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ABSTRACT

A mathematical model describing the densification process during
viscous sintering process of a material contains solid inclusions is developed
(modified) from a Scherer model which describes the rate of densification
during sintering for a free solid inclusons material. The modified model is
used to simulate the rate of densfication during sintering process for
ceramic heterogeneous materials consist from mixtures of some Iragi clays
that had been prepared in a previous work. In addition the modified model is
used to study the effect of several factors on densification during sintering
process and used in predicting the effective viscosity of the viscous phase
that formed during sintering. The factors are the sintering temperature,
sintering time, and the ratio of solid inclusions volume to viscous phase
volume.

Another two heterogeneous models which are the composite sphere
and the self consistent models are also applied and used to study the effect of
sintering temperature and sintering time on densification during sintering for
comparison with the present developed model.

The modified model is also used to study the effect of pore size
distribution on densification process by assuming a Gaussian distribution for
the pore sizes and reformulating the equations of the modified model to
make them depend on the standard deviation of pore size distribution.

The physical parameters like viscosity are computed from the fitting
process of the practical data of the samples.

Computer programs in FORTRAN 90 language are designed to study
the effect of sintering temperature on densification process using the

developed model, the composite sphere and the self consistent models.



These programs are modified to simulate the densification process versus
time duration of the sintering process. Another program is designed to study
the effect of pore size distribution on sintering process using the developed
model.

The results from the developed (modified) Scherer model are better
fit the practical data, then the composite sphere model.

The results from the program of the effect of sintering temperature
indicates in general that the rate of densification is increased with increasing
sintering temperature, this is due to the decrease in the viscosity with
temperature increasing. However, when the ratio of the solid inclusions is
high the viscosity is increased at relatively high sintering temperatures
(about 1400°C) this increase in viscosity may be due to induced
crystallization processes, accordingly the rate of densification is decreased at
these circumstances.

The results from the program of the effect of sintering time indicate
that the modified model predicts that the increase in density is semi
logarithmic with time, while the other two models predict an exponential
increase with time.

The results from the program of the effect of pore size distribution
indicate that this parameter has a strong effect if the distribution is broad
only in the last stages of densification because the largest pores are relatively

slow to close.
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Appendix-A

Theintegration of Eq. (2.22):
From Eq. (2.24) we have

3 371
= _ - 8\/5 -
Y« (1+ 1 )X (A-1)
by rearranging we get
3n
- . . A-2
L+ A)y® +8v2) (A-2)
Differentiating the above equation gives
= Y (A-3)
1+ )y +842)
substituting in Eq. (2.22) gives
- =6 [ ydy ]
K(t-t,)= (1”)]()/3 Y] (A-4)

from reference [6] we have

ydy _I’{az ay+y j+ 1 - (Zy a'j
‘ ) a+ y) NE" a3 . (A-5)
so Eqg. (A-4) becomes after the substitution of the last Equation in it

K(t—to):—ﬁ{%ln(%}ftan*(zz\/_aﬂ (A-6)

Which isthe same as Eq. (2.263).



SYMBOLSDEFINITION

Symbol Definition
a The patrticle size, which equals the cylinder radius
Ao The core radius for non sintering inclusion.
b The cladding radius for sintering powder.
C A constant equalsy/2/3r)
d The pore diameter.
d The mean pore diameter
dOa The mean pore diameter.
dN (1) The number of cells with side length betwelgragd ( +dl).
dp The grain (or particle size).
f(t) A funr_:tion that represent the relation betw&eand the
sintering temperature
E Young's modulus
En the viscous response of the porous material taaxiah stress.
= The rate of energy dissipation in the viscous flow.
E. The reduction in surface area.
f(y;) Is a mathematical function of a varialgle
G The effective shear modulus.
G, The shear viscosity of the continuum.
G The shear modulus of the matrix or the apparerdrshe
m modulus.
G- The elastic shear modulus of the matrix.
h The height of the compact unit cell cylinder.
K The proportionality constant between the measuneel 4nd
the reduced time.
Ko is a constant that corresponds to the valu&gfdtt=t,
KE The elastic bulk modulus of the matrix.
K The bulk modulus of the composite in the self cstesit
i model.
kOt the initial value oKt in the flow chart.

The side length of the composite unit cell.

The effective side length of the unit cell.

The initial length of the compacted unit cell.

The average value of
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Definition

Symbol
[

The average value of

The side length of the solid inclusions in the caotp

Ivis

The side length of the viscous phase in the compact

The value of the diameter that corresponds to maxim

m intruded volume.,

n The number of closed pores per volume of solasph
n The number of cells with side lengtlor diameted .
n The number of pores with diameter

n'(d) The number of pores with diameter

N(l) The number of cells with side lendth
Pr The integral of the probability function.
pi The constant ratie3.14
r The radius of the compact unit cell cylinder.

o The radius of the particle.

IppS The final relative density of the compact in theafichart.
S The surface area of a single full cylinder in anpact cell.
t The time of sintering.

ttm A matrix contains the value of the sinteringnpeeratures.
ty The practical time of sintering.

u The radial displacement.
Vo The initial volume of the compact.
Ve The effective volume of one cylinder.
Vv The volume of the compact after sintering measbseHg
compact ;
porosimetry.
V, The current value of the volume fraction of sohdlusions.
A The final volume fraction in the fully sintereddyo

Vi* The critical volume fraction.

Vi The theoretical volume of solid inclusions.

V; The volume fraction of the rigid inclusions.

V; The volume fraction of the voids.

Vpore The volume of pores from Hg porosimetry.

Vp(d) The volume of pores with diameter
Vs The volume of the solid phase.

viii




e

o d

Symbol Definition
Vsiica The true volume of viscous phase which is mostiynfxd
from silica from Hg porosimetry.
Viis The theoretical volume of the viscous phase irctmapact.
X The ratio of the particle siza)(to the compacted length of th
unit cell ().
Xo Is the initial value of x.
Xmax The highest value of x in Scherer model.
X The neck radius.
y Is a symbol related 0 andoy assumed to make Eq. (2.40) &
function to the standard deviation.
Is a variable inversely proportional with x assunediake
Yx the integration of Eq. (2.22) easier.
Yor Yso Are the initial values of y and,yrespectively.
/ Is a variable related to the relative density assilito make
the integration of Eq. (2.30a) easier.
Z The initial value of z.
Y The surface energy.
Yb The interface (or boundary) energy.
Ygh The grain boundary energy
Yev The solid/vapor surface energy
Ex The strain in the x direction.
& The free strain.
Eim The free strain of the matrix.
£, The strain rate of the composite.
M The viscosity coefficient.
The third root ratio of the theoretical volume wélusion in
2 the compact to the theoretical volume of viscoussghin the
compact.
Vm Is Poisson's ratio.
p The density of the cell.
Do The initial density of the unit cell or the initizalue ofp.
Pc The relative density of the composite.

The rate of the relative density of the composite.




Symbol

Definition

Peo The initial value of the relative density of thamuoosite.
ﬁ(lzt) The average relative density.
D The relative density of the matrix.
o The rate of the relative density of the matrix.
Pro The initial value of the relative density of thetnra
Dr The radius of curvature at the surface.
Drd The relative density.
De The theoretical density of the solid phase.
Om The hydrostatic stress in the matrix.
oy The radial component of the stress.
Orm The radial component of the stress of the matrix.
T 0;’ and The stresses in the x, y, and z directions, res@et
Z
or The circumferential component of the stress.
Oom The circumferential component of the stress ofntiadyix.
o) The load-bearing function of the cross-sectionaha

Pd

The equilibrium dihedral angle.




Chapter Five
Conclusions and Future Work

5.1 Introduction

This chapter is demonstrating the main conclusabtained from the
results which can be extracted from the model aoh tthe fitting process.
The development steps to this model are considesedfuture work and are

summarized and listed below.

5.2 Main Conclusions
The main concluded points can be summarized asAsll

1. The most limiting factor in the sintering of ceramiompacts that
corresponded with the formation of viscous liqusdkhe magnitude
of the effective viscosity of this liquid.

2. The solid inclusions have a strong effect in ratayd the
densification process, by increasing the value lué effective
viscosity of the viscous liquid that is formed dugrisintering, which
as a result decreases the rate of densificatiorepso

3. The materials that can be regarded (or manipulated solid
inclusions are the materials that didn’t particgoédr melted) in the
viscous phase, and this is affected not only bytyipe of additive
but also by the quantity of these additives, wiaileelatively little
guantity of the materials (like alumina) reduces tscosity of the
viscous phase, a high quantity increases the vtgcasd retards
densification and act as solid inclusions as we sawample of

group M21.
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. The particle size affects the densification procbkssause the higher
particle size increases the viscosity of the visgoliase, as predicted
by Coble [49], and retards densification.

. The modified Scherer model predicts that; incregagime viscous
phase may increase the densification rate slightlye viscosity of
this viscous phase is kept constant, because tine wsrous phase
will dissolve more solids in it; however the strengffect is for the
value of the effective shear viscosity.

. The modified Scherer model predicts that increashm sintering
time increases the final density and the densiGoatate is retarded
at final stages of sintering, this is due to fudhdification when the
relative density approaches unity.

. Increasing the firing temperature increases thesifleation rate
because, this reduces the value of the effectigeosgity of the
viscous phase, but in condition that the increasdemperature
doesn’t induce much the crystallization procesadsch may lead to
increase the viscosity and as a result decreasetetisification rate.
The modified Scherer model predicts well the rssubf
densification process in ceramic materials, whike ttcomposite
sphere and the self consistent models predictaffeaeht shape of
the densification curve; they predicted that thestfecation curve is
exponential, but the present model and the expetahéeata of clay
materials predict a semi logarithmic curve.

. The present modified model predicts that the pare distribution
have a strong effect only in the last stages ofsifieation if the
distribution is wide, because the largest poreseledively slow to

close.

101



5.3 Future Work

The suggestions for future work are

1. The volume ratio of the solid inclusions to thecous phase is better
to be calculated directly from the phase diagramstead of
supposing all the materials that may dissolve amdpose the viscous
phase patrticipate in the viscous phase duringrangt@rocess as done
in the present case.

2. Using the present geometrical model in buildengumerical model
which uses the finite element method or Monte Carthod to see
its applicability to the sintering process in celamaterials.

3. The major factor that may test the applidgbof the modified Scherer
model and explains its modification advantages dwer previous
Scherer model is the viscosity of the viscous phaseed during
sintering process; we suggest that this factoraasured practically to
compare the practical results with the predictetasity values from

this model and from Scherer model.

102



Chapter Four

Results and discussion

4.1 Introduction:

In this chapter we display the resultsrfrie fitting process that used to
describe the manner of the effective viscosity g tised materials versus
sintering temperature in addition to some dendificarelated parameters.
Then we display the results from the manipulatibthe developed model in
addition to the composite sphere model and thecsgifistent model which
describes the effect of sintering temperature dadsintering time and the
effect of pore size distribution on the densifioatiprocess. Then we discus
these results and curves and compare them withrtetical data if they are

available and compare them with the results ofrgtk@lishing.

4.2 Models Related Parameters:
4.2.1 Viscosity:

The behavior of viscosityyf as a function of sintering temperature as
predicted by the modified Scherer model is as shmwhe figure (4.1) and
the figure (4.2) for samples of groups M21and M@&pectively.
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Figure (4.1) Viscosity versus sintering temperatfreamples of group M21
(A=0.723) as predicted by the Modified Scherer Model.
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Figure (4.2) Viscosity versus sintering temperatfreamples of
group M22 p=0.669) as predicted by the Modified Scherer Model.
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For comparison, figurers (4.3) and (4.4) show thtues of effective
viscosities versus sintering temperature for saspfegroups M21 and M22

respectively as predicted by the Scherer model.
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= 710 -
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gm/cm.sec
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700 \ \ \ \
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Sintering Temperature in °C

Figure (4.3) Viscosity versus sintering temperatfreamples of group M21as
predicted by the Scherer Model.
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Figure (4.4) Viscosity versus sintering temperatfreamples of group M22 as
predicted by the Scherer Model.

4.2.2. Ratio of the Side Length of the Inclusions in the Cell per
Unit Side Length of the Viscous Phase (A):
Figure (4.5) shows the effect of the ratig, (which is the ratio of the

side length of solid inclusions in the cell pertwside length of viscous phase
on the relation between the relative density aed#to (x), which is the ratio

of the particle size per unit side length of thenposite unit cell.
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Figure (4.5) x versus relative density0, 0.4, 0.67 & 0.72.

4.3. Models Results:

Generally the results fall on three categoriescihiey are as follows:
1. Results that describe the effect of sintering temampee on the density
after firing. These results come from the simulatlyy the modified

Scherer model, the composite sphere model and dliecensistent

model.

2. Results that describe the variation of the relatigasity with sintering
time.

3.

Results that describe the effect of the standaxiatien of pore size
distribution on the densification process duringesiing.
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4.3.1 Results of the Effect of Sintering Temperature on
Density after Firing:
The results are shown in figure (4.6). from fig(#eb) it is obvious that

the results from the modified Scherer model arelege from the practical

0.51 )
O practical
IE——/A\—& data
0.49 -
;‘ —— CS matrix
)
o
@ —a—CS
E \_/ composite
g 0.45 -
nd —4A— S-Cmode
0.43
—x— modified
model
0.41
1150 1250 1350 1450
Sintering Temperature in °C

Figure (4.6) Relative density from various hetermgmis models versus
sintering temperature for samples of group M2 Idfii@ two hours.

results. Other models also offer good approximatmithe practical results,
but the best approximation from them is offeredtbg composite sphere
model, which describes the densification processtha&f matrix of the

composite. These results will be discussed later.

4.3.2 Results of the Variation of the Relative Density with
Sintering Time:
The results are shown in figure (4.7). These resu#scomputed using

the modified Scherer model for the values of x l#®n X,.xand for the
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values greater than,x the modified Mackenzie-Shuttleworth model is used
by applying Eg. (2.32). From the figure it's obvsothat the solid inclusions

have a strong effect on densification process @aptbsent model predicts.
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For comparison between models a sample from groRp Which was
sintered at 1200C had been taken and the following models had bpptied
to it: the composite sphere model which descrihescomposite densification
(CS composite) using Eq. (2.79) and Eg. (2.76&) ctimposite sphere model
which describes the matrix densification (CS matusing Eq. (2.83), and the
self consistent model (S-C model) using Eq. (2&8) (2.79). These models
had been applied, in addition to the modified Seh@nodel and the results

are shown in figure (4.8).
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Figure (4.8) Relative density versus sintering tioresample from group M22£0.723)
sintered at temperature equal 12D@und using various heterogeneous models as
indicated in the list.

