
 ا�����

 �	
� �

� �
���� �

� ا�	
�ض ���������ام ����
�ت ��

�ة "! $�% �	
���() ط
�ق �
��� ا

5
7 و5
) ، %���� �3 ا�,���12 %�0 /*دة ا�-*ت ا�,+	*ط!" �	
�3 ا=?< "��1 ا=%�>�ر أ�9
�ز ا�+
@A,�.

*ري ھC اH�ى ھ<ه ا��Dق ا��C $�ا���2 ���ع "��>����ت وAا� �	ط�$�� ا�+ �	ط�ق ا�+ @� �<�J�
 K

-� C

�
�� ا�

�دLت ا��$��
J,ا� @

	��ة �

�دة و�
�� 3���

�د �9

� ا9$
��,% 0

�% �

,�Jو� �

M$�ا��

 ."!ر �ل ����Jت ھ<ه ا�,�JدLت ا�0 ���7 ا���Oة $,A@ ا%�دة �7�AO ا�NLرة ا�NL .����Lرة ا
�,� %�0 �>�أ ��1م ا���Aار ا�,R9ئJ$ ري*
Aا�-*ت ا� �	��9ز $!"PIFS) .(

�	7 ال

*ري $
Aت ا�*

	� ا�-�)Affine redundancy (ت*
2
C ا�- �
�*ا/� C
�ھ
<ه ال ، وا�
)redundancy (ت*-�� Cا�<ا� S"�O���" �<���.

�ت

 ���" �

�*ا/� C

�
�"�� و ا�

O�
�ط ا�,

�دا= �,

*م "!9$

*ري $�

Aت ا�*

	� ا�-

�ى �

� ا?

,�A"
�

�����)different scales(�

����� @T�

*ت)different places(وا�

C ا�-

*م ، 2
�$ U

� ذ��
J"و

).redundancy("�<ف اA,$ �� �MT@ �@ ال

	� ا�-
*ت� �
��,% C2 ري*
Aا� �	ا�+ ��<D� ����Aا� @� ���� .ھ<ا ا�>�X $��ف ا�0 ���و�� ا�

@���H�

� @

*ن �
A�$ �

,�J,م ا��

� ا=و�
0 : ا��1
�H�,ا����

O�
� ا�
�H��(Encoding Unit) �

���Mو ا�
 ��H�� ���O� U2) .(Decoding Unit ا�

7

�Aا� @

� @�%*

� 0

�C ا�

*ت ا=�

Rأ ا�-
9$ ���

O�
� ا�
�H�� C

2 ، 7

�ل ا�,��"

7 ا�,9
�T 0%�

� 7

�T
)(Range Pool ��?ا��� ��Z 7�T Cل ، وھ�

7 ا�,9�T 0%�
� 7�T و)Domain Pool (@
� C
�و ا�

. ا�,,A@ ان �A*ن ���ا?����7 و�@ (] $�] ��3�D ا�-*ت "! ���ام ط�$�� ا���3�D ا�,T 07 ا��A�� وي�

�و$� ا��9]�� . �
�<D�" U
2
C ا�,9
�ل ا�,��"
7 وذ� �
��T 7
A� ل�
7 2
C ا�,9�T 7+2ا$�9د ا [�$ Uذ� �J"

0%�

*$�ت و���
Rن ����
�Affine Transformation . 7)(اH� ا�
*اع ا��" ���
O�
� ا��H�� C
����
�7 ا�,�9ل ا�,��"
���J�(7ت (T @� ���T 7A� ت�$*��
� ان %,��
� .ھ<ه ا��D�� ��"�
O�
7 ا�,�Aد ا��
ا9$

 �

D��T ري*

Aا� �	

� ا�+

0 ط�$�
�% >

?\$ �

<ا �

7 وھ

) ط*$
�	�ق و5

�ة �
�J� ��"�

H ت�

��,%
KJ�.

 . ان ا�>�ا���9ت ا��C �] "��ؤھ� ��<ا ا�	�ض �] ا?�>�رھ� "� ���ام ?,
� �,�ذج �>����ت �*���
U

*ال "�
���ام 9�2

 !" �

,�J,م ا��

< ا��1
���� [

� �

��6.0 �T�

9��" �

	 ، !

Dل ا���

J� ام���

] ا
�

CJ�"��
� PSNR)(و �
>� ا=�Nرة ا�0 ا��MSE _$*O)(ا�-���

�a` ا�,�
�ب د5
� ا��
H ت���
J,T
�,�J,ا���1م ا� C2 ���Aا� ����� .�@ ا�

�وي
� �
��Aا� [
9H �
��H C
2 0

� اLو���J�� �<

���" C
���-� �@ ا�>�X ھ
و cJ" (��T ا����a` ا�,
)٦٠ (

�وي ،)١٥٫٥١:١(>� ا�+	� 2!ن �� ���A9] ا�H ���H C2 ����Mا� ���J٤٠(ا�� ا� (�<

2
!ن �

�وي ،)١١٫٥١:١(ا�+	� � C���� �	��ة C2 �,T ا����J ا��M��M وا�T [9H ���H C2٢٠(و (�
2
�ن �5,

�وي ،)dB ٣٥٫٧٦(/��ة و �
�وي) PSNR(ال� ���A9] ا�H ���H C2 0ا=و� ���J�� Uا�>T ١٠(و (

٤٥٫٦٣(�
�وي) PSNR(�2ن �5,� ال dB.(

Abstract

 Fractal audio compression is based on the concept of a partitioned
iterated function system (PIFS). Fractal audio compression exploits the affine
redundancy that is commonly present in audio; this redundancy is related to
the similarity of an audio with itself.
 In other words, fractal audio compression finds similar patterns that exist
in different scales and different places in audio, and then eliminates as much
redundancy as possible.
 In this work the possibility of implementing fractal audio compression is
investigated.
 The implemented system consists of two major units; the first is the
Encoding unit and the second is the Decoding unit.
 Encoding is done by partitioning the range pool (which is the original
audio) into non-overlapping blocks, called range blocks, and partitioning the
domain pool (which is the result of the original audio after down sampling)
into overlapped blocks with the same size of range blocks called domain
blocks. A fixed size-partitioning scheme is used to partition the domain pool
and the range pool. After generating the range and domain pools, for every
range block, the best-matching domain block in the domain pool is searched
for by performing a set of affine transformations on them. Thus the encoding
is completed by saving the optimal affine parameters for every range block.
The Decoding process can be done by repeatedly applying the affine
transformation on an initially blank audio and its subsequent reconstructed
audio, until it completely reconstruct an approximate wave to the original
audio.
The time required to compress an audio file is affected by the size of each
block being extracted from the proceed audio file; this means smaller block
size implies longer time required to compress the corresponding audio file.
The implemented system was tested using five wave samples of data.
 The proposed work was implemented by using Visual Basic (6.0) as a
programming language, the fidelity measure MSE and PSNR were used to
check the results of the whole implemented technique.
 The best results obtained from the implemented system were for the test
(sample -1) in case were block size equal to (60) the compression ratio is
(15.51:1), also for test (sample-2) were block size equal to (40) the
compression ratio is (11.03:1), and for small block size as in test (sample-3)
were the block size is (20) the value of the PSNR is good that its equal to
(35.76 dB), also for test sample-1 when the block size is (10) the PSNR value
(45.63 dB).

Acknowledgment

I would like to express my sincere appreciation to my

research supervisor, Dr. Loay A. George, for giving me the

major steps to go on to explore the subject, shearing with

me the ideas in my research “Fractal Audio Compression”

And perform the points that I felt were important.

Also I wish to thank, Dr. Laith A. Al-Ani my

supervisor for his available advice and encouragement.

Grateful thanks for the Head of Department of Physics

Science Dr. Ahmad K. Ahmad.

I wish to thank the staff of Physics Science Department at

the AL-Nahrain University for their help.

I would like to say "thank you" to my faithful friends for

supporting and giving me advises.

Appendices

Appendix A

Wave PCM Sound File Format

 The WAVE file format is a subset of Microsoft's RIFF specification for

the storage of multimedia files. A RIFF file starts out with a file header

followed by a sequence of data chunks. A WAVE file is often just a RIFF file

with a single "WAVE" chunk which consists of two sub-chunks -- a "fmt"

chunk specifying the data format and a "data" chunk containing the actual

sample data. Call this form the "Canonical form".

Offset Size Name Description

The canonical WAVE format starts with the RIFF header:

0 4 ChunkID Contains the letters "RIFF" in ASCII form
 (0x52494646 big-endian form).
4 4 Chunk Size 36 + SubChunk2Size, or more precisely:
 4 + (8 + SubChunk1Size) + (8 + SubChunk2Size)
 This is the size of the rest of the chunk
 following this number. This is the size of the
 entire file in bytes minus 8 bytes for the
 two fields not included in this count:
 ChunkID and ChunkSize.
8 4 Format Contains the letters "WAVE"
 (0x57415645 big-endian form).

The "WAVE" format consists of two subchunks: "fmt" and "data":
The "fmt" sub chunk describes the sound data's format:

12 4 Subchunk1ID Contains the letters "fmt"
 (0x666d7420 big-endian form).
16 4 Subchunk1Size 16 for PCM. This is the size of the
 rest of the Subchunk which follows this number.
20 2 AudioFormat PCM = 1 (i.e. Linear quantization)
 Values other than 1 indicate some
 form of compression.
22 2 NumChannels Mono = 1, Stereo = 2, etc.
24 4 SampleRate 8000, 44100, etc.
28 4 ByteRate == SampleRate * NumChannels * BitsPerSample/8
32 2 BlockAlign == NumChannels * BitsPerSample/8
 The number of bytes for one sample including
 all channels. I wonder what happens when
 this number isn't an integer?
34 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.
 2 ExtraParamSize if PCM, then doesn't exist
 X ExtraParams space for extra parameters

The "data" subchunk contains the size of the data and the actual sound:

36 4 Subchunk2ID Contains the letters "data"
 (0x64617461 big-endian form).

40 4 Subchunk2Size == NumSamples * NumChannels *
BitsPerSample/8
 This is the number of bytes in the data.
 You can also think of this as the size
 of the read of the subchunk following this
 number.
44 * Data The actual sound data.

Notes:

• The default byte ordering assumed for WAVE data files is little-
endian. Files written using the big-endian byte ordering scheme have
the identifier RIFX instead of RIFF.

• The sample data must end on an even byte boundary. Whatever that
means.

• 8-bit samples are stored as unsigned bytes, ranging from 0 to 255. 16-
bit samples are stored as 2's-complement signed integers, ranging from
-32768 to 32767.

• There may be additional subchunks in a Wave data stream. If so, each
will have a char [4] SubChunkID, and unsigned long SubChunkSize,
and SubChunkSize amount of data.

• RIFF stands for Resource Interchange File Format.

 ا��
��ر	� ا���ا���
�
 وزارة ا������ ا����� و ا���� ا���

��� ا����	���

 ر����

	م ا�� �
��������� ا� �����ء����� ا�� �� ���ء

	م ا� ! ��"
 ������ء�� �"(
)�ت &�% در�� ا�#��

%(� ��
 �-#� و��م !	زي ����

) �����) 0٢٠٠٢/��	ر�	س ����� ا�

 أ�راف

ؤي أدور 	ورج. د

�ث ��د ا
�ز�ز ا
����. د

 �ز�ران ٢٠٠٥

 �
��دي ا�و	١٤٢٥

 *() ا�'�ت &%$�#"ام ا� ��ر	�ت

SSuuppeerrvviissoorr CCeerrttiiffiiccaattiioonn

We certify that this thesis was prepared under our supervision at the
Department of Physics/ College of Science/ Al-Nahrain University, by

Wesam Fawzi Jassim Mohammed as partial fulfillment of the

requirements for the degree of Master of Science in Physcis.

Signature: Signature:

Name: Dr. Loay A. George Name: Dr. Laith A. Al-Ani

Title: Senior Rreasercher Title: Assist Professor

Date: / / 2005 Date: / / 2005

In view of the available recommendations, I forward this thesis for
debate by the examination committee.

Signature:

Name: Dr. Ahmed K. Ahmed

Title: Head of the Department of Physics Science, Al-Nahrain

University.

Date: / / 2005

CCeerrttiiffiiccaattiioonn ooff tthhee EExxaammiinnaattiioonn CCoommmmiitttteeee

We chairman and members of the examination committee, certify that we have
studied the thesis entitled (Fractal Audio Compression) presented by the student
Wesam Fawzi Jassim Mohammed and examined him in its contents and in what is
related to it, and we have found it worthy to be accepted for the degree of Master of
Science in Physics Science with grade Very Good.

