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Abstract

The study of the resampling and requantization oelof digital audio data
Is one of the major assets project. Which theséoastused to compression
the audio data.

In this search the application of some resampliethiwds on the audio signal
was investigated by reducing the number of samplele the audio quality is
maintained. The considered resampling methodshare t

Linear, Quadratic, Cubic spline, Lagrange and Bezie

and for each method the level of sampling reducti@s investigated by
applying the down sampling rate using and thenamppding using the above
mentioned interpolation method. The efficiency dcle method under
consideration will be determined with the aid ofality criteria like peak
signal to noise ratio (PSNR). The Lagrange, Culptine, and Beizer
interpolation methods provided have the same reanidl good quality.

Also in this search the results of applying thaform and non—uniform
guantization methods are presented the effecteofjtlantization steps on the
audio quality investigated. The results proved thform quantization
method is better than non—uniform quantization ioeth

A listening test was used to prove the efficienéyeach method, the test
sample has different backgrounds and they provenwhe decimation rate

and the step of quantization increase the audibtguwall be decrease
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Appendix A
The Wave File Format

The header structure can be represented by the following record structure:

Field name Field size (bytes)
Sign 4
WavSiz ¢
Format ¢
Block type $
Sound card ¢
File format type Y
No. of channels Y
Sampling rate ¢
Byterate ¢
Byte per sample Y
Bits per sample Y
Chunk name ¢
Chunk size ¢

AN




The WAV format stars with the RIFF header:

Name Size Description
Sign 4 Contains the letters”"RIFF” in ASCII form
WavSiz 4 This is the size of the entire file in bytes nur@u
bytes for the two fields not included in this caunt
sign and wavsiz
Format 4 Contains the letters "WAVE”

The WAV format consists from "fmt” and "data”
The "fmt” describes the sound data format:

Name Sizeg Description
Block type 4 Contain the letters “fmt”
Sound card 4 | This is the type of the used sound card duriag

recording stage

File format type| 2 PCM=1

No. of channels| 2 Mono = 1, Stereo = 2
Sampling rate 4 8000, 11024, 22048, 44069

Byte rate 4 No. of bits per second

Byte per sample 2 No. of bytes per samples

Bits per sample 2 8 bits = 8, 16 bits = 16
Chunk name 4 Contains the letters "data”

Chunk size 4 This is the number of bytes in data
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Chapter Two
Digital Audio Processing

2.1 Introduction

A signal can be defined as function that convej@amation. Although
signals can be represented in many ways, in akscdlse information is
contained in a pattern of variations of some fdionexample the signal may
take the form of pattern of time variations or atsdly varying pattern.
Signals are represented mathematically as functbnone or more
independent variables. For example, a speech sigmad be represented as
a sampling and quantizatio®pp 75|.

When we hear a voice of a friend or other well kraove we recognize
it instantly. Similarly if we hear music, we cancognize the sound of
particular musical instrument. Some people are edr to recognize the
identity of an instrument by the sound alone. Ss itlear that the sound of
these people and instrument must be different. &laee plenty of terms to
describe the tone of someone's voice: rich, reddgcordant, syrupy, and
seductive. Musicians have their adjective, but éhase poetic rather than
precise. Fortunately for the engineer, physicistd anathematicians have
provided a precise way of characterizing any souhenever or however it is
produced Rab 7§.

Continuous—time, continuous—amplitude signals araetimes called
analog signals. Signal processing systems maydssitied along the same
lines as signals. That is, continuous—time syst@masystems for which both
the input and output are continuous—time signatk discrete—time. Systems
are those for which the input and output are dtsefteme signals. Similarly
analog systems are systems for which the inputoamgut are analog signals

and digital systems are those for which the inpod autput are digital



Chapter Two Digital Audio Processing

signals. Digital signals processing, deals witm¢farmations of signals that
are discrete in both amplitude and tinGpp 79).

The primary element of a wave is its strength ompléaode, the
amplitude is determined by the highest point altmg curve of the sound
wave, the higher the amplitude, the louder the dowitl be. The physical
unit of loudness is the decibel (dB), a decibalgorithmic unit of measuring
specifying the degree of loudness of the wave. Mgryhe amplitude of its
wave changes the loudness of a sound. The secenti| of a wave is its
frequency. How high or low a given tone sounds ddpeon the number of
pulses per second. This number of pulses is reféoras the tone's frequency
[Emb 91].

2.2 The Physics of Sound

For most of us sound is a very familiar phenomemsam;e we hear it
all the time. Nevertheless, when we try to definarsl, we find that we can
approach this concept from two different points/igfw, and we end up with
two definitions, as followsSal 99:

1. An intuitive definition: sound is the sensation el#ed by our ears and
interpreted by our brain in a certain way.

2. A scientific definition: sound is a physical dighance in a medium
propagated as a pressure wave by the movemerdrogair molecules.

When we speak the sound that we make createses sércompression
and expansion in the air around us. However, feound to travel from the
sound source to ear, another element must be blatla transmit the sound.
This "sound carrier" is called a medium. Usuallis tmedium is the air that
surrounds us. However, sound can also travel throwgter. Without a
medium, sound transmission is not possible, fomgta, it's impossible to

have a conversation on the moon. Since the modss lan atmosphere, a
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medium is not present to carry the sound from onatimto the listener's ear
[Sto 93.

We normally hear sound as it propagates throughathand hits the
diaphragm in our ear. However, sound can propagateny different media.
Marine animals produce sounds under water and nelspm similar sound.
Hitting the end of metal bar with a hammer produsesind waves that
propagate through the bar and can be detectect atiier end. Good sound
insulators are rare, and the best insulator is wacuwhere there are no
particles to vibrate and propagate the disturbar®eund can also be
considered as a wave, everthough its frequencyamnagge all the time. It is
a longitudinal wave, one where the disturbance theé direction of the wave
itself. In contrast, electromagnetic waves and onceaves are transverse
waves. Their oscillations are perpendicular todirection of the wave. As
any other wave, sound has three important attriyutespeed, amplitude, and
period. The frequency of a wave is not an indepenaéribute; it is the
number of periods that occur in one time unit (@@eond). The unit of
frequency is the hertz (Hz). The speed of soundedd® mostly on the
medium it passes through, and on the temperaBaiedg.
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2.3 Digital Wave File

Wave audio files are one of the common formats tigetiore and play
audio data. They support variable sampling freqigsnanultiple channels,
and a number of compression algorithmal[03].

The wave file can be classified according to thenlner of sampling
channels, and the samples resolution. Figure (#d9ents the four types of

PCM wave files.

Speech Header
[ Per Bits per channel ()]

8 Bits Sample 16 Bits Samples

Resolution Resolution

- N
( ) ( \

1 channel 2 channel 1 channel 2 channel
Mono Stereo Mono Stereo
(8 Bits) (8 Bits) (16 Bits) (16 Bits)

Figure (2.1) Types of PQ@Muve files
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The structure of the wave file can be divided itwto partsHeader and

Data Chunk.
Header: contain thirteen field of information concernediwchunk data, it

has length 44 bytes.
Data Chunk: contain a data of speef(ite, stored in binary format after the
conversion from analog to digital form. Its length byte depends on the

recording time.

44 byte  (No. of samples No. of channek Sample Resolutiohs) byte

Header Chunk

FigureqRWave file structure

The contents of the wave header structure are:

1. The Signature Resource I nterchange File Format (RIFF):
RIFF is a file format for storing many kinds of daprimarily multimedia
data like audio and video. It is based on chun&shehunk has a type,
represented by a four-character tag. This chuné ¢gmes first in the file,
followed by the size of the chunk, then the corgerftthe chunk\\Veb
03].

2. TheFile Size:
It is a long integer number indicates the sizeewhainder of the file in
bytes. It is equal to the length of the entire {8ebyte Web 03.

3. TheRIFF Type:
Multimedia applications require the storage and agament of a wide
variety of data, including bitmaps, audio data, andeo data. RIFF

provides a way to store all these varied type ¢d @&/l 03].
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4. The Block Type:
It is a string type field tell us the kind of thalbwed chunk (mostly it is a
format chunk which implies information about thesph data format.

5. Sound Card:
It is long integer field indicates the type of theed sound card during the
recording stage.

6. File Format Type:
It is an integer field indicates the type of codinged to represent the
speech wave from data, (the value 1 means Pulse Modulation).

7. No. of Channel(s):
It is an integer field indicates the number of meloog channels. If it is
equal to (1) it means Mono (single) channel othgsevi it is equal to (2) it
means stereo (double) channels.

8. Sampling Rate:
It is a long integer field indicates the numbersampling per second, it
may be one of the following values [8000, 11024052 44069] sample
per second.

9. Bytes Rate:
It is a long integer field represents the numbdrydés needed to store one
sample.

10. Chunk Name;
It is a string (4 characters) type field indicati®s next chunk type. In most
cases it will be a "data" chunk.

11. Chunk Size:
It is a long type field indicates the size of dethaink.

AR



Chapter Two Digital Audio Processing

2.4 Digital Audio

Much as an image can be digitized and broken up pitels, where
each pixel is a number, sound can also be digitared broken up into
numbers. When sound is played through a microphbmegconverted into a
voltage that varies continuously with time. Suchitage is the analog
representation of the sound. Digitizing sound i\@dy measuring the
voltage at many points in time, translating eaclasoeement into a number,
and writing the numbers in a file. This procesesaBed sampling. The sound
wave is sampled, and the samples become the éigispund. The device
used for sampling is callehalog-to-Digital Converter (ADC) [Sal 9.

Since the sound samples are numbers, they ared@®asit. However,
the main use of a sound file is to play it backisTie done by converting the
numeric samples back into voltages that are coatisly fed to a speaker.
The device that does is calledDaital-to—Analog Converter (DAC) [Sal
98].

Just as it is possible to convert a sound betvpeessure wave in air
and analog electric signal, it is possible to caoheevarying electric signal
into a series of digital values, and vice versaweler, because analog and
digital sounds are fundamentally different, we alsvbbose information when
we make this transformatioKie 98].

