical
aberratiofHawkes 1973]

Tretner used in 1959 the technique of calculus of variatmfind the
minimum spherical and chromatic aberrations thatlccde obtained with
round magnetic and electrostatic lenses. He usestaedifferent constraints
on the fields to represent the construction ressiavailableln 1968Crewe
et al designed a field emission electron gun under 8s@aption that the
axial potential U(z) in the space between the &red the second anode can be
represented by a cubic polynomial, the coefficieatswhich were the
optimization parameter .Later oMunro in 1973 showed that this design

does not represent a true optim[Munro 1975].

Moses[1970, 1971, 1973 and 1974] also used the calaflygriation
in his work to minimize the values of the spheriaatl chromatic aberration
coefficients Cs and Cc respectively; his work wasoentrated on magnetic
lenses only. More recenthBzilagyi [1977, 1978] introduced the dynamic
programming approach. The integration interyat z < z between object and
image is dissected into a set of small subintervBllen starting from the
object coordinateyz the integrand of an aberration integral , fatamce that

Cs is minimized under given constraints in eachlthee subintervals. The

-V\Y -



result was a piecewise analytic axial field digitibn, which is then assumed
to be the best fielfHawkes and Kasper 1989]

Furthermore, systematic investigatioha arge number of practically
feasible axial potential distributions were carread by[Szilagyi 1983, 1984
and 1985] with a subsequent reconstruction of the electregstems
producing such distribution. In this approach dif& curve fitting techniques
and parameterized analytical function are used itol fmany potential
distributions with both small spherical and chromaterrations[Martinez
and Sancho 1983jntroduced a new version of the charged densitihate
applicable to the analysis of the potential disttiln in multi-element
electrostatic lenses used for focusing chargedcpestand study of the optical
properties of four cylinders lens has been caried Also,[Kurihara 1985]
achieved optimization of a focused ion beam systEm submicron
lithography. He employed a four electrode accelegaens for the condenser
lens and obtained guidelines for reducing the clatanaberration coefficients
by choosing the dominant design parameters andiakagtheir relations to

the coefficients.

In 1987,Tang and Sheng made an analysis of the combined
electrostatic focusing and deflection system usnoging object lens concepit.
They developed a practical electrostatic systegie good overall deflection
aberration performancggang and Sheng 1987]But, [Amos et al 1988]
introduced an analysis method in the optimizatibthe properties of micro
focused ion beam system. Another approach for degigelectrostatic lenses
with given source parameters, first order propsraed minimum aberrations
Is based on constrained nonlinear optimization rigghes presented by
[Szilagyi and Szep 1988]However,Tsumagari et alin 1988 introduced a

discussion presented on the optimization of thatined displacement in the

-V¢e -



two lens system with an intermediate beam crossdvsy showed that the
design for crossover beam system was possible wafithost the same
performance as the collimated system in the sangnifi@ation conditions

and short working distancéEsumagari et al 1988]

[Kiss 1989pelieved that systematic potential analysis vahtribute to
the development of the techniques of electrostatis design. He discussed a
computerized investigation to find the axially syetnt electrostatic lens

potential with acceptable first order propertied amall spherical aberration.

[Michiel van der Stam et al 1993]showed that Optimization programs
are becoming available to support the designfrgpmplicated lens systems
in charged patrticle optics. By exploring the consawes of design decisions
automatically, they can increase the effectivenédise designer. Adding that,
[Raymond 1993]proved that Focused ion beam machines are becoamng
accepted part of the semiconductor industry. Theyused in the repair of
photo masks and X-ray masks, for direct modificatxd devices, for failure
analysis, and for process verification. As the sadlthe lithography shrinks,
the demands on the FIB tool increase accordingbth bn terms of its
accuracy (for repair and modification) and its tegon (for imaging). One
key factor that affects these parameters in thedelBmn itself, in terms of its
spot size performance. Many of today's applicataer®and spot sizes as low
as 15 nm, at beam currents of 10 - 20 pA. Moreoj&teve et al 1993]
described a novel method of determining potentialccessful starting
designs by utilizing an expert systems algorithnciWloperates on a database
of previously well-designed optical systems. Al§diaogang Chen et al

1993]developed a small expert system used in lens nlesig
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Martinez and Sanchoin 1995 have used an accurate numerical
method to calculate the geometric aberrations attedstatic lenses (three
cylinder einzel lens). They used an accurate verefahe boundary element
method to solve the Laplace's equation for the rgilens geometry and
potentialgfMartinez and Sancho 1995]

Meanwhile, in 199Kartinez and Dymnikov investigated the possibility
of utilizing an electrostatic cylinder lens to fecthe beam in microprobes.
They used new analytical model of the axial potgrdistribution varying the
parameters of this distribution and the size ofdbgct aperture diaphragms
to obtain the minimum spot size at the specimenafgiven beam emitted,
and finding by this way the optimal parameters bé taxial potential
distribution. They applied an accurate versionhef integral equation method
to solve Laplace's equation in order to obtainpghemmeters of the physical
model which has the same axial potential distrdouis the optimal analytical

model[Martinez and Dymnikov 1997].

In recent years, most of researchers hdeeested in optimizing optical
instruments and devices as a nano scale devicesthdn Heisenberg
microscope, the uncertainty principle has been usetdketermine the spatial
position of a moving electron in the lateral dirent However, since charged
particles follow the principle of Heisenberg, itnst possible to find solutions
to the homogenous wave equation (paraxial ray emadf electrodynamics
that do not follow the behavior imposed by the utaiety principle[Stelzer
1999] Moreover,[Sales 1998]has recently shown that the axial lateral gain
factors are related by a Heisenberg — like relatigm Also, [Stelzer and
Grill 2000] have estimated the focal spot dimensions accoridirthe same
relationship. Adding thatAhmad et al 2002] have introduced a computer

aided design of an electrostatic FIB system congjstf three electrostatic
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lenses approximated by the spline lens model. Tasemt work have mixed
the dynamic programming procedure and artificidleliigence technique
optimization methods, in order to find FIB systeransisting of three

electrostatic lenses measuring the beam spot size.

1.5 Optimization Method

The desire to produce electron and /or aptical systems with
prescribed first order properties and as smallrabiens as possible is as old

as electron/ion optics itsglbzilagyi 1988]

Optimization is the search for such etattnd / or ion optical element
that would provide the required optical properivgth minimum aberrations.
There are two approaches exist in optimization, elgmanalysis and
synthesis. The method of analysis is based onandlerror, so that designer
starts with certain elements and tries to improkeirt performance by
analyzing the optical properties and varying themngetrical dimensions as
well as the electric or magnetic parameters of ldres (system) until a

satisfactory performance is achiej&azilagyi 1985].

However, many researchers attempted #segd and optimization of
electron lenses and systems according to the asahgthod with the aid of
computer programs. In recent years symbolic compguthas become a
promising aid in different kinds of decision makiriExpert systems that have
built in knowledge in the form of symbolically regsented facts and
rules .The design of optical elements and systsnssed on the knowledge
of simple facts and rules .An expert system for design of electron/ion
lenses could work in the following way. As a fistep, a database must be

established to provide efficient representatioaregje, and retrieval of large
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amounts of published information .A user interfacaild allow the selection
of a specified set or a range of optical properéssvell as some figure of
merit. The system responds with a list of availaleleses with the given
properties indicating their order of preferencedoasn the given figure of
merit. Therefore, the system automatically perfotingsfield calculations, and
ray tracing .Also it determines the optical projst adds the new
configuration to the database, and evaluates ithenbasis of the preferred

figure of merit[Steve et al 1993]
1.6 Aims of the Project

In the present work, optimum and analydedigns of a FIB system
consists of single, two, three and multi lenseshds consisted of both
electrostatic and magnetic lenses which have imegsd by adding the
dynamic programming procedure (DPP) and artifioiélligence technique
(AIT) in a nano scale measurements. Also, an op#itron programming
developed for getting a setup of optical columnwo-lens, three-lens and
multi-lens systems. Therefore, electrodes and pm@ees have designed and
plotted in two and three dimensional viewing wanewdated for the main lens
systems. Also spot sizes measurements have bemnatatl and a suggestion
of estimations in charged particles optics with meatatical manipulations
has proposed to get a category based on uncergaingiple. Thus, synthesis
procedures within the aid of analytical one unde¥ following conditions
have five main steps are taken place in this wihibése are summarized as:

+ Single-lens design: [electrostatic and magnetisdsh

+ Two-lens system: [electrostatic lenses].

+ Three-lens system: [electrostatic lenses].

+ Multi-lens system: [electrostatic and magnetic é=)s

+ A suggestion of spot size calculations in termghef uncertainty

principle relationship.
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Chapter Two

Theoretical Considerations

2.1 Motion of Charged Particles in rotationally symmetric Electrostatic
and Magnetic fields

In charged — particle optics , rotaibaymmetry (or axial symmetry
as it is sometimes called) is of particular interesince the most common
charged-particle lenses are round , which meartsthiey are built up from

rotationally symmetric fieldfHawkes and Kasper 1989]

The motion of charged particles in FsuBelds is similar to
propagation of light through optical lenses. Thesmsuitable coordinate
system to fields with rotationally symmetry is ttdindrical polar coordinate
system. The z-axis is the optical axis which repnés the axis of symmetry.
The value of the potential at any point can exmédss terms of the three
coordinates r, z an@ i.e. the potential u = u(z), The condition for
rotational symmetry in cylindrical coordinates danexpressed by u(r, &), =
u(r, z), where the values of r and z uniquely define value of u, regardless
of the angle of rotation. In rotationally symmetsjggace — charge — free fields,

Laplace's equation is reduced to the following f§®zlagyi 1985]

@) plor (rfou o)} +*ulez? =0 .....ceeeeeenn..n. (2.1)
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2.1.1 Paraxial-ray equation in electrostatic fields

The assumption that the trajectory ofrghd particles beam has small
enough inclination angle with respect to the optecds of the system, to
allow replacing its tangent by its sine or its ayeatly simplify the analysis
of this system. Rays with these properties aranedeto as paraxial rays, i.e.

rays that are close to the ajiitawkes and Kasper 1989]

In many designing lenses and deflectoasaxial trajectories are dealt
with, thereforeGaussian dioptricsis a theory of the behavior of paraxial rays
Is being considered. The paraxial ray equation igerg by a linear
homogenous second order differential equation, siidution gives the
trajectoryr=r(z), for particles moving close to the optical axisirotationally

symmetric electrostatic fielffSzilagyi 1988] as follows:

r*+ @' /2u)r+ (U/4u) r=0.................. (2.2)

where u = u(z) is the electrostatic potential disttion in volts along the
optical axisz, the primes represent differentiation with resgea For non —
relativistic velocities and the absence of any aiimal velocity components,
the trajectory of charged particles (ions or emts$) can be treated in the
plane, where in cylindrical coordinates system;represents the radial
component, and is the axial component of the trajectory along dipdical

axis of a lens.

The behavior of paraxial rays have two ag#ions which are
considered afSzilagyi 1988j

a. In the power series expansion of the potentialtionau (r,z) , all terms

containing powers of ( r ) higher than the firstiwe neglected .Then

the potential distribution becomes ;

=Y. o



u(r, 2) = u (2)-w"(2) (P14) +w, (2) (F164) - ... oo (2.3)

This assumption will be used only in theioagwhere the field
exists. Outside the field the trajectories areigialines that may
extend far away from the axis even if they are yafanside the field.

b. The radial and azimuthal velocity components cannbglected in

comparison with that of the axial one.

2.1.2 Paraxial-ray equation in magnetic fields

The paraxial ray equation in axiajynmetric magnetic fields can

be written agHawkes and Kasper 1989]

where K= [q B/ 8 m V], B, - is the axial component of the magnetic flux
density , g- is the electric charge-id/the accelerating voltage and m is the

mass of charged particles accelerated through aetiadield.

Unlike the behavior of paraxial rays iealostatic fields, the paraxial
rays in magnetic fields the distarrcef the ion / electron path from the optical
axis (compared to the total length of the beam pathin the field region)
should always be so small. Furthermore, the intibnaof the beam path to
the axis is required to be so small that second fagter powers of the
inclination of the beam path can always be negieateh respect to the first

power.
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2.1.3 Numerical determining field potentials

The field equation to be solved will baplace's equation (2.1).The
solution of Laplace's equation with specified boanydconditions make it
possible to determine the potential u(r, z) asrection of coordinates, from
which the components of the field intensity carchkulated. It is possible to
obtain an analytic solution; the final expressisnoften too awkward and
unsuitable for particular applications. Therefatee uses of the numerical
methods (approximate methods) are very useful Ivirgpthe charge particle
optics problem$Ahmad 1993]

There exist a wide variety of approate methods for solving the

field equation (field potential); the most commoe [Szilagyi 1988]

(a) Finite Element Method

The finite element method FEM was firsedign electron optics by
Munro 197Q who applied it to the computation of the magneagdfin round
lenses. Since that time, it is of special interastharged particle optics. In
this method the system of algebraic equations raadg= ijlN Aj U; +B;,
the inhomogeneous terms arising from the boundatyesg of the potential
are represented by; Bhd B The matrix A depends on the node coordinates
and on the partial differential equation (PDE).ake derived from a variation
principle —equivalent with the PDE to be solvedeTuanctional is a volume

integral as in the electrostatic cgstinro 1975]:
F HiotaivoumeZ2A U - AU AV oo, (2.5)
The above integral depends on the type of cooredihe potential U, and its

first derivatives with respect to the coordinafése field is subdivided into

triangles, each node being the common vertex ohdlj@cent triangles.

=YY -



As shown in figure (2.1), within eachatrgle the potential is expressed

by a lower order polynomial of the coordinates.

