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The aim of this thesis is studying some numerical methods for 

solving Stochastic Differential Equation. The mathematical preliminary 

required to understand these numerical methods is proposed. Since many 

stochastic differential equations do not have explicit solution, Euler-

Maruyama and Milstein numerical methods are used. The numerical 

simulation for different selected examples are implemented. The 

necessary concluding remarks are provided. The absolute error, the 

strong convergence error, the weak convergence error and the linear 

stability for Euler- Maruyama and Milstein's schemes are discussed and 

supported by numerical test problems. The comparison different type of 

convergence and error between Euler-Maruyama and Milstein's for some 

test problems are presented. Some conclusions and comparison in some 

sense have been presented with discussions. The programs coded in 

Matlab software are also given with useful discussion. 
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AAppppeennddiixx  AA  

 

A.1: Discretized Brownian path                                                                  
 
%Discretized Brownian path 
randn( 'state' ,100)           % set the state of randn  
T = 1; N = 800; dt = T/N; 
dw = sqrt(dt)*randn(1,N);    % since dw is N(0,dt)  
w = cumsum(dw);              % since w(j) = sum dw(i)for i= 1...j  
plot([0:dt:T],[0,w], 'r-' )    % plot w against t  
xlabel( 'time' , 'Fontsize' ,12) % Adds x labels  
ylabel( 'w(t)' , 'Fontsize' ,12, 'Rotation' ,0)   % Adds y labels  
 
A.2: Exact solution and Euler scheme                                                                                        
 
%Generator Brownian Motion - Discretized paths  
randn( 'state' ,100)  
xzero = 1; yzero = 0;        % problem parameters  
T = 1; N = 2^6; dt = 1/N; 
dw = sqrt(dt )*randn(1,N);    % Brownian increments  
w = cumsum(dw);              % discretized Brownian path  
% Exact solution  
R = 1; Dt = R*dt; L = N/R;   % L EM steps of size Dt = R*dt  
xam = zeros(1,N);            % preallocate for efficiency  
xem = zeros(1,L);            % preallocate for efficiency  
ytemp = yzero;  
for  i = 1:N  
    winc = sum(dw(R*(i- 1)+1:R*i)); 
    ytemp = ytemp + (- 0.5)*(sin(i*Dt))^2*Dt + sin(i*Dt)*winc; 
    xtrue = exp(ytemp);  
    xam(i) = xtrue;  
end  
plot([0:Dt:T],[yzero,xam], 'm-' ), hold on 
% Euler scheme  
xtemp = xzero;  
for  k = 1:L  
     winc = sum(dw(R*(k- 1)+1:R*k)); 
     xtemp = xtemp + winc*sin(k*Dt)*xtemp;  
     xem(k) = xtemp;  
end  
plot([0:Dt:T],[xzero,xem], 'r--*' ), hold off  
xlabel( 'time' , 'Fontsize' ,10)  
ylabel( 'x(t)' , 'Fontsize' ,10, 'Rotation' ,0, 'HorizontalAlignment' , 'right')  
legend( 'Exact solution' , 'Numerical solution' )  
% Absolute Error  
eme = zeros(1,L); 
for  d = 1:L  
      emerr = abs(xem(d)-xam(d));  
      eme(d) = emerr;  
end  
eme'  
plot([0:Dt:T],[0,eme], 'b*-' ), hold off  
xlabel( 'time(t)' , 'Fontsize' ,12)  
ylabel( 'error(t)' , 'Fontsize' ,12, 'Rotation' ,0, 'HorizontalAlignment' , 'right' )  
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A.3: EM strong convergence                                                       
 
% generator Brownian Motion - Discretized paths  
randn( 'state' ,100)  
secma = 1; mu = 2; pzero=1;   % problem parameters  
T = 1; N = 2^9; dt = T/N;     % 
M = 4000;                     % number of paths sampled  
perr = zeros(M,5);            % preallocate array  
for  s = 1:M,                  % sample over discrete Brownian paths  
        dw = sqrt(dt)*randn(1,N);      %   Brownian increments  
        w = cumsum(dw);                %   discrete Brownian path.  
        ptrue = pzero*exp((secma*w(end))+ (mu - 0.5*secma^2)); 
for  p = 1:5  
  R = 2^(p- 1); Dt = R*dt; L = N/R;  %L Euler steps of size Dt = R*dt.  
  ptemp = pzero;  
             
            for  j = 1:L  
                Winc = sum(dw(R*(j- 1)+1:R*j)); 
                ptemp = ptemp + Dt*mu*ptemp + secma *ptemp*Winc;  
            end  
             
           perr(s,p) = abs(ptemp - ptrue); % store the error at t = 1  
        end  
end  
Dtvals = dt*(2.^([0:4])); 
subplot(221)                                      % top LH picture  
loglog(Dtvals,mean(perr), 'b*-' ),hold on 
loglog(Dtvals,(Dtvals.^(.5)), 'r--' ),hold off  %reference slope of 1/2.  
axis([1e-3 1e-1 1e-4 1])  
xlabel( '\Delta t' ),ylabel( 'Sample average of | p(T) - p_L |' )  
%%% Least squares fit of error = c * Dt^q  %%%  
A = [ones(5,1),log(Dtvals)']; rhs = log(mean(perr)'); 
sol = A\rhs;  
q = sol(2)  
resid = norm(A*sol - rhs)  
 
A.4: EM weak convergence                                                                                               
 
% generator Brownian Motion - Discretized paths  
randn( 'state' ,100)  
pzero = 1; T = 1; mu = 2; segma = 1;    % problem parameters  
M = 50000;                              % number of paths sampled  
pem = zeros(5,1);                       % preallocate arrays  
   for  p = 1:5                   % take various Euler timesteps   
     Dt = 2^(p- 10); L = T/Dt;    % L Euler steps of size Dt  
     ptemp = pzero*ones(M,1); 
        for  j = 1:L  
        Winc = sqrt (Dt)*randn(M,1); 
        %%% Winc = = sqrt(Dt)*sign(randn(M,1)); %% use for weak E-M%% 
        ptemp = ptemp + Dt*mu*ptemp + secma*ptemp.* Winc;  
        end  
              pem(p) = mean(ptemp);  
  end  
perr = abs(pem - exp(mu));  
Dtvals = 2.^([1:5]- 10); 
subplot(221)                         % top RH picture  
loglog(Dtvals,perr, 'b*-' ),hold on 
loglog(Dtvals,Dtvals, 'r--' ), hold off   %reference slope of 1  
axis([1e-3 1e-1 1e-4 1])  
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xlabel( '\Delta t' ),ylabel( '| E(x(T)) - Sample average of x_L|' )  
%%%% Least squares fit of error = c*dt^q %%%%  
A = [ones(p,1),log(Dtvals)']; 
rhs = log(perr);  
sol = A\ rhs; q = sol(2) 
resid = norm(A*sol - rhs)  
 
A.5: Mean – square and asymptotic stability for E-M                                                      
 
% generator Brownian Motion - Discretized paths  
randn( 'state' ,100)  
T = 20; M = 50000; Xzero = 1; 
ltype = { 'b-' , 'r--' , 'm-.' };          % line types for plot  
subplot(211) %%%%%%%Mean Square%%%%%%% 
 for  k = 1:3  
     Dt = 2^(1-k);  
     N = T/Dt;  
     xms = zeros(1,N); 
     xtemp = Xzero*one s(M,1); 
         for  j = 1:N  
              winc = sqrt(Dt)*randn(M,1); 
              xtemp = xtemp + sin(j*Dt)*xtemp.*winc ;  
              xms(j) = mean(xtemp.^2);         % mean-square estimate  
         end  
         semilogy([0:Dt:T],[Xzero,xms],ltype{k}, 'Linewidth' ,2), hold on 
 end  
 axis([0,T,1e-20,1e+20]),hold off  
 legend( '\Delta t = 1' , '\Delta t = 1/2' , '\Delta t = 1/4' )  
 title( 'Mean- Square: g(t) = sin(t)' , 'Fontsize' ,16)  
 ylabel( 'E[x^2]' , 'Fontsize' ,12)  
subplot(212)     %%%% Asymptotic: a single path %%%%%  
T =500; 
    for  k = 1:3  
        Dt = 2^(1-k);  
        N = T/Dt;  
        xemabs = zeros(1,N); 
        xtemp = Xzero;  
           for  j = 1:N  
                 winc = sqrt(Dt)*randn;  
                  xtemp = xtemp + sin(j*Dt)*xtemp.* winc;  
                  xemabs(j) = abs(xtemp);  
           end  
    semilogy([0:Dt:T],[Xzero,xemabs],ltype{k}, 'Linewidth' ,2), hold on 
    end  
legend( '\Delta t = 1' , '\Delta t = 1/2' , '\Delta t = 1/4' )  
title( 'single path: g(t) = sin(t)' , 'Fontsize' ,16)  
ylabel( '|x|' , 'Fontsize' ,12)  
axis([0,T,1e-50,1e+100]),hold off  
 
A.6: Exact solution and Milstein scheme                                                                          
 
% Generator Brownian Motion- Discretized paths  
randn( 'state' ,100)  
xzero = 1; yzero = 0;         % problem parameters  
T = 1;  N = 2^7; dt = 1/N; 
dw = sqrt(dt)*randn(1,N);     % Brownian increments  
w = cumsum(dw);               % discretized Brownian path  
% Exact solution  
R = 1; Dt = dt; L = N/R;      % L EM steps of size Dt = R*dt.  
xam = zeros(1,N);             % preallocate for efficiency           
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xem = zeros(1,L);             % preallocate for efficiency  
ytemp  = yzero;  
    for  i = 1:N  
         winc = sum(dw(R*(i- 1)+1:R*i));  
         ytemp = ytemp + (- 0.5)*(sin(i*Dt)^2)*Dt + sin(i*Dt)*winc; 
         xtrue = exp(ytemp);  
         xam(i) = xtrue;  
    end       
plot([0:Dt:T],[yzero,xam], 'm-' ),hold on   
% Milstein scheme  
xtemp = xzero;  
for  j = 1:L  
         winc = sum(dw(R*(j- 1)+1:R*j)); 
         xtemp = xtemp + sin(j*Dt)*xtemp.*winc ...  
               + 0.5*sin(j*Dt)^2*xtemp.*(winc.^2 - Dt);  
     xem(j) = xtemp;  
end  
plot([0:Dt:T],[xzero,xem], 'r--*' ), hold off  
xlabel( 'time' , 'Fontsize' ,10)  
ylabel( 'x(t)' , 'Fontsize' ,10, 'Rotation' ,0, 'HorizontalAlignment' , 'right' )  
legend( 'Exact solution' , 'Numerical solution' )  
% Absolute Error  
eme = zeros(1,L); 
for  d = 1:L  
      emerr = abs(xem(d)-xam(d));  
      eme(d) = emerr;  
end  
eme'  
plot([0:Dt:T],[0,eme], 'b*-' ), hold off  
xlabel( 'time(t)' , 'Fontsize' ,10)  
ylabel( 'error(t)' , 'Fontsize' ,10, 'Rotation' ,0, 'HorizontalAlignment' , 'right
' )  
 
A.7: strong convergence of Milstein                                                                                 
 
% Generator Brownian Motion - Discretiaed path  
randn( 'state' ,100)  
Xzero = 1;                                 % problem parameters  
T = 1; N = 2^(11); dt = T/N;               % 
M = 500;                                   % number of paths sampled  
R = [1; 16; 32; 64; 128];                  % Milstein stepsizes are R*dt  
dw = sqrt(dt)*randn(M,N);                  % Brownian increments  
Xmil = zeros(M,5);                         % preallocate array  
 for  p = 1:5  
     Dt = R(p)*dt; L = N/R(p);      % L timesteps of size Dt = R dt  
     Xtemp = Xzero*ones(M,1); 
      for  j = 1:L  
              winc = sum(dw(:,R(p)*(j- 1)+1:R(p)*j),2); 
              Xtemp = Xtemp + sin(j*Dt)*Xtemp.*winc  ...  
                           + 0.5*(sin(j*Dt))^2*Xtem p.*(winc.^2- Dt);  
      end  
   Xmil(:,p) = Xtemp;             % store Milstein solution at t = 1  
 end  
Xref = Xmil(:,1);                             % Reference solution  
Xerr = abs(Xmil(:,2:5) - repmat(Xref,1,4));   % Error in each path  
mean(Xerr);                                   % Mean pathwise erorrs  
Dtvals = dt*R(2:5);                           % Milstein timesteps used  
subplot(221)                                  % lower RH picture  
loglog(Dtvals,mean(Xerr), 'b*-' ), hold on 
loglog(Dtvals,Dtvals, 'r--' ), hold off         % reference slope of 1  
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axis([1e-3 1e-1 1e-4 1])  
xlabel( '\Delta t' )  
ylabel( 'sample average of |x(T) - x_L|' )  
%%%% Least squares fit of error = c * Dt^q%%%%  
A = [ones(4,1), log(Dtvals)]; rhs = log(mean(Xerr)' );  
sol = A\ rhs; q = sol(2) 
resid = norm(A*sol - rhs)  
 
A.8: Mean – square and asymptotic stability for Milstein      
 
% generator Brownian Motion - Discretized path  
randn( 'state' ,100)  
T = 20; M = 50000; Xzero = 1; 
ltype = { 'b-' , 'r--' , 'm-.' };          % line types for plot  
subplot(211) %%%%%Mean - square%%%%% 
lambda = - 3; mu = sqrt(3);            % problem parameters  
 for  k = 1:3  
     Dt = 2^(1-k);  
     N = T/Dt;  
     xms = zeros(1,N); 
     xtemp = Xzero*ones(M,1); 
        for  j = 1:N  
            winc = sqrt(Dt)*randn(M,1); 
            xtemp = xtemp + lambda*xtemp.*Dt + mu*x temp.*winc ...  
                      + 0.5*mu^2*xtemp.*(winc.^2-Dt );  
              xms(j) = mean(xtemp.^2);         % mean-square estimate  
        end  
         semilogy([0:Dt:T],[Xzero,xms],ltype{k}, 'Linewidth' ,2), hold on 
 end  
 axis([0,T,1e-20,1e+20]),hold off  
 legend( '\Delta t = 1' , '\Delta t = 1/2' , '\Delta t = 1/4' )  
 title( 'Mean- Square:\lambda = -3, \mu = \surd3' , 'Fontsize' ,16)  
 ylabel( 'E[x^2]' , 'Fontsize' ,12)  
 subplot(212) %%%% Asymptotic: a single path %%%%%  
 T =500; 
 lambda = 0.5; mu = sqrt(6);        % problem parameters  
    for  k = 1:3  
        Dt = 2^(1-k);  
        N = T/Dt;  
        xemabs = zeros(1,N); 
        xtemp = Xzero;  
           for  j = 1:N  
                 winc = sqrt(Dt)*randn;  
                  xtemp = xtemp + lambda*xtemp.*Dt + mu*xtemp.*winc ...  
                           + 0.5*mu^2*xtemp.*(winc. ^2-Dt);  
                  xemabs(j) = abs(xtemp);  
           end  
           semilogy([0:Dt:T],[Xzero,xemabs],ltype{k }, 'Linewidth' ,2), hold 
on 
    end  
legend( '\Delta t = 1' , '\Delta t = 1/2' , '\Delta t = 1/4' )  
title( 'single path:\lambda = -3, \mu = \surd 6' , 'Fontsize' ,16)  
ylabel( '|x|' , 'Fontsize' ,12)  
axis([0,T,1e-50,1e+100]),hold off  



BBaassiicc  NNoottaattiioonnss  

 

t Time. 

T Maturely date. 

Wt Wiener process. 

Xt Stochastic process. 

Var(X) Variance of the random variable X. 

E(X) The expectation of the random variable X. 

~N(µ, t) Normal distribution with expectation µ and variance t. 

~ With distribution. 

∆n Small increment in n. 

Ω Sample space. 

[a, b] Closed interval {x ∈ R : a ≤ x ≤ b}. 

R Set of real numbers. 

Cov(X) Covariance of the random variable X. 

|X| The Euclidian norm of a vector X. 

f : �  → �  A function f from �  to � . 

a.s. Almost surely. 

w.p.1 with probability 1. 

P Probability. 

L.i.p. Limit in probability. 
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CChhaapptteerr  OOnnee  

SSoommee SSttoocchhaassttiicc  PPrroocceessss  CCoonncceeppttss  

 

This chapter presents some stochastic process concepts which is 

divided into seven sections, the first one describe the set of algebra, the 

second section deals with the random variable, the third section deals 

with the stochastic processes, the fourth section deals with the stochastic 

integral, the fifth section deals with the approximation of functions by 

step functions, the sixth section deals with the Itô formula, while the 

seventh section deals with the existence and uniqueness theorem of 

solution of stochastic differential equations and some of its kinds. 

 

1.1 Algebra of Sets: 

The collection of all elementary outcomes of a random 

experiment is called sample space and is denoted by Ω. In the 

terminology, the sample space is termed as the universal set. Thus, the 

sample space Ω is a set consisting of mutually exclusive, collectively 

exhaustive listing of all possible outcomes of a random experiment. That 

is, Ω = {ω1, ω2, …, ωn} denotes the set of all finite outcomes, Ω = {ω1 , 

ω2, …} denotes the set of all countably infinite outcomes, and , Ω = {0 ≤ 

t ≤ T} denotes the set of uncountably infinite outcomes. 

Let Ω represent the sample space which is a collection of ω-

points as defined earlier. The various set operations are 

complementation, union and intersection. Let A and B be two subsets 
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of the sample space Ω, denoted by A ⊂ Ω, B ⊂ Ω. The complement of A, 

denoted by Ac, represents the set of all ω-points not contained in A, i.e., 

Ac = { ω: ω ∉ A}  …(1.1) 

Evidently the complement of Ω is the empty set ∅. The union of 

sets A and B, denoted by A ∪ B or A + B, represents the occurrence of 

ω-points in either A or B. Similarly, the intersection of sets A and B, 

denoted by A ∩ B or AB, represents the occurrence of ω-points in A and 

B. Clearly, if there is no commonality of ω-points in A and B, then A ∩ 

B is the empty set ∅. 

 

Definition (1.1) (Field) (Algebra), [Krishnan, 2006]: 

A class of a collection of subsets Aj ⊂ Ω denoted by υ is a field, 

when the following condition are satisfied: 

1. If A i ∈ υ, then c
iA  ∈ υ, i = 1, 2, …, n. 

 …(1.2) 

2. If {A i, i = 1, 2, …, n}∈ υ, then 
n

i
i 1

A
=
U  ∈ υ. 

 

Remark (1.1): 

Given the above two conditions, de Morgan's law ensures that 

finite intersections also belong to the field. Thus a class of subsets is a 

field if and only if it is closed under all finite set operations like unions, 

intersection, and complementation.  
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Definition (1.2) (σ-Field) (σ-Algebra), [Krishnan, 2006]: 

A class of a countable infinite collection of subsets Aj ⊂ Ω 

denoted by F is a σ-field when the following conditions are satisfied: 

1. If A i ∈ F, then c
iA  ∈ F. 

 …(1.3) 

2. If {A i, i = 1, 2, …} ∈ F, then i
i 1

A
∞

=
U  ∈ F. 

