Abstract

In this thesis, we introduce a modified approach for solving
fractional order boundary value problems. This approach is given by
applying the Riesz-Feller operator to obtain a modified finite difference
equation, which is symmetric to the equation of fractional boundary
value problems.

Also, the main objective of thiswork is to study the existence and
unigueness theorem of solutions of the fractional boundary value
problems, and to present their proof depending on Schauder fixed point

theorem for fractional order integral operator.
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Chapter One

Fundamental Theory of Fractional
Differential Equations

In this chapter, some general concepts are prasemtiuiding,
fractional calculus and fractional differential etjons of initial value

problems.

Fractional calculus is that field of mathematicablgsis which
deals with the investigation and applications eégnals and derivatives

of arbitrary order.

This chapter consists of two sections. In sectidndl brief and
general introduction to fractional calculus is giwehich is necessary for
understanding fractional differential equationsséttion 1.2, fractional
differential equations, as well as, some of itsl@meal and numerical

methods are given and illustrated with well solezdmples.

1.1 Fractional Calculus

In this section, we introduce some of the basic faamdlamental
concepts and definitions related to the subjedtaxtional calculus for

completeness.
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1.1.1 Basic Notations:

1.1.1.1 The Gamma and Beta Functions, [Oldham, 1974]:

Gamma and beta functions are two of the most imaport
notations in fractional calculus, since they play important role in

fractional differentiation and integration.

First, the gamma functioin(x) of a positive real x, is defined by:

Following are some of the most important propertiésthe

gamma function:
1.1(1)=1.
2.7 (X +1)=xI(x).

3.M(x+1)=x.

4.r(1 j:(—4)”n!ﬁr_

=-n
2 (2n)!

5. F(%+njzm.

4" n!

—TICSCTX)
F(x+1)

I P B s o = G
7.7 (nx) = ?{\/EJLL(M_E)’D”DD'

The second function is the beta function with pesiparameters

6. (—x) =

p and q is defined by:
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1
B(p,q)= j Y L (Y (1.2)
0

If either p or q is non-positive, the integral diges.
The incomplete beta function can be defined in seofngamma
function by the following relationship:

r(p)r (a)

,Opandq
F(p+q)

B(p.q)=

The beta function of argument t is defined by titegral:

t
B,(p,q)= j V@ Y)Y e (1.3)
0

1.1.1.2 Fractional Derivatives:

Many literatures discussed and presented fractider@atives of
certain functions, therefore this subsection soefendions of fractional

derivatives are presented:

1. Riemann-Liouville Formula of Fractional Differentiation and
Integration, [Oldham, 1974], [Nishimoto, 1983]:

Among the most important formulae used in fractioraculus
is the Riemann-Liouville formula. For a given fuioct f(x), O x [
[a, b], the left and right hand Riemann-Liouvilladtional derivatives of

order g > 0 and m is a natural number, are given by

1 mE ()

DJ.f(x) =
P =g ] (x- g

v
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_ (™ d"F
r(m-a)dx™; (x—t) ™!

DI f(x)

where m— 1 <g<m, mO [ . These equations are usually named as the

Riemann-Liouville fractional derivatives.

2. Caputo Fractional Derivatives, [El-Sayed, 2006]:

Another type of equation used in fractional calsukithe Caputo
fractional derivatives and according to the leftl ailght hand Riemann-
Liouville derivatives, the left and right Caputord@tives of order q > 0

of a given function f(x), X1 [a, b], can be defined as:

qemo L ™)

DL F(xX) F(m—q)-!; (X_t)q_m+1dt .................................... (1.6)
Qo (D™ T M

D9_f(x) F(m=0) £ (X_t)q_m+1dt .................................... (1.7)

where mOd [1, m—- 1 < q < m. It is remarkable that, the Caputo
derivatives will be used in the derivation of ti@te difference equation
related to the boundary fractional ordinary diffegral equations (see
chapter three).

The Relationship Between Riemann-Liouville and Caputo Fractional
Derivatives, [El-Sayed, 2006]:

When qOd (O, 1) the following relationships between the rapear

D3, and,DJ,, ,D{_ and,D{_ have been introduced.
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By integrating by parts of egs.(1.6) and (1.7) \&#ds to:

__ 1 f(a)
ng+f(X) = - q)|:(a_ XY + ngH-f(X)j|

and similarly:

q 1 f(b) g
xDb—f(X)_r(l_q)|:(b_X)q xDb—f(X):|

Such relations can be extended easily to the taset] (m - 1,

m) as follows:

_ m-1 (a_ X)k—q dk
(D If(x)=,DLf(x) +kZ=;‘)F(k—q+l) dka(x) e (1.8)
m-1 m—Kk k- k
_ ()™ (x-b)*"" d
PR =PI + 3 = g ) X:b (1.9)

k

and based on the assumption thdm d—kf(x)
at — —oo gx

< oo and as well

X=a

k
bIim ;—kf(x) <o, for k=0, 1, ..., m— 1. The terms accruing on
— oo dx

x=b

the left and right sides of egs.(1.8) and (1.93temzero, thus when the

lower and upper limit of integration approachesdoand-o, yields:

DA f(X)=Daf(x) and ,_DIf(x)=p-DI(x)

3. Riesz-Feller Fractional Derivative, [Mainardi, 2001]:

There is also another kind of equations of fraclaherivatives

which is not less important than Riemann-LiovilledaCaputo fractional

]
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derivatives which is called Riesz-Feller derivati¥®r a given function

the Riesz-Feller fractional derivative of order @ < 2, gz 1 is defined

by:

dd
xD&f(x) = - ng(x)

_ras q)sm( jjf(xm 209* 1Y 1. (1.10)
Tt 2 0 t+q

and for g= 1, the Riesz derivative related to Hilbert tramsfdy Feller

in 1952 [Hahn, 1996] can be defined as:

T ()
DL f =——-—— | —Zdt
Dol (X) = T[dX - x—t

and for 0 < g <2, ¢ 1 and §] < min{q, 2 - q} the Riesz-Feller

derivative can be written as:

D =1 q){sin((q+e)njj‘ fO+ -1 .
Tl 2

1+q
O t

(s S — w

1+q
0 t

for g=1, we obtain the composite formula:

|X|D%f (x) :{co{e?nj IxI|j)10+ sir{ j xP } f(x)
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4. Gruiinwald Fractional Derivatives, [Oldham, 1974],
[Odibat, 2006]:

The Gruinwald derivatives of any integer order to any ficacal

order derivative which takes the form:

: ><j_q
2 fx) = im (N Nzlr(J_q)f(x —J(%)J ........... (1.12)

i N-w | T(-q) £ T(j+D)

.

The following are some examples for fractional eliéintiations:

q -q
1, 9 ()= X

, x>0
dxd r1l-q)
q q —q
2. & = (=X
dxd dx¥ r1-0q)

ixp _ M(p+D)xP™ _
dx“ M(p—-q+1)

d? [ x% | _ r(p+1)
dxd (1-x | (1-x)9

q p © i
5. R .S Xp-qz I_.(J +tp+1)

_(p+1)B, (- g0+
r(p-a)@- xf™
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d lexp(L — cx)] = exp(L— cx)

6. —
d(x-a) (x —a)?

p >-1, L an arbitrary constant, ayt{c, x) is the incomplete gamma

y*(—q, —c(x — a)), where 0<x<1,

function defined by:

:ic x-15-y
¥¥(c, X) r(x)gy e dy

= exp( )Z

I'(J+c +1)
dq q ( 1)|( (ax)2k+1
7. Ksm(ax) X Z e 2ke D)’

q k k
8. d—cos(ax)— xqz (" (axy
dx4 ol (q+2k+ 1)

1.1.1.3 Fractional Integration:

As in fractional ordinary derivatives, there arenyditeratures

introduces different definitions of fractional igration, such as:

1. Riemann-Liouville Fractional Integral, [Oldham, 1974]:

The generalization to non-integer q of Riemann-Libe

integral can be written for a suitable function)f(x I [] ) as:

—f(x )_mj(x V) I (Y)Y, G <0 s (1.13)
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2. Weyl Fractional Integral, [Oldham, 1974]:

The left handed fractional order integral of order O of a given

function f is defined as:

_ 1ty
DY (x) = —dy, X >=00 i 1.14
() r(q)_[o(x_y)lq Y, x> (1.14)

and the right handed fractional order integral mfeo q > O:

[ee)

DY (x) = (1q) i 5 f_(i/))l_q QY X <O e, (1.15)

1.1.2 Some ®roperties of the Fractional Differential Operator DY :

The fractional differential operatoD] has some important

properties that can be described as follows:

1. The operatob] is linear, i.e.,
D} (caf1(X) + Gof2(X)) = ¢ Dy (f1(X)) + D3 (f2(X))

2. For real numbers p and ¢, the equality betw&DJf(x) and
DP*9f(x) is always valid if p< 0, but is not so if p > 0, even when p is

an integer, except when q is positive integer wimaplies that:

DP DYf(x) = DP*9f(x)
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1.2 Fractional Differential Equations

An important type of differential equations is tise called
ordinary fractional differential equations whichaiis equation containing
fractional order derivatives in the independentialde with suitable
initial or boundary conditions. Such type of eqoas may be considered

to have the form:
DY(x) = f(x, y(x))
with initial conditions:
DT™Y(xo) = y§, k=1,2, ...,mrI;m-1<qgsm

where n is a positive integer[gl] .