W e
, polyg an
finite elermert af sur rounding
v verticies
| v, NN

yertey
yiertes

Figure 2.1represents mesh of the finite element method
[Munro 1975]

With these approximations the potentrabtigh out each element is
uniquely determined by potentials at its vertiddence the contribution for
each element to the value of the functional cam)Xjgessed in terms of the
vertex potential. Minimizing the functional, oneelds a set of linear algebraic
relations, relating the potentials at each vertex s neighbours, where the
A; depending on the coordinates of all vertices iwedl This set of linear

equations is solved to give the potential at eaebmpoint.

(b) Finite Difference Method

The finite difference method was firstraduced byLiebmann in 1918
and thus it is often called "Liebmann's method"e Thathematical theory of
this method is exhaustively studied in many redezscThe basic concept of

the procedure is to subdivide the space withinfidled under consideration
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into finite squares or rectangular grids. The po&tat each node is related to
those at four or eight of its nearest neighbourshasvn in figure (2.2).

F

n+1

Z

Figure 2.2represents the grid of the FDM in two dimensions
[Hawkes and Kasper 1989]

There are essentially two differentysvaof deriving the finite
difference formula that replaces Laplace's equati@mely, the Taylor series
method and the integral method. Further detail&[OM are given in most of
literatures likgHawkes and Kasper 1989]

One of the simplest classes of paranegdranalytical functions is the
class of high degree polynomials whose coefficiemées simple functions of
the potential values at given locations. One cad &xcellent imaging field

distributions even with a personal compJytéawkes and Kasper 1989]

(c) Artificial Intelligence Technique

In 1990's symbolic computing has beconpeaanising aid in different
kinds of decision making and building expert syseifhese were the first
attempts in this technique, programs are appedhagare able to deduce
rules from a database without actually carrying nutmerous amounts of
numerical calculationdFriedman 2003, Menken 2002] The design of

optical elements and systems are based on the &dgw/lof simple facts and
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rules the initial data are laws of electron and/or ioticgand the knowledge
about existing solutionjKiaogang et al 1993Steve et al 1993]

Present softwar€QADION )"which stand for computer aided design for
lons" has adopted this technique with the aid ofadgic programming
procedure, in order to maintain such smart datafiaseexpert system); the
system contains database tables impeded insidaitiveutines. The synthesis
procedure of the dynamic programming has usedtiélaid of this technique

to achieve such expert system.

(d) Dynamic Programming

Dynamic programming is a mathematical optimizatiechnique used for
making a series of interrelated decisions. It @&tswith a small portion of the
problem and finds the optimal solution for this #eraproblem. In contrast to
other mathematical programming techniques, ther@istandard formulation
of the dynamic programming problem. This kind obgmamming is a general
strategy for optimization rather than a specifi¢ o€ rules. The dynamic
programming procedure has been successfully apgiédferent problems of
electron and ion optighmad et al 2002, Orloff 1993, Chapra and Canale
1998, Amos et al 1988]

A major distinction among dynamic programg problems is the
nature of the decision variables. If the decisianable is restricted to integer
values as in this investigation, the whole probliento bediscrete If the
decision variable can take on any real value, thablpm is said to be
continuous. Usually a multi stage decision progessansformed into a series
of single stage decision processes. It is essBnfhatecursive optimization
[Kuester 1973]
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In the present work both the artificiatelligence technique and the
dynamic programming procedure will be used. Moraitke on the synthesis

procedure will be given in chapter three.

(e) Cubic spline function

A cubic spline function is a third ordgrolynomial used for
interpolation, curve fitting with continuous firahd second derivative. The
name is derived from the old drafting tool. It iflexible thin piece of wood
that was used to generate a smooth curve passinggth specific points
known by nodal points. The spline assumes thateskdpch minimizes its
potential energy, and beam theory states thaetiesgy is proportional to the
integral with respect to the arc length of the squat the curvature, of the
spline. If the spline is a function of coordinatard if the slope is small, the
second derivative approximates the curvarture.Toexe cubic spline

function, its first and second derivative can bétem as[Burden et al 1981]

Fe(2) = Act Bo(z-2c1) + G (-2a)’ + De(2-20)° |
Fi(2) = B+ 2G (2-Zc1) +3 D (z-%c1)’ S (2.6)
F'«(2) = 2G + 6 D(2-%c1)

where z; is the coordinates of the k-th interval's left graint , k=1,2,3,....n
Is the number of intervals , A,B,C and D are theffioients of the spline
function which are for each region, () may approximate the axial potential
distribution U(z) for both rotationally symmetrideetrostatic and magnetic

lenses.

The continuity conditions for the spline functiorts first and second

derivatives can be rewritten as:
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Frer () = R(@) )
F'k+1 (Zk) = F'k (Zk) > .................................. (27)
F'k1(z0) = F'x (i)

2.2 Light Optics Verses lon Optics

There are significant differences betweehtland ion optics, such as
[Steve et al1993}

+ Radius of Refraction

Light optics makes use of sharp transgiof light velocity (e.g. lens
edges) to refract light. These are very sharp agitl defined (by lens shape)
transitions. The radius of refraction is infinkeerywhere gtraight lines)

except at transition boundaries where it approazhes charp bends).

lon optics make use of electric fieldemmsity and charged particle
motion in magnetic fields to refract ion trajecesmi This is a distributed
effect resulting in gradual changes in the radidisredraction. Desired
electrostatic/magnetic field shapes are much haeletermine and create
since they result from complex interactions of &lee/pole shapes, spacing,

and potentials and can be modified significantlyspgice charge.

 Enerqgy (Chromatic) Spreads

Visible light varies in energy by lesaha factor of two. lons can vary
in initial relative energies (or momentum for matycle by orders of
magnitude. This is why strong initial accelerati@me often applied to ions to

reduce the relative energy spread.

* Physical Modeling

Light optics can be modeled using physmatics benches (interior

beam shapes can be seen with smoke, screenssorsen

-YVY -



lon optics hardware is generally intelynahaccessible and must
normally be evaluated via end to end measuremextsnerical simulation
programs allow the user to create a virtual ionagpbench and look inside

much like physical light optics benches.

2.3 Uncertainty Principle

The motion of charged particles at nontnaktic velocities is governed
by the laws of classical mechanics. Naturally, wse nature of particles is
an important limitation for dimensions comparabléhwthe following de
Broglie wavelengtiYariv 1982]:

whereh = 6.62 X10°* Js is Planck's constant, m amdare the mass and
velocity of the accelerated particle respectivéty.classical mechanics it is
possible to measure both the velocity and the ¢paté of a particle at some
time without disturbing it. However quantum meclafly the act of
measurements interferes with the system and maediftie The resulting
perturbation is negligible in "large" (classicajsgeems, but assumes major
importance in small systems such as atoms, electand nucleons. It is a basic
result of electromagnetic theory (specifically,tbé theory of diffraction) that
the spatial limit of resolution is approximatelyuad to the wavelength of

electromagnetic radiation usgsizilagyi 1988]

Therefore, momentum and position of argéd particle cannot be
measured simultaneously with arbitrary accuracys Was due to the fact that
the uncertainty principle works. The uncertaintgtienships are often referred

to in order to illustrate the constraints on pragdagy quantum mechanical
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wave functions. Since position and momentum are Wey factors
characterizing a particle in classical mechanicss, important to know that the
corresponding quantum mechanical operators do oothrwte for a known
function. Quantum mechanically the positian and momentump are

represented by the following expressj§iariv 1982]:

i[rpj]z I A Sij ................... (29)
wherer—,, =X ,yorz ,and pi=y.. = Px, Py Or p; and so on. Thus find that

the position and momentum as operators of a clEagele do not commute.

In principle the quantitfz can be used as a measure of the uncertainty
(fuzziness) in position (along optical path), ang is a measure of the

momentum spread; both are relatedYgriv 1982]:

AP AZZ>H 2 i (2.10)

where i = h/2n, and all particles are considered under the ntativestic

case. Equation (2.10) holds for any physical system

Consequently, most of present work tsswere calculated in a nano
scale or less of accuracy. To distinguish the fidah and discuss it for more
precise factors, the aspects have been adoptdusinniestigation are the

whole dramatic notions of the uncertainty principigothesis.
Therefore, to select the best lens, italsle dimensionless figure of

merit may be constructed for the problem and tleenhioose the lens with

smallest acceptable value of an optimized factOree common requirement
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of all applications is to reduce the spherical ahcbomatic aberrations to as

small as possible.

It seems then that the absolute figdrmerit of any optical system is
the size of its total aberration disc diametg). (Adding that the beam spread
angle a can be ascribed to the fact that the chargedgestielectrons or
ions) are confined initially to a distance, whithsicorresponding to the total

aberration disc diameter. Therefore, the transveis®entum spread 8P ~

1/ total aberration disc diameterd;);, then the spread angle has taken as
[Yariv 1982]:

a~Aplp~nl(d)2nnll)=r/2nd,.......... (2.11)

wherep =27 1 /A, ) is the wavelength of the charge particles wave.

This is a well-known formula, it is appched as a problem in
electromagnetic theory .Equation (2.11) reflect® tRourier transform
relationship that exists between the field disttido in the lens plane and the
far-field distribution of the image spot size .Thisourier transform
relationship is also the basis for the uncertairdyations in quantum

mechanicEShannon and Weaver 1949]



2.4 Definitions of Some Optical Parameters

Figure (2.3) shows some of the opti@abmeters, such as object plane

Z,, the image plane zhe principal planes and points, the focal poartd the
focal planes. There are so many definitions of sy&Erameters and
properties .The following steps are summarized sahéhem Bzilagyi
1989;

+ Object sidethe side of the lens at which the charged padienter.

+ Image sidethe side of the lens at which the charged padittave.

* The object plane,z The plane at which the physical object is placed

a real image is formed from a previous lens, orothject side.

» The image plane;:ZThe plane at which a real image of the objech@la

Z, is formed, on the image side.

+ The principal pointsThe planes passing through the intersections and
perpendicular to the axis are called principal pfarlrhe intersections
of the principal planes with the optical axis aaled principal points.

+ The focal pointsA focal point is the image of a bundle of raysident

on a lens parallel to the axis. If these rays arav the lens from the
object side, then these rays are collected atniage focal point;. If
these parallel rays are incident from the imagees,sithey will be
collected by the lens at the object focal poigt The plane
perpendicular to the optical axis and passing tinoeitherf, or f; is

known as the object or the image focal plane raspey.
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Object side
A

Image side

Optical axis

(a)

Optical axis

D

Figure 2.3 represents the Cardinal Elements (Optical Paras)etd# an
axially symmetric lens (a) Definition of focal pojrib) Definition of principal

points and (c) Definition of nodal points.

+» The objective and projector propertiedn many cases the charged

particle beam trajectory crosses the optical anggle the lens ( strong
lens ) .It cannot be assumed that the path of rjectory will be
rectilinear after crossing the optical axis , besaut can still be
modified by the field until it emerges from the $efhis is illustrated in
figure (2.4), where the trajectory crosses the akithe objective focal
point f,y. The objective focal point, the objective midfoéamgth, and
the objective principal point are denoted hy;, Ofu, and Pgy,
respectively. The projective focal poiffif,; , the projective principal

point Py and the projective mid focal leng®f,; are also shown in
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the figure (2.4).For weak lenses , where the ietdrsn of the beam
with the optical axis occur outside the lens figlthe objective and

projective cardinal points coincidézl-Kareh and El-Kareh 1970].

T - \‘Fﬂhj

. : 5 =l -
F;pruj F‘;hi FI"“'II\\

Figure 2.4shows the definition of Objective Cardinal Poims Strong Lens

There are three magnification conditiomzler which a lens can be
operated, namely zero, infinite and finite magmifion .Figure (2.5) shows
the three conditions, thus magnification in anyiacgtsystem is the ratio
between the transverse dimension of the final image the corresponding

dimension of the original object, i.e. the magration (M) agMunro 1975]:

M =r; /1, = image height / object height............... (2.12)

As shown in the figure (2.5) these ctinds are summarized as
[Hawkes 1989]
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a) Zero magnification condition : In this case the m@@g conditions is
Z,=-», as an example , the final probe forming lens iscanning
electron microscope (SEM) is usually operated is tondition.

b) Infinite magnification condition: The operating @btion is z=+« , as
an example, the objective lens in a transmissiecten microscope
(TEM) is usually operated in this condition.

c) Finite magnification condition: The operating carah in whichz, and
z is at finite distances, as an example, the elsttic lens in field

emission gun is usually operated in this condition.

r(z,)=1 rz;)=0
r'(zo)=0 r'(zi)<g
Optical axis \\ M=0
r(z,)=0 r(z;)=1
r(Z.)> 0 / r(z;)=0
. — M=¢2
Optical azxis
I'{Eu}=0 r{zi}=0

F(2o)> 0 r'(z;)<0
/ _ _ \\ M-=Finite
Optical axis

Figure 2.5shows the magnification conditions
2.5 System of Lenses

A system of lenses is a combinationevesal lenses arranged in the
axial direction and forming an intermediate imafj@mobject in the field free

regions between them. If the fields of any two emutive lenses overlap,
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they must be considered as one single lens. Thenwah important practical
reasons to employ a system of lenses Srddgyi 1989:

I.  To allow variations of the magnification over a wichnge by changing
the lens excitations when the object and lensealbséuated at fixed
locations.

ii.  To provide the possibility of achieving very highwery low

magnifications.

To construct the final image of the objettie intermediate image
produced by the Nth lens will be the object for {Ne-1)th lens, where N is
the ordinal number of the lens in the system . Hnisiber is usually small in
most equipment such as the electron microscopesthenmicro fabrication
devices, and no more than three lenses are ussdnia applications, like in
particle accelerators, the number of successivasiag elements may be very
large. So that the fewer the number of lenses essthorter is the optical
column , which is equivalent to a much easier [cattrealization ( better
mechanical stability , not so complicated alignmesrthaller number of power
supplies, etc.). In the present investigation,edé@ht combinations were used

as a focusing portion of the system.

