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Chapter Three 

 
 
3- Results And Discussion Of Magnetic Deflector 

3-1  Introduction 

In this part of present work the synthesis approach has been used to find the 

optimum design of magnetic deflector. The saddle yoke coil whose magnetic field 

is given by equation (2-10) is used as the source of magnetic field in our present 

work. The MOL concept (which is shown in section 2-6) is used to find the 

deflection field of the magnetic deflector, i.e. by using the  MOL one can find the 

design of magnetic deflector by knowing the design of magnetic lens or the axial 

magnetic field distribution of the lens, depending on equation (2-11). 

 

 Spherical and chromatic aberrations are minimized by using synthesis 

approach in two steps. Firstly, one can use different shapes of axial magnetic field 

distribution; a well known field distribution as Glaser model, Grivet-Lenz model, 

variable aperture projection (VAP) arrangement, and new suggested field. 

Secondly, in each case the geometrical shape of deflection coil is changed, where 

the length and the angle are varied. Then, the pole piece designs that give rise to 

these field distributions are found by using the reconstruction method.  
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3-2  The Design By Using Glaser's  Model 

According to Glaser's model the axial flux density distribution is given by 

Szilagyi [1988]: 
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where mB  is the maximum value of magnetic field and it is calculated by 

using equation (2-10), and a is the field width at half maximum 2/mB . The 

axial flux density distribution of the deflector D(z) is computed by using 

equation (2-11) where B' is computed with the aid of equation (3-1). The 

shapes of the axial flux density distribution B(z) and the axial deflection flux 

density distribution D(z) are shown in figures (3-1) and (3-2), respectively. 
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Figure (3-1): The axial flux density distribution B(z) of Glaser's model. 
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Figure (3-2): The axial deflection flux density distribution D(z) 

calculated with Glaser model. 

 

 

 

3-2-1 Infinite magnification condition 

 3-2-1-1  effects of changing the angle 

 Both spherical and chromatic aberrations are computed under this 

operating condition. The following angles ø = 30
o
, 45

o
, 50

o
 and 60

o
 of 

saddle yoke coil, with coil lengths H = 37mm, are used in the computations 

of the aberrations. Figure (3-3) shows the relation between  relative spherical 

aberration coefficient Cs / fo and NI/SQRT (Vr). From this figure, one can 

show that ø = 60
o
 gives the lower values of Cs / fo. Also, the relative 

spherical aberration coefficient Cs/fo increases with increasing  

NI/SQRT(Vr). The minimum value of Cs /fo = 0.2 at NI/SQRT (Vr) = 0.035. 
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Figure (3-3): The relative spherical aberration coefficient as a  function of 

NI / SQRT(Vr) for  ø = 30
o
, 45

o
, 50

o
 and 60

o
 when H = 37mm. 

 

 

 

Figure (3-4) shows the relation between Cc/fo and NI/SQRT(Vr). 

From the figure all  cases appear to have the same behavior, and  ø = 60
o
 

gives us the minimum value of Cc/fo and the NI/SQRT(Vr) = 0.035 gives us 

the lower value of Cc/fo for all cases. From our calculations two parameters 

can be used to reduce the spherical and chromatic aberrations by selection 

the best angle and the best value of the ratio NI/SQRT(Vr) ( by changing NI 

and Vr ).  
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Figure (3-4): The relative chromatic aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 30
o
, 45

o
, 50

o
 and 60

o
 when H = 37mm. 

 

 

 

The relation between Cs/fo and Cc/fo with the angle of saddle 

deflection coil ø is shown in figures (3-5) - (3-6), respectively at 

NI/SQRT(Vr) = 0.05 . both cases have the same behavior, where Cs/fo and 

Cc/fo decrease as the angle increases.  

 

The pole piece shape is found by using the reconstruction method, where 

equation (2-12) is used to achieve this task.  
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Figure (3-5): The relative spherical aberration coefficient as a  function of  

the angle  ø at NI/SQRT(Vr) = 0.05. 
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Figure (3-6): The relative chromatic aberration coefficient as a  function      

of  the angle  ø at NI/SQRT(Vr) = 0.05 . 
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Figure (3-7) shows the  shape  of the upper half part of  the  pole piece   

for   ø = 60
o
    and H = 37mm.  
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Figure (3-7): The pole piece shape  when ø = 60
o
  and  H = 37mm. 
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3-2-1-2 effects of changing the length of coil 

 To study the effects of variation of the length of the coil H on the 

Cs/fo and Cc/fo we take different values of H, where H=27, 37, 47, 57 and 

67mm with  ø = 60
o
 are taken into account. Figure (3-8) shows this effect on 

a spherical aberration. This figure shows that the length H=27mm gives the 

lower value of Cs/fo which is equal to  0.19  at NI/SQRT(Vr) = 0.035. 
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Figure (3-8): The relative spherical aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 60
o
 and   H = 27, 37, 47, 57 and 67mm. 

  

 

Figure (3-9) shows the effect of variation of the length on the Cc/fo . 

Figure (3-9) shows that the length H=27mm gives the best value of Cc/fo 

which is equal to  0.515  at  NI/SQRT(Vr) = 0.035. In both spherical and 

chromatic aberrations one can find that the values of relative aberration 

coefficient increase as the ratio of  NI/SQRT(Vr) increase. Also, at the lower 



 38 

values of  NI/SQRT(Vr) one has the best values of both spherical and 

chromatic aberrations, and one can select the values of  NI and Vr to keep 

this ratio small. 

0.5

0.55

0.6

0.65

0.7

0.75

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

NI/SQRT(Vr) ( Amp. turns / sqrt (volt))

C
c/

fo

H = 27 mm

H = 37 mm

H = 47 mm

H = 57 mm

H = 67 mm

 

Figure (3-9): The relative chromatic aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  ø = 60
o
 and   H =27, 37, 47, 57 and 67mm. 

 

 

The relation between Cs/fo and Cc/fo  and the length of the coil H is 

shown for NI/SQRT(Vr) =0.05 in figures (3-10) and (3-11), respectively. 

The values of Cs/fo and Cc/fo increase when the length of the coil H 

increases  and at the length H=27mm one can have a better result. Therefore, 

to reduce the values of relative spherical and chromatic aberrations the 

designer can use the shorter lengths to design the saddle deflection coil. 

Figure (3-12) shows the shape the upper half part of pole piece which is 

found by using the reconstruction method for  ø = 60 and H=27mm.    
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Figure (3-10): The relative spherical aberration coefficient as a  function      

of  the length of the coil  H  at NI/SQRT(Vr) = 0.05  .  
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Figure (3-11): The relative chromatic aberration coefficient as a  function      

of  the length of the coil  H  at NI/SQRT(Vr) = 0.05  .                                                 
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Figure (3-12): The pole piece shape  when ø = 60
o
  and  H = 27mm. 

 

 

 

3-2-2  Zero magnification condition    

3-2-2-1 effects of changing the angle  

 Both spherical and chromatic aberrations are computed using this 

operating condition. Different angles of saddle yoke coil,  ø = 30
o
, 45

o
, 60

o
 

and 75
o
 with constant length of coil H=37mm,  are used in calculations. 

Figure (3-13) shows the relation between Cs/fo and  NI/SQRT(Vr). In this 

figure, we find that at  ø = 75
o
 the lower value of aberrations can be found. 

From the figure one can also see that the quotient  Cs/fo increase when the 

ratio NI/SQRT(Vr)  increases  and the minimum value of Cs/fo = 0.31 is at 

NI/SQRT(Vr) = 0.035 . 
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Figure (3-13): The relative spherical aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 30
o
, 45

o
, 60

o
 and 75

o
 when H = 37mm. 

 

Figure (3-14) shows the relation between  Cc/fo  and  NI/SQRT(Vr). 

In this figure, we find that  ø = 75
o
 give us the best value of Cc/fo which is 

equal to  0.655  at NI/SQRT(Vr) = 0.035. The values of relative chromatic 

aberrations has the same behavior as relative spherical aberrations in figure 

(3-13). At the smaller values of NI/SQRT(Vr)  one can find the minimum 

values of both spherical and chromatic aberrations and by choosing the 

values of  NI  and Vr  one can keep the aberration coefficients small. The 

relation between Cs/fo and Cc/fo with the angle of saddle deflection coil  ø 

is shown in figures (3-15) and (3-16), respectively with NI/SQRT(Vr) =0.05. 

In both cases the Cs/fo and Cc/fo  decrease as value of  (ø) increases. The 

optimum values of Cs/fo and Cc/fo at are ø =75
o
 .  
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Figure (3-14): The relative chromatic aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø =30
o
, 45

o
, 60

o
 and  75

o
 when H = 37mm. 
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Figure (3-15): The relative spherical aberration coefficient as a  function 

of  the angle  ø  for  H = 37mm  at NI/SQRT(Vr) =0.05. 
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Figure (3-16): The relative chromatic aberration coefficient as a  function 

of  the angle ø  for  H = 37mm  at NI/SQRT(Vr) =0.05. 

 

The shape of the upper half part of pole piece for  ø = 75
o
 and 

H=37mm is shown in figure (3-17), where it is determined by using the 
reconstruction method. 
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Figure (3-17): The pole piece shape  when ø = 75
o
  and  H = 37mm. 
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3-2-2-2  effects of changing the length of coil 

 The variation of the length of the coil has been studied to find the 

optimum length which gives us the minimum values of spherical and 

chromatic aberrations. The  calculations  for different values of  the  length 

of  the  coil,  

 H = 27,37,47,57 and 67mm, are made for ø = 75
o
. Figure (3-18) shows the 

results of spherical aberration. In this figure we find that the  H = 27mm 

gives the lower values of Cs/fo which is equal to 0.434 at  

NI/SQRT(Vr)=0.035. From the calculation of all lengths we find that the all 

cases have the same behavior, where the relative aberration coefficient 

increases as the ratio NI/SQRT(Vr) increases. 
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Figure (3-18): The relative spherical aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  ø = 75
o
 and   H = 27, 37, 47, 57 and 67mm. 
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The effect of variation of the coil length on the relative chromatic aberration 

coefficient  is  shown  in  figure (3-19). One  finds  that  at  the  length  

H = 27mm the best value of Cc/fo which is equal to 0.715 at NI/SQRT(Vr) = 

0.035 is found. In all calculations of Glaser model we find that the spherical 

aberrations give smaller values than that of the chromatic aberrations. 
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Figure (3-19): The relative chromatic aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  ø = 75
o
 and  H =27, 37, 47, 57 and 67mm. 

