A bstract

In this work, we studied the " Path-Following
Algorithm™, which is one of the family algorithms, called
“Interior-Point  Algorithms™,

We are discussed two modifications, the first
one concerned with the path solution, while the second
one isconcerned with the feasibility solution. These
two modifications are combined in a new manner, to
construct a hybrid method. The same test problem had
been run for all the algorithms, as well as, number of
tested problems had beenimplemented for comparison,
shown that our modifications give better results in the

number of iterations and the accuracy of the results.
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Chapter One Introduction

Beyond any doubt linear programming has been successful from a
practical point of view. It is therefore perhaps surprising that various
fundamental theoretical questions concerning linear programming have
remained open for avery long time. Several of these questions are related to
the inherent computational complexity of linear programming problems.

In this chapter, a brief introduction to the linear programming problems,
Is presented, in which its standard mathematical form and needed basic

related techniques are presented.

(1.1) Linear-Programming Problem Formulation[5]:

A linear-programming problem differs from the general variety in that
a mathematical model or description of the problem can be state using
relationships which are called "“straight-line™ or linear, mathematically, these

relationships are of the form:

X +aX, +.o. X+t X =b
where the g's and b are known coefficients and the x;'s are unknown variables.

The general linear programming problem is to find a vector

which minimize the linear form ( i.e., the objective function) (X;, X, ..., X;,)

C,X, +CpX, +.. +Co X, (L.1)

subject to the linear constraints

X HapX ot a X e+ a X, =h

Ay Xy + X+t 8y X+ 8, X, :bz

; (1.2)
By X, F8pX, +o 8 X+ 8 X, =by

and
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X] 2 O’ j:1121---1n (13)

where the a;, b and c; are given constants and m<n. The above general

linear problem can be written commonly stated in the following matrix form

Minimize C T X (1.4)
subject to

AX =B (1.5)
X=>0 (1.6)

where C and X are vectors in R", B is avector in R™,and A, iS an

matrix. mxn
Next, considering the primal problem (1.4)-(1.6), we can define another,

closely related dual problem, as follows:

MaximizeB'y (1.7)
subject to

A'Y +S =C (18)
S>0 (1.9)

where is a vector of unrestricted values, and Y = (Y, Y, Y,)

S =(s,S,,-.,S,) is avector of slack variables.

Therefore, we can state the following definition:

Definition[13]:
A feasible solution to the linear programming problems is a vector X=(Xy ,Xy,...,
Xn) Which satisfies conditions (1.2) and (1.3).
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(1.2) Optimality Conditions[11]:
To construct the optimality conditions, we start by combining the

primal and dual problem, using the following Lagrangian function [13]:

L(X,Y,S)=C"X —=YT(AX —B)-S"X (1.10)

and applying the 1¥-order necessary conditions [20] for X to be a solution

of the primal and dual problems such that

ATY +S—C (1.11a)
AX =B (1.11b)
(1.11c) X =20
(1.11d)S > 0
XS, =0

(1.11e) i =1,.,n

Which are called "~“Karush-Kuhn-Tucker™ conditions denoted by KKT
conditions.

The complementarity condition (1.11e), which essentially says that
.1 =1...,n must be zero for each S; and X; at least one of the components

denoted a vector triple that satisfies (1.11). By (x ,y ,s") Let
combining the three equalities (1.11a),(1.11d), and (1.11e), we find that

X =(ATYy +5) x =(AX)' 'y =By’ (1.12)
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is also the objective function for theB'y As we shall see in a moment,

problem formulated by egs. (1.4)-(1.6), so (1.12) indicates that the primal
which satisfy the dual objectives are equal for vector triples (Xx,y,s) that
satisfy (1.11).

It is easy to show directly that the conditions (1.11) are sufficient for x~

be any other feasible X to be a global solution of (1.4)-(1.6), by letting
thenX >0 and AX=Bpoint, so that

c'X=(Ay +s)' Xx=B'y +X's">B'y =c¢'x (1.13)

We have used (1.11) and (1.12) here; the inequality relation follows. The
inequality (1.13) tells us that no other feasible s >0 and X > Otrivially from

.We can say more: C'X point can have a lower objective value than
is optimal if andonly X The feasible point

X's =0
since otherwise the inequality in (1.13) is strict. In other words, when

of (1.4)-(1.6). X for all solutions X, =0 then we must have s, >0

(1.3) Methods For Solving Linear Programming Problems:

Many methods are available in which the simplest way is to
follow a direct mathematical search through calculating the objective
function value at each vertex [2].

An algorithm for a certain problem is said to be "good if it solves an
instance of that problem in a number of computations that is bounded from
above by a polynomial function of the size of the problem instance (Edmonds

[1965] ). Informally we say that an algorithm is "good" if it runs in polynomial
time.
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G.B. Dantzing and others in 1947 (see[21]), developed an algorithm
for solving the linear programming problem, by constracting a path along the
edges of the
polytype defined by (1.2) and (1.3). In each iteration, the method examines if
further improvement in the objective function is attainable by moving from the
current extreme points to one of its neighbours; if so, one of these neighbours
is selected by means of a pivot selection rule and another step is executed.
On the other hand, in practice the number of iterations in the simplex method
usually ranges from m to 3m, (see Wolfe and Cutler [1963], Quandt and
Kuhn [1964] ).