2.6 Aberration Theorem in lon Optics

Microscopes and other optical instrureearte commonly plagued by
lens errors that distort the image by a varietynetchanisms associated with
defects (commonly referred to as aberrations) tegsufrom the spherical
geometry of lens surfaces. There are three prirsanyces of non-ideal lens
action (errors) that are observed in any opticalae
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Of the three major classes of lens errors, twoaassociated with
the orientation of wave fronts and focal planeswispect to the optical axis.
These includen-axislens errors such afiromatic andspherical aberration,
and the majoroff-axis errors manifested asoma, astigmatism and field
curvature. A third class of aberrations, commonly seen @resimicroscopes
that have zoom lens systems, is geometrical distgrtvhich includes both

barrel distortion andgpincushion distortion[Michiel et al 1993]

Rotationally symmetric electric fields may be geted by systems of
metallic electrodes that are rotationally symmaetriagn geometry and
configuration and between which appropriate volskagee applied. In these
electric fields, the equal-potential surfaces atatronally symmetrical curved

surfaces, which can be made to focus ion beams.

The study of aberrations is of great omt@@nce, since they cause
limitations to the performance of various electrom/optical elements and
systems. It is as old as the electron microscaadf jtfor the first calculations
of aberration coefficients were made in the ea®3ds byScherzer and
Glaser. Hence, the operation of axially symmetric electemd ion lenses is

based on the paraxial theory (first order) whichnsapproximation theory.

Similar to a light optical imaging system, the antiof the ion optical
system is to transfer the ion image from the oljpéante to the image plane. In
the paraxial approximation the ion optical systean torm an ideal and clear
image known as th&aussianimage, but when aberration is present the

image is distorted and unclear.
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Figure 2.6shows the ideal imaging Gaussian trajectory

As shown in Figure (2.6), the object is at plare,, and itsGaussian
Image plane is located &tz,. Trajectories passing through the object point
intersect at an image point are independent oétimtial slope (¥, y2). Thus
all Gaussiantrajectories emitted from an object point(®,Y,) in the object
plane, regardless of their slope, are focusedpatrd image B (xy, yy) in the

iImage plane=z, [Lencova and Wisselink 2001]

Unfortunately, aberration is not thdyotefect that the image suffers
from. Other type of defects that due to fladrication of lenses such as
mechanical imperfections and misalignment. Thetedstatic repulsion forces
between particles of the same charge causes atidevia charged particles
path. It is another defect, known as fipace charge effectand it is a case of

charged particle optics alone, that cannot be forigiht optics.

2.6.1 Aberration Coefficients
Aberrations are the problem of all imagerfing systems. In general,
they are defined as the departure from the idealafpal) image formation.
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Sometimes, they are called image defects or impkofes, because their
presence causes deformation or complete damage tmage featureg El-
Kareh and El-Kareh 197Q .

a. Spherical Aberration

When the rays are monochromatic, whichuoaghen the laws of
refraction and reflection are applied to mathenadiirccorrect surfaces and
which are not consequences of material inhomogemeifabrication errors
are as followgEl-Kareh and El-Kareh 1970]:
1. Spherical aberration
2. Coma
3. Astigmatism
4. Field curvature
5. Distortion

Deformed image is not clear because ofadribese aberrations, which
are mostly taken place a mixture of them. Thissifastion is arranged in a
descending manner according to their extent otierfte in the deformation
of image features. They are called “geometricalra@bens” because each

kind has a geometrical origin.

The calculation of the spherical abéosratoefficient can be performed
in two different ways. A straight forward approasho retain the cubic terms
in the paraxial ray equation (2.3) and evaluate dliterence between the
accurate ray equation, and the paraxial trajectwiginating at the object
point. The spherical aberration coefficient (Cs) & expressed in terms of
integration involving knowledge of the paraxialj@éetory and the value of the
axial electrostatic potential .This procedure isnowmnly known as the

trajectory methodLawson 1977] On the contrary, a general perturbation
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theory may be developed, known as tk&nal method or method
characteristic functionfHawkes and Kasper 1989] The coefficient of
spherical aberration referred to the object sp@se is represented by the
following equatioriSzilagyi 1985]

Z
Cso= (1/16 r* U,"? I {[5/4(U"/U) ? +5/24(U'/U) “r* +
%

14/3(U' V)3 r-3/2(UU)2 r2r JUM2 Az oo (2.13)

whereCso = spherical aberration coefficient in the objedesU = U (z),

r =r (z) and {is the object side potential.

As shown in Figure (2.7), the focusingi@t of the fields in the region
farther from the axis is stronger than that inrgion nearer to the axis. The
image positiore', for the marginal off-axis trajectories will be firont of the
Gaussianfocus and further from th@aussianimage plane than the position
z, for paraxial trajectories. The minimum radius loé beand,, which is used
to characterize spherical aberration, proportidoathe third power of the
angular aperturer, in the object plane. In electron or ion opticalagmg
devices, the ultimate resolution is limited maibly the spherical aberration
which is the only nonzero geometrical aberratiothataxis and therefore the
most harmful. It can be decreased by reductiom.0fEl-Kareh and El-
Kareh 1970]
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Figure 2.7 represents the spherical aberrafirKareh and El-Kareh 1970]

As a result, in any charged — particleagpas well as in classical optics,
the aperture aberration (spherical aberration op siperture) is by far the
most important, because it limits the resolutioret#fctron microscopes and
the smallness of the probes of microanalysers.Thalserrations are
characterized by the values of the deviatiansand Ay from the point of the

iImage formed by the paraxial be§&eptier 1966]

The radius of the stop apertuggi§ proportional to the tangent of
the aperture angle (half acceptance angle).Sinaes very small (i.e. tana
= a in radians).Thus, it would get the disc formula[gsKareh and El-
Kareh 1970}

whered,, Csis the diameter of the spherical aberration distits coefficient
respectively. As it has seen, the spherical aberratoefficient of the

focusing device depends primarily on the diametén® aperture.



On the other hand, the spherical abemawill cause blurring in the
formed image if the angle is not very small. To evaluate the aberration disc
for a very small anglen , it makes the easiest way for getting such
indications .Since , the aperture of the systetedctecal lenses ) have multi
frames representations in the whole sfidaehael 2005] Mainly, the present
work results have given this value the proper iatlom of uncertainty

relationship.

b.Chromatic Aberration

Chromatic aberration in light optics asisieom the fact that light of
different colors (wavelength) is refracted with different strength. In ion
optics, the ions passing through a lens with daffeienergies will be refracted
differently. First-order chromatic aberration ioportional to the fractional
energy spreadAU/U, at the image plane, and to the first powern.adr r.
In rotationally symmetric electron lenses, chromaiberration cannot be
completely eliminated, but it can be reduced byeaasing the acceleration
voltage[Michael 2005]

In summary, geometrical aberrations havenatfonal dependence of the
form o' P, whereo = beam half angle at the image plane, r = off-aissance
at the image plane, First-order chromatic abema#ice proportional to the
fractional energy spreadU/U, at the image plane, and to the first powes of
or r. As in the figure (2.8) a simple principalstbe chromatic aberration
defect in light optics is shown El-Kareh and El-Kareh 1970 .
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Figure 2.8represents the chromatic aberration

Since the charged particle wavelerigih inversely proportional to the
square root of the accelerating voltage U, the lacatng voltage must be
very stable to have a narrow spread of wavelen{tas energies). AU
denotes the departure from the desired accelerathgge, them\U/U must
not be greater than 5x2@n high resolution instrumenfslawkes 1972] This
ratio is known as a relative energy spread whicpoisitive number, usually
given as the characteristic parameter of the sodite chromatic aberration
then can be reduced in two different ways; eithemrdducing the relative
energy spread of the source or by reducing theratio@n coefficient of the

lens.

The chromatic aberration coeffici@ub is defined by the following

equation Hzilagyi 1985]

Z
Cco= (U,"?/ r'?) J {(U2U) r'r+ (UAV)AU Y2 dz .o (2.15)
%

where z; is the axial coordinate of the image spage,s the axial coordinate
of the object coordinate, r and r' are the solubbthe paraxial ray equation

and U is the electrostatic potential distributidong the optical axis .
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The chromatic aberration results from tependence of the optical
parameters of the charged — particle lenses orrkegy of the beam being
focused. If the angle of convergence of the rays ihen the radius of least
confusiond, (i.e. diameter of chromatic aberration disc), iegi by[Ahmad
1993}

d=a[Af/ Ap] Ap =a f[p/f] [Af/ Ap] Aplp .......... (2.16)

where p andAp are the momentum and the change in momentumeof th
incident parallel beam of free charged particlespeetively, and (f) is the
focal length of a perfect lens .

But the coefficient of chromatic aberrati@g is given byLawson 1977];

Cclf = (1/2) (pIHATTAP) weoveeeieiiiie e (2.17)
Then the disc can be written as:
Ad=2CcaAp/P ccoveveiiiinnnn. (2.18)

Since the present work deals with the non-relditvisase; the disc may get
the new definitiorjLawson 1977]

de=Cca (AU/U) oovveerren, (2.19)

where U is the potential energy through which tharged — particles have
been accelerated to reach the momentum p,Auhdefers to half the total
energy spread in the beam. It can be seen fromlibee equation thal. is
proportional to the initial slope of the outermoay and the relative energy
spread AU / U). From equations (2.14) and (2.19) one nttasat low values
of the acceptance angle the performance of theamystem is limited by its

chromatic aberration, where at larger aperturegrsdd aberration becomes
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the dominant limiting factor.The total diametertbe aberration disd; is
given bySzilagyi and Szep 1988]

d=V dZ+dZ e (2.20)

2.6.2 Aberration of System of Lenses

According to the case of axial aberrafio®. aberration due to paraxial
approximation), the expression for any particulaeraation coefficient of the
lens system contains the corresponding coefficiehtkie individual lenses,
and they do not depend on the off-axis aberratomfficients of the individual
lensedSzilagyi 1988]

The spherical aberration coefficientshaf system referred to the object
can be expressed[8zilagyi 1988]

Csso = C'so+ {[U (@-Uo)/ [U (zm)-UoJ} *? C"so / M*
= C'so + {[U (3-UoJ/ [U (z)-U} ¥ C"si I M* .....ooov. (2.21)
where %, is the coordinate of the intermediate image, Mh& magnification

of the first lens in the system of two lenses, Nhis total magnification.

It is clear that the first expressiomtzons only coefficients referred to
the object, while the overall magnification M appean the second
expression. In the case of two lenses with M' i@nniely large and M"
(magnification of the second lens) is zero, onlgoCand C"si are finite.
Therefore, the second part of the above equatiost rha used, and the

magnification of the system is given [Szilagyi 1985-1988]
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M=-f"/f=-(m ') (1) = -\/U U (@) (2.22)
where f; and '} are the object side and image side focal lengthbeofirst
lens in the system, and &ind f'; are the object and image side focal lengths
of the second lens in the system respectively. Blenc and n are the
refractive index of the lens. The spherical abemator the system is thus
given by the following equation:

Gso= Csow - (f'1 /") C'si(m=0) /M ....oovvinininnnn. (2.23)

The spherical aberration coefficientlvioé smaller incase of infinite
maghnification .It is easy to generalize the ab@suiit for a chain of lenses by
simply considering combinations of lens pairs agle lenses and using the
procedure sequentially .By the same method , simkpression with some
differences exist in determining the chromatic &teyn coefficient . The
chromatic aberration coefficients of the systenemefd to the object can be

expressed by the following equatif$rilagyi 1988]

Csco = C'co+ {[U @-Uo)/ [U (zm)-UoJ} ¥ C"co / M*

= C'co + {[U @-Uo)/ [U (zm)-U} ¥ C'ci/M* ............. (2.24)
where the coefficients C'co and C"co are functiohthe magnifications M'
and M", respectively. The magnification M" on ther hand, depends on the
separation of the two lenses from each other. Toexe the chromatic
aberration coefficient of the compound lens is mglkcated function of the
system parameters. For a system the chromatic adimerrcoefficients are
given as follows:

Gco= Ctooo - M (1 /) C"ci (M=0) +.v'eevvveeaanenne, (2.25)

-¢o .



The spherical aberration disc diameteh@image plane can be written
in the following form:
= M Ot O52 e et oo e (2.26)
where,dy= M' C'so tan (o) is the spherical aberration disc diameter of the
first lens and g = M" C'so taf (ay) is the spherical aberration disc diameter
of the second lena; anda, are the acceptance half angle of the charged

particles for the first and second lenses respelgtiv

The chromatic aberration disc diametervegiby:
=M" ezt iz covveee i (2.27)

where d.;;= M' C'co tan §) AU, / {2[U (z,)-U,]} is the chromatic aberration
disc diameter of the first lens andi,& M" C'co tan §,) AU, / {2[U(z)-UoJ}
Is the chromatic aberration disc diameter of treosd lens.

