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Abstract  
 
 
The study of the resampling and requantization methods of digital audio data 

is one of the major assets project. Which these methods used to compression 

the audio data.  

In this search the application of some resampling methods on the audio signal 

was investigated by reducing the number of samples while the audio quality is 

maintained. The considered resampling methods are the  

Linear, Quadratic, Cubic spline, Lagrange and Bezier 

and for each method the level of sampling reduction was investigated by 

applying the down sampling rate using and then up sampling using the above 

mentioned interpolation method. The efficiency of each method under 

consideration will be determined with the aid of quality criteria like peak 

signal to noise ratio (PSNR). The Lagrange, Cubic spline, and Beizer 

interpolation methods provided have the same results and good quality.  

Also in this search the results of applying the uniform and non–uniform 

quantization methods are presented the effect of the quantization steps on the 

audio quality investigated. The results proved the uniform quantization 

method is better than non–uniform quantization method. 

A listening test was used to prove the efficiency of each method, the test 

sample has different backgrounds and they prove when the decimation rate 

and the step of quantization increase the audio quality will be decrease 
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Appendix A 

The Wave File Format 

The header structure can be represented by the following record structure: 

 

Field size (bytes) Field name 
 

4 Sign 
 

٤  WavSiz 
  

٤  Format 
 

٤  Block type 
  

٤  Sound card 
  

٢  File format type 
 

٢  No. of channels 
  

٤  Sampling rate 
  

٤  Byte rate 
  

٢  Byte per sample 
  

٢  Bits per sample 
  

٤  Chunk name 
  

٤  Chunk size 
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The WAV format stars with the RIFF header: 
 

Name Size Description 

Sign 
 

4 Contains the letters’’RIFF’’ in ASCII form 

WavSiz 
 
 

4 This is the size of the entire file in bytes minus 8 
bytes for the two fields not included in this count: 

sign and wavsiz 
Format 4 Contains the letters ’’WAVE’’ 

 
 
The WAV format consists from ’’fmt’’ and ’’data’’ 
The ’’fmt’’ describes the sound data format: 
 

Name Size Description 

Block type 4 Contain the letters ’’fmt’’ 
Sound card 

 
 

4 This is the type of the used sound card during the 
recording stage 

File format type 2 PCM = 1 
No. of channels 2 Mono = 1, Stereo = 2 
Sampling rate 4 8000, 11024, 22048, 44069 

Byte rate 4 No. of bits per second 
Byte per sample 2 No. of bytes per samples 
Bits per sample 2 8 bits = 8, 16 bits = 16 

Chunk name 4 Contains the letters ’’data’’ 
Chunk size 4 This is the number of bytes in data 
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Chapter Two 
Digital Audio Processing 

 

2.1 Introduction  

A signal can be defined as function that conveys information. Although 

signals can be represented in many ways, in all cases the information is 

contained in a pattern of variations of some form, for example the signal may 

take the form of pattern of time variations or a spatially varying pattern. 

Signals are represented mathematically as function of one or more 

independent variables. For example, a speech signal would be represented as 

a sampling and quantization [Opp 75]. 

When we hear a voice of a friend or other well know one we recognize 

it instantly. Similarly if we hear music, we can recognize the sound of 

particular musical instrument. Some people are even able to recognize the 

identity of an instrument by the sound alone. So it is clear that the sound of 

these people and instrument must be different. There are plenty of terms to 

describe the tone of someone's voice: rich, reedy, discordant, syrupy, and 

seductive. Musicians have their adjective, but these are poetic rather than 

precise. Fortunately for the engineer, physicists and mathematicians have 

provided a precise way of characterizing any sound whenever or however it is    

produced [Rab 78].  

Continuous–time, continuous–amplitude signals are sometimes called 

analog signals. Signal processing systems may be classified along the same 

lines as signals. That is, continuous–time systems are systems for which both 

the input and output are continuous–time signals and discrete–time. Systems 

are those for which the input and output are discrete–time signals. Similarly 

analog systems are systems for which the input and output are analog signals 

and digital systems are those for which the input and output are digital 
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signals. Digital signals processing, deals with transformations of signals that 

are discrete in both amplitude and time [Opp 75]. 

The primary element of a wave is its strength or amplitude, the 

amplitude is determined by the highest point along the curve of the sound 

wave, the higher the amplitude, the louder the sound will be. The physical 

unit of loudness is the decibel (dB), a decibel is algorithmic unit of measuring 

specifying the degree of loudness of the wave. Varying the amplitude of its 

wave changes the loudness of a sound. The second element of a wave is its 

frequency. How high or low a given tone sounds depends on the number of 

pulses per second. This number of pulses is referred to as the tone's frequency 

[Emb 91]. 

 

2.2 The Physics of Sound 

For most of us sound is a very familiar phenomenon, since we hear it 

all the time. Nevertheless, when we try to define sound, we find that we can 

approach this concept from two different points of view, and we end up with 

two definitions, as follows [Sal 98]: 

1. An intuitive definition: sound is the sensation detected by our ears and       

interpreted by our brain in a certain way. 

2. A scientific definition: sound is a physical disturbance in a medium     

propagated as a pressure wave by the movement of atoms or molecules. 

When we speak the sound that we make creates a series of compression 

and expansion in the air around us. However, for a sound to travel from the 

sound source to ear, another element must be available to transmit the sound. 

This "sound carrier" is called a medium. Usually this medium is the air that 

surrounds us. However, sound can also travel through water. Without a 

medium, sound transmission is not possible, for example, it's impossible to 

have a conversation on the moon. Since the moon lacks an atmosphere, a 
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medium is not present to carry the sound from one mouth to the listener's ear 

[Sto 93]. 

We normally hear sound as it propagates through the air and hits the 

diaphragm in our ear. However, sound can propagate in many different media. 

Marine animals produce sounds under water and respond to similar sound. 

Hitting the end of metal bar with a hammer produces sound waves that 

propagate through the bar and can be detected at the other end. Good sound 

insulators are rare, and the best insulator is vacuum, where there are no 

particles to vibrate and propagate the disturbance. Sound can also be 

considered as a wave, everthough its frequency may change all the time. It is 

a longitudinal wave, one where the disturbance is in the direction of the wave 

itself. In contrast, electromagnetic waves and ocean waves are transverse 

waves. Their oscillations are perpendicular to the direction of the wave. As 

any other wave, sound has three important attributes, its speed, amplitude, and 

period. The frequency of a wave is not an independent attribute; it is the 

number of periods that occur in one time unit (one second). The unit of 

frequency is the hertz (Hz). The speed of sound depends mostly on the 

medium it passes through, and on the temperature [Sal 98]. 
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2.3 Digital Wave File 

Wave audio files are one of the common formats used to store and play 

audio data. They support variable sampling frequencies, multiple channels, 

and a number of compression algorithms [Wil 03]. 

The wave file can be classified according to the number of sampling 

channels, and the samples resolution. Figure (2.1) presents the four types of 

PCM wave files.      

                                   

        

 

 

 

 

  

 1 channel        2 channel                           1 channel         2 channel                            

 

 Mono                Stereo                             Mono                Stereo 

(8 Bits)            (8 Bits)                                   (16 Bits)            (16 Bits)  

                      

       

                         Figure (2.1) Types of PCM wave files                                                     

 

 

 

 

 

      Speech Header 

[Per Bits per channel (s)] 

8 Bits Sample 

   Resolution      

16 Bits Samples 
     Resolution 
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The structure of the wave file can be divided into two parts Header and 

Data Chunk. 

Header: contain thirteen field of information concerned with chunk data, it 

has length 44 bytes. 

Data Chunk: contain a data of speech file, stored in binary format after the 

conversion from analog to digital form. Its length in byte depends on the 

recording time. 

 

   44 byte        (No. of samples × No. of channel × Sample Resolution / s) byte            

                                 

                                         Figure (2.2) Wave file structure  

 

The contents of the wave header structure are: 

1. The Signature Resource Interchange File Format (RIFF): 

RIFF is a file format for storing many kinds of data, primarily multimedia 

data like audio and video. It is based on chunks; each chunk has a type, 

represented by a four-character tag. This chunk type comes first in the file, 

followed by the size of the chunk, then the contents of the chunk [Web 

03].  

2. The File Size: 

It is a long integer number indicates the size of remainder of the file in 

bytes. It is equal to the length of the entire file -8 byte [Web 03].   

3. The RIFF Type: 

Multimedia applications require the storage and management of a wide 

variety of data, including bitmaps, audio data, and video data. RIFF 

provides a way to store all these varied type of data [Wil 03]. 

Header                            Chunk 
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4. The Block Type: 

It is a string type field tell us the kind of the followed chunk (mostly it is a 

format chunk which implies information about the speech data format. 

5. Sound Card: 

It is long integer field indicates the type of the used sound card during the 

recording stage. 

6. File Format Type: 

It is an integer field indicates the type of coding used to represent the 

speech wave from data, (the value 1 means Pulse Code Modulation). 

7. No. of Channel(s): 

It is an integer field indicates the number of recording channels. If it is 

equal to (1) it means Mono (single) channel otherwise if it is equal to (2) it 

means stereo (double) channels. 

8. Sampling Rate: 

It is a long integer field indicates the number of sampling per second, it 

may be one of the following values [8000, 11024, 22050, 44069] sample 

per second. 

9. Bytes Rate: 

It is a long integer field represents the number of bytes needed to store one 

sample. 

10. Chunk Name: 

It is a string (4 characters) type field indicates the next chunk type. In most 

cases it will be a "data" chunk. 

11. Chunk Size: 

It is a long type field indicates the size of data chunk. 
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2.4 Digital Audio 

Much as an image can be digitized and broken up into pixels, where 

each pixel is a number, sound can also be digitized and broken up into 

numbers. When sound is played through a microphone, it is converted into a 

voltage that varies continuously with time. Such voltage is the analog 

representation of the sound. Digitizing sound is done by measuring the 

voltage at many points in time, translating each measurement into a number, 

and writing the numbers in a file. This process is called sampling. The sound 

wave is sampled, and the samples become the digitized sound. The device 

used for sampling is called Analog–to–Digital Converter (ADC) [Sal 98]. 

Since the sound samples are numbers, they are easy to edit. However, 

the main use of a sound file is to play it back. This is done by converting the 

numeric samples back into voltages that are continuously fed to a speaker. 

The device that does is called a Digital–to–Analog Converter (DAC) [Sal 

98]. 

 Just as it is possible to convert a sound between pressure wave in air 

and analog electric signal, it is possible to convert a varying electric signal 

into a series of digital values, and vice versa. However, because analog and 

digital sounds are fundamentally different, we always loose information when 

we make this transformation [Kie 98]. 