In general a σ-field is a field, but a field may not be a σ-field. 

 

Definition (1.3) (Borel σ-Field), [Krishnan, 1984]: 

The minimum σ-field generated by the collection of open sets of 

a topological space Ω is called the Borel σ-field or Borel field. Members 

of this σ-field are called Borel sets. 

 

Definition (1.4) (Measurable Space), [Stirzaker, 2005]: 

A suitable model of the random experiment is therefore a sample 

space Ω and a σ-field F of subsets of Ω. The space (Ω, F) thus created is 

called a measurable space. 

 

Remarks (1.2), [Krishnan, 1984], [Stirzaker, 2005]: 

1. Events are defined as the subsets of Ω which are elements in the σ-

field. 

2. In particular, Ω is called the certain event. 
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3. If two events A and B satisfy A ∩ B = ∅ , then they are said to be 

disjoint. 

4. The complement Ω
c is an event called the impossible event, which we 

denote by Ωc = ∅, the empty set. 

5. If {A i, i = 1, 2, …, n} is a class of disjoint sets of Ω, such that 
n

i
i 1

A
=
U  = 

Ω then the {Ai} collectively exhaust Ω. 

 

Definition (1.5) (Probability Measure), [Krishnan, 2006]: 

A probability measure is a set function defined on a σ-field F of 

subsets of a sample space Ω, such that it satisfies the following axioms 

of Kolmogorov for any A ∈ F: 

1. P(A) ≥ 0 (nonnegativity). 

2. P(Ω) = 1  (normalization). …(1.4) 

3. P n
n 1

A
∞

=

 
 
 
U  = n

n 1
P(A )

∞

=
∑  (σ-additivity), with An ∈ F, and Ai and Aj 

being pairwise disjoint. 

It is also called probability distribution. 

 

Lemma (1.1) (Sequential Monotone Continuity), [Krishnan, 1984]: 

Let {A n} be a monotone decreasing sequence in F, such that  

An+1 ⊂ An, and let 
n
lim
→∞

An = ∅, then: 

n
lim
→∞

P(An) = 0 …(1.5) 
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The probability measure is said to satisfy the sequential 

monotone continuity at ∅. 

 

Proposition (1.1) (Sequential Continuity), [Krishnan, 1984]: 

Let {A n} be a convergent sequence of events in F, with 
n
lim
→∞

An = 

A. Then: 

n
lim
→∞

P(An) = P(
n
lim
→∞

An) = P(A) …(1.6) 

The probability measure is sequentially continuous. 

 

1.2 Random Variable, [Krishnan, 1984], [Stirzaker, 2005]: 

An important class of functions is the measurable functions 

which are different from the measure functions, whereas measure 

functions are set functions, measurable functions are invariably point 

functions. 

 

Definition (1.6) (Measurable Function), [Krishnan, 1984]: 

Let (Ω1, F1) and (Ω2, F2) be two measurable spaces. Let g be a 

function with domain E1 ⊂ Ω1 and range E2 ⊂ Ω2. 

g: Ω1 → Ω2 

g is called an F1-measurable function or an F1-measurable mapping if for 

every E2 ∈ F2 

g−1(E2) = {ω: g(ω) ∈ E2}   E1  …(1.7) 

is in the σ-field F1. 
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Remarks (1.3), [Krishnan, 1984]: 

1. If g is measurable with respect to the σ-field F of sets that are P-

measurable, then we might also say that g is P-measurable if there is 

no confusion. 

2. The set given by g−1(E2) is called the inverse image or inverse 

mapping of E2, and it is measurable set. 

3. Inverse mappings preserve all set relations. 

 

Definition (1.7) (Random Variable), [Stirzaker, 2005]: 

Measurable space consisting of the real line R and σ-field of 

Borel sets R. Let the probability measure P be defined on (Ω, F). The 

measurable mapping from (Ω, F) into (R, R) is called a real-valued 

random variable. 

 

Remarks (1.4), [Krishnan, 1984], [Stirzaker, 2005]: 

1. Naturally, the probability measure P induces a probability measure PX 

in the space (R, R). If E2 ∈ R, then: 

PX(E2) = P(X−1(E2)) = P(E1) = P{ω: X(ω) ∈ E2} …(1.8) 

Equation (1.8) related the probability measure PX in (R, R) to the 

probability measure P in (Ω, F). Instead of writing P{ω: X(ω) ∈ E2},  

we shall have the abbreviated notation P{X ∈ E2}.  

2. If Ω is a metric topological space, then F is the σ-field of all Borel 

sets of Ω. Then a function g mapping Ω →   is a Borel function if 

for every E2 ∈ R, g−1(E2) is a Borel set of Ω. Since Borel sets of Ω are 

measurable by assumption, every Borel function is F-measurable. 
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1.2.1 Distribution Functions, [Hsu, 1997], [Evans, 2006]: 

Let (Ω, F, P) be a probability space and suppose X: Ω → n
  

random variable, in this section some additional concepts about basic 

statistical definitions and properties of the distribution function are 

considered. 

 

Definition (1.8) (Distribution Function): 

i. The distribution function of is the function FX: n
  → [0,1] 

defined by: 

FX(x):= F(X ≤ x) for all x ∈ n
  …(1.9) 

ii. If X 1, X2, …,Xm,: Ω → n
  are random variables, their joint 

distribution function is 
1 2 mX ,X ,...,XF (x1,x2,…,xm): ( n

 )m → [0, 1], 

1 2 mX ,X ,...,XF (x1,x2,…,xm):= P(X1≤x1, X2≤x2, …, Xm≤xm) …(1.10) 

for all xi ∈ n
  , i = 1, 2, …, m. 

 

Definition (1.9) (Density Function): 

Suppose X: Ω → n
  is a random variable and F = FX its 

distribution function. If there exists a nonnegative, integrable function  

f: n
  →  , such that: 

F(x) = F(x1, x2, …, xn)  

= 
1 2 nx x x

1 2 n n 2 1... f (y , y ,..., y )dy ...dy dy
−∞ −∞ −∞
∫ ∫ ∫  …(1.11) 
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Then f is called the density function for X. 

It follows then that: 

P(X ∈ B) = 
B
∫ f(x) dx, for all B ∈ B  …(1.12) 

This formula is important as the expression on the right hand side 

is an ordinary integral, and can often be explicitly calculated. 

 

Remark (1.5): 

If the probability distribution function is differentiable, then we 

obtain the probability density function f(x) 

f(x) = 
dF(x)

dx
 …(1.13) 

 

1.2.2 Expectation of Random Variables: 

Let (Ω, F, P) be a probability space. The expectation of a random 

variable X is usually defined by the Stieltjes integral: 

EX = 
∞

−∞
∫ X dF(x) …(1.14) 

 

Definition (1.10) (Expectation), [Krishnan, 1984]: 

Let (Ω, F, P) be a probability space, and let X be a real random 

variable. The expectation of X is defined by: 

EX = 
Ω
∫ X(ω) dP(ω) …(1.15) 
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Remarks (1.6): 

There are some properties of expectation operation, such as: 

1. Linearity: E(aX + bY) = aEX + bEY, for all constants a and b. 

2. Homogeneity: E(cX) = cEX, for constant c. 

3. Order preservation X ≥ Y implies EX ≥ EY. 

 

Lemma (1.2), [Evans, 2005]: 

Let X: Ω → n
  be a random variable, and assume that its 

distribution function F = FX which has the density function. Suppose  

g: n
  →  , and Y = g(X) is integrable. Then: 

E(Y) = 
n
∫


g(x)f(x) dx 

In particular, 

E(X) = 
n
∫


xf(x) dx …(1.16) 

and 

V(X) = 
n
∫


|x − E(X)|2f(x) dx …(1.17) 

 

1.2.3 Convergence of Random Variable: 

The convergence of random variable and their kinds are of our 

interest and then submitted as follows: 
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Definition (1.11) (Almost Surely Convergence), [Krishnan, 2006]: 

A sequence of random variables {Xn} converges almost surely 

(a.s.), or almost certainly, or strongly, to X if for every ω-point not 

belonging to the null event A, 

n
lim
→∞

|Xn(ω) − X(ω)| = 0 …(1.18) 

This type of convergence is known as convergence with probability 1 

and is denoted by: 

Xn(ω)n→∞ a.s.→  X(ω) 

or 

X(ω) = 
n
lim
→∞

Xn(ω)    (a.s.) 

 

Definition (1.12) (Convergence in Probability), [Krishnan, 1984]: 

A sequence of random variables {Xn} converges in probability to 

X if for every ε >0, however small, 

n
lim
→∞

p(|Xn − X| ≥ ε) = 0, or 

n
lim
→∞

p(|Xn − X| < ε) = 1 

It is denoted by: 

Xn(ω)n→∞ l.i.p.→  X(ω), or 

X(ω) = 
n
l.i.p.
→∞

Xn(ω) 

(where l.i.p. is standing for limit in probability). 
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Remarks (1.7), [Krihsnan, 2006]: 

The concept of convergence in probability plays an important 

role in the consistency of estimators and the weak law of large numbers. 

We give next some results concerning this concept. 

i. If a sequence of random variables {Xn} converges almost surely to X, 

then it converges in probability to the same limit. The converse is not 

true.  

ii. If {X n} converges in probability to X, then there exist a subsequence 

{
knX } of {X n} which converges almost surely to the same limit. 

 

1.3 Stochastic Processes: 

Let (Ω, F, P) be a probability space. Let T be an arbitrary indexed 

parameter set called the time set. T can be the real line  , the positive 

real line +
 , the set of positive integers  , or any semiclosed interval in 

  or +
 , unless otherwise specified. We shall assume that T is a 

semiclosed time interval in + . Sometime we will explicitly state that T 

is in +
 . 

 

Definition (1.13) (Stochastic Process), [Krishnan, 1984]: 

Let (Ω, F, P) be a complete probability space and let T be any 

time set. Let ( , R) be a measurable space, where   is the real line and 

R is the σ-field of Borel sets on the real line. A stochastic process  

{X t, t ∈ T} is a family of random variables defined on the probability 

space (Ω, F, P) and taking values in the measurable space ( , R). 
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Definition (1.14) (Covariance Matrix), [Raphael, 1972]: 

Consider a vector-valued stochastic process W(t). Then we call: 

m(t) = E{W(t)} 

the mean of the process, 

CW(t1, t2) = E{[W(t 1) − m(t1)][W(t 2) − m(t2)]
T} …(1.19) 

The covariance matrix, and: 

CW(t1, t2) = E{W(t1)W
T(t2)} …(1.20) 

is the second-order joint moment matrix of W(t). RW(t, t) = Q(t) is 

termed as the variance matrix, while: 

CW(t, t) = Q(t) …(1.21) 

is the second-order moment matrix of the process. 

 

Remarks (1.8), [Raphael, 1972]: 

1. The joint moment matrix written out more explicitly is 

CW(t1, t2) = E{W(t1)W
T(t2)} 

1 1 1 2 1 1 2 2 1 1 m 2

2 1 1 2 2 1 2 2 2 1 m 2

m 1 1 2 m 1 2 2 m 1 m 2

E{w (t )w (t )} E{w (t )w (t )} E{w (t )w (t )}

E{w (t )w (t )} E{w (t )w (t )} E{w (t )w (t )}

E{w (t )w (t )} E{w (t )w (t )} E{w (t )w (t )}

 
 
 =
 
 
 

L

L

M M O M

L

 

 …(1.22) 

2. Each element of CW(t1, t2) is a scalar joint moment function. Similarly, 

each element of RW(t1, t2) is a scalar covariance function. 
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1.3.1 Classes of Stochastic Processes: 

In this subsection we shall consider several types of stochastic 

process and discuss their properties. 

 

Definition (1.15) (Stationary Process), [Hsu, 1997]: 

Let {X t, t ∈ T} be a stochastic process with time set T defined on 

a probability space (Ω, F, P) taking values in the state space ( , R). Let 

T = {t 1, t2, …, tn} be any finite set of values belonging to T. Then the 

process is strictly stationary or stationary if for any ∆t the joint 

distribution of the sequence {X(t1), X(t2),… , X(tn)}is the same as the 

joint distribution of the sequence {X(t1 + ∆t), X(t2 + ∆t), … , X(tn + ∆t)} 

for any positive integer n. 

 

Definition (1.16) (Wide Sense Stationary), [Krishnan, 1984]: 

A real stochastic process {Xt, t ∈ T} is wide sense stationary or 

covariance stationary if: 

1. E 2
tX  < ∞. 

2. µx = EXt a constant. 

3. CX(t – s) = E{(X t − µ)(Xs − µ)} depends only on the time difference  

t − s and not on either t or s. 

 

Remark (1.9): 

The strict sense stationary of definition (1.15) implies wide sense 

stationary of definition (1.16), but the converse is not true, [Krishnan, 

1984]. 
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Example (1.1), [Krishnan, 1984]: 

Let us define the random signal: 

x(t) = αsin(0.5t + θ) 

Where α is a positive random variable with mean 0.63 and variance 

0.11, θ is uniformly distributed between 0 and 2π, and α and θ are 

uncorrelated. 

where the p.d.f. of uniformly distribution is: 

f(x) = 
1

,     0 2
2
0,        e.w.

 ≤ θ ≤ π π


 

The mean of this random signal is calculated as: 

m(t) = E[x(t)]  

= E[αsin(0.5t + θ)] 

= E(α)
2

0

π

∫  sin(0.5t + θ)
1

2π
 dθ 

= (0.63)
2

0

π

∫ [sin(0.5t) cos(θ) + cos(0.5t)sin(θ)] 
1

2π
 dθ 

= (0.63) ( ) ( )2 2
0 0

sin(0.5t) cos(0.5t)
sin cos

2 2
π π − θ + θ π π 

 = 0. 

Now, let t = t2, s = t1; t2 > t1 

CX(t − s) = CX(t2 − t1) 

= E{(
2t

X  − µ)(
1t

X  − µ)} = E(X(t2)X(t1)) 

= 
1

2
E(α2)

2

0

π

∫ [sin{0.5(t2−t1)+2θ}+sin{0.5(t2−t1)}]
1

2π
 dθ 
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= 
1

4π
E(α2)

2

0

π

∫ [sin(0.5)(t2 − t1)cos(2θ) + cos{0.5(t2 − t1) 

sin(2θ)} sin{0.5(t2 − t1)}] dθ 

= 
1

4π
 E(α2) 2 1sin(0.5(t t ))

2

−
 π

2

0

π

∫ cos(2θ) dθ + 

2 1cos(0.5(t t ))

2

−
π

2

0

π

∫ sin(2θ) dθ + 

2 1sin(0.5(t t ))

2

−
π

2

0

π

∫ dθ



  

= 0.03cos(0.5(t2 − t1)) 

The mean is independent of time, and the covariance function depends 

only on time difference (t2 − t1), so this random signal is wide sense 

stationary. This result is reasonable since there is no preferred time if the 

phase is uniformly distributed from 0 to 2π. 

 

Definition (1.17) (Independent Increment Process), [Krishnan, 2006]: 

A stochastic process {Xt, t ∈ T} defined on the probability space 

(Ω, F, P) is an independent increment process if for any collection {t1, t2, 

…, tn} ⊂ T satisfying t1 < t2 < … < tn  the increment of the process Xt, 

2 1t tX X− , 
3 2t tX X− , …, 

n n 1t tX X
−

−  are a sequence of independent 

random variables. 

 

1.3.2 White Noise: 

The following definitions are needed to complete understanding 

white noise: 
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White Noise, [Raphel, 1972]: 

One frequently encounters in practice zero-mean scalar stochastic 

process with the property that X(t1) and X(t2) are uncorrelated even for 

values of |t2 − t1| that are quite small, that is: 

RX(t2, t1) ≅  0, for |t2 − t1| > ε …(1.23) 

where ε is a small number. The covariance function of such stochastic 

processes can be idealized as follows: 

CX(t2, t1) = V(t1)δ(t2 − t1), V(t1) ≥ 0 …(1.24) 

Here δ(t2 − t1) is the delta function and V(t1) is referred to as the intensity 

of the process at time t. Such processes are called white noise processes.  

We can of course extend the notion of a white noise process to 

vector-valued process: 

 

Definition (1.18) (White Noise Process) [Raphael, 1972]: 

Let X(t) be a zero mean vector-valued stochastic process with 

covariance matrix: 

CX(t2, t1) = V(t1)δ(t2 − t1) …(1.25) 

where V(t1) ≥ 0. 

The process X(t) is then said to be a white noise stochastic 

process with intensity V(t). 

 

White Noise Differential Equation, [Krishnan, 1984]: 

We now investigate the problem of a differential equation driven 

by white noise. Suppose we are given the differential equation in the 

following form: 
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tdY

dt
= α(t)Y t + β(t)X t, t ∈ T, Ya …(1.26) 

where Ya is the initial condition and Xt is a white noise process. 

Presented in the form (1.26) cannot be interpreted as an ordinary 

differential equation without making assumptions on differentiability 

and separability of Yt and Xt, even if Xt is not white but some other 

quadratic mean continuous random process. Instead of interpreting this 

equation as a differential equation, we can interpret it as an integral 

equation without worrying about these assumptions. We interpret the 

stochastic process {Yt, t ∈ [a, b)} with E|Yt|
2 < ∞ as the solution to the 

differential equation (1.26) if it satisfies the following integral equation: 

Y t = Ya + 
t

a
∫ α(s)Ys ds + 

t

a
∫ β(s) dZs,  a ≤ t ≤ b …(1.27) 

where Zt is the process of orthogonal increment associated with the 

white noise process Xt, Ya is the initial condition satisfying E|Ya|
2 < ∞, 

and α(t) and β(t) belong to a class of square integrable functions. 

The above integral equation can also be written as: 

dYt = α(t)Y t dt + β(t)dZt,   a ≤ t < b, Ya, E|Ya|
2 < ∞ 

We have more to say about these differential equations when we discuss 

Itô stochastic differential equations. 

 

1.3.3 Brownian Motion: 

Next we define a Brownian motion process assuming that the 

time set T = +
  or any interval [0, a], a > 0. 
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Definition (1.19) (Brownian Motion), [Krishnan, 2006]: 

Let (Ω, F, P) be a complete probability space. The stochastic 

process {Wt, t ∈ T} defined on (Ω, F, P) is a Brownian motion process 

with parameter σ2 if: 

1. W0(t) = 0. 

2. {W t} is a stationary independent increment process. 

3. For every s and t, s ≤ t, belonging to the increment Wt − Ws are 

Gaussian distributed with mean zero and variance σ2(t − s). 

4. For almost all ω ∈ Ω the sample functions t → Wt(ω) are 

uniformly continuous in the interval T. 

 

With the definition given above we shall now drive the auto 

covariance function CW(t, s). 

For t > s. 

CW(t, s) = E(WtWs) 

= E(Wt − Ws + Ws)Ws 

= E(Wt − Ws)Ws + E 2
sW  

= E 2
sW     from 2 

= σ2s        from 3 

Similarly, for t < s, CW(t, s) = σ2t. Hence CW(t, s) = σ2(t ∧ s), where  

t ∧ s = min{t, s}. 
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Remark (1.10), [Stirzaker, 2005]: 

If σ2 = 1, then W(t) is said to be the standard Brownian process 

(standard Wiener process). 