  

 

The relation between Cs/fo and Cc/fo with the length of the coil  H  is 

shown in figure (3-20) and (3-21), respectively at constant NI/SQRT(Vr)  = 

0.05. the values of Cs/fo and Cc/fo increase when the length of the coil 

increases and  H = 27mm gives us the lower values.  
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Figure (3-20): The relative spherical aberration coefficient as a  function 

            of  the length of the coil  H  at  NI/SQRT(Vr)  = 0.05. 
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Figure (3-21): The relative chromatic aberration coefficient as a  function 

            of  the length of the coil  H  NI/SQRT(Vr)  = 0.05. 
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The shape of the upper part of the pole piece of  ø = 75
o
 and  H = 27mm 

appear in figure (3-22).  
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Figure (3-22): The pole piece shape  when ø = 75
o
  and  H = 27mm. 
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3-3  The Design By Using Grivet-Lenz Model 

 The axial flux density distribution for Grivet-Lenz model is given by 

the following [Szilagyi 1988]: 

)23()()( −=
b

z
SechBzB m    

where mB  is the maximum value of the magnetic field and it is calculated by 

using equation (2-10), b = 0.7593 a where a is the field width at half 

maximum ( mB / 2 ). 

 

The shapes of  axial flux density distribution B(z) and axial deflection 

flux distribution D(z) are shown in figure (3-23) and (3-24), respectively. 
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Figure (3-23): The axial flux density distribution B(z) of Grivet-Lenz model 
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Figure (3-24): The axial deflection flux density distribution D(z)                    

calculated with Grivet-Lenz model. 

 

 

 

3-3-1  Infinite magnification condition 

3-3-1-1  effects of changing the angle of the coil 

 The different angle of saddle yoke coil,  ø = 30
o
, 45

o
 and 75

o
 with 

constant coil length H =37mm, are studied. Figure (3-25) shows the relation 

between  Cs/fo and  NI/SQRT(Vr). In  this  figure, we  find  that  the  angle 

ø = 30
o
 gives the optimum value of Cs/fo. Also, we find that the ratio Cs/fo 

decreases as NI/SQRT(Vr) increases. As the ratio NI/SQRT(Vr) increases 

the all values the curves of quotient Cs /fo at different angles are closer to 

each other. Also, both results of the two angles ø =30
o
 and  ø =75

o
 take the 

same value at the ratio NI/SQRT(Vr) = 0.16 . 
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Figure (3-25): The relative spherical aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 30
o
, 45

o
 and 75

o
 when  H = 37mm. 

  

 

Figure (3-26)  shows the relation between Cc/fo and  NI/SQRT(Vr) 

for different angle ø = 30
o
, 45

o
 and 75

o
, respectively. In this figure, the 

values of  Cc/fo  are  reduced  when  NI/SQRT(Vr)  increases  and  the  

angle  ø = 30
o
 gives the lower values of Cc/fo up to a certain values of  

NI/SQRT(Vr) = 0.11 and after this value the Cc/fo will  increase and at the 

same time the two curves of  ø = 45
o
 and 75

o
 will decrease and the values of 

Cc/fo for the two cases take the same value at NI/SQRT(Vr) =0.16  and this 

value is smaller than the value of  ø =30
o
. That means we have two optimum 

depending of the values of the ratio NI/SQRT(Vr). 
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Figure (3-26): The relative chromatic aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 30
o
, 45

o
 and 75

o
 when  H = 37mm. 

 

 

  

 

The relation between Cs/fo and Cc/fo with the angle of saddle 

deflection coil ø is shown in figures (3-27) and (3-28), respectively at 

NI/SQRT(Vr) = 0.05. Both cases have the same behavior, where Cs/fo and 

Cc/fo are increased as the angle ø increases.  
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Figure (3-27): The relative spherical aberration coefficient as a  function 

of  the angle  ø  with  H = 37mm  at NI/SQRT(Vr) = 0.05. 
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Figure (3-28): The relative chromatic aberration coefficient as a  function 

of  the angle  ø  with  H = 37mm  at NI/SQRT(Vr) = 0.05. 
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The shape of the upper half part of the pole piece is found by using 

reconstruction method for ø =30
o
 and H = 37mm is shown in figure   (3-29).  
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Figure (3-29): The pole piece shape  when ø = 30
o
  and  H = 37mm. 
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3-3-1-2  effects of changing the length of the coil 

 After finding that the angle ø = 30
o
 represents optimum angle which 

give us the minimum aberrations, we try to see the effect of changing the 

length of the coil. Therefore, we choose H= 37, 47 and 57mm and the results 

are shown in figure (3-30). From the figure one can find that the Cs/fo 

decrease as  NI/SQRT(Vr)  increase up to NI/SQRT(Vr) = 0.118 then the 

ratio Cs/fo will be increased as  NI/SQRT(Vr)   increases. All the curves 

intercept at NI/SQRT(Vr) = 0.118 and have the same value of Cs/fo. For coil 

length  H = 57mm one can have the lower for Cs /fo  up to NI/SQRT(Vr) = 

0.118, while  H =37mm represents the best length of the coil when 

NI/SQRT(Vr)  > 0.118. 
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Figure (3-30): The relative spherical aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 30
o
 with  H = 37, 47 and 57mm. 
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Figure (3-31) shows the effect of variation of the coil length H  on the Cc/fo. 

In  this figure we find that the three curves take the same behavior of 

spherical aberration case. The relations between Cs/fo and Cc/fo with coil 

length H at NI/SQRT(Vr) = 0.05 are shown in figures (3-32) and (3-33), 

respectively. In the figures (3-30) and (3-31), the Cs/fo and Cc/fo very 

slightly  decrease as  H  increases and this description is true up to  

NI/SQRT(Vr)  = 0.118 for spherical case and up to 0.09  for chromatic case. 

Hence, when NI/SQRT(Vr)  > 0.118  the  behavior is reversed, i.e. Cs/fo and 

Cc/fo very slightly  increase as coil length H   increases.  
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Figure (3-31): The relative chromatic aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 30
o
 with  H = 37, 47 and 57mm. 
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Figure (3-32): The relative spherical aberration coefficient as a  function 

of  the coil length H  for  ø = 30
o
 . 
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Figure (3-33): The relative chromatic aberration coefficient as a  function 

of  the coil length H  for  ø = 30
o
 . 
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The  shape  of the upper half part of the  pole piece  for  ø = 30
o
  and   H = 

57mm  shown  in figure (3-34). 
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Figure (3-34): The pole piece shape  when ø = 30
o
  and  H = 57mm. 

 

 

 

3-3-2  Zero magnification condition 

3-3-2-1  effects of changing the angle 

 The spherical and chromatic aberrations are studied  in this operating 

condition. Different angles, ø = 45
o
, 50

o
 and 60

o
, of saddle yoke coil are 

taken into account. Figure (3-35) represents the results of these calculations. 

In this figure, we find that the Cs/fo decreases as  NI/SQRT(Vr) increases 

and all curves are closed to each other at the value of  NI/SQRT(Vr) higher 

than 0.1 . Also, we find that the  ø = 45
o
 gives us the optimum angle and the 

values of Cs/fo of  ø = 45
o
  for wide range of  NI/SQRT(Vr)  appear to be 

constant.  
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Figure (3-35): The relative spherical aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 45
o
, 50

o
 and 60

o
 when  H = 37mm. 

  

Figure (3-36) represents the results of chromatic aberration. From the 

calculations of three angles we find that the three curves take the same 

behavior of spherical aberration case. The relation between Cs/fo and Cc/fo 

with the angle of saddle deflection coil is shown in figures (3-37) and (3-38), 

respectively with NI/SQRT(Vr) = 0.05. In both cases the Cs/fo and Cc/fo 

increase as the angle increases.  
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Figure (3-36): The relative chromatic aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 45
o
, 50

o
 and 60

o
 when  H = 37mm. 
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Figure (3-37): The relative spherical aberration coefficient as a function of    

the angle  ø  with  H = 37mm. 
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Figure (3-38): The relative chromatic aberration coefficient as a function of    

the angle  ø  with  H = 37mm. 

 

 

 

The shape of the upper half part of the pole piece for  ø = 45
o
 and H = 37mm 

is shown in figure (3-39), where it is found by using the reconstruction 

method. 
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Figure (3-39): The pole piece shape  when ø = 45
o
  and  H = 37mm. 
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3-3-2-2  effects of changing the length of coil 

 Different  value  of  length of  the  coil, H = 37, 57 and  67mm   with 

ø = 45
o
, are studied to find the optimum length which give us the best values 

of Cs/fo and Cc/fo. The results of spherical  aberration are shown in figure 

(3-40).  In this figure, we find that the  H = 67mm represents the optimum 

length. The effect of changing the length of the coil on chromatic aberration 

is shown in figures (3-41). In  this figure it appears that the  H = 67mm  

gives the best result up to NI / SQRT(Vr) = 0.09, while H = 37mm represent 

the best length of the coil when NI / SQRT(Vr) > 0.09 . 
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 Figure (3-40): The relative spherical aberration coefficient as a  function 

of  NI / SQRT(Vr) for  ø = 45
o
 with  H = 37, 57 and 67mm. 
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Figure (3-41): The relative chromatic aberration coefficient as a  function            

of  NI / SQRT(Vr) for  ø = 45
o
 with  H = 37, 57 and 67mm. 

 

 

The relation between Cs/fo and Cc/fo with the length of the coil is 

shown in figures (3-42) and (3-43), respectively for NI/SQRT(Vr) = 0.05. 

The Cs/fo and Cc/fo decrease as the length of the coil increases. This 

behavior is true up to NI/SQRT(Vr) = 0.13 for spherical aberration and up to 

0.095  for chromatic aberration and the values of Cs/fo and Cc/fo will 

increase as NI/SQRT(Vr) > 0.13 for spherical and 0.095 for chromatic 

aberration.  
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Figure (3-42): The relative spherical aberration coefficient as a  function 

of  the coil length with constant angle  ø = 45
o
. 
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Figure (3-43): The relative chromatic aberration coefficient as a  function 

of  the coil length with constant angle  ø = 45
o
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The shape of the upper half   part  of  the  pole piece of  ø = 45
o
 and  

H = 67mm is given in figure (3-44).   
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Figure (3-44): The pole piece shape  when ø = 45
o
  and  H = 67mm. 
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3-4  The Design By Using New Suggestion Field Distribution  

 In order to reduce the spherical and / or chromatic aberrations we 

have suggested new deflection field distribution and we have studied both 

spherical and chromatic aberrations. We choose the geometrical shape of the 

deflection yoke coil which gives us optimum properties in both Glaser and 

Grivet-Lenz models. We find that the spherical and chromatic aberrations 

can be reduced in many cases.  

