Abstract

The aim of this thesis is studying some numericathods for
solving Stochastic Differential Equation. The matia¢ical preliminary
required to understand these numerical method®Eoged. Since many
stochastic differential equations do not have expbolution, Euler-
Maruyama and Milstein numerical methods are usdte fumerical
simulation for different selected examples are snmnted. The
necessary concluding remarks are provided. The lateserror, the
strong convergence error, the weak convergence amnd the linear
stability for Euler- Maruyama and Milstein's schenage discussed and
supported by numerical test problems. The comparisfierent type of
convergence and error between Euler-Maruyama aisteifi's for some
test problems are presented. Some conclusions@ngarison in some
sense have been presented with discussions. Tlyaprms coded in

Matlab software are also given with useful disomissi
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Appendiz A

A.l: Discretized Brownian path

%Discretized Brownian path

randn( 'state’ ,100) % set the state of randn

T =1; N = 800; dt = T/N;

dw = sqgrt (dt) *randn(1,N); % since dw is N(0,dt)

w = cumsum(dw); % since w(j) = sum dw(i)for i= 1...]
plot([0:dt:T],[0,w], ) % plot w against t

xlabel( 'time' , 'Fontsize' ,12) % Adds x labels

ylabel( 'w(t)" , 'Fontsize' ,12, 'Rotation’ ,0) % Adds y labels

A.2: Exact solution ancEuler scheme

%Generator Brownian Motion - Discretized paths
randn( 'state’ ,100)

xzero = 1; yzero = 0; % problem parameters

T =1; N = 2"6; dt = 1/N;

dw = sqrt(dt ) *randn (1,N) ; % Brownian increments

w = cumsum(dwy); % discretized Brownian path

% Exact solution
R = 1; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt

xam = zeros (1,N); % preallocate for efficiency
xem = zeros(1,L); % preallocate for efficiency
ytemp = yzero;
for i=1:N
winc = sum(dw(R*(i- 1)+1:R*1));
ytemp = ytemp + (- 0.5)*(sin(1i*Dt))"2*Dt + sin(i*Dt) *winc;

xtrue = exp(ytemp);

xam(i) = xtrue;
end
plot([0:Dt:T],[yzero,xam], ‘m-' ), hold on
% Euler scheme
xtemp = xzero;
for k=1:L

winc = sum(dw(R*(k- 1)+1:R*k));

xtemp = xtemp + winc*sin(k*Dt)*xtemp;

xem(k) = xtemp;
end
plot([0:Dt:T],[xzero,xem], r--* ), hold off
xlabel( 'time' , 'Fontsize' ,10)
ylabel(  'x(t)' , 'Fontsize' ,10, 'Rotation’ ,0, 'HorizontalAlignment' , 'right")
legend( ‘'Exact solution’ , 'Numerical solution' )
% Absolute Error
eme = zeros(l,L);
for d=1L

emerr = abs(xem(d)-xam(d));
eme(d) = emerr;

end

eme'

plot([0:Dt:T],[0,eme], '‘b*-* ), hold off

xlabel(  'time(t)’ , 'Fontsize' ,12)

ylabel(  ‘error(t)’ , 'Fontsize' ,12, 'Rotation’ ,0, 'HorizontalAlignment' , 'right’

A1
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A.3: EM strong convergence

% generator Brownian Motion - Discretized paths
randn( 'state’ ,100)
secma = 1; mu = 2; pzero=l; % problem parameters

T =1; N =2"9; dt = T/N; %

M = 4000; % number of paths sampled

perr = zeros (M,5); % preallocate array

for s=1:M, % sample over discrete Brownian paths
dw = sqgrt(dt)*randn(1,N); % Brownian increments
w = cumsum(dwy); % discrete Brownian path.
ptrue = pzero*exp((secma*w(end))+ (mu - 0.5*secma”2)) ;

for p=15

R = 2(p- 1); Dt = R*dt; L = N/R; %L Euler steps of size Dt = R*dt.
ptemp = pzero;

for j=1.L
Winc = sum(dw(R*(j- 1)+1:R*7J));
ptemp = ptemp + Dt*mu*ptemp + secma *ptemp*Winc;
end
perr(s,p) = abs(ptemp - ptrue); % store the error att =1
end
end
Dtvals = dt* (2.7 ([0:41));
subplot(221) % top LH picture
loglog(Dtvals,mean(perr), ‘b*-' ),hold  on
loglog(Dtvals,(Dtvals.”\(.5)), r--' ),hold  off %reference slope of 1/2.
axis([1le-3 le-1 1e-4 1])
xlabel( "\Delta t' ),ylabel( '‘Sample average of | p(T) -p_L|' )
%% % Least squares fit of error = ¢ * Dt*q %%%
A = [ones(5,1),log(Dtvals)']; rhs = log(mean(perr)');
sol = A\rhs;
g = sol(2)

resid = norm(A*sol - rhs)

A.4: EM weak convergence

% generator Brownian Motion - Discretized paths
randn( 'state’ ,100)

pzero = 1; T = 1; mu = 2; segma = 1; % problem parameters
M = 50000; % number of paths sampled
pem = zeros(5,1); % preallocate arrays
for p=15 % take various Euler timesteps
Dt = 2/\(p- 10); L = T/Dt; % L Euler steps of size Dt
ptemp = pzero*ones (M,1);
for j=1.L
Winc = sqrt (Dt) *randn (M, 1) ;
%$%% Winc = = sqrt(Dt) *sign(randn(M,1)); %% use for weak E-M%%
ptemp = ptemp + Dt*mu*ptemp + secma*ptemp.* winc;
end
pem(p) = mean(ptemp);
end
perr = abs(pem - exp(mu));
Dtvals = 2.7([1:5]- 10);
subplot(221) % top RH picture
loglog(Dtvals,perr, ‘b*-' ),hold  on

loglog(Dtvals,Dtvals,
axis([1le-3 le-1 1e-4 1])

r--' ), hold off  %reference slope of 1
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xlabel( "\Delta t' ),ylabel( ‘| E(x(T)) - Sample average of x_L|' )
%%%% Least squares fit of error = c*dt"q %%%%
A = [ones(p,1l),log(Dtvals) '];

rhs = log(perr);
sol=A\ rhs; g = sol(2)
resid = norm(A*sol - rhs)

A.5: Mean — square and asymptotic stability for E-M

% generator Brownian Motion - Discretized paths
randn( 'state’ ,100)
T = 20; M = 50000; Xzero = 1;
Itype={ b ,'Tr-" ,'m-." } % line types for plot
subplot(211) %%%%%%%Mean Square%%%%%%%
for k=1:3
Dt = 27(1-K);
N = T/Dt;
xms = zeros(1l,N);
xtemp = Xzero*one s(M,1);
for j=1:N
winc = sqrt(Dt) *randn (M, 1) ;
xtemp = xtemp + sin(j*Dt)*xtemp.*winc ;
xms (j) = mean (xtemp.”"2); % mean-square estimate
end
semilogy([0:Dt:T],[Xzero,xms],ltype{k}, ‘Linewidth' ,2), hold on
end
axis([0,T,1e-20,1e+20]),hold off
legend( ‘\Deltat=1' , \Deltat = 1/2' , \Delta t = 1/4' )
title( 'Mean- Square: g(t) = sin(t)' , 'Fontsize' ,16)
ylabel( 'E[x*2]" , 'Fontsize' ,12)
subplot(212) %%%% Asymptotic: a single path %%%%%
T =500;
for k=1:3
Dt = 27(1-k);
N = T/Dt;
xemabs = zeros(1l,N);
xtemp = Xzero;
for j=1:N
winc = sqrt(Dt)*randn;
xtemp = xtemp + sin(j*Dt)*xtemp.* winc;
xemabs(j) = abs(xtemp);
end
semilogy([0:Dt:T],[Xzero,xemabs],Itype{k}, ‘Linewidth' ,2), hold on
end
legend( "\Deltat=1"' , \Deltat = 1/2' , \Delta t = 1/4' )
title(  'single path: g(t) = sin(t)’ , 'Fontsize' ,16)
ylabel(  '|x|" , 'Fontsize' ,12)
axis([0,T,1e-50,1e+100]),hold off

A.6: Exact solution and Milstein scheme

% Generator Brownian Motion- Discretized paths
randn( 'state’ ,100)

xzero = 1; yzero = 0; % problem parameters

T=1; N =2"7; dt = 1/N;

dw = sqrt(dt) *randn (1,N) ; % Brownian increments

w = cumsum(dw); % discretized Brownian path

% Exact solution

R =1; Dt = dt; L = N/R; % L EM steps of size Dt = R*dt.
xam = zeros (1,N); % preallocate for efficiency

A-3
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xem zeros (1,L);
ytemp = yzero;
for i=1:N
winc = sum(dw(R*(i-
ytemp = ytemp + (-
xtrue = exp(ytemp);
xam(i) = xtrue;
end
plot([0:Dt:T],[yzero,xam],
% Milstein scheme
xtemp = xzero;
for j=1.L
winc = sum(dw(R*(j- 1)+1:R*J));
xtemp = xtemp + sin(j*Dt)*xtemp.*winc

1)+1:R*1i));

'm-" ),hold  on

0.5)*(sin(i*Dt)"

% preallocate for efficiency

2)*Dt + sin(i*Dt) *winc;

+ 0.5*sin(j*Dt)"2*xtemp.*(winc."2 - Dt);

xem(j) = xtemp;
end
plot([0:Dt:T],[xzero,xem], r--* ), hold off
xlabel( 'time' , 'Fontsize' ,10)
ylabel(  'x(t)' , 'Fontsize' ,10, 'Rotation’ ,0, 'HorizontalAlignment' , 'right’ )
legend( ‘'Exact solution’ , 'Numerical solution' )
% Absolute Error
eme = zeros(l,L);
for d=1:L

emerr = abs(xem(d)-xam(d));

eme(d) = emerr;
end
eme'
plot([0:Dt:T],[0,eme], 'b*-" ), hold off
xlabel(  'time(t)’ , 'Fontsize' ,10)
ylabel(  ‘error(t)’ , 'Fontsize' ,10, 'Rotation’ ,0, 'HorizontalAlignment' , ‘right

A.7: strong convergence of Milstein

% Generator Brownian Motion - Discretiaed path

randn( 'state’ ,100)

Xzero = 1;

T =1; N = 2~(11); dt =TIN;
M = 500;

R = [1; 1l6; 32; 64; 128];

dw = sqrt(dt)*randn(M,N);
Xmil zeros (M, 5) ;
for p=15
Dt = R(p)*dt; L = N/R(p);
Xtemp = Xzero*ones(M,1);
for j=1.L
winc = sum(dw(:,R(p)*(j-
Xtemp = Xtemp + sin(j*Dt)*Xtemp.*winc
+ 0.5*(sin(j*Dt))*2*Xtem

end

Xmil(:,p) = Xtemp;

end
Xref Xmil (:,1);
Xerr = abs(Xmil(:,2:5) -
mean(Xerr);
Dtvals dt*R(2:5);
subplot(221)
loglog(Dtvals,mean(Xerr),
loglog(Dtvals,Dtvals,

repmat (Xref, 1,4));

b*-' ), hold
), hold  off

on
et

A4

1)+1:

% problem parameters

%

% number of paths sampled
% Milstein stepsizes are R*dt
% Brownian increments

% preallocate array

% L timesteps of size Dt = R dt

R(p)*3),2);

p..’.‘.(winc."Z- Dt);

% store Milstein solutionatt=1

% Reference solution

% Error in each path

% Mean pathwise erorrs
% Milstein timesteps used
% lower RH picture

% reference slope of 1
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axis([1le-3 le-1 1e-4 1])
xlabel( "\Delta t' )

ylabel( 'sample average of |x(T) - x_L|' )
%%%% Least squares fit of error = ¢ * Dt"q%%%%
A = [ones(4,1), log(Dtvals)]; rhs = log(mean(Xerr)' );

sol=A\ rhs; g = sol(2)
resid = norm(A*sol - rhs)

A.8: Mean — square and asymptotic stability for Iglikin

% generator Brownian Motion - Discretized path
randn( 'state’ ,100)
T = 20; M = 50000; Xzero = 1;

Itype={ b ,'r-" ,'m-." } % line types for plot
subplot(211) %%%%%Mean - square%%%%%
lambda=- 3; mu = sqrt(3); % problem parameters
for k=1:3
Dt = 27(1-k);
N = T/Dt;
xms = zeros(1l,N);
xtemp = Xzero*ones(M,1);
for j=1:N
winc = sqrt(Dt) *randn (M,1);
xtemp = xtemp + lambda*xtemp.*Dt + mu*x temp.*winc
+ 0.5*mu”2*xtemp.*(winc.”2-Dt );
xms (j) = mean (xtemp."2); % mean-square estimate
end
semilogy([0:Dt:T],[Xzero,xms],ltype{k}, ‘Linewidth' ,2), hold on
end
axis([0,T,1e-20,1e+20]),hold off
legend( "\Deltat=1' , \Deltat=1/2' , \Deltat = 1/4' )
title( 'Mean- Square:\lambda = -3, \mu = \surd3' , 'Fontsize' ,16)
ylabel( 'E[x*2]" , 'Fontsize' ,12)
subplot(212) %%%% Asymptotic: a single path %%%%%
T =500;
lambda = 0.5; mu = sqrt(6); % problem parameters
for k=1:3
Dt = 27(1-k);
N = T/Dt;
xemabs = zeros (1l,N);
xtemp = Xzero;
for j=1:N
winc = sqrt(Dt)*randn;
xtemp = xtemp + lambda*xtemp.*Dt + mu*xtemp.*winc
+ 0.5*mu”2*xtemp.*(winc. A2-Dt);
xemabs(j) = abs(xtemp);
end
semilogy([0:Dt:T],[Xzero,xemabs],ltype{k }, 'Linewidth’ ,2), hold
on
end
legend( "\Deltat=1' , \Deltat=1/2' , \Deltat = 1/4' )
title(  'single path:\\lambda = -3, \mu = \surd €' , 'Fontsize' ,16)
ylabel( '|x|" , 'Fontsize' ,12)
axis([0,T,1e-50,1e+100]),hold off



Basic Notations

[a, b]

Cov(X)
X

f:0 0510

as.

w.p.1

L.i.p.

Time.

Maturely date.

Wiener process.

Stochastic process.

Variance of the random variable X.

The expectation of the random variable X.
Normal distribution with expectation p and variancet.
With distribution.

Small increment in n.

Sample space.

Closed interval {x R :a<x <Db}.

Set of real numbers.

Covariance of the random variable X.

The Euclidian norm of avector X.

A functionf from ] to [J .

Almost surely.

with probability 1.

Probability.

Limit in probability.
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Chapter One

This chapter presents some stochastic process msnefich is
divided into seven sections, the first one descitigeset of algebra, the
second section deals with the random variable,thivd section deals
with the stochastic processes, the fourth secteaisdwith the stochastic
integral, the fifth section deals with the approatian of functions by
step functions, the sixth section deals with the flirmula, while the
seventh section deals with the existence and unegge theorem of

solution of stochastic differential equations anthe of its kinds.

1.1 Algebra of Sets:

The collection of all elementary outcomes of a mand
experiment is calledsample spaceand is denoted byQ. In the
terminology, the sample space is termed asutheersal set. Thus, the
sample spac® is a set consisting of mutually exclusive, coilssly
exhaustive listing of all possible outcomes of d@m experiment. That
IS, Q = {wy, Wy, ..., W} denotes the set of all finite outcomés= {wy, ,
Wy, ...} denotes the set of all countably infinite cutees, and Q2 ={0 <

t < T} denotes the set of uncountably infinite outceme

Let Q represent the sample space which is a collectiom-0
points as defined earlier. The various set opearatioare

complementationunion andintersection Let A and B be two subsets



Chapter One Some Stockartic Process Cometpts

of the sample spad®, denoted by A1Q, BL1Q. The complement of A,

denoted by A represents the set of allpoints not contained in A, i.e.,
A°={w wA} ..(1.1)

Evidently the complement @ is the empty sdtl. The union of
sets A and B, denoted by [A B or A + B, represents the occurrence of
w-points in either A or B. Similarly, the intersemti of sets A and B,
denoted by An B or AB, represents the occurrencewppoints in A and
B. Clearly, if there is no commonality ofpoints in A and B, then A

B is the empty sétl.

Definition (1.1) (Field) (Algebra), [Krishnan, 2006]:

A class of a collection of subsets [A Q denoted by is a field,

when the following condition are satisfied:

1.1fA;Ov, thenAf Ov,i=1,2,...,n.
(1.2)

n
2.1f{A,i=1,2,...,nHdv, thenJA; Ovu.
i=1

Remark (1.1):

Given the above two conditions, de Morgan's lawuess that
finite intersections also belong to the field. Tlauslass of subsets is a
field if and only if it is closed under all finitget operations like unions,

intersection, and complementation.
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Definition (1.2) (O-Field) (0-Algebra), [Krishnan, 2006]:

A class of a countable infinite collection of sulsséy [ Q

denoted byris ac-field when the following conditions are satisfied:

1.1f A; O thenAS O &

..(1.3)
2.1f{A,i=1,2, ..}0 ¢ thenJA, OF
i=1

In general av-field is a field, but a field may not beoafield.