Signature: Signature:

Name: Dr. Geen Istefan Name: Dr. Bushra K. AL-Abudi

Title: Assistant Professor Title: Assistant Professor

Date: / / 2005 Date: / / 2005

 (Chairman) (Member)

 Signature:

 Name: Dr. Ali A. Dawood

 Title: Assistant Professor

 Date: / / 2005

 (Member)

Signature: Signature:

Name: Dr. Loay A. George Name: Dr. Laith A. Al-Ani

Title: Senior Rreasercher Title: Assist Professor

Date: / / 2005 Date: / / 2005

 (Supervisor) (Supervisor)

Signature:

Name: Dr. Laith A. Al-Ani

Title: Dean of College of Science

Date: / / 2005

 CHAPTER ONE

 GENERAL INTRODUCTION

1.1Digital Audio

 Audio is the range of frequencies within human hearing (approx. 20Hz at

the low to a high of 20,000Hz). In computers there is an audio card contains a

special built-in processor and memory for processing audio data and sending

them to speakers in the computer. An audio file is a record of captured sound

that can be played back. Sound is a sequence of naturally analog signals that

are converted to digital signals by the audio card, using a microchip called an

analog-to-digital converter (ADC). When sound is played, the digital signals

are sent to the speakers where they are converted back to analog signals that

generate varied sound [Kie98].

 Audio files are usually compressed for storage or faster transmission.

And can be sent in short stand-alone segments (for example, as files in the

Wave File format). In order for users to receive sound in real-time for a

multimedia effect, listening to music, or in order to take part in an audio or

video conference, sound must be delivered as streaming sound. More

advanced audio cards support Wavetable, or precaptured tables of sound. The

most popular audio file format today is MP3 (MPEG-1 Audio Layer-3)

[Kie98]. The digital representation of audio data offers many advantages:

high noise immunity, stability, and reproducibility. Audio in digital form also

allows the efficient implementation of many audio processing functions (e.g.,

mixing, filtering, and equalization) through the digital computer. The

conversion from the analog to the digital domain begins by sampling the

audio input in regular, discrete intervals of time and quantizing the sampled

values into a discrete number of evenly spaced levels. The digital audio data

consists of a sequence of binary values representing the number of quantizer

Chapter One: General Introduction

٢

levels for each audio sample. The method of representing each sample with

an independent codeword is called Pulse Code Modulation (PCM) [Pan93].

1.2 Data Compression [Sal00]

 Data transmission and storage cost money. The more information being

dealt with, the more it costs. In spite of this, most digital data are not stored

in the most compact form. Rather, they are stored in whatever way makes

them easiest to use, such as: ASCII text from word processors, binary code

that can be executed on a computer, individual samples from a data

acquisition system, etc. Data compression is the general term for the various

algorithms and programs developed to address this problem. A compression

program is used to convert data from an easy-to-use format to one optimized

for compactness. Likewise, an uncompressing program returns the

information to its original form.

1.3 Types of Data Compression

 By considering the characteristics of the reconstructed data after the

process of compression and decompression, data compression can be divided

generally into two major types: lossless and lossy.

1.3.1 Lossless Data Compression

 Lossless data compression has a property that after the compression and

decompression operation, an identical duplicate of the original is reproduced.

Figure (1.1) shows the typical block diagram of lossless data compressor.

The possibility of this operation exists, and Shannon [Sha01] has shown a

theoretical limit for this compression operation by considering the statistical

characteristics of the source data stream. In fact, lossless compression system

can be built by making use of symbol probabilities of the data stream. By

representing frequently appearing symbols with shorter codes and rarely

Chapter One: General Introduction

٣

appearing ones with longer codes, we can encode the original to a stream of

codes with shorter total length. These systems are usually called statistical

coding systems, since they rely on the statistics of the incoming source to

determine coding symbol [Zol98].

 Figure (1.1) Lossless Compressor

 Many lossless compression techniques exist nowadays. For examples,

Huffman coding, arithmetic coding, and Lempel-Ziv algorithms are among

the most efficient of these lossless compression techniques, they are suitable

for wide range applications, from hard disk file compression to digital

medical image archiving. In fact, the lossless property of these techniques

makes them good for most applications universally, since data are

compressed without any loss. However, lossless compression often has a low

compression ratio. Sometimes the compression is so insignificant that making

it not attractive enough in some applications, which require large

compression ratio, such as image and speech compression [Wat95, Zol98].

1.3.2 Lossy Data Compression

 As an alternative to lossless compression, lossy compression techniques

can be considered if we want to have a higher compression ratio. The

important point of lossy compression is that, its compression procedure can

be adjusted to sacrifice some accuracy in order to gain a lot of compression.

In other words, degradations are allowed in the reconstructed data. Some

 Input
 Stream

 Model

 Statistical
 Encoder

 Output
 Stream

Chapter One: General Introduction

٤

times, the gain of lossy compression is so significant that it leads to a very

small compressed data size, which contrasts lossless compression. Most of

the lossy compression techniques include a quantization stage as shown in

Figure (1.2) to perform lossy quantizing procedures [Sal00, Wat95].

 This is especially the case for lossy compression of multimedia signals

including images, sounds, and moving pictures. The resulting quantized

coefficients are then encoded losslessly to form an output stream. In some

techniques, this quantization process is very efficient that it can achieve 50

times compression or even more. Nowadays, many multimedia applications

use modern lossy compression techniques [Zol98, Wan00].

 Figure (1.2) Lossy Compressor

 These applications include image, speech, and video compression. Some

popular examples are JPEG for image compression, GSM for speech

compression, and MPEG-2 for video compression. Nevertheless, some

mission-critical applications, such as medical imaging and satellite image

transmission, still require lossless compression techniques. Since lossless and

lossy compression techniques have different advantages, they are both

important to multimedia compression [Zol98, Wan00].

1.4 Audio Compression

 In order to more efficiently broadcast or record audio signals, the

amount of information required to represent the audio signals may be

 Input
 Stream

Transformation
And

Quantization

Model

Statistical
 Encoder

 Output
 Stream

Chapter One: General Introduction

٥

reduced. In the case of digital audio signals, the amount of digital information

needed to accurately reproduce the original pulse code modulation (PCM)

samples may be reduced by applying a digital compression algorithm,

resulting in a digitally compressed representation of the original signal. (The

term compression used in this context means the compression of the amount

of digital information, which must be stored or recorded). The goal of the

digital compression algorithm is to produce a digital representation of an

audio signal which, when decoded and reproduced, sounds the same as the

original signal, while using a minimum of digital information (bit-rate) for

the compressed (or encoded) representation [ATS01].

 Digital compression of audio is useful wherever there is an economic

benefit to be obtained by reducing the amount of digital information required

to represent the audio. Typical applications are in satellite or terrestrial audio

broadcasting, delivery of audio over metallic or optical cables, or storage of

audio on magnetic, optical, semiconductor, or other storage media [ATS01].

 Audio compression algorithms were created to enable audio to be saved

more effectively. A compressor codec takes an original uncompressed audio

track and reduces its size. Because of the smaller size, the speed requirements

for the storage devices are greatly reduced. To play back the compressed

audio data, a decompression algorithm is used to decompress the data so it

can be heard.

1.5 Fractal Compression [Xia04]

 Fractal compression is a lossy compression method used to compress

images using fractals. The method is best suited for photographs of natural

scenes. The fractal compression technique relies on the fact that in certain

images, parts of the image resemble other parts of the same image.

Chapter One: General Introduction

٦

 Fractal compression seems to be one of those technologies with "a great

future behind it". It promised much in the late 1980s, when in some

circumstances it appeared to compress much better than JPEG, its main

competitor in those days.

 Fractal compression is a radical departure from the conventional image

compression techniques. The difference between it and the other techniques

is much like the difference between bitmapped graphics and vector graphics.

Rather than storing data for individual pixels, fractal compression stores

instructions or formulas for creating the source (image or audio).

 Like vector quantization, fractal compression is asymmetrical. Although

it takes a long time for compression, decompression is very fast. These

asymmetrical methods are well suited to such applications as video on a CD-

ROM where the user doesn't care about compression but does expect to see

results quickly. Decompression simply reads the mathematical formulas and

recreates the source.

 The tough part is generating the formulas to correctly represent the

source. Fractal compression assumes that every image is composed of

smaller images just like them. Blue sky in an image is composed of smaller

patches of blue. Tree branches can be broken into smaller branches and then

twigs those all have similar structure. The compression technique tries to find

as many of these relationships in an image and then describe them with

mathematical formulas. This is done within regions of an image called

domain regions. These domain regions are determined by using techniques

such as frequency analysis, edge detection, and texture-variation analysis.

 Like other lossy compression schemes, fractal compression involves a

tradeoff, which is little different from the other methods. The tradeoff is

between image quality and compression time. The longer the encoder has to

create the descriptive formulas, the higher the quality of the output image.

Like all other lossy compression schemes, fractal compression also

Chapter One: General Introduction

٧

introduces artifacts. These include softness and substitution of details with

other details. This substitution is typically undetected in natural images.

1.6 Aim of Thesis

 This research aims to study the performance of a lossy audio compression

system based on partitioned iterated function system (PIFS) coding method.

The effect of all control parameters of the performance of the designed and

implemented compression system will investigate in an attempt to achieve a

good compression ratio with keeping the audio quality above an acceptable

level.

1.7 Related Work

1. In 1993, Sinha and Tewfik [Sin93] presented a low bit rate transparent

audio compression using a dynamic dictionary and optimized wavelets.

The authors proposed an audio synthesis coding method, which employs

an optimized wavelet transform (WT), based adaptive transform coding

to exploit perceptual masking. In addition, a dynamic dictionary was

used to extract source redundancies.

2. In 1995, Baharav, Krupnik, and Karnin [Bah95] presented in their paper

the basic fractal coder suggested by Jacquin. The coder finds and

encodes the parameters of a partitioned iterated function system (PIFS),

which approximate the signal as a fixed point of a contractive

transformation.

3. In 1995, Degener [Deg95], her research group at the technical university

of Berlin developed a speech compression part of the (GSM) Global

System for Mobile telecommunication protocol suite that is currently

used as the Europe's most popular protocol for digital cellular phones.

Chapter One: General Introduction

٨

The GSM consists of an input of frame of 160 samples; 13-bit linear

PCM values sampled at 8 kHz, so each frame covers 20 ms.

4. In 1996, Shamoon [Sha96], had presented algorithms for encoding high

fidelity audio at low bit rate. The ultimate goal of this work is to provide

fast algorithms for sub-band perceptual coding that are capable of audio

coding at bit rates that permit transmission of high fidelity audio over

broadcast and telephone channels, and storage of audio on low capacity

media.

5. In 2002, Mohammed Abbas [Aba02], proposed a genetic algorithm as a

new lossy compression method for multimedia data files (image and

audio), and he concluded that using genetic algorithm with iterated

function system can improve the compression performance in some

respects, but it fails in others.

6. In 2003, Yokoyama, Watanabe, and Sugawara [Yok03], proposed in their

paper a new retrieval system of images using PIFS codes. In this paper

they suggested a new retrieval technique that uses compression codes;

especially they used fractal image compression (FIC) method. This

compression method is relatively recent technique and based on the self-

similarity of images. Exploiting the robust property of this compression

method, they have developed a new similarity-based retrieval system.

CHAPTER TWO

BASIC CONCEPTS OF FRACTAL

2.1 Introduction

 There are many shapes in the natural world; they look so complex that we

could not express them by several simple functions. But after B. B.

Mandelbrot (1977) devised the notion of ‘fractal’ [Man77], we are able to

express many natural shapes by some simple algorithms. From that time,

dedicated hardware and software of computer systems have been improved

day by day. And various researches on how to construct fractal shapes or how

to imitate natural creatures have been developed [Bra88].

 The term fractal (from Latin fractus -means irregular, fragmented)

applies to objects in space or fluctuations in time that possess a form of self-

similarity and cannot be described within a single absolute scale of

measurement. Fractals are recurrently irregular in space or time, with themes

repeated like the layers of an onion at different levels or scales. Fragments of

a fractal object or sequence are exact or statistical copies of the whole and

can be made to match the whole by shifting and stretching. Sequential fractal

scaling relationships are observed in many physiological processes. Spatial

structures of many living systems are fractal. Fractal geometry has evoked a

fundamentally new view of how both nonliving and living systems result

from the coalescence of spontaneous self-similar fluctuations over many

orders of time and how systems are organized into complex recursively

nested patterns over multiple levels of space [Klo00] .