In this respect, two kinds of conditions have bé®noduced
associated with the fractional differential equasipinitial and boundary
conditions, and in this chapter we will concern hvdnalytical and
numerical methods for solving initial ordinary ftamal differential

equations.

1.2.1 Analytic Methods for Solving Ordinary Fractional Differential
Equations, [Oldham, 1974]:

Several analytical methods are available to solkeetibnal

differential equations and many of such methodgherdollowing:

1. The inverse operator method:

Consider the simplest type of all fractional diéetial equations:
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q
j—g TR (1.16)
X

where f is an unknown function and q is an arbytraal number, F is a
: : : : d™

given function of x. Hence taking the inverse opmaa—_q to the both

X

sides of eq.(1.16), yields:

-q
f= d—_ F
dx™“
where it is clear it is not always the case thaiythre equal, but this is

not the most general solution:

-q  4d
e O e (1.17)
dx 9 dx“
. . d9 d : . . .
The differentiation - —— ——f, will not, in general, vanish but will
dx 9 dx“

consist of these portions of the differentiableeseunits {f} in f that

q

.d
are sent to zero under the actrgnq—.
X

We decompose f into differentiable unigs where:

fui= xpiZaﬂ- X, p>-1,a#0,i=1, 2, ...
j=0

The condition onf; required to give:

AR
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This condition is obvious if and only if for soménithe range ¥ i < n,
(pi — g + 1) is infinite, this condition can occur, hoxge, only when
pi—q+1=0,-1,-2,...;and hence pi=q-1, q— 2, ...; then:

d9 d

f =X +exT2+ L+ g
dx™ % dx?

f -

where g, ¢, ..., G, are arbitrary constants, and-1i < q< m, thus:
d9 g
dx 9 dx“
-q
= d—_ F
dx

Finally, the general solution of eq.(1.16) can b#ten as:

f—cxXdt—oxi?— .. —xiM=

-q
f= d—_ FaoxX 4+ eXT 24 o+ X0 e, (1.18)
dx @

The next example illustrate the above method aftsmi.

Example (1.1):

Consider the ordinary fractional differential eqoat
d1/2

dx1/2

Now, since o= 1/2, F= x° hence 0 < q < 1, so using eq.(1.18)

y=x>,y?0)=0.1

yields:

_ d_1/2 X5 + CX1/2
y= dX-l/Z 1
— r(6) X11/2+ ClX—1/2
M(13/2)

\Y
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and applying the first initial conditions, gives:

d_llzy_ [(6) d/2 1112 d2 w12
dx1/2 - r(13/2) dX-l/Z ldx—l/Z

and hencec= A Therefore:
ra

/2)

y = r(6) 112 4 0.1 5112
r13/2) r@/2)

2. Laplace Transformation Method:

Another type of analytic methods for solving fracl
differential equations which will be discussed Imstsection by using

Laplace transformation method.

q
The Laplace transformation %9?, qO 0" is given by:
X
dif | _% do
L <—— = | explsx)— dx
{dxq} '([ P dxA

But first let us recall the well-known transformd$ mteger order

derivatives:
n n-1 k
L9 o {f}—Zs”‘l‘kOI f(ko),nz 1,2,.
an k=0 dx
and

d"f | _ n _
L =s"L {f},n=0-17 2, e (1.19)
X

\Y
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note that both formulas are embraced by:

g-1-k
L {jxf} $IL {1} Z kdd = I(I?) = 0F 1, v, (1.20)
k=0

Notice that eq.(1.20) may be generalized to incluole integer g

by the simple extension:

do | _ = d9 Tk (0)
L{d?}—sL{f Z:;) dqlk,mqm ............. (1.21)

where n is integer such than-i < g<n.
The sum vanishes whensg0. To prove (1.21) first consider q <
0, so that the Riemann-Liouville definition gives:
X

df _ 1 i £(y)
dx4 T(=a)y(x-y)™

may be adopted and upon direct application of thesclution theorem
[Churchill, 1948]:

1 {Tn(x ) 2<y>dy} SL (1)L

Then gives:

dif | 1 -
o) g b

=siL {f} ,g<0

so that eq. (1.19) unchanged may be generalizeteigative g.

For positive non integer g, the following resultised:

V¢
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d%  d" g
dx? dx" dx@"

where n is an integer number such thatrl < g < n. Now, on

application of eq. (1.20), one can find that:

q n Gn
Cfet] [ fary
dx“ dx" | dx® "

S 6 KLy 3 ol”‘H do
:SL{an} Z_: nl_kl: }(0}

dxT "

The difference ¢ n being negative, the first right-hard term may
be evaluated by use of equation (1.22), sineenc< 0, the composition
rule may be applied to the terms within the sumomatvhich is:

ddf -kt (0) .
L{ } $IL {1} - ka,qDD

qu k=0
For the linear fractional ordinary differential egwns with

constant coefficients, consider the equation:

n qi
D¢ d’ 1) =g(x), where- ¥ g< r
i dx

and taking the Laplace transformation to the botless of the above

equation and using the homogeneous property, yields

N i (x)
L {ch G } L {g(x)}

i=0

or equivalently:

\e
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n di
Zcil‘ {dd;(ﬁ(ﬁX)} =L {g(x)}

i=0

And by using eq.(1.21) with f(x), for alk[(0,o), one can find

L {f(x)} =G(x) which is the solution of the linear equation.

It is remarkable that, in this method the followingitial

conditions can be used:

di k¢ (0) _

Ak =0,k=0,1,...,n .
X

The next example illustrate the above method aftgmi:

Example (1.2):

Consider the fractional differential equation:

d1/2f (X) d—1/2f (X) 2 X X3/2
+ + 2f(X)= — +6,|— +4—— +2x+ 4
dxt/? dx /2 ) Jx m 3J/m
............................... (1.23)
q-1-k
w = O’ k= 0’1
dxd Lk

To solve this equation using Laplace transformatizgthod, first take
the Laplace transformation to the both sides qfle?3)

d1/2f d—l/Zf 2 1
L { dxll(;()} FL {Tﬂg{)} - 200} = L {ﬁ} +

{&} +ﬁL {x3/2} + 2} + 1{4)

6
=L
Jn

1
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which is equivalent to:

U} ={P+L+282 =2 +3s+1+2¥+4s/s

and hence:
= 28+ 3st ¥ 2/ & 4
(s+ 1+ 2/ s)
_ (28 +3s+ 1y 2/ 5@ 2
2 (s+ 1 2/ s)
_ (2s+1)(s+ 1 2 s@ 2
& (s+ 1+ 2/ s)
(28+ (st ¥ =/ S _ 2s !
& (s+ 1+ 2/ s) &
Therefore:
2 1
{f} = =S 3_2

Then using the inverse Laplace transformation,gythe solution:

f(x) =2 +x

1.2.2 Numerical and Approximate Methods for Solving Ordinary
Fractional Differential Equations:
The choice of approximate method for approximatitige
solution to problems is influenced significantly blyanges in calculator

and computer technology since 50 years ago, ame e mathematical

problem ordinarily does not solve the physical peobexactly in any

\V



Chapter One Fundamental Theory of Fractional Differential Equations

case, it is often more appropriate to find an apjpnate solution to more

complicated mathematical model of physical probl@Buayden, 1985].

In this subsection several numerical and approx@nmethods
will be discussed which can be used to solve “fomatl differential

equations”.

1. The least-square method, [Burden, 1985]:

Among the most important methods used to approxnthaé
solution of fractional differential equations which called the least-
square method and has the general idea of minignittie square of
residual error. To illustrate this method, considée fractional

differential equation:
D% = f(x)

wheref [JCJ[0,1], g > 0 and approximate the solution by:

n .
y(n) = > ¢x} ., nO 0
=0

where ¢ O =0, 1, ..., n are constants to be determined. Hence,
substituting in the differential equation and miraimg the sequence of

the residual error, i.e.,
b 2
E(G, G ..., G) = j{f(x)—Dgyn(x)} dX, >0, (1.24)
a

For this residual error, we have upon using thedimproperty:

YA
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b n 2
E(Co Ciy ...y G = j{f(x)—Dgzcix‘} dx

i=0

b n 2
= I{f(x)—ZciDﬂxi} 3 ) (1.25)
i=0

a

Hence, the problem now is reduced to find the doefits ¢, j = 0O, 1,
..., N. A necessary condition for the coefficientje 0, 1, ..., n; which

minimizes E is that:

O =0,foreachfF0,1, ..., n
acj
hence:
oE b _ n b .
— ==2|f(x)DIx!dx+2) ¢ [DIx™ dx,0j=0,1, ...,n
= i() g Zoqj g j

Therefore, in order to find,ywe have the following n + 1 linear system:

n b o b .
Zcingx”' olx:jf(x)D‘;xJ dX, i=0, 1, ooy N, (1.26)

i=0 a a

which must be solved for n + 1 unknownsje 0, 1, ..., n.

