W=y BN

i Cad (38a Lgia (i el dabise ol aladinly sagae Jazas (§ ke cliaaia il
i g J8G aroall Sl jlie) ki 3V e gazaal) G seall 33 5a e ddadlall ae dle
(Sas
Liiall 35k (e ety CliLally £l L@y Al)kl oda saa) (& (o) sl Iaruzall 44y)k
coal Al Azl)l EYalaall (e 8 ppray Badas aubase el ke e aatad g A0l
Alal) s Lay) Jus sale) (San s aall Jlaa) Y alead) s3a O baa Jle b | 5 ,L3Y)
(PIFS)tsaal) JSill alai fase e aing (5) suSll & gaall a5l
JVeda «&pall 8 aal g5 Al (Affine redundancy)d! daiew) soSll & pall Jara
& geall SN 4Ll a3 (redundancy)
iy aal g) g dgaldial) Jalas Walals o 58y 6 sl O gl Jaz a5 A AdIS,
psty b aay g o guall 8 (different places)iiliss (Sl s (different scal es)idliss
.(redundancy)d) e Sas be AS) Cadag
D gall i ia dlee 8 (5) gul) Jniiall (3audad Al (g 3T A glae M Coagy Canill 138
Al 5 (Encoding Unit) il dda e A6 s jall coprila o (e () S0 aainal) pllail)
.(Decoding Unit) sl <18 s
Jalaall Jlaall J5S e a8 JHS (58N (a9 (A (Laal) o gall 1 hay sl A je 4
=~ s (Domain Pool) Jlswll 5 eas JiS 5 i e I a5 (Range Pool)
JIS) JU (5 slusiall aadaill 43 yha aladiuly O geall audal 2y o5 (e g AdAlaie (5S35 () (Saall
ety @llh 5 Llaal) Jlaall (8 AN JSE Jlaall 8 J5S Jiadl alag) oy Gl a2y anall 4 gluia
Jraldl o 3y puadall s je ¢35, (Affine Transformation) e s <3 saill ¢ g3) aa)
s Agabiiall JaSl) alagl Alee (), Jaliall Jlaall € (e 3B JSE) gl 238 (< elae)
A0S (g) 5l Jarall A8y e e 325 L 1 5y sha g (3 atiad Badae Al Ciljlec

azin

A gea il iled el aladiuly b LA &5 (2) 13gd La 5l &5 3l Sl Ll
Laall Jaee alasiul 2 dlae y 4508 6,00y JI s alodiuly 2 dizall aldaill 3aws a5 28]
aliiiaal) il 48y Clus COLlaaS (PSNR) G sl 3, 4 5 (M SE) szl
Adiaall alill & 2K 4l oy

6 sloas ALY amn Al 8 W) Al Ay o Canl) (e Aaliiinall piliall (s cuilS
A Lo (£4) (ol A aaa a8 400 diall L) ¢(10,0:)) Jasacal) A (3 (14)
e ()l (Y 0) (ssbaat 5 AR Al 8 LeS 3 jpia AES aan Ala o5 ¢()),0) 1)) Laucall
(V+) sbost AN pnn Al & I W) il SIS 5 ¢(dB Y0,V s sk 533 (PSNR)J)
(dB £2,17) (s sk (PSNR)J) 2 4

Abstract

Fractal audio compression is based on the concept of a partitioned
iterated function system (PIFS). Fractal audio compression exploits the affine
redundancy that is commonly present in audio; this redundancy is related to
the similarity of an audio with itself.

In other words, fractal audio compression finds similar patterns that exist
in different scales and different places in audio, and then eliminates as much
redundancy as possible.

In this work the possibility of implementing fractal audio compression is
Investigated.

The implemented system consists of two maor units; the first is the
Encoding unit and the second is the Decoding unit.

Encoding is done by partitioning the range pool (which is the original
audio) into non-overlapping blocks, called range blocks, and partitioning the
domain pool (which is the result of the original audio after down sampling)
into overlapped blocks with the same size of range blocks called domain
blocks. A fixed size-partitioning scheme is used to partition the domain pool
and the range pool. After generating the range and domain pools, for every
range block, the best-matching domain block in the domain pool is searched
for by performing a set of affine transformations on them. Thus the encoding
Is completed by saving the optimal affine parameters for every range block.
The Decoding process can be done by repeatedly applying the affine
transformation on an initially blank audio and its subsequent reconstructed
audio, until it completely reconstruct an approximate wave to the original
audio.

The time required to compress an audio file is affected by the size of each
block being extracted from the proceed audio file; this means smaller block
size implies longer time required to compress the corresponding audio file.
The implemented system was tested using five wave samples of data.

The proposed work was implemented by using Visual Basic (6.0) as a
programming language, the fidelity measure MSE and PSNR were used to
check the results of the whole implemented technique.

The best results obtained from the implemented system were for the test
(sample -1) in case were block size equal to (60) the compression ratio is
(15.51:1), also for test (sample-2) were block size equa to (40) the
compression ratio is (11.03:1), and for small block size as in test (sample-3)
were the block size is (20) the value of the PSNR is good that its equal to
(35.76 dB), aso for test sample-1 when the block sizeis (10) the PSNR value
(45.63 dB).

Acknowledgment

I would [ike to express my sincere appreciation to my
research supervisor, Dr. Loay A. George, for giving me the
major steps to go on to explore the subject, shearing with
me the ideas in my research “Fractal Audio Compression”
And perform the points that I felt were important.

Also I wish to thank, Dr. Laith A. Al-Ani my
supervisor for his available advice and encouragement.

Grateful thanks for the Head of Department of Physics
Science Or. Ahmad K, Ahmad.

I wish to thank the staff of Physics Science Department at
. the AL-Nahrain University for their help.

) I would like to say "thank you' to my faithful friends for

h ° . . .
C v supporting and giving me advises.

&
bQ '}31

B~

Appendices

Appendix A

Wave PCM Sound File Format

The WAVE file format is a subset of Misadt's RIFF specification for
the storage of multimedia files. A RIFF file stadat with a file header
followed by a sequence of data chunks. A WAVE ifleften just a RIFF file
with a single "WAVE" chunk which consists of twobsahunks -- a "fmt"
chunk specifying the data format and a "data" chooktaining the actual

sample data. Call this form the "Canonical form".

_ File offset Field Size
field name
endiEn (ytes) hytes)
|:I " L1} H
big ChunkID 4 - The "RIFF” ¢hunk descriptor
4
It . Chunk3ize 4 > The Format of concern here is
bigy Format 4 I “WANVE', which requires two
_ 12 sub-chunks; "fmt " and "data”
big Subchunk1 1D 4 I
16
little Subchunk1 Size 4
20
little AudioFormat. 2
_ 22 The "fmt " sub-chunk
little HumChannels Z
24 :
little SampleRate 4 describes the format of
_ 23 the sound information in
hitle . ByteRate 4 the data sub-chunk
little BlockAlign g
: aid
little BitsPer Sample 2 S
36
i Subchunkz2ID 4 1
_ 40 The "data” sub-chunk
little Subchunkz Size 4
44 - ;
0 > Indicates the size of the
little 0 sound information and
% contains the raw sound
ﬁ data
3 d
o

Offset Size Name Description

The canonical WAVE format starts with the RIFF hexad

0 4 ChunkID Contains the letters "RIFF" in ASCII form
(052494646 big-eardform).

4 4 Chunk Size 36 + SubChunk2Size, or more precisely:
4 + (8 + SubChunkZ&Si+ (8 + SubChunk2Size)
This is the sizetlod rest of the chunk
following this numberhis is the size of the
entire file in bytesnus 8 bytes for the
two fields not indied in this count:
ChunkID and Chunlke&iz

8 4 Format Contains the letters "WAVE"
(0x57415645 big-ardform).

The "WAVE" format consists of two subchunks: "fratid "data":
The "fmt" sub chunk describes the sound data'sdorm

12 4 SubchunkllD Contains the letters "fmt"
(0x666d7420 big-eardform).
16 4 Subchunkl1Size 16 for PCM. This is the size of the
rest of the Subchwikich follows this number.
20 2 AudioFormat PCM =1 (i.e. Linear quantization)
Values other thaimdicate some
form of compression.
22 2 NumChannels Mono = 1, Stereo = 2, etc.
24 4 SampleRate 8000, 44100, etc.
28 4 ByteRate == SampleRate * NumChannels * BitsPerSaspl
32 2 BlockAlign == NumChannels * BitsPerSample/8
The number of byfimsone sample including
all channels. | wendvhat happens when
this number isn'tiateger?
34 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.
2 ExtraParamSize if PCM, then doesn't exist
X ExtraParams space for extra parameters

The "data" subchunk contains the size of the dadlalae actual sound:

36 4 Subchunk2ID Contains the letters "data"
(0x64617461 big-eardform).

40

4 Subchunk2Size == NumSamples * NumChannels *

BitsPerSample/8

44

This is the numbébytes in the data.
You can also thirfklus as the size
of the read of thidshunk following this
number.

* Data The actual sound data.

Notes:

The default byte ordering assumed for WAVE datasfilis little-
endian. Files written using the big-endian byteeoirty scheme have
the identifier RIFX instead of RIFF.

The sample data must end on an even byte boundédrgtever that
means.

8-bit samples are stored as unsigned bytes, rarfigphgO to 255. 16-
bit samples are stored as 2's-complement signedarg, ranging from
-32768 to 32767.

There may be additional subchunks in a Wave datarst If so, each
will have a char [4] SubChunkID, and unsigned & ChunkSize,
and SubChunkSize amount of data.

RIFF stands foResource Interchange File Format.

_ﬁ?ﬁwml - @!’.;{,

: R 380) 4y 5 gt

< z . e

% % w&ﬂ‘u#‘ggiu‘w‘f)bj

2 3 () Azl
gy ™

Gl g e\dﬁu@ < gl Jan.a

AL
¢3S (gl Azala oyl asle and) dass
sLjudl) agle (8 piualall da jy Ju Gldlaiae e

8 (e

Qs auslas (5 98 ol g
(Yoo ¥ Gl dnala s) sllS)

sl il

) el ae &l zos o o

\2"0‘;‘5&\%3\-‘“; Y..od\ﬁ}

Supervisor Certification

We certify that this thesis was prepared under our supervision at the
Department of Physics/ College of Science/ Al-Nahrain University, by
Wesam Fawzi Jassm Mohammed as partia fulfillment of the
requirements for the degree of Master of Sciencein Physcis.

Signature; Signature:

Name: Dr. Loay A. George Name: Dr. Laith A. Al-Ani
Title: Senior Rreasercher Title: Assist Professor

Date: / /2005 Date: / /2005

In view of the available recommendations, | forward this thesis for
debate by the examination committee,

Signature:

Name: Dr. Ahmed K. Ahmed

Title: Head of the Department of Physics Science, Al-Nahrain
University.

Date: / /2005

Certification of the Examination Committee

We chairman and members of the examination committee, certify that we have
studied the thesis entitled (Fractal Audio Compression) presented by the student
Wesam Fawzi Jassm Mohammed and examined him in its contents and in what is
related to it, and we have found it worthy to be accepted for the degree of Master of
Science in Physics Science with grade Very Good.

Signature:

Name: Dr. Geen Istefan
Title: Assistant Professor
Date: / /2005

(Chairman)

Signature:

Signature:
Name: Dr. Bushra K. AL-Abudi
Title: Assistant Professor
Date: / /2005
(Member)

Name: Dr. Ali A. Dawood

Title: Assistant Professor

Date. / /2005
(Member)

Signature:

Name: Dr. Loay A. George

Title: Senior Rreasercher

Date: / /2005
(Supervisor)

Signature:

Name: Dr. Laith A. Al-Ani

Title: Dean of College of Science
Date: / /2005

Signature:

Name: Dr. Laith A. Al-Ani

Title: Assist Professor

Date: / /2005
(Supervisor)

CHAPTER ONE
GENERAL INTRODUCTION

1.1Digital Audio

Audio is the range of frequencies within lmmmearing (approx. 20Hz at
the low to a high 020,000H2. In computers there is an audio card contains a
special built-in processor and memory for processindio data and sending
them to speakers in the computer. An audio file iecord of captured sound
that can be played back. Sound is a sequence afatigtanalog signals that
are converted to digital signals by the audio casiiig a microchip called an
analog-to-digital converter (ADC). When sound iay@d, the digital signals
are sent to the speakers where they are conveatgdtb analog signals that
generate varied sourlie98].