4.3.3 Results of the Effect of the Standard Deviation of Pore
Size Distribution on the Densification Process during
Sintering:

The results are shown in the figures (4.9) andOfdr samples of group

M21 sintered at temperature 1200 and 1300C, respectively. From figures

it is clear that the pore size distribution ha#téeleffect on the densification

process. However, generally it retards the deradibo process specially at

the final stage of sintering process as the figurdgate.
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4.4 Discussion:

In this work the Scherer model for viscous sintgriof open pore
systems for materials such as glass or silicavgaich did not contain solid
inclusions in a considerable amount is modified aapmplied to some
heterogeneous multiphase systems that known toiriered by viscous
sintering and contains a considerable (non nedéyilamount of solid
inclusions such as some of the silicate systems gexcelain or kaolin).
These systems form a viscous phase during sint@vasgjcally consisted from
silica) [12, 52]. The silicate melt formed at higgmperatures has a very high
viscosity about (18) poise. In this case, the formation of the dessmng
product is due to the continuity of the very vissailicate melt over the
whole system; the melt serves, then, as a bonithéosolid grains dispersed in
it [13]. On this base and according to Scherer rhfijet has been supposed
that the body of the compact consists from a cudm@y formed by
intersecting cylinders, which represent the striofysilicate particles. These
cylinders work as a bond for the solid grains (isabns) dispersed in the
viscous phase. A unit cell is assumed as Schedettlte cylinders penetrate
the cell as in figure (2.1b), and the solid inatuns are supposed to be placed
at the center of the cylinders. The effect of sahdlusions is taken into
account by considering the effect of solid inclusi@n the side length of the
unit cell that the viscous phase can propagateugiroit. These solid
inclusions will decrease the length side that tiseous phase can propagate
through it and achieve densification. Each unitwél contain a volume ratio
from inclusions equal to the volume ratio in thenpact. According to these
assumptions the formulas derived by Scherer [6 aB&modified and used to
study the densification process during sinteringsfume of the Iraqi clays and
to simulate the effect of several parameters ohhe first studied parameter
is the effect of sintering temperature on the desation process. Here, also
two models of heterogeneous systems (that alsofreddiy Scherer) have
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been applied to compare their results with the ltesuom the modified
model, and to study the applicability of each moddie models are the
composite sphere model (which used to study theixndénsification (CS
matrix) and the composite densification (CS com@dsi and the self
consistent (S-C) model.

From figure (4.1) it is obvious that for samples grtbup M21 the
effective viscosity drops fast initially until a a@ of sintering temperature
slightly above 120C where the curve stop decreasing and become a semi
plateau curve. The semi plateau end is as a refultystallization process.
This indicates that the crystallization procesge#y affect the viscosity of the
viscous phase in the compact as the predictionsfefence [53].

From figure (4.2) for samples of group M22 it haeb noted that the
curve of the effective viscosity continues decnegswith temperature
increasing, and no semi plateau end is found. Thdcates that the
crystallization process in samples of group M22eiss than that for M21.
Also it has been noted that the magnitudes of ikeosity coefficient of
samples of group M21 is higher than that for M22sTimay be due to the
higher ratio of solid inclusionst) in M21 especially from alumina, because
high amounts reduce the mobility of liquid glas$age, because of induced
structural forms in the liquid phase [12]. This binduce crystallization in
M21 and makes the values of viscosity for M21 hrghan that for M22.

From figures (4.1) and (4.3) and figures (4.2) ¢hd) it is clear that
the viscosity values predicted by the modified Sehenodel equal about
(1+L) the viscosity values predicted by Scherer mo&al. the modified
Scherer model predicts a higher effect for thedswiclusions in increasing
the values of the effective viscosity of the vissqhase formed during the
sintering process, unfortunately, there are notmacmeasurements of the
effective viscosity for the simulated samples, ducWw value is correct this

will be a proposal for the future work to proveractically.
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Figure (4.5) also shows another difference betwéenvalues of the
ratio x as predicted by Scherer model versus tlative density, and that as
predicted by the modified Scherer model, the lagt predicts a lower values
of x versus the relative density with increasing #solid inclusions, because
the geometry of the cell in the modified Scheredelaescribes the geometry
of the matrix cell, so when the solid inclusiogasncreased the volume of the
matrix cell will be decreased by a factor {)*and the relative density of the
matrix will be higher than that predicted by Schem®del for the same value
of X, but this does not mean the increasing inrtte of densification with
increasing the solid inclusions because, the rdtencreasing x in the
modified Scherer model is slower than that in Sehenodel as appeared
from the comparison between Eq. (2.26a) for theifiemtlScherer model and
Eq. (2.26b) for Scherer model, if these two equmstiare solved numerically
for y and then the value of x is determined, it wé found that the value of x
which is given from Eq. (2.26a) is lower than thaten by Eq. (2.26b). This
Is due to the factor (24 which makes the solving of Eg. (2.26a) for (Wes
a higher value for (y) and as a result gives a towaue for (x). The
conclusion from applying the model is with incregsthe ratio of the solid
inclusions to the viscous phase; the effective &dgthl” of the matrix unit
cell, which represent the cell that the viscoussphean propagate through it,
will be shorter, then any increase in the valu afill have more effect in
densifying the matrix that represented by the wiscpohase, but this does not
mean the increasing in the rate of densificatiorabsee the rate of increasing
X becomes slower with increasing the solid inclasjoand this retards
densification with increasing the solid inclusiaiasio. The decreasing in the
side length of the unit cell that the viscous phasgagates through it leads
to the decrease in the range of x, which can thdifred Scherer model be
applied in it on the densification process, asudised in the explanation of
Eq. (2.29b).
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From figure (4.6) it is obvious that the resuftem the present
modified model offer best applicability to the piiaal results. This may be
due to the approximation for the value of interfaoergy, which is assumed
to have the same value as that for silica, on #se Ithat the silica represents
the major material in the composite. The interfaoergy is applied in the
case of the composite sphere and the self consisiatels, while in applying
the modified Scherer model there is no need tafaxte energy because the
constant of proportionality between the reducec tand the practical time (K)
is used directly to find the relative density, d@his is an advantage point from
the present model. The results also show that dmeposite sphere model
considering the matrix densification (Eq. (2.83))eg results better than the
composite sphere considering the densificatiorhefdomposite (Eq. (2.79)).
This may be because the equation of free stramkEqt (2.94), is determining
the free strain rate for the matrix not for the pasite, but in the present
work, Scherer [20] suggestion had been followeduse this equation to

describe the free strain rate of the composite tandubstitute it as, in

Eq. (2.77). Generally the composite sphere moddetser applied to the
densification than the self consistent model; tisisdue to the enormous
liberties with the geometry of the material combioa of the self consistent
model [21].

Figure (4.7) shows the densification process for@as of groups M22
and M21; for the values of x larger than,x the modified Mackenzie-
Shuttleworth model is used. The figure shows olslpthe effect of solid
inclusions on the values of the relative densitysue sintering time. While
M22 reaches a relative density equal 0.8 at fitimge equal about five hours,
sample M21 reaches the same relative density iagfirme more than ten
hours as the modified Scherer model predicts. 8sdiid inclusions strongly
affect the densification process in viscous singgrbut the type of their effect
is limited by the type of the inclusions and theiantity and the temperature
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of sintering [12]. However, their effect on samp21 was increasing the
value of viscosity, and as a result retards desadibn.

Figure (4.8) shows the predicted densification psscfor sample of
group M21 with the modified Scherer model, the cosife sphere model
considering matrix and composite densification #relself consistent model.
All the last three models predict an exponentiddtren between the relative
density and time, just the modified Scherer modetdigted a semi
logarithmic relation, unfortunately no detailed alas available for the
densification process to limit which model is betgplied, but the data from
figure (1.9) for porcelain agrees well with shap¢h@ curve predicted by the
modified Scherer model but this does not meantti@simulated samples in
this investigation will have the same densificatiurve because the used
materials are different. However the investigatresults of Rahaman and
DeJdonghe [54] on the solid inclusions in glass asdigure (4.11) clarifies
agrees well with the composite sphere and the eselfsistent models
predictions of the effect of solid inclusions ore ttiensification process, the
numbers at the end of the curves represent theneoftactions V) of each
sample. As it is obvious from figure (4.8) the nfeatli Scherer model predicts
that the densification is relatively fast at thaétiah stages of the sintering
process, but at the last stages the densificaittnlvecomes relatively slow.
This happened because the densification rate isrded due to full
densification when the relative density approachessy [53]. This part is
predicted by the Mackenzie-Shuttleworth model, wilea pores become
closed pores and the rate of densification decsease

The figures (4.9) and (4.10) show the effect ofgbes size distribution
represented by the standard deviation of pore sig&ribution on the
densification process, the result agrees with treefer result [31], which was
the standard deviation of pore size distributiors ba little effect on

densification process, even when the distributsoguite broad, it has a strong
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effect only in the last stages of densification &hese the largest pores are

relatively slow to close.
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Figure (4.11) Relative density of the matrix verguse in minute [54].

The effect of sintering temperature on the denrdditn process is also
observed from the figures, which is the predicietetis decreased by about
five hours when the temperature of sintering isG?@0rather than 120C.
This is due to the decrease in the effective visgass the figure (4.1)
indicates for sample M21 with the increasing of Huetering temperature
from 1200C to 130C°C.

Finally, it is difficult to put a collective modehat describes the
sintering process in ceramic, with any type of &ddiand at any quantity,
because each type or each quantity may give areiffeaction to the
composite material, even the conditions of expeminmeay change the action

of additives and the densification manner of therastructure itself.

99



?73;)” QA;)S\ A‘n\ ('U.MJ
Chapter One
General Introduction

1.1 Introduction

The sintering process has been used throughouwirhisthe ancient
Egyptians sintered metal and ceramics as far ba@080 B.C. [1]. Today,
sintering process is used to manufacture a widgeraf products, including
rocket nozzles, nuclear fuel elements, golf clubd @orcelain plumbing
fixtures [2]. Sintering process is a complex pheanan in which several
processes are occurring simultaneously [1]. By idgyr sintering is
‘...understood to mean any changes in shape whicmall garticle or a
cluster of particles of uniform composition undexgonvhen held at high
temperature’ [3]. It is an inexpensive way of makiparts, provided the
finished part can be used as it is, and does moline additional machining.
The difficulty is that, when a part is sintered, size and shape change non-
linearly, which needs to be taken into accounth®ydesigner of the unfired
piece [2].

During the usual processing of ceramics, crystltn non-crystalline
powders are compacted and then fired at a suffitenperature to develop
useful properties. During the firing process, clemgnay occur initially
because of the decomposition or phase transformatisome of the phases
present. On further heating of the fine-grainedppe compact, three major
changes commonly occur:

1. There is an increase in grain size
2. There is a change in pore shape
3. There is a change in size and number of pores,llysitagive a

decreased porosity [4].



Various models have been developed for theemsing process describing
the densification and the change in porosity dutimg process. Mackenzie
and Shuttleworth [5] calculated the rate of denation of a viscous body
containing closed spherical pores.

Another model developed by Scherer [6], wiidekcribes the rate at which
a cubic array of cylinders densifies by viscousvfldriven by surface energy
reduction, this model will be described in detafighe next chapter. Kellett
and Lange [7] put a model describes the densifingprocess in solid state
sintering.

The investigation is concerned with the madifions of assumed previous
model for sintering process using different consepd simulate the
densification process, and study the effect of owemi parameters on the
densification during the sintering of ceramic hetgmeous systems. The
results were compared with the experimental datahi® compacted sintered
ceramic samples. The raw materials of the samp&fram Iraqi kaolin and
other materials.

1.2 Types of Sintering Processes

Sintering can occur in the presence or absehadiquid phase. In the
former case, it is called liquid-phase sinteringpeve the compositions and
firing temperatures are chosen such that somedligsi formed during
processing, as shown schematically in figure (1.athe absence of a
liquid phase, the process is referred to as setditkssintering (figure 1.1b)

[1]. In general, there are three types of sinteprocesses, which are:

1. Solid state sinteringAll constituents of the compact remain solid dgri
the entire process; all densification is achievedliange in grain shape.
Sintering aids that will not form a liquid may belded in amounts
ranging from a few hundred parts per million to 028 %. This method

is preferred for the production of technical cemsniwith good
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Figure (1.1) (a) Liquid-phase sintering (b) dedtate sintering [1]

mechanical, electronic or optical properties, pattrly where optimum
high temperature properties are required [8]. Theenwscopic driving
force operative during sintering is the reductidntloe excess energy
associated with surfaces. This can happen by: (B &limination of
solid/vapor interfaces and the creation of grainruary area, followed
by grain growth, which leads to densification (figul.2a), and/or (2)
Reduction of the total surface area by an incr@aske average size of
the particles, which leads to coarsening (figur@bl. These two
mechanisms are usually in competition. If the atoprocesses that lead
to densification dominate, the pores get smaller disappear with time
and the compact shrinks. But if the atomic procestaat lead to
coarsening are faster, both the pores and graiasse&o and get larger
with time [1]. The difference in free energy or oheal potential
between the neck area and the surface of the lgaptiovides a driving

force which causes the transfer of material byféiséest means available.



If the vapor pressure is low, material transfer rmagur more readily by

solid-state processes, several of which can beimadgAs shown in
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Densification Grain growth Coarsening
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(a) (h)

Figure (1.2), Schematic of two possible paths byctvta collection of particles can
lower its energy :( @) Densification followed byagr growth. In this case, shrinkage of
the compact has to occur. (b) Coarsening wherdatige grains grow at the expense of

the smaller ones [1].

figure (1.3) and table (1.1), in addition taper transport (process 3),
matter can move from the particle surface, frompasicle bulk, or from
the grain boundary between particles by surfac#ijcéa or grain-
boundary diffusion. Which one or more of these psses actually
contributes significantly to the sintering processa particular system
depends on their relative rates, since each is rallglamethod of
lowering the free energy of the system. There im@st significant
difference between these paths for matter transpgbd transfer of
material from the surface to the neck by surfactatiice diffusion, like
vapor transport, does not lead to any decreashermdistance between
particle centers. That is, these processes doesattrin shrinkage of the

compact and a decrease in porosity. Only transfematter from the



particle volume or from the grain boundary betwemmticles causes

shrinkage and pore elimination [4].

Figure (1.3): Alternate paths for matter transplonting the initial stages of sintering [4].