2. The collocation method, [A[-Hussainy, 2006]:

The collocation method is one of the approximatéhagds which
Is used “in general” to solve differential equagsoand to solve “in
particular’ fractional differential equations. Thmethod has another
application in solving other equations, such asgrdl equations, partial

differential equations, integrodifferential equaitso etc. This method has

14
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its basis on approximating the solution of the tica@l differential

equation by a complete sequence of functignp, whereq, O i satisfy

the homogeneous conditions and certain functjomvhich satisfy the

non-homogenous initial and boundary conditions, i.e
m
Y(X) W) + D€y B (X) corverriereieeeeeee e (1.27)
j=1

where ¢s, [1j =1, 2, ..., m; are an arbitrary constants to be evaluated.
Therefore, to solve the last equation, we mustuatal the coefficients
G's, ] = 1, 2, ..., m; which will produce a linear system of algebraic

equations.

After substituting y(x) in the different equatiomcaevaluating

the resulting equation of m-distinct points in th@main of solution.

3. Adam’s method, [Diethelm. 1999]:
Consider the fractional differential equation:
D% =f(x, y(X)), (%) =Yo, m=1<gsm, mO 0 .............. (1.28)

In order to solve this equation, we must first cemivng the

problem into the following equivalent equation:
l X
y(X) = y(Xq) +m j (X =V)IH(V, Y(V) AV o, (1.29)
X0

which is a Volterra singular integral equation loé second kind and also

called Riemann-Liouville integration formula.
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Second, use any quadrature formula with noges®,1,...,n+1,

taken with the weighted function{x - v)*™* and use the approximation:

Xn+1 Xn+1
_[ (Xps1 — V)4 g(v) dv= _[ (X1~ V)T g, 1(V) dv....... (1.30)
X0 X0

where g.1is the piecewise linear interpolation for g whoseles are
chosen at the;xj = 0, 1, ..., n + 1. Then use Legendre quadrature

integration method. Then the right hand side of1e80) may be written

as:
Xn+1 n+1
j Xne1 = V)G sVAVE D @iy 1 9K e, (1.31)
X0 j=0
where:
Xn+1
1= | O™ VT et (V) Ve (1.32)
X0

In the case of equispaced nodestt + jh with some fixed h, the
relationship of eq.(1.32) reduced to:

(V=X%j9) /(X; = Xj4), if,Xj4 <V <X;

€41 (V) =9 (Xjup =V (X jag = X))y 0, X SV <X jag o, (1.33)
0, otherwise
and:
|1q +1 . .
——— nT = (n-q)(n+ 2f' |, if j=0
_ Q(q+1)[ }
Q1= (1.34)
hY
; if j=n+1
La(q+1)

where 1< j < n, then eq.(1.32) becomes:

AR
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hq
q(g+1)

Qo1 = [(n —j+2)-2(n- j+ 11+ (n- j)q+1] ...... (1.35)

where @,., are termed as the coefficients of the method &pd(u) as

the linear basis functions.

Now, substituting eq.(1.31) into eq.(1.29) and gsithe

fractional variant of one step Adam-Moulton methgid|ds:

1
Yne =Yo+ ra Zajnﬂf(xpy)+an+1n+1f(xr+1’)P+1) (1.36)

Now, the problem is the determination of the premi¢cormula
to calculate the valug, . By using the one-step Adams-Bashforth

method which is described above, we replace thegrat on the right-

hand side of eq. (1.29), by any quadrature rwde, i.

Xn+1

j (X1 = V)9 g (V) dv—Zc,n+1g(x] ............................. (1.37)

XO J
where:

Xj+1

- 1
Cin+1 = I (Xper—V)? 1dV:a[(Xn+1‘Xj)q‘(Xml‘xjm)q]
Xj

................................ (1.38)
Thus, for equispaced case, one has:
h : :

Cyns1 :F[(m 1- )7 - (n- J)q] ............................................ (1.39)

HenceyPh,,, is given by:

Yy
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1 n
—— D Cinaatf (X Y}) oo (1.40)

Yhe1=Yo+

The next example is an illustrative example whishgiven in
[Ford, 2003] and solved here using the discussemhengal and

approximate methods.

Example (1.3):

Consider the fractional differential equation:

r(3)
2) — _ +% + X3/2, 0)=0
y y r62) y(0)
where the exact solution is given by y&X-.

The numerical results obtained using the aboveethpproaches

are given in table (1.1) as well as the exact swiut

Table (1.1)

The numerical results of example (1.3).

Collocation Adam-Moulton | Exact Solution

Yy
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From the above obtained results, one can seehbaccuracy of
the results, where the approximate solution offthetional differential
equation using the least square and collocationhoakst are more
accurate than the solution obtained by using theali approximation of

Adam’s method.

Y¢



Chapter Two

Existence and Unigueness Theorems of
Fractional Boundary Value Problems

In this chapter we shall state and prove an importaeorems
concerning the existence and uniqueness theorensobftion of

fractional order boundary value problems (FBVP's).

Also, some necessary definitions and results warehimportant

to state and prove those theorems.

This chapter consists of two sections. Section omesists of
some preliminary concepts of fractional order bamgd/alue problems.
While in section two, we state and prove the ersteand uniqueness
theorems of fractional boundary value problem, gisithuader fixed

point theorem.

2.1 Preliminaries

Consider the fractional boundary value problemhefa™ order

described as:
XD = £(t, x(1), t O [@, B], 00 O (0, 1) cvveeeeeeeeeeeeeeeee e AP
subject to the boundary conditions:

Mx(@)+ Rx(b)=B, a, bO [ e, (2.2)

Yo
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where f:[a, b]x0 "0 G- 0" is continuous, non-linear function®xis
the fractional derivative of x, M and R are givanstants inl , B is a
number in0 "

Equations (2.1) and (2.2) are known as a fractidwalndary
value problem (FBVP).

In this section, we shall introduce an importanfirdgons,
lemmas and theorems which are necessary to prevexistence and

uniqueness theorem.

But first, some of the most important and necessasylts for
the existence and uniqueness of solution for foaeti differential
equations are given. The proofs of these resuksgaren in details

which seem to be necessary here.

Lemma (2.1), [Tisdell, 2005]:

Suppose M + R 0 holds, and if x(tJ C([a, b],0 ") satisfies
egs. (2.1) and (2.2), then:

x(t) = g + @ )j(t s* ™ f(s,x(s)) ds, O [a,k

where:

— 1 a-1
LRy s )j(b s f(s.x(s)) d

wherea [ (0, 1).

A\
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Proof:
Using Riemann-Liouville integration formula givey bq.(1.29)
from ato t, yields:

t

1 1
- a)i(t DR ICR () X T (2.3)

x(t) =x(a)+

and hence substituting=tb, yields

b

: D R CR(C) L R— (2.4)
0()a

x(b) = x(a)+ =

Now, substitute eq.(2.4) in eq.(2.2), gives:

1 2 .
M x(a)+ R[x(a)+ r(q)i (b- s§ f(s,x(s)) d}:B

M x(a)++Rx(a)+

b
R [ (o= S5 f(s,x() dSB v (2.5)
a)

rearranging eq.(2.5), give:

x(a) = [[3—— j (b- s f(s,x(s)) o% ................... (2.6)

(M+R)|" [(a)

Now, substituting eq.(2.6) in eq.(2.3) gives far [a, b]

x(t) = B——j(b s f(s,x(s)) o%

M+ R)[ r@)?

@ )j(t IR TG N LT (2.7)

Yv
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Boundary Value Problems

Now, the fractional operator related to the fratilbboundary

value problem given by eq. (2.7) is:

b
_ R R
T—|.+r(a)(M+R)£(b sftf(s,.) ds
fa )j(t ) T (S,.) A cereeeeeee e (2.8)

and if f is taken to be linear, then eq.(2.8), lmeemf the form:

b
_ R -l
T_|.+r(a)(M+R)j(b sY1K(t,s). ds

f )j(t s LK(t,s). d

where K(t, s) is an function of s and tis the identity operator.

Lemma (2.2):

The fractional operator T is linear.
Proof:

To prove T is linear, i.e., is to prove that:

T(CiX1 + GX2) = CT(X1) + GT(X)

Now:

b

T(Cxg +CoXp)= (G X1+ C, X2) (b—sfK(s,t)

s R |
(M+R)I (a)2

1 & _
(er%g + o) s £ (t- sJ7 K(s,0)(g %+ © % ¥is

YA
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b
j (b- s§ L K(s, t)x ds

Tt exet 1M +R)M (@ )

(M+R)r(a)J( -sfK(s, t)% ds-

o )j(t s K (s, t)x ds -

j (t—s)*1K(s, t)% ds

r( M
_ PR i
=¢, x1+(M+R)r(G)j(b sfK(s, )% ds
- )j(t sPLK(s, t)>1ds}
R
0 x2+(M+R)r(G)j(b sf T K(s, )% ds-
- )j(t sFLK (s, t)% ds]
; -1
=¢, |_+(M +R)r(o()j(b—s) K(s,1). ds-
- )j(t sf1K(s, t)ds] X +
R 0 o
c |.+(M+R)r(a)j(b—s) K(s,t). ds-

- )j(t sPLK(s, t)ds]

= ClT(X]_) + C2T(X2)

Hence Tis linear. =

Ys
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Definition (2.1), [Erwin, 1978]:

Given a point x O 0" and a number r > 0, an open ball B of

radius r and centepxis defined by:

B(xo,1) ={ xO0 ™ & [ x=xg| <1}

Definition (2.2), [Erwin, 1978]:

Let X and Y be two normed spaces and T £1X- Y a linear
operator and let BExr) be a ball, then the fractional operator Taglgo

bebounded if there is a real number c, such that:

|Tx]|[< c||x]|, for all XJ B..