Definition (1.3) (Borel o-Field), [Krishnan, 1984]:

The minimumo-field generated by the collection of open sets of
a topological spac@ is called the Boreb-field or Borel field. Members

of thiso-field are called Borel sets.

Definition (1.4) (Measurable Space), [Stirzaker, 2005]:

A suitable model of the random experiment is theeefh sample
spaceQ and ao-field F of subsets of2. The space(}, ¥) thus created is

called a measurable space.

Remarks (1.2), [Krishnan, 1984], [Stirzaker, 2005]:

1.Eventsare defined as the subsetsifwhich are elements in the
field.

2.In particular,Q is called thecertain event.
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3.If two events A and B satisfy A B = [0 , then they are said to be
disjoint.
4.The complemen®® is an event called the impossible event, which we
denote byQ° =, theempty set
n
5.IF{Ai,i=1, 2, ..., n}is a class of disjoint sets@f such tha{ JA; =
i=1

Q then the {A} collectively exhausf.

Definition (1.5) (Probability Measure), [Krishnan, 2006]:

A probability measuras a set function defined onaafield # of
subsets of a sample spa@esuch that it satisfies the following axioms

of Kolmogorov for any ACl
1.P(A) = 0 (nonnegativity).

2.P(Q) =1 (normalization). ...(1.4)

3. P[G An] = Y P(A,) (o-additivity), with A, O #, and A and A

n=1 n=1

being pairwise disjoint.

It is also called probability distribution.

Lemma (1.1) (Sequential Monotone Continuity), [Krishnan, 1984]:

Let {A,} be a monotone decreasing sequencerirsuch that

A1 O A, and letlim A, =0, then:

n - oo

lim P(A) =0 ...(L.5)

Nn — oo
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The probability measure is said to satisfy the eatal

monotone continuity dtl.

Proposition (1.1) (Sequential Continuity), [Krishnan, 1984]:

Let {A,} be a convergent sequence of events,iwith lim A, =

Nn — oo

A. Then:

lim P(A,) = P(lim A,) = P(A) ..(1.6)

n— oo

The probability measure is sequentially continuous.

1.2 Random Variable, [Krishnan, 1984], [Stirzaker, 2005]:

An important class of functions is the measurahlacfions
which are different from the measure functions, rgase measure
functions are set functions, measurable functiomsiavariably point

functions.

Definition (1.6) (Measurable Function), [Krishnan, 1984]:

Let (Qi, &) and Q,, %) be two measurable spaces. Let g be a

function with domain E0 Q; and range E[1 Q..
0: Q.0 - Q,

g is called arF;-measurable function or aR-measurable mapping if for

every B &
g'(E) ={w g(w) OE} 0 E ..(L.7)

IS in theo-field 7.
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Remarks (1.3), [Krishnan, 1984]:

1.1f g is measurable with respect to tbeield & of sets that are P-
measurable, then we might also say that g is Punalle if there is

no confusion.

2.The set given by §(E,) is called theinverse imageor inverse

mapping of &, and it is measurable set.

3. Inverse mappings preserve all set relations.

Definition (1.7) (Random Variable), [Stirzaker, 2005]:

Measurable space consisting of the real line R awiekld of
Borel sets®, Let the probability measure P be defined &n €). The

measurable mapping fronQ( ¢) into (R, ®) is called a real-valued

random variable.

Remarks (1.4), [Krishnan, 1984], [Stirzaker, 2005]:

1. Naturally, the probability measure P induces a gbilly measure £
in the space (Rg). If E; O ®, then:
Px(E2) = P(XY(E,)) = P(E) = P{w: X(w) 0 E3} ...(1.8)
Equation (1.8) related the probability measuseif® (R, ®) to the
probability measure P i), 7). Instead of writing Pd: X(w) O E},

we shall have the abbreviated notation P{E,}.

2.1f Q is a metric topological space, thenis theo-field of all Borel
sets ofQ. Then a function g mappim@ [0 - [J is a Borel function if
for every B O R, g*(E,) is a Borel set of). Since Borel sets @ are

measurable by assumption, every Borel functiormseasurable.

§
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1.2.1 Distribution Functions, [Hsu, 1997], [Evans, 2006]:

Let (Q, %, P) be a probability space and suppose&Xd - 0"
random variable, in this section some additionalcepts about basic
statistical definitions and properties of the disition function are
considered.

Definition (1.8) (Distribution Function):

i. The distribution function of is the function k: 0" O - [0,1]
defined by:

Fx(X):=F(X<x) forallxO O " ...(1.9)
i. If X1, Xo ....Xmy: Q@ O - 0" are random variables, thejoint

forallx OO" ,i=1,2,...,m.

Definition (1.9) (Density Function):

Suppose X:Q O - 0" is a random variable and ¥ Fx its

distribution function. If there exists a nonnegatintegrable function

f: 0" 0 - 0, such that:

F(X) = F(Xg, X, ..., %)

X1 X2 Xp

= [ [ f Y20 Yo )Yy -.dys Ay ..(1.12)

—00 —00 —00
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Then fis called thedensity functionfor X.

It follows then that:

P(XOB)=[ f(x)dx, forall BO ® ...(1.12)
B

This formula is important as the expression orritjet hand side

is an ordinary integral, and can often be expliacithlculated.

Remark (1.5):

If the probability distribution function is diffenéiable, then we
obtain the probability density function f(x)

dF(x)

f(x) = x

..(1.13)

1.2.2 Expectation of Random Variables:

Let (Q, 7, P) be a probability space. The expectation @ralom
variable X is usually defined by the Stieltjes gria:

EX = of X dF(x) ..(1.14)

Definition (1.10) (Expectation), [Krishnan, 1984]:

Let (Q, #, P) be a probability space, and let X be a readloan

variable. The expectation of X is defined by:

EX= [ X(w) dP@) ...(1.15)
Q
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Remarks (1.6):

There are some properties of expectation operatioeh as:
1. Linearity: E(aX + bY)=aEX + bEY, for all constants a and b.
2. Homogeneity: E(cX¥ cEX, for constant c.

3. Order preservation X Y implies EX> EY.

Lemma (1.2), [Evans, 2005]:

Let X: Q O - " be a random variable, and assume that its

distribution function F= F¢x which has the density function. Suppose

g9:0" 0 - O, and Y=g(X) is integrable. Then:

E(Y)= | g(X)f(x) dx
Dn

In particular,
E(X) = j xf(x) dx ...(1.16)
Dn
and
V(X) = [ Ix=EX)[f(x) dx ..(1.17)

U

1.2.3 Convergence of Random Variable:

The convergence of random variable and their kisndsof our

interest and then submitted as follows:
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Definition (1.11) (Almost Surely Convergence), [Krishnan, 2006]:

A sequence of random variables jfXconverges almost surely
(a.s.), or almost certainly, or strongly, to X drfevery w-point not

belonging to the null event A,

lim [Xa(w) - X(c)] = 0 ..(1.18)

n—oo

This type of convergence is known as convergendk probability 1
and is denoted by:

Xn(w)nﬁoo Dﬁ—’ X((*))
or

X(w) = lim X,(w) (a.s.)

Definition (1.12) (Convergence in Probability), [Krishnan, 1984]:

A sequence of random variables $>onverges in probability to

X if for everye >0, however small,

lim p(|X,— X|=¢€) =0, or

n - oo

lim p(|X, - X|<g) =1

n- oo

It is denoted by:
Xn(W)n - w mhugnR X(w), or

X(w) = Li.p. Xy(w)

n—oo

(where L.i.p. is standing for limit in probability)

10
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Remarks (1.7), [Krihisnan, 2006]:

The concept of convergence in probability playsimaportant
role in the consistency of estimators and the waakof large numbers.

We give next some results concerning this concept.

I. If a sequence of random variables,JXonverges almost surely to X,
then it converges in probability to the same linithe converse is not

true.

ii. If {X } converges in probability to X, then there existubsequence

{ Xnk} of {X n} which converges almost surely to the same limit.

1.3 Stochastic Processes:

Let (Q, ¥, P) be a probability space. Let T be an arbitmadgxed

parameter set called the time set. T can be tHdimeal] , the positive
real line ¥, the set of positive integers, or any semiclosed interval in
0 or 07, unless otherwise specified. We shall assume Thi a
semiclosed time interval ii . Sometime we will explicitly state that T

isinl] ™.

Definition (1.13) (Stochastic Process), [Krishnan, 1984]:

Let (Q, #, P) be a complete probability space and let T e a
time set. Letl( , ®) be a measurable space, wheras the real line and
® is the o-field of Borel sets on the real line. A stochastimcess
{Xy, t O T} is a family of random variables defined on thebability

space Q, ¥ P) and taking values in the measurable spacer].

"
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Definition (1.14) (Covariance Matrix), [Raphael, 1972]:

Consider a vector-valued stochastic process WignTwe call:
m(t) = E{W(1)}
the mean of the process,
Cw(ty, ) = E{[W(t1) - m(t)][W(t2) - m(t)]'} ...(1.19)
The covariance matrix, and:
Cw(ty, ) = EfW(t)W'(t,)} ...(1.20)

is the second-order joint moment matrix of W(t)u(R t) = Q(t) is

termed as the variance matrix, while:

Cult, ) = Q(1) ..(1.21)

is the second-order moment matrix of the process.

Remarks (1.8), [Raphael, 1972]:

1. The joint moment matrix written out more explicitly
Cu(ty, ) = EfW(t)W' (t2)}

Ewi(tgwq(t)} Ew ¢t)w & )} - Ew (&)w ()b
_| Bwa(tyw(t} Ew gjw ¢} - Ew G)w &)k

Ewn(tywy(t )} Ew ft)w ¢ 3 - Ew H)w )b
..(1.22)

2. Each element of {{t,, t,) is a scalar joint moment function. Similarly,

each element of {1y, t,) is a scalar covariance function.

12
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1.3.1 (Classes of Stochastic Processes:

In this subsection we shall consider several typestochastic
process and discuss their properties.

Definition (1.15) (Stationary Process), [Hsu, 1997]:

Let {X;, t 00 T} be a stochastic process with time set T defioed
a probability space, #, P) taking values in the state spaice, (r). Let
T ={t,, t,, ..., t} be any finite set of values belonging to T. Thae
process isstrictly stationary or stationary if for any At the joint
distribution of the sequence {X|t X(t,),... , X(t,)}is the same as the
joint distribution of the sequence {X(¥ At), X(t; + At), ... , X(t, + At)}

for any positive integer n.

Definition (1.16) (Wide Sense Stationary), [Krishnan, 1984]:

A real stochastic process {# 00 T} is wide sense stationargr

covariance stationary if:
1.EX? <o,

2. = EX; a constant.

3.Cx(t — s)= E{(X; — W(Xs — W} depends only on the time difference

t — s and not on either t or s.

Remark (1.9):
The strict sensstationaryof definition (1.15) impliesvide sense

stationary of definition (1.16), but the converse is not tr{i€rishnan,
1984].

13
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Example (1.1), [Krishnan, 1984]:

Let us define the random signal:
X(t) = asin(0.5t +6)

Wherea is a positive random variable with mean 0.63 aadawnce

0.11, 6 is uniformly distributed between 0 andtZ2anda and 0 are

uncorrelated.

where the p.d.f. of uniformly distribution is:

1

—, 0<06< 21
f(x) = < 2m

0, e.W.

The mean of this random signal is calculated as:
m(t) = E[x(1)]

= E[asin(0.5t +0)]
= E(O()ZfT sin(0.5t +6)i do
0 21

21 1

= (O.63)j [sin(0.5t) cos) + cos(0.5t)sird)] P do
0

— (063 Sln(O.St)(_Sine|2T[)+ COS(O.5t€CO£|2T[) - 0.
2T 0 211 0

Now, lett=t,, s=t;; b > t;
Cx(t—s)=Cx(t2— t)

= E{(X, —W)(Xy, — W} = EX(R)X(t2))

N |-

E(@?) 2jﬂ[sin{O.5(t2—t1)+26}+sin{0.5(t2—t1)}] 1
0 21

14
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_1 E(a?) Zjn [sin(0.5)(t — t;)cos(D) + cos{0.5(t — t,)
41 0

sin(29)} sin{0.5(t, - t,)}] dO

211

_ 1 50 sin(0.5(b-14)
= E( )[ o g cos(dD) do +

05054 = £ 7" incap) o +
21 0

sin(0.5(4L - ) an d
21 0

= 0.03cos(0.56t- t;))

The mean is independent of time, and the covarifuncetion depends
only on time difference {t- t;), so this random signal is wide sense
stationary. This result is reasonable since thermipreferred time if the

phase is uniformly distributed from O tot2

Definition (1.17) (Independent Increment Process), [Krishnan, 2006]:

A stochastic process {Xt [ T} defined on the probability space
(Q, 7 P) is an independent increment process if forantigction {t, t,

.., &y OTsatisfyingt<t, <.. <t the increment of the procesg X

Xiy =Xy Xig =Xy0 oo Xy =Xy, are a sequence of independent

random variables.

1.3.2 White Noise:

The following definitions are needed to complete&enstanding
white noise:

19
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White Noise, [Raphel, 1972]:

One frequently encounters in practice zero-mealaisstochastic
process with the property that Y(and X(t) are uncorrelated even for
values of - t;| that are quite small, that is:

Rx(tz, t) OO, for b —tq] >€ ...(1.23)
wheree is a small number. The covariance function of ssitthastic
processes can be idealized as follows:

Cx(tz, t) = V(t)d(t2 — 1), V(1) =2 0 ...(1.24)

Hered(t, — ty) is the delta function and \{{tis referred to as the intensity

of the process at time t. Such processes are calied noise processes

We can of course extend the notion of a white npiseess to

vector-valued process:

Definition (1.18) (White Noise Process) [Raphael, 1972]:

Let X(t) be a zero mean vector-valued stochastacgss with

covariance matrix:
Cx(tz, tr) = V(t1)0(t2 — ta) ...(1.25)
where V(i) = 0.

The process X(t) is then said to bewhite noise stochastic

processwith intensity V(t).

White Noise Differential Equation, [Krishnan, 1984]:

We now investigate the problem of a differentiali@gon driven
by white noise. Suppose we are given the diffea¢rquation in the

following form:

1
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i _

=AY+ BOX, tOT, Vs ...(1.26)

where Y, is the initial condition and Xis a white noise process.
Presented in the form (1.26) cannot be interpreasdan ordinary
differential equation without making assumptions differentiability

and separability of Yand X, even if X is not white but some other
quadratic mean continuous random process. Insteadeopreting this

equation as a differential equation, we can intrpr as an integral
equation without worrying about these assumptioiie. interpret the
stochastic process {Yt O [a, b)} with E[Y < « as the solution to the

differential equation (1.26) if it satisfies thdléwing integral equation:

t t
Yi=Ya+ [ a(s)Ysds+[ B(s)dZ, ast<b ...(1.27)

where Z is the process of orthogonal increment associatgd the
white noise process; XY, is the initial condition satisfying EJf < o,

anda(t) andp(t) belong to a class of square integrable funestion
The above integral equation can also be written as:
dY,=a()Y,dt +B(t)dZ, ast<b, Y, E[Ys <o

We have more to say about these differential egnatwhen we discuss

Itd stochastic differential equations.

1.3.3 Brownian Motion:

Next we define a Brownian motion process assumirad the

time set T=0 ¥ or any interval [0, a], a > 0.
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Definition (1.19) (Brownian Motion), [Krishnan, 2006]:

Let (Q, 7, P) be a complete probability space. The stoahasti
process {W. t 0 T} defined on Q, # P) is a Brownian motion process

with parameteo? if:
1. Wo(t) =0.
2. {W} is a stationary independent increment process.

3. For every s and t, £ t, belonging to the increment W W; are

Gaussian distributed with mean zero and variarile- s).

4. For almost allw O Q the sample functions B - Wy (w) are

uniformly continuous in the interval T.

With the definition given above we shall now dritlee auto

covariance function §{t, s).
Fort>s.
Cw(t, s)= E(WWy)
= E(W; — W + W)W
= E(W, - W)W, + EW?

=EW? from 2

= 0%s from 3

Similarly, for t < s, G(t, s) = 0’t. Hence G(t, s)= o*(t O s), where
t s=min{t, s}.

19
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Remark (1.10), [Stirzaker, 2005]:

If 0> =1, then W(t) is said to be ttstandard Brownian process

(standard Wiener process)

1.3.3.1 Computation of Joint Probabilities, [Evans, 2005]:

From the definition if W(.)is a Brownian motionah for all t > 0

and e< b,

b x?

P(as W(t) < b) = %i e 2t dx ..(1.28)
since W(t) is N(O, t) (for more details see [Evaz(3)6]).

Remarks (1.11), [Evans, 2005]:

1.Fix a point ¥ O 0" and consider then the ordinary differential

equation:

X(t) =b(X(1)), t>

0
X0 =x } (ODE) ...(1.29)

where b:0" 0O - 0" is a given, smooth vector field and the solution
is the trajectory X(.): [Op) O - 0",

2. X(1) is the state of the system at tine @,
SN
X(t) .:EX(t) ...(1.30)

In many applications, however, the experimentallyeasured
trajectories of systems modeled by (ODE) do notact behave as
predicted.

