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Abstract 
        
    Fractal audio compression is based on the concept of a partitioned 
iterated function system (PIFS). Fractal audio compression exploits the affine 
redundancy that is commonly present in audio; this redundancy is related to 
the similarity of an audio with itself. 
      In other words, fractal audio compression finds similar patterns that exist 
in different scales and different places in audio, and then eliminates as much 
redundancy as possible. 
      In this work the possibility of implementing fractal audio compression is 
investigated. 
     The implemented system consists of two major units; the first is the 
Encoding unit and the second is the Decoding unit.   
      Encoding is done by partitioning the range pool (which is the original 
audio) into non-overlapping blocks, called range blocks, and partitioning the 
domain pool (which is the result of the original audio after down sampling) 
into overlapped blocks with the same size of range blocks called domain 
blocks.  A fixed size-partitioning scheme is used to partition the domain pool 
and the range pool.  After generating the range and domain pools, for every 
range block, the best-matching domain block in the domain pool is searched 
for by performing a set of affine transformations on them. Thus the encoding 
is completed by saving the optimal affine parameters for every range block. 
The Decoding process can be done by repeatedly applying the affine 
transformation on an initially blank audio and its subsequent reconstructed 
audio, until it completely reconstruct an approximate wave to the original 
audio.   
The time required to compress an audio file is affected by the size of each 
block being extracted from the proceed audio file; this means smaller block 
size implies longer time required to compress the corresponding audio file. 
The implemented system was tested using five wave samples of data.     
      The proposed work was implemented by using Visual Basic (6.0) as a 
programming language, the fidelity measure MSE and PSNR were used to 
check the results of the whole implemented technique.    
        The best results obtained from the implemented system were for the test 
(sample -1) in case were block size equal to (60) the compression ratio is 
(15.51:1), also for test (sample-2) were block size equal to (40) the 
compression ratio is (11.03:1), and for small block size as in test (sample-3) 
were the block size is (20) the value of the PSNR is good that  its equal to 
(35.76 dB), also for test sample-1 when the block size is (10) the PSNR value 
(45.63 dB).       
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Appendices 



Appendix A 

Wave PCM Sound File Format 

          The WAVE file format is a subset of Microsoft's RIFF specification for 

the storage of multimedia files. A RIFF file starts out with a file header 

followed by a sequence of data chunks. A WAVE file is often just a RIFF file 

with a single "WAVE" chunk which consists of two sub-chunks -- a "fmt" 

chunk specifying the data format and a "data" chunk containing the actual 

sample data. Call this form the "Canonical form".  

 

 



Offset Size Name             Description 
 

 
The canonical WAVE format starts with the RIFF header: 
 
0         4   ChunkID          Contains the letters "RIFF" in ASCII form 
                               (0x52494646 big-endian form). 
4         4   Chunk Size        36 + SubChunk2Size, or more precisely: 
                               4 + (8 + SubChunk1Size) + (8 + SubChunk2Size) 
                               This is the size of the rest of the chunk  
                               following this number.  This is the size of the  
                               entire file in bytes minus 8 bytes for the 
                               two fields not included in this count: 
                               ChunkID and ChunkSize. 
8         4   Format           Contains the letters "WAVE" 
                               (0x57415645 big-endian form). 
 
The "WAVE" format consists of two subchunks: "fmt" and "data": 
The "fmt" sub chunk describes the sound data's format: 
 
12        4   Subchunk1ID      Contains the letters "fmt" 
                               (0x666d7420 big-endian form). 
16        4   Subchunk1Size    16 for PCM.  This is the size of the 
                               rest of the Subchunk which follows this number. 
20        2   AudioFormat      PCM = 1 (i.e. Linear quantization) 
                               Values other than 1 indicate some  
                               form of compression. 
22        2   NumChannels      Mono = 1, Stereo = 2, etc. 
24        4   SampleRate       8000, 44100, etc. 
28        4   ByteRate         == SampleRate * NumChannels * BitsPerSample/8 
32        2   BlockAlign       == NumChannels * BitsPerSample/8 
                               The number of bytes for one sample including 
                               all channels. I wonder what happens when 
                               this number isn't an integer? 
34        2   BitsPerSample    8 bits = 8, 16 bits = 16, etc. 
          2   ExtraParamSize   if PCM, then doesn't exist 
          X   ExtraParams      space for extra parameters 
 
The "data" subchunk contains the size of the data and the actual sound: 
 
36        4   Subchunk2ID      Contains the letters "data" 
                               (0x64617461 big-endian form). 



40        4   Subchunk2Size    == NumSamples * NumChannels * 
BitsPerSample/8 
                               This is the number of bytes in the data. 
                               You can also think of this as the size 
                               of the read of the subchunk following this  
                               number. 
44        *   Data             The actual sound data. 
 

Notes:  

• The default byte ordering assumed for WAVE data files is little-
endian. Files written using the big-endian byte ordering scheme have 
the identifier RIFX instead of RIFF.  

• The sample data must end on an even byte boundary. Whatever that 
means.  

• 8-bit samples are stored as unsigned bytes, ranging from 0 to 255. 16-
bit samples are stored as 2's-complement signed integers, ranging from 
-32768 to 32767.  

• There may be additional subchunks in a Wave data stream. If so, each 
will have a char [4] SubChunkID, and unsigned long SubChunkSize, 
and SubChunkSize amount of data.  

• RIFF stands for Resource Interchange File Format.  
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                                     CHAPTER ONE 

                           GENERAL INTRODUCTION  

 

1.1Digital Audio  

       Audio is the range of frequencies within human hearing (approx. 20Hz at 

the low to a high of 20,000Hz). In computers there is an audio card contains a 

special built-in processor and memory for processing audio data and sending 

them to speakers in the computer. An audio file is a record of captured sound 

that can be played back. Sound is a sequence of naturally analog signals that 

are converted to digital signals by the audio card, using a microchip called an 

analog-to-digital converter (ADC). When sound is played, the digital signals 

are sent to the speakers where they are converted back to analog signals that 

generate varied sound [Kie98].  

       Audio files are usually compressed for storage or faster transmission. 

And can be sent in short stand-alone segments (for example, as files in the 

Wave File format). In order for users to receive sound in real-time for a 

multimedia effect, listening to music, or in order to take part in an audio or 

video conference, sound must be delivered as streaming sound. More 

advanced audio cards support Wavetable, or precaptured tables of sound. The 

most popular audio file format today is MP3 (MPEG-1 Audio Layer-3) 

[Kie98]. The digital representation of audio data offers many advantages: 

high noise immunity, stability, and reproducibility. Audio in digital form also 

allows the efficient implementation of many audio processing functions (e.g., 

mixing, filtering, and equalization) through the digital computer. The 

conversion from the analog to the digital domain begins by sampling the 

audio input in regular, discrete intervals of time and quantizing the sampled 

values into a discrete number of evenly spaced levels. The digital audio data 

consists of a sequence of binary values representing the number of quantizer 
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levels for each audio sample. The method of representing each sample with 

an independent codeword is called Pulse Code Modulation (PCM) [Pan93].  
 

1.2 Data Compression [Sal00] 

                   Data transmission and storage cost money. The more information being 

dealt with, the more it costs. In spite of this, most digital data are not stored 

in the most compact form. Rather, they are stored in whatever way makes 

them easiest to use, such as: ASCII text from word processors, binary code 

that can be executed on a computer, individual samples from a data 

acquisition system, etc. Data compression is the general term for the various 

algorithms and programs developed to address this problem. A compression 

program is used to convert data from an easy-to-use format to one optimized 

for compactness. Likewise, an uncompressing program returns the 

information to its original form. 

 

1.3 Types of Data Compression 

                  By considering the characteristics of the reconstructed data after the 

process of compression and decompression, data compression can be divided 

generally into two major types: lossless and lossy. 

 

1.3.1 Lossless Data Compression  

       Lossless data compression has a property that after the compression and 

decompression operation, an identical duplicate of the original is reproduced. 

Figure (1.1) shows the typical block diagram of lossless data compressor. 

The possibility of this operation exists, and Shannon [Sha01] has shown a 

theoretical limit for this compression operation by considering the statistical 

characteristics of the source data stream. In fact, lossless compression system 

can be built by making use of symbol probabilities of the data stream. By 

representing frequently appearing symbols with shorter codes and rarely 
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appearing ones with longer codes, we can encode the original to a stream of 

codes with shorter total length. These systems are usually called statistical 

coding systems, since they rely on the statistics of the incoming source to 

determine coding symbol [Zol98].  

 

                           Figure (1.1) Lossless Compressor 

     

        Many lossless compression techniques exist nowadays. For examples, 

Huffman coding, arithmetic coding, and Lempel-Ziv algorithms are among 

the most efficient of these lossless compression techniques, they are suitable 

for wide range applications, from hard disk file compression to digital 

medical image archiving. In fact, the lossless property of these techniques 

makes them good for most applications universally, since data are 

compressed without any loss. However, lossless compression often has a low 

compression ratio. Sometimes the compression is so insignificant that making 

it not attractive enough in some applications, which require large 

compression ratio, such as image and speech compression [Wat95, Zol98].   

 

1.3.2 Lossy Data Compression  

                  As an alternative to lossless compression, lossy compression techniques 

can be considered if we want to have a higher compression ratio. The 

important point of lossy compression is that, its compression procedure can 

be adjusted to sacrifice some accuracy in order to gain a lot of compression. 

In other words, degradations are allowed in the reconstructed data. Some 
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times, the gain of lossy compression is so significant that it leads to a very 

small compressed data size, which contrasts lossless compression. Most of 

the lossy compression techniques include a quantization stage as shown in 

Figure (1.2) to perform lossy quantizing procedures [Sal00, Wat95].  

                  This is especially the case for lossy compression of multimedia signals 

including images, sounds, and moving pictures. The resulting quantized 

coefficients are then encoded losslessly to form an output stream. In some 

techniques, this quantization process is very efficient that it can achieve 50 

times compression or even more. Nowadays, many multimedia applications 

use modern lossy compression techniques [Zol98, Wan00]. 

