
Abstract 

 

In this thesis, we introduce a modified approach for solving 

fractional order boundary value problems. This approach is given by 

applying the Riesz-Feller operator to obtain a modified finite difference 

equation, which is symmetric to the equation of fractional boundary 

value problems. 

Also, the main objective of this work is to study the existence and 

uniqueness theorem of solutions of the fractional boundary value 

problems, and to present their proof depending on Schauder fixed point 

theorem for fractional order integral operator. 
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Chapter One 

Fundamental Theory of Fractional 

Differential Equations 

 

 

In this chapter, some general concepts are presented including, 

fractional calculus and fractional differential equations of initial value 

problems. 

Fractional calculus is that field of mathematical analysis which 

deals with the investigation and applications of integrals and derivatives 

of arbitrary order. 

This chapter consists of two sections. In section 1.1 a brief and 

general introduction to fractional calculus is given which is necessary for 

understanding fractional differential equations. In section 1.2, fractional 

differential equations, as well as, some of its analytical and numerical 

methods are given and illustrated with well solved examples. 

 

1.1 Fractional Calculus 

In this section, we introduce some of the basic and fundamental 

concepts and definitions related to the subject of fractional calculus for 

completeness. 
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1.1.1 Basic Notations: 

1.1.1.1 The Gamma and Beta Functions, [Oldham, 1974]: 

Gamma and beta functions are two of the most important 

notations in fractional calculus, since they play an important role in 

fractional differentiation and integration. 

First, the gamma function Γ(x) of a positive real x, is defined by: 

x 1 y

0

(x) y e dy, x 0
∞

− −Γ = >∫  ....................................................... (1.1) 

Following are some of the most important properties of the 

gamma function: 

1. Γ(1) = 1. 

2. Γ(x + 1) = xΓ(x). 

3. Γ(x + 1) = x!. 

4. 
n1 ( 4) n!

n
2 (2n)!

− π Γ − = 
 

. 

5. 
n

1 (2n)!
n

2 4 n!

π Γ + = 
 

. 

6. 
csc( x)

( x)
(x 1)

−π πΓ − =
Γ +

. 

7. Γ(nx) = 
n 1x

k 0

2 n k
n

n n2

−

=

 π  +   π    
∏ , ∀ n ∈ � . 

The second function is the beta function with positive parameters 

p and q is defined by: 
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1
p 1 q 1

0

B(p,q) y (1 y) dy− −= −∫  ..................................................... (1.2) 

If either p or q is non-positive, the integral diverges. 

The incomplete beta function can be defined in terms of gamma 

function by the following relationship: 

(p) (q)
B(p,q)

(p q)

Γ Γ=
Γ +

, ∀ p and q 

The beta function of argument t is defined by the integral: 

t
p 1 q 1

t
0

B (p,q) y (1 y) dy− −= −∫  ................................................... (1.3) 

 

1.1.1.2 Fractional Derivatives: 

Many literatures discussed and presented fractional derivatives of 

certain functions, therefore this subsection some definitions of fractional 

derivatives are presented: 

 

1. Riemann-Liouville Formula of Fractional Differentiation and 

Integration, [Oldham, 1974], [Nishimoto, 1983]: 

Among the most important formulae used in fractional calculus 

is the Riemann-Liouville formula. For a given function f(x), ∀ x ∈  

[a, b], the left and right hand Riemann-Liouville fractional derivatives of 

order q > 0 and m is a natural number, are given by: 

xm
q

x a m q m 1
a

1 d f (t)
f (x) dt

(m q) dx (x t)
+ − +=

Γ − −∫D  ........................... (1.4) 
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bm m
q

x b m q m 1
x

( 1) d f (t)
f (x) dt

(m q) dx (x t)
− − +

−=
Γ − −∫D  ........................... (1.5) 

where m − 1 < q ≤ m, m ∈ � . These equations are usually named as the 

Riemann-Liouville fractional derivatives. 

 

2. Caputo Fractional Derivatives, [El-Sayed, 2006]: 

Another type of equation used in fractional calculus is the Caputo 

fractional derivatives and according to the left and right hand Riemann-

Liouville derivatives, the left and right Caputo derivatives of order q > 0 

of a given function f(x), x ∈ [a, b], can be defined as: 

x (m)
q

x a q m 1
a

1 f (t)
D f (x) dt

(m q) (x t)
+ − +=

Γ − −∫  .................................... (1.6) 

bm (m)
q

x b q m 1
x

( 1) f (t)
D f (x) dt

(m q) (x t)
− − +

−=
Γ − −∫  .................................... (1.7) 

where m ∈ � , m − 1 < q < m. It is remarkable that, the Caputo 

derivatives will be used in the derivation of the finite difference equation 

related to the boundary fractional ordinary differential equations (see 

chapter three). 

 

The Relationship Between Riemann-Liouville and Caputo Fractional 

Derivatives, [El-Sayed, 2006]: 

When q ∈ (0, 1) the following relationships between the operator 

q
x aD +  and q

x a+D , q
x bD −  and q

x b−D  have been introduced. 