Audio files are usually compressed for sgerar faster transmission.
And can be sent in short stand-alone segmentsfample, as files in the
Wave File format). In order for users to receiveirsdb in real-time for a
multimedia effect, listening to music, or in ordertake part in an audio or
video conference, sound must be delivered as stngarsound. More
advanced audio cards support Wavetable, or preeaptables of sound. The
most popular audio file format today is MP3 (MPEGALdio Layer-3)
[Kie98]. The digital representation of audio data offe@nynadvantages:
high noise immunity, stability, and reproducibiliudio in digital form also
allows the efficient implementation of many audrogessing functions (e.g.,
mixing, filtering, and equalization) through thegal computer. The
conversion from the analog to the digital domaigibe by sampling the
audio input in regular, discrete intervals of tiamed quantizing the sampled
values into a discrete number of evenly spaceddeVée digital audio data

consists of a sequence of binary values repreggtitennumber of quantizer

Chapter One: General I ntroduction \

levels for each audio sample. The method of reptesg each sample with
an independent codeword is called Pulse Code Madaol&PCM)[Pan93].

1.2 Data Compression [Sal00]

Data transmission and storaget owney. The more information being
dealt with, the more it costs. In spite of this,sindigital data are not stored
in the most compact form. Rather, they are stoned/hatever way makes
them easiest to use, such as: ASCII text from wotessors, binary code
that can be executed on a computer, individual &snfrom a data
acquisition system, etc. Data compression is tmeige term for the various
algorithms and programs developed to address tbislgm. A compression
program is used to convert data from an easy-tdfarseat to one optimized
for compactness. Likewise, an uncompressing prognaturns the

information to its original form.

1.3 Types of Data Compression
By considering the charactersstmf the reconstructed data after the
process of compression and decompression, dataressipn can be divided

generally into two major types: lossless and lossy.

1.3.1 Lossless Data Compression

Lossless data compression has a propertyaftea the compression and
decompression operation, an identical duplicatheforiginal is reproduced.
Figure (1.1) shows the typical block diagram ofsless data compressor.
The possibility of this operation exists, and Stanftha0l] has shown a
theoretical limit for this compression operationdpnsidering the statistical
characteristics of the source data stream. In l@gs)ess compression system
can be built by making use of symbol probabilitedsthe data stream. By

representing frequently appearing symbols with nocodes and rarely

Chapter One: General I ntroduction i

appearing ones with longer codes, we can encoderiti@al to a stream of
codes with shorter total length. These systemsuaually called statistical
coding systems, since they rely on the statistich® incoming source to
determine coding symb§Zol98].

Input | Statistical Output
Stream Model | Encoder Stream

A 4

A 4

Figure (1.1) Lossless Compressor

Many lossless compression techniques existadays. For examples,
Huffman coding, arithmetic coding, and Lempel-Zigaithms are among
the most efficient of these lossless compressionnigues, they are suitable
for wide range applications, from hard disk filengwression to digital
medical image archiving. In fact, the lossless propof these techniques
makes them good for most applications universaBince data are
compressed without any loss. However, lossless oesgpn often has a low
compression ratio. Sometimes the compressioniissggnificant that making
it not attractive enough in some applications, Wwhicequire large

compression ratio, such as image and speech cosiqu@d/at95, Zol98].

1.3.2 Lossy Data Compression

As an alternative to lossless pmasion, lossy compression techniques
can be considered if we want to have a higher cesgmon ratio. The
important point of lossy compression is that, msnpression procedure can
be adjusted to sacrifice some accuracy in ordgato a lot of compression.

In other words, degradations are allowed in themstructed data. Some

Chapter One: General I ntroduction ¢

times, the gain of lossy compression is so sigaifid¢hat it leads to a very
small compressed data size, which contrasts |lessl@sipression. Most of
the lossy compression techniques include a quditiizgtage as shown in
Figure (1.2) to perform lossy quantizing procedii&s00, Wat95].

This is especially the case fassly compression of multimedia signals
including images, sounds, and moving pictures. Témulting quantized
coefficients are then encoded losslessly to fornoaput stream. In some
techniques, this quantization process is very ieffiicthat it can achieve 50
times compression or even more. Nowadays, manyimedia applications

use modern lossy compression techniqde$98, Wan00].

Transformation

And -~ | Statistical Output
Quantization Model Encoder Strean

Figure (1.2) Lossy Compressor

A

These applications include imagmeech, and video compression. Some
popular examples are JPEG for image compressionyl &8 speech
compression, and MPEG-2 for video compression. Negkss, some
mission-critical applications, such as medical imggand satellite image
transmission, still require lossless compressichrigues. Since lossless and
lossy compression techniques have different adgastathey are both

important to multimedia compressi@fol 98, Wan00].

1.4 Audio Compression
In order to more efficiently broadcast @caord audio signals, the

amount of information required to represent thei@usignals may be

Chapter One: General I ntroduction °

reduced. In the case of digital audio signalsatimeunt of digital information
needed to accurately reproduce the original putske anodulation(PCM)
samples may be reduced by applyingdigital compression algorithm,
resulting in a digitally compressed representatibthe original signal. (The
termcompression used in this context means the compression of rieuat
of digital information, which must be stored or seied). The goal of the
digital compression algorithm is to produce a @igitepresentation of an
audio signal which, when decoded and reproducadhdsthe same as the
original signal, while using a minimum of digitaiformation (bit-rate) for
the compressed (or encoded) representffidrs01].

Digital compression of audio is useful weer there is an economic
benefit to be obtained by reducing the amount gitali information required
to represent the audio. Typical applications arsaitellite or terrestrial audio
broadcasting, delivery of audio over metallic oticgd cables, or storage of
audio on magnetic, optical, semiconductor, or otterage medipAT S01].

Audio compression algorithms &vereated to enable audio to be saved
more effectively. A compressor codec takes an wailguncompressed audio
track and reduces its size. Because of the snsiley the speed requirements
for the storage devices are greatly reduced. Ty p&ck the compressed
audio data, a decompression algorithm is used ¢omdpress the data so it

can be heard.

1.5 Fractal Compression [Xia04]

Fractal compression is a lossy compressiethod used to compress
Images using fractals. The method is best suiteghh@tographs of natural
scenes. The fractal compression technique reliegherfact that in certain

iImages, parts of the image resemble other pattseecdame image.

Chapter One: General I ntroduction 1

Fractal compression seems to be one of ttemd®ologies with "a great
future behind it". It promised much in the late @98 when in some
circumstances it appeared to compress much bdtar JIPEG, its main
competitor in those days.

Fractal compression is a radical departunenfthe conventional image
compression techniques. The difference betweendtthe other techniques
Is much like the difference between bitmapped gicgand vector graphics.
Rather than storing data for individual pixels,cted compression stores
Instructions or formulas for creating the sourcea@e or audio).

Like vector quantization, fractal compressi® asymmetrical. Although
it takes a long time for compression, decompresssonery fast. These
asymmetrical methods are well suited to such apidios as video on a CD-
ROM where the user doesn't care about compressibddes expect to see
results quickly. Decompression simply reads thehemagtical formulas and
recreates the source.

The tough part is generating the formulascéorectly represent the
source. Fractal compression assumes that everyeinmgcomposed of
smaller images just like them. Blue sky in an im&geomposed of smaller
patches of blue. Tree branches can be broken mébler branches and then
twigs those all have similar structure. The comg@stechnique tries to find
as many of these relationships in an image and tleseribe them with
mathematical formulas. This is done within regiasfsan image called
domain regions. These domain regions are deternbyealsing techniques
such as frequency analysis, edge detection, amgréexariation analysis.

Like other lossy compression schemes, fraobahpression involves a
tradeoff, which is little different from the othenethods. The tradeoff is
between image quality and compression time. Thgdoithe encoder has to
create the descriptive formulas, the higher thdityuaf the output image.

Like all other lossy compression schemes, fractampression also

Chapter One: General I ntroduction \

introduces artifacts. These include softness amdtgution of details with

other details. This substitution is typically urelged in natural images.

1.6 Aim of Thesis

This research aims to study the performameel@ssy audio compression

system based on partitioned iterated function aygtelFS) coding method.

The effect of all control parameters of the perfante of the designed and

implemented compression system will investigatanmattempt to achieve a

good compression ratio with keeping the audio gquabove an acceptable

level.

1.7 Related Work

1.

In 1993, Sinha and TewfilSin93] presented a low bit rate transparent
audio compression using a dynamic dictionary artthoped wavelets.
The authors proposed an audio synthesis codingaagithich employs
an optimized wavelet transform (WT), based adaptiaasform coding
to exploit perceptual masking. In addition, a dymawdictionary was
used to extract source redundancies.

In 1995, Baharav, Krupnik, and KarrjiBah95] presented in their paper
the basic fractal coder suggested by Jacquin. Tddercfinds and
encodes the parameters of a partitioned iteratectitn system (PIFS),
which approximate the signal as a fixed point ofcantractive
transformation.

In 1995, DegendbDeg95], her research group at the technical university
of Berlin developed a speech compression part ef((a&SM) Global
System for Mobile telecommunication protocol suitat is currently

used as the Europe's most popular protocol fortaligellular phones.

Chapter One: General I ntroduction A

The GSM consists of an input of frame of 160 samples; 13-bit linear
PCM values sampled at 8 kHz, so each frame cornss2

4. In 1996, Shamooftha96], had presented algorithms for encoding high
fidelity audio at low bit rate. The ultimate godlthis work is to provide
fast algorithms for sub-band perceptual coding #natcapable of audio
coding at bit rates that permit transmission ofhiglelity audio over
broadcast and telephone channels, and storagedmf an low capacity
media.

5. In 2002, Mohammed Abbd#ba02], proposed a genetic algorithm as a
new lossy compression method for multimedia dats f(image and
audio), and he concluded that using genetic algoritvith iterated
function system can improve the compression perdoca in some
respects, but it fails in others.

6. In 2003, Yokoyama, Watanabe, and Sugayaok03], proposed in their
paper a new retrieval system of images using P&€®< In this paper
they suggested a new retrieval technique that csegpression codes;
especially they used fractal image compression)(F@thod. This
compression method is relatively recent techniquel@ased on the self-
similarity of images. Exploiting the robust propedf this compression

method, they have developed a new similarity-bast&tkeval system.

CHAPTER TWO
BASIC CONCEPTS OF FRACTAL

2.1 Introduction

There are many shapes in the natural wdrkl took so complex that we
could not express them by several simple functioBst after B. B.
Mandelbrot (1977) devised the notion of ‘fractaflgn77], we are able to
express many natural shapes by some simple algwitfrom that time,
dedicated hardware and software of computer systeawms been improved
day by day. And various researches on how to cocistractal shapes or how
to imitate natural creatures have been developezBg].

The termfractal (from Latin fractus -means irregular, fragmented)
applies to objects in space or fluctuations in ttimet possess a form sélf-
similarity and cannot be described within a single absolui@esof
measurement. Fractals are recurrently irregul@pace or time, with themes
repeated like the layers of an onion at differentls or scales. Fragments of
a fractal object or sequence are exact or stalstiapies of the whole and
can be made to match the whole by shifting andcttieg. Sequential fractal
scaling relationships are observed in many phygiod processes. Spatial
structures of many living systems are fractal. talageometry has evoked a
fundamentally new view of how both nonliving angidig systems result
from the coalescence of spontaneous self-similactdlations over many
orders of time and how systems are organized iotmptex recursively

nested patterns over multiple levels of sp#&de00].