 

The suggestion deflection field distribution is given by: 

)33(])5(5[exp)10()( 2 −+−−−= zzBzD m  

 

The shape of axial deflection field distribution of suggestion field 

distribution is shown in figure (3-45). 
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Figure (3-45): The axial deflection flux density distribution D(z)                     

calculated with suggestion new field distribution model. 
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3-4-1  Comparison with Glaser model 

3-4-1-1  infinite magnification condition 

 In results of Glaser model we find that the best result due to the 

geometrical shape of coil angle  ø = 60
o
 and the coil length H = 27mm. This 

dimension is used in the present field distribution and the results of spherical 

and chromatic aberration are shown in figures (3-46) and (3-47), 

respectively. Under this operating condition, the new field distribution 

failure to reduce the spherical and chromatic aberrations. The shape of the 

upper quarter part of the pole piece for  ø = 60
o
 and H = 27mm which is 

calculated by using the present new field distribution is shown in figure (3-

48). 
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Figure (3-46): Comparison between the relative spherical aberration 

coefficient calculations for Glaser model and new suggestion field for 

ø = 60
o
 and H = 27mm. 
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Figure (3-47): A comparison between the relative chromatic aberration 

coefficient calculations for Glaser model and the new suggestion field for ø 

= 60
o
 and H = 27mm. 
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Figure (3-48): The pole piece shape  when ø = 60
o
  and  H = 27mm. 



 68 

3-4-1-2  zero magnification condition 

 In this operating condition, the geometrical shape of the saddle 

deflection yoke coil of angle  ø = 75
o
  and  H = 27mm, which gives us the 

best result in Glaser model, is taken into account. The calculation by using 

the new field distribution shows that both spherical and chromatic 

aberrations can be reduced under this operating condition and one can 

optimized the result by using the new deflection field distribution as is 

shown in figures (3-49) and (3-50) and the upper quarter part of the pole 

piece is shown in figure (3-51). 
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Figure (3-49): A comparison between the relative spherical aberration 

coefficient  calculations  for  Glaser model  and  the new  suggestion  field  

for ø = 105
o
 and H = 27mm. 
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Figure (3-50): A comparison between the relative chromatic aberration 

coefficient  calculations  for  Glaser model  and  the new  suggestion  field   

for ø = 75
o
 and H = 27mm. 
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Figure (3-51): The pole piece shape  when ø = 75
o
  and  H = 27mm. 
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3-4-2  Comparison with Grivet-Lenz model 

3-4-2-1  infinite magnification condition  

 In this operating condition, the two best dimensions of optimum result 

in Grivet-Lenz model are taken into account. Firstly, the angle  ø = 30
o
  and 

the length of coil  H = 37mm  are studied and the results of spherical and 

chromatic aberrations are shown in the figures (3-52) and (3-53). From the 

two figures, one can find that our new field distribution succeeds in reducing 

only the spherical aberration, giving us a good result for a spherical 

aberration case in comparison to Grivet-Lenz calculations. Also, the results 

for chromatic aberrations stile acceptable with very small increasing. 

Secondly, the angle  ø = 30
o
 and the length of coil  H = 57mm  are used to 

calculate the spherical n and chromatic aberrations and the results are shown 

in figures (3-54) and (3-55). Also, the new field distribution calculations 

succeeds in  reducing the value of spherical aberration and the results for 

chromatic aberrations stile acceptable with slightly increasing. 

Finally, we find that the new field distribution can be used successfully in 

the calculation of both spherical and chromatic aberrations and it gives us a 

very acceptable result in this case. 
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Figure (3-52): A comparison between the relative spherical aberration 

coefficient calculations of Grivet-Lenz model and a new suggestion field for 

ø = 30
o
 and H = 37. 
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Figure (3-53): A comparison between the relative chromatic aberration 

coefficient calculations of Grivet-Lenz model and a new suggestion field for 

ø = 30
o
 and H = 37. 
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Figure (3-54): A comparison between the relative spherical aberration 

coefficient calculations of Grivet-Lenz model and a new suggestion field for 

ø = 30
o
 and H = 57. 
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Figure (3-55): Comparison between the relative chromatic aberration 
coefficient calculations for Grivet-Lenz model and new suggestion field for 

ø = 30
o
 and H = 57. 
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 The  shape of  upper quarter part of  the  pole piece  for ø = 30
o
   with 

H = 37mm  is shown in figure (3-56).  

 

          

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0

Z / L

R
 / 

L

 

Figure (3-56): The pole piece shape  when ø = 30
o
  and  H = 37mm. 

 

The shape of the upper quarter part of the pole piece  for ø = 30
o
 with 

H = 57mm is shown in figure (3-57). 
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Figure (3-57): The pole piece shape  when ø = 30
o
  and  H = 57mm. 
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3-4-2-2  zero magnification condition  

 In this operating condition, the optimum two cases of Grivet-Lenz 

model have been studied. Firstly, the case of  ø = 45
o
  and H = 37mm are 

studied and the results of spherical and chromatic aberrations are shown in 

figures (3-58) and (3-59). Spherical aberration can be reduced by new field 

distribution calculation. In figure (3-58), the values of Cs / fo for a new field 

distribution calculations is smaller than that of Grivet-Lenz model 

calculations and it gives best results up to NI / SQRT(Vr) = 0.12 and the two 

curves take the same value of Cs / fo at this point and after it the values of 

Cs / fo of new field distribution calculations have slightly increased in 

comparison with Grivet-Lenz model. Secondly, the case of  ø = 45
o
  and  H 

= 67mm are studied and both spherical and chromatic aberrations results are 

shown in figures (3-60) and (3-61). The new field distributions succeeds in 

reducing spherical aberration at the lower values of the ratio NI / SQRT(Vr)  

up to 0.1 and after this value the quotient Cs / fo is still acceptable with a 

slight increase in comparison with Grivet-Lenz model calculations as shown 

in figure (3-60). From figures (3-59) and (3-61), one can show that the 

values of quotient Cs / fo for a new field distribution calculations have a 

very small increase in comparison with Grivet-Lenz model calculations but 

this result is still acceptable and gives a better result. 
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Figure (3-58): A comparison between the relative spherical aberration 

coefficient calculations of Grivet-Lenz model and a new suggestion field for 

ø = 45
o
 and H = 37. 
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Figure (3-59): A comparison between the relative chromatic aberration 

coefficient calculations of Grivet-Lenz model and a new suggestion field for 

ø = 45
o
 and H = 37. 
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Figure (3-60): Comparison between the relative spherical aberration 

coefficient calculations for Grivet-Lenz model and new suggestion field for 

ø = 45
o
 and H = 67. 
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Figure (3-61): A comparison between the relative chromatic aberration 

coefficient calculations of Grivet-Lenz model and a new suggestion field for 

ø = 45
o
 and H = 67. 
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The upper half part of the pole piece for ø = 45
o
 and H = 37mm is  

shown in figure (3-62).      
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Figure (3-62): The pole piece shape when ø = 45
o
 and H = 37mm. 

     

The upper half part of the pole piece for ø = 45
o
 and H = 37mm is shown in 

figure (3-63).  
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Figure (3-63): The pole piece shape when ø = 45
o
 and H = 67mm. 
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3-5 The Design By Using The Variable-Aperture Projection (V-

AP) Arrangement 

 In the present section, we have determined  the design of the deflector 

in a variable-aperture projection and the scanning system is based on the 

MOL concept [Goto 1978]. The axial field distribution B(z) is given by the 

following equation:  

)43(
)(

exp)(
2

−





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

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



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

 −−=
R

Pz

R

A
zB  

where A, P and R  are parameters specifying amplitude, position and radius 

of the coil, respectively. 

 The axial flux density distribution of the deflector D(z) is computed 

by using equation (2-11), where B' in equation (2-11) is computed by using 

equation (3-4). The general shape of axial  field density distribution B(z) and 

deflection field density distribution D(z) are shown in figures (3-64)   and 

(3-65) , respectively. 
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Figure (3-64): The axial flux density distribution B(z) of a VAP 

arrangement.  
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Figure (3-65): The axial deflection flux density distribution D(z)                     

calculated with  VAP arrangement. 

 

 

3-5-1  Infinite magnification condition 

 In this part of the present work, we try to find the optimum values of 

spherical and chromatic aberrations as a function of  changing the position 

of the coil  P. The following coil positions P = 0.3, 0.4, 0.5, 0.6 and 0.7 are 

taken into account in the calculations; while the values of  A  and  R  are 

1.80579  and  0.2, respectively[Goto 1978]. The results of spherical 

aberration in this operating condition are shown in figure (3-66). In this 

figure we find that the position of coil  P = 0.7 give us the best values of 

Cs/fo  for range of  NI/SQRT(Vr). The results of calculations of chromatic 

aberrations  shown in figure (3-67) coincide with the results in the spherical 

aberration.  
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Figure (3-66): The relative spherical aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  P = 0.3, 0.4, 05, 0.6 and 0.7 . 
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Figure (3-67): The relative chromatic aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  P = 0.3, 0.4, 0.5, 0.6 and  0.7 . 
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The relation between Cs/fo  and  Cc/fo as a function of  the position of 

the coil  P  is shown in the figures (3-68) and (3-69), respectively. In these 

two figures, we find that the values of Cs/fo  and  Cc/fo decrease as the 

position of the coil increases.   
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Figure (3-68): The relative spherical aberration coefficient as a  function 

            of  the position of the coil   P . 

0.66

0.662

0.664

0.666

0.668

0.67

0.672

0.674

0.676

0.678

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P(mm)

C
c/

fo

 

Figure (3-69): The relative chromatic aberration coefficient as a  function 

            of  the position of the coil  P . 
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The shape of the upper quarter part of the pole piece s of this case is shown 

in figure (3-70). 
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Figure (3-70): The pole piece shape  for P = 0.7  . 
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3-5-2  Zero magnification condition 

 The same values of the position of the coil  P  which are used in 

infinite magnification condition are used. The results of the spherical 

calculations are shown in figure (3-71). From this figure we find that the 

position of the coil  P = 0.3 gives the lower values for spherical aberration. 
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Figure (3-71): The relative spherical aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  P = 0.3, 0.4, 0.5, 0.6 and 0.7 . 

  

The results of the calculations of chromatic aberrations are shown in 

figure (3-72) and they coincide with the results in the spherical aberration 

case. The relation between  Cs/fo  and  Cc/fo  with the position of coil is 

shown in figures (3-73) and (3-74). In these two figures, we find that the 

values of  Cs/fo  and Cc/fo increase as the position of coil increases, except 

at the position between  P = 0.5 and 0.6 where the Cs/fo  and Cc/fo decrease. 
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Figure (3-72): The relative chromatic aberration coefficient as a  function 

            of  NI / SQRT(Vr) for  P = 0.3, 0.4, 0.5, 0.6 and 0.7 . 
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Figure (3-73): The relative spherical aberration coefficient as a  function 

            of the position of the coil  P . 
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Figure (3-74): The relative chromatic aberration coefficient as a  function 

            of the position of the coil  P. 

 

The shape of the upper quarter part of the pole piece of this case is shown in 

figure (3-75).  
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Figure (3-75): The pole piece shape  for P = 0.3  . 