The next theorem is of great importance which Wwél used in
the proof of the existence and uniqueness theore(FrBVP) that is

called "Schauder fixed point theorem".

Theorem (2.1), (Schauder Fixed Point Theorem), [Rao, 1980]:

Let X be a nonempty, closed, bounded and convesetullf a
Banach space B, and suppose that T £1X X is a compact

operator, then T has a fixed point.

The next theorem has a tremendous importance iprivef of

the existence and uniqueness theorem:
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Theorem (2.2), (Finite Dimensional Rang), [Erwin, 1978]:

Let X and Y be two normed spaces and T [IX- Y, a Linear

operator, then:
(@) If T is bounded and dim T(x) &, the operator T is compact.

(b) If dim X < o0, then operator T is compact.

2.2 The Existence and Uniqueness Theorem

Because of the importance of the existence anduenegs
theorem in the theory of fractional boundary vapreblems, in this
section we shall state and prove this theorem liyguSchauder fixed

point:

Theorem (2.3):

Suppose M + R 0 hold and 11 C([a, bk ", 0 ") and if there

exist a function i@ C([a, b]J ), such that:

It @)l p®llall, for all €1 [a, bl, G0 0™ oo (2.9)

and if:

i{1+
(a)

Then the boundary value problem (2.1) and (2.2) &iadeast one

1
(M +R)

b
R‘ } j(b— S p(S) K o, (2.10)

solution in C([a, b]2 ).

¥
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Proof:

The existence of at least one solution to the ifsaal boundary
value problem (2.1) and (2.2) is equivalent to t{of that the
fractional integral equation given by eq.(2.7) ha#xed point, by using

the Schauder fixed point theorem.

Consider the mapping TC([a, b],0 ") O - C([a, b],0 "), is defined

by:
_ 1 a-1 N
T = e B )j(b s (s, x(s)) ds
@ )j(t —s)"Li(s,x(s))ds, D tO [a, b] ceene..... (2.11)

Thus the problem is to prove the existence ofagtlene x, such that:
LD (2.12)

In order to prove that x Tx, one must consider first an

associated problem, namely:
X=ATx,A O[O0, 1]

and hence one can prove that all possible solutidbns= ATx (for the

proof see [Tisdell, 2005]) with = 1 is a solution for x Tx, therefore:
ITX][= [Ix]]

and hence:

Yy
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[IX[|= [ITx]]

: LMiR)[ (@ >I(b e O%

o-1
@ )j(t s\ (s, x(s))dﬁ“
Also, since t [a, b], i.e., € b, hence:

t b
j (t-s)* 1f(s, x(s))ds < j (b-s) (s, x(s)) ds

and therefore:

[k |£r(a)( ‘M Uju(trs? f(SX(S))dSH‘ ‘[B
1 1 4
o s }j(b Sf P Ix@ sk | B
Therefore:
1 1 1
I I_(0()(1+|\/I +R Rj {tu?aut?] lX(t)I(b_Sf p(s@l%+ M +R H
1
tiﬁ,ﬁ]'x(t){}r(m( VR jj(b S p(s)d% ver| P
1IB ]
sup |x(t)E "V'*R‘ : —L .(2.13)
tfa,b] 1 1 a1
1 F(a)(l+‘M+R‘Rj£(b s§™ p(s) ds

Now, define the open ball with center 0 and radiusl, by:

ry
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B, ., ={ xOC([a, b],0 "):| x(t)| < L+1,0tO[a, b]}
From eq.(2.13) it is clear that ||x(8|L + 1,0 tO [a, b]

Now, we define a fractional operator T, as follow:

T:B.aOC([a, b],0™") O » C([a, bl,0")
To prove, B.; is closed, bounded and convex fractional subset of

C([a, b],0 ™). First, from the construction of B it is clear that B, is

closed and bounded set.

Now to Prove, B.; is convex set of fractional solutions.
Let x(t), X(t) O B.+1, hence we have:

x1(t) 0 C([a, b],0 ™), where ||O||<L + 1,0t0[a, b]

and

Xo(t) O C([a, b],0 ™), where ||xt)||<L+1,0t0[a, b]
To prove:
X() = Axy(f) + (1 - A)xz(t) U Brea
i.e., to prove that x(t)] C([a, b],0 ") and [|x(t)| L + 1,0t O [a, b].

Also:

X[ =2 % 0+ @-2) x, (0)]
<| A x1 () [+] @-A) x2(0)]
=A@ [ +[1-A] [ x2 0
SAL+1)+ (1-A)(L +1)
=L+1

Y¢
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Hence, ||k L + 1, i.e., x()U Br+1
Hence, B.; is convex set

Now, to prove that T is bounded, i.e., to prove|||€ M||x]||, for any

x(t) O C([a, b],0 "), we have:

TO() =x() + R)r( ] j (b=sFtf(s, x(s)) ds-

- )j(t s\ (s, x(s))ds

therefore

b

IIT(X(t))IFHX(t)+ R [ (o sJ (s.x(s)) ds

(M+R)I (a) 7

j (t—s)" L(s, x(s))d%

M3

<[]+ (1+ j [ (o= sf 1 f(s,x(s)) |Ids

(a) M+R

b
M +R ‘ﬂ .[(b sf 7 p(s) [ x(s) [lds

a

1
<[ x| J{r(a) (1+

j sup|x(t)|j (b= )7 p(s) d

< sup | x(t)+
tI[a,b]

e
t[a,b] M(a)

1
_{1 L_(a)[1+
:{1+|: ! (1+

(a)

M +R

M+R 1) ]2 tO[a,b]

R b
D [ (- sFp(s) d% sup [x()

R b
ﬂj(b— sf 7 p(s) ds} I x 11 < MIix|

ve
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Hence the fractional operator is bounded, and sir{gé)) has a finite

dimension, then by using theorem (2.2) T is comfractional operator.

Finally, by using Schauder fixed point theoremntiiehas a fixed point
which shows that the existence of at least ondisolin B_.; and hence
to(2.1)and (2.2). m

Theorem (2.4):

Suppose M + R 0 hold and fJ C([a, bk ", 0 ") and if there

exists a function i@ C([a, b]ZJ ), such that:

|If(t, u)- f(t, v)]|< (b - sf p@®)|lu-v||,0tO[a, b],u, v 0"

and eq.(2.10) holds, then the fractional boundalues problem (2.1)

and (2.2) has a unique solution in C([a,Db]).
Proof:

Suppose that there exist two solutionsand y for the FBVP,
and let z= u; — u. Now, consider the fractional boundary value

problem:

29 = Y@ — (@

=f(t, u) — f(t, W), tO[a, b] oo (2.15)
subject to:

Mz(@) + RZ(D)= 0o (2.16)

1



Chapter Two Existence and Uniqueness Theorems of Fractional
Boundary Value Problems

As in the proofs of lemma (2.1) and theorem (2@&) f O [a, b],
integrating the boundary value problem given by(2dl5) from a to t,

yields:

z(1) = z(a)+

1 t a-1
G)i(t‘s) [ sy ) f(sy ] dsiB [a,1.(2.17)
Putting t= b, we have:

z(b)= z(a)+

ré()i(b—sf‘l[f(s,qr (S8 ) e (2.18)
Now, substituting eq. (2.18) in eq. (2.16) gives:

Mz(a)+ R z(a)k—j(b sFf(s,y > f(s,4 ) o% (2.19)
and hence:

Mz(a)+ Rz(a)=——j (- Y fsuy fs])

Therefore:

L [mY
z(a)= s R)LI‘( )j( sy ) fsy) dsJ ..... (2.20)

So substituting eq. (2.20) in eq. (2.17), to get:

2= R T(b-S)“_l[ fs.y)-f(s,y ) ds+
(M+R)| T'(a) ]

- )j(t s f(s,u)-f(s,p )| ds

v
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taking the norm on both sides of the last equataids:

R

M+ R)Lr(ooI

1z(t) I (b-sf [ f(s,4 ) f(s,y ) d}

o )j(t P fsy)-fsy )] ﬂ

(] R o sf it 1 ) o
" | M (a) £ 4 2 )1

1 R -1 )
{r(a)(u Yo j}&é‘i]'z(t) |£ (b= s§7 p(s) d

and rearranging the last inequality, we obtain:

b
1 R 4
fF +——| & b
té;pb]lz()){ F(cx)( ‘M+R Ui( S) p(s)%ss

So we have ||z(t#H O, 00 t O [a, b] and from the properties of the norm,

we have z(t)= 0, i.e., y(t) = w(t), O t O [a, b], which shows the

uniqueness of the solution.m
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Chapter Three

Solution of Fractional Boundary
TValue Problems

Some physical problems that are position depenierathan
time-dependent are often described in terms oéwdfitial equation with
conditions imposed at more than one point. Becafigbis reason and
more the boundary conditions are required to salome problems,
[Burden, 1985].