There are two factors that determine fidelity of the original analog 

signal: the sampling rate and the resolution of the sample. 

1. Sampling rate is the number of samples that are used to represent one   

second of sound. By sampling at lower rates we don't lose the sound 

entirely, just the higher frequencies. 

2. The resolution of the sample is the number of bits per sample. It may be 8-

bit samples or 16–bit samples. 8–bit samples cannot accurately represent 

sound. The human brain, by way of its audio sensor (ears) can distinguish 
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very subtle differences in amplitude and frequency. With only 256 

recordable levels, many of the subtler elements of a complex sound 

disappear. On the other hand, 16-bit sampling can differentiate over 

65,000 signal levels, which makes it possible to represent a sound with 

much greater fidelity, while only doubling the storage demand [Sco 95]  

 

2.4.1 Pulse Code Modulation (PCM)         

When an analog signal is converted to digital form, it is made discrete 

both in time and in amplitude. Discretization in time is the operation of 

sampling, while in amplitude it is quantizing. It is worth pointing out that the 

transmission of analog information by digital means is called (PCM) standing 

for "Pulse Code Modulation". 

PCM is the first method used in converting analog speech signal to 

digital forms, and is still widely used in digital speech transmission systems    

In PCM, the input speech signal is frequency bounded to exclude any 

frequency greater than a maximum frequency of the signal fmax. This signal is 

sampled at fs ≥2fmax sample per second (sampling frequency), to produce the 

corresponding Pulse Amplitude Modulation (PAM) signal. The produced 

samples are quantized into the nearest m levels, and the number of bits in the 

sampling is P = log2 (m)  

It is simple to show that a binary codeword of m bits long allows 2m 

separate numbers (or single values) to be represented. Thus, if m = 8, we may 

encode 28 = 256 discrete values, if m = 16 then 216 = 65536 values may 

encode [Wit 82]. 
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2.4.2 Sampling                

The effects of time sampling in both time and frequency domains will 

first be investigated. We will find that provided the appropriate sampling 

criterion is satisfied, a continuous-time signal can in principle be exactly 

reconstructed from its samples without error [Cav 00]. 

The primary objective of our presentation is the understanding of the 

sampling theorem, which states that when the sampling rate is greater than 

twice the highest frequency contained in the spectrum of the analog signal, 

the original signal can be reconstructed exactly from the samples [Mcc 98].                   

The plots shown in figure (2.3) naturally raise the question of how 

frequently we must sample in order to retain enough information to 

reconstruct the original continuous–time signal from its samples. The 

amazingly simple answer is given by Shannon sampling theorem which 

states that a continuous–time signal x(t) with frequencies no higher than fmax 

can be reconstructed exactly from its samples x[n]=x(nTs), if the samples are 

taken at a rate fs=1/Ts that is greater than 2fmax. Where, n take only integer 

values, x[n]: reconstructed signal, Ts: sampling period, and fs: sampling 

frequency. 

This is a statement of the Shannon sampling theorem, one of the 

theoretical pillars in modern digital communications, digital control, and 

digital processing. Notice that the sampling theorem involves two issues. 

First, it talks about reconstruction of the signal from its samples, although it 

never specifies the algorithm for reconstruction. Second it gives a minimum 

sampling rate that depends on the frequency content of x(t), the continuous-

time signal. This minimum sampling rate is called the Nyquist rate [Mcc 98]. 
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     Figure (2.3) Original and its sampled signals 

 

2.4.3 Quantization             

It is the step which allows a continuous amplitude signal to be 

represented in terms of discrete amplitude increments. 

The simplest form of quantization is the uniform quantization, where 

the amplitude range is splitted into equal regions by levels termed 

quantization level. 

Quantization typically effects a distortion which depends on the chosen 

quantization step size and the number of quantization level [Con 00]. 

The quantization can be arranged in either a uniform fashion, i.e., 

uniformly distributed from the highest expected value to the lowest expected 

value, or non–uniformly distributed. Uniform quantizers allow the designer to 

designate a minimum value for the error of any quantized value. For uniform 

quantization there are only two parameters: the number of levels and the 

quantization step size, while non–uniform quantizers can give a significant 

increase in accuracy, especially when the statistics of the incoming signal are 

known. 

In the present work 8–bits ADC conversion was used, to give 256 

quantization levels, and half the levels correspond to negative input voltage, 

while the other half to positive one [Dou 87]. 
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Chapter Five 
Conclusions and Future Work 

 

 

 This chapter is dedicated to present a list of conclusions, which derived 

from the analysis results discussed in chapter four; also some suggestions for 

future work will be given. 

 

5.1 Conclusions 

From the analysis of the test results the following remarks were 

derived: 

1. In the decimation method the sound is rapid because the number of 

samples per second is reduced. 

2. Lagrange, Cubic spline, and Bezier interpolation methods have smaller 

error than Linear, and Quadratic. 

3. The increase of the decimation rate will decrease the quality of the 

reconstructed signal. 

4. When rate of down sample is ten the Peak Signal to Noise Ratio of the 

Cubic, Lagrange, and Bezier interpolation methods is between 24 to 29 dB 

more efficient than the Linear, and Quadratic methods. 

5. In the quantization the sound is low because the amplitude is reduced. 

6. The increase of the quantization step in the uniform quantization will 

decrease the quality of the reconstructed signal. 

7. When the quantization step is 14 the Peak Signal to Noise Ratio of 

uniform quantization is 37 dB. 

8. When the number of level is 4 the Peak Signal to Noise Ratio of non–

uniform quantization is between 15 to 16 dB. 
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9. In non–uniform quantization when the number of the level is decrease the 

quality of the reconstructed signal will be also decrease. 

 

5.2 Future Work 

 There are many directions in which the current research work could be 

developed. Among these directions are the following: 

1. By using filters we may increase the down sampling rate. 

2. Using other methods of interpolation like (Legender centered function, 

and cubic β–spline). 

3. Apply other algorithms of non–uniform quantization.  



 
Chapter Four            Experimental Results 
 
 

 ٣٧

 

 

4.1 Introduction 

       This chapter is dedicated to describe the application of some resampling 

methods on the audio signal by reducing the number of samples while the 

audio quality is maintained. The considered resampling methods are the 

Linear, Quadratic, Cubic spline, Lagrange and Bezier, and for each method 

the level of sampling reduction was investigated by applying the down 

sampling using and then up sampling using the above mentioned interpolation 

method. Also in this chapter the results of applying the uniform and non–

uniform quantization methods to determine the effect of the quantization steps 

on the audio quality investigated 

 

4.2 Resampling Processes  

       The signal can be reconstructed for all time from its samples by 

resampling process. We do this by using the interpolation methods, Linear 

interpolation which is the simplest method and it can be used to calculate any 

number of new samples between two existing samples. There are many 

methods for interpolating discrete points, for example, Lagrange 

interpolation is a classical technique of finding an order N polynomial which 

passes through N+1 given points. 

       Cubic splines fits a third order polynomial passing through two points. 

This allows for a smooth chain of third order polynomial passing through a 

set of points. 

       Also, Bezier interpolation method could be used to interpolate a set of 

points using smooth curves which don't necessarily pass through the points.  

 
Chapter Four  

Experimental Results 



 
Chapter Four            Experimental Results 
 
 

 ٣٨

       Since Shannon's sampling theorem says it is possible to restore an audio 

signal exactly from its samples, it makes sense that the best digital audio 

interpolators would be based on that theory. The block diagram shown in 

figure (4.1) illustrate the steps of implementing the interpolation methods 

(Linear, Quadratic, Cubic spline, Lagrange, and Bezier) as resampling 

methods. 
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Figure (4.1) Block diagram of resampling process 

 

Open Wave File     
(*.wav) 

 

  Read Header 

 Down Sampling by Using 
Decimation Method 

  Up Sampling by Using Different 
Interpolation Methods like Linear, 
Quadratic, Cubic spline, Lagrange, 
and Bezier  

   Read Data 

   Compare between Original          
Signal & Reconstructed Signal 

   Reconstruct Signal 
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4.2.1 Linear Interpolation Method       

       This method is the simplest methods of the interpolation. It is used to 

interpolate the samples. More details about the mathematical foundation of 

this model are discussed in chapter three. In this method the interpolate 

sample depend on the values of the two surrounding samples. Thus, since the 

samples are averaged. The results are obtained from the equation. 

       ])(x  - (x [
xx

x 
 )(x  (x) i)1  i

i
 

1  i

i
i   -

  -
ff

x
fP +

+

+= ,                        . . . (4.1) 

So, from the surrounding samples pair )1  ,( +ii xx  we can determine the value of 

(x) P at the point )(x  within the interval ].,[ 1  +ii xx  Equation (4.1) would be 

rewritten in the form 

       
10

FFxYup  x    ) x -(1  )( ×+×= ,                                          . . . (4.2)        

Where Yup  is interpolated (up sampled) data, x is the normalized relative 

position of the interpolated samples: x = (x – xi-1) / (xi – xi-1), F0 (f (xi), and F1 

(f (xi+1)) are the nearest known samples. 

 

 

 

 

 

 

 

 

 

 

Algorithm (4.1): A program for resampling by using Linear 

interpolation method. 

Inputs: (1) Nosamp= No. of input samples 

           (2) u = Ratio of up sampling 

           (3) yup() = Samples after decimation 

           (4) M = Up sampling rate -1 

Out put: (1) Y() = Reconstructed samples  

         For I = 0, 1, . . . , Nosamp  

             F0 = Ydwn (I): F1 = Ydwn (I + 1) 

         For j = 1 To M 

             Y() = (1 - U) * F0 + U * F1 
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4.2.2 Quadratic Interpolation Method  

       In the previous section we have discussed the linear interpolation as a 

method based on evaluating straight line to interpolate the gaps between two 

points (known samples).  Since the result of this simple interpolation method 

is often less than satisfactory for up sampling audio data, it is important to 

utilize other kinds of interpolants utilize higher order polynomials which can 

represent the curves more accurately. The simplest way of doing this is to  

apply the quadrant interpolant, which requires only three points to reconstruct 

an arc passing through these three points. 

Let us consider the three points (x0,Y0), (x1,Y1), (x2,Y2) then since the 

quadratic interpolation formula is written as: 

       Yup (x) = a0 + a1 x + a2 x
2,                                       . . . (4.3) 

Where Yup is interpolated (up sampled) data, x is the normalized relative 

position of the interpolated samples. 

