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ABSTRACT 

 

The objective of this work may be oriented towards tow aspects. 

The first objective is to study fuzzy set theory, as well as some of its basic 

algebraic properties and theoretical results. 

The second objective is to study D-metric space and M-fuzzy metric spaces, 

and some of their properties. Also, the objective includes the study of complete fuzzy 

metric space by using M-fuzzy distance function. 
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FUTURE WORK 

 

The following problems may be recommended as open problems 

for future work: 

1. Study the completeness of D-metric spaces, in general, and the 

completeness of fuzzy D-metric spaces, in particular. 

2. Studying the compactness of M-fuzzy metric spaces. 

3. Study other fixed point theorems of M-fuzzy metric spaces, such as 

Schuder fixed point theorem, Sadoviski fixed point theorem, etc. 

4. Introducing the M-fuzzy topological spaces and its separation 

axioms. 
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INTRODUCTION 

 

The concept of fuzzy sets was introduced initially by Zadeh in 

1965. Since then, this concept is used in topology and some branches of 

analysis, many authors have expensively developed the theory of fuzzy 

sets and application, [2]. 

We start with the obvious definition of fuzzy sets “A fuzzy set, 

termed by A% , in a space of objects X is a class of events with a 

continuous grade of membership and is characterized by a membership 

function, termed as Aµ % , which associates for each x ∈ X a real number 

in the interval [0, 1]”. The value of A (x)µ %  represents of grade of 

membership of x in A% , i.e., denotes the degree to which an element or 

event x may be a member of A%  or belong to A% , [18]. 

The characteristic function Aµ % , in fact, may be viewed as a 

weighting function that reflects the ambiguity in a set. As the 

membership value approaches unity, the grade of membership of an 

event in A%  becomes higher. For example, A (x)µ %  = 1 indicates that the 

event x is strictly contained in the set A% , and on the other hand,  

A (x)µ %  = 0 indicates that x does not belong to A% . Any intermediate 

value would reflects the degree on which x could be a member of A% , 

[4]. 
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Classical examples, such as the class of animals, the class of 

beautiful women or the class of tall men, or large streets, etc. are all 

good examples that explain the definition of fuzzy sets, [18]. 

Moreover, every day life, we are used too properties which can 

not be dealt with satisfactorily on a simple “yes” or “no” basis. Whether 

these properties perhaps best indicated by a shade of gray, rather than by 

the black or white. Assigning each individual in a population on a “yes” 

or “no” value, as is done in ordinary set theory is not an adequate way of 

dealing with properties of this type, [2]. 

Historically, the general accepted birth date of the theory of fuzzy 

sets back to 1965, when the first article entitled “fuzzy sets” by L. A. 

Zadeh appeared in the journal of information and control. Also, the term 

“fuzzy” was introduced and coined by Zadeh for the first time in this 

paper, [4]. 

Zadeh’s original definition of fuzzy sets is to consider a class of 

objects with a continuum of grades of membership, such a set is 

characterized by a membership (characteristic) function which assigns to 

each object a grade of membership value ranging between 0 and 1. 

Chang, C. L. in 1968 used the fuzzy set theory for defining and 

introducing fuzzy topological spaces, while Wong, C. K. in 1973, 

discussed the covering properties of fuzzy topological spaces, [12]. 

Ercey, M. A. in 1979, studied fuzzy metric spaces and its 

connection with statistical metric spaces, [4]. 
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Ming P. P. and Ming L. Y. in 1980, used fuzzy topology to define 

neighborhood structure of fuzzy point and Moore-Smith convergence, 

[4]. 

Zike Deng in 1982, studied the fuzzy point and discussed the 

fuzzy metric spaces with the metric defined between two fuzzy points, 

[4]. 

The main objective of his work is to study and prove the 

completeness of fuzzy metric spaces using M-fuzzy metric spaces. 

This thesis consists of three chapters. 

In chapter one, we introduce some of the basic necessary 

concepts, in which basic definitions and algebraic properties are given 

with some illustrative examples. An extension principle has been used to 

generalize crisp mathematical concepts to fuzzy mathematical concepts. 

As well as the introduction of α-level sets has been considered as an 

intermediate set between fuzzy sets and ordinary sets. At the end of this 

chapter, we discusses fuzzy topology, fuzzy metric spaces and its 

completeness. 

In chapter two, a brief introduction to the theory of M-fuzzy 

metric spaces is given in order to make this thesis, as possible of self 

contents. This chapter consists of three sections. In section 2.1, we 

introduce some basic definitions related to this subject, including the 

definition of T-norms and M-fuzzy metric spaces using functions of 

three tuples. In section 2.2, we present the concept of D-metric spaces, 

which has its connectivity with M-fuzzy metric spaces, in which the 

distance in M-fuzzy metric spaces is defined using the D-function. Also, 
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in this section we give the proof of some important results. In section 

2.3, additional results are given with their proofs. 

In chapter three, we discuss the completeness of M-fuzzy metric 

spaces. This chapter consists of two sections. In section 3.1, additional 

theoretical study to the M-fuzzy metric spaces is given using functions 

of four tuples where it is noticeable that this section includes some new 

results to the best of our knowledge. Also, this section consists of some 

well selected examples, with their solution, which illustrate the M-fuzzy 

metric spaces. Finally, section 3.2 presents the study of the completeness 

of M-fuzzy metric spaces. 
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CHAPTER THREE 

COMPLETENESS OF M-FUZZY METRIC SPACES 

 

The purpose of this chapter is to study the completeness of M-

fuzzy metric spaces and some basic concepts in this spaces, which are 

related to the M-convergence of such metric spaces. 

For substantially understanding of the idea of M-fuzzy metric 

spaces, we find it is convenient to present some special examples with 

details.  

George and Veermamani [5], Kramosil and Michalek have 

introduced the concept of M-fuzzy topological spaces induced by M-

fuzzy metric spaces which have very important applications in quantum 

practical physics particularly in connections which were given and 

studied by El-Naschie. Many authors [7] have proved the fixed point 

theorem in M-fuzzy metric spaces and upon such generalization is the 

generalized metric space. He proved some results on fixed points for a 

self contractive mappings for M-complete and bounded M-metric 

spaces, [15]. 

Here, we obtain the following result, that is the topology 

generated by any M-fuzzy metric space is metrizable. We also show that 

if the M-fuzzy metric space is complete, then the generated topology is 

M-completely metrizable, [17]. 
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3.1 ADDITIONAL RESULTS IN M-FUZZY METRIC 

SPACES 

In this section, some additional important results related to  

M-fuzzy metric spaces are presented which are necessary for the 

completeness of M-fuzzy metric spaces. 

Now, recall that from chapter two, typical examples of continuous 

T-norm that may be used in this chapter, which are: 

a*b = ab 

a*b = min {a, b}. 

We start first with the following generalization of M-fuzzy metric 

spaces, i.e., generalization of definition (2.3.2). 

 

Definition (3.1.1), [15]: 

A 4-tuple (X, MD, *) is called M-fuzzy metric space if X is an 

arbitrary (nonempty) set, * is M-continuous T-norm and M is a fuzzy 

subset of X×X×X×(0, ∞), satisfying the following conditions for each  

x, y, z, a ∈ X and t, s > 0: 

1. MD(x, y, z, t) > 0. 

2. MD(x, y, z, t) = 1 if and only if x = y = z. 

3. MD(x, y, z, t) = MD(p{x, y, z}, t), where p is a permutation function 

of x, y and z. 

4. MD(x, y, a, t)*MD(a, z, z, s) ≤ MD(x, y, z, t + s). 

5. MD(x, y, z, *) : (0, ∞) → [0, 1] is a continuous. 
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Remark (3.1.1), [17]: 

Let (X, d) be a metric space and define a*b = ab, for every  

a, b ∈ [0, 1]. Let Md be the function defined on X×X×(0, ∞) by: 

Md(x, y, t) = 
t

t d(x, y)+
, t > 0 

Then (X, Md, *) is a M-fuzzy metric space and Md is called the M-fuzzy 

metric induced by d. 

 

The next definition may be considered as a generalization to the 

definitions (2.2.2) and (2.2.3) given in chapter two. 

 

Definition (3.1.2): 

Let (X, MD, *) be a M-fuzzy metric space and let A%  be a fuzzy 

subset of X. Let M denote the restriction of M to A% ×A% ×A% , then  

(A% , MD, *) is called M-fuzzy metric subspace of (X, MD, *). 

 

Definition (3.1.3): 

An M-fuzzy metric (X, MD, *) is said to be bounded (M-bounded) 

if there exists a positive real number k, such that: 

MD(x, y, z, t) ≤ k, for all x, y, z ∈ X, t > 0 

and in such a case k is said to be an M-bound for X. Moreover, if E ⊆ X, 

then E is said to be M-bounded subspace if there exists a positive real 

number n, such that MD(x, y, z, t) ≤ n, for all x, y, z ∈ E. 
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Definition (3.1.4), [15]: 

Let (X, MD, *) be a M-fuzzy metric space, M is said to be  

M-continuous function on X×X×X×(0, ∞) if: 

n
lim
→∞

MD(xn, yn, zn, tn) = MD(x, y, z, t) 

Whenever a sequence {(xn, yn, zn, tn)} in X ×X×X×(0, ∞) is M-converges 

to a point (x, y, z, t) ∈ X×X×X ×(0, ∞), i.e.,  

n
lim
→∞

xn = x, 
n
lim
→∞

yn = y, 
n
lim
→∞

zn = z,   and 

n
lim
→∞

MD(x, y, z, tn) = MD(x, y, z, t) 

 

The next lemma shows that condition (4) of definition (3.1.1) 

may be proved in all cases and thus this condition may be violated from 

the definition. 

 

Lemma (3.1.1): 

Let (X, MD, *) be an M-fuzzy metric space. Define  

MD : X×X×X×(0, ∞) → [0, 1], by: 

MD(x, y, z, t) = Md(x, y, t)*Md(y, z, t)*Md(z, x, t) 

Then: 

MD(x, y, z, t + s) ≥ MD(x, y, a, t)*MD(a, z, z, s) 

for every t, s > 0 and x, y, z ∈ X. 