2.2 Definition of Fractal

 The formal mathematical definition of fractal is defined by Benoit

Mandelbrot. It says that a fractal is a set for which the Hausdorff Besicovitch

Chapter Two: Basic Concepts of Fractal ١٠

dimension strictly exceeds the topological dimension [Fis94, Man83].

However, this is a very abstract definition. Generally, we can define a fractal

as a rough or fragmented geometric shape that can be subdivided in parts,

each of which is (at least approximately) a reduced-size copy of the whole.

Fractals are generally self-similar and independent of scale.

2.3 Properties of Fractal

 A geometric figure or natural object is said to be fractal if it combines the

following characteristics [Fis94]:

a) Its parts have the same form or structure as the whole, except that they

are at a different scale and may be slightly deformed.

b) Its form is extremely irregular or fragmented, and remains so, whatever

the scale of examination.

c) It contains "distinct elements" whose scales are very varied and cover a

large range.

d) They have a perimeter of infinite length but an area limited.

e) Fractional dimension: A non-integer dimension. We know that the

dimension of lines, squares, and cubes are respectively 1, 2, and 3. For

example the dimension of a fractal may be 1.342.

f) Formation by iteration.

Chapter Two: Basic Concepts of Fractal ١١

2.4 Fractal Development [Xia04]

 Unfortunately, fractal was not developed for data compression in the first

place, but at that time it was considered as a different kind of geometry

introduced by the IBM mathematician Benoit B. Mandelbrot through his

book ”The Fractal Geometry of Nature" published at 1977. At 1981, the

mathematician John Hutchinson found the theory of iterated function system

to model collections of contractive transformations in a metric space as

dynamical systems, which later provided some theoretical support of

recognizing fractal in the metric space. It was Michael Barnsley, eventually,

who generated the fractal model using iterated function systems (IFS’s), and

led to encode images to achieve significant compression. However,

Barnsley’s image compression algorithm based on fractal mathematics was

inefficient and unpractical suffering too big searching space problem. At

1988, one of Barnsley’s ph.D students, Arnaud Jacquin, suggested a

modified scheme for representing images, called partitioned iterated function

systems (PIFS’s). The basic idea of the algorithm is to convert an image into

the PIFS’s, instead of looking at the whole image. It immediately made

fractal image compression more practical, however with sacrificing the

compression ratio. After Jacquin’s PIFS, there were many other modified

schemes, but none of them made any significant progress. Most of later

publications on the fractal subject stay on the PIFS, but focus on the possible

improvements. The two big problems of Jacquin’s algorithm are the partition

scheme selection for encoding, and the speed problem for encoding.

2.5 Fractal Examples

 In this section two fractal examples are provided for demonstration

purposes.

 The first example is generating Sierpinski’s Triangle using IFS. We can

see from Figure (2.1) that the Sierpinski’s triangle can be generated by

Chapter Two: Basic Concepts of Fractal ١٢

infinitely repeating a procedure of connecting the midpoints of each side of

the triangle to form four separate triangles, and cutting out the triangle in the

center [Kis99].

 (a) Initial Image (b) First Iteration (c) Fifth Iteration (d) Sixth Iteration

 Figure (2.1) Sierpinski triangle example of generat ing sequence

by iteration .

 This process can be viewed as three transformations map the original

triangle to the new 3 triangles as shown in Figure (2.2).

 Figure (2.2) Sierpinski Triangle mapping using thre e affain

transformations .

Chapter Two: Basic Concepts of Fractal ١٣

The mathematical expressions of the transformations are the followings:

 It is important to observe that there is hardly to remark any visible

difference between the fifth and the sixth iterations shown in Figure (2.1).

The Sierpinski’s triangle sequence thus visually converges to one triangle

within certain threshold. Reversely, if we take the sequence backward, for the

Sierpinski triangle sequence, we only need to know the mapping which

is 1w , 2w and 3w . This is the essence of how fractal compression works.

 The second example is shown in Figure (2.3). It demonstrates one

domain-range match, which is calculated through the rotation and

modification. And since the domain block is twice the size of the range

block, the reduction is needed at last.

Figure (2.3) Fractal encoding from a domain mapping to a
range domain for Lena image.

)32..(..,.........
0

5.0

5.00

05.0

)22..(..,.........
5.0

0

5.00

05.0

)12.....(..,.........
5.00

05.0

3

2

1

−







+
















=









−







+
















=









−















=









y

x

y

x
w

y

x

y

x
w

y

x

y

x
w

Chapter Two: Basic Concepts of Fractal ١٤

 Essentially, in image sense, the rotation, and modification are the

process to get a proper set of scalings and offsets, which adjust the luminance

of the domain block (in this case for a grey-scale image). The Lena image is a

widely accepted test figure in image compression. It gives the idea that

natural images have self-similarities or patterns embedded. With this belief,

our research work is an attempt to discover the possibility of using this

concept on audio [Xia04].

2.6 Fractal Coding

 Fractal coding is one of the promising new coding techniques for high

compression ratios, which are beginning to be adopted worldwide by the way

of the Internet. It is based on the work of Barnsley and Jacquin on fractals

and Iterated Function Systems (IFSs) [Bar88-Fis94]. Blocks of a source

(image or audio) are considered as affine transformations of other blocks

taken from the image itself.

2.6.1 Encoding [Bah95]

 Encoding is done by partitioning the source (image or audio) into non-

overlapping blocks, called range blocks (denoted iR , where i is the block

index), and into typically overlapping blocks to form what is called the

domain pool. A spatial contraction is performed on the domain pool, by an

operator ϕ (usually averaging), so that the resulting blocks (which we

denote jD) are of the size of the range blocks.

 Each range block is linearly estimated from a contracted domain block

according to ijiii bDaR += .ˆ , where ia is called the scale parameter, ib the offset

parameter, and ji is the index denoting the best domain block to get iR̂ as

close as possible toiR .

Chapter Two: Basic Concepts of Fractal ١٥

2.6.2 Decoding [Bah95]

 Decoding can be done by starting with some arbitrary initialized range

pool (image or audio), then the domain pool is generated by down sampling

the range pool, estimating the range blocks of a new source from the

contracted domain blocks, and iterating the above last two steps until a fixed

point is reached, or nearly so (thus this method is called IFS – Iterated

Function System). If the range block estimators are good enough, then the

fixed point source is much like the original source.

2.7 Affine Transformations [Bra93, Fis92]

 Most literatures in fractal compression define the mapping function f to

be affine to simplify the computation. An affine transformation w:
nn RR → can always be written as w = Ax + b, where A nnR ×∈ is an n × n

matrix and b nR∈ is an offset vector. The transformation is contractive when

its linear part is contractive. The contractive depends on the metric used to

measure distance. And because affine transformation is linear, we can use

norm . in nR to define the metric. Then

nRx

A
∈

= rsup If)42...(....................,.........1/ −<xxA
rr

 The contractive under the sup norm of a complete metric space is

guaranteed if the above condition is satisfied (i.e., the left hand side is always

less than one). However, Wohlberg and Jager in their review [Woh99]

pointed out that this restriction is sufficient but not necessary for

convergence; empirical evidence indicates that convergence is often achieved

even if xxA
rr

/ greater than one, although smaller values provide more

rapid convergence on decoding. The eventually contractive mapping function

is sufficient to ensure the convergence of the mapping. Setting the equation

less than one guarantees the contractive mapping, which is a stronger

Chapter Two: Basic Concepts of Fractal ١٦

argument than eventually contractivity. But unfortunately, the affine

transformation and sup norm metric cannot explicitly give us the bound of

ensuring eventually contractive. Affine transformation also suffers from

some problems as a linear transformation that has limited capabilities of

mapping and requests geometrically identical mapping parties.

2.8 Contractive Transformations [Fis92]

 A transformation w is said to be contractive if for any two points P1, P2

the distance:

 d (w (P1), w (P2)) < sd (P1, P2),)52.(.. −

For some 1<S , where d is the distance. This formula says the application of a

contractive map always brings points closer together (by some factor less

than 1).

2.9 Fixed Point Theorem [Fis92]

 This theorem says something that is intuitively obvious: if a

transformation is contractive then when applied repeatedly starting with any

initial point, we converge to a unique fixed point.

 If X is a complete metric space and W: X →X is contractive, then W has a

unique fixed point w .

2.10 Partitioned Iterated Function Systems (PIFS’s)

 The Sierpinski triangle (shown in Figure 2.1) demonstrates the way of

using IFS. However, unlike the example; our real spaces are very irregular. In

most cases, it would be rather impossible to find such a perfect mapping for

the whole space. Thus Jacquin introduced the partitioned iterated function

system (PIFS) in his works [Jac92]. A PIFS is a generalization of an IFS, and

Chapter Two: Basic Concepts of Fractal ١٧

attempts to ease the IFS computation by partitioning the whole space into

subspaces. In other words, PIFS is a restricted version of IFS.

 One problem brought up from the PIFS is the partition. The space has to

be partitioned into subspaces. It is necessary to be sure the addition of the

subspaces covering the original space. Also, the partition scheme dominates

the final map set, which means the compression process in general [Jac92].

 Jacquin first introduced the PIFS on the fractal image compression.

Image space is naturally recognized as a 2D space. The partition scheme is

simply partitioning the whole space twice to the range set and the domain set.

Both sets cover the whole image space, with the domain set allowing

overlapping. As a shortcoming of using affine transformation, the partition

schemes for the domain set and the range set have to give the same geometric

shaped domain and range blocks, which are usually squares or rectangles.

Domain block is set to be twice as big as range block in Jacquin’s original

scheme in [Jac92], which is widely accepted in fractal image compression.

The reason allowing domain overlapping is to smooth artifacts between

blocks in decoding process. The mapping between the domain and the range

blocks is as demonstrated in Figure (2.4). For each range block, find a proper

domain block to map to. The final map set is composed of mappings for each

range block from the range set.

 Figure (2.4) Mapping from the domain set to the ran ge set.

Chapter Two: Basic Concepts of Fractal ١٨

 Among most of fractal image compression range partition schemes

appearing in literatures, Quadtree partition and Horizontal-Vertical (HV)

partition are the most popular two schemes being used. We show two

examples in Figure (2.5) for both partition schemes. The review in [Woh99]

classifies range partition schemes into right-angled partition schemes and

triangular and polygonal range partition schemes. Both quadtree and HV

schemes belong to the first category.

 (a) Quadtree range partition (b) HV range partition

 Figure (2.5) Examples of quadtree and HV range part ition
schemes

 PIFS is recognized as a significant improvement for IFS. It reduces

large amount of searching time both theoretically and practically.

Furthermore, it provides some possible aspects of improving fractal encoding

like using different partition schemes or taking different mapping methods.

Comparing with some more advanced methods of generating fractals such as

Weighted Finite Automata, PIFS also has the beauty of simplicity. For the

above reasons, our research on fractal audio compression uses PIFS in the

same way like conventional fractal image compression methods.

Chapter Two: Basic Concepts of Fractal ١٩

2.11 Derivation of Scale and Offset Equations

 To compute the s and o one should compute the values of a scale (s) and

offset (o) which minimize the value of the distortion error equation (E). The

minimum of the distortion error (E) occurs when the partial derivatives (of E)

with respect to (s) and (o) are zero.