 



 86 

 

 

 

 

 

 

 



 86 

 

 

Chapter Four 

 

4-  Results And Discussion Of Electrostatic Deflector 

4-1  Introduction  

In this part of the present work both analysis and synthesis approaches are 

used to find the optimum design of electrostatic deflectors which give us the 

minimum aberrations. In the analysis approach calculations we have studied the 

properties of asymmetrical and symmetrical electrostatic deflectors which consist 

of two parallel-plates have been studied. The optimization is made by changing the 

geometrical shape of the deflector, i.e. the variation of the  vertical and horizontal 

dimensions of the deflector plates, to study its effects on the variation of the 

geometrical shape on the spherical and chromatic aberrations. The axial potential 

distributions of the symmetrical and asymmetrical deflectors are computed by 

using the finite element method (FEM). 

 

After studying the properties of symmetrical electrostatic deflector by using the 

analysis approach we have tried to find the optimum design of this type of 

electrostatic deflector by using the synthesis approach. To achieve this we suggest 

an axial potential distribution which satisfies the solution of Laplace  equation 

taken in the analytical approach. Then the shape of deflector is found by using the 

reconstruction method.  
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4-2  Asymmetrical Electrostatic Deflector 

The asymmetrical electrostatic deflector, shape figure (4-1), is used in the 

present calculations. The horizontal dimension  H is changed, as H=24, 30 and 

40mm with constant vertical dimension V = 15mm , in order to find the optimum 

value of the spherical and chromatic aberrations. The axial potential distribution of 

these three cases which are computed by using the finite element method ( FEM ) 

are shown in figure (4-2).   

 

 

 

           

  

Figure (4-1): The shape of asymmetrical electrostatic deflector. 
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Figure (4-2): The axial potential distribution for asymmetrical electrostatic 

deflector with horizontal dimension H = 24, 30 and 40mm. 

 

 

4-2-1  Infinite magnetic condition 

 The spherical and chromatic aberrations are computed in this operating 

condition. To find the optimum design we have tried to study the effect of 

variation the horizontal dimension H  of the deflector. Different values of 

horizontal dimension, H=24, 30 and 40mm, are taken into account in the 

calculations of spherical and chromatic aberrations.  The results of spherical 

aberration calculations are shown in figure (4-3). The optimum horizontal 

dimension which gives us the minimum value of spherical aberration is H = 24mm 

. In  this  figure  we  also find  that  the  both H = 24 and 30mm have the same 

behavior where the values of Cs/fo decrease as Ui / Uo increase, while for H = 

40mm the values of Cs/fo decrease as Ui / Uo increase up to Ui / Uo = 10 then the 

value of Cs/fo will be increased.  



 89 

 

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25

Ui / Uo

C
s/

fo

H=24 mm

H=30 mm

H=40 mm

 

Figure (4-3): The relative spherical aberration coefficient as a function of Ui / Uo 

for  H = 24, 30 and 40mm. 

 

 In chromatic aberration calculations we have found that the value of 

chromatic aberration can be reduced to very small values at Ui / Uo = 14  by 

choosing the horizontal dimension H = 24mm  as is shown in figure (4-4).  In this 

figure  we find  that  the curve of  H = 24mm  has  the  opposite  behavior  to  the   

curve of  H = 40mm. In figures (4-5) and (4-6) one can see that the spherical and 

chromatic aberrations have the inverse proportion with the horizontal dimension. 

Therefore, according to the type of application the designer choose the horizontal 

dimension of the deflector.  
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Figure (4-4): The relative chromatic aberration coefficient as a function of Ui / Uo 

for  H = 24, 30 and 40mm. 
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Figure (4-5): The relative spherical aberration coefficient as a function of the 

horizontal dimension  H .  
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Figure (4-6): The relative chromatic aberration coefficient as a function of the 

horizontal dimension  H .  
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4-2-2  Zero magnification condition 

 Under this  operating condition  the  same values of  horizontal dimension, 

H = 24, 30 and 40mm, are also  tested to show its effects on spherical and 

chromatic aberrations. The results of the calculations of spherical aberration is 

shown in figure (4-7). The horizontal dimension H = 30mm gives us the best result 

in comparison with other cases as shown in this figure. The values Cs/fo appear to 

be slightly linear variation in all Ui / Uo range. While  the  other  two dimensions 

H = 24 and 40mm have a minimum at Ui / Uo = 9  and relative high values of 

Cs/fo. 
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Figure (4-7): The relative spherical aberration coefficient as a function of Ui / Uo 

for  H = 24, 30 and 40mm. 
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 From figure (4-8) one can see that the horizontal dimension H = 40mm 

reduces  the  value  of  relative  chromatic  aberration  to  very  small  values   at  

Ui / Uo =11.7 . The results of  H = 24 and 30mm have the opposite behavior of the 

case of  H = 40mm where the value of Cc/fo increases as Ui / Uo increases. 

The relation between the relative spherical aberration and horizontal dimension ( H 

) is shown in figure (4-9). The relative spherical aberration values decrease as the 

horizontal dimension increases up to H = 30mm then the value of Cs/fo will be 

increased. While in the chromatic aberration case we find the opposite behavior 

where we have the maximum value of Cc/fo at H = 30mm as is shown in  figure 

(4-10). 
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Figure (4-8): The relative chromatic aberration coefficient as a function of  Ui / Uo 

for  H = 24, 30 and 40mm. 
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Figure (4-9): The relative spherical aberration coefficient as a function of         

horizontal dimension  H . 
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Figure (4-10): The relative chromatic aberration coefficient as a function of         

horizontal dimension  H. 
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4-3  Symmetrical Electrostatic Deflector   

The symmetrical electrostatic  deflector whose  shape is shown  in  figure (4-

11) is used with different geometrical dimensions to study the effect of the 

different vertical dimension V  on both spherical and chromatic aberrations. Three 

values of vertical dimensions  V, V = 60, 55 and 50mm, are studied. The axial 

potential distributions of these cases are computed by using the finite element 

method ( FEM ) which is shown in figure (4-12). 

  

 

 

 

          

          

Figure (4-11): The shape of  symmetrical electrostatic deflector. 
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Figure (4-12): The axial potential distribution for symmetrical electrostatic 

deflector with horizontal dimension V = 50, 55 and 60mm. 

 

 

4-3-1  Infinite magnification condition   

The effect of changing the vertical dimension V  on spherical and chromatic 

aberrations under this operating condition is shown with a different value, V = 60, 

55 and 50mm, in figures (4-13) and (4-14). The calculations show that the vertical 

dimension V = 50mm gives us the lower value of relative spherical and chromatic 

aberrations. The values of relative spherical and chromatic aberrations increase as 

the values of  Ui / Uo increase of all states which have the same behavior as is 

shown in figures (4-13) and (4-14). Both spherical and chromatic aberrations have 

the same relation with the vertical dimension  V,  where the relative spherical and 

chromatic aberrations increase as the vertical dimensions increase and this relation 

appears in figures (4-15) and (4-16).  
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 Figure (4-13): The relative spherical aberration coefficient as a function of           

Ui / Uo for  V = 50, 55 and 60mm. 
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Figure (4-14): The relative chromatic aberration coefficient as a function of         

Ui / Uo for  V = 50, 55 and 60mm. 
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Figure (4-15): The relative spherical aberration coefficient as a function of           

vertical dimension  V. 
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Figure (4-16): The relative chromatic aberration coefficient as a function of         

vertical dimension  V. 



 99 

4-3-2  Zero magnification condition  

The same values of the vertical dimensions, V = 50, 55 and 60mm, are used 

in the calculations under this operating condition. The results of spherical and 

chromatic aberrations are shown in figures (4-17) and (4-18). As same as the 

infinite magnification condition results the vertical dimension V = 50mm give us 

the lower values for both spherical and chromatic aberration as is shown in these 

two figures. Also, the relative spherical and chromatic aberrations have the same 

proportion with the vertical dimension V as shown in figures (4-19) and (4-20). 
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Figure (4-17): The relative spherical aberration coefficient as a function of           

Ui / Uo for  V = 50, 55 and 60mm. 
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 Figure (4-18): The relative chromatic aberration coefficient as a function of         

Ui / Uo for  V = 50, 55 and 60mm. 
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Figure (4-19): The relative spherical aberration coefficient as a function of           

vertical dimension  V. 
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Figure (4-20): The relative chromatic aberration coefficient as a function of         

vertical dimension  V. 
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4-4  The Suggested  Potential  Distribution  

After using the analysis approach to find a better design of an electrostatic 

deflector, the synthesis approach has been used to achieve the same aim. 

Therefore, we suggest the following axial potential distribution for the symmetrical 

electrostatic deflector: 

 

 )14()1()( 2 −−= ZbUzU O  

where OU  is the maximum  value of potential and  b is constant can be choice 

depending on the axial potential distribution of the deflector which is calculated 

from analysis approach where  b = 0.004 in this case. The axial potential 

distribution which is computed by using equation (4-1) is shown in figure (4-21). 

The comparison with the symmetrical deflector calculations is made in figure (4-

22). 
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Figure (4-21): The axial potential distribution of electrostatic deflector which is 

computed using equation (4-1) . 
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Figure (4-22): A comparison between the potential distribution of electrostatic 

deflector which is computed using equation (4-1) and the potential distribution of 

symmetrical electrostatic deflectors which are computed using the analysis 

approach.  

 

 

4-4-1 Infinite and zero magnification condition   

By using the suggestion potential distribution during the synthesis approach 

, we find that the results of both infinite and zero magnification condition are the 

same and they take the exact values of the spherical and chromatic aberrations. 

Also, the calculations of spherical aberration are able to reduce the relative 

spherical  aberration to at small potential ratio  Ui / Uo = 5  as is shown in figure 

(4-23). The calculations of chromatic aberration give us good results as is shown in 

figure (4-24) where at Ui / Uo = 6 the values of Cc/fo = 1.07 . From these two 

figures one can see that the relative spherical and chromatic aberrations increase as 

Ui / Uo increase.  
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In comparison with the results of the symmetrical electrostatic deflector 

calculations when the analysis approach  is used, we find that the calculations of 

the synthesis approach gives us better results than those of both spherical and 

chromatic aberrations in the analytical approach as  is shown in figures (4-25) and 

(4-26).  

The shape of electrostatic deflector  is found by using the reconstruction method 

and the shape of the plate of this deflector is shown in figure (4-27). 
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Figure (4-23): The relative spherical aberration coefficient as a function of           

Ui / Uo . 
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Figure (4-24): The relative chromatic aberration coefficient as a function of         

Ui / Uo . 
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Figure (4-25): A comparison between the calculations of the relative spherical 

aberration coefficient  by using the analysis approach of symmetrical electrostatic 

deflector and the calculation by using the synthesis approach by using the 

suggested potential distribution . 
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 Figure (4-26): A comparison between the calculations of the relative chromatic 

aberration coefficient  by using the analysis approach of the symmetrical 

electrostatic deflector and the calculation by using the synthesis approach.  
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Figure (4-27): The shape of electrostatic deflector which is computed by using  the 

suggested potential distribution . 
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Chapter Five 

 

5- Electron-Optical Column  

5-1  Electron-Optical Column Design  

One of the important applications is the ion and electron lithography, which 

uses the electron-optics as a tool, these devices need the electron-optical column to 

achieve many purposes. The electron-optical column consists of a series of 

magnetic  and / or electrostatic  lenses  and / or deflectors. The incoming 

accelerated electron-beam enters a field of the first optical-element which is 

operated under zero or infinite magnification condition  and then it emerges from 

the first optical-element to enter the field of the next optical-element which also 

operates under a limited operating condition and this process is repeated to final 

stage.      