19
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Hence it seems reasonable to modify (ODE’s), ilhsamway to
include the possibility of random effects distudpihe system. A formal

way to do so is to write:

..(1.31)

X(t) =b(X(1)) +B(X(1))&t), t>0
X(0) =Xq

where B:0" 0 - M™™ (= space of Rm matrices) and
¢(.):= m-dimensional “white noise”.
This approach presents us with thesghematical problems
1. Define the “white noisel (.) as we define.
2.Define what it means for X(.) to solve (1.31).

3.Show (1.31) has a solution, discuss uniquenessm@Esyic

behavior, dependence upaog i, B, etc.

Some Heuristics:

Let us first study equation (1.31) in the casem X% =0, b= 0,
and B= I. The solution of (1.31) in this setting turnstda be the n-
dimensional Wiener process, or Brownian motion, ofied by W(t).

Thus we may symbolically write:
W(t) = &(t) ..(1.32)

Thereby asserting that “white noise” is the timerivdive of the

Brownian motion, (if exist).

Now return to the general case of the equatiolel.@rite%

instead of the dot, yielding:

20
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do,.\_ dW(t)

1X0 = bX(®) + BXX(®) =~ -(1.33)
and finally multiply by “dt”:

dX(t) =b(X(t))dt+ B(X(t))dW(t)} (SDE) .(1.34)

X(0) =Xg

This expression, properly interpreted, is a stohasdferential equation
(abbreviated by SDE). We say that X(.) solves 8ieK) provided

X(t) :x0+} b(X(s))ds+} B(X(s))dW, for all times t>0 ...(1.35)
0 0

Now we must:
1. Construct W(t).
2. Define thestochastic integral

3. Show that equation (1.35) has a solution, etc.

1.4 Stochastic Integral:

It is well-known that stochastic integrals and ftdmula play a
central role in modern probability theory and itppkcations in

stochastic differential equation concerned by Briawmmotion, etc.

This section concerning the most necessary matlheahat
principles discussing stochastic integration, l@rnfula, 1t6 SDE,
existence of a unique solution of It6 SDEs, as wasllsome solvable

examples.

Now, we shall define the integral:

21
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T
I(T) = j f(t) dw(t) ...(1.36)
0
where w(t) is a Brownian motion and f(t) is a stasfic function, and to

study its basic properties. One may define:

T
I(T) =f(Mw(T) - [ f'B)w(t) dt
0
If f is absolutely continuous for each w. Howevdl, f is only
continuous, or just integrable, this definition dorot make sense,

[Friedman, 1975].

Remark (1.12), [Friedman, 1975]:

Since w(t) (the Brownian motion) is nowhere difieiable with
probability 1, the integral (1.36) cannot be definen the usual

Lebesgue-Stieltjes sense.

Definition (1.20) (Measurability), [Doob, 1953]:

A stochastic process {Xt [0 T} defined on a probability space
(Q, F P) with a time set T is a measurable proceserifafl Lebesgue
measurable sets B belonging to théield £(T) generated by Lebesgue
measurable sets the mappinguft,[1 — Xy(w) is a measurable on T

with respect to the productfield £(t)U F, that is:

{(t, 0): X(w) 0B} O 4(MOF ..(1.37)
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Theorem (1.1), [Doob, 1953]:

Let {X;, t O T} be a measurable stochastic process with regpect

the produco-field £(t)F. Then:

1. Almost all sample function of this process are lsghee measurable

function of tJ T.

2.1f EX{(w) exists for all tOJ T, then it also defines a Lebesgue

measurable function oftf T.

3.If Ais a Lebesgue time setin T andjif E|X| dt <, then almost all
A

sample functions Xw) are Lebesgue integrable on the set A, that is:

[ IXy(w)| dt <co, for almost all w
A

Since the value of an absolutely convergent inteigrandependent of

the order of integration, we have

EX() dt=E[ X(w) dt ...(1.38)
! !

Definition (1.21) (Increasing O-Field or Filtration O-field), [Krishnan, 2006]:

Let(Q, ¥) be a complete measurable space andgiett {1 T, T =
0%} be a family of sub-o-field of # such that for  t, # O #. Then
{®} is called anincreasing family of sub-o-field on @Q, # or the

filtration o-field of (Q, 7).
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Remark (1.13):

T is called theo-field of events priorto t. If )X t 0 T} is a

stochastic process defined dp, (7, P) then clearlyr given by:
TG =0{Xs s<t, tO T} ...(1.39)

IS increasing.

Definition (1.22) (Adaptation of {X;}), [Krishnan, 1984]:

Let {X;, tO T, T =07} be a stochastic process defined on
probability space®, ¥ P) and let &, tO T, T=0 "} be a filtrationo-
field. The process {} is adapted to the family 4}, if X, is &-

measurable for every® T, or E't X, =X,

Remarks (1.14), [Krishnan, 2006]:

1. E™t represents the conditional expectation.

2. F-adapted random processes are alsg-measurable and

nonanticipative with respect to tefield .

3.If # is theo-field by{Xs, s< t}, then clearly the process {}t 0 T} is
adapted to the family#, t O T}, which is called thenatural family

or natural filtration of the process {}.

24
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1.5 Approximation of Functions by Step Functions:

We shall call a stochastic process also a stochfastction.

Let w(t), t = 0 be Brownian motion on probability space
(Q, F P). Let (t = 0) be an increasing family af-fields, i.e.,
T, U thif t,<t,, such thatrF, Aw(s), &st) is in &, andFAw(A +t) -
w(t), A = 0) is independent of;, for all t= 0. One can take, for instance,
T ={Fw(s), 0<ss<t} Let 0 < a <3 <. A stochastic process f(t)
defined fora <t < is called a nonanticipative function with resptect
F if:
(i) f(t) is a separable process; (see definition sdyb@rgrocess,

[Krishnan, 1984]).

(i) f(t) is a measurable process, i.e., the functiorftl] - f(t , w)

from [a, B]*xQ into [ lis a measurable; (as in definition (1.20)).

(i) For each t [a, B], f(t) is & measurable.

Remarks (1.15) [Friedman, 1975]:

1. When (iii) holds we say that f(t) iadaptedto % (see definition
(1.22)).

2. Let us definel?[a, B], (1 < p < «) the class of all nonanticipative

functions f(t) satisfying:

B
P{“f(t) P dt<oo}=1 .-.(1.40)

a
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3. We denote byMP[a, B] the subset ofL? [a, B] consisting of all

functions f with:

B
EfIf(t) P dt<co ..(1.41)

Definition (1.23) (Step Function), [Evans, 2005], [Stirzaker, 2005]:

A stochastic process f(t) defined on,[(] is called a step
function if there exists a partitiam=t, < t; < ... <t = of [a, B], such
that:

f(t) = f(t) if <t <twy, O<i<r—1 ..(1.42)

Lemma (1.3), [Friedman, 1975]:

Let fO L2,[a, B]. Then:

(i) There exists a sequence of continuous functiqnis §2,[a, B], such

that:

B
im [1f()-g,()F dt=0 as. ...(1.43)

(i) There exists a sequence of step functigms £2,[a, ], such that:

B
lim [1f(t)-f,()° dt=0 as. ...(1.44)

n—oo
(o

Lemma (1.4), [Friedman, 1975]:

Let f O M2[a, B]. Then:
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() There exists a sequence of continuous functioms’snKM("f)[a, B],

such that:

B
E[If()-K,(®)° dtO -0 ...(1.45)

ifn [ - oo,

(i) There exists a sequence of bounded step funct.Loimlsl\Vlﬁ,[a, B],

such that:

B
E[1f()~1,(®)° dtO - 0 ...(1.46)
a
ifnO - oo,

Remark (1.16):

The following stochastic integral:
T

[ wdw

0

where W(.) is a 1-dimensional Brownian motion. Aasenable
procedure is to construct a Riemann sum approxamatnd then—if

possible—to pass to limits.
The following definitions are concerning:

Definitions (1.24), [Evans, 2005]:

(i) If[0,T]is an interval, gartition K of [0,T] is a finite collection of

points in [0, T]:
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K={0=ty<t;<..<t=T}

(i) Let themesh sizeof K be |K|= max |t — t
O<ksm-1

(i) For fixed O< A <1 and K a given partition of [0, T], set:
Tk = (1—}\)tk + Ate1, kK=0,2, ..., m—1

For such a partition K and forOA < 1, we define:

m-1
R=R(K,A):= > W(T)(W(t) — W(t))
k=0

T
This is the corresponding Riemann sum approximalfoﬁWdW.
0

Lemma (1.5) (Quadratic Variation), [@Ksendal, 1998]:

Let [a, B] be an interval in [Ow), and suppose that:
Pi={a=tb<ti<..<tp =}
be a partitions ofd, B], with |P| 0 - 0 as n - . Then:

Y (W) - W) O — B-a ..(1.47)
k=0

In L2,[a, B] as n0 - .

Definition (1.25), [Friedman, 1975]:
Let f(t) be a step function in%o[a, B], say f(t)=fiif ti<t<t:, O

O<i<r-1,where fi =t, <t; < ... <t =}, the random variable:

r-1
Y Ft)W(tkes) — W(t)] ...(1.48)
k=0
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where maxjt; -t 0 - 0, 0 k<r—1; is denoted by:
B
I f(t) dw(t) ...(1.49)
(o

and is called thetochastic integralof f with respect to the Brownian

motion w; it is also called thigd integral.

Lemma (1.6), [Evans, 2005]:

We have for all constants a,[bl0 and for all step processes G,
HOL%0, T), GinM2[a, B]

T T T
() [ @G+bH)dW=a] GdW +b[ Hdw.
0 0 0

.
(i) E|[G de =0.
0

(i) E @G dvvﬂ = E@Gz dwj

Lemma (1.7), [Friedman, 1975]:

If f is a step function iri\/lﬁ,[a, B], then:

B
E[ f(t) dw(t) =0 ...(1.50)

2
E

B
[f(t) dw(t)

B
=E[f? dt ...(1.51)
a
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Lemma (1.8), [Friedman, 1975]:

Let f, g belong ta.[a, B], and assume that f(® g(t) for alla <
t<B,w0Q. Then:

B B
[ f(t) dw(t) = [ g(t) dw(t), for a.aw 0 Q ...(1.52)

Remarks (1.17), [Dksendal, 1998]:

1.Letf Li,[a, B] and consider the integral:

) =} f(s) dw(s), O< t< T ...(1.53)
0

0
2.By definition,j f(s) dw(s)= 0, and we refer to I(t) as the indefinite
0

integral of f. Notice that I(t) ig; measurable.

If f is a step function, then clearly:

B
j f(s) dw(s) +\f/ f(s) dw(s):\f f(s) dw(s) ...(1.54)
o B a

fO<a<B<y<sT.

By approximation we find that (1.54) holds for drig L%)[O, T].
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1.6 It6 Formula:
Definition (1.26), [Evans, 2005]:

Let X(t) (0 <t < T) be a stochastic process such that for any

0<t;<t<T
to to
X(tz) = X(t) = [ a(t) dt+ ] b(t) dw(t)
t t1

where a L1 [0, T], b0 LZ,[0, T]. Then we say that X(t) has stochastic

differential dX, on [0, T], given by:
dX(t) = a(t)dt + b(t)dw(t)
Observe that X(t) is a nonanticipative function.igt also a

continuous process. Hence, in particular, it besotod 7 [0, T].

Definition (1.27), [Friedman, 1975]:

Let X(t) be as in definition (1.26) and let f(t) @efunction in
L[0, T]. We define:

f(H)dX(t) = f(H)a(t)dt + f(Ob()dw(t).

Theorem (1.2), [Friedman, 1975], [@ksendal, 1998]:

Let d€(t) = adt + bdw(t), and let f(x, t) be a continuous fiimc in

(x, t) O 0 1x[0, o) together with its partial derivativeg f., . Then the

process €(t), t) has a stochastic differential, given by:
df(&(v), ) = [f(&(0), 1) + £(&(1), Da(t) +%fxx(é(t), b ()]dt +

F(E(0), HbE)dw(D) ...(1.55)

%
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This is called the It6 formula. Notice that if w(tere

continuously differentiable in t, then (by the stard calculus formula

for total derivatives) the tern%}fxxbzdt will not appear.

1.7 Existence and Uniqueness Solution of Stochastic Differential
Equations, [Oksendal, 1998], [Evans, 2005]:

If 0 = (0y) is a matrix, we writed’ = >_ o[-
]

Let b(x, t) = (by(x, t), (X, 1), ..., (X, 1)), o(x, t = @(X, t)){?j:1 and

suppose the functionsg(k, t), gj(x, t) are measurable in (Gt)) " %[0, T].

If &(t) (O<t<T)Iis a stochastic process, such that:
dé(t) = bE(t), t) + a(&(t), t)dw(t) ...(1.56)
€(0) = ¢&o ...(1.57)

Then we say thag(t) satisfies the system of stochastic differential

equations (1.56) and the initial condition (1.9¥dte that it is implicitly

assumed that B(t), t) belongs toLlw[O, T] and o(¢(t), t) belongs to

L2 [0, T].

Theorem (1.3), [Friedman, 1975], [@ksendal, 1998], [Evans, 2005]:

Suppose b(x, tg(x, t) are measurable in (x,H 0 "x[0, T] and
|b(X, t)_ b()~(’ t)lS Kelx_ X |1 b(x’ t) - O-()~(a t)lS Kelx - )~(|

Ib(x, D] K(L + |x]), b(x, )] < K(L + [x] ...(1.58)
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where kK, K are constants. L&, be any n-dimensional random vector

independent of(w(t), 0< t < T), such that E}f < . Then there exists

a unique solution of (1.56) and (1.57)M¢,[0, TJ.

The assertion of uniqgueness means théf(if, &,(t) are two solutions of

(1.56), (1.57) and if they belong Mﬁ,[O, T], then:

P{€(t) = &x(t) forall 0<t< T} =1

Theorem (1.4) (Stronger Uniqueness and Existence Theorem):

Suppose kx, t), oi(x, t) are measurable functions in (x, [)
0 "x[0, T], fori=1, 2, satisfying:
[B(x, 1) = Bi(X, h]= Kelx = X|, pi(x, 1) = Gi(X, )| < Kglx = X|
Ib(x, )< K1 + [x]), gi(x, 1)< K(1 + [x])
Let D be a domain il " and suppose that:
ba(x, t) = ba(x, t)
...(1.59)
01(X, t) = 0a(X, 1)
Ifx OD,0<t<T.
Let&;(t) (i =1, 2) be the solution of:
d&(t) = bi(&i(t), 1) +ai(&i(1), 1), &(0) = &io
in M2[0, T] (with the same family ob-fields #) where Ef < .

Assume finally thaté,, = &, for a.aw. for which eitheré,, O D or

33



Chapter One Some Stockartic Process Cometpts

&€,0 0 D. Denote byr; the first timeé;(t) intersects] "/D if such time <

T exists, and; = T, otherwise. Then:
Pt:=1) =1

P{ sup [€1(s) - &x(S)|= 0} = 1.

0< <y

Thus if two stochastic equation have the same wefts in a
cylinder Q= Dx[0, T] and if the initial condition coincide in Bhen the
corresponding solution agree until the first tirmey both leave D; they

first leave D at the same time.

Remarks (1.18), [Friedman, 1975]:

1.This is local uniqueness theorem.

2.1t remains true for the general domains Q.
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Chapter Twe
Stockastic Diffrential Equals

This chapter deals with the some numerical methetgh have
been programmed in Matlab. The strong and weak exgence criteria
lead to different discrete time approximation, whigre only efficient
with respect to one of these two criteria. It igrdfore important to
clarify the aim of the simulation before choosimgappropriate scheme,
deciding on whether a good pathwise approximatibthe process is
required or whether an approximation of some fumai of the 16

process is the real objective.

Initially, Brownian motion is generated. Then EuMaruyama
numerical scheme, which approximate the solutionth&f stochastic
differential equation, are compared to the exaktt®m of a linear SDE.
This can be easily accomplished since we havesedlsolution for the
linear SDE. Numerical estimates are provided for tlstrong
convergence schemes of well known estimates foratisolute error

using the absolute criterion.

2.1 Vector SDE's, [Evans, 2005]:

We shall interpret a vector as a column vectorigstfanspose as

a row vector and consider an m-dimensional Wiemecgss W= {W,

t = 0}, with componentsW}, W?, ..., W™, which are independent

3
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scalar Wiener process. Then, we take a k-dimenkioeetor values

function a : [§, T]x[l KO - 0K, the drift coefficients, and axkn-matrix

valued function b : ft T]x[ 'O o 0%M the diffusion coefficient,
to O [0, T], to form a k-dimensional vector stochastldferential
equation:

dX, = a(t, X) dt + b(t, X) dW, ..(2.)

we interpret this as a stochastic integral equation

Xi= Xy * } a(s, X) ds +} b(s, X) dW; ...(2.2)

to to

with initial value XU L K where the Lebsegue andd ltintegrals

determined component by component, with the compomé (2.2)
being:

. . t mt .
Xy =Xy, + [ d(s,X)ds+3 [ b(s, X) dWd

to j:1t0

If the drift and diffusion coefficients do not deyeon the time variable,
that is if a(t, xX)= b(x), then we say that the stochastic equation is
autonomous. We can always write a nonautonomousitiequas a

vector autonomous equation of one dimension morediting in the

drift component the component of te time variablén, =t.