 

1.3.3.1 Computation of Joint Probabilities, [Evans, 2005]: 

From the definition if W(.)is a Brownian motion, then for all t > 0 

and a ≤ b, 

P(a ≤ W(t) ≤ b) = 
1

2 tπ

b

a
∫

2x
2te

−
 dx …(1.28) 

since W(t) is N(0, t) (for more details see [Evans, 2006]). 

 

Remarks (1.11), [Evans, 2005]: 

1. Fix a point x0 ∈ n
  and consider then the ordinary differential 

equation: 

0

X(t) b(X(t)),    t 0

X(0) x

= >
= 

&
    (ODE) …(1.29) 

where b: n
  → n

  is a given, smooth vector field and the solution 

is the trajectory X(.): [0, ∞) → n
 . 

2. X(t) is the state of the system at time t ≥ 0,  

d
X(t) : X(t)

dt
=&  …(1.30) 

In many applications, however, the experimentally measured 

trajectories of systems modeled by (ODE) do not in fact behave as 

predicted. 
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Hence it seems reasonable to modify (ODE’s), in such away to 

include the possibility of random effects disturbing the system. A formal 

way to do so is to write: 

0

X(t) b(X(t)) B(X(t)) (t),    t 0

X(0) x

= + ξ >
= 

&
 …(1.31) 

where B: n
  → Mn×m (= space of n×m matrices) and 

ξ(.):= m-dimensional “white noise”. 

This approach presents us with these mathematical problems: 

1. Define the “white noise” ξ (.) as we define. 

2. Define what it means for X(.) to solve (1.31). 

3. Show (1.31) has a solution, discuss uniqueness, asymptotic 

behavior, dependence upon x0, b, B, etc. 

 

Some Heuristics: 

Let us first study equation (1.31) in the case m = n, x0 = 0, b ≡ 0, 

and B ≡ I. The solution of (1.31) in this setting turns out to be the n-

dimensional Wiener process, or Brownian motion, denoted by W(t). 

Thus we may symbolically write: 

W(t)&  = ξ(t) …(1.32) 

Thereby asserting that “white noise” is the time derivative of the 

Brownian motion, (if exist). 

Now return to the general case of the equation (1.31), write 
d

dt
 

instead of the dot, yielding: 
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d

dt
X(t) = b(X(t)) + B(X(t)) 

dW(t)

dt
 …(1.33) 

and finally multiply by “dt”: 

0

dX(t) b(X(t))dt B(X(t))dW(t)

X(0) x

= + 
= 

    (SDE) …(1.34) 

This expression, properly interpreted, is a stochastic differential equation 

(abbreviated by SDE). We say that X(.) solves the (SDE) provided 

X(t) = x0+
t

0
∫ b(X(s)) ds+

t

0
∫ B(X(s)) dW, for all times t>0 …(1.35) 

Now we must: 

1. Construct W(t). 

2. Define the stochastic integral. 

3. Show that equation (1.35) has a solution, etc. 

 

1.4 Stochastic Integral: 

It is well-known that stochastic integrals and Itô formula play a 

central role in modern probability theory and its applications in 

stochastic differential equation concerned by Brownian motion, etc. 

This section concerning the most necessary mathematical 

principles discussing stochastic integration, Itô formula, Itô SDE, 

existence of a unique solution of Itô SDEs, as well as some solvable 

examples. 

Now, we shall define the integral: 
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I(T) = 
T

0
∫ f(t) dw(t) …(1.36) 

where w(t) is a Brownian motion and f(t) is a stochastic function, and to 

study its basic properties. One may define: 

I(T) = f(T)w(T) − 
T

0
∫ f  ′(t)w(t) dt 

If f is absolutely continuous for each w. However, if f is only 

continuous, or just integrable, this definition does not make sense, 

[Friedman, 1975]. 

 

Remark (1.12), [Friedman, 1975]: 

Since w(t) (the Brownian motion) is nowhere differentiable with 

probability 1, the integral (1.36) cannot be defined in the usual 

Lebesgue-Stieltjes sense. 

 

Definition (1.20) (Measurability), [Doob, 1953]: 

A stochastic process {Xt, t ∈ T} defined on a probability space 

(Ω, F, P) with a time set T is a measurable process if for all Lebesgue 

measurable sets B belonging to the σ-field L(T) generated by Lebesgue 

measurable sets the mapping (t, ω) → Xt(ω) is a measurable on T×Ω 

with respect to the product σ-field L(t)⊗F, that is: 

{(t, ω): Xt(ω) ∈ B} ∈ L(T)⊗F …(1.37) 
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Theorem (1.1), [Doob, 1953]: 

Let {X t, t ∈ T} be a measurable stochastic process with respect to 

the product σ-field L(t)⊗F. Then: 

1. Almost all sample function of this process are Lebesgue measurable 

function of t ∈ T. 

2. If EX t(ω) exists for all t ∈ T, then it also defines a Lebesgue 

measurable function of t ∈ T. 

3. If A is a Lebesgue time set in T and if 
A
∫ E|Xt| dt < ∞, then almost all 

sample functions Xt(ω) are Lebesgue integrable on the set A, that is: 

A
∫ |Xt(ω)| dt < ∞, for almost all w 

Since the value of an absolutely convergent integral is independent of 

the order of integration, we have 

A
∫ EXt(ω) dt = E

A
∫ X t(ω) dt …(1.38) 

 

Definition (1.21) (Increasing σ-Field or Filtration σ-field), [Krishnan, 2006]: 

Let(Ω, F) be a complete measurable space and let {Ft, t ∈ T, T = 

+
 } be a family of sub- σ-field of F such that for s ≤ t, Fs ⊂ Ft. Then 

{ Ft} is called an increasing family of sub- σ-field on (Ω, F) or the 

filtration  σ-field of (Ω, F). 
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Remark (1.13): 

Ft is called the σ-field of events prior to t. If {Xt, t ∈ T} is a 

stochastic process defined on (Ω, F, P) then clearly Ft given by: 

Ft = σ{X s, s ≤ t, t ∈ T} …(1.39) 

is increasing. 

 

Definition (1.22) (Adaptation of {Xt}), [Krishnan, 1984]: 

Let {X t, t ∈ T, T = +
 } be a stochastic process defined on 

probability space (Ω, F, P) and let {Ft, t ∈ T, T = +
 } be a filtration σ-

field. The process {Xt} is adapted to the family {Ft}, if X t is Ft-

measurable for every t ∈ T, or t
t tE X X=F  

 

Remarks (1.14), [Krishnan, 2006]: 

1. tEF  represents the conditional expectation. 

2. Ft-adapted random processes are also Ft-measurable and 

nonanticipative with respect to the σ-field Ft. 

3. If Ft is the σ-field by{X s, s ≤ t}, then clearly the process {Xt, t ∈ T} is 

adapted to the family {Ft, t ∈ T}, which is called the natural family 

or natural filtration  of the process {Xt}. 
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1.5 Approximation of Functions by Step Functions: 

We shall call a stochastic process also a stochastic function. 

Let w(t), t ≥ 0 be Brownian motion on probability space  

(Ω, F, P). Let Ft (t ≥ 0) be an increasing family of σ-fields, i.e., 

1 2t t⊂F F if t1<t2, such that Ft⊂F, F(w(s), 0≤s≤t) is in Ft, and F(w(λ + t) − 

w(t), λ ≥ 0) is independent of Ft, for all t ≥ 0. One can take, for instance, 

Ft = {Fw(s), 0 ≤ s ≤ t}. Let 0 ≤ α < β < ∞. A stochastic process f(t) 

defined for α ≤ t < β is called a nonanticipative function with respect to 

Ft if: 

(i) f(t) is a separable process; (see definition separable process, 

[Krishnan, 1984]). 

(ii)  f(t) is a measurable process, i.e., the function (t, ω) → f(t , ω) 

from [α, β]×Ω into 1
  is a measurable; (as in definition (1.20)). 

(iii)  For each t ∈ [α, β], f(t) is Ft measurable. 

 

Remarks (1.15) [Friedman, 1975]: 

1. When (iii) holds we say that f(t) is adapted to Ft (see definition 

(1.22)). 

2. Let us define pLω [α, β], (1 ≤ p ≤ ∞) the class of all nonanticipative 

functions f(t) satisfying: 

P p| f (t) |  dt 1
β

α

  < ∞ = 
  
∫  …(1.40) 
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3. We denote by pMω [α, β] the subset of pLω [α, β] consisting of all 

functions f with: 

E p| f (t) |  dt
β

α
< ∞∫  ...(1.41) 

 

Definition (1.23) (Step Function), [Evans, 2005], [Stirzaker, 2005]: 

A stochastic process f(t) defined on [α, β] is called a step 

function if there exists a partition α = t0 < t1 < … < tr = β of [α, β], such 

that: 

f(t) = f(ti) if t i ≤ t < ti+1, 0 ≤ i ≤ r − 1 …(1.42) 

 

Lemma (1.3), [Friedman, 1975]: 

Let f ∈ 2Lω [α, β]. Then: 

(i) There exists a sequence of continuous functions gn in 2Lω [α, β], such 

that: 

n
lim
→∞

2
n| f (t) g (t) |  dt

β

α
−∫  = 0  a.s. …(1.43) 

(ii)  There exists a sequence of step functions fn in 2Lω [α, β], such that: 

n
lim
→∞

2
n| f (t) f (t) |  dt

β

α
−∫  = 0  a.s. …(1.44) 

 

Lemma (1.4), [Friedman, 1975]: 

Let f ∈ 2Mω [α, β]. Then: 
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(i) There exists a sequence of continuous functions Kn in 2Mω [α, β], 

such that: 

E 2
n| f (t) K (t) |  dt

β

α
−∫  → 0 …(1.45) 

if n → ∞. 

(ii)  There exists a sequence of bounded step functions ln in 2Mω [α, β], 

such that: 

E 2
n| f (t) l (t) |  dt

β

α
−∫  → 0 …(1.46) 

if n → ∞. 

 

Remark (1.16): 

The following stochastic integral: 

T

0
∫ W dW 

where W(.) is a 1-dimensional Brownian motion. A reasonable 

procedure is to construct a Riemann sum approximation, and then–if 

possible–to pass to limits. 

 

The following definitions are concerning: 

 

Definitions (1.24), [Evans, 2005]: 

(i) If [0,T] is an interval, a partition K of [0,T] is a finite collection of 

points in [0, T]: 
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K := {0 = t0 < t1 < … < tm= T} 

(ii)  Let the mesh size of K be |K|:= 
0 k m 1

max
≤ ≤ −

|tk+1 − tk| 

(iii)  For fixed 0 ≤ λ ≤ 1 and K a given partition of [0, T], set: 

τk = (1 − λ)tk + λtk+1, k =0, 2, …, m − 1 

For such a partition K and for 0 ≤ λ ≤ 1, we define: 

R = R(K, λ):= 
m 1

k 0

−

=
∑ W(τk)(W(tk+1) − W(tk)) 

This is the corresponding Riemann sum approximation of 
T

0

WdW∫ . 

 

Lemma (1.5) (Quadratic Variation), [Øksendal, 1998]: 

Let [α, β] be an interval in [0, ∞), and suppose that: 

Pn:= {α = t0 < t1 < … < tm = β} 

be a partitions of [α, β], with |Pn| → 0 as n → ∞. Then: 

nm 1

k 0

−

=
∑ (W( n

k 1t + ) − W( n
kt )) → β − α …(1.47) 

In 2Lω [α, β] as n → ∞. 

 

Definition (1.25), [Friedman, 1975]: 

Let f(t) be a step function in 2Lω [α, β], say f(t) = fi if t i ≤ t < ti+1, 0 

0 ≤ i ≤ r − 1, where {α = t0 < t1 < … < tr = β}, the random variable: 

r 1

k 0

−

=
∑ f(tk)[W(tk+1) − W(tk)] …(1.48) 
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where max|tk+1 − tk| → 0, 0 ≤ k ≤ r − 1; is denoted by: 

β

α
∫ f(t) dw(t) …(1.49) 

and is called the stochastic integral of f with respect to the Brownian 

motion w; it is also called the Itô integral. 

 

Lemma (1.6), [Evans, 2005]: 

We have for all constants a, b ∈   and for all step processes G, 

H ∈ L2(0, T), G in 2Mω [α, β] 

(i) 
T

0
∫ (aG + bH) dW = a

T

0
∫ G dW + b

T

0
∫ H dW. 

(ii)  E
T

0

G dW
 
  
 
∫  = 0. 

(iii)  E

2T

0

G dW
  
      
∫  = E

T
2

0

G  dW
 
  
 
∫  

 

Lemma (1.7), [Friedman, 1975]: 

If f is a step function in 2Mω [α, β], then: 

E
β

α
∫ f(t) dw(t) = 0 …(1.50) 

E

2

f (t) dw(t)
β

α
∫  = E 2f  dt

β

α
∫  …(1.51) 
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Lemma (1.8), [Friedman, 1975]: 

Let f, g belong to 2Lω[α, β], and assume that f(t) = g(t) for all α ≤ 

t ≤ β, ω ∈ Ω . Then: 

β

α
∫ f(t) dw(t) = 

β

α
∫ g(t) dw(t), for a.a. ω ∈ Ω …(1.52) 

 

Remarks (1.17), [Øksendal, 1998]: 

1. Let f ∈ 2Lω[α, β] and consider the integral: 

I(t) = 
t

0
∫ f(s) dw(s), 0 ≤ t ≤ T …(1.53) 

2. By definition, 
0

0
∫ f(s) dw(s) = 0, and we refer to I(t) as the indefinite 

integral of f. Notice that I(t) is Ft measurable. 

If f is a step function, then clearly: 

β

α
∫ f(s) dw(s) + 

γ

β
∫ f(s) dw(s) = 

γ

α
∫ f(s) dw(s) …(1.54) 

if 0 ≤ α < β < γ ≤ T. 

By approximation we find that (1.54) holds for any f in 2Lω[0, T]. 
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1.6 Itô Formula: 

Definition (1.26), [Evans, 2005]: 

Let X(t) (0 ≤ t ≤ T) be a stochastic process such that for any  

0 ≤ t1 < t2 ≤ T 

X(t2) − X(t1) = 
2

1

t

t
∫ a(t) dt + 

2

1

t

t
∫ b(t) dw(t) 

where a ∈ 1Lω[0, T], b ∈ 2Lω[0, T]. Then we say that X(t) has stochastic 

differential dX, on [0, T], given by: 

dX(t) = a(t)dt + b(t)dw(t) 

Observe that X(t) is a nonanticipative function. It is also a 

continuous process. Hence, in particular, it belongs to L∞
ω[0, T]. 

 

Definition (1.27), [Friedman, 1975]: 

Let X(t) be as in definition (1.26) and let f(t) be a function in 

L∞
ω[0, T]. We define: 

f(t)dX(t) = f(t)a(t)dt + f(t)b(t)dw(t). 

 

Theorem (1.2), [Friedman, 1975], [Øksendal, 1998]: 

Let dξ(t) = adt + bdw(t), and let f(x, t) be a continuous function in 

(x, t) ∈ 1
 ×[0, ∞) together with its partial derivatives fx, fxx, ft. Then the 

process f(ξ(t), t) has a stochastic differential, given by: 

df(ξ(t), t) = [f t(ξ(t), t) + fx(ξ(t), t)a(t) + 
1

2
fxx(ξ(t), t)b2(t)]dt + 

fx(ξ(t), t)b(t)dw(t) …(1.55) 
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This is called the Itô formula. Notice that if w(t) were 

continuously differentiable in t, then (by the standard calculus formula 

for total derivatives) the term 
1

2
fxxb

2dt will not appear. 

 

1.7 Existence and Uniqueness Solution of Stochastic Differential 

Equations, [Øksendal, 1998], [Evans, 2005]: 

If σ = (σij) is a matrix, we write |σ|2 = 
i, j
∑ |σij |

2.  

Let b(x, t) = (b1(x, t), b2(x, t), …, bn(x, t)), σ(x, t = (α(x, t))n
i, j 1=  and 

suppose the functions bi(x, t), σij(x, t) are measurable in (x,t)∈ n
 ×[0,T]. 

If ξ(t) (0 ≤ t ≤ T) is a stochastic process, such that: 

dξ(t) = b(ξ(t), t) + σ(ξ(t), t)dw(t) …(1.56) 

ξ(0) = ξ0 …(1.57) 

Then we say that ξ(t) satisfies the system of stochastic differential 

equations (1.56) and the initial condition (1.57). Note that it is implicitly 

assumed that b(ξ(t), t) belongs to 1Lω[0, T] and σ(ξ(t), t) belongs to 

2Lω[0, T]. 

 

Theorem (1.3), [Friedman, 1975], [Øksendal, 1998], [Evans, 2005]: 

Suppose b(x, t), σ(x, t) are measurable in (x, t) ∈ n
 ×[0, T] and 

|b(x, t) − b(x% , t)| ≤ Kθ|x − x% |, |σ(x, t) − σ( x% , t)| ≤ Kθ|x − x% | 

|b(x, t)| ≤ K(1 + |x|), |σ(x, t)| ≤ K(1 + |x|) …(1.58) 
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where Kθ, K are constants. Let ξ0 be any n-dimensional random vector 

independent of F(w(t), 0 ≤ t ≤ T), such that E|ξ0|
2 < ∞. Then there exists 

a unique solution of (1.56) and (1.57) in 2Mω [0, T]. 

The assertion of uniqueness means that if ξ1(t), ξ2(t) are two solutions of 

(1.56), (1.57) and if they belong to 2Mω [0, T], then: 

P{ξ1(t) = ξ2(t) for all 0 ≤ t ≤ T} = 1 

 

Theorem (1.4) (Stronger Uniqueness and Existence Theorem): 

Suppose bi(x, t), σi(x, t) are measurable functions in (x, t) ∈ 

n
 ×[0, T], for i = 1, 2, satisfying: 

|bi(x, t) − bi( x% , t)| ≤ Kθ|x − x% |, |σi(x, t) − σi( x% , t)| ≤ Kθ|x − x% | 

|bi(x, t)| ≤ K(1 + |x|), |σi(x, t)| ≤ K(1 + |x|) 

Let D be a domain in n
  and suppose that: 

b1(x, t) = b2(x, t) 

 …(1.59) 

σ1(x, t) = σ2(x, t) 

If x ∈ D, 0 ≤ t ≤ T. 

Let ξi(t) (i = 1, 2) be the solution of: 

dξ(t) = bi(ξi(t), t) + σi(ξi(t), t), ξi(0) = ξi0 

in 2Mω [0, T] (with the same family of σ-fields Ft) where E|ξi0|
2 < ∞. 

Assume finally that ξ10 = ξ20 for a.a.ω. for which either ξ10 ∈ D or  
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ξ20 ∈ D. Denote by τi the first time ξi(t) intersects n
 /D if such time t ≤ 

T exists, and τi = T, otherwise. Then: 

P(τ1 = τ2) = 1 

P{
10 t

sup
≤ ≤τ

|ξ1(s) − ξ2(s)| = 0} = 1. 

Thus if two stochastic equation have the same coefficients in a 

cylinder Q = D×[0, T] and if the initial condition coincide in D, then the 

corresponding solution agree until the first time they both leave D; they 

first leave D at the same time. 