Karmarkar [1] presented a new polynomial time algorithm for linear
programming problems. Also, several so called interior point algorithms
for linear and convex quadratic programming have been proposed, ( see [12]
and [21] ), which become very competitive to the simplex method. They
fall into three main groups:

(a) Projective algorithms.
(b) Affine scaling algorithms.
(c) Path following algorithms.

The above three categories are similar in concept but differ in
problem transformation and internal search direction, (see[21]).

This work, consist of three chapters, as well as, this chapter. The second
chapter, discussed in details, the class of path following method. Chapter three,
discussed two modifications on the path following method. Chapter four build
a hybrid method, based on the modifications presented in chapter three. The
programming steps for all algorithms are presented, and the same tested
problem, is utilized for all methods for the saek of the accuracy and
comparision of the results. As well as number of tested problems had been

utilized for comparison.
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By the early 1990s, the class of path following algorithms had
distinguished itself as the most efficient practical approach and proved to
be a strong competitor to the simplex method on large problems [14].
This method is the focus of this chapter.

The motivation for interior-point method arose from the desire to
find algorithms with better theoretical properties than the simplex method.
As it has been mentioned, (see [7]), the simplex method can be quite
inefficient on certain problems (see[15]). Roughly speaking, the time
required to solve a linear program may be exponential in the size of the
problem, as measured by the number of unknowns and the amount of
storage needed for the problem data.In practice, the poor worst case
complexity motivated the development of new algorithms with better
guaranteed performance.

Interior-point method shere common features that distinguish them
from the simplex method (see[14,20]). Each interior-point iteration is
expensive to compute and can make significant progress towards the
solution, while the simplex method usually requires a larger number of
inexpensive iterations (see [10,21]). The simplex method works its way
around the boundary of the feasible polytope, testing a sequence of
vertices in turn until it finds the optimal one. Interior-point method
approach the boundary of the feasible set only in the limit. They may
approach the solution either from the interior or the exterior of the feasible
region, but they never actually lie on the boundary of this region.

In this chapter we outline some of the basic ideas behind the path
following algorithms, called Primal-Dual Interior-Point method (see[19,20],
including its relationship to Newton's method.

Therefore, before we are presented the details of the Primal-Dual
Method, we will give a short explination to the Newton's method for

nonlinear algebric equations as following, (see[9]):
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If the mathematical model involves two (or more) simultaneous
nonlinear algebraic equations in two (or more) unknowns, the Newton-
Raphson method can be extended to solve, these equations simultaneously,

by considering the following model for two unknowns variables [6,16]

f,(X,,%X,)=0
f,(X,,X,)=0

are nonlinear function of variables x; and x,. f, and f where

Both functions may be expanded in to Taylor series expansion around an

initial estimate of x,' and x,':

of
(X, =X, )+ — (X, =X, )+...
. 2 lx 2.1)

fl(Xlaxz): f1(X11ale)+a_fl
1

(X1_X1 )"‘%
x! 2

f,(x,%,) = fz(xll,x21)+%
1

Setting the left hand sides of eqs.(2.1) to zero and truncating the second-

order and higher derivatives of the Taylor series , we obtain the following

equations:
of of
; (Xl_xll)+§ (Xz_le):_f1(xllale)
Hx 2 (2.2)
8f2 1 af 1 1 1
—2 (X, =X )+ =2 (X, =X, )=—TF,(X,X,)
axl ; 1 1 axz ; 2 2 2 1 2

as AX If we define the correction variables

AX, =X, —X,'

1
AX, =X, — X,

then eqs.(2.2) can be rewritten as:
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of, of,

0X, OX, |:AX1} _ _|: fl(xlaxz):|
of, of, || Ax, B f, (X, Xy,
ox, 0X,

Now if we consider the system:
f (X e X, ) =0
fo (X 5y X, ) =0

The linearization of this system obtained by applying the Taylor series

expansion, we have eqs.(2.3).

of, of o

OX, OX, X fax, 1 [f,]

of, of of

Za T 22| AX, f, (2.3)
OX, OX, X | - =-.

o of o oh 1A% L

| OX,  OX, oX, |

In matrix -vector notation this condenses to

JAX = — f

is the Jacobian matrix containing the partial derivatives, is the J where

is the vector of functions. f correction vector, and

Primal-dual problem is to find solution (x",y",s") of this system by

applying variants of Newton’s method (which is described later in this
chapter), and modifying search directions and step lengths so that the
inequalities (x , s ) > 0 are satisfied strictly at every iterations. The equations
(1.11a), (1.11b), (1.11c¢) are only mildly nonlinear and so are not difficult
to solve by themselves. However, the problem becomes much more

difficult when we add the nonnegativity requirement (1.11d), which is
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the source of all the complications in the design and analysis of interior-
point method [4].
To derive Primal-Dual Interior-Point method see[13], we restate

the optimality conditions (1.11) in a slightly different form by means of

mapping F from R*™™ to R*™
A'y+s—c

F(xy,5)=| Ax-b  |=0 (2.42)
XSe

(x,8) =0 (2.4b)

Where

X = diag (X, X, ..., xn)}

S =diag (S,,S,,» S,) (2:3)
and
e=(1,...,1)

Primal-Dual method generate an iterates (Xk , yk , s ) that satisfy the

bounds (2.4b) strictly, that is, x>0 and s*>0. This property is the
origin of the term interior-point. By respecting these bounds , the methods
avoid spurious solution, that is, points that satisfy F(X,Yy,S)=0 but
(X,8)>0.