The energy spreadU, expressed in electron volts, thus the above
relationships indicate that the diameter of splaérior chromatic) aberration
disc of the system is the sum of the diameter efdgpherical (or chromatic)
aberration disc of the first lens magnified by #fseond lens and the diameter
of the spherical (or chromatic) aberration disctbé second lens. The
diameters of the spherical and chromatic aberratd@mts determine the

diameter of the total aberration diSzilagyi 1988]

di =V A2+ 2 e, (2.28)
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2.7 Figures of Merit

There are many design problems (forediit applications) in which
the conditions (geometrical and electrical or magnparameters) can be
varied to optimize the quality of this design (fiveal image).The number of
these geometrical and electrical parameters magutte high , where the
requirement of different applications may be tgtdiffferentfAhmad 1993]

Therefore, to select the best lens, italsle dimensionless figure of
merit may be constructed for the problem and tlerhbose the lens with the
smallest acceptable value of this figure of mé&ine common requirement of
all applications is to reduce the aberration tesm@msll as possible. It seems
then that the absolute figure of merit of an opteygstem is the size of its
aberration disc. By using the known scaling lawsalisg down) one can
make the aberration disc as small as possible.a8oreable suggestion has
been made by relating the radius of aberrationtdismother quantity that has
the same dimension (dimension of length). Othetofaccan be used when
selecting the figures of merit , for comparisondiferent lenses one may
choose quantities like , the length of the lenklfiefield from z to z), the
object or the image —side focal length t@ f; respectively), the probe radius
etc. Important factors are the dependence of #eeddithe aberration disc on
the magnification. Therefore, according [t8zilagyi 1988] the aberration
coefficients of different lenses with equal refraetpowers must be compared
for the case of infinite magnification at equal nmaxm fields or potential
ratios , or one can use for each problem its owlividual: the figures of merit
[Harting and Read 1976]In this investigation the figures of merit takero
consideration are the relative spherical aberratioefficient Cs/f and the
relative chromatic aberration coefficient Cc/f whiigive a dimensionless

guantity.
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2.8 Image Analysis by spot diagrams

A spot diagram is a collection of rayadeesulting from tracing a large
number of rays from a single object point througévesal aperture
coordinates. The aperture coordinates are nornsallyup to form a square
grid in the entrance pupil. Spot diagrams can begssed in a variety of ways
to provide either geometrical or diffraction ana&gsof optical images.
Although spot diagrams involve ray tracing, manpexss of spot diagram
analysis involve considerations of statistics omeucal analysis that have
little to do with the techniques used to trace rdyse image of a point by a
lens that is not diffraction limited is often debed by its geometrical spot
size, defined to be the root mean square (i.e. smg) radius (not diameter).
The rms spot size is defined as the square roothefvariance of the
distribution. This quantity does not indicate thectional energy in the spot, it
has an intuitive appeal and its square is widelgduis optimization merit
functions [Forbes 1988] Calculating the spot size is thus a matter of
considerable importance in present optical desidivare.

Rays should be spaced so that each prggents an equal element of
solid angle. Various patterns have been used, dnajucircular patterns and
square grids, neither of which is particularly aete. In addition, the
reference point on the image surface must be talsethe centroid of the
distribution, not the intersection of the chief rap that asymmetries in the
image are properly accounted fdhe spot size to be defined by an integral
equation that represents the limit that would b&ioled if the number of rays
traced approached infinity. Then, if the objectrppos located at a distante
from the axis, and the pupil intersection pointdsscribed using polar
coordinates, one has the following expressionHerrhean square spot se®
follows [Sinclair & McLaughlin 1989]:
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5 ) = Llj;"[y(r, 8.5) -y [ rder

whereas?(h) is the rms (i.e. root mean square) spot sizehaisdthe distance
from the axis of an object point. Figure (2.9) wn the essential quantities
includedin spot size determinatid®inclair & McLaughlin 1989].

Rays

Q\\ Y centroid
/ of Image

Reference Ray

Image
Surface
Minimum variance point
¥
Best-fit sphere
\ z
Reference Ray \
Image
Surtace

Wavefront

Figure 2.9shows the principal spot diagram parameters
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The grid used to set up the apertw@dinates of rays in the spot
diagram is determined by the value of the numbepefrture divisions across
the diameter of the entrance pupil. For systems lthae a large numerical
aperture on th@bject side, the grid cells are equally spaced umerical
aperture, not in entrance pupil coordinates. FigiZd0) shows the grid
pattern used in the present work for 10 apertuvesions. The number of
aperture divisions is not restricted to integeruesal but is a continuous
parameter that determines the size of grid cellhénspot diagrarfHawkes
and Kasper 1989]

Figure 2.10represents the grid pattern



Chapter Three

Computations and Analysis

The following conditions have been used in the gmesvork for both electric
and magnetic lenses as follows:
* Non - relativistic velocities (low energy beamsk amssumed for
charged particles, and just paraxial trajectorres@aken into account.
 The space charge effects are assumed negligild¢, ishsatisfying
exactly Laplace's equation.
» The aberrations due to the source of charged [estibave been
neglected.
* Machining inaccuracies and asymmetries in lenselhap neglected.
* The initial velocities of charged particles havemh@&eglected.
And for magnetic lenses considerations ongyftillowing conditions:
o The influence of any currents is negligible.
o The relative permeability of the magnetic matedah be considered

infinite.

3.1 Electrostatic and Magnetic spline lenses

The cubic spline model is the smoothest interpadafunction, so that
it is quite obvious to use it as a simple model floe representation of
complicated axial potential distributions. The aulspline is not the only
possibility; fifth — or higher —order splines cals@be used. The distribution
along the length L is divided into N intervals blet following cubic

polynomial:
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~
Uk (2) =ax + b (Zc-Zia) + Gk (Ze-Zica)” + i (Zc-zicn)°

U'k (2) =byx+ 26 (Zc-Zi1) +3 di (zk-2c1)? NPT (3.1)
U"«(2) = 2o + 6 di (zc-2k-1)

~/

where U(z) represents the approximated potentistridution for either
electrostatic or magnetic lens, () and Uk (z) are the first and second
derivatives with respect to z respectively. From tlontinuity conditions one
may write equation (2.7) as follofSzilagyi 1987, 1988]

U1 (Z) = Uk (zd)
U'k+1 (Zk) = U'k (Zk) .................................. (32)
U"1(z) = U (z)

Thus, the coefficients of the spline function cae interrelated by the

following relationships:

841 = a + bch +o P +dy h?
b1 = b+ 2¢, h +3d, h?
Cke1 = 20 + 6dh

where h= z — 7., is the length of each interval. It is importantremember
that the discontinuity of the third derivative artde undefined higher
derivatives do not cause any problem since onecafnulate all the optical

properties including the aberrations by using trst two derivatives only.
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3.2 Optimization by dynamic programming procedure (DPP) with the

aid of artificial intelligence technique (AIT)

It is aimed at finding the potential distributiohat minimizes the
aberration integral, at the same time satisfyirgdtiferential equation of the
paraxial rays, and also the constraints imposedragtical requirements.
By consider the rectangular computational gridresas in the figure (3.1). It
defines the domain of existence for the soughtridigion function. It is
limited by the maximum allowable value of the fiektrength or its
derivatives. The axial extension is defined by ¢meen lengthL ,which is
divided intoN equal regions each of which is denoted by k ardngth
interval h= z — 7z, = constant ,so thgAhmad et al 2002]

AZ=2 =21 =LIN=ZCONSt .o (3.4)

where k =1, 2, 3... N is the ordinal number of tivesg region.

W(2)AW
N
3 LK
2
1
0
. A I
-1 K| K
-2
- /
Y j K-l

Z/Az
Figure 3.1 computational grids for the dynamic programmingoadure
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This will lead to approximate the unknown distribat U (z) or one of
its derivatives by a straight line in each regibWV (z) denotes the piecewise
linear function, then for magnetic lenses one cssuie that W (z) = B (2),
which is equivalent to the piecewise linear moa#ijle electrostatic lenses
can take W (z) = E(z). But the effective approach may to use for the
piecewise linear function W (z) the highest deinwatthat appears in the
aberration integral. Also, assume further that W&ah take only 2f|+1
different values at the boundaries of the regiomisere M represents the
ordinate dimension of the computational grid. Thinis problem has been
reduced to that to finding Nx{a||+1) intersection points of the computational
grid that will provide the linear segments for thtimized function U (z).The
present work seeks for a systematic investigatibfemmses by varying the
basic parameters of their potential distributiorthe process of construction
of the spline model. This procedure can be donerdoty to either of the
following two basic strategidSzilagyi 1988]

1) Considering a class of splines with a fixed nunddentervals.
2) Approximating a certain class of potential disttibns by different

splines.

Consequently, the paraxial ray equatian be solved in each interval
numerically. The continuity of the solution requirthat the initial values for
the particle trajectory and its first derivative fach region must be equal to
their corresponding final values in the precediegion. The contribution of
each region to the aberration integral can be &atled numerically using
Simpson's rule. The ordinate dimension of the npdahts at the beginning
and at the end of each interval is representeddoy ji respectively. Then the
initial and terminal values of the second derivatiunction in the k-th region

are given by:
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U"(z) =] AU"
U'(Z=iAU" Sl (3.5)

whereAU" is the minimum amount of change of the secomivd#ve, given

by:

AU"=6 /M , o:isapriorigiven number. .............. (3.6)

To ensure the continuity of the spline as well &st® first and second
derivatives at each of the N-1 nodes, equation) (3uBst be satisfied for the
coefficients wherd is the equivalent asz in equation (3.4).Four coefficients
of the spline function have to be calculated fartemterval. The coefficients
C. andd, are expressed in terms of i and j as folljbmad et al 2002,

Harriott2001]:

C=jAU" 12, de=(i-) AU /6 oovveveen (3.7)

While & is the magnitude of the potential at the starpoint, b, represents
the magnitude of the first derivative of the potahfunction at the starting
point of the k-th interval. For the first interv@le. k=1) the four coefficients
were calculated from these definitions, and theyewstored in one database

to revaluated as a part of an expert system. Wiléhe successive intervals
a, b andc coefficients were calculated from the continuipnditions of the
spline function and its first and second derivagivédhe coefficientd is

determined by varying the values of i and j. Byngsartificial intelligence

technique, an expert system has been establisnbddatabase list of the
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entered coefficients to minimize the optical praesraccording to figures of
merit.

Indeed the present investigation was ¢yio reconstruct exactly the
same function that is the subject of our investogatthe spline function. . For
N intervals there are 4N coefficients , where 3(Nof them are calculated
from the continuity conditions and two of them képed to determine the
initial magnitude of the potential and to ensure zkro slope condition at the
beginning of the first interval. Then the remainiNg1 free coefficient are
varied to search for sub-intervals of sets of dofifits that would be stored in
unique database of the expert system, which itigesvthe best and optimum

optical properties.

3.3 The Synthesis Procedure

Optimization by synthesis has always been one @fntbst ambitious
goals of charged-particle optics. This approadbased on the fact that in any
imaging field, it's first and third — order proped are totally determined by

some axial functionfpAhmad 1993]

The axial electrostatic and magnetelacpotential distribution U(z)
Is represented by a cubic spline function. Thaths, solution will be in the
form of a spline lens. The axial length L of thetdbution is divided into N
equal regions, each denoted by k, where k =1, 2,,3N. For each k-th
interval, the potential distribution, and its firahd second derivatives are
expressed in the form of a cubic polynomial (equrat8.1). The constraints
are formulated according to the pre-assigned rements of the problem.
Then the objective function that is to be minimizedelected. This function
will be the coefficient of aberration, which is thest important rule into the

present work rule-based system called a knowledge bf the expert system.
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In the present procedure of our work,atadase was established to
provide storage and retrieval of calculated optoraperties (i.e. spherical and
chromatic aberration coefficients) and optimizedeptial distributions (i.e.
electrostatic and magnetic) according to dynamgm@mming procedure. An
expert system has been built according to artificigelligence technique,
which is called rule-based syst¢Rriedman 2003] It maintains a collection
of knowledge nuggets called facts. This colleci®known as the knowledge

base, which is our relational database.

By using a Jess 6.1 (i.e. Java ExperttefysShell-version 6.1)
programming language and a class modules in VBe6\(isual basic studio -
version 6) the present work expert system has bexated and setting up the
user interfaceless is a tool for building a type of intelligenfta/are called
expert systems. An expert system is a set of rtlas can be repeatedly
applied to a collection of facts. It is sphericalhtended to model human

expertise or knowledgi@enken 2002]

A specific set of optical properties (i.e. sphdri@d chromatic
aberration coefficients) have been selected aaagrth figures of merit and
the spline functions (i.e. electrostatic and maigrgtential distributions)with
their coefficient sets equation ((3.1) and (3.33yevstored into our knowledge
base. Our rule based expert system written in i3easdata-driven program
where the facts are the data stored in our knowledgse that stimulate
execution via the inference engine. This enginedascwhich rules should be
executed and whefMenken 2002] Therefore, the present expert system
automatically performs the field calculation ang t@cing, depending to the
stored data base (i.e. jess knowledge base) arfdIibwing two factors:

1. The facts of the function to be analyzed (i.e. tetestatic and

magnetic potential distribution).
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2. The rule of dynamic programming procedure solutievisich obey

the given constraints.

Thus, an important rule has been used in our proeef.e. jess rule based
system) is the typical dynamic programming recwsiformulation as
[Kuester and Mize 1973]
F(n,s,X)=g|R(N, S, X), E(S) cccvvrrannnnnn. (3.8)

where n is an integer denoting the stage of thélemo, s is an integer
denoting the state of the system at n, s' is agertdenoting the state of the
system at stage n-1 resulting from the decisiox ¥ the decision being
evaluated at stage n , R(n,s,x) is the immediadterreassociated with making
decision x at stage n when the state of the syiem F,.,(s") is the return
associated with an optimal sequence of the deciatostage n-1 when the

state is s' and g is the minimal function.