A necessary condition for sintering tmur is that the grain boundary
energyyq, be less than twice the solid/vapor surface engggywhich
implies that the equilibrium dihedral anglg which defined by the

following equation has to be less than 180° forsiferation to occur [1]:

Ygb=2Ysv COS(pd/2) (1.1)



Table 1.1 Alternate Paths for Matter Transport Bgithe Initial Stages of
Sintering [4].

Mechanism Transport Path | Source of Matter Sink of Matter
Number
1 Surface diffusion Surface Neck
2 Lattice diffusion Surface Neck
3 Vapor transport Surface Neck
4 Boundary diffusion| Grain boundary Neck
5 Lattice diffusion Grain boundary Neck
6 Lattice diffusion Dislocations Neck

2. Liquid phase sinteringThe composition is such that enough liquid

forms at the firing temperature to allow easy raagement of the
particles, but not enough to fill the initial portys subsequent solution
and reprecipitation of the solid in the liquid paathen allows re-
shaping of the particles and formation of a derm#ybThis method is
often effective and reasonably inexpensive, but rsulting grain
boundary phase may be detrimental to the high testyre mechanical
properties (e.g., creep resistance) [8].

Liquid-phase sintering offers two sigo#int advantages over solid-
state sintering first, it is much more rapid; se;abresults in uniform
densification. The presence of a liquid reduces ftltion between
particles and introduces capillary forces that ltasuthe dissolution of
sharp edges and the rapid rearrangement of the gaiticles. During
liquid-phase sintering, the composition of the tgtgrsolids is such as

to result in the formation of a liquid phase upaatmng. The liquid



fanned has to have an appreciable solubility ofsthl&l phase and wet
the solid [1].

3. Vitrification: Heat treatment, which produces enough viscousdiat
the firing temperature, which implies to fill corep¢ly the porous spaces
in the original powder compact, this process idecalitrification [8].
The factors determining the vitrification rate &ne pore size, viscosity
of the overall composition (which depends on amaeintiquid phase
present and its viscosity), and the surface tensiGquivalent
densification results from longer periods of tinhéhee same temperature.
In controlling the process, the temperature depeceles great because of
the increase in liquid content and lowered visgos#t higher
temperatures. Changes in processing and changssmposition affect
the vitrification process as they affect these petars [4]. This process
Is relatively inexpensive and is of particular imgamce in the production
of porcelain and clay-based ceramics [8]. For fatiery firing the
amount and viscosity of the liquid phase must k@ ghat densification
occurs in a reasonable time without the ware slagqpir warping under
the force of gravity. The relative and absoluteesabf these two
processes (shrinkage and deformation) determing lerge extent the
temperature and compositions suitable for satisfgdiring [4]. For the
materials of the present work vitrification procésshe major kinetics of

sintering process, so we will take it in more detai

1.3 Viscous Sintering Kinetics

If we consider two particles initially in cadt as in figure (1.4), there is a
negative pressure at the small negative radisofaturep, compared with

the surface of the particles. This causes a visflows of material into the



pore region. On this concept Frenkel [9] derivedeapression of the rate of
initial neck growth which is given as:

Xi - (—31’” )1/2 (1.2)
r, 2. p.1n '

where x is the neck radiusy,: is the radius of curvature at the surfageisr

the radius of the particle; is the viscosity coefficienty,: is the interface (or

boundary) energy, and t: is sintering time.

Materisk
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-

Figure (1.4) Initial stages of sintering by evapioracondensation [4].

The increase in contact diameter is propoalion t* the increase in area
between particles is directly proportional to tifkactors of most importance
in determining the rate of this process are théasartension, viscosity, and
particle size. The shrinkage which takes placeeterhined by the approach
between particle centers and is also given by Faigsk as:

AV _ 3AL _ 9y,
= = t .
V, L, 4/7rp (1.3)




where AV, AL are the changes in compact volume and lengtheotisely,
and V,, L, are the initial volume and length of the comp&ebm the last
relation, initial rate of shrinkage is directly piartional to the surface tension,
inversely proportional to the viscosity, and inwdys proportional to the
particle size. The situation after long perioddiwfe can best be represented

as small spherical pores in a large body (Figusg 1.

Figurel.5 Compact with isolated spherical pore tieaend
of the sintering process [4].

The time for complete densification is given bygery et al. [4] as:

‘= 1.5r,7 (1.4)
Vb

where () is the initial radius of the particles.

Different mechanisms dominate at differeninp®in the sintering process,
and different materials exhibit different mecharssrior instance, viscous
flow is the dominant mechanism when sintering arhoys materials, while
grain boundary diffusion (obviously) plays no pdrhe opposite is generally
true for crystalline materials. In liquid-phase tenng, viscous flow and
related mechanisms play a significant role [2]. Thportance of vitrification
lies in the fact that most silicate systems formistous glass at the firing
temperature and that a major part of densificatesults from viscous flow
under the pressure caused by fine pores, and ked¢hasmaterials under

study is from silicate systems we will take thenmare details [4].



1.4 Silicate systems:

Silicates are materials composed primarily of siiand oxygen, the
two nominated abundant elements in the earth's;@ossequently, the bulk
of soils, rocks, and sand come under the silidatgsdication [10].

Bragg [11] postulated that all silicates are bualtound a unit
tetrahedron, composed of a silicon ion at the eeofrfour symmetrically
placed oxygen ions. This unit is shown in figuré6jland may be chemically
represented as (Sijy.

(5 Dj-

Figure (1.6) The Silicate tetrahedron [12].

There is a significant covalent character to theratomic Si-O bonds;
these bonds are directional and relatively strétegardless of the character
of the Si-O bond, there is a (-4) charge associatétti every SiQ"
tetrahedron, since each of the four oxygen atomgimes an extra electron to
achieve a stable electronic structure. Variousat#i structures arise from the
different ways in which the Si® units can be combined into one-, two-, and
three-dimensional arrangements. We are concernesl \Wwigh the layered
silicates because their basic structure is charatiteof the clays and other

minerals. The layered silicates asetwo-dimensional sheet or layered
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structure that produced by the sharing of threegeryions in each of the
tetrahedral [10]. The system,®-Al,Os-SiO, will be taken because the
eutectic in the subsystem potash-feldspar-silicHmwdetermines the firing
behavior in many compositioriset us consider figure (1.7) , which shows an
isothermal cut at 1200°C in the,®-Al,Os-SiO, system; this is the lower
range of firing temperatures used for semivitrepoicelain bodies composed
of about 50% kaolin (45%A0;, 55% SiQ), 25% potash-feldspar, and 25%
silica.In actual practice only a small part of the silm&sent as flint enters
into the liquid phase, and the composition of tlggiitdl depends on the
fineness of the grinding as well as on the ovecAkmical composition.
However, the amount of silica which dissolves doaishave a large effect on
the amount and composition of the liquid phase gresThe liquid is
siliceous and has a high viscosity; the major ¢ftdaccompositional changes
is to alter the relative amounts of mullite anduid) phases present. Since
mullite is very fine-grained, the fluid flow proges of the body correspond
to those of a liquid having a viscosity greatemtliae pure liquid phase [4].
The introduction of N#D or K,O to silicate melts leads to the breaking of a
certain number of oxygen bridges binding the silioxygen tetrahedra with
one another. As a consequence of breaking someeobxygen bridges, the
silicon-oxygen anions in the melt become smallelt #re viscosity of the
melt decreases. The melt becomes relatively honemyen[13]. Fine grinding
and intimate mixing also reduce the vitrificati@miperatureThis change is
caused in part by increased tendencies towardrfiegjailibrium and uniform

mixing of constituents and in part by the smalfetial particle and pore size.
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Figure (1.7) Isothermal cut in the®-Al,0s-SiO, diagram at 120K [4].

The time-temperature relationship and the greaew@gnce, of vitrification

processes on temperature can perhaps be seennbdsé iexperimental

measurements illustrated in figures (1.8) and (1A®%) shown in these two

figures, the time required for a porcelain bodydach an equivalent maturity

changes by almost an order of magnitude with a S@tiperature change.

There are changes in both the amount and viscofttye glassy phase during

firing, so that it is difficult to elucidate a spic activation energy for the
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process with which to compare the activation enef@y viscous flow.
However, the temperature dependence of the vatibo rate of a
composition such as this (a mixture of clay, fels@and flint) is greater than
the temperature dependence of viscosity alone.i$hasbe expected from the
increased liquid content at the higher firing tenapares [4]. The last type of
the sintering processes will be taken in more tetaithe next chapter, due to

the complicated operations in the sintering proaeg&solin.

1.5 Sintering Stages

Coble [14] described a sintering stage as an “Walesf geometric change
in which pore shape is totally defined (such asxding of necks during the
initial stage sintering) or an interval of time thg which the pore remains
constant in shape while decreasing in size". Basmghat definition, three
stages have been identified, and they are as follow
1. Initial Stage During this stage the interparticle contact aneaeases by

neck growth and the relative density increases fadyout 60 to 65

percent. Neck formation is driven by the energydgmat resulting from

the different curvatures of the particles and teek[2]. For this stage the
analysis is based on assumed geometric changescthat between pairs
of contacting spheres. When the grain boundarjesnbaterial source,
shrinkage will occur, while when the particle sedais the material
source only neck growth will take place. The preessof evaporation-
condensation and surface diffusion can only suppéterial from the

particle surface and hence only causes neck grddf) Surface

diffusion is usually the dominant mass-transporcima@ism during the
early stages of neck growth, as the compact isebett the sintering

temperature [2].
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2. Intermediate Stagelntermediate phase sintering begins when adjacent

necks begin to impinge upon each other [2], whiltharacterized by
continuous pore channels that are coincident whtteet grain edges.
During this stage, the relative density increasesnf65 to about 90
percent by having matter diffuse toward, and vaemnaway from the
long cylindrical channels [1]The packing density and coordination
number of the green packing are important during ftage. A high
green packing density produces rapid sintering wathtively few pores
in the final object. Very low green packing deresti which are also
associated with low coordination numbers, can l|eéadcoarsening
(increase in mean grain size) without densificafecrease in porosity).
In extreme cases, this may lead to open-pore shestand lacking in
structural integrity [2]. See figure (1.10).

Figure (1.10) Coarsening resulting from low cooation number at
intermediate stage of serinc [2].

During intermediate stage sintering, gsabegin to form from the

individual particles, and the material’s final grastructure begins to
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develop. Pore networks form along the grain bouedarAt the
beginning of the intermediate stage, the pores farmetwork of
interconnected cylindrical pores broken up by ne&sthe end, the
pores are smoother and begin to pinch off and becsolated from
each other. Bulk transport mechanisms, such asn gbaundary
diffusion and volume diffusion, dominate the simgrprocess during
this stage. As stated previously, these bulk trarigpechanisms cause
material to migrate from inside the particles te surface, resulting in

contact flattening and densification [2].

3. Final StageBegins when the pore phase is eventually pindfednd
Is characterized by the absence of continuous pdrannels.
Individual pores are either of lenticular shapethiéy reside on the
grain boundary, or rounded, if they reside withirgrain [1].Final
stage sintering is much slower than the initial artdrmediate stages.
As grain size increases, the pores tend to breay &w@m the grain
boundaries and become spherical [2]. An importduaracteristic of
this stage is the increase in pore and grain bayrdabilities, which
have to be controlled if the theoretical densitioide achieved [1]n
some cases, pore growth during final stage sirgec#n lead to a
decrease in density, as gas pressure in the lpages tends to inhibit
further densification. This can be mitigated by ingvthe final stage

sintering occur in a partial vacuum [2].

1.6 Models of Heterogeneous Systems:
Two models have been taken to apply thenthensintering process in
heterogeneous systems, these models are, the ctenppkere model, and

the self-consistent model.
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1.6.1 The Composite Sphere (CS) Model

The composite spheres model was introdbgedashin [16]. This model
Is of interest principally as a model for a contna matrix containing
spherical inclusions [17The composite sphere (CS) model has also been used
to model the densification rate of a composite =bimg) of a sintering powder
(the matrix) containing rigid inclusions [18, 19]2This is analogous to the
analysis of thermal stress, with the strain rateesdfsification taking the place
of the thermal strain. The rule of mixtures giveg ttontraction rate of the
composite as a weighted average of the contracatms of the matrix and the
inclusions. The composite is predicted to sinteremslowly than the matrix
alone, because the densification rate of the immhgsis zero. The CS model
recognizes that the contraction rate of the matgpyresented by the cladding
of the sphere, is retarded by stresses generateatlogions, represented by the
core of the sphere. Therefore, the densificatioa isaslower than predicted by
the rule of mixtures [20]. The model is composedaajradation of sizes of
spherical particles embedded in a continuous maphase. The size
distribution, however, is not random, but rathers ha very particular
characteristic. The composite spheres model is shiowfigure (1.11). The
broken curves shown in this figure are taken taongeé region of the matrix
phaseassociated with each particular particle. Tago of radii a/b is taken to
be a constant for each composite sphere, indepeatigs absolute size, where

(ac0) Is the radius of the core; (b) is the radiushef $pherical particle.
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Figure (1.11) Composite sphere model [21].

Thus there must be a specific gradation of sizepanficles such that
each composite sphere hagy/(d) = constant, while still having a volume
filling configuration. Obviously, this distributiorequires particle sizes down to
infinitesimal sizes. This model would be expeciegrtovide reasonable results
for actual systems that do have a rather fine gi@uaf sizes. Quite obviously,
this model would not be expected to provide redskeneesults for systems
containing single size particles, at high concgiuina [21]. In the next
chapter, the effect of the inclusions on the sintgrate of the matrix will be
calculated by using the CS model [20].