There is a vector version of thedlformula. For a sufficiently

smooth transformation= [to, T]x[ 40 o 0K of the solution X= {X4,
to<t< T} of (2.1), we obtain a k-dimensional process YY ; = f(t, Xy),

to < t < T} with the vector stochastic differential in coonent form:

%
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d m P
dyp = z R b VYR P
30X 2303 0%;0X;
izd:b'faf AW
(=1i=1 aXl

for p=1, 2, ..., k; where the terms are all evaluated at (t, X;). We can
sometimes use this formula to determine the salatf certain vector
stochastic differential equations in terms of knas@futions of the other

equations, for example linear equations.

2.2 Generating Brownian Motion in Matlab:

The underlying difference between deterministic prababilistic
differential equations is the need to generate foll®ewing random

increments of the Brownian motion for the SDE:

AW, =W, - W,

th-1

..(2.3)

For computational purpose, it is necessary to descthe
Brownian motion, where Ws specified at discrete t values. Therefore,
let At = T/N, for some positive integer N and for T on thierval [0, T].

From the definition of Brownian motion:

AW, =W, =W,  ~N(QO, t~t,s)

or equivalently:

MW, =W, =W,  ~.ft,—t,;N(O, 1)

where N(O, 1) denotes a standard normally distedbuandom variable

with zero mean and variance equal to one. Here #-; = At is the

2
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variance of the Brownian motion random variable. Ntatlab, the

function randn (1, N) will generate N random variables from the
standard normal distribution. In order to genesatandom variable with
variance equal toAt, random variables from the standard normal

distribution are generated using the Matlab fumctiandn (1, N) and

each of these variables are then multiplied \bt, resulting in the

random increments in equation (2.3). From equdaRod):

Implying that:

= Wt2

and sinceg= 0 and W = 0, therefore:

For more details, see the computational algoritbomgkenerating

Brownian motion supported by Matlab.

2.3 Stochastic Taylor Expansion, [Kloeden ¢ Platen, 1992]:

We consider the equation=x{Xy, t I [t,, T]} of one-dimensional
stochastic ordinary differential equation:

dy _
axt =a(X)
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with initial value Xto, for t O [to, T], where 0< tp < T, which we can

write in the equivalent integral equation form as:
t
Xi= Xy, + [ a(Xy) ds ...(2.4)
to

To justify the following constructions we requitet the function
a satisfies appropriate properties, for instancbeufficiently smooth
with a linear growth bound. Let f {J] [ - [J be continuously

differentiable function. Then by the chain rule, nseve:
d
Ef(x ) = a(X)f(Xy) ...(2.5)

Which using the operator:
Lf = af
we can express (2.5) as the integral relation:
t
f(Xo) =f(Xy,) + [ Lf(Xyds ...(2.6)
to

for all t O [to, T]. When f(x)= x, we have LE a, Lf = La, ..., and (2.6)

reduces to:

t
Xi= Xy, + [ a(Xy) ds ..(2.7)
to

that is, to equation (2.4). If we apply the relati(2.6) to the function

f =ain the integral in (2.7), we obtain:
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Xi= Xy, + j[a(x )+j|_a(x )dz} ds

to to

t s
= Xy, *alXy )j ds + [ [ La(X,)dzds ...(2.8)
to toto

Which is the simplest nontrivial Taylor expansiam X;. We can apply

(2.6) again to the function=f La in the double integral of (2.8) to derive:

t t' s
Xi= Xy, +a(Xy,) [ ds+Lai,) [ [ dzds+ R

to totp
where:
t sz
Rs= [ [ [ L%a(X,)dudzds
totpto

for t O [to, T]. For a general r + 1 times continuously diétiable

function f:[J O - [, this method gives the classical Taylor formula in

integral form:

o) L'f(Xy) } j L (X)ds; ...(2.9)

to 1o

(tt

f(X) =1(Xo0) + Z

fort[ty, T]and r=1, 2, ..; since:

ts §-1 ,
J I Idsi ds = —,(t—to)
toto '

for / =1, 2, ... . The Taylor formula (2.9) has proven édovery useful
tool in both theoretical and practical investigatp particularly in

numerical analysis. It follows the approximationac$ufficiently smooth
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function in a neighborhood of a given point to ahgsired order of

accuracy. The expansion depends on the value® dfitiction and some
of its higher derivatives at the expansion pointeighted by
corresponding multiple time integrals. In additidtnere is a remainder
term which contains the next following multiple 8rmtegral, but with a
time dependent integrand.

A stochastic counterpart of the deterministic Taylirmula for
the expansion of smooth functions of am firocess about a given value

has many potential.

As with the deterministic Taylor expansion, thechktastic Taylor
formula for the expansion of smooth functions ofli@nprocess is used
to construct numerical methods for stochastic tifiéal equations. The
stochastic Taylor formula, which is called the-faylor expansion is
derived by repeatedly applying thed Iformula (1.55). For any twice
continuously differentiable function f £ O - [, apply the &

formula to obtain:

f(X) =f(X,,) + f[a(xl)f'(xo +§b2(xof (X ) jds +

to

t
[ bOX)F'(X)dX4
to

Introduce the following operators:
L% = af' + 1b2f "
2

L*f = bf’ ...(2.10)

To obtain:

W
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f(Xy) = f(XtO) + 'tf Lof(Xl) ds +_t[ Llf(Xl) dW; ...(2.11)
to to

for any tO [to, T]. If f(x) = x, then Lf = a and L!f = b. Thus, the above is
just the original 16 equation for X

t t
Xi= Xy + [ a(X) ds+[ b(X) dWs ...(2.12)
to to

If formula (2.11) is again applied to the functidrrsa and b in equation
(2.12), the following is obtained:

Xi= Xy, + }[a(xtowf Loa(xz)dz+js Loa(XZ)dV\éJ ds +

to to to

}[b(xto) + T LOb(XZ)dz + js Lob(xz)dWZ] dw,

to to to

t t
= Xy, ta(Xy,) [ds+b(Xy) [dW, +R ...(2.13)
to to
Where:
t z t z
R=[] L%(X)dzds +| [ L'a(X;) dWyds +

toto toto

t z t z

[ ] LX) dzdWe+ [ [ L°b(X,) dW.dWs

to to to to

Repeat this procedure by applying the formula (Rtlf = L' in
equation (2.13) to obtain:
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t t
Xi= Xy +a(Xy,) [ds+b(Xy,) [ dW, +
to to
t z _
L'b(Xy,) [ [ dwWdwes+ R ...(2.14)
toto
Where:

t t
R=| f L%a(X,) dzds + f L*a(X,) dW,ds +

toto toto

t s t sz

[ L%0G)dzdWe+ [ [ | L°L'b(X,) dudWdWs +
to to tototo

t sz

[]] LX) dWdW,dW,

tototo

The Ito-Taylor expansion can thus be considered as a
generalization of both the dt formula and the deterministic Taylor

formula.

2.4 Euler-Maruyama Method, [Evans, 2005]:

The Euler-Maruyama method applied to an SDE islamio the
Euler method used to solve an ordinary differergigliation. Consider

the following scalar SDE:
dX; = a(t, X)dt + b(t, X)dW,

or in integral form:

t t
Xi(W)=X, (@)+ [ a(s,X(w)) ds+| b(s,X(w)) dWs(w) ...(2.15)

to to
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where X={X,: o <t< T}is an Ito process with initial value(to = Xo.

Subdivide the interval {t T] into N-subintervals according to the

following discretisation:
h=To<T<..<Tp<..<Tty=T

The Euler approximation is defined as a continutoge stochastic

process Y={Y(T), to < t < T} satisfying the iterative scheme:
Yni1= Y(Tn) + alltn, Y(T0))(Tnez — Tn) + b(Tn, Y(Tn))(xtn+1 B th)

...(2.16)

forn=0, 1, ..., N- 1; with initial value Yo = X,. The Euler scheme is

obtained by considering the first three terms eflth-Taylor expansion
(2.14):

t t
Xi= Xy, +a(Xy,) tj ds + b(Xy,) tj dw, +
0 0

le(xto)ﬁ dW,dW; + R ...(2.17)
toto

where R is the remainder and is defined in equation (2.E¢uation
(2.17) is the Ib-Taylor expansion of Xw) in equation (2.15). Thedt
Taylor expansion is useful in approximating a sudintly smooth
function in a neighborhood of a given point to asicedl order of
accuracy. Thus, considering the first three terrhsequation (2.17)
provides the Euler scheme in (2.16) where each terthe right hand
side of equation (2.16) approximates the corresipgnigérm on the right
hand side of equation (2.15). For brevity, equafa6) is written as:

Yn+1: Yn + &n + MWn
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where:

Th+1
AN=Tnq—T,= j ds

Th

AW, = X X, = [ dwg

n— th+1 B th

a=af(, Y(1,))
b =b(t,, Y(1,))
Yn=Y(T,)

The Euler scheme for a deterministic ordinary ddfegial equations is
obtained if b= 0 in equation (2.16). Thus, the main differenceMeen
the Euler scheme for deterministic ordinary différal equations and
the Euler-Maruyama scheme for SDE's is the follgwirandom

increments need to be generated for the SDE:

AWn: Xt - th

n+1

forn=0, 1, ..., N- 1; of the Wiener process W = {W,, t= 0}, as defined
in, [Evans, 2005].

The Euler scheme determines values of the apprdéxigia
process at the discretisation times only. The \waltethe intermediate
instances can be calculated by using either theepise constant
interpolation method or the linear interpolationthwel. An overview
method is provided in [Kloeden & Platen, 1994].

The Euler scheme is an example of a time discgeoximation

(or difference method) in which the continuous tirdéferential
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equation is replaced by a discrete time differeagaation generating

values Y, Y, ..., Y, to approximateth, X th at given

to?
discretisation timest< t; < ... < t. The Euler scheme is the simplest
strong Taylor approximation and attains an ordezarivergencg = 0.5.

The proof is given in [Kloeden & Platen, 1992].

2.5 Convergence Criteria:

There are five commonly used concepts for the cgaree of

random sequences, [Kloeden & Platen, 1992]. These a

(i) Convergence with probability one:
P({wDQ: lim [X (o) —X(o)|:0}j =1
n— oo

(i) Mean-sguare conver gence:
E(X2) <o, forn=1, 2, ...
E(X? < o, and

lim E(|X, - X[") =0

n- oo
(iii) Convergencein probability:

lim P{w O Q : [Xy(w) - X(w)|=€}) =0, foralle >0

n- oo
(iv) Convergencein distribution:

lim R () = Fx(x)

n—oo

for all continuity points of k.
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(v) Weak convergence:
r!im [ 09 dR (= [ f(x) dFx(x)
for all test functions ftJ 0O - [J .

In these definitions, all random variables are medi on a

common probability spac€( F, P).

Convergence of random sequences is classifiedtwioclasses,
namely, strong convergence and weak convergenagvefgence with
probability one, mean square convergence and cgakee in
probability are the most commonly used convergaemdbe strong class
while convergence in distribution and weak conveogeare classified
from the weak class. For the weak class, only thkiblution function is
required and not the actual random variables of timelerlying

probability space.

Since many SDE's cannot be solved explicitly, nucaér
schemes are employed. There are various numercdanges (see
[Kloeden & Platen, 1992]) and in order to accessrthsefulness and
practicality, certain criteria are required in whito access the various
schemes. The convergence criterion is just one arfynother criteria,
like mean square stability, asymptotic stabilityl aost of computation,
which can be used when assessing the usefulneiffesent numerical

schemes.

This work uses the strong and weak convergencerieritiefined

below.

]
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2.5.1 Strong Convergence Criterion:

In many practical areas, like direct simulatiorni$efing or testing
statistical estimators, a good pathwise approxmnais usually required
and for these instances, the absolute error @ites appropriate. The
criterion gives a measure of pathwise closenesbeaend of the time
interval [0, T], [Kloeden & Platen, 1992].

Consider a practical sample path of the Wienergssci.e., W
is given (and hence known) therefore there is ndoanness in the SDE
and hence no randomness in[Xao & Pope, 2003]. The increments in
the given Wiener process are then used to obtae rthmerical

approximation Y(T). The absolute error criteriordefined as:
e =E(Xr = Y(T)])

Here, the Euclidean norm is use; % the 16 process at time T while
Y(T) is the approximation obtained by approximatetyegrating the
SDE in a sequence of time steps, i.e., from the emnioal scheme.
Therefore, the error is the expectation of the hlbsovalue of the
difference between the approximation Y(T) and ttee process X at

time T.

The numerical scheme is consistent if the approtanaY (T)
converges to X at At tends to zero. Therefore, a discrete time
approximation Y(T) with maximum time step si@e&onverges strongly
to X at time T if [Kloeden & Platen, 1992]:

lim E(1X: = Y(T)) =0 ..(2.18)
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There are various discrete time approximations fttet be

derived from the fh-Taylor expansion and in order to compare different
discrete time approximations, the order of convecgeof the numerical

scheme is used.

A discrete time approximation™tonverges strongly with order
p > 0 at time T if there exists a positive const@twhich does not
depend o, and a, > 0, such that:

e(d) = E(Xr - Y(T)) s C&°

for eachd O (0, &). Thus, the numerical scheme is strorly guder

accurate if the error is of ordAt", [Cao & Pope, 2003].

2.5.2 Weak Convergence Criterion:

In practical problems, approximating some functloofathe 1t
process is of interest, such as the probabilityribigtion, its mean and
variance. Thus, the weak convergence criterion sedusince the
requirements for their simulation are not as dermmands for pathwise
approximations, [Kloeden & Platen, 1992]. Here slaenple path Wis

not known but is drawn from the distribution of \Wex processes.

Since W is a random variable, Xis a random variable. The
numerical approximation Y(T) is also a random Maleabecause Y(T) is
obtained using samples of Wiener-process incremé&hts convergence
in distribution is analyzed in terms of means g(X(®f test functions
g(x), [Cao & Pope, 2003].
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The test functions g(x) are bounded, infinitelyfeliéntiable and

the means exist as || tends to infinity. The nizaéscheme is weak'p

order accurate if the error:

e = |E(g(X(T))) - E(g(Y(M))I
is of orderAt”. Thus:

IE(9(X(T))) - E(9(Y(T)))|< CAt"
A general discrete time approximation Y with maxmmtime step sizé
converges weakly to X at time T a$J] - O with respect to a class C of

test functions g [ 90 - 0, if we have:

lim |E(9(*r)) - E(Q(T))I=0, for g0 C ..(2.19)

A time discrete approximation Y converges weaklyhworder
B>0to XattimeTad - O, if for each polynomial g, there exists a
positive constant C, which does not depend,cend a finite numbaed,,

such that:
[E(g(%r)) - E(9(T)))|< CAt®, for eachd O (0, &)

Whereas, the strong convergence criterion givegribasure of
the closeness of the positive approximation toltbeprocess, the weak
convergence criterion gives an approximation of thebability
distribution of X.. [Carletti, 2006], states that:

(The strange of convergence measures the rate m@hwhe
"mean of the error" decays As[] — 0. The weak order of convergence

measures the rate of decay of the "error of thensteasit [ — 0).

S0
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Theorem (2.1), [Evans, 2005]:
Suppose that a 1, but m> 1 is arbitrary, then the solution of:

dx = (c(t) + d(t)x)dt +§ (e’ ()+f' (t)x)dw’ , x(0)=0

/=1
IS:
X(t) = q’(t)[xo +f¢‘1(s)(c(sr§ e (s)f (s»d}+
0 /=1
i P Y(s)é (s)dw
where: -
t m (f 6)2 t'm
CD(t):exp(jd—Z ds+jzf€dv¢J
0 /=1 2 0/=1

2.6 Examples of Linear Stochastic Differential Equations:

The following examples with discussions are neddtst on:

Example (2.1), [Evans, 2005]:

Let m=n =1 and suppose g is a continuous function (not a
random variable). Then the solution of:

dX = ngW}

X(O)=1 ...(2.20)

1t t
—Ejgz dst [ gdw
Xt)=e © 0
for 0<t<T. To verify this, note that:

t t
Y(t):—lj g°ds +| gdw
27 0

Y/
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satisfies:
1
dY:—E g dt+gdw

Thus, I1D's lemma for u(x¥ €, gives:

2
ax = Mgy + 197U 2
[6)4 2 ox2

= eY(—%gde gdW+—; of dtj = gX dW, as claimed

We will prove unigueness later.

Example (2.2), [Evans, 2005]:

Similarly, the unique solution of:

..(2.21)

dX = fXdt +gXdW
X(0) =1

t t
[t ——gzdt+j gdw

X(t) = €0 0 ,forO<st<T.

Example (2.3) (Stock Prices), [Evans, 2005]:

Let P(t) denote the price of a stock at time t. ¥da model the
evolution of P(t) in time by supposing th%E, the relative change of

price, evolves according to the SDE:

%3 = pdt + odW

for certain constantg > 0 ando, called the drift and the volatility of the

stock. Hence:

S2
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dP= pPdt +cPdW ...(2.22)
and so:
dP 1 ¢’P4dt .
d(log(P))= — - = ———, by It0 formula
(log(P)) P 2 Y
2
= (u—c—)dt +odW
2
Consequently:

2
OW(t){u—cht
P(t) = poe

similarly to example (2.2). Observe that the pnsealways positive,

assuming the initial priceyfis positive.