In the present investigation, the functof Ifn_l(s') will be added to
R(n,s,x) but on the first stage (i.e. n =1) thianteof the function will be
omitted. At each stage, the results of the recarBwmulation are calculated
for all feasible values of x, and the optimal dems are returned for
subsequent use. Dynamic programming starts witimall sportion of the
problem and finds the optimal solution for thistp#trthen gradually enlarges
the problem, finding the current optimal solutidnem the preceding one,
until the original problem is solved in its entyeConsidering the recursive
relation expressed in equation (3.8), the objectivection may take the
following form [Ahmad et al 2002]

=min | fk + Gyl «oovvvvviininn, (3.9)
where R is the contribution of the k-th region to the abéon integral, G is
the coefficient of aberration, and (& is the optimized intermediate value of

the aberration integral.
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The coefficients of the spline function asried, and then the potential
and its first and second derivatives are calculaleé paraxial ray equation is
solved numerically using the fourth ordeunge — Kutta method under pre-
assigned initial conditions of r and r' , whera the radial component of the
lon trajectory and r' is its slope when the bearemnthe lens field. After
solving the paraxial ray equation, the constrasitsuld be fulfilled, in order
to determine the required optical properties (éogal length, maximum
electrostatic and magnetic potential and aberratiooefficients).The
aberration integrals can be solved numerically syng Simpson rule
[Chapra and Canale 1998]

Among the different values of the caméfnts, a minimum is selected
according to the rules equation ((3.8) and (3.9}he knowledge base of our
expert system. The database stored in the expsteraysearches over each k-
th interval for a set of spline coefficients eqaat(3.3) that would lead to the
axial distribution U(z) for both electrostatic anthgnetic potentials, which

gives a minimum aberration under the given constsali

Our expert system in the present invastig which has responded to
the SELECT statement is being used as one of thHe (B€ structure query
language) statements in our programming, which nsbezlded in the
ANALYZER program. Also, a search engine was created acupridi a
given constraints, in order to get an optimum pexfee as the given figure of

merit.
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3.4 Constraints and Optimization

It is important that the magnitude of the potential first and second
derivatives and the particles trajectory with itadjents along the optical axis,
should be carefully taken into account in deterngnihe optimum potential
distribution. The present optimization procedurecasried out under these
constraints, and results are determined afterllfatfii the given conditions,

that will limit the potential distribution and itkerivatives as follows:

MU @) <W v (3.10)
U'@)|U. e, (3.11)
U@ <U.wvniiiiinn (3.12)

where Y , U, , Uy and U" are selected values which stored in the database
(i.e. jess - rule knowledge base system) as fdctaioexpert system to be
evaluated. The potential distribution should behsti@at the beam trajectory
would intersect the optical axis outside the effeciens field. Hence, this

requirement can be formulated as follows:

r (z) >0where 0<z<L,whdethe axial length ...... (3.13)

The problem of finding the constraimthich can be easily fulfilled
in the presence of other requirements such as nuaxivalue of the potential
function will be encountered. This problem is omgged from the
optimization procedure itself since the distribatis always brought back to
the trivial case when one tries to give it a pafac shapgAhmad et al 2002,
Harriott 2001 and Amos et al 1988]



3.5 Computational Grid

The rectangular grid is introduced toiefthe domain of existence of
the solution for the distribution with the aid oyriamic programming and
artificial intelligence techniques. Then two, ouf four of the spline
coefficients namelc, andd, are related with the variation of the ordinate
position of the nodal points of the grid along thstribution at each interval.
The variation ofc, coefficients at the first interval (i.e. k=1) aad the d,
coefficients along the distribution are governedhoy variations of i and j as
in equation (3.7).These coefficients are restricigdhe domain and the rate
of change at which the magnitude of the secondvaive function varies.
Instead of testing an infinite number of coeffigefor the spline function that
may fulfill the given requirements , 2|M|+1 settioém for each nodal point at
each interval is examined and thefulfills the requirements were selected
and stored in the database (i.e. jess knowledg®dfasur expert system. The

result is 2|M|+1 sets of coefficients for eachha N intervals.

Our procedure in the present worktstat k=1 with the initial
condition G = 0, which expresses the simple fact that thertmrtton of the
region beyond the object to the aberration integgatero. Therefore, the
search in the first region is reduced to compardifferent F; values
(equation 3.9). The full procedure starts with deiaing the solution of the
paraxial ray equation and the contribution to thereation integral for each
stored database pair (i, j) values. For each icthreesponding j value that
minimizes F; is selected and stored as unique database ieghe&knowledge
base with the terminal values of the solution o praraxial ray equation.
After having done this for each of the 2|M|+1 pbksialues of i for the first
interval, the procedure is repeated for the secomidrval keeping in

knowledge base (i.e. rule-based expert system)ttigatecursion relation of
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the minimized objective function equation (3.9)nist trivial anymore and

what was i for the first interval becomes j for 8exond interval.

This procedure is performed from one rwvdé to another recursively
toward the image space until reaching the end ef dbmputational grid
(k=N). It will give rise to a maximum of 2|M|+1 aptum distribution, and the
one that fulfills the requirements is selected Isyng jess (i.e. java expert
system shell) language compromised with SQL (trecture query language)

statements of our expert system.

Figures (3.2) and (3.3) are shown thenmatational grid for the
dynamic programming procedure with the aid of wmiaf intelligence
technique. They defined the domain of existenadefolution for the sought
distribution function W(z) (i.e. the spline funaticequation (3.1) for both
electrostatic and magnetic potential distributionShe abscissa of those
figures represents the axial extension of the &oisg which it's potential and
field distribution exists. The ordinate shows tlasigon of the nodal points
where the axes of the grid intersect. These paion$rol and fix the value of
the spline function coefficients and consequeritly potential and electric or

magnetic field values, to be consistent with theegiconstraints.

The dynamic programming procedure exasmasch nodal point at the
end of each sub-interval with all other points le¢ beginning of the same
interval. By using artificial intelligence techniguthe automatic search for the
set of the spline coefficients that lead finallytbee minimum value of the
aberration integral. This procedure may inter-eelte two nodal points in
particular that fulfill the aim of the search andard the others. It may also
occur that some of optimized solutions cut out ttuéhe fact that last nodal

point in the particular solution in theykinterval either doesn't permit an
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optimum solution in the next interval (i.e. (kf1)nterval) or it cannot satisfy
the given constraints. The optimum solution thas watracted from among
similar ones is the solution that satisfies thegtesequirements (i.e. the jess
rule knowledge base equations (3.8) and (3.9)) ahdiven constraints. It
could choose a particular solution starting frora thst nodal point which
existed in the solution and tracing it back by gsihe jess rule knowledge

base, until reaching the initial nodal point.

The computational grid has been taked defined over twenty
intervals only for the present work. This is one tbe difficulties to
incorporate one of synthesis procedure (i.e. dyngrogramming procedure
in our work) into our expert system. Basically, tkeowledge base (i.e.
database of our rule-based system) has limitedcdgipal memory stored in
the personal computer hard drive. It may overcome difficulty by using
another type of jess as a programming languagedtermining the expert
system. This may happen in future by take very msbighted programming
language called sweet jg€3rosof et al 2002]

Our expert system requirements are depending ee timain steps: the speed
in the processing unit (i.e. CPU speed 2.5 or n\birz), the capacity of the
personal computer random accessing memory (i.e. RAM2 full caches)

and operation system availability (i.e. windows gack 2) or server2003).
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3.6 Simulation Software Description

Two software packages have been used to desigfothising lenses
that can be used in the ion beam lithography systame is called CADION
package, and the other is a SIMION simulator.

3.6.1 Computer Aided Design for ION system (CADION)

The increasing demand for smaller strustoe fundamental physics
research as well as for faster and higher denkattrenic circuits pushed the
fabrication technology in recent years to dimensionthe nanometer-scale
region. For the fabrication of structures with extely small details both
pattern definition and pattern transfer play a @&ucole. The ion-beam
lithography system is widely used for the pattegfirdtion [Romijn and van
der Drift 1988]. As will be shown in the present work, a simulatiand
optimization procedure have used to design lengbsrelatively large overall
dimensions of the order of a few millimeters andaahedium resolution of
the order of (30 — 100) nm.

The term optimization covers a wide mamg methods of finding an
optimal solution to a problem through the use a@baputer. Optimization
usually consists of two components:

1. A program as one package that producesilimate output given inputs
such as data and parameters.
2. A measure of how good the solution is, thateisned as one of the

following: objective function; criteria; goodneskfib.

Therefore, a computer programs have begetten and used as a
powerful techniques in the present work. Theseautbres comprise one full
package called (CADION) which is stand for (Computéded Design for

ION system) .This package has been described dasa module program
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written in visual basic-6 studio and designed assimulator for getting a full
simulation of whole processes. This program has besled (CADION

Simulator package), which comprises many subrositassfollows:

a- Accomplished program for the fourth ordeunge —Kutta method, also
this is used for computing trajectories when th&ahconditions are given.
The full details and outputs are given in a talmdaorm (set of data) inside
the PC stored as one database.

b- Accomplished program to analyze all set of storatadwhich can be
given with many results. This program is call€@ADION ANALYZER ), it
analyses all optimized field distributions (i.eedkostatic and magnetic
fields), and it has an ability to select the bestmulae fitted to the

optimization procedure (i.e. dynamic programmingjsT analyzer is
involving both techniques i.e. artificial inteligee and dynamic
programming. Also it is a search engine dependinghe SQL database
statements (i.e. SELECT statement).The programmainguage is classified
into two categories: [JESS — java expert systerit ahd visual basic studio 6
as it to make the user interface], this programksowledge base with search
and SQL server connector for the expert system.ysee section 3.3) and
(see the appendix)

c- Accomplished program for computing spherical antbofatic aberration
coefficients, this is done by usil@Impson’s ruleintegration method.

d- Accomplished program to draw (2 and 3 Dimensi@tisiind of inputs as
optimized field distributions (both electrostatimdamagnetic fields).

e- Accomplished program to convert and read all owputo another
application, Visual Basic Application programs askxcel sheets were used
in this investigatiofChapra and Canale 1998] This program has a search
engine to facilitate work with multi formulae thabuld be stored in the

Analyzer database.
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f- Accomplished program to calculate and plot all atépnto another GUISs,

aberration spot size diagrams were plotted and/aedlin this investigation.

The inputs of the programs processeatlaralyzed the values of the
optimized potential distribution U (z) for both éffield E (z) and B (2)
distributions). Otherwise, the outputs obtainedakial potential distributions

and their first and second derivatives respectively

Consequently, the above cases are clearly studidinwmore accurate
investigations. These multi times iterations andtibg examinations are
composed in the present work, as well as the casgres have been imposed
in all results and outputs. This work may lead & gew estimations and
predictions in the charged particle optics; alsmdty give a raise to consider
most of the results as prospective aspect for igtethe non classical

technology — the nano technology.

The conditions associated with theunegl system are given at two
different values of ( i.e. boundary conditiong, andz) .Since the system is
linear , the dynamic programming accompanied witiifi@al intelligence
techniqgue methods are the better choice to be takease methods are
adopted in this work when the values of the axwéptial are pre-specified at
Z, andz .It is seem worthwhile to state that by the abpraredures , one can
determine the axial potential distributions reqdi® produce a suitable
trajectories. TheRunge-Kutta (RK) method of the fourth order is used to
solve the system equations which can be giverr#ipectories under the given

constraints.
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Once the tests have been completed ardvbelming the standard
field distributions, theCADION analyzer has been used to give the best
distributions within a specific parameters accogdim the initial conditiong,
to z; the range of the optical axis was (-10 to 10) bynan increment of (0.1)
mm per each step.

Therefore, according to the aim of thgk the investigations have

been classified into two categories:-

+ Electrostatic field distributions (the designindj etectrostatic
lenses )
+ Magnetic field distributions ( the designing of agnetic

lens )

The spherical and chromatic aberration coefits have been calculated
within the CADION simulations, which gives the mamdications of the best
electrode design of each model .Four differentsaselectrostatic lenses and
two cases in magnetic lenses have been investigatedis work. Many
factors and variables have to be calculated to make any of results among
the others were corrected. Also, the dynamic progsaused for those factors
in optimizing process supported by artificial itiggtnce technique. So that,
considerable amount of errors have obtained wergleoeed in the
accumulation of data. Obviously, most of the forasulhave taken the

optimized results from the CADION simulator subroas.
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3.6.2 ION and electron optics SIMulation package (SIMION)

Instead of using Munro's prograjwkinro 1975] for checking up the
present work results and analyzed them into mocerrate values, the well
known and more updating simulator SIMION 7.0 paekhgs been used, by
which is the latest version for getting preciseueal and excellent optimized
formulae. Present work results were imported ihis simulator as a stored
database; full computerized manipulation has bgefied to get same precise
results as in CADION package simulations, as wall @otting and

configuring electrodes / pole - pieces in threeatsions graphs.

SIMION 3D version 7.0 is a Windows PC based ionagpsimulation
program designed to study and analyze ion opticbath two and three
dimensional modes or views. Electrostatic and miagmpetential arrays can
be studied with this software to determine thefeafon ion trajectories. It
incorporates an ion optics workbench strategy @aliatvs you to size, orient ,
and position .The original version of SIMION was aflectrostatic lens
analysis and design program developed McGilvery at Latrobe

University Bundoora Victoria, Australia, 1977.

SIMION for the PC was developed atliteho National Engineering
Laboratory.SIMION utilizes potential arrays to dhedi electrostatic and
magnetic fields. These arrays can be either elstettic or magneti@dlso it is
an array of points organized so that the pdmts equally-spaced square
(2D-two dimensions) or cubic (3D-three dimensiogsyls. Equally-spaced
means that all points are equal distances fromr thearest neighbor
points. To summarize the present work plan as ef Bow chart, describing
the optimization procedures with all input and ausp figure (3.3) shows the

flow chart of the optimization steps for the prasemestigation.
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Figure (3.3) represents the optimization schematic diagrarh@ptesent
work software.
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3.7 Reconstruction of electrodes and pole pieces

Once the axial field distributions of higlfavorable optical properties are
determined, the next step is to find the electrquedile that would generate
such distributions. An assumption is made thathigher derivatives of the
potential function which do not appear anywherthaexpressions of the focal
properties should not affect the potential disttifu either. The procedure is
elementary, it may add an assumption that "the drigierivatives at the
boundaries of the regions". Setting the potentialeéto U for an arbitrary point
with coordinates r and z situated in the kth regaomd then the equation of an
equipotential surface is obtained to be as follf®@&lagyi 1984 and 1988]

P=4U @)= UU (@) ccoeeeeeen (3.14)

where U (z) is the cubic function. Both U (z) amt¢end derivative U" (z) have
different expressions for each region but theybaté continuous functions for
the entire length of the optical system. By usihg simple formula given in

equation (3.14) , one would be able to reconstheequipotential surfaces and
thus the electrodes and/or pole pieces that wilvigle the same functions
U(z) , U'(z) and U"(z) , and thus the same firstasrproperties and third order
aberrations as the original theoretical distribotimbtained from the

optimization technique.