 ∑
=

′−=
n

ni

rrE 2)(,………………………………………………….(2 - 6)

 Where: osdr i +=′ where (s) is the scale and (o) is the offset

 ∑
=

−−=
n

ni
ii osdrE 2)(,…...(2 - 7)

Differentiate the distortion error equation (E) with respect to (s) and (o):

 0,0 =
∂
∂=

∂
∂

o

E

s

E , the differentiation of (E) with respect to (s) as follows:

 0)(,0))((2
1 1

2 =++−=−−−=
∂
∂

∑ ∑
= =

i

n

i

n

i
iiiiii odsddrdosdr

s

E
,…….(2- 8)

 ∑ ∑ ∑
= = =

=++−
n

i

n

i

n

i
iiii odsddr

1 1 1

2 0,…………………………………..(2 - 9)

 rearrange equation (2-9) to get:

 ∑ ∑∑
= ==

=+
n

i

n

i
iii

n

i
i drodds

1 11

2 ,…………………………………………(2-10)

 Now differentiate the distortion error equation (E) with respect (o):

 ∑ ∑
= =

=++−=−−−=
∂
∂ n

i

n

i
iiii osdrosdr

o

E

1 1

0)(,0)1)((2 ,…............(2-11)

 ∑∑∑∑ ∑ ∑
==== = =

=+=++−
n

i
i

n

i

n

i
i

n

i

n

i

n

i
ii rodsosdr

1111 1 1

1,0 ,…………………….(2-12)

 ∑ ∑
= =

=+
n

i

n

i
ii ronds

1 1

,………………………………………………….(2-13)

 rearrange equation (2-13) to get:

n

dsr
o

n

i

n

i
ii∑ ∑

= =
−

= 1 1 ,…...(2-14)

Chapter Two: Basic Concepts of Fractal ٢٠

 substitute equation (2-14) in equation (2-10) to get:

 ∑∑∑
∑ ∑

==

= = =

















−

+
n

i
ii

n

i
i

n

i

n

i
ii

i drd
n

dsr
ds

11

1 12 ,…......................................(2-15)

 rearrange equation (2-15) to get:

 ∑ ∑∑∑ ∑
= === =

−=


























−

n

i
i

n

i
i

n

i
ii

n

i

n

i
ii dr

n
drd

n
ds

1 111

2

1

2 11
,…………………(2-16)

 rearrange equation (2-16) to get:

∑ ∑

∑ ∑ ∑

= =

= = =











−

−
=

n

i

n

i
ii

n

i

n

i

n

i
iiii

d
n

d

dr
n

dr
s

1

2

1

2

1 1 1

1

1

,………………………………………(2-17)

 multiply equation (2-17) by
n

n
 to get:

∑ ∑

∑ ∑ ∑

= =

= = =











−

−
=

n

i

n

i
ii

n

i

n

i

n

i
iiii

ddn

drdrn
s

1

2

1

2

1 1 1 ,…...(2-18)

also to get the offset equation rearrange equation(2-14) to get:

∑

∑

=

=
−

=
n

i
i

n

i
r

d

onr
s

1

1 ,…………………….(2-19) substitute this equation in

equation (2-10) to get:

∑ ∑

∑∑∑∑

= =

====











−

















−
















=
n

i

n

i
ii

n

i
ii

n

i
i

n

i
i

n

i
i

ddn

drdrd

o

1

2

1

2

1111

2

,……………..……… ………(2-20)

Chapter Two: Basic Concepts of Fractal ٢١

Where id are the samples values of the domain blocks.

ir are the samples values of the range block.

n is the number of samples in each block (i.e. the block size).

2. 12 Advantage and Weakness of Fractal Compression

 Fractal compression methods have been mainly studied developed for

image compression. The advantages and weaknesses are apparently

addressed with image compression. People generally realize that fractal

compression works quite well at high compression ratio, usually around 40:1.

Walle [Wal95] gives a very detailed analysis on fractal image encoding

performance comparing with other conventional image compression

methods.

2.12.1 Fractal Advantages

 The most valuable advantage of fractal compression is the ability of

achieving high compression ratio within certain acceptable threshold of

recovery. However, the compression ratio is still highly related with

identifiable patterns and self-similarities. Under this restriction, fractal

compression with high compression ratio is not universally applied.

 In audio compression, it can see that fractal audio compression is a much

simpler scheme compared with the most popular MP3 encoding. This is one

potential advantage that fractal compression may be used in audio world.

Despite audio is a very continuous sequence; it still embeds patterns and self-

similarities, especially those created by us, like music and instrumental

sound, which gives us a hope that fractal compression may work well.

Chapter Two: Basic Concepts of Fractal ٢٢

2.12.2 Fractal Weaknesses

 Fractal compression has not been put into practical uses, even for image

compression, for its numerous weaknesses. The success of the scheme seems

to rely exclusively on exhibiting some self-similarities among part of the

space. And there is no guarantee that the probability of matching domain and

range blocks is sufficiently high to achieve compression.

 The restriction of using affine mapping does not guarantee scaling iα and

offset iβ forming a set of independent random variables. This is to say that

each transform iw may not be able to be independent from others, so that

wmay not be equal to the union of swi ' .

 Furthermore, the fractal encoding requests a large amount of time

because of the search for matching blocks, and the fractal decoding can also

be a long iterating process.

2.13 Quantization

 The definition of the term "quantization" is to restrict a variable quantity

to discrete values, rather than to a continuous set of values. In the field of

data compression, quantization is used as follows: If the data samples to be

compressed are large numbers then, quantization is used to convert them to

small numbers. Small numbers take less space than large ones, so

quantization generates compression. On the other hand, small numbers

generally contain less information than large ones, so quantization results in

lossy compression, this aspect of quantization is used by several speech

compression methods.

 Quantization theorem says that the quantizer can be modeled as the

addition of a uniform distributed random signal (e) and the original

unquantized signal (x) as shown in the figure (2.6).

Chapter Two: Basic Concepts of Fractal ٢٣

 Figure (2.6) A quantizer

 There are two types of quantization: Scalar Quantization and Vector

Quantization. In scalar quantization, each input symbol is treated separately

to produce the output, while in vector quantization the input symbols are

assembled together in groups called vectors, and processed to give the output.

Treating these assembles of data as a single unit could increase the optimality

of the vector quantizer, but at the cost of increased computational

complexity. Here, we'll take a look at scalar quantization.

 A quantizer can be specified by its input partitions and output levels

(also called reproduction points). If the input range is divided into levels of

equal spacing then the quantizer is termed as a Uniform Quantizer, and if not

it is termed as a Non-Uniform Quantizer. A uniform quantizer can be easily

specified by its lower bound and the step size. Also, implementing a uniform

quantizer is easier than a non-uniform quantizer. Take a look at the uniform

 Q

X XQ

Input
Signal Quantizer

X

e

XQ=X+e

Quantizer Error

Chapter Two: Basic Concepts of Fractal ٢٤

quantizer shown in figure (2.7). If the input falls between n*r and (n+1)*r,

the quantizer outputs the symbol n.

 Figure (2.7) A uniform quantizer

 Just in the same way a quantizer partitions its input and outputs discrete

levels, a dequantizer is one which receives the output levels of a quantizer

and converts them into normal data, by translating each level into a

'reproduction point' in the actual range of data. The optimum quantizer

(encoder) and optimum dequantizer (decoder) must satisfy the following

conditions:

1. Given the output levels or partitions of the encoder, the best decoder is

the one that puts the reproduction points x' on the centers of mass of

the partitions. This is known as centroid condition.

2. Given the reproduction points of the decoder, the best encoder is the

one that puts the partition boundaries exactly in the middle of the

reproduction points, i.e. each x is translated to its nearest reproduction

point. This is known as nearest neighbour condition.

 The quantization error (x - x') is used as a measure of the optimality of

the quantizer and dequantizer.

2.14 Fidelity Criteria

 A natural way to determine the fidelity of a recovered audio is to find the

difference between the original and reconstructed values. The two popular

measures of distortion are the squared error measure and the absolute

difference measure, which are called difference distortion measures. If X is

Chapter Two: Basic Concepts of Fractal ٢٥

the source output and Y is the reconstructed sequence, the sum of squared

error measure is given by [Xia01]:

 ∑
=

−=
n

i
ii yx

n
d

1

2)(
1

,………………..............................…….(2-21)

And the sum of absolute difference measure is given by [Xia01]:

 ∑
=

−=
n

i
ii yx

n
d

1

||
1

,…………......................................……….(2-22)

 Practically, it is difficult to examine the difference on a term-by-term

basis; so, some average measures are used for this examination. The most

often used average measure is the average of squared error measure. This is

called the mean squared error (MSE) and is given as:

 ∑ −=
=

n

i
ii

yx
N

MSE
1

2)(
1

,……...…….(2-23)

 Sometimes it is more interesting to measure the size of the error relative to

the peak value of the signal rather than the size of the error relative to the

average squared value of the signal. This ratio is called the peak-signal-to-

noise ratio (PSNR) and is calculated by the following equation:














=

MSE
dBPSNR

2

10

255
log10)(,……………………….…(2-24)

 PSNR is the most commonly used value to evaluate the objective audio

compression quality.

CHAPTER THREE

SYSTEM DESIGN AND IMPLEMENTATION

3.1 Introduction

 The encoding unit of the implemented audio fractal compression (AFC)

is based on partitioned iterated function system (PIFS), which is basically

based on affine transformation. So, for encoding the audio data it is necessary

to divide it into non-overlapped blocks called (ranges, R), and then each

block is transformed separately. By partitioning the audio data into blocks

(called ranges), the partitioning will let the encoding of a wave with

complicated shaped is mostly possible, taken into consideration that audio is

not composed of copies and doesn’t imply exact similarity, so it can’t be

coded as one single piece by using the IFS.

 So, the PIFS is used in the suggested system to find for each range block

the best approximation the best approximation is found by searching in the

domain pool, compute the corresponding PIFS parameters and storing these

parameters in the compression file.

 The steps of the implemented algorithms for the two units of fractal

audio compression system (Encoding unit and Decoding unit) are given in

details in this chapter.

3.2 Audio Fractal Compression System (System Model)

 The implemented fractal audio compression system consists of two

major units:

1. Encoding unit

2. Decoding unit

 Each of these two units consists of many modules as illustrated in
figures (3.1), and (3.2).

Chapter Three: System Design and Implementation ٢٧

Figure (3.1) The flow chart of the Fractal Audio Encoding unit

Construct the Range Pool from the Original wave file and
Partition it into nonoverlapped Blocks

Down Sample the Audio Data by 2 to Construct the Down Sampled Wave

Construct the Domain Pool by Partitioning the Down Sampled Wave
into Sets of overlapped Blocks

Compute the Domain Parameters

Point to the First Range Block and Compute its Parameters

Match this Range Block with each Domain Block till find the suitable
Domain block, which satisfy the best map to this Range Block and determine

its Affine Coefficients

Quantize and Dequantize the Offset and Scale Parameters

Is it the Last
Range Block?

No
Point to next
Range Block
and compute

its
parameters

Yes

Start

Load Wave File

Store the PIFS Coefficients
in the Compression File

End

Chapter Three: System Design and Implementation ٢٨

Initialize an arbitrary wave domain with the same size of the domain pool to be a
temporary domain

Set No. of iterations =Desired No. of Iteration
Set Iteration=1

Point to the first set of affine coefficients in the stored PIFS code

Construct the specific range block, which gets its information from
the parameters of the affine set by inverse mapping using affine

transform

Iteration
exceeds the No.
of Iterations?

Is it the last
registered set?

No

Yes

Yes

No

Reconstruct the wave file

Down sample
the

reconstructed
range blocks to

create new
domain Pool

Determine the MSE and PSNR

Iterations=Iterations+1

Save the reconstructed Wave File

Start

Load the stored PIFS Coefficients

End

Load the
next set of

affine
coefficients

in the stored
PIFS

Figure (3.2) The flow chart of the Fractal Audio Decoding unit

Chapter Three: System Design and Implementation ٢٩

3.2.1 Encoding Unit

 The encoding process is mainly based on the PIFS. This unit consists of

numbers of modules, which are all together responsible for reducing the size

of the desired audio data and construct the compression file.

 As shown in figure (3.1), the encoding unit consists of the following

modules:

1. Loading wave file.

2. Construct the Range pool: Partition the given wave data using a fixed

block size partitioning to construct the Range pool R, and partition it

into nonoverlapped blocks.

3. Down sample the audio data by 2: Take the mean value of every two

successive samples values listed in the Range vector and put it in the

Domain vector.

4. Construct the Domain pool: From the domain array construct the

domain pool D by partitioning it into overlapped blocks with the same

size of the range blocks.

5. Compute the Domain parameters (for all domain blocks) and put them

in array.

6. Point to the first Range block R and compute its parameter.

7. Search the Domain pool, and match the first Range block with each

domain block using affine transform. Find the best matched domain

block, and register the corresponding affine coefficients (scale, offset,

symmetry, and position), of this domain block.

8. Quantize and dequantize the scale and offset coefficients.

9. Store the determined affine transform coefficients for the current

range block (which consist of the indices of S and O) in the

compression stream (file).

Chapter Three: System Design and Implementation ٣٠

10. If the matched range block on the range pool is the last one, then end

the encoding process, if not then point to the next range block on the

range pool and go to step 7.

3.2.1.1 Loading Wave File

 The wave file format is a subset of Microsoft Resources Interchange

File Format (RIFF) specification; it is adopted for the storage of multimedia

data. This file starts out with a file header followed by a sequence of data

chunks. A WAVE file is often containing single "WAVE" chunk, which

consist of two sub-chunks, a format "fmt" sub-chunk specifying the data

format and the "data" sub-chunk containing the actual sampling data.