Since (2.22) implies:

t t
P()=po+ [ uPds +[ oPdwW
0 0
t
and EUGP dWJ =0, we see that:
0

t
E(P(t)=po+ [ ME(P(S))ds
0

Hence:
E(P(t)= poe", fort=0

The expected value of the stock price consequeadiges with the

deterministic solution of (2.22) correspondingote O.

S3
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Example (2.4) (Langevin's Equation) [Evans, 2005]:

A possible improvement of our mathematical model tioé
motion of the Brownian particle models frictionalrées as follows for

the one-dimensional case:

X —bX + o¢
dt

whereé(.) is "white noise", b > 0 is a coefficient ofdtion, ando is a
diffusion coefficient. In this interpretation X(i¥ the velocity of the

Brownian particle. We interpret this to mean:

dX = —bXdt+odwW
..(2.23)

X(0) = X,

for some initial distribution ¥ independent of the Brownian motion.

This is the Langevin equation. The solution is:
t
X(t) =e®Xo+of e”dw,t=0
0

as is straightforward to verify. Observe that:
E(X(1) = €"E(Xo)

and

t
E(XA(t) = E[e_th X5+ 206 X[ € P Sdw
0

2
t
o)
0

S4
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t
= e ®E(X3) + 20e'th(Xo)E£ | e‘b“‘s)de +
0

t
o2 I a2b(t=8) gy
0

2bt 2 02 2bt
=e“"E(X5)+—(1-e
(Xo) 2b( )

Thus, the variance:
V(X(1) = EQXA(1) - E(X())’

IS given by:
52
V(X(1) = €*°V(Xo) + 2—b(1 -e)

assuming that, V(& < o. For any such initial condition ¢X we

therefore have:

EXX)OE0
g2 (+@s t - oo
V(X(t) O E%

From the explicit form of the solution we see ttra distribution

2

of X(t) approaches N(Og—b) as tll - . We interpret this to mean that

irrespective of the initial distribution, the satu of the SDE for large

2
time "settles down" into a Gaussian distributionos variance%

represents a balance between the random distufbing c¢(.) and the

frictional damping force-bX(.).

SS
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Example (2.5), [Evans, 2005]:

Consider next the general equation:

dX = (c(t) + d(©)X)dt+ (e(ty+ f(t)x)dw} .(2.24)

X(0) =X,
again for m=n=1. As above, we try for a solution of the form:

X(1) = Xa()X(t)

where now:
dXy =d(t)Xdt+f(t)X pw} ...(2.25)
X,(0)=1

and
dX, = A(t)dt + B(t)dW} ...(2.26)
X5(0) =X

the functions A, B to be chosen. Then:

dX = XodX; + XedX, + f()X,B(t)dt

= d(t)Xdt + fXAW + X (A(D)dt + B()dW) + f(t)X.B(t)dt

We now require:

X, (A(D)dt + B(OAW) + f()XB(t)dt = c(t)dt + e(t)dW:
and this identity will hold if we take:

A1) :=[e(t) —F(1)e(D](X (1)) _l}

B(t) :=e(t)(X. ()™

Observe that since:

S€



Clagter Twa Euler-M, Nemerical Method for Solvi
Aresphirrd inng
Stocbastic Difffrential Equst:

t t 1 ’
jde+jd—§f ds

Xl(t) =0 0

We have X(t) > 0 almost surely. Consequently:
t t
Xat) = Xo + | [c(s) = f(s)e(s)](4(s)) " ds +[ e(s)(Xu(s))™ dW
0 0

Employing this and the expression above for, e arrive at the

formula:

X(t) = Xa(t)X2(t)
t 1 ) t t r
= ex J‘d(S)—Ef (S)dS"I f(s)d Xo +IeXp _J. d(r)-
0 0 0 0
%f 2(r)dr - ff (r)dWJ(c(S)— e(s)f (s))ds
0

}exp{—f d(R)-< £ (r)olr—js f(r)dw} e(s)d\A}
0 0 2 0

Example (2.6), [Evans, 2005]:

Consider the linear stochastic differential equatio

dX = d(t)th+f(t)XdW} (2.27)

X(0) =X,
for m=n=1. We will try to find a solution having the proztdorm:
X(t) = Xy(t)Xx(t)

where:
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dX1=f(t)X§W} ...(2.28)
X1(0) =Xy
and:
dX, = A(t)dt + B(t)dW} ...(2.29)
X,(0)=1

where the functions A and B are to be considerbenT
dX = d(XX5)
= X.dX; + Xod X, + (1) X B(t)dt
= f()XdW + (X dX, + f(t)X,B(t)dt)
according to (2.28). Now, we try to choose A, Bilsai:
dX, + f(t)B(t) dt= d(t)X.dt
for this, B= 0 and A(t)= d(t)Xx(t) will work. Thus (2.29) reads:
dX, =d(t)X.dt
X,(0)=1
This is non-random differential equation, which @ake solution:
t
[d(s)ds
Xo(t) = €°
Since the solution of (2.28) is:
t 1t
[ f(s)dw- [f2(s)ds
Xl(t) = Xoeo 0
We conclude that:
X(t) = Xq()X(t)
t t
[f(s)dw+[ (d(s)—; 2 (s)j ds
= Xoeo 0

a formula noted earlier.

S8
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Example (2.7), [Evans, 2005]:

Let m=n=1 and supposk, 1 are constants. Then:

dX = AXdt + XdW
H } ..(2.30)

X(0)=1
and so:

dX(t) _ 1[dX(1)]?
X({) 2 X3(1)

d(LogX(t)) = (by Ito formula)

= (\dt +pdw) - %uzdt

2
= [)\ —%jdt +dw

integrate both sides to obtain:

LogX(t) — LogX(0) = _t[ ()\ —“—ZJ ds +_t[ M dWs
0 2 0
= Log[X(t)/X(0)] = [)\ —u—;Jt + UW(t)

= X()/X(0) = exp{(A - “—zz)t + uW(t)}

2
= X(t) = X(0)exp{(\ - H7)t +UW(D)}

Therefore, the solution for the above linear SDEadipn is:

2
X, = Xoexp{(h - %)t FUW@), 0<t< T ..(2.31)

9
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The following are very useful steps for solving SD&Emerically

as follows:

Concluding Remarks (2.1) (Numerical Steps for Explicit Euler-
Maruyama Method), [Desmond J. Higham, 2000]:

1. The SDE can be written in integral form as:

X(t) = X(0) + _t[ f(X(s)) ds +} g(X(s)) dW(s), xt< T ...(2.32)
0 0

Here f and g are scalar functions and the init@hdition X, is a
random variable. The second integral on the righhdnhside of
eq.(2.32) is to be taken with respect to Browniastiom as discussed

in the previous section.
2. It is usual to rewrite (2.32) in differentialrfos:
dX(t) = f(X(t)) dt + g(X(t)) dW(t), X(0)= X, 0<st<T ...(2.33)

This is nothing more than a compact way of saymag X(t) solves
(2.32). To keep with convection, we will emphasthe SDE from
(2.33) rather than the integral form (2.32).

3. Note that we are not allowed to write dW(t)/dince Brownian

motion is nowhere differentiable with probability 1

4. If g =0 and X% is constant, then the problem becomes deterngnisti

and (2.33) reduces to the ordinary differentialagoun:

dXx(t)

L = fOX(), with X(0) = X

€0
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5. To apply a numerical method to (2.33) over [),We first discretize

the interval. LetAt = T/L, for some positive integer L ang= jAt, for

j =1, 2, ..., L. Our numerical approximation totj(will be denoted
by Xj.

The Euler-method takes the form:
X; = Xj1 + T(X0)At + g(%-o)(W(T) = W(T;)) .(2.34)
forallj=1,2, ..., L

6. To understand where (2.34) comes from, noticenfthe integral
(2.32) that:

1 T
X(M) =X )+ [ fX(s)ds+ [ g(X(s) dW(s) ...(2.35)

Tj_l Tj—l
Each of the three terms on the right hand sid& &4() approximates

the corresponding term on the right-hand side &5R

7. We also note that in the deterministic case @ and > constant)

(2.34) reduces to Euler's method.

8. For computational purpose it is useful to coesidliscretized
Brownian motion, where W(t) is specified at diser¢tvalues. We
thus sedt = T/N for some positive integer N and let énote W)
with t; = jot. Condition 1 says W& O with probability 1, tell us that:

Wj:Wj_]_"'dVVj,j:l, 2,..., N (236)

where each d\Vis an independent random vector of the form

JBEN(O, 1).

¢
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9. For convenience, we always choose the stepAsiftg the numerical

method to be an integral multiple R1 of thedt for the Brownian
path.
10. This ensures that the set of point$ én which the discretized

Brownian path is based contains the pointy & which the EM

solution is computed.

Concluding Remarks (2.2) (Numerical Steps of Strong Convergence for
EM), {Desmond J. Higham, 2000]:

1. Keeping in mind that X(J) and X, are random variables, in order to
make the notion of convergence precise, we musideesow to

measure their difference.

1.1 Using E|X% — X(T,)| where E(.) denotes the expected value

leads to the concept of strong convergence.

1.2 The method is said to have strong order of convergequal to

n if there exists a constant C, such that:
E|X, — X(T)| < CAt" ..(2.37)
for any fixed T= nAt I [0, T] andAt sufficiently small.

2.1f SDE functions satisfy appropriate conditionscdn be shown that

Euler-Maruyama has strong order has strong ordetoolergence

r]:

N |-

3. This marks a departure from the deterministicisetii g= 0 and X% is
constant, then the expected value can be deleted tine left hand

side of (2.37) and the inequality is true wifh 1.
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4.In our numerical tests, we will focus on the eratrthe end point

t=T, so that:

en "9 = E|X — X(T)|, where 1At =T ...(2.38)
denote the EM end point error in this strong seffsine EM bound
(2.37) holds withn = % at any fixed point in [0, T], then certainly
holds at the end point, so we have:

eron8 < CALH? ...(2.39)

for sufficiently smallAt.

5. To study the numerical solution of SDE's, thera reeed to determine
the type of convergence. The strong convergenteeis adapted and
for the following example on dyonding of the resnfitsection (2.5.1)
the main steps the strong error for different exaspising different

values and functions are simulated in the followtilgies and figures.

6. The least square's error is:
t
eslrond < CA(°
Logex®"9=LogC + gLod\t; + @ ...(2.40)

e = Logex °"? - LogC - qLogAt;
Q=3¢

N 2
= Z(Log ex°"9- LogC- gLog it) 00
=1
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On settingaiQ =0 anda—Q =0, we obtain:
oLogC oq
N
—ZZ(Log oNI_ | 0gC- gLogh it) =0
i=1

N
—ZZ(Log &°N9_ | 0gC- gLogh it) LogAt; = 0

=1

N N
> Log ey " - NLogC- q> LogAt; =0
=

i1
N t N N ,
> Log €y "LogAt; — LogC) LogAt; — g (LogAt;)” =0
=1 =1 i=
N N
N S Logay || -09¢ 3" Log €ilrong
=l _| =
N N | N
> LogAt, Y (LogAt)? q S Log & ogh §
=1 =1 i1

By Gramer's rule:

N
N iZ::lLogAti N 2 N ,
N N , = NZ(LogAti) - (ZLogAti] z0
> LogAt; > (LogAt) i=1 i=1

i=L

i=1

Hence:

N N N N
$Log ez‘{"”g[z Logm] -3 Logh 13" Logd™® Lo

N%( LogAt;)? —(% LogAt T

i=1 i=1

4
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and:
N N N
N> Logex®™Loght - Logg ™" Log
q=—I2 i=1 i=1

N%(LogAti )? —@1 LogAt T

i=1
Then, we have that:

y=ax+Db
where:

strong

a=LogAt;; b=Log c and y= Logey,

on comparison with eq.(2.40), one can see thdigskope of the line
of fitting is the ordered of strong convergencecshhneed to be 0.5 as

discussed in section (2.5.1).

7.Since Log °" is taken on both sides. Then one can lookingHer t
slops of the figure to be equal to that one of efitting.
8. The best results of the numerical simulation obrsgr curves is

obtained on the line simulation has a slop 0.5res @an concluded
this fact from (6).

Concluding Remarks (2.3) (Numerical Steps of Weak Convergence for
EM), [Desmond J. Higham, 2000]:

1. The strong order of convergence (2.36) measuresatheat which the
"mean of the error" decays a% [0 - 0O of a less demanding

alternative is to measure the rate of decay ofeh®r of means".
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2. This leads to the concept of weak convergence. thoadkeis said to be

of weak order of convergence equalntaf there exists a constant C,

such that for all functions p in some class:
|Ep(X,) — Ep(X(T))|< CAt" ..(2.41)

at any fixed T= nAt I [0, T] andAt sufficiently small. Typically, the
function p allowed in (2.41) must satisfy smoottshaad polynomial

growth conditions.

3. For appropriate function of SDE, it can be showatt tBM has weak
order of convergencg = 1. Mimicking our strong convergence tests,

we let:
eneak .= |EX, - EX(T)| ...(2.42)

where LAt = T denote the weak end point error in EM. So (2it)

p(x) = x with n = 1 immediately implies that:
eneak < CAt ...(2.43)

for sufficiently smallAt.

4.This improves the execution time at the expenseexdfa strong
requirements. To compensate, we have used diff@ahis for each
At so that only the current increments, rather tin@ncomplete paths,
need to be stored. Further, we choose the paterremntdt = At for
extra efficiency. The sample average approximatmoBX, it follows
from (2.1) that EX(T)= €, for the true solution and ¥, Stores the

corresponding weak endpoint error for eAth

(Y



Clagter Twa Euler-Mariyama Numerical Method for Solving
Sockartic Difjprtial Equa
Concluding Remarks (2.4) (Numerical Steps of Liner Stability for EM),

[Desmond J. Higham, 2000]:

1. The concepts of strong and weak convergence cotlteraccuracy of
numerical methods over a finite interval [0, T]r fonall step sizeAt.
However, in many applications the long term] t» o, behaviour of

an SDE is of interest.
2.Convergence bounds of the form:
E[X, = X(T)| < CAt" or |Ep(%) — Ep(X(T))|< CAtY

are not relevant in this context, since generalig, constant C grows

unboundedly with T,

3. For deterministic ODE methods, a large body of istgliheory has
been developed that gives insight into the behawlomumerical

methods in thét fixed, t 0 — oo,

4. Typically, a numerical method is applied to a clagroblems with
some qualitative feature, and the ability of thethod to reproduce
this feature is analyzed. Although, a wide varietyproblem classes
have been analyzed, the simplest, and perhaps dlsé nevealing, is
the linear test equation dX/dt AX, whereA [0 [J is a constant
parameter. For SDE's it is possible to develop malogous linear

stability theory, as we now indicate:
5.We return to the linear SDE:
dX(t) = A(X(t)) dt +p(X(t)) dW(t), X(0) = Xo ...(2.44)

where the function of SDE allowed to be complexha case where

KU =0 and X is constant, (2.44) reduces to the determinigigalr test
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equation, if we use the term stable to mean timatX(t) = O, for any
t> o0

Xo. Then we see that stability is characterized by}R{0.

6. We will consider the two most common measures albibty; Mean-
Square and Asymptotic, [D. J. Higham, 2000]. Assigrthat X% # O
with probability 1, solutions of SDE is:

dX(t) = AX(t) dt + uX(t) dW(t), X(0)= X,

Satisfying:
lim EX¥(t) =0 « R{A} + %w <0 ...(2.45)
| )
lim |X(t)] = O with probability 1= R{A - %pz} <0 ...(2.46)
t > o0

The left-hand side of (2.45) defines what is mdayntmean-square
stability. The right-hand side of (2.45) completelyaracterizes this
property in terms of the function SDE. Similarly.48) defines and

characterizes asymptotic stability.

7.Setting the characterization collapse to the saomelidon R{f} < O,
which of course, a rose for deterministic stahility follows
immediately from (2.45) and (2.46) that if the SDE:

dX(t) = AX(t) dt + pX () dW(L), X(0) = Xo

IS mean-square stable, then it is automaticallyngsgtic stable, but

not vice versa.
8. Now, suppose that the functions f and g are cheedhat the SDE:

dX(t) = AX(t) dt + pX () dW(L), X(0) = Xo

$7
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Is stable in the mean-square or asymptotic sens@mple properties

of the expected value show that:

lim EX$ =0 < |1 +AN +Atjuf < 1 ...(2.47)

Xy
for EM applied to equation:
dX(t) = AX(t) dt + puX(t) dW(t), X(0)= X,

The asymptotic version of the question can be stuidia the strong

low of large numbers and the low of the iterateghlathm, leading to:

lim |X;|=0, with probability 1~ ELog|1l +AtA + \/EHN(O,l)|<O

jooo

2.7 Algorithm and Illustration:

Algorithm (2.1) (Euler-Maruyama Method):

Input: The dynamic stochastic differential equation inolpem

formulation:

dX(t) =f (X, )dt +g(Xy, 1) dW(t)} ..(2.48)

X(0) =X,
Output: Numerical (sample path) solution of stochasticpss.