2.2 Definition of Fractal

The formal mathematical definition of fracte defined by Benoit

Mandelbrot. It says that a fractal is a set forahhihe Hausdorff Besicovitch

Chapter Two: Basic Concepts of Fractal \

dimension strictly exceeds the topological dimensi&is94, Man83]

However, this is a very abstract definition. Geligrave can define a fractal
as a rough or fragmented geometric shape that easubdivided in parts,
each of which is (at least approximately) a redesied copy of the whole.

Fractals are generally self-similar and independéstale.

2.3 Properties of Fractal
A geometric figure or natural object is stde fractal if it combines the

following characteristicsHis94:

a) Its parts have the same form or structure as th@ey except that they
are at a different scale and may be slightly deéarm

b) Its form is extremely irregular or fragmented, aedhains so, whatever
the scale of examination.

c) It contains "distinct elements" whose scales aw® varied and cover a
large range.

d) They have a perimeter of infinite length but asaaimited.

e) Fractional dimensionA non-integer dimension. We know that the
dimension of lines, squares, and cubes are respsctl, 2, and 3. For
example the dimension of a fractal may be 1.342.

f) Formation by iteration.

Chapter Two: Basic Concepts of Fractal AR

2.4 Fractal Development [Xia04]

Unfortunately, fractal was not developeddata compression in the first
place, but at that time it was considered as eemifft kind of geometry
introduced by the IBM mathematician Benoit B. Malbdet through his
book "The Fractal Geometry of Nature" published1877. At 1981, the
mathematician John Hutchinson found the theoryeviied function system
to model collections of contractive transformatiansa metric space as
dynamical systems, which later provided some theme support of
recognizing fractal in the metric space. It was hiel Barnsley, eventually,
who generated the fractal model using iteratedtfonsystems (IFS’s), and
led to encode images to achieve significant congwas However,
Barnsley's image compression algorithm based octdranathematics was
inefficient and unpractical suffering too big sdang space problem. At
1988, one of Barnsley's ph.D students, Arnaud Jacgsuggested a
modified scheme for representing images, callettjmened iterated function
systems (PIFS’s). The basic idea of the algorithito iconvert an image into
the PIFS’s, instead of looking at the whole imajeimmediately made
fractal image compression more practical, howevéh gacrificing the
compression ratio. After Jacquin’s PIFS, there waany other modified
schemes, but none of them made any significantrpssg Most of later
publications on the fractal subject stay on theRlbut focus on the possible
improvements. The two big problems of Jacquin’®atgm are the partition

scheme selection for encoding, and the speed prnofgieencoding.

2.5 Fractal Examples

In this section two fractal examples are pted for demonstration
purposes.

The first example is generating SierpinsKifeangle using IFS. We can

see from Figure (2.1) that the Sierpinski’'s trianglan be generated by

Chapter Two: Basic Concepts of Fractal VY

infinitely repeating a procedure of connecting thielpoints of each side of
the triangle to form four separate triangles, amttirng out the triangle in the
center Kis99].

/O A

(a) Initial Image (b) First Iteration (c) Ffth Iteration (d) Sixth Iteration

Figure (2.1) Sierpinski triangle example of generat ing sequence

by iteration .

This process can be viewed as three transfitons map the original

triangle to the new 3 triangles as shown in Figara).

Y Y

Figure (2.2) Sierpinski Triangle mapping using thre e affain

transformations .

Chapter Two: Basic Concepts of Fractal ‘Y

The mathematical expressions of the transformatoashe followings:

X 05 0 | x
w, e | RSP (2-1)
y 0 05]y
'x] [05 O |[x] [O]
W, = + PO PUPPP (2-2)
'y] [0 05]y] [05]
'x] [05 O |[x] [05]
W, = + PP PP PPPPRPPPPRPRR (2-3)
y| L0 05|y| | 0]

It is important to observe that there is hard remark any visible
difference between the fifth and the sixth itemaicshown in Figure (2.1).
The Sierpinski’s triangle sequence thus visuallpvasges to one triangle
within certain threshold. Reversely, if we take sliegjuence backward, for the
Sierpinski triangle sequence, we only need to kribev mapping which

Isw,,w, andw,. This is the essence of how fractal compressiorksvo

The second example is shown in Figure (2lB)demonstrates one
domain-range match, which is calculated through ti¢ation and
modification. And since the domain block is twideetsize of the range
block, the reduction is needed at last.

Figure (2.3) Fractal encoding from a domain mapping to a
range domain for Lena image.

Chapter Two: Basic Concepts of Fractal AR

Essentially, in image sense, the rotatiang modification are the
process to get a proper set of scalings and offafiish adjust the luminance
of the domain block (in this case for a grey-scalage). The Lena image is a
widely accepted test figure in image compressiongives the idea that
natural images have self-similarities or pattermbedded. With this belief,
our research work is an attempt to discover thesipdisy of using this

concept on audipXiaO4].

2.6 Fractal Coding

Fractal coding is one of the promising newling techniques for high
compression ratios, which are beginning to be astbptorldwide by the way
of the Internet. It is based on the work of Bammsd@d Jacquin on fractals
and lterated Function Systems (IF$Bar88-Fis94]. Blocks of a source
(image or audio) are considered as affine transitions of other blocks

taken from the image itself.

2.6.1 Encoding [Bah95]
Encoding is done by partitioning the souficeage or audio) into non-

overlapping blocks, calledange blocks(denotedR, whereiis the block

index), and into typically overlapping blocks tordo what is called the
domain poal A spatial contraction is performed on the domaaol, by an

operator ¢ (usually averaging), so that the resulting block#i¢h we
denoteD,) are of the size of the range blocks.

Each range block is linearly estimated framontracted domain block
according t® = a.D; +h, wherea is called the scale parametgrthe offset
parameter, andiis the index denoting the best domain block to Bets

close as possible .

Chapter Two: Basic Concepts of Fractal Ve

2.6.2 Decoding [Bah95]

Decoding can be done by starting with samptrary initialized range
pool (image or audio), then the domain pool is gateel by down sampling
the range pool, estimating the range blocks of & seurce from the
contracted domain blocks, and iterating the abasetivo steps until a fixed
point is reached, or nearly so (thus this methoaabed IFS — Iterated
Function System). If the range block estimators goed enough, then the
fixed point source is much like the original source
2.7 Affine Transformations [Bra93, Fis92]

Most literatures in fractal compression defthe mapping functiohto
be affine to simplify the computation. Aaffine transformation w:
R" - R"'can always be written as = Ax + b where AODR™is an n x n
matrix andb OR"is an offset vector. The transformation is contx@ctvhen
its linear part is contractive. The contractive elggls on the metric used to
measure distance. And because affine transformagidimear, we can use

norm ||.|| inR"to define the metric. Then

[Al=sup. 1T AR <L (2-4)

The contractive under the sup norm of a ceteplmetric space is
guaranteed if the above condition is satisfied,(ilee left hand side is always
less than one). However, Wohlberg and Jager inr treiiew [Woh99]
pointed out that this restriction is sufficient bumot necessary for
convergence; empirical evidence indicates that eogence is often achieved
even if ||[AX|/|%| greater than one, although smaller values providee
rapid convergence on decoding. The eventually ectitte mapping function

Is sufficient to ensure the convergence of the nmgpSetting the equation

less than one guarantees the contractive mappimgchwis a stronger

Chapter Two: Basic Concepts of Fractal A

argument than eventually contractivity. But unfoitely, the affine
transformation and sup norm metric cannot expjiajive us the bound of
ensuring eventually contractive. Affine transforroat also suffers from
some problems as a linear transformation that magetl capabilities of

mapping and requests geometrically identical mapparties.

2.8 Contractive Transformations [Fis92]
A transformationw is said to be contractive if for any two poifits, P2
the distance:
d (w (P1), w (P2)) <sd (P1, P2),.cccoinieiiiiiiieceieein (2-5)

For somes <1, where d is the distance. This formula says thpiegttion of a
contractive map always brings points closer togetbg some factor less
than 1).

2.9 Fixed Point Theorem [Fis92]

This theorem says something that is intuljiveobvious: if a
transformation is contractive then when applieceegedly starting with any
initial point, we converge to a unique fixed point.

If X'is a complete metric space awd X - Xis contractive, thelVhas a

unique fixed pointw .

2.10 Partitioned lterated Function Systems (PIFS’s)

The Sierpinski triangle (shown in Figurd)2demonstrates the way of
using IFS. However, unlike the example; our realcgs are very irregular. In
most cases, it would be rather impossible to fimchsa perfect mapping for
the whole space. Thus Jacquin introducedpdu¢itioned iterated function

system (PIFS) in his work$Jac92]. A PIFS is a generalization of an IFS, and

Chapter Two: Basic Concepts of Fractal Vv

attempts to ease the IFS computation by partitgpribre whole space into
subspaces. In other words, PIFS is a restrictesloeof IFS.

One problem brought up from the PIFS is thdifion. The space has to
be partitioned into subspaces. It is necessaryetsuse the addition of the
subspaces covering the original space. Also, tiitipa scheme dominates
the final map set, which means the compressiongssom generglac92].

Jacquin first introduced the PIFS on the takhemage compression.
Image space is naturally recognized as a 2D sfde partition scheme is
simply partitioning the whole space twice to thega set and the domain set.
Both sets cover the whole image space, with the allonset allowing
overlapping. As a shortcoming of using affine tfanmation, the partition
schemes for the domain set and the range set bayred the same geometric
shaped domain and range blocks, which are usugllgres or rectangles.
Domain block is set to be twice as big as rangelbla Jacquin’s original
scheme inJac93, which is widely accepted in fractal image congsien.
The reason allowing domain overlapping is to smoattfacts between
blocks in decoding process. The mapping betweendngin and the range
blocks is as demonstrated in Figure (2.4). For eanbge block, find a proper

domain block to map to. The final map set is congplosf mappings for each

B

range block from the range set.

e ™

.‘:v{ :
= .

Figure (2.4) Mapping from the domain set to theran ge set.

Chapter Two: Basic Concepts of Fractal YA

Among most of fractal image compression ramgetition schemes
appearing in literatures, Quadtree partition andizémtal-Vertical (HV)
partition are the most popular two schemes beingdusVe show two
examples in Figure (2.5) for both partition schenidee review in Woh99]
classifies range partition schemes into right-atigbartition schemes and
triangular and polygonal range partition schemesthByjuadtree and HV

schemes belong to the first category.

HT FHF
T |
I

H H H

(a) Quadtree range partitio (b) HV rangeaptition

Figure (2.5) Examples of quadtree and HV range part ition
schemes

PIFS is recognized as a significant improent for IFS. It reduces
large amount of searching time both theoreticallgd apractically.
Furthermore, it provides some possible aspectspfaving fractal encoding
like using different partition schemes or takindfetent mapping methods.
Comparing with some more advanced methods of gengriractals such as
Weighted Finite Automata, PIFS also has the beabitsimplicity. For the
above reasons, our research on fractal audio casipre uses PIFS in the

same way like conventional fractal image compressaiethods.

Chapter Two: Basic Concepts of Fractal V4

2.11 Derivation of Scale and Offset Equations

To compute the s and o one should compute theesaf a scale (s) and
offset (0) which minimize the value of the distortierror equation (E). The

minimum of the distortion error (E) occurs when gaetial derivatives (of E)

with respect to (s) and (o) are zero

E =) (1 1) e @2- 6)
Where: r'=sd +o where (s) is the scale and (0) is the offset
E=D(F =SA = 0)2 oo 2-7)

Differentiate the distortion error equation (E) hviespect to (s) and (0):

%E_ 0, Z—E =0, the differentiation of (E) with respect to (s) addws:

0s
oE < _ n 2 _
E—Z“Z(ri =sd -0)(=d,)=0,> (-rd, +sd” +0d)=0,....... (2- 8)
=3 d, #3084 #2000, S0, 2- 9)
rearrange equation (2-9) to get:
SO0, #2000 =300, e (210)
Now differentiate the distortion error equati@) with respect (0):
g—E=i2(ri —sd —0)(-1) =0, (-, +5d +0)=0 ,.erevvrer. (2-11)
0O =z i=1
- nri+Zn:sdi+Zn:o=0,sndi+ozn‘ll=zn“ri e (2-12)
i=1 i=1 i=1 i=1 i=1 i=1
s_zn“di +on=Zn:ri e e e e e e e e e e (2-13)

rearrange equation (2-13) to get:

Chapter Two: Basic Concepts of Fractal A

substitute equation (2-14) in equation (2-10) tb ge

n n

r-sy.d

yd+| = i | gdi - s (2-15)

rearrange equation (2-15) to get:

n

> —%[id,} =31, —%iriz oo (2-16)

i=1 i=1
rearrange equation (2-16) to get:

Zn:ridi ‘iiri Zn:du

s= =2 L e, (2-17)

idiz _l[id.)2

n\ i=a

multiply equation (2-17) byﬂ to get:
n

equation (2-10) to get:

] i

0= ; e) (2-20)

nzn:diz - Zdi

i=1

Chapter Two: Basic Concepts of Fractal AR

Whered, are the samples values of the domain blocks.
r, are the samples values of the range block.

n is the number of samples in each block (i.e. thekisize).