 Some wave data were used as test material in this research work. The

specifications of the input sound waves for testing and measuring the

performance of the suggested audio compression method are: 8-bits sample

length, and MONO (i.e., single channel). A detailed description of the wave

file format is presented in Appendix (A).

 In the current work the way used for loading audio file is by loading

wave (*.wav) files using the steps listed in algorithm (3.1).

Algorithm (3.1) Loading the Audio Data

Input: Wave File Name

Output: Wave Data Buffer Wav (WaveSize-1)

Open wave File

• Load the header of wave file

 If Number of bits per sample = 8 and Number of Channels = 1 Then

 WaveSize = (Length of Wave file - 60) do

• Load the audio data into a wav (WaveSize-1) buffer.

Chapter Three: System Design and Implementation ٣١

3.2.1.2 Range Pool Construction

 There are many possible methods for partitioning the audio data that

can be used to select the range blocks. The main goal of the partitioning

process is to divide the audio data into regions that show similarity with other

regions in the domain pool, and generate a non-overlapping region, which

referred to as range pool (range blocks), that can be utilized in audio coding.

It must be noted that the constraint of non-overlapping range blocks is an

important condition to achieve correct decoding process.

 The way of partitioning used in this research is a fixed size-partitioning

scheme, because it requires less computational time than the other schemes.

This done only by choosing the size of the block one time in the program.

 The goal of partitioning is to improve the approximation between the

samples values of range block with those of a domain block, because small

blocks can probably be matched with each other better than large blocks.

 Choosing the block size must be done accurately, since although the

small block size perform a good matching between range and domain blocks,

but this is time consuming which leads to long encoding time because of

searching process. While, if the block size is big, then the encoding time is

reduced but this may influence the quality of the reconstructed wave file.

The test results illustrated in the next chapter will explain the effect of the

block size on the compression ratio, encoding time, PSNR, and MSE.

 As a first step, the header of the wave file is analyzed to get the

necessary parameters (such as data size, bits per sample, sampling rate, etc....

as listed in algorithm 3.1) that required loading the audio information. After

reading the audio data from the opened stream then the audio data will be

partitioned uniformly, and put the partitioned data (blocks) in a temporary

buffer to manipulate them as blocks of samples (of fixed size). The set of

partitions is called the Range pool (Range blocks), algorithm (3.2) illustrate

the implemented steps of partitioning.

Chapter Three: System Design and Implementation ٣٢

 Algorithm (3.2) Partitioning and Constructing the Range

Pool

3.2.1.3 Down Sample the Audio Data By 2

 The loaded audio data is down sampled by 2 (by averaging method) to

construct the domain array.

3.2.1.4 Domain Pool Construction

 This module is responsible for constructing another one-dimensional

array, called the Domain, with size half the size of the range array.

 The data of the domain is produced from the Range as illustrated in

algorithm (3.3), there are many ways to select the data from Range to fill the

Domain but all of them deal with choosing one element from every two

adjacent elements in Range to be in the Domain, different selections rules

were used, some of these rules are based on:

1. Choosing the minimum value of the two elements.

2. Choosing the maximum value of the two elements.

Input: Wave Data Buffer Wav (WaveSize-1), the size of the Wave Data Buffer

WaveSize, the size of the range-block B.

Output: Wav partitioned into RB range-blocks,(RB is the number of range-blocks).

RB= WaveSize/ B

For I = 1 to RB

 For j = 1 to B

 ri (j)= Wav ((I-1)* B + j)

 Next j

Next I

r is called the range-block and is of size B. ri is the i’th range-block.

Chapter Three: System Design and Implementation ٣٣

3. Choosing the average value of the two elements.

4. Choosing the nearest or farthest element to the average

 The rule that is used in this research is taking the average of every two

adjacent samples in range array and put it in its corresponding position in

domain array.

 A fixed size-partitioning scheme is used to partition the domain pool for

the same purpose in the range pool partitioning. Thus the domain will be

divided into “Domain blocks” with the same size of the range blocks, but

possibly into overlapped domain blocks, where the partitioning jump size of

samples may take values less than the block size. Overlapping blocks leads to

many possible domain blocks in the domain pool, and thus good

approximation will be obtained. As the jump size is small, the domain pool

will be large and this satisfies the good approximation and high quality in the

reconstructed wave file. But at the same time this will lead to high encoding

time because searching a large pool of domain blocks is time consuming.

Choosing a big jump size will serve reducing the encoding time but the

reconstructed wave data will have low quality. This will be demonstrated by

the results of the compression ratio, encoding time, PSNR, and the MSE in

different jump sizes presented in the next chapter.

 Its important to notice that the jump size must be less than or equal to the

block size and of course greater than zero, and in the case of choosing the

step size equal to the block size then the domain blocks will be non-

overlapped.

Chapter Three: System Design and Implementation ٣٤

 Algorithm (3.3) Construct the Domain Pool

Error!

 3.2.1.5 Compute the Domain Parameters

 The algorithm (3.4) illustrates the implemented steps to compute the list

of domain parameters.

 Algorithm (3.4) Compute Domain Parameters

Error!

3.2.1.6 Compute the Range Parameters

Input: Wave Data Buffer (Wav (WaveSize-1))

Output: One-dimensional array called domain pool, Domain (Domain size), with

half size of the range pool.

 Domain Size = WaveSize \ 2 - 1

 For Pd = 0 To Domain Size do

 Pr = Pd + Pd

 Domain (Pd) = (round (Wav (Pr)) + Wav (Pr + 1)) \ 2 - 128

Input: Domain Pool array (Domain (Domain Size)), Domain Size, BlockSize and

JumpStep.

Output: Domain parameters (SumD (No.DomainBlocks), SumD2

 (No.DomainBlocks)).

 No.DomainBlocks = (DomainSize+1-BlockSize)\JumpStep-1: Pd=0

 For I= 0 to No.DomainBlocks do

 S=0: Ss = 0

 For Pp = Pd to Pd + BlockSize do

 S = S + Domain (Pp): Ss = Ss + Domain (Pp) ^2

 End

 SumD (I) = S: SumD2 (I) = Ss

 Pd = Pd + JumpStep

Chapter Three: System Design and Implementation ٣٥

 The algorithm (3.5) illustrates the implemented steps to compute the list

of range parameters.

 Algorithm (3.5) Compute the Range Parameters

Error!

3.2.1.7 Quantization and Dequantization for Scale and
Offset

 The actual effective part of the audio compression is quantization. It is

simply the process of reducing the number of bits needed to store coefficients

values by reducing its precision from float type to integer. The determined

PIFS coefficients values are real-valued, and in order to increase the

compression, they must converted to integer values, in order to increase the

compression performance, so they must be quantized before storage.

Input: Wave Data Buffer (Wav (WaveSize-1)), Wave Size, Block Size.

Output: Range parameters SumR, SumR2 and RangeBlock (BlockSize-1)

 No.RangeBlocks = WaveSize \ BlockSize - 1

 Pr = 0

 For I = 0 to No.RangeBlocks do

 SumR = 0: SumR2 = 0: SumR4 = 0

 For J = 0 To BlockSize-1 do

 R = round (Wav (Pr + J)) – 128

 R2 = R * R

 SumR = SumR + R

 SumR2 = SumR2 + R2

 RangeBlock (J) = R

 End

Chapter Three: System Design and Implementation ٣٦

 This is done by assigning the number of bits will used to encode each

scale and offset coefficients. The quantization and dequantization for scale

values were computed by applying the following equations:

Quantization

,.. (3-1)

Dequantization

,…………………………………….…(3-2)

Where:

min

1 12

S
Q

bs

SN

−=
−

,…………………………………………………..(3-3)

max

1 12
S

Q
bs

SP

−=
−

,……………………………………………………………(3-4)

S is the scale coefficients.

SNQ is the quantization step for negative S-values.

SPQ is the quantization step for positive S-values.

IS is the quantization index.

bs is the number of bits allocated to encode the scale coefficient.























<








=

otherwise
Q

S
round

0 Sif
Q

S
round

S

SP

SN

I









×

<×
=′

otherwise QS

0 Sif QS

S

SPI

ISNI

Chapter Three: System Design and Implementation ٣٧

minS is the minimum allowable values for scale coefficients.

maxS is the maximum allowable values for the scale coefficients.

While the quantization and dequantization for offset values were computed

by applying the following equations:

Quantization

,…………………………….(3-5)

Dequantization

,……………….…………………(3-6)

Where:

1

maxmin

2 −

+
=

boON

OO
Q ,………………………………………….. (3-7)

















+
−= −

maxmin

min
1 12

OO

O
Q bo

OP ,………………………………. (3-8)

O is the offset coefficients.

ONQ is the quantization step for negative O-values.

OPQ is the quantization step for positive O-values.

IO is the quantization index.























<








=

otherwise
Q

O
round

0O if
Q

O
round

O

OP

ON

I









×

<×
=′

otherwise QO

0O if QO

O

OPI

IONI

Chapter Three: System Design and Implementation ٣٨

bo is the number of bits allocated to encode the offset coefficient.

minO is the minimum allowable values for offset coefficients.

maxO is the maximum allowable values for the offset coefficients.

 Algorithm (3.6) Quantize and dequantize the Scale and

Offset values

Error!

3.2.1.8 Matching between Range Blocks and Domain

Blocks

 After generating range blocks and domain blocks, all range blocks

should be matched with the domain blocks to determine the affine transform

parameters (scale, offset, symmetry, and position) for each range block.

Input: Scale and Offset of each Range blocks.

Output: quantized and dequantized scale and offset of each range blocks.

No.RangBlocks = WaveSize \ BlockSize - 1

 For I = 0 to No. RaneBlocks do

 If Scl < 0 Then

 SI = round (Scl * StpScaleN)

 Scl = SI / StpScaleN

 Else

 SI = round (Scl * StpScaleP)

 Scl = SI / StpScaleP

 End If

 If Ofs < 0 Then

 OfsI = round (Ofs * StpOfsetN)

 Ofs = OfsI / StpOfsetN

 Else

 OfsI = round (Ofs * StpOfsetP)

Chapter Three: System Design and Implementation ٣٩

 Now for each range block, search through all domain blocks to find the

best matched domain block (block with minimum distortion error). The best

matched domain block is that block whose affine transformed block has a

minimum distortion error relative to other domain blocks. So, the scenario of

domain search is to check each domain block and determine the scale, offset

and symmetry coefficients that minimize the error between the checked

domain block with the range block, the matching is continued over all the

domain blocks till finding the domain block whose difference (error) with

range block is the minimum in comparison with errors registered by other

domain blocks. Each domain block is subjected to some isometric

(symmetry) transformations (consist of reflections and rotations) to get

different symmetry state for each domain block, and then the transformed

domain block is considered as individual domain block, which should be

matched with range blocks as a separate or individual case.

 Algorithm (3.7) Searching Domain Pool and Matching

Input: Range blocks with number No.RangeBlocks

Output: OfsetIdx, ScaleIdx, Pos, SymState of each range block.

For I = 0 to No.RangeBlocks

• Rb is the ith Range block.

• Compute range parameters ‘Algorithm (3.5)’.

• Set MinError = 9.9E+19

 For j = 0 to No.DomainBlocks

• Db is the jth Domain block.

 Pd=0: SumRD1=0: SumRD2=0

 For M=0 to BlockSize-1 do

 SumRD1=SumRD1+Domain (M+Pd)*RangeBlock (M)

 SumRD2=SumRD2+Domain (M+Pd)*RangeBlock (BlockSize-1-M)

Chapter Three: System Design and Implementation ٤٠

3.2.1.9 Save the Affine Coefficients in the PIFS code

 Saving original audio file as collections of transformations could lead to

audio compression, which is done by describing the original audio in terms of

few parameters of affine transformations (PIFS code).

 So, the results of matching process between every range block and the

domain blocks are the affine transformation parameters (scaleIdx, offsetIdx,

symmetry, and position of the best matched domain block), the whole

transformation informations for all range blocks would be collected in the

PIFS code or (compression file) as illustrated in algorithm (3.8). In other

words, fractal audio coding process implies the determination of all matching

parameters, and then they are quantized, coded, and stored sequentially as

arrays of PIFS parameters vectors. The elements of this array are equal to the

number of range blocks in the range pool.