Proof: 

Since: 



Chapter Three                                                       Completeness of M-Fuzzy Metric Spaces 

 42 

MD(x, y, z, t) = Md(x, y, t)*Md(y, z, t)*Md(z, x, t) 

Then: 

MD(x, y, a, t) = Md(x, y, t)*Md(y, a, t)*Md(a, x, t) ................... (3.1) 

and 

MD(a, z, z, s) = Md(a, z, s)*Md(z, z, s)*Md(z, a, s) ................... (3.2) 

and hence by definition (2.3.2): 

MD(x, y, z, t + s) = Md(x, y, t + s)*Md(y, z, t + s)*Md(z, x, t + s) 

≥ Md(x,y,t)*M d(y,a,t)*Md(a,z,s)*Md(z,a,s)*Md(a,x,t) 

= MD(x, y, a, t)*Md(a, z, s)*Md(z, a, s) (using eq.(3.1)) 

= MD(x, y, a, t)*Md(a, z, s)*Md(z, a, s)*1  

= MD(x, y, a, t)*Md(a, z, s)*1*Md(z, a, s) 

= MD(x, y, a, t)*Md(a, z, s)*Md(z, z, s)*Md(z, a, s) 

= MD(x, y, a, t)*MD(a, z, z, s)  

which follows from definition (3.1.1) and eq.(3.2).    � 

 

Among the main results in this work is the following two lemmas: 

 

Lemma (3.1.2): 

Let (X, D) be a D-Metric space, and let: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
, t > 0 

where: 
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D(x, y, z) = |x − y| + |y − z| + |z − x| 

Then (X, MD, *) is a fuzzy metric space. 

Proof: 

To prove that the conditions in definition (3.1.1) are satisfied for 

all x, y, z, a ∈ X. 

1. MD(x, y, z, t) > 0, since D(x, y, z) > 0, for all t > 0. 

2. If x = y = z, then |x − y| = 0, |y − z| = 0, |z − x| = 0, and hence  

MD(x, y, z, t)=1 

If M D(x, y, z, t) = 1, then |x − y| + |y − z| + |z − x| = 0, and therefore  

x = y = z. 

3. Since from the symmetry of the distance function d, 

D(x, y, z) = D(y, x, z) = … 

hence: 

MD(x, y, z, t) = MD(y, x, z, t) = … 

i.e., MD(x, y, z, t) = MD(p{x, y, z}, t) 

4. From lemma (2.3.1) and lemma (3.1.1), we have: 

MD(x, y, z, t + s) = Md(x, y, t + s)*Md(y, z, t +s)*Md(z, x, t + s) 

= 
t s

t s | x y |

+
+ + −

*
t s

t s | y z |

+
+ + −

*
t s

t s | z x |

+
+ + −

 

≥ 
t

t | x y |+ −
*

t

t | y a |+ −
*

s

s | a z |+ −
*

s

s | z a |+ −
* 

t

t | a x |+ −
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= 
t

t | x y | | y a | | a x |+ − + − + −
*

s

s | a z |+ −
*

s

s | z a |+ −
* 

s

s | z z |+ −
 

t s
*

t | x y | | y a | | a x | s | a z | | z z | | z a |
=

+ − + − + − + − + − + −
 

= MD(x, y, a, t)*MD(a, z, z, s), for every s > 0 

5. Let x, y, z ∈ X, t > 0 and let (x′n, y′n, z′n, t′n) be a sequence in  

X×X×X×(0, ∞) that M-converges to (x, y, z, t). 

Since (x′n, y′n, z′n, t′n) is a sequence in [0, 1], then there is a 

subsequence (xn, yn, zn, tn) of (x′n, y′n, z′n, t′n), such that the 

subsequence (xn, yn, zn, tn) M-converges to some point of [0, 1].  

Fix δ > 0, so that δ < 
t

2
, then there is n0 ∈  , such that: 

|tn − t| < δ, for every n ≥ n0 

So  

MD(xn, yn, zn, tn) ≥ MD(xn, yn, zn, t − δ) 

≥ MD(xn, yn, z, t − 
4

3

δ
)*M D(z, zn, zn, 

3

δ
) 

≥ MD(xn, z, y, t − 
5

3

δ
)*M D(y, yn, yn, 

3

δ
)*M D(z, zn, zn, 

3

δ
) 

≥ MD(z, y, x, t − 2δ)*M D(x, xn, xn, 
3

δ
)*M D(y, yn, yn, 

3

δ
)* 

MD(z, zn, zn, 
3

δ
) 
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and 

MD(x, y, z, t + 2δ) ≥ MD(x, y, z, tn + δ) 

≥ MD(x, y, zn, tn + 
2

3

δ
)*M D(zn, z, z, 

3

δ
) 

≥ MD(x,zn,yn,tn+
3

δ
)*M D(yn, y, y, 

3

δ
)*M D(zn, z, z, 

3

δ
) 

≥ MD(zn, yn, xn, tn)*M D(xn, x, x, 
3

δ
)* M D(yn, y, y, 

3

δ
)* 

MD(zn, z, z, 
3

δ
) 

for all n ≥ n0. Taking the limits as n → ∞, yields: 

n
lim
→∞

MD(xn, yn, zn, tn) ≥ MD(x, y, z, t − 2δ)*1*1*1  

= MD(x, y, z, t − 2δ) 

and 

MD(x, y, z, t + 2δ) ≥ 
n
lim
→∞

 MD(xn, yn, zn, tn)*1*1*1 

= 
n
lim
→∞

 MD(xn, yn, zn, tn) 

taking the limit as δ → 0, then 

n
lim
→∞

 MD(xn, yn, zn, tn) = MD(x, y, z, t) 

Therefore, MD is continuous on X×X×X×(0, ∞) 

Hence (X, MD, *) is M-fuzzy metric space.    � 

 

 



Chapter Three                                                       Completeness of M-Fuzzy Metric Spaces 

 46 

Lemma (3.1.3): 

Let X =   and let: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
, t > 0 

where: 

D(x, y, z) = max{|x − y|, |y − z|, |z − x|}, ∀ x, y, z ∈ X 

Then (X, MD, *) is M-fuzzy metric space. 

Proof: 

Since, by letting x, y, z, a ∈ X 

1. MD(x, y, z, t) = 
t

t max{| x y |,| y z |,| z x |}+ − − −
 > 0, ∀ t > 0 since |x − 

y| > 0, |y − z| > 0 and |z − x| > 0. 

2. If MD(x, y, z, t) = 
t

t max{| x y |,| y z |,| z x |}+ − − −
 = 1 then max{|x − 

y|, |y − z|, |z − x|} = 0 and hence x = y = z and also max{|x − y|, |y − 

z|, |z − x|} = 0 implies that MD(x, y, z, t) = 1.  

3. Clear that MD(x, y, z, t) = MD(y, x, z, t) = MD(z, x, y, t) = … 

4. MD(x, y, z, t + s) = 
t s

t s max{| x y |,| y z |,| z x |}

+
+ + − − −

 

= 
t s

t s max{| x y |}

+
+ + −

*
t s

t s max{| y z |}

+
+ + −

* 

t s

t s max{| z x |}

+
+ + −

 (by lemma (3.1.2)) 
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≥ 
t

t max{| x y |}+ −
*

t

t max{| y a |}+ −
*

s

s max{| a z |}+ −
* 

s

s max{| z a |}+ −
*

t

t max{| a x |}+ −
*1 

= 
t

t max{| x y |,| y a |,| a x |}+ − − −
*

s

s max{| a z |}+ −
* 

s

s max{| z a |}+ −
*

s

s max{| z z |}+ −
 (by lemma (3.1.3)) 

= 
t

t max{| x y |,| y a |,| a x |}+ − − −
* 

s

s max{| a z |,| z z |,| z a |}+ − − −
 

= MD(x, y, a, t)*MD(a, z, z, s), ∀ t, s > 0 

5. Let x, y, z ∈ X, t > 0 and let {(x′n, y′n, z′n, t′n)} be a sequence in  

X×X×X×(0, ∞) that M-converges to (x, y, z, t). 

Since {(x′n, y′n, z′n, t′n)} is a sequence in [0, 1], then there is a 

subsequence {(xn, yn, zn, tn)} of {(x ′n, y′n, z′n, t′n)}, such that the 

subsequence {(xn, yn, zn, tn)} M-converges to some point of [0, 1].  

Fix δ > 0, so that δ = 
t

2
, then there is n0 ∈  , such that: 

|tn − t| < δ, for every n ≥ n0 

So  

MD(xn, yn, zn, tn) ≥ MD(xn, yn, zn, t − δ) 

= 
n n n n n n

t

t max{| x y |,| y z |,| z x |}

− δ
− δ + − − −
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= 

n n n n n n

4
t

3 3
4

t max{| x y |,| y z |,| z x |}
3 3

δ− δ +

δ− δ + + − − −
 

≥ 

n n n n

4
t

3
4

t max{| x y |,| y z |,| z x |}
3

δ−

δ− + − − −
* 

n n n n

3

max{| z z |,| z z |,| z z |}
3

δ

δ + − − −
 

≥ 

n n n n

4
t

3
4

t max{| x y |,| y z |,| z x |}
3

δ−

δ− + − − −
* 

n n

3

max{| z z |,0,| z z |}
3

δ

δ + − −
 

≥ 

n n n n

4
t

3
4

t max{| x y |,| y z |,| z x |}
3

δ−

δ− + − − −
* 

n n

3

max{| z z |,0,| z z |}
3

δ

δ + − −
 

= 

n n n n

4
t

3
4

t max{| x y |,| y z |,| z x |}
3

δ−

δ− + − − −
* 

n

3

| z z |
3

δ

δ + −
 



Chapter Three                                                       Completeness of M-Fuzzy Metric Spaces 

 49 

≥ 

n n

5
t

3
5

t max{| x z |,| z y |,| y x |}
3

δ−

δ− + − − −
* 

n n n n

3

max{| y y |,| y y |,| y y |}
3

δ

δ + − − −
* 

n n n n

3

max{| z z |,| z z |,| z z |}
3

δ

δ + − − −
 

≥ 

n n

5
t

3
5

t max{| x z |,| z y |,| y x |}
3

δ−

δ− + − − −
* 

n

3

| y y |
3

δ

δ + −
*

n

3

| z z |
3

δ

δ + −
 

≥ 
t 2

t 2 max{| z y |,| y x |,| x z |}

− δ
− δ + − − −

* 

n n n n

3

max{| x x |,| x x |,| x x |}
3

δ

δ + − − −
* 

n n n n

3

max{| y y |,| y y |,| y y |}
3

δ

δ + − − −
* 

n n n n

3

max{| z z |,| z z |,| z z |}
3

δ

δ + − − −
 

and with δ = 
t

2
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≥ 

t
6

t
max{| z y |,| y x |,| x z |}

6
+ − − −

*

n

t
6

t
| x x |

6
+ −

* 

n

t
6

t
| y y |

6
+ −

* 

n

t
6

t
| z z |

6
+ −

 

and  

M(x, y, z, t + 2δ) ≥ M(x, y, z, tn + δ) 