1.6.2 The Self-Consistent(S-C) Model:

The method of the self-consistent scheras fivst derived by Hershey
[22] and Kroner [23] to model the behavior of palystalline materials. Such
materials are just one phase media, but becausieeafandom or partially
random orientation of the crystals, discontinuitiesproperties exist across
crystal interfaces. Thus, the properties vary \pibition, and this is certainly
a particular type of heterogeneous media. Whenyaquplthe method to

polycrystalline aggregates, a single anisotropystat is viewed as a spherical
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or ellipsoidal inclusion embedded in an infinite dnan of the unknown
isotropic properties of the aggregate. Then théegayss subjected to uniform
stress or strain conditions at large distances ftheninclusion. Next, the
average orientation of the stress or strain initictusion is set equal to the
corresponding applied value of stress or strairr@mesults a condition from
which the isotropic effective properties can bevedl[21]. The extension of
the self-consistent scheme to multiphase mediagmesn by Hill [24] and
Budiansky [25]. As discussed by Budiansky the mgthas a very simple
geometric interpretation. Specifically, each phasfe the composite is
alternatively viewed as being lumped as a sindipselidal inclusion in an
infinite matrix of the unknown effective propertiethe problem. Applying
uniform stress or strain conditions at infinityaalls the determination of the
average conditions in the inclusion. After this igien is performed for all
phases, the average conditions are known in alkgdhain terms of the
individual phase properties and the effective proge Hence, average
conditions in the entire composite are known aredeffective moduli can be
calculated from the averages. Coupled equationsl@ened to be solved for
the effective shear and bulk modulus in terms «f fhroperties of the
individual phases and their volume fractions. Altgb the method for
multiphase media seems straightforward, there @re roblems with it. An
indication of the difficulty can be observed in tteses of rigid inclusions and
cavities.As noted in Budiansky [25] in the case of cavitikg predicted

effective shear modulus is given by

L A2,
1-V,

(1.5)

whereV, is the volume fraction of the voids, a@g, is the shear modulus of

the matrix. Whereas for rigid inclusions in an ingwessible matrix phase
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where in the last casé, is the volume fraction of the rigid inclusions.ugh
(G) becomes zero at a volume fraction\@E0.5 in the case of voids, and (it
becomes infinite at a volume fraction ®f = (2/5) in the case of rigid
inclusions. Clearly, there is a very strange batradssociated with the
application of the self-consistent scheme to moége media. As Christensen
[21] noted this is due to the liberties that thethod takes with geometry of
the material.

1.7 Historical Review

The starting of the theory of viscous sinteringdem 1945 when

Frenkel [9] assumed that the energy dissipatedsicous flow is equal to
the energy gained by the decrease in surface aregydiensification. Using
this assumption, he obtained expressions for ttee ahgrowth of a neck
between glass spheres and for the rate of linearkstye of a compact of
glass spheres. Experimental studies by Kuczynskidd49 [26] and by
Kingery and Berg in 1951 [27] have supported thedmtions of Frenkel's
analysis.

Cutler and Henrichsen in 1968 [28] have shown tt@nhpacts of
nonspherical particles depart markedly from theabedr predicted for
spheres.

Mackenzie and Shuttleworth in 1949 [5] calculatdte trate of
densification of a viscous body containing closgihesical pores. They

developed a model for the shrinkage of sphericdlblas in a viscous
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matrix. The simplicity of the geometry enabled tham write exact
expressions for the energy dissipation and changsurface area during
sintering. This model can apply to bodies with @davolume fraction of
pores, as long as the flow fields surrounding nedgimg pores do not
interact significantly. However, it most naturadipplies to the last stages of
densification, when the relative density is largjean 90% and the body
contains only isolated closed pores.

Coble in 1961 [29] presented a model for the hiiffusion transport
with the grain boundaries as vacancy sinks when fgbee phase is
continuous and coincident with three grain edges, @so when the pore
phase is discontinuous and located at four grammers. These models
predict that the rate of density change is constanén the diffusion
coefficient and grain size are constant. He alsaldd the sintering process
into three stages, and defined the stage as fht's@rval of time during
which the pore remains constant in shape whileedestng in size’.

Beere in 1975 [30] presented a unifying theory tloe stability of
penetrating liquid phases and sintering pores,reggnting a model of grain
edge porosity which is equally applicable to ligprécipitates, to fission gas
swelling in nuclear fuels and to powder compacts. $howed that the
morphology of the pores depends on the ratio oir therface to grain
boundary energies and their volumes. And he shdhadhe stability of the
porosity decreases with increasing the dihedralea®gnd he predicted that
liquid phases possess large driving forces for ypatien and powder
compacts have large driving forces for sintering.

Scherer in 1977 [6] proposed a model which dessribe rate at which
a cubic array of cylinders densifies by viscousvfldriven by surface energy
reduction, the surface area change can be expregaetly, but the assumed

flow pattern was approximated. The model was exuokdb provide a
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reasonable representation of a flame oxidationopnef phase separated and
leached glass or a silica gel.

At the same year Scherer [31] extended his previousiel by
considering a Gaussian distribution of pore singbie body of the compact,
and he studied the effect of breadth of the distrim of pore sizes on the
densification kinetics. He found that the effec$msall except for very broad
distribution, and his model manipulated sinteringpgess at constant
sintering temperature.

Rag and Bordia in 1984 [18] studied and analyzedtitne dependent
sintering of a bimodal powder compact, consistiigvwm regions which
sintered at different rates. They assumed ex@mithg—dashpot elements to
represent the constitutive properties of a poroateral. Their results were
obtained in terms of a non-dimensional parametaichvequal to the ratio
of the shear relaxation rate per densification.rdtee small value of this
parameter give negative values of Poisson's sithey are unacceptable as
references [32, 33] postulated.

Hsueh et al. in 1986 [34] developed a method folcutating
viscoelastic stresses that develop around heteettgesn during sintering.
The method had used constitutive laws derived feaperimental data; and
obtained on porous partially sintered body, howettee model predicted
that Poisson's ratio is negatiug¥-1) until the body is almost fully dense.

Scherer in 1987 [20] used two models of heterogemesystems to
approximate the viscous sintering in a materialtaims rigid inclusions.
These models are the composite sphere model arsgtlfheonsistent model.
In the composite sphere model the compact is repted by a composite
sphere with the core representing the solid inolusin the self-consistent
model, the sintering material is regarded as bsurgounded by a composite

matrix with slower densification rate. The resuftats only in that the shear

22



modulus of the matrix is replaced by the shear rusdaf the composite in
the self-consistent calculation.

Kellet and Lange in 1989 [35] put a model that déss the
densification process in linear array and in cloaeey of particles, and they
showed that the grain boundary motion in a sintgarray of particles can
be limited by the geometry of the sintered partiei¢ work.

Scherer in 1991 [36] studied the effect of the sbkpe that supposed
in his model of viscous sintering, by assuming #mape of the cell as
octahedral, tetrahedral, inverse tetrahedral ardccuwand he studied the
effect of the cell shape on the densification psscand he found that the
effect is small.

Olevsky and Bert in 1997 [37] considered viscousesing of a porous
ball with various initial distributions of porositwersus radius. They
elaborated the numerical algorithms based on tlfflerential quadrature
method (DQM) and an arbitrary Eulerian-Lagrangiarsion of the finite
element method (FEM).

Olevsky et al. in 2002 [38] modeled Sintering skaige anisotropy
using a coupled meso-macro-scale analysis. Thewylated Microstructural
evolution during sintering of 2D compacts of elotagh particles
incorporating ellipsoidal oriented pores at graingtions using both a kinetic,
Monte Carlo algorithm and a micro-mechanical caniim model.

Tikare et al. in 2003 [39] developed a niddat can simulate sintering
at the mesoscale. The mesoscale model is a kildtinte Carlo model that
simulates the microstructural evolution processesuovature-driven grain
growth, pore migration, and pore shape equilibrabg surface diffusion and
vacancy formation, in addition to diffusion, andndmlation in a powder

compact.
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1.8 The Aim of the Thesis

The general purpose of this thesis is to constumathematical model
that serves in specifying the effect of variousapagters on the densification
during the sintering process of heterogeneous cot®paonsists from
mixtures of several types of clays that preparedeterence [40]. Well
known geometrical model for Scherer [6], which adas the viscous
sintering with only a negligible ratio of solid imsions in the compact, is
developed to make it takes the effect of solidusins on the densification
during sintering into consideration. This modelsed to study the effect of
the following parameters:

1. Effective viscosity of the compact on the decetion during

sintering.
2. The ratio of the solid inclusions on the diecetion during sintering.
3. The magnitude of firing temperature on the fimgnsity of the
compact after sintering process.

4. Time of firing on the densification during sinte.

5. Pore size distribution on the densification pssc
Another two models, the composite sphere model thed self-consistent
model, that also take the effect of solid inclusioto consideration during the

viscous sintering process are applied and compaitbcour modified model.
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Chapter Two

Theoretical Analysis
2.1 Introduction

There are two entirely distinct phenomena occurringclays

heated at high temperatures, these are:
(a) Crystal formation due to the recombination amedrystallization
reactions, and (b) liquid formation. This latterteraal may crystallize on
cooling, but siliceous melts are prone to superewal often 'freeze' to a
homogeneous glass or a partially crystallized systehe relative rates of
crystal formation and of liquid development in partar clay cannot be
predicted because of the complexity and numbegrctofs involved. The
composition, grain-size and distribution of minerafiring rate and
maximum temperature all contribute to both typesredction and, in
addition, the two phases may mutually interact rafteey have been
produced. Thus the liquid which develops durinpp§rmay dissolve some
of the crystals formed by solid reaction processed, conversely, some
liquid may crystallize on contact with the solid ®ason of the change in
composition produced, or by the 'seeding' of a suqméed phase. The
factors that influence glass formation on cooling a
(a) The rate of cooling.
(b) The viscosity of the liquid in the temperatuegion of incipient
crystallization.
(c) The composition of the liquid [12].

The theory of viscous sintering is based on anmpsan proposed
by Frenkel [9], that 'the energy dissipated in @iscflow is equal to the
energy gained by the decrease in surface areagddeinsification'. Using
Frenkel's energy balance concept, Mackenzie andtl@karth [5]
calculated the rate of densification of a viscooslybcontaining closed
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spherical pores. Scherer [6] and depending on teekEl's concept put a
model to calculate the rate of densification ofiscous body containing
open pores. In this chapter firstly, the last maddlbe modified to make
it applicable to viscous sintering that contairggdiinclusions, and apply
these modifications on the model of Scherer [3Hic study the effect
of pore size distribution on the densification @e&. Then in the second
part of the chapter, two models of heterogeneostesys, which are the
composite sphere model and the self-consistent mwdle be taken.
Scherer [20] used these models in presenting mdtatsdescribe the
stresses and densification processes during vissiotesing of compacts
contain rigid inclusions. The theoretical equatioosncerned with
densification process of these two models will bearized, to apply it
on the sintering process in heterogeneous systemspmparison with

the results from the present modified model.

2.2 Development of the Scherer Model of Viscous
Sintering:
2.2.1. Development of the Model of Viscous Sintering to
be applied on Materials Contain Rigid Inclusions:
2.2.1.1. The Model

Scherer [6] put a model to describe the aate@hich a cubic array of
cylinders densifies by viscous flowg chose a simple geometric form,
which retains theessential features of the real material. He apphisd
model on Silica preform and silica gel. The modebsen (shown in
figure (2.1a)) consists of a cubic array formedirtersecting cylinders.
Each three cylinders intersect at a node. The dgls represented the
strings of oxide particles; the cylinder radiusresponded to the average

particle radius in the Silica preform. A "unit celbf the assumed
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structure is presented in figure (2.1b); when thoslés are stacked, the
structure shown in figure (2.1a) is obtained. Theice of a cubic cell is
quite arbitrary, but it has several factors infagor. First, in general, the
choice of any other polyhedron would be equallyiteaby, and the cube
has the advantage of having a very simple geom&egond, the cell

shape is likely to have a small effect on the tesahd that point had

Figure (2.1) Geometry of the Scherer model a) dyloal array, b) Unit
cell of the Scherer model, which is equivalenti® tinit cell of the
matrix structure in the present model [6].
been proved by Scherer [36].
The volume of the solid phasé, in the cubic cell was determined

by the equation [6]:

V. = 3m’l - g8+/2a°® (2.1)
where @) is the cylinder radius and § is the side length of the unit cell.
The last equation didn't consider the foundatiormmf solid inclusions,

SO in the case of the mixture of clays which cdns@m materials that

will be discussed in chapter four, which contaifatieely high ratio of
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rigid inclusions (that have the effect of retardidgnsification[21, 20])
the previous equation must be changed or modifrethis case, to take
the effect of solid inclusions, their effect on ttensification process
during viscous sintering will be simulated. The si@poation process in
the composite will be simulated by manipulating deasification process
in the matrix of the composite. In the case of gldfie matrix is usually
represented by a viscous phase formed during sigt¢t2]. We will
assume that the solid inclusions are representétkeininit cell by a ratio
equal their ratio in the compact, so if we supp@3eepresents the ratio
of the solid inclusions side length to the viscphgse side length in the

compact, then\) can be defined as

| V 1/3
A= |_ = LV_J (2.2)

where Vi, andl;,) are the theoretical volume and side length ofdsol
inclusions in the compactyysand l,;) are the theoretical volume and
side length of viscous phase in the compact. Hexedmpact is assumed
to have a cubic shape and the length of each twastiin the compact is
assumed to equal the cubic root of its correspandoiume. The solid
inclusions are assumed to be arranged in the @iflitirc away, which
reduces the side length of the unit cell (and a®slt reduces the
cylinder length) that the viscous phase can praeatigough to achieve
the densification. If the length of the unit célat the viscous phase can
propagate through i¢*(), which will be called as the effective side ldngt
of the composite unit cell that equal the side tergf the matrix, and if
the side length of the composite unit celll)s hich will be called as the
compacted length, then at the end of the sintgprogess for the full
densification the ratio ofl{) to () will equal the ratio of the viscous
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phase lengthl ) to the summation of the solid inclusions lengtia #he

viscous phase length as in the equation

Ivis
Ivis + Iin

I’
T (2.3)

Substituting Eq. (2.2) after rearranging in thehtigide of the last

equation gives

” 1
1 1+ (2.4)
or by rearranging
; I
I = (2.5)

1+ A
The considered assumption will be as folloti® solid inclusions
retard densification by decreasing the length ef ¢iglinder, which the
viscous phase can propagate through it. Theretbesyiscous phase is
propagated throughl’J not through 1), because the solid inclusions
prevent the propagation of the viscous phase ipldees where the solid
inclusions are found. So eadhif Scherer model will be replaced By)(

so Eq. (2.1) will be as:
V. = 3@l -8y2a° (2.6)
When there is no inclusions in the comgdaet 1=0) Eq. (2.6) will

equal Eqg. (2.1). As in figure (2.1b) the densjy,of the matrix cell is
given by:

_ PsVs
P = |*3 (2.7)

where ps is the theoretical density of the solid phase. Giomg
Equations (2.6) and (2.7), we find that the relatdensity,p/ps, is a
function only of @/1) and {), as the following equations declares:
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o . [a* ca)_ . a° ca
P {F_Wj'?’”ﬁ(lﬂ_*] (282)

P _3m’(1+A)

P 70

ca(ll+/1)) =3 (1+ A) ([1-cx@+ 1)) (2.8b)

wherec =82 /31T, x=all.