Chapter One                                                    Fundamental Theory of Fractional Differential Equations 

٥ 
 

By integrating by parts of eqs.(1.6) and (1.7) will leads to: 

q q
x a x aq

1 f (a)
f (x) D f (x)

(1 q) (a x)
+ +

 
= + Γ − − 

D  

and similarly: 

q q
x xb bq

1 f (b)
f (x) D f (x)

(1 q) (b x)
− −

 
= − Γ − − 

D  

Such relations can be extended easily to the case that q ∈ (m − 1, 

m) as follows: 

k q km 1
q q

x a x a k
k 0 x a

(a x) d
f (x) D f (x) f (x)

(k q 1) dx

−−

+ +
= =

−= +
Γ − +∑D  ............ (1.8) 

m k k q km 1
q q

x xb b k
k 0 x b

( 1) (x b) d
f (x) D f (x) f (x)

(k q 1) dx

− −−

− −
= =

− −= +
Γ − +∑D  (1.9) 

and based on the assumption that 
k

ka
x a

d
lim f (x)

dx+→−∞
=

< ∞ and as well 

k

kb
x b

d
lim f (x)

dx−→∞
=

< ∞, for k = 0, 1, …, m − 1. The terms accruing on 

the left and right sides of eqs.(1.8) and (1.9) tend to zero, thus when the 

lower and upper limit of integration approaches to +∞ and −∞, yields: 

q q
a aD f (x) f (x)−∞ + += D     and    q q

b bD f (x) f (x)− ∞ − ∞= D  

 

3. Riesz-Feller Fractional Derivative, [Mainardi, 2001]: 

There is also another kind of equations of fractional derivatives 

which is not less important than Riemann-Lioville and Caputo fractional 
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derivatives which is called Riesz-Feller derivative. For a given function 

the Riesz-Feller fractional derivative of order 0 < q < 2, q ≠ 1 is defined 

by: 

q
q

|x| 0 q
0

d
f (x) f (x)

d | x |
=D  

= 
1 q

0

(1 q) q f (x t) 2f (x) f (x t)
sin dt

2 t

∞

+
Γ + π + − + − 

 π  
∫  .. (1.10) 

and for q = 1, the Riesz derivative related to Hilbert transform by Feller 

in 1952 [Hahn, 1996] can be defined as: 

1
|x| 0

1 d f (t)
f (x) dt

dx x t

∞

−∞

= −
π −∫D  

and for 0 < q < 2, q ≠ 1 and |θ| ≤ min{q, 2 − q} the Riesz-Feller 

derivative can be written as: 

q
|x| 1 q

0

(1 q) (q ) f (x t) f (x)
f (x) sin dt

2 t

∞

θ +

Γ + + θ π + −  = +  π  
∫D  

1 q
0

(q ) f (x t) f (x)
sin dt

2 t

∞

+

− θ π − −  
 

  
∫  ...................... (1.11) 

for q = 1, we obtain the composite formula: 

1 1 1
|x| |x| 0 |x| 0f (x) cos sin f (x)

2 2θ
 θπ θπ   = +    

    
D D D  
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4. Gruünwald Fractional Derivatives, [Oldham, 1974],  

[Odibat, 2006]: 

The Gruünwald derivatives of any integer order to any fractional 

order derivative which takes the form: 

q

q N 1

q N j 0

x
d ( j q) xN

f (x) lim f x j
( q) ( j 1) Ndx

−

−

→∞ =

  
    Γ −   = −   Γ − Γ +    
  

∑  ........... (1.12) 

The following are some examples for fractional differentiations: 

1. 
q

q

d

dx
(1) = 

qx

(1 q)

−

Γ −
, x > 0. 

2. 
q

q

d

dx
(c) = c

q

q

d

dx
(1) = c

qx

(1 q)

−

Γ −
. 

3. 
q

q

d

dx
xp = 

p q(p 1)x

(p q 1)

−Γ +
Γ − +

. 

4. 
q

q

d

dx

qx

1 x

 
  − 

 = 
q 1

(p 1)

(1 x) +
Γ +

−
. 

5. 
q

q

d

dx

px

1 x

 
  − 

 = xp−q

j 0

( j p 1)

( j p q 1)

∞

=

Γ + +
Γ + − +∑  

= 
( ) x

q 1

p 1 B (p q,q 1)

(p q)(1 x) +
Γ + − +

Γ − −
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6. 
q

q

d

d(x a)−
[exp(L − cx)] = 

q

exp(L cx)

(x a)

−
−

γ*(−q, −c(x − a)), where 0<x<1, 

p > −1, L an arbitrary constant, and γ*(c, x) is the incomplete gamma 

function defined by: 

γ*(c, x) = 
cx

x 1 y

0

c
y e dy

(x)

−
− −

Γ ∫  

= exp(−x)
j

j 0

x

( j c 1)

∞

= Γ + +∑  

7. 
q

q

d

dx
sin(ax) = 

k 2k 1
q

k 0

( 1) (ax)
x

(q 2k 2)

+∞

=

−
Γ + +∑ . 

8. 
q

q

d

dx
cos(ax) = 

k 2k
q

k 0

( 1) (ax)
x

(q 2k 1)

∞

=

−
Γ + +∑ . 

 

1.1.1.3 Fractional Integration: 

As in fractional ordinary derivatives, there are many literatures 

introduces different definitions of fractional integration, such as: 

 

1. Riemann-Liouville Fractional Integral, [Oldham, 1974]: 

The generalization to non-integer q of Riemann-Liouville 

integral can be written for a suitable function f(x) (x ∈ � ) as: 

xq
q 1

q
0

d 1
f (x) (x y) f (y)dy

( q)dx
− −= −

Γ − ∫ , q < 0 ........................ (1.13) 
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2. Weyl Fractional Integral, [Oldham, 1974]: 

The left handed fractional order integral of order q > 0 of a given 

function f is defined as: 

x
q
x 1 q

1 f (y)
D f (x) dy

(q) (x y)
−∞ −

−∞

=
Γ −∫ , x > −∞ ........................... (1.14) 

and the right handed fractional order integral of order q > 0: 

q
x 1 q

x

1 f (y)
D f (x) dy

(q) (y x)

∞

∞ −=
Γ −∫ , x < ∞ ................................ (1.15) 

 

1.1.2 Some Properties of the Fractional Differential Operator q
xD : 

The fractional differential operator q
xD  has some important 

properties that can be described as follows: 