There are two factors that determine fidelity oé tbriginal analog
signal: the sampling rate and the resolution ofstm@aple.

1. Sampling rate is the number of samples that aesl us represent one
second of sound. By sampling at lower rates wetdose the sound
entirely, just the higher frequencies.

2. The resolution of the sample is the number of issample. It may be 8-
bit samples or 16—bit samples. 8—bit samples caaocairately represent

sound. The human brain, by way of its audio se(eans) can distinguish

'Y
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very subtle differences in amplitude and frequengyith only 256

recordable levels, many of the subtler elementsa afomplex sound
disappear. On the other hand, 16-bit sampling ciffierentiate over

65,000 signal levels, which makes it possible forgsent a sound with
much greater fidelity, while only doubling the stige demandjco 9%

2.4.1 Pulse Code Modulation (PCM)

When an analog signal is converted to digital foitns made discrete
both in time and in amplitude. Discretization imé is the operation of
sampling, while in amplitude it is quantizing. $stworth pointing out that the
transmission of analog information by digital meanesalled (PCM) standing
for "Pulse Code Modulatiori.

PCM is the first method used in converting analpgesh signal to
digital forms, and is still widely used in digitgheech transmission systems

In PCM, the input speech signal is frequency bodrideexclude any
frequency greater than a maximum frequency of ifpeasfmax. This signal is
sampled afs >2fmaxsample per second (sampling frequency), to protluee
corresponding Pulse Amplitude Modulation (PAM) signThe produced
samples are quantized into the nearest m levalstrnnumber of bits in the
sampling is P = logm)

It is simple to show that a binary codeword of rtsbong allows 2
separate numbers (or single values) to be repmderhus, if m = 8, we may
encode 2= 256 discrete values, if m = 16 theff 2 65536 values may
encode Wit 82].

'Y
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2.4.2 Sampling

The effects of time sampling in both time and fregey domains will
first be investigated. We will find that providetet appropriate sampling
criterion is satisfied, a continuous-time signah aa principle be exactly
reconstructed from its samples without er©@ay 0(Q.

The primary objective of our presentation is theenstanding of the
sampling theorem, which states that when the sagphte is greater than
twice the highest frequency contained in the spettof the analog signal,
the original signal can be reconstructed exactynfthe samplesVcc 9§|.

The plots shown in figure (2.3) naturally raise tpeestion of how
frequently we must sample in order to retain enougformation to
reconstruct the original continuous—time signalnfrats samples. The
amazingly simple answer is given [8hannon sampling theorem which
states that a continuous—time signal x(t) with fieacies no higher thdmax
can be reconstructed exactly from its samples xm¥s), if the samples are
taken at a raté&=1/Ts that is greater thanfrzax Where, n take only integer
values, Xx[n]: reconstructed signals: Tsampling period, ands. sampling
frequency.

This is a statement of th&hannon sampling theorem, one of the
theoretical pillars in modern digital communicasordigital control, and
digital processing. Notice that the sampling theonavolves two issues.
First, it talks about reconstruction of the sigfram its samples, although it
never specifies the algorithm for reconstructioecé@d it gives a minimum
sampling rate that depends on the frequency cowfex(t), the continuous-

time signal. This minimum sampling rate is callbd Nyquist rateNicc 98§).

V¢
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D Do

0 nl

(a) Ongmal (b) Sampled

Figure (2.3) Original and its sampled signals

2.4.3 Quantization

It is the step which allows a continuous amplitusignal to be
represented in terms of discrete amplitude incrésnen

The simplest form of quantization is the uniformagtization, where
the amplitude range is splitted into equal regidmg levels termed
guantization level.

Quantization typically effects a distortion whiclepknds on the chosen
quantization step size and the number of quantizaével Con 0Q.

The quantization can be arranged in either a umiféashion, i.e.,
uniformly distributed from the highest expectedueato the lowest expected
value, or non—uniformly distributed. Uniform quars allow the designer to
designate a minimum value for the error of any gaad value. For uniform
guantization there are only two parameters: the bmunof levels and the
guantization step size, while non—uniform quantzean give a significant
increase in accuracy, especially when the statisti¢dhe incoming signal are
known.

In the present work 8-bits ADC conversion was udgedgive 256
qguantization levels, and half the levels corresptandegative input voltage,
while the other half to positive onBdu 87).

Vo



Chapter Five
Conclusions and Future Work

This chapter is dedicated to present a list of anens, which derived
from the analysis results discussed in chapter, fMlso some suggestions for

future work will be given.

5.1 Conclusions
From the analysis of the test results the followiggnarks were
derived:

1. In the decimation method the sound is rapid becdabhsenumber of
samples per second is reduced.

2. Lagrange, Cubic spline, and Bezier interpolationthods have smaller
error than Linear, and Quadratic.

3. The increase of the decimation rate will decredse quality of the
reconstructed signal.

4. When rate of down sample is ten the Peak Sign&ldise Ratio of the
Cubic, Lagrange, and Bezier interpolation methsdsetween 24 to 29 dB
more efficient than the Linear, and Quadratic mé#ho

5. In the quantization the sound is low because thaiaude is reduced.

6. The increase of the quantization step in the umfguantization will
decrease the quality of the reconstructed signal.

7. When the quantization step is 14 the Peak SignaNdace Ratio of
uniform quantization is 37 dB.

8. When the number of level is 4 the Peak Signal tes&l&Ratio of non—

uniform quantization is between 15 to 16 dB.

Ao



Chapter Five Conclusions and Future work_

9. In non—uniform quantization when the number ofltheel is decrease the

quality of the reconstructed signal will be alscrdase.

5.2 Future Work
There are many directions in which the currentaegework could be
developed. Among these directions are the following
1. By using filters we may increase the down samptatg.
2. Using other methods of interpolation like (Legendentered function,
and cubig3—spline).
3. Apply other algorithms of non—uniform quantization.

AT



Chapter Four
Experimental Results

4.1 Introduction

This chapter is dedicated to describe th@i@gtion of some resampling
methods on the audio signal by reducing the nunolbexamples while the
audio quality is maintained. The considered resamgpmethods are the
Linear, Quadratic, Cubic spline, Lagrange and Beaad for each method
the level of sampling reduction was investigated dpplying the down
sampling using and then up sampling using the abw@ioned interpolation
method. Also in this chapter the results of apmgythe uniform and nen
uniform quantization methods to determine the ¢féthe quantization steps

on the audio quality investigated

4.2 Resampling Processes

The signal can be reconstructed for all tifnem its samples by
resampling process. We do this by using the intatjpm methodslinear
interpolation which is the simplest method andai be used to calculate any
number of new samples between two existing samglbsre are many
methods for interpolating discrete points, for epémn Lagrange
interpolation is a classical technique of finding an order Nypomial which
passes through N+1 given points.

Cubic splines fits a third order polynomial passing through twarts.
This allows for a smooth chain of third order paymal passing through a
set of points.

Also,Bezier interpolation methodould be used to interpolate a set of
points using smooth curves which don't necesspa$s through the points.

A%



Chapter Four Experimental Results

Since Shannon's sampling theorem sayspibssible to restore an audio
signal exactly from its samples, it makes sense tiiia best digital audio
interpolators would be based on that theory. Thoeelbldiagram shown in
figure (4.1) illustrate the steps of implementirige tinterpolation methods
(Linear, Quadratic, Cubic spline, Lagrange, and i@&¢zas resampling

methods.

YA



Chapter Four Experimental Results

Open Wave File
(~.wav)

v
| I |
v

| I |
v

Down Sampling by Using
Decimation Method

v

Up Sampling by Using Different
Interpolation Methods like Linear,

Quadratic, Cubic spline, Lagrange,
and Bezier,

Reconstruct Signal

Compare between Original
Signal & Reconstructed Signal

Figure (4.1) Block diagram of resampling process
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Chapter Four Experimental Results

4.2.1 Linear Interpolation Method

This method is the simplest methods of titerpolation. It is used to
interpolate the samples. More details about thehemahtical foundation of
this model are discussed in chapter three. In teshod the interpolate
sample depend on the values of the two surrounsingples. Thus, since the

samples are averaged. The results are obtainedf@equation.

X=X

PX)=f (x;)+ L[f (%, - T (X1, ... (4.1
X - X,

i+1 i
So, from the surrounding samples pgirx ,,) we can determine the value of
P(x)at the point(x) within the interval[x,x,,]. Equation (4.1) would be
rewritten in the form
Yup (><):(1-x)><F0+x><Fl, -t
Where Yup is interpolated (up sampled) data, x is the nomedl relative
position of the interpolated samples: x = (XD X (X — %.1), Fo (f (X)), andF,

(f (x+1)) are the nearest known samples.

Algorithm (4.1): A program for resampling by using Linear
interpolation method.
Inputs: (1) Nosamp= No. of input samples
(2) u = Ratio of up sampling
(3) yup() = Samples after decimation
(4) M = Up sampling rate -1
Out put: (1) Y() = Reconstructed samples

For1=0,1,..., Nosamp
FO =Ydwn (I): F1 = Ydwn (I + 1)
Forj=1ToM

Y)=(1L-U)*FO+U*F1
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4.2.2 Quadratic Interpolation Method

In the previous section we have discussed tiali interpolation as a
method based on evaluating straight line to intiaeadhe gaps between two
points (known samples). Since the result of tmgoke interpolation method
Is often less than satisfactory for up samplingi@auwthta, it is important to
utilize other kinds of interpolants utilize higherder polynomials which can
represent the curves more accurately. The simpl@giof doing this is to
apply the quadrant interpolant, which requires dhfge points to reconstruct
an arc passing through these three points.
Let us consider the three pointsy,o), (X1,Y1), (X2,Y2) then since the
guadratic interpolation formula is written as:

Yup (x) = g+ a X + & X, ... (4.3)
Where Yup is interpolated (up sampled) data, xhes hormalized relative
position of the interpolated samples.
By substituting the relative position valueg & -1; x; = 0; x, = 1), in

equation (4.25), we will get:

Yo= g -a+a,, ... (4.4)

Y, =3y, ...(4.5)

Y,=a+a +a,, ... (4.6)
The solution of above three linear simultaneousa@gn leads to the
following

%:%(Yz'Yo)’ ... (4.7)

a, =%(Y2 +Y,-2Y,), ..(4.8)

So, substituting the values o§,YY,, Y, in equation (4.5), (4.7), and (4.8) we
can get the values of(aa, &) respectively. Then substituting the determine

&)
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values of (g a, &) in equation (4.3) we can get the value of Yupdkjhe

relative position (x).