≥ n

n

t

t max{| x y |,| y z |,| z x |}

+ δ
+ δ + − − −

 

≥ 
n

n n n

2
t

3
2

t max{| x y |,| y z |,| z x |}
3

δ+

δ+ + − − −
* 

n n

3

max{| z z |,| z z |,| z z |}
3

δ

δ + − − −
 

= 
n

n n n

2
t

3
2

t max{| x y |,| y z |,| z x |}
3

δ+

δ+ + − − −
*

n

3

| z z |
3

δ

δ + −
 



Chapter Three                                                       Completeness of M-Fuzzy Metric Spaces 

 51 

≥ 
n

n n n n n

t
3

t max{| x z |,| z y |,| y x |}
3

δ+

δ+ + − − −
* 

n n

3

max{| y y |,| y y |,| y y |}
3

δ

δ + − − −
* 

n n

3

max{| z z |,| z z |,| z z |}
3

δ

δ + − − −
 

= 
n

n n n n n

t
3

t max{| x z |,| z y |,| y x |}
3

δ+

δ+ + − − −
*

n

3

| y y |
3

δ

δ + −
* 

n

3

| z z |
3

δ

δ + −
 

≥ n

n n n n n n n

t

t max{| z y |,| y x |,| x z |}+ − − −
* 

n n

3

max{| x x |,| x x |,| x x |}
3

δ

δ + − − −
* 

n n

3

max{| y y |,| y y |,| y y |}
3

δ

δ + − − −
* 

n n

3

max{| z z |,| z z |,| z z |}
3

δ

δ + − − −
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≥ n

n n n n n n n

t

t max{| z y |,| y x |,| x z |}+ − − −
*

n

3

| x x |
3

δ

δ + −
* 

n

3

| y y |
3

δ

δ + −
* 

n

3

| z z |
3

δ

δ + −
 

≥ n

n n n n n n n

t

t max{| z y |,| y x |,| x z |}+ − − −
 

for all n ≥ n0 and by taking the limit as n → ∞, yields: 

n
lim
→∞

MD(xn, yn, zn, tn) ≥ MD(x, y, z, t − 2δ)*1*1*1 

≥ MD(x, y, z, t − 2δ) 

and 

MD(x, y, z, t + 2δ) ≥ 
n
lim
→∞

MD(xn, yn, zn, tn)*1*1*1 

= 
n
lim
→∞

MD(xn, yn, zn, tn) 

taking the limit as δ → 0, one can immediately deduce that: 

n
lim
→∞

MD(xn, yn, zn, tn) = MD(x, y, z, t) 

Therefore, MD is continuous on X×X×X×(0, ∞)  

Then (X, MD, *) is M-fuzzy metric space.    � 
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Remark (3.1.2), [15]: 

Let (X, MD, *) be M-fuzzy metric space, then one can prove that 

for every t > 0: 

MD(x, x, y, t) = MD(x, y, y, t) 

Which follows directly from lemma (2.2.1). 

 

Let (X, MD, *) be an M-fuzzy metric space, for t > 0 the M-open 

ball BM(x, r, t) with center x ∈ X and radius 0 < r < 1 is defined by: 

BM(x, r, t) = {y ∈ X : MD(x, y, y, t) > 1 − r} 

A subset A of X is called M-open set if for each x ∈ A, there 

exists t > 0 and 0 < r < 1, such that BM(x, r, t) ⊆ A. 

A sequence {xn} in X is M-converges to x ∈ X if and only if 

MD(x, x, xn, t) → 1 as n → ∞, for each t > 0 

A sequence {xn} is called M-Cauchy sequence if for each  

0 < ε < 1 and t > 0, there exists n0 ∈  , such that: 

MD(xn, xn, xm, t) > 1 − ε, ∀ n, m ≥ n0 

The M-fuzzy metric space (X, MD, *) is said to be M-complete if 

every M-Cauchy sequence is M-converges. 

 

The following result is given in [15] without details. Here, we 

give the details of the proof. 
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Lemma (3.1.4), [15]: 

Let (X, MD, *) be an M-fuzzy metric space. Then MD(x, y, z, t) is 

nondecreasing with respect to t, for all x, y, z ∈ X, where: 

MD(x, y, z, t) = Md(x, y, t)*Md(y, z, t)*Md(z, x, t) 

Proof: 

By definition (3.1.1)(4) , for each x, y, z, a ∈ X and t, s > 0, then 

from eq.(3.2): 

MD(a, z, z, s) = Md(a, z, s)*Md(z, a, s)*Md(z, z, s) 

hence 

MD(x, y, a, t)*MD(a, z, z, s) ≤ MD(x, y, z, t + s) 

Setting a = z, and then using lemma (2.3.1) and lemma (3.1.1): 

MD(x, y, z, t)*MD(z, z, z, s) ≤ MD(x, y, z, t + s) 

That is: 

MD(x, y, z, t + s) ≥ MD(x, y, z, t) 

Hence MD is nondecreasing.    � 

 

3.2 FUNDAMENTAL RESULTS 

Completeness of M-fuzzy metric spaces play an important role in 

the analysis of the subject.  

In the next lemma, we use the set Un, which is defined by: 

Un = {(x, y, z) ∈ X×X×X | MD(x, y, z, 
1

n
) > 1 − 

1

n
} 
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Lemma (3.2.1): 

Let {Un, n ∈ W}, be a sequence of subsets of X×X×X, such that 

U0 = X×X×X, where W is any index set and Un contains the diagonal 

(the identity relation is called the diagonal), and Un+1oUn+1oUn+1 ⊂ Un, ∀ 

n, where o denotes the composition of three uniformly M-continuous 

functions is a given uniformly M-continuous. Then there is a non-

negative real valued function d on X×X, such that: 

a. d(x, z) ≤ d(x, y) + d(y, z). 

b. Un ⊂ {(x, y) | d(x, y) < 2−n = f(x, y)} ⊆ Un−1, for each n ∈   and if 

each Un is symmetric (i.e., U = U−1). 

Then there is a pseudo-metric d satisfying condition (b). 

Proof: 

See [9].    � 

 

Definition (3.2.1), [9]: 

A family A is σ-locally finite (σ-discrete) if it is the union of a 

countable number of locally finite (respectively, discrete) subfamilies of 

A. 

 

The statement of the metrization theorem may be decomposed 

into the following two lemmas: 
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Lemma (3.2.2), [9]: 

If X is a uniform space which has a countable base, then X is 

pseudo-metrizable. 

Proof: 

If X has a uniformity U with countable base {Un}, then by the 

principle of mathematical induction, we can construct a subsequence 

{U n}, such that: 

1. Each Un is symmetric. 

2. UnoUnoUn ⊆ Un−1. 

3. Un ⊆ Vn, ∀ n ∈  . 

Hence {Un} form a base for U and hence by the metrization lemma 

(3.2.1), we have a uniform space (X, U) is a pseudo-metrizable.    � 

 

Lemma (3.2.3), [9]: 

A regular T1-space whose topology has a σ-locally finite base is 

metrizable. 

Proof: 

It will be shown that there is a countable family F of pseudo 

metrics on the space X, such that each member of F is M-continuous on 

X×X and such that for each closed subset A of X and each point x of  

X − A, there is member d of F such that d-distance from x to A is 

positive. 
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This will be prove metrizability, for the map of X into each of the 

pseudo metric spaces (X, d) will then be M-continuous, and since from 

the embedding lemma [9], and since if we let {(Xn, dn), n ∈ W} be a 

sequence of pseudo metric spaces, each of diameter at most one, and 

define d by: 

d(x, y) = n
n n n

n

2 d (x , y )−

∈
∑


 

Then d is a pseudo-metric for the Cartesian product and the pseudo-

metric topology is the product topology, [9]. 

The problem is then to construct the family F. 

Let B be a σ-locally finite base for the topology of X, and suppose that: 

B = ∪ {B n : n ∈ W} 

where each Bn is locally finite.  

For every ordered pair of integers m and n and for each member U of 

Bm, let U′ be the union of all members of Bn whose closures are 

contained in U. 

Because Bn is locally finite the closure of U′ is a subset of U and there is 

a M-continuous function fU on X to the unit interval which is one on U′ 

and zero on X − U. 

Hence letting (Since a regular space whose topology has a σ-locally 

finite base is normal), [9]: 

d(x, y) = 
m

U U
U B

f (x) f (y)
∈

−∑  
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The continuity of d on X×X is straight forward consequence of the local 

finiteness of Bm. 

Finally, let F be the family of pseudo-metrics so obtained, since pseudo-

metric was constructed for each ordered pair of integers, F is countable, 

if A is a closed subset of X and x ∈ X − A, then for some m and some U 

in Bm it is true that x ∈ U ⊂ X − A, and for some n and some V in Bn it 

is true that x ∈ V and V′ ⊂ U.  

For the pseudo-metric d constructed for this pair it is clear that the d-

distance from x to A is at least one.    � 

 

From the theory of topological spaces, the definition of Hausdorff 

topological space that; a topological space (X, τ) is called Hausdorff 

space if given distinct points x, y ∈ X, there exists an open sets U and V 

such that x ∈ U, y ∈ V and U ∩ V = ∅. 

The result may be generalized to fuzzy set theory (M-fuzzy 

topological spaces) using the properties of α-level sets depending on the 

relation between α-level sets (crisp sets) and fuzzy sets, where: 

A%  = 
[0,1]

Aα
α∈

αU  

which says that, if the α-level set Aα, ∀ α ∈ [0, 1] satisfy or have certain 

property, then the fuzzy set A%  has also that property. 

Now, if Aα, ∀ α ∈ [0, 1] is a Hausdorff space, then A%  is a fuzzy 

Hausdorff space. 
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Lemma (3.2.4), [17]: 

Let (X, MD, *) be a M-fuzzy metric space. Then τM is a Hausdorff 

topological space and for each x ∈ X, {B(x, 1/n, 1/n) | n ∈  } is a 

neighborhood base at x for the topology τM. 