2. 12 Advantage and Weakness of Fractal Compression

Fractal compression methods have been mainigied developed for
image compression. The advantages and weaknessesamrarently
addressed with image compression. People genemadlyze that fractal
compression works quite well at high compressidio rasually around 40:1.
Walle [Wal95] gives a very detailed analysis on fractal imageodmg
performance comparing with other conventional imagempression

methods.

2.12.1 Fractal Advantages

The most valuable advantage of fractal aasgion is the ability of
achieving high compression ratio within certain egg@ble threshold of
recovery. However, the compression ratio is stiijhly related with
identifiable patterns and self-similarities. Und#ris restriction, fractal
compression with high compression ratio is not arsally applied.

In audio compression, it can see that fraamtalio compression is a much
simpler scheme compared with the most popMBB encoding. This is one
potential advantage that fractal compression mayde=l in audio world.
Despite audio is a very continuous sequence;lliestibeds patterns and self-
similarities, especially those created by us, likesic and instrumental

sound, which gives us a hope that fractal compoassiay work well.

Chapter Two: Basic Concepts of Fractal vy

2.12.2 Fractal Weaknesses

Fractal compression has not been put intotigad uses, even for image
compression, for its numerous weaknesses. The ssiof¢he scheme seems
to rely exclusively on exhibiting some self-simitaas among part of the
space. And there is no guarantee that the probabflimatching domain and
range blocks is sufficiently high to achieve congsien.

The restriction of using affine mapping does$ guarantee scaling and
offset B forming a set of independent random variables. Ti® say that
each transformw, may not be able to be independent from otherghab
wmay not be equal to the union ef's.

Furthermore, the fractal encoding requesttarge amount of time
because of the search for matching blocks, andr#itéal decoding can also

be a long iterating process.

2.13 Quantization

The definition of the term "quantization"tsrestrict a variable quantity
to discrete values, rather than to a continuouotetlues. In the field of
data compression, quantization is used as follolf/¢he data samples to be
compressed are large numbers then, quantizatioeed to convert them to
small numbers. Small numbers take less space thage |ones, so
guantization generates compression. On the othad,hamall numbers
generally contain less information than large osesguantization results in
lossy compression, this aspect of quantizationseduby several speech
compression methods.

Quantization theorem says that the quantizr be modeled as the
addition of a uniform distributed random signal (ajhd the original

unquantized signal (x) as shown in the figure (2.6)

Chapter Two: Basic Concepts of Fractal vy

X > Q % xo0
Input
Signal Quantizer

X :G\ » XQ=X+e

e

Quantizer Error

Figure (2.6) A quantizer

There are two types of quantization: Sc&amantization and Vector
Quantization. In scalar quantization, each inpumisyl is treated separately
to produce the output, while in vector quantizattbe input symbols are
assembled together in groups called vectors, amtepsed to give the output.
Treating these assembles of data as a single auld encrease the optimality
of the vector quantizer, but at the cost of incegascomputational

complexity. Here, we'll take a look at scalar duztion.

A quantizer can be specified by its inpattpions and output levels
(also called reproduction points). If the inputgans divided into levels of
equal spacing then the quantizer is termed as ®tomiQuantizer, and if not
it is termed as a Non-Uniform Quantizer. A unifogmantizer can be easily
specified by its lower bound and the step sizeo Alsiplementing a uniform

guantizer is easier than a non-uniform quantizekeTa look at the uniform

Chapter Two: Basic Concepts of Fractal AR

guantizer shown in figure (2.7). If the input fabetween n*r and (n+1)*r,

the quantizer outputs the symbol n.

n-2 n-1 1 n+1 32 =--- Cutput

——t——— s

(n-2r (ol o (oD (bl (e <--- Input

Figure (2.7) A uniform quantizer

Just in the same way a quantizer partitichisnput and outputs discrete
levels, a dequantizer is one which receives theuiuevels of a quantizer
and converts them into normal data, by translateagh level into a
‘reproduction point' in the actual range of datae Toptimum quantizer
(encoder) and optimum dequantizer (decoder) musshgahe following

conditions:

1. Giventhe output levels or partitions of the encoder,libst decoder is
the one that puts the reproduction poixit®n the centers of mass of
the partitions. This is known agntroid condition

2. Given the reproduction points of the decoder, tbst lencoder is the
one that puts the partition boundaries exactlyha middle of the
reproduction points, i.e. eastis translated to its nearest reproduction

point. This is known as nearest neighbour condition

The quantization erroxk € x') is used as a measure of the optimality of

the quantizer and dequantizer.

2.14 Fidelity Criteria

A natural way to determine the fidelity ofexovered audio is to find the
difference between the original and reconstructaldies. The two popular
measures of distortion are the squared error meaand the absolute

difference measure, which are calldfference distortion measurel X is

Chapter Two: Basic Concepts of Fractal A

the source output and is the reconstructed sequence, the sum of squared

error measure is given Ip}ia0O1]:

Practically, it is difficult to examinée difference on a term-by-term
basis; so, some average measures are used faoexdansination. The most
often used average measure is the average of shhjga@ measure. This is

called themean squared errgfMSE) and is given as:
1. ,
MSE:N;(X. Y e 23)

Sometimes it is more interesting to measueestbe of the error relative to
the peak value of the signal rather than the sizthe error relative to the
average squared value of the signal. This raticalled thepeak-signal-to-

noise ratio(PSNR)and is calculated by the following equation:

) 255
PSNRdB) =10log,, MSE | e (2-24)

PSNRis the most commonly used value to evaluate theatibp audio

compression quality.

CHAPTER THREE
SYSTEM DESIGN AND IMPLEMENTATION

3.1 Introduction

The encoding unit of the implemented audaztal compression (AFC)
Is based on partitioned iterated function systehx3F, which is basically
based on affine transformation. So, for encodimgaihdio data it is necessary
to divide it into non-overlapped blocks called @as, R), and then each
block is transformed separately. By partitioning @udio data into blocks
(called ranges), the partitioning will let the edow of a wave with
complicated shaped is mostly possible, taken intsicleration that audio is
not composed of copies and doesn’'t imply exactlamty, so it can’t be
coded as one single piece by using the IFS.

So, the PIFS is used in the suggestedmytstéind for each range block
the best approximation the best approximation isébby searching in the
domain pool, compute the corresponding PIFS paemeind storing these
parameters in the compression file.

The steps of the implemented algorithms thee two units of fractal
audio compression system (Encoding unit and Degpdimt) are given in

details in this chapter.

3.2 Audio Fractal Compression System (System Model)
The implemented fractal audio compressigstesn consists of two
major units:
1. Encoding unit
2. Decoding unit

Each of these two units consists of manydutes as illustrated in
figures (3.1), and (3.2).

Chapter Three: System Design and | mplementation

Yv

Start

\ 4

L oad Wave File

A 4

Construct the Range Pool from the Original wavefile and
Partition it into nonover lapped Blocks

A 4

Down Samplethe Audio Data by 2 to Construct the Down Sampled Wave

A 4
Construct the Domain Pool by Partitioning the Down Sampled Wave
into Sets of overlapped Blocks

v
Compute the Domain Parameters

A 4
Point to the First Range Block and Compute its Parameters

>

|

A 4
Match this Range Block with each Domain Block till find the suitable
Domain block, which satisfy the best map to this Range Block and deter mine
its Affine Coefficients

A 4

Quantize and Dequantize the Offset and Scale Parameters

Point to next

Range Block
Isit theLast and compute
Range Block? its

parameters

Storethe PIFS Coefficients
in the Compression File

Figure (3.1) The flow chart of the Fractal Audio Encoding unit

Chapter Three: System Design and | mplementation

YA

| nad the stored PIFS Coefficients

v

Initialize an arbitrary wave domain with the same size of the domain pool to bea

temporary domain

v

Set No. of iterations=Desired No. of Iteration
Set Iteration=1

v

Point to thefirst set of affine coefficientsin the stored Pl FS code

>
A 4

Construct the specific range block, which getsitsinformation from
the parameter s of the affine set by inver se mapping using affine

transform

Load the
next set of
affine
coefficients
inthestored
PIFS

Isit the last
registered set?

Figure (3.2) The flow chart of the Fractal Audio Decoding unit

Reconstruct the wavefile

A\ 4
|terations=lterations+1

Down sample
No the

Iteration reconstructed
exceeds the No. range blocksto
of Iterations? create new
domain Pool

Determinethe M SE and PSNR

Y
Savethereconstructed Wave File

Chapter Three: System Design and | mplementation A

3.2.1 Encoding Unit

The encoding process is mainly based orfPtR&. This unit consists of

numbers of modules, which are all together respdmdor reducing the size

of the desired audio data and construct the corsjoeéile.

As shown in figure (3.1), the encoding uninsists of the following

modules:

1. Loading wave file.

2. Construct the Range pool: Partition the given waa& using a fixed
block size partitioning to construct the Range geoand partition it
into nonoverlapped blocks.

3. Down sample the audio data by 2: Take the mearevaflievery two
successive samples values listed in the Rangervantbput it in the
Domain vector.

4. Construct the Domain pool: From the domain arrapstwct the
domain poolD by partitioning it into overlapped blocks with teame
size of the range blocks.

5. Compute the Domain parameters (for all domain Edekd put them
in array.

6. Point to the first Range bloédkand compute its parameter.

7. Search the Domain pool, and match the first Rarigekbwith each

domain block using affine transform. Find the besttched domain
block, and register the corresponding affine coedfits (scale, offset,

symmetry, and position), of this domain block.

8. Quantize and dequantize the scale and offset caifs.

Store the determined affine transform coefficiefds the current
range block (which consist of the indices of S a@il in the

compression stream (file).

Chapter Three: System Design and | mplementation v

10. If the matched range block on the range pool aslaist one, then end
the encoding process, if not then point to the marge block on the

range pool and go to step 7.

3.2.1.1 Loading Wave File

The wave file format is a subset of MicrbdResources Interchange
File Format (RIFF) specification; it is adopted fbe storage of multimedia
data. This file starts out with a file header felkxd by a sequence of data
chunks. A WAVE file is often containing single "WAY chunk, which
consist of two sub-chunks, a format "fmt" sub-chwspecifying the data
format and the "data" sub-chunk containing theaampling data.

Some wave data were used as test matarthis research work. The
specifications of the input sound waves for testamyd measuring the
performance of the suggested audio compressionothethe: 8-bits sample
length, and MONO (i.e., single channel). A detaitecription of the wave
file format is presented in Appendix (A).

In the current work the way used for loadagdio file is by loading

wave (*.wav) files using the steps listed in al¢fum (3.1).

Algorithm (3.1) Loading the Audio Data

Input: Wave File Name
Output: Wave Data Buffer Wav (WaveSize-1)
Open wave File
* Load the header of wave file
If Number of bits per sample = 8 and Number of Channels = 1 Then
WaveSize = (Length of Wave file - 60) do

* Load the audio data into a wav (WaveSize-1) buffer.