Algorithm (4.2): A program for resampling by using Quadratic
interpolation method.
Inputs: (1) Nosamp= No. of input samples
(2) u = Ratio of up sampling
(3) yup() = Samples after decimation
(4) M = Up sampling rate -1
Out put: (1) Y() = Reconstructed samples

For1=0,1,..., Nosamp
Evaluated the coefficient ag, a; and a, from the Quadratic
egaution
Forj=1toM

YO)=U*(a*U+a)+a

4.2.3 Cubic Polynomial Interpolation Method

Cubic spline is the name of an interpolategthod. The weight
coefficient for the four surrounding points, twoth® left and two to the right
of the point intended to be sampled.
Let us consider the four points then the cubierpolation formula is written
as:

Yup (X)=a+ax+ax +ax, ... (4.9)
Where Yup is interpolated (up sampled) data, argdtlke normalized relative
position of the interpolated samples. We assunakes the values (-1, O, 1,

and 2), substitute these values in equation («@)ill get

Yo=a-a+a-a, . .(4.10)

&y



Chapter Four Experimental Results

Y1 = &, ... (4.11)
Y, =& +a +& +as, ... (4.12)
Y:=at+2a+4a+8a, .. .18)
A straight forward manipulation for the above fdaear unknown equations,
we get:
aZ:%(YO-2Y1+Y2), ... (4.14)
a1=% (ab, -b,), ... (4.15)
1
a3=§(b2 -by), ... (4.16)
Where
1
bLZE(Yz'Yo)’ ... (4.17)
1
bZ:E(Y3-2Y2+3Y1-2Y2), ...18)

We substituted equation (4.11), (4.14), (4.15), ghtl6) in equation (4.9) to

determine Yup.

Algorithm (4.3): A program of resampling by using Cubic spline
interpolation method.
Inputs: (1) Nosamp= No. of input samples
(2) u = Ratio of up sampling
(3) yup() = Samples after decimation
(4) M = Up sampling rate -1
Out put: (1) Y() = Reconstructed samples

For1=0,1,..., Nosamp
Evaluated the coefficient ap, a;, a» , and a; from the Cubic
eqaution
Forj=1to M

Y()=(U*U*(ao*U+a1)+a2*U+a3)

&y
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4.2.4 Lagrange Interpolation Method

A polynomial function is continuous and srioeverywhere. It would
seem that if we can constructed a polynomial whmsge pass through the
N+1 data points, our problem may be solved. Fomgte, the Lagrange
polynomial is the unique polynomial of degree Ngmwag through these N+1
points. This polynomial interpolant can be thoughas an approximation of
some other function passing through these N+1 poilfherefore better

results are obtained from the approximation polybmritten in the form
P(X)zznlli()() fi’ P (419)
i=0

In out work the up sampling by using Lagmangterpolation method is
done by taking pieces of four known samples sumog the point to be
samples. Let us consider four points then the Lgigrainterpolation is begin

P (X) = 4(X) fo + 11(X) f1 + I(X) f2 + I5(X) f3, ... (4.20)

Where
_ (x - xl)(x - xz)(x - x3) . za)

S0 X) 06T X)X 7 X))

0

_ (x - xo)(x - x2)(x - x3) )

o (Xl- XO) (Xl- X2) (Xl- XS)’

_ (x - xo)(x - xl)(x - x3) ...13)

: (XZ ) XO) (X2 ) Xl) (X2 ) XS) |

_ (x - xO)(x - xl)(x - x2) .24

0 X)X m X)) X))

3

Since the points (X1,X,X3) are equally spaces, then their relative position
could be set (-1, 0, 1, and 2) respectively thogpragon (4.20) become

123
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Yup(X) =Fyx lg+ F x I + F, x|, + Fy x5, ... (4.25)
Where Yup is interpolated (up sampled) d&taf,, F,, andF; are the known
surrounding samples.

We substitute the relative values of,§x,X,X3) in equations (4.21), (4.22),
(4.23), and (4.24) to find,l 14, 5, and krespectively:

_x-0)x-1)(x-2) _ 1 i i
lo= 0-1)(0-2(03) 6x(x 1)(x -2), ... (4.26)

_(x=(1) x-1)(x-2) _1 e
o 2 THxDk-2), ... (4.27)

_(X-()(x-0(x-2) _ 1 i
I, = 202023 2x(x+1)(x 2), ... (4.28)

_(x-(1)(x-0)(x-1) _1 )
I = G-0GDGE2) 6x(x+1)(x 1), ... (4.29)

Then we substitute equation (4.26), (4.27), (4.28Y (4.29) respectively in
equation (4.25) to determine Yup.

Algorithm (4.4): A program for resampling by using Lagrange
interpolation method.
Inputs: (1) Nosamp= No. of input samples
(2) u = Ratio of up sampling
(3) yup() = Samples after decimation
(4) M = Up sampling rate -1
Out put: (1) Y() = Reconstructed samples

“ Continue H

¢0o
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Forj=1to M
Unl=U-1.Um2=U-2:Upl=U+1
F@O,j)=-U*Um1l*Um2/6:F(1,j)=Upl*Uml*Um2/2
F,)=-U*Upl*Um2/2:F(3,j))=U*Upl*Uml/6

Y() = F((0,)) * Yp(0) + F(1, ) * Yp(1) F(2,]) * Yp(2) + F(3, )) *
Yp(3))

4.2.5 Bezier Interpolation Method

This method is one of the simplest methadsépresenting the curves.
The mathematical relationship can be found in arabiree. The form of the

Bezier functions can be given as:
N
P (x) =_ZO RW(N,i,4), . ..(4.30)
| =

Where W is called Bernisten blending function anag by the relation

W(N,i,p) =[Nl a- ", . 4.31)

NC] = NI/ (i (N - i), ... (4.32)
Where Ris the parametric point (B P, Py, ..., R), ' is the value selected
in the range [0, ..., 1], Nis the number offrol points.

In out work the interpolation was done by choosegtrrounding four points
around the position that intended to be up sampézl consider the relative

position of the four points (0, 1, 2, and 3) theuation (4.30) become
P=R @-u)°+ 3Pu (Luf+3P u* (Lpu)+P i’ ... (4.33)
Applying equation (4.33) on the four points (whogevalues are O,

E,E,and 1we will get:
33

1
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R= Yo, ... (4.34)
B =ys ... (4.35)
Y1 = Epo’LﬂPl’LngJ’iPs’ ...368)

27 9% 9 27
The solution of the four linear simultaneous equatiwill lead to:

Pl:%(ZAl-Az), ... (4.37)

PZ:%(ZAZ-AI), ... (4.38)
Where

A1=%(27 Y -8Yy-Y3) s ... (4.39)

A2=%(27 Yo - Yo -8Y3), ... (4.40)

Thus we can use the equations (4.37), (4.38), Y488 (4.40) to determine
the values of (R P, P, P). Then the equation (4.33) could be used to

interpolate the points between @nd %) by usingu valueu=1+ X4
Xy =X

Algorithm (4.5): A program of resampling by using Bezier
interpolation method.
Inputs: (1) Nosamp= No. of input samples
(2) u = Ratio of up sampling
(3) yup() = Samples after decimation
(4) M = Up sampling rate -1
Out put: (1) Y() = Reconstructed samples

“ Continue
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Evaluated the coefficient P1, and P2 from the Cubic eqaution

Forj=1to M
u2=uUu*U
Uu=1-U:Uu2=Uu*Uu
YO=YpO)*Uu2*Uu+P1*U*Uu2+P2*U2*Uu +
Yp(3) *U2*U

4.3 Quantization Processes

Quantization is a rounding off (approximation) nueth By this
process, the wide ranges of real numbers are mappedmall set of integers
which require less number of bits in representat{oa. in storage or
transmission). The quantization can be arrangesther a uniform fashion,
l.e., uniformly distributed from the highest expettvalue to the lowest
expected value, or non—uniformly distributed. Unmfloquantizers allow the
designer to designate a minimum value for the esfany quantized value,
while non—uniform quantizers can give a significamtrease in accuracy,
especially when the statistics of the incoming algare known. The block
diagram shown in figure (4.2) illustrate the stepfsimplementing the

quantization methods (uniform quantization, and-aonfiorm quantization).

EA
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Open Wave File
(.wav)
“ & Read Header

i
|

Read Data H
Quantization Process

v

g

Uniform
Quantization

Non—uniform:
Quantization:

Reconstruct signal

Compare between Original
signal & Reconstructed Signal

Figure (4.2) Block Diagram of de—quantization psxce
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4.3.1 Uniform Quantization

The process of quantization and reconstructior-ddantization) are
extremely simple due to the linear relationshipwaen the reconstructed
values and the quantization indices (i). For compamn of the index i from
the signal value x, it is sufficient to divided tleentinuous value by the
quantization step4) and perform nearest integer rounding. Optionadly,
offset shift can be compensated in the quantizasimp. To compute the
reconstruction value (y), scaling of the index ) @nd reverse offset shift
must be performed. A uniform quantization procestemines the optimum

index i and the reconstructed (y) as follows:

i:cint[x_oAffset}, ... (4.35)

y =ixA + offset, Ce (4.36)

Algorithm (4.6): A program of Uniform Quantization.
Inputs: (1) Nosamp = No. of input samples
(2) gs = Quantization step

Output: (1) Y () = Reconstructed samples

For1=0,1,..., Nosamp
] = Nosamp — 128
Ya()=j/as

End For

For1=0,1,..., Nosamp

YO)=Yq *qgs +128

End For
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4.3.2 Non—uniform Quantization

It is useful if quantization errors are perceigdmore severe at low
amplitude ranges. For computation of the indexirfithe signal value x, it is
sufficient to apply histogram equalization methddhe first step in this

method is to find the accumulated probability dBnsi

_iZH ()
=120 ... (4.37)

Pacm(' ~ 255 ’

> H()
j=0

Where H (j) is the histogram value of the | th leekthe audio signal, £{i)
is the accumulated probability of the i th levehen the requantized value

(") of the level (i) is determined from follows:
i/ =P () %N, ... (4.38)

Where i’ the requantized signal and N is is the total numifequantized

levels.