 

Remarks (1.18), [Friedman, 1975]: 

1. This is local uniqueness theorem. 

2. It remains true for the general domains Q. 
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CChhaapptteerr  TTwwoo  

EEuulleerr--MMaarruuyyaammaa  NNuummeerriiccaall  MMeetthhoodd  ffoorr  SSoollvviinngg  
SSttoocchhaassttiicc  DDiiffffeerreennttiiaall  EEqquuaattiioonnss  

 

This chapter deals with the some numerical methods, which have 

been programmed in Matlab. The strong and weak convergence criteria 

lead to different discrete time approximation, which are only efficient 

with respect to one of these two criteria. It is therefore important to 

clarify the aim of the simulation before choosing an appropriate scheme, 

deciding on whether a good pathwise approximation of the process is 

required or whether an approximation of some functional of the It̂o 

process is the real objective. 

Initially, Brownian motion is generated. Then Euler-Maruyama 

numerical scheme, which approximate the solution of the stochastic 

differential equation, are compared to the exact solution of a linear SDE. 

This can be easily accomplished since we have a closed solution for the 

linear SDE. Numerical estimates are provided for the strong 

convergence schemes of well known estimates for the absolute error 

using the absolute criterion.  

 

2.1 Vector SDE's, [Evans, 2005]: 

We shall interpret a vector as a column vector and its transpose as 

a row vector and consider an m-dimensional Wiener process W = {W t,  

t ≥ 0}, with components 1
tW , 2

tW , …, m
tW , which are independent 

 



Chapter Two                                                     Euler-Maruyama Numerical Method for Solving  
                                                                                 Stochastic Differential Equations 

 36 

scalar Wiener process. Then, we take a k-dimensional vector values 

function a : [t0, T]× k
�  → k

� , the drift coefficients, and a k×m-matrix 

valued function b : [t0, T]× k
�  → k m×

� , the diffusion coefficient,  

t0 ∈ [0, T], to form a k-dimensional vector stochastic differential 

equation: 

dXt = a(t, Xt) dt + b(t, Xt) dWt …(2.1) 

we interpret this as a stochastic integral equation: 

X t = 
0t

X  + 
0

t

t
∫ a(s, Xs) ds + 

0

t

t
∫ b(s, Xs) dWs …(2.2) 

with initial value 
0t

X ∈ 
k

� , where the Lebsegue and Itô integrals 

determined component by component, with the component of (2.2) 

being: 

i
tX  = 

0
i
tX  + 

0

t

t
∫ ai(s, Xs) ds + 

0

tm

j 1 t=
∑ ∫ bi,j(s, Xs) d

j
sW  

If the drift and diffusion coefficients do not depend on the time variable, 

that is if a(t, x) ≡ b(x), then we say that the stochastic equation is 

autonomous. We can always write a nonautonomous equation as a 

vector autonomous equation of one dimension more by setting in the 

drift component the component of Xt the time variable tWl  = t. 

There is a vector version of the Itô formula. For a sufficiently 

smooth transformation f = [t0, T]× d
�  → k

�  of the solution X = {X t, 

t0 ≤ t ≤ T} of (2.1), we obtain a k-dimensional process Y = {Y t = f(t, Xt), 

t0 ≤ t ≤ T} with the vector stochastic differential in component form: 
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d p
tY  = 

p p 2 pd d m
i i, j,

i 1 i i, j 1 1 i j

f f 1 f
a b b dt

t x 2 x x= = =

 ∂ ∂ ∂+ +  ∂ ∂ ∂ ∂ 
∑ ∑ ∑ l l

l

 + 

pm d
i,

t
1 i 1 i

f
b dW

x= =

∂
∂∑∑ l l

l

 

for p = 1, 2, …, k; where the terms are all evaluated at (t, Xt). We can 

sometimes use this formula to determine the solutions of certain vector 

stochastic differential equations in terms of known solutions of the other 

equations, for example linear equations. 

 

2.2 Generating Brownian Motion in Matlab: 

The underlying difference between deterministic and probabilistic 

differential equations is the need to generate the following random 

increments of the Brownian motion for the SDE: 

∆Wn = 
nt

W  − 
n 1tW

−
 …(2.3) 

For computational purpose, it is necessary to describe the 

Brownian motion, where Wt is specified at discrete t values. Therefore, 

let ∆t = T/N, for some positive integer N and for T on the interval [0, T]. 

From the definition of Brownian motion: 

∆Wn = 
nt

W  − 
n 1tW

−
 ~ N(0, tn − tn−1) 

or equivalently: 

∆Wn = 
nt

W  − 
n 1tW

−
 ~ n n 1t t −− N(0, 1) 

where N(0, 1) denotes a standard normally distributed random variable 

with zero mean and variance equal to one. Here tn − tn−1 = ∆t is the 
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variance of the Brownian motion random variable. In Matlab, the 

function randn (1, N) will generate N random variables from the 

standard normal distribution. In order to generate a random variable with 

variance equal to ∆t, random variables from the standard normal 

distribution are generated using the Matlab function randn (1, N) and 

each of these variables are then multiplied by t∆ , resulting in the 

random increments in equation (2.3). From equation (2.3): 

∆W1 = 
1t

W  − 
0t

W  

∆W2 = 
2t

W  − 
1t

W  

Implying that: 

∆W1 + ∆W2 = 
2t

W  − 
1t

W  + 
1t

W  − 
0t

W  

= 
2t

W  

and since t0 = 0 and W0 = 0, therefore: 

nt
W  = 

n

j 1=
∑ ∆Wj 

For more details, see the computational algorithm for generating 

Brownian motion supported by Matlab. 

 

2.3 Stochastic Taylor Expansion, [Kloeden & Platen, 1992]: 

We consider the equation X = {X t, t ∈ [t0, T]} of one-dimensional 

stochastic ordinary differential equation: 

d

dt
X t = a(Xt) 
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with initial value 
0t

X , for t ∈ [t0, T], where 0 ≤ t0 < T, which we can 

write in the equivalent integral equation form as: 

X t = 
0t

X  + 
0

t

t
∫ a(Xs) ds …(2.4) 

To justify the following constructions we require that the function 

a satisfies appropriate properties, for instance to be sufficiently smooth 

with a linear growth bound. Let f : �  → �  be continuously 

differentiable function. Then by the chain rule, we have: 

d

dt
f(X t) = a(Xt)f(X t) …(2.5) 

Which using the operator: 

Lf = af 

we can express (2.5) as the integral relation: 

f(X t) = f(
0t

X ) + 
0

t

t
∫ Lf(X s) ds …(2.6) 

for all t ∈ [t0, T]. When f(x) = x, we have Lf = a, L2f = La, …, and (2.6) 

reduces to: 

X t = 
0t

X  + 
0

t

t
∫ a(Xs) ds …(2.7) 

that is, to equation (2.4). If we apply the relation (2.6) to the function  

f = a in the integral in (2.7), we obtain: 
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X t = 
0t

X  + 
0

0 0

t s

t z
t t

a(X ) La(X )dz ds
 
 +
 
 
∫ ∫  

= 
0t

X  + a(
0t

X )
0

t

t
∫ ds + 

0 0

t s

z
t t

La(X )dzds∫ ∫  …(2.8) 

Which is the simplest nontrivial Taylor expansion for Xt. We can apply 

(2.6) again to the function f = La in the double integral of (2.8) to derive: 

X t = 
0t

X  + a(
0t

X )
0

t

t
∫ ds + La(

0t
X )

0 0

t s

t t

dzds∫ ∫  + R3 

where: 

R3 = 
0 0 0

t s z
2

u
t t t

L a(X )dudzds∫ ∫ ∫  

for t ∈ [t0, T]. For a general r + 1 times continuously differentiable 

function f : �  → � , this method gives the classical Taylor formula in 

integral form: 

f(X t) = f(X 0) + 
0

r
0

t
1

(t t )
L f (X )

!=

−
∑

l

l

l
l

 + 

2

1
0 0

st
r 1

s 1
t t

... L f (X )ds+
∫ ∫  …(2.9) 

for t ∈ [t0, T] and r = 1, 2, ..; since: 

1 1

0 0 0

s st

1
t t t

... ds ...ds
−

∫ ∫ ∫
l

l
 = 

1

!l
(t − t0)

l  

for l  = 1, 2, … . The Taylor formula (2.9) has proven to be a very useful 

tool in both theoretical and practical investigations, particularly in 

numerical analysis. It follows the approximation of a sufficiently smooth 
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function in a neighborhood of a given point to any desired order of 

accuracy. The expansion depends on the values of the function and some 

of its higher derivatives at the expansion point, weighted by 

corresponding multiple time integrals. In addition, there is a remainder 

term which contains the next following multiple time integral, but with a 

time dependent integrand. 

A stochastic counterpart of the deterministic Taylor formula for 

the expansion of smooth functions of an Itô process about a given value 

has many potential. 

As with the deterministic Taylor expansion, the stochastic Taylor 

formula for the expansion of smooth functions of an Itô process is used 

to construct numerical methods for stochastic differential equations. The 

stochastic Taylor formula, which is called the Itô-Taylor expansion is 

derived by repeatedly applying the Itô formula (1.55). For any twice 

continuously differentiable function f : �  → � , apply the It̂o 

formula to obtain: 

f(X t) = f(
0t

X ) + 
0

t
2

1 1 1 1
t

1
a(X )f (X ) b (X )f (X ) ds

2
 ′ ′′+ + 
 
∫  

0

t

1 1 1
t

b(X )f (X )dX′∫  

Introduce the following operators: 

L0f = af ′ + 
1

2
b2f  ′′ 

L1f = bf ′ …(2.10) 

To obtain: 
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f(X t) = f(
0t

X ) + 
0

t

t
∫ L0f(X 1) ds + 

0

t

t
∫ L1f(X 1) dW1 …(2.11) 

for any t ∈ [t0, T]. If f(x) = x, then L0f = a and L1f = b. Thus, the above is 

just the original It̂o equation for X1: 

X t = 
0t

X  + 
0

t

t
∫ a(Xs) ds + 

0

t

t
∫ b(Xs) dWs …(2.12) 

If formula (2.11) is again applied to the functions f = a and b in equation 

(2.12), the following is obtained: 

X t = 
0t

X  + 
0

0 0 0

t s s
0 0

t z z z
t t t

a(X ) L a(X )dz L a(X )dW ds
 
 + +
 
 
∫ ∫ ∫  + 

0
0 0 0

t s s
0 0

t z z z z
t t t

b(X ) L b(X )dz L b(X )dW dW
 
 + +
 
 
∫ ∫ ∫   

= 
0t

X  + 
0t

a(X )
0

t

t

ds∫  + 
0t

b(X )
0

t

z
t

dW∫  + R …(2.13) 

Where: 

R = 
0 0

t z

t t
∫ ∫ L0a(Xz) dzds + 

0 0

t z

t t
∫ ∫ L1a(Xz) dWzds +  

0 0

t z

t t
∫ ∫ L0b(Xz) dzdWs + 

0 0

t z

t t
∫ ∫ L0b(Xz) dWzdWs 

Repeat this procedure by applying the formula (2.11) to f = L1f in 

equation (2.13) to obtain: 
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X t = 
0t

X  + 
0t

a(X )
0

t

t

ds∫  + 
0t

b(X )
0

t

z
t

dW∫  + 

L1b(
0t

X )
0 0

t z

t t
∫ ∫ dWzdWs + R  …(2.14) 

Where: 

R  = 
0 0

t s

t t
∫ ∫ L0a(Xz) dzds + 

0 0

t s

t t
∫ ∫ L1a(Xz) dWzds +  

0 0

t s

t t
∫ ∫ L0b(Xz) dzdWs + 

0 0 0

t s z

t t t
∫ ∫ ∫ L0L1b(Xu) dudWzdWs + 

0 0 0

t s z

t t t
∫ ∫ ∫ L1L1b(Xu) dWudWzdWs 

The Itô-Taylor expansion can thus be considered as a 

generalization of both the Itô formula and the deterministic Taylor 

formula. 

 

2.4 Euler-Maruyama Method, [Evans, 2005]: 

The Euler-Maruyama method applied to an SDE is similar to the 

Euler method used to solve an ordinary differential equation. Consider 

the following scalar SDE: 

dXt = a(t, Xt)dt + b(t, Xt)dWt 

or in integral form: 

X t(ω)=
0t

X (ω)+
0

t

t
∫ a(s,Xs(ω)) ds+

0

t

t
∫ b(s,Xs(ω)) dWs(ω) …(2.15) 
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where X = {X t : t0 ≤ t ≤ T} is an Itô process with initial value 
0t

X  = X0. 

Subdivide the interval [t0, T] into N-subintervals according to the 

following discretisation: 

t0 = τ0 < τ1 < … < τn < … < τN = T 

The Euler approximation is defined as a continuous time stochastic 

process Y = {Y(T), t 0 ≤ t ≤ T} satisfying the iterative scheme: 

Yn+1 = Y(τn) + a(τn, Y(τn))(τn+1 − τn) + b(τn, Y(τn))( n 1tX
+

 − 
nt

X ) 

 …(2.16) 

for n = 0, 1, …, N − 1; with initial value Y0 = X0. The Euler scheme is 

obtained by considering the first three terms of the Itô-Taylor expansion 

(2.14): 

X t = 
0t

X  + 
0t

a(X )
0

t

t

ds∫  + 
0t

b(X )
0

t

z
t

dW∫  + 

L1b(
0t

X )
0 0

t z

t t
∫ ∫ dWzdWs + R  …(2.17) 

where R  is the remainder and is defined in equation (2.14). Equation 

(2.17) is the It̂o-Taylor expansion of Xt(ω) in equation (2.15). The Itô-

Taylor expansion is useful in approximating a sufficiently smooth 

function in a neighborhood of a given point to a desired order of 

accuracy. Thus, considering the first three terms of equation (2.17) 

provides the Euler scheme in (2.16) where each term in the right hand 

side of equation (2.16) approximates the corresponding term on the right 

hand side of equation (2.15). For brevity, equation (2.16) is written as: 

Yn+1 = Yn + a∆n + b∆Wn 
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where: 

∆n = τn+1 − τn = 
n 1

n

ds
+τ

τ
∫  

∆Wn = 
n 1tX

+
 − 

nt
X  = 

n 1

n

sdW
+τ

τ
∫  

a = a(τn, Y(τn)) 

b = b(τn, Y(τn)) 

Yn = Y(τn) 

The Euler scheme for a deterministic ordinary differential equations is 

obtained if b = 0 in equation (2.16). Thus, the main difference between 

the Euler scheme for deterministic ordinary differential equations and 

the Euler-Maruyama scheme for SDE's is the following random 

increments need to be generated for the SDE: 

∆Wn = 
n 1tX

+
 − 

nt
X  

for n = 0, 1, …, N − 1; of the Wiener process W = {W t, t ≥ 0}, as defined 

in, [Evans, 2005]. 

The Euler scheme determines values of the approximating 

process at the discretisation times only. The values at the intermediate 

instances can be calculated by using either the piecewise constant 

interpolation method or the linear interpolation method. An overview 

method is provided in [Kloeden & Platen, 1994]. 

The Euler scheme is an example of a time discrete approximation 

(or difference method) in which the continuous time differential 
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equation is replaced by a discrete time difference equation generating 

values Y1, Y2, …, Yn to approximate 
1t

X , 
2t

X , …, 
nt

X  at given 

discretisation times t0 < t1 < … < tn. The Euler scheme is the simplest 

strong Taylor approximation and attains an order of convergence γ = 0.5. 

The proof is given in [Kloeden & Platen, 1992]. 

 

2.5 Convergence Criteria: 

There are five commonly used concepts for the convergence of 

random sequences, [Kloeden & Platen, 1992]. These are: 

(i) Convergence with probability one: 

P { }n
n

: lim X ( ) X( ) 0
→∞

 ω∈Ω ω − ω = 
 

 = 1 

(ii) Mean-square convergence: 

E( 2
nX ) < ∞, for n = 1, 2, … 

E(X2) < ∞, and 

n
lim
→∞

E(|Xn − X|2) = 0 

(iii) Convergence in probability: 

n
lim
→∞

P({ω ∈ Ω : |Xn(ω) − X(ω)| ≥ ε}) = 0, for all ε > 0 

(iv) Convergence in distribution: 

n
lim
→∞ nXF (x) = FX(x) 

for all continuity points of FX. 
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(v) Weak convergence: 

n
lim
→∞

∞

−∞
∫ f(x) d

nXF (x) = 
∞

−∞
∫ f(x) dFX(x) 

for all test functions f : �  → � . 

 

In these definitions, all random variables are defined on a 

common probability space (Ω, F, P). 

Convergence of random sequences is classified into two classes, 

namely, strong convergence and weak convergence. Convergence with 

probability one, mean square convergence and convergence in 

probability are the most commonly used convergence in the strong class 

while convergence in distribution and weak convergence are classified 

from the weak class. For the weak class, only the distribution function is 

required and not the actual random variables of the underlying 

probability space. 

Since many SDE's cannot be solved explicitly, numerical 

schemes are employed. There are various numerical schemes (see 

[Kloeden & Platen, 1992]) and in order to access their usefulness and 

practicality, certain criteria are required in which to access the various 

schemes. The convergence criterion is just one of many other criteria, 

like mean square stability, asymptotic stability and cost of computation, 

which can be used when assessing the usefulness of different numerical 

schemes. 

This work uses the strong and weak convergence criteria defined 

below. 
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2.5.1 Strong Convergence Criterion: 

In many practical areas, like direct simulations, filtering or testing 

statistical estimators, a good pathwise approximation is usually required 

and for these instances, the absolute error criterion is appropriate. The 

criterion gives a measure of pathwise closeness at the end of the time 

interval [0, T], [Kloeden & Platen, 1992]. 

Consider a practical sample path of the Wiener process, i.e., WT 

is given (and hence known) therefore there is no randomness in the SDE 

and hence no randomness in XT [Cao & Pope, 2003]. The increments in 

the given Wiener process are then used to obtain the numerical 

approximation Y(T). The absolute error criterion is defined as: 

ε = E(|XT − Y(T)|) 

Here, the Euclidean norm is use, XT is the It̂o process at time T while 

Y(T) is the approximation obtained by approximately integrating the 

SDE in a sequence of time steps, i.e., from the numerical scheme. 

Therefore, the error is the expectation of the absolute value of the 

difference between the approximation Y(T) and the Itô process XT at 

time T. 

The numerical scheme is consistent if the approximation Y(T) 

converges to XT at ∆t tends to zero. Therefore, a discrete time 

approximation Y(T) with maximum time step size δ converges strongly 

to X at time T if [Kloeden & Platen, 1992]: 

0
lim
δ→

 E(|XT − Y(T)|) = 0 …(2.18) 
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There are various discrete time approximations that can be 

derived from the It̂o-Taylor expansion and in order to compare different 

discrete time approximations, the order of convergence of the numerical 

scheme is used. 

A discrete time approximation Yp converges strongly with order  

p > 0 at time T if there exists a positive constant C, which does not 

depend on δ, and a δ0 > 0, such that: 

ε(δ) = E(|XT − Y(T)|) ≤ C∆p 

for each δ ∈ (0, δ0). Thus, the numerical scheme is strong pth order 

accurate if the error is of order ∆tp, [Cao & Pope, 2003]. 