Chapter Three: System Design and | mplementation)

3.2.1.2 Range Pool Construction

There are many possible methods for pamtiig the audio data that
can be used to select the range blocks. The mah @fothe partitioning
process is to divide the audio data into regioas show similarity with other
regions in the domain pool, and generate a nonkagweing region, which
referred to as range pool (range blocks), thatbeaatilized in audio coding.
It must be noted that the constraint of non-oveilag range blocks is an
important condition to achieve correct decodingcpss.

The way of partitioning used in this rassh is a fixed size-partitioning
scheme, because it requires less computationalthiare the other schemes.
This done only by choosing the size of the block bme in the program.

The goal of partitioning is to improvestapproximation between the
samples values of range block with those of a dorbéck, because small
blocks can probably be matched with each otheeb#tan large blocks.

Choosing the block size must be done accurasahge although the
small block size perform a good matching betweegesaand domain blocks,
but this is time consuming which leads to long eleg time because of
searching process. While, if the block size is thgn the encoding time is
reduced but this may influence the quality of tkeeanstructed wave file.
The test results illustrated in the next chaptdl explain the effect of the
block size on the compression ratio, encoding tiR&N\R, and MSE.

As a first step, the header of the wale i analyzed to get the
necessary parameters (such as data size, bitampeies sampling rate, etc....
as listed in algorithm 3.1) that required loadihg audio information. After
reading the audio data from the opened stream ttieraudio data will be
partitioned uniformly, and put the partitioned d#@tdocks) in a temporary
buffer to manipulate them as blocks of samplesfi¢@d size). The set of
partitions is called the Range pool (Range blocagorithm (3.2) illustrate

the implemented steps of partitioning.

Chapter Three: System Design and | mplementation vy

Algorithm (3.2) Partitioning and Constructing the Range
Pool

Input: Wave Data Buffer Wav (WaveSize-1), the size of the Wave Data Buffer
WaveSize, the size of the range-block B.
Output: Wav partitioned into Rs range-blocks,(Rs is the number of range-blocks).
Re= WaveSize/ B
ForI=1toRs
Forj=1toB
ri)= Wav ((-1)* B +j)
Next j
Next 1

r is called the range-block and is of size B. riis the i’th range-block.

3.2.1.3 Down Sample the Audio Data By 2
The loaded audio data is down sampled by 2 (byaaweg method) to

construct the domain array.

3.2.1.4 Domain Pool Construction
This module is responsible for construgtamother one-dimensional
array, called the Domain, with size half the sizéhe range array.

The data of the domain is produced from ange as illustrated in
algorithm (3.3), there are many ways to selectdia from Range to fill the
Domain but all of them deal with choosing one eletrigom every two
adjacent elements in Range to be in the Domaierdiit selections rules
were used, some of these rules are based on:

1. Choosing the minimum value of the two elements.

2. Choosing the maximum value of the two elements.

Chapter Three: System Design and | mplementation vy

3. Choosing the average value of the two elements.
4. Choosing the nearest or farthest element to theagee

The rule that is used in this research isntakhe average of every two
adjacent samples in range array and put it inotsesponding position in
domain array.

A fixed size-partitioning scheme is used &otpion the domain pool for
the same purpose in the range pool partitioningusTthe domain will be
divided into “Domain blocks” with the same size tbe range blocks, but
possibly into overlapped domain blocks, where tagifoning jump size of
samples may take values less than the block sizerl&pping blocks leads to
many possible domain blocks in the domain pool, ahds good
approximation will be obtained. As the jump sizesimsall, the domain pool
will be large and this satisfies the good approxiomand high quality in the
reconstructed wave file. But at the same time whiklead to high encoding
time because searching a large pool of domain Blagkime consuming.
Choosing a big jump size will serve reducing theogling time but the
reconstructed wave data will have low quality. Tii#f be demonstrated by
the results of the compression ratio, encoding tiffeNR, and the MSE in
different jump sizes presented in the next chapter.

Its important to notice that the jump sizastrbe less than or equal to the
block size and of course greater than zero, arttiencase of choosing the
step size equal to the block size then the domé&mckb will be non-

overlapped.

Chapter Three: System Design and | mplementation v

Algorithm (3.3) Construct the Domain Pool

Errarl

Input: Wave Data Buffer (Wav (WaveSize-1))
Output: One-dimensional array called domain pool, Domain (Domain size), with
half size of the range pool.
Domain Size = WaveSize \ 2 -1
For Pd = 0 To Domain Size do
Pr=Pd+Pd

Domain (Pd) = (round (Wav (Pr)) + Wav (Pr+1)) \ 2-128

3.2.1.5 Compute the Domain Parameters

The algorithm (3.4) illustrates the implaertedd steps to compute the list

of domain parameters.

Algorithm (3.4) Compute Domain Parameters

B Input: Domain Pool array (Domain (Domain Size)), Domain Size, BlockSize and

JumpStep.
Output: Domain parameters (SumD (No.DomainBlocks), SumD2
(No.DomainBlocks)).
No.DomainBlocks = (DomainSize+1-BlockSize) \ JumpStep-1: Pd=0
For I= 0 to No.DomainBlocks do
S=0: Ss=0
For Pp = Pd to Pd + BlockSize do
S=5+ Domain (Pp): Ss =Ss+ Domain (Pp) "2
End
SumD (I) =S: SumD2 (I) =Ss

3.2.1.6 Compute the Range Parameters

Chapter Three: System Design and | mplementation ve

The algorithm (3.5) illustrates the implenmezhsteps to compute the list

of range parameters.

Algorithm (3.5) Compute the Range Parameters

Ertrarl
Input: Wave Data Buffer (Wav (WaveSize-1)), Wave Size, Block Size.

Output: Range parameters SumR, SumR2 and RangeBlock (BlockSize-1)
No.RangeBlocks = WaveSize \ BlockSize - 1
Pr=0
For I =0 to No.RangeBlocks do
SumR = 0: SumR2 = 0: SumR4 =0

For] =0 To BlockSize-1 do
R =round (Wav (Pr +])) - 128
R2=R*R
SumR = SumR + R
SumR2 = SumR2 + R2
RangeBlock (J) =R
End

3.2.1.7 Quantization and Dequantization for Scale and
Offset

The actual effective part of the audio comsgion is quantization. It is
simply the process of reducing the number of lesded to store coefficients
values by reducing its precision from float typeiiteger. The determined
PIFS coefficients values are real-valued, and ideorto increase the
compression, they must converted to integer valmesrder to increase the

compression performance, so they must be quanbifxe storage.

Chapter Three: System Design and | mplementation ¥

This is done by assigning the number of bits wdéd to encode each
scale and offset coefficients. The quantization dadquantization for scale

values were computed by applying the following eiunes:

Quantization

round(Qi] if S<0
N
s =) T 3-1)

round[i otherwise
SP

Dequantization

S xQq if S <0

. (3-2)
Where
2bs—1 _1
QSN = S Y et a e ee e eaa e e et a e e (3—3)
2bs—1 1

€ is the scale coefficients.

Qg is the quantization step for negative S-values.
Qg is the quantization step for positive S-values.

S, is the quantization index.

bs is the number of bits allocated to encode theesoakfficient.

Chapter Three: System Design and | mplementation vV

S, is the minimum allowable values for scale coegiits.

S, is the maximum allowable values for the scale faciehts.

While the quantization and dequantization for dffsdues were computed
by applying the following equations:

Quantization

round(© J if O<0
ON
OI = Y e e (3-5)
@) .
round(J otherwise
L OoP

Dequantization

O, xQqy if O, <0

Where:
0,/ +[0,..
Quoy =t e (3-7)
Qo =2 1- ‘Omm e, (3-8)
0,,/+[0,..

O is the offset coefficients.

Q. is the quantization step for negative O-values.

Q.- is the quantization step for positive O-values.

O, is the quantization index.

Chapter Three: System Design and | mplementation YA

bo is the number of bits allocated to encode thsevftoefficient.

O, .. is the minimum allowable values for offset coeéits.

O, ., is the maximum allowable values for the offsetffioents.

Algorithm (3.6) Quantize and dequantize the Scale and
Offset values

: Input: Scale and Offset of each Range blocks.

Output: quantized and dequantized scale and offset of each range blocks.
No.RangBlocks = WaveSize \ BlockSize - 1
For I =0 to No. RaneBlocks do
If Scl < 0 Then
SI =round (Scl * StpScaleN)
Scl = SI / StpScaleN
Else
SI = round (Scl * StpScaleP)
Scl = SI / StpScaleP
End If
If Ofs <0 Then
OfsI = round (Ofs * StpOfsetN)
Ofs = Ofsl / StpOfsetN
Else

Ofsl = round (Ofs * StpOfsetP)

3.2.1.8 Matching between Range Blocks and Domain
Blocks

After generating range blocks and domain blpckk range blocks
should be matched with the domain blocks to detaernthe affine transform

parameters (scale, offset, symmetry, and posifmmgach range block.

Chapter Three: System Design and | mplementation ¥

Now for each range block, search througld@inain blocks to find the
best matched domain block (block with minimum distm error). The best
matched domain block is that block whose affinedfarmed block has a
minimum distortion error relative to other domaindks. So, the scenario of
domain search is to check each domain block arefmete the scale, offset
and symmetry coefficients that minimize the err@tween the checked
domain block with the range block, the matchingaesitinued over all the
domain blocks till finding the domain block whos#ference (error) with
range block is the minimum in comparison with esroegistered by other
domain blocks. Each domain block is subjected tanesoisometric
(symmetry) transformations (consist of reflectioasd rotations) to get
different symmetry state for each domain block, #meh the transformed
domain block is considered as individual domainckjowhich should be

matched with range blocks as a separate or indaviclase.

Algorithm (3.7) Searching Domain Pool and Matching

Input: Range blocks with number No.RangeBlocks
Output: Ofsetldx, Scaleldx, Pos, SymState of each range block.
For I =0 to No.RangeBlocks
* Rbis the ith Range block.
* Compute range parameters ‘Algorithm (3.5)".
* Set MinError = 9.9E+19
For j =0 to No.DomainBlocks
* Db is the jth Domain block.
Pd=0: SumRD1=0: SumRD2=0
For M=0 to BlockSize-1 do
SumRD1=SumRD1+Domain (M+Pd)*RangeBlock (M)

Chapter Three: System Design and | mplementation £

For symmetry =0 To 1
If symmetry =0 Then
SumRD = SumRD1
Else
SumRD = SumRD2
* Compute scale and offset values of Rb and Db using equations (2-
18),and (2-20)
* Quantize and dequantize Scale and Offset values of Rb using
‘Algorithm (3.6)".

¢ Compute the distortion error (E) between Rb and Db using equation

(2-7).
If E <MinError Then
End
DA — DA & TerrmanQhan

3.2.1.9 Save the Affine Coefficients in the PIFS code

Saving original audio file as collectionfsm@nsformations could lead to
audio compression, which is done by describingotiginal audio in terms of
few parameters of affine transformations (PIFS ¢ode

So, the results of matching process betvesamny range block and the
domain blocks are the affine transformation paransefscaleldx, offsetldx,
symmetry, and position of the best matched domaatklp, the whole
transformation informations for all range blocksulb be collected in the
PIFS code or (compression file) as illustratedlgoathm (3.8). In other
words, fractal audio coding process implies theeination of all matching
parameters, and then they are quantized, codedstaneld sequentially as
arrays of PIFS parameters vectors. The elemeritsérray are equal to the

number of range blocks in the range pool.

Chapter Three: System Design and | mplementation

£

In addition to the affine parameters, someribead informations are also
coded and stored in compression file, these infoamga are important in the
decoding stage, such as the minimum and the maxibmumdaries of the
scale and offset parameters, the number of bitd toseepresent the values of
the scale factor, offset factor, and the positibaaxzh matched domain block,

the size of the range and domain blocks, the jutep,salso the audio

sampling rate and the actual wave size.

Table (3.1) lists the PIFS parameters

Table (3.1) PIFS Parameters.

Par ameter Description
Pos The position of the best matched domain block
Scaleldx The scale index value
Ofsetldx The offset index value
SymState The symmetry state (O:identity, 1: Rédiéc

Algorithm (3.8) Saving PIFS Code

Errarl

Input: Affine transform parameters

Output: Compressed file

Prepare storage buffer.