Algorithm (4.7): A program of non—Uniform Quantization.
Inputs: (1) Nosamp = No. of input samples
(2) N = No. of quantization level

Output: (1) Y () = Reconstructed samples

For1=0,1,..., Nosamp

Determine the histogram of the samples
End For
For1=0,1,..., Nosamp

Pacm = his/max
End For

“ Continue “

o)
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For1=0,1,..., Nosamp
Y ()=PamxN
End For

4.4 Criteria Measures
Due to the decimation/upsampling and to the qmattn/

dequantization the speech signals tend to be dewtupy distortion known as
Noise. Noise is usually modeled as a random signal, which islmoed
(added) with the signal of interest. Timgise is usually viewed as an additive
signal independent of the speech signal. To meashee quality of
reconstructed signal compared with the originalsor® common measure
used for this purpose is tipeak signalto noise ratio (PSNR). It is familiar
to workers in the field; it is also simple to cdkte [Douglas 87.

The ratio of PSNR is calculated by the failog equation:

_ (255)°
PSNR=10xlog, 5 . .38)
Where
1N
5"2_ﬁiz (x -x)2, ...(4.39)

1

Jj iIs the Mean Square Error (MSE); s original signal, andxi’ IS

reconstructed signal.
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4.5 Resampling Test Results
Three files were adopted as test sampleenTthe five types of
interpolation methods are applied on each test kmMp reconstruct the

signal, and then we compute the values of PSNRV&®BE for different down
sample values.
451 Test1

The first test has 8-bit sampling resolutimono), sampling rate 22
kHz, and size 41080 bytes. Figure (4.3) illustrite shape of the signal

which has been tested.

Sampled signal

with down sampling = 2

Reconstructed signal

Figure (4.3) Original and its sampled and reaacséd signal
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The test results are shown in tables (441.2), (4.3), (4.4), (4.5), (4.6),

(4.7), (4.8), and (4.9).
Table (4.1) The results of 8-bit and size 4108@$ytith rate of down

sampling =2
Interpolation Methods MSE (dB) PSNR (dB)
Linear 4.6 41.5
Lagrange 4.4 41.7
Cubic Spline 4.4 41.7
Quadratic 54 40.8
Bezier 4.4 41.7

Table (4.2) The results of 8-bit and size 4108@$ytith rate of down

sampling =3
Interpolation Methods MSE (dB) PSNR (dB)
Linear 9 38.6
Lagrange 8.5 38.8
Cubic Spline 8.5 38.8
Quadratic 9.6 38.3
Bezier 8.5 38.8
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Table (4.3) The results of 8—bit and size 4108@%bytith rate of down

sampling =4
Interpolation Methods MSE (dB) PSNR (dB)
Linear 14.1 36.7
Lagrange 12.5 37.2
Cubic Spline 12.5 37.2
Quadratic 14.5 36.5
Bezier 12.5 37.2

Table (4.4) The results of 8-bit and size 4108@$ytith rate of down

sampling =5
Interpolation Methods MSE (dB) PSNR (dB)
Linear 21.2 34.9
Lagrange 18.2 35.5
Cubic Spline 18.2 35.5
Quadratic 21.3 34.9
Bezier 18.2 35.5

Table (4.5) The results of 8-bit and size 4108@$ytith rate of down

sampling = 6
Interpolation Methods MSE (dB) PSNR (dB)
Linear 29.6 33.4
Lagrange 25.9 34
Cubic Spline 25.9 34
Quadratic 31.3 33.2
Bezier 25.9 34

00
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Table (4.6) The results of 8—bit and size 4108@%bytith rate of down

sampling =7
Interpolation Methods MSE (dB) PSNR (dB)
Linear 38 32.3
Lagrange 34.5 32.8
Cubic Spline 34.5 32.8
Quadratic 41.1 32
Bezier 34.5 32.8

Table (4.7) The results of 8-bit and size 4108@$ytith rate of down

sampling =8
Interpolation Methods MSE (dB) PSNR (dB)
Linear 50.4 31.1
Lagrange 48.2 31.3
Cubic Spline 48.2 31.3
Quadratic 54.2 30.8
Bezier 48.2 31.3

Table (4.8) The results of 8-bit and size 4108@$ytith rate of down

sampling =9
Interpolation Methods MSE (dB) PSNR (dB)
Linear 64.1 30
Lagrange 65.7 30
Cubic Spline 65.7 30
Quadratic 75.2 294
Bezier 65.7 30
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Table (4.9) The results of 8—bit and size 4108@%bytith rate of down

sampling =10
Interpolation Methods MSE (dB) PSNR (dB)
Linear 77.9 29
Lagrange 83.7 29.4
Cubic Spline 83.7 29.4
Quadratic 95.1 29
Bezier 83.7 29.4

4.5.2 Test 2
The second test has 8-bit sampling resely{imono), sampling rate 22
kHz, and size 28213 bytes. Figure (4.4) illustrite shape of the signal

which has been tested.

Original signal Sampled signal

with down sampling = 2

Reconstructed signal
Figure (4.4) Original and its sampled and recorms$éa signal
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The test results are shown in the table$0§4.(4.11), (4.12), (4.13),
(4.14), (4.15), (4.16), (4.17), and (4.18).

Table (4.10) The results of 8—bit and size 2821i2dwith rate of down

sampling =2
Interpolation Methods MSE (dB) PSNR (dB)
Linear 6 40.3
Lagrange 4 42.2
Cubic Spline 4 42.2
Quadratic 5.8 40.5
Bezier 4 42.2

Table (4.11) The results of 8—bit and size 2821i2dwith rate of down

sampling =3
Interpolation Methods MSE (dB) PSNR (dB)
Linear 19.3 35.3
Lagrange 13.3 36.9
Cubic Spline 13.3 36.9
Quadratic 18.49 35.5
Bezier 13.3 36.9
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Table (4.12) The results of 8—bit and size 28212 dHwith rate of down

sampling =4
Interpolation Methods MSE (dB) PSNR (dB)
Linear 41.6 32
Lagrange 33.3 33
Cubic Spline 33.3 33
Quadratic 44 .4 31.6
Bezier 33.3 33

Table (4.13) The results of 8—bit and size 28212 dHwith rate of down

sampling =5
Interpolation Methods MSE (dB) PSNR (dB)
Linear 74.8 29.4
Lagrange 67.4 29.8
Cubic Spline 67.4 29.8
Quadratic 77.4 29.2
Bezier 67.4 29.8

Table (4.14) The results of 8—bit and size 28212 dHwith rate of down

sampling = 6
Interpolation Methods MSE (dB) PSNR (dB)
Linear 115 27.5
Lagrange 110 27.7
Cubic Spline 110 27.7
Quadratic 130 27
Bezier 110.4 27.7
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Table (4.15) The results of 8—bit and size 28212 with rate of down

sampling =7
Interpolation Methods MSE (dB) PSNR (dB)
Linear 158.3 26.1
Lagrange 158.2 26.2
Cubic Spline 158.2 26.2
Quadratic 179.8 26
Bezier 158.2 26.2

Table (4.16) The results of 8—bit and size 2821i2dwith rate of down

sampling = 8
Interpolation Methods MSE (dB) PSNR (dB)
Linear 204.7 25
Lagrange 206.4 25
Cubic Spline 206.4 25
Quadratic 234.5 24.4
Bezier 206.4 25

Table (4.17) The results of 8—bit and size 2821i2dwith rate of down

sampling =9
Interpolation Methods MSE (dB) PSNR (dB)
Linear 249.5 24
Lagrange 254.8 24.2
Cubic Spline 254.8 24.2
Quadratic 279.3 23.7
Bezier 254.8 24.2
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Table (4.18) The results of 8—bit and size 28212 dHwith rate of down

sampling = 10
Interpolation Methods MSE (dB) PSNR (dB)
Linear 299.7 23
Lagrange 310.3 23.2
Cubic Spline 310.3 23.2
Quadratic 334.1 22.9
Bezier 310.3 23.2

4.5.3 Test 3
The third test has 8—bit sampling resolutiomono), sampling rate 22
kHz, and size 117114 bytes. Figure (4.5) illustidie shape of the signal

which has been tested.