For (\) equal zero the relation is plotted in figure §2.2

plp=3M(a h*-8V2(d }®

i

s

all

aw f

i g,

Figure (2.2) plot o/l vs. p/psfor =0 [6].

so forA=0, x can be given as a function to the relative denisyythe

relation [6]:
X = (”T\/Ej co{e +%ﬂ] +% (2.9a)
where
1 . 4\’
0= écos [1— fo [;j J (2.9b)

wherepq4 is the relative density.
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Scherer [6] related the pore diametdy, (vhich may be obtained
from Hg penetration porosimetry, td X by equating the cross-sectional
area of the pore with the area of the opening & slde of the cell.
Replacing i) with (") this approach leads to:

\ |
ﬂd2/4=(| —Za)2 :(m—Za)z (2.10)

Scherer with these assumptions calculated the satiga/| ) for
several preforms for which both particle size andopimetry data were
available. He suggested that Even if the partide sneasurements are
not available, the value fol § can be obtained from an Hg penetration
curve, as follows: From figure (2.2) he obtainfxt,a given density, the
value of @/1), This value can be used with equation similaEdp (2.10)
to obtainl as a function of. In the present case, this method can be
applied for a given/) to find @), but it will be more accurate if the
Stereological ways is used with an image of scapnalectron
microscope to findd) as we will see later. Scherer [6] assumed tleatla
consisting of twelve-quarter cylinders (or thre# @ylinders); replacing
() by (), then the surface area of a single full cylintlea compact unit

cell, §, is given by:
SC = 27B.|* —8\/58.2 (2.11)

When the volume of the solid phase is apportiomadrey the three

cylinders in the unit cell,

VS:3VC (212)
whereV is the effective volume of one cylinder, and igeyi by
V., = mzll* - (8f2/3ﬂ)aj (2.13)

The quantity in brackets in Eq. (2.13) is the dffex length of the
cylinder. As the length of the cylinder decreadbs, surface area of the

cell decreases, as a result providing the drivorgd for the densification.
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The reason for dividing the volume of the cell fagi@lly among three
cylinders is explained by Scherer [6] as follows sintering rate can be
calculated only when the amount of energy dissgpatesiscous flow has
been determined. Since the flow pattern in the eosections of the cell
would be quite awkward to describe, so the choies W make this a

convenient approximation.

2.2.1.2. The Rate of Densification

To calculate the rate of densification during gimig of the model
structure, we will follow Frenkel [9]: the energyssdipated in viscous
flow will be set equal to the energy change resglfrom the reduction in

surface area. In the model, the rate of energypdigen in viscous flow,

E:” , as a cylinder decreases in height is given by:

£ - 3mr? (dhjz
f " p (2.14)

where () and f) are the radius and height of the matrix unit cglinder

respectively andy is the viscosity of the viscous phase. For a cell,
r=a,h=1"-8J/2/3na.
the energy supplied by the reduction in surface, Eg'e IS given by:
' ds
E, = °
s — Y ( at ) (2.15)

wherey is the surface energy.

assuming E equal (-E" ) and by following the same procedure in

reference [6], this gives:

*x_r1
dt on | (2.16a)
where x=&/| (2.16b)
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recognizing that\{y) is constant which means that the mass of solid

matter is constant within the unit cell at any tisze

* /3 _ * .1/3
o, "=l p 12a)
multiplying Eq. (2.17a) by (14 yields:
1/3
1 1 Yo,
| t 0. (2.17b)

wherel,, p, are the initial values of)(and p) respectively. substituting
from Eq. (2.8b) into Eq. (2.17b), we can have:

11 @mea+AP -sv2@+A)P)p, )
VA (2.18)
1) I p.
by rearranging, we get:
| / 1/3
) = og(poz ps) _ (2.19)
JTIX

1+A) ———-8+42x%°

e a) G 75y~ ev
substituting Eq. (2.19) into Eq. (2.16a) gives:

3 2 1/3

dx=2 dt (2.20)

21 L(o.1p,)"°
rearranging the last equation in away that eaah Isetomes a function of
one variable and integrating ot) i the interval fromtg) to (t) on the (t)
side of the equation, which corresponding to therual from &,=0) to

(x) on the (x), side of the equation gives:

1/3
Y [ Ps t X 2dx
A 221
X
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x 2dx
Kt-t)= 7 (2.22)

(1+/1)[(1J:f7;)x—8«/§J y

where (K) is the proportionality constant betwebka teduced time (Kt)
and the practical timefts given by:
1/3

K = L[P_j (2.23)

nl. L p.
here § is the fictitious time at which (x=0). Eq. (2.2@¢termines (x) as a
function of time; since for a certain value @, (p/ps is a function only of
X (1), so the density of the cell is determinedaaiinction of time. The
indefinite integral is readily evaluated as in Appgix (A) with the
substitution
y,’ = (13—7;))( -8v2 (2.24)

to give

K(t—to)=—§(1+/1)'l(;lna (a‘iy; )zyx +3tan® 2 = J K, (2.25a)

wherex = (8V2)*2, (K,) is a constant that corresponds to the valugf (
att=t,. From Eq. (2.23) and Eq. (2.25a), it is obvioust tine viscosity is
directly proportional with the factor (¥, in other word, the viscosity is
increasing with increasing the solid inclusions.

Scherer equation corresponding to Eq. (2.25a) wan feference
[6] as

_ 2(1 a _ayx yx —1 y a
K(t-t,)= a[zln @ty ) ++/3tan a\/_J K, (2.25b)

and K, has the same definition. According to the lastatigm, the
relative density, p/ps, is plotted in figure (2.3) versus (Kt). The

experimental data can be fitted to the theoretinale by plotting the
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Figure (2.3) plot op/ps vs. K (t-t,), for A=0 [6].

reduced times versus the experimentally determimees. The reduced
times can be found from figure (2.3)/#0, or in other case from solving
Eq. (2.25a) and Eq. (2.8b) for, and for known values of the relative
density andi. The slope of the straight line formed by plottikgas a
function of experimental times of sintering equé3 When Eq. (2.25) is
applied to the experimental results for the singgiof mixtures of clays,
after determining the value oK) for each sample, it has been found that
it is inapplicable. This is due to the assumptibat tat the beginning of
the sintering process the value ®f (which is given by the ratiod/| )) is
equal zero. This assumption may be applicable ernctise of silica gel
(as an example) or other materials stated in reéerd41], but it is
inapplicable on the materials of our present watke to the solid
inclusions and the anisotropy in the structure thand in the body of the
compact. Therefore, the interval of the integratonk) will be assumed

to start at X,) following reference [36] with a difference, th@t) +0.
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applying this to the integration of Eq. (2.22) bgring the integration

from (x,) to (X), yield the following equation:

2 _ 2 _
K(t—t0)=—£(1+/])1M%|na Y+ Yy 4 /3 tant 2Yx aJ
a

(@+y,) a3
_ iln a’-ay,, + nyZ + V3 tan 12Y,, " a (2.26a)
20 la+y.S a3

and the integration of Eq. (2.25b) will be:

2 _ 2 -
K(t—to):—gﬁllna Dy * Vs 4 f3tan 2Yx UJ

27 (a+y,) a3
(1 at-ay,ty,, L2y, -0
(2 In (0/ " yxo)z + +/3 tan ) H (2.26b)
where
v, =(37/x,)-8V2 (2.27)

and X, =a,/l, which is found from the initial relative densityy b

numerically solving equation (2.8b) for x, and te@me procedure is
applicable for any relative density at any timetloé sintering process.
Eq. (2.26) is more applicable and gives a good @ppration to the
density values, as will be seen later.

Scherer noted that the window in the sidéhefdubic cell closes when
a=1"/2=1/(2(1+1)) (2.28a)
where the side of the cell in Scherer model wasakeq) but in the
present assumptions it is equla).(So when &/1") =0.5, the neighboring
cylinders touch and the cell contains a closed;pbeerelative density at
that instant according to Scherer and to the ptes@adel according to
Eq. (2.8b) is:

P _ (3_77J ~J2 =0942 (2.28b)
ps \ 4
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Scherer model and the present model are no longered for relative

densities larger than that given by Eq. (2.28b)abse the structure
cannot be described as an array of cylinders isethranges of relative
densities [6]. To limit the maximum value of (&.(,y) corresponding to
the relative density given by Eq. (2.28b) for thedified Scherer model,
Eq. (2.28a) and Eq. (2.16b) gives the followingatepn:

a _al+4)
I I

So when /) =0.5, then the maximum value of X.{,) will be given by

=x(1+ 1) (2.29a)

the following equation:
05

Xmax = (1+—}|) (2.29b)

In the present materiald)(usually has a value around (0.7), so from
Eq. (2.29b), the highest value aj @t which this model is still applicable
is about 0.294 when£0.7). For relative densities greater than 0.942,
Scherer suggested using the analysis of MackemrdeSauttleworth [5]
for viscous sintering of a body containing closeatgs. For relative
densities greater than that given in Eq. (2.28bg tesults of the
Mackenzie-Shuttleworth (M-S) analysis were usedcoostruct figure
(2.3) at £=0). Mackenzie and Shuttleworth plottgdps versus the

reduced time in the form

1/3 p

yni/e _ 2( 3 j dp
t-t )= =—| —
n ( ) 3\4rm '([ -p4 )" ps"" (2.30a)

where () is the number of closed pores per unit volumealid phase.

pra IS the relative density. Scherer supposed wn5, the body consists
of closed pores with=1/Vs,

or

37



.\ o,

Using the same arguments used in finding @®6) it will be

13
nY3 = i(&}
= (2.30b)

assumed that the integration in Eq. (2.30a) befyora initial valuepq,
and following reference [5] the assumption willdse
2= (1pra)lpra (2.30c)

by integration, the following formula will be given

1/3 3 _
) B'” 1_} _ {ﬁtan L2z 1}

7 @+ z) V3
1, 1+z° N 42z,-1
—[Eln m} {«@tan 7 } (2.31a)

where 2°= (1-prao)/Prdo
For the present model from Eq. (2.7) by comparisdh Eq. (2.30b), the

following equation will be concluded:

1
nl3 =

1/3
& 2.31b
1" p. (2.31D)

Substituting Eq. (2.31b) into Eqg. (2.31a), the hefhd side becomes

y V(o)
- t—t,
[mo }( ch t-t.) (2.31¢)

Eq. (2.31c) differs from that in Scherer model byaator (1+4) in the

numerator. Thus to give the same time scale useflqin(2.26a), the

equation of Mackenzie-Shuttleworth must be dividgda factor equal

(1+4), or the final modified Mackenzie-Shuttleworth etyoia will be:

38



V(2 b e [ 22 ] s 221
I[Z] ft=t)=(1+1) Hzm (1+z)3} {x@tan ﬁ}

{5 (i::)} Vgta @1}] (2.32)

Once K) has been determined by fitting the experimergalits to

the theoretical curve, then the measured valugs arfid |, can be used to

obtain the quantity y(). An Hg penetration porosimetry curve is
presented in figure (2.4), showing thiemulative pore size distribution in
a flame hydrolysis preform of SyOTypically, greater than or equal to
(2/3) of the pores have diameters within 15% of dkerage value. The
average pore diameter is found from figure (2.4)chposing the pore
size corresponding to half the maximum pore volunee,half the pore
volume consists of pores with diameters smallem tilae average.
Averagevalues for @) and () can be derived from the average pore

diameter [6].
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Figure (2.4) Hg porosimetry curve [6].
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As noted earlier, the reduced-time expression usethe M-S
analysis is equivalent to that of the Scherer amslywhen the unicell
contains a single pore. On this basis, the two eurvad been plotted
together in figure (2.5) and shifted so that theyncide for relative
densities larger than 94%. The close agreementmwest of the density
range suggests the remarkable result that the sbfapeit cell chosen
does not have a strong effect on the predicteceramy kinetics. The
principle reason for using the present analysiserathan the M-S theory
Is that the model structure bears a rational @tatd the actual structure.
Moreover, to find a value fornf to use it in the M-S theory, it is

necessary to adopt some sort of realistic struictnoalel.

— M-S MODEL

08 | === PRESENT MODEL

0.6

p/ps

04 -

02

0 -t
-3.0 ‘ =20

(yn*3m)(t-to) for 1=0

Figure (2.5) Comparison of M-S and Scherer modepfiesvs. Kt ati=0 [6].
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2.2.2 Development of the Model of the Effect of the

Distribution of Pore Sizes on Densification:
2.2.2.1. Introduction

Scherer [31] extended the sintering model preseptediously by
considering a Gaussian distribution of pore sirethe body. He studied
the effect of the breadth of the distribution ofrgosizes on the
densification kinetics in a typical pure Silica faren made by flame
hydrolysis of SiCJ. Here the model is developed and then used ty $hed
effect of the breadth of the distribution of poiees on the densification
kinetics during sintering process of some of tlagjiliclays. The pore size
distribution can be obtained by Hg penetration ponetry. An example of
the data obtained by this technique is given imrkg(2.4) for a typical
pure SiQ preform made by flame hydrolysis of SICA curve similar to
that in figure (2.4) was obtained for Iraqi claysctares. The fraction of
the total pore volume having a particular diametetetermined by finding
the slope of the cumulative distribution at thardeter. Scherer took this
approach, using figure (2.4) and the result is shamv figure (2.6). A
Gaussian distribution of the following form can appmate the solid line
in figure (2.6):

n'(d) = Fexp{—gdz_—azqvp(d) (2.33)

Jd
whered is the mean pore diameter is the standard deviation of the
distribution, d is the pore diametemn(d)is the number of pores with
diameterd,n’ is the number of pores with diameter andV,(d) is the
volume of pores with diametel In figure (2.6)d =2800A andad=700&.

The scatter in the points is a result of the diftig in measuring the slope

of the cumulative distribution and of a lack of stltmess in that
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experimental curve. The uncertainty of measurenwnthe slope is
greatest where the slope is least, accountingHerldng tails on the
distribution in figure (2.6). When these factore aken into account, the

actual distribution seems to be adequately destalseGaussian.

10 ‘ R 0
d=2800 A

o | rald -0.25
a 583 A

06

04

Volume of pores with diameter)

A1 A
5 10 15 20 F 0,3 0 45 50

Pore diameter (d) x2Angstrom)

Figure (2.6) Distribution of pore sizes obtaineaifr

Hg penetration porosimetry curve [31].