 

2.5.2 Weak Convergence Criterion: 

In practical problems, approximating some functional of the Itô 

process is of interest, such as the probability distribution, its mean and 

variance. Thus, the weak convergence criterion is used since the 

requirements for their simulation are not as demanding as for pathwise 

approximations, [Kloeden & Platen, 1992]. Here the sample path WT is 

not known but is drawn from the distribution of Wiener processes. 

Since WT is a random variable, XT is a random variable. The 

numerical approximation Y(T) is also a random variable because Y(T) is 

obtained using samples of Wiener-process increments. The convergence 

in distribution is analyzed in terms of means g(X(T)) of test functions 

g(x), [Cao & Pope, 2003]. 
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The test functions g(x) are bounded, infinitely differentiable and 

the means exist as |x| tends to infinity. The numerical scheme is weak pth 

order accurate if the error: 

ε = |E(g(X(T))) − E(g(Y(T)))| 

is of order ∆tp. Thus: 

|E(g(X(T))) − E(g(Y(T)))| ≤ C∆tp  

A general discrete time approximation Y with maximum time step size δ 

converges weakly to X at time T as δ → 0 with respect to a class C of 

test functions g : d
�  → � , if we have: 

0
lim
δ→

|E(g(XT)) − E(g(T)))| = 0, for g ∈ C …(2.19) 

A time discrete approximation Y converges weakly with order  

β > 0 to X at time T as δ → 0, if for each polynomial g, there exists a 

positive constant C, which does not depend on δ, and a finite number δ0, 

such that: 

|E(g(XT)) − E(g(T)))| ≤ C∆tβ, for each δ ∈ (0, δ0) 

Whereas, the strong convergence criterion gives the measure of 

the closeness of the positive approximation to the It ô process, the weak 

convergence criterion gives an approximation of the probability 

distribution of XT. [Carletti, 2006], states that: 

(The strange of convergence measures the rate at which the 

"mean of the error" decays as ∆t → 0. The weak order of convergence 

measures the rate of decay of the "error of the means", as ∆t → 0). 
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Theorem (2.1), [Evans, 2005]: 

Suppose that n = 1, but m ≥ 1 is arbitrary, then the solution of: 

dx = (c(t) + d(t)x)dt + 
m

1

(e (t) f (t)x)dw
=

+∑ l l l

l

, x(0) = 0 

is: 

x(t) = Φ(t)
t m

1
0

10

x (s) c(s) e (s)f (s))ds−

=

  
+ Φ − +    

∑∫
l l

l

 

m
1

1

(s)e (s)dw−

=
Φ∑ l l

l

 

where: 

Φ(t) = exp
t t2m m

1 10 0

(f )
d ds f dw

2= =

 
− +  

 
∑ ∑∫ ∫

l
l l

l l

 

 

2.6 Examples of Linear Stochastic Differential Equations: 

The following examples with discussions are needed later on: 

 

Example (2.1), [Evans, 2005]: 

Let m = n = 1 and suppose g is a continuous function (not a 

random variable). Then the solution of: 

dX gXdW

X(0) 1

= 
= 

 …(2.20) 

is: 

X(t) = 

t t
2

0 0

1
g ds gdW

2
e

− +∫ ∫
 

for 0 ≤ t ≤ T. To verify this, note that: 

Y(t) = − 1

2

t

0
∫ g2 ds + 

t

0
∫ g dW 
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satisfies: 

dY = − 1

2
 g2 dt + g dW 

Thus, It̂o's lemma for u(x) = ex, gives: 

dX = 
u

x

∂
∂

dY + 
1

2

2

2

u

x

∂
∂

g2dt 

= eY 2 21 1
g dt gdW g dt

2 2
 − + + 
 

 = gX dW, as claimed 

We will prove uniqueness later. 

 

Example (2.2), [Evans, 2005]: 

Similarly, the unique solution of: 

dX fXdt gXdW

X(0) 1

= + 
= 

 …(2.21) 

is: 

X(t) = 

t t
2

0 0

1
f g dt gdW

2
e

− +∫ ∫
, for 0 ≤ t ≤ T. 

 

Example (2.3) (Stock Prices), [Evans, 2005]: 

Let P(t) denote the price of a stock at time t. We can model the 

evolution of P(t) in time by supposing that 
dP

P
, the relative change of 

price, evolves according to the SDE: 

dP

P
 = µdt + σdW 

for certain constants µ > 0 and σ, called the drift and the volatility of the 

stock. Hence: 
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dP = µPdt + σPdW …(2.22) 

and so: 

d(log(P)) = 
dP

P
 − 

1

2

2 2

2

P dt

P

σ
, by Itô formula 

= 
2

2

 σµ −  
 

dt + σdW 

Consequently: 

P(t) = p0

2
W(t) t

2
e

 σ
 σ + µ−
 
   

similarly to example (2.2). Observe that the price is always positive, 

assuming the initial price p0 is positive. 

Since (2.22) implies: 

P(t) = p0 + 
t

0
∫ µPds + 

t

0
∫ σPdW 

and E
t

0

PdW
 

σ  
 
∫  = 0, we see that: 

E(P(t)) = p0 + 
t

0
∫ µE(P(s)) ds 

Hence: 

E(P(t)) = p0e
µt, for t ≥ 0 

The expected value of the stock price consequently agrees with the 

deterministic solution of (2.22) corresponding to σ = 0. 
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Example (2.4) (Langevin's Equation) [Evans, 2005]: 

A possible improvement of our mathematical model of the 

motion of the Brownian particle models frictional forces as follows for 

the one-dimensional case: 

dX

dt
 = −bX + σξ 

where ξ(.) is "white noise", b > 0 is a coefficient of friction, and σ is a 

diffusion coefficient. In this interpretation X(.) is the velocity of the 

Brownian particle. We interpret this to mean: 

0

dX bXdt dW

X(0) X

= − + σ 
= 

 …(2.23) 

for some initial distribution X0, independent of the Brownian motion. 

This is the Langevin equation. The solution is: 

X(t) = e−btX0 + σ
t

0
∫ e−b(t−s) dW, t ≥ 0 

as is straightforward to verify. Observe that: 

E(X(t)) = e−btE(X0) 

and 

E(X2(t)) = E
t

2bt 2 bt b(t s)
0 0

0

e X 2 e X e dW− − − −
+ σ +


∫  

2t
2 b(t s)

0

e dW− −
 
σ      

∫  
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= e−2btE( 2
0X ) + 2σe−btE(X0)E

t
b(t s)

0

e dW− − 
  
 
∫  + 

σ2
t

2b(t s)

0

e dW− −
∫  

= e−2btE( 2
0X ) + 

2

2b

σ
(1 − e−2bt) 

Thus, the variance: 

V(X(t)) = E(X2(t)) − E(X(t))2 

is given by: 

V(X(t)) = e−2btV(X 0) + 
2

2b

σ
(1 − e−2bt) 

assuming that, V(X0) < ∞. For any such initial condition X0, we 

therefore have: 

2

E(X(t)) 0

V(X(t))
2b

→

σ→ 


, as t → ∞ 

From the explicit form of the solution we see that the distribution 

of X(t) approaches N(0, 
2

2b

σ
) as t → ∞. We interpret this to mean that 

irrespective of the initial distribution, the solution of the SDE for large 

time "settles down" into a Gaussian distribution whose variance 
2

2b

σ
 

represents a balance between the random disturbing force σξ(.) and the 

frictional damping force −bX(.). 
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Example (2.5), [Evans, 2005]: 

Consider next the general equation: 

0

dX (c(t) d(t)X)dt (e(t) f (t)X)dW

X(0) X

= + + + 
= 

 …(2.24) 

again for m = n = 1. As above, we try for a solution of the form: 

X(t) = X1(t)X2(t) 

where now: 

1 1 1

1

dX d(t)X dt f (t)X dW

X (0) 1

= + 
= 

 …(2.25) 

and 

2

2 0

dX A(t)dt B(t)dW

X (0) X

= + 
= 

 …(2.26) 

the functions A, B to be chosen. Then: 

dX = X2dX1 + X1dX2 + f(t)X1B(t)dt 

= d(t)Xdt + f(t)XdW + X1(A(t)dt + B(t)dW) + f(t)X1B(t)dt 

We now require: 

X1(A(t)dt + B(t)dW) + f(t)X1B(t)dt = c(t)dt + e(t)dW; 

and this identity will hold if we take: 

1
1

1
1

A(t) : [c(t) f (t)e(t)](X (t))

B(t) : e(t)(X (t))

−

−

= − 


= 
 

Observe that since: 
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X1(t) = 

t t
2

0 0

1
fdW d f ds

2
e

+ −∫ ∫
 

We have X1(t) > 0 almost surely. Consequently: 

X2(t) = X0 + 
t

0
∫ [c(s) − f(s)e(s)](X1(s))−1 ds + 

t

0
∫ e(s)(X1(s))−1 dW 

Employing this and the expression above for X1, we arrive at the 

formula: 

X(t) = X1(t)X2(t) 

= exp
t t

2

0 0

1
d(s) f (s)ds f (s)dW

2

 
− +  

 
∫ ∫

t r

0
0 0

X exp d(r)
 

+ − − 


∫ ∫  

s
2

0

1
f (r)dr f (r)dW (c(s) e(s)f (s))ds

2


− − +


∫  

t s s
2

0 0 0

1
exp d(R) f (r)dr f (r)dW e(s)dW

2

 
− − −    
  

∫ ∫ ∫  

 

Example (2.6), [Evans, 2005]: 

Consider the linear stochastic differential equation: 

0

dX d(t)Xdt f (t)XdW

X(0) X

= + 
= 

 (2.27) 

for m = n = 1. We will try to find a solution having the product form: 

X(t) = X1(t)X2(t) 

where: 
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1 1

1 0

dX f (t)X dW

X (0) X

= 
= 

 …(2.28) 

and: 

2

2

dX A(t)dt B(t)dW

X (0) 1

= + 
= 

 …(2.29) 

where the functions A and B are to be considered. Then: 

dX = d(X1X2) 

= X1dX2 + X2dX1 + f(t)X1B(t)dt 

= f(t)XdW + (X1dX2 + f(t)X1B(t)dt) 

according to (2.28). Now, we try to choose A, B, so that: 

dX2 + f(t)B(t) dt = d(t)X2dt 

for this, B ≡ 0 and A(t) = d(t)X2(t) will work. Thus (2.29) reads: 

2 2

2

dX d(t)X dt

X (0) 1

= 
= 

 

This is non-random differential equation, which have the solution: 

X2(t) = 

t

0

d(s)ds

e
∫

 

Since the solution of (2.28) is: 

X1(t) = X0

t t
2

0 0

1
f (s)dW f (s)ds

2
e

−∫ ∫
 

We conclude that: 

X(t) = X1(t)X2(t) 

= X0

t t
2

0 0

1
f (s)dW d(s) f (s) ds

2
e

 + − 
 

∫ ∫
 

a formula noted earlier. 
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Example (2.7), [Evans, 2005]: 

Let m = n = 1 and suppose λ, µ are constants. Then: 

dX Xdt XdW

X(0) 1

= λ + µ 
= 

 …(2.30) 

and so: 

d(LogX(t)) = 
dX(t)

X(t)
 − 

1

2

2

2

[dX(t)]

X (t)
   (by Itô formula) 

= (λdt + µdW) − 
1

2
µ2dt 

= 
2

2

 µλ −  
 

dt + dW 

integrate both sides to obtain: 

LogX(t) − LogX(0) = 
t

0
∫

2

2

 µλ −  
 

 ds + 
t

0
∫ µ dWs  

⇒ Log[X(t)/X(0)] = 
2

2

 µλ −  
 

t + µW(t) 

⇒ X(t)/X(0) = exp{(λ − 
2

2

µ
)t + µW(t)} 

⇒ X(t) = X(0)exp{(λ − 
2

2

µ
)t + µW(t)} 

Therefore, the solution for the above linear SDE equation is: 

X t = X0exp{(λ − 
2

2

µ
)t + µW(t)}, 0 ≤ t ≤ T …(2.31) 
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The following are very useful steps for solving SDE numerically 

as follows: 

 

Concluding Remarks (2.1) (Numerical Steps for Explicit Euler-

Maruyama Method), [Desmond J. Higham, 2000]: 

1. The SDE can be written in integral form as: 

X(t) = X(0) + 
t

0
∫ f(X(s)) ds + 

t

0
∫ g(X(s)) dW(s), 0 ≤ t ≤ T …(2.32) 

Here f and g are scalar functions and the initial condition X0 is a 

random variable. The second integral on the right hand side of 

eq.(2.32) is to be taken with respect to Brownian motion as discussed 

in the previous section. 

2. It is usual to rewrite (2.32) in differential forms: 

dX(t) = f(X(t)) dt + g(X(t)) dW(t), X(0) = X0, 0 ≤ t ≤ T …(2.33) 

This is nothing more than a compact way of saying that X(t) solves 

(2.32). To keep with convection, we will emphasize the SDE from 

(2.33) rather than the integral form (2.32). 

3. Note that we are not allowed to write dW(t)/dt, since Brownian 

motion is nowhere differentiable with probability 1. 

4. If g = 0 and X0 is constant, then the problem becomes deterministic 

and (2.33) reduces to the ordinary differential equation: 

dX(t)

dt
 = f(X(t)), with X(0) = X0 
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5. To apply a numerical method to (2.33) over [0, T], we first discretize 

the interval. Let ∆t = T/L, for some positive integer L and τj = j∆t, for 

j = 1, 2, …, L. Our numerical approximation to X(τj) will be denoted 

by Xj.  

The Euler-method takes the form: 

X j = Xj−1 + f(Xj−1)∆t + g(Xj−1)(W(τj) − W(τj−1)) …(2.34) 

for all j = 1, 2, …, L 

6. To understand where (2.34) comes from, notice from the integral 

(2.32) that: 

X(τj) = X(τj−1) + 
j

j 1−

τ

τ
∫ f(X(s)) ds + 

j

j 1−

τ

τ
∫ g(X(s)) dW(s) …(2.35) 

Each of the three terms on the right hand side of (2.34) approximates 

the corresponding term on the right-hand side of (2.35). 

7. We also note that in the deterministic case (g = 0 and X0 constant) 

(2.34) reduces to Euler's method. 

8. For computational purpose it is useful to consider discretized 

Brownian motion, where W(t) is specified at discrete t values. We 

thus set δt = T/N for some positive integer N and let Wj denote W(tj) 

with tj = jδt. Condition 1 says W0 = 0 with probability 1, tell us that: 

Wj = Wj−1 + dWj, j = 1, 2, …, N …(2.36) 

where each dWj is an independent random vector of the form 

tδ N(0, 1). 
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9. For convenience, we always choose the step size ∆t for the numerical 

method to be an integral multiple R ≥ 1 of the δt for the Brownian 

path. 

10. This ensures that the set of points {tj} on which the discretized 

Brownian path is based contains the points {Jj} at which the EM 

solution is computed. 

 

Concluding Remarks (2.2) (Numerical Steps of Strong Convergence for 

EM), {Desmond J. Higham, 2000]: 

1. Keeping in mind that X(Tn) and Xn are random variables, in order to 

make the notion of convergence precise, we must decide how to 

measure their difference. 

1.1 Using E|Xn − X(Tn)| where E(.) denotes the expected value 

leads to the concept of strong convergence. 

1.2 The method is said to have strong order of convergence equal to 

η if there exists a constant C, such that: 

E|Xn − X(T)| ≤ C∆tη …(2.37) 

for any fixed T = n∆t ∈ [0, T] and ∆t sufficiently small. 

2. If SDE functions satisfy appropriate conditions, it can be shown that 

Euler-Maruyama has strong order has strong order of convergence  

η = 
1

2
. 

3. This marks a departure from the deterministic setting if g ≡ 0 and X0 is 

constant, then the expected value can be deleted from the left hand 

side of (2.37) and the inequality is true with η = 1. 
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4. In our numerical tests, we will focus on the error at the end point  

t = T, so that: 

strong
te∆  := E|Xt − X(T)|, where L∆t = T …(2.38) 

denote the EM end point error in this strong sense. If the EM bound 

(2.37) holds with η = 
1

2
 at any fixed point in [0, T], then certainly 

holds at the end point, so we have: 

strong
te∆  ≤ C∆t1/2 …(2.39) 

for sufficiently small ∆t. 

5. To study the numerical solution of SDE's, there is a need to determine 

the type of convergence. The strong convergence is then adapted and 

for the following example on dyonding of the result of section (2.5.1) 

the main steps the strong error for different examples using different 

values and functions are simulated in the following tables and figures. 

6. The least square's error is: 

strong
te∆  ≤ C∆tq 

Log strong
te∆  = LogC + qLog∆ti + ei …(2.40) 

ei = Log strong
te∆  − LogC − qLog∆ti 

Ω = 
N

2
i

i 1

e
=
∑  

= ( )N 2strong
it

i 1

Loge LogC qLog t∆
=

− − ∆∑  → 0 
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On setting 
LogC

∂Ω
∂

 = 0 and 
q

∂Ω
∂

 = 0, we obtain: 

−2 ( )N
strong

it
i 1

Loge LogC qLog t∆
=

− − ∆∑  = 0 

−2 ( )N
strong

it
i 1

Loge LogC qLog t∆
=

− − ∆∑ Log∆ti = 0 

N
strong

t
i 1

Loge∆
=
∑  − NLogC − q

N

i
i 1

Log t
=

∆∑  = 0 

N
strong

t
i 1

Loge∆
=
∑ Log∆ti − LogC

N

i
i 1

Log t
=

∆∑  − q ( )
N

2
i

i 1

Log t
=

∆∑  = 0 

( )

N

i
i 1

N N
2

i i
i 1 i 1

N Log t

Log t Log t

=

= =

 
∆ 

 
 

∆ ∆  
 

∑

∑ ∑

LogC

q

 
 
 
 
 
 

 = 

N
strong

t
i 1

N
strong

it
i 1

Loge

Loge Log t

∆
=

∆
=

 
 
 
 

∆  
 

∑

∑
 

By Gramer's rule: 

( )

N

i
i 1

N N
2

i i
i 1 i 1

N Log t

Log t Log t

=

= =

∆

∆ ∆

∑

∑ ∑
 = N ( )

N
2

i
i 1

Log t
=

∆∑  − 
2N

i
i 1

Log t
=

 
∆ 

 
∑  ≠ 0 

Hence: 

( )

2N N N N
strong strong

i i it t
i 1 i 1 i 1 i 1

2N N
2

i i
i 1 i 1

Loge Log t Log t Loge Log t

LogC

N Log t Log t

∆ ∆
= = = =

= =

 
∆ − ∆ ∆ 

 =
 

∆ − ∆ 
 

∑ ∑ ∑ ∑

∑ ∑
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and: 

( )

N N N
strong strong

i it t
i 1 i 1 i 1

2N N
2

i i
i 1 i 1

N Loge Log t Loge Log t

q

N Log t Log t

∆ ∆
= = =

= =

∆ − ∆
=

 
∆ − ∆ 

 

∑ ∑ ∑

∑ ∑

 

Then, we have that: 

y = ax + b 

where: 

a = Log∆ti; b = Log c and y = Log strong
te∆  

on comparison with eq.(2.40), one can see that q; the slope of the line 

of fitting is the ordered of strong convergence which need to be 0.5 as 

discussed in section (2.5.1). 