The Primal-Dual problem of (1.4)-(1.6) and (1.11) and (2.5) are
characterized by KKT conditions which we are restarted here as

equations (1.11).
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Interior-Point method actually require the iterates to be strictly
feasible, that is, each (xk, yk, sk) must satisfy the linear equality constraints
for the primal and dual problems (see [20,22]). If we define the primal-dual
feasible set F and strictly feasible set F° by:

F ={(x, y,s)/Ax=b,ATy+s=c,(x,s)20} (2.6a)

FO={(x,y,s)/Ax=b,ATy+s=c,(x,s)>0} (2.6b)
The strict feasibility condition can be written concisely as
(x*,y*,s) e F’

Like most iterative algorithms in optimization, primal-dual interior
-point method have two basic ingredients: a procedure for determining the
step direction and its length at each point in the search space. The search
direction procedure has its origins in Newton’s method for the nonlinear
equations (2.4a). Newton’s method forms a linear model for F around the
current point and obtains the search direction (Ax , Ay, As ) by solving the

following system of linear equations[3]:

AX

J(X,Y,8) x| Ay | =—-F(X,V,S)
AS

where J is the jacobian of F, which is equivalent to the system (2.3). If

the current point is strictly feasible ( thatis (X,Y,S) € F ‘ ), the Newton step

equation become
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0 AT I [Ax 0
A 0 O0|Ay|=]0 (2.7)
S 0 X |As — XSe

A full step along direction usually is not permissible, since it would
violate the bound (x,s)>0. To avoid this difficulty, we perform a line

search along the Newton direction so that the new iterate is

(X, Y,8) +a(AX, Ay, As)

for some line search parameter & € (0,1]. Unfortunatly we often can take
only a small step along the direction (a0 << 1 ) before violating the condition
(X,S8) > 0. Hence, the pure Newton direction (2.7), which is known as the

affine scaling direction, often does not allow us to make much progress
toward a solution (see [13]). Primal-dual methods modify the basic Newton

procedure in the following two ways:

1. They bias the search direction toward the interior of the nonnegative
(X,8) 20, so that we can move further along the direction before one of
the components of (X, S) becomes negative.

2. They keep the components of (X,S) from moving " too close " to the

boundary of the nonnegative.

Algorithm:

Given (x,y°,s")eF’
For kK =0,1,2,...

Solve
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0 AT I || Ax* 0

A 0 0 |Ay"|= 0

sk 0 X¥| As* — X kgke
Set

(Xk+1,yk+1,sk+l) — (Xk,yk,sk)+ak(AXk,Ayk,ASk)

choosing @ such that (X**',s*")>0

Now, we are present an example taken from [15], and considered it in
all modifications presented in chapters three and four for the results

verifying.

Example:

Minimize
- 6X, —3X, +4X,

subject to

X, +4X, —2x, <1
2X, —2X, +6X; <2
—2X, +3X, +X; £5

we have
1 4 -2
A= 2 -2 6
-2 3 1
Iterationl

and suppose that
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0 0 0
0 =10 1 0 and y=10
1 0 1

Therefor, from eq.(2.7)

0 A" I |[Ax 0
A 0 O0JAy|=]0
S 0 X | As — XSe
where
~1
- X°S% =] -1
~1
Thus, we get
0 0 0 1 2 -2 1 0 0fAx, | [0]
0 0 0 4 -2 3 0 1 0fAx 0
0 0 0 -2 6 1 0 0 1|Ax, 0
1 4 -2 0 0 0 0 0 0fAy, 0
2 -2 6 0 0 0 0 0 OfAy,|=|0
-2 3 1 0 0 0 0 0 0Ay, 0
1 0 0 0 0 0 1 0 0faAs, -1
0 I 0 0 0 0 0 1 0faAs,| [-1
0 0 1 0 0 0 0 0 LJAs,| [-1]

By solving the above system we get:
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AX, 0
AX, 0
AX, 0
Ay, 0.053
Ay, | =10.053
Ay, 0.053
As, -1
As, -1
As; | | -1 |

choose «a, =0.01

(x',y',8) =(x",y",s") + oy (A", Ay, As®)

x| [1
X, 1
X, 1
y, | |1.0005
y, | =10.0005
y, | [0.0005
s, | 0.9900
s, | [0.9900
s, | [0.9900 |
Iteration2

Since we get (X,Y,S) >0 in the last iteration, then «, = &,

1 0 O 0.9900 0 0
X'={0 1 0 ’ S'=| 0 0.9900 0
0 0 1 0 0 0.9900

where
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—0.9900
— X'S'e = -0.9900
—0.9900
Thus, we get
0 0 0 1 2 -2 1 0 ofAax,| [ 0O ]
0 0 0 4 -2 3 0 1 0]Ax 0
0 0 0 -2 6 1 0 0 1|Ax 0
1 4 -2 0 0 0 0 0 0fAy, 0
2 ) 6 0 0 0 0 0 Of|Ay,|=| ©
) 3 1 0 0 0 0 0 0fAy, 0
0.9900 0 0 0 0 0 1 0 O|As | |-0.9900
0 0990 0 0 0 0 0 1 0|As,| |-0.9900
0 0 0990 0 0 0 0 0 1]As,| [-0.9900 ]