By substituting the relative position values (x0 = -1; x1 = 0; x2 = 1), in 

equation (4.25), we will get: 

       2100 a  a- a  +=Y ,                                                         . . . (4.4) 

       01 a  =Y ,                                                                    . . . (4.5) 

       2102 a a  a  ++=Y ,                                                        . . . (4.6) 

The solution of above three linear simultaneous equation leads to the 

following 

       )Y - (Y 
2

1
  021 =a ,                                                         . . . (4.7) 

       )Y 2 - Y  (Y 
2

1
  1022 +=a ,                                                 . . . (4.8) 

So, substituting the values of Y0, Y1, Y2 in equation (4.5), (4.7), and (4.8) we 

can get the values of (a0, a1, a3) respectively. Then substituting the determine 
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values of (a0, a1, a3) in equation (4.3) we can get the value of Yup (x) at the 

relative position (x).  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 Cubic Polynomial Interpolation Method    

       Cubic spline is the name of an interpolation method. The weight 

coefficient for the four surrounding points, two to the left and two to the right 

of the point intended to be sampled. 

 Let us consider the four points then the cubic interpolation formula is written 

as: 

       Yup (x) = a0 + a1 x + a2 x
2 + a3 x

3,                              . . . (4.9) 

Where Yup is interpolated (up sampled) data, and x is the normalized relative 

position of the interpolated samples. We assume x takes the values (-1, 0, 1, 

and 2), substitute these values in equation (4.9), we will get 

       Y0 = a0 – a1 + a2 – a3,                                                 . . . (4.10) 

Algorithm (4.2): A program for resampling by using Quadratic 

interpolation method. 

Inputs: (1) Nosamp= No. of input samples 

           (2) u = Ratio of up sampling 

           (3) yup() = Samples after decimation 

           (4) M = Up sampling rate -1 

Out put: (1) Y() = Reconstructed samples  

         For I = 0, 1, . . . , Nosamp  

Evaluated the coefficient a0, a1 and a2 from the Quadratic 

eqaution 

For j = 1 to M 

             Y() = U * (a0* U + a1) + a2 
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       Y1 = a0,                                                                     . . . (4.11) 

       Y2 = a0 +a1 +a2 +a3,                                                   . . . (4.12) 

       Y3 = a0 + 2 a1 +4 a2 + 8 a3,                                         . . . (4.13)  

A straight forward manipulation for the above four linear unknown equations, 

we get: 

       )Y  Y 2 - (Y 
2

1
  2102 +=a ,                                                   . . . (4.14) 

       )b - b (4 
3

1
  1 21=a ,                                                          . . . (4.15) 

       )b - (b 
3

1
  3 12=a ,                                                            . . . (4.16) 

Where 

       )Y - (Y 
2

1
  021 =b ,                                                           . . . (4.17) 

       )Y 2- Y 3 Y 2 - (Y 
2

1
  21232 +=b ,                                         . . . (4.18) 

We substituted equation (4.11), (4.14), (4.15), and (4.16) in equation (4.9) to 

determine Yup. 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm (4.3): A program of resampling by using Cubic spline 

interpolation method. 

Inputs: (1) Nosamp= No. of input samples 

           (2) u = Ratio of up sampling 

           (3) yup() = Samples after decimation 

           (4) M = Up sampling rate -1 

Out put: (1) Y() = Reconstructed samples  

         For I = 0, 1, . . . , Nosamp  

Evaluated the coefficient a0, a1, a2 , and a3 from the Cubic 

eqaution 

For j = 1 to M 

      Y() = (U* U * (a0 * U + a1) + a2 * U + a3)         
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4.2.4 Lagrange Interpolation Method      

       A polynomial function is continuous and smooth everywhere. It would 

seem that if we can constructed a polynomial whose curve pass through the 

N+1 data points, our problem may be solved. For example, the Lagrange 

polynomial is the unique polynomial of degree N passing through these N+1 

points. This polynomial interpolant can be thought of as an approximation of 

some other function passing through these N+1 points. Therefore better 

results are obtained from the approximation polynomial written in the form  

       i

n

i
i fIxP  (x)  )( 

0  
∑
=

= ,                                                     . . . (4.19) 

       In out work the up sampling by using Lagrange interpolation method is 

done by taking pieces of four known samples surrounding the point to be 

samples. Let us consider four points then the Lagragian interpolation is begin        

       P (x) = I0(x) f0 + I1(x) f1 + I2(x) f2 + I3(x) f3 ,                  . . . (4.20) 

Where       

       
)x(x )x(x )x(

)x(x   )x(x   )x  (
 I

3
 

02
 

01
 0

321
0   -  -  -

  -  -  -
x

x
= ,                                         . . . (4.21) 

 

       
)x(x )x(x )x(

)x(x   )x(x   )x  (
 

3
 

12
 

10
 

1

320
1   -  -  -

  -  -  -
x

x
I = ,                                          . . . (4.22) 

 

       
)x(x )x(x )x(

)x(x   )x(x   )x  (
 

3
 

21
 

20
 

2

310
2   -  -  -

  -  -  -
x

x
I = ,                                         . . . (4.23) 

       
)x(x )x(x )x(

)x(x   )x(x   )x  (
 

2
 

31
 

30
 

3

210
3   -  -  -

  -  -  -
x

x
I = ,                                         . . . (4.24) 

Since the points (x0,x1,x2,x3) are equally spaces, then their relative position 

could be set ( -1, 0, 1, and 2) respectively then equation (4.20) become 
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       33221100 I    I    I    I   (x) ×+×+×+×= FFFF Yup ,                               . . . (4.25)  

Where Yup is interpolated (up sampled) data, F0, F1, F2, and F3 are the known 

surrounding samples. 

We substitute the relative values of (x0,x1,x2,x3) in equations (4.21), (4.22), 

(4.23), and (4.24) to find I0, I1, I2, and I3 respectively:  

       2) -(x  1) -(x  x 
6

1
 -  

3) - (0 2) - (0 1) - 0(

2) -(x  1) -(x  ) 0 -(x 
  0 ==I ,                              . . . (4.26) 

 

       2) -(x  1) -(x  1)(x  
2

1
 

3) - (1 2) - (1 0) - 1(

2) -(x  1) -(x   (-1))(x
  1 +=−=I ,                      . . . (4.27) 

 

       2) -(x  1) (x  x 
2

1
-  

3) - (2 1) - (2 0) - 2(

2) -(x  0) -(x  (-1) -(x 
  2 +==I ,                           . . . (4.28) 

 

        1) -(x  1) (x  x 
6

1
  

2) - (3 1) - (3 0) - (3

1) -(x  0) -(x  (-1)) -(x 
  3 +==I ,                           . . . (4.29) 

Then we substitute equation (4.26), (4.27), (4.28), and (4.29) respectively in 

equation (4.25) to determine Yup.  

 

 

 

 

 

 

 

 

 

 

 

Algorithm (4.4): A program for resampling by using Lagrange 

interpolation method. 

Inputs: (1) Nosamp= No. of input samples 

           (2) u = Ratio of up sampling 

           (3) yup() = Samples after decimation 

           (4) M = Up sampling rate -1 

Out put: (1) Y() = Reconstructed samples  

Continue 
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4.2.5 Bezier Interpolation Method  

       This method is one of the simplest methods for representing the curves. 

The mathematical relationship can be found in chapter three. The form of the 

Bezier functions can be given as: 

       ),,( (x) 
0  

µiNWPP ii

N

i
∑
=

= ,                                                 . . . (4.30)  

Where W is called Bernisten blending function and given by the relation 

       Ni
i

NCiNW )1(  ][ ),,( µµµ −= ,                                           . . . (4.31) 

  

       [NCi] = N! / (i! (N - i)!),                                              . . . (4.32) 

Where Pi is the parametric point (Pi = P0, P1, . . . , Pn), i µ  is the value selected 

in the range [0, . . . , 1],  N is the number of control points. 

In out work the interpolation was done by choose the surrounding four points 

around the position that intended to be up sampled. We consider the relative 

position of the four points (0, 1, 2, and 3) then equation (4.30) become 

       3
3

2
2

2
1

3
0  P  ) - (1  P 3  ) - (1  P 3 ) - (1 P  µµµµµµ +++=P ,               . . . (4.33) 

Applying equation (4.33) on the four points (whose  µ values are 0, 

1  ,
3

2
 ,

3

1
and we will get: 

For j = 1 to M  

    Um1 = U - 1: Um2 = U - 2: Up1 = U + 1 

    F (0, j) = -U * Um1 * Um2 / 6: F (1, j) = Up1 * Um1 * Um2 / 2 

    F (2, j) = -U * Up1 * Um2 / 2: F (3, j) = U * Up1 * Um1 / 6 

       Y() =  F((0, j) * Yp(0) + F(1, j) * Yp(1) + F(2, j) * Yp(2) + F(3, j) * 
       Yp(3))  
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       P0 = y0,                                                                       . . . (4.34) 

       P3 = y3,                                                                       . . . (4.35)  

       32101 P 
27

1
 P 

9

2
 P 

9

4
  P 

27

8
   +++=y ,                                         . . . (4.36) 

The solution of the four linear simultaneous equations will lead to: 

       )A - A (2 
3

1
  211 =P ,                                                           . . . (4.37) 

       )A - A (2 
2

1
  122 =P ,                                                          . . . (4.38) 

Where 

       )y - y 8 - y (27 
6

1
 A 301 1 = ,                                                   . . . (4.39) 

       )y 8- y - y (27 
6

1
  3022 =A ,                                                  . . . (4.40) 

Thus we can use the equations (4.37), (4.38), (4.39) and (4.40) to determine 

the values of (P0, P1, P2, P3). Then the equation (4.33) could be used to 

interpolate the points between (x1 and x2) by using µ  value
12

1

 x- x

 x-x 
  1  +=µ . 

 

 

  
  
  
  
  
  
  
  
  
  

 
  
  
  

Algorithm (4.5): A program of resampling by using Bezier 

interpolation method. 

Inputs: (1) Nosamp= No. of input samples 

           (2) u = Ratio of up sampling 

           (3) yup() = Samples after decimation 

           (4) M = Up sampling rate -1 

Out put: (1) Y() = Reconstructed samples  

  

Continue 
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4.3 Quantization Processes                                                                                                                                  

 Quantization is a rounding off (approximation) method. By this 

process, the wide ranges of real numbers are mapped to a small set of integers 

which require less number of bits in representation (i.e. in storage or 

transmission). The quantization can be arranged in either a uniform fashion, 

i.e., uniformly distributed from the highest expected value to the lowest 

expected value, or non–uniformly distributed. Uniform quantizers allow the 

designer to designate a minimum value for the error of any quantized value, 

while non–uniform quantizers can give a significant increase in accuracy, 

especially when the statistics of the incoming signal are known. The block 

diagram shown in figure (4.2) illustrate the steps of implementing the 

quantization methods (uniform quantization, and non–unifiorm quantization). 