7. Since Log strong
te∆  is taken on both sides. Then one can looking for the 

slops of the figure to be equal to that one of curve fitting. 

8. The best results of the numerical simulation of strong curves is 

obtained on the line simulation has a slop 0.5 as one can concluded 

this fact from (6). 

 

Concluding Remarks (2.3) (Numerical Steps of Weak Convergence for 

EM), [Desmond J. Higham, 2000]: 

1. The strong order of convergence (2.36) measures the rate at which the 

"mean of the error" decays as ∆t → 0 of a less demanding 

alternative is to measure the rate of decay of the "error of means". 
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2. This leads to the concept of weak convergence. A method is said to be 

of weak order of convergence equal to η if there exists a constant C, 

such that for all functions p in some class: 

|Ep(Xn) − Ep(X(T))| ≤ C∆tη …(2.41) 

at any fixed T = n∆t ∈ [0, T] and ∆t sufficiently small. Typically, the 

function p allowed in (2.41) must satisfy smoothness and polynomial 

growth conditions. 

3. For appropriate function of SDE, it can be shown that EM has weak 

order of convergence η = 1. Mimicking our strong convergence tests, 

we let: 

weak
te∆  := |EXL − EX(T)| …(2.42) 

where L∆t = T denote the weak end point error in EM. So (2.41) for 

p(x) = x with η = 1 immediately implies that: 

weak
te∆  ≤ C∆t …(2.43) 

for sufficiently small ∆t. 

4. This improves the execution time at the expense of extra strong 

requirements. To compensate, we have used different paths for each 

∆t so that only the current increments, rather than the complete paths, 

need to be stored. Further, we choose the path increment δt = ∆t for 

extra efficiency. The sample average approximation to EXL it follows 

from (2.1) that EX(T) = eλT, for the true solution and Xerror stores the 

corresponding weak endpoint error for each ∆t. 
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Concluding Remarks (2.4) (Numerical Steps of Liner Stability for EM), 

[Desmond J. Higham, 2000]: 

1. The concepts of strong and weak convergence concern the accuracy of 

numerical methods over a finite interval [0, T], for small step sizes ∆t. 

However, in many applications the long term, t → ∞, behaviour of 

an SDE is of interest. 

2. Convergence bounds of the form: 

E|Xn − X(T)| ≤ C∆tγ  or  |Ep(Xn) − Ep(X(T))| ≤ C∆tγ 

are not relevant in this context, since generally, the constant C grows 

unboundedly with T. 

3. For deterministic ODE methods, a large body of stability theory has 

been developed that gives insight into the behavior of numerical 

methods in the ∆t fixed, tj → ∞. 

4. Typically, a numerical method is applied to a class of problems with 

some qualitative feature, and the ability of the method to reproduce 

this feature is analyzed. Although, a wide variety of problem classes 

have been analyzed, the simplest, and perhaps the most revealing, is 

the linear test equation dX/dt = λX, where λ ∈ �  is a constant 

parameter. For SDE's it is possible to develop an analogous linear 

stability theory, as we now indicate: 

5. We return to the linear SDE: 

dX(t) = λ(X(t)) dt + µ(X(t)) dW(t), X(0) = X0 …(2.44) 

where the function of SDE allowed to be complex in the case where  

µ = 0 and X0 is constant, (2.44) reduces to the deterministic linear test 
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equation, if we use the term stable to mean that 
t
lim
→∞

X(t) = 0, for any 

X0. Then we see that stability is characterized by R{λ} < 0. 

6. We will consider the two most common measures of stability; Mean-

Square and Asymptotic, [D. J. Higham, 2000]. Assuming that X0 ≠ 0 

with probability 1, solutions of SDE is: 

dX(t) = λX(t) dt + µX(t) dW(t), X(0) = X0 

Satisfying: 

t
lim
→∞

EX2(t) = 0 ⇔ R{λ} + 
1

2
|µ|2 < 0 …(2.45) 

t
lim
→∞

|X(t)| = 0 with probability 1 ⇔ R{λ − 
1

2
µ2} < 0 …(2.46) 

The left-hand side of (2.45) defines what is meant by mean-square 

stability. The right-hand side of (2.45) completely characterizes this 

property in terms of the function SDE. Similarly (2.46) defines and 

characterizes asymptotic stability. 

7. Setting the characterization collapse to the same condition R{f} < 0, 

which of course, a rose for deterministic stability. It follows 

immediately from (2.45) and (2.46) that if the SDE: 

dX(t) = λX(t) dt + µX(t) dW(t), X(0) = X0 

is mean-square stable, then it is automatically asymptotic stable, but 

not vice versa. 

8. Now, suppose that the functions f and g are chosen so that the SDE: 

dX(t) = λX(t) dt + µX(t) dW(t), X(0) = X0 
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is stable in the mean-square or asymptotic sense. A simple properties 

of the expected value show that: 

j
lim
→∞

E 2
jX  = 0 ⇔ |1 + ∆tλ|2 + ∆t|µ|2 < 1 …(2.47) 

for EM applied to equation: 

dX(t) = λX(t) dt + µX(t) dW(t), X(0) = X0 

The asymptotic version of the question can be studied via the strong 

low of large numbers and the low of the iterated logarithm, leading to: 

j
lim
→∞

|Xj|=0, with probability 1 ⇔ ELog|1 + ∆tλ + t∆ µN(0,1)|<0 

 

2.7 Algorithm and Illustration: 

Algorithm (2.1) (Euler-Maruyama Method): 

Input: The dynamic stochastic differential equation in problem 

formulation: 

t t

0

dX(t) f (X , t)dt g(X , t)dW(t)

X(0) X

= + 
= 

 …(2.48) 

Output: Numerical (sample path) solution of stochastic process. 

Step 1: Consider problem formulation (2.48). 

Step 2: Generating a Brownian motion as follows (see, 

concluding remark (2.1)): 

Step 2.1: Generate a random number. 

Step 2.2: Consider T = t0; N = n0; dt = T/N. 
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Step 2.3: W(t) ~ N(0, 1). 

Step 2.4: W0 = 0 with probability 1. 

Step 2.5: Wj = Wj−1 + dWj, j = 1, 2, …, N. 

Step 2.6: dWj ~ tδ N(0, 1). 

Step 3: Set j = 1 → L 

W(Tj) − W(Tj−1) = W(jRδt) − W((j − 1)Rδt)  

= 
jR

k
k jR R 1

dW
= − +
∑  

X j = Xj−1 + f(Xj−1)∆t + g(Xj−1)(W(Tj) − W(Tj−1)),  

If j ≥ L stop. 

Step 4: Computation of error, depending on the type of error for 

example, the following is absolute error 

Step 4.1: If ∆t = δt 

Set i = 1 → L 

error = abs(Xn(i) − XT(i)) 

Step 4.2: If ∆t ≠ δt 

error = abs(Xn(final) − XT(final)). 

 

Figure (2.1) Shows a signal simulation of discretized Brownian 

motion of the interval [0, 1] and N = 500, so that ∆t = 1/500 (see 

program A.1 in Appendix). 
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Figure (2.1) Discretized Brownian paths. 

 

Figure (2.2) Shows a signal simulation of discretized Brownian 

motion of the interval [0, 1] and N = 600, where ∆t = 1/600. 
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Figure (2.2) Discretized Brownian paths. 
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While Figure (2.3) Shows a signal simulation of discretized 

Brownian motion of the interval [0, 1] and N = 800, with ∆t = 1/800. 
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Figure (2.3) Discretized Brownian paths. 

 

Illustration (2.1) (With Absolute Error Test and Comparisons): 

Consider the example (2.1) of section (2.6) which is: 

dX = gXdW 

X(0) = 1 

Where: 

g(t) = sint; X0 = 1; y0 = 0 

The absolute error at the final time interval for different sample 

space numbers, where ∆t = δt; R = 1; the step time for discritization of 

Brownian motion equals to the step time of Euler scheme, are shown in 



Chapter Two                                                     Euler-Maruyama Numerical Method for Solving  
                                                                                 Stochastic Differential Equations 

 73 

the following (table (2.1) and Figure (2.4.1)). As one can see, increasing 

the number of sample (N) leads to improving the absolute error at the 

different time steps, where ∆t = δt.  

The figure (2.4) shows the very good agreement between the 

exact solution and the corresponding numerical solution on simulating 

different selected function and their nature leads to well understand the 

behaviour of numerical method. The absolute error at final time interval 

is depending not only on the number of sample N, but also on the nature 

of the selection function of SDE and on the selection of R not equal to 1, 

as one can see this fact from the following figure (2.4) and table (2.1) is: 

Table (2.1) Error generated by the Euler scheme. 

R N Error at final time 

1 
25 0.0409 

26 0.0058 
 

On using R = 1, N = 26, the following numerical solution is 

obtained and presented in the following figure (2.4.1) (see program A.2 

in Appendix A). 
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Figure (2.4) Exact solution and the numerical solution by Euler scheme 

with N = 26; R = 1. 
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Figure (2.4.1) Absolute error between the Euler scheme and exact 

solution with N = 26; R = 1. 
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Illustration (2.2) (With Absolute Error Test and Comparisons): 

Consider the example (2.2) of section (2.6) which is: 

dX = fX dt + gX dW 

X(0) = 1 

Where: 

f(t) = cost; g(t) = sint; X0 = 1; Y0 = 0 

As discussed previously in illustration (2.1), the following table 

(2.2) is needed for error analysis and as follows: 

 

Table (2.2) Error generated by the Euler scheme. 

R N Error at final time 

1 

25 0.0821 

26 0.0250 

28 0.0123 

29 0.0526 

210 0.0230 

211 0.0088 

 

On using R = 1, N = 211, the following numerical solution is 

obtained and presented in the following figure (2.5.1). 
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Figure (2.5) Exact solution and the numerical solution by Euler scheme 

with N = 211; R = 1. 
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Figure (2.5.1) Absolute error between the Euler scheme and exact 

solution with N = 211; R = 1. 
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Illustration (2.3) (With Absolute Error Test and Comparisons): 

Consider the example (2.3) of section (2.6) which is: 

dP = µP dt + σP dW 

P(0) = P0 

Where: 

P0 = 1; µ = 1; σ = 2 

The error at final time interval for R = 1 and different number of 

sample N is discussed in the following table (2.3) 

 

Table (2.3) Error generated by the Euler scheme. 

R N Error at final time 

1 

25 0.0284 

28 0.0266 

211 0.0128 

 

One can select R = 1, N = 211 for accuracy, the following 

numerical solution is then obtained and presented in the following figure 

(2.6.1). 

 



Chapter Two                                                     Euler-Maruyama Numerical Method for Solving  
                                                                                 Stochastic Differential Equations 

 78 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time

x(t)

 

 

Exact solution

 Numerical solution

 
Figure (2.6) Exact solution and the numerical solution by Euler scheme 

with N = 211; R = 1. 
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Figure (2.6.1) Absolute error between the Euler scheme and exact 

solution with N = 211; R = 1. 
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Illustration (2.4) (With Absolute Error Test and Comparisons): 

Consider the example (2.4) of section (2.6) which is: 

dX = −bX dt + σ dW 

X(0) = X0 

Where: 

X0 = 1; Y0 = 0; b = 2; σ = 1 

Where R = 1 and N = 28 is adapted for the numerical solution as 

discussed in the following table (2.4) and Figures (2.7.1). 

 

Table (2.4) Error generated by the Euler scheme. 

R N Error at final time 

1 

25 0.8634 

26 0.3335 

27 0.3793 

28 0.0686 
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Figure (2.7) Exact solution and the numerical solution by Euler scheme 

with N = 28; R = 1. 
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Figure (2.7.1) Absolute error between the Euler scheme and exact 

solution with N = 28; R = 1. 
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Illustration (2.5) (With Absolute Error Test and Comparisons): 

Consider the example (2.7) of section (2.6) which is: 

dX = λX dt + µX dW 

X(0) = 1 

Where: 

λ = 2; µ = 1; X0 = 1 

As discussed previously in illustration (2.1), the following table 

(2.5) is needed for error analysis and as follows. 

Here, the numerical solution are discussed for different values of 

R, i.e., ∆t = Rδt. The absolute error can be evaluated at all the values in 

the selected interval, but only on the final time interval. As one can see 

the effect of selection of R on the error. 
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Table (2.5) Error generated by the Euler scheme. 

R N Error at final time 

1 

25 0.3430 

26 1.0219 

27 0.3420 

28 0.0821 

29 0.1269 

210 0.1581 

211 0.0603 

2 

25 0.3030 

26 0.9630 

27 0.1084 

28 0.1595 

29 0.1100 

210 0.0735 

211 0.0035 

3 

25 0.6355 

26 2.1141 

27 3.1173 

28 0.1075 

29 0.8522 

210 0.1285 

211 0.2298 

4 

25 0.6320 

26 2.4777 

27 1.8936 

28 0.6907 

29 1.3507 

210 0.7935 

211 0.1515 
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Different solution for illustration (2.5) have been obtained by 

using different values of R and N. The comparison behaviour between 

the given exact solution and numerical one have also been given as one 

can see this from the following figures: 
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Figure (2.8) Exact solution and the numerical solution by Euler scheme 

with N = 211; R = 2. 
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Figure (2.9) Exact solution and the numerical solution by Euler scheme 

with N = 28; R = 3. 
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Figure (2.10) Exact solution and the numerical solution by Euler scheme 

with N = 211; R = 4. 
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Figure (2.11) Exact solution and the numerical solution by Euler scheme 

with N = 211; R = 1. 

 

Illustration (2.6) (With Strong Convergence Test): 

Consider the example (2.3) of section (2.6) which is: 

dP = µP dt + σP dW 

P(0) = P0 

Where: 

P0 = 1; σ = 1 and µ = 2 

N = 29; T = 1 and sample path µ = 4000 

Depending on the concluding remark (2.2), the strong 

convergence for the numerical solution using Euler-Maruyama method 

is obtained. This produces the blue asterisks connected with solid lines 

in the plot of Figure (2.12). For reference, a dashed red line of slope one-
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half is added. The least-squares power law fit gives q = 0.5194 and  

resid = 0.0355 (see program A.3 in Appendix A). 
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Figure (2.12) Euler-Maruyama strong convergence. 

 

Illustration (2.7) (With Strong Convergence Test): 

Consider the example (2.7) of section (2.6) which is: 

dX = λX dt + µX dW 

X(0) = 1 

Where: 

λ = 2; µ = 1; X0 = 1; N = 29, T = 1 and sample path µ = 4000 

The strong convergence for the numerical solution using Euler-

Maruyama method of this example is obtained, where the least-squares 

power law fit gives q = 0.5490 and resid = 0.0940. 
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Figure (2.13) Euler-Maruyama strong convergence. 

 

Illustration (2.8) (With Strong Convergence Test): 

Consider the example (2.3) of section (2.6) which is: 

dP = µP dt + σP dW 

P(0) = P0 

Where: 

P0 = 1; T = 1; µ = 2; σ = 1 and sample path µ = 50000 

The Figure (2.14) shows that weak error varies with ∆t on a Log-

Log scale. A dashed red reference line of slope one is added. The least-

squares power law fit gives q = 1.2617 and resid = 0.7709 (see program 

A.4 in Appendix a). 
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Figure (2.14) Euler-Maruyama strong convergence. 

 

Illustration (2.9) (With Weak Convergence Test): 

Consider the example (2.7) of section (2.6) which is: 

dX = λX dt + µX dW 

X(0) = 1 

Where: 

X0 = 1; λ = 2; µ = 0.1; and sample path µ = 50000 

For this example, the weak convergence for the numerical 

solution using Euler-Maruyama method is obtained, where Figure (2.15) 

shows the weak error varies with ∆t on a Log-Log scale. A dashed red 

reference line of slope one is added, where the least-squares power law 

fit gives q = 0.9858 and resid = 0.0508. 
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Figure (2.15) Euler-Maruyama strong convergence. 

 

Illustration (2.10) (With Linear Stability Test): 

Consider the example (2.1) of section (2.6) which is: 

dX = gX dW 

X(0) = 1 

(1) Mean-Square stability: 

Where g(t) = sint; T = 20; µ = 50000; X0 = 1; ∆t = 1, 2, 1/4; 

and N = T/ ∆t 

(2) Asymptotic stability: 

Where g(t) = sint; T = 500; ∆t = 1, 2, 1/4; and N = T/ ∆t 

The Figure (2.16) plots the sample average of E(X2) against t in 

this picture the ∆t = 1 and ∆t = 1/2 curves increase with t, while the ∆t = 

1/4 curve decays toward zero (see program A.5 in Appendix A). 
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Figure (2.16) Mean-Square and Asymptotic stability. 

 

Illustration (2.11) (With Linear Stability Test): 

Consider the example (2.2) of section (2.6) which is: 

dX = fX dt + gX dW 

X(0) = 1 

(1) Mean-Square stability: 

Where f(t) = cost; g(t) = sint; sample path µ = 50000; T = 2; 

X0 = 1 and using step size ∆t = 1, 1/2, 1/4; and N = T/∆t. 

(2) Asymptotic stability: 

Where f(t) = cost; g(t) = sint; T = 500; and using step size  

∆t = 1, 1/2, 1/4; and N = T/∆t. 
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The Figure (2.17) plots the sample average of E(X2) against t in 

this picture the ∆t = 1 and ∆t = 1/2 curves increase with t, while the ∆t = 

1/4 curve decays toward zero. 
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Figure (2.17) Mean-Square and Asymptotic stability for EM. 

 

Illustration (2.12) (With Linear Stability Test): 

Consider the example (2.3) is (Stock prices): 

dP = µP dt + σP dW 

P0 = 1 

(1) Mean-Square stability: 

Where T = 20; µ = 50000; P0 = 1 and ∆t = 1, 1/2, 1/4; N = T/∆t. 

µ = −3; σ = 3 
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(2) Asymptotic stability: 

Where T = 500; µ = 1/2; σ = 3 and ∆t = 1, 1/2, 1/4; N = T/∆t. 

Show in the following Figure (2.18) plots the sample average for 

(µ = −3, σ = 3) and (µ = 1/2, σ = 3, respectively. 
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Figure (2.18) Mean-Square and Asymptotic stability for EM. 

 

Illustration (2.13) (With Linear Stability Test): 

Consider the example (2.4) of section (2.6) which is: 

dX = −bXdt + σ dW 

X(0) = 1 

(1) Mean-Square stability: 

Where µ = 50000; T = 20; b = 0; σ = 1 and using step size  

∆t = 1, 1/2, 1/4; N = T/∆t. 
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(2) Asymptotic stability: 

Where T = 500; b = 1; and σ = 2. 

The first part of Figure (2.19) represent the mean-square for b = 0 

and σ = 1, while the second part is standing for asymptotic stability 

which plots the asymptotic behaviour of this example. 
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Figure (2.19) Mean-Square and Asymptotic stability for EM. 