 

 One can use the magnetic and electrostatic deflectors which are studied in 

our present work to make many types of electron-optical column. The arrangement 

of the magnetic and electrostatic deflectors gives us the final properties  

of the electron-optical column, and  this arrangement gives us the operating mode 

of the column.       

 

 Figures 5-1, 5-2, 5-3 and 5-4 show the different types of the electron-optical 

column. For example, the electron-optical column of figure 5-1 consists of six 

deflectors: the symmetrical electrostatic deflector, the magnetic deflector, the 

symmetrical electrostatic deflector, the asymmetrical electrostatic deflector, the 

asymmetrical electrostatic deflector  and the magnetic deflector. The accelerated 

electron-beam enters the first symmetrical electrostatic deflector which has an 
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infinite operating condition closed to optical-axis then it exits from this deflector 

with a shifting equal to one unit and the electron-beam enters the magnetic 

deflector which operates under zero magnetic condition then the electron-beam 

retrain to the optical-axis and at the next stage the electron-beam enters the 

symmetrical electrostatic deflector and emerges to enter the asymmetrical 

electrostatic deflector which has the infinite magnification condition then the fifth 

and sixth stages consist of asymmetrical electrostatic and magnetic deflectors with 

zero magnification condition, respectively. The final result of the whole column 

represents the zero magnification condition and this result is the same as that in 

figures  5-3  and 5-4, while the column in figure  5-2 represents the infinite 

magnification condition. 
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Figure 5-1: The trajectory of the accelerated electron-beam along the optical axis 

of the electron-optical column. 
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Figure 5-2: The trajectory of the accelerated electron-beam along the optical axis 

of the electron-optical column. 
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Figure 5-3: The trajectory of the accelerated electron-beam along the optical axis 

of the electron-optical column. 
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Figure 5-4: The trajectory of the accelerated electron-beam along the optical axis 

of the electron-optical column. 
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Chapter Six 

 

6-  Conclusion And Suggestions For Future Work   

6-1 Conclusion Of Magnetic Deflector Calculations  

By using the synthesis approach in magnetic deflector  calculations it is 

found that: the optimization can be made via changing the axial field distribution 

model and the new axial field distribution model could be suggested. Secondly, the 

optimization can be achieved by changing the geometrical shape of the coil where 

the variation of the angle of the coil reduces either the spherical aberration or the 

chromatic aberration or both. Then the spherical and chromatic aberration can be 

reduced in another stage  by changing the length of the coil. In many cases the 

optimization calculations succeeds to reduce either the spherical aberration  or the 

chromatic aberration  and in some cases both spherical and chromatic aberrations 

are reduced.  

To find the optimum results one can choose the best value of   NI / SQRT [ Vr ] 

which gives us the minimum values of the relative spherical and chromatic 

aberrations, where at a limited value of  NI / SQRT [ Vr ] we have the minimum 

value of relative spherical and chromatic aberrations. 

 

 

6-2  Conclusion Of Electrostatic Deflector Calculations 

By using the analysis approach in  the calculations of electrostatic deflectors 

it is found that the spherical and chromatic aberrations can be reduced by choosing 

the best geometrical shape and one can find the best geometrical shape by testing 

some vertical and horizontal dimensions of the parallel-plates. In some cases the 
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chromatic aberrations can be reduced to a very small values by choosing the 

special dimensions.  

By using the potential distributions of the cases which are computed by the finite 

element method   [ FEM ] in the analysis approach one can suggest the new 

potential distribution in the synthesis approach and this potential distribution can 

give us the best result. Also, we find that the suggested potential distribution 

succeeds to reduce the spherical aberration to be zero and the result of the 

suggested potential distribution is better than that of the analysis approach. Finally, 

in the synthesis approach and with the suggested potential distribution the results 

of the infinite and zero magnification condition  coincide.  

 

Future Work  

 One can use a different approach to do the optimization, where in the case of 

magnetic deflectors one can use other types of  coils as sources of magnetic 

deflection field and the geometrical shapes of these coils can be changed to reach 

an optimum design. Also, one can use another type of axial magnetic deflection 

models, and also, another new axial magnetic deflection field  distribution can be 

suggested.  

 In the case of electrostatic deflectors one can use another mathematical 

method, for example: the FDM, to determine the axial potential distribution in 

analysis approach calculations. Different types of electrostatic deflectors can be 

studied and by varying their geometrical dimensions and the distance between 

plates of deflectors one can find an optimum design.   
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Chapter One 
 

 
1-  General Introduction 

1-1  Introduction 

The analogy between electron optics and light optics extends to the 

domain of deflection systems [ Paszkowski 1968 ]. The systems which 

deflect electron rays correspond to prisms in ordinary optics; thus, they 

are often called electron prisms. Electron beams are deflected for many 

purposes [Szilagyi 1988]. The most common and classical type of 

deflection is used in cathode ray tubes, lithography machines, scanning 

electron microscopes, electron accelerators, electron-beam manufacturing 

technologies and some other analytical instruments. Its purpose is to scan 

the beam over a surface. 

 

 A deflection system is an arrangement of electrodes or coils by 

means of which it is possible to exert an influence on the path of an 

electron ray. A fundamentally different type of deflection is needed in 

cycle particle accelerators, mass and beta spectrometers, and energy 

analyzers. In this case, deflection is used either for guidance of beams 

along curved trajectories or separation of particles with different energies 

and/or masses from each other. In both cases the main trajectory of the 

beams is a curve. 

 

 A deflection system must satisfy a number of conditions. First of 

all, it should have a high deflection sensitivity  which is the ratio of the 

displacement of the spot on the screen (surface) to the deflection voltage 

or to the current flowing in the deflection coil. This displacement should 

be proportional to the factor causing the deflection. Moreover, this system 



 2 

should not introduce distortion by de-focusing the electron ray at the 

surface of the luminescent screen.  

 

 Electron deflection systems are regions in which there is a two-

dimensional electrostatic or magnetic field of plane symmetry. In fixed-

beam instrument [Hawkes and Kasper 1989], essentially in conventional 

transmission electron microscopes, deflection plays a minor role and is 

provided only to permit nonmechanical alignment of the column. In 

scanning devices, the role of the optics of the deflection system is to 

move a focused spot in a raster pattern over a prescribed area of a 

specimen or a viewing screen, or to sweep a two-dimensional image over 

a small detector, and its design is at least as important as that of the 

lenses. The deflection system becomes just one member of the complex 

sequence of optical components that make up these hybrid instruments. 

 

The deflection system may be either magnetic or electric, or mixed, 

and each type has practical application. In television tubes, for example, 

the power consumption is higher for magnetic deflectors, but these are 

nevertheless preferred, for it is easier to provide the required deflection 

current than the voltage needed in an electric system; moreover, the 

distortions are lower. In the range of frequencies used in television 

systems, induction effects do not yet play a role. 

 

 The electrostatic deflectors usually consist of pairs of plates, 

symmetrical about a plane through the optical axis. They may have a 

wide variety of shapes, ranging from simple rectangles parallel to each 

other with tilted or curved surface ( see figure 1-1 ). By choosing the 

electrode potentials appropriated, not only can deflection at an arbitrary 

azimuth be achieved but the aberration can also be partially corrected. 
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Figure (1-1): Shape of electrostatic deflector [Hawkes and Kasper 1989] 

 

 In the magnetic deflectors, two geometries are common: saddle 

coils and toroidal coils. Saddle coils (see figure 1-2) are usually enclosed 

in a ferrite sheath, thereby reducing the wastage of flux. The shielding is 

omitted only in devices design function at high deflection frequencies in 

order to reduce the inductance. In toroidal structures illustrated in figure  

1-3, the turns of the two individual coils are wound meridionally, 

( lengthwise around a ferrite yoke ) which may have a more complicated 

shape than a simple cylinder or cone.   

 

 

 

 

Figure (1-2): Saddle deflection coil [Hawkes and Kasper 1989]. 
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Figure (1-3): Toroidal deflection coil [Hawkes and Kasper 1989]. 

 

 

 The study of the deflection systems optics passes essentially 

through the same stages as those already encountered for round lenses or 

quadruples; the novel aspects arise from the new symmetry conditions. 

The treatment of the deflection system have considered the system a 

rotationally symmetric similar to the round-lenses case and the line of 

intersection of the symmetry or antisymmetry planes in quadruple system 

– to have experienced no transverse force. 

 

1-2  Historical Development   

 
1-2-1  Electrostatic deflector 

 
The calculation of energy distribution was used by Poulin [1978] for 

optimization of 180
o
 hemispherical electrostatic deflector. Energy 

distribution has been computed for a large range of possible dimensions 

by means of least-square fits. Munro and Chu [1981a] used the numerical 

analysis of electron beam lithography system to describe the numerical 

computation of the field in electrostatic deflectors by the charge density 

method and finite element method. The electrostatic deflectors are 

H 
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assumed to have a fourfold symmetry, with electrodes consisting of 

cylindrical and/or conical segments. 

 

High performance electrostatic deflectors are required for wide 

angle and high precision deflection systems. Much work has been 

performed and reported regarding multipole-type deflectors without 

asymmetrical errors. Asymmetrical errors may deteriorate wide range 

deflection properties. Geometrical errors in manufacturing were taken 

into account by Idesawa et al [1983] in evaluating nonequisectored-type 

multipole electrostatic deflectors. A contribution factor was introduced to 

evaluate wide range deflection properties. They demonstrated that the 

deflection performance of manufactured deflectors could easily be 

evaluated  by the proposed method from their geometrical dimension. 

 

 Soma et al [1984] developed  an interactive computer aided design 

and evaluation system sectored-type electrostatic deflectors. The 

geometrical dimensions of a deflector were measured and a computer 

model was constructed. By this system, the wide area deflection 

properties can be estimated from the computer model and displayed 

graphically. 

 

 The concept of asymptotic aberrations of combined focusing-

deflection systems were discussed by Tang [1986]. The first order 

asymptotic chromatic and third-order geometrical aberration coefficients 

of combined electrostatic focusing-deflection system had been derived. 

Each of the aberration coefficients was expressed as polynomials in 

object distance or in reciprocal of magnification.  
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 An optimization method for nonequiradial electrostatic deflection 

systems was made by Grigorov [1988]. The improvement of the 

electrostatic deflectors characteristics could be achieved by a 

nonequiradial arrangement of the deflection electrodes. A graphical 

method for determining the parameters of nonequiradial deflectors based 

on the known integral equation method was developed. 