Three types of boundary conditions are possibleyfffHan,
2001]:

1. The function y(xX) may be specified “called Dirichl®oundary

conditions”.

2. The derivative ordinary '{x) or ¥“(x), a O 0 may be specified

“called Neumann boundary conditions”.

3. A combination of y(x) and'§x) or ¥?(x) may be specified “called

mixed boundary conditions”.

This chapter deals with ordinary fractional boundamalue
problems and the methods for solving such kind afbjems. This
chapter consists of two sections. In section (3t ,analytic solution of
ordinary fractional boundary value problems isodticed and using the

Green'’s function to solve such problems.

Y4
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In section (3.2), the numerical solution of boundamalue
problems of fractional order differential equatidrese been introduced

using the Riesz-Feller fractional operator.

3.1 Analytic Solution of Ordinary Fractional Boundary Value
Problems

The only analytical method proposed by a numbeeséarchers
to solve fractional differential equations with Imolary conditions. In

this section, we will discuss this method in dstalil

3.1.1 Fractional Green’s Function Method for Solving Fractional
Boundary Value Problems, [Zhang, 2006]:
A Green function is one of the most important fumes which
can be used to solve differential equations. Is gibsection, we first
derive the corresponding Green’s function, namefttaadional Green'’s

function with boundary conditions and then use thisction it to solve

these kind of fractional differential equations.

Let hO C[0, 1] be a given function, then the fractionalbdary

value problem is defined by:

Dg+u(t) =h(t),0<t< 1, ka<
u(0)+ U (0)= 0, u(l U(@F O

Then a unique solution, given by:

1
u(t) = j G(t, SIN(S) TS v, (3.2)
0
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where:
A-sfr -t (t=sf @
G(t, Sy B (@) , Mo 1) (3.3)
A-sf~" @19, @=sf E 1) fes
[ (a) Ma-1) -

and G(t, s) is called the Green’s function of tlertdary value problem

(3.1) andDg‘+ Is the Caputo fractional derivative which is désed by
eq.(1.6).

Equation (3.2) may be proved as follows, since d¢hjaivalent

integral equation is given by:

u(t) = Ig+ h(t) - ¢, — ot

1

r@ (t=sfh(s) ds—C1 = Cot evvvrrriiieiiieciee e, (3.4)

Oy~

Forsome g c, U [].

Now, using the relation B%u(t) = u(t) and13 1Bu(t) = 13*Pu(),
for someqa, B > 0, one can have:

t

iy~ L -2
u'(t) = " _1)£ (R RO N R e T (3.5)

Equation (3.4) and the boundary conditions, yields:
u(0) +u(0)=0

which implies that £= —c;, and also:

£
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u(l)= ﬁ j (1-sfh(s) ds- ¢, - G

and
1 7 ]

OR ey i (1-sf7h(s) ds-c,
Therefore:

u(l) + u(1)=0
implies that:

@)1 j (A-sfhis)ds- e+ o _1) j (1-sf"*h(s)ds—c, = 0
and hence

1 1
C+ 26 = % £ (1 - sfh(s) ds + £ (1-sfh(s) ds

M(a-1)
.................................. (3.6)
and substituting,c= —¢; in eq.(3.6), gives:
1
- 26 = m j (1-sfh(s) ds +——— - 1 D) j (1-sf?h(s) ds
hence:
-1 1 ‘ o—2
=T )j(l sfh(s) ds- " _1)£(1 ~ s n(s) ds....(3.7)

and

¢y
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C = m j (1-sfh(s) ds +

1 i -2
o _1)!)(1—3) h(s) ds.......(3.8)

therefore, the unique solution of eq.(3.1) is:

1

u(t) = _m j (t—sf'h(s) ds + (10() ! (1-sfh(s) ds +

02 _Ll _ P11 _
r(O(_l)j(l—s) h(s) ds r(a)g(l sPh(s) ds

1 - sf?h(s) ds
o _1) j( ¥°h(s)

Finally, to find the Green function, divide theental (0, 1) into
two subintervals (0, t) and (t, 1), yields:

t
u(t) = 'W j (t=5F7n(s) ds +- (10() ! (1-sfh(s) ds +

j (1 - sfh(s) ds +

t
1_1) £ (1-sfn(s) ds +

(o)1 M(a

1 " ot .
= _1)j(1—s)“ h(s) ds W!)(1 sfh(s) ds

t
j (1 - sfh(s) ds-

j (1 - sf*h(s) ds- e

(o) 4

o _1)j(1 sf2nh(s) ds

implies that:

¢y
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0o = j|:(l—s)“—1 @t -, @ 870 @ tjh(s)dﬁ
5 M(a) M(a-1)

i A-sfra-y, = sF2 @ 0, o
M (a) M(a-1) i

t
1

= '[G(t,s)h(s)d:
0

which completes the proof of the relation.

Now, the function G(t, s) has some properties tban be

described as:
1. GOC([O0, 1[0, 1]) and G(t, s) > 0, for t,[S (O, 1).
2. There exists a positive functigri] C(0, 1), such that:

1mingG(t, s)= y(s)M(s), slI (0, 1)

4_t_ 4

maxG(t, s)< M(s)
O<t<1

where:

M(s) = 24 sf7 L, A-sf [0, 1)
[ (a) M(a-1)

for more details, see [Zhang, 2006].

The next example illustrate the above method aftswi:

¢¢
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Example (3.1):

Consider the fractional boundary value problem:
D32u(t)=t, 0st<1
u(0) + u(0)=0,u(l) +u1)=0

Hence by substituting h(§ t anda = 3/2 in G(t, s) of eq. (3.3), yields:

A-sf?a- o - sf? @ 9Py
o s r(3/2) r1/2)
(L-s}? (- 1), (@ V2 (& 1) t<s
r(3/2) raz )

Then, put G(t, s) in eq.(3.2) one can have:

1 t 12 /2
_ ¢l @a-sH?@a- b+ (t- s}
U = [G(t,s)h(s)d: = { N
! J r@3/2)

0
1

(-2 (1= t)}sds X J{a—s)”z a- v,
r(1/2) r(3/2)

1-sy¥2 (- t)}sds
r(1/2)

=1.053(1- t) + 0.3t

3.2 Numerical Solution of Fractional Boundary Value
Problems

Analytic solution of fractional boundary value plems is so
difficult and limited and it does not work in alages and functions,

because of these reasons this section deals vathutmerical solution to

¢0



Chapter Three Solution of Fractional Boundary Value Problems

an ordinary differential equations of fractionatier, which is based on
the finite difference method (FDM), [Smith, 1978Hoffman, 2001],
but we start with the Riesz-Feller fractional operaand then describe

an approximate method for solving fractional bougdelue problems.

3.2.1 Riesz-Feller Operator, [Ciesielski, 2006]:

Consider an ordinary differential equation of franal order of

the following form:

d(X
d|xf

TX)=0, X0 ,0<OS2 e (3.9)

a
where T(x) is a variable depending on x aglg—gT(x) is the Riesz-
X

Feller fractional operatoq is the real order of this operator aids a

parameter.

The Riesz-Feller fractional operator is defined[@gorenflo,
1998]:

dC(

aIxE T(x) = xDg T(x)

= —[C.(at, 8) ., D T(X) + Cx(a, 8) D%, T(X)] ......... (3.10)

forO<a<2,a#1, where:

DIT(X) = (%Jm [ ol X’“‘“T(x)}

D810 = (| L [Limereo]

£
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formO [, m-1<a<m, and the coefficients (&, 6), Cx(a, 0) (for

O<as<2,a#l, p|<min{a, 2- a}) are defined as:

sin((a _e)T[j \
CL (a ,e) = Sin(an) (3 12)
| ((a +e)"j .............................................. ;
sin
Cr(0.9)= sin(am)

and the fractional integral operator of order _ 13 T(x) and 15, T(X)
are defined as the left and right hand of Weyltfoaal integration and
when x0 [a, b], i.e., the integration is proper, thensitcalled Caputo’s

fractional derivatives as in eqs.(1.6) and (1.7).

In this section, consider eq.(3.9) for i< 2 in one-dimensional
domainQ : L < x £ R, with boundary conditions of the first kinds

(Dirichlet conditions) as:

T(L) =9, }
T(R)=0r

3.2.2 Approximation of Riesz-Feller Operator:

In order to develop a discrete form of the operatoeq.(3.10),
consider a homogeneous gritb < ... < %5 < X1 < X < X1 < Xuo <
... <oo, With uniform step size h xx — Xx-1.and denoting the value of the
function T(x) at the pointxas & = T(xx), for k0 [ taking into account

only the function of one variable in order to siffplnotations and
denote €= C.(a, 6) and G = Cg(q, 0).

1 2%
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In accordance with changes parametén eq.(3.9) the following
two cases will be described a discrete approximatb Riesz-Feller

derivative depending on the value of the fractiateivative.