 For symmetry = 0 To 1

 If symmetry = 0 Then

 SumRD = SumRD1

 Else

 SumRD = SumRD2

• Compute scale and offset values of Rb and Db using equations (2-

18),and (2-20)

• Quantize and dequantize Scale and Offset values of Rb using

‘Algorithm (3.6)’.

• Compute the distortion error (E) between Rb and Db using equation

(2-7).

 If E < MinError Then

 End

 Pd = Pd + JumpStep

Chapter Three: System Design and Implementation ٤١

 In addition to the affine parameters, some overhead informations are also

coded and stored in compression file, these informations are important in the

decoding stage, such as the minimum and the maximum boundaries of the

scale and offset parameters, the number of bits used to represent the values of

the scale factor, offset factor, and the position of each matched domain block,

the size of the range and domain blocks, the jump step, also the audio

sampling rate and the actual wave size.

Table (3.1) lists the PIFS parameters

Table (3.1) PIFS Parameters.
Parameter Description

Pos The position of the best matched domain block

ScaleIdx The scale index value

OfsetIdx The offset index value

SymState The symmetry state (0:identity, 1: Reflected)

 Algorithm (3.8) Saving PIFS Code
Error!

Input: Affine transform parameters

Output: Compressed file

• Prepare storage buffer.

• Encode Sample Rate and put in the storage buffer as 16 bits word.

� Encode Maximum Scale and put in the storage buffer as 11 bits

word.

� Encode Minimum offset and put in the storage buffer as 11 bits

word.

� Encode Maximum offset and put in the storage buffer as 11 bits

word.

� Encode No. of bits per scale and put in the storage buffer as 5 bits

word.

� Encode No. of bits per offset and put in the storage buffer as 5 bits

word.

Chapter Three: System Design and Implementation ٤٢

3.2.2 Decoding Unit

 In encoding unit the encoded wave data is transformed into a set of PIFS

codes. While, in the decoding unit these PIFS codes are used to iteratively

reconstruct the wave data. At every iteration the decoded wave becomes

closer to the original wave.

 Decoding process is considerably easier and faster than the encoding

process because it involves little computations. The decoding process is

iterated until the fixed point is approximated, that is until further iteration

does not significantly change the reconstructed wave data. Typically, 8

iterations are sufficient.

 As shown in figure (3.2) this unit consists of the following items:

1. Load the stored PIFS coefficients.

2. Set Iteration =1.

3. Initialize in arbitrary manner the domain pool.

4. Point to the first set of PIFS coefficients.

5. Construct the specific range block by applying the affine transform that

gets its information from the PIFS parameters set.

6. Repeat step 5 till all the range blocks are reconstructed.

7. If the iteration less than the maximum number of iterations then down

sample the reconstructed range blocks to create a new domain pool,

and set Iteration=Iteration+1, and go to step 4.

8. If the iteration reaches the maximum number of iterations then call

MSE and PSNR subroutine (only for efficiency assessments).

9. Save the reconstructed wave data.

3.2.2.1 Load PIFS code

 The first step in the decoding process is loading and decoding the affine

transform parameters (ScaleIdx, OffsetIdx, Symmetry, and Position of the

Chapter Three: System Design and Implementation ٤٣

best matched domain block), also loading the overhead informations needed

in the decoding process stage such as the minimum and the maximum

boundaries of the scale and offset coefficients, the number of bits used to

represent the scale factor, offset factor, and position of each matched domain

block, the block size, the jump step and the actual wave size.

Algorithm (3.9) Load PIFS Code

Error!

3.2.2.2 Decoding Using Affine Transform Equation

 The decoding process is simple, and fast. By applying the resulted PIFS

on any arbitrarily generated wave the original wave at the decoder can be

successively regenerated after a number of PIFS decoding iterations.

 The decoder uses the affine parameters set (ScaleIdx, OfsetIdx, Position,

and Symmetry) to transform the pointed (by Pos.) domain block to construct

Input: compression file

Output: Decoded affine parameters

• Open the storage buffer.

• Extract Sample Rate from the storage buffer as 16 bits word.

� Extract Maximum scale from the storage buffer as 11 bits word.

� Extract Minimum offset from the storage buffer as 11 bits word.

� Extract Maximum offset from the storage buffer as 11 bits word.

� Extract No. of bits per scale from the storage buffer as 5 bits word.

� Extract No. of bits per offset from the storage buffer as 5 bits word.

� Extract block size from the storage buffer as 9 bits word.

For I = 0 to No. Range Blocks

• Extract SymState (I) from the storage buffer.

• Extract ScaleIdx (I) from the storage buffer.

• Extract OfsetIdx (I) from the storage buffer.

• Extract Pos (I) from the storage buffer.

Chapter Three: System Design and Implementation ٤٤

the approximate of the range block. Algorithm (3.10) illustrates the

implemented steps of the decoding process.

 So, the decoding phase of the affine transform involves with

reconstruction of an optimal approximation for each range block by

multiplying it corresponding matched domain block by the scale value and

adding to the result the corresponding offset value, which is:

 Ri = sDi + o

 Where:

 Ri represents the value of a sample in the reconstructed (approximate)

range block,

Di represents the value of the corresponding sample in the best-

matched domain block,

 s represents the scale value for mapping the domain block to the

range block, and

 o represents the offset value.

 In audio it is important to say that, the scale factor is an indication to the

rate of change in the wave, while the offset factor represents wave loudness.

 The reconstructed range block may transformed (reflected) according to

its corresponding symmetry coefficient value, as illustrated in algorithm

(3.11).

 Algorithm (3.10) Decoding Equation
Error!

 Algorithm (3.11) Range Block Reflection

Error! Input: Range block with SymState 0 or 1

Output: Reflected range block

Pr=0

For J = 0 to BlockSize-1

Input: affine transform parameters set (Scl, Ofs, and Pos).

Output: decoded range block DRb (BlockSize-1).

For J = 0 to BlockSize-1

 K = Scl * Domain (Pos + J) + Ofs + 128

 If K > 255 Then K = 255

 Else If K < 0 Then K = 0

 DRb (J) = K

Chapter Three: System Design and Implementation ٤٥

3.2.2.3 Wave Reconstruction

 In this stage the domain data is initialized by setting the samples values

equal to zero, and assign the number of iterations required to make the

reconstructed wave close to the attractor (fixed point).

 After performing the affine transform to all affine parameters sets (saved

in the compression file), the produced reconstructed wave, must be used to

generate a new domain pool as illustrated in algorithm (3.12). The range

reconstruction process is repeated by re-applying the same affine transform

sequence on the new domain pool.

 This process will repeated for several times (assuming NoIter is the

number of iterations), until we reach the fixed point as listed in algorithm

(3.13).

 Algorithm (3.12): Reconstruct the Domain

 Algorithm (3.13) Reconstruct the original wave

Input: number of range blocks (No.RangeBlocks).

Output: reconstructed wave DRb (WaveSize-1).

For I = 0 to DomSize-1

 Domain (I) = 0

End

Input: Reconstructed range pool, DRb (Wavesize-1).

Output: Domain pool, Domain (DomSize-1).

For Pd = 0 to DomSize-1 do

 Pr = Pd + Pd

 Domain (Pd) = (round (DRb (Pr)) + DRb (Pr + 1)) \ 2 – 128

Chapter Three: System Design and Implementation ٤٦

CHAPTER FOUR

Performance Measures and Test Results

4.1 Performance Measures

 Some performance measures were taken into consideration to evaluate

the performance efficiency of the suggested fractal audio compression

system.

 The adopted measures are the fidelity criteria (i.e., MSE, and PSNR),

the compression ratio, and entropy measures.

4.1.1 Compression Ratio

 The ratio of the original (uncompressed audio file) and the compressed

audio file is referred to as the Compression Ratio, (i.e. the term compression

ratio is used to refer to the ratio of uncompressed data to compressed data).

The compression ratio is denoted by [Umb98]:

sizefilecompressed

sizefileeduncompress
RationCompressio =

)14.........(....................,......... −=
c

u

size

size

And it is often written as size u: size c

 Thus an audio with a 10:1 compression ratio has a compressed data size

10 times smaller than the original audio file [Mar98].

 The uncompressed audio file size is computed from the following

equation:

 8)(×= Audiou SBitsize ,.....................................………...……..…...(4 - 2)

Where:

 S is the size of the original audio file,

Chapter Four: Performance Measures and Test Results ٤٨

 and 8 is the number of bits required to assign the each sample value

 While the compressed file size is computed from:

 size c (Bit) = (BitScl + BitOfs + BitPos +1) ×No.RangeBlock,...…..(4-3)

Where:

 BitScl is the number of bits required to store the scaling values,

 BitOfs is the number of bits required to store the offset values,

BitPos is the number of bits required to store the position of the best

matched domain block.

The number 1 is the bits required to store the symmetry value

(which is the reflection state), and No. Range Blocks is the number of the

range blocks in the original audio file.

4.1.2 Entropy Measures

 Entropy, which is a measure of the inherent randomness in a probability

distribution (or set of observed data). And it can be computed using the

equations:

 ∑ ∗−=
=

255

0
2

)(log
i

ppEntropy ,…………………………………….…..(4- 4)

n

iHis
p

)(= ,………………………….………………………….….....(4- 5)

 Where:

 n is the number of samples.

4.1.3 Energy Measures

 A term encounter frequently when measuring sound is the RMS, or the

root mean square, value. The RMS value is a special kind of mathematical

Chapter Four: Performance Measures and Test Results ٤٩

average value, which is directly related to the energy contents of the sound.

The energy content of the sound computed from the relation:

 ∑
=

−=
n

k

kwavnEnergy
1

2)128)((1 ,………………………..………….(4 - 6)

 Where:

 n is the number of samples.

4.2 Performance Parameters

 Several parameters were taken into consideration to study the

performance of the suggested fractal audio compression system. The

considered control parameters are: the block size, jump size, quantization

steps for both scale and offset, maximum and minimum values for both scale

and offset.

4.3 Audio Test Samples

 Table (4.1) demonstrates the attributes of five audio test files. Figures

(4.1) to (4.5) present the waveform of the adopted five test samples.

 All these five test samples are Wave Sound type with 8 bits sample size,

PCM format, and 1(mono) which is the number of channels.

Table (4.1) The Attributes of the audio test samples

Name Test
Sample1

Test
Sample2

Test
Sample3

Test
Sample4

Test
Sample5

Size 332 KB 82.4 KB 235 KB 70.3 KB 74.9 KB

Sampling
Rate

22kHz 22kHz 22kHz 11kHz 11kHz

Behavior Music Music Music Speech Speech

Chapter Four: Performance Measures and Test Results ٥٠

Figure (4.1) The waveform of the test sample 1

(Entropy= 6.51: Energy= 496.61)

Figure (4.2) The waveform of the test sample 2

(Entropy= 6.3: Energy= 550.52)

Chapter Four: Performance Measures and Test Results ٥١

Figure (4.3) The waveform of the test sample 3

(Entropy= 5.27: Energy=130.22)

Figure (4.4) The waveform of the test sample 4

(Entropy= 5.2: Energy=358.59)

Chapter Four: Performance Measures and Test Results ٥٢

Figure (4.5) The waveform of the test sample 5

(Entropy= 5.36: Energy=563.91)

4.4 Test Results

 In this section, the five test audio files were tested for examining the

performance of the proposed fractal audio compression system; in these tests

the effects of the control parameters on the performance of the compression

system were investigated as follows:

Test (1): Block Size Effect

 The effect of block size in this test for case (test sample-4) is investigated.

The other compression parameters were taken as in table (4.2).

 Table (4.2) Coding parameters

Maximum Scale 1.5

Minimum scale -1.5

Maximum Offset 128

Minimum Offset -128

Scale Bits 8

Offset Bits 8

Chapter Four: Performance Measures and Test Results ٥٣

 Different values for the block size were taken, and the results of applying

the compression system of (test sample-4) are listed in table (4.3). The tests

results of applying same test on other samples have shown same behavior.

 Table (4.3) The Resulted MSE and PSNR of the reconstructed
Wave File

Block Size MSE PSNR Compression Ratio
Encoding Time

(sec.)

4 0.063 60.11 1.4:1 1151.77

14 2.21 44.68 4.68:1 484.48

18 5.26 40.92 5.95:1 432.44

24 25.07 34.13 7.83:1 393.62

30 51.58 31.0 9.7:1 346.62

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

Block Size

CR

PSNR

Figure (4.6) The effect of different block sizes on the

compression ratio and the PSNR of the reconstructed wave data.