Encode Sample Rate and put in the storage buffer as 16 bits word.
Encode Maximum Scale and put in the storage buffer as 11 bits
word.

Encode Minimum offset and put in the storage buffer as 11 bits
word.

Encode Maximum offset and put in the storage buffer as 11 bits
word.

Encode No. of bits per scale and put in the storage buffer as 5 bits
word.

Encode No. of bits per offset and put in the storage buffer as 5 bits

word.

Chapter Three: System Design and | mplementation £y

3.2.2 Decoding Unit

In encoding unit the encoded wave dataaissiormed into a set of PIFS
codes. While, in the decoding unit these PIFS ca@desused to iteratively
reconstruct the wave data. At every iteration tleeodled wave becomes
closer to the original wave.

Decoding process is considerably easier asterf than the encoding
process because it involves little computationse Wecoding process is
iterated until the fixed point is approximated, tthe until further iteration
does not significantly change the reconstructed ewdata. Typically, 8
iterations are sufficient.

As shown in figure (3.2) this unit consists of th#owing items:

1. Load the stored PIFS coefficients.

Set Iteration =1.
Initialize in arbitrary manner the domain pool.

Point to the first set of PIFS coefficients.

ok~ WD

Construct the specific range block by applyingdffene transform that

gets its information from the PIFS parameters set.

6. Repeat step 5 till all the range blocks are recansd.

7. If the iteration less than the maximum number efations then down
sample the reconstructed range blocks to createwadomain pool,
and set Iteration=Iteration+1, and go to step 4.

8. If the iteration reaches the maximum number afatiens then call

MSE and PSNR subroutine (only for efficiency assesgs).

9. Save the reconstructed wave data.

3.2.2.1 Load PIFS code
The first step in the decoding process isliloga and decoding the affine

transform parameters (Scaleldx, Offsetldx, Symmedryd Position of the

Chapter Three: System Design and | mplementation ¢y

best matched domain block), also loading the owatheformations needed
in the decoding process stage such as the minimuntlae maximum
boundaries of the scale and offset coefficients, iimber of bits used to
represent the scale factor, offset factor, andtioosof each matched domain
block, the block size, the jump step and the aciaale size.

Algorithm (3.9) Load PIFS Code

Input: compression file

Output: Decoded affine parameters
* Open the storage buffer.
* Extract Sample Rate from the storage buffer as 16 bits word.
* Extract Maximum scale from the storage buffer as 11 bits word.
» Extract Minimum offset from the storage buffer as 11 bits word.
» Extract Maximum offset from the storage buffer as 11 bits word.
» Extract No. of bits per scale from the storage buffer as 5 bits word.
» Extract No. of bits per offset from the storage buffer as 5 bits word.
= Extract block size from the storage buffer as 9 bits word.

For I =0 to No. Range Blocks

* Extract SymState (I) from the storage buffer.

* Extract Scaleldx (I) from the storage buffer.

* Extract Ofsetldx (I) from the storage buffer.

¢ Extract Pos (I) from the storage buffer.

3.2.2.2 Decoding Using Affine Transform Equation

The decoding process is simple, and fastalying the resulted PIFS
on any arbitrarily generated wave the original wavehe decoder can be
successively regenerated after a number of PIF&dileg iterations.

The decoder uses the affine parametersSsatdldx, Ofsetldx, Position,

and Symmetry) to transform the pointed (by Posthaia block to construct

Chapter Three: System Design and | mplementation £¢

the approximate of the range block. Algorithm (3.lillustrates the
implemented steps of the decoding process.

So, the decoding phase of the affine transfoinvolves with
reconstruction of an optimal approximation for eaange block by
multiplying it corresponding matched domain blogkthe scale value and
adding to the result the corresponding offset valtech is:

R=3sDi+ 0
Where:
R represents the value of a sample in the recoristtuy@approximate)
range block,
Di represents the value of the corresponding sampléhe best-
matched domain block,

S represents the scale value for mapping the dorbdok to the

range block, and

o represents the offset value.

In audio it is important to say that, thelsdactor is an indication to the
rate of change in the wave, while the offset factpresents wave loudness.

The reconstructed range block may transfdr(neflected) according to
its corresponding symmetry coefficient value, dastrated in algorithm
(3.11).

Algorithm (3.10) Decoding Equation

Errarl

Input: affine transform parameters set (Scl, Ofs, and Pos).
Output: decoded range block DRb (BlockSize-1).
For] =0 to BlockSize-1
K =Scl * Domain (Pos +J) + Ofs + 128
If K> 255 Then K = 255
Else If K<0 Then K=0
H DRb (J) =K

Output: Reflected range block
Pr=0

For] =0 to BlockSize-1

Chapter Three: System Design and | mplementation £o

3.2.2.3 Wave Reconstruction

In this stage the domain data is initialibgdsetting the samples values
equal to zero, and assign the number of iterati@ugiired to make the
reconstructed wave close to the attractor (fixedpo

After performing the affine transform to affiae parameters sets (saved
in the compression file), the produced reconstadigtave, must be used to
generate a new domain pool as illustrated in algari(3.12). The range
reconstruction process is repeated by re-apphhegsame affine transform
sequence on the new domain pool.

This process will repeated for several timassgming Nolter is the
number of iterations), until we reach the fixed mgaas listed in algorithm
(3.13).

Algorithm (3.12): Reconstruct the Domain

Input: Reconstructed range pool, DRb (Wavesize-1).
Output: Domain pool, Domain (DomSize-1).
For Pd =0 to DomSize-1 do
Pr=Pd +Pd
Domain (Pd) = (round (DRb (Pr)) + DRb (Pr + 1)) \ 2-128

Algorithm (3.13) Reconstruct the original wave

Input: number of range blocks (No.RangeBlocks).
Output: reconstructed wave DRb (WaveSize-1).
For I =0 to DomSize-1

Domain (I)=0

) I |

Chapter Three: System Design and | mplementation

¢

CHAPTER FOUR

Performance Measures and Test Results

4.1 Performance Measures

Some performance measures were taken orisigderation to evaluate
the performance efficiency of the suggested fraeatlio compression
system.

The adopted measures are the fidelity raait@.e., MSE, and PSNR),

the compression ratio, and entropy measures.

4.1.1 Compression Ratio

The ratio of the original (uncompressed audio faedl the compressed
audio file is referred to as ti@mpression Ratio, (i.e. the term compression
ratio is used to refer to the ratio of uncompressaizh to compressed data).

The compression ratio is denoted k\jb98]:

uncompressed file size
compressed file size

_gize
size ’

Compression Ratio =

And it is often written asize.. size.

Thus an audio with a 10:1 compressiormradis a compressed data size
10 times smaller than the original audio filddr 98].

The uncompressed audio file size is coegburom the following
equation:

SIZE, (Bit) = Spio X8 eeerrnnerrerueeeeeruieeessnneeraue s e ateneenenaaeanan 4 -2
Where:

Sis the size of the original audio file,

Chapter Four: Performance Measures and Test Results £A

and 8 is the number of bits required ®igasthe each sample value

While the compressed file size is compditeah:

size: (Bit) = (Bitl + BitOfs + BitPos +1) xNo.RangeBlock,........ (4-3)

Where:

BitScl is the number of bits required to store the sgalialues,

BitOfs is the number of bits required to store the ofisdties

BitPos is the number of bits required to store thwsition of the best

matched domain block.

The numberl is the bits required to store the symmetryluea
(which is the reflection state), amdb. Range Blocks is the number of the
range blocks in the original audio file.

4.1.2 Entropy Measures

Entropy, which is a measure of the inherantiomness in a probability
distribution (or set of observed data). And it da®m computed using the

equations:

Entropy = —Z PLHOG, () e ceeenenee e e e e (4- 4)

0= (4- 5)
n
Where:

n is the number of samples.

4.1.3 Energy Measures

A term encounter frequently when measusagnd is the RMS, or the

root mean square, value. The RMS value is a spkmidl of mathematical

Chapter Four: Performance Measures and Test Results €4

average value, which is directly related to thergpeontents of the sound

The energy content of the sound computed fromelaion:

n
Energy =1/n>" (wav(k) 1282 (4 - 6)
k=1

Where:

n is the number of samples.

4.2 Performance Parameters

Several parameters were taken into considerato study the
performance of the suggested fractal audio comjessystem. The
considered control parameters are: the block simap size, quantization
steps for both scale and offset, maximum and mimmalues for both scale

and offset.

4.3 Audio Test Samples

Table (4.1) demonstrates the attributes wé faudio test files. Figures
(4.1) to (4.5) present the waveform of the adoftezlitest samples.

All these five test samples are Wave Soypé tvith 8 bits sample size,
PCM format, and 1(mono) which is the number of cleds

Table (4.1) The Attributes of the audio test samples

Name Test Test Test Test Test
Samplel | Sample2 | Sample3 | Sample4 | Samples
Size 332 KB 82.4 KB 235KB | 70.3KB 74.9 KB
Sampling | oopH; | 22KHz 22kHz | 11kHz| 11kHz
Rate
Behavior Music Music Music Speech Speech

Chapter Four: Performance Measures and Test Results

Figure (4.1) The waveform of the test sample 1
(Entropy= 6.51: Energy=496.61)

Figure (4.2) The waveform of the test sample 2
(Entropy= 6.3: Energy= 550.52)

Chapter Four: Performance Measures and Test Results o)

Figure (4.3) The waveform of the test sample 3
(Entropy=5.27: Energy=130.22)

Figure (4.4) The waveform of the test sample 4
(Entropy=5.2: Energy=358.59)

Chapter Four: Performance Measures and Test Results oy

Figure (4.5) The waveform of the test sample 5
(Entropy= 5.36: Energy=563.91)

4.4 Test Results

In this section, the five test audio files weéested for examining the
performance of the proposed fractal audio compoessystem; in these tests
the effects of the control parameters on the perémce of the compression
system were investigated as follows:

Test (1): Block Size Effect

The effect of block size in this test for cé®st sample-4) is investigated.
The other compression parameters were taken abli {4.2).

Table (4.2) Coding parameters

Maximum Scale 15
Minimum scale -1.5
Maximum Offset 128
Minimum Offset -128
Scale Bits 8
Offset Bits 8

Chapter Four: Performance Measures and Test Results oy

Different values for the block size were taken, greresults of applying
the compression system of (test sample-4) aralisteable (4.3). The tests

results of applying same test on other samples slaven same behavior.

Table (4.3) The Resulted MSE and PSNR of the reconstructed

Wave File
Block Sze | MSE | PSNR | Compression Ratio Encoding Time
(sec.)
4 0.063 60.11 141 1151.77
14 2.21 44.68 4.68:1 484.48
18 5.26 40.92 5.95:1 432.44
24 25.07| 34.13 7.83:1 393.62
30 51.58 31.0 9.7:1 346.62

70
60 5.

50 \
40 —e—CR
30 \'\- = PSNR

20
10 &
0 L
0 5 10 15 20 25 30 35
Block Size

Figure (4.6) The effect of different block sizes on the
compression ratio and the PSNR of the reconstructed wave data.

It's clear from this figure that the following pagcan be concluded:

Chapter Four: Performance Measures and Test Results o

1. By increasing the block size the compression ratoeases.

2. By increasing the block size the quality of theorstructed wave is
negatively affected, i.e. the value of the PSNRobszs lesser and
the value of the MSE becomes larger.

3. The encoding time decreases with increase of thekldize.

Test (2): Quantization Effect

In this test (test sample-4) was taken to demotestiiae effect of
guantization steps (for both scale and offset) dm® tcompression
performance.

Different values of both (Scale bits andsef bits) were taken.

Values of other coding parameters were taken fageoh table (4.4).

Table (4.4) coding parameters

Maximum Scale 15
Minimum scale -1.5
Maximum Offset 128
Minimum Offset -128
Block Size 14
Jump Size 1

The test results of the quantization stepistHe case (test sampig-on
the MSE and the PSNR of the reconstructed wave a@&disted in table
(4.5).