 

 

 

 

 

 

 

Evaluated the coefficient P1, and P2 from the Cubic eqaution 

        For j = 1 to M 
            U2 = U * U 
           Uu = 1 - U: Uu2 = Uu * Uu 
           Y() = Yp(0) * Uu2 * Uu + P1 * U * Uu2 + P2 * U2 * Uu +                         
Yp(3) * U2 * U 
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Figure (4.2) Block Diagram of de–quantization process 
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4.3.1 Uniform Quantization 

 The process of quantization and reconstruction (de–quantization) are 

extremely simple due to the linear relationship between the reconstructed 

values and the quantization indices (i). For computation of the index i from 

the signal value x, it is sufficient to divided the continuous value by the 

quantization step (∆ ) and perform nearest integer rounding. Optionally, an 

offset shift can be compensated in the quantization step. To compute the 

reconstruction value (y), scaling of the index by (∆ ) and reverse offset shift 

must be performed. A uniform quantization process determines the optimum 

index i and the reconstructed (y) as follows: 

       








∆
= offset -x 

cint   i ,                                                          . . . (4.35) 

       offset   i  +∆×=y ,                                                             . . . (4.36) 

 

 

 
 

 

 

 

 

 

 

 

 

 

Algorithm (4.6): A program of Uniform Quantization. 

Inputs: (1) Nosamp = No. of input samples 

            (2) qs = Quantization step 

Output: (1) Y () = Reconstructed samples 

For I = 0, 1, . . . , Nosamp 

     j = Nosamp – 128 

     Yq (I) =  j / qs 

 End For 

For I = 0, 1, . . . , Nosamp 

        Y() = Yq  * qs +128 

    End For 
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4.3.2 Non–uniform Quantization 

  It is useful if quantization errors are perceived as more severe at low 

amplitude ranges. For computation of the index i from the signal value x, it is 

sufficient to apply histogram equalization method. The first step in this 

method is to find the accumulated probability density: 

       

∑

∑

=

== 255

0  j

i

0 

(j) H

(j) H

  )( j
acm iP ,                                                   . . . (4.37) 

Where H (j) is the histogram value of the j th level of the audio signal, Pacm(i) 

is the accumulated probability of the i th level. Then the requantized value 

)( /i of the level (i) is determined from follows: 

       N  (i)P  acm
/ ×=i ,                                                      . . . (4.38) 

Where /i the requantized signal and N is is the total number of quantized 

levels. 

 

 

 

 

 

 

Algorithm (4.7): A program of non–Uniform Quantization. 

Inputs: (1) Nosamp = No. of input samples 

            (2) N = No. of quantization level 

Output: (1) Y () = Reconstructed samples 

For I = 0, 1, . . . , Nosamp 

    Determine the histogram of the samples 

End For 

For I = 0, 1, . . . , Nosamp 

    Pacm = his/max 

End For 

 
Continue 
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4.4 Criteria Measures  

 Due to the decimation/upsampling and to the quantization/ 

dequantization the speech signals tend to be corrupted by distortion known as 

Noise. Noise is usually modeled as a random signal, which is combined 

(added) with the signal of interest. This noise is usually viewed as an additive 

signal independent of the speech signal. To measure the quality of 

reconstructed signal compared with the original ones. A common measure 

used for this purpose is the peak signal to noise ratio (PSNR). It is familiar 

to workers in the field; it is also simple to calculate [Douglas 87].      

       The ratio of PSNR is calculated by the following equation:                

       
2

2

10

) 255 (
log  10  

d

PSNR δ×= ,                                          . . . (4.38) 

Where  

       ∑=
=

N

1  i

2
ii

2 ) x(x 
N

1
 /- 

d
δ ,                                                 . . . (4.39) 

2
d

δ  is the Mean Square Error (MSE), xi is original signal, and /

i
x  is 

reconstructed signal.  

 

 

 

For I = 0, 1, . . . , Nosamp  

    Y () = Pacm × N  

End For  
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  Figure (4.3) Original and its sampled and reconstructed signal     

4.5 Resampling Test Results  

       Three files were adopted as test samples. Then the five types of 

interpolation methods are applied on each test samples to reconstruct the 

signal, and then we compute the values of PSNR and MSE for different down 

sample values.  

4.5.1 Test 1 

       The first test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 41080 bytes. Figure (4.3) illustrate the shape of the signal 

which has been tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Original signal                                     Sampled signal    

                                                         with down sampling = 2     

        

Reconstructed signal 
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       The test results are shown in tables (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), 

(4.7), (4.8), and (4.9). 

Table (4.1) The results of 8–bit and size 41080 bytes with rate of down 

sampling =2 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 4.6 41.5 

Lagrange 4.4 41.7 

Cubic Spline 4.4 41.7 

Quadratic 5.4 40.8 

Bezier 4.4 41.7 

 

Table (4.2) The results of 8–bit and size 41080 bytes with rate of down 

sampling =3 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 9 38.6 

Lagrange 8.5 38.8 

Cubic Spline 8.5 38.8 

Quadratic 9.6 38.3 

Bezier 8.5 38.8 
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Table (4.3) The results of 8–bit and size 41080 bytes with rate of down 

sampling = 4 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 14.1 36.7 

Lagrange 12.5 37.2 

Cubic Spline 12.5 37.2 

Quadratic 14.5 36.5 

Bezier 12.5 37.2 

 

Table (4.4) The results of 8–bit and size 41080 bytes with rate of down 

sampling =5 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 21.2 34.9 

Lagrange 18.2 35.5 

Cubic Spline 18.2 35.5 

Quadratic 21.3 34.9 

Bezier 18.2 35.5 

 

Table (4.5) The results of 8–bit and size 41080 bytes with rate of down 

sampling = 6 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 29.6 33.4 

Lagrange 25.9 34 

Cubic Spline 25.9 34 

Quadratic 31.3 33.2 

Bezier 25.9 34 
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Table (4.6) The results of 8–bit and size 41080 bytes with rate of down 

sampling =7 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 38 32.3 

Lagrange 34.5 32.8 

Cubic Spline 34.5 32.8 

Quadratic 41.1 32 

Bezier 34.5 32.8 

 

Table (4.7) The results of 8–bit and size 41080 bytes with rate of down 

sampling = 8 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 50.4 31.1 

Lagrange 48.2 31.3 

Cubic Spline 48.2 31.3 

Quadratic 54.2 30.8 

Bezier 48.2 31.3 

 

Table (4.8) The results of 8–bit and size 41080 bytes with rate of down 

sampling = 9 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 64.1 30 

Lagrange 65.7 30 

Cubic Spline 65.7 30 

Quadratic 75.2 29.4 

Bezier 65.7 30 
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Figure (4.4) Original and its sampled and reconstructed signal     

Table (4.9) The results of 8–bit and size 41080 bytes with rate of down 

sampling =10 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 77.9 29 

Lagrange 83.7 29.4 

Cubic Spline 83.7 29.4 

Quadratic 95.1 29 

Bezier 83.7 29.4 

 

4.5.2 Test 2 

       The second test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 28213 bytes. Figure (4.4) illustrate the shape of the signal 

which has been tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original signal                                     Sampled signal    

                                                         with down sampling = 2     

Reconstructed signal 



 
Chapter Four            Experimental Results 
 
 

 ٥٨

       The test results are shown in the tables (4.10), (4.11), (4.12), (4.13), 

(4.14), (4.15), (4.16), (4.17), and (4.18).  

 
Table (4.10) The results of 8–bit and size 28213 bytes with rate of down 

sampling =2 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 6 40.3 

Lagrange 4 42.2 

Cubic Spline 4 42.2 

Quadratic 5.8 40. 5 

Bezier 4 42.2 

 
 

Table (4.11) The results of 8–bit and size 28213 bytes with rate of down 

sampling =3 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 19.3 35.3 

Lagrange 13.3 36.9 

Cubic Spline 13.3 36.9 

Quadratic 18.49 35.5 

Bezier 13.3 36.9 
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Table (4.12) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 4 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 41.6 32 

Lagrange 33.3 33 

Cubic Spline 33.3 33 

Quadratic 44.4 31.6 

Bezier 33.3 33 

 
Table (4.13) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 5 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 74.8 29.4 

Lagrange 67.4 29.8 

Cubic Spline 67.4 29.8 

Quadratic 77.4 29.2 

Bezier 67.4 29.8 

 

Table (4.14) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 6 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 115 27.5 

Lagrange 110 27.7 

Cubic Spline 110 27.7 

Quadratic 130 27 

Bezier 110.4 27.7 
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Table (4.15) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 7 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 158.3 26.1 

Lagrange 158.2 26.2 

Cubic Spline 158.2 26.2 

Quadratic 179.8 26 

Bezier 158.2 26.2 

 

Table (4.16) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 8 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 204.7 25 

Lagrange 206.4 25 

Cubic Spline 206.4 25 

Quadratic 234.5 24.4 

Bezier 206.4 25 

Table (4.17) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 9 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 249.5 24 

Lagrange 254.8 24.2 

Cubic Spline 254.8 24.2 

Quadratic 279.3 23.7 

Bezier 254.8 24.2 
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Reconstructed signal 
 
Figure (4.5) Original and its sampled and reconstructed signal     

Table (4.18) The results of 8–bit and size 28213 bytes with rate of down 

sampling = 10 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 299.7 23 

Lagrange 310.3 23.2 

Cubic Spline 310.3 23.2 

Quadratic 334.1 22.9 

Bezier 310.3 23.2 

 

4.5.3 Test 3  

       The third test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 117114 bytes. Figure (4.5) illustrate the shape of the signal 

which has been tested. 

 

 

 

 

 

 

 

 

 

 

 

 

Original signal                                     Sampled signal    

                                                         with down sampling = 2     
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       The test results are shown in the tables (4.19), (4.20), (4.21), (4.22), 

(4.23), (4.24), (4.25), (4.26) and (4.27).  