The electrodes (pole pieces) construstiere built from the potential
distribution by using the approximated series ef plotential equation (eq.3.1).
The final electrodes shapes have represented dqutpd surfaces according to
ad-hoc assumption. SIMION simulator is used to find suepresentations of
electrodes (pole pieces).The finite size of thespdal system is a limitation to

the accuracy of reconstruction because the elextrotist be cut somewhere at
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a finite distance from the axis to limit the maxmwalue of () to a realistic
size, usually half of the total length of the focigselement. Thus parts of the
electrodes (or pole piece) are omitted.

3.8 Spot Diagrams and Spot size

Having computed the aberration coeffitseit is useful to be able to plot
the shape of the aberrated beam at various locatiothe image plane, in the
form of spot diagrams. Those diagrams are very Igirtgp generate, it could
take a bundle of rays uniformly distributed in dq@erture plane. The spot size
depends on the aberration coefficients of the \emgh in turn, depend on the
magnification, the potential at the target, and Hadf acceptance angle
subtended by the cone of particles at the spotn Ppinebe disc radiug can be
added in quadrature §Szilagyi 1984 and 1988]

fi =Py + () 2+ (1) 2+ (M) 2 o, (3.15)
where the radii of the Gaussian imagg),(f(rs and ;) are the spherical and

chromatic aberration discs radii and;)(is the Airy disk, respectively. The

formulae of each component in equation (3.15) asedbed as follows:

o 1= ()21 (TMo) oo (3.15.a)
o T=M CootarP (0) wvvvvvenreeeeeeeeeeieeiee s (3.15.b)
o I=M Cgtan @) AUy / {2 [U(Zo)-Ugl} ..vvvn. (3.15.c)
o 15=0.6A/SIN[@) (3.15.d)

where the | is the total current of the Gaussiaanband bis the value of the
brightness at the image, M is the magnification @igand C,) are the object-
side spherical and chromatic aberration coeffigerdgspectively. AlsaAU, is
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the total energy spread of the beam and the wavelength at the image plane

anda is the half acceptance angle of the ion beam.

Since the ion source was not included m phesent investigation aims,
CADION package software has been neglectghend [r]. Therefore, it uses
enhanced spot diagrams that contain angles andguagths in addition to the
intersection coordinates of rays with the imagefaz@. This enables the
subroutines to carry out focus-shifting operatiomghout tracing additional
rays. Spot diagrams in this code are stored in mgifi@. jess rule-base [the
knowledge base] of our expert system), making cdaimns of image
evaluations that may use them very fast. The dianwtthe beam transmitted
through the system in computing a spot diagranorsnally determined by the
entrance beam radii.

Therefore, the probe radius to determinespi@ size (i.e. equation (3.15))

has been rewritten as follows:

T (D)% + ()2 e, (3.16)
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Chapter Four
Results and Discussion

Both electrostatic and magnetic lenses hlagen investigated in the
present work in two, three and multi-lens systehmre axial potential (or field)
distributions were optimized by using the combirghamic programming
procedure (DPP) and atrtificial intelligence techuadAlIT), figure (4.1) shows

a schematic diagram of our investigation.

The paraxial ray equation was solved nicaly by using Runge- Kutta
method. The aberration integrals (spherical androhatic) were solved by
using the numerical integration method of Simpsoni&e. The optical
properties (i.e. the aberration coefficients, focaldinal points) have been
investigated under infinite magnification conditigxiso, they were normalized
in order to be able to make a meaningful comparemong all results. The
present analysis and optimization procedures aresidered a nano scale
features, which is included by the given resultsuaacy limitations of the
written dynamic program package (i.e. CADION paeKabhese limitations are
determined by the following characteristics:

* Numbers precision is fifteen digits (iE5 digits).

* Number of iterations allowed are up 82767 times.
» Largest allowed positive number is79769*16%).

e Smallest allowed negative number12$507*10°%).

» Largest allowed negative number is{03").

« Smallest allowed positive number &s20*10%%).
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@ The dynamic programming procedure

Using the cubic spline model to find the optimized

formulae and parameters of the dynamic coefficients
according to the given constraints, by applying

(The class module of the visual basic studio 6) 6/B

4 @ Artificial intelligence technique

Building a hugedata base which represents as a

knowledge base (KB1)of a rule — based engine t
make our "expert system", by using

(Java expert system shell)-JESS 6.1

Mixing both methodd and2 together to find our work optimization
method according to the given rules and constrainits package has

the ability to search through the knowledge basednyg — jess
engine .Which is extracted all the optimum formwaeording to the
given figure of merit (i.e. as small as spherigal ahromatic aberratior
coefficients), and saving those data (KB)’a&() files in our data bass.
(See chapter 3JADION package

SIMION 7.0 3D has been used to draw three dimension graphidseo¢lectrodes an
pole pieces, and the optimized design, which theyorted from the saved knowled
base (i.e. database).

Visual basic application programis convertingthe stored data int¢*.xIs) files and
calculate and draw spot size diagrams.

Figure (4.1)shows the schematic diagram of our work
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4.1 Single lens design

Simulations with different parameters hayeen the spherical and
chromatic aberration decreased. The half acceptangée o has a value =
5x10° rad and the relative accelerating voltag€u for ion beam focused is
taken the value =5x10for very high resolving power instrumerjtdawkes
1972]

4.1.1 Electrostatic lenses

The axial potential distributions along with firgshd second derivatives were
investigated according to the cubic spline model using the dynamic

programming procedure for twenty intervals. Thessributions have been

used to make a comparison for getting the minimyotical properties to the

optimized axial potential distributions were obtinby using the dynamic
programming procedure with the aid of artificiataligence technique. The
results of this procedure are shown in figures)(#23),(4.4) and (4.5).

relative axial potential
distribution

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

relative optical axis z/L

Figure (4.2) the relative axial potential distribution and fitst and second derivatives u(z)
and u'(z) for unipotential lens (1) operated inale@tion mode obtained by the dynamic
programming procedure.
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Figure (4.3) the axial potential distribution and its first aseicond derivatives u(z)and u'(z)
for unipotential lens (2) operated in acceleratioode obtained by the dynamic
programming procedure.
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Figure (4.4)the axial potential distribution and its first aselcond derivatives u(z) and u'(z)
for immersion lens obtained by the dynamic programgnprocedure.
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Figure (4.5)the axial potential distribution and its first aselcond derivatives u(z) and u'(z)
for diaphragm lens obtained by the dynamic progrargrprocedure.

Table (4.1) summarized the dynamic parameters ef d&iial potential
distributions which were investigated by using tthgnamic programming

procedure according to the cubic spline modellerdiven electrostatic lenses.

Table (4.1) the axial potential distributions cubic spline ffimgents of the
given electrostatic lenses by using the dynamigf@mming procedure.
Cubic spline
Lens Type coefficients

a b c| d
unipotential lens (1) | 100| 0.1 | 2.0} 15

unipotential lens (2) | 0.8 0.001|1.0| 0.1
immersion lens 05| 2.0 | 1.0 0.0

diaphragm lens | 0.8|0.009| 2.0| 0.04

The four types of the optimum axial potandistributions with its first
derivative for the electrostatic lenses have beeterthined by using the

dynamic programming procedure and artificial inggdhce technique operated
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with the acceleration and deceleration modes depgndn the given
constraints equations (3.10),(3.11) and (3.12)aetygely, are shown in figures
(4.6, 4.7, 4.8 and 4.9) .The table (4.2) has gitrenoptimized formulae and
their dynamic parameters, which has been obtaingd th®e dynamic

programming procedure and artificial intelligeneetnique.

Table (4.2) the optimized axial potential distributions withetr dynamic
parameters of the given electrostatic lenses gu3PP with the aid of AIT.

. . ) Dynamic Parameters
Optimized Axial Potential yof Sub-intervals

Distribution Formula b cl d

a
12

Lens Type

unipotential lens (1)  a*tanh (b*z”c) +d 80| 0.04

0
0.01

immersion lens a*tanh(b*z”c)+d 05| 15
diaphragm lens a*tanh (b*z”*c) +d 0.9/ 0.008

2

unipotential lens (2) a*exp (-b*z”c)/cosh(z-d) |0.9] 3 |54 O
1
2
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Figure (4.6)the optimum axial potential distribution and itst derivative u(z)
and u'(z) for unipotential lens (1) operated ineleation mode obtained by the
dynamic programming procedure and artificial inggdhce technique.
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Figure (4.7)the optimum axial potential distribution and itstf derivative u(z)
and u'(z) for unipotential lens (2) operated inee@tion mode obtained by the
dynamic programming procedure and artificial inggdhce technique.
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Figure (4.8)the optimum axial potential distribution and itstf derivative u(z)
and u'(z) for immersion lens obtained by the dymapnogramming procedure
and atrtificial intelligence technique.
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Figure (4.9)the optimum axial potential distribution and itst derivative u(z)
and u'(z) for diaphragm lens obtained by the dycgmogramming procedure
and artificial intelligence technique.
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Figure (4.10) shows the trajectories along thetikedaoptical axis for the

optimized electrostatic lenses under infinite mégaiion condition.
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Figure (4.10) the ion beam trajectories of electrostatic lensasputed by
using dynamic programming and artificial intelligentechnique under infinite
magnification condition of the four types of lenses

The following figures (4.11, 4.12, 4.13dad.14) show the relative

spherical and chromatic aberration coefficiefts/{, andCc/f,] against relative

values of potential ratitd(z)/U, for the optimized electrostatic lenses.
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Figure (4.11)the relative spherical and chromatic aberraticgffanents of the
unipotential lens (1) for a potential ratio U (&)/
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Figure (4.12)the relative spherical and chromatic aberraticgffanents of the
unipotential lens (2) for a potential ratio U (&)/
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Figure (4.13)the relative spherical and chromatic aberraticgffanents of the
immersion lens for a potential ratio U (z),/U
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Figure (4.14)the relative spherical and chromatic aberraticgffanents of the
diaphragm lens for a potential ratio U (z),/U
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4.1.2 Electrode reconstruction

The electrodes reconstruction processe&e Hmen made within the
following four types of optimized electrostatic &% obtained by the dynamic
programming procedure with the aid of artificiataligence technique as

follows:-

* Unipotential lens (1) operated in deceleration enpfig.(4.15)

» Unipotential lens (2 ) operated in acceleration endidy.(4.16)

» Diaphragm lens ,fig.(4.17)
The following figures (4.15), (4.16) and (4.17) shitree-electrode lens of the
optimized axial potential distributions in two dingon profiles. SIMION 7.0
simulator has plotted the configurations of sucapys in three dimensions.
Figures (4.18), (4.19) and (4.20) give those etelds of the optimized lenses
(unipotential lens (1), unipotential lens (2) angpdhragm lens), respectively.

0.9

08 0.92U(0) 0.12U(0) 0.92U(0)

0.7 A
0.6

0.5 -
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0.1 -

./

0
0.0 010 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

relative optical axis z/L

Figure (4.15)the electrodes profile for a three-electrode urapbal lens (1) at
energies 0.92U(0), 0.12U(0) and 0.92U(0) respelstive
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Figure (4.16)the electrodes profile for a three-electrode urapbal lens (2) at
energies 0.006U(0), 0.9U(o) and 0.006U(0) respelstiv
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Figure (4.17) the electrodes profile for a three-electrode diaghr lens at
energies U(0), 0.002U(0) and 0.608U(0) respectively
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Figure (4.18)three-electrode profile for unipotential lens by)using SIMION
7[(a) total profile and (b)cross section].
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Figure (4.19)three-electrode profile for unipotential lens i8)using SIMION
7[(a) total profile and (b)cross section].
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Figure (4.20)three-electrode profile for diaphragm lens by gs&tMION 7[(a)
total profile and (b)cross section].
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The immersion lens with an optimized apatential distribution as in
figure (4.8) would get two electrodes taken thesptl at the range amount of
about U(o) and 0.5 U(o) respectively. Figures (3&id (4.22) show our the
Immersion two electrodes lens profile (i.e. two dmaions profile) ,as well as
three dimensions graphic electrodes shape haspgbetted by using SIMION 7.

0.60
0.50 - U() 0.5 U(0)
0.40 -
|
E 0.30 -
0.20 -
0.10 -
0.00

0.0 0.10 0.20 0.30 0.40 0.50 0.6070 0.80 090 1.0

relative optical axis z/L

Figure (4.21) the electrodes profile for a two-electrode immersiens at
energies U(o) and 0.5U(o) respectively.
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SIMIOH + CRDION

immersion
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Figure (4.22)two-electrode profile for immersion lens by usBigMION 7[(a)
total profile and (b)cross section].
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4.1.3 Magnetic lens design

In present work only one case of a magrieiis has been designed. The
optical properties (i.e. the relative spherical andromatic aberration
coefficients) are characterized by the dimensienfeErametetk®d?), wherek?®
as in paraxial ray equation (2.4) addis the field half-width, in which is
determined by the shape of the pole pieces anteogegree of saturation. The
axial flux density distribution was optimized lik&rivet-Lenz model for

magnetic lenses, which it can be used for the gesnr of unsaturated lenses.