By solving the above system we get:

AX, 0

AX, 0

AX, 0

Ay, 0.0390
Ay, |=| 0.0290
Ay, 0.0010
As, —-0.9900
As, —-0.9900

| Asy | [=0.9900 |

(x*,y%,8*)=(x',y',s" )+, (AX',Ay', As")



Chapter Two Path-Following Method

X, 1
X, 1
X3 1
Y, 1.0005
Yy, | ={0.0005
Y, 0.0005
S, 0.9890
S, 0.9890
1Sy ] [0.9890 ]

The same procedure will be repeated for 15 different values of ¢,
satisfying condition (2.6b) until no significant difference values in X and

S , will be appeared. And the final results is:

X, 1
X, 1
X3 1
Y, 1.0025
y, |=10.0022
Y, 0.0007
S, 0.9799
s, 0.9799
1S3 | 1 0.9799 ]
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The comparsion results for the interior-point and all its modifications
are presented in a table to show the efficiency of the hybrid method, based
on the number of iterations.

The path modification, shifting the path ©, by a parameter

7 €[0,1) , with (X(0), y(0),5(0)) = (X, y,S) and, if the limit exists as 7 —> |

we have
lrigll(X(f), y(z),s(r)) € Q, where Q is the set of the solution points.

Then after we perform this shifting, we are choosing the parameter
o adaptively, which assign a value to o prior to calculating the search
direction. At each iteration, the method first calculates the scaling direction

(witho =0) and assesses its usefulness as a search direction. If this direction

yields a large reduction in A without violating the positivity condition

(X9)>0, the processing concludes that it need to choose o close to zero and

calculates a search direction with this small value. If the scaling direction is

not so productive, the algorithm enforces choosing a value of o closer to 1.
The computation of the search direction (AX,AY,AS) proceeds as
follows.
First, we calculate the predictor step (AX",Ay”,As”) (where P

denote the "scalling direction") by setting o = 0 in (3.9), that is

0 A" I | AxP -,
A 0 0] AyP|=| —-r (4.1)
S 0 X | As’ — XSe

To measure the effectiveness of this direction, we find azri and

a(:)ual (where “pri’* and “‘dual” denote the “*primal’* and “*dual’" problem)
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to be the longest step lengths that can be taken along this direction before

violating the nonnegativity conditions (X,S) =0, with an upper bound of 1.

where [20]
prii . 1 =X

o, =min(l,min AXip) (4.2.a)
“ — min( 1, min — i )

o P ’ i:As;<0 Asi P (42b)

we define H#, to be the value of # that would be obtained by a full step

(i.e a, =1) to the boundary that is [20]

) (X+ g AXP) (s + g 0% As?)

n

My (4.3)

and set the parameter o to be

J
u
o= L_‘JJ , where j is any suitable integer.

Second, the corrector step is obtained by replacing the right-hand-
side of eqs.(4.1) by (0,0,—Ax"AsP"e), while the parameter 0, requires
a right-hand-side of (0,0,0u €) .

Now, we can built a hybrid algorithm step which includes the

path and step length modifications, by changing the right-hand-sides for

these three components and solving the following modified system:



Chapter Four Hybrid Method

0 A" 1 [AX —r,
S 0 X|As — XSe — AxPAs’e + oue

We calculate the maximum steps lengths that can be taken along these
directions before violating the nonnegativity condition (X,S) >0 by a

formula similar to (4.2); namely,

k
ri X

p _ : . i

o ... = min( 1,iI:IAlx1iI<10 —Axi) (4.5.2)
dual S-k

amx=mMngﬂ&) (4.5.b)

and then choose the primal and dual step lengths as follows

o =min(Lyg;)

dual . dual (46)
o, = min( 1,7 amax)

Where 17 €[0.9,1.0) (see [20]) is chosen so that 7 = 1 near the solution,

to accelerate the convergence. We summarize this discussion by specifying

the following algorithm in the usual format.
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The Hybrid Algorithm:

(x’,y°,s°)Given with  (x°,8") >0

for k=0,1,2,...

Set (X, Y,8) = (x*,y*,s")

and solve
0 A" | |AxP -,
A 0 O0]|Ay°"|=| -1
S 0 X|AsP — XSe
Calculate
" = min( 1, min — X, )
(04 P ,i:Axi<O Axip
dual . ) — Si
o, =min(l, min Asip)
and

dual

i, :(x+aE”Axp)T(s+ap AsP)/n

. H ]
Set centering parameter to solve 0 = ( %)J

0 A" 1 [[Ax —T,
A 0 0 ||AY |= -,
S 0 X°| As — X°S% — AxPAs’e + cue
Calculate
) k
o :lzx = min( 1, min L)

i:AXi<O AXI
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k

dual . .
o = min( 1, min
max Asi<0 AS,

)
n —1

a. =min(lng.)

dual
)

dual .
. = min(1,7 Ol o
set
X =X+, P A
(Y8 = (v*,5) + o M (ay, As)
end(for).