Case (1 ):

The first case includes changes in the paranteter the range
0 <a < 1, by rewriting the Riesz-Feller operator in(8dL0O) using
Caputo definition in egs.(1.6) and (1.7) as:
1 P TE

Xi De T(Xi) = —I:CL I_(l—d)_'[o (Xi —E)a € -

1 ¢ TE)
F(l G)I(E X;)" dz}

after using numerical integration schemes, replheeabove integration

by the sum of discrete integrals as:

q - T
Dg T(Xi
0 Do T T ){ Lkzox {_1<xi—z)“

oo Xi+k+1
S G dz}

k=0 x, €=%)°

Xj—k—1

tA
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where'T'j’ and 'T'J are the difference schemes which approximateitbe f

derivative of integer order in the interval;x x] and [X, X1],

respectively. The following weighted forms of thesehemes are

obtained:
F1 2 1 T4 N A=A = Tjg) + A (Tjsy = T5)
2 h h
1
= %[mjﬂ +2(1-A)T,+ (A, - 2)Tj_1] ......................... (3.15)

'T'-’:l Tj+1_Tj +(1_)\1)(-|_j+1_Tj)+)\1(Tj_Tj—l)
21 h h

1
%[(2—A1)Tj+1 +20 - 1T + (—Al)Tj_l] .................... (3.16)
whereA; = Ay(a, 0) =a —16],A, O [0, 1].

The above formulae have been introduced in ordeohliain
various transitions between the difference scheres. example, if
substitutingA; = 1 in eqgs.(3.15) and (3.16) will give the central-
difference approximation of first derivative, anftea puttingA; = 0 get
the backward difference equation in eq.(3.15) amavérd difference
equation in eq.(3.16).

Denoting by:

Xj—k
1 1 o
rd-a), - (x=8)"

Vg =

£9
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1 Xj+k +1 1

ra-a) ) (E-x)°

1 |[Xi+k+1

_ 1 (E-x)™™
NMl-a) -oa+1

Xj+k

and sincd (2-a)=(1-a)l(1 - a), then:

1 1-a _ (v _ y)l«a
F2=a) [(Xiskez = X) ™ = (i = %0) ™ ]
= I'(21—0() [(Xisk + h- Xi)l_a - (X% + kh- xi)l’“]
= I'(21—0() [(x; + kh + h=x)"" = (x; + kh=x)"™]

[(k +Dh]™® -k
M(2-a)

Hence:

VE _ hl—(x (k +1)1—(1 _ kl—d
[(2-a)

Now, substituting eqgs.(3.15), (3.16) into eq.(3,348lds:

21
Xi Dy T(xi) = —| ¢, kz_:,)E[AlTi—kﬂ +2(1-A) Ty +

=1
A1 =2)Ti Vi —cr D, >h [(2=AD) Tkt
k=0

20 = DT + CADTiea] VR | oo (3.18)
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Finally, from egs. (3.17), (3.18) the discrete favfrRiesz-Feller

operator in eq.(3.10) for Oec < 1 can be written as:

1 (e0)
« DG T(x) = o~ D TiaWE Y s (3.19)

k=

where the coefficient yw= wy(a, 8) have the following form:

[(K[+2f7 A + (k579 (2 3, ¥

KF® @2y (kF T (@A ] g, le-
:31_0()\1"'21_0( (2= A )+ Ay - A} GHAL G, k-
a,0) _ -1 [ Al-ay —
w e)_m :21 A 3)\1+2:|(CL+CR), k=0
3+ 270 (2- A )+ A - 4 gtAig ke 1

(k279N + (K +1)F% (2= 3 )+

K@ - k-7 20|, ke 2

Case (2 ):

The second case involves changes in the paramefer the

range 1 <a < 2 by rewriting the Riesz-Feller operator in ed.(§.using
Caputo definition in egs.(1.6) and (1.7) as:

1 j @)
"r-a) 5, (-9

L DAT() =—| c E +

1 T TE
I (€)

RF2-a); E-x)™ *

o)
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Similarly, as in case (1) after using numericalegration

scheme, replace the above integral by the sunsofete integrals as:

DET() = = [ i j

-k-1

E) gt ®

Xj+k+1 1
cRZ x.{k Wd&] ....................... (3.21)

where 'T'j” and 'T'j" are difference schemes of the second derivative of

integer order, which approximated by the followfogmulae:

< 1|:TJ+1 2T, + T4 (1‘)\2 Y(Tjaa = 2T+ T )+ A (T - 2T 4 + T }
17

2 h2 h2

= o i@ A2)Tjer + (B2 =4)Tj + (2- M) Tj-s + A2T] (3.22)

z, 1| T~ 2T+ T4 . A=A ) (T = 2T+ T )+ A (T = 2Ty + )
J"E h2 h2

1
= o p AT+ 23T + @A), + (22T (3.23)

whereh, =A(a,0) =2-(a + B|), A, O [0, 1].

By letting A, = 0 into egs.(3.22) and (3.23), the classical céntra
difference schemes are obtained, and Xer= 1 in eq. (3.22) the
backward four-point of the second derivative oéger order is obtained

and in eq.(3.23) the forward four-point of the swtaderivative of
integer is also obtained.

Denoting by:

oy
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1 Mtk 1

r2-a), 5  (x-§*"

uy =

1 Xj+k +1 l

—=—d
r@-a) Q—xﬁ“iz

1 (E-x,)Tar2[ e
— |
re-a) 2-a

Xj+k

and sincd (3-a)=(2-a)l(2-a), then:

ke =00~ Gt =)
=r@{a)Km+kh+h—mf“—(m+h—mfﬂ]
= F(3— ) [(h(k + 1)} = (kh)*™]
Hence:
uﬁzhh“k+nza K e (3.24)

Now, substituting egs.(3.22), (3.23) into eq.(3,34glds:
21
X; Do T(xi) = —| ¢, 2—2[(2_7\2)1}—“1 + (B = 4T +
k=02h
(2= 3) Ty + Ao Ty o Ui +CRZ [)\2T|+k+2+

(2= ) Tikar + o= DT+ (2722 Ty K | -(3:25)

oy
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Finally, from egs.(3.24) and (3.25) the discretef@f the Riesz-
Feller operator in eq.(3.10) for lo<< 2 can be written as:

1 (e0)
5 DG T(x) = o~ D TiaWE Y s (3.26)

k=

Where the coefficient w= wi(a, 6) have the following form:

[UKI+2P7 (22 )% (kb 157 (A~ &) [T

(6= 6A )+ (Ik -1 (Ay— 2 (Ikt 257° ﬂz} £, k-
(3279 (2-2,)+ 22 (M- 61 B+ § ¢+ (22X, )g ke
27 (22)+ Ao 6] (@ &), =0

(3779 (2-2,)+ 27 (M- 6)- B+ 6] G+ (2),)q , ke 1

w(®®) = -1
2r (3-a)

[(K+2)77%(2=A5)+ (k+ 177 (A, - 6+ K (6-

6h;)+ (k=177 (A= 2+ (k= 277" €A)| &, e 2

In both cases, whem = 1, the Riesz-Feller operator is singular,

and hence the method failed to be applied.

3.2.3 Finite Difference Method for Fractional Differential
Equations:

a

In this subsectionﬁT(x) can be described using the finite
X

difference by restricting the numerical solution ¢gomparison with
ed.(3.9) where the discritization of the fractiorgdrivative can be
approximated using the central difference methodthefsecond order.

The difference appears in the setting of boundangdiions.

o¢
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Here, replace eq.(3.9) by eqs.(3.480|(3.26) depending amas:

1 [00]
3 W =0, (3.28)

k=—00
But eq.(3.28) includes unbounded domai® < X < o and this
unbounded domain has no practical implementation camputer
simulation. So, to solve this problem in the finlkemainQ : L<x <R
with boundary conditions (3.13), one can follow tHellowing

procedure:

Divide the domainQ into N subdomains with step length

h = % N O [, and in order to introduce the Dirichlet boundary

conditions, propose a numerical treatment whiclhimss that the values
of the function T in outside points are identical the values in the

boundary nodesyor Xy, i.e.,

T(Xg)=9,, forx<O

T(x) = {T(XN) g forx [ (3)29

On the basis of the above considerations, modi§/(8d.9) and

(3.26) for the discritization of the Riesz-Fellargative, as:

1 &
X; Dg T(Xi) = h_a Z Ti+kWE(a’e)

k=

1 ! 6 N—i 6 ® o
= 2 TaWEP+ Y Tgow @+ S Tw
h™ | k= k=-i k=N—i+

1 i -i-1 N-i 00
<o S weo S ranieo e 3 e
L k=—o k=-i k=N-i+

(<X
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Hence:
a 1| & (@.) (@.6) (@.0)
XiDeT(xi)zh—a D TiaWi ™ +g 3L +gr 3RV | .. (3.30)
k=-i

fori=1, 2, ..., N- 1, where:

_j_l
6L(j°"e) _ Z Wf(a,e)
k=-c0
c (a,0)r, forO<a<1
= (3.31)
¢ (a,8)/;, forl<a<?2
0 _ % 0
6R§°‘ V= > wd
k=j+1
Cg (0,0)r;, forO<a<1
S (3.32)
Cr(0,0)/;, forl<as 2
and
o (TN H ()TN 22+ T (- 2)
: 2r(2-a)
....(3.33)
D7 @A)+ (DT (R — A+ (2= ),
: 2r (3-a)
(i-D*"A,
2r (3-a)

Substituting eq.(3.30) into eq.(3.28), the folloginfinite

difference scheme have been obtained:

o1
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- (,0) (a,0) (@,0)
D TiaeWi ™ +g 0L +gr ORN = 0 e, (3.34)
k=-i

fori=1, 2, ..., N- 1, with boundary conditions:
To=0., Tn=0r

Finally, eq.(3.34) may be written as a linear syst@ matrix

form as:
N T = TSP (3.35)
where:
1 0 0 0 0 0 0
a, q ) A3 R2 &K
a, aq ) q A4 Rz &2
a_gz a, aq d A5 RHa &3
A=l ay agz a, ad; 0 6 K5 &g
AN+2 AN+3 AN+g4 QN5 0 P} q a
AN+l AN+2 ANz Aneg 0 Qg d a
0 0 0 o - 0 0 1|
................................ (3.36)
and

B= [gL; bl; bZ; sy b\l—li gR]t
with

g =w, forj=-N+1,-N+2, ..., N-1

b = g 8L +gg8R™Y forj=1,2, .., N1

oV
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and
T=[To To, ..., T]'

Is the vector of unknown values of the functionahd t is the matrix

transportation.