1. The operator q
xD  is linear, i.e., 

q
xD (c1f1(x) + c2f2(x)) = c1

q
xD (f1(x)) + c2

q
xD (f2(x)) 

2. For real numbers p and q, the equality between p
xD q

xD f(x) and 

p q
xD + f(x) is always valid if p ≤ 0, but is not so if p > 0, even when p is 

an integer, except when q is positive integer which implies that: 

p
xD q

xD f(x) = p q
xD + f(x) 
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1.2 Fractional Differential Equations 

An important type of differential equations is the so called 

ordinary fractional differential equations which is an equation containing 

fractional order derivatives in the independent variable with suitable 

initial or boundary conditions. Such type of equations may be considered 

to have the form: 

Dqy(x) = f(x, y(x)) 

with initial conditions: 

Dq−ky(x0) = k
0y , k = 1, 2, …, m + 1; m − 1 < q ≤ m 

where n is a positive integer, q ∈ � . 

In this respect, two kinds of conditions have been introduced 

associated with the fractional differential equations, initial and boundary 

conditions, and in this chapter we will concern with analytical and 

numerical methods for solving initial ordinary fractional differential 

equations. 

 

1.2.1 Analytic Methods for Solving Ordinary Fractional Differential 

Equations, [Oldham, 1974]: 

Several analytical methods are available to solve fractional 

differential equations and many of such methods are the following: 

 

1. The inverse operator method: 

Consider the simplest type of all fractional differential equations: 
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q

q

d f

dx
 = F ................................................................................. (1.16) 

where f is an unknown function and q is an arbitrary real number, F is a 

given function of x. Hence taking the inverse operator 
q

q

d

dx

−

−  to the both 

sides of eq.(1.16), yields: 

f = 
q

q

d

dx

−

− F 

where it is clear it is not always the case that they are equal, but this is 

not the most general solution: 

f − 
q

q

d

dx

−

−

q

q

d

dx
f = 0 ................................................................. (1.17) 

The differentiation f − 
q

q

d

dx

−

−

q

q

d

dx
f, will not, in general, vanish but will 

consist of these portions of the differentiable series units {fu} in f that 

are sent to zero under the action 
q

q

d

dx
. 

We decompose f into differentiable units fu,i; where: 

fu,i = ip j
ij

j 0

x a x
∞

=
∑ , pi > −1, ai0 ≠ 0, i =1, 2, … 

The condition on fu,i required to give: 

f − 
q

q

d

dx

−

−

q

q

d

dx
f ≠ 0 
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This condition is obvious if and only if for some i in the range 1 ≤ i ≤ n, 

Γ(pi − q + 1) is infinite, this condition can occur, however, only when  

pi − q + 1 = 0, −1, −2, …; and hence pi = q −1, q − 2, …; then: 

f − 
q q

q q

d d
f

dx dx

−

−  = c1x
q−1 +c2x

q−2 + … + cmxq−m 

where c1, c2, …, cm are arbitrary constants, and m − 1 < q ≤ m, thus: 

f − c1x
q−1 − c2x

q−2 − … − cmxq−m = 
q

q

d

dx

−

−

q

q

d

dx
f  

= 
q

q

d

dx

−

− F 

Finally, the general solution of eq.(1.16) can be written as: 

f = 
q

q

d

dx

−

− F + c1x
q−1 +c2x

q−2 + … + cmxq−m .............................. (1.18) 

The next example illustrate the above method of solution. 

 

Example (1.1): 

Consider the ordinary fractional differential equation: 

1/ 2

1/ 2

d

dx
y = x5, y(−1/2)(0) = 0.1 

Now, since q = 1/2, F = x5 hence 0 < q < 1, so using eq.(1.18) 

yields: 

y = 
1/ 2

1/ 2

d

dx

−

− x5 + c1x
1/2 

= 
(6)

(13/ 2)

Γ
Γ

x11/2 + c1x
−1/2 



Chapter One                                                    Fundamental Theory of Fractional Differential Equations 

١٣ 
 

and applying the first initial conditions, gives: 

1/ 2

1/ 2

d y

dx

−
= 

(6)

(13/ 2)

Γ
Γ

1/ 2

1/ 2

d

dx

−

− x11/2+ c1

1/ 2

1/ 2

d

dx

−

− x−1/2  

and hence c1 = 
0.1

(1/ 2)Γ
. Therefore: 

y = 
(6)

(13/ 2)

Γ
Γ

x11/2 + 
0.1

(1/ 2)Γ
x−1/2 

 

2. Laplace Transformation Method: 

Another type of analytic methods for solving fractional 

differential equations which will be discussed in this section by using 

Laplace transformation method. 

The Laplace transformation of 
q

q

d

dx
, q ∈ +

�  is given by: 

q q

q q
0

d f d f
exp( sx) dx

dx dx

∞   = − 
  

∫L  

But first let us recall the well-known transforms of integer order 

derivatives: 

{ }
n kn 1

n n 1 k
n k

k 0

d f d f (0)
s f s ,n 1,2,...

dx dx

−
− −

=

   = − = 
  

∑L L  

and 

{ }
n

n
n

d f
s f ,n 0, 1, 2,...

dx

   = = − − 
  

L L      ................................. (1.19) 
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note that both formulas are embraced by: 

{ }
q 1q q 1 k

q k
q q 1 k

k 0

d f d f (0)
s f s ,q 0, 1,...

dx dx

− − −

− −
=

   = − = 
  

∑ mL L  ............ (1.20) 

Notice that eq.(1.20) may be generalized to include non integer q 

by the simple extension: 

{ }
q q 1 kn 1

q k
q q 1 k

k 0

d f d f (0)
s f s , q

dx dx

− −−

− −
=

   = − ∀ 
  

∑L L  ∈ �  ............. (1.21) 

where n is integer such than n − 1 < q ≤ n. 