Chapter Four: Performance Measures and Test Results

o0

Table (4.5) The Resulted MSE and PSNR of The Reconstructed

Wave File

Scale
Bits

Offset
Bits

M SE

PSNR
(dB)

Compression

Ratio

Encoding
Time

(sec.)

353.67

22.64

5.66:1

557.78

421.16

21.88

5.32:1

547.65

26.23

33.94

4.48:1

546.75

2.21

44.68

4.68:1

484.48

20.95

34.91

5.32:1

543.6(

23.73

34.37

5.13:1

545.12

p

g1l o 01 0| N O O1

| N| N 00 N O o1

2.66

43.87

5.13:1

543.31

4

Notes:

. When the number of bits used to represent the s@dilee (Scale

Bits) is equal to 5, and the number of bits usedefresent the
offset value (Offset Bits) is equal to 5 also, MEE value is too
large, so to decrease the MSE value the valuebeoStale Bits
and Offset Bits were increased, so when the vabfi€3cale Bits

and Offset Bits increased to 6 the PSNR value dses

So increasing the values of the Scale Bits andeDBds will lead

to make the value of the MSE become well.

It's noticeable that by decreasing the value ofSbale Bits and at
the same time increasing the value of the Offsés Bie PSNR
value would be better.

The best values for both Scale Bits and Offset Bad to

acceptable values of MSE, PSNR, and compressiam isatvhen

Scale Bits equal 5 and Offset Bits equal 8, thesfo the next

Chapter Four: Performance Measures and Test Results o1

(other) tests Scale Bits and Offset Bits are takerand 8,
respectively.

5. By increasing the value of the offset Bits tI&NR value increases
rather than the Scale Bits, that’'s means that #heevof the Offset
Bits has effect on the audio quality more than &é&ats.

Test (3): Jump Size Effect

In this test the values of other coding parametense taken fixed as in
table (4.6).

Table (4.6) coding parameters

Maximum Scale 15
Minimum scale -1.5
Maximum Offset 128
Minimum Offset -128
Scale Bits 5
Offset Bits 8
Block Size 4

To demonstrate the effect of the Jump Size on tB& Mnd PSNR values and
the encoding time. Different values for the jungesivere considered.

The test results for the case (test sample-5)stezllin table (4.7).

Table (4.7) The Resulted MSE and PSNR of the reconstructed
wave data (Test-Sample-5)

. PSNR | Compression Encoding
Jump Size | MSE (dB) Ratio Time (sec.)
4 0.13 56.96 1.6:1 392.01
10 0.13 56.78 1.71:1 174.37
16 0.92 48.45 1.7:1 118.7

Chapter Four: Performance Measures and Test Results

oV

20 0.96 48.35 1.78:1 96.23
26 0.99 48.17 1.78:1 82.34
36 19.95 35.13 1.78:1 69.52
450
400
é 350 \\
g 300 \
i= 250
> 200 \ —e—ET/sec
S 150 \\
£ 100 ~—
50
O I I I
0 10 20 30 40
Jump Size

Figure (4.7) The Effect of the jump size on the encoding time

Notes:
1.

By fixing the block size and varying the jump site encoding
time will be highly affected.

By increasing the jump size the encoding time wal decrease,
because the increase in jump size will lead to lsdmhain pool, so
the searching process for the best match domaickbdll need

smaller number of tests.

Increasing the jump size will affect the audio dyalof the

reconstructed file, as shown in the table (4.7) uhkie of PSNR

decreases when jump size increases.

. Increasing jump size rather has no effect on tmepression ratio.

Chapter Four: Performance Measures and Test Results oA

Test (4): Maximum Scale and Minimum Scale Effects
In this testthree test samples were taken as test materiagsfifgh one
is (test sample-4). The values of other coding patars were taken fixed as

in table (4.8).
Table (4.8) Coding parameters

Block size 20
Jump Size 8
Maximum Offset 128
Minimum Offset -128
Scale Bits 5
Offset Bits 8

To demonstrate the effect of different maximum scahd minimum scale
values on thePSNR and M SE of the reconstructed wave data. Different
values for maximum and minimum scale were consdiere

The test results for the case (test samplarel)isted in table (4.9).

Table (4.9) The MSE and PSNR of the reconstructed wave data for
the first test set.

Min. Scale | Max. Scale | MSE P(il;l)? Compression Ratio
-1.5 1.5 20.91 34.92 7.92:1
-2 2 15.22 36.30 7.92:1
-3 3 14.45 36.53 7.92:1
-4 4 14.05 36.65 7.92:1
-5 5 14.93 36.38 7.92:1
-8 8 17.60 35.67 7.92:1

Chapter Four: Performance Measures and Test Results o9

The second test is applied on (test samplenit) the following fixed
coding parameters as in table (4.10).
Table (4.10) Coding parameters

Block size 20
Jump Size 8
Maximum Offset 128
Minimum Offset -128
Scale Bits 5
Offset Bits 8

The test results of the second test are listedhle (4.11).

Table (4.11) The MSE and PSNR of the reconstructed wave data
for the second test set.

Min. Scale | Max. Scale | MSE | PSNR Compression Ratio
-1.5 1.5 69.90 29.68 7.89:1
-2 2 61.04, 30.27 7.89:1
-3 3 48.23| 31.3 7.89:1
-4 4 45.24| 31.57 7.89:1
-5 5 43.68| 31.72 7.89:1
-8 8 45.22| 31.57 7.89:1

Chapter Four: Performance Measures and Test Results T

The third test is applied on (test samplew&h the following fixed
coding parameters as in table (4.12).
Table(4.12) Coding parameters

Block size 10
Jump Size 10
Maximum Offset 128
Minimum Offset -128
Scale Bits 5
Offset Bits 8

The test results of the third test are listed bidg44.13).

Table (4.13) The MSE and PSNR of the reconstructed wave data
for the third test set.

Min. Scale Max. Scale MSE | PSNR | Compression Ratio
-1.5 1.5 28.92 33.51 2.87:1
-2 2 37.00 32.44 2.87:1
-3 3 20.18| 35.08 2.87:1
-4 4 17.77), 35.63 2.87:1
-5 5 7.94 | 39.13 2.87:1
-8 8 18.27| 35.51 2.87:1
Notes

1. The results of the test set (first) indicate tia $cale boundary has
an effect on théV SE. In other words the increase in value of Min.
scale (up to 4) will decrease the value of MSE. B further

increase in value of Min.scale will cause sligldraase in MSE.

Chapter Four: Performance Measures and Test Results 1Y

2. The results of the test set (second) indicate tihvatvalue of the
MSE decreases by increasing the Min.scale (up tofuBher
increase in value of Min.scale will increase thkigaof the MSE.

3. The results of the test set (third) indicate thattalue of the MSE
decreases by increasing the Min.scale (up to Shdurincrease in

Min.scale value will increase MSE value.

Test (5): Maximum Offset and Minimum Offset Effects
In this test sdtvo test samples were taken: the first part of s set is
applied on (test sample-4). In this test the follmyvcoding parameters are
taken fixed as in table (4.14).
Table (4.14) Coding parameters

Block size 20

Jump Size

Maximum Scale

Minimum Scale
Scale Bits
Offset Bits

| Ul Al N ©

To demonstrate the effect of maximum offset andimmimn offset values on
the PSNR and MSE of the reconstructed wave data. Different valuas fo
maximum and minimum offset were considered.

The test results of (test sample 4) are listetdble (4.15).

Chapter Four: Performance Measures and Test Results ny

Table (4.15) The resulted MSE and PSNR of the reconstructed
wave data for (test sample- 4)

Min. Offset Max.Offset MSE | PSNR | Compression Ratio

-128 128 14.05 36.65 7.92:1
-256 256 13.95 36.68 7.92:1
-512 512 16.21 36.03 7.92:1

The second part of this test set is appliedtest sample-2). In this test

the following coding parameters are taken fixethasble (4.16).

Table (4.16) Coding parameters

Block size 40
Jump Size 40
Maximum Scale 5
Minimum Scale 5
Scale Bits 5
Offset Bits 8

The test results of (test sample -2) are listetdle (4.17).

Table (4.17) The resulted MSE and PSNR of the reconstructed
wave data for (test sample-2)

Min. Offset Max. Offset | MSE | PSNR | Compression Ratio

-128 128 45.66 31.53 12.3:1
-256 256 726.8 19.51 12.3:1
-512 512 728.3 19.50 12.3:1

Chapter Four: Performance Measures and Test Results Y

Notes:

1. In the first part of this test set, taking the effsalue 128, 256 or 512
has no real effect on PSNR value it's rather dtaysame, according to
the PSNR values obtained.

2. In the second part of the test set the change mppgaa larger when
taking Max.Offset equal to 256 and 512, where PSidRe decrease.
But when Max.Offset value equal to 128 PSNR valuk e larger
than that of 256 and 512, according to the PSNRegbbtained.

Further tests made on all five test samptes resulted MSE and PSNR

of the reconstructed wave data are listed in teh(E).

Table (4.18) The resulted MSE and PSNR and compression ratio
of the reconstructed wave data

Test | Block | Jump | MSE | PSNR | Compression | Encoding Time
Samples| Size | Size Ratio (sec.)
Samplel| 40 40 | 12.42 37.18 11.44:1 308.08
Sample2| 40 40 | 44.28 31.61 12.3:1 22.95
Sample3| 40 40 | 32.38 33.02 12.91:1 138.71
Samplel| 10 10 | 1.77| 45.63 2.7:1 2284.36
Sample2| 10 10 | 28.92 3351 2.87:1 149.6
Sample3| 10 10 | 6.41] 40.05 3.06:1 1014.61
Samplel| 60 4 | 16.98 35.83 15.51:1 2317.38
Sample2| 40 4 | 37.72 32.36 11.03:1 162.85
Sample3| 20 4 | 17.22 35.76 5.86:1 1610.09
Sample4| 10 1 1.09| 47.72 3.7:1 621.39
Sample5| 10 1 3.75| 42.38 3.65:1 820.38
Sample4 | 14 4 5.07| 41.08 5.5:1 121.45
Sample5| 14 4 | 18.97 35.35 5.42:1 160.50
Sample4| 20 8 | 20.91 34.92 7.92:1 54.71
Sample5| 20 8 | 69.90 29.68 7.89:1 62

Chapter Four: Performance Measures and Test Results

1¢

Table (4.19) Test samples and corresponding PSNR and energy

Test Block Size PSNR Energy
Samples
Sample3 40 34.02 130.22
Sampled 40 33.92 358.59
Samplel 40 31.18 496.61
Sample2 20 30.61 550.52
Sampleb 20 29.68 563.91
35
34 . .
x 331
& 32 1
& 31
30 - \\
29 ‘ ‘ ‘ ‘
0 100 200 300 500
Energy
Figure (4.8) The relationship between PSNR and energy
Notes:

1. This figure is to study the behavior of the teshpkes sound quality

with its corresponding energy for each test sample.

2. The figure (4.8) shows that the PSNR value decezabten the energy

increases.

Table (4.20) Test samples and corresponding PSNR and entropy

Test Block Size PSNR Entropy
Samples
Sampled 40 33.92 5.2
Sample3 40 34.02 5.27
Sampleb 40 29.68 5.36
Sample2 20 30.61 6.3
Samplel 20 31.18 6.51

Chapter Four: Performance Measures and Test Results

35
34 &
% 33
8 32
31 /’
30 L/
29 T T T
0 2 4 6 8
Entropy

Figure (4.9) The relationship between PSNR and entropy

CHAPTER FIVE

Conclusions and Future Work Suggestions

5.1 Conclusions

In this work an attempt is made to design and implement a fractal audio

compression system.

From the test results presented in the previous chapter, some remarks

related to the behavior and performance of the suggested fractal audio

compression system were concluded, among these remarks are the following:

1.

The encoding time is inversely proportional with both Block size and
Jump size.

The compression ratio and the MSE value of the fractal audio
compression system are direct proportional with both block size and jump
size, while the PSNR value is inversely proportional with both block size
and jump size.

As the jump size is small, the domain pool is large, so a better quality of
the reconstructed audio will obtain.