Original signal Sampled signal
with down sampling = 2

Reconstructed signal

Figure (4.5) Original and its sampled and recoms$éa signal
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The test results are shown in the table$9§4.(4.20), (4.21), (4.22),
(4.23), (4.24), (4.25), (4.26) and (4.27).
Table (4.19) The results of 8—bit and size 1174yités with rate of down

sampling = 2
Interpolation Methods MSE (dB) PSNR (dB)
Linear 6.1 40.3
Lagrange 5 41.2
Cubic Spline 5 41.2
Quadratic 6.2 40.2
Bezier 5 41.2

Table (4.20) The results of 8—bit and size 117\téswith rate of down

sampling =3
Interpolation Methods MSE (dB) PSNR (dB)
Linear 16.3 36
Lagrange 13.2 37
Cubic Spline 13.2 37
Quadratic 16.4 36
Bezier 13.2 37
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Table (4.21) The results of 8-bit and size 117 itédwith rate of down

sampling =4
Interpolation Methods MSE (dB) PSNR (dB)
Linear 32.3 33
Lagrange 27.7 33.7
Cubic Spline 27.7 33.7
Quadratic 34.3 32.8
Bezier 27.7 33.7

Table (4.22) The results of 8—bit and size 117 itédwith rate of down

sampling =5
Interpolation Methods MSE (dB) PSNR (dB)
Linear 52.8 31
Lagrange 47.3 314
Cubic Spline 47.3 314
Quadratic 58.2 30.5
Bezier 47.3 31.4

Table (4.23) The results of 8—bit and size 117téwith rate of down

sampling = 6
Interpolation Methods MSE (dB) PSNR (dB)
Linear 79.4 29.1
Lagrange 77.5 29.2
Cubic Spline 77.5 29.2
Quadratic 92 28.5
Bezier 77.5 29.2
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Table (4.24) The results of 8-bit and size 117 itédwith rate of down

sampling =7
Interpolation Methods MSE (dB) PSNR (dB)
Linear 107.4 27.3
Lagrange 114 27.7
Cubic Spline 114 27.7
Quadratic 128.7 27
Bezier 114 27.7

Table (4.25) The results of 8—bit and size 117 itédwith rate of down

sampling = 8
Interpolation Methods MSE (dB) PSNR (dB)
Linear 136.4 26
Lagrange 150.7 26.3
Cubic Spline 150.7 26.3
Quadratic 163.1 26
Bezier 150.7 26.3

Table (4.26) The results of 8—bit and size 117téswith rate of down

sampling =9
Interpolation Methods MSE (dB) PSNR (dB)
Linear 167.5 25.9
Lagrange 184.4 25.5
Cubic Spline 184.4 25.5
Quadratic 195.3 25.2
Bezier 184.4 25.5
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Table (4.27) The results of 8—bit and size 117 itédwith rate of down

sampling = 10
Interpolation Methods MSE (dB) PSNR (dB)
Linear 198.8 25.1
Lagrange 212.4 24.8
Cubic Spline 212.4 24.8
Quadratic 223.1 24.6
Bezier 212.4 24.8

The results of the three tested samples ghatvthe resampling method

which they are Lagrange, Cubic spline, and Bezz the same results (i. e)

there is no difference between them. Also the tesghow that when

increases the rate of down sample the PSNR witldmeeases this lead to the
difference in the audio quality. The results arféedent because it depend on

the conditions and the parameters of each method.

4.6 Listening Test

Also the results are tested subjectivelye Tiktening test is done to the

resampling algorithm for it importance, the testwsh when increase the rate

of down sampling there is perceptually noticeabféeence to the listener.

The four tested sample listens are from differeafiancludes student in the

master science, and ordinary people. The choitkeolisting is random. The
listening test results are shown in the tables3#4.@.29), and (4.30).

10
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Table (4.28) Listening test results of 8—dniid size 41080 bytes

——

Down
sampling Person 1 Person 2 Person 3 Person 4
rate
2 Excellent Excellent Excellent Excellent
3 Excellent Excellent Excellent Excellent
4 Excellent Very good Very good Excellent
5 Excellent Very good Very good Excellent
6 Very good Very good Good Very gooc
7 Very good Good Good Very gooc
8 Good Bad Good Good
9 Bad Bad Bad Bad
10 Bad Bad Bad Bad
Table (4.29) Listening test resuti8—bit and 28213 bytes
Down
sampling Person 1 Person 2 Person 3 Person 4
rate
2 Excellent Excellent Excellent Excellent
3 Excellent Excellent Excellent Excellent
4 Very good Very good Very good Very goot
5 Very good Very good good Very gooc
6 good Very good Good good
7 good Good Good good
8 Bad Bad Good Bad
9 Bad Bad Bad Bad
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Table (4.30) Listening test results of 8—~dnd size 117114 bytes

Down
sampling Person 1 Person 2 Person 3 Person 4
rate
2 Excellent Excellent Excellent Excellent
3 Excellent Excellent Excellent Very good
4 Excellent Very good Very good Very good
5 Excellent Very good Very good good
6 Very good Very good Good good
7 good Good Good Bad
8 Bad Bad Good Bad
9 Bad Bad Bad Bad
10 Bad Bad Bad Bad

4.7 Dequantization Test Results

Three files are adapted as test samplesn Weeapplied two types of

guantization methods on each test samples to reeachghe signal, and then

we compute the value of PSNR and MSE.
4.7.1.aTestl

The first test has 8-bit sampling resolutiGmono), sampling rate 22
kHz, and size 41080 bytes. Figure (4.6) illustrite shape of the signal

which has been tested.

v



Chapter Four Experimental Results

Ea ==

Original signal Quantized signal with

guantization step = 2

De-quantized signal

Figure (4.6) Original and its quantized and recatséed signal

The test results of uniform quantization are shawme table (4.31).
Table (4.31) Results of 8-bit and size 41080 byték different steps of

uniform quantization

Step of quantization MSE (dB) PSNR (dB)
2 0.3 54
3 0.6 50
4 1.4 46.7
5 1.8 45.5
6 2.8 43.6
7 3.5 42.7
8 4.7 41.4
9 5.6 40.6

TA
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Step of quantization MSE (dB) PSNR (dB)
10 7.1 39.6
11 8.2 39
12 9.8 38.2
13 11.2 37.6
14 13 37

Table (4.32) Listening test resutit8—bit and size 41080 bytes of uniform

guantization

Step

of Person 1 Person 2 Person 3 Person 4

guantization
2 Excellent Excellent Excellent Excellent
3 Excellent Excellent Excellent Excellent
4 Excellent Excellent | Very good Excellent
5 Excellent Excellent | Very good Excellent
6 Very good Excellent | Very good Very good
7 Very good Very good| Very good Very good
8 Very good Very good| Very good Good
9 Very good Very good Good Good
10 Very good Very good Good Good
11 Very good Good Good Good
12 Good Good Good Good
13 Good Bad Bad Bad
14 Bad Bad Bad Bad

14
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4,7.2.a Test 2
The second test has 8-bit sampling reselufimono), sampling rate 22
kHz, and size 28213 bytes. Figure (4.7) illustrite shape of the signal

which has been tested.

Quantized signal with
guantization step = 2

De-quantized signal

Figure (4.7) Original and its quantized and recatséed signal
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Experimental Results

The test results of uniform quantization sirewn in the table (4.33).

Table (4.33) Results of 8—bit and size 28213 bwiies different steps of

uniform quantization

Step of quantization MSE (dB) PSNR (dB)
2 0.5 51.3
3 0.6 50.1
4 1.3 47
5 1.7 45.7
6 2.8 43.8
7 3.4 42.7
8 4.7 41.4
9 5.6 40.6
10 7.1 39.6
11 8.3 39
12 10 38.1
13 114 37.5
14 13.3 36.9

\A




Chapter Four

Experimental Results

Table (4.34) Listening test resuti8—bit and size 28213 bytes of uniform

guantization

Step
of Person 1 Person 2 Person 3 Person 4
guantization
2 Excellent Excellent Excellent Excellent
3 Excellent Excellent Excellent Excellent
4 Excellent Excellent | Very good Excellent
5 Excellent Excellent | Very good Excellent
6 Very good Excellent | Very good Very good
7 Very good Excellent | Very good Very good
8 Very good Excellent | Very good Very good
9 Very good Very good Good Very good
10 Very good Very good Good Very good
11 Good Very good Good Very gooq
12 Good Very good Good Good
13 Good Good Bad Good
14 Bad Bad Bad Bad
4.7.3.aTest3

The third test has 8—bit sampling resolutiomono), sampling rate 22
kHz, and size 117114 bytes. Figure (4.8) illustrdie shape of the signal

which has been tested.

\Al
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Chapter Four

Quantized signal with

Original signal

quantization step

=2
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De-quantized signal

Figure (4.8) Original and its quantized and recatséd signal
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The test results of uniform quantization are shawme table (4.35).

Table (4.35) Results of 8-bit and size 117114 byi#s different steps of

uniform quantization

Step of quantization MSE (dB) PSNR (dB)
2 0.5 51.1
3 0.6 50
4 1.4 46.7
5 1.8 45.5
6 2.8 43.6
7 3.5 42.7
8 4.7 41.4
9 5.6 40.6
10 7.1 39.6
11 8.2 39
12 9.8 38.2
13 11.2 37.6
14 13 37

V¢
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Table (4.36) Listening test resuti8—bit and size 117114 bytes of uniform

guantization

Experimental Results

S

j -

Step

of Person 1 Person 2 Person 3 Person 4

guantization
2 Excellent Excellent Excellent Excellen
3 Excellent Excellent Excellent Excellen
4 Excellent Very good, Very good Excellent
5 Very good | Verygood| Very good Excellent
6 Very good | Verygoodl Verygood | Verygood
7 Very good | Verygoodl Verygood | Verygood
8 Very good Good Very good | Very good
9 Good Good Good Very goof
10 Good Good Good Very goo
11 Good Good Good Good
12 Good Bad Good Good
13 Bad Bad Good Good
14 Bad Bad Bad Bad

Yo
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4.7.1.b Test 1
The first test has 8-bit sampling resolutimono), sampling rate 22
kHz, and size 41080 bytes. Figure (4.9) illustrite shape of the signal

which has been tested.

Original signal Quantized signal with

No. of level = 30

De-quantized signal

Figure (4.9) Original and its quantized and recatsed signal

A
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The test results of non—uniform quantization a@shin the table (4.37).

Table (4.37) Results of 8—bit and size 41080 bwii#s different levels of

non—uniform quantization

No. of level MSE (dB) PSNR (dB)
30 41.9 32
26 53.2 30.9
22 86.3 28.8
18 111.3 27.7
14 179 25.6
10 279.4 23.7

436 21.7
436 21.7

8
7
5 756 19.3
4 1722.4 15.8
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Table (4.38) Listening test resutiE8—bit and size 41080 bytes of non—

Experimental Results

uniform quantization

No. of level| Person1 Person 2 Person 3 Person 4
30 Excellent Excellent Excellenq Excellent
26 Excellent Excellent Excellent Excellent
22 Excellent Very goodl Very good Excellent
18 Excellent Very good| Very good | Verygood
14 Very good | Verygood Verygood 6 Verygood
10 Very good | Very good Very good Good
8 Good Good Very good Good
7 Good Good Good Good
5 Bad Bad Good Good
4 Bad Bad Bad Bad

4.7.2.b Test 2

The second test has 8-bit sampling reselu{imono), sampling rate 22
kHz, and size 28213 bytes. Figure (4.10) illustrdie shape of the signal

which has been tested.