 

 The aberration of electrostatic lens and electrostatic deflection 

systems due to misalignment was analyzed by Kurihara [1990] for the 

design of micro fabrication system. The potential for lens and deflector 

having an electrode axis shift was approximated by introducing a shift 

function that expressed the electrode shift from the optical axis. On the 

basis of this approximation, mixed aberrations due to misalignment of 

lens and deflector electrodes could be analyzed, including the effect of a 

nonuniform electrode axis shift.   

 

 Electrostatic deflection systems in which the deflector plates are 

edgeways to the beam were investigated by Read [1999]. A deflection 

system that can deflect in both transverse directions was considered and 

the geometry was optimized to minimize the aberrations, which were 

found to be 4 to 30 times smaller than the aberrations of conventional 

deflection system. 

 
 
 
 
 
 
 
 
 



 7 

1-2-2  Magnetic deflector 
 
Munro [1974] derived the formula for calculating the first- order 

optical properties, third-order geometrical aberrations, and first-order 

chromatic aberrations of combined round magnetic lens and two-

dimensional deflection systems. His formulae are applicable to the 

general case in which the lens and deflector field are superimposed on 

one another. Munro [1975] introduced the methods for computing the 

optical properties of any combination of magnetic lenses and deflection 

yokes, including the most general case in which the lens and deflector 

fields may physically be superimposed. 

 

 

 The design of improved postlens deflection coils for electron-beam 

microfabrication was described by Amboss [1975]. These coils were 

made for use in a Cambridge Instrument Co. model S-4 scanning electron 

microscope column. 

 

 The considerations and results of designing air-core scanning 

systems comprising round lenses and saddle-type deflection coils were 

presented by Ohiwa [1977]. He found that, if the deflection coils were 

cosine distributed, the third-order deflection aberrations were similar to 

those of a round magnetic lens. This round lens type deflection aberration 

can be eliminated or reduced by using the Moving Objective Lens (MOL) 

and predeflection. 

 

 A method called " dynamic programming" was introduced by 

Szilagyi [1977a,b , 1978]. In this approach the integration interval 

between the object and the image is divided into a set of small 
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subintervals; then starting from the object coordinate, for instance for 

spherical aberration is minimized under given constrains in each of these 

subintervals. The result is an analytic axial field distribution, which is 

then assumed to be the best field. 

 

 Goto et al [1978] introduced design calculations of a variable-

aperture aberration and scanning exposure system. Aberration formulas 

were developed for the focus deflection system, which could handle 

systems consisting of a set of focus and deflection coils arranged in 

rotated angular positions, taking into account the finiteness of the object. 

 
 Lencova [1980] had shown that the aberration coefficients of an 

electron-beam deflection system with several deflection stages could be 

expressed for given geometry and different excitations and rotation of 

individual stages with the help of coefficients of individual stages and a 

set of auxiliary coefficients. Then the optimum geometry and set-up of an 

electron-beam scanning system was found. 

 

 Kuroda [1980] introduced the method for calculating the deflective 

aberration for a deflection system with two deflectors and a lens by using 

the independent aberration of each deflector. The method gives the 

deflective aberrations without the calculation of deflection fields or 

paraxial trajectories when the conditions ( rotation angle and coil 

current ) of each deflector are changed. This method can be applied 

successfully whenever the centers of the deflection fields are separated  

from each other by more than the half value width of the wider deflection 

field. 
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 The numerical analysis of magnetic deflector in electron-beam 

lithography system was carried out by Munro and Chu [1981b]. Formulae 

were derived for calculating the first and third harmonic components of 

the magnetic deflection field, for both toroidal and saddle yokes, either in 

free-space regions by using the Biot-Savard law or in the presence of 

rotationally symmetric ferromagnetic materials by using the finite 

element method. 

 

 A combined system consisting of round lenses and magnetic 

deflector with superimposed fields had been studied by Jiye [1981]. The 

general expressions for superimposed fields and trajectories were 

obtained. The Gaussian optical properties of the system were discussed 

and the effect of magnetic deflector on the round magnetic and 

electrostatic lens migth be considered as the linear transformations for 

Gaussian trajectory parameters. Then the expressions for calculating the 

aberrations were given in a compact matrix form appropriate for 

numerical computation. 

   

 A method of analytical field calculation was presented by  Kasper 

[1981], which was suitable for solution of Dirichlet problems in 

rotationally symmetric domains with arbitrary boundary values 

depending also on the azimuth. This method consisted of the linear 

superposition of the fields of coaxial rings carrying a harmonic source 

distribution to be determined from the boundary values. The application 

of this method was used for toroidal magnetic deflection system. 

 

 A novel deflection system had been developed by Pfeiffer [1981], 

which essentially eliminates off-axis aberrations including the transverse 

chromatic aberration by employing a variable axis lens (VAL). This  lens 
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shifts the electron optical axis in synchronism with the deflected beam. 

The system comprises two precision pole piece lenses to achieve 

telecentricity, two composite predeflection yokes, and two yokes 

positioned in the pole piece region of the final lens. 

 

 A focusing and deflection system with vertical landing and reduced 

aberrations was developed by Kuroda [1983], for direct electron-beam 

lithography. The system consisted of two magnetic lenses and a magnetic 

deflector. The excitations of the lenses were opposite to each other. The 

deflector, which had saddle coils was set inside the first lens. By using 

the expression of the field parameters and with the aid of the Orthogonat 

Design Method, Zhi-xing et al [1986] optimized the design of the saddle 

deflection yoke with a ferromagnetic shield. 

 

 A unified deflection aberration theory had been further developed  

by Ximen et al [1996a] for magnetic deflection system with curvilinear or 

rectilinear axis. By using variable method, primary-order deflection 

aberrations with respect to curvilinear or rectilinear axis could be 

universally calculated by means of gradient operations on eikonal ( the 

function of optical length). Based on the variational deflection aberration 

theory, a magnetic deflection system consisting of homogeneous 

deflection field and a homogeneous sextupole field had been further 

investigated [Ximen 1996b]. 

 

 Zhao and Khursheed [1999] introduced the variable axis lens 

(VAL) system for magnetic round lenses which could be achieved by 

using electrostatic deflectors (ME-VAL) instead of magnetic deflectors 

(MM-VAL). The condition for ME-VAL was obtained from the paraxial 

ray equation rather than from axial focusing field expansions. The study 
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introduced that the ME-VAL also reduced the off-axis aberrations 

significantly, though not as much as its MM-VAL counterpart. 

 

 The surface charge density method and the Fourier spatial 

harmonic expansion technique for three-dimensional magnetic field 

calculations were studied by Wang et al [1999]. Spatial harmonic 

components of the magnetic field generated by the magnetized 

ferromagnetic core of deflection yokes were derived by the surface 

magnetic charge method. 

 

 Nakagawa and Nakata [2000] proposed an improved power-series 

expansion method for the analysis of magnetic deflection yoke in a 

cathode-ray tube ( CRT ). The magnetic field was expanded to either of 

two different power-series formulations, depending on the radial position 

from the central axis of the deflection yoke. The coefficients of the power 

series were calculated by symbolically differentiating the magnetic field 

expressed by the surface magnetic charge method formulation. 

 
 
1-2-3  Combined electrostatic and magnetic deflector  

 
Chu and Munro [1981a] derived the formula for computing the 

optical properties of lithograph systems containing any combination of 

magnetic and electrostatic lenses and deflectors. The general case of a 

dual-channel deflection system was considered, in which the main-field 

deflectors and sub-field deflectors could either be magnetic , electrostatic, 

or mixed. Chu and  Munro [1981b] described how the damped least 

squares method could be applied to the design and optimization of 

combined focusing and deflection systems for electron beam lithography. 
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 A deflector for electron or ion beam lithography was described by 

Kuo and Groves [1983]. It combines the functions of focusing and 

deflection in a single unit. Focusing was accomplished by means of a 

uniform magnetic field oriented parallel with the optical axis of the 

system. A uniform electric field oriented perpendicular to the magnetic 

field provided the deflection capability. 

 

 Smith and Munro [1986] presented an aberration theory  that could 

handle any combination of electrostatic round quadrupole and octople 

lenses, electrostatic and magnetic deflectors, and crossed electrostatic and 

magnetic quadrupole lenses. Yu [1986] derived the relativistic fifth-order 

geometrical aberration equation of a combined electric-magnetic 

focusing-deflection system with superimposed field by using variational 

principle and taking symbolic derivatives and inner product of complex 

numbers as a mathematical tools. Lencova [1988] summarized some 

basic ideas used in the design of combined deflection and focusing 

systems. The aberration coefficients of post-lens and pre-deflection were 

discussed. Also the deflection aberrations of pre-deflection followed by 

lens and the aberration of two-stage pre-deflection were discussed. 

 
 
1-3  Optimization: Analysis And Synthesis 
 
 Any reasonable design of an electron or an ion optical system must 

take the aberrations into account. There are two fundamental approaches 

to optimize the parameters of a charged-particle optical system: ( i ) the 

analysis and ( ii ) the synthesis of electron and ion systems [ Szilagyi 

1985 ]. The optimization approach looks for such electron and ion optical 

elements that would provide the required optical properties with 

minimum aberrations. 
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 The method of synthesis is usually trial and error. The designer 

starts with given simple sets of electrodes or pole pieces and tries to 

improve the design by analyzing the optical properties and changing the 

geometrical dimensions as well as the electric and magnetic parameters of 

the system. This process must be repeated until it converges  to an 

acceptable solution. Due to the infinite number of possible 

configurations, the procedure is extremely slow and tedious. It can yield 

quick and reliable results only if a reasonable guess of the answer is 

already available from a previous design or from an expert before the 

work starts. The iterations can be automated by using the damped least 

squares method [ Chu and Munro 1981b]. 

 

 Optimization by synthesis, which is sometimes called inverse 

design procedure, has been one of the most ambitious goals of electron 

and ion optics. This approach is based on the fact that for any imaging 

field, its optical properties and aberrations are totally determined by the 

axial distribution of the field. This has been dealt with by many authors 

[Septier 1966, Moses 1973, Szilagyi 1977a, Chu and Munro 1981c, 

Szilagyi 1983]. Only the axial distributions and their derivatives appear in 

those expressions. Then, instead of analyzing a hopelessly vast amount of 

different electrode and pole piece configurations we can take the criteria 

defining an optimum system as initial conditions and try to find the 

imaging field distribution ( and hence synthesis the electrodes or pole 

pieces ) that would produce it. i.e. in synthesis approach, one tries to find 

the best axial field distribution or the best shapes of these axial 

distributions that would satisfy the given constraints.  
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1-4  Aim Of The Project  

 The present work, aims at finding the optimum design of magnetic 

and electrostatic deflectors which give rise to the minimum spherical and 

chromatic aberration. Both analysis and synthesis approaches of 

optimization method are used in this work. 