 

From the above lemma one can note that every fuzzy metric space 

indeed is a fuzzy Hausdorff space. 

 

Theorem (3.2.1): 

Let (X, MD, *) be an M-fuzzy metric space, and let: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
, t > 0 

where: 

D(x, y, z) = | x y | | y z | | z x |− + − + −  

then (X, τM) is metrizable fuzzy topological space. 

Proof: 

For each n ∈  , define: 

Un = {(x, y, z) ∈ X×X×X | MD(x, y, z, 1/n) > 1 − 
1

n
} 

where: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
 

= 

1
n

1
| x y | | y z | | z x |

n
+ − + − + −
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It is sufficient to prove that the sequence {Un} is a base for a 

uniformity U on X, whose induced topology coincides with τM. 

First, for each n ∈  , to prove that: 

{(x, x, x) | x ∈ X} ⊆ Un, Un+1 ⊆ Un and Un = 1
nU−  

Since: 

MD(x, x, x, t) = 
t

t | x x | | x x | | x x |+ − + − + −
 

= 
t

t
 = 1 

Hence MD ≥ 1 and therefore {(x, x, x) | x ∈ X} ⊆ Un, i.e., the diagonal is 

contained in Un. 

Now, to prove that Un+1 ⊆ Un, ∀ n ∈  , and since n + 1 > n, 

hence 
1

n 1+
 < 

1

n
 and so: 

1 − 
1

n 1+
 > 1 − 

1

n
 

Therefore Un+1 ⊆ Un and Un = 1
nU−  

If U = U−1, then U is called symmetric. 

On the other hand, for each n ∈  , there is, by the M-continuity 

of *, m ∈   such that m > 3n. Hence: 

1

m
 < 

1

3n
 

and with * to be the usual product, gives: 
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1 1 1
1 * 1 * 1

m m m
     − − −          

 = 
1 1 1

1 1 1
m m m

     − − −          
 

< 
1 1 1

1 1 1
3n 3n 3n

     − − −          
 

< 
1 1 1

1 1 1
n n n

     − − −          
 

< 
1

1
n

− , ∀ n ∈   

Therefore UmoUmoUm ⊆ Un (by lemma (3.2.2)) 

Indeed, let (x, y) ∈ Um, (y, y) ∈ Um and (y, a) ∈ Um 

Since MD(x, y, z, *) is non decreasing (by lemma (3.1.4)) 

Then Md(x, a, 1/n) ≥ Md(x, a, 3/m), and so: 

Md(x, a, 1/n) ≥ Md(x, y, 1/m)* Md(y, y, 1/m)*Md(y, a, 1/m) 

 ≥ 

1 1 1
m m m* *

1 1 1
| x y | | y y | | y a |

m m m
+ − + − + −

 

 ≥ 

1 1
m m*

1 1
| x y | | y a |

m m
+ − + −

 

 ≥ 
1 1

1 * 1
m m

   − −      
 

 ≥ 
1

1
n

−  
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Therefore, (x, a) ∈ Un and thus {Un : n ∈  } is a base for a uniformity U 

on X. 

Since for each x ∈ X and each n ∈   

Un(x) = {y ∈X : MD(x, y, y, 1/n) > 
1

1
n

− } 

= B(x, 1/n, 1/n) 

Hence from lemma (3.2.4), that the fuzzy topology induced by U 

coincide with τM. 

By lemma (3.2.3), (X, τM) is a metrizable fuzzy topological space.    � 

 

Definition (3.2.2), [6]: 

An M-fuzzy metric space is said to be completely M-fuzzy 

metrizable if every M-fuzzy Cauchy sequence is M-fuzzy convergent. 

 

Theorem (3.2.2), [17]: 

Let (X, MD, *) be a M-complete fuzzy metric space, and let: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
, t > 0 

where: 

D(x, y, z) = | x y | | y z | | z x |− + − + −  

Then (X, τM) is M-completely fuzzy metrizable. 

Proof: 

It follows from the proof of theorem (3.2.1) that {Un : n ∈  } is 

a base for a uniformity U on X compatible with τM, where: 
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Un = {(x, y, y) ∈ X×X×X | MD(x, y, y, 1/n) > 
1

1
n

− , ∀ n ∈  } 

Then there is a metric d on X whose induced uniformity coincides with 

U. 

To show that the metric (X, d) is M-complete fuzzy metric spase, indeed 

given a fuzzy M-Cauchy sequence {xn} in (X, d) and to show that {xn} 

is a fuzzy M-Cauchy sequence in (X, MD, *) 

To do this, fix r, t with 0 < r < 1 and t > 0 and choose k ∈  , such that 

1

k
 ≤ min{t, r} 

Then, there is n0 ∈  , such that (xn, xn, xm) ∈ Uk, for every n, m ≥ n0 

Consequently, for each n, m ≥ n0 

MD(xn, xn, xm, t) ≥ MD(xn, xn, xm, 1/k) 

> 
1

1
k

−  ≥ 1 − r 

Hence {xn} is a fuzzy M-Cauchy sequence in the M-complete fuzzy 

metric space (X, MD, *) (by assumption) 

So it is M-convergent with respect to τM  

Hence, (X, d) is a M-complete metric space on X 

Therefore, (X, τM) is M-completely fuzzy metrizable (by definition  

(3.2.3).    � 
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Corollary (3.2.1), [17]: 

A topological space (X, τM) is M-completely metrizable if and 

only if it is a compatible complete fuzzy metric space, where: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
, t > 0 

and 

D(x, y, z) = | x y | | y z | | z x |− + − + −  

Proof: 

Suppose that (X, τ) is a M-completely metrizable space and let 

(X, d) be a M-complete metric space such that d is compatible with τ 

since one can prove that the induced fuzzy metric space (X, MD, *) is M-

complete if and only if the metric space (X, d) is M-complete, where: 

MD(x, y, z, t) = 
t

t D(x, y,z)+
, ∀ x, y, z, ∈ X, t ∈ (0, ∞) 

and it is compatible with t 

The converse follows immediately from theorem (3.2.2).    � 

 

Now, we are in a place to give the main result related to this work 

which is the M-completeness of fuzzy metric spaces. 
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Definition (3.2.3), [17]: 

An M-fuzzy metric space (X, MD, *) is called precompact if for 

each r, with 0 < r < 1 and each t > 0, there is a finite subset A of X, such 

that: 

X = 
a A

B(a, r, t)
∈
U  

In this case, M is called a precompact M-fuzzy metric space on X. 

 

Theorem (3.2.3), [17]: 

Compact M-fuzzy metric space is M-complete. 

Proof: 

Suppose that (X, MD, *) is a compact fuzzy metric space, for each 

r, with 0 < r < 1 and each t > 0 the open cover {B(x, r, t) : x ∈ X} of X, 

has a finite subcover by definition (1.4.5) 

Hence (X, MD, *) is precompact (by definition (3.2.3)) 

On the other hand, every M-Cauchy sequence {xn} in (X, M D, *) 

has a limit point y ∈ X 

Let {xn} be a fuzzy M-Cauchy sequence in (X, MD, *) having a limit 

point x ∈ X, then there is a subsequence {xkn} of {x n} that M-converges 

to y with respect to τM. 

Thus, given r, with 0 < r < 1 and t > 0, there is n0 ∈  , such that for 

each n ≥ n0 

MD(x, x, xkn, 
t

3
) > 1− s, where s > 0 
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Which satisfies (1 −s)*(1 − s) > 1 −r 

Also, there exists n1 ≥ k(n0), such that for each n, m ≥ n1 

MD(xn, xn, xm, 
t

3
) > 1 − s 

Therefore, for each n ≥ n1 

MD(x, x, xn, t) ≥ MD(x, x, xkn, 
t

3
)*M D(xkn, xn, xn, 

t

3
) 

≥ (1 − s)*(1 −s) 

> 1 − r 

Hence the fuzzy M-Cauchy sequence {xn} M-converges to x. 

Thus (X, MD, *) is an M-complete fuzzy metric space.    � 
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CHAPTER TWO 

M-FUZZY METRIC SPACES 

 

Fuzzy metric spaces are of great importance in studying fuzzy 

dynamical systems. Fuzzy metric spaces have been introduced by 

several mathematicians using different approaches, either by using α-

level sets, or by using fuzzy numbers, or by using the cooperation of 

fuzzy topological spaces, etc. 

This chapter consists of studying an important type of fuzzy 

metric spaces, which have not been studied commonly by other 

researchers, which is the M-fuzzy metric spaces and its relationship with 

fuzzy topological spaces. 

 

2.1 BASIC DEFINITIONS 

Following are some definitions and basic concepts in fuzzy metric 

spaces which are given by several literatures and further illustrated by 

Mary in 2004, [10]. 

 

Definition (2.1.1), [10]: 

A fuzzy set A%  is bounded if there exists a real number h > 0, such 

that: 

d*(x, y) < h, ∀ x, y ∈ A%  
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Now, some additional concepts are given for completeness in 

ordinary set theory which are necessary in this chapter to define M-fuzzy 

metric spaces. 

 

Definition (2.1.2), [11]: 

Let A be a non empty set. A binary operation * on A is a 

correspondence which associates to each ordered pair (a, b) of elements 

of A×A a unique element a*b of A. 

 

An alternative definition of binary operations is as follows: 

 

It is a mapping from the Cartesian product A×A to A, where the 

image of (a, b) is denoted by a*b. 

Three words in the above definition are given, which merit extra 

emphasis: 

(1) "each". If * is to be a binary operation on a set A, it must define a*b 

for every pair of elements a, b of A, i.e., there is no elements of A 

that can not be combined. 

(2) "unique". For each pair of elements a, b of A, there must be only one 

"answer" a*b when combining a and b. 

In particular, this says that if a1, a2, b1 and b2 ∈ A, a1 = a2 and 

b1 = b2, then a1*b1 = a2*b2. When the operation in the question has 

this "uniqueness" property, then the operation is said to be well 

defined. 
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(3) "of". For * to be a binary operation on A, a*b must be an element of 

A. Hence for every a, b ∈ A, a*b ∈ A. This property is usually called 

the closure property. 

Now, it is easy for the reader to recall some additional basic 

definitions in ordinary set theory, such as commutative, associative, 

identity element of an operation, etc. For symbolic definitions, let A be 

any nonempty set, then we let K(A) to denote the set of all one to one 

mappings of A onto itself. 