The sum vanishes when q ≤ 0. To prove (1.21) first consider q < 

0, so that the Riemann-Liouville definition gives: 

xq

q q 1
0

d f 1 f (y)
dy,q 0

( q)dx (x y) += <
Γ − −∫ ......................................... (1.22) 

may be adopted and upon direct application of the convolution theorem 

[Churchill, 1948]: 

{ } { }
x

1 2 1 2
0

f (x y)f (y)dy f f
  − = 
  
∫L L L  

Then gives: 

{ } { }
q

1 q
q

d f 1
x f

( q)dx
−   =  Γ −  

L L L  

{ }qs f ,q 0= <L  

so that eq. (1.19) unchanged may be generalized for negative q. 

For positive non integer q, the following result is used: 
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q n q n

q n q n

d f d d f

dx dx dx

−

−=  

where n is an integer number such that n − 1 < q < n. Now, on 

application of eq. (1.20), one can find that: 

q n q n

q n q n

d f d d f

dx dx dx

−

−

       =    
        

L L  

= 
q n n 1 k q nn 1

n k
q n n 1 k q n

k 0

d f d d f
s s (0)

dx dx dx

− − − −−

− − − −
=

    −   
     

∑L  

The difference q − n being negative, the first right-hard term may 

be evaluated by use of equation (1.22), since q − n < 0, the composition 

rule may be applied to the terms within the summation which is: 

{ }
q q 1 kn 1

q k
q q 1 k

k 0

d f d f (0)
s f s ,

dx dx

− −−

− −
=

   = − 
  

∑L L q ∈ +
�  

For the linear fractional ordinary differential equations with 

constant coefficients, consider the equation: 

i

i

qn

i i iq
i 0

d f (x)
c g(x), where 1 q n

dx=
= − < <∑  

and taking the Laplace transformation to the both sides of the above 

equation and using the homogeneous property, yields: 

{ }
i

i

qn

i q
i 0

d f (x)
c g(x)

dx=

   = 
  
∑L L  

or equivalently: 
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{ }
i

i

qn

i q
i 0

d f (x)
c g(x)

dx=

   = 
  

∑ L L  

And by using eq.(1.21) with f(x), for all x (0, )∈ ∞ , one can find 

{ }f (x) G(x)=L  which is the solution of the linear equation. 

It is remarkable that, in this method the following initial 

conditions can be used: 

q 1 k

q 1 k

d f (0)
0, k 0,1,...,n 1

dx

− −

− − = = −  

The next example illustrate the above method of solution: 

 

Example (1.2): 

Consider the fractional differential equation: 

1/ 2

1/ 2

d f (x)

dx
 + 

1/ 2

1/ 2

d f (x)

dx

−

−  + 2f(x) = 
2

xπ
 + 6

x

π
 + 4

3/ 2x

3 π
 + 2x + 4 

 ............................... (1.23) 

q 1 k

q 1 k

d f (0)
0, k 0,1

dx

− −

− − = =  

To solve this equation using Laplace transformation method, first take 

the Laplace transformation to the both sides of eq.(1.23) 

1/ 2

1/ 2

d f (x)

dx

  
 
  

L  + 
1/ 2

1/ 2

d f (x)

dx

−

−

  
 
  

L  + 2L{f(x)} = 
2 1

x

 
 

π  
L  + 

{ }6
x

π
L  + { }3/ 24

x
3 π

L  + 2L{x} + L{4} 
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which is equivalent to: 

L{f} = {s3 + s2 + 2s5/2} = 2s2 + 3s + 1 + 2s1/2 + 4s s  

and hence: 

L{f} = 
2

2

2s 3s 1 2 s 4s s

s (s 1 2 s)

+ + + +
+ +

 

= 
2

2

(2s 3s 1) 2 s(1 2s)

s (s 1 2 s)

+ + + +
+ +

 

= 
2

(2s 1)(s 1) 2 s(1 2s)

s (s 1 2 s)

+ + + +
+ +

 

= 
2

(2s 1)(s 1 2 s)

s (s 1 2 s)

+ + +
+ +

 = 
2 2

2s 1

s s
+  

Therefore: 

L{f} = 
2

2 1

s s
+  

Then using the inverse Laplace transformation, gives the solution: 

f(x) = 2 + x 

 

1.2.2 Numerical and Approximate Methods for Solving Ordinary 

Fractional Differential Equations: 

The choice of approximate method for approximating the 

solution to problems is influenced significantly by changes in calculator 

and computer technology since 50 years ago, and since the mathematical 

problem ordinarily does not solve the physical problem exactly in any 
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case, it is often more appropriate to find an approximate solution to more 

complicated mathematical model of physical problem, [Burden, 1985]. 

In this subsection several numerical and approximate methods 

will be discussed which can be used to solve “fractional differential 

equations”. 

 

1. The least-square method, [Burden, 1985]: 

Among the most important methods used to approximate the 

solution of fractional differential equations which is called the least-

square method and has the general idea of minimizing the square of 

residual error. To illustrate this method, consider the fractional 

differential equation: 

Dqy = f(x) 

where f C[0,1]∈ , q > 0 and approximate the solution by: 

y(xn) = 
n

j
j

j 0

c x
=
∑ ., n ∈ �  

where cj, ∀ j = 0, 1, …, n are constants to be determined. Hence, 

substituting in the differential equation and minimizing the sequence of 

the residual error, i.e., 

E(c0, c1, …, cn) = { }
b 2q

x n
a

f (x) D y (x) dx, q 0− >∫  ................ (1.24) 

For this residual error, we have upon using the linear property: 
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E(c0, c1, …, cn) = 