 Table (4.19) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 2 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 6.1 40.3 

Lagrange 5 41.2 

Cubic Spline 5 41.2 

Quadratic 6.2 40.2 

Bezier 5 41.2 

   

Table (4.20) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 3 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 16.3 36 

Lagrange 13.2 37 

Cubic Spline 13.2 37 

Quadratic 16.4 36 

Bezier 13.2 37 
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Table (4.21) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 4 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 32.3 33 

Lagrange 27.7 33.7 

Cubic Spline 27.7 33.7 

Quadratic 34.3 32.8 

Bezier 27.7 33.7 

 
Table (4.22) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 5 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 52.8 31 

Lagrange 47.3 31.4 

Cubic Spline 47.3 31.4 

Quadratic 58.2 30.5 

Bezier 47.3 31.4 

 
Table (4.23) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 6 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 79.4 29.1 

Lagrange 77.5 29.2 

Cubic Spline 77.5 29.2 

Quadratic 92 28.5 

Bezier 77.5 29.2 
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Table (4.24) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 7 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 107.4 27.3 

Lagrange 114 27.7 

Cubic Spline 114 27.7 

Quadratic 128.7 27 

Bezier 114 27.7 

 
Table (4.25) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 8 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 136.4 26 

Lagrange 150.7 26.3 

Cubic Spline 150.7 26.3 

Quadratic 163.1 26 

Bezier 150.7 26.3 

 
Table (4.26) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 9 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 167.5 25.9 

Lagrange 184.4 25.5 

Cubic Spline 184.4 25.5 

Quadratic 195.3 25.2 

Bezier 184.4 25.5 
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Table (4.27) The results of 8–bit and size 117114 bytes with rate of down 

sampling = 10 

Interpolation Methods MSE (dB) PSNR (dB) 

Linear 198.8 25.1 

Lagrange 212.4 24.8 

Cubic Spline 212.4 24.8 

Quadratic 223.1 24.6 

Bezier 212.4 24.8 

 

       The results of the three tested samples show that the resampling method 

which they are Lagrange, Cubic spline, and Bezier give the same results (i. e) 

there is no difference between them. Also the results show that when 

increases the rate of down sample the PSNR will be decreases this lead to the 

difference in the audio quality. The results are different because it depend on 

the conditions and the parameters of each method.    

  

4.6 Listening Test 

       Also the results are tested subjectively. The listening test is done to the 

resampling algorithm for it importance, the test shows when increase the rate 

of down sampling there is perceptually noticeable difference to the listener. 

The four tested sample listens are from different area includes student in the 

master science, and ordinary people. The choice of the listing is random. The 

listening test results are shown in the tables (4.28), (4.29), and (4.30).  
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Table (4.28) Listening test results of 8–bit and size 41080 bytes 

Down  

sampling 

rate 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

2 Excellent Excellent Excellent Excellent 

3 Excellent Excellent Excellent Excellent 

4 Excellent Very good Very good Excellent 

5 Excellent Very good Very good Excellent 

6 Very good Very good Good Very good 

7 Very good Good Good Very good 

8 Good Bad Good Good 

9 Bad Bad Bad Bad 

10 Bad Bad Bad Bad 

 

Table (4.29) Listening test results of 8–bit and 28213 bytes 

Down  

sampling 

rate 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

2 Excellent Excellent Excellent Excellent 

3 Excellent Excellent Excellent Excellent 

4 Very good Very good Very good Very good 

5 Very good Very good good Very good 

6  good Very good Good  good 

7 good Good Good good 

8 Bad Bad Good Bad 

9 Bad Bad Bad Bad 
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Table (4.30) Listening test results of 8–bit wand size 117114 bytes 

Down  

sampling 

rate 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

2 Excellent Excellent Excellent Excellent 

3 Excellent Excellent Excellent Very good 

4 Excellent Very good Very good Very good 

5 Excellent Very good Very good good 

6 Very good Very good Good good 

7 good Good Good Bad 

8 Bad Bad Good Bad 

9 Bad Bad Bad Bad 

10 Bad Bad Bad Bad 

 

4.7 Dequantization Test Results 

       Three files are adapted as test samples. Then we applied two types of 

quantization methods on each test samples to reconstruct the signal, and then 

we compute the value of PSNR and MSE. 

4.7.1.a Test 1 

       The first test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 41080 bytes. Figure (4.6) illustrate the shape of the signal 

which has been tested. 
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The test results of uniform quantization are shown in the table (4.31).  

Table (4.31) Results of 8–bit and size 41080 bytes with different steps of 

uniform quantization 

Step of quantization MSE (dB) PSNR (dB) 

2 0.3 54 

3 0.6 50 

4 1.4 46.7 

5 1.8 45.5 

6 2.8 43.6 

7 3.5 42.7 

8 4.7 41.4 

9 5.6 40.6 

Original signal                                                   Quantized signal with   
                                                                             quantization step = 2 
               

De-quantized signal 

 
Figure (4.6) Original and its quantized and reconstructed signal     
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Step of quantization MSE (dB) PSNR (dB) 

10 7.1 39.6 

11 8.2 39 

12 9.8 38.2 

13 11.2 37.6 

14 13 37 

 

Table (4.32) Listening test results of 8–bit and size 41080 bytes of uniform 

quantization 

Step  

of 

quantization 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

2 Excellent Excellent Excellent Excellent 

3 Excellent Excellent Excellent Excellent 

4 Excellent Excellent Very good Excellent 

5 Excellent Excellent Very good Excellent 

6 Very good Excellent Very good Very good 

7 Very good Very good  Very good Very good 

8 Very good Very good Very good Good 

9 Very good Very good Good Good 

10 Very good Very good Good Good 

11 Very good Good Good Good 

12 Good Good Good Good 

13 Good Bad Bad Bad 

14 Bad Bad Bad Bad 
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4.7.2.a Test 2  

       The second test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 28213 bytes. Figure (4.7) illustrate the shape of the signal 

which has been tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original signal                                                   Quantized signal with   
                                                                             quantization step = 2 
               

De-quantized signal 

 
Figure (4.7) Original and its quantized and reconstructed signal     
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       The test results of uniform quantization are shown in the table (4.33).  

 
Table (4.33) Results of 8–bit and size 28213 bytes with different steps of 

uniform quantization 

Step of quantization MSE (dB) PSNR (dB) 

2 0.5 51.3 

3 0.6 50.1 

4 1.3 47 

5 1.7 45.7 

6 2.8 43.8 

7 3.4 42.7 

8 4.7 41.4 

9 5.6 40.6 

10 7.1 39.6 

11 8.3 39 

12 10 38.1 

13 11.4 37.5 

14 13.3 36.9 
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Table (4.34) Listening test results of 8–bit and size 28213 bytes of uniform 

quantization 

Step  

of 

quantization 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

2 Excellent Excellent Excellent Excellent 

3 Excellent Excellent Excellent Excellent 

4 Excellent Excellent Very good Excellent 

5 Excellent Excellent Very good Excellent 

6 Very good Excellent Very good Very good 

7 Very good Excellent Very good Very good 

8 Very good Excellent Very good Very good 

9 Very good Very good Good Very good 

10 Very good Very good Good Very good 

11 Good Very good Good Very good 

12 Good Very good Good Good 

13 Good Good Bad Good 

14 Bad Bad Bad Bad 

 

 

4.7.3.a Test 3  

       The third test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 117114 bytes. Figure (4.8) illustrate the shape of the signal 

which has been tested. 
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Original signal                                                   Quantized signal with   
                                                                             quantization step = 2 
               

De-quantized signal 

 
Figure (4.8) Original and its quantized and reconstructed signal     
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The test results of uniform quantization are shown in the table (4.35).  

 

Table (4.35) Results of 8–bit and size 117114 bytes with different steps of 

uniform quantization 

Step of quantization MSE (dB) PSNR (dB) 

2 0.5 51.1 

3 0.6 50 

4 1.4 46.7 

5 1.8 45.5 

6 2.8 43.6 

7 3.5 42.7 

8 4.7 41.4 

9 5.6 40.6 

10 7.1 39.6 

11 8.2 39 

12 
 

9.8 38.2 

13 
 

11.2 37.6 

14 
 

13 37 
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Table (4.36) Listening test results of 8–bit and size 117114 bytes of uniform 

quantization 

Step  

of 

quantization 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

2 Excellent Excellent Excellent Excellent 

3 Excellent Excellent Excellent Excellent 

4 Excellent Very good Very good Excellent 

5 Very good Very good Very good Excellent 

6 Very good Very good  Very good Very good 

7 Very good Very good  Very good Very good 

8 Very good Good  Very good Very good 

9 Good Good Good Very good 

10 Good Good Good Very good 

11 Good Good Good Good 

12 Good Bad Good Good 

13 Bad Bad Good Good 

14 Bad Bad Bad Bad 
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4.7.1.b Test 1 

       The first test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 41080 bytes. Figure (4.9) illustrate the shape of the signal 

which has been tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original signal                                                   Quantized signal with   
                                                                             No. of level = 30 
               

De-quantized signal 

 
Figure (4.9) Original and its quantized and reconstructed signal     
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The test results of non–uniform quantization are shown in the table (4.37). 

 

Table (4.37) Results of 8–bit and size 41080 bytes with different levels of 

non–uniform quantization   

No. of level MSE (dB) PSNR (dB) 

30 41.9 32 

26 53.2 30.9 

22 86.3 28.8 

18 111.3 27.7 

14 179 25.6 

10 279.4 23.7 

8 436 21.7 

7 436 21.7 

5 756 19.3 

4 1722.4 15.8 
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Table (4.38) Listening test results of 8–bit and size 41080 bytes of non–

uniform quantization 

 

No. of level 

 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

30 Excellent Excellent Excellent Excellent 

26 Excellent Excellent Excellent Excellent 

22 Excellent Very good Very good Excellent 

18 Excellent Very good Very good Very good 

14 Very good Very good  Very good Very good 

10 Very good Very good  Very good Good 

8 Good Good  Very good Good 

7 Good Good Good Good 

5 Bad Bad Good Good 

4 Bad Bad Bad Bad 

 
 

4.7.2.b Test 2 

       The second test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 28213 bytes. Figure (4.10) illustrate the shape of the signal 

which has been tested. 
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Original signal                                                   Quantized signal with                                 
                                                                             No. of level = 30 
               

De-quantized signal 

 
Figure (4.10) Original and its quantized and reconstructed signal     
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The test results of non–uniform quantization are shown in the table (4.39). 

Table (4.39) Results of 8–bit and size 28213 bytes with different levels of 

non–uniform quantization 

No. of level MSE (dB) PSNR (dB) 

30 0.8 49.2 

26 0.8 49.1 

22 0.8 40.2 

18 110.3 27.7 

14 322.8 23 

10 540 20.8 

8 540.8 20.8 

7 540.8 20.8 

5 1163 17.5 

4 1987 15.1 

 

Table (4.40) Listening test results of 8–bit and size 28213 bytes of non–

uniform quantization 

 
No. of level 

 

 
Person 1 

 
Person 2 

 
Person 3 

 
Person 4 

30 
 

Excellent Excellent Excellent Excellent 

26 
 

Excellent Excellent Very Good Excellent 

22 
 

Very good Excellent Very good Very good 

18 
 

Very good Very good Very good Very good 

14 
 

Very good Good Very good Good 
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No. of level 
 

 
 

Person 1 

 
 

Person 2 

 
 

Person 3 

 
 

Person 4 

10 
 

Good Good Very good Good 

8 
 

Good Good Good Good 

7 
 

Good Good Good Good 

5 
 

Bad Bad Good Good 

4 
 

Bad Bad Bad Bad 

 
 

4.7.3.b Test 3 

       The third test has 8–bit sampling resolution, (mono), sampling rate 22 

kHz, and size 117114 bytes. Figure (4.11) illustrate the shape of the signal 

which has been tested. 