In this part, we want to develop Scherer modelthar effect of
pore size distribution on sintering to become ajgtlie on the sintering
process of clays mixtures. Scherer model studiedsthtering process of
samples consisting from homogeneous materials dikea gel as an
example. Hence, the goal is to study the sinterprgcess for
heterogeneous systems for some of the clay typks. semples are
prepared by Rasen [40]. The studied samples argisted from mixing
different types of Iraqi clays, which are listedcimapter four. The present
work is concerned with the sintering process. Tlszsaples are fired at

different temperatures between (1100 to 143Q)each sample was fired
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at constant temperature. Before the firing tempeeais reached, the
temperature of the sample is raised gradually byte of 100C/hr until

the firing temperature, each sample put under tleasmrement of Hg
porosimetry after the sintering process so thedstahdeviation of the
pore size distribution can be found only afteresimy, but not before the
firing process. A model that describes the effédthe standard deviation
of pore size distribution on the densification dgrisintering process in
heterogeneous systems represented by mixtures ays dhave been
suggested. In all these manipulations, the standevehtion of pore size
distribution will be assumed constant during sinigifollowing Scherer

assumption.

2.2.2.2. The Analysis of the Model

The two parameters of the model structure are yheder radius @)
and the distance between the axes of neighborirajl@lacylinders (* ).

(d) is related to @) and (I*) by Eqg. (2.10), and is related to the relative

density through Eq. (2.8b). Thus two equationsaaalable to determine
(a) and (), if the values ofd) and the bulk density and)(are given.
The cylinder radiusd) corresponds to the particle size of the bodyhef t
compact will be assumed constant throughout they lzowl during the
sintering process for the present analysis. Schafgrexpected thahe
cylinder radius &) represents the average particle size in theasilic
preform. In present case, the particle size is oreasfrom the grain (or
particle size) dp), which is found using the stereological ways vitile
aid of a scanning electron microscope image inrég{2.7) , then the
following formula will be applied to finda):

a=2P

> (2.34)
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Figure (2.7) SEM; Microstructure for fractured sample of group M22
sintered at 140T for 2 hr (rating 100C/hr) [40]

The Gaussian distribution will be assumed as Schéic This

assumption came from the figure (2.8), which wamtbby following the

1.2

0.8

0.6

0.4

0.2

Normalized volume of
poreswith diameter d

Porediameter din pm

Figure (2.8) Distribution of pore sizes obtaineahfrHg
penetration porosimetry curve for sample of grougilM
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same steps done by Scherer in finding figure (2.6&. figure represent the
graph between normalized volume of pores, meadoyddg porosimetry
for the sample composed from (60% kaolin, 30% riaivock, 10%
Al,O3) and the pore diameted {, the similarity between the figure and the
Gauss distribution can be observed. In figure (fh8)values ofi anday
are 60004 and 19004 respectively.

The number of cells with side length betweén)(and ¢~ +dI ' )

is dN (1), heredN will be assumedis a function ofl}f, because}] is

constant for a given sample.

where
_ n(H)dl
dN(l) = ar ) (2.35)
for a Gaussian distribution,
o _ (|* -1 )2
n(l) =n exp{ 2(a|*)2
T, (239
= mexp -
2(0,)?@+A)°
and from Eq. (2.10)
. | NE 3
| = (1+ 1 ) = (d(T) + 2a) (2.37)
therefore,
d/7 o (-(@-dY
n(l) = n(( +2a)J: nexp( - J (2.38a)
2 Ziad )
_ @ 41_/1 )y~ 2@
where d = 2 NE (2.38b)
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N (2.39)

where thesy ,0; are the standard deviation of pore size distrdrutand
cell size distribution in the compact respectiv8lyis the number of cells

with pore diameted or side length .
With Equations (2.38) and (2.39), the mezi_n) (@and the standard

deviation (0,") of the (I*) distribution are simply obtained from the

corresponding parameters of the pore size distobuihe density) of

the model structure during sintering is a functodrihe reduced timekg).

A cell, which has a dimensionl.() will at time (Kt) have a dimension

| (I.,Kt) . The distribution of the cell sizes at any time usiquely

determined by the initial distribution [31]. Whelmetcells are assumed to

shrink independently, the average relative densily time Kt ,

whereK = K(l,), is

n(l, v.dl,
= (2.40)
[0, K)o,

2a

Q|
—

A

—
N —

|
2:'—;8

whereVsis given in Eq. (2.6).
(&) and (. ) are the initial values ofa) and ( ) respectively.

To evaluate the integral in the last equation le&t assume that

C-r). (-1

y = T o v E A ) (2.41)

The initial value of (y) is (3), which associated withl (). Alternatively,

by rearranging this gives:
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%0 20 A)+T

| =

* [+ A) 1+2) (2.42)
By differentiating Eq. (2.42) yields:

dl, =+/20, dy, (1+ /) (2.43a)
whereo,” = Vo, (2.43b)

Substituting Eq. (2.42) in Eq. (2.6) and Eq. (2.#lfq. (2.36) yields:
2 * i
Iy, A g o

v, %) (2.44)
n(l,) = NexpEy?) (2.45)

Then substituting equations (2.44), (2.45) & (24BaEq. (2.40) yields

after canceling the similar constants in the nuteerand denominator:

[ 2 * r
J. exp(_ yg{sm (y00| ﬁ(1+ /])+ I) _8’\/§a3]dyo
— —(F—Za) (1+ A)
,O(Kt) _ 20
0. @ T (2.46)
: [exp(- y2)1 (1, Kty)*ay,
—(F—Za?
20,
From the fact that\(y) is time independent, this means:
V.(a,,l,) =V,.(@,l) (2.47)
| *3,0
From Eq. (2.7) Vs = ,0—
o, LK) _ (,)°p, 2.48)
Ps Ps '

Taking the third root of the previous equation, #meh substituting
Eq. (2.8b) in it, solving fdr(l., Kt) | yields

1 (1., Kt) =|0*Kﬁ] ((1+’1)1_C’%ﬂ (2.49)

X )| @+A)*"—-cx
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Substituting Eq. (2.42) in Eg. (2.49) gives:

1/3

|*(|O,Kt):(yoa'*[(l”)“){( ]((1”) -cxoﬂ 250

(1+1) L+ A)* -cx

If (I" - 2a) >>0,4/2, the area under the distribution curve, for
values of (y) smaller than the lower limit shown in Eq. (2.48@)Jl be
small. In that case, the lower limit may be changed(-«) without
appreciable error, and the integrals in Eqg. (2.4 readily evaluated.
Applying this change to integration intervals amtstituting Eq. (2.50) in
(2.46) yields:

T v2) 2z (o0 V2(1+2)+1)
p(Kt) J‘exd yo{sna (1 /]) -8/2a° jdy0

Ps jexp( yo{(yoon \(/il/sfi)H)J H Mmﬂd%

Putting the constants outside the integration andltiplying the

(2.51)

numerator and the denominator by {1the last equation will be

) 7 fes v Ve A) o) ool iy

e et oot

1+ 1)

(2.52)

where ¢c=8/2/37 .The integral is in a form, which it can be solved

numerically using Gauss-Hermite quadrature [42]isTtkechnique offers,

the approximation:
Joxdl-y? )i ay=> At (x) (2.53)

where the coefficients jAand the abscissas #re tabulatedf(y): is a
mathematical function of a variable By comparison between the last
equation and the integration terms in the numeratnar the denominator,
and after replacing ;yby y; it is concluded that For the numerator

integration termf(y;)) is given by:
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F (Y numerater = 378 (1+ A ((y0 200+ A) +T) —ca@+ 1)) (2.54)

And For the denominator integration term {f(ys given by

f (y| )dencminator = |:(§\] ( (1+A)_ . C)% J:|(yl 0'| \/§(1+A)+ l_)3 (255)

X )l @+A)"-cx

The steps for applying the model can be summaazsdtie following:

1. First step is the fitting process, which will besdissed, in the

following chapter.

2. The second step is substituting all the parameateEsy. (2.52) and

solving the integral numerically using Eqg. (2.53).

2.3. Studying the Applicability of Heterogeneous Models on

Sintering Process of Clays Mixtures:

2.3.1. Introduction:

In this part, two models that describe the behawfdreterogeneous
media will be used to study the densification pssceThese models
assume that, there are solid inclusions embeddethanhomogeneous
matrix. These models are the composite sphere maddl the self-
consistent model. Scherer [20] used these modet®mmection with his
previous model in reference [43], to put the eoqumithat describe the
densification process during sintering in materiist contain solid
inclusions surrounded by the matrix phase. In wsk, the applicability
of these equations on the densification in singerprocess in clays
mixtures will be studied. A list of the importangueations that related to

densification process will be given below.
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2.3.2. The Constitutive Equations:
The constitutive equation for an elastic matesd4d:

E, =&, + E‘l[aX ~Vnlo, + az)] (2.56)
whereg, is the strain in the x directiom; is the free strain, E is Young's
modulus,vy, is Poisson's ratio, ang, oy, ando,, are the stresses in the X,
y, and z directions, respectivelffhe observed straim, is a linear

combination of the free straiy and the strain caused by stresses. The

analogous result for a viscous material is

& =€+ @) o, - W20, +a,)] (2.57)
wheree'y ande’; are the strain rate ik direction and the free strain rate
respectivelyy is the viscosity and = %2, indicating that the material is

incompressible. The sintering matrix is compressiblecause it contains
pores, so Eq. (2.57) becomes [43]

£, =&, +(E,) o, -va(o, + 7)) (2.58)
where E, is the apparent Young's modulus ang is Poisson's ratio.
Scherer [20] supposed,Bot a modulus, but a viscosity, he defined it as
the viscous response of the porous material toiaxiah stress, so it will
be called the uniaxial viscosity of the porous maths the porosity goes
to zero, & — 3n andv,—1/2, so Eq. (2.58) reduces to Eq. (2.57).The
functional dependence ofEand v, on porosity depends on the
microstructure. The observed contraction rate afirgering body is
attributed to an effective pressure resulting fromerfacial energy. The
strain rate depends on the magnitude of that presand the bulk
modulus of the body. The relationship between tlogsantities can be
established as follows:

If the applied stress is hydrostatis, = 6, = 6, = P, then Eq. (2.58)

becomes
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£ =€ +M:£’f +P/(3K,,) (2.59)

X f E

m

where K, is the apparent bulk modulus, which defined by

K, =E, [31-2v,) (2.60)
by analogy to the elastic bulk modulés E., K, is not a true modulus:
it represents the viscous response of the porody bm a hydrostatic
stress, so it will be called the bulk viscosity tbe porous matrix. K
becomes infinite (i.e., the matrix becomes incorsgitde) when the
porosity vanishesvf, = 1/2). If P is equal and opposite to the sintgrin
pressure, § then densification stopg'{, = 0); according to Eq. (2.59)

this occurs when

P=-3K, &
Therefore
R, = 3K} (2.61)

The pressure is regarded as negative when it ipEssive; i.e. the same
sign convention is used for pressure and for stress

The viscous or elastic response of an isatrafaterial to stress or
strain can be described by two independent funstidime constitutive
equation can be written in terms of,Eand vy, as in Eqg. (2.58), or
equivalent expressions can be obtained in ternms,p&nd the apparent
shear modulus, &that is given by the following equation [44]:

E

G, = a+v )l +”‘Vm)] (2.62)
Again, G, is not a true modulus: it represents the viscespaonse of the
porous material to a shear stress, so it will deddhe shear viscosity of
the porous matrix. The uniaxial and shear visgesiare finite when the
porosity is zero (k= 3n and G, =n), while the bulk viscosity diverges. No

microscopic model is implied by the constitutive uation. The
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fundamental assumption is that the strain rate ywed by the applied
stress is linearly additive with the free strairieraThis may apply to
crystalline materials undergoing creep such thatdinain rate is linearly
proportional to the stress (as discussed in Refeserd8 and 19), and is
expected to apply to viscous materials. However,absumption may be
violated if the applied stress causes a changensification mechanism or
a significant change in pore shafée properties ot’, E,, andv, are

assumed isotropic. This may cease to be valid afignificant

densification occurs, because the inclusions witiibit shrinkage in the
circumferential, but not in the radial directiorhi3 may cause the sintering
particles to develop necks of different sizes alahgse directions,
resulting in anisotropic properties for the matihe predictions of the
present analysis are consistent with experimemsililts for composites
with noncrystalline matrices, but not with polydgiine matrices. As

discussed in References 33 and 34 it seems likey the discrepancy

results from the development of anisotropy in pofgtalline matrices.

2.3.3. The Composite Sphere Model:

We are interested in the sintering behavior of ampasite sphere in
which the core (radiug,,) is a nonsintering inclusion and the cladding
(radius b) is sintering powder. Quantities relatedhe core (inclusion)
are denoted by the subscript (i), those relateth@opowder (matrix) by
subscript (m), and those related by the compositr(x plus inclusions)
by subscript (c). The stresses in the sphere domdisone radial
component &) and two equal circumferential components).( In

spherical coordinates, the elastic constitutivea¢igus are given by [44]:

£ =& +E* o -2vo,) (2.63)

r

£,=€ + E'l[ag —l/(ar +ag)] (2.64)
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The free strain of the inclusion is zey, (= 0). The inclusion was
regarded as incompressible (i.e. the bulk modulpys-ko) under these

conditions. The elastic solution was given in refee [20] as:

O =04 =0; :(1_\/i)KcEs£fm (2.65)
a 3

Tim {(Tj -Vi}KfsEfm (2.66)
1(a,)

Um:_{i(fj +\/i:|Kfs£fm (2.67)
1 v |

KE — + i

WhereGnE, andKCES, are the elastic shear and bulk moduli, respdgtive
of the matrix. The volume fractionVy) is the current value, which
increases as the matrix densifies. The radial atgghent (u) at the
surface of the composite sphere is also given B}/42:

un(b) _ 1~V )KEe,
b 4G,

(2.69)
and the constitutive equations of the sintering rixatn spherical
coordinates are given as:

£ =& +Elo -2v, 0o,) (2.70)
&, =&, +Elo, v, (0, +0,) (2.71)
The solution for the sintering problem was obtairfiexin the thermal

stress problem by replacir@f] and KCEswith G, andK,, (defined by

Egs. (2.60) and (2.62)) and replacing the straiitls thie respective strain

rates. Thus, the stresses in the sintering congsgliere are given by

ai = (1_Vi )Kcsglfm (272)
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Oy = K&T -\A}Kcse}m (2.73)

3
g, = —E(aj +vi}Kcsa;m (2.74)

Koo =| 2t ) 2.75
© 4G, 3K, (2.75)

the circumferential stress in the matrix is tengsiecee’s, < 0), so cracks
tend to propagate radially from rigid inclusion8[19]. The linear strain

rate of the composite is derived from Eq. (2.69):

2 (D) _ VK,

. b 16, (2.76a)
substituting Eq. (2.75) in last equation gives:
1-V, g’m
£ = VL (2.76b)
v o))

Let p be the relative density (i.e. bulk density dividedtheoretical

density). The densification rate of the composte |

]

Lo _ '

;Z =3¢, (2.77)
rearranging gives

1do, _ ...

at o 3e, (2.78)
multiplying the last equation byl{) and integrating both sides gives

Polt)) - o

ln(p— = -3t (2.78b)
Taking the exponential and multiplying y.d) gives

Pu(t) = P, expl-35t) (2.79)
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where o) and p.) are the densities of the composite at time e¢jal
and €) respectively. Given expressions for the freeirstrate and moduli
of the matrix, Eq. (2.79) can be used to deschieedensification process

in the composite. The densification rate of thermas
P — (o ,
o= (g1, + 264,) (2.80)
Pnm

using Equations (2.70) and (2.71) leads to

L et + 20~ 20 284+ 2600 1,010+ 00

S P 3(1‘E2"m) (0, + a&n)} (2.81)

substituting Eq. (2.60) in the last equation, gives

p_:n = _|:3£I + (Urm + Zaﬂn):|

,Om fm 3Km

o : g

—=- 3, +—"

Pn { " 3K, } (252

with similar rearranging and integrating, as damé&gq. (2.77) we get

p.(t)=p,.exd -| 3¢, +Im L (2.83)
m mo m 3Km .

where pmo) and p.) are the densities of the matrix at time equab zerd
(t) respectivelyoy, is the hydrostatic stress in the matrix, is gibgr20]

as.