 

Illustration (2.14) (With Linear Stability Test): 

Consider the example (2.7) of section (2.6) which is: 

dX = λXdt + µX dW 

X0 = 1 

(1) Mean-Square stability: 

λ = −3; µ = 3; T = 20; sample path µ = 50000 and step size  

∆t = 1, 1/2, 1/4; N = T/∆t. 
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(2) Asymptotic stability: 

λ = −3; µ = 6 ; T = 500; and step size ∆t = 1, 1/2, 1/4; N = T/∆t. 

The information of mean-square error and asymptotic linear 

stability may be found in the following Figure (2.20). 
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Figure (2.20) Mean-Square and Asymptotic stability for EM. 
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CChhaapptteerr  TThhrreeee  

MMiillsstteeiinn''ss  NNuummeerriiccaall  MMeetthhoodd  ffoorr  SSoollvviinngg  SSttoocchhaassttiicc  
DDiiffffeerreennttiiaall  EEqquuaattiioonnss  

 

Early attempts are made in the area of numerical methods for 

stochastic differential equations using Euler-Maruyama method. 

[Milstein, 1974] provides an early account for constructing a numerical 

method for solving stochastic differential equations. This method is 

known as the Milstein method. [Hovanessian & Chang, 1977] proved an 

application of the central difference and predictor methods for finding a 

solution of differential equations with stochastic inputs. 

Numerical methods for SDE's constructed by translating a 

deterministic numerical method (like the Euler method or Runge-Kutta 

method, etc). and applying it to a stochastic ordinary differential 

equation. However, merely translating a deterministic numerical method 

and applying it to an SDE will generally not provide accurate methods, 

[Burrage & Burrage, 1996]. Suitably appropriate numerical methods for 

SDE's should take into account a detailed analysis of the order of 

convergence as well as stability of the numerical scheme and the 

behaviour of the errors. The Euler-Maruyama ( see chapter two) method 

for SDE's is the simplest method which is a direct translation of, the 

deterministic Euler method, but according to [Burrage & Burrage, 1996] 

this method is not very accurate. However, this method is useful in that 

it provides a starting point for more advanced numerical methods for 

SDE's. 
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A very concise publication by [Kloeden & Platen, 1992] provides 

a comprehensive and systematic presentation of numerical methods 

available for SDE's. The book focuses on time discretisation methods for 

initial value problems of SDE's with its diffusion as their solutions. 

Numerical methods for both the strong and weak order of convergence 

are presented. 

The following is then focuses into understanding the Milstein 

numerical method for solving SDE's and their stability, error as well as 

its line stadety. 

 

3.1 Milstein Scheme: 

The Milstein scheme is obtained by considering the first four 

terms of Taylor expansion of section (2.3) in chapter two. It is given by: 

X t = 
0t

X  + a(
0t

X )
0

t

t
∫ ds + b(

0t
X )

0

t

t
∫ dWs + 

L1b(
0t

X )
0 0

t s

t t
∫ ∫ dWzdWs 

Use formula: 

t

0
∫ Ws(ω) dWs(ω) = 

1

2
2
tW (ω) − 

1

2
t 

to obtain: 

n 1

n n

t t

t t

+

∫ ∫ dWsdWt = 
1

2
{( ∆Wn)

2 − ∆n} 
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From equation (2.10), L1b = bb1, thus: 

L1b(
0t

X )
0 0

t s

t t
∫ ∫ dWzdWs = 

1

2
bbt{( ∆Wn)

2 − ∆n} 

Therefore, the Milstein scheme is defined as: 

Yn+1 = Y(τn) + a(τn, Y(τn))(τn+1 − τn) + b(τn, Y(τn))( n 1
W

+τ  − 
n

Wτ ) 

+ 
1

2
b(τn, Y(τn))b′(τn, Y(τn)){( n 1

W
+τ  − 

n
Wτ )2 − (τn+1 − τn)} 

For brevity, this is written as: 

Yn+1 = Yn + a∆n + b∆Wn + 
1

2
bb′{( ∆Wn)

2 − (∆n)} 

The term b′ is the partial derivative of b with respect to x., i.e., b′ = 
b

x

∂
∂

. 

 

Concluding Remarks (3.1) (Explicit and Implicit Numerical Method): 

1. The Euler scheme is an example of a time discrete approximation (or 

difference method) in which the continuous time differential equation 

is replaced by a discrete time difference equation generating values 

Y1, Y2, …, Yn to approximate 
1i

X , 
2i

X , …, 
ni

X  at given 

discretisation times t0 < tl < ... < tn. The Euler scheme is the simplest 

strong Taylor approximation and attains an order of convergence  

y = 0.5. The proof is given in [Koleden & Platen, 1992]. 

2. The Euler-Maruyama scheme has order γ = 0.5, the Milistein scheme 

has and order γ = 1, [Kloden & Platen, 1992]. 

3. The orders of strong and weak convergence of the stochastic Euler and 

Milistein schemes are low. In order to improve the order of 

convergence, multiple stochastic integrals of Wt are included in the 
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numerical scheme. This is because the simple increments ∆Wt do not 

provide enough information about the sample paths of Wiener process 

Wt inside the discretization subinterval [τn+1, τn] to ensure higher order 

of approximation. 

4. Generally, the numerical scheme implicitly uses a linear interpolation 

in the subinterval. Multiple stochastic integrals of Wt that occur in the 

stochastic Taylor expansion provide additional information about the 

sample paths of the driving Wiener process within the discretization 

interval. 

5. A more accurate order 1.5 strong Taylor scheme can be obtained by 

including further multiple stochastic integrals from the stochastic 

Taylor expansion in the scheme. The order γ = 1.5 strong Taylor 

scheme is derived by adding more terms from the Itô-Taylor 

expansion to the Milstein scheme. 

The order 1.5 strong Taylor scheme is given as (see [Kloeden & 

Platen, 1992]): 

Xn+1 = Xn + a∆n + b∆Wn + 
1

2
bb′{( ∆Wn)

2 − ∆n} + b
a

x

∂
∂

∆Zn + 

2
2

2

b b 1 b
b

t x 2 x

 ∂ ∂ ∂ + + ∂ ∂ ∂  
(∆Wn∆n − ∆Zn} + 

1

2

2
2

2

a a 1 a
a b

t x 2 x

 ∂ ∂ ∂ + + ∂ ∂ ∂  
(∆n)2 + 

1

2

22

2

b b
b

xx

 ∂ ∂  +  ∂∂    

2
n

1
( W ) n

3
 ∆ − ∆ 
 

∆Wn 

6. Using strong Taylor approximations involves determining and 

evaluating the derivatives of the various orders of the drift and 
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diffusion coefficient as well as the coefficients themselves for each 

step. Implementing this procedure can be time consuming. Therefore, 

to avoid the use of derivatives, the derivatives in the strong schemes 

are replaced by their corresponding finite differences. 

Using the Milstein scheme, one can derive the explicit order 1 

scheme by replacing the derivatives by the corresponding difference 

ratios. However, these differences require the use of supporting values 

of the coefficients at additional points. 

Use the following Milstein scheme: 

Yn+1 = Yn + a∆n + b∆Wn + 
1

2
bb′{( ∆Wn)

2 − (∆n)} 

and replace the derivative b' with finite differences, to obtain the 

explicit order 1 strong scheme which has the following form [KIoeden 

& Platen, 1992] 

Yn+1 = Yn+a∆n+b∆Wn+
1

2 n∆
{b(τn, nY )−b(τn,Yn)}{( ∆Yn)

2−∆n} 

Where: 

nY  = Yn + a∆n + b n∆  

An explicit order 1.5 strong scheme can also be derived by 

replacing the derivatives in the order 1.5 strong Taylor scheme by 

corresponding finite differences. 

7. In principle, the derivatives of the strong Taylor schemes can be 

replaced to obtain corresponding explicit schemes. This procedure 

may work well for low order explicit schemes but as the order is 

increased the formulae become more complicated. Sometimes, the 
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special structure of the equation under consideration can be used to 

derive relatively simple higher order explicit schemes which do not 

involve the derivatives of the drift and diffusion coefficients. [Kloeden 

& Platen, 1992] provide an explicit order 2 strong scheme for additive 

noise, using the Stratonovich notation, to simplify the notation. This is 

possible, since an SDE which is written using Ito integrals can be 

equivalently written using Stratonovich integrals (see [Kloeden & 

Platen, 1992]). 

8. The implicit Milstein scheme is derived analogously: 

Yn+1 = Yn + a(τn+1, Yn+1)∆n + b∆W + 
1

2
bb′{( ∆W)2 − (∆n)} …(3.1) 

where again only the drift term contains the unknown yn+1.  

The family of implicit schemes: 

Yn+1 = Yn+{αa(τn+1,Yn+1)+(1−α)a}∆n+b∆W+
1

2
bb′{( ∆W)2−(∆n)} 

where again, α ∈ [0, l] characterizes the degree of implicitness. When  

α = 0, the explicit Milstein scheme is obtained; the implicit scheme 

when α = 1 and for α = 0.5 the generalization of the deterministic 

trapezoidal method is obtained. 

Implicit schemes for the order 1.5 and order 2 strong Taylor 

schemes can also be obtained, as well as derivative free schemes and 

multi-step schemes. [Kloeden & Platen, 1992] provide the implicit 

versions of these schemes for the 1-dimensional as well as multi-

dimensional case. In addition, they also consider the special cases when 

there is additive and commutative noise, sometimes using the equivalent 

Stratonovich representation to ease the notation. 
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Concluding Remarks (3.1) (Numerical Steps for Explicit Milstein's 

Methods and Linear Stability): 

1. SDE can be written in integral form as: 

X(t) = X0 + 
t

0
∫ λX(s) ds + 

t

0
∫ µX(s) dW(s) + 

t s

0 0
∫ ∫ µX(z)µ′X(s) 

dW(z)dW(s), 0 ≤ t ≤ T …(3.2) 

Here f and g are scalar functions and the time condition X0 is the 

random variable. The second integral on the right-hand side of (3.2) is 

to be taken with respect to Brownian motion as discussed in the 

previous section. 

2. To rewrite (3.2) in differential equation form as: 

dX(t) = λX(t) dt + µX(t) dW(t) + 
1

2
µX(t)µ′X(t)((dW(t))2 − dt), 

X(0) = X0, 0 ≤ t ≤ T …(3.3) 

this is nothing more than a compact way of using that X(t) solves 

(3.2). To keep with connection, we will emphasize the SDE from (3.3) 

rather than the integral from (3.2). 

3. Note that, we are not allowed to write dW(t)/dt. Since motion is 

nowhere differentiable with probability 1. 

4. If g = 0 and x0 is constant, then the problem becomes deterministic 

and (3.3) reduces to the ordinary differential equation dx(t)/dt = λx(t), 

with x(0) = x0. 

5. To apply a numerical method to (3.3) over [0, T] we first discretize 

the interval. Let ∆t = T/L for some positive integer L, and Tj = j∆t for  
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j = 1, 2, …, L. Our numerical approximation to X(Tj) will be denoted 

X j. The Milstein's method takes the form: 

X j = Xj−1 + λX j−1∆t + µX j−1(W(Tj) − W(Tj−1)) + 

1

2
µX j−1µ′X j−1((W(Tj)−W(Tj−1))

2−∆t), j = 1, 2, …, L …(3.4) 

6. To understand where (3.4) comes from, notice from the integral form 

(3.2) that: 

X(T j) = X(Tj−1) + 
j

j 1

T

T −
∫ λX(s) ds + 

j

j 1

T

T −
∫ µX(s) dW(s) + 

1

2

j

j 1

T0

T 0−
∫ ∫ µX(z)µ′(s)) dWzdWs …(3.5) 

Each of the three terms on the right-hand side of (3.4) approximates 

the corresponding term on the right-hand side of (3.5). 

7. We also note that in the deterministic case (g = 0 and X0 constant) 

(3.4) reduce to Milstein's method. 

8. For computational purposes, it is useful to consider discrtized 

Brownian motion, where W(t) is specified at discrete t values, we thus 

set δt = T/N for some positive integer N and let Wj denote W(tj) with  

tj − jδt condition 1 says W0 = 0 with probability 1 us that: 

Wj = Wj−1 + dWj, j = 1, 2, …, N …(3.6) 

Where each dWj is an independent random variable of the form 

tδ N(0, 1). 
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9. In this chapter, we will compute our own discretized Brownian path 

and use them to generate the increments W(Tj) − W(Tj−1) needed in 

(3.4). For convenience, we always choose the step size ∆t for the 

numerical method to be an integer multiple R ≥ 1 of the increment δt 

for the Brownian path. 

10. This ensures that the set of points {tj} on which the discretized 

Brownian path is based contains the points {Tj} at which the 

Milstein's method solution is computed. 

11. Linear stability: For stability, one can see concluding remark (2.4) in 

chapter two, the same is true for Milestien's method excepted 

changing: 

dX(t) = λX(t) dt + µX(t) dW(t), X(0) = X0 

by: 

dX(t) = λX(t) dt + µX(t) dW(t) + 
1

2
µX(t)µ′X(t)((dW(t))2 − dt), 

X(0) = X0 

 

Concluding Remarks (3.2) (Numerical Steps of Strong Converge for 

Milstein's): 

1. We saw in the previous section that EM has strong order of converges 

γ = 1/2 in E|Xn − X(T)| ≤ C∆tγ, the underlying deterministic Milestien's 

method converges with classical order 1. It is possible to raise the 

strong order of EM 1 by adding a correction to the stochastic 

increment gives Milstein's method. 
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2. The correction arises because the traditional Taylor expansion must be 

modified in the case of Itô calculus. A so called Itô Taylor can be 

formed by applying It̂o's result, which is a fundamental tool of 

stochastic calculus truncating the Itô-Taylor expansion at an 

appropriate point produces Milstein's method for the SDE (2.33). 

X j = Xj−1 + ∆tf(X j−1) + g(Xj−1)(W(Tj) − W(Tj−1)) + 

1

2
g(Xj−1)g′(X j−1)((W(Tj)−W(Tj−1))

2−∆t, j = 1, 2, …, L …(3.7) 

 

3.2 Algorithm and Illustrations: 

Algorithm (2.1) (The Explicit Milstein's Method): 

Input:  The dynamic stochastic differential equation in problem 

formulation (3.3). 

Output: Numerical (sample path) solution of stochastic process. 

Step 1: Consider problem formulation (3.3). 

Step 2: Generating a Brownian motion as follows (see concluding 

remark (3.1)): 

Step 2.1: Generate a normal random number. 

Step 2.2: Consider T = t0; N = n0; step size dt = T/N; 

Step 2.3: W(t) ~ N(0, 1). 

Step 2.4: Set W0 = 0 with probability 1. 

Step 3.5: Wj = Wj−1 + dWj; j = 1, 2, …, N. 

Step 2.6: dWj ~ tδ N(0, 1). 
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Step 3: Set j = 1 → L 

W(Tj) − W(Tj−1) = W(jRδt) − W((j − 1)Rδt)  

= 
jR

k
k jR R 1

dW
= − +
∑  

X j = Xj−1 + f(Xj−1)∆t + g(Xj−1)(W(Tj) − W(Tj−1)) + 

1

2
g(Xj−1)g′(X j−1)((W(Tj)−W(Tj−1))

2−∆t), 

If j ≥ L stop. 

Step 4: Computation of error, depending on the type of error for 

example, the following is absolute error 

Step 4.1: If ∆t = δt 

Set i = 1 → L 

error = abs(Xn(i) − XT(i)) 

Step 4.2: If ∆t ≠ δt 

error = abs(Xn(final) − XT(final)). 

Step 4.3: For strong convergence (see concluding remark (3.2)). 

 

Illustration (3.1): 

Consider the example (2.1) of section (2.6) in chapter two, which 

is: 

dX = gX dW 

X(0) = 1 

Where, g(t) = sint; X0 = 1; Y0 = 0 
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The absolute error at the final time interval for different sample 

space numbers, where ∆t = δt; R = 1; the step time for discritization of 

Brownian motion equals to the step time discretization of explicit Euler 

scheme are shown in the following (table (3.1)) and Figure (3.1.1). As 

one can see, increasing the sample space generated randomly (N) leads 

to improving the absolute error at the different time steps, where ∆t = δt. 

The Figure 3.1) show the very good agreement between the exact 

solution and the corresponding numerical solution (see program A.6 in 

Appendix A). 

 

Table (3.1) Error generated by the explicit Milstein scheme. 

R N Error at final time 

1 

25 0.0023 

26 0.0012 

27 0.0009 

 

 

 

 



Chapter Three         Milstein's Numerical Method for Solving Stochastic Differential Equations 

 107 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

time

x(t)

 

 
Exact solution

Numerical solution

 
Figure (3.1) Exact solution and the numerical solution by Milstein's 

scheme with N = 27; R = 1. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-3

time(t)

error(t)

 
Figure (3.1.1) Absolute error between the Milstein's scheme and exact 

solution with N = 27; R = 1. 
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Illustration (3.2): 

Consider the example (2.2) of section (2.6) in chapter two, which 

is: 

dX = fX dt + gX dW 

X(0) = 1 

Where, f(t) = cost; g(t) = sint; X0 = 1; Y0 = 0 

The values absolute error at the final time interval T = 1; for R = 

1, can be shown in table (3.2). As one can see, generating final time 

error is obtained for sample space N = 28.  

 

Table (3.2) Error generated by the explicit Milstein scheme. 

R N Error at final time 

1 

25 0.0152 

26 0.0356 

27 0.0270 

28 0.0011 
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Figure (3.2) Exact solution and the numerical solution by Milstein's 

scheme with N = 28; R = 1. 
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Figure (3.2.1) Absolute error between the Milstein's scheme and exact 

solution with N = 28; R = 1. 
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Illustration (3.3): 

Consider the example (2.3) of section (2.6) in chapter two, which 

is: 

dP = µP dt + σP dW 

P(0) = P0 

Where, P0 = 1; µ = 1; σ = 2. 

Same error estimations is represented in the following table (3.3). 

 

Table (3.3) Error generated by the explicit Milstein scheme. 

R N Error at final time 

1 

25 0.0304 

26 0.1997 

27 0.2294 

28 0.0071 

 

Figure (3.3) on using the R = 1; N = 28, the following plot of 

numerical solution of Milstein method is showing with the exact 

solution. 
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Figure (3.3) Exact solution and the numerical solution by Milstein's 

scheme with N = 28; R = 1. 
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Figure (3.3.1) Absolute error between the Milstein's scheme and exact 

solution with N = 28; R = 1. 
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Illustration (3.4): 

Consider the example (2.4) of section (2.6) in chapter two, which 

is: 

dX = −bX dt + σ dW 

X(0) = X0 

Where, X0 = 1; Y0 = 0; b = 2; σ = 1 

As discussed previously in illustration (3.1), the following table 

(3.4) is needed for error analysis and as follows: 

 

Table (3.4) Error generated by the explicit Milstein scheme. 

R N Error at final time 

1 

25 0.9633 

26 0.3539 

27 0.4183 

28 0.0560 

 

Figure (3.4) on using the R = 1; N = 28, the following plot of 

numerical solution of Milstein method is showing with the exact 

solution. 
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Figure (3.4) Exact solution and the numerical solution by Milstein's 

scheme with N = 28; R = 1. 
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Figure (3.4.1) Absolute error between the Milstein's scheme and exact 

solution with N = 28; R = 1. 