 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter Four            Experimental Results 
 
 

 ٨٢

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original signal                                                   Quantized signal with                                 
                                                                             No. of level = 30 
               

De-quantized signal 

 
Figure (4.11) Original and its quantized and reconstructed signal     
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The test results of non–uniform quantization are shown in the table (4.41). 

 

Table (4.41) Results of 8–bit and size 117114 bytes with different levels of 

non–uniform quantization 

No. of level MSE (dB) PSNR (dB) 

30 37 32.4 

26 52.2 31 

22 67 30 

18 93.8 28.4 

14 139.1 26.7 

10 238.5 24.3 

8 347.2 22.7 

7 347.2 22.7 

5 
 

619.8 20.2 

4 
 

1358.6 16.8 
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Table (4.42) Listening test results of 8–bit and size 117114 bytes of non–

uniform quantization 

 

No. of level 

 

 

Person 1 

 

Person 2 

 

Person 3 

 

Person 4 

30 Excellent Excellent Excellent Excellent 

26 Excellent Excellent Excellent Excellent 

22 Excellent Very good Very good Excellent 

18 Excellent Very good Very good Very good 

14 Very good Very good  Very good Very good 

10 Very good Good  Very good Good 

8 Good Bad  Good Good 

7 Good Bad Good Good 

5 Bad Bad Good Bad 

4 Bad Bad Bad Bad 
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Chapter One 
General Introduction 

 
 

1.1 Introduction 

 Over the past two decades, improvements in technology have changed 

the way of recording the music and the used digital media. Today, we use 

computers to record audio and save it on of CDs, or other storage devices. In 

order to transform sound into a digital format, one must sample the sound. 

This process takes place while one is recording. The computer takes a 

snapshot of the sound level at small time intervals. The number of samples 

taken in each second is called the sampling rate. The more samples that are 

taken, the better sound quality. For instance, audio sampled at 44 kHz is better 

than audio sampled at 22 kHz. It also means more storage space is required to 

record higher quality digital sounds  

Bandlimited interpolation of discrete–time signals is a basic tool has 

extensive applications in digital signal processing. In general, the problem is 

to correctly compute signal values at arbitrary continuous times from a set of 

discrete-time samples of the signal amplitude. In other words, we must be 

able to interpolate the signal between samples. Shannon's sampling theorem 

tells us the signal can be exactly and uniquely reconstructed for all time from 

its samples by bandlimited interpolation [Smi 04].             

Signal requantization is applied in digital audio systems whenever the 

word−length of the audio samples needs to be reduced. This is the case for 

instance when an audio signal has to be stored on a CD and was originally 

produced from the output of a digital audio system that operates with more 

than 16 bit precision. In some applications, like multimedia, gaming, or 

mobile communication devices, requantization to 8 bit or 12 bit could be an 
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economically interesting alternative to other forms of data compression 

because requantized data can be send directly to the D/A converter, while 

encoded data requires a decoder. Signal requantization inevitably introduces 

an error, which can cause two types of audible problems. The first is a 

background noise that may be audible by itself. It can usually occur when 

(part of) the error signal is uncorrelated with the original audio. When the 

error is correlated with the signal, linear or nonlinear distortions may cause 

alterations in the perceived quality of the signal itself. At low signal levels, 

the second problem is usually much more serious. Dither (it means how well 

it remove quantization distortion whenever there's some requantization going 

on), noise can be used to remove the correlation between the error and the 

signal at the expense of increased noise energy [Kon 003]. 

 

1.2 Review of Previous Works 

  Among the massive published research work in the literature concerned 

with speech analysis, the following list of recent researches illustrate some the 

important research work conducted in the field: 

 

1. Mclain (1976) describe a method for smooth interpolation in one 

dimension between data provided at a set of points arbitrarily 

distributed. Because the method ensures the continuity of the resulting 

points, and its first two derivatives, it is suitable for graphical 

application. This method is called spline and its coefficients are not 

found from the values at the nodes, as in the usual applications of 

bicunbic spline when the data are given, but are calculated using a 

statistical least squares fit, so that resulting curves fits as closely as 

possible with the data. The curves produced by this technique are, of 

course, smooth but it will not in general pass through all the data points 

[Mcl 76]. 
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2. Collins (1998) described that real–time synthesis methods deal with 

some form of manageable control data as a handle to the job of 

producing a continuous output stream of digital audio in the time 

domain. Changes in the control data have an immediate effect on the 

synthesis, though the relation between audio result and the parameter 

changed can be obscure. Interfacing to low level digital audio requires 

a manageable representation of control data to specify the shape of a 

waveform. The model solved this by the use of interpolating splines 

defined by an ordered list of control points [Col 98].  

3. Shykula and Seleznjev (2000) considered quantization of a signal (or 

random process) in a probabilistic framework. The presented 

quantization method can be applied to signal coding and storage 

capacity problems. In order to demonstrate the general approach, the 

uniform quantization of a Gaussian process was studied in more detail. 

They investigated asymptotic properties of some accuracy 

characteristics, such as rate and distortion, in terms of correlation 

structure of the original random process when quantization cellwidth 

tends to zero [Shy 00].   

4. Koning and Verhelst (2003) presented the idea of using Least Squares 

(LS) theory for optimal noise shaping of audio signals; they indicated 

that the suggested approach provides shorter and more straightforward 

proof of known properties of dithered and nondithered noise shaping. 

In contrast with the standard theory, this approach shows how noise 

shaping filters that attain the theoretical optimum can be designed in 

practice. Also they presented some produced results from an 

experimental noise shaping system for minimally audible signal 

requantization that is based on the suggested filter design method and a 

simple masking model. In listening experiments, this system was 
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unanimously preferred over the alternatives which included 

straightforward requantization, dithered requantization and optimized 

fixed noise shaping [Kon 03]. 

5. Simth (2004) described a technique for resampling algorithm which 

evaluates a signal at any time specifiable by a fixed point number. In 

addition, one low pass filter was used, regardless of the sampling rate 

conversion factor. The algorithm effectively implements the “analog 

interpretation” of rate conversion, in which a certain low pass filter 

impulse response must be available as a continuous function. 

Continuity of the impulse response is simulated by linearly 

interpolating between samples of the impulse response stored in a table. 

Due to the relatively low cost of memory, the method is quite practical 

for hardware implementation [Sim 04]. 

 

1.3 Aim of the Thesis 

The present work aims to investigate the performance of some selected 

resampling methods on the digital audio signal, which they are Linear, 

Quadratic, Cubic spline, Lagrange, and Bezier in order to reduce the number 

of samples while the audio quality is maintained. Also the present work aims 

to investigate the performance of some uniform and non–uniform 

quantization methods in order to make the requantization levels of the digital 

audio data so small such that the audio quality is maintained. 
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1.4 Thesis Layout 

 In addition to chapter one, there are four chapters, which deal with the 

ways of resampling and requantization of the digital wave. 

 

Chapter Two  Entitle ‘‘Digital Audio Processing’’ 

 This chapter includes some basic of signal processing concepts dealing 

with digital audio wave as a digital signal. 

 

Chapter Three Entitle ‘‘Resampling and Requantization’’ 

 This chapter presents a short description for some selected resampling 

methods, which they are linear, Lagrange, Cubic spline, Quadratic, Bezier, 

and there is some descrition of each one of them. The chapter also contains a 

description of requantization methods which they are uniform and non–

uniform methods.  

 

Chapter Four Entitle ‘‘Experimental Results’’ 

 It includes a summary of the practical current research work. Also, the 

analysis results were presented in form of tables. 

 

Chapter Five Entitle‘‘Conclusions and Future Work’’ 

 It includes some of conclusions derived from the investigation of test 

results, which present in chapter four. Also, this chapter presents some future 

work suggestions concerned with the field of resampling and requantization 

for audio data. 
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Chapter Three 
Resampling and Requantization 

 

3.1 Introduction         

The discrete–time signals is a basic way for representing signals in 

digital form, it has an extensive applications using digital signal processing. 

In general, the problem is to correct computer signal values at arbitrary 

continuous times from a set of discrete–time samples of the signal amplitude. 

In other words, we must be able to interpolate the signal between samples. 

Since the original signal is always assumed to be band limited to half the 

sampling rate. Shannon's sampling theorem tells us the signal can be exactly 

and uniquely reconstructed for all time from its samples by interpolation 

[Sim 04].      

The concept of interpolation is the selection of a function f (x) from a 

given class of functions in such a way that the graph of y=f (x) passes through 

a finite set of given data points. Interpolation method has a number of 

important uses. Its primary use is to furnish some mathematical tools that are 

used in developing methods in the areas of approximation theory, numerical 

integration, and the numerical solution of differential equations. A second use 

is in developing means for working with functions that are stored in a tabular 

form [Mcl 79]. 

When the sample is assigned into a numeric value that the computer or 

digital circuit can use or store in a process called quantization. The number 

of available values is determined by the number of bits used for each sample. 

Each additional bit doubles the number of values available (1–bit samples 

have 2 values, 2–bit samples have 4 values, etc.). When a sample is quantized, 

the analog amplitude has to be rounded off to the nearest available digital 

value. This rounding–off process is called approximation [Has 01]. 
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3.2 Resampling 

The process of converting from digital back to analog is called 

reconstruction a good example is given by audio CDs. The music is stored in 

a digital form from which a CD player reconstructs the continuous (analog) 

waveform that we listen to. The reconstruction process is basically one of 

interpolation [Mcc 98]. 

Thus, an understanding of sampling and reconstruction is a good 

foundation for producing good–quality signals.  

In the sampling/reconstruction problem we have to deal with three 

distinct signals: the continuous signal f, the discrete signal fd, and the 

reconstructed signal fr. Ideally we aimed to make the reconstructed signal 

equal to continuous signal (fr = f) when this happens we say the reconstruction 

is exact. Exact reconstruction is not always possible. 

The aim of reconstruction techniques is to minimize the error |f – fr|.  

Reconstruction techniques are very important in the manipulation of signals in 

the computer, for at least two reasons: 

1. In the solution of certain problem we need a continuous representation of             

    the signal. 