  

 

                                                                            

                                       Figure (1.2) Lossy Compressor 

    

                  These applications include image, speech, and video compression. Some 

popular examples are JPEG for image compression, GSM for speech 

compression, and MPEG-2 for video compression. Nevertheless, some 

mission-critical applications, such as medical imaging and satellite image 

transmission, still require lossless compression techniques. Since lossless and 

lossy compression techniques have different advantages, they are both 

important to multimedia compression [Zol98, Wan00].   

 

1.4 Audio Compression 

        In order to more efficiently broadcast or record audio signals, the 

amount of information required to represent the audio signals may be 
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reduced. In the case of digital audio signals, the amount of digital information 

needed to accurately reproduce the original pulse code modulation (PCM) 

samples may be reduced by applying a digital compression algorithm, 

resulting in a digitally compressed representation of the original signal. (The 

term compression used in this context means the compression of the amount 

of digital information, which must be stored or recorded). The goal of the 

digital compression algorithm is to produce a digital representation of an 

audio signal which, when decoded and reproduced, sounds the same as the 

original signal, while using a minimum of digital information (bit-rate) for 

the compressed (or encoded) representation [ATS01].  

         Digital compression of audio is useful wherever there is an economic 

benefit to be obtained by reducing the amount of digital information required 

to represent the audio. Typical applications are in satellite or terrestrial audio 

broadcasting, delivery of audio over metallic or optical cables, or storage of 

audio on magnetic, optical, semiconductor, or other storage media [ATS01].  

                   Audio compression algorithms were created to enable audio to be saved 

more effectively. A compressor codec takes an original uncompressed audio 

track and reduces its size. Because of the smaller size, the speed requirements 

for the storage devices are greatly reduced. To play back the compressed 

audio data, a decompression algorithm is used to decompress the data so it 

can be heard. 

 

1.5 Fractal Compression [Xia04] 

       Fractal compression is a lossy compression method used to compress 

images using fractals. The method is best suited for photographs of natural 

scenes. The fractal compression technique relies on the fact that in certain 

images, parts of the image resemble other parts of the same image. 
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      Fractal compression seems to be one of those technologies with "a great 

future behind it". It promised much in the late 1980s, when in some 

circumstances it appeared to compress much better than JPEG, its main 

competitor in those days. 

      Fractal compression is a radical departure from the conventional image 

compression techniques. The difference between it and the other techniques 

is much like the difference between bitmapped graphics and vector graphics. 

Rather than storing data for individual pixels, fractal compression stores 

instructions or formulas for creating the source (image or audio). 

       Like vector quantization, fractal compression is asymmetrical. Although 

it takes a long time for compression, decompression is very fast. These 

asymmetrical methods are well suited to such applications as video on a CD-

ROM where the user doesn't care about compression but does expect to see 

results quickly. Decompression simply reads the mathematical formulas and 

recreates the source. 

      The tough part is generating the formulas to correctly represent the 

source. Fractal compression assumes that every image is composed of 

smaller images just like them. Blue sky in an image is composed of smaller 

patches of blue. Tree branches can be broken into smaller branches and then 

twigs those all have similar structure. The compression technique tries to find 

as many of these relationships in an image and then describe them with 

mathematical formulas. This is done within regions of an image called 

domain regions. These domain regions are determined by using techniques 

such as frequency analysis, edge detection, and texture-variation analysis. 

      Like other lossy compression schemes, fractal compression involves a 

tradeoff, which is little different from the other methods. The tradeoff is 

between image quality and compression time. The longer the encoder has to 

create the descriptive formulas, the higher the quality of the output image. 

Like all other lossy compression schemes, fractal compression also 
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introduces artifacts. These include softness and substitution of details with 

other details. This substitution is typically undetected in natural images. 

 

1.6 Aim of Thesis 

      This research aims to study the performance of a lossy audio compression 

system based on partitioned iterated function system (PIFS) coding method. 

The effect of all control parameters of the performance of the designed and 

implemented compression system will investigate in an attempt to achieve a 

good compression ratio with keeping the audio quality above an acceptable 

level. 

 

1.7 Related Work  

1.   In 1993, Sinha and Tewfik [Sin93] presented a low bit rate transparent 

audio compression using a dynamic dictionary and optimized wavelets. 

The authors proposed an audio synthesis coding method, which employs 

an optimized wavelet transform (WT), based adaptive transform coding 

to exploit perceptual masking. In addition, a dynamic dictionary was 

used to extract source redundancies. 

2.   In 1995, Baharav, Krupnik, and Karnin [Bah95] presented in their paper 

the basic fractal coder suggested by Jacquin. The coder finds and 

encodes the parameters of a partitioned iterated function system (PIFS), 

which approximate the signal as a fixed point of a contractive 

transformation.      

3.    In 1995, Degener [Deg95], her research group at the technical university 

of Berlin developed a speech compression part of the (GSM) Global 

System for Mobile telecommunication protocol suite that is currently 

used as the Europe's most popular protocol for digital cellular phones. 
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The GSM consists of an input of frame of 160 samples; 13-bit linear 

PCM values sampled at 8 kHz, so each frame covers 20 ms. 

4.   In 1996, Shamoon [Sha96], had presented algorithms for encoding high 

fidelity audio at low bit rate. The ultimate goal of this work is to provide 

fast algorithms for sub-band perceptual coding that are capable of audio 

coding at bit rates that permit transmission of high fidelity audio over 

broadcast and telephone channels, and storage of audio on low capacity 

media.   

5.   In 2002, Mohammed Abbas [Aba02], proposed a genetic algorithm as a 

new lossy compression method for multimedia data files (image and 

audio), and he concluded that using genetic algorithm with iterated 

function system can improve the compression performance in some 

respects, but it fails in others. 

6.   In 2003, Yokoyama, Watanabe, and Sugawara [Yok03], proposed in their 

paper a new retrieval system of images using PIFS codes. In this paper 

they suggested a new retrieval technique that uses compression codes; 

especially they used fractal image compression (FIC) method. This 

compression method is relatively recent technique and based on the self-

similarity of images. Exploiting the robust property of this compression 

method, they have developed a new similarity-based retrieval system. 
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2.1 Introduction       

      There are many shapes in the natural world; they look so complex that we 

could not express them by several simple functions. But after B. B. 

Mandelbrot (1977) devised the notion of ‘fractal’ [Man77], we are able to 

express many natural shapes by some simple algorithms. From that time, 

dedicated hardware and software of computer systems have been improved 

day by day. And various researches on how to construct fractal shapes or how 

to imitate natural creatures have been developed [Bra88].  

       The term fractal (from Latin fractus -means irregular, fragmented) 

applies to objects in space or fluctuations in time that possess a form of self-

similarity and cannot be described within a single absolute scale of 

measurement. Fractals are recurrently irregular in space or time, with themes 

repeated like the layers of an onion at different levels or scales. Fragments of 

a fractal object or sequence are exact or statistical copies of the whole and 

can be made to match the whole by shifting and stretching. Sequential fractal 

scaling relationships are observed in many physiological processes. Spatial 

structures of many living systems are fractal. Fractal geometry has evoked a 

fundamentally new view of how both nonliving and living systems result 

from the coalescence of spontaneous self-similar fluctuations over many 

orders of time and how systems are organized into complex recursively 

nested patterns over multiple levels of space [Klo00] . 

 

2.2 Definition of Fractal 

      The formal mathematical definition of fractal is defined by Benoit 

Mandelbrot. It says that a fractal is a set for which the Hausdorff Besicovitch 
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dimension strictly exceeds the topological dimension [Fis94, Man83]. 

However, this is a very abstract definition. Generally, we can define a fractal 

as a rough or fragmented geometric shape that can be subdivided in parts, 

each of which is (at least approximately) a reduced-size copy of the whole. 

Fractals are generally self-similar and independent of scale.  

 

2.3 Properties of Fractal 

      A geometric figure or natural object is said to be fractal if it combines the 

following characteristics [Fis94]: 

a) Its parts have the same form or structure as the whole, except that they   

are at a different scale and may be slightly deformed. 

b) Its form is extremely irregular or fragmented, and remains so, whatever                                                      

the scale of examination. 

c) It contains "distinct elements" whose scales are very varied and cover a 

large range. 

d) They have a perimeter of infinite length but an area limited. 

e) Fractional dimension: A non-integer dimension. We know that the 

dimension of lines, squares, and cubes are respectively 1, 2, and 3. For 

example the dimension of a fractal may be 1.342. 

f)  Formation by iteration. 
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2.4 Fractal Development [Xia04] 

      Unfortunately, fractal was not developed for data compression in the first 

place, but at that time it was considered as a different kind of geometry 

introduced by the IBM mathematician Benoit B. Mandelbrot through his 

book ”The Fractal Geometry of Nature" published at 1977. At 1981, the 

mathematician John Hutchinson found the theory of iterated function system 

to model collections of contractive transformations in a metric space as 

dynamical systems, which later provided some theoretical support of 

recognizing fractal in the metric space. It was Michael Barnsley, eventually, 

who generated the fractal model using iterated function systems (IFS’s), and 

led to encode images to achieve significant compression. However, 

Barnsley’s image compression algorithm based on fractal mathematics was 

inefficient and unpractical suffering too big searching space problem. At 

1988, one of Barnsley’s ph.D students, Arnaud Jacquin, suggested a 

modified scheme for representing images, called partitioned iterated function 

systems (PIFS’s). The basic idea of the algorithm is to convert an image into 

the PIFS’s, instead of looking at the whole image. It immediately made 

fractal image compression more practical, however with sacrificing the 

compression ratio. After Jacquin’s PIFS, there were many other modified 

schemes, but none of them made any significant progress. Most of later 

publications on the fractal subject stay on the PIFS, but focus on the possible 

improvements. The two big problems of Jacquin’s algorithm are the partition 

scheme selection for encoding, and the speed problem for encoding. 