Some properties of K(A) are listed below which are needed later 

in chapter three. 

 

Properties of K(A) (2.1.1), [11]: 

Consider three mappings α : A → A, β : A → A and  

γ : A → A and let o be the usual composition of mappings, then: 

1. αoβ is an element of K(A), where o is the usual mapping composition. 

2. αo(βoγ) = (αoβ)oγ. 

3. There exists an element L (the identity mapping on A) in K(A), such 

that: 

αoL = Loα = α 

4. There exists an element α−1 for each α in K(A), such that: 

αoα−1 = α−1
oα = L 

In the present section, we will set also the basic fundamental 

definitions which are needed later on to study the completeness of fuzzy 

metric spaces. 
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We start first with some classical definitions and notions in fuzzy 

set theory, in general, and in fuzzy metric spaces, in particular. 

 

Definition (2.1.3), [14]: 

A two place function T : [0,1]×[0,1] → [0.1] is said to be T-

norm if it satisfy: 

(a) 0 ≤ T(a, b) ≤ 1. 

(b) T(c, d) ≥ T(a, b), for c ≥ a, d ≥ b. 

(c) T(a, b) = T(b, a). 

(d) T(1, 1) = 1 

(e) T(a, 1) > 0, for all a > 0. 

 

As an example of some of the most well known T-norms, are the 

following: 

For all a, b ∈ [0, 1] 

T1: T(a, b) = max {a + b − 1, 0}, i.e., T = max {sum −1, 0}. 

T2: T(a, b) = ab, i.e., T = product. 

T3: T(a, b) = min {a, b}, i.e., T = min. 

T4: T(a, b) = max {a, b}, i.e., T = max. 

T5: T(a, b) = a + b − ab, i.e., T =sum −product. 

T6: T(a, b) = min {a + b, 1}, i.e., T = min {sum, 1} 
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Definition (2.1.4), [17]: 

A binary operation * : [0, 1]×[0, 1] → [0, 1] is continuous  

T-norm if it satisfies the following conditions: 

1. * is associative and commutative. 

2. * is continuous mapping. 

3. a*1 = a, for all a ∈ [0, 1]. 

4. a*b ≤ c*d, whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1]. 

 

As an example of continuous T-norm which will be used next in 

chapter three is the usual product, which is given in [17] without details, 

here we give its details. 

 

Example (2.1.1): 

Consider the binary operation * : [0, 1]×[0, 1] → [0, 1] defined 

by a*b = ab, then it is clear that * is commutative and associative. 

Also, consider f(a, b) = a*b = ab, ∀ a, b ∈ [0, 1] 

Now, let A = [a, b] ⊆ [0, 1] 

Hence f−1(A) = [c, d] ⊆ [0, 1] 

Then a*b is continuous 

Also, it clear that a*1 = a, ∀ a ∈ [0, 1] 

Finally: 

a*b = ab, if  a ≤ c, b ≤ d 

≤ cd 

= c*d, (a, b, c, d ∈ [0, 1]) 

Therefore, a*b = ab is continuous T-norm. 
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2.2 D-METRIC SPACES 

It is important to mention that the definition of M-fuzzy metric 

spaces depends implicitly on another type of metric spaces, which is the 

so called D-metric spaces (as it will be seen next in chapter three), and 

hence because of this strong relationship between M-fuzzy metric spaces 

and D-metric spaces, we discuss in this section (for completion purpose) 

D-metric spaces, as well as, some of its important properties. 

We start with the following basic definition of D-metric spaces: 

 

Definition (2.2.1), [15]: 

Let X be a nonempty set. A generalized metric (or D-metric) on X 

is a function D : X×X×X  → 
+

 , that satisfies the following conditions 

for each x, y, z, a ∈ X: 

(1) D(x, y, z) ≥ 0. 

(2) D(x, y, z) = 0 if and only if x = y = z. 

(3) D(x, y, z) =D(p{x, y, z}), where p is the permutation function. 

(4) D(x, y, z) ≤ D(x, y, a) + D(a, z, z). 

The pair (X, D) is called the generalized metric or D-metric 

space. 

 

Immediate examples of such a function which are of great 

importance, are: 

(a) D(x, y, z)= max {d(x, y), d(y, z), d(z, x)}, where d is the ordinary 

metric on X. 
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(b) D(x, y, z) = d(x, y) + d(y, z) + d(z, x). 

(c) If X = n
 , then for every p ∈ +

  

D(x, y, z) = ( )1/ pp p p|| x y || || y z || || z x ||− + − + −  

(d) If X = +
 , then: 

D(x, y, z) = 
0,                      if  x y z

max{x, y,z},     otherwise 

= =



 

 

Definition (2.2.2), [1]: 

Let (X, D) be a D-metric space and let A ⊆ X. Let r denote the 

restriction of D to A×A×A, then (A, r) is called a D-metric subspace of 

(X, D). 

 

Definition (2.2.3), [1]: 

A D-metric space (X, D) is said to be D-bounded if there exists a 

positive real number N, such that D(x, y, z) ≤ N, for all x, y, z ∈ X. 

 

In such a case N is said to be the D-bound for X. Moreover, if  

E ⊆ X, then E is said to be D-bounded subspace of X if there exists a 

positive real number M, such that D(x, y, z) ≤ M, for all x, y, z ∈ E. 

 

Now, some illustrative examples are considered for completeness 

purpose. 
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Example (2.2.1), [15], [1]: 

Let X =   and D(x, y, z) = |x − y| + |y − z| + |z − x|, for all  

x, y, z ∈ X. Then (X, D) is unbounded D-metric space. 

Since if we let x, y, z, a ∈ X, then: 

i- D(x, y, z) = |x − y| + |y − z| + |z – x| > 0 if and only if x, y, z are 

distinct and if x = y = z then |x − y| + |y − z| + |z – x|  = 0 and hence  

D(x, y, z) = 0  

if D(x, y, z) = 0, then |x − y| + |y − z| + |z – x| = 0, which is true only 

if |x − y| = 0, |y − z| = 0, |z – x| = 0 and therefore x = y = z. 

ii-  D(x, y, z) = |x − y| + |y − z| + |z – x| 

= |x − z| + |z − y| + |y – x| 

= D(x, z, y) 

Similarly, D(x, y, z) = D(x, z, y) = D(z, x, y) = …  

i.e., D(x, y, z) = D(p{x, y, z}), where p is the permutation function. 

iii-  D(x, y, z) = |x − y| + |y − z| + |z – x| 

≤ |x − y| + |y − a| + |a − x| + |a − z| + |z − z| + |z − a| 

= D(x, y, a) + D(a, z, z) 

Therefore (X, D) is a D-metric space. 

But if there is no positive real number N, such that D(x, y, z) ≤ N, for all 

x, y, z ∈ X, then (X, D) is unbounded D-metric space. 
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Also, consider the following example which may be solved 

similarly as example (2.2.1). 

 

Example (2.2.2), [15], [1]: 

Let X =   and D(x, y, z) = max {|x − y|, |y − z|, |z − x|}, for all x, 

y, z ∈ X. Then (X, D) is unbounded D-metric space. 

 

The next lemma is given in [15] without details, we give here the 

details of the proof. 

 

Lemma (2.2.1): 

Let (X, D) be a D-metric space, then D(x, x, y) = D(x, y, y). 

Proof: 

(i) D(x, y, z) ≤ D(x, y, a) + D(a, z, z) (by definition) 

By substituting x instead of y and y instead of z, gives: 

D(x, x, y) ≤ D(x, x, a) + D(a, y, y), and if a = x 

≤ D(x, x, x) + D(x, y, y) 

and since D(x, y, z) = 0 if and only if x = y = z, then D(x, x, x) = 0 

Therefore, D(x, x, y) ≤ D(x, y, y) 

(ii) Similarly, as in (i) 

D(x, y, y) = D(y, y, x) 

≤ D(y, y, a)+D(a, x, x)  

≤ D(y, y, y) + D(y, x, x) 
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= D(y, y, y) + D(y, x, x) 

= D(x, x, y) 

Therefore, D(x, y, y) ≤ D(x, x, y) 

Then from (i) and (ii): 

D(x, x, y) = D(x, y, y).    � 

 

Definition (2.2.4), [15]: 

Let (X, D) be a D-metric space, for r > 0, define: 

BD(x, r) = {y ∈ X : D(x, y, y) < r} 

If for every x ∈ A, there exists r > 0, such that BD(x, r) ⊂ A, then the 

subset A of X is called D-open ball. 

 

Example (2.2.3), [15]: 

Let X =  , and define D(x, y, z) = |x − y| + |y − z| + |z − x|, for all 

x, y, z ∈  , then: 

BD(1, 2) = {y ∈   : D(1, y, y) < 2} 

= {y ∈   : |y − 1| + |y − 1| < 2} 

= {y ∈   : |y − 1| < 1} 

= (0, 2) 

 

Definitions (2.2.5), [15]: 

Let (X, D) be a D-metric space and A ⊂ X. 



Chapter Two                                                                                      M-Fuzzy Metric Spaces 

 29 

1. A sequence {xn} in X is said to be D-converge to x if and only if  

D(xn, xn, x) → 0, as n → ∞. 

That is, for each ε > 0, there exist n0 ∈  , such that: 

D(xn, x, x) < ε, ∀ n ≥ n0 

One can easily prove for a D-convergent sequence 

D(xn, xn, x) = D(x, x, xn) 

2. A sequence {xn} in X is called a D-Cauchy sequence if for each  

ε > 0, there exists n0 ∈  , such that D(xn, xn, xm) < ε, for each  

n, m ≥ n0. 

3. The D-metric space (X, D) is said to be D-complete if every D-

Cauchy sequence is D-converge. 

 

Now, let τ be the set of all A ⊂ X with x ∈ A if there exists r > 0, 

such that BD(x, r) ⊂ A, then τ is called a topology on X induced by the 

D-metric D. 

 

Lemma (2.2.2), [15]: 

Let (X, D) be a D-metric space. If r > 0, then the ball BD(x, r) 

with center x ∈ X and radius r is an open set. 