0., +t 20,

0— — rm
m 3 (2.84)

Thus, the sintering rate is affected by the hy@tastomponent of

the stress in the matrix, which is independent aflial position.
Substituting equations (2.73) and (2.74) in EcB42gives
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= _Vi K csglfm (2 85)

2.3.4. Self-Consistent Model:

The matrix region can be regarded as an islanthtédrsng material
in a continuum (the composite) that is contractga slower rate (see
figure (2.9)). The mismatch in free strain ratestlmé island and the
continuum causes stresses that affect the denmficeates of each [20].
The hydrostatic tensile stress in the island ofrixatan be calculated
from Selsing solution [45] for the stress in anlased inclusion. Using
that stress in the constitutive equation of therixabne can calculate the
sintering rate of the matrix, which controls thatering rate of the
composite. The hydrostatic stress in the islandichviiepresents any
region of matrix, is found by applying the viscoaisalogy to Selsing's
solution: strains are replaced by strain ratesthadespectivenoduli of

the island and continuum are replaced by)(&d G.). Thus

-1
am:(sé—s’fm{ t 1 } (2.86)

3K, 4G,
whereG:. is the shear viscosity of the continuum (i.e.,dbeposite) ;
for spherical inclusions, the Hashin-Shtrikman aoun [46] for G, is
appropriate. Eq. (2.86) indicates that the streghe (island of) matrix is
proportional to the difference between its freaistrate and the strain
rate of the surrounding composite. The linear @umtton rate of the
compositeg’,, is related to the densification rate of the nxaby [20] as:

r— (1_Vi )p;n — ' On
& = _W _( _\/I) Eim T 3Km (287)
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Figure (2.9) in the selfonsistent calculation, the region of matrix witkiie dashe
circle is regarded as an isolated island surrouthgeah infinite continuum (the
composite) with a slower densification rate. Simylaany of the inclusions (solid
circles) can be treated as being isolated in timirmaum [20].

where the second equality follows from Eq. (2.&)bstituting Eq. (2.87)
into Eg. (2.86) gives

sz[—VJ%-F@_VJJm} - 1 . (2.88)
+

4G,

3K

m

Solving the previous equation fef, gives

L 2.89
m i+ v (2.89)
4G, 3K
am = _Viglmes—c (290)
where
1 v |
Koo =|—+=——
sc LGC SKJ (2.91)

substituting Eq. (2.90) in Eq. (2.87), gives
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£ =) Ve

3K,
(2.92)
R
Ks—c 3Km
ro_ (l_vi )g'mes—c
£l = 1 (2.93)

C

2.4 Applying the Previous Models on Viscous Sintering:

In this section, the stress and strain rates aa®iated for the case
of viscous sintering. The microstructure of the nmats assumed to
consist of a network of cylinders with radius) ¢hat intersect at right
angles, and the distance between neighboring phacglinders is ). For
such a structure, the free strain (i.e. linear @mion) rate is given by

reference [43] as:

. y (3m)""° 2 - 3cx
B ] e

where §) is a geometric paramete&a/l, () is the interfacial energyy)

is the viscosity, I() and pn,) are the initial values ofl)( and p),

respectively, and the constaot8V/2/37. From the same reference

Poisson's ratio is given by

1/2
1l p
=2 ox/ =] Pm
v, =22xIm 2{(3_21%)} (2.95)

where pn), is the relative density of the structure, whishgiven by [6]

as
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o, =3 (1-cx) (2.96)
The "apparent Young's modulus" (uniaxial viscosisy43]:

P
E. = 37775(2 ~_ M
(3-2p.) (2.97)

Kn IS given from the substitution of equations (2.%6)d (2.95) in
Eq. (2.60) as follows

_ 2
“n = (2-3cx)

(2.98)

For this microstructure the load-bearing functidntite cross-sectional

area, ¢, is @¢), so Eg. (2.95) and Eq. (2.97) impl, =37¢

andV,, = \/5/2. The expressions fet, o, ande'c involve the ratio of the

shear to the bulk viscosity. According to equati¢2$0) and (2.62) we
get:

4G, _ 2@1-2v,)

m —

3K @+v )

m

(2.99)

Equations (2.95) and (2.99) are used to evaluaerdbults for the CS
model. The Hashin-Strikman equation [46] fG) leads to

4G, _ 4G, |, 15( Vi | 1-v, > 100
3K, 3K, | 2(1-V \4-50, (2.100)

m

Equations (2.95), (2.99) and (2.100) are used &duate the results
for S-C model. The current volume fraction of irstns, ), is related

to the final volume fraction in the fully sinteréddy, /) by [20]:
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V, = pm{pm J{l;/.\{l H (2.101)

The difference between the CS and S-C models become

significant only at high concentrations of inclusso

Figure (2.10) shows a similar comparison betweenptediction

of the S-C model and the CS model. The resultsnalistinguishable for
(Vi) less than 0.2.
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P. (composite sphere)

{self-consistent)

Figure (2.10) Relative density of composjig,from
self-consistent model (by integration of Eq. (2)93)
versusp., from composite sphere model (by
integration of Eq. (2.76a)) [20].

These analyses do not allow for the fact that tietusions will
come into contact and stop densification at sontea&rvolume fraction,
Vi*. For inclusions of uniform size, percolation theardicates that the
inclusions will form a contiguous network wh¥f equal approximately
0.16. If this network is stiff enough to resist @iatering stress, thev*

equal0.16 in this case; for inclusions with a wide distribution of sizes, the
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critical volume fraction could be smaller. The extef the contiguous
network of particles, increases abruptly \§sapproaches/i*, so the

present analyses should fail only n¥gr[20].
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Chapter Three
Fitting Data and Programs Design

3.1 Introduction

In this chapter, the following points are discussexplaining the
fitting process and the way to determine the rehsinip between the
constant (K) ,which is the proportionality consténetween the reduced
time (Kt) and the practical time, in Eq. (2.23) atie temperature of
sintering. Then shortly describe the simulated dashy@nd their raw
materials, then listing the input data in each progand the way to get
each parameter from the practical measurementsn Bhéow chart
diagram is drawn which contains the basic relatissed and the origin of
their equations for each program. Basically; thegeethree programs:

The first concerned with the modified Scherer slolt simulates
the sintering process in the clay mixtures, andimdates the effect of
sintering temperature and time on the densificghimtess.

The second simulates the effect of pore sizeriloigion on the
densification process in the mixtures of the udagiscusing the modified
Scherer model.

The third program uses the composite sphere madkktze self-
consistent model to simulate the sintering protesbke clays mixtures,
and manipulates the effect of sintering temperatamd time on the

density after firing.

3.2. Fitting Process
3.2.1 Fitting procedure:

The goal of this operation is todfia relation between the
values of the constanK) in (hr ') from Eq. (2.26a) versus the

temperature of the sinterin@)(in (°C) using the practical data. From
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Eq. (2.23) it is obvious that the basic parametet s affected by
temperature is the viscosity coefficiemf),(so it is the basic factor
that makes K) changed with temperature. The fitting process is
divided into the following steps:

A. The value of K) is found for each sample at each temperature by
finding the slope of the line formed from plottitige data between
the reduced timeK{) versus the practical timé (TheK (t-ty) values
are calculated using Eqg. (2.26a) for the modifietheBer program
and Eq. (2.26b) for the composite sphere and tlfeceasistent
program by substituting the values of x agd #e values of xand
X before and after sintering respectively can henébby knowing
the values ofA) from Eq. (2.2) (which will be discussed later)dan
by knowing the relative densities for each samm@éote and after
sintering from the practical data, then solving eucally Eq. (2.8b)
to get the value ofx] corresponding to a givep)(value. The K)

value is given by the equation:

K{t-t,)

L

slope = K = (3.1)

where t) is the time of sintering, for the present it equals
two for all samples. The rest parameters have g@ie previous

definitions.

B. The graph of the data betweeK) (and the corresponding firing
temperature is drawn. Then, fitting is accomplisteetind a formula
describing the change df) with temperature. If a relation between
K and temperature is determined th&) yalues are substituted in

equation (2.23) in addition to the rest parametieifind the relation
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between the factorylfy) and sintering temperature by fitting the

resulting curve.

3.2.2 Viscosity:

The most important physical factor that can benfbfrom fitting
process is the viscosity of the viscous liquid th@tmed during the
sintering process. Viscosity is the internal foctiof flowing substance
[47]. In ceramic materials, the viscosity (sheascwosity) of the matrix
depends in a complex way on the microstructureeptesents the major
difference between the sintering of a glass ancerangic. In glass it
depends merely on the self diffusion coefficientceramic it depends on
the grain size in addition to the diffusion coa#iat, since matter must be
transported across a distance of the grain siaehleve shear deformation
[48]. The dependence on grain size may be the sanmmeCoble creep [49]
where the viscosity of polycrystal varies with graize, dp, according to
the relatiom o dp’. So it may be concluded that the viscosity of glal
always be lower than the viscosity of polycrystedliceramic, provided
that the ceramic is deformed by Coble creep meshanin viscous
sintering the densification process depends bdgioal viscous flow [12,
13] so the value of viscosity during the processypla major role in
limiting the density after firing. In this work Sefter concepts [6] in
finding the values of viscosity are followed, fidte values of K) are
calculated from the fitting process as discussedgtipusly, wherekK) is the
proportionality constant between the reduced tikte ¢alculated from Eq.
(2.26b) and the practical time. Then Eq. (2.23)sed after rearranging the
parameters to find the viscosity coefficien) @t different temperatures,
and a relationship between the viscosity coefficiand the sintering

temperatures can be found by fitting process.
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3.3 The Groups Undergoing the Simulation:

The samples used for applying the simulation prepared by
Rasen [40]. Two groups were selected as an expetainesults data that
was applied to examine the models. The materiatsaoiples regarded as
heterogeneous ceramic systems. Since the presektisvoot concerned
here with the details of preparation, but only viltle parameters related
to the sintering process, like the compositionh#fse materials, and the
ratio of the solid inclusions, then the raw maier@f their groups will be
defined to follow the results come from the proggasameters. The raw

materials applied for the groups are:
1. Kaolin Dukhla: the composition of kaolin is imettable (3.1).

2. Ninivite Rock: It is a white, light silica brigkporous and low bulk
density rock (less than 0.3gm/tin the pure rock). Quartz is the main
mineral constituent; gypsum is the main pollutainth@ rock. Since this
rock differs in origin and is not recorded in gegptal dictionaries, it is
suggested to name it as "NINIVITE" for this form drcelainite which
Is produced by sulphure leaching of clay stoneg. difemical analysis of
a semi- pure ninivite rock and that is used ingresent work are given in
table (3-1).

There are two groups used in applying the simulatiee groups
are defined as Group M21 and Group M22. Group M2a& mixture of
compositional weight percentage of 60% kaolin dileekiaw material
powder, 30% of ninivite raw material with particleze range 'D'
(22um<D<32um), and 10% weight ofa-Al,Os particle size range
(D<32um). These components were dried, mixed and milled.

Group M22 is a mixture of compositional weight parage of

70% kaolin duekhla raw material mixed with 30% ahivite raw
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material with particle size range 'D' is given BDx(50um) . Then it was
dried, mixed and later milled for 10 hours.

Table (3.1) the chemical composition of the rawenats of the used

groups [40].

Chemical composition data for Chemical composition data
Kaolinite of Ninivite rock
Material | PercentagePercentagéMaterial| Percentage Percentage
before | after firing Before After firing
firing firing
Sio, 52.35 58.82 Si© 93.76 96.233
Al,O3 34.02 38.225 AD; 0.28 0.28739
FeO; 1.31 1.472 s 0.16 0.1642
TiO, 0.21 0.236 NzO 0.09 0.0924
CaO 1.20 0.1348 CaO 0.82 0.8416
MgO 1.11 1.2472 MgO 0.031 0.0318
SO, 0.45 1.472 S© 0.26 _
L.O.I 12.54 _ RPOs 0.06 0.06158
KO 0.06 0.06158
Cl 0.13 _
L.O.l 2.57 _
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3.4. The Modified Scherer Model Program (Effect of
Sintering Temperature and Time of Sintering):

This program simulates the sintering process andipukates the
effect of sintering temperature and time on thealfigensity and
densification. It is written in the FORTRAN 90 larage. Here we will
concentrate on the temperature effect, and by a saanner the time
effect on densification can be found.

3.4.1 Input Data

The input data to this program are the

1. Initial densities.

2. Theoretical density of the samples used.

3. The sintering temperature and the ratiand they are found as

follows:

3.4.1.1 The Theoretical Densities and the True Volumes

The theoretical density for each compact is catedldy summing
the multiples of the theoretical density of eachmponent in the compact
by its weight percent from the compact after sudbing the loss on
ignition from the weight of the compact, becausaha end of firing
process this volume will be lost from the compact.