 
2.5 Fractal Examples       

      In this section two fractal examples are provided for demonstration     

purposes. 

      The first example is generating Sierpinski’s Triangle using IFS. We can 

see from Figure (2.1) that the Sierpinski’s triangle can be generated by 
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infinitely repeating a procedure of connecting the midpoints of each side of 

the triangle to form four separate triangles, and cutting out the triangle in the 

center [Kis99].  

                               

      (a) Initial Image    (b) First Iteration      (c) Fifth Iteration          (d) Sixth Iteration 

 

 Figure (2.1) Sierpinski triangle example of generat ing sequence 

by iteration . 

 

      This process can be viewed as three transformations map the original 

triangle to the new 3 triangles as shown in Figure (2.2). 

 

          Figure (2.2) Sierpinski Triangle mapping using thre e affain     

transformations . 
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The mathematical expressions of the transformations are the followings:        

      It is important to observe that there is hardly to remark any visible 

difference between the fifth and the sixth iterations shown in Figure (2.1). 

The Sierpinski’s triangle sequence thus visually converges to one triangle 

within certain threshold. Reversely, if we take the sequence backward, for the 

Sierpinski triangle sequence, we only need to know the mapping which 

is 1w , 2w  and 3w . This is the essence of how fractal compression works. 

      The second example is shown in Figure (2.3). It demonstrates one 

domain-range match, which is calculated through the rotation and 

modification. And since the domain block is twice the size of the range 

block, the reduction is needed at last. 

 

Figure (2.3) Fractal encoding from a domain mapping  to a 
range domain for Lena image. 
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        Essentially, in image sense, the rotation, and modification are the 

process to get a proper set of scalings and offsets, which adjust the luminance 

of the domain block (in this case for a grey-scale image). The Lena image is a 

widely accepted test figure in image compression. It gives the idea that 

natural images have self-similarities or patterns embedded. With this belief, 

our research work is an attempt to discover the possibility of using this 

concept on audio [Xia04]. 

 

2.6 Fractal Coding  

      Fractal coding is one of the promising new coding techniques for high 

compression ratios, which are beginning to be adopted worldwide by the way 

of the Internet. It is based on the work of Barnsley and Jacquin on fractals 

and Iterated Function Systems (IFSs) [Bar88-Fis94]. Blocks of a source 

(image or audio) are considered as affine transformations of other blocks 

taken from the image itself. 

 

2.6.1 Encoding [Bah95] 

       Encoding is done by partitioning the source (image or audio) into non-

overlapping blocks, called range blocks (denoted iR , where i is the block 

index), and into typically overlapping blocks to form what is called the 

domain pool. A spatial contraction is performed on the domain pool, by an 

operator ϕ (usually averaging), so that the resulting blocks (which we 

denote jD ) are of the size of the range blocks. 

       Each range block is linearly estimated from a contracted domain block 

according to ijiii bDaR += .ˆ , where ia  is called the scale parameter, ib  the offset 

parameter, and ji is the index denoting the best domain block to get iR̂ as 

close as possible toiR . 
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2.6.2 Decoding [Bah95] 

        Decoding can be done by starting with some arbitrary initialized range 

pool (image or audio), then the domain pool is generated by down sampling 

the range pool, estimating the range blocks of a new source from the 

contracted domain blocks, and iterating the above last two steps until a fixed 

point is reached, or nearly so (thus this method is called IFS – Iterated 

Function System). If the range block estimators are good enough, then the 

fixed point source is much like the original source. 

2.7 Affine Transformations  [Bra93, Fis92] 

      Most literatures in fractal compression define the mapping function f to 

be affine to simplify the computation. An affine transformation w: 
nn RR → can always be written as w = Ax + b, where A nnR ×∈ is an n × n 

matrix and b nR∈ is an offset vector. The transformation is contractive when 

its linear part is contractive. The contractive depends on the metric used to 

measure distance. And because affine transformation is linear, we can use 

norm .  in nR to define the metric. Then  

          

                    
nRx

A
∈

= rsup    If    )42...(....................,.........1/ −<xxA
rr

    

       

      The contractive under the sup norm of a complete metric space is 

guaranteed if the above condition is satisfied (i.e., the left hand side is always 

less than one). However, Wohlberg and Jager in their review [Woh99] 

pointed out that this restriction is sufficient but not necessary for 

convergence; empirical evidence indicates that convergence is often achieved 

even if xxA
rr

/  greater than one, although smaller values provide more 

rapid convergence on decoding. The eventually contractive mapping function 

is sufficient to ensure the convergence of the mapping. Setting the equation 

less than one guarantees the contractive mapping, which is a stronger 
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argument than eventually contractivity. But unfortunately, the affine 

transformation and sup norm metric cannot explicitly give us the bound of 

ensuring eventually contractive. Affine transformation also suffers from 

some problems as a linear transformation that has limited capabilities of 

mapping and requests geometrically identical mapping parties. 

 

2.8 Contractive Transformations [Fis92] 

      A transformation w is said to be contractive if for any two points P1, P2 

the   distance: 

                d (w (P1), w (P2)) < sd (P1, P2), )52.(.................................................. −  

For some 1<S , where d is the distance. This formula says the application of a 

contractive map always brings points closer together (by some factor less 

than 1). 

 

2.9 Fixed Point Theorem  [Fis92] 

      This theorem says something that is intuitively obvious: if a 

transformation is contractive then when applied repeatedly starting with any 

initial point, we converge to a unique fixed point. 

      If X is a complete metric space and W: X →X is contractive, then W has a 

unique fixed point w . 

 

2.10 Partitioned Iterated Function Systems (PIFS’s)  

        The Sierpinski triangle (shown in Figure 2.1) demonstrates the way of 

using IFS. However, unlike the example; our real spaces are very irregular. In 

most cases, it would be rather impossible to find such a perfect mapping for 

the whole space. Thus Jacquin introduced the partitioned iterated function 

system (PIFS) in his works [Jac92]. A PIFS is a generalization of an IFS, and 
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attempts to ease the IFS computation by partitioning the whole space into 

subspaces. In other words, PIFS is a restricted version of IFS. 

      One problem brought up from the PIFS is the partition. The space has to 

be partitioned into subspaces. It is necessary to be sure the addition of the 

subspaces covering the original space. Also, the partition scheme dominates 

the final map set, which means the compression process in general [Jac92].  

      Jacquin first introduced the PIFS on the fractal image compression. 

Image space is naturally recognized as a 2D space. The partition scheme is 

simply partitioning the whole space twice to the range set and the domain set. 

Both sets cover the whole image space, with the domain set allowing 

overlapping. As a shortcoming of using affine transformation, the partition 

schemes for the domain set and the range set have to give the same geometric 

shaped domain and range blocks, which are usually squares or rectangles. 

Domain block is set to be twice as big as range block in Jacquin’s original 

scheme in [Jac92], which is widely accepted in fractal image compression. 

The reason allowing domain overlapping is to smooth artifacts between 

blocks in decoding process. The mapping between the domain and the range 

blocks is as demonstrated in Figure (2.4). For each range block, find a proper 

domain block to map to. The final map set is composed of mappings for each 

range block from the range set. 

 

       Figure (2.4) Mapping from the domain set to the ran ge set. 
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      Among most of fractal image compression range partition schemes 

appearing in literatures, Quadtree partition and Horizontal-Vertical (HV) 

partition are the most popular two schemes being used. We show two 

examples in Figure (2.5) for both partition schemes. The review in [Woh99] 

classifies range partition schemes into right-angled partition schemes and 

triangular and polygonal range partition schemes. Both quadtree and HV 

schemes belong to the first category.  

 
                        (a) Quadtree range partition                                    (b) HV range partition 
 
                          
  Figure (2.5) Examples of quadtree and HV range part ition    
schemes 
 
 
         PIFS is recognized as a significant improvement for IFS. It reduces 

large amount of searching time both theoretically and practically.     

Furthermore, it provides some possible aspects of improving fractal encoding 

like using different partition schemes or taking different mapping methods. 

Comparing with some more advanced methods of generating fractals such as 

Weighted Finite Automata, PIFS also has the beauty of simplicity. For the 

above reasons, our research on fractal audio compression uses PIFS in the 

same way like conventional fractal image compression methods.  
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2.11 Derivation of Scale and Offset Equations 

   To compute the s and o one should compute the values of a scale (s) and 

offset (o) which minimize the value of the distortion error equation (E). The 

minimum of the distortion error (E) occurs when the partial derivatives (of E) 

with respect to (s) and (o) are zero. 

          ∑
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          Where:   osdr i +=′  where (s) is the scale and (o) is the offset 
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Differentiate the distortion error equation (E) with respect to (s) and (o):        
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     rearrange equation (2-9) to get: 
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     Now differentiate the distortion error equation (E) with respect (o): 
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       rearrange equation (2-13) to get: 
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   substitute equation (2-14) in equation (2-10) to get: 
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   rearrange equation (2-15) to get: 
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   rearrange equation (2-16) to get: 
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    multiply equation (2-17) by 
n

n
 to get: 
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also to get the offset equation rearrange equation(2-14) to get: 

         
∑

∑

=

=
−

=
n

i
i

n

i
r

d

onr
s

1

1  ,…………………….(2-19)  substitute this equation in 

equation (2-10) to get: 

        

∑ ∑

∑∑∑∑

= =

====











−

















−
















=
n

i

n

i
ii

n

i
ii

n

i
i

n

i
i

n

i
i

ddn

drdrd

o

1

2

1

2

1111

2

,……………..……… ………(2-20) 



Chapter Two: Basic Concepts of Fractal ٢١

Where id  are the samples values of the domain blocks. 

ir  are the samples values of the range block. 

n  is the number of samples in each block (i.e. the block size). 

 

2. 12 Advantage and Weakness of Fractal Compression  

      Fractal compression methods have been mainly studied developed for 

image compression. The advantages and weaknesses are apparently 

addressed with image compression. People generally realize that fractal 

compression works quite well at high compression ratio, usually around 40:1.     