2b n
q i
x i

i 0a

f (x) D c x dx
=

  − 
  

∑∫  

= 

2b n
q i

i x
i 0a

f (x) c D x dx
=

  − 
  

∑∫  ........................... (1.25) 

Hence, the problem now is reduced to find the coefficients cj, j = 0, 1, 

…, n. A necessary condition for the coefficient cj, j = 0, 1, …, n; which 

minimizes E is that: 

j

E

c

∂
∂

 = 0, for each j = 0, 1, …, n 

hence: 

j

E

c

∂
∂

 = −2
b bn

q j q j i
x i x

i 0a a

f (x)D x dx 2 c D x dx+

=
+ ∑∫ ∫ , ∀ j = 0, 1, …, n 

Therefore, in order to find yn, we have the following n + 1 linear system: 

b bn
q j i q j

i x x
i 0 a a

c D x dx f (x)D x dx+

=
=∑ ∫ ∫ , j = 0, 1, …, n ................. (1.26) 

which must be solved for n + 1 unknowns cj, j = 0, 1, …, n. 

 

2. The collocation method, [Al-Hussainy, 2006]: 

The collocation method is one of the approximate methods which 

is used “in general” to solve differential equations and to solve “in 

particular” fractional differential equations. The method has another 

application in solving other equations, such as integral equations, partial 

differential equations, integrodifferential equations, etc. This method has 



Chapter One                                                    Fundamental Theory of Fractional Differential Equations 

٢٠ 
 

its basis on approximating the solution of the fractional differential 

equation by a complete sequence of functions { }iφ , where φi, ∀ i satisfy 

the homogeneous conditions and certain function ψ  which satisfy the 

non-homogenous initial and boundary conditions, i.e.: 

m

j j
j 1

y(x) (x) c (x)
=

= ψ + φ∑  .......................................................... (1.27) 

where cj’s, ∀ j = 1, 2, …, m; are an arbitrary constants to be evaluated. 

Therefore, to solve the last equation, we must evaluate the coefficients 

cj’s, j = 1, 2, …, m; which will produce a linear system of algebraic 

equations. 

After substituting y(x) in the different equation and evaluating 

the resulting equation of m-distinct points in the domain of solution. 

 

3. Adam’s method, [Diethelm. 1999]: 

Consider the fractional differential equation: 

Dqy = f(x, y(x)), y(x0) = y0, m − 1 < q ≤ m, m ∈ �  .............. (1.28) 

In order to solve this equation, we must first converting the 

problem into the following equivalent equation: 

0

x
q 1

0
x

1
y(x) y(x ) (x v) f (v, y(v)) dv

(q)
−= + −

Γ ∫  ........................ (1.29) 

which is a Volterra singular integral equation of the second kind and also 

called Riemann-Liouville integration formula. 
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Second, use any quadrature formula with nodes xj, j=0,1,…,n+1, 

taken with the weighted function (xn+1 − v)q−1 and use the approximation: 

n 1 n 1

0 0

x x
q 1 q 1

n 1 n 1 n 1
x x

(x v) g(v) dv (x v) g (v) dv
+ +

− −
+ + +− ≈ −∫ ∫  ....... (1.30) 

where gn+1 is the piecewise linear interpolation for g whose nodes are 

chosen at the xj, j = 0, 1, …, n + 1. Then use Legendre quadrature 

integration method. Then the right hand side of eq.(1.30) may be written 

as: 

n 1

0

x n 1
q 1

n 1 n 1 j n 1 j
j 0x

(x v) g (v)dv a , g(x )
+ +

−
+ + +

=
− =∑∫  ............................. (1.31) 

where: 

n 1

0

x
q 1

j n 1 n 1 j n 1

x

a , (x v) , (v) dv
+

−
+ + += − ξ∫  ....................................... (1.32) 

In the case of equispaced nodes tj = t0 + jh with some fixed h, the 

relationship of eq.(1.32) reduced to: 

j 1 j j 1 j 1 j

j n 1 j 1 j 1 j j j 1

(v x ) /(x x ), if , x v x

, (v) (x v) /(x x ), if ,x v x

0, otherwise

− − −

+ + + +

− − < <
ξ = − − < <



.................. (1.33) 

and: 

aj,n+1 = 

q
q 1 q

q

h
n (n q)(n 1) , if j 0

q(q 1)

h
, if j n 1

q(q 1)

+
 − − + =  +


 = + +

 ......... (1.34) 

where 1 ≤ j ≤ n, then eq.(1.32) becomes: 
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aj,n+1 = 
qh

q(q 1)+
 q 1 q 1(n j 2) 2(n j 1) (n j)+ + − + − − + + −   ...... (1.35) 

where aj,n+1 are termed as the coefficients of the method and ξj,n+1(u) as 

the linear basis functions. 

Now, substituting eq.(1.31) into eq.(1.29) and using the 

fractional variant of one step Adam-Moulton method, yields: 

n
pc

n 1 0 j,n 1 j j n 1,n 1 n 1 n 1
j 0

1
y y a f (x , y ) a f (x , y )

(q)+ + + + + +
=

 
= + + 

Γ   
∑  (1.36) 

Now, the problem is the determination of the predictor formula 

to calculate the valuepn 1y + . By using the one-step Adams-Bashforth 

method which is described above, we replace the integral on the right-

hand side of eq. (1.29), by any quadrature rule, i.e., 

n 1

0

x n
q 1

n 1 j n 1 j
j 0x

(x v) g(v) dv c , g(x )
+

−
+ +

=
− =∑∫  ............................. (1.37) 

where: 

j 1

j

x
q 1 q q

j,n 1 n 1 n 1 j n 1 j 1
x

1
c (x v) dv (x x ) (x x )

q

+
−

+ + + + + = − = − − − ∫  

 ................................ (1.38) 

Thus, for equispaced case, one has: 

q
q q

j,n 1
h

c (n 1 j) (n j)
q+  = + − − − 

............................................ (1.39) 

Hence p
n 1y + , is given by: 
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n
p

0 j,n 1 j jn 1
j 0

1
y y c f (x , y )

(q) ++
=

= +
Γ ∑  ........................................... (1.40) 

The next example is an illustrative example which is given in 

[Ford, 2003] and solved here using the discussed numerical and 

approximate methods. 