Proof: 

Let z ∈ BD(x, r), hence D(x, z, z) < r 

Letting D(x, z, z) = δ and let r′ = r − δ, and since r′ < r, then BD(x, r′) ⊂ 

BD(x, r) 
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Let y ∈ BD(z, r′), hence by the triangular inequality: 

D(x, y, y) = D(y, y, x)  

≤ D(y, y, z) + D(z, x, x) 

< r′ + δ = r 

Therefore, BD(z, r′) ⊆ BD(x, r) 

That is the ball BD(x, r) is an open set.    � 

 

Lemma (2.2.3), [15]: 

Let (X, D) be a D-metric space. If a sequence {xn} in X is  

D-converges to x, then x is unique. 

Proof: 

Suppose that {xn} has two D-limit points x and y, such that x ≠ y 

Since {xn} converge to x and y, hence for each ε > 0, there exists  

n1 ∈  , such that for every n ≥ n1, D(x, x, xn) < 
2

ε
 and n2 ∈  , such 

that for every n ≥ n2, D(y, y, xn) < 
2

ε
 

Setting n0 = max {n1, n2}, then for every n ≥ n0 and by the triangular 

inequality: 

D(x, x, y) ≤ D(x, x, xn) + D(xn, y, y) 

< 
2

ε
 + 

2

ε
 = ε 

Hence D(x, x, y) = 0 which is a contradiction, so x = y.    � 
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Lemma (2.2.4), [15]: 

Let (X, D) be a D-metric space. If a sequence {xn} in X is D-

converges to x ∈ X, then the sequence {xn} is a D-Cauchy sequence. 

Proof: 

Since {xn} is D-converges to x, hence for every ε > 0, there exists  

n1 ∈  , such that for every n ≥ n1, D(xn, xn, x) < 
2

ε
 and n2 ∈  , such 

that for every m > n2, D(x, xm, xm) < 
2

ε
 

Setting n0 = max {n1, n2}, then for every n, m ≥ n0 and by the triangular 

inequality: 

D(xn, xn, xm) ≤ D(xn, xn, x) + D(x, xm, xm) 

< 
2

ε
 + 

2

ε
 = ε 

Hence the sequence {xn} is a D-Cauchy sequence.    � 

 

2.3 ELEMENTARY CONSEPTS IN M-FUZZY METRIC 

SPACES 

In this section fundamental concepts are recalled in M-fuzzy 

metric spaces. 

 

Definition (2.3.1), [17]: 

A 3-tuple (X, Md, *) is said to be M-fuzzy metric space if X is an 

arbitrary set, * is a continuous T-norm and M is a fuzzy subset of 
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X×X×(0, ∞) satisfying the following conditions for all x, y, z ∈ X and  

t, s > 0: 

(1) M(x, y, t) > 0. 

(2) M(x, y, t) = 1 if and only if x = y. 

(3) M(x, y, t) = M(y, x, t). 

(4) M(x, y, t)*M(y, z, s) ≤ M(x, z, t + s). 

(5) M(x, y, *) : (0, ∞) → [0, 1] is continuous. 

 

Let (X, Md, *) be a M-fuzzy metric space, then among the 

important notions in M-fuzzy metric spaces is the family: 

{B(x, r, t) | x ∈ X, 0 < r < 1, t > 0} 

which is the neighborhood system for a Hausdorff topology on X, that is 

called the topology induced by the M-fuzzy metric M, with topology τ 

defined by: 

τ = {  A  ⊂ X  : x ∈ A if and only if there exists t > 0, 0 < r < 1, such 

that B(x, r, t) ⊂ A} 

 

Definition (2.3.2), [16]: 

Let (X, τ) be a topological space, then (X, τ) is called T2-space 

(Hausdorff space) if for all a, b ∈ X, there exists an open sets G and H, 

such that: 

A ∈ G, b ∈ H and G ∩ H = ∅ 
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Now, we are going to recall some basic concepts in ordinary 

metric spaces and topological spaces with some fundamental concepts. 

 

Definition (2.3.3), [16]: 

A topological space (X, τ) is a first countable space if there exists 

a countable local base B at every point p ∈ X. 

 

Definition (2.3.4), [8], [16]: 

A topological space (X, τ) is called a second countable space if 

there exists a countable base B for the topology τ. 

 

Definition (2.3.5), [17]: 

A topological space (X, τ) admits a compatible fuzzy metric if 

there is a M-fuzzy metric M on X, such that τ = τM. 

 

Lemma (2.3.1): 

Let (X, d) be a metric space and consider the M-fuzzy metric 

space (X, Md, *) and define Md by: 

Md(x, y, t) = 
t

t d(x, y)+
 

Then Md(x, y, t + s) ≥ Md(x, y, t), ∀ s, t, > 0. 

Proof: 

Suppose that t, s > 0, then: 
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Md(x, y, t) = 
t

t d(x, y)+
 

= 
t d(x, y) d(x, y)

t d(x, y)

+ −
+

 

= 
t d(x, y) d(x, y)

t d(x, y) t d(x, y)

+ −
+ +

 

= 1 − 
d(x, y)

t d(x, y)+
 

≤ 1 − 
d(x, y)

t s d(x, y)+ +
 

= 
t s d(x, y) d(x, y)

t s d(x, y)

+ + −
+ +

 

= 
t s

t s d(x, y)

+
+ +

  

= Md(x, y, t + s). 

and hence the inequality follows.    � 

 

The proof that (X, τM) is a Hausdorff first countable topological 

space, is given in the next two theorems which are given in [16] without 

details, here we give the details of the proof. 

 

Theorem (2.3.1): 

Let X be a Hausdorff space, then every M-convergent sequence in 

X has a unique limit point. 
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Proof: 

Suppose { }n n 1
a ∞

=  is a M-convergent sequence in X to a and b, and 

suppose that a ≠ b. Since X is Hausdorff, then there exists two open sets 

G and H, such that: 

a ∈ G, b ∈ H and G ∩ H = ∅ 

By hypothesis, the sequence {an} is M-converges to a; hence there exists 

an n0 ∈  , such that for all n > n0, implies that an ∈ G, i.e., G contains 

all except a finite number of the terms of the sequence 

But G and H are disjoints, hence H can only contain those terms of the 

sequence which do not belong to G and there are only a finite number of 

such terms. 

Accordingly, {an} can not M-converge to b 

But this violates the hypothesis that the sequence M-converge to b also, 

which is a contradiction 

Hence a = b.    � 

 

Theorem (2.3.2): 

Let X be a first countable space, then the following are 

equivalent: 

(1) X is Hausdorff space. 

(2) Every M-convergent sequence has a unique limit. 

Proof: 

(1) ⇒ (2). Clear from theorem (2.3.1). 
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(2) ⇒ (1). Suppose that X is not a Hausdorff space, then there 

exists a, b ∈ X, a ≠ b, with the property that every open set containing a 

has a nonempty intersection with every open set containing b. 

Now, let {Gn} and {Hn} be a nested local bases at a and b, respectively. 

Then, Gn ∩ Hn ≠ ∅, for every n ∈  , and so there exist a sequence 

{ }i i 1
a ∞

=  such that: 

a1 ∈ G1 ∩ H1, a2 ∈ G2 ∩ H2, … 

Accordingly, {ai} is M-converges to both a and b and hence the limit 

point is not unique, which is a contradiction 

Hence, X is a Hausdorff space.    � 

 

Definition (2.3.6), [8], [9]: 

A pseudo-metric space is a pair (X, d) such that d is a pseudo-

metric on X. 

 

An equivalent definition of pseudo-metrics is the following which 

has its connectivity with the topological spaces: 

 

Definition (2.3.7), [19]: 

A pseudo-metric space is a metric space if and only if the 

topology is T1 space, i.e., each singleton set {x} is closed, ∀ x ∈ X. 
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Definition (2.3.8), [9]: 

A topological space (X, τ) is pseudo-metrizable if and only if 

there is a pseudo-metric, such that the topology is the pseudo-metric 

topology. 

 

Definition (2.3.9), [9]: 

A topological space (X, τ) is metrizable if and only if it is T1 and 

pseudo-metrizable. 
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CHAPTER ONE 

FUNDAMENTAL CONCEPTS OF FUZZY SET THEORY 

 

In this chapter, some of the most important concepts related to 

fuzzy set theory, will be presented. These concepts include a brief 

introduction to the theory of fuzzy sets, fuzzy metric spaces and fuzzy 

topological spaces. These concepts are of great importance for this work. 

 

1.1 BASIC CONCEPTS OF FUZZY SETS [3] 

Fuzzy set theory is a generalization of abstract set theory; it has a 

widr scope of applicability than abstract set theory in solving problems 

that involve to some degree subjective evaluation or vague notions. 

Let X be any non-empty set of elements. A fuzzy set A%  in X is 

the set of all x ∈ X, which are characterized by a membership function 

)x(A
~µ  : X → I, where I is the closed unit interval [0, 1]. The grades 0 

and 1 represent respectively non-membership and full membership in a 

fuzzy set A% . A fuzzy set A%  may be written mathematically as: 

A%  = {(x, )x(A
~µ ) | x ∈ X, 0 ≤ )x(A

~µ  ≤ 1} 

The following concepts may be defined in fuzzy sets: 

1. The support of A%  is the crisp set of all x ∈ X, such that )x(A
~µ  > 0 

and is denoted by S(A% ). 

 



Chapter One                                                    Fundamental Concepts of Fuzzy Set Theory 

 2 

2. The core (uncleus) of a fuzzy set A%  is the set of all points x ∈ X, 

such that )x(A
~µ  = 1. 

3. The height of a fuzzy set A%  (denoted by hgt (A% )) is the supremum 

value of )x(A
~µ  over all x ∈ X. If hgt (A% ) = 1, then A%  is normal, 

otherwise it is subnormal, and a fuzzy set may be always normalized 

by defining the scaled membership function: 

*
A (x)µ %  = A

A
x X

(x)

Sup (x)
∈

µ
µ
%

%

, ∀ x ∈ X 

4. The crossover point of a fuzzy set A%  is that point in X, whose grade 

of membership in A%  is 0.5. 

5. Fuzzy singleton is a fuzzy set whose support is a single point x ∈ X, 

with )x(A
~µ  = α, α ∈ (0, 1]. 