Chapter Three         Milstein's Numerical Method for Solving Stochastic Differential Equations 

 114 

Illustration (3.5): 

Consider the example (2.7) of section (2.6) in chapter two, which 

is: 

dX = λX dt + µX dW 

X(0) = 1 

Where, λ = 2; µ = 1; X0 = 1. 

As one can see, the error is improved for this case. The following 

numerical solution is adopted for R =1; N = 211; and R = 2; N = 211 and 

R = 3; N = 211; R = 4 and N = 210 as one can see in figures (3.5)-(3.7). 
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Table (3.5) Error generated by the Milstein scheme. 

R N Error at final time 

1 

25 0.1826 

26 0.0834 

27 0.1083 

28 0.0196 

29 0.1083 

210 0.0118 

211 0.0015 

2 

25 0.2469 

26 0.0743 

27 0.3855 

28 0.0291 

29 0.0558 

210 0.0256 

211 0.0032 

3 

25 0.4462 

26 0.1569 

27 1.7240 

28 0.2899 

29 0.4118 

210 0.2884 

211 0.1519 

4 

25 0.7802 

26 0.2335 

27 0.5157 

28 0.1018 

29 0.0345 

210 0.0198 
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Here, the numerical solution are discussed for different values of 

R, i.e., ∆t = Rδt, there are different below the time steps of Brownian 

motion and the numerical one. The absolute error can be evaluated at all 

the values in the selected interval, but only on the final time interval. As 

one can see the effect of selection of R on the absolute error. 
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Figure (3.5) Exact solution and the numerical solution by Milstein's 

scheme with N = 211; R = 2. 
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Figure (3.6) Exact solution and the numerical solution by Milstein's 

scheme with N = 211; R = 3. 
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Figure (3.7) Exact solution and the numerical solution by Milstein's 

scheme with N = 210; R = 4. 
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The strong convergence for some test examples are shown and 

discussed in the following: 

 

Illustration (3.6): 

Consider the example (2.1) of section (2.6) in chapter two, which 

is: 

dX = gX dW 

X(0) = 1 

Where: 

g(t) = sint; X0 = 1; N = 211; T = 1; sample path µ = 500 

Depending on the concluding remark (3.2), the strong 

convergence for the numerical solution using Euler-Maruyama method 

is obtained. This produces the blue asterisks connected with solid lines 

in the plot of Figure (3.8). For reference, a dashed red line of slope one-

half is added. The least-squares power law fit gives q = 1.0132 and  

resid = 0.0166 (see program A.7 in Appendix A). 
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Figure (3.8) Milstein strong convergence. 
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Illustration (3.7): 

Consider the example (2.2) of section (2.6) in chapter two, which 

is: 

dX = fX dt + gX dW 

X(0) = 1 

Where: 

F(t) = cost; g(t) = sint; X0 = 1; N = 211; T = 1;  

sample path µ = 500 

The strong convergence plot is as follows: 
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Figure (3.9) Milstein strong convergence. 

 

Illustration (3.8): 

Consider the example (2.7) of section (2.6) in chapter two, which 

is: 

dX = λX dt + µX dW 

X(0) = 1 
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(1) Mean-Square stability: 

Where λ = −3, µ = 3; and T = 20; µ = 50000; X0 = 1;  

∆t = 1, 1/2, 1/4. 

(2) Asymptotic stability: 

Where λ = 0.5, µ = 6 ; and T = 500; ∆t = 1, 1/2, 1/4. 

The following Figure (3.11) plots the sample average of E(X2) 

against t in this picture the ∆t = 1 and ∆t = 1/2 curves increase with t, 

while the ∆t = 1/4 curve decays toward zero (see program A.8 in 

Appendix A). 
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Figure (3.10) Mean-Square and Asymptotic stability by Milstein 

scheme. 
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Illustration (3.9): 

Consider the example (2.1) of section (2.6) in chapter two, which 

is: 

dX = gX dW 

X0 = 1 

(1) Mean-Square stability: 

Where g(t) = sint; T = 20; X0 = 1; ∆t = 1, 1/2, 1/4; 

and sample path µ = 50000 

(2) Asymptotic stability: 

Where g(t) = sint; T = 500; ∆t = 1, 1/2, 1/4; 

The following figures are then obtained: 
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Figure (3.11) Mean-Square and Asymptotic stability by Milstein 

scheme. 
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Illustration (3.10): 

Consider the example (2.2) of section (2.6) in chapter two, which 

is: 

dX = fX dt + gX dW 

X0 = 1 

(1) Mean-Square stability: 

Where f(t) = cost; g(t) = sint; T = 20; X0 = 1; ∆t = 1, 1/2, 1/4; 

and sample path µ = 50000 

(2) Asymptotic stability: 

Where g((t) = cost; g(t) = sint; T = 500; ∆t = 1, 1/2, 1/4; 

The numerical solution can be shown in the following figures: 
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Figure (3.12) Mean-Square and Asymptotic stability by Milstein 

scheme. 
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CChhaapptteerr  FFoouurr  

CCoommppaarriissoonn  aanndd  CCoonncclluussiioonnss  

 

4.1 Comparisons (Summary of Numerical Results): 

4.1.1 Comparison (of Example (2.1) of Section (2.6) in Chapter Two): 

This section focuses on some comparisons and conclusions of the 

presented work based on the test problems and methods, like, Euler 

scheme and Milstein scheme. The following section step-by-step 

comparisons are obtained for (example (2.1) of section (2.6) in chapter 

two) and parameters to study the proposed numerical method, so that 

one can conclude his final decision easily and as follows. 

Table (4.1) provides a summary of the numerical schemes and the 

associated error at final time for the SDE with EM and Milstein as 

follows: 

 

Table (4.1) Comparison of errors: SDE with EM and Milstein. 

Scheme R N = 25 N = 26 N = 27 

A
bs

ol
ut

e 
er

ro
r 

at
 fi

na
l t

im
e 

Euler scheme 1 0.0409 0.0058 0.0742 

Milstein scheme 1 0.0023 0.0012 0.0009 
 

The error of the Euler scheme decreases when the number of 

discritization points increases from N = 25 to N = 27. The Milstein 

scheme performs better than the Euler scheme. Also, the error analysis 
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for N = 26 and R = 1 for t ∈ [0, 1] using example (2.1) have been plotted 

in the following figures for comparison point of view. 
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Figure (2.4.1) Absolute error between the Euler scheme and exact 

solution with N = 26; R = 1. 
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Figure (3.1.1) Absolute error between the Milstein's scheme and exact 

solution with N = 27; R = 1. 
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4.1.2 Comparison (of Example (2.2) of Section (2.6) in Chapter Two): 

Table (4.2) provides a summary of the numerical schemes and the 

associated error at final time for the SDE with EM and Milstein for 

example (2.2) of section (2.6) in chapter two, as follows: 

 

Table (4.2) Comparison of errors: SDE with EM and Milstein. 

Scheme R N=25 N=26 N=27 N=28 N=29 N=210 N=211 

A
bs

ol
ut

e 
er

ro
r 

at
 

fin
al

 ti
m

e 

Euler 
scheme 

1 0.0821 0.0250 0.1409 0.0123 0.0526 0.0230 0.0088 

Milstein 
scheme 

1 0.0125 0.0356 0.0270 0.0011 0.0031 0.0012 0.0005 

 

The error of the Euler scheme decreases when the number of 

discritization points increases from N = 27 to N = 211. The Milstein 

scheme performs better than the Euler scheme as one can see this from 

the above table, even for lesser number of point laws than Euler method. 
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Figure (2.5.1) Absolute error between the Euler scheme and exact 

solution with N = 211; R = 1. 
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Figure (3.2.1) Absolute error between the Milstein's scheme and exact 

solution with N = 28; R = 1. 
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4.1.3 Comparison (of Example (2.3) of Section (2.6) in Chapter Two): 

As one discussed earlier, the following comparisons are obtained: 

 

Table (4.3) Comparison of errors: SDE with EM and Milstein. 

Scheme R N=25 N=26 N=27 N=28 N=29 N=210 N=211 

A
bs

ol
ut

e 
er

ro
r 

at
 

fin
al

 ti
m

e 

Euler 
scheme 

1 0.0248 0.9980 0.4442 0.0266 0.0841 0.1149 0.0128 

Milstein 
scheme 

1 0.0304 0.1997 0.2294 0.0071 0.0309 0.0074 0.0005 

 

The Milstein scheme performs better than the Euler scheme as 

one can see for N = 211. The following graphs are also plotted: 
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Figure (2.6.1) Absolute error between the Euler scheme and exact 

solution with N = 211; R = 1. 
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Figure (3.3.1) Absolute error between the Milstein's scheme and exact 

solution with N = 28; R = 1. 

 

4.1.4 Comparison (Absolute and Strong Converge): 

For example 92.4) of section (2.6) in chapter two, the following is 

given: 

 

Table (4.4) Comparison of errors: SDE with EM and Milstein. 

Scheme R N=25 N=26 N=27 N=28 

A
bs

ol
ut

e 
er

ro
r 

at
 

fin
al

 ti
m

e 

Euler 
scheme 

1 0.8634 0.3335 0.3793 0.0686 

Milstein 
scheme 

1 0.9633 0.3539 0.4183 0.0560 

 

and 
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Figure (2.7.1) Aabsolute error between the Euler scheme and exact 

solution with N = 28; R = 1. 
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Figure (3.4.1) Absolute error between the Milstein's scheme and exact 

solution with N = 28; R = 1. 



Chapter Four                                                                                         Comparison and Conclusions 

 130 

One can also see the following order of strong convergence of 

Euler-Maruyama method is 0.5, while the order of strong convergence of 

Milstein method is 1, depending on: 

E|Xn − X(T)| ≤ C∆tη 

Which present the Milstein method to be the best than Euler method. 

The linear stability between Euler-Maruyama method and 

Milstein method shows that Milstein method is better than Euler-

Maruyama method, as one can see this final time in figures (2.16)-(2.20) 

and (3.10)-(3.12) for example (2.1), (2.2), (2.3), (2.4) and (2.7), 

respectively. 
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Figure (2.16) Mean-Square and Asymptotic stability. 
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Figure (2.17) Mean-Square and Asymptotic stability for EM. 

 

0 2 4 6 8 10 12 14 16 18 20
10

-20

10
0

10
20

E
[x

2 ]

Mean- Square:mu = -3,secma = 3

 

 

∆ t = 1

∆ t = 1/2

∆ t = 1/4

 
Mean-square 

0 50 100 150 200 250 300 350 400 450 500
10

-50

10
0

10
50

10
100

|x
|

single path:mu = 0.5,secma = 3

 

 

∆ t = 1

∆ t = 1/2

∆ t = 1/4

 
Asymptotic stability 

Figure (2.18) Mean-Square and Asymptotic stability for EM. 
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Figure (2.19) Mean-Square and Asymptotic stability for EM. 
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Figure (2.20) Mean-Square and Asymptotic stability for EM. 
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Figure (3.10) Mean-Square and Asymptotic stability by Milstein 

scheme. 
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Figure (3.11) Mean-Square and Asymptotic stability by Milstein 

scheme. 
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Figure (3.12) Mean-Square and Asymptotic stability by Milstein 

scheme. 

 

The final decision, the numerical result for Milstein method is 

better than Euler-Maruyama method, even for small number of sample 

size and R (Brownian motion step size) as one can see from previous 

tables (4.1)-(4.4), for different type of comparison. 
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4.2 Future Work: 

1. On using the present numerical methods, one can go further to study 

the numerical solution of stochastic partial differential equations. 

2. One can focus on study the implicit numerical solutions for stochastic 

differential equations to overcome the problem of stability and 

convergence. 

3. Systems had nonlinearity with differential kinds of randomness (not 

necessary Brownian motion) may be adopted and study the numerical 

solution. 

4. Another numerical method, like Runge-Kutta method, etc., may be 

studied for solving some SDE's. 
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Introduction 

 I 

IInnttrroodduuccttiioonn  

 

Stochastic differential equations (SDE's) constitute an ideal 

mathematical model for a multitude of phenomena and processes 

encountered in areas such as differential equations, stochastic control, 

signal processes and mathematical finance, most notably in option 

pricing (see for example [Kloeden & Platen, 1992] and [φksendal, 

1998]). Unlike their deterministic counterparts, SDE's do not have 

explicit solutions, a part from in a few exceptional cases; hence the 

necessity for a sound theory of their numerical approximation is 

important. 

It is well-known that stochastic integrals and Itô formula play a 

central role in modern probability theory and its applications to 

stochastic differential equations concerned by Brownian motion. 

The theory of It̂o stochastic differential equations is one of the 

most beautiful and most useful areas of the theory of stochastic 

processes. However, until recently the range of investigations in this 

theory have been in our view, justifiably restricted only equations were 

studied which can in analogy with the deterministic case, be called 

ordinary stochastic equations. The situation had begun to change in the 

last 12-18 years. The necessity of considering equations combining the 

features of partial differential equations and Itô equations has appeared 

both in the theory of stochastic processes and in related areas, [Krylov & 

Rozovskii, 2007]. 
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During the past twenty years, there has been an accelerating 

interest in developing numerical methods for stochastic differential 

equations, especially in engineering and physical sciences, [Burrage & 

Burrage, 1996]. This has been supported by continuous improvements in 

computing capability and the equivalent decrease in costs of personal 

computers. 

In the light of the volume of interest rate of related derivatives 

trade worldwide, there is a need to highlight and to understand the 

available numerical methods that could be used to solve the stochastic 

differential equations, thus providing a more accurate and efficient way 

for the pricing and hedging of derivatives products. Further, these 

numerical methods aide in bridging the gap between the well advanced 

theory of SDE's and its application to specific examples. 

There are various methods that have been proposed to solve 

SDE's numerically, Monte Carlo methods can be used to simulate the 

behaviour of the system. Under this method, the physical process is 

simulated directly using a sequence of random numbers and there is no 

need to specify the differential equation that describes the behaviour of 

the system. The physical system is described by probability density 

functions and then the Monte Carlo simulation can begin by random 

sampling from the probability density function [Casella & Robert, 

2005]. Many simulations are performed and the desired result is taken as 

an average over the number of observations. 

However [Kloeden & Platen, 1992] claim that this method is to 

some extent inefficient because it does not use the special structure of 

the drift and diffusion coefficients. Another method to solve SDE's is to 



Introduction 

 III  

make use of the discretisation of both time and space variables, so that 

the solution is approximated as finite state Markov chains. This method 

is plausible for simple problems, but for high dimension problems, this 

method can involve a considerable amount of computing time because 

the transition matrices contain a lot of unnecessary information which 

must be repeatedly reprocessed during computations. 

Another method involves the finite discretisation of the time 

interval [0,T] only and not the state variable. This time discrete 

approximation can be used to generate approximate values of the sample 

paths at each step of the discretisation times. The simulated sample paths 

can then be analysed using statistical methods to determine how good 

the approximation is to the exact solution. This method is efficient and 

can be easily implemented on a digital computer. Consequently, it has 

been used widely and preferred to other methods because it has lower 

computational costs, [Fridman, 1975]. 

Having realised the importance and the recent increased use of 

SDE's, the main aim of this thesis is to present a brief analysis of the two 

numerical methods that have been developed for solving SDE's, 

focusing, on strong and weak schemes. In addition, this thesis shows 

how these numerical schemes can be derived from Taylor expansions of 

the stochastic differential equations, thus providing opportunities for the 

derivation of more advanced numerical schemes and the application of 

existing schemes by other researchers that do not have a solid 

background in modern probability theory, [Stirzaker, 2005]. 

Analogous to deterministic ordinary differential equations where 

the Taylor expansion is used to derive various numerical methods, the 
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lt ô-Taylor expansion for stochastic differential equations is used to 

derive various numerical methods. The Euler and Milstein schemes 

provide a good starting point to introduce numerical methods for SDE's. 

This is then extended to higher order Taylor schemes. These schemes 

involve simulating the derivatives of the coefficients of the drift and 

diffusion terms. Further schemes are presented which replace the 

derivatives with finite differences, implicit schemes are then presented, 

which takes into account previous simulated values and thus involves 

less computing. These schemes are presented for both the strong and 

weak convergence criteria, [Platen, 1999]. 

The numerical methods are based on time discrete 

approximations. Time discrete approximations for both the strong and 

weak convergence criteria will be presented. Whereas time discrete 

approximations which satisfy the strong convergence criterion involves 

the simulation of sample paths at each step of the discretisation time, 

approximations that satisfy the weak convergence criterion involve the 

approximation of some function of the ltô process such as the first and 

second moments at a given final time T. Also, the linear stability of the 

considered numerical schemes is also presented in this thesis. Further, 

the thesis also contrasts the different numerical schemes by providing 

some analytical results of the scheme and comparing it with the known 

solution. This is done by using Matlab software. The effect of varying 

the step size is considered. 

Some examples of SDE have been taken and the numerical 

solution are compared with the derived exact solution (if any) depending 

on some types of error like absolute, strong, weak, etc. 
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This thesis consists of four chapters. The first chapter deals with 

the, Some Stochastic Process Concepts. 

In chapter two, Euler-Maruyama numerical method for solving 

SDE is discussed and some illustration have been implemented the 

absolute error, strong error as well as weak convergence error and linear 

stability are also been discussed supported by some illustration. Some 

concluding remarks have also been proposed. 

In chapter three, Milstein's numerical method for solving SDE is 

proposed. Some illustrations have also been implemented. The absolute 

error, strong convergence error and linear stability are also been 

discussed and supported by some illustration. Some concluding remarks 

have also been presented. 

In chapter four, comparisons and conclusions, future work, are 

presented. Then, appendixes with result programs and references are 

given at the end of this thesis. 
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  المستخلصالمستخلص

 

دراسة بعض الطرق العددية لحل المعـادلات التفاضـلية  هولهذه الرسالة  الرئيسالهدف 
لقــد تــم عــرض المفــاهيم . حــلاً عــددياً  (Stochastic Differential Equations) الصــدفية

  .الاساسية لفهم ودراسة الطرق العددية المقترحة

تــم ، الصــدفيةادلات التفاضــلية يجــاد الحلــول التحليليــة لكثيــر مــن المعــإصــعوبة بســبب 
لقد تـم تنفيـذ بعـض المحاكـات العدديـة لعـدد و . ميلستين العدديتينميرما و  طريقتي أويلر إستخدام

  .رورية لذلكوقدمت الملاحظات الاستنتاجية الض .من الامثلة الاختيارية

تم كذلك دراسة وتقديم الخطأ المطلق، خطأ التقارب القوي، خطـأ التقـارب الضـعيف لقد 
  .رات عدديةمدعمة بأختباأويلر ميرما وميلستين بالاضافة الى الاستقرارية الخطية لطريقتي 

العدديـة للطــريقتين  لانـواع مختلفـة مـن التقاربـات والخطـأ رضـت مـع المناقشـة المقارنـةعُ 
ـــــر( ـــــة وأخيـــــراً  )نميرمـــــا وميلســـــتي-أويل ـــــبعض الامثلـــــة الاختياري ـــــد قـــــدمت ونوقشـــــت بعـــــض ول لق

البـرامج الحاسـوبية مبرمجـة ضـمن  عـرض مـع. الاستنتاجات والمقارنات لانواع معينة من الدراسة
  .شروحات الكافية لفهماالمع  Matlab Softwareلغة 
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