2. A good knowledge of the reconstruction techniques used by a given output  

    device is important in the creation or choice of a algorithms to process the 

    signal to be displayed on that device [Gom 97].  
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3.2.1 Linear Interpolation   

The simplest method of deforming an object is to create in–between a 

series of transitional stages between two static positions. The in–between, or 

the sequence of intermediate shapes, are all generated from the given 

beginning and final static positions; these are also called key positions or 

extremes. Linear interpolation is the method of calculating any number of 

new values between two existing values [Ker 86].     

Linear interpolation is definitely the most popular and most widely 

used reconstruction method. The reasons for this are that it is simple and 

pretty straight forward to implement, and the results are usually not so linear. 

Linear interpolation in one dimension results it is simply connecting sampling 

points using straight lines. 

The simplest kind of interpolation is linear interpolation. Assuming 

some desired function f (x), which is continuous and differentiable at all 

points. Thus, for n+1 different values of x, not necessarily evenly spaced, we 

are given the corresponding values of f (x). We assume here that both the xi  

and the corresponding f (xi) are given either exactly, or within some specified 

accuracy. Figure (3.1) shows the function f (x) and the corresponding values 

of x. Which are shown as heavy black points on the curve.  

    To use linear interpolation , we draw a straight line between two points 

one on each side of the unknown point x ;  in this case, we draw a straight line 

AD between the points at x3 and x4. 

 

 

 

 

      
 
 



Chapter Three                                                                    Resampling and Requantization                          
 
 

 ١٩ 

 

 

 

 

 

 

 

 

 

 

 

 

Having drawn this line, as in figure (3.1), we now approximate the 

curve in the region between, in this case, x3 and x4 by the straight line, which 

is shown magnified in figure (3.2) using similar triangles, we can get the 

proportion    

  

         AE

DE

AC

BC =                                                        . . . (3.1) 
 

Which we can solve for BC: 
                       

          DE
AE

AC
BC =                                                                                . . . (3.2) 

 
                                  

          f (x)int – f (x3)          
34

3

x x

       x  x   

  
  
-

-
[f (x 4) – f (x3 )] ,                    . . . (3.3) 

So, the resulting interpolation value for f (x) will be:  
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, 

, 

 ● 
 

xn 

● 
 

● 
  ● 

 

 ● 
 

 ● 
  ● 

  ● 
  ● 
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Figure (3.1) Linear interpolation  
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        P (x ) = f ( x ) int  = f (x3 ) + 
34

3

x x

       x   x   

  
  
-

-
[f (x 4) – f (x3 )] ,        . . . (3.4) 

 

Where P (x ) is the interpolating approximation to f ( x ). In general, suppose 

we wish to find the value of f (x) for some x located between xi and xi + 1 [Sta 

70] 

   Then the interpolated value p (x), which is only an approximation for f (x), 

is given by 

         P (x) = f (xi) + 
i1  

i

x 

x   

 
  
-

-

+ix

x
[f (x 1  +i ) – f (x i )] ,                         . . . (3.5)      
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Figure (3.2) Derivation of linear interpolation formula 
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3.2.2 Lagrange Interpolation            

Consider the problem of determining a polynomial of degree 2 that 

passes through the distinct points (x0,y0) and (x1,y1) [Bur 85]. 

   Consider the polynomial 

         P (x) = 
) x(x

) x  (

1  0

1

 -
- x

  y0   +      
) x(

)x  (

0  1

0

 -
- 

x

x
  y1 ,                                         . . . (3.6)      

When x = x0, then 
 
         P (x0) = y0 = f (x0) ,                                                                                . . . (3.7)      

  
And when x = x1, then 
 
          P (x1) = y1 = f (x1) ,                                                                   . . . (3.8)      

  
For the case we need to construct (for each k = 0, 1, . . ., n) a quotient Ln, k(x) 

with the property that Ln, k (xi)=0 when i≠ k and Ln,k (xk) = 1. To satisfy that  

Ln,k (xi)=0 for each i≠ k requires that numerator of Ln, k contain the term  (x – 

x 0) (x – x1) . . . (x – x 1−k ) (x – x 1  +k ) . . . (x – x n ).  

To satisfy Ln,k(xk)=1, the denominator of Lk must be equal to (1) when 

 x = xk. Thus, 

 

Ln,k (x) = 
)x(x .  .  . )x(x )x(x .  .  . )x(x

     )x(x  .  .  . )  x(x  )x(x  .  .  . )x (

nk1 k k1 -k k0k 

n1 k 1 -k 0

--- -
 - - --

+

+
x

=∏
≠
=

n x

k  i
0  i ik

i

)x (x

)x (
 

  -
 -

,  . . . (3.9) 

If x0, x1, . . . , xn are (n+1) distinct numbers and f is a function whose values 

are given at these numbers, then there exists a unique polynomial p of degree 

at most n with property that 

          

f (xn) = f (xk)       for each k = 0, 1, . . . , n ,                                . . . (3.10)      
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p (x) = f (x0) Ln, 0 (x) + .  .  .  + f (xn) Ln, n (x) = )(L )(x kn,k
0k

xf
n

∑
=

,  

                                                                                                  . . .  (3.11) 

Where 
 

Ln,k (x) =  
)x (x . . . )x (x )(x . . . )x(x )x(x

)x(x  .  .  . )x(x   )x(x  .  .  .  )x(x   )x (

nk1 k k1 -k k 1k 0k 

n1 k 1 -k 10

 - - x- - -
 - - - - -

+

+
x

,          . . . (3.12) 

 

            = ∏
≠
=

n x

ki
0i ik

i

)x (x

)x (

 -
 -

                   for each k = 0, 1, . . . , n ,        . . . (3.13)  

 
  
                              Figure (3.3) Lagrange interpolation 
 
f (x)=exact function of which only N+1 discrete values are known and used to 

an interpolating or approximating function p(x). 

P(x)=approximating or interpolating function. This function will pass through 

all specified N+1 interpolation points (also referred to as data points or nodes) 

[Ron 02]. 

The interpolated curves tend to oscillate about the exact result. Smooth 

functions are treated more accurately than oscillatory ones or ones with 

concentrated curvature. For this reason, Lagrange interpolation with more 
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than three or four points is rarely used. Piecewise Lagrange interpolation 

offers some improvement, but suffers from having discontinuous derivation at 

the points that join the segments and many cause trouble if the result is to be 

differentiated [Fer 81]. 

This approximation to the function is not "smooth" (smoothness usually 

refers to the continuity of the derivatives) because, at the end–points 

(sometimes known as nodes) of each subinterval the derivative of the 

approximation is discontinuous. We can try to make the approximation 

smoother by using piecewise quadratic, rather than piecewise Linear, 

approximation. A quadratic has three free parameters, two of which are 

determined by the function values at the ends of the subinterval, leaving the 

third free to be used to smooth the approximation. Unfortunately, there are not 

enough free parameter to ensure smoothness over the whole interval; the 

approximation cannot match the derivatives of the function at the end–points 

of the interval. This can be achieved, however, by using Cubic spline [Atk 

87].  
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3.2.3 Cubic Spline Interpolation            

       Cubic spline is an equation of degree seven. Splines are drafting aids 

used to draw smooth curve passing through a set of points. Weights are 

attached at the points to be connected and a flexible stripe is shaped around 

the weights. A polynomial fitted to many data points could exhibit erratic 

behavior. Splines are smooth and continuous across the interval. 

Cubic splines have the advantage of sufficient free parameters to 

ensure continuity of first and second derivatives throughout the interval, and 

to satisfy a derivative condition at the ends of the interval. The disadvantage 

of approaching an approximation problem is that at each of the end points of 

the subintervals, there is no assurance of differentiability, which, in a 

geometric context, means that the interpolating function is not "smooth" at 

these points. 

It is important to note that the construction of a Cubic spline does not 

assume that the derivatives of the interpolant agree with those of the function 

any where except, perhaps, at the ends of the interval [Burden & Faires 85]. 

      (i)    0  )(xs  )(x
n

//
0

// ==s  ,                                                              . . . (3.14)             

 

      (ii)     /fxs
00

//   )( =       and      /
nn

fx   )(s/ = ,                                   . . . (3.15) 

When condition (i) is satisfied the spline is called a natural spline. The 

condition (ii) is called a clamped spline [Atk 87]. 
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We turn now to the specific problem of obtaining a Cubic spline 

function which interpolates the function f at x0, x1, . . . , xN. It will be 

convenient to introduce the following notation; in each of the subintervals Ii =  

[x i , xi + 1] of the interpolation range, S is a polynomial of degree at most three; 

denote this polynomial by si then we have  

 

      s (x) = si (x)      x ∈ Ii, i = 0, 1, . . . , N–1,                                  . . . (3.16) 

A convenient formulation of si will be in terms of the distance of x 

from the two ends of the interval Ii, and so we define new variables ui by 

 

      ui = x − xi             for i = 0, 1, . . . , N ,                                      . . . (3.17) 

  

Observe that dui / dx = 1 for every i, and so differentiation or 

integration with respect to x and with respect to ui will be equivalent. We 

denote the step lengths between the knots by 

      hi = xi + 1 −x i = ui − ui + 1 ,                                                                  . . . (3.18) 

Figure (3.4) Cubic spline interpolation 
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The conditions which must be satisfied are that s must interpolate f at 

x0, x1, . . . , xN and /s , //s must be continuous at the interior knots x1, x2, . . . , 

xN – 1. We will begin with the last of these conditions, the continuity of //s . On 

each of the intervals Ii, and so //s is the first–degree polynomial//

i
s . Let us 

denote its (as yet unknown) values at the knots by 

 

      //s (xi) = Ai                   i = 0, 1, . . . , N ,                                 . . . (3.19) 

 

It follows that //

i
s (xi) = Ai and //

i
s (xi + 1) = Ai + 1, and since //

i
s (xi) is a linear 

function, we have, for each i, 

 

      //

i
s (x) = 

i

1  iii

h

 )x(x A )x (  - - -
++ x

1 i 
A

 = 
i

1   i1  

h

A   -
++ iii uuA

 ,                 . . . (3.20) 

 

We may integrate equation (3.20) twice to get  

 

      si (x) =    
h 6

 

i

3
1  i

3
1   A 

+++ −
iii uuA

cx  + d ,                                        . . . (3.21) 

 

Where c and d are constants of integration. This can be conveniently 

written in the form  

 

      si (x) =      
h 6

 

i

3
1  i

3
1   A 

++ −
iii uuA

 −  Biui + 1 +  Ciui ,                                         . . . (3.٢٢) 
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Consider first the interpolation condition at the point xi, we have ui = 0 

and ui + 1 = – hi. Denoting f (xi) by fi  and substituting these values into (3.22), 

we get  

      fi  = +  
6

2
 ii hA

 Bihi                      (i = 0, 1, . . . , N–1),                 . . . (3.٢٣) 

Similarly at xi + 1, we have 

      fi+1 = ++
  

6

 2
1  ii hA

 Cihi                           (i = 0, 1, . . . , N–1),                    . . . (3.24) 

 

Solving these two for Bi and Ci  yields: 

      Bi = 
i

i

h

f
  

6

h iiA
,                                                                          . . . (3.25 a)                                                                                                       

      Ci = 
i

1  

h
+i

f
 – 

6

h i1  +iA
,                                                                    . . . (3.25 b)     

The final system of equations is derived from the first−derivative 

continuity condition. These equations are obtained by differentiating equation 

(3.22) with respect to x (remembering that differentiations with respect to x, 

or with respect to ui or ui + 1 are the same operation).  