Walle [Wal95] gives a very detailed analysis on fractal image encoding 

performance comparing with other conventional image compression 

methods.    

 

2.12.1 Fractal Advantages  

        The most valuable advantage of fractal compression is the ability of 

achieving high compression ratio within certain acceptable threshold of 

recovery. However, the compression ratio is still highly related with 

identifiable patterns and self-similarities. Under this restriction, fractal 

compression with high compression ratio is not universally applied.  

      In audio compression, it can see that fractal audio compression is a much 

simpler scheme compared with the most popular MP3 encoding. This is one 

potential advantage that fractal compression may be used in audio world. 

Despite audio is a very continuous sequence; it still embeds patterns and self-

similarities, especially those created by us, like music and instrumental 

sound, which gives us a hope that fractal compression may work well. 
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2.12.2 Fractal Weaknesses  

      Fractal compression has not been put into practical uses, even for image 

compression, for its numerous weaknesses. The success of the scheme seems 

to rely exclusively on exhibiting some self-similarities among part of the 

space. And there is no guarantee that the probability of matching domain and 

range blocks is sufficiently high to achieve compression.  

      The restriction of using affine mapping does not guarantee scaling iα and 

offset iβ forming a set of independent random variables. This is to say that 

each transform iw  may not be able to be independent from others, so that 

wmay not be equal to the union of swi ' . 

      Furthermore, the fractal encoding requests a large amount of time 

because of the search for matching blocks, and the fractal decoding can also 

be a long iterating process.   

 

2.13 Quantization 

      The definition of the term "quantization" is to restrict a variable quantity 

to discrete values, rather than to a continuous set of values. In the field of 

data compression, quantization is used as follows:  If the data samples to be 

compressed are large numbers then, quantization is used to convert them to 

small numbers. Small numbers take less space than large ones, so 

quantization generates compression. On the other hand, small numbers 

generally contain less information than large ones, so quantization results in 

lossy compression, this aspect of quantization is used by several speech 

compression methods. 

     Quantization theorem says that the quantizer can be modeled as the 

addition of a uniform distributed random signal (e) and the original 

unquantized signal (x) as shown in the figure (2.6).  
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                               Figure (2.6) A quantizer 

       There are two types of quantization: Scalar Quantization and Vector 

Quantization. In scalar quantization, each input symbol is treated separately 

to produce the output, while in vector quantization the input symbols are 

assembled together in groups called vectors, and processed to give the output.  

Treating these assembles of data as a single unit could increase the optimality 

of the vector quantizer, but at the cost of increased computational 

complexity.  Here, we'll take a look at scalar quantization. 

        A quantizer can be specified by its input partitions and output levels 

(also called reproduction points). If the input range is divided into levels of 

equal spacing then the quantizer is termed as a Uniform Quantizer, and if not 

it is termed as a Non-Uniform Quantizer. A uniform quantizer can be easily 

specified by its lower bound and the step size. Also, implementing a uniform 

quantizer is easier than a non-uniform quantizer. Take a look at the uniform 
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quantizer shown in figure (2.7). If the input falls between n*r and (n+1)*r, 

the quantizer outputs the symbol n.  

 

                               Figure (2.7) A uniform quantizer  

      Just in the same way a quantizer partitions its input and outputs discrete 

levels, a dequantizer is one which receives the output levels of a quantizer 

and converts them into normal data, by translating each level into a 

'reproduction point' in the actual range of data. The optimum quantizer 

(encoder) and optimum dequantizer (decoder) must satisfy the following 

conditions:  

1. Given the output levels or partitions of the encoder, the best decoder is 

the one that puts the reproduction points x'  on the centers of mass of 

the partitions. This is known as centroid condition.   

2. Given the reproduction points of the decoder, the best encoder is the 

one that puts the partition boundaries exactly in the middle of the 

reproduction points, i.e. each x is translated to its nearest reproduction 

point. This is known as nearest neighbour condition. 

       The quantization error (x - x') is used as a measure of the optimality of 

the quantizer and dequantizer. 

2.14 Fidelity Criteria  

       A natural way to determine the fidelity of a recovered audio is to find the 

difference between the original and reconstructed values. The two popular 

measures of distortion are the squared error measure and the absolute 

difference measure, which are called difference distortion measures. If X is 
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the source output and Y is the reconstructed sequence, the sum of squared 

error measure is given by [Xia01]: 
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And the sum of absolute difference measure is given by [Xia01]: 
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          Practically, it is difficult to examine the difference on a term-by-term 

basis; so, some average measures are used for this examination. The most 

often used average measure is the average of squared error measure. This is 

called the mean squared error (MSE) and is given as: 
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     Sometimes it is more interesting to measure the size of the error relative to 

the peak value of the signal rather than the size of the error relative to the 

average squared value of the signal. This ratio is called the peak-signal-to-

noise ratio (PSNR) and is calculated by the following equation: 
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       PSNR is the most commonly used value to evaluate the objective audio 

compression quality. 

 



CHAPTER THREE 

SYSTEM DESIGN AND IMPLEMENTATION  

 

3.1 Introduction 

       The encoding unit of the implemented audio fractal compression (AFC) 

is based on partitioned iterated function system (PIFS), which is basically 

based on affine transformation. So, for encoding the audio data it is necessary 

to divide it into non-overlapped blocks called (ranges, R), and then each 

block is transformed separately. By partitioning the audio data into blocks 

(called ranges), the partitioning will let the encoding of a wave with 

complicated shaped is mostly possible, taken into consideration that audio is 

not composed of copies and doesn’t imply exact similarity, so it can’t be 

coded as one single piece by using the IFS. 

        So, the PIFS is used in the suggested system to find for each range block 

the best approximation the best approximation is found by searching in the 

domain pool, compute the corresponding PIFS parameters and storing these 

parameters in the compression file. 

       The steps of the implemented algorithms for the two units of fractal 

audio compression system (Encoding unit and Decoding unit) are given in 

details in this chapter. 

    

3.2 Audio Fractal Compression System (System Model) 

        The implemented fractal audio compression system consists of two 

major units: 

1. Encoding unit 

2. Decoding unit 

        Each of these two units consists of many modules as illustrated in 
figures (3.1), and (3.2). 
 



Chapter Three: System Design and Implementation ٢٧

 
Figure (3.1) The flow chart of the Fractal Audio Encoding unit  

Construct the Range Pool from the Original wave file and 
Partition it into nonoverlapped Blocks  

 

Down Sample the Audio Data by 2 to Construct the Down Sampled Wave 

Construct the Domain Pool by Partitioning the Down Sampled Wave 
into Sets of overlapped Blocks 

Compute the Domain Parameters 

Point to the First Range Block and Compute its Parameters 

Match this Range Block with each Domain Block till find the suitable 
Domain block, which satisfy the best map to this Range Block and determine 

its Affine Coefficients 

Quantize and Dequantize the Offset and Scale Parameters 

Is it the Last 
Range Block? 

No 
Point to next 
Range Block 
and compute 

its 
parameters 

Yes 

Start 

Load Wave File 

Store the PIFS Coefficients 
in the Compression File 

End 
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Initialize an arbitrary wave domain with the same size of the domain pool to be a 
temporary domain 

Set No. of  iterations =Desired No. of Iteration 
Set Iteration=1  

Point to the first set of affine coefficients in the stored PIFS code  

Construct the specific range block, which gets its information from 
the parameters of the affine set by inverse mapping using affine 

transform   

Iteration 
exceeds the No. 
of Iterations?  

Is it the last 
registered set? 

No 

Yes 

Yes 

No 

Reconstruct the wave file  

Down sample 
the 

reconstructed 
range blocks to 

create new 
domain Pool 

Determine the MSE and PSNR   

Iterations=Iterations+1 

Save the reconstructed Wave File 

Start 

Load the stored PIFS Coefficients 

End 

Load the 
next set of 

affine 
coefficients 

in the stored 
PIFS 

Figure (3.2) The flow chart of the Fractal Audio Decoding unit 
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3.2.1 Encoding Unit 

        The encoding process is mainly based on the PIFS. This unit consists of 

numbers of modules, which are all together responsible for reducing the size 

of the desired audio data and construct the compression file. 

      As shown in figure (3.1), the encoding unit consists of the following 

modules:  

1. Loading wave file. 

2. Construct the Range pool: Partition the given wave data using a fixed 

block size partitioning to construct the Range pool R, and partition it 

into nonoverlapped blocks. 

3. Down sample the audio data by 2: Take the mean value of every two 

successive samples values listed in the Range vector and put it in the 

Domain vector.   

4. Construct the Domain pool: From the domain array construct the 

domain pool D  by partitioning it into overlapped blocks with the same 

size of the range blocks. 

5. Compute the Domain parameters (for all domain blocks) and put them 

in array. 

6.  Point to the first Range block R and compute its parameter. 

7. Search the Domain pool, and match the first Range block with each 

domain block using affine transform. Find the best matched domain 

block, and register the corresponding affine coefficients (scale, offset, 

symmetry, and position), of this domain block. 

8. Quantize and dequantize the scale and offset coefficients. 

9.  Store the determined affine transform coefficients for the current 

range block (which consist of the indices of S and O) in the 

compression stream (file). 
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10.  If the matched range block on the range pool is the last one, then end 

the encoding process, if not then point to the next range block on the 

range pool and go to step 7. 

 

3.2.1.1 Loading Wave File 

        The wave file format is a subset of Microsoft Resources Interchange 

File Format (RIFF) specification; it is adopted for the storage of multimedia 

data. This file starts out with a file header followed by a sequence of data 

chunks. A WAVE file is often containing single "WAVE" chunk, which 

consist of two sub-chunks, a format "fmt" sub-chunk specifying the data 

format and the "data" sub-chunk containing the actual sampling data. 

        Some wave data were used as test material in this research work. The 

specifications of the input sound waves for testing and measuring the 

performance of the suggested audio compression method are: 8-bits sample 

length, and MONO (i.e., single channel). A detailed description of the wave 

file format is presented in Appendix (A). 