YA
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Original signal Quantized signal with
No. of level = 30

]

i

De-quantized signal

Figure (4.10) Original and its quantized and retwased signal
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The test results of non—uniform quantization a@shin the table (4.39).
Table (4.39) Results of 8—bit and size 28213 bwii#is different levels of

non—uniform quantization

No. of level MSE (dB) PSNR (dB)
30 0.8 49.2
26 0.8 49.1
22 0.8 40.2
18 110.3 27.7
14 322.8 23
10 540 20.8
8 540.8 20.8
7 540.8 20.8
5 1163 17.5
4 1987 151

Table (4.40) Listening test resuti8—bit and size 28213 bytes of non—

uniform quantization

No. of level Person 1 Person 2 Person 3 Person 4
30 Excellent Excellent Excellent Excellent
26 Excellent Excellent Very Good Excellent
22 Very good Excellent Very good Very gooq
18 Very good Very good Very good Very gooc
14 Very good Good Very good Good
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No. of level Person 1 Person 2 Person 3 Person 4
10 Good Good Very good Good
8 Good Good Good Good
7 Good Good Good Good
5 Bad Bad Good Good
4 Bad Bad Bad Bad
4.7.3.b Test3

The third test has 8—bit sampling resolutiomono), sampling rate 22
kHz, and size 117114 bytes. Figure (4.11) illustrdte shape of the signal

which has been tested.

AN
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Original signal Quantized signal with
No. of level = 30

De-quantized signal

Figure (4.11) Original and its quantized and retatsed signal
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The test results of non—uniform quantization a@shin the table (4.41).

Table (4.41) Results of 8—bit and size 117114 bwi#s different levels of

non—uniform quantization

No. of level MSE (dB) PSNR (dB)
30 37 324
26 52.2 31
22 67 30
18 93.8 28.4
14 139.1 26.7
10 238.5 24.3

8 347.2 22.7
7 347.2 22.7
5 619.8 20.2
4 1358.6 16.8
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Experimental Results

Table (4.42) Listening test resutit8—bit and size 117114 bytes of non—

uniform quantization

No. of level| Person 1 Person 2 Person 3 Person 4
30 Excellent Excellent Excellem{ Excellent
26 Excellent Excellent Excellent Excellent
22 Excellent Very good| Very good Excellent
18 Excellent Very good| Very good | Very good
14 Verygood | Verygood Verygood 6 Verygood
10 Very good Good Very good Good
8 Good Bad Good Good
7 Good Bad Good Good
5 Bad Bad Good Bad
4 Bad Bad Bad Bad
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Chapter One
General I ntroduction

1.1 Introduction

Over the past two decades, improvements in teolggdiave changed
the way of recording the music and the used digitatiia. Today, we use
computers to record audio and save it on of CDstloer storage devices. In
order to transform sound into a digital format, anest sample the sound.
This process takes place while one is recordinge Thmputer takes a
snapshot of the sound level at small time intervele number of samples
taken in each second is called the sampling rdte. miore samples that are
taken, the better sound quality. For instance,asdmpled at 44 kHz is better
than audio sampled at 22 kHz. It also means morag space is required to
record higher quality digital sounds

Bandlimited interpolation of discrete—time signasa basic tool has
extensive applications in digital signal processimggeneral, the problem is
to correctly compute signal values at arbitrarytoarous times from a set of
discrete-time samples of the signal amplitude. tlmeo words, we must be
able to interpolate the signal between samplesni@ds sampling theorem
tells us the signal can be exactly and uniquelpmstructed for all time from
its samples by bandlimited interpolatiddnji 04].

Signal requantization is applied in digital audystems whenever the
word-length of the audio samples needs to be redudas is the case for
instance when an audio signal has to be stored ©B and was originally
produced from the output of a digital audio systéat operates with more
than 16 bit precision. In some applications, likelliimedia, gaming, or

mobile communication devices, requantization tat8&b 12 bit could be an



Chapter One General Introduction

economically interesting alternative to other form data compression
because requantized data can be send directlyet®fA converter, while
encoded data requires a decoder. Signal requaatizaevitably introduces
an error, which can cause two types of audible lprob. The first is a
background noise that may be audible by itseltaih usually occur when
(part of) the error signal is uncorrelated with trgginal audio. When the
error is correlated with the signal, linear or noeér distortions may cause
alterations in the perceived quality of the sigmself. At low signal levels,
the second problem is usually much more seriouheD(it means how well
it remove quantization distortion whenever thesee requantization going
on), noise can be used to remove the correlatitnvds® the error and the
signal at the expense of increased noise en&rgy P03].

1.2 Review of Previous Works

Among the massive published research work inliteeature concerned
with speech analysis, the following list of recesgearches illustrate some the

important research work conducted in the field:

1. Mclain (1976) describe a method for smooth interpolation in one
dimension between data provided at a set of poartsitrarily
distributed. Because the method ensures the catytiouthe resulting
points, and its first two derivatives, it is sui@abfor graphical
application. This method is called spline and iweficients are not
found from the values at the nodes, as in the uapplications of
bicunbic spline when the data are given, but ateutaed using a
statistical least squares fit, so that resultingvesi fits as closely as
possible with the data. The curves produced bytdablnique are, of
course, smooth but it will not in general pass tigioall the data points
[Mcl 76].
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2. Collins (1998) described that real-time synthesis methods detdd wi

some form of manageable control data as a handlthdojob of
producing a continuous output stream of digital iaudh the time
domain. Changes in the control data have an imrtee@ifiect on the
synthesis, though the relation between audio resudtthe parameter
changed can be obscure. Interfacing to low levgitali audio requires
a manageable representation of control data toifgpbe shape of a
waveform. The model solved this by the use of pa&ating splines
defined by an ordered list of control poin@of 98].

. Shykula and Seleznjev (2000) considered quantization of a signal (or
random process) in a probabilistic framework. Theespnted
guantization method can be applied to signal codangl storage
capacity problems. In order to demonstrate the gérsgproach, the
uniform quantization of a Gaussian process wasetud more detail.
They investigated asymptotic properties of some uy
characteristics, such as rate and distortion, rmmgeof correlation
structure of the original random process when gmatdn cellwidth
tends to zergShy 00].

. Koning and Verhelst (2003) presented the idea of using Least Squares
(LS) theory for optimal noise shaping of audio silgn they indicated
that the suggested approach provides shorter anel st@ightforward
proof of known properties of dithered and nondigaenoise shaping.
In contrast with the standard theory, this approsicbws how noise
shaping filters that attain the theoretical optimoam be designed in
practice. Also they presented some produced resfutisn an
experimental noise shaping system for minimally ilaled signal
requantization that is based on the suggested di&isign method and a

simple masking model. In listening experiments,s tiystem was
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unanimously preferred over the alternatives whichcluded
straightforward requantization, dithered requanitraand optimized

fixed noise shapingqon 03].

5. Simth (2004) described a technique for resampling algorithm Wwhic

evaluates a signal at any time specifiable by adfipoint number. In
addition, one low pass filter was used, regardidsthe sampling rate
conversion factor. The algorithm effectively implems the “analog

interpretation” of rate conversion, in which a e@rtlow pass filter

impulse response must be available as a continuous function

Continuity of the impulse response is simulated hyearly
interpolating between samples of the impulse respasitored in a table.
Due to the relatively low cost of memory, the meth® quite practical

for hardware implementatiorsijm 04].

1.3 Aim of the Thesis

The present work aims to investigate the perforrmarfcsome selected

resampling methods on the digital audio signal, clwhthey are Linear,

Quadratic, Cubic spline, Lagrange, and Bezier aeoto reduce the number

of samples while the audio quality is maintainetboAhe present work aims
to investigate the performance of some uniform andn—uniform
quantization methods in order to make the requamtiz levels of the digital

audio data so small such that the audio qualitgastained.
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1.4 Thesis Layout

In addition to chapter one, there are four chaptehsch deal with the

ways of resampling and requantization of the digiave.

Chapter Two Entitle “Digital Audio Processing”

This chapter includes some basic of signal pracgssoncepts dealing

with digital audio wave as a digital signal.

Chapter Three Entitle “Resampling and Requantization”

This chapter presents a short description for ssaehected resampling
methods, which they are linear, Lagrange, CubimsplQuadratic, Bezier,
and there is some descrition of each one of thdra.chapter also contains a
description of requantization methods which theg aniform and non—

uniform methods.

Chapter Four Entitle “Experimental Results”

It includes a summary of the practical curreneaesh work. Also, the

analysis results were presented in form of tables.

Chapter Five Entitle*Conclusions and Future Work”

It includes some of conclusions derived from tingestigation of test
results, which present in chapter four. Also, tthapter presents some future
work suggestions concerned with the field of redargpand requantization
for audio data.



Chapter Three
Resampling and Requantization

3.1Introduction

The discrete—time signals is a basic way for reprsg signals in
digital form, it has an extensive applications gsthgital signal processing.
In general, the problem is to correct computer aigralues at arbitrary
continuous times from a set of discrete—time sampfehe signal amplitude.
In other words, we must be able to interpolate digmal between samples.
Since the original signal is always assumed to &edbimited to half the
sampling rateShannon's samplintpeoremtells us the signal can be exactly
and uniquely reconstructed for all time from itsnpées byinterpolation
[Sim 04.

The concept of interpolation is the selection dfiactionf (x) from a
given class of functions in such a way that theQraf y=f (x) passes through
a finite set of given data points. Interpolationtinoel has a number of
important uses. Its primary use is to furnish sonahematical tools that are
used in developing methods in the areas of apptiom theory, numerical
integration, and the numerical solution of diffarahequations. A second use
Is in developing means for working with functiomst are stored in a tabular
form [Mcl 79].