 

 In magnetic deflector calculations, the synthesis approach is used 

to find the optimum design of the magnetic deflector of the saddle yoke 

deflection coil, with the moving objective lens concept. Deflection 

aberrations are minimized by changing the geometrical shape of the 

deflection coil, where the length and angle are varied.  

 

 In electrostatic deflector calculations, both analysis and synthesis 

approaches are used to find an optimum design, which gives rise to 

minimum aberrations for electrostatic deflector designs which consist of 

two parallel-plates, and the optimization is made by changing the 

geometrical shape of the deflector by varying the dimensions of the 

parallel-plates. Both symmetric and asymmetric electrostatic deflectors 

are studied.  Secondly, the synthesis approach is used to find minimum 

values of the  aberration by means of the  new axial field distribution that 

has been put forward in the present work for the electrostatic deflectors 

under investigation. The  shape of the deflector is found by using the 

reconstruction method. Finally, the magnetic and electrostatic deflectors 

are assembled to give complete columns of deflection systems and plot 

the trajectories of the beam traversing them.   
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Chapter Two 

 
 

2- Electron-Optical Considerations 

2-1  Introduction 

Electron and  ion  optics is the theory and practice of production, 

control, and utlilization of charged-particle beams. Charged-particle beams 

can only be controlled(acclerated, focused, and deflected) by external 

electromagnetic fields. Electric fields are produced by a set of electrodes 

held at a suitably chosen voltage. Coils surrounded by ferromagnetic 

materials provide magnetic fields. Different symmetries may be utilized for 

electron and ion optical elements such as lenses, deflectors, etc. 

 

 In a typical device, the beam originates with some energy from the 

electron source and enters the focusing field of an objective lens at a certain 

acceptance angle, focused to a point image at a reasonable working 

distance behind the lens. However, due to the geometrical and chromatic 

aberrations of the lens, a point image can never be achived. There will be a 

crossover of different trajectories instead. This crossover can be imaged by 

a projector lens and deflected by a suitable deflector element. The deflector 

itself is a source of additional aberrations. 

 

2-2  Tarjectory Equations  
2-2-1  Paraxial-ray equation in electrostatic field 

The trajectory of electrostatic symmetrical electron or ion optical 

system is given by the following equation (see for example, Szilagi 1988): 
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where r is the radial displacement of the beam from the optical axis z, and 

the primes denote a derivative with respect to z. U=U(z) is the electrostatic 

potential distribution along the optical axis z. Equation (2-1) is a linear 

homogeneous second-order differential equation, known as the paraxial-ray 

equation which describes the paths of charged particles moving through a 

roationally symmetrical electrostatic field characterized by the potential 

function U. The paraxial-ray equation was first derived by Busch in 1926. 

Many important deductions can be made from this equation: 

a. The quotient of charge-to-mass (q/m) does not appear in the 

equation. Therefore, the trajectory is the same for any charged 

particle eneterning the field with the same initial kinetic energy, but 

arrives to the same focus at different times. 

b.  The equation is homogeneous in U. Therefore, an equal increase (or 

decrease) in the potential U at all the points of field (multiplying the 

potential by any constant) does not change the trajectory. 

c. The  equation is homogeneous in r and z which indicates that any 

increase in the dimensions of the whole system produces a 

corresponding increase in the dimensions of the trajectory, since the 

equipotentials, though of the same form, are enlarged. If the object is 

doubled in size, the image will be doubled in size too; the ratio 

between the two remains constant. 
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2-2-2  Paraxial-ray equation in magnetic field 

The motion of an electron in an axially symmetrical field  may be 

derived from many departure points. One can start from the agrangian 

[Hawkes 1982; Silagyi 1988] or from a more familiar method of 

elementary mechanics [Pierce 1954, Klemperer and Barnett 1971; Hawkes 

1972; El-Kareh and El-Kareh 1970; Grivet 1972]. The paraxial-ray 

equation of an electron in a magnetic field of axial symmetry is given by: 
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where  e  and  m  are the charge and mass of the electron respectively, and  

rV  is the relativistically corrected accelarating voltage which is given by: 
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where  aV   is the accelerating voltage. It can easily be realized from 

equation (2-2) that the force driving the electrons towards the axis is 

directly propotional to the radial distance  r. This is the principle of a 

focusing field. Futhermore, this force is propotional to the square of the 

magnetic flux density which means that if the direction of the magnetic 

field is reversed by reversing the current, the direction of the force towards 

the axis should not change, i.e. there will be no change in the focus.  
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2-3  Defects Of Electron Optical System 

The electron paths, which leave points of the object close to the axis 

at small inclinations with respect to the axis, intersect the image plane in 

points forming a geometrically similar patteren. This ideal image is known 

as the Gaussian image, and the plane in which it is formed as the Gaussian 

image plane. If an electron leaving an object point a finite distance from the 

axis with a particular direction and velocity intersects the Gaussian image 

plane at a point displaced from the Gaussian image points, this 

displacement is defined as the aberration [El-Kareh and El-Kareh 1970]. 

 

 The quality of an electron optical system depends not only on the 

wavelength of electrons, but also on the aberrations from which it may 

suffer. These aberrations can arise from a number of different reasons. If 

the accelarating potential fluctuate about his mean value, chromatic 

aberration will mar the image. If the properties of the system are 

investigated, using a more exact approximation to the refractive index than 

is employed in the Gaussian approximation, one would find that the 

geometrical aberrations affect both the quality and the fidelity of the 

Gaussian image. When the properties of the system are analyzed using the 

nonrelativistic approximation, the disparities between the relativistic and 

nonrelativistic can conveniently be regarded as relativistic aberration. 

These are the most important types of aberration in electron optical 

systems, unless there are regions where the electron current density is very 

high; in such a system, the space-charge aberration produced by the 

interaction between the electron charges may have to be considered 

[Hawkes 1967]. 
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2-4  Aberrations Of Axial Symmetrical Optical System 
 
2-4-1  The spherical aberration 

The spherical aberration is one of the most important geometrical 

aberrations; these aberrations are sometimes, called aperture defect and 

they are one of the principal factors that limit the resolution of the optical 

system. This defect occurs because the power of the optical system 

(magnetic or electrostatic optical system) is greater for off-axis rays than 

the paraxial rays, i.e. the beams passing within the optical system area at a 

considerable distance from the axis are more (or less) refracted than the 

paraxial beams so that they intersect closed to (or farther from) the image 

plane [Zhigarev 1975], as is shown in figure (2-1). 

 

 

 

 The rays confined within the aperture angle oα  are spread over a disc 

of radius ir∆  given by: 

 

)42(3 −=∆ iiSi Cr α  

where iSC  is the spherical aberration coefficient referred to image side. 

Figure (2-1 ): Spherical aberration 
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  The spherical aberration coefficientOSC , of axial symmetric 

magnetic optical element ( lens or deflector), referred  to the object side 

is calculated from the following formula [Kato and Tsuno 1990] : 
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where  η is the charge-to-mass quotient of the electron, rV  is the 

relativistically corrected accelerating voltage, ZB  is the axial flux 

density distribution, and αr is the solution of the paraxial-ray equation 

with an initial condition depending on the operation mode. Actually, the 

integration covers the whole interval from object plane (Zo ) to image 

plane (Zi ) in spite of the magnetic limits. 

 

The spherical aberration coefficient SOC  of an axially symmetric 

electrostatic optical element referred to the object side is given by 

[Scheinfeir and Galantai 1986, Szilagyi 1987] :  
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where U=U(z) is the axial potential, the primes denote derivatives with 

respect to z, and )(zoUU O =  is the potential at the object where zoz= . 
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2-4-2  Chromatic aberration 

This type of aberration is a consequence of the fact that fluctuations 

in the electron-optical element focal length because of a spread in electron 

energy (due to different initial energy of electrons, the inhomogeneous 

interaction of electrons with specimen,and fluctuation in the electron-

optical element excitation) result in the superposition of the final screen of 

a number of images of different size with a consequent loss of image 

definition.  

  

 Figure (2-2) represents a simplified diagram defining this defect. A 

ray of energy EE ∆+   will reach the image plane for energy E at a distance  

ir∆  from the axis. At a plane about halfway between the points where the 

two rays intersect the axis in image space, the bundle of rays having 

energies between  E  and  EE ∆+  are contained within a disc of confiusion 

of radius about one-half [Hall 1966] where  
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iCC  is the chromatic aberration coefficient referred to image plane. 

 

Figure (2- 2): Chromatic aberration 
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The chromatic aberration coefficient Cc of magnetic optical element , with 

axial symmetric field condition, is given by [Szilagyi 1985] : 
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where the parameters in this equation are the same as those used in 

equation (2-5). The chromatic aberration coefficient Cc of electrostatic 

optical element, with axial symmetric field condition, is given by 

[Scheinfeir and Galantai 1986, Szilagyi 1987, Kiss 1988]  : 
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where the parameters in this equation are the same as those used in 

equation (2-6). 

 

 

 

2-5  Magnetic Deflection Field 

In magnetic deflector, two geometries are common: saddle coils and 

toroidal coils [Hawkes and Kasper 1989]. In the present work, only the 

saddle coils are taken into consideration as the source of the magnetic 

deflection field. Saddle coils ,figure (1-2), are usually enclosed in a ferrite 

sheath, thereby reducing the wastage of flux. The shielding is omitted only 

in devices design to function at high deflection frequencies in order to 

decrease the inductance. 
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The method used for calculating the deflection yoke fields depends 

on whether the deflection coils are near the magnetic materials [Septier 

1980]. If the coils are not near any magnetic materials, their fields can be 

computed using Biot-Savart's formula. The deflection field at the axis of an 

air-cored saddle yoke, figure (1-2), is obtained by using the formula given 

by [Munro 1975]: 
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If the deflection yokes are near magnetic materials (for example, if the coils 

are wound on a magnetic former), then the yoke fields must be computed 

by a numerical technique such as the finite element method. The finite 

element method has been adopted in the present work. 

 

2-6  The Moving Objective Lens (MOL) Concept 

Ohiwa et al [1971] pointed out that the aberrations of a combined 

focusing and deflection system can greatly be reduced by using an 

arrangement of the type shown in figure (2-3). A point source of electrons, 

emitted from  zo, is imaged by a lens at  zi. The beam is deflected by the 

first deflector so that it enters the lens off axis. A second deflector, placed 

inside the lens, shifts the electrical center of the lens off axis. This so-called 

Moving Objective Lens (MOL) reduces the effect of the off axis 

aberrations. The spherical and chromatic aberration of the lens can be kept 

small by having a short working distance2L . At the same time, the 

deflection aberrations can be kept small by having a large distance 1L  from 

the first deflector to the image plane. 
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 Let B(z) be the axial flux-density distribution for the lens and D(z) be 

the deflection flux density required at the axis. Then, the following relation 

holds [Ohiwa 1977&1978, Kern 1979]: 

 )112()(
2

1
)( −′= zBdzD  

where  d  is the displacement by the first deflector (pre-deflection). 