       In the current work the way used for loading audio file is by loading 

wave (*.wav) files using the steps listed in algorithm (3.1).  

 

Algorithm (3.1) Loading the Audio Data 

 

Input: Wave File Name 

Output: Wave Data Buffer Wav (WaveSize-1)  

Open wave File 

• Load the header of wave file 

    If Number of bits per sample = 8 and Number of Channels = 1 Then 

    WaveSize = (Length of Wave file - 60) do  

• Load the audio data into a wav (WaveSize-1) buffer.       
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3.2.1.2 Range Pool Construction 

         There are many possible methods for partitioning the audio data that 

can be used to select the range blocks. The main goal of the partitioning 

process is to divide the audio data into regions that show similarity with other 

regions in the domain pool, and generate a non-overlapping region, which 

referred to as range pool (range blocks), that can be utilized in audio coding. 

It must be noted that the constraint of non-overlapping range blocks is an 

important condition to achieve correct decoding process.  

          The way of partitioning used in this research is a fixed size-partitioning 

scheme, because it requires less computational time than the other schemes. 

This done only by choosing the size of the block one time in the program. 

          The goal of partitioning is to improve the approximation between the 

samples values of range block with those of a domain block, because small 

blocks can probably be matched with each other better than large blocks.  

   Choosing the block size must be done accurately, since although the 

small block size perform a good matching between range and domain blocks, 

but this is time consuming which leads to long encoding time because of 

searching process. While, if the block size is big, then the encoding time is 

reduced but this may influence the quality of the reconstructed wave file.  

The test results illustrated in the next chapter will explain the effect of the 

block size on the compression ratio, encoding time, PSNR, and MSE. 

          As a first step, the header of the wave file is analyzed to get the 

necessary parameters (such as data size, bits per sample, sampling rate, etc.... 

as listed in algorithm 3.1) that required loading the audio information. After 

reading the audio data from the opened stream then the audio data will be 

partitioned uniformly, and put the partitioned data (blocks) in a temporary 

buffer to manipulate them as blocks of samples (of fixed size). The set of 

partitions is called the Range pool (Range blocks), algorithm (3.2) illustrate 

the implemented steps of partitioning. 
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 Algorithm (3.2) Partitioning and Constructing the Range 

Pool 

 

 

3.2.1.3 Down Sample the Audio Data By 2 

       The loaded audio data is down sampled by 2 (by averaging method) to 

construct the domain array. 

 

3.2.1.4 Domain Pool Construction  

         This module is responsible for constructing another one-dimensional 

array, called the Domain, with size half the size of the range array.  

       The data of the domain is produced from the Range as illustrated in 

algorithm (3.3), there are many ways to select the data from Range to fill the 

Domain but all of them deal with choosing one element from every two 

adjacent elements in Range to be in the Domain, different selections rules 

were used, some of these rules are based on: 

1. Choosing the minimum value of the two elements.  

2. Choosing the maximum value of the two elements.  

Input: Wave Data Buffer Wav (WaveSize-1), the size of the Wave Data Buffer     

WaveSize, the size of the range-block B.      

Output: Wav partitioned into RB  range-blocks,(RB is the number of range-blocks). 

RB= WaveSize/ B 

For I = 1 to RB  

   For j = 1 to B 

   ri (j)=  Wav ((I-1)* B + j) 

   Next j 

Next I 

r is called the range-block and is of size B. ri is the i’th range-block.    
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3. Choosing the average value of the two elements. 

4. Choosing the nearest or farthest element to the average 

      The rule that is used in this research is taking the average of every two 

adjacent samples in range array and put it in its corresponding position in 

domain array. 

      A fixed size-partitioning scheme is used to partition the domain pool for 

the same purpose in the range pool partitioning. Thus the domain will be 

divided into “Domain blocks” with the same size of the range blocks, but 

possibly into overlapped domain blocks, where the partitioning jump size of 

samples may take values less than the block size. Overlapping blocks leads to 

many possible domain blocks in the domain pool, and thus good 

approximation will be obtained. As the jump size is small, the domain pool 

will be large and this satisfies the good approximation and high quality in the 

reconstructed wave file. But at the same time this will lead to high encoding 

time because searching a large pool of domain blocks is time consuming. 

Choosing a big jump size will serve reducing the encoding time but the 

reconstructed wave data will have low quality. This will be demonstrated by 

the results of the compression ratio, encoding time, PSNR, and the MSE in 

different jump sizes presented in the next chapter. 

       Its important to notice that the jump size must be less than or equal to the 

block size and of course greater than zero, and in the case of choosing the 

step size equal to the block size then the domain blocks will be non-

overlapped.  
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 Algorithm (3.3) Construct the Domain Pool 

Error! 

 

 

 

 

 

 

 

 

 3.2.1.5 Compute the Domain Parameters 

        The algorithm (3.4) illustrates the implemented steps to compute the list 

of domain parameters. 

  

 Algorithm (3.4) Compute Domain Parameters 

Error! 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.6 Compute the Range Parameters 

Input: Wave Data Buffer (Wav (WaveSize-1)) 

Output: One-dimensional array called domain pool, Domain (Domain size), with 

half size of the range pool. 

      Domain Size = WaveSize \ 2 - 1 

      For Pd = 0 To Domain Size do 

          Pr = Pd + Pd 

         Domain (Pd) = (round (Wav (Pr)) + Wav (Pr + 1)) \ 2 - 128 

Input: Domain Pool array (Domain (Domain Size)), Domain Size, BlockSize and  

JumpStep.  

Output: Domain parameters (SumD (No.DomainBlocks), SumD2 

            (No.DomainBlocks)). 

  No.DomainBlocks = (DomainSize+1-BlockSize)\JumpStep-1: Pd=0 

  For I= 0 to No.DomainBlocks do 

     S=0:   Ss = 0      

    For Pp = Pd to Pd + BlockSize do 

          S = S + Domain (Pp):  Ss = Ss + Domain (Pp) ^2 

    End 

    SumD (I) = S:  SumD2 (I) = Ss 

    Pd = Pd + JumpStep
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      The algorithm (3.5) illustrates the implemented steps to compute the list 

of range parameters. 

    

   Algorithm (3.5) Compute the Range Parameters 

Error! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.7 Quantization and Dequantization for Scale and               
Offset 

 
       The actual effective part of the audio compression is quantization. It is 

simply the process of reducing the number of bits needed to store coefficients 

values by reducing its precision from float type to integer. The determined 

PIFS coefficients values are real-valued, and in order to increase the 

compression, they must converted to integer values, in order to increase the 

compression performance, so they must be quantized before storage. 

Input: Wave Data Buffer (Wav (WaveSize-1)), Wave Size, Block Size.   

Output: Range parameters SumR, SumR2 and RangeBlock (BlockSize-1)  

  No.RangeBlocks = WaveSize \ BlockSize - 1 

  Pr = 0 

  For I = 0 to No.RangeBlocks do 

  SumR = 0: SumR2 = 0: SumR4 = 0 

     For J = 0 To BlockSize-1 do 

 R = round (Wav (Pr + J)) – 128 

 R2 = R * R 

                 SumR = SumR + R 

                 SumR2 = SumR2 + R2 

                 RangeBlock (J) = R 

      End 
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         This is done by assigning the number of bits will used to encode each 

scale and offset coefficients. The quantization and dequantization for scale 

values were computed by applying the following equations:   

Quantization 

     

,................................................ (3-1) 

 

 

Dequantization 

                                                                                

,…………………………………….…(3-2) 
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S  is the scale coefficients. 

SNQ  is the quantization step for negative S-values.  

SPQ  is the quantization step for positive S-values. 

IS   is the quantization index. 

bs  is the number of bits allocated to encode the scale coefficient. 
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minS  is the minimum allowable values for scale coefficients. 

maxS  is the maximum allowable values for the scale coefficients. 

While the quantization and dequantization for offset values were computed 

by applying the following equations: 

Quantization 

 

,…………………………….(3-5) 

 

Dequantization 
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O  is the offset coefficients. 

ONQ  is the quantization step for negative O-values.  

OPQ  is the quantization step for positive O-values. 

IO   is the quantization index. 
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bo   is the number of bits allocated to encode the offset coefficient. 

minO  is the minimum allowable values for offset coefficients. 

maxO  is the maximum allowable values for the offset coefficients. 

 Algorithm (3.6) Quantize and dequantize the Scale and 

Offset   values 

Error! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.1.8 Matching between Range Blocks and Domain 

Blocks  
 

    After generating range blocks and domain blocks, all range blocks 

should be matched with the domain blocks to determine the affine transform 

parameters (scale, offset, symmetry, and position) for each range block. 

Input: Scale and Offset of each Range blocks. 

Output: quantized and dequantized scale and offset of each range blocks.  

No.RangBlocks = WaveSize \ BlockSize - 1 

  For I = 0 to No. RaneBlocks do 

         If Scl < 0 Then 

            SI = round (Scl * StpScaleN) 

            Scl = SI / StpScaleN 

         Else 

           SI = round (Scl * StpScaleP) 

           Scl = SI / StpScaleP 

        End If 

        If Ofs < 0 Then 

            OfsI = round (Ofs * StpOfsetN) 

            Ofs = OfsI / StpOfsetN 

        Else 

            OfsI = round (Ofs * StpOfsetP) 
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        Now for each range block, search through all domain blocks to find the 

best matched domain block (block with minimum distortion error). The best 

matched domain block is that block whose affine transformed block has a 

minimum distortion error relative to other domain blocks. So, the scenario of 

domain search is to check each domain block and determine the scale, offset 

and symmetry coefficients that minimize the error between the checked 

domain block with the range block, the matching is continued over all the 

domain blocks till finding the domain block whose difference (error) with 

range block is the minimum in comparison with errors registered by other 

domain blocks. Each domain block is subjected to some isometric 

(symmetry) transformations (consist of reflections and rotations) to get 

different symmetry state for each domain block, and then the transformed 

domain block is considered as individual domain block, which should be 

matched with range blocks as a separate or individual case. 