The true volume is given by the following relati&®]

True volume = Weight /True density (3.2)

The weight of each material in the compact is gibgrhe multiple of its
weight percent in the compact taken from table)(Bylthe mass of the

compact.
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3.4.1.2 The Temperature:

In this program as being mentioned previously tasidobjective
is finding the effect of sintering temperature twe final density of the
compact, so the temperature must be a variable fi&e temperature
will be substituted in the equation d&f)(results from the fitting process.
The values of the temperatures will be between{1@@500¥C.

3.4.1.3 The Ratio A:
The ratioA, From Eq. (2.2) is determined by determining the

volume of solid inclusiond/;, and the volume of viscous phasggs in
compact. This is done by: first, deciding which enatls have the solid
inclusions manner and which have the viscous pmagener. In the
present case the materials in the table (3.2)sisraed to have the viscous
phase effect and other oxides specially alumina hbeg solid inclusions
effect.

Table (3.2) Fusion temperatures of fluxes associated with alumina
and silica [12]

Oxide Lowest eutectic temperature in
°C
Na,O 732
K,0 695
CaO 1170
MgO 1345
Fe203 1073

Second, determining the weight of the solid in@uasi in the
compact from the weight percent of the solid indos materials by

multiplying the weight percent of the solid incloss by the mass of the
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sintered compact, then dividing the weight of safidlusions materials
by the theoretical density of the solid inclusianaterials to determine
the true volume of the solid inclusions. By the samanner the true
volume of the viscous phase is found for each camphaeni is found
from Eq. (2.2).

3.4.2 Program Design:

A computer program in FORTRAN 90 langeiag designed and
applied to calculate the final relative density tbe compacts after

sintering process. This program needs the follovnpgt data:

Input: the data file for the model consists frora tbllowing information:

1. Initial density for each samplg,). 2. Theoretical density for the used
samplepsand the ratio. defined by Eq. (2.2) for the simulated sample.
3. Temperature of sintering of each sample. Let the number of the
sintered samples, t: is a counter, f(t): is a fiomctthat represent the
relation betweerK and the sintering temperature, Kt :is the valu&if
acc: the accuracy,: is the initial densityps: is the theoretical densitys:

Is the relative density, xdaMhere (a) is the particle sidejs the length
of the compacted unit cell, which is the cell caméathe viscous phase,
the porosity and the solid inclusion phasegsthe initial value ofX), xr:

Is a real function that solves Eq. (2.8) numenc#dl x for known values
of the relative densityp(ps) and ¢), A: is a parameter given by Eq. (2.2),
lo: Is the effective length of the cell, pi: is thenstant ratio= 3.14, pps :

Is the final relative density. t: is a counter. Ros a subroutine that
determines the value of x corresponds to a gkewalue by solving Eq.
(2.26a) numerically; here we used Newton-Raphsorthode The

program design is explained in the following flohact.
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a4

INPUT FILE

v

Pr=Po(t)/ps

|

< Xo=XI(pr,)) >

v

yO= (3*Pil(Xe*(1+1))-8*2**.5) ** 3334

v

Kt= f(t)*2

v

@ot Q.,y0,Kt,x,,acc,x) >

v

rppS=((3.0*pi*x**2.0/(1+1))-8.0*2.0%*0.5*x**3.0)*(1+ A)**3.0

'

t=t+1

v

OUTPUT SECTION

A

YES
If t<N

NO
v

Figure (3.1) Flow chart of the modified Scherer md@emperature
effect) program
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3.5. The Modified Scherer Model Program (Effect of Pore
Size Distribution):

This program simulates the effect of pore sizerithstion on the
densification process. A program EFFECT OF POREES&Zwritten in
FORTRAN 90 language to simulate the effect of mize distribution.

3.5.1 Input Data

To perform the calculations of this program theuingata must be
provided. These data includes the compact pasizk the initial relative
density of the compact, the standard deviation loé pore size
distribution, the temperature of sintering of timaidated samplé, which
Is the ratio of the true solid inclusions volumethe true viscous phase
volume in the compact and the necessary inform&gtorthe numerical
methods used in the program. We will discus thendation of the

parameters that didn’t discussed previously.

3.5.1.1 The Standard Deviation (og):

The standard deviatiary of the pore diameters is found from mercury
porosimetry data, by drawing a curve between threded volume versus
the diameter of pores like that in figure (2.8).ehwe get 4y) by
following reference [51] the integral of the probeyp function (p;) of a
normally distributed variable (x) about its meaay,sx=0 in the interval -
X< 0< X is given by

X /a2
P, :ﬁ !exp(—tz)dt (3.3)

Where t=xév2
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The integral of equation (3.3) can be evaldiatgng the error function

by the substitution y=XA2 the equation can be written as
erf(y) = —2- [ exp(t?)d 3.4
Jmi o0

Comparing the last two equation gives

p, =erf (X/ o~2) (3.5)

(p) Is the probability that a value of x lies withine range x| <X. the

values of erf (y) are tabulated in reference [5bf. the case

erf (X/ ov2) =0.99 (3.6)
Yielding
X
2= =1.820 3.7
N (3.7)
g=——-:
or 558 (3.8)

Where (X) is the upper or lower limit of the poiieesdistribution. For a

mean (m) not equal to zero Eq. (3.8) will be as

X -m

2.58

g = (3.9)
(m): is defined by the value of the diameter thatr&sponds to
maximum intruded volume see Figure (2.8). if thiéedence (X-m) for

the upper limit differs from the lower limit it's diter to take the

average.
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3.5.1.2 The Particle Size

The particle size will be found using stereologicgakthods.
Stereology is a method of analyzing the structdra three-dimensional
solid from the information provided by a two-dimamsl plane section
taken through the solid [2]. In figure (2.7) thésean image of the sample
M22, (which sintered at 1400) after the firing process, this image will
be used to find the particle size using the steggodl methods as
followed. Bycomputing the mean intercept sizip) that is equivalent to
grain size, wheredf) is the ratio of the fractional density/4s) to the
number of grain (or pore) intercepts per unit langfttest line N,):

plp,

dp=
P N,

(3.10)

This is illustrated in figure (3.2) [2].

If grain size distribution is important, the meantercept size can
be calculated for multiple slices at different ategions. Here the same
value of the particle size for M22 is assumed dythre sintering process
and at all the firing temperatures following Scheassumption [31], and
also because of the unavailable practical measurgis® in other study it
IS suggested taking this factor in considerationaddition, it is noticed
that there is a similarity in composition betweeA2Msample and M21 so

the same value of particle size is applied to M#ltlie previous reason.
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|—I ntercept

Intercept

Intercept

[ntercept

Figure (3.2) Calculating the Mean Intercept SiZe [2

3.5.2 Program Design
A computer program PORE SIZE DISTRIBUTION EFFECT in

FORTRAN 90 language is designed and applied tolsimthe
densification process. This program needs thevatig input data:
Input: the data file for the model consists frora following information:

a) particle size

b) theoretical density

c) standard deviation

d) accuracy

e) average pore diameter

f) Magnitude of sintering temperature.
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The values of the input parameters are listedhletéB.3)

Table (3.3) Values of input data

Value
Parameter | Symbol
M22 M21
Compact dp
_ _ 0.5777 0.5777
particle size (um)
Theoretical Ps
_ 3.04362237 3.995213
density
(gm/cn?)
Standard
deviation of
_ od
pore size 0.19 0.19
(nm)
(measured
value)
Mean pore dOa
_ 0.6 0.6
diameter (um)
Third root of
solid
inclusion to A 0.669 0.723
silica
volume ratio

Let o4, 0: be the standard deviation of pore size distrdsutand
cell length side distribution respectively. dOae tverage pore diameter,
acc: the accuracy, N: the number of the sinteremgperatures, ttm: is the
value of the sintering temperatugg; the relative density, x the initial
value of ), xr: is a real function that solves Eq. (2.8) ruimally for x
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for known values ofd/ps) and ), |,: the effective length of the cell, pi:
Is the constant ratie 3.14, a0: the particle size. t: time in hour, ft)
function yielded from the fitting process ,whichsdabes the variation of
(K) as a function of sintering temperature. Then fiblklowing Flow
diagram can explain the logical steps of the pnogra

START

A 4

READ
dppscd,acc,dOa,NOavi

A 4

READ (ttm)

A 4

a0=dp/ 2

:

sl = sd*pi'42

pr =pOavips

v

< Xo= XI (pr,\) >

\4

Yo=((3*pi/(Xo*(1+1)))-
g*2** 5)**(1/3)
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1

—

lo = ((d0@*pi**0.5/2) +2*a0)* (14

10 K (1) =F (1)

'w

4

KO (f) = K (f)*

!

Root ¢, yo,K0,x0,acc,x)

v

Intigration @, pOav,\,a0,Xg,l0,pS,ppS)

Output section

v

t=t+1

10 Yes

No

Figure (3.3) the Flow diagram of (the effect of paize
distribution on densification) program
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By giving (og) different values and from the graph betwegp,|
versus reduced time we can see the effecipHiop the densification

process.

3.6. The Program of Applying the Heterogeneous Models

on Sintering Process:

This program applies two models of heterogeneosteB)s; nhamed
as the self consistent model and the compositersphedel to simulate
the sintering process and manipulate the effestméring temperature on
the final density, to compare the result with tesult from the modified

Scherer model.

3.6.1 Input Data
This program needs the following input data:
Input: is a data file for the model consists frdma following information:
a) Particle size
b) Theoretical density
c) Average pore diameter
d) Number of temperature intervals
e) Magnitude of temperature at each interval
f) Final volume fraction of inclusions in eadngple at each
temperature interval.
g) Initial density for each sample.
All the parameters are evaluated as the way in ptevious
programs. The only new parameter is the final v@umaction of solid

inclusions in the compact. To find this parametes tolume of the
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compact will be divided as (done in finding according to the type of
the material into three parts, these parts are:

a) Volume of viscous phase.

b) Volume of solid inclusions.

c) Volume of pores.

The volume of viscous phase can be found as exgagnreviously,
it will be assumed equal to the true volume. Thiewe of pores is
found from mercury porosimetry and it's equal te tumulative
porosity after firing. So the final volume fractiofthe solid inclusions
will be given by:

Vv

V. f — compct - (\/pore +Vsi|ca)
| \Y

compact

(3.11)

whereV,": is the final volume fraction of the solid inclosi, Veompact 1S
the volume of the compact after sintering measbyedg porosimetry.
Voore 1S the volume of pores from Hg porosimetyc.: is the true
volume of viscous phase which is mostly formed frehea.

Applying Eq. (3.11) we get the final volume fractiof the solid

inclusion in the compact as in the table (3.4).

Table (3.4) the final volume fraction of the sdlitlusions V")

In the compacts.

temperature 1200 1300 1400
in(°C)
sample
M21 0.1909627 0.3248233 0.2215987
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3.6.2 Program Design:

A computer program is written in FORTRAN 90 langeato
compute the density after firing process using tenposite sphere
model and the self consistent model. The Flow abiathis program is as
in the figure (3.4).

All the previously defined parameters in the fpsbgram will have
the same definition here. The new defined symb@s a
po(l): Is @ matrix represent the initial density.

v is the interface energy.

xr (p): is a real function that uses Eq. (2.8b) to give value of (x) that
corresponds to a given value pig() .

ti: is the time of sintering (or firing process).

Vi": is the final volume fraction of the solid incloss.

V.: is the instantaneous volume fraction of the swiadusions.

defm: is a subroutine that used to compute theohfese strain energy
(dery) as defined by Eq. (2.94).

etg(i) : is a matrix that computes the ratigy] which is the ratio of
viscosity per interface energy.

1. represents the viscosity.

vm: IS Poisson’s ratio.

en. is The apparent Young's moduassdefined by Eq.(2.97).

Gn: is the apparent shear modulus as defined byZ6R).

K : is the bulk viscosity of the porous matrix asined by Eq. (2.60).
GmpKn: represents the ratio (4G3K,,) as defined by Eq. (2.99).

Gc: Is the shear viscosity of the continuum (in tBE sonsistent model).
GpKn: is the ratio (4@3K,,) as defined by Eq. (2.100).

Kcs is the bulk modulus of the matrix as defined loy .75).

decs The linear strain rate of the composite accordmgomposite sphere
model as defined by Eq. (2.76b).
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dese The linear strain rate of the composite accordmgelf consistent
model as defined by Eq.(2.87).

pecdi): 1S @ matrix represent the relative densitytloé composite after
sintering as predicted by the composite sphere mode

om. IS the hydrostatic stress in the matrix as defiog Eq. (2.90).

pmedl) IS @ matrix represent the relative densitytbé matrix after

sintering as predicted by the composite sphere mode

pesdi) : IS @ matrix represent the relative densitytloé composite after

sintering as predicted by the self consistent model
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START

READ dp,ps, dOa, N,

pOav,y, ti, A
READ
(o(i), VA (D), ttm(i), i=1,3)
40
pr()=po(i)/ps
a=dp/2
x=xr(p(i)) >
etg(i)=f(t)
n=etg(i)*y
lo=alx
Q‘m =defm (X,etg(i)|oapr(i))>
40 v

2]
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4C

AC

Vi (D) =pe(i)/(pei)+(L-V D) V(D))

v

Vm=2*2*%+0.5%x/pi

em:3*n*pi*X**2

v

Gm= en/(2*(1+vm))

v

Km=em/(3*(1-2*n))

'

GmpKm=2*(1-2*vm)/(1+om)

v

GPKm=GmpKm*(1+ (15*Vi(i)*(1-vm)/(2*(1-
Vi(i))*(4-5* om)))

y
Kes=1/ ((1/(4*Gw)+(Vi(i))/(3*K m)))

y

decs=(1-Vi(i))*d e/ (1+(Vi())*G mpKm))
v

Pecdi)=EXP(-3*Tecs*ti)* pm(i)
y
om= -Vi(i)*K cs*dem

v

pmed1)=eXP((-3*detm-om/Km)*ti)* pm(i)
v

Ge= GPpKn*3*K /4
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+ 10 Ke=1/ (1 (4G) + (Vi () (3K )

\ 4

des=(1-Vi(i))*K sdem/ (4*Ge)

A 4

SC='3*Cbsc*ti

A 4

pesdi)=exp(sc)Pm(i)

OUTPUT
SECTION

40 No

Yes

Figure (3.4) Flow chart of the program of the CosifmSphere
and Self Consistent model.
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