The next example illustrate the above method of emncal

solution:

Example (3.2):

Consider the fractional boundary value problem:
Xi D(l)'.ng(X) =0

T(Xg) =2, for x<0

T06) = {T(XN) =1, forx> 10

wherea = 1.01 and® = 0.1, 0< x £ 1, and to solve this problem using

Riesz-Feller operator.

Let the number of node points be equal to 9, Ne5 10 and

hence h= 0.1. To solve this problem, the resulting finitéfetence

equation from eq.(3.34):

10-i
k=-i

First, from eq.(3.12),c= -31.519 and g=-31.362.

Second, after carrying out some calculations frap{3e27), w
with A, =0.89, =1, 2, ..., 9, yields:

oA
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W_o = 3.84%10° wg=4.89%107°, w.; = 6.43410°,

W_g = 8.851x10°°%, w5 = 0.013, w, = 0.21, w; = 0.041,

W_, = 0.154, wy = 3.352, g = —7.43, w = 3.509, w = 0.153,
ws = 0.041, w=0.021, w=0.013, wy = 8.80%10°°,

W7 = 6.40%107°, wg = 4.868<10°°, wy = 3.82810°°

Then, from eq.(3.31) and after carrying some catouhs,doL;, j = 1, 2,

..., 9, becomes:

oL, = 0.285,0L, = 0.131,0L; = 0.09,dL, = 0.069,0L5 = 0.056,
0Ls=0.047,0L;=0.041,0L5=0.036,0Ly = 0.032

anddR;, j =1, 2, ..., 9, from eq.(3.32), yields:

OR; = 0.284,0R; = 0.13,0R; = 0.09,0R, = 0.069,0Rs = 0.056,
ORs = 0.047,0R; = 0.041,0Rg = 0.036,0R, = 0.032

Finally, from the results of the finite differeneguation (3.34)

the linear system may be written as in the follayunatrix form:
AT =Db

where:

o4



Chapter Three Solution of Fractional Boundary Value Problems

74 350 0153 004 002l 0013 880710 6402 10 x4
33 -743 350 0153 004 021 Q013 8807 10 6409 10

014 332 - 743 359 0153 0041 004 0013 >8§5?7 10
(010741 014 332 - 743 350 0153 4DO0 024

A= o2 0041 014 332 743 390 0153 0041
0013 0021 0041 014 332 743 390 0153

88K 10° 0013 002l 004 0154 332~ 743 3509
640410° 88BLI0 0013 Q1 0041 014 33 - 43 7
| 4,80 10° 6434 10 8®L D 0013 QL 004 0154 3362 -
(T, | [-7.314]
T, -0.611
LE —0.309
T, -0.236
T=|T;| and b= |-0.207
Te -0.202
T, -0.226
Tg —0.365
Ty | -3.685

Solving this system, one can get the following nuoad results
presented in table (3.1). Also, the resultsafer 1.01 and® =0, 0.1, 0.3,

0.5 are also illustrated in figure (3.1).



T()

——0=0.1

—=—0=0
6=.5
6=.3
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3.2.4 Other Types of Boundary Conditions (Neumann Condition) for
Solving Fractional Differential Equations by Riesz-Feller
Operator:

In this subsection, two kinds of new boundary ctods that

may be encountered in boundary value problem amsidered, which

are:

I- The First type of boundary conditions:

This kind can describe the boundary conditionshim shape of
the ordinary differential equation which may be wered into a
Dirichlet condition by the forward and backward¢fetience method,
then solving the problem using Riesz-Feller operat® in subsection
(3.2.3).

So, the boundary conditions may be described &sifs]

T'(xg)=9g,, fork<O

T(x) = {T,(XN)zg,R for ks (3.37)

The following example illustrates the above cordis:

Example (3.3):

Consider the boundary value problem:
«Dg T(x) =0

T'(xg) =2, fork<O

T06) = {T'(xg) =1, fork>9

1y
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fora =0.1 and6 =0, 0< x < 1, and let the number of node points be

equal to 10, i.e., N 9 and hence & 1/9.

Hence, using the forward and backward differencéhots to
convert the conditions (3.37) to Dirichlet condi#oas; for i= 0, by

forward difference method
-To+ T1=0.222

and for i= 9, by backward difference method
-Tg+ Tg=0.111

and for i=1, 2, ..., 8 from eq.(3.34) the finite differenceuatjon to

solve this problem is:

9-i
Z Ti +kwf<0.1,0) + gL 6Li(0.1,0)+ gR 6R9(_?'1’0): 0
k=i

from eq.(3.12) and sinde= 0, then
c.(a, 8) = cx(a, 8) =0.506

and after carrying out some calculations from eg@B w with A; = a -
0=0.1,j=0,1, ..., 8 and sindg@= 0, therefore:

Wo = —0.993, w; = 0.042, w, = 0.023, ws = 0.014,
W.s = 0.01, Ws = 8.05410°3, W, = 6.584x10°3, w,, = 5.554,
W.g = 4.79510°3

Then, from eq.(3.31) and after some calculatiomEg anddR;, j = 1,
2, ..., 8, yields:

0L, =0R; =0.454,0L,=0R, =0.432,0L3 =0R; = 0.417,

Y
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oL, =0R;=0.407,0L5 =0Rs = 0.399,0L s = 0Rs = 0.393,
6'.7 = 6R7 = 0387,6'.8 = 6R8 =0.382

Finally, from the result of the finite differenceeation as in
eq.(3.34) and the forward, backward difference w@sh the linear

system AT= b, can be written as the following matrix form:

[ 4 1 0 0 0 0 0 0 0 0]
049 -0993 0.042 0023 0014 001 805810 4883° 5554 100 0.38
0455 0042 - 0993 0042 0023 0014 001 &34 B584& 10° 0.39
0431 0023 0042 - 0993 0042 0023 0014 001.054810° 0.4
0417 004 0.023 0042 - 0993 0042 0023 0.014 001
0407 001 0014 0023 0042 0993 0042 0023 .0140 0417
04 8054 10 0.01 0014 0023 0042- 0993 0042 0230 0.43]
0393 6584 1§ 803 1O 001 0014 0023 0042- 0993 0.04255| 0

0387 5554 10 658 1 8084730 001 0014 0023 0.042 -0993 049
0 0 0 0 0 0 0 0 -1 1

T, [0.227]
T, 0

0

0

T= and b= 0
Ts 0
0

0

0

A1

To 0.111

Solving this system using any numerical method, careget the
following numerical results presented in table (3Adso, the results for
a =0.1,0.75,1.01,1.25,1.75 afd- 0O, are also illustrated in figure (3.2).

¢
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II- The Second type of boundary conditions:

This kind can be described as the boundary comditio the
shape of the fractional differential equation, whitan be described as

follows:

T00) T (xy) =g, fork<0
Xk) =
T@(xy) =gy, for k>N

and may be converted into Drichlit condition by tfedlowing finite
difference method. To do this, let us write the fidary conditions as:
TOKG) = F(Xi, TUX)) werererreereereereereereeeeeee e eeeeereereeeens (3.39)

where x=L +ih,1=0, 1, ..., N, h= % where NO [1 is the

number of subintervals of the interval [L, R].