It’s clear from this figure that the following points can be concluded:

Chapter Four: Performance Measures and Test Results ٥٤

1. By increasing the block size the compression ratio increases.

2. By increasing the block size the quality of the reconstructed wave is

negatively affected, i.e. the value of the PSNR becomes lesser and

the value of the MSE becomes larger.

3. The encoding time decreases with increase of the block size.

Test (2): Quantization Effect

 In this test (test sample-4) was taken to demonstrate the effect of

quantization steps (for both scale and offset) on the compression

performance.

 Different values of both (Scale bits and Offset bits) were taken.

Values of other coding parameters were taken fixed as in table (4.4).

 Table (4.4) coding parameters

Maximum Scale 1.5

Minimum scale -1.5

Maximum Offset 128

Minimum Offset -128

Block Size 14

Jump Size 1

 The test results of the quantization steps, for the case (test sample-4); on

the MSE and the PSNR of the reconstructed wave data are listed in table

(4.5).

Chapter Four: Performance Measures and Test Results ٥٥

Table (4.5) The Resulted MSE and PSNR of The Reconstructed
Wave File

Scale

Bits

Offset

Bits
MSE

PSNR

(dB)

Compression

Ratio

Encoding

Time

(sec.)

5 5 353.67 22.64 5.66:1 557.78

6 6 421.16 21.88 5.32:1 547.65

7 7 26.23 33.94 4.48:1 546.75

8 8 2.21 44.68 4.68:1 484.48

5 7 20.95 34.91 5.32:1 543.60

6 7 23.73 34.37 5.13:1 545.12

5 8 2.66 43.87 5.13:1 543.37

Notes:

1. When the number of bits used to represent the scale value (Scale

Bits) is equal to 5, and the number of bits used to represent the

offset value (Offset Bits) is equal to 5 also, the MSE value is too

large, so to decrease the MSE value the values of the Scale Bits

and Offset Bits were increased, so when the values of Scale Bits

and Offset Bits increased to 6 the PSNR value decreases.

2. So increasing the values of the Scale Bits and Offset Bits will lead

to make the value of the MSE become well.

3. It’s noticeable that by decreasing the value of the Scale Bits and at

the same time increasing the value of the Offset Bits the PSNR

value would be better.

4. The best values for both Scale Bits and Offset Bits led to

acceptable values of MSE, PSNR, and compression ratio is when

Scale Bits equal 5 and Offset Bits equal 8, therefore in the next

Chapter Four: Performance Measures and Test Results ٥٦

(other) tests Scale Bits and Offset Bits are taken 5 and 8,

respectively.

5. By increasing the value of the offset Bits the PSNR value increases

rather than the Scale Bits, that’s means that the value of the Offset

Bits has effect on the audio quality more than Scale Bits.

Test (3): Jump Size Effect

 In this test the values of other coding parameters were taken fixed as in

table (4.6).

 Table (4.6) coding parameters

Maximum Scale 1.5

Minimum scale -1.5

Maximum Offset 128

Minimum Offset -128

Scale Bits 5

Offset Bits 8

Block Size 4

To demonstrate the effect of the Jump Size on the MSE and PSNR values and

the encoding time. Different values for the jump size were considered.

 The test results for the case (test sample-5) are listed in table (4.7).

 Table (4.7) The Resulted MSE and PSNR of the reconstructed
wave data (Test-Sample-5)

Jump Size MSE PSNR
(dB)

Compression
Ratio

Encoding
Time (sec.)

4 0.13 56.96 1.6:1 392.01

10 0.13 56.78 1.71:1 174.37

16 0.92 48.45 1.7:1 118.7

Chapter Four: Performance Measures and Test Results ٥٧

20 0.96 48.35 1.78:1 96.23

26 0.99 48.17 1.78:1 82.34

36 19.95 35.13 1.78:1 69.52

0
50

100
150
200

250
300
350

400
450

0 10 20 30 40

Jump Size

E
n

co
d

in
g

 T
im

e
/s

e
c

ET/sec

Figure (4.7) The Effect of the jump size on the encoding time

Notes:

1. By fixing the block size and varying the jump size the encoding

time will be highly affected.

2. By increasing the jump size the encoding time will be decrease,

because the increase in jump size will lead to small domain pool, so

the searching process for the best match domain block will need

smaller number of tests.

3. Increasing the jump size will affect the audio quality of the

reconstructed file, as shown in the table (4.7) the value of PSNR

decreases when jump size increases.

4. Increasing jump size rather has no effect on the compression ratio.

Chapter Four: Performance Measures and Test Results ٥٨

Test (4): Maximum Scale and Minimum Scale Effects

 In this test three test samples were taken as test materials. The first one

is (test sample-4). The values of other coding parameters were taken fixed as

in table (4.8).

 Table (4.8) Coding parameters

Block size 20

Jump Size 8

Maximum Offset 128

Minimum Offset -128

Scale Bits 5

Offset Bits 8

To demonstrate the effect of different maximum scale and minimum scale

values on the PSNR and MSE of the reconstructed wave data. Different

values for maximum and minimum scale were considered.

 The test results for the case (test sample- 4) are listed in table (4.9).

Table (4.9) The MSE and PSNR of the reconstructed wave data for

the first test set.

Min. Scale Max. Scale MSE PSNR
(dB) Compression Ratio

-1.5 1.5 20.91 34.92 7.92:1

-2 2 15.22 36.30 7.92:1

-3 3 14.45 36.53 7.92:1

-4 4 14.05 36.65 7.92:1

-5 5 14.93 36.38 7.92:1

-8 8 17.60 35.67 7.92:1

Chapter Four: Performance Measures and Test Results ٥٩

 The second test is applied on (test sample -5) with the following fixed

coding parameters as in table (4.10).

 Table (4.10) Coding parameters

Block size 20

Jump Size 8

Maximum Offset 128

Minimum Offset -128

Scale Bits 5

Offset Bits 8

 The test results of the second test are listed in table (4.11).

Table (4.11) The MSE and PSNR of the reconstructed wave data
for the second test set.

Min. Scale Max. Scale MSE PSNR Compression Ratio

-1.5 1.5 69.90 29.68 7.89:1

-2 2 61.04 30.27 7.89:1

-3 3 48.23 31.3 7.89:1

-4 4 45.24 31.57 7.89:1

-5 5 43.68 31.72 7.89:1

-8 8 45.22 31.57 7.89:1

Chapter Four: Performance Measures and Test Results ٦٠

 The third test is applied on (test sample 2) with the following fixed

coding parameters as in table (4.12).

 Table(4.12) Coding parameters

Block size 10

Jump Size 10

Maximum Offset 128

Minimum Offset -128

Scale Bits 5

Offset Bits 8

 The test results of the third test are listed in table (4.13).

Table (4.13) The MSE and PSNR of the reconstructed wave data
for the third test set.

Min. Scale Max. Scale MSE PSNR Compression Ratio

-1.5 1.5 28.92 33.51 2.87:1

-2 2 37.00 32.44 2.87:1

-3 3 20.18 35.08 2.87:1

-4 4 17.77 35.63 2.87:1

-5 5 7.94 39.13 2.87:1

-8 8 18.27 35.51 2.87:1

Notes:

1. The results of the test set (first) indicate that the scale boundary has

an effect on the MSE. In other words the increase in value of Min.

scale (up to 4) will decrease the value of MSE. But the further

increase in value of Min.scale will cause slight increase in MSE.

Chapter Four: Performance Measures and Test Results ٦١

2. The results of the test set (second) indicate that the value of the

MSE decreases by increasing the Min.scale (up to 5) further

increase in value of Min.scale will increase the value of the MSE.

3. The results of the test set (third) indicate that the value of the MSE

decreases by increasing the Min.scale (up to 5) further increase in

Min.scale value will increase MSE value.

Test (5): Maximum Offset and Minimum Offset Effects

 In this test set two test samples were taken: the first part of this test set is

applied on (test sample-4). In this test the following coding parameters are

taken fixed as in table (4.14).

 Table (4.14) Coding parameters

Block size 20

Jump Size 8

Maximum Scale 4

Minimum Scale -4

Scale Bits 5

Offset Bits 8

To demonstrate the effect of maximum offset and minimum offset values on

the PSNR and MSE of the reconstructed wave data. Different values for

maximum and minimum offset were considered.

 The test results of (test sample 4) are listed in table (4.15).

Chapter Four: Performance Measures and Test Results ٦٢

Table (4.15) The resulted MSE and PSNR of the reconstructed
wave data for (test sample- 4)

Min. Offset Max.Offset MSE PSNR Compression Ratio

-128 128 14.05 36.65 7.92:1

-256 256 13.95 36.68 7.92:1

-512 512 16.21 36.03 7.92:1

 The second part of this test set is applied on (test sample-2). In this test

the following coding parameters are taken fixed as in table (4.16).

 Table (4.16) Coding parameters

Block size 40

Jump Size 40

Maximum Scale 5

Minimum Scale -5

Scale Bits 5

Offset Bits 8

 The test results of (test sample -2) are listed in table (4.17).

Table (4.17) The resulted MSE and PSNR of the reconstructed
wave data for (test sample-2)

Min. Offset Max. Offset MSE PSNR Compression Ratio

-128 128 45.66 31.53 12.3:1

-256 256 726.8 19.51 12.3:1

-512 512 728.3 19.50 12.3:1

Chapter Four: Performance Measures and Test Results ٦٣

Notes:

1. In the first part of this test set, taking the offset value 128, 256 or 512

has no real effect on PSNR value it’s rather stay the same, according to

the PSNR values obtained.

2. In the second part of the test set the change may appear larger when

taking Max.Offset equal to 256 and 512, where PSNR value decrease.

But when Max.Offset value equal to 128 PSNR value will be larger

than that of 256 and 512, according to the PSNR values obtained.

 Further tests made on all five test samples, the resulted MSE and PSNR

of the reconstructed wave data are listed in table (4.18).

Table (4.18) The resulted MSE and PSNR and compression ratio

of the reconstructed wave data

Test
Samples

Block
Size

Jump
Size

MSE PSNR Compression
Ratio

Encoding Time
(sec.)

Sample1 40 40 12.42 37.18 11.44:1 308.08
Sample2 40 40 44.28 31.61 12.3:1 22.95
Sample3 40 40 32.38 33.02 12.91:1 138.71
Sample1 10 10 1.77 45.63 2.7:1 2284.36
Sample2 10 10 28.92 33.51 2.87:1 149.6
Sample3 10 10 6.41 40.05 3.06:1 1014.61
Sample1 60 4 16.98 35.83 15.51:1 2317.38
Sample2 40 4 37.72 32.36 11.03:1 162.85
Sample3 20 4 17.22 35.76 5.86:1 1610.09
Sample4 10 1 1.09 47.72 3.7:1 621.39
Sample5 10 1 3.75 42.38 3.65:1 820.38
Sample4 14 4 5.07 41.08 5.5:1 121.45
Sample5 14 4 18.97 35.35 5.42:1 160.50
Sample4 20 8 20.91 34.92 7.92:1 54.71
Sample5 20 8 69.90 29.68 7.89:1 62

Chapter Four: Performance Measures and Test Results ٦٤

Table (4.19) Test samples and corresponding PSNR and energy

Test
Samples

Block Size PSNR Energy

Sample3 40 34.02 130.22

Sample4 40 33.92 358.59

Sample1 40 31.18 496.61

Sample2 20 30.61 550.52

Sample5 20 29.68 563.91

29
30

31
32

33
34

35

0 100 200 300 400 500 600

Energy

P
S

N
R

 Figure (4.8) The relationship between PSNR and energy

Notes:

1. This figure is to study the behavior of the test samples sound quality

with its corresponding energy for each test sample.

2. The figure (4.8) shows that the PSNR value decreases when the energy

increases.

Table (4.20) Test samples and corresponding PSNR and entropy

Test
Samples

Block Size PSNR Entropy

Sample4 40 33.92 5.2

Sample3 40 34.02 5.27

Sample5 40 29.68 5.36

Sample2 20 30.61 6.3

Sample1 20 31.18 6.51

Chapter Four: Performance Measures and Test Results ٦٥

29

30

31

32

33

34

35

0 2 4 6 8

Entropy

P
S

N
R

Figure (4.9) The relationship between PSNR and entropy

CHAPTER FIVE

Conclusions and Future Work Suggestions

5.1 Conclusions

 In this work an attempt is made to design and implement a fractal audio

compression system.

 From the test results presented in the previous chapter, some remarks

related to the behavior and performance of the suggested fractal audio

compression system were concluded, among these remarks are the following:

1. The encoding time is inversely proportional with both Block size and

Jump size.