The optimized formula of the axial magadield distribution (i.e. the
axial flux density distributionB(z)) was obtained by using the dynamic
programming procedure with the aid of artificialahigence technique included
in CADION package. Figure (4.23) and table (4.3 ahown the optimized
field distribution with its first derivative andsioptimized formula respectively.
The maximum value has been taken in our work fer dlial flux density
distribution B« is equal to §.0) mTesla. For future work optimization will be
done to get a formula depending on the magnetiangability p in

ferromagnetic materials as a function of the optsas and radial.

Table (4.3)the optimized magnetic lens formula with its dymamparameters
by using DPP and AIT.

Optimized Flux Dynamic Parameters
Lens Type density Distribution b q
a c

Formula
a*sech (zc/ b) +d Bmax 20 | 1.0 O

magnetic lens (1)
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the axial flux density distribution (mTesla)
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relative optical axis z/L

Figure (4.23)the optimum axial magnetic flux density distrilaurtiB(z) with its
first derivative for the given magnetic lens (1)tahed by the dynamic
programming procedure and artificial intelligeneehnique.

Figure (4.24) shows the trajectory along the reéatoptical axis for the
optimized magnetic field obtained in table (4.3)gufe (4.25) shows the
relative spherical and chromatic aberration cogffits Cs/f, and Cc/f, -

respectively, as a function as the dimensionlessmeterk’d? which related to
the half-widthd for the optimized magnetic field. Table (4.4) gvibe values

of the relative aberration coefficients and theefisionless parametiefd?.
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Figure (4.24) the ion beam trajectories of magnetic lens (1)eundfinite
magnification condition.
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Figure (4.25)the relative spherical and chromatic aberraticgffanents of the
optimized magnetic lens (1) related to the dimemlsiss parametded®.
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Table (4.4) the relative spherical and chromatic aberratioeffcoents of the
optimized magnetic lens (1) and the dimensionlesametek?’d®.

Cs/f, | Cclf, | k°d?
1.00 1.00 | 0.00
0.82 0.71 | 1.00
0.69 0.67 | 2.00
0.60 0.62 | 3.00
0.52 0.60 | 4.00
0.44 0.58 | 5.00
0.38 057 | 6.00
0.33 0.55 | 7.00
0.28 055 | 8.00
0.24 054 | 9.00
0.22 0.53 | 10.00
0.22 0.52 | 11.00
0.22 052 |12.00
0.22 0.52 | 13.00
0.22 052 | 14.00
0.22 0.52 | 15.00
0.22 0.52 | 16.00
0.22 052 |17.00
0.22 0.52 | 18.00
0.22 0.52 | 19.00

0.22 0.52 | 20.00

0.22 0.52 |21.00
0.22 0.52 | 22.00
0.22 0.52 |23.00
0.22 0.52 | 24.00
0.22 0.52 | 25.00
0.22 0.52 |26.00
0.22 0.52 | 27.00
0.22 0.52 |28.00
0.22 0.52 | 29.00
0.22 0.52 |30.00

-4 -



4.1.4 Pole pieces reconstruction

The pole pieces reconstruction has tdkersame analyzed procedure by
using SIMION 7. The following figures (4.26) and4%) show the profiles of
the pole pieces of the optimized magnetic fieldwo and three dimensions

respectively.

NI =96

1.00
0.90
0.80
0.70
0.60
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0.201
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0.00
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0.10 0.20 0.30 0.40 050 0.60 0.70 0.80 0.90 1.00

Relative optical axis z/L

Figure (4.26)the two dimension profile of a pole piece for agmetic lens (1)
with NI = 96 ampere-turns.
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SIMICH + CADICH simulation
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Figure (4.27) (a) three dimensions graph of the pole piece wiagnetic lens
(1). (b) The optimized pole piece profile of a mafyn lens (1).

To make a comparison of the optimum magnetic lapsfigure (4.28) shows

the axial magnetic flux density distribution B(zthvits first derivative for the
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Glaser's model (i.e. magnetic lens (2)).Table (4i8gs the magnetic lens (2)

formula with its dynamic parameters obtained bygstADION package.

7.0

6.0 | Glaser's model
magnetic-2

40 1
3.0 |

2.0

1.0 ]

The axial flux density distribution (mTesla)

0.0 -7

| N
5.0 - A
] R

Grivet-Lenz model
magnetic-1

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

relative Optical axis z/L

Figure (4.28)the magnetic flux density distributions B(z) fath magnetic

lens (1) and (2).

Table (4.5)the magnetic field (2) formula with its dynamia@ieters by using

CADION package.

Lens Tvpe Flux density Dynamic Parameters

yp Distribution Formula a b c| d

magnetic lens (2) a/[1+((z/b)"c)+d] B 20 |20 0o
max . "
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To summarize the optimized results obtained indingle-lens design for the
aberration discs diametersds(—spherical aberration disc diameted, —
chromatic aberration disc diameter add total aberration disc diameter),
table (4.6) gives the values in micro scale (pungaurthe infinite magnification
condition. In which they were calculated dependiomgequations (2.14, 2.19
and 2.20 respectively) by choosing the minimum esl(.e. figure of merit) of
the given relative spherical and chromatic abermatoefficients (Csjfand

Cclf,) of the optimized lenses.

Table (4.6) the minimum optical properties in a single-lengdem infinite
magnification conditions

relative aberration | aberration discs diameter
coefficients (um)
Lens Types Csit, Colf. sph((jerlcal chrodmatlc t(z;al
S C t

Unipotential -1 1.50 0.70 0.19 0.18 0.26
Unipotential- 2 1.25 1.10 0.16 0.28 0.32
Immersion 0.60 4.56 0.08 1.14 1.14
Diaphragm 3.40 2.24 0.43 0.56 0.70
Magnetic lens -1 0.22 0.52 0.03 0.13 0.138




4.2 Two-lens system

The two-lens system is constructed fromdptmized electrostatic lenses
that have been used the dynamic programming proeednd artificial
intelligence technique. Furthermore has to be donemproving the ion beam

collimated design to achieve smaller spot size.

However, if the first lens is operated endero magnification and the
second lens is operated under infinite magnificatione would have a
telescopic lens system with a beam cross over legivtiee two electrostatic
lenses. It should be noted that when operatingfitisé lens under infinite
magnification and the second lens under zero miagtivn the combined
lenses act as a demagnifying system, which has loceesidered in our
investigation. The axial potential distributiondstermined with their first and
second derivatives of a given two - lens systemmiiog two collimated beams
as follows:

1. Unipotential lens (1) [einzel] lens is operated under infinite
maghnification condition — immersion lens is opedatander zero
magnification condition.

2. Diaphragm lens is operated under infinite magatfan condition —

immersion lens is operated under zero magnificatamdition.

Figures (4.29 and 4.30) show the ion b&ajactory for a given two- lens
systems (i.e. 1 and 2) with its collimated beamween focusing elements
obtained by using dynamic programming proceduré whie aid of artificial
intelligence technique. The gap between the twhldiés a field free region
which is traversed by the ion beam as straighslifiée ion beam leaves the

left hand side field and enters the right hand §ield along a path parallel to
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the optical axis. An axial extension for the fidlgée region is important to
prevent an interaction between the two fields &sd bf energy associated with
the charged particles which both would affect thptioal properties of the

whole system.

Collimated ion beam of a two lens system 1

1.00

Einzel lens Immersion lens
0.80 -

0.60 -

0.40 -

0.20 -

0.00 +—+———rr T

-0.20

-0.40 -

-0.60 +

relative radial displacement

-0.80

-1.00

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

relative optical axis z/L

Figure (4.29)the ion beam trajectory for a two-lens system (1).
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Collimated ion beam of a two lens system 2
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-0.60 -

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
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Figure (4.30)the ion beam trajectory for a two-lens system (2).

The given ion beam columns have been opgithand analyzed by using

the dynamic programming procedure and artificialeligence technique
included in CADION package. Figures (4.31 and 4.82)w the electrodes

configuration plotted in three dimensions by usBIyIION 7 simulator of the

two ion beam columns, respectively.
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Figure (4.31) the electrodes configuration for a two-lens syst@m with
collimated beam between focusing elements.
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Figure (4.32) the electrodes configuration for a two-lens syst@&n with
collimated beam between focusing elements.
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The relative optical properties of thea® systems (i.e. system (1) and
(2)) are given in tables (4.7 and 4.8), respectivdlhe relative aberration
coefficients are taken in terms of the image-sataflength of the second lens,
by which it's the overall image-side focal lengthtlee system. The spherical,
chromatic and total aberration disck;,(d;; andd;) are calculated with the aid

of equations (2.26, 2.27 and 2.28), respectively.

Table (4.7) the relative optical properties for a two-lensteygs (1) with
collimated beam between focusing elements.

DEMAGNIFICATON CONDITION FOR TWO LENSES
SYSTEM -1
relative optical einzel lens immersion The system
properties lens
magnification infinite zero -0.553
Ui/U, 1.545 2.70 2.70
filL infinite 1.082 1.082
fo/L 1.48 infinite 1.48
Ciilfi 6.22
Csdfo 1.50 5.30
C.if; 0.541
Cefo 0.70 3.30
dsi(pm) 0.08 1.702
dso(m) 0.19
dci(pum) 1.14 1.365
o) 0.18
dii(um) 1.142 1.703
dio(Hm) 0.26




Table (4.8) the relative optical properties for a two-lensteygs (2) with
collimated beam between focusing elements.

DEMAGNIFICATON CONDITION FOR TWO LENSES
SYSTEM -2
relative optical diaphragm | immersion The system
properties lens lens
magnification infinite zero -0.98
Ui/U, 0.846 2.70 2.70
fi/lL infinite 1.082 1.082
foll 0.618 infinite 0.618
Ciilfi 6.22
Csdfo 3.40 5.33
C.ilfi 0.541
Cedfo 2.24 5.51
dsi(um) 0.08 1.31
dso(Hm) 0.43
dei(Um) 1.14 0.763
deo(m) 0.56
dgi (um) 1.142 0.764
dio(Lm) 0.70

The aberration discs diameters over the baagesa (5, 10,30,50,75 and
100) mrad of the given two-lens system are shown in figut&3) ,which is
given the variations of contours over the beam esgf such an optical
column. While; the percentage distribution of thermation disc densities along

the given optical column of the same beam anglegerare shown in figure
(4.34).
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Figure (4.33)two-lens system aberration discs contours vetseidéam angle
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Figure (4.34) the two-lens system aberration disc densities gmeage
distribution versus the beam angle
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4.3 Three-lens system

Demagnification of the beam size in itnage plane is one of the most
requirements of focused ion beam, which should sso@ated with low
aberrations. The ion beam systems consisting cfethenses with a beam

crossover take the following setup.

4.3.1 Column setup
The axial potential distribution is detened with their first and second
derivatives of a given two-lens system for ion icadited beam, which is
forming three lenses with a beam crossover asvistio
1. Unipotential lens (1)einzel] lens operates under infinite magnification
condition — immersion lens operates under zero ifiagtion condition-
Diaphragm lens operates under finite magnificatondition.
2. Diaphragm lens operates under infinite magrifca condition —
Immersion lens operates under zero magnificationditmn- Diaphragm

lens operates under finite magnification condition.

Likewise, the two-lens system selectivhe third lens or the right hand
side of the given columns operates under finitemfexgtion condition, as they
are shown in figures (4.35) and (4.36), respedtivel
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relative radial displacement

Collimated ion beam of three lens system 1
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Figure (4.35)the ion beam trajectory for a three-lens system (1
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Figure (4.36)the ion beam trajectory for a three-lens system (2
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The relative optical properties of theagithree - lens systems are listed
in tables (4.9) and (4.10), also those properteagehoeen obtained using the
equations (2.26, 2.27 and 2.28),which they werd tsecalculate the spherical,
chromatic and total aberration disak;,(d,; andd;). The relative aberration
coefficients are taken in terms of the image-sat=flength of the second lens,

by which it's the overall image-side focal lengtttloe system.

Table (4.9)the relative optical properties for a three-leystesm (1).

DEMAGNIFICATON CONDITION FOR THREE LENSES
SYSTEM -1
relative optical | _. immersion | diaphragm The
properties Sl 21 lens lens system
magnification | infinite zero -0.999 -0.403
Ui/U, 1.545 2.70 1.545
filL infinite 1.082 0.244 0.244
fo/L 1.48 infinite 0.244 0.50
Ciilfi 6.22 5.67
Csdfo 1.50 5.04
C.ilfi 0.541 0.63
Cfo 0.70 4.32
dsi(Lm) 0.08 1.80 8.788
dso(Hm) 0.19
dei(um) 1.14 8.910 9.393
deo(Um) 0.18 --- --- ---
dii(um) 1.142 8.912 9.396
dio(M) 0.26
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Table (4.10)the relative optical properties for a three-leystesm (2).

DEMAGNIFICATON CONDITION FOR THREE LENSES
SYSTEM - 2
relative optical | diaphragm | immersion | diaphragm The
properties lens lens lens system
magnification infinite zero -0.999 -0.400
Ui/U, 0.846 2.70 0.846
fi/lL infinite 1.082 0.244 0.244
foll 0.618 infinite 0.244 0.51
Ciilfi 6.22 5.67
Csdfo 3.40 4.927
C.ilfi 0.541 0.63
Ccfo 2.24 1.036
dsi(Lm) 0.08 1.80 2.247
dso(Lm) 0.43
dei(um) 1.14 8.910 1.774
deo(m) 0.56
dsi(um) 1.142 8.912 1.78
dio(m) 0.70

4.3.2 Beam spot size measurement

According to the principles and methadssection 2.8, and using
equation (3.16), using the software (i.e. CADIONkmge) the spot size has
been calculated. Figure (4.37) shows the spotbeulations for a range of
beam angles [5, 10,30,50,75, and 180&d of the given ion beam three-lens
systems. From these results one can distinguismane scale optimization

which is very useful for FIB designing.
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Figure (4.37)the axial spot size measurements versus the begla f@r three-

lens systems (1& 2).