We obtain  

 

      s/
i
(x) = 

i

2
1  ii

2
   i1  

2h

u uA  -
++iA

 − Bi + Ci  ,                                         . . . (3.26) 

 

From which we may deduce that  

      s/
i
(xi) = Ci − Bi – 

2
 ii hA ,                                                             . . . (3.27) 

and, similarly, 

      s/
i
(xi + 1) = Ci – Bi +  

2

h
i

 
1  +i

A
,                                                         . . .  (3.28) 
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The continuity of /s will be guaranteed if, for every interior knot xi, we 

have  

/

i
s  (xi)  = /

1 - is (xi) which, on comparing (3.27) with (3.28) for i–1, yields the 

equation 

      
2

A )h  (
ii1 - +ih
 +  Bi – Ci  − (Bi – 1 – Ci - 1) = 0 ,   for i = 1, 2, . . . , N−1,                    

                                                                                 . . .  (3.29) 

We can subtract the two equations (3.25 a and b) to obtain: 

      Bi – Ci = 
6

h )AA (
ii1  i

  -
+  − 

i

i

h

ff   - 
1  i +  ,     (i = 0, 1, . . . , N–1),  . . . (3.30)                                                

The final term here is just the divided f [xi, xi + 1] which we will denoted 

by di. With this notation and substituting (3.30) for both i and i−1 into (3.29) 

we get  

 

       
6

A
1 - i

 
 1 - i

h
+ 

3

A )h h (
ii

 
1 - i

+
 +

6
1   +ii

Ah
= di – di – 1 ,    (i = 1, 2, . . ., N−1)  

                                                                                       . . . (3.31)                                                                                                         

This is a system of N–1 equations with N−1 unknown A i 
,s. As was 

commented above, there are many ways of using these two extra degree of 

freedom. One of the simplest ways is to simply set 

 

      A0 = AN = 0 ,                                                                                 . . . (3.32) 

 

Which gives rise to the so–called natural cubic splines [Buc 92]. 
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3.2.4 Quadratic Interpolation  

To define a Quadratic function, we need three data points. So each 

piece of the piecewise function will actually be defined over two consecutive 

data intervals. The following pints explains how to evaluate the piecewise 

quadratic interpolant at a point x [Atk 03]. 

1. Determine the two consecutive intervals that contain the position x. 
2. Determine the parabola that passes through the three data points that 

define the intervals. 

3. Evaluate that parabola at x. 

Most data arise from graphs that are curved rather than straight. 

Assume that three data points (x0, y0), (x1, y1) and (x2, y2) are given with 

x0, x1, x2 distinct points [Atk 03]. 

 

                                      Figure (3.5) Quadratic interpolation 
 
 

With linear interpolation, it was obvious that there was only one 

straight line passing through two given data points. But with three data points 
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it is less obvious that there is only one quadratic interpolation whose graph 

pass through the points. It would be expected that a quadratic interpolation 

would yield better accuracy interpolation [Atk 03]. 

The given three points at a time construct an arc of a quadratic curve, 

perhaps parabola, circle or ellipse, to join them. Let us consider the three 

points A, B, C, with position vector n1, n2, n3 respectively. Quadratic 

interpolation formula is written using shape functions, which vary according 

to the parameter values being used. Thus in general we have: 

 

      I (x) = M1(d) n1 + M2(d) n2 + M3(d) n3 ,                            . . (3.34) 

 

Where M1(d), M2(d) and M3(d) are shape functions. For quadratic 

interpolation the shape functions involve squared terms like d2 and 

expressions like d2 + 3d + 2, and thus the overall result is an arc of a 

quadratic curve fitting the points [Ema 01]. 

 

3.2.5 Bezier Interpolation 

So far we have considered curve definitions that interpolate given data. 

Another approach is to provide a good smooth representation of a surface that 

approximates given data. In such a case there is no definable best fit, but the 

quality of a fit depends primarily on the designer's judgment. It is thus logical 

to use an interactive technique in which the user can experiment with a 

variety of shapes without having to know anything about the mathematical 

principles involved. However, certain smoothness condition should a priori be 

built into the class of curves the designer will experiment with. The most 

interesting approach probably being that developed by Bezier [Wol 78]. 

Bezier defines the curve p(u) in terms of the locations of n+1 control 

points pi   
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      P(u) = )(B p 
n i,0  i

u
n

i
∑
=

,                                                                                . . . (3.35)   

 

Where Bi, n (u) is a blending function 

 

             Bi,n (u) = C(n,i) ui (1– u)n − i ,                                        . . . (3.36) 

      

And C(n,i) is the binomial coefficient, 

       

C(n,i) = n!/ (i!(n – i)!) ,                                                      . . . (3.37) 

 

The particular curve shown in figure (3.7) uses four control points, connected 

in the illustration to form an open polygon. 

 

 

 
             Figure (3.6) The four Bezier blending functions for n=3 

 

The blending functions are the key to the behavior of Bezier curve. 

Figure (3.7) shows the four blending functions that correspond to a Bezier 

curve with four control points. These curves represent the influence that each 

control point exerts on the curve for various values of u. The first control 

point, p0 corresponding to B0,3, is most influential when u=0 in fact. Locations 

of all other control points are ignored when u=–0, because their blending 

functions are zero. The situation is symmetric for p3 and u=1. The middle 
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control points p1 and p2 are most influential when u=1/3 and 2/3, respectively 

[New 79]. 

In Bezier curve generally only the first and last control points are 

interpolated. The intermediate control points influence the curve's shape in a 

different way, acting more like magnets. There are various ways to adjust the 

influence of the control points. One could repeat some points, i.e., list them 

more than once, but increasing the number of points also increases the degree 

of the resulting curve. Another restriction inherent to the Bezier approach is 

the fact that the curves change totally as soon as one control point is moved 

[Mul 00]. 

 

3.3 Requantization              

Quantization is the step which allows a continuous amplitude signal to 

be represented in the discrete amplitude increments available in a digital 

computer this is performed by an ADC, Which takes as input a constant 

analogue voltage (performed by the sampler) and generates a corresponding 

binary value as output [Embree 91]. 

Signal requantization is applied in digital audio systems whenever the 

word−length of audio samples needs to be reduced. This is the case for 

instance when an audio signal has to be stored on a CD and was originally 

produced at the output of a digital audio system that operates with more than 

16 bit precision. In some applications, like multimedia, gaming, or mobile 

communication devices, requantization to 8 bit or 12 bit could be an 

economically interesting alternative to other forms of data compression 

because requantized data can be send directly to the ADC converter, while 

encoded data requires a decoder. Signal requantization inevitably introduces 

an error, which can cause two types of audible problems. The first is a 

background noise that may be audible by itself. It can usually occur when 
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- - - - -  - - - 

  

 
- - - - 

-  - - - 
  

(part) of the error signal is uncorrelated with the original audio. When the 

error is correlated with the signal, linear or nonlinear distortions may cause 

alterations in the perceived quality of the signal itself. At low signal levels, 

this second problem is usually much more serious. Dither means how well 

does it remove quantization distortion whenever there's some requantization 

going on, small noise can be used to remove the correlation between the error 

and the signal at the expense of increased noise energy [Kon 03].  
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Figure (3.7) Quantization operation 
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3.3.1 Uniform Quantization 
  

Uniform quantization is the most commonly used technique for digital 

signal representation. The goal of the quantizer is to provide minimum 

possible average distortion to its input under some constraint. The quantizer 

output signal, which indicates the minimum amount of information needed to 

reconstruct the output, is generally used as a constraint. The simplest 

quantization correspondence is uniform quantization, where the amplitude 

range is split into equal regions by points termed quantization levels, and the 

output is a binary representation of the nearest quantization level to the input 

voltage. An example of a 1-dimensional uniform quantization is shown in 

figure (3.9):  

 

 

 

                       Figure (3.8) Uniform quantization 

 

Here, every number less than -2 is approximated by 00. Every number 

between -2 and 0 are approximated by 01. Every number between 0 and 2 are 

approximated by 10. Every number greater than 2 is approximated by 11. 
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The amplitudes of the samples are quantized by dividing entire 

amplitude range into a finite set of amplitude ranges and assigning the same 

amplitude value to all samples falling in a given range. This is shown in 

figure (3.10) for an 8-level quantizer. For all values of x (n) between x1 and x2 

the output of the quantizer is q (n) = Q [x (n)] = q2. each of the quantizer level 

is labeled with a 3–bit binary codeword which serves as a symbolic 

representation of that amplitude level [Wit 82].  
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Figure (3.9) Input–output characteristic of a 3–bit quantizer 
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3.3.2 Non–Uniform Quantization  

 When the input source signal is uniformly distributed all the 

quantization intervals are of the same width, i.e, the source does not prefer 

any particular quantization interval. This may not be true in general for a 

source with an arbitrary distribution of values. In this general case it would 

make more sense to assign more levels in the ranges of values that occur more 

often and fewer quantization levels to ranges that are infrequent. This type of 

quantization is referred to as non–uniform quantization. 

 There are two advantages to using non-uniform spacing of quantization 

levels. First, it is possible to significantly increase the dynamic range that can 

be accommodated for a given number of bits of resolution by using a suitably 

chosen non-uniform quantizer. Second, it is possible to design a quantizer 

tailored to the specific input statistics so that it is considerably superior, in 

terms of (SNR) levels, compared to the uniform quantization case [Gar 02]. 

It is sufficient to apply histogram equalization method. The first step in 

this method is to find the accumulated probability density: 

       

∑

∑

=

== 255

0  j

i

0 

(j) H

(j) H

  )( j
acm iP ,                                                      . . . (3.38) 

Where H (j) is the histogram value of the j th level of the audio signal, Pacm(i) 

is the accumulated probability of the i th level. Then the requantized value 

)( /i of the level (i) is determined from follows: 

       N  (i)P  acm
/ ×=i ,                                                         . . . (3.39) 

Where /i the requantized signal and N is is the total number of quantized 

levels. 
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