The above algorithm, can be demonstrated by solving the same

preceding example:

The solution of the example:

Iterationl
0 A" || AxP -,
A 0 0]Ay"|=| -
S 0 X/ As” — XSe
where

2
n=| 4
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Therefor, from eq.(4.1) we get

0 0 0 1 2 -210 0]ax?]| [-8
0 0 0 4 -2 3 01 0/ax, | |-8
0 0 0 -2 6 1 00 1[AxP| |5
1 4 -2 0 0 0 00 0fay"| |-2
2 -2 6 0 0 0 0 0 0aAy,’|=|-4
23 1 0 0 0 00 0fay’| |3
1 0 0 0 0 0 1 00fas?| |1
0 1 0 0 0 0 01 0fasP?| |-1
(0 0 1 0 0 0 00 1]aAs?| [-1

By solving the above system we get:

A, | [-0.0651]
Ax,” | |-0.0104
Ax," | |-0.0556
Ay,” | |-0.0659
Ay," |=|-0.0558
Ay,” | | 0.0035

As” | |-0.9985
As,” | |—0.9998
As,” | [—0.9996

Calculate o , )" and H,

pri . =X
= min( 1, min
o (1, A <0 Ax P )
|

pri
a, =1
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“& — min( 1, min — i )
dy "ias<0 Ag. P
|

dual _

o, =1

dual

p
pAs)

B (x+a2”Axp)T(s+a

Hy n

4, =0.0030

s .
o= (7) set centering parameter

o =0.0909
Solve
0 A" | |[Ax -,
A 0 0 |Ay|= -,
S 0 X°|As| |-X°S’—AxPAsPe+oue
where
—0.9962
— X°S% — AxPAsPe + oue = | —0.9987
—0.9899
0 0 0 1 2 -2100[a] [ -8 ]
0 0 0 4 -2 3 01 0]Ax -8
0 0 0 -2 6 1 0 0 I|AXx 5
1 4 -2 0 0 0 0 0 0fAy -2
2 =2 6 0 0 0 0 0 0fAy, -4
-23 1 0 0 0 0 0 0fAy, 3
I 0 0 0 0 O 1 0 0fAs —0.9962
0O 1 O 0 0 0 01 0fA4s, —0.9987
0 0 1 0 0 0 00 1]As,| |-09899
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By solving the above system we get:

AX | [-0.0054]
AX, | |—0.0156
AX, —0.0580
Ay, 0.0067
Ay, |=| 0.0005
AY, 0.0003
As, —0.9983
As, —0.9989
| Asy | | —0.9988
Calculate

pri . . - Xl
Q... = min(l, min —)
max A% <0 AX.

1

pri
Clina ™|

ax
chosen

17 =0.95

o =min(Ling,)

al =095
dual . . =S
amax - mln( 1’ |r£151|1;10 Asi )
dual
=

dual dual

. = min(l,namax)

dual

Ol =0.95
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set

X' = x4+ g AX
X, =0.994¢

X, =0.989¢

X; =0.964¢

dual

(Y, s = (v s+, (Ay,A9)
(Y.,5,) = (1.0063,0.9986 )
(Y.,s:) = (0.0006,0.9978)
(Y.,s.) = (0.0007 ,0.9988 )

Iteration2

Now we obtain new X and S

09948 0 0
X'=[ 0 09899 0
0 0 09649

0.9986 0 0
S'=| 0 0.9978 0
0 0 0.9988
where
—0.0004
r, = —0.0005

—-0.6789
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7.8602
r.=| 6.9623
~5.9635

—0.9934
—X'S'e=[-0.9877
-0.9796

Therefor, from eq.(4.1) we get

0 0 0 I 2 =2
0 0 0 4 -2 3
0 0 -2 6 1
1 4 -2 0 0 O
2 -2 6 0 0 O
-2 3 1 0 0 O
09986 0 0 0 0 O
0 09978 0 0 0 O
0 0 09988 0 0 O

By solving the above system we get:

Ax,” | [-0.0646]
Ax,” | | =0.0101
Ax," | | —0.0545
Ay,” | |-0.0329
Ay,P |=| —0.0457
Ay,” | | 0.0032
As,” | |-0.9983
As,” | [—0.9994
As,” | [ —=0.9993]

Calculate " , )" and 4,

P — min( 1, min — X )
(04 P ’ i:AX <0 AX. P
|

S O©O o o =

0.9948
0

S O o o = O

0
0.9899
0

o O O o = O O

0

0.9649]

[—7.8602)]
~6.9623
59635
0.0004
0.0005
0.6789
—0.9934
—0.9877

| -0.9796]
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Hybrid Method

pri

o, =1
dual . .=
o, =min(l, min As’ )
dual
o, =1

ri dual
78 :(X+a2 AXp)T(S—i—ap ASp)A

4, = 0.0026

1=03311

H 3 :
o=( %) set centering parameter

o =0.0000
Solve
0 A" 1 |[Ax -,
0 0 ||Ay|= -,
S 0 X°|As| |-x""e—AxPAsPe+oue
where

-0.9961
— X"S%e —AxPAsPe+oe =| —0.9985
—0.9896
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0 0 0 1 2 -2 1 0 0 Tax] [-7.8602]
0 0 0 4 -2 3 0 1 0 |Ax, | |-69623
0 0 2 6 1 0 0 1| ax | | 59635
1 4 -2 0 0 0 0 0 0 |Ay,| | 00004
2 -2 6 0 0 0 0 0 0 |4y, |=| 00005
2 3 1 0 0 0 0 0 0 |ay,| | 06789
0.9986 0 0 0 0 0 09948 0 0 |as | [-09961
0 09978 0 0 0 0 0 0989 0 |As,| |-09985
0 0 09988 0 0 0 0 0 09649 As, | |-0.9896]