However over the same range of ion beantean(§, 10,30,50,75 and 100)
mrad, one see that the spot size measurements are th@efhstribution of the
lons concentration through the image side. Asehdeom the figure (4.37) the
spot size would get smaller with small beam angleasequently the reduction

of aperture defects may take the right procesargi¢t.38) shows the variation

of the ions distribution of that concentration €biferent ion beam angles.
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Also, it has shown at beam angle 100 ninadspot size is (110 nm) and
(112 nm), while at the beam angle of high resolsygtem are taken the values
(3.0 nm) and (3.01 nm), respectively. This mightalgpod indication to get the
optimum reduction for the aberrations inside theegisystems.

120
100 -
80 -
60 -
40
20

O T T T T
5 10 30 50 75 100

The beam angle(mrad)

lons distribution (%)

Figure (4.38)lons distributions in percentage versus the beagtedor a three-
lens systems (1& 2).
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4.4 Multi-lens system

A multi-lens system may have an acceptétm over a range of three
collimated beam systems (1, 2 and 3), which arergebed by using the
optimized formulae as follows:

1. Unipotential lens (1)einzel] lens operates under infinite magnification
condition — magnetic lens (1) operates under zexgnification condition.

2. Diaphragm lens operates under infinite magrifca condition —
magnetic lens (1) operates under zero magnificatoordition.

3. Immersion lens operates under infinite magnifca condition —

magnetic lens (1) operates under zero magnificatoodition.

Figures (4.39, 4.40 and 4.41) show timchieam trajectory for the multi-
lens systems (i.e. 1,2 and 3) with its collimateshin between focusing
elements obtained by using dynamic programming gaoce with the aid of
artificial intelligence technique. Our softwaree(i.CADION package) has an

ability to perform multi-lens designs with minimzaberrations.
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Figure (4.39)the ion beam trajectory for a multi-lens system (1

Collimated ion beam of multi lens system 2
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Figure (4.40)the ion beam trajectory for a multi-lens system (2
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Collimated ion beam of multi lens system 3
1.00

0.80 1 Immersion lens magnetic lens
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Figure (4.41)the ion beam trajectory for a multi-lens system (3

The following tables (4.11), (4.12) a(®l13) are given the relative
optical properties of the multi-lens systems (a4n@ 3), respectively. However,
relative aberration coefficients are taken in teahthe image-side focal length
of the second lens, by which it's the overall imagge focal length of the
system. Also, the spherical, chromatic and totak ion discsds;, d; anddy)
are calculated with the aid of equations (2.267 22d 2.28), respectively.
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Table (4.11)the relative optical properties for a multi-lenstem (1) with
collimated beam between focusing elements.

DEMAGNIFICATON CONDITION FOR MULTI-LENS

SYSTEM -1
relative optical einzel lens magnetic The system
properties lens (1)
magnification infinite zero -0.763
Ui/U, 1.545 1.66 1.66
f./L infinite 2.01 2.01
fo/L 1.48 infinite 1.48
C.iffi 0.52
Csdfo 1.50 6.316
C.ilfi 0.22
Ccfo 0.70 1.077
dsi(Um) 0.03 0.07
dso(um) 0.19
dci(um) 0.14 0.106
deo(Um) 0.18 --- ---
dgi (um) 0.141 0.107
Cio(m) 0.26




Table (4.12)the relative optical properties for a multi-lenstem (2) with
collimated beam between focusing elements.

DEMAGNIFICATON CONDITION FOR MULTI- LENS
SYSTEM -2
relative optical diaphragm magnetic The system
properties lens lens (1)
magnification infinite zero -0.433
Ui/U, 0.846 1.66 1.66
f./L infinite 2.01 2.01
foll 0.618 infinite 0.618
Ciilfi 0.52
Csdfo 3.40 4.94
C.if; 0.22
Cefo 2.24 1.41
dsi(Lm) 0.03 0.054
dso(m) 0.43
dci(pum) 0.14 0.0768
deo(m) 0.56 --- ---
dsi(nm) 0.141 0.0772
Cio (M) 0.70




Table (4.13)the relative optical properties for a multi-lenstem (3) with
collimated beam between focusing elements.

DEMAGNIFICATON CONDITION FOR MULTI- LENS
SYSTEM -3
relative optical immersion magnetic The system
properties lens lens (1)
magnification infinite zero -0.541
Ui/U, 0.53 1.66 1.66
f./L infinite 2.01 2.01
fo/L 2.10 infinite 2.10
C.iffi 0.52
Csdfo 0.60 0.76
C.ilfi 0.22
Ccfo 4.56 3.55
dsi(Lm) 0.03 0.049
dso(m) 0.08
dci(m) 0.14 0.0701
deo(m) 1.140
dii(Um) 0.141 0.0703
Cio (M) 1.142

4.5 A suggested estimations in charged particles optics

According to the principals and formulaechapter2, section2.3 and
optical properties representations, a suggestedemettical approach has been
used in this investigation. Nevertheless, the msagtificant optical properties
have to be examined by multi tests and iteratiothows .For the first sought to
the lenses were designed according to the optimodentials, most of their
spherical and chromatic aberration coefficients enaalues near to reach

Planck's constant. However, these values are muoke closely to the nano



scale considerations. In charged — particle otgcsvell as in classical optics,
the aperture aberration (spherical aberrationagy aperture) is by far the most
important, because it limits the resolution of &l@ce microscopes and the
smallness of the probes of microanalysers. Thesgations are characterized

by the values of the deviatiodsx and Ay from the point of the image formed

by the paraxial beafiSeptier 1966]

The radius of the stop aperturg & proportional to the tangent of the
aperture angle (half acceptance angle).Sinzes very small (i.e. tarm) ~a in
radians).Thus, it would get the disc formuldBisKareh and El-Kareh 1970];

whereds andCs are the diameter spherical aberration disc andoisficient,
respectively. Also , the spherical aberration aoefht of the focusing device
depends primarily on the diameter of the apert@e the other hand , the
spherical aberration will cause blurring in thenfied image if the anglex is
not very small. Mainly, the present work resultsvdaiven this value the
proper indication of uncertainty relationship likBo evaluate the aberration
disc for a very small angle, it makes the easiest way for getting such
indications. Thus, changing in measuring the pasitof the incident and

reflected rays will appear in the spherical aberatoefficientCs.

In micro scale systems this might talec@ many times, and the effect
of smallness the angke it could be neglected .So that the equation (gkhay
rewritten as a definition of the spherical abeaatcoefficientCs according to

eikonal method as followgHawkes and Kasper 1989]:

CsA ds (space) b ... (4.2)



The sign of the spherical aberration is always tpasisuch that rays remote
from the axis focus more strongly than rays clasg.tlt has shown that in the
absence of space charges in the region throughhwhetrajectories pass, the
formula of the aberration can be expressed asuimeo$ squared terms, so that
the sign cannot be changed, in particular the aberr cannot be made zero
[Szilagyi 1988] As a micro scale point of view, the sphericalradt®n disc is

a function of space for various trajectories of tharged particle.

On the other hand, the chromatic atiemmaesults from the dependence
of the optical parameters of the charged — parteises on the energy of the
beam being focused. Depending on the whole formafaghapter2 upon the
definitions of chromatic aberration disc diametgrthen the disc can be written
as:

A=2CCaApP/P cccviiiiiininns (4.3)

where d;, Cc is the diameter chromatic aberration disc andcdsfficient

respectively. Since the present work deals with ritbe-relativistic case; the
disc may get the new definitighawson 1977]

g=Cca (Au/u) ....ocoeerrnnnnn, (4.49)

where U is the potential energy through which tharged — particles have been
accelerated to reach the momentum p, Abdrefers to half the total energy
spread in the beam. It can be seen from the abouatien thatd. is
proportional to the initial slope of the outermeay and the relative energy
spread Au / u).

From equations (4.1) through (4.4) oo¢es that at low values of the
acceptance angle the performance of the opticalersyss limited by its

chromatic aberration, where at larger aperturesrsgdl aberration becomes the
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dominant limiting factofSzilagyi and Szep 1988n the sub micro scale the
chromatic aberration disd. has appeared like a function of momentum in a
space along optical axis-This will give us a strong indication for the non
commutative approaches, since the energy spradd)(has relative expression
within estimated fields or potentials in the optisystems. Equation (4.4)
becomes more fitted to the case in sub micro systeand the chromatic
aberration coefficien€Cc may be considered as @konal method [Hawkes

and Kasper 1989]as follows:

Cc=Ad. (momentumYa (Au/U) .cooovvvvienininnnn, (4.5)

Once the limitations of non commutatbgerations have been fixed , the
uncertainty principle relationship like for the afadions ( spherical and
chromatic)discs may take place .In terms of thevabiadications , most of
present work results (i.e. the spherical and chtimnaberration coefficients)

may have explained strongly enough .

A consideration of the aberration theorasna part of the uncertainty
principle has raised the similarity for finding e¢gad — particles along optical
path. Hence, the probability of finding those paeis with a specific amount of
energy, diffracted from the edges of the targefje@h in an optical system.
Therefore, the quantization of electrostatic lensage dominantly worked at
micro or nano scale only. The aspects of verifarataccording to the strong

principle of the uncertainty relationship like had@ne.

It may be raised in different models (les)sbut not for all kinds. The
present work tables are giving the most estimagsd|ts, as new configurations

of doing the fuzziness systems ligetelzer and Grill 2000]Our work could
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lead to get suggested aspects and hypothesis chérged particle optics, also
it may give a raise to consider most of the resadtsuggested estimations for
entering the non classical technology. Obvioudig, talues of the aberration
coefficients and discs are showing a significanttawsor of the uncertainty

relationship like. According to the uncertainty mmiple (chapter 2), and

equation (2.9) this approach will lead to new igd@#ich has been considered
for improving the design of mesoscopic optical Ensnd it may take such

manipulation as:

[Ads (space) lz3]. [A dc (momentum)a (Au / U)] =178 ......... (4.6)

where pdg (space) /(13] represents the position of the charged partialeag
the optical path, and\f, (momentum)a (Au / u)] represents the momentum of
the charged particles accelerated through theapt@umn. This formula (i.e.
equation (4.6)) leads to get a new aspect in dpsigstems, and it could be

rewritten as:

s de]/ [0 (AUU)] = 188 oo, (4.7)

One can see from the equation (4.7),dmsnall angle: total amount of
aberration discs has become very large. The ordgm@ion is about the range
of energy spreadAg/u); this is a well-known formula for the micro scale
conditions. It would be the success of non comnudaapproach for both

aberration discs (spherical and chromatic) as well.
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Chapter Five

Conclusions and Suggestions for Future Work

5.1 Conclusions

The present investigation has clearly usednapétion methods by
mixing the dynamic programming procedure and thifi@al intelligence

technique, to find a simulator, packed in one paoyr

Our work achievements have been summarized asv&illo

* The single-lens design electrodes and optimizeohditae for obtaining
axial potential for four types of electrostaticdes and a magnetic lens as
in tables (4.2) and (4.3).

* Get minimum optical properties of relative abewaticoefficients, and
then calculate the aberration disc diameters asmsuiped in table (4.6).

» Setting up an optical column as follows:

o Two-lens system as in figures (4.29) and (4.30).

0 Three-lens system as in figures (4.35) and (4.36).

0 Multi-lens system as in figures (4.39), (4.40) &hdl).

* Nano scale measurements of spot size diametersifaguons in the
Image plane have values are very useful for getiiBgydesigning (figure
(4.37)). Over a range of ion beam angles (5, 18(B®5 and 100jnrad,
the results were summarized as follows:

o System (1)-have values [3.0, 14.0, 47.0 and 11th0]

o0 System (2) - have values [3.01, 13.9, 47.2 and(] 1izn.

» Suggesting mathematical manipulations for the ahemn coefficients
basing on the uncertainty principle hypothesis.
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» Atrtificial intelligence has promise for building Blin charged particle
optics.

5.2 Suggestions for Future work

Plenty of projects and investigatiomsy be suggested for further work
upon the designing , optimizing , analyzing andnstructed new lens systems
(electrostatic and/or magnetic) holding for nantagb ion and electron lens
column. Such suggestions are listed as follows:

1. Considering the effect of the magnetic permeabjlitgs a dominant
factor in magnetic lens systems.

2. Investigating the design of the optical column &tk systems where
the relativistic charged particle velocities and #pace charge effects
are taken into account.

3. Design a quantum-lens system.

4. Design a quadrapole's deflectors and mirrors.



Appendix
The program CADION Analyzer is the main significamptimizer" expert
system"; the steps are configured as includeddridgtiowing flowchart:

Data stored
Knowledge-base

Read data
Jess —rule based system

v

Evaluate individual functions f;
Fn(n,s,X) =g [R(n,s, x), (s

A 4
Calculate partial derivatives f';, f*;;

\ 4
Set initial values
Gik = min | R + Gj e

A 4
Solve the (potential) equations

Paraxial ray equation

v

Set new values and parameters
taking new constraints

A 4

Evaluate new individual functions f{

AT



Solve the (potential) equations

A 4

Calculate partial derivatives f';, f*;;

Calculate new factors

A A
Has optimum
parameters been
found for this
No iteration?
a,b,cd Modify
parameter
values

A

Yes

Is another
optimization
cycle required?

Figure (A) shows CADION analyzer "expert system" flowchart.
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