Step 1. Consider problem formulation (2.48).

Step 2: Generating a Brownian motion as follows (see,

concluding remark (2.1)):
Step 2.1: Generate a random number.

Step 2.2: Consider T=to; N = ng; dt=T/N.

€9
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Step 2.3: W(t) ~ N(O, 1).

Step 2.4: W, = 0 with probability 1.

Step 2.5: W; =W, +dW,j=1, 2, ..., N,

Step 2.6: dW, ~ /3t N(O, 1).

Step3: Setj=10 - L
W(T)) = W(Tj-1) = W(jRat) — W((j — 1)Rdt)
iR
=2 dw
k=jR-R+1

X; = Xia + f0XG-)AL + gOG2)(W(T)) = W(Tj-0)),
If ] > L stop.

Step 4: Computation of error, depending on the type obrefor

example, the following is absolute error
Step 4.1: If At =0t

Seti=10 - L

error=abs(x(i) — X+(i))
Step 4.2: If At # ot

error= abs(X,(final) — X¢(final)).

Figure (2.1) Shows a signal simulation of discediBrownian
motion of the interval [0, 1] and N 500, so thatAt = 1/500 (see
program A.1 in Appendix).

20
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1
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Figure (2.1) Discretized Brownian paths.

Figure (2.2) Shows a signal simulation of discediZ8Brownian

motion of the interval [0, 1] and N 600, where\t = 1/600.
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Figure (2.2) Discretized Brownian paths.
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While Figure (2.3) Shows a signal simulation of coedized
Brownian motion of the interval [0, 1] and®N80O0, withAt = 1/800.

1.4
1.2} \
‘\Jﬁ _
0.8} I AL [
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o2t 1 | W i 8
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0.211) L{ \x”‘f" lh'w ‘w’w"w
f

0.4 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (2.3) Discretized Brownian paths.

Iltystration (2.1) (With Absolute Error Test and Comparisons):

Consider the example (2.1) of section (2.6) whgch i

dX = gXdw
X(0)=1
Where:

gt)=sint; Xo=1;y0,=0
The absolute error at the final time interval foffedent sample

space numbers, whefd = ot; R = 1; the step time for discritization of

Brownian motion equals to the step time of Euldresae, are shown in

2
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the following (table (2.1) and Figure (2.4.1)). &i3e can see, increasing

the number of sample (N) leads to improving theohlie error at the

different time steps, whett = ot.

The figure (2.4) shows the very good agreement é&twthe
exact solution and the corresponding numericaltssluon simulating
different selected function and their nature ledsgvell understand the
behaviour of numerical method. The absolute ertdinal time interval
is depending not only on the number of sample Natso on the nature
of the selection function of SDE and on the setectf R not equal to 1,

as one can see this fact from the following fig{Z€) and table (2.1) is:

Table (2.1) Error generated by the Euler scheme.

R N Error at final time
2° 0.0409

1
2° 0.0058

On using R= 1, N = 2°, the following numerical solution is
obtained and presented in the following figure (P.4see program A.2

in Appendix A).
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Sz ‘ zc Dc&& zvilE ﬁz'ﬂ' ]
2 ‘ ‘
Exact solution
1.8¢ —+ — Numerical solution mﬁe
1.6 / |
1.4} X 75k |
2+ / i
X(®) Lt A *ﬁ@f |
0.8] T e A 1
‘ V
0.6 |
0.41 i
0.21 |
0 I ! ! ! L ! ‘ ‘

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Figure (2.4) Exact solution and the numerical solution by Euler scheme
with N =2% R =1.
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Figure (2.4.1) Absolute error between the Euler scheme and exact

solution with N =2% R =1.
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Illustration (2.2) (With Absolute Error Test and Comparisons):

Consider the example (2.2) of section (2.6) whgch i
dX =fX dt + gX dW
X(0) = 1
Where:
f(t) = cost; g(t)=sint; Xo=1; Yo =0

As discussed previously in illustration (2.1), fiedowing table

(2.2) is needed for error analysis and as follows:

Table (2.2) Error generated by the Euler scheme.

R N Error at final time
2° 0.0821
2° 0.0250
2° 0.0123
. 2° 0.0526
210 0.0230
2t 0.0088

On using R= 1, N = 2", the following numerical solution is

obtained and presented in the following figure (2.5

I
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2.6 T T :
Exact solution 5 3

2.4+ —# - Numerical solution

2.2

1.8
x(t)

14+

0.8 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time
Figure (2.5) Exact solution and the numerical solution by Euler scheme
with N =2 R =1.
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RTTRTINT,. a  allil, ‘ ‘ 1
0 01 02 03 04 05 06 07
time(t)

Figure (2.5.1) Absolute error between the Euler scheme and exact

solution with N =2*: R =1.
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Illustration (2.3) (With Absolute Error Test and Comparisons):

Consider the example (2.3) of section (2.6) whech |
dP=pP dt +oP dW
P(0)= Py
Where:
Po=1;u=1,0=2

The error at final time interval for R 1 and different number of

sample N is discussed in the following table (2.3)

Table (2.3) Error generated by the Euler scheme.

R N Error at final time
2° 0.0284

1 2° 0.0266
2t 0.0128

One can select R 1, N = 2" for accuracy, the following
numerical solution is then obtained and presentdate following figure
(2.6.1).
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45 T T T
Exact solution
Numerical solution H

3.5

2.
x(t)

1.5

0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time
Figure (2.6) Exact solution and the numerical solution by Euler scheme
with N =2 R =1.

0.18

0.16

s R S PR NN
¥
1

0.14+ B

el
ToRK

0.12

error(t)
0.08

0.06

0.04

0.02+4

] - |
0 01 02 03 04 05 06 07 08 09 1
time(t)

Figure (2.6.1) Absolute error between the Euler scheme and exact

solution with N =2™: R =1.
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Illustration (2.4) (With Absolute Error Test and Comparisons):

Consider the example (2.4) of section (2.6) whgch i

dX =-bX dt +o dW
X(0) = X,

Where:
Xo=1;Y9=0;b=2;0=1

Where R= 1 and N= 2° is adapted for the numerical solution as
discussed in the following table (2.4) and Figu&3.1).

Table (2.4) Error generated by the Euler scheme.

R N Error at final time
2° 0.8634
2° 0.3335

. 2 0.3793
2° 0.0686

M
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Stackastic Differential Equat:
1.4 ‘ ‘

A Exact solution
L2r i [V |+ - numerical solution |

x(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Figure (2.7) Exact solution and the numerical solution by Euler scheme
with N =2% R =1.

0.35

0.25} 8

0.2 8

error(t)
0.15} 8

0.1} B

0.05+ B

O+ ! ! ! 1 ! ! ! ! !
0 0.1 02 0.3 04 05 06 07 0.8 0.9 1

time(t)

Figure (2.7.1) Absolute error between the Euler scheme and exact

solution with N =28 R =1.
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Illustration (2.5) (With Absolute Error Test and Comparisons):

Consider the example (2.7) of section (2.6) whgch i
dX =AX dt +pX dW
X(0) = 1
Where:
A=2;u=1;Xp=1

As discussed previously in illustration (2.1), fiedowing table

(2.5) is needed for error analysis and as follows.

Here, the numerical solution are discussed foedkfiit values of
R, i.e.,At = Rot. The absolute error can be evaluated at all #heeg in
the selected interval, but only on the final timérval. As one can see

the effect of selection of R on the error.

9
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Stocbartic Differential Equat:

Table (2.5) Error generated by the Euler scheme.

R N Error at final time
2° 0.3430
2° 1.0219
2’ 0.3420
1 2° 0.0821
2° 0.1269
210 0.1581
2t 0.0603
2° 0.3030
2° 0.9630
2’ 0.1084
2 2° 0.1595
2° 0.1100
210 0.0735
2t 0.0035
2° 0.6355
2° 2.1141
2’ 3.1173
3 28 0.1075
2° 0.8522
210 0.1285
2t 0.2298
2° 0.6320
2° 2.4777
2’ 1.8936
4 28 0.6907
2° 1.3507
210 0.7935
2t 0.1515
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Different solution for illustration (2.5) have beafbtained by

using different values of R and N. The comparisehdviour between
the given exact solution and numerical one have laéen given as one

can see this from the following figures:

T T
Exact solution
7 —# — Numerical solution

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

0 1 1 1 1

Figure (2.8) Exact solution and the numerical solution by Euler scheme
with N =2 R =2.
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Exact solution
—* ~ Numerical solution | |

x() 5|

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (2.9) Exact solution and the numerical solution by Euler scheme
with N =2% R =3,

8 T T
Exact solution

—+ -~ Numerical solution

X(t)

0 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Figure (2.10) Exact solution and the numerical solution by Euler scheme
with N =2 R =4.
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Euler-Mariyama Numerical Method for Solving
Stocbartic Differential Equat:

T T
Exact solution a3
— - Numerical solution | &7

0 1

0 0.1

0.2

0.3

0.4

!
0.5

time

0.6 0.7 0.8 0.9 1

Figure (2.11) Exact solution and the numerical solution by Euler scheme

with N =2 R =1.

Illustration (2.6) (With Strong Convergence Test):

Consider the example (2.3) of section (2.6) whgch i

dP=pP dt +oP dW

P(0)=Fo

Where:

Po=1;0=1andu=2

N = 2% T =1 and sample path= 4000

Depending on

the concluding remark (2.2), the sfron

convergence for the numerical solution using EMaruyama method

is obtained. This produces the blue asterisks aadewith solid lines

in the plot of Figure (2.12). For reference, a @akted line of slope one-

g
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half is added. The least-squares power law fit ©ige= 0.5194 and

resid= 0.0355 (see program A.3 in Appendix A).

=
o
o

R

1
N

IN

=
o

Sample average of | p(T) - p |
|
o

10”7 10"

At

=
oI
w

Figure (2.12) Euler-Maruyama strong convergence.

Illustration (2.7) (With Strong Convergence Test):

Consider the example (2.7) of section (2.6) whgch i
dX = AX dt +pX dW
X(0) = 1
Where:
A=2;u=1;Xo=1;N=2° T=1 and sample pajn= 4000

The strong convergence for the numerical solutisimgi Euler-
Maruyama method of this example is obtained, whieeeleast-squares

power law fit gives ¢ 0.5490 and resid 0.0940.

%
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Sample average of | x(T) - X |
=
o

10° 10 10"
At

Figure (2.13) Euler-Maruyama strong convergence.

Illustration (2.8) (With Strong Convergence Test):

Consider the example (2.3) of section (2.6) whgch i
dP=puP dt +oP dW
P0)=PR,
Where:
Po=1;T=1;u=2;0=1and sample pato= 50000

The Figure (2.14) shows that weak error varies Witbn a Log-
Log scale. A dashed red reference line of slopeism@elded. The least-
squares power law fit gives=1.2617 and resid 0.7709 (see program

A.4 in Appendix a).



Clapter Two Euler-Marugama Numerical Metkod for Soluing
Sockastic Difforenial Equut

[EEN
o

'
N

A

[EN
o

10 10"

At

w

| E(x(T)) - Sample average of >f_|
=
(@)

|_\

oI

Figure (2.14) Euler-Maruyama strong convergence.

Illustration (2.9) (With Weak Convergence Test):

Consider the example (2.7) of section (2.6) whgch i
dX =AX dt +puX dW
X(0) = 1
Where:
Xo=1;A=2; u=0.1; and sample path p = 50000

For this example, the weak convergence for the micale
solution using Euler-Maruyama method is obtaineldens Figure (2.15)
shows the weak error varies wifft on a Log-Log scale. A dashed red
reference line of slope one is added, where th&t-lguares power law

fit gives q=0.9858 and resid 0.0508.
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~

o

=Y
o

1
N

A

=Y
o

10 10"

At

'
w

| E(X(T)) - Sample average of >f_|
|_\
o

[ =Y

o

Figure (2.15) Euler-Maruyama strong convergence.

Iltystration (2.10) (With Linear Stability Test):

Consider the example (2.1) of section (2.6) whgch i
dX =gX dw
X(0) = 1
(1) Mean-Square stability:
Where g(t)= sint; T=20; u=50000; Xo=1; At=1, 2, 1/4;
and N= T/ At
(2) Asymptotic stability:
Where g(t)=sint; T=500; At=1, 2, 1/4; and N = T/ At

The Figure (2.16) plots the sample average of’Eégainst t in
this picture théAt = 1 andAt = 1/2 curves increase with t, while the=

1/4 curve decays toward zero (see program A.5 ipefydix A).
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1 O20

10'20 I I I I I I I

Mean-Square

10100

—At=1
weL e At=1/2 ||
3 e At=1/4
10’ |
W
-50 NN A |

10 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Asymptotic stability

Figure (2.16) Mean-Square and Asymptotic stability.

Illustration (2.11) (With Linear Stability Test):

Consider the example (2.2) of section (2.6) whgch i
dX =X dt + gX dW
X@0)=1
(1) Mean-Square stability:
Where f(t)= cost; g(t)= sint; sample path =50000; T = 2;
Xo =1 and using step sizd =1, 1/2, 1/4; and N = T/At.
(2) Asymptotic stability:

Where f(t) = cost; g(t)= sint; T = 500; and using step size
At=1,1/2,1/4; and N = T/At.
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The Figure (2.17) plots the sample average of E&gainst t in

this picture théAt = 1 andAt = 1/2 curves increase with t, while the=

1/4 curve decays toward zero.

1 O20

°x, 10°
L
10’20 I I I I I I I IR At=1/4
0 2 4 6 8 10 12 14 16 18 20
Mean-Square
10100 :
—_— At=1
wer | e At=1/2
Z e At= 1/4
10°
-50 ‘-bh::\s~'-" TN Ay

10 1 1 1 1
150 200 250 300 350 400 450 500

Asymptotic stability

1
0 50 100

Figure (2.17) Mean-Square and Asymptotic stability for EM.

Illustration (2.12) (With Linear Stability Test):

Consider the example (2.3) is (Stock prices):
dP=puP dt +oP dW
Po=1
(1) Mean-Square stability:
Where T=20; u=50000; Po =1 andAt =1, 1/2, 1/4; N = T/At.

H=-3;0=3

Vil
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(2) Asymptotic stability:
Where T=500; u=1/2; c =3 andAt =1, 1/2, 1/4; N = T/At.
Show in the following Figure (2.18) plots the saenplerage for

(M=-3,0=3) and 1 = 1/2,0 = 3, respectively.

1 O20

EX]

10°

0 50 100 150 200 250 300 350 400 450 500
Asymptotic stability

Figure (2.18) Mean-Square and Asymptotic stability for EM.

Illustration (2.13) (With Linear Stability Test):

Consider the example (2.4) of section (2.6) whgch i
dX =-bXdt +o dW
X(0) = 1
(1) Mean-Square stability:
Wherep =50000; T =20; b=0; 0=1 and using step size

At=1,1/2, 1/4; N = T/At.
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(2) Asymptotic stability:
Where T=500; b=1; ando = 2.
The first part of Figure (2.19) represent the msquare for k= 0

ando = 1, while the second part is standing for asymetstability

which plots the asymptotic behaviour of this exaampl

X, 10
w —At=1
----- At=1/2
e At=14

10 I I I I I I I T T
0 2 4 6 8 10 12 14 16 18 20

Mean-Square

1050 _____ A t=1/2
i} ———— At=1/4
. 0 WMM
N
ﬂ‘ ﬂ—l-—v
- Sea,
10 T ‘ ‘ e RNy

1 1
0 50 100 150 200 250 300 350 400 450 500

Asymptotic stability

Figure (2.19) Mean-Square and Asymptotic stability for EM.

Illustration (2.14) (With Linear Stability Test):

Consider the example (2.7) of section (2.6) whgch i
dX = AXdt + pX dW
Xo =1

(1) Mean-Square stability:
A=-3;u= J3: T =20; sample path 4 = 50000 and step size

At=1,1/2,1/4; N = T/At.
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(2) Asymptotic stability:
A=-3,u= \/6; T =500; and step sizAt =1, 1/2, 1/4; N = T/At.

The information of mean-square error and asymptbtiear

stability may be found in the following Figure ()2

20

10
%, 10
Ll
10’20 I I I I I I | T Nem, I
0 2 4 6 8 10 12 14 16 18 20
Mean-Square
10100 -
vt S
| e At=1
10 Pl
R _
=< At=1/2
7 mmme At=1/4
10 Aot FINIICURPEE TG S s O PR P g e ATV P
10-50

0 50 160 1%0 2(50 550 360 3%0 460 !50 500
Asymptotic stability

Figure (2.20) Mean-Square and Asymptotic stability for EM.
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Early attempts are made in the area of numericahoas for
stochastic differential equations using Euler-Mamga method.
[Milstein, 1974] provides an early account for coasting a numerical
method for solving stochastic differential equasiomhis method is
known as the Milstein method. [Hovanessian & Chdrdy,7] proved an
application of the central difference and predict@thods for finding a

solution of differential equations with stochastiputs.