 

Example (1.3): 

Consider the fractional differential equation: 

y(1/2) = −y + x2 + 
(3)

(5/ 2)

Γ
Γ

x3/2, y(0) = 0 

where the exact solution is given by y(x) = x2.  

The numerical results obtained using the above three approaches 

are given in table (1.1) as well as the exact solution. 

 

Table (1.1) 

The numerical results of example (1.3). 

n x Collocation Least square Adam-Moulton Exact Solution 

0 0 0 0 0 0 

1 0.1 0.01 0.01 0.14 0.01 

2 0.2 0.04 0.04 0.47 0.04 

3 0.3 0.09 0.09 0.99 0.09 

4 0.4 0.16 0.16 0.162 0.16 
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From the above obtained results, one can see that the accuracy of 

the results, where the approximate solution of the fractional differential 

equation using the least square and collocation methods are more 

accurate than the solution obtained by using the linear approximation of 

Adam’s method. 
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Chapter Two 

Existence and Uniqueness Theorems of 

Fractional Boundary Value Problems 

 

In this chapter we shall state and prove an important theorems 

concerning the existence and uniqueness theorem of solution of 

fractional order boundary value problems (FBVP’s). 

Also, some necessary definitions and results which are important 

to state and prove those theorems. 

This chapter consists of two sections. Section one consists of 

some preliminary concepts of fractional order boundary value problems. 

While in section two, we state and prove the existence and uniqueness 

theorems of fractional boundary value problem, using Schuader fixed 

point theorem. 

 

2.1 Preliminaries 

Consider the fractional boundary value problem of the αth order 

described as: 

x(α) = f(t, x(t)), t ∈ [a, b], α ∈ (0, 1) ........................................ (2.1) 

subject to the boundary conditions: 

Mx(a) R x(b)+ = β , a, b ∈ �  .................................................. (2.2) 
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where nnf : [a, b]× →� �  is continuous, non-linear function, x(α) is 

the fractional derivative of x, M and R are given constants in � , β is a 

number in n
� . 

Equations (2.1) and (2.2) are known as a fractional boundary 

value problem (FBVP). 

In this section, we shall introduce an important definitions, 

lemmas and theorems which are necessary to prove the existence and 

uniqueness theorem. 

But first, some of the most important and necessary results for 

the existence and uniqueness of solution for fractional differential 

equations are given. The proofs of these results are given in details 

which seem to be necessary here. 

 

Lemma (2.1), [Tisdell, 2005]: 

Suppose M + R ≠ 0 holds, and if x(t) ∈ C([a, b], n
� ) satisfies  

eqs. (2.1) and (2.2), then: 

t
1

a

x(t) (t s) f (s, x(s)) ds, t [a, b]
1

 
( )

α−= ψ + − ∈
Γ α ∫  

where: 

b
1

a

1 R
(b s) f (s,x(s)) ds

(M R)
 

( )
α−ψ = β − −

+

 
 

Γ α  
∫  

where α ∈ (0, 1). 
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Proof: 

Using Riemann-Liouville integration formula given by eq.(1.29) 

from a to t, yields: 

t
1

a

x(t) x(a) (t s) f (s, x(s)) ds
1

 
( )

α−= + −
Γ α ∫  ................................ (2.3) 

and hence substituting t = b, yields 

b
1

a

x(b) x(a) (b s) f (s, x(s)) ds
1

 
( )

α−= + −
Γ α ∫  ............................... (2.4) 

Now, substitute eq.(2.4) in eq.(2.2), gives: 

b
1

a

M x(a) R x(a) (b s) f (s, x(s)) ds
1

 
( )

α−+ + −
 

= β 
 Γ α 

∫  

b
1

a

M x(a) Rx(a) (b s) f (s, x(s)) ds
R

 
( )

α−+ + + − = β
Γ α ∫  ................ (2.5) 

rearranging eq.(2.5), give: 

b
1

a

1
x(a) (b s) f (s, x(s)) ds

(M R)

R
 

( )
α−= − −

+

 
β 

Γ α  
∫ ................... (2.6) 

Now, substituting eq.(2.6) in eq.(2.3) gives for t ∈ [a, b] 

b
1

a

1
x(t) (b s) f (s, x(s)) ds

(M R)

R
 

( )
α−= − − +

+

 
β 

Γ α  
∫  

t
1

a

(t s) f (s, x(s)) ds
1

 
( )

α−−
Γ α ∫  .......................................... (2.7) 

� 

 



Chapter Two                                                                 Existence and Uniqueness Theorems of Fractional  
                                                                         Boundary Value Problems 

٢٨ 
 

Now, the fractional operator related to the fractional boundary 

value problem given by eq. (2.7) is: 

b
1

a

R
T .

( )(M R)
(b s) f (s,.) dsα−= Ι + −

Γ α +
−∫  

t
1

a

1

( )
(t s) f (s,.) dsα−

Γ α
−∫  ................................................... (2.8) 

and if f is taken to be linear, then eq.(2.8), become of the form: 

b
1

a

R
T .

( )(M R)
(b s) K(t,s). dsα−= Ι + −

Γ α +
−∫  

t
1

a

1

( )
(t s) K(t,s). dsα−

Γ α
−∫  

where K(t, s) is an function of s and t, Ι  is the identity operator.  