When thesampleis assigned into a numeric value that the comparter
digital circuit can use or store in a process cadjeantization. The number
of available values is determined by the numbdviisf used for each sample.
Each additional bit doubles the number of valueailalile (1-bit samples
have 2 values, 2—bit samples have 4 values, ¥t¢n a sample is quantized,
the analog amplitude has to be rounded off to tha&rest available digital

value. This rounding—off process is callgabroximation [Has 01].

V1
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3.2 Resampling

The process of converting from digital back to agalis called
reconstruction a good example is given by audie.dbhe music is stored in
a digital form from which a CD player reconstrutite continuous (analog)
waveform that we listen to. The reconstruction pescis basically one of
interpolation Mcc 99].

Thus, an understanding of sampling and reconstmicts a good
foundation for producing good—quality signals.

In the sampling/reconstruction problem we have ¢éaldwith three
distinct signals: the continuous signl the discrete signaly;, and the
reconstructed signd}. Ideally we aimed to make the reconstructed signal
equal to continuous signd} € f) when this happens we say the reconstruction

IS exact. Exact reconstruction is not always pdssib
The aim of reconstruction techniques is to minintize errorlf — f|.

Reconstruction techniques are very important imtaaipulation of signals in

the computer, for at least two reasons:

1. In the solution of certain problem we need a cardus representation of
the signal.

2. A good knowledge of the reconstruction techniqus=d by a given output
device is important in the creation or choi€a algorithms to process the
signal to be displayed on that deviG®m 97].

AR
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3.2.1 Linear Interpolation

The simplest method of deforming an object is ®ate in—between a
series of transitional stages between two statsitipns. The in—between, or
the sequence of intermediate shapes, are all gedefeom the given
beginning and final static positions; these ar® alalledkey positions or
extremes Linear interpolation is the method of calculating any number of
new values between two existing valuks| 86].

Linear interpolation is definitely the most popular and most widely
used reconstruction method. The reasons for thastlaat it is simple and
pretty straight forward to implement, and the ressale usually not so linear.
Linear interpolation in one dimension results isiisiply connecting sampling
points using straight lines.

The simplest kind of interpolation isnear interpolation. Assuming
some desired functioh (x), which is continuous and differentiable at all
points. Thus, for n+1 different values of x, notessarily evenly spaced, we
are given the corresponding valued ¢x). We assume here that both the x
and the correspondirfgx;) are given either exactly, or within some spedifie
accuracy. Figure (3.1) shows the functfofx) and the corresponding values
of x. Which are shown as heavy black points orctirge.

To uselinear interpolation, we draw a straight line between two points
one on each side of the unknown paintin this case, we draw a straight line

AD between the points atand x.

YA
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yA

interpolated value

Xo X1 Xo X3 X4 Xs X6

Figure (3.1) Linear interpolation

v

Having drawn this line, as in figure (3.1), we naeyproximate the

curve in the region between, in this casgand X by the straight line, which

is shown magnified in figure (3.2) using similaratrgles, we can get the

proportion
BC _DE
AC AE

Which we can solve for BC

AE

X = X
FOQme—f (xa) = ———2—1[f (x,) - (x3)],

X4™ X,

So, the resulting interpolation value fdx) will be:

Y4

... (3.1)

... (32

... (33)
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PE)=F () =F0G) + — [T () -F)], ... (34)

4 73

Where P &) is the interpolating approximation td x). In general, suppose
we wish to find the value df(x) for some x located betweenand x. ; [Sta
70]

Then the interpolated value p (x), which is oatyapproximation fof (x),

Is given by
P00 000+ 1T 0) - 0], ..(35)
D
B —
A r
7 : C E
f(xa) i f(xs)
l e ):( X \ 4

Figure (3.2) Derivation of linear interpolation foula



Chapter Three Resampling and Requantization

3.2.2 Lagrange Interpolation
Consider the problem of determining a polynomialdefyree 2 that
passes through the distinct pointg ) and (x,y:1) [Bur 85].
Consider the polynomial

(x- x) (x - x,)

P(X)m Yo + 0 Vi, ... (3.6)
When x = %, then

P (%) = Yo =1 (Xo) . ... (3.7)
And when x = %, then

P)=y=f(x), ...(3.8)

For the case we need to construct (for each kI5 0, ., n) a quotient L (x)
with the property that |y (x))=0 when iz k and L, (Xx) = 1. To satisfy that
Lnk (X)=0 for each ¥k requires that numerator of k contain the term (x
Xgo) (X=X1) .o (X=X ) X=X 4q) « - - (X=X3).

To satisfy L, «(Xk)=1, the denominator of imust be equal to (1) when

X = X. Thus,
X=X LoXE X X=X X=X X=X,
Lak(X) = ( 0) ( k-l)( k+1 ) n) = n |) , ...(3.9
(X "X, ). (X -xk_l) (X -xk+1). (X -xn) - (xk X )
izk
If Xo, X1, . . ., % are (n+1) distinct numbers ahds a function whose values

are given at these numbers, then there existscau@molynomial p of degree

at most n with property that

f (X, =1 (X) foreachk=0,1,...,n, ...(3.10)

Y
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P (X) =f (Xo) Lno(X) + " +f (X)) Ln n(X) = kZ:Of(xk) Lo (X))

.. (3.11)
Where
L) = (x—xo) (x- )&) .. .(x—xk_l) (x-xk+1). . .(x-xn) | .(312)
X =X ) X = %) (X = X )X =% ) (K =X )
n (X-X)
= ' foreachk=0,1,...,n, ...(3.13)
1= (X -Xi)
ik
A
F )
/ X {0 X ] A‘._} X 3 X 4 v JAJHJ X

Figure (3.3) Lagrangerpolation

f (x)=exact function of which only N+1 discrete vatuare known and used to
an interpolating or approximating function p(x).
P(x)=approximating or interpolating function. THisction will pass through
all specified N+1 interpolation points (also reéstito as data points or nodes)
[Ron 02.

The interpolated curves tend to oscillate aboutethect result. Smooth
functions are treated more accurately than oscrjabnes or ones with

concentrated curvature. For this reason, Lagrantgrpolation with more

Yy



Chapter Three Resampling and Requantization

than three or four points is rarely used. Pieceviiagrange interpolation
offers some improvement, but suffers from havirggdntinuous derivation at
the points that join the segments and many caosble if the result is to be
differentiated Fer 81].

This approximation to the function is not "smoottrhoothness usually
refers to the continuity of the derivatives) beeagust the end—points
(sometimes known as nodes) of each subinterval ditrigvative of the
approximation is discontinuous. We can try to madke approximation
smoother by using piecewise quadratic, rather tpatewise Linear,
approximation. Aquadratic has three free parameters, two of which are
determined by the function values at the ends efsthbinterval, leaving the
third free to be used to smooth the approximatitnfortunately, there are not
enough free parameter to ensure smoothness ovewhbke interval; the
approximation cannot match the derivatives of tiecfion at the end—points
of the interval. This can be achieved, howeverubyg Cubic spline [Atk

87).

Yy
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3.2.3 Cubic Spline Interpolation

Cubic spline is an equation of degree seven. Splines are ngatids
used to draw smooth curve passing through a setoofts. Weights are
attached at the points to be connected and a feestibipe is shaped around
the weights. A polynomial fitted to many data peimould exhibit erratic
behavior. Splines are smooth and continuous athessiterval.

Cubic splines have the advantage of sufficient free parameters t
ensure continuity of first and second derivative®taghout the interval, and
to satisfy a derivative condition at the ends @& titerval. The disadvantage
of approaching an approximation problem is thataath of the end points of
the subintervals, there is no assurance of difteabitity, which, in a
geometric context, means that the interpolating:tion is not "smooth" at
these points.

It is important to note that the construction aCabic spline does not
assume that the derivatives of the interpolantegiéh those of the function
any where except, perhaps, at the ends of thevalt@Burden & Faires 85|.

() ¢'x)=s"tx )=0 ... (3.14)

(ii) s”(xo)=f0’ and s’(xn):fn/, ...(3.15)

When condition (i) is satisfied the spline is cdlnatural spline. The

condition (ii) is called &lamped spline[Atk 87].

Y¢
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S(x)

A

Figure (3.4) Cubic spline interpolation

We turn now to the specific problem of obtainingCabic spline
function which interpolates the functidnat », X;, . . . , X. It will be

convenient to introduce the following notationgach of the subintervalsd

[Xi , % + 1] Of the interpolation range, S is a polynomiatlefjree at most three;
denote this polynomial by hen we have

s(x)=s(x) xLI,i=0,1,..., N, ... (3.16)
A convenient formulation of; swill be in terms of the distance of x

from the two ends of the interva] &nd so we define new variablgdu
U= X- X fori=0,1,...,N, ... (3.17)
Observe that du/ dx = 1 for every i, and so differentiation or

integration with respect to x and with respect tavil be equivalent. We
denote the step lengths between the knots by

h=X+1-Xi=U-U+1, ...(3.18)

Yo
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The conditions which must be satisfied are thatustrmterpolatd at
Xo, X1, - + ., Xy @ands’, s must be continuous at the interior knotsx, . . .,
XN - 1. We will begin with the last of these conditiotise continuity of”. On

each of the intervals; land s@’is the first—degree polynomiséi(l. Let us

denote its (as yet unknown) values at the knots by
S//(Xi):Ai i:O,l,...,N, (319)

It follows that si” (x)) = A and si” (Xi+1) = A+, and sinc&ei” (x;) is a linear

function, we have, for each i,

A (X-x)-A (X-Xx, ~quU-Au
qwzlﬂ ﬂhK HﬁzAlklwa ... (3.20)

We may integrate equation (3.20) twice to get

S—A U3
Al L1+ 4 cx +d, .. .ZB)
6h

s(x) =

Where ¢ and d are constants of integration. This & conveniently

written in the form

A+1 U13 _Ai ui3+l
6h

$(X) = - Bui.1 + Cu;, ... (3Y)
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Chapter Three Resampling and Requantization

Consider first the interpolation condition at tham x, we have y=0
and y. ; = —h;. Denotingf (x;) by fi and substituting these values into (3.22),

we get

f:A;2+Bﬂ (i=0,1,... N-1), (@37

Similarly at x. ;, we have

_ Al

+1 —

+ Ch (i=0,1,...,N-1), ... (3.24)

Solving these two for Band G vyields:

_fi . Ah

B_h_iDT’ ...(38.259)
— fi+ A}+ hi
G= hl_ 61 , ...(3.25b)

The final system of equations is derived from tivstfderivative
continuity condition. These equations are obtaimgdifferentiating equation
(3.22) with respect to x (remembering that difféi@ions with respect to x,
or with respect to;wor y ., are the same operation).