 
2-7  Pole pice Design 

 The final task optimization of magnetic or electrostatic field is to 

reconstruct the pole pieces shape or electrodes shape of deflector that 

would produce such field. This problem has been solved by using two 

different approaches (i) the analytic approach and (ii) the numerical 

approach; the standard finite element method has been used. 

 

 

 

 

 

 

zo
o

Object 
Plane 

First Deflector Lens Second Deflector 
Image 
Plane 

zi 

L2 

L1 

Figure (2-3): MOL arrangement [Ohiwa 1971]. 
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2-7-1  Analytic approache 

One can apply the technique used by Silagyi [1984] for constructing the 

electrodes of an electrostatic lens to reconstruct  the pole piece shape of 

magnetic deflector and electrode shape of electrostatic deflector. According 

to this technique the equation of equipotential surfaces (the pole piece in 

case of magnetic deflector) is 

 

 ( )[ ] )122(/2)( 2/1 −′′−= zPzP VVVzR  

 

where PR   is the radial height of the pole piece, ZV  is the axial potential 

distribution, ZV ′′  is the second derivative of  ZV  with respect to z and PV  is 

the value of the potential at any one of the two pole pieces or electrodes.  

 

 

2-7-2  Numerical approache 

In the technique of reconstructing the pole piece or electrode shape, 

one would need the solution of Laplace's equation. To solve Laplace's 

equation numerically two different methods have been used, namely, the 

finite element method (FEM) and the finite difference method (FDM). 

The finite element method has been used in the present work. 

 
2-7-3  The finite element method (FEM) 

It is a numerical application of calculus of variation. FEM was first 

introduced in electron and ion optics by Munro [1971] who used it for 

the computation of magnetic field in round lenses. The base of this 

method comprises the dividing of the region to be analyzed into a large 

number of small finite elements (meshes), usually of a triangular shape. 

A potential value is assigned to each mesh-point, and the potential is 



 26 

assumed to vary linearly across each triangular finite element. The 

differential equation of the system (Laplace's equation in this case) is 

replaced by an appropriate functional. The minimization of this 

functional with respect to the changes in the potentials at each mesh-

point corresponds to the original differential equation. The functional 

must have a stationary value with respect to the small change in the 

potentials at each mesh-point. This condition makes it possible to set up 

a nodal equation for each mesh-point, relating the potential at that node 

to the potentials at adjacent nodes. The set of algebraic nodal equations 

thus obtained is solved by a suitable numerical method, to yield the 

potential at every nodal point. The functional is a volume integral 

[Munro 1971]: 

 

 ∫∫∫ −=
volumetotal

dvVgradVgradI )132(.
2

1
 

where v is the volume. 

  

The integral depends on the type of coordenates, the potential V, and 

its first derivatives with respect to the coordinates. The field is 

subdivided into triangles, each node represents the common vertex of 

the adjacent triangles (figure 2-4). Within each triangle the potential is 

expressed by a lower order polynomial of the coordinales; in most 

practical cases by a linear function [Kasper 1980]. With this 

approximation, the potential throughout each element is uniquely 

determined by the potentials at its vertices. Hence, the contribution from 

each element to the value of the functional can be expressed in terms of 

the vertex potential. 
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Minimizing the functional yields a set of linear algebraic relations of 

the type given by the following equation: 
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Equation (2-14) relates the potentials at each vertex and its neighbours, 

where jiA  depends on the coordinates of all vertices involved, i.e. on the 

shape of all adjacent triangles. This set of linear equations is solved to 

give the potential at each mesh-point, for more specific details one can 

see Munro [1971, 1973] and Hawkes [1989].   

 

Vi(zi,ri) 

Vj(zj,rj) 

Vk(zk,rk) 

Figure (2-4): Mesh of the finite-element method. 
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2-8  Definitions And Operating Conditions 

Some definitions and operating conditions of charged-particle optical 

systems are given in this section. 

 

 Object side: is the side of lens or deflector at which the charged 

particles enter. 

 Image side: is the side of lens or deflecor at which the charged 

particles leave. 

 The object plane (OZ ): is the plane at which the physical object is 

placed, or a real image is formed from a previous lens or deflector, on 

the object side. 

 The image plane (iZ ): is the plane at which the real image of the 

object plane OZ  is formed, on the image side.  

 

 Magnification ( M ): In any optical system the ratio between the 

transverse dimension of the final image and the corresponding dimension 

of the original object is called the lateral magnification: 

 

 )152( −=
heightobject

heightimage
M  

 

There are three magnification conditions under which a lens or 

deflector can operate, namely: 

 

(i) zero magnification condition: In this operational condition ∞−=OZ   as is 

shown in figure (2-5). For example, the final probe-forming lens in a 

scanning electron microscope (SEM) is usually operated under this 

condition.  
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                          Figure (2-5): Zero magnification condition. 

 

(ii) Infinite magnification condition: In this case ∞+=iZ  as is shown in 

figure (2-6). For example, the objective lens in a transmission electron 

microscope ( TEM ) is usually operated under this condition. 

 

 

                       Figure (2-6): Infinite magnification condition. 
 
(iii) Finite magnification condition: Under this operational condition  OZ  

and iZ  are at finite distances, as is shown in figure (2-7). As an example, 

the electrostatic lens in field-emission gun is usually operated under this 

condition [Munro 1975]. 

 

                             Figure (2-7): Finite magnification condition. 
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LIST  OF  SYMBOLS 
 
a The field width at half maximum  Bm / 2. 
B(z) Magnetic flux density ( Tesla  ). 
Bm Maximum value of axial magnetic flux density distribution ( Tesla ). 
Bx(z) The deflection field at the axis of an air-cored saddle yoke (Tesla). 
Cc Chromatic aberration coefficient (mm)  . 
Cci Chromatic aberration coefficient referred to image side (mm). 
Cco Chromatic aberration coefficient referred to object side (mm). 
Cs Spherical aberration coefficient (mm). 
Csi Spherical aberration coefficient referred to image side (mm). 
Cso Spherical aberration coefficient referred to object side (mm). 
D(z) Deflection magnetic flux density (Tesla). 
d Displacement by the first magnetic deflector (mm). 
E Energy of electron beam . 
e Electron charge ( 1.6 × 10-19 C ). 
fo Object focal length (mm). 
M The magnification. 
m Electron mass ( m = 9.1 × 10-31 kg ). 
NI Magnetic deflector excitation ( ampere-turn, A-t ). 
NI / (Vr)

1/2 Magnetic deflector excitation parameter (Amp. turns / sqrt(volts)). 
Rp(z) Radial height of the pole pieces along the deflector axis (mm). 
r Trajectory radial along the deflector axis. 
rα Solution of paraxial-ray equation. 
Va Accelerating voltage (volt). 
Vr Relativistic corrected accelerating voltage (volt). 
Vz =V(z) Axial magnetic scalar potential. 
Vp Pole piece potential (volts). 
v Volume (mm3). 
z Deflector optical axis (mm). 
zi Image plane position (mm). 
zo Object plane position (mm). 
U Electrostatic potential distribution along the optical axis z (volts). 
Ui Voltage of the image side (volts). 
Uo Voltage of the object side (volts). 
αi Trajectory angle with deflector axis in image side. 
α0 Trajectory angle with deflector axis in object side. 



∆E Fluctuation in the electron beam energy. 
∆ri Fluctuation in the electron beam focus. 
η Electron charge to mass quotient, e / m. 
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Abstract 
 
 
 Both analysis and synthesis approaches of optimization method are used 

in the present work to finding the optimum design of magnetic and electrostatic 

deflectors which give rise to the minimum spherical and chromatic aberration. In 

magnetic deflector calculations, the synthesis approach is used; the saddle yoke 

deflection coil is used as the source of magnetic field, then some axial field 

distribution models are to be used and new field distribution model to be 

suggested. The moving objective lens concept is included in the computation of 

deflection field. Deflection aberrations are minimized for each field distribution 

model by changing the shape of the deflection coil, where the length and angle 

are varied. By using the optimum axial field distribution for each case, the pole 

pieces design which give rise to these field distributions is to be found by using 

reconstruction method. 

 In electrostatic deflector calculations, both analysis and synthesis 

approaches are used to find optimum design, which give rise to minimum 

aberrations. Firstly, the analysis approach is used to study some electrostatic 

deflector designs which consists of two parallel-plates, and the optimization is 

made by changing the geometrical shape of the deflector by varying the 

dimensions of the parallel-plates. Secondly, the synthesis approach is used to 

find minimum values for the  aberration by means of the  new axial field 

distribution that has been put forward in the present work for the electrostatic 

deflectors under investigation. The  shape of the deflector is found by using the 

reconstruction method. Finally, the magnetic and electrostatic deflectors are to 

be assembled to give complete columns of deflection systems and plot the 

trajectories of the beam traversing them.                                                              
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a The field width at half maximum  Bm / 2. 
B(z) Magnetic flux density ( Tesla  T ). 
Bm Maximum value of axial magnetic flux density distribution ( T ). 
Bx(z) The deflection field at the axis of an air-cored saddle yoke. 
Cc Chromatic aberration coefficient . 
Cci Chromatic aberration coefficient referred to image side. 
Cco Chromatic aberration coefficient referred to object side. 
Cs Spherical aberration coefficient . 
Csi Spherical aberration coefficient referred to image side. 
Cso Spherical aberration coefficient referred to object side. 
D(z) Deflection magnetic flux density. 
d Displacement by the first magnetic deflector. 
E Energy of electron beam. 
e Electron charge ( 1.6 × 10-19 C ). 
fo Object focal length. 
M The magnification. 
m Electron mass ( m = 9.1 × 10-31 kg ). 
NI Magnetic deflector excitation ( ampere-turn, A-t ). 
NI / 
(Vr)

1/2 
Magnetic deflector excitation parameter. 

Rp(z) Radial height of the pole pieces along the deflector axis. 
r Trajectory radial along the deflector axis. 
rα Solution of paraxial-ray equation. 
Va Accelerating voltage (volt). 
Vr Relativistic corrected accelerating voltage (volt). 
Vz 
=V(z) 

Axial magnetic scalar potential. 

Vp Pole piece potential. 
v Volume. 
z Deflector optical axis. 
zi Image plane position. 
zo Object plane position. 
U Electrostatic potential distribution along the optical axis z. 
Ui Voltage of the image side 
Uo Voltage of the object side. 
αi Trajectory angle with deflector axis in image side. 



 VII

α0 Trajectory angle with deflector axis in object side. 
∆E Fluctuation in the electron beam energy. 
∆ri Fluctuation in the electron beam focus. 
η Electron charge to mass quotient, e / m. 
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