 

Lemma (2.2):  

The fractional operator T is linear. 

Proof:  

To prove T is linear, i.e., is to prove that: 

T(c1x1 + c2x2) = c1T(x1) + c2T(x2) 

Now: 

b
1

a
1 1 2 2 1 21 2

R
T(c x c x ) (c x c x )

(M R) ( )
(b s) K(s, t)α−+ = + +

+ Γ α
−∫

t
1

1 1 2 2 1 1 2 2
a

1
ds

( )
(c x c x )ds (t s) K(s, t)(c x c x )α−

Γ α
+ − − +∫  
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b
1

1 1 2 2 11
a

R
c x c x c (b s) K(s, t)x  ds

(M R) ( )
α−−

+ Γ α
= + + +∫

b
12

2
a

c

(M R) ( )

R
(b s) K(s, t)x dsα−

+ Γ α
− −∫  

t
11

1
a

c
ds

( )
(t s) K(s, t)xα−

Γ α
−∫  − 

t
12

2
a

c
ds

( )
(t s) K(s, t)xα−

Γ α
−∫  

b
1

1
a

t
1

1
a

b
1

2
a

t
1

2
a

1 1

2 2

R
c x

(M R) ( )

ds
( )

R
   c x

(M R) ( )

ds
( )

(b s) K(s, t)x  ds

1
   (t s) K(s, t)x

(b s) K(s, t)x  ds

1
   (t s) K(s, t)x

α−

α−

α−

α−

+
+ Γ α

Γ α

+
+ Γ α

Γ α


= − −




− +




− −




− 



∫

∫

∫

∫

 

b
1

a

t
1

1
a

b
1

a

t
1

2
a

1

2

R
c

(M R) ( )

ds
( )

R
   c

(M R) ( )

ds
( )

I. (b s) K(s, t). ds

1
   (t s) K(s, t). x

I. (b s) K(s, t). ds

1
   (t s) K(s, t). x

α−

α−

α−

α−

+
+ Γ α

Γ α

+
+ Γ α

Γ α


= − −




− +




− −




− 



∫

∫

∫

∫

 

= c1T(x1) + c2T(x2) 

Hence T is linear.    � 
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Definition (2.1), [Erwin, 1978]: 

Given a point x0 ∈ n
�  and a number r > 0, an open ball B of 

radius r and center x0, is defined by: 

{ }n
0 0B(x , r) x x rx:= ∈ <−�  

 

Definition (2.2), [Erwin, 1978]: 

Let X and Y be two normed spaces and T : X → Y a linear 

operator and let B(x0, r) be a ball, then the fractional operator T is said to 

be bounded if there is a real number c, such that: 

||Tx|| ≤ c||x||, for all x ∈ BL+1. 

 

The next theorem is of great importance which will be used in 

the proof of the existence and uniqueness theorem of (FBVP) that is 

called "Schauder fixed point theorem". 

 

Theorem (2.1), (Schauder Fixed Point Theorem), [Rao, 1980]: 

Let X be a nonempty, closed, bounded and convex subset of a 

Banach space B, and suppose that T : X → X is a compact 

operator, then T has a fixed point.  

 

The next theorem has a tremendous importance in the proof of 

the existence and uniqueness theorem: 
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Theorem (2.2), (Finite Dimensional Rang), [Erwin, 1978]: 

Let X and Y be two normed spaces and T : X → Y, a Linear 

operator, then: 

(a) If T is bounded and dim T(x) < ∞, the operator T is compact. 

(b) If dim X < ∞, then operator T is compact. 

 

2.2 The Existence and Uniqueness Theorem 

Because of the importance of the existence and uniqueness 

theorem in the theory of fractional boundary value problems, in this 

section we shall state and prove this theorem by using Schauder fixed 

point: 

 

Theorem (2.3): 

Suppose M + R ≠ 0 hold and f ∈ C([a, b]× n
� , n

� ) and if there 

exist a function p ∈ C([a, b]; )+
� , such that: 

||f(t, q)|| ≤ p(t)||q||, for all t ∈ [a, b], q ∈ n
�  ............................ (2.9)  

and if: 

b
1

a

1
1 R (b s) p(s) ds 1

(M R)

1

( )
α−+ − ≤

+
 
 Γ α  

∫  ...................... (2.10) 

Then the boundary value problem (2.1) and (2.2) has at least one 

solution in C([a, b], n
� ). 
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Proof: 

The existence of at least one solution to the fractional boundary 

value problem (2.1) and (2.2) is equivalent to the proof that the 

fractional integral equation given by eq.(2.7) has a fixed point, by using 

the Schauder fixed point theorem. 

Consider the mapping  T : nC ,([a, b] )�  → nC ,([a, b] )� , is defined 

by: 

b
1

a

1 R
T(x(t)) (b s) f ds

(M R)
(s,x(s))

( )
α−= β − − +

+

 
 

Γ α  
∫

t
1

a

1
(t s) f ds(s,x(s))

( )
α−−

Γ α ∫ , ∀ t ∈ [a, b] .............. (2.11) 

Thus the problem is to prove the existence of at least one x, such that:  

Tx = x ..................................................................................... (2.12) 

In order to prove that x = Tx, one must consider first an 

associated problem, namely: 

x = λTx, λ ∈ [0, 1] 

and hence one can prove that all possible solutions of x = λTx (for the 

proof see [Tisdell, 2005]) with λ = 1 is a solution for x = Tx, therefore: 

||Tx|| = ||x|| 

and hence: 
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||x|| ≤ ||Tx|| 

= 
b

1

a

1 R
(b s) f (s,x(s)) ds

(M R) ( )
α−

 
 β − −

+ Γ α 
 

∫  + 

t
1

a

1
(t s) f ds(s,x(s))