By solving the above system we get:

AX, | [-0.0052]
AX, | |-0.0153
AX, | |-0.0579
Ay, 0.0060
Ay, |=| 0.0004
Ay, 0.0002
As, | | -0.9981
AS, —0.9987
| As, | [-0.9986
Calculate

pri . =X
= min(l, min —-
K max ( i:AX <0 AX. )
|
pri

amax = 1
pri . pri
. = mln(l,nak )
pri
a. =095

dual . . - Sl
o ... = min(l, min —-)

max i:AS;<0 AS.

I

dual _

amax =1
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dual dual

. = min( 1,7 amax)
o =095
set

X = x* 4 OZEH AX

X, =0.994%
X, =0.989¢
X, =0.964¢

dual

(Vs =(y )+ g (BY,09)
(Y.,s,) = (1.0060,0.9983)

(Y.,5.) = (0.0010,0.9975)
(y.,s.) = (0.0006 ,0.9986 )

The above procedure, will be repeated for 4 more different values of

& |, satisfying the condition (2.6b), having the final results:

%1 T .
X, 1

X3 1

Y, 1.0023
y, [=]0.0019
Y, 0.0007
S, 0.9795
S, 0.9793
1S5 | [0.9797]
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Computation Results:

Twenty problems have been tested for a comparison study.
The number of iterations have been considered as a measurement of

the efficiency to all methods, as shown in the following table(1).

Number of iteration
Problem | Size
number | nxm Path Path Step Length Hybrid
Following | Modification | Modification | Modification
\ Ox ¢ 1 AR q 1
Y Ax Y \RY% VY A0 1
Y 3Ix4 yo V) A °
¢ Ex Y )¢ A0 ¢
° Yo Y. Yo q 1
1 Ax© AR Y1 Yo 1
\s x4 Y¢ YA AR 1
A AxA Yy ARY% A0 °
q Yo xA Yo Y. Y ¢ Y
Yo Ax Y YA 'Y ! o
AR YxY Y4 Yo A0 o
'Y Ax ¢ A\l Y1 AR 1
'Y axyY AR ARY% VY \¢
V¢ Ax A Yy YA V'Y \¢
Yo YxV Yy YA VY 1
Y1 T ARY 'Y A0 o
ARY% oxo0 1 AR A ¢
YA Ex ¢ Yo AR \4 °
14 Tx ¢ Y4 V¢ A °
A Ax Y)Y ARY% AR \¢
Table(1)

Comparison of the Results for the Interior-Point method and their

modifications
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(3.1) The Path Modification:

Since the path in primal-dual algorithms plays an effective rule in

solving the problem [15], we suggested a modification on the path © based
on the nonnegative condition (2.4), in which we parametrized it by a scalar

r > 0 and each point (X,,Y,,S,) € P solve the following system:

A'y+s=c 3.1)
Ax=D (3.2)
XiSi =7 (3.3)
(X,5) >0 34

The above conditions differ from KKT condition (1.11) only in the
term Tt on the right-hand-side of (3.3). Instead of the complementarity
condition (1.11c), we require that the pairwise products x; s; have the same
value for all indices i. Therefore, another way of defining © is to use the

mapping F defined in (2.4)-(2.5) as:

0
F(X,Y:,S)=1|0

T

’ (Xr’sz’)>0 (35)

e

Equations (3.1)-(3.4) approximate (1.11) more and more closely as
T goes to zero. If O converges to anything as 7z — 0, it must converge to a
primal-dual solution of the linear program[15]. This path thus guides us to a
solution along a route that solutions keeping all x and s components strictly
positive and decreasing the pairwise products X;S;, (i =12,...,N) to

Z€ro.
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To describe this, we introduce a parameter o € [0,1] and a measurement

H defined by [19]

|
1 3.6
nz X.S. n (3.6)
i=1

which measure the average value of the pairwise products X;S; , by writing

T =ou and applying Newton's method to the system (3.5) (which is a

modification to (2.7)), we obtain

0 A" I |[Ax] [0
A 0 O0]Ay|=|0 (3.7)
S 0 X|As — XSe + oue

and, we call this modification as ““path modification ™" .
To demonstrate this modification, we solve the same example

presented in chapter 2, by the following modified algorithm:

Given (x,y°,s")eF’

For kK =0,1,2,...
Solve
0 A" I | Ax* 0
A 0 0 ||AY*|= 0
S 0 X" As" — X*S*e+oue

where
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o € [0,1]

and

= (x)'s*/n

Set

(Xk+1, yk+1,sk+1) — (Xk, yk,Sk)+ ak(AXk,Ayk,ASk)
choosing @ such that (X*"',s*")>0

end(for).