 

Remarks (1.1.1), [3]: 

Some important concepts related to fuzzy subset of a universal set 

X may be listed below. Let A%  and B%  be two fuzzy subsets of the 

universal set X with membership functions A (x)µ %  and B (x)µ % , 

respectively, then: 

1. A B⊆% %  if and only if  A (x)µ %  ≤ B (x)µ % , ∀ x ∈ X. 

2. A B=% %  if and only if  A (x)µ %  = B (x)µ % , ∀ x ∈ X. 

3. cA%  is the complement of A%  with membership function 

c AA
(x) 1 (x)µ = − µ %%

, ∀ x ∈ X. 
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4. The empty fuzzy set ∅%  and the universal set X, when for all x ∈ X 

A (x)µ %  = 0 and A (x)µ %  = 1, respectively. 

5. C A B= ∩% % %  is a fuzzy set with membership function: 

{ }BC A(x) Min (x), (x) , x Xµ = µ µ ∀ ∈% % %  

More generally, for any index set J, then j
j J

A
∈

%I  is also a fuzzy 

set of X with membership function: 

j
j J

A (x)
∈

µ %I
 = 

i J
inf
∈ jA (x)µ % , ∀ x ∈ X 

6. D A B= ∪%% %  is a fuzzy set with membership function 

{ }D BA(x) Max (x), (x) , x Xµ = µ µ ∀ ∈% % %  

More generally, for any index set J, then j
j J

A
∈

%U  is also a fuzzy 

set of X with membership function: 

j
j J

A (x)
∈

µ %U
 = 

i J
sup

∈ jA (x)µ % , ∀ x ∈ X 

7. If A B (x)∩µ % %  = 0, ∀ x ∈ X, then A%  and B%  are said to be disjoint. 

 

More additional concepts may be found in any text reference, 

such as [8], [11]. 
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Remark (1.1.2), [3]: 

It is notable that the only law is A∪Ac=X and the law A∩Ac=∅ 

are broken for the fuzzy sets, since A%  ∪ cA%  ≠ X and A%  ∩ cA%  ≠ ∅% . 

Indeed, for all x ∈ X, if )x(A
~µ  = α, 0 < α < 1, then: 

cA A
(x)

∪
µ

% %
 = max {α, 1 − α} ≠ 1 

cA A
(x)

∩
µ

% %
 = min {α, 1 − α} ≠ 0 

 

1.2 THE EXTENSION PRINCIPLE  

The extension principle of fuzzy set theory may be used to 

generalize crisp mathematical concepts to fuzzy mathematical concepts, 

which is used also to define fuzzy functions, [1]. 

 

Definition (1.2.1), [2]: 

Let X be the Cartesion product of universes X1, X2, …, Xr and 

1 2 rA ,A ,...,A% % %  be r- fuzzy sets in X1, X2, …, Xr, respectively, f is a 

mapping from X to a universe Y ( 1 2 ry f (x ,x , , x )= K ). Then the fuzzy 

set B% in Y is defined, by: 

( ) ( ) ( ){ }1 2 r 1 2 rBB f (A) y, (y) y f x ,x , , x , x ,x , , x X= = µ = ∈%
%% K K   

where 

( )
{ } ( )

1 r1
1 2 r

1
1 rA A

(x ,x , ,x ) f (y)B

sup min (x ),..., (x ) , if f y
y

0 , Otherwise

−

−

∈

 µ µ ≠ ∅
µ = 



% %

K%  
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where 1f −  is the inverse image of f. 

For r = 1, the extension principle, of course, reduces to: 

( ){ }BB f (A) y, (y) y f (x), x X= = µ = ∈%
%%  

where: 

( )
1

1
A

x f (y)B

sup (x), if f y
(y)

0 , Otherwise

−

−

∈

 µ ≠ ∅
µ = 



%

%  

which is the definition of a fuzzy function. 

 

1.3 α-LEVEL SETS [4] 

Among the basic concepts in fuzzy set theory is the concept of α-

level (α-cut) sets of a fuzzy set A% , which is used as an intermediate set 

that connect between fuzzy and non fuzzy sets. 

Given a fuzzy set A%  defined on a universal X and any number  

α ∈ (0, 1] the α-level, Aα is the crisp set that contains all elements of the 

universal set X, whose membership grades in A%  are greater than or equal 

to a pre specified value of α, i.e., 

Aα = {x : )x(A
~µ  ≥ α, ∀ x ∈ X}  

Also, the strong α-level set is defined by: 

Aα+ = {x : )x(A
~µ  > α, ∀ x ∈ X} 

The following properties are satisfied for all α ∈ [0, 1], which 

may be proved easily for all α, β ∈ (0, 1]: 
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1. A%  = B%  if and only if Aα = Bα. 

2. If A%  ⊆ B%  then Aα ⊆ Bα. 

3. (A%  ∪ B% )α = Aα ∪ Bα. 

4. (A%  ∩ B% )α = Aα ∩ Bα. 

5. If α ≤ β, then Aα ⊇ Aβ. 

6. Aα ∩ Aβ = Aβ and Aα ∪ Aβ = Aα, if α ≤ β. 

7. If A%  is a fuzzy set, {Aα}, ∀ α ∈ (0, 1] is a family of subsets of the 

universal set X, then: 

A%  = 
[0,1]

Aα
α∈

αU  

Now, because of its importance in fuzzy sets, the following 

property which is given in some literatures without proof, and appeared 

in [13] without any details, here we give the details of the proof. 

8. Let X and Y be two universal sets, and f : X×X → Y be an 

ordinary function, and A% , B%  be any two fuzzy subset of X, then: 

f( A% , B% ) = 
[0,1]

f (A ,B )α α
α∈

αU  

One can prove this property as follows: 

Since A%  = 
(0,1]

Aα
α∈

αU , B%  = 
(0,1]

Bα
α∈

αU  

For the left hand side and using the extension principle: 
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f (A,B) (z)µ % %  = 
1(x,y) f (z)

sup
−∈

min { }BA (x), (y)µ µ% %  

= 
1(x,y) f (z)

sup
−∈

min A B
[0,1] [0,1]

sup 1 (x), sup 1 (y)
α α

α∈ α∈

 
α α 

 
 

where A1 (x)
α

, B1 (y)
α

 refers to the characteristic functions of the crisp 

sets Aα  and Bα , respectively. 

Now, from the uniqueness of the supremum then one can write: 

f (A,B) (z)µ % %  = 
1(x,y) f (z)

[0,1]

sup
−∈

α∈

min { }A B1 (x), 1 (y)
α α

α α  ................... (1.1) 

Also, for the right hand side and by letting: 

C%  = 
[0,1]

f (A ,B )α α
α∈

αU  

Hence: 

C(z)µ %  = f (A ,B )
[0,1]

sup 1 (z)
α α

α∈
α  

= 
[0,1]

sup
α∈

{ }
1

A B
(x,y) f (z)

sup min 1 (x), 1 (y)
α α−∈

  α α 
  

 

= 
1(x,y) f (z)

[0,1]

sup
−∈

α∈

min { }A B1 (x), 1 (y)
α α

α α  .......................... (1.2) 

Hence, from eqs. (1.1) and (1.2): 

f( A% , B% ) = 
[0,1]

f (A ,B )α α
α∈

αU .    � 
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Also, the following property is of great importance, which 

appears in [13] without proof. Here, we give for completeness the details 

of the proof. 

 

9. If f : X → Y, and A%  and B%  a fuzzy subset of X, and: 

1(x,y) f (z)

sup
−∈

min { }BA (x), (y)µ µ% %  = α, ∀ α ∈ [0, 1] 

then [f(A% , B% )]α = f(Aα, Bα). 

Proof: 

From (7) and (8), we have: 

f(A α, Bα) ⊆ [f( A% , B% )]α, ∀ α ∈ [0, 1] ....................................... (1.3) 

Now, let z ∈ [f( A% , B% )]α, i.e.,  

f (A,B) (z)µ % %  = 
1(x,y) f (z)

sup
−∈

min { }BA (x), (y)µ µ% %  ≥ α 

Then, there exists (x̂ , ŷ ) ∈ f−1(z), such that: 

α < min{ }BA (x), (y)µ µ% %   

Then A (x)µ %  ≥ α, B (y)µ %  ≥ α 

Therefore, ̂x  ∈ Aα, ŷ  ∈ Bα 

Then z = f( x̂ , ŷ ) = α, and hence by hypothesis, there exists (x′, y′) ∈ 

f−1(z), such that: 

min { }BA (x ), (y )′ ′µ µ% %  = 
1(x ,y ) f (z)

[0,1]

sup
−′ ′ ∈

α∈

min { }BA (x), (y)µ µ% %  = α 
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hence x′ ∈ Aα, y′ ∈ Bα 

therefore, z = f(x′, y′) ∈ f(Aα, Bα), and hence:  

[f( A% , B% )]α ⊆ f(Aα, Bα) ............................................................. (1.4) 

From (1.3) and (1.4), we have: 

[f( A% , B% )]α = f(Aα, Bα), ∀ α ∈ [0, 1].    � 

 

Remarks (1.3.1), [3]: 

1. The support of A%  is exactly the same as the strong α-level of A%  for 

α = 0, A0+ = S(A% ). 

2. The core of A%  is exactly the same as the α-level set of A%  with α = 1, 

i.e. A1 = core(A% ). 

3. The height of A%  may also be viewed as the supremum of α-level set 

for which Aα+ ≠ ∅. 

 

1.4 FUZZY TOPOLOGY AND FUZZY METRIC SPACES, 

[8], [10], [12] 

Chang, C. L. in 1968 introduced the notion of fuzzy topological 

spaces, which is a non-empty set X together with a family of fuzzy sets 

in X which is closed under arbitrary union and finite intersection. Erceg, 

M. A. in 1979, studied fuzzy metric spaces and its connection with 

statistical metric spaces. Ming P. P. and Ming L. T. in 1980 used fuzzy 

topology to define the neighborhood structure of fuzzy point. Zike Deng 

in 1982, studied the fuzzy point and discussed the fuzzy metric spaces 

with certain metric defined between two fuzzy points. 
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We start with the following definition of fuzzy topological 

spaces: 

 

Definition (1.4.1): 

A family τ* of fuzzy sets of X is called a fuzzy topology for X if 

and only if: 

a. ∅~ , X ∈ τ*. 

b. A
~

 ∩ B~  ∈ τ* whenever A
~

, B~  ∈ τ*. 

c. ∪{ A
~

i | i ∈ J} ∈ τ* whenever each A
~

i ∈ τ* (i ∈ J), where J is any 

index set. 

The pair (X, τ*) is called fuzzy topological space. 