Numerical methods for SDE's constructed by tramglata
deterministic numerical method (like the Euler noetlor Runge-Kutta
method, etc). and applying it to a stochastic adindifferential
equation. However, merely translating a determmistimerical method
and applying it to an SDE will generally not prozidccurate methods,
[Burrage & Burrage, 1996]. Suitably appropriate muical methods for
SDE's should take into account a detailed analg§ishe order of
convergence as well as stability of the numericgthesne and the
behaviour of the errors. The Euler-Maruyama ( $egpter two) method
for SDE's is the simplest method which is a direahslation of, the
deterministic Euler method, but according to [Bge& Burrage, 1996]
this method is not very accurate. However, thishoétis useful in that
it provides a starting point for more advanced nucaé methods for
SDE's.
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A very concise publication by [Kloeden & Platen929 provides
a comprehensive and systematic presentation of mcahemethods
available for SDE's. The book focuses on time éissation methods for
initial value problems of SDE's with its diffusicas their solutions.
Numerical methods for both the strong and weak roofie&onvergence
are presented.

The following is then focuses into understanding tilstein
numerical method for solving SDE's and their stghikrror as well as

its line stadety.

3.1 Milstein Scheme:

The Milstein scheme is obtained by considering fing four

terms of Taylor expansion of section (2.3) in ckeapivo. It is given by:

t t
Xi= Xy, +a(Xy,) [ ds+bK, ) [ dWs+

to to

to

t
L'b(Xy,) | f dW,dWs

toto

Use formula:

t 1.5 1
| W) dWyw) = > W (w) — Et
0

to obtain:

th+p t 1

[ | dwdw:= E{(Awn)2 - An}
tI‘] tn
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From equation (2.10),'b = bb', thus:

t s
L'b(Xy,) | | dWZdWS:%bbt{(AWn)Z—An}
to to

Therefore, the Milstein scheme is defined as:

Yne1 = Y (Tn) + aQn, Y (T0))(Tnez = Tn) + B(n, Y(T))(W . — Wrn)

n+l
1 ,

+ Eb(tn, Y ()0 (T, YE){( Wy, ,, — Wy, )2 = (Tnsr — Tn)}
For brevity, this is written as:

Yo=Y, + @An + AW, + %bb’{(AWn)z — (An)}

The term bis the partial derivative of b with respect toixe,, B = @

0X

Concluding Remarks (3.1) (Explicit and Implicit Numerical Method):

1.The Euler scheme is an example of a time discigbeoximation (or
difference method) in which the continuous timdegiéntial equation
Is replaced by a discrete time difference equatjenerating values

Yi, Y2, ..., Yy tO approximateXil, X Xin at given

i2 y vy
discretisation timeg < t < ... < t. The Euler scheme is the simplest
strong Taylor approximation and attains an ordercofivergence

y = 0.5. The proof is given in [Koleden & Platen, 1§92

2.The Euler-Maruyama scheme has orger0.5, the Milistein scheme

has and ordey = 1, [Kloden & Platen, 1992].

3. The orders of strong and weak convergence of tiahastic Euler and
Milistein schemes are low. In order to improve tbeder of

convergence, multiple stochastic integrals of k& included in the

N
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numerical scheme. This is because the simple irem&sAW, do not
provide enough information about the sample patiWiener process
W, inside the discretization subinterva).;, 1] to ensure higher order

of approximation.

4.Generally, the numerical scheme implicitly usesmadr interpolation
in the subinterval. Multiple stochastic integrafe/é, that occur in the
stochastic Taylor expansion provide additional infation about the
sample paths of the driving Wiener process withia discretization

interval.

5.A more accurate order 1.5 strong Taylor schemebeanbtained by
including further multiple stochastic integrals frothe stochastic
Taylor expansion in the scheme. The orgler 1.5 strong Taylor
scheme is derived by adding more terms from thaThylor

expansion to the Milstein scheme.

The order 1.5 strong Taylor scheme is given as [(slkeeden &
Platen, 1992]):

d

Xe1 = X + @AN + AW, + = bb({(AWn) —An}+baaAZ +

{ab b, 1,,09°k 92b

(AW, An — AZ,} +
ot ox 2 X2

210t “ox 2 gx2

1 ba—2b (@j }{ (AW) —An}AW
2| ogx? \ox

6.Using strong Taylor approximations involves determg and

evaluating the derivatives of the various orderstlodé drift and
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diffusion coefficient as well as the coefficienteimselves for each
step. Implementing this procedure can be time consy Therefore,
to avoid the use of derivatives, the derivativeshi@ strong schemes

are replaced by their corresponding finite diffexesn

Using the Milstein scheme, one can derive the eXptirder 1
scheme by replacing the derivatives by the cormeding difference
ratios. However, these differences require theafiseipporting values

of the coefficients at additional points.

Use the following Milstein scheme:
Y= Yn+ @n + AW, + %bb’{(AWn)z — (An)}

and replace the derivative b' with finite differesc to obtain the
explicit order 1 strong scheme which has the foltgixform [Kloeden
& Platen, 1992]

Yne1= Yn+aAn+bAWn+i{b(Tn, Y, )-b(Tn, Y ) H( AY,)*—An}

27 AN

Where:
Y, =Y, +a\n + b/An

An explicit order 1.5 strong scheme can also bavddr by
replacing the derivatives in the order 1.5 strorayldr scheme by

corresponding finite differences.

7.In principle, the derivatives of the strong Taylechemes can be
replaced to obtain corresponding explicit scheniéss procedure
may work well for low order explicit schemes but the order is

increased the formulae become more complicated.eSm®s, the
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special structure of the equation under considaratan be used to
derive relatively simple higher order explicit sofes which do not
involve the derivatives of the drift and diffusionefficients. [Kloeden
& Platen, 1992] provide an explicit order 2 stra@uipeme for additive
noise, using the Stratonovich notation, to simplifg notation. This is
possible, since an SDE which is written using htegrals can be
equivalently written using Stratonovich integraked [Kloeden &
Platen, 1992])).

8. The implicit Milstein scheme is derived analogously
Y1 = Yo+ allneg, Yne)AN + AW + %bb’{(AW)2 - (An)}...(3.1)

where again only the drift term contains the unkngw;.

The family of implicit schemes:
Y= YnH{ aa(rn+1,Yn+1)+(1—a)a}An+bAW+% bb{( AW)*~(An)}

where againgt [J [0, I] characterizes the degree of implicithnesshiéwv
a = 0, the explicit Milstein scheme is obtained; theplicit scheme
whena = 1 and fora = 0.5 the generalization of the deterministic

trapezoidal method is obtained.

Implicit schemes for the order 1.5 and order 2 rgjrdaylor
schemes can also be obtained, as well as derivageeschemes and
multi-step schemes. [Kloeden & Platen, 1992] previthe implicit
versions of these schemes for the 1-dimensionaeal$ as multi-
dimensional case. In addition, they also considerspecial cases when
there is additive and commutative noise, sometinsasg the equivalent

Stratonovich representation to ease the notation.
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Concluding Remarks (3.1) (Numerical Steps for Explicit Milstein's
Methods and Linear Stability):

1. SDE can be written in integral form as:

X(t) =Xo + 't[ AX(s) ds +} uX(s) dW(s) +'t['? UX(Z)U'X(S)
0 0 00

dW(z)dW(s), = t<T ...(3.2)
Here f and g are scalar functions and the time itiondX, is the

random variable. The second integral on the rigimntehside of (3.2) is
to be taken with respect to Brownian motion as ulised in the

previous section.

2.To rewrite (3.2) in differential equation form as:
dX(t) = AX(t) dt + puX(t) dW(t) + %UX(t) WX ((dW(L)? - dt),

X(0) = Xo, 0<t< T ..(3.3)

this is nothing more than a compact way of usingt t{(t) solves
(3.2). To keep with connection, we will emphasize EDE from (3.3)
rather than the integral from (3.2).

3. Note that, we are not allowed to write dW(t)/dtn& motion is

nowhere differentiable with probability 1.

4.1f g = 0 and x is constant, then the problem becomes deternunisti
and (3.3) reduces to the ordinary differential equadx(t)/dt= Ax(t),
with x(0) = Xo.

5.To apply a numerical method to (3.3) over [0, T] fiwst discretize

the interval. LetAt = T/L for some positive integer L, and ¥ jAt for
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j=1, 2, ..., L. Our numerical approximation to X(Will be denoted

X;. The Milstein's method takes the form:
Xj = Xj + AXjAt + pX o (W(T) = W(Tj-)) +

XX (WCT) W )80, 51,20 L (34

6. To understand where (3.4) comes from, notice froenittegral form
(3.2) that:

T; T;
XT)=X(Ta)+ | AX(E)ds+ | HX(S) dW(s) +
Tj—l Tj—l

0T

> [ [ ux@w(s) dwaw, .(35)
Tj_]_O

Each of the three terms on the right-hand side3af) (approximates
the corresponding term on the right-hand side &)(3

7.We also note that in the deterministic case=(Q and X% constant)

(3.4) reduce to Milstein's method.

8. For computational purposes, it is useful to considéscrtized
Brownian motion, where W(t) is specified at diserevalues, we thus
setdt = T/N for some positive integer N and let @énote W() with
t; — jot condition 1 says \W= 0 with probability 1 us that:

Wj:Wj_]_"'dVVj,j:l, 2,..., N (36)
Where each dWis an independent random variable of the form

JBEN(O, 1).
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9. In this chapter, we will compute our own discretiZz&rownian path
and use them to generate the increments;W{(W(T;-;) needed in
(3.4). For convenience, we always choose the step/d¢ for the
numerical method to be an integer multipleR of the incremendt

for the Brownian path.

10.This ensures that the set of pointg {dn which the discretized
Brownian path is based contains the points} {&t which the

Milstein's method solution is computed.

11.Linear stability: For stability, one can see coulahg remark (2.4) in
chapter two, the same is true for Milestien's methexcepted

changing:
dX(t) = AX(t) dt + uX(t) dW(t), X(0)= X,
by:
dX(t) = AX(t) dt + pX(t) dW(t) + %UX(t) WX (0 ((dW()* - dt),

X(0) = Xo

Concluding Remarks (3.2) (Numerical Steps of Strong Converge for

Milstein's):

1. We saw in the previous section that EM has stradgroof converges
y=1/2 in E|X%—X(T)| < CAtY, the underlying deterministic Milestien's
method converges with classical order 1. It is fdssto raise the

strong order of EM 1 by adding a correction to thiechastic

increment gives Milstein's method.
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2. The correction arises because the traditional Tagtpansion must be
modified in the case of dt calculus. A so called &t Taylor can be
formed by applying fi's result, which is a fundamental tool of
stochastic calculus truncating theo{Taylor expansion at an

appropriate point produces Milstein's method fer $DE (2.33).
Xj = Xj1 + Atf(Xj-1) + 9(%-2)(W(T)) = W(Tjp)) +

9060 XD (WIT)-W(T-) 86 1= 1,2, o L. (37

3.2 Algorithm and Illustrations:

Algorithm (2.1) (The Explicit Milstein's Method):

Input: The dynamic stochastic differential equation inolpem

formulation (3.3).
Output: Numerical (sample path) solution of stochasticpss.
Step 1:Consider problem formulation (3.3).

Step 2: Generating a Brownian motion as follows (see catioky
remark (3.1)):

Step 2.1:Generate a normal random number.
Step 2.2:Consider T=to; N = ng; step size dt T/N;
Step 2.3:W(t) ~ N(O, 1).

Step 2.4:Set W, = 0 with probability 1.

Step 3.5W;= W, +dW;j=1,2, ..., N.

Step 2.6:dW, ~ /3t N(0, 1).
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Step3:Setj=10 - L

W(T)) - W(T}-s) = W(R8t) - W((j - 1)RY)

iR
= 2 dw
k=jR-R+1

Xj = Xja + f(Xj0)At + g(X-1) (W(T)) = W(Tj-)) +

000 (Xp-o) (W(T)-W(Ty0)) ),

If ] = L stop.

Step 4. Computation of error, depending on the type oforeror

example, the following is absolute error
Step 4.1:1f At = ot
Seti=10 - L
error=abs((i) — X+(i))
Step 4.2:If At # ot
error= abs(x(final) — X+(final)).

Step 4.3:For strong convergence (see concluding remarR)(3.2

Iltystration (3.1):

Consider the example (2.1) of section (2.6) in ¢&apvo, which

dX =gX dw
X(0)=1
Where, g(tF sint; Xo=1; Yo=0

10S



Clagten Three Milstein's Numerical Metbod [or Solving Stockastic Differestial Equations

The absolute error at the final time interval foffedent sample
space numbers, whefg = ot; R = 1; the step time for discritization of
Brownian motion equals to the step time discrezrabf explicit Euler
scheme are shown in the following (table (3.1)) &mgure (3.1.1). As
one can see, increasing the sample space geneaaoimly (N) leads
to improving the absolute error at the differentdisteps, wherat = &t.
The Figure 3.1) show the very good agreement betwbe exact

solution and the corresponding numerical solutieee(program A.6 in
Appendix A).

Table (3.1) Error generated by the explicit Milstescheme.

R N Error at final time
2° 0.0023

1 2° 0.0012
2’ 0.0009
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2.5

T T
Exact solution
—F -~ Numerical solution

AT

2/ i
W

g

M

1.5+ az—[
Mmﬁxj@%ﬁ%

0.5 N

X(t)

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (3.1) Exact solution and the numerical soioh by Milstein's
scheme with N=2"; R =1.

x 107
1.4

1.2+

0.8+
error(t)
0.6

0.4

0.2

(O ikl bt bl T =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)

Figure (3.1.1) Absolute error between thdilstein's scheme and exact

solution with N=2": R =1.
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Illustration (3.2):

Consider the example (2.2) of section (2.6) in ¢&apwvo, which

dX =fX dt + gX dW
X(0)=1
Where, f(t)= cost; g(t)=sint; Xo=1; Yo=0

The values absolute error at the final time intefiva 1; for R =
1, can be shown in table (3.2). As one can seegrgéng final time

error is obtained for sample space I,

Table (3.2) Error generated by the explicit Milstescheme.

R N Error at final time
2° 0.0152
2° 0.0356

. 2 0.0270
2° 0.0011
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T T
Exact solution
—+# -~ Numerical solution

0.5F B

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (3.2) Exact solution and the numerical soioh by Milstein's
scheme with N=2%, R =1.

x 10°

error(t) 3l

0 ] ! ! ! ! ! ! ] !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)

Figure (3.2.1) Absolute error between thdilstein's scheme and exact

solution with N=2%: R =1.
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Illustration (3.3):

Consider the example (2.3) of section (2.6) in ¢&apvo, which

dP=pP dt +oP dW
P(0)=Fo
Where, B=1;u=1;0=2.

Same error estimations is represented in the fatigwable (3.3).

Table (3.3) Error generated by the explicit Milstescheme.

R N Error at final time
2° 0.0304
2° 0.1997

. 2 0.2294
2° 0.0071

Figure (3.3) on using the R 1; N = 2%, the following plot of
numerical solution of Milstein method is showing tlwithe exact

solution.
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T T
Exact solution
Numerical solution

x(t)

0 0.1 0.2 0.3 0.4 0.5
time

Figure (3.3) Exact solution and the numerical soioh by Milstein's
scheme with N=2%, R =1.

0.08

0.07 - i
0.06 |- i
0.05 8
error(t) 0.041
0.03 :
0.02 - i

0.01+

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)

Figure (3.3.1) Absolute error between thdilstein's scheme and exact

solution with N=2%: R =1.
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Illustration (3.4):

Consider the example (2.4) of section (2.6) in ¢t&apvo, which

dX =-bX dt +o dW
X(0) = Xo
Where, %=1; Yo=0;b=2;0=1

As discussed previously in illustration (3.1), fiedowing table

(3.4) is needed for error analysis and as follows:

Table (3.4) Error generated by the explicit Milstescheme.

R N Error at final time
2° 0.9633
2° 0.3539

. 2 0.4183
2 0.0560

Figure (3.4) on using the R I; N = 28, the following plot of
numerical solution of Milstein method is showing tlwithe exact

solution.
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1.4 ‘ ‘
Exact solution

12¢ b W/ | —+ - Numerical solution

X0 0.4}

0.2

(0)=

0.2+

0.4+

0.6 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (3.4) Exact solution and the numerical soioh by Milstein's
scheme with N=2%, R =1.

0.35

0.25| :

0.2+ a .

error(t)

0.15} %

0.1}

005 # 1

i3 |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time(t)

O n‘,'f[
0

Figure (3.4.1) Absolute error between thdilstein's scheme and exact

solution with N=2%: R =1.
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Illustration (3.5):

Consider the example (2.7) of section (2.6) in ¢t&apvo, which

dX =AX dt + uX dW
X(0)=1
Where A =2; u=1; Xy = 1.

As one can see, the error is improved for this.céise following
numerical solution is adopted forR; N = 2 and R=2; N = 2"* and

R=3;N=2"R=4 and N= 2" as one can see in figures (3.5)-(3.7).
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Table (3.5) Error generated by the Milstein scheme.