The IFS coefficients (Scale and Offset) highly affect the compression ratio
and it was improved when they are quantized. But these coefficients do

not have any effect on the encoding time.

5. Fractal method can provide good compression performance for sounds.

6. In this work, the implemented fractal audio compression method has

very long encoding time. This can considered as the main weak point in
fractal compression method.

The long time process implied in the encoder is resulted from the
matching module, where for each range block the searching process is
trying to find the domain block, which satisfy the best match with the
considered range block among the other whole domain blocks taking into

Chapter Five: Conclusions and Future Work Suggestions 1y

consideration the symmetry states. So this searching with its matching,

transformation, will lead to long encoding time for fractal method.

5.2 Future Work Suggestions

The followings are recommendations for the future work:

1. Since the resulted IFS code consists of only the parameter vectors,
then it is possible to use additional lossless data compression
method to further compress the PIFS code and obtain better
compression performance such as Huffman coding method.

2. Trying to use other audio partitioning scheme (variable block size),
which may cause a better quality for the reconstructed audio.

3. using some classification methods to classify the domain blocks
and the range blocks.

4. Develop the software system to open the coded file directly
(decode it and play it at the same time).

5. In order to reduce the long encoding time of fractal compression
and make it reasonable. We suggest an approach depends on the
idea of reducing the matching search operation by suggesting new
searching mechanism.

6. Elimination of the unvoiced data samples from the original input

data to decrease the compression time.

Chapter Four
Performance
Measures and

Test Results

Chapter One
General
Introduction

Chapter Three

System Design
and

Implementation

Chapter Two
Basic Concepts
of Fractal

Chapter Five
Conclusions and

Future Work.
Suggestions

Dedication

I dedicate my work, to all the
researchers and scientists who use the
science to make the world a better place.

To all the people who sacrifice in their
lives for a better future for their country
and for their children.

To my country as a simple gift, to

memory of my best friend (Oras) to my

Wesam

Sena il (5)58 alus tan)

sl 3l o gle andl

Fractal Audio Compression :¢ s<a sl
Yo ofA[Y sg il

Very Good :_paill

il ¢ oz 1) siall

SV FAY (ailgll

PV ATAYY b gl

ve e, s A Bt "ff}f‘,"f
G o) fp g ity

* 0

e :’:‘ < }_i'}-‘f
MYJM\@}.@\ Ly

- i

asliall Aad)) G

A Q-Q‘JM‘Y‘

List of Abbreviations

ADC Analog-to-Digital Converter
ASCII An acronym for American Standard Code for
Information Interchange
AFC Audio Fractal Compression
CD-ROM Compact Disk — Read Only Memory
CR Compression Ratio
dB Decibel
FIC Fractal Image Compression
GSM Global System for Mobile Telecommunication
Protocol
HV Horizontal-Vertical Partition
IFS Iterated Function System
JPEG Joint Photographic Expert Group
MP3 MPEG Audio Layer 3
MPEG Moving Picture Expert Group
MSE Mean Squared Error
PCM Pulse Code Modulation
PIFS Partitioned Iterated Function System
PSNR Point to Point Signal to Noise Ratio
RIFF Resource Interchange File Format
SNR Signal- to- Noise Ratio
WT Wavelet -Transform

References

[ATS01]
ATSC Standard: Digital Audio Compression (AC-3)vikeon A, Advanced
Television Systems Committee, Doc. A/52A, 20 Augid1.

[Aba02]

Abas M.; “Genetic Algorithm and Vector Quantizatiofor Image
Compression”, Ph.D. Thesis, Computer Science arornration System
dep., Baghdad University, 2002.

[Bar 93]
Barnsley M. F. and Hurd L. P.; “Fractahage Compression”, AK peters,
Wellesley, Massachusetts, USA, 1993.

[Bar 88]
Barnsley M. F.; “Fractals everywherdew York: Academic Press, 1988.

[Bah95]

Baharav Z., Krupnik H., and karnin E.; “A Multi-Rastion Framework for
Fractal Image Representation and its applicatidethnion-Israel Institute
of Technology, Israel, 1995.

[Deg93)

Degener J.; “Speech Compression Algorithm to Supploe Real-Time
Video Conferencing Research”, A research, TechritaVversity of Berlin,
1995.

[Fiso4]

Fisher E. Y.; “Fractal Image Compression: Theorg applicatiofi. Springer
Verlag, 1994.

[Fis02]

Fisher E. Y.; “Fractal Image Compression”, courstes, Volume 12, ACM
SIGGRAPH, 1992.

[Jac92]
Jacquin A. E.; “Image Coding Based on a Fractal ofyeof Iterated
Contractive Image Transformations”, IEEE Transawioon Image

Processing, Vol. 1, no. 1, January 1992.

[Kis99]
Kishimoto N. and Natori N. C.; “Basic Consideratiof Structures with
Fractal Properties and Their Mechanical Charadtesis Paper, The institute

of Space and Astronautically Science, Kanagawanlai999.

[Kie98]
Kientzle T.; “A Programmer’s Guide to Sound”, Adais\Wesely Developers
press, 1998.

[K1000]
Klonowski W., “Signal and Image Analysis Using Cbkadheory and
Fractal”, Polish Academy of Sciencé&gland, 2000.

[Man83]
Mandelbrot B. B.; “the fractal geometry of naturé&reeman W. H. and
company, 1983.

[Man77]

Mandelbrot B. B. “The Fractal Geometry of Naturéteeman W. H. and
Company, 1977.

[Mor 98]
Morris J.; “Center for Intelligent Information Pressing Systems”,

University of Western Australia, 1998

[Mar9g]
Martensson A.; “Error Resilient Wavelet Image Coegsion”, Stockholm
University, 1998.

[Pan93]
Pan, D. Y.; “Digital Audio Compression” Digital Technical Journal, Vol. 5
No. 2, Spring 1993.

[Sal00]
Salomon, D.; “Data Compression the Complete RetererAddison Wesley
Company, Second Edition, 2000.

[Sha9g]
Shamoon T. G.; “Algorithms for encoding high fidglaudio at low bit rate”,
Cornell University, 1996.

[Sin93]

Sinha D., and Tewfik A. H.; “Low Bit Rate Transpatéudio Compression

Using a Dynamic Dictionary an Optimized Waveletdgpt. of Electr. Eng.

Minnesota Univ., IEEE International Conference aro@stics, Speech, and
signal processing, pp.197-200, 1993.

[Sha01]
Shannon C. E.; “a Mathematical Theory of Commuicd; Bell Labs,
2001.

[Umb98]
Umbaugh S. E.; “Computer Vision and Image ProcegsiRrentice-hall,
Inc., USA, 1998.

[Wat95]
Watkinson J.; “Compression in video and audio”, dReEducational

Company, 1995.

[Wan00]

Wang A.; “Data Coding”, Information and Computeiedce Dept., Univers-
ity of California Irivin, 2000. Site:
http:www.cs.tut.fil/~ypsilon/80545/coding of As.hi#RD2, 2000.

[Woh99]

Wohlberg B. and Jager G., “A Review of the Frackalage Coding
Literature”, IEEE Transactions on Image ProcessiNg). 8, no. 12,
December 1999.

[Wal95]

Walle A. V.; “Relating Fractal Image CompressionTi@nsform Methods”,
M.Sc Thesis, College of Science, University of Waig, 1995.

[Xia01]
Xiao P.; “Image Compression by Wavelet TransforM’Sc. Thesis, college
of science, East Tennessee State University, 2001

[Xia04]
Xiao H.; “Fractal Compression”, Queen’s Universitgingston, Ontario,
Canada, April 2004. Site:

http://www.cs.queensu.ca/home/xiao/doc/fractal.pdf

[YokO3]

Yokoyama T., Watanab T., and Sugawara E.; “Sintjdrased Image
Retrieval System Using PIFS Codes”, University ofledio—
Communications, Tokyo, JAPAN, 2003.

[Z019§]
Zolzer U.; “Digital Audio Signal Processing”, Vjl&Company, 1998.

Table of Contents

Abstract [
List of Abbreviation [

1.1 Digital Audio 1

1.2 Data Compression 2

1.3 Types of Data Compression 2
1.3.1 Lossless Data Compression 2
1.3.2 Lossy Data Compression 4

1.4 Audio Compression 5

1.5 Fractal Compression 5

1.6 Aim of thesis 7

1.7 Related work 7

2.1 Introduction 9
2.2 Definition of Fractal 9
2.3 Properties of Fractal 10
2.4 Fractal Development 11
2.5 Fractal Examples 11
2.6 Fractal Coding 14
2.6.1Encoding 14
2.6.2Decodig 15
2.7 Affine Transformations 15
2.8 Contractive Transformations 16
2.9 Fixed Point Theorem 16
2.10 Partitioned iterated Function Systems (PIFS’s) 16
2.11Derviation of Scale and Offset Equations 19
2.12 Advantage and Weakness of Fractal Compression 21
2.12.1 Fractal Advantages 21
2.12.2 Fractal Weaknesses 22
2.13 Quantization 22
2.14 Fidelity Criteria 24
‘Chapter Three: System Design and Implementation
3.1 Introduction 26
3.2 Audio Fractal Compression system (System Model) 26

3.2.1 Encoding Unit 29

3.2.1.1Loading Wave File

3.2.1.2 Range Pool Construction

3.2.1.3 Down Sample the Audio Data By 2

3.2.1.4 Domain Pool Construction

3.2.1.5 Compute the Domain Parameters

3.2.1.6 Compute Range Parameters

3.2.1.7 Quantization and Dequantization fcal& and

Offset

3.2.1.8 Matching between Range Blocks and &orBlock

3.2.1.9 Save the Affine Coefficients in tHE® code
3.2.2 Decoding Unit

3.2.2.1 Load PIFS code

3.2.2.2 Decoding Using Affine Transform Eqoati

3.2.2.3 Wave Reconstruction

Chapter Four: Performance Measuresand Test Results
4.1 Performance Measures
4.1.1 Compression Ratio
4.1.2 Entropy Measures
4.1.3 Energy Measures
4.2 Performance Parameters
4.3 Audio Test Samples
4.4 Test Results

Chapter 5 Conclusionsand Future Work Suggestions
5.1 Conclusions
5.2 Future Work Suggestions

Appendix A (Wave PCM Sound File Format)
References

30
31
32
32
34
35
35

38
40
42
42
43
45

47
47
48
48
49
49
52

66
67

- -;l.p“" - @:’.$

Lo,

P“"”“ AHR4 f‘.’

& %
i‘

3
%

Republic of Irag
Al-Nahrain University

College of Science

“-{lsugm\‘“

Fractal Audio Compression

A THESIS
SUBMITTED TO THE
COLLEGE OF SCIENCE, AI-NAHRAIN UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE IN
PHYSICS

By

Wesam Fawzl Jassm M ohammed
(B.Sc. 2002)

SUPERVISORS

Dr. Loay A. George Dr.Laith A. Al-ani

Jamadi Al-awal 1425

June 2005

	Microsoft Word - 8D9A~1.pdf
	Microsoft Word - Abstract Final.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - Appendices.pdf
	Microsoft Word - Appendix A.pdf
	Microsoft Word - C644~1.pdf
	Microsoft Word - CERTIFICATE.pdf
	Microsoft Word - CERTIFICATE of Examination.pdf
	Microsoft Word - CH1.pdf
	Microsoft Word - CH2.pdf
	Microsoft Word - CH3.pdf
	Microsoft Word - CH4.pdf
	Microsoft Word - CH5.pdf
	Microsoft Word - Chapter Four Face.pdf
	Microsoft Word - Chapter One Face.pdf
	Microsoft Word - Chapter Three Face.pdf
	Microsoft Word - Chapter Two Face.pdf
	Microsoft Word - Conclusion.pdf
	Microsoft Word - Dedication.pdf
	Microsoft Word - information.pdf
	Microsoft Word - KURAAN.pdf
	Microsoft Word - List of apprevations.pdf
	Microsoft Word - References.pdf
	Microsoft Word - References2.pdf
	Microsoft Word - table of comtents.pdf
	Microsoft Word - Title.pdf