 

Definition (1.4.2): 

Let (X, τ*) be a fuzzy topological space. A subfamily β of τ* is 

called a base for τ* if and only if for each A
~

 ∈ τ*, there exists A
~B  ⊆ β 

such that A%  = ∪ AB % , and a subfamily σ of τ* is called a subbase for τ* if 

and only if the family β = {∩ F | F is a finite subset of σ} is a base τ*.  

 

There is a strong relationship between fuzzy metric spaces and 

fuzzy topological spaces, as the next definition shows: 

 

Definition (1.4.3): 

Let (X*, d*) be a fuzzy metric space. The fuzzy topology τ~  on X 

generated by the class of open fuzzy balls in X* is called the fuzzy 
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topological space (or, the fuzzy topology induced by the fuzzy metric 

d*), where: 

d*( A
~

,B~ )=
y B x AI x A y B

Sup Max Sup Inf d(x, y), Sup Inf d(y,x)
α αα α∈ ∈α∈ ∈ ∈

    
  

    
 

 

Definition (1.4.4): 

Let (X, τ~ ) be a fuzzy topological space, a family A of fuzzy sets 

is a cover of a fuzzy set B
~  if and only if B~  ⊆ ∪{ A

~
 | A

~
 ∈ A }, it is an 

open cover if and only if each member of A is an open fuzzy set. A 

subcover of A is a subfamily, which is also cover. 

 

Definition (1.4.5): 

A fuzzy topological space is compact if and only if each open 

cover of the space has a finite subcover. 

 

Theorem (1.4.1): 

The fuzzy topological space (X, τ*) is compact if and only if 

every family of closed subsets of (X, τ*) satisfies the finite intersection 

property and it’s intersection is non-empty. 

 

Remark (1.4.1): 

A fuzzy metric space is a fuzzy topological space in which the 

topology is induced by a fuzzy metric. Accordingly, all concepts defined 

for fuzzy topological spaces are also defined for fuzzy metric spaces. 
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For example, by theorem (1.4.1) and definition (1.4.3), we obtain 

(X*, d*) which is compact fuzzy metric space. 

 

Definition (1.4.6): 

Let (X*, d*) be a fuzzy metric space. A neighborhood of a fuzzy 

point p is a fuzzy set Nε(p) consisting of all fuzzy points q such that 

d*(p, q) < ε, the number ε is called the radius of Nε(p), i.e., 

Nε(p) = ∪ {q ∈~  X* | d*(p, q) < ε, ε > 0} 

 

Definition (1.4.7): 

Let (X*, d*) be a fuzzy metric space. A fuzzy point p is said to be 

fuzzy limit point of the fuzzy set E~  if every neighborhood of p contains 

fuzzy points q ≠ p such that q ∈~  E~ . 

 

Theorem (1.4.2): 

If (X*, d*) is a compact fuzzy metric space, then every infinite 

fuzzy subset of X* has at least one fuzzy limit point in X*. 

 

Definition (1.4.8): 

Let A
~

 be a fuzzy subset of a fuzzy metric space X* and let ε > 0. 

A finite fuzzy set of fuzzy points W~  = {(e1, α1), (e2, α2), …, (em, αm)} is 

called an ε-fuzzy net for A
~

 if for every fuzzy point  p ∈~  A
~

. There 

exists an ei0 ∈~  W~  with d*(p, ei0) < ε. 
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Definition (1.4.9): 

A fuzzy subset A
~

 of a fuzzy metric space X* is totally bounded if 

A
~

 possesses an ε-fuzzy net for every ε > 0. 

 

Definition (1.4.10): 

A fuzzy subset E%  of a fuzzy topological space (X, τ*) is said to 

be countably compact if and only if there exist a fuzzy limit point for 

every infinite fuzzy subset of E% . 

 

It is said that a fuzzy set E%  in a fuzzy topological space is 

countably compact if and only if there exists for each infinite fuzzy set 

of E%  has limit point. 

 

Remark (1.4.2): 

By theorem (1.4.2) and definition (1.4.10), we obtain that (X*, 

d*) is countably compact fuzzy metric space. 

 

Theorem (1.4.3): 

If a fuzzy metric space is countably compact, then it is also totally 

bounded. 
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1.5 COMPLETENESS OF FUZZY METRIC SPACES 

The completeness of metric spaces is one of the fundamental 

aspects in real analysis, in general, and of fuzzy metric spaces in 

particular, [4]. 

Therefore, several approaches are proposed to study this subject. 

Hence, in this section, we will give one of such approaches as a 

theorem without proof. Also, we will stand and present some of the basic 

ideas for the construction and the proof of the completeness of fuzzy 

metric spaces, which are given in [4]. Where the following abbreviation 

is used, X* is the set of all closed and bounded fuzzy subsets of X. 

We start with the following definitions: 

 

Definition (1.5.1), [4]: 

A fuzzy set A%  is closed and bounded fuzzy subset of X if and 

only if for all α ∈ I, the α-level sets Aα are closed and bounded ordinary 

subset of X. 

 

The distance function between two fuzzy sets is given as in the 

following definition: 

 

Definition (1.5.2), [4]: 

Let (X, d) be a closed and bounded metric space and let A% , B~  ∈ 

X* be any two closed and bounded fuzzy subsets of X, i.e., Aα, Bα are 

closed and bounded subsets of X for each α∈I, then a function  

d* : X* ×X* → +
 , defined by: 
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d*( A
~

,B~ )=
y B x AI x A y B

Sup Max Sup Inf d(x, y), Sup Inf d(y,x)
α αα α∈ ∈α∈ ∈ ∈

    
  

    
 .. (1.5) 

is said to be a distance function between fuzzy sets. 

 

The last function given by (1.5) can be proved to be a distance 

function (see [4]) and therefore (X*, d*) is a fuzzy metric space. 

In [4], the author is interested in the completeness of the fuzzy 

metric space (X*, d*) whenever the original metric space (X, d) is 

complete, i.e., the completeness of the space (X*, d*) is an inheritable 

property that may be accomplished from the completeness of the original 

crisp metric space (X, d). 

 

Definition (1.5.3), [4]: 

Suppose that (X*, d*) is a fuzzy metric space and S%  be a fuzzy 

subset in X* with membership function Sµ %  : X → I, and let δ > 0 be 

any given real number. The δ-neighborhood S%  + δ of S%  in X* is defined 

by using the α-level sets as: 

(S + δ)α = {y ∈X : ∃ x ∈ Sα such that d(x, y) ≤ δ, ∀ α ∈ I and 

Sµ % (y) + δ ∈ [0, 1]} 

where (S + δ)α = Sα + δ, ∀ α ∈ I. 

It is clear that S%  + δ is also a fuzzy subset of X*. 

 

The next theorem generalizes the ideas of the neighborhood of a 

point to a neighborhood of a fuzzy set. 
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Theorem (1.5.1), [4]: 

Suppose that A
~

 is a closed and bounded fuzzy subset of X*. The 

δ-neighborhood of A
~

 (denoted by A
~

 + δ) is also closed and bounded 

fuzzy subset of X*, i.e., if Aα is closed and bounded, then Aα + δ is also 

closed and bounded for each α ∈ I. 

 

The following lemma is of great importance, since it gives an 

equivalence definition to the distance between two fuzzy sets. 

 

Lemma (1.5.1), [4]: 

Let A
~

, B
~  ∈ X* and ε > 0 be any given real number. Then  

d*( A
~

, B~ ) ≤ ε if and only if Aα ⊂ Bα + ε and Bα ⊂ Aα + ε, ∀ α ∈ I. 

 

The above lemma may be considered as one of the most 

important properties of α-level sets. 

 

Definition (1.5.4), [10]: 

A sequence { }∞
=1nnA

~
 of fuzzy subsets of X* is said to be 

convergent to a fuzzy set A
~

, if for any real number ε > 0, there exists a 

natural number k ∈  , such that: 

ε+⊂ αα
AA n     and    Aα ⊂ ε+

αnA , ∀ n > k. 

i.e., d*( nA
~

, A
~

) ≤ ε. 
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Definition (1.5.5), [10]: 

A sequence { }∞
=1nnA

~
 of fuzzy subsets of X* is said to be fuzzy 

Cauchy sequence if for every real number ε > 0, there is a natural 

number N such that for all n, m ≥ N implies that d*( nA
~

, mA% ) ≤ ε which 

is equivalent to n mA A
α α

⊂ + ε  and mA
α

 ⊂ nA
α

 + ε. 

This Cauchy sequence of fuzzy sets has the following property. 

There is a Cauchy sequence { }∞
=1nnx  ∈ X with the condition that  

xn ∈ nA
~

, ∀ n; and there is a natural number N, such that: 

d(xn, xm) < ε, ∀ n, m > N 

As it is mentioned previously, many results and properties may be 

proved and generalized for fuzzy metric spaces. But Fadhel in 1998 [4] 

interested in the completeness of the space (X*, d*) whenever the 

ordinary metric space (X, d) is complete, i.e., the completeness of the 

space (X*, d*) is an inheritable property that can be concluded from the 

completeness of the space (X, d). 

 

Theorem (1.5.2): 

Let (X, d) be a complete metric space, then (X*, d*) is also a 

complete metric space, i.e., if { }∞
=1nnA

~
 is a Cauchy sequence in X*. Then 

n
n

A
~

lim
∞→

 = A
~

 ∈ X*, which can be characterized if we define: 

A
~

 = {x ∈X :There is a Cauchy sequence { }∞
=1nnx  such that xn ∈ 

( nA
~

)α, ∀ n and {xn} converge to x, where )x(A
~µ  ∈ [0, 1]} 
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In this theorem, one must prove first that the limit fuzzy set A
~

 is 

a nonempty, closed and bounded fuzzy subset of X* (see [4]). 

 

Theorem (1.5.3): 

A fuzzy metric space (X*, d*) is complete if there exist a fuzzy 

limit point for every totally bounded and infinite fuzzy subset of X*. 
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ABSTRACT 

 

The objective of this work may be oriented toward two 

objectives. 

The first objective is to study fuzzy set theory, as well as some of 

its basic algebraic properties and theoretical results.  

The second objective is to study D-metric spaces and M-fuzzy 

metric spaces, and some of their properties. Also, this objective includes 

the study of complete fuzzy metric spaces using M-fuzzy distance 

function. In addition, some additional results are presented and proved in 

this work. 
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