We obtain

~B+GC , ... (3.26)

From which we may deduce that

gmzq—a—ég, ..(3.27)
and, similarly,
A h
§(x+1)=G-B+ S, .. (3.28)
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Chapter Three Resampling and Requantization

The continuity ofs' will be guaranteed if, for every interior knat we

have
Si/ (%) = s (X)) which, on comparing (3.27) with (3.28) for i-lielgs the

equation

h)A
u +B-G-(B-1-G.)=0, fori=1,2,...,N-1,

... (3.29)

We can subtract the two equations (3.25 a and bbtain:

(A -A)h £ -1 _
w - (20,1, N-D), ... (38O

The final term here is just the dividégk;, X; . 1] which we will denoted
by d. With this notation and substituting (3.30) fortlbo and i-1 into (3.29)

B-G =

we get

hiA

1=d-d_:, (=1,2,...,,N-1)

.(3.31)
This is a system of N—1 equations with N-1 unknofyrs. As was
commented above, there are many ways of using thesextra degree of

freedom. One of the simplest ways is to simply set

Ao=Ay=0, ... (3.32)

Which gives rise to the so—calledtural cubic splines [Buc 92.
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Chapter Three Resampling and Requantization

3.2.4 Quadratic Interpolation

To define aQuadratic function, we need three data points. So each
piece of the piecewise function will actually bdided over two consecutive
data intervals. The following pints explains howewaluate the piecewise

quadratic interpolant at a point Atk 03].

1. Determine th@éwo consecutive intervalghat contain the position x.

2. Determine the parabola that passes through the thaa points that
define the intervals.

3. Evaluate that parabola at x.

Most data arise from graphs that are curved rathan straight.
Assume that three data points,(¥), (X1, Y1) and (%, y») are given with
Xo, X1, Xz distinct points Atk 03].

e |

14 |

\J

Figure (3.5) Quadratic interpolation

With linear interpolation, it was obvious that teewas only one

straight line passing through two given data poiBtg with three data points

Y4



Chapter Three Resampling and Requantization

it is less obvious that there is only one quadratierpolation whose graph
pass through the points. It would be expected dltadratic interpolation
would yield better accuracy interpolatioftk 03].

The given three points at a time construct an &ecquadratic curve,
perhaps parabola, circle or ellipse, to join théet us consider the three
points A, B, C, with position vector nnmn, mn respectively.Quadratic
interpolation formula is written using shape fuoos, which vary according

to the parameter values being used. Thus in generahve:
| (X) = My(d) n + Mx(d) e + Ms(d) s, .. (3.34)

Where M(d), My(d) and M(d) are shape functions. Foguadratic
interpolation the shape functions involve squaredms like d and
expressions like @+ 3d + 2, and thus the overall result is an arcaof

guadratic curve fitting the pointsgEma 01].

3.2.5 Bezier Interpolation

So far we have considered curve definitions thi@rpolate given data.
Another approach is to provide a good smooth remtasion of a surface that
approximates given data. In such a case there dgefinable best fit, but the
quality of a fit depends primarily on the desigagudgment. It is thus logical
to use an interactive technique in which the user experiment with a
variety of shapes without having to know anythirpat the mathematical
principles involved. However, certain smoothnessdition should a priori be
built into the class of curves the designer wilpestment with. The most
interesting approach probably being that develdpeBlezier [Wol 78].

Bezier defines the curve p(u) in terms of the locatiohs6l control

points p
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n
PU)=2,p B8, 1, ... (3.35)

Where B ,(u) is a blending function
Bn (U) = C(n,i) 4(1-uf ', .. .38
And C(n,i) is the binomial coefficient,
C(n,i) = nl/(il(n —i)!) , ... (3.37)

The particular curve shown in figure (3.7) uses fooantrol points, connected

in the illustration to form an open polygon.

] \Hﬂ'}(u) 81_3(11) By 3(u) 13y 3(w)

) ) a! -

0 " ]

Figure (3.6) The four Bezier blendfngctions for n=3

The blending functions are the key to the behawioBezier curve.
Figure (3.7) shows the four blending functions tbatrespond to &ezier
curve with four control points. These curves repn¢she influence that each
control point exerts on the curve for various valwé u. The first control
point, p corresponding to &, is most influential when u=0 in fact. Locations
of all other control points are ignored when u=bécause their blending

functions are zero. The situation is symmetric forand u=1. The middle

AR
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control points pand p are most influential when u=1/3 and 2/3, respetyiv
[New 79.

In Bezier curve generally only the first and last controlime are
interpolated. The intermediate control points iaflae the curve's shape in a
different way, acting more like magnets. Therexameous ways to adjust the
influence of the control points. One could repeans points, i.e., list them
more than once, but increasing the number of pailsts increases the degree
of the resulting curve. Another restriction inheremtheBezier approach is
the fact that the curves change totally as sooonascontrol point is moved
[Mul 00].

3.3 Requantization

Quantization is the step which allows a continuanplitude signal to
be represented in the discrete amplitude incremawdslable in a digital
computer this is performed by an ADC, Which takssirgput a constant
analogue voltage (performed by the sampler) an@mgées a corresponding
binary value as outpuEmbree 91.

Signal requantization is applied in digital audystems whenever the
word-length of audio samples needs to be reducéd i the case for
instance when an audio signal has to be stored ©D and was originally
produced at the output of a digital audio systeat tdperates with more than
16 bit precision. In some applications, like mukuha, gaming, or mobile
communication devices, requantization to 8 bit @ Uit could be an
economically interesting alternative to other formk data compression
because requantized data can be send directlyet&BEfC converter, while
encoded data requires a decoder. Signal requaatizaevitably introduces
an error, which can cause two types of audible lprab. The first is a

background noise that may be audible by itseltah usually occur when
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Chapter Three Resampling and Requantization

(part) of the error signal is uncorrelated with trgginal audio. When the
error is correlated with the signal, linear or noear distortions may cause
alterations in the perceived quality of the sigmself. At low signal levels,
this second problem is usually much more serioutheDmeans how well
does it remove quantization distortion wheneverdisesome requantization
going on, small noise can be used to remove theladion between the error

and the signal at the expense of increased noegefKon 03].

64
63 <« Reconstruction

62 Levels

- 31

= N W

0

Original  Quantization Quantized
Sample  Decision Sample
| evel

Figure (3.7) Quantization operation
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Chapter Three Resampling and Requantization

3.3.1 Uniform Quantization

Uniform quantization is the most commonly used teghe for digital
signal representation. The goal of the quantizetoisprovide minimum
possible average distortion to its input under scowstraint. The quantizer
output signal, which indicates the minimum amounhformation needed to
reconstruct the output, is generally used as at@ns The simplest
guantization correspondence is uniform quantizatishere the amplitude
range is split into equal regions by points termaentization levels, and the
output is a binary representation of the neareahtyzation level to the input
voltage. An example of a 1-dimensional uniform duation is shown in
figure (3.9):

<
<
<
v

A

Figure (3.8) Uniform quaritimon
Here, every number less than -2 is approximate@yEvery number

between -2 and 0 are approximated by 01. Every euinbtween 0 and 2 are

approximated by 10. Every number greater thanadpoximated by 11.
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Chapter Three Resampling and Requantization

The amplitudes of the samples are quantized bydidigi entire
amplitude range into a finite set of amplitude ®m@nd assigning the same
amplitude value to all samples falling in a giveange. This is shown in
figure (3.10) for an 8-level quantizer. For allwas of x (n) betweenyand %
the output of the quantizer is g (n) = Q [x (n)z=each of the quantizer level
is labeled with a 3-bit binary codeword which servas a symbolic
representation of that amplitude levélif 82].

q
b 111
Qa [
G | 110
B | 101
o 10C
| | | | L,
R X1 Xy X3 Xa
X1
01C %
001 | xs
_| Xa

Figure (3.9) Input—output characteristic of a 3-guantizer
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3.3.2 Non—-Uniform Quantization

When the input source signal is uniformly distrigmt all the
guantization intervals are of the same width, the, source does not prefer
any particular quantization interval. This may & true in general for a
source with an arbitrary distribution of values.this general case it would
make more sense to assign more levels in the raigedues that occur more
often and fewer quantization levels to ranges d@inatinfrequent. This type of
quantization is referred to asn—uniform quantization.

There are two advantages to using non-uniformisgadf quantization
levels. First, it is possible to significantly iease the dynamic range that can
be accommodated fargiven number of bits of resolution by using aadaly
chosen non-uniform quantizer. Second, it is possibl design a quantizer
tailored to the specific input statistics so thaisiconsiderably superior, in
terms of (SNR) levels, compared to the uniform quation caseGar 02].

It is sufficient to apply histogram equalizationtined. The first step in
this method is to find the accumulated probabdiynsity:

Y H ()

Pacm(i)=—‘£-,§ , ...(3.38)
Z;)H ()
J:

Where H (j) is the histogram value of the | th leekthe audio signal, £{i)
Is the accumulated probability of the i th leveheh the requantized value

(") of the level (i) is determined from follows:
i/ =P () xN, ... (3.39)

Where i’ the requantized signal and N is is the total nundfequantized

levels.
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