R N Error at final time
2° 0.1826
2° 0.0834
2’ 0.1083
1 2° 0.0196
2° 0.1083
210 0.0118
2t 0.0015
2° 0.2469
2° 0.0743
2’ 0.3855
2 2° 0.0291
2° 0.0558
210 0.0256
2t 0.0032
2° 0.4462
2° 0.1569
2’ 1.7240
3 28 0.2899
2° 0.4118
210 0.2884
2t 0.1519
2° 0.7802
2° 0.2335
2’ 0.5157
4 28 0.1018
2° 0.0345
210 0.0198
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Here, the numerical solution are discussed foedkffit values of
R, i.e.,At = Rdt, there are different below the time steps of Br@am
motion and the numerical one. The absolute ermrbeaevaluated at all
the values in the selected interval, but only anfthal time interval. As

one can see the effect of selection of R on thelateserror.

8 T T
Exact solution
—+ -~ Numerical solution

0 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (3.5) Exact solution and the numerical soioh by Milstein's
scheme with N=2'" R =2,
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Exact solution
as —# - Numerical solution

X(t)

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure (3.6) Exact solution and the numerical soioh by Milstein's
scheme with N=2'" R =3,

14 \

Exact solution
—# — Numerical solution

12

10

x(t)

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

0 1 1 1 1

Figure (3.7) Exact solution and the numerical soioh by Milstein's
scheme with N=2% R =4,
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The strong convergence for some test exampleshanensand

discussed in the following:

Illustration (3.6):

Consider the example (2.1) of section (2.6) in ¢&apvo, which

IS:
dX =gX dw
X(0)=1
Where:

g(t) = sint; X = 1; N = 2% T = 1; sample path p = 500

Depending on the concluding remark (3.2), the gfron
convergence for the numerical solution using EMaruyama method
Is obtained. This produces the blue asterisks adadewith solid lines
in the plot of Figure (3.8). For reference, a dastesl line of slope one-
half is added. The least-squares power law fit §ige= 1.0132 and

resid=0.0166 (see program A.7 in Appendix A).

=
(@]
o

1
N

A

=Y
o

10° 10 10"

At
Figure (3.8) Milstein strong convergence.

sample average of |x(T) - x|
|
o
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Illustration (3.7):

Consider the example (2.2) of section (2.6) in ¢&apvo, which

IS:
dX =fX dt + gX dW
X(0)=1
Where:
F(t) = cost; g(t)=sint; X, = 1; N=2"2T=1;
sample pathu = 500
The strong convergence plot is as follows:
< 10°
E
x
S
fgju 10°
o
&
o
e
o 10 2 1
10 10 10
At
Figure (3.9) Milstein strong convergence.
Iltystration (3.8):
Consider the example (2.7) of section (2.6) in ¢&apvo, which
iS:

dX = AX dt + pX dw
X(0) = 1
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(1) Mean-Square stability:
WhereA =-3,u = \/5; and T=20; u =50000; Xo=1;
At=1,1/2, 1/4.

(2) Asymptotic stability:
Whereh = 0.5, = v/6; and T=500; At = 1, 1/2, 1/4.

The following Figure (3.11) plots the sample averaj E(X)
against t in this picture thst = 1 andAt = 1/2 curves increase with t,
while the At = 1/4 curve decays toward zero (see program A.8 in
Appendix A).

Mean-square

10 X AN —————— At=1/4 |-

",
N N m v

~ ~
S0 M e i n 22 WO

1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Asymptotic stability

Figure (3.10) Mean-Square and Asymptotic stabilily Milstein

scheme.
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Illustration (3.9):

Consider the example (2.1) of section (2.6) in ¢&apwvo, which

dX =gX dw
X0:1

(1) Mean-Square stability:
Where g(t=sint; T=20; Xo=1; At=1, 1/2, 1/4;
and sample path = 50000

(2) Asymptotic stability:
Where g(t)= sint; T=500; At=1, 1/2, 1/4;

The following figures are then obtained:

0 ‘2 4‘1 é é 1‘0 £2 1‘4 £6 £8 20
Mean-square

1
0 50 100 150 200 250 300 350 400 450 500

Asymptotic stability

Figure (3.11) Mean-Square and Asymptotic stabilily Milstein

scheme.
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Illustration (3.10):

Consider the example (2.2) of section (2.6) in ¢&apwvo, which

dX =X dt + gX dW
Xo=1
(1) Mean-Square stability:
Where f(t)= cost; g(t)=sint; T=20; Xo=1; At =1, 1/2, 1/4;
and sample path = 50000
(2) Asymptotic stability:
Where g((t)= cost; g(t)=sint; T=500; At=1, 1/2, 1/4;

The numerical solution can be shown in the follayiigures:

%, 10° - i
m At=1
----- At=1/2

2 == A U= 14

0 2 4 6 8 10 12 14 16 18 20
Mean-square

'~
"\\-“

10' I I I Paan T I I
0 50 100 150 200 250 300 350 400 450 500

Asymptotic stability

Figure (3.12) Mean-Square and Asymptotic stabilily Milstein

scheme.

122



%{JMFM
Comparisan and Conclusions

4.1 Comparisons (Summary of Numerical Results):

4.1.1 Comparison (of Example (2.1) of Section (2.6) in Chapter Two):

This section focuses on some comparisons and coankiof the
presented work based on the test problems and osthige, Euler
scheme and Milstein scheme. The following sectidap-by-step
comparisons are obtained for (example (2.1) ofised®.6) in chapter
two) and parameters to study the proposed numemedhod, so that

one can conclude his final decision easily ancdlsws.

Table (4.1) provides a summary of the numericaéseds and the
associated error at final time for the SDE with Evid Milstein as

follows:
Table (4.1) Comparison of errors: SDE with EM andilgtein.

Scheme

Euler scheme

Absolute error
at final time

Milstein scheme

The error of the Euler scheme decreases when th@&eruof
discritization points increases from & 2° to N = 2. The Milstein

scheme performs better than the Euler scheme. #lsoerror analysis
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for N=26 and R=1 for t] [0, 1] using example (2.1) have been plotted

in the following figures for comparison point ofew.

: ,x
e % ‘ \ ,
| il
0.005 ) N /\/M \J xﬁf

time(t)
Figure (2.4.1) Absolute error between the Euler grhe and exact
solution with N=2% R =1.

x 10°
1.4

1.2+

1+

0.8

error(t)

0.6

0.4

0.2

0 H‘HHH‘HHHHH:HH:H\‘WNA\ vv"'uﬂumu—‘“ﬁ | ¥ ™ v“ B
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)

Figure (3.1.1) Absolute error between thdilstein's scheme and exact
solution with N=2": R =1.
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4.1.2 Comparison (of Example (2.2) of Section (2.6) in Chapter Two):

Table (4.2) provides a summary of the numericaésets and the
associated error at final time for the SDE with Ed Milstein for

example (2.2) of section (2.6) in chapter two,@®ws:

Table (4.2) Comparison of errors: SDE with EM andilgtein.

Scheme

Euler
scheme

final time

Milstein
scheme

Absolute error at

The error of the Euler scheme decreases when theeruof
discritization points increases from ® 2’ to N = 2'%. The Milstein
scheme performs better than the Euler scheme asamesee this from

the above table, even for lesser number of pows lan Euler method.
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x 10°

5
error(t)

i
1 1

| . ) ‘
0 01 02 03 04 05 06 07
time(t)

Figure (2.5.1) Absolute error between the Euler grhe and exact

solution with N=2': R =1.

x 107

error(t) 3l

O i ! ! ! ! ! ! . !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)

Figure (3.2.1) Absolute error between thdlstein's scheme and exact
solution with N=2°; R =1.
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4.1.3 Comparison (of Example (2.3) of Section (2.6) in Chapter Two):

As one discussed earlier, the following comparisanesobtained:

Table (4.3) Comparison of errors: SDE with EM andilgtein.

Scheme

Euler
scheme

Absolute error at
final time

Milstein
scheme

The Milstein scheme performs better than the Estdreme as

one can see for N 2. The following graphs are also plotted:

0.18

0.161 I ]
0.14| 5 |

0.12+

error(t)
0.08}

0.06 -

0.04

0.02 -k

=i 5 we |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time(t)

Figure (2.6.1) Absolute error between the Euler grhe and exact

solution with N=2': R =1.
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0.08

0.07 - ‘ i
0.06 - ‘%/ T@ﬁf i
0.05F %ﬁt

error(t) 0.041 %F i
¥

0.03

0.02 -

0.01+

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)

Figure (3.3.1) Absolute error between thdilstein's scheme and exact

solution with N=2%: R =1.

4.1.4 Comparison (Absolute and Strong Converge):

For example 92.4) of section (2.6) in chapter tine,following is

given:

Table (4.4) Comparison of errors: SDE with EM andilgtein.

Scheme

Euler

scheme

final time

Milstein
scheme

Absolute error at

and
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0.35

0.3F B
0.25¢ B
0.2 E

error(t)

0.15¢ B

0.05+ B

O+ ! ! ! 1 ! ! ! ! !
0 0.1 02 0.3 04 05 06 07 0.8 0.9 1

time(t)

Figure (2.7.1) Aabsolute error between the Eulehste and exact

solution with N=2%: R =1.
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Figure (3.4.1) Absolute error between thdlstein's scheme and exact

solution with N=2% R =1.
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One can also see the following order of strong eogence of
Euler-Maruyama method is 0.5, while the order ofrsg convergence of

Milstein method is 1, depending on:
E|X, — X(T)| < CAt"
Which present the Milstein method to be the besmt thuler method.

The linear stability between Euler-Maruyama methadd
Milstein method shows that Milstein method is bettean Euler-
Maruyama method, as one can see this final tinfigumes (2.16)-(2.20)
and (3.10)-(3.12) for example (2.1), (2.2), (2.32.4) and (2.7),

respectively.

1 o20

10’20 I I I I I I I T T
0 2 4 6 8 10 12 14 16 18 20

Mean-square

10100
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10 I I I I
0 50 100 150 200 250 300 350 400 450 500

Asymptotic stability

Figure (2.16) Mean-Square and Asymptotic stability.
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Mean-square

10 ‘
At=1
1050 L | mmm—— At=1/2|]
=3 - At=1/4
10° 1
T,
10'50 b Ty Tt e,

1 1 1 1
150 200 250 300 350 400 450 500

Asymptotic stability

1
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Figure (2.17) Mean-Square and Asymptotic stabilityr EM.
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Figure (2.18) Mean-Square and Asymptotic stabilityr EM.
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Figure (2.19) Mean-Square and Asymptotic stabilityr EM.
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Figure (2.20) Mean-Square and Asymptotic stabilftyr EM.
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Figure (3.10) Mean-Square and Asymptotic stabilily Milstein

scheme.
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Figure (3.11) Mean-Square and Asymptotic stabilily Milstein

scheme.

133



Claptr Four Comparison and Conclusions

0 2 4 6 8 10 12 14 16 18 20
Mean-square

10100

At=1
D At=1/2|

10

Ix]

10°

R e
10 50

- b
| Aaa, ARy o,

0 50 160 150 200 250 300 350 460 4é0 500
Asymptotic stability

Figure (3.12) Mean-Square and Asymptotic stabilily Milstein
scheme.

The final decision, the numerical result for Milstenethod is
better than Euler-Maruyama method, even for smathimer of sample
size and R (Brownian motion step size) as one eanfr®m previous

tables (4.1)-(4.4), for different type of companso
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Claptr Four Comparison and Conclusions

4.2 Future Work:

1. On using the present numerical methods, one cdurgfeer to study

the numerical solution of stochastic partial diéfietial equations.

2. One can focus on study the implicit numerical soha for stochastic
differential equations to overcome the problem tdbgity and

convergence.

3. Systems had nonlinearity with differential kinds rahdomness (not
necessary Brownian motion) may be adopted and shelpumerical

solution.

4. Another numerical method, like Runge-Kutta methett,., may be

studied for solving some SDE's.
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Stochastic differential equations (SDE's) congtititn ideal
mathematical model for a multitude of phenomena f@ndcesses
encountered in areas such as differential equatisioshastic control,
signal processes and mathematical finance, mosblyotin option
pricing (see for example [Kloeden & Platen, 1992id dgksendal,
1998]). Unlike their deterministic counterparts, B® do not have
explicit solutions, a part from in a few exceptibmases; hence the
necessity for a sound theory of their numerical rapimation is

important.

It is well-known that stochastic integrals and formula play a
central role in modern probability theory and itppkcations to

stochastic differential equations concerned by Briaw motion.

The theory of b stochastic differential equations is one of the
most beautiful and most useful areas of the thewoirystochastic
processes. However, until recently the range ogstigations in this
theory have been in our view, justifiably restrectenly equations were
studied which can in analogy with the deterministase, be called
ordinary stochastic equations. The situation haglbdo change in the
last 12-18 years. The necessity of considering te@pusacombining the
features of partial differential equations and #quations has appeared
both in the theory of stochastic processes andlatad areas, [Krylov &
Rozovskii, 2007].
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During the past twenty years, there has been arlaating
interest in developing numerical methods for ststbadifferential
equations, especially in engineering and physicenges, [Burrage &
Burrage, 1996]. This has been supported by contisirmprovements in
computing capability and the equivalent decreaseoists of personal

computers.

In the light of the volume of interest rate of tekh derivatives
trade worldwide, there is a need to highlight andunderstand the
available numerical methods that could be usedbeesthe stochastic
differential equations, thus providing a more aateirand efficient way
for the pricing and hedging of derivatives produdt&irther, these
numerical methods aide in bridging the gap betwteenwell advanced

theory of SDE's and its application to specificrapées.

There are various methods that have been propasesblve
SDE's numerically, Monte Carlo methods can be usesimulate the
behaviour of the system. Under this method, thesiglay process is
simulated directly using a sequence of random nusnéed there is no
need to specify the differential equation that dess the behaviour of
the system. The physical system is described bypgimtity density
functions and then the Monte Carlo simulation cagib by random
sampling from the probability density function [@da & Robert,
2005]. Many simulations are performed and the ddsiesult is taken as

an average over the number of observations.

However [Kloeden & Platen, 1992] claim that thisthwal is to
some extent inefficient because it does not usespieeial structure of

the drift and diffusion coefficients. Another methto solve SDE's is to
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make use of the discretisation of both time andspariables, so that
the solution is approximated as finite state Markbains. This method
is plausible for simple problems, but for high dme®n problems, this
method can involve a considerable amount of compgutime because
the transition matrices contain a lot of unnecgs&afiormation which

must be repeatedly reprocessed during computations.

Another method involves the finite discretisatioh the time
interval [0,T] only and not the state variable. Shiime discrete
approximation can be used to generate approxinates of the sample
paths at each step of the discretisation times.sithalated sample paths
can then be analysed using statistical methodstermine how good
the approximation is to the exact solution. Thighod is efficient and
can be easily implemented on a digital computemsgquently, it has
been used widely and preferred to other methodausecit has lower

computational costs, [Fridman, 1975].

Having realised the importance and the recent as@é use of
SDE's, the main aim of this thesis is to presdmief analysis of the two
numerical methods that have been developed forirgphSDE'S,
focusing, on strong and weak schemes. In additiois, thesis shows
how these numerical schemes can be derived froroiTaypansions of
the stochastic differential equations, thus prawdopportunities for the
derivation of more advanced numerical schemes hadpplication of
existing schemes by other researchers that do e ha solid

background in modern probability theory, [Stirzgk&d05].

Analogous to deterministic ordinary differentialuagjons where

the Taylor expansion is used to derive various migaemethods, the
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lto-Taylor expansion for stochastic differential edqomas is used to
derive various numerical methods. The Euler andstdih schemes
provide a good starting point to introduce numeéncathods for SDE's.
This is then extended to higher order Taylor sclenidese schemes
involve simulating the derivatives of the coeffitie of the drift and
diffusion terms. Further schemes are presented hwhaplace the
derivatives with finite differences, implicit schemare then presented,
which takes into account previous simulated valaed thus involves
less computing. These schemes are presented fbrthetstrong and

weak convergence criteria, [Platen, 1999].

The numerical methods are based on time discrete
approximations. Time discrete approximations fothbthe strong and
weak convergence criteria will be presented. Whertime discrete
approximations which satisfy the strong convergeeriterion involves
the simulation of sample paths at each step ofdikeretisation time,
approximations that satisfy the weak convergendermn involve the
approximation of some function of theélprocess such as the first and
second moments at a given final time T. Also, thedr stability of the
considered numerical schemes is also presentedignhesis. Further,
the thesis also contrasts the different numericakses by providing
some analytical results of the scheme and comparwgh the known
solution. This is done by using Matlab softwareeTdffect of varying

the step size is considered.

Some examples of SDE have been taken and the raaheri
solution are compared with the derived exact sotufif any) depending

on some types of error like absolute, strong, wesk,
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This thesis consists of four chapters. The firgptar deals with

the, Some Stochastic Process Concepts.

In chapter two, Euler-Maruyama numerical method golving
SDE is discussed and some illustration have begriemented the
absolute error, strong error as well as weak cagerere error and linear
stability are also been discussed supported by stastration. Some

concluding remarks have also been proposed.

In chapter three, Milstein's numerical method folvg SDE is
proposed. Some illustrations have also been impleede The absolute
error, strong convergence error and linear stgbidte also been
discussed and supported by some illustration. Smneluding remarks

have also been presented.

In chapter four, comparisons and conclusions, &tuork, are
presented. Then, appendixes with result progrands raferences are

given at the end of this thesis.
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