Now, recall the left-hand fractional derivatives @Gfinwald

definition:
d® . N
e T(X) = |\|1|£noo —Zong(x— T0) e, (3.40)
iz

where g = 1, and:

_ a(a-D(-2)...

| _J+1),forj:1, 2, ...
j!

j

Next, to obtain a good approximation, define tieHand shifted

Grunwald estimate to left hand derivative.

dC(
T(X) =
e (x)

1N
—aZng(X‘(j‘l)h)
h™ %

1
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Therefore:

N
TO) = =3 g, T(x - (j-1h)
h* <

and by substituting eq.(3.41) in eq.(3.39), oneltare:

i+l
hiaZngi_jﬂ =f(x, T, i=0, 1, oo, = Lo, (3.42)
=0

To illustrate this method, consider the followingstgn example:

Example (3.4):

Consider the boundary value problem:
DO°T(X)=0,0sx<1

T@®(x,) =1, fork<O
T(x) = o)

T@(xg)=0, fork>9

and if we let N= 9, then = 0.111

The first step is to convert the two boundary ctaods to

Dirichlet conditions using eq.(3.42) for=i 0 and i= 9, respectively as

follows:
1 &
h_uzngi—JH =1
j=0
and

v
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13
h_azngi—jﬂ =0
j=0

Now, for i = 1, 2, ..., 8, from eq.(3.34) the finite difference

equation to solve this problem is:

9-i
Z Ti+kW§<0'5'O) +0. 5|—i(0'5'0)+ Or 5RN((_)55’0)= 0
k=i

from eq.(3.12) and sind®= 0, then:
c.(a, 8) =cx(a, 8) =0.707

and after carrying some calculations from eq.(3.29)with A; = a -

6|=0.5,j=0, 1, ..., 8, and sindg= 0, therefore:
Wo =-0.963, w; =0.17, w, = 0.068, w; = 0.036,
Wi = 0.024, ws = 0.017, we = 0.013, w7 =0.01,
W.g = 8.498¢<10°°

Then, from eq.(3.31)and after some calculatidinsoR;, j = 1, 2,
..., 8, yields:

oL; =0R; =0.311,0L, =0R, =0.244,0L; = 0R; = 0.208,
OL;=0R;=0.184,0L5=0R5=0.167,0Ls = 0Rs = 0.154,
6'.7 = 6R7 = 0144,6L8 = 6R8 =0.135

Finally, from the result of the finite differenceeation as in
eq.(3.34) and by eqs.(3.42), then the system=Ab, which can be

written as the following matrix form:

A
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0.481
0.312
0.244
0.208
0.184
0.167
0.154
0.143

1

0

Solution of Fractional Boundary Value Problems

0 0

-0963 0.17 0.068 0.036
0.17 - 0963 0.17 0.068
0.17 - 0963 0.17

0.068
0.036
0.024
0.017
0.013
0.01

0.068
0.036
0.024
0.017
0.013

and br

0.17- 0.963
0.068 0.17-
0.036 0.068
0.024 0.036
0.017 0.024

10.333]
0

O O O O O O o o

L 0

0
0.024
0.036
0.068
0.17
0.963
0.1#
0.068
0.036

0
0.017
0.024
0.036
0.068

0.17

0 0 0
0.01301 00.1
0.0101%. 0.1
0.024010. 0.16
©.09.024 0.1
0.068)38. 0.20:

0.963 0.17068. 0.2

0.17

0.9637 00.31

0.068 0.1/ 63.9.48

| -0.011 -0.013- 0.016- 0.02+ 0.02¢ 0.039 00663 01265 1

Solving this system using any numerical method, careget the

following numerical results presented in table Y3Aso, the results for
a=0.1,0.5,1.25, 1.5 arti= 0, are also illustrated in figure (3.3).

4
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Conclusions and Recommendations

The following conclusions may be drown from thesem study:

1. The finite difference method used in the numerisalution of
fractional differential equations depends on th&auarmvald fractional
derivative approximation of the fractional orderidative, which is

the only applicable method for solving FBV'’s.

2. The accuracy of the results may be improved whensidering
fractional differential equations with Drichlit bodary conditions, of

integer or fractional order (see examples (3.3)(@n4).

3. From the illustrative figures of examples (3.2),3j3and (3.4), one
can see that the behavior of the solutions is umgpba for different

values ofo and®6.

Also, the following problems may be recommended ftdgure

work as an open problems:

1. Solving fractional boundary value problems usingesRiFeller

fractional derivative with fractional order> 2.

2. Using the Green’s function method to solve fracidmundary value

problems with boundary conditions of fractional @rd

3. Proposing a modified approach for solving partiaffedential
equations with fractional order derivatives usinges2-Feller

fractional derivative.

A



Conclusions and Recommendations

4. Modifying the present approach for solving homogersefractional
boundary value problems to solve non-homogeneoastidnal

boundary value problems.

5. Solving nonlinear fractional boundary value probdensing Riesz-

Feller fractional derivative.

6. Using other methods for solving fractional boundeajue problems,

such as the shooting method, the collocation metéiad

\A
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Introduction

From the 18 century until now, the fractional calculus have an
important place in many fields, because it deals whe investigation
and applications of integrals and derivatives obiteary order.
Moreover, it has played a significant role in emgnng, science,
economy and more particularly in transport of cleahicontaminant
through water around rocks, diffusion process imvig cells, signals
theory such as radar and sonar applications, dotiteory and many
more, [El-Sayed, 2006].

The subject of fractional calculus may be consideas an old
and yet novel topic. It is an old since, startingi some speculations of
G. W. Leibniz (1695, 1697), L. Euler (1730) who gagted to use this

relationship for negative or non-integer (rationadjues of n.

Historically, S. Locroix (1819) first mentioned deatives of
arbitrary order in a text published in (1819) ankas been developed up
to nowadays by J. B. Fourier (1820-1822) who patfilst steps to the
generalization of the notion of differential eqoats of arbitrary
function. Also, the first application of fractionaérivatives was given in
(1823) by Abel who applied the fractional calcuinghe solution of an
integral equations. Liouville (1832) who attempteal give logical

definitions of fractional derivatives.

Moreover, one can state that the whole theory attional

derivative and calculus was established on the d®woh many scientists



Introduction

in the 29 half of the 18 century (for more detailed overview concerning

the history of fractional derivative and calculsse [Ross, 1975]).

Many books and papers on fractional calculus, ivael
differential equations have appeared recently, saghSamko, 1993],
[Diethelm, 1997], [Podlubny, 1997], [Gorenflo, 199Ddibat, 2006].

Many scientists who works in fractional calculuarshg from G.
W. Leibniz (1695-1697), P. S. Laplace (1812), JFBurier (1822), N.
H. Abel (1823-1828), J. Liouville (1832-1873), BieRhann (1847), H.
Holmgren (1865-1867), A. K. @Gnwald (1867-1872) until the 19
century like S. Pincherle (1902), G. H. Hordy andEJ Littlewood
(1917-1928), E. R. Love (1938-1996), A. Erdelyi 39291965), H. Kober
(1940), D. V. Widder (1941), M. Riesz, (1949), ef@ldham, 1974].

Finally, in recent years, the interesting of franal calculus have
been stimulated by using the subject in many agftins like the
subject of finding the numerical solution of dit#eatial equations and in

sciences, such as physics and engineering, etejussieny, 2006].

Nowadays, many researchers works in fractionalecbfitial
equations with initial conditions and the methodsaution it such as
[Al-Shather, 2003] who presented some approximatkitisns for
fractional delay integro-differential equations,|{Azawi, 2004] who
gave some results in fractional calculus, [Al-Auth2005] gave some
numerical methods for solving fractional differemtequations, [Khalil,
2006] used linear multistep method to approximataesfractional order
differential equations, [Aziz, 2006] use some apprated methods for
solving fractional partial differential equationpAl-Husseiny, 2006]

who gave some type of solution in fuzzy fractiondifferential



Introduction

equations, [Ghareeb, 2007] used the finite diffeeermethods for
solving fractional differential equations and [farj2007] used the
Laplace transformation method to solve ordinargtfomal differential

equations with constant coefficients. But a litte mathematicians or
papers deals with fractional differential equatiavith boundary

conditions like [Zhang, 2006], [Ciesielski, 2006]da[Zhanbing, 2005],
thus this thesis is oriented towards introduciragtional boundary value

problems and the numerical methods for solving sypé of equations.

This thesis consists of three chapters, the fliapter devoted to
introduce the general concepts of fractional calsuédnd fractional
differential equations, while the main objectivetloifs chapter is to give
an overview about fractional differential equationvgith initial

conditions, these problems has the form:

DY(x) = f(x, y(x)), D"*y(xo) = y5, d > k
where k=1, 2, ..., m+ 1; m-1<q<m, and m is a positive integer.
The methods used to solve the above problems scestied with some
illustrative examples, which are necessary for wstdeding these
methods of solution.

In order to ensure the existence of a unique swlutthapter two
is devoted to discusses the existence and unigsietteorem of
solutions of fractional differential equations wiloundary conditions

using the Schauder’s fixed point theorem.

Finally, in chapter three we present the only wetiown
fundamental analytic method for solving fractioddferential equations
with boundary conditions. Since the numerical mdthamay be

sometimes the most applicable methods for solvinifferdntial



Introduction

equations, in general, and fractional differenéigliations, in particular,
therefore in this chapter we derived one of thetrsascessful methods
for solving fractional boundary value problems apcesent some

illustrative examples are given.
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ABSTRACT

In this thesis, we introduce a modified approachdolving fractional
order boundary value problems. This approach isrgiyy applying the Riesz-
Feller operator to obtain a modified finite difface equation, which is

symmetric to the equation of fractional boundarluggroblems.

Also, the main objective of this work is to studyetexistence and
unigueness theorem of solutions of the fractiomainaary value problems, and
to present their proof depending on Schauder fp@dt theorem for fractional

order integral operator.
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