The solution of the example:

Iteration 1
Let
1 0 O 1 0 O 1
X*=l0 1 0] , S"={0 1 0 and y’ =10
0 0 1 0 0 1 0
where
0.0033
oue =|0.0033
0.0033
—0.9966
- X"S’%+oue =|-0.9966
—0.9966

Therefor, from eq.(3.7) we get
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0 0 0 1 2 -21 0 0] 0
0 0 0 4 -2 3 01 0|Ax 0
0 0 0 -2 6 1 00 1]Ax 0
I 4 -2 0 0 0 00 0fay, 0
2 -2 6 0 0 0 00 0lAy,|=| o0
2 3 1 0 0 0 00 0fay, 0
I 0 0 0 0 0 1 0 0fAs | |-0996
0 1 0 0 0 0 01 0fAs,| |-09966
0 0 1 0 0 0 00 1]aAs,| [-09966]

By solving the above system we get:

‘M1T 0
AX, 0

AX, 0

Ay, | | 00399
Ay, [=| 00299
Ay, | | 00001
As, | |-09970
ss, | |-0.9970
As, | [-0.9970)

choose «, =0.01

(x',y',8") =(x",y’,8") + a, (AX’,Ay’, As”)

%1 i -
X, 1

X3 1

Y, 1.0003
Yy, |=]0.0002
Y, 0.0002
S, 0.9900
S, 0.9900
| S; | [0.9900 |
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Iteration 2
Now we obtain new X and S
1 0 0
X'=l0 1 0
0 0 1
[0.9900 0 0
S'=| 0 0.9900 0
| 0 0 0.9900
where
0.0032
oue =|0.0032
0.0032
—0.9867
—~ X'S'e+oue = -0.9867
—0.9867
Therefor, from eq.(3.7) we get
0 0 0 1 2 -2 1 0 0fAx] [ 0 ]
0 0 0 4 -2 3 01 0fAx 0
0 0 0 -2 6 1 0 0 1]Ax 0
1 4 -2 0 0 0 0 0 0] Ay, 0
2 -2 6 0 0 0 0 0 0]Ay, 0
-2 3 1 0 0 0 0 0 O} Ay, 0
0.9900 0 0 0 0 0 1 0 O} As, —-0.9867
0 0.9900 0 0 0 0 0 1 0]As, —-0.9867
0 0 09900 O 0 0 0 0 1]As, | —0.9867 |

By solving the above system we get:
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AX 0
AX, 0

X, 0

Ay, | | 00395
A, |={ 002960
Ay, | | 00001
ss, | |-09870
As, | |-09870
As, | |-09870

Since we get (X,Y,S) >0 in the last iteration, then «, = ¢,

(x*,y%,87)=(x",y',s" ) +a,(AX',Ay', As")

X, 1

X, 1

X, 1

Y, 1.0006
Yy, |=]0.0004
A 0.0002
S 0.9801
S, 0.9801
' S; | [0.9801]

The above procedure, will be repeated for 10 more different values of

o , satisfying the condition (2.6b), having the final results:

X 1
X, 1
X, 1
2 1.0011
y, |=10.0015
Y, 0.0003
S, 0.9791
S, 0.9791
s3] [0.9791]
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(3.2) The Feasibility Modification:

Since the choices of parameter 0 and step length @, are crucial to

the performance of the method. Techniques for controlling these parameters,
directly and indirectly, give rise to a wide variety of method (see [13]). In
the original algorithm and its modification, we have assumed that the

starting point is strictly feasible and in particular it satisfies the linear
equations Ax" =b , A"y’ +s’ =c.

Since in most problems, however, a strictly feasible starting points are
difficult to find, while infeasible-interior-point require only that the
components of X’and S” be strictly positive. We modified the search
direction so that it improves feasibility at each iteration, but this requirement
entails only a slight change to equations (3.1) and (3.2). Let (x",y ,s")

be an approximate solution to system (3.1)-(3.4) we define the residuals for

the two linear equations as:

r,=Ax" —b r=A"y +s" —c (3.8)

b

then the modified system become:

0 A" I [Ax] [-r,
S 0 X | As — XSe + oue

The search direction is still a Newton step toward the point
(X,,Y,,S,)e p. It tries to correct the infeasibility in the equality

constraints in a single step. If a full step is taken at any iteration (that
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is,a, =1 for some k), the residuals Iy and I become zero, and all
subsequent iterates remain strictly feasible.

Now, to demonstrate this modification, we solve the same example, by the
following modified algorithm:

Given (XO, y°,S°) eF’

for k=01.2,...

and

r,=Ax-b r=A'y+s—c
Solve

0 A" I | AX* -

A 0 0 |Ay|= -,

S¥ 0 X¥|As“| |-X*S*e+oue

Where o €[0]1] and g, = (x)Ts*/n
Set

(X, y s = (XK, ¥, 6) + o (AXS, AYE, AsY)
choosing @, such that (X*"',s*")>0

end(for).