 
  Algorithm (3.7) Searching Domain Pool and Matching 

  
 

Input: Range blocks with number No.RangeBlocks  

Output: OfsetIdx, ScaleIdx, Pos, SymState of each range block.  

For I = 0 to No.RangeBlocks 

• Rb is the ith Range block. 

• Compute range parameters ‘Algorithm (3.5)’. 

• Set MinError = 9.9E+19 

    For j = 0 to No.DomainBlocks 

• Db is the jth Domain block. 

    Pd=0: SumRD1=0: SumRD2=0 

   For M=0 to BlockSize-1 do 

        SumRD1=SumRD1+Domain (M+Pd)*RangeBlock (M) 

        SumRD2=SumRD2+Domain (M+Pd)*RangeBlock (BlockSize-1-M) 
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3.2.1.9 Save the Affine Coefficients in the PIFS code 

        Saving original audio file as collections of transformations could lead to 

audio compression, which is done by describing the original audio in terms of 

few parameters of affine transformations (PIFS code). 

       So, the results of matching process between every range block and the 

domain blocks are the affine transformation parameters (scaleIdx, offsetIdx, 

symmetry, and position of the best matched domain block), the whole 

transformation informations for all range blocks would be collected in the 

PIFS code or (compression file) as illustrated in algorithm (3.8).    In other 

words, fractal audio coding process implies the determination of all matching 

parameters, and then they are quantized, coded, and stored sequentially as 

arrays of PIFS parameters vectors. The elements of this array are equal to the 

number of range blocks in the range pool.  

        For symmetry = 0 To 1 

           If symmetry = 0 Then  

 SumRD = SumRD1  

          Else  

 SumRD = SumRD2 

• Compute scale and offset values of Rb and Db using equations (2-

18),and (2-20) 

• Quantize and dequantize Scale and Offset values of Rb using 

‘Algorithm (3.6)’. 

• Compute the distortion error (E) between Rb and Db using equation 

(2-7). 

         If E < MinError Then  

  End  

 Pd = Pd + JumpStep 
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       In addition to the affine parameters, some overhead informations are also 

coded and stored in compression file, these informations are important in the 

decoding stage, such as the minimum and the maximum boundaries of the 

scale and offset parameters, the number of bits used to represent the values of 

the scale factor, offset factor, and the position of each matched domain block, 

the size of the range and domain blocks, the jump step, also the audio 

sampling rate and the actual wave size.             

Table (3.1) lists the PIFS parameters  

Table (3.1) PIFS Parameters. 
Parameter Description 

Pos The position of the best matched domain block 

ScaleIdx The scale index value  

OfsetIdx The offset index value  

SymState The symmetry state  (0:identity, 1: Reflected) 

 

  Algorithm (3.8) Saving PIFS Code     
Error! 

 

 

 

 

 

 

 

 

 

 

Input: Affine transform parameters  

Output: Compressed file  

• Prepare storage buffer. 

• Encode Sample Rate and put in the storage buffer as 16 bits word. 

� Encode Maximum Scale and put in the storage buffer as 11 bits 

word. 

� Encode Minimum offset and put in the storage buffer as 11 bits 

word. 

� Encode Maximum offset and put in the storage buffer as 11 bits 

word. 

� Encode No. of bits per scale and put in the storage buffer as 5 bits 

word. 

� Encode No. of bits per offset and put in the storage buffer as 5 bits 

word. 
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3.2.2 Decoding Unit 

       In encoding unit the encoded wave data is transformed into a set of PIFS 

codes. While, in the decoding unit these PIFS codes are used to iteratively 

reconstruct the wave data. At every iteration the decoded wave becomes 

closer to the original wave.  

      Decoding process is considerably easier and faster than the encoding 

process because it involves little computations. The decoding process is 

iterated until the fixed point is approximated, that is until further iteration 

does not significantly change the reconstructed wave data. Typically, 8 

iterations are sufficient. 

    As shown in figure (3.2) this unit consists of the following items: 

1. Load the stored PIFS coefficients. 

2. Set Iteration =1. 

3. Initialize in arbitrary manner the domain pool. 

4. Point to the first set of PIFS coefficients.  

5. Construct the specific range block by applying the affine transform that 

gets its information from the PIFS parameters set. 

6. Repeat step 5 till all the range blocks are reconstructed. 

7. If the iteration less than the maximum number of iterations then down 

sample the reconstructed range blocks to create a new domain pool, 

and set Iteration=Iteration+1, and go to step 4.   

8.  If the iteration reaches the maximum number of iterations  then call 

MSE and PSNR subroutine (only for efficiency assessments).   

9. Save the reconstructed wave data. 

 

3.2.2.1 Load PIFS code 

      The first step in the decoding process is loading and decoding the affine 

transform parameters (ScaleIdx, OffsetIdx, Symmetry, and Position of the 
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best matched domain block), also loading the overhead informations needed 

in the decoding process stage such as the minimum and the maximum 

boundaries of the scale and offset coefficients, the number of bits used to 

represent the scale factor, offset factor, and position of each matched domain 

block, the block size, the jump step and the actual wave size.  

Algorithm (3.9) Load PIFS Code  

Error! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.2 Decoding Using Affine Transform Equation 

       The decoding process is simple, and fast. By applying the resulted PIFS 

on any arbitrarily generated wave the original wave at the decoder can be 

successively regenerated after a number of PIFS decoding iterations.   

       The decoder uses the affine parameters set (ScaleIdx, OfsetIdx, Position, 

and Symmetry) to transform the pointed (by Pos.) domain block to construct 

Input: compression file 

Output: Decoded affine parameters    

• Open the storage buffer. 

• Extract Sample Rate from the storage buffer as 16 bits word. 

� Extract Maximum scale from the storage buffer as 11 bits word. 

� Extract Minimum offset from the storage buffer as 11 bits word. 

� Extract Maximum offset from the storage buffer as 11 bits word. 

� Extract No. of bits per scale from the storage buffer as 5 bits word. 

� Extract No. of bits per offset from the storage buffer as 5 bits word. 

� Extract block size from the storage buffer as 9 bits word. 

For I = 0 to No. Range Blocks  

• Extract SymState (I) from the storage buffer.         

• Extract ScaleIdx (I) from the storage buffer. 

• Extract OfsetIdx (I) from the storage buffer. 

• Extract Pos (I) from the storage buffer. 
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the approximate of the range block. Algorithm (3.10) illustrates the 

implemented steps of the decoding process.  

      So, the decoding phase of the affine transform involves with 

reconstruction of an optimal approximation for each range block by 

multiplying it corresponding matched domain block by the scale value and 

adding to the result the corresponding offset value, which is:   

     Ri = sDi + o 

  Where: 

         Ri represents the value of a sample in the reconstructed (approximate) 

range block, 

Di represents the value of the corresponding sample in the best-

matched domain block, 

         s represents the scale value for mapping the domain block to the                      

range block, and         

        o represents the offset value. 

      In audio it is important to say that, the scale factor is an indication to the 

rate of change in the wave, while the offset factor represents wave loudness.  

       The reconstructed range block may transformed (reflected) according to 

its corresponding symmetry coefficient value, as illustrated in algorithm 

(3.11). 

 
 Algorithm (3.10) Decoding Equation 
Error! 
 
 
 
 
 
 
 
  Algorithm (3.11) Range Block Reflection 
 
Error! Input: Range block with SymState 0 or 1 

Output: Reflected range block 

Pr=0 

For J = 0 to BlockSize-1 

Input: affine transform parameters set (Scl, Ofs, and Pos). 

Output: decoded range block DRb (BlockSize-1). 

For J = 0 to BlockSize-1 

            K = Scl * Domain (Pos + J) + Ofs + 128 

            If K > 255 Then K = 255 

            Else If K < 0 Then K = 0 

            DRb (J) = K  
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3.2.2.3 Wave Reconstruction  

       In this stage the domain data is initialized by setting the samples values 

equal to zero, and assign the number of iterations required to make the 

reconstructed wave close to the attractor (fixed point). 

     After performing the affine transform to all affine parameters sets (saved 

in the compression file), the produced reconstructed wave, must be used to 

generate a new domain pool as illustrated in algorithm (3.12). The range 

reconstruction process is repeated by re-applying the same affine transform 

sequence on the new domain pool. 

     This process will repeated for several times (assuming NoIter is the 

number of iterations), until we reach the fixed point as listed in algorithm 

(3.13). 

 Algorithm (3.12): Reconstruct the Domain   

  Algorithm (3.13) Reconstruct the original wave 
 
 
 

Input: number of range blocks (No.RangeBlocks). 

Output: reconstructed wave DRb (WaveSize-1). 

For I = 0 to DomSize-1 

     Domain (I) = 0 

End 

Input: Reconstructed range pool, DRb (Wavesize-1). 

Output: Domain pool, Domain (DomSize-1). 

For Pd = 0 to DomSize-1 do 

   Pr = Pd + Pd 

  Domain (Pd) = (round (DRb (Pr)) + DRb (Pr + 1)) \ 2 – 128 
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CHAPTER FOUR 
 

Performance Measures and Test Results 
 
 
4.1 Performance Measures 

        Some performance measures were taken into consideration to evaluate 

the performance efficiency of the suggested fractal audio compression 

system. 

        The adopted measures are the fidelity criteria (i.e., MSE, and PSNR), 

the compression ratio, and entropy measures. 

 

4.1.1 Compression Ratio 

        The ratio of the original (uncompressed audio file) and the compressed 

audio file is referred to as the Compression Ratio, (i.e. the term compression 

ratio is used to refer to the ratio of uncompressed data to compressed data). 

The compression ratio is denoted by [Umb98]: 

                                           

           
sizefilecompressed

sizefileeduncompress
RationCompressio =  

                                             )14.........(....................,......... −=
c

u

size

size
 

 
And it is often written as size u: size c  

         Thus an audio with a 10:1 compression ratio has a compressed data size 

10 times smaller than the original audio file [Mar98]. 