2. The compression ratio and the MSE value of the fractal audio

compression system are direct proportional with both block size and jump

size, while the PSNR value is inversely proportional with both block size

and jump size.

3. As the jump size is small, the domain pool is large, so a better quality of

the reconstructed audio will obtain.

4. The IFS coefficients (Scale and Offset) highly affect the compression ratio

and it was improved when they are quantized. But these coefficients do

not have any effect on the encoding time.

5. Fractal method can provide good compression performance for sounds.

6. In this work, the implemented fractal audio compression method has

very long encoding time. This can considered as the main weak point in

fractal compression method.

7. The long time process implied in the encoder is resulted from the

matching module, where for each range block the searching process is

trying to find the domain block, which satisfy the best match with the

considered range block among the other whole domain blocks taking into

Chapter Five: Conclusions and Future Work Suggestions ٦٧

consideration the symmetry states. So this searching with its matching,

transformation, will lead to long encoding time for fractal method.

5.2 Future Work Suggestions

The followings are recommendations for the future work:

1. Since the resulted IFS code consists of only the parameter vectors,

then it is possible to use additional lossless data compression

method to further compress the PIFS code and obtain better

compression performance such as Huffman coding method.

2. Trying to use other audio partitioning scheme (variable block size),

which may cause a better quality for the reconstructed audio.

3. using some classification methods to classify the domain blocks

and the range blocks.

4. Develop the software system to open the coded file directly

(decode it and play it at the same time).

5. In order to reduce the long encoding time of fractal compression

and make it reasonable. We suggest an approach depends on the

idea of reducing the matching search operation by suggesting new

searching mechanism.

6. Elimination of the unvoiced data samples from the original input

data to decrease the compression time.

Chapter Four
Performance

Measures and
Test Results

Chapter One
General

Introduction

Chapter Three
System Design

and
Implementation

Chapter Two
Basic Concepts

of Fractal

Chapter Five
Conclusions and

Future Work
Suggestions

Dedication

 I dedicate my work to all the

researchers and scientists who use the

science to make the world a better place.

 To all the people who sacrifice in their

lives for a better future for their country

and for their children.

 To my country as a simple gift, to

memory of my best friend (Oras), to my

family.

Wesam

 و�
م ��زي �
�� ����: ا���
 ���م ا�����
ء: ا����

 Fractal Audio Compression: ا�����ع
� ١/٨/٢٠٠٥: ا�
ر�
 Very Good: ا� ���&
 ا�/(�.، ,+�اد : ا�()�ان
01
 ٥١٧٠٣٨٧: ا�2

5�
 ٠٧٩٠١٩٦٩٢٧٠: ا���,

٨٥-ا���اء

دق
 ا��	� ا��ظ�م

List of Abbreviations

Abbreviation Meaning

ADC Analog-to-Digital Converter

ASCII An acronym for American Standard Code for
Information Interchange

AFC Audio Fractal Compression
CD-ROM Compact Disk – Read Only Memory

CR Compression Ratio
dB Decibel
FIC Fractal Image Compression

GSM Global System for Mobile Telecommunication
Protocol

HV Horizontal-Vertical Partition
IFS Iterated Function System

JPEG Joint Photographic Expert Group
MP3 MPEG Audio Layer 3

MPEG Moving Picture Expert Group
MSE Mean Squared Error
PCM Pulse Code Modulation
PIFS Partitioned Iterated Function System
PSNR Point to Point Signal to Noise Ratio
RIFF Resource Interchange File Format
SNR Signal- to- Noise Ratio
WT Wavelet -Transform

References

[ATS01]

ATSC Standard: Digital Audio Compression (AC-3), Revision A, Advanced

Television Systems Committee, Doc. A/52A, 20 August 2001.

[Aba02]

Abas M.; “Genetic Algorithm and Vector Quantization for Image

Compression”, Ph.D. Thesis, Computer Science and Information System

dep., Baghdad University, 2002.

[Bar93]

Barnsley M. F. and Hurd L. P.; “Fractal Image Compression”, AK peters,

Wellesley, Massachusetts, USA, 1993.

[Bar88]
Barnsley M. F.; “Fractals everywhere”. New York: Academic Press, 1988.

[Bah95]

Baharav Z., Krupnik H., and karnin E.; “A Multi-Resolution Framework for

Fractal Image Representation and its application”, Technion-Israel Institute

of Technology, Israel, 1995.

[Deg95]

Degener J.; “Speech Compression Algorithm to Support the Real-Time

Video Conferencing Research”, A research, Technical University of Berlin,

1995.

[Fis94]

Fisher E. Y.; “Fractal Image Compression: Theory and application”. Springer
Verlag, 1994.

[Fis92]

Fisher E. Y.; “Fractal Image Compression”, course notes, Volume 12, ACM
SiGGRAPH, 1992.

[Jac92]

Jacquin A. E.; “Image Coding Based on a Fractal Theory of Iterated

Contractive Image Transformations”, IEEE Transactions on Image

Processing, Vol. 1, no. 1, January 1992.

[Kis99]

Kishimoto N. and Natori N. C.; “Basic Consideration of Structures with

Fractal Properties and Their Mechanical Characteristics”, Paper, The institute

of Space and Astronautically Science, Kanagawa, Japan, 1999.

[Kie98]

Kientzle T.; “A Programmer’s Guide to Sound”, Addison-Wesely Developers

press, 1998.

[Klo00]

Klonowski W., “Signal and Image Analysis Using Chaos Theory and

Fractal”, Polish Academy of Sciences, Poland, 2000.

[Man83]

Mandelbrot B. B.; “the fractal geometry of nature", Freeman W. H. and

company, 1983.

[Man77]

Mandelbrot B. B. “The Fractal Geometry of Nature”, Freeman W. H. and
Company, 1977.

[Mor98]

Morris J.; “Center for Intelligent Information Processing Systems”,

University of Western Australia, 1998

[Mar98]

Martensson A.; “Error Resilient Wavelet Image Compression”, Stockholm

University, 1998.

[Pan93]

Pan, D. Y.; “Digital Audio Compression” Digital Technical Journal, Vol. 5

No. 2, Spring 1993.

[Sal00]

Salomon, D.; “Data Compression the Complete Reference”, Addison Wesley

Company, Second Edition, 2000.

[Sha96]

Shamoon T. G.; “Algorithms for encoding high fidelity audio at low bit rate”,

Cornell University, 1996.

[Sin93]

Sinha D., and Tewfik A. H.; “Low Bit Rate Transparent Audio Compression

Using a Dynamic Dictionary an Optimized Wavelets”, Dept. of Electr. Eng.

Minnesota Univ., IEEE International Conference on Acoustics, Speech, and

signal processing, pp.197-200, 1993.

[Sha01]

Shannon C. E.; “a Mathematical Theory of Communication”, Bell Labs,

2001.

[Umb98]

Umbaugh S. E.; “Computer Vision and Image Processing”, Prentice-hall,

Inc., USA, 1998.

[Wat95]

Watkinson J.; “Compression in video and audio”, Reed Educational

Company, 1995.

[Wan00]

Wang A.; “Data Coding”, Information and Computer Science Dept., Univers-

ity of California Irivin, 2000. Site:

http:www.cs.tut.fil/~ypsilon/80545/coding of As.html#HRD2, 2000.

[Woh99]

Wohlberg B. and Jager G., “A Review of the Fractal Image Coding

Literature”, IEEE Transactions on Image Processing, Vol. 8, no. 12,

December 1999.

[Wal95]

Walle A. V.; “Relating Fractal Image Compression to Transform Methods”,

M.Sc Thesis, College of Science, University of Waterloo, 1995.

[Xia01]

Xiao P.; “Image Compression by Wavelet Transform”, M.Sc. Thesis, college

of science, East Tennessee State University, 2001

[Xia04]

Xiao H.; “Fractal Compression”, Queen’s University, Kingston, Ontario,

Canada, April 2004. Site:

http://www.cs.queensu.ca/home/xiao/doc/fractal.pdf

[Yok03]

Yokoyama T., Watanab T., and Sugawara E.; “Similarity-based Image

Retrieval System Using PIFS Codes”, University of Electro–

Communications, Tokyo, JAPAN, 2003.

[Zol98]

 Zolzer U.; “Digital Audio Signal Processing”, Wiley Company, 1998.

Table of Contents

Contents

Page

Abstract I
List of Abbreviation II

Chapter One: General Introduction
1.1 Digital Audio 1
1.2 Data Compression 2
1.3 Types of Data Compression 2
 1.3.1 Lossless Data Compression 2
 1.3.2 Lossy Data Compression 4
1.4 Audio Compression 5
1.5 Fractal Compression 5
1.6 Aim of thesis 7
1.7 Related work 7

Chapter Two: Basic Concepts of Fractal
2.1 Introduction 9
2.2 Definition of Fractal 9
2.3 Properties of Fractal 10
2.4 Fractal Development 11
2.5 Fractal Examples 11
2.6 Fractal Coding 14
 2.6.1Encoding 14
 2.6.2Decodig 15
2.7 Affine Transformations 15
2.8 Contractive Transformations 16
2.9 Fixed Point Theorem 16
2.10 Partitioned iterated Function Systems (PIFS’s) 16
2.11Derviation of Scale and Offset Equations 19
2.12 Advantage and Weakness of Fractal Compression 21
 2.12.1 Fractal Advantages 21
 2.12.2 Fractal Weaknesses 22
2.13 Quantization 22
2.14 Fidelity Criteria 24

Chapter Three: System Design and Implementation
3.1 Introduction 26
3.2 Audio Fractal Compression system (System Model) 26
 3.2.1 Encoding Unit 29

 3.2.1.1Loading Wave File 30
 3.2.1.2 Range Pool Construction 31
 3.2.1.3 Down Sample the Audio Data By 2 32
 3.2.1.4 Domain Pool Construction 32
 3.2.1.5 Compute the Domain Parameters 34
 3.2.1.6 Compute Range Parameters 35
 3.2.1.7 Quantization and Dequantization for Scale and
 Offset

35

 3.2.1.8 Matching between Range Blocks and Domain Block 38
 3.2.1.9 Save the Affine Coefficients in the PIFS code 40
3.2.2 Decoding Unit 42
 3.2.2.1 Load PIFS code 42
 3.2.2.2 Decoding Using Affine Transform Equation 43
 3.2.2.3 Wave Reconstruction 45

Chapter Four: Performance Measures and Test Results
4.1 Performance Measures 47
 4.1.1 Compression Ratio 47
 4.1.2 Entropy Measures 48
 4.1.3 Energy Measures 48
4.2 Performance Parameters 49
4.3 Audio Test Samples 49
4.4 Test Results 52

Chapter 5 Conclusions and Future Work Suggestions
5.1 Conclusions 66
5.2 Future Work Suggestions 67

Appendix A (Wave PCM Sound File Format)
 References

Republic of Iraq
Al-Nahrain University
College of Science

A THESIS
SUBMITTED TO THE

COLLEGE OF SCIENCE, Al-NAHRAIN UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE IN

PHYSICS

By

Wesam Fawzi Jassim Mohammed
 (B.Sc. 2002)

SUPERVISORS

Dr.Laith A. Al-ani

Dr. Loay A. George

Jamadi Al-awal 1425

June 2005

Fractal Audio Compression

	Microsoft Word - 8D9A~1.pdf
	Microsoft Word - Abstract Final.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - Appendices.pdf
	Microsoft Word - Appendix A.pdf
	Microsoft Word - C644~1.pdf
	Microsoft Word - CERTIFICATE.pdf
	Microsoft Word - CERTIFICATE of Examination.pdf
	Microsoft Word - CH1.pdf
	Microsoft Word - CH2.pdf
	Microsoft Word - CH3.pdf
	Microsoft Word - CH4.pdf
	Microsoft Word - CH5.pdf
	Microsoft Word - Chapter Four Face.pdf
	Microsoft Word - Chapter One Face.pdf
	Microsoft Word - Chapter Three Face.pdf
	Microsoft Word - Chapter Two Face.pdf
	Microsoft Word - Conclusion.pdf
	Microsoft Word - Dedication.pdf
	Microsoft Word - information.pdf
	Microsoft Word - KURAAN.pdf
	Microsoft Word - List of apprevations.pdf
	Microsoft Word - References.pdf
	Microsoft Word - References2.pdf
	Microsoft Word - table of comtents.pdf
	Microsoft Word - Title.pdf