The solution of the example:

Iteration 1
Let
1 0 O 1 00
S°=10 1 0 X°=0 1 0
0 0 1 0 01
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8
r.=|7
-6
where
0.0033
oue =|0.0033
0.0033
-1
~X°S%=|-1
-1
—0.9967
— X’S% + oue =| —0.9967
—0.9967

Therefor, from eq.(3.9) we get

0 0 0 1 2 -210 0fax -8
0 0 0 4 -2 3 0 1 0]Ax -7
0 0 0 -2 6 1 0 0 1]Ax 6
I 4 -2 0 0 0 0 0 0fAay, 0
2 -2 6 0 0 0 0 0 OfAy,|=| 0
-2 3 1 0 0 0 0 0 0fay, 7
1 0 0 0 0 0 1 0 0As | |-0.997
0 1 0 0 0 0 0 1 0fAs,| |-09967
0 0 1 0 0 0 0 0 1]As,| [-0.997]
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By solving the above system we get:

A [-0.0110
A, | [-0.0087
A | |-00087
Ay, | | 00328
Ay, |=| 00204
Ay, || 00025
As, | |—09881
ss, | |—09901
2s, | [-09901]

choose «a, =0.01

(x',y',s) =(x",y’,8") + a,(AX’,Ay’, As")

x| [0.9998]
X, | |0.9999
X, | |0.9999
y, | |1.0003
y, | =|0.0002
y, | |0.0002
s, | 10.9901
s, | 10.9901
s, | 10.9901 |
Iteration 2

Now we obtain new X and S

0.9998 0 0 09901 0 0
X'=| 0 0.9999 0 : S'=| 0 09901 0
0 0 0.9999 0 0 0.9901

where
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~0.0001
r, =| —0.0001
—0.6989

7.9983
r.=| 6.8911
—-5.9381

—0.9899
—~ X'S'e =|-0.9899
—0.9899

0.0032
oue =|0.0032
0.0032

~0.9867
~ X'S'e + oue =|-0.9861
~0.9861

Therefor, from eq.(3.9) we get

0 0 o 1 2 -2 1 0 0 JAx ]| [-7.9983]
0 0 0 4 -2 3 0 1 0 |A| |-6.8911
0 0 0 -2 6 1 0 0 1 | A | | 59381
1 4 -2 0 0 0 0 0 0 |aAy, | | 00001
2 -2 6 0 0 0 0 0 0 |Ay,|=| 0.0001
-2 3 1 0 0 0 0 0 0 |Ay,| | —6.988
09901 0 0 0 0 0 09998 0 0 |As, | |-09867
0 0991 0 0 0 0 0 09999 0 |aAs,| |-09861
0 0 09901 0 0 0 0 0 09999 As, | |—0.9861]
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By solving the above system we get:

AX, | [-0.0173]
AX, | |-0.0086
AX, | |—0.0086
Ay, 0.0326
Ay, |=| 0.0210
Ay, 0.0036
As, | |-0.9822
As, | |-0.9898
| As, | | —0.9898 |

Since we get (X,Y,S) >0 a, = a, in the last iteration, then

(x2,y%,87)=(x",y',s" ) +a,(Ax',Ay', As")

X, | [0.9999]
X, | 0.9998
X, | |0.9998
y, | [1.0006
y, |=|0.0004
y; | |0.0002
s, | |0.9879
s, | |0.9895
s, | ]0.9895]

The above procedure, will be repeated for 5 more different values of

a . , satisfying the condition (2.6b), having the final results:
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X, | [0.9996]
X, | 0.9998
X, | |0.9998
y, | [1.0009
y, | =10.0080
y; | |0.0004
s, | [0.9790
s, | 0.9789
s, | [0.9789




Conclusions and Futue work

From the computational results of this work, we could have the
following conclusions:
1. The path modification takes less number of iterations than the path-
following method, because of the path in primal-dual algorithms plays
an effective rule in solving the problem.
2. The feasibility modification takes less number of iterations than the
path-following method and the predictor phase, because of the choices

of the parameter as well as the positivity of x’ o, and step lengthe,

and s’.

3. The hybrid method shows less number of iterations than the path-
following method, path modification and the feasibility modification,
because of the way of calculating the parameter o, as well as the change

of the right-hand side in (4.1) to be as in (4.4).

For the future work, we are suggested the following:
1. Comparision study between our hybrid method and the simplex method
for different structure of linear programming problems.
2. Studying the convergence theory of our hybrid method.
3. Reformulation of the linear systems, especially when the coefficient
matrix usually large and sparse, in which implementation of the algorithms
to be easier than the original form.
4. Extended our algorithms to a wider class of problems, such as convex

quadratic programming problems.
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Introduction

The development of linear programming started about sixty years ago
when G.B. Dantzig and others formulated the simple method (see [2]),
in which various surveys confirm that it is still the most widely
technique used in practice. Its fields of application range from oil
refinery management to hospital diet planning; problems with thousands of
variables and constraints are solved routinely by sophisticated commercial
codes.



Path-Following
Method

In the 1980s it was discovered that many large linear programs
may be solved efficiently by formulating them as nonlinear problems and
solving them with various modifications of nonlinear algorithms such as
Newton's method [11,17,23]. One characteristic of these methods was
that they require all iterates to satisfy the inequality constraints in
the problem strictly, so they soon became known as interior-point

methods.



Modifications

In [15, 8, 18, 19], several notes had been suggested, some ideas
concerning the path solution and the step length, hopping better
performance.

In this chapter, we discussed two modifications to the interior
method which have been presented in chapter two. The first modification,
concern on the path solution, called path modification, while the second

modification, concern the feasibility solution, called feasibility modification.



Hybrid Method

In this chapter, we are presenting a hybrid method, based on the
results of path and feasibility solution modifications, discussed in chapter
three, by combining these two modifications together, we call it as
““hybrid™™ method.
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