         The uncompressed audio file size is computed from the following 

equation: 

          8)( ×= Audiou SBitsize ,.....................................………...……..…...(4 - 2) 

Where: 

         S is the size of the original audio file,  
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         and 8 is the number of bits required to assign the each sample value 
          
        While the compressed file size is computed from: 
           

       size c (Bit) = (BitScl + BitOfs + BitPos +1) ×No.RangeBlock,...…..(4-3) 

 

Where: 

        BitScl is the number of bits required to store the scaling values, 

        BitOfs is the number of bits required to store the offset values, 

BitPos is the number of bits required to store the position of the best   

matched domain block.  

The number 1 is the bits required to store the symmetry value                                                   

(which is the reflection state), and No. Range Blocks is the number of the 

range blocks in the original audio file. 

 

4.1.2 Entropy Measures 

       Entropy, which is a measure of the inherent randomness in a probability 

distribution (or set of observed data). And it can be computed using the 

equations: 

      ∑ ∗−=
=

255

0
2

)(log
i

ppEntropy ,…………………………………….…..(4- 4) 

      
n

iHis
p

)(= ,………………………….………………………….….....(4- 5) 

    Where: 

    n is the number of samples.  

 

4.1.3 Energy Measures 

        A term encounter frequently when measuring sound is the RMS, or the 

root mean square, value. The RMS value is a special kind of mathematical 
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average value, which is directly related to the energy contents of the sound.      

The energy content of the sound computed from the relation: 

             

          ∑
=

−=
n

k

kwavnEnergy
1

2)128)((1 ,………………………..………….(4 -  6) 

         Where: 

          n is the number of samples.         

 

4.2 Performance Parameters 

      Several parameters were taken into consideration to study the 

performance of the suggested fractal audio compression system. The 

considered control parameters are: the block size, jump size, quantization 

steps for both scale and offset, maximum and minimum values for both scale 

and offset.   

 

4.3 Audio Test Samples 

      Table (4.1) demonstrates the attributes of five audio test files. Figures 

(4.1) to (4.5) present the waveform of the adopted five test samples. 

       All these five test samples are Wave Sound type with 8 bits sample size, 

PCM format, and 1(mono) which is the number of channels.  

 

Table (4.1) The Attributes of the audio test samples 

Name Test 
Sample1  

Test 
Sample2 

Test 
Sample3 

Test 
Sample4 

Test 
Sample5 

Size 332 KB 82.4 KB 235 KB 70.3 KB 74.9 KB 

Sampling 
Rate 

22kHz 22kHz 22kHz 11kHz 11kHz 

Behavior Music Music Music Speech Speech 
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Figure (4.1) The waveform of the test sample 1 

(Entropy= 6.51: Energy= 496.61) 

 

 

 

 

 

Figure (4.2) The waveform of the test sample 2 

(Entropy= 6.3: Energy= 550.52) 
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Figure (4.3) The waveform of the test sample 3 

(Entropy= 5.27: Energy=130.22)  

 

 

 

 

Figure (4.4) The waveform of the test sample 4  

(Entropy= 5.2: Energy=358.59) 
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Figure (4.5) The waveform of the test sample 5 

(Entropy= 5.36: Energy=563.91) 

 

4.4 Test Results 

       In this section, the five test audio files were tested for examining the 

performance of the proposed fractal audio compression system; in these tests   

the effects of the control parameters on the performance of the compression 

system were investigated as follows:    

Test (1): Block Size Effect 

     The effect of block size in this test for case (test sample-4) is investigated. 

The other compression parameters were taken as in table (4.2). 

                            Table (4.2) Coding parameters 

Maximum Scale 1.5 

Minimum scale -1.5 

Maximum Offset 128 

Minimum Offset -128 

Scale Bits 8 

Offset Bits 8 
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      Different values for the block size were taken, and the results of applying 

the compression system of (test sample-4) are listed in table (4.3). The tests 

results of applying same test on other samples have shown same behavior. 

 

   Table (4.3) The Resulted MSE and PSNR of the reconstructed 
Wave File 

Block Size MSE PSNR Compression Ratio 
Encoding Time 

(sec.) 

4 0.063 60.11 1.4:1 1151.77 

14 2.21 44.68 4.68:1 484.48 

18 5.26 40.92 5.95:1 432.44 

24 25.07 34.13 7.83:1 393.62 

30 51.58 31.0 9.7:1 346.62 
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Figure (4.6) The effect of different block sizes on the 

compression ratio and the PSNR of the reconstructed wave data. 

 

 

It’s clear from this figure that the following points can be concluded: 
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1. By increasing the block size the compression ratio increases.  

2. By increasing the block size the quality of the reconstructed wave is 

negatively affected, i.e. the value of the PSNR becomes lesser and 

the value of the MSE becomes larger. 

3. The encoding time decreases with increase of the block size.    

 

Test (2): Quantization Effect 

        In this test (test sample-4) was taken to demonstrate the effect of 

quantization steps (for both scale and offset) on the compression 

performance. 

        Different values of both (Scale bits and Offset bits) were taken. 

Values of other coding parameters were taken fixed as in table (4.4). 

                             
                         Table (4.4) coding parameters  

Maximum Scale 1.5 

Minimum scale -1.5 

Maximum Offset 128 

Minimum Offset -128 

Block Size 14 

Jump Size 1 

 

      The test results of the quantization steps, for the case (test sample-4); on 

the MSE and the PSNR of the reconstructed wave data are listed in table 

(4.5).   
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Table (4.5) The Resulted MSE and PSNR of The Reconstructed 
Wave File 

Scale 

Bits 

Offset 

Bits 
MSE 

PSNR 

(dB) 

Compression 

Ratio 

Encoding 

Time 

(sec.) 

5 5 353.67 22.64 5.66:1 557.78 

6 6 421.16 21.88 5.32:1 547.65 

7 7 26.23 33.94 4.48:1 546.75 

8 8 2.21 44.68 4.68:1 484.48 

5 7 20.95 34.91 5.32:1 543.60 

6 7 23.73 34.37 5.13:1 545.12 

5 8 2.66 43.87 5.13:1 543.37 

 

Notes: 

1. When the number of bits used to represent the scale value (Scale 

Bits) is equal to 5, and the number of bits used to represent the 

offset value (Offset Bits) is equal to 5 also, the MSE value is too 

large, so to decrease the MSE value the values of the Scale Bits 

and Offset Bits were increased, so when the values of Scale Bits 

and Offset Bits increased to 6 the PSNR value decreases. 

2. So increasing the values of the Scale Bits and Offset Bits will lead 

to make the value of the MSE become well. 

3. It’s noticeable that by decreasing the value of the Scale Bits and at 

the same time increasing the value of the Offset Bits the PSNR 

value would be better.  

4. The best values for both Scale Bits and Offset Bits led to 

acceptable values of MSE, PSNR, and compression ratio is when 

Scale Bits equal 5 and Offset Bits equal 8, therefore in the next 
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(other) tests Scale Bits and Offset Bits are taken 5 and 8, 

respectively. 

5. By increasing the value of the offset Bits the PSNR value increases 

rather than the Scale Bits, that’s means that the value of the Offset 

Bits has effect on the audio quality more than Scale Bits.       

 

Test (3): Jump Size Effect 

      In this test the values of other coding parameters were taken fixed as in 

table (4.6). 

                             Table (4.6) coding parameters 

Maximum Scale 1.5 

Minimum scale -1.5 

Maximum Offset 128 

Minimum Offset -128 

Scale Bits 5 

Offset Bits 8 

Block Size 4 

 

To demonstrate the effect of the Jump Size on the MSE and PSNR values and 

the encoding time. Different values for the jump size were considered.   

    The test results for the case (test sample-5) are listed in table (4.7). 
 

 Table (4.7) The Resulted MSE and PSNR of the reconstructed 
wave data (Test-Sample-5) 

Jump Size MSE PSNR 
(dB) 

Compression 
Ratio 

Encoding 
Time (sec.) 

4 0.13 56.96 1.6:1 392.01 

10 0.13 56.78 1.71:1 174.37 

16 0.92 48.45 1.7:1 118.7 



Chapter Four: Performance Measures and Test Results ٥٧

20 0.96 48.35 1.78:1 96.23 

26 0.99 48.17 1.78:1 82.34 

36 19.95 35.13 1.78:1 69.52 
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Figure (4.7) The Effect of the jump size on the encoding time 

 

Notes: 

1. By fixing the block size and varying the jump size the encoding 

time will be highly affected. 

2. By increasing the jump size the encoding time will be decrease, 

because the increase in jump size will lead to small domain pool, so 

the searching process for the best match domain block will need 

smaller number of tests. 

3. Increasing the jump size will affect the audio quality of the 

reconstructed file, as shown in the table (4.7) the value of PSNR 

decreases when jump size increases.    

4. Increasing jump size rather has no effect on the compression ratio.       
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Test (4): Maximum Scale and Minimum Scale Effects 

      In this test three test samples were taken as test materials. The first one 

is (test sample-4). The values of other coding parameters were taken fixed as 

in table (4.8). 

                            Table (4.8) Coding parameters  

Block size 20 

Jump Size 8 

Maximum Offset 128 

Minimum Offset -128 

Scale Bits 5 

Offset Bits 8 

 

To demonstrate the effect of different maximum scale and minimum scale 

values on the PSNR and MSE of the reconstructed wave data. Different 

values for maximum and minimum scale were considered. 

     The test results for the case (test sample- 4) are listed in table (4.9). 

 
Table (4.9) The MSE and PSNR of the reconstructed wave data for 

the first test set. 

Min. Scale Max. Scale MSE PSNR 
(dB) Compression Ratio 

-1.5 1.5 20.91 34.92 7.92:1 

-2 2 15.22 36.30 7.92:1 

-3 3 14.45 36.53 7.92:1 

-4 4 14.05 36.65 7.92:1 

-5 5 14.93 36.38 7.92:1 

-8 8 17.60 35.67 7.92:1 
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    The second test is applied on (test sample -5) with the following fixed 

coding parameters as in table (4.10). 

                           Table (4.10) Coding parameters 

Block size 20 

Jump Size 8 

Maximum Offset 128 

Minimum Offset -128 

Scale Bits 5 

Offset Bits 8 

 

   The test results of the second test are listed in table (4.11). 

 

Table (4.11) The MSE and PSNR of the reconstructed wave data 
for the second test set.                     

Min. Scale Max. Scale MSE PSNR Compression Ratio 

-1.5 1.5 69.90 29.68 7.89:1 

-2 2 61.04 30.27 7.89:1 

-3 3 48.23 31.3 7.89:1 

-4 4 45.24 31.57 7.89:1 

-5 5 43.68 31.72 7.89:1 

-8 8 45.22 31.57 7.89:1 
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      The third test is applied on (test sample 2) with the following fixed 

coding parameters as in table (4.12). 

                          Table(4.12) Coding parameters 

Block size 10 

Jump Size 10 

Maximum Offset 128 

Minimum Offset -128 

Scale Bits 5 

Offset Bits 8 

 

    The test results of the third test are listed in table (4.13). 

 

Table (4.13) The MSE and PSNR of the reconstructed wave data 
for the third test set.                     

Min. Scale Max. Scale MSE PSNR Compression Ratio 

-1.5 1.5 28.92 33.51 2.87:1 

-2 2 37.00 32.44 2.87:1 

-3 3 20.18 35.08 2.87:1 

-4 4 17.77 35.63 2.87:1 

-5 5 7.94 39.13 2.87:1 

-8 8 18.27 35.51 2.87:1 

 

Notes: 

1. The results of the test set (first) indicate that the scale boundary has 

an effect on the MSE. In other words the increase in value of Min. 

scale (up to 4) will decrease the value of MSE. But the further 

increase in value of Min.scale will cause slight increase in MSE.    



Chapter Four: Performance Measures and Test Results ٦١

2. The results of the test set (second) indicate that the value of the 

MSE decreases by increasing the Min.scale (up to 5) further 

increase in value of Min.scale will increase the value of the MSE. 

3.  The results of the test set (third) indicate that the value of the MSE 

decreases by increasing the Min.scale (up to 5) further increase in 

Min.scale value will increase MSE value. 

 

Test (5): Maximum Offset and Minimum Offset Effects 

       In this test set two test samples were taken: the first part of this test set is 

applied on (test sample-4). In this test the following coding parameters are 

taken fixed as in table (4.14). 

                         Table (4.14) Coding parameters 

Block size 20 

Jump Size 8 

Maximum Scale 4 

Minimum Scale -4 

Scale Bits 5 

Offset Bits 8 

 

To demonstrate the effect of maximum offset and minimum offset values on 

the PSNR and MSE of the reconstructed wave data. Different values for 

maximum and minimum offset were considered. 

   The test results of (test sample 4) are listed in table (4.15). 
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Table (4.15) The resulted MSE and PSNR of the reconstructed 
wave data for (test sample- 4)                     

Min. Offset Max.Offset MSE PSNR Compression Ratio 

-128 128 14.05 36.65 7.92:1 

-256 256 13.95 36.68 7.92:1 

-512 512 16.21 36.03 7.92:1 

 

      The second part of this test set is applied on (test sample-2). In this test 

the following coding parameters are taken fixed as in table (4.16). 

 

                           Table (4.16) Coding parameters 

Block size 40 

Jump Size 40 

Maximum Scale 5 

Minimum Scale -5 

Scale Bits 5 

Offset Bits 8 

 

  The test results of (test sample -2) are listed in table (4.17). 

 

Table (4.17) The resulted MSE and PSNR of the reconstructed 
wave data for (test sample-2)                      

Min. Offset Max. Offset MSE PSNR Compression Ratio 

-128 128 45.66 31.53 12.3:1 

-256 256 726.8 19.51 12.3:1 

-512 512 728.3 19.50 12.3:1 
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Notes: 

1. In the first part of this test set, taking the offset value 128, 256 or 512 

has no real effect on PSNR value it’s rather stay the same, according to 

the PSNR values obtained. 

2. In the second part of the test set the change may appear larger when 

taking Max.Offset equal to 256 and 512, where PSNR value decrease. 

But when Max.Offset value equal to 128 PSNR value will be larger 

than that of 256 and 512, according to the PSNR values obtained. 

     

      Further tests made on all five test samples, the resulted MSE and PSNR 

of the reconstructed wave data are listed in table (4.18). 

 
Table (4.18) The resulted MSE and PSNR and compression ratio 

of the reconstructed wave data 

Test 
Samples  

Block 
Size 

Jump 
Size 

MSE PSNR Compression 
Ratio 

Encoding Time 
(sec.) 

Sample1 40 40 12.42 37.18 11.44:1 308.08 
Sample2 40 40 44.28 31.61 12.3:1 22.95 
Sample3 40 40 32.38 33.02 12.91:1 138.71 
Sample1 10 10 1.77 45.63 2.7:1 2284.36 
Sample2 10 10 28.92 33.51 2.87:1 149.6 
Sample3 10 10 6.41 40.05 3.06:1 1014.61 
Sample1 60 4 16.98 35.83 15.51:1 2317.38 
Sample2 40 4 37.72 32.36 11.03:1 162.85 
Sample3 20 4 17.22 35.76 5.86:1 1610.09 
Sample4 10 1 1.09 47.72 3.7:1 621.39 
Sample5 10 1 3.75 42.38 3.65:1 820.38 
Sample4 14 4 5.07 41.08 5.5:1 121.45 
Sample5 14 4 18.97 35.35 5.42:1 160.50 
Sample4 20 8 20.91 34.92 7.92:1 54.71 
Sample5 20 8 69.90 29.68 7.89:1 62 
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Table (4.19) Test samples and corresponding PSNR and energy 

Test 
Samples  

Block Size PSNR Energy 

Sample3 40 34.02 130.22 

Sample4 40 33.92 358.59 

Sample1 40 31.18 496.61 

Sample2 20 30.61 550.52 

Sample5 20 29.68 563.91 
 

 

                     

29
30

31
32

33
34

35

0 100 200 300 400 500 600

Energy

P
S

N
R

 

          Figure (4.8) The relationship between PSNR and energy 

Notes: 

1. This figure is to study the behavior of the test samples sound quality 

with its corresponding energy for each test sample.  

2. The figure (4.8) shows that the PSNR value decreases when the energy 

increases.  

 

Table (4.20) Test samples and corresponding PSNR and entropy 

Test 
Samples  

Block Size PSNR Entropy 

Sample4 40 33.92 5.2 

Sample3 40 34.02 5.27 

Sample5 40 29.68 5.36 

Sample2 20 30.61 6.3 

Sample1 20 31.18 6.51 
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Figure (4.9) The relationship between PSNR and entropy 



CHAPTER FIVE 
 

Conclusions and Future Work Suggestions 
 
5.1 Conclusions 

       In this work an attempt is made to design and implement a fractal audio 

compression system. 

       From the test results presented in the previous chapter, some remarks 

related to the behavior and performance of the suggested fractal audio 

compression system were concluded, among these remarks are the following: 

1. The encoding time is inversely proportional with both Block size and 

Jump size. 

2. The compression ratio and the MSE value of the fractal audio 

compression system are direct proportional with both block size and jump 

size, while the PSNR value is inversely proportional with both block size 

and jump size. 

3. As the jump size is small, the domain pool is large, so a better quality of 

the reconstructed audio will obtain. 

4. The IFS coefficients (Scale and Offset) highly affect the compression ratio 

and it was improved when they are quantized. But these coefficients do 

not have any effect on the encoding time. 

5. Fractal method can provide good compression performance for sounds.  

6. In this work, the implemented fractal audio compression method has   

very long encoding time. This can considered as the main weak point in 

fractal compression method. 

7. The long time process implied in the encoder is resulted from the 

matching module, where for each range block the searching process is 

trying to find the domain block, which satisfy the best match with the 

considered range block among the other whole domain blocks taking into 
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consideration the symmetry states. So this searching with its matching, 

transformation, will lead to long encoding time for fractal method. 

 

5.2 Future Work Suggestions 

The followings are recommendations for the future work: 

1. Since the resulted IFS code consists of only the parameter vectors, 

then it is possible to use additional lossless data compression 

method to further compress the PIFS code and obtain better 

compression performance such as Huffman coding method. 

2. Trying to use other audio partitioning scheme (variable block size), 

which may cause a better quality for the reconstructed audio. 

3. using some classification methods to classify the domain blocks 

and the range blocks. 

4. Develop the software system to open the coded file directly 

(decode it and play it at the same time). 

5. In order to reduce the long encoding time of fractal compression 

and make it reasonable. We suggest an approach depends on the 

idea of reducing the matching search operation by suggesting new 

searching mechanism. 

6. Elimination of the unvoiced data samples from the original input 

data to decrease the compression time. 
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List of Abbreviations 
 
 

Abbreviation Meaning 

ADC Analog-to-Digital Converter 

ASCII An acronym for American Standard Code for 
Information Interchange 

AFC Audio Fractal Compression 
CD-ROM Compact Disk – Read Only Memory 

CR Compression Ratio 
dB Decibel 
FIC Fractal Image Compression 

GSM Global System for Mobile Telecommunication 
Protocol 

HV Horizontal-Vertical Partition 
IFS Iterated Function System 

JPEG Joint Photographic Expert Group 
MP3 MPEG Audio Layer 3 

MPEG Moving Picture Expert Group 
MSE Mean Squared Error 
PCM Pulse Code Modulation 
PIFS Partitioned Iterated Function System 
PSNR Point to Point Signal to Noise Ratio 
RIFF Resource Interchange File Format 
SNR Signal- to- Noise Ratio 
WT Wavelet -Transform 
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