( )
α−−

Γ α ∫  

Also, since t ∈ [a, b], i.e., t ≤ b, hence: 

t
1

a

(t s) f ds(s, x(s))α−−∫  ≤ 
b

1

a

(b s) f ds(s,x(s))α−−∫  

and therefore: 

b
1

a

1 1 1
1 R || (b s) f ds ||

M R M R
|| x || (s, x(s)) || ||

( )
α−+ − +

+ +
 ≤ β Γ α  

∫  

b
1

a

1 1 1
1 R (b s) ds ||

M R M R
p(s) || x(s) || || ||

( )
α−+ − +

+ +
 ≤ β Γ α  

∫  

Therefore: 

b
1

t [a ,b ] a

1 1 1
1 R (b s) ds

M R M R
|| x || sup | x ( t ) | p(s) || ||

( )
α −

∈
+ − +

+ +

    ≤ β  Γ α     
∫  

b
1

t [a,b] a

1 1 1
1 R (b s) ds

M R M R
sup | x(t) | 1 p(s) || ||

( )
α−

∈
+ −

+ +

   − ≤ β  Γ α    
∫  

b
t [a,b] 1

a

1
|| ||

M Rsup | x(t) | L
1 1

1 1 R (b s) p(s) ds
( ) M R

∈ α−

β
+ =

 − + − Γ α + 

≤

∫

 . (2.13) 

Now, define the open ball with center 0 and radius L + 1, by: 
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{ }n
L 1

B x C , : x(t) L 1 , t [a, b]([a, b] )+ = ∈ < + ∀ ∈�  

From eq.(2.13) it is clear that ||x(t)|| ≤ L + 1, ∀ t∈ [a, b]  

Now, we define a fractional operator T, as follow: 

T : BL+1 ⊂ C([a, b], n
� ) → C([a, b], n

� ) 

To prove, BL+1 is closed, bounded and convex fractional subset of  

C([a, b], n
� ). First, from the construction of BL+1 it is clear that BL+1 is 

closed and bounded set. 

Now to Prove, BL+1 is convex set of fractional solutions. 

Let x1(t), x2(t) ∈ BL+1, hence we have: 

x1(t) ∈ C([a, b], n
� ), where  ||x1(t)|| ≤ L + 1, ∀ t ∈ [a, b] 

and 

x2(t) ∈ C([a, b], n
� ), where  ||x2(t)|| ≤ L + 1, ∀ t ∈ [a, b] 

To prove: 

x(t) = λx1(t) + (1 − λ)x2(t) ∈ BL+1 

i.e., to prove that x(t) ∈ C([a, b], n
� ) and ||x(t)|| ≤ L + 1, ∀ t ∈ [a, b]. 

Also: 

1 2
x x (t) (1 ) x (t)= λ + − λ  

1 2x (t) (1 ) x (t)≤ λ + − λ  

= 1 2x (t) 1 x (t)λ + − λ  

≤ λ(L + 1) + (1 − λ)(L + 1) 

= L + 1 
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Hence, ||x|| ≤ L + 1, i.e., x(t) ∈ BL+1 

Hence, BL+1 is convex set 

Now, to prove that T is bounded, i.e., to prove ||Tx|| ≤ M||x||, for any  

x(t) ∈ C([a, b], n
� ), we have: 

b
1

a

R
T(x(t)) x(t) (b s) f ds

(M R)
(s, x(s))

( )
α−= + − −

+ Γ α ∫
t

1

a

1
(t s) f ds(s, x(s))

( )
α−−

Γ α ∫  

therefore 

b
1

a

R
|| T(x(t)) || x(t) (b s) f ds

(M R)
(s, x(s))

( )
α−= + − −

+ Γ α ∫
t

1

a

1
(t s) f ds(s, x(s))

( )
α−−

Γ α ∫  

b
1

a

1 R
x(t) 1 (b s) f ds

M R
|| (s, x(s)) ||

( )
α−+ −

+
 ≤ +  Γ α  

∫  

b
1

a

1 R
x(t) 1 (b s) ds

M R
p(s) || x(s) ||

( )
α−+ −

+
  ≤ +   Γ α   

∫  

b
1

at [a ,b] t [a ,b]

1 R
sup x(t) 1 sup (b s) ds

M R
| x(t) | p(s)

( )
α −

∈ ∈
≤ + + −

+
 
 Γ α  

∫  

b
1

a t [a ,b]

1 R
1 (b s) ds sup

M R
1 p(s) | x(t) |

( )
α −

∈
+ −

+

    ≤ +   Γ α     
∫  

b
1

a

1 R
1 (b s) ds

M R
1 p(s) || x ||

( )
α −+ −

+

    = +   Γ α     
∫  ≤ M||x|| 
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Hence the fractional operator is bounded, and since T(x(t)) has a finite 

dimension, then by using theorem (2.2) T is compact fractional operator. 

Finally, by using Schauder fixed point theorem, then T has a fixed point 

which shows that the existence of at least one solution in BL+1 and hence 

to (2.1) and (2.2).    � 

 

Theorem (2.4): 

Suppose M + R ≠ 0 hold and f ∈ C([a, b]× n
� , n

� ) and if there 

exists a function p ∈ C([a, b]; )+
� , such that: 

||f(t, u) − f(t, v)|| ≤ (b − s)α−1p(t)||u − v||, ∀ t ∈ [a, b], u, v ∈ n
�  

 ............................... (2.14) 

and eq.(2.10) holds, then the fractional boundary value problem (2.1) 

and (2.2) has a unique solution in C([a, b], n
� ). 

Proof:  

Suppose that there exist two solutions u1 and u2 for the FBVP, 

and let z = u1 − u2. Now, consider the fractional boundary value 

problem: 

z(α) = ( )
1u α  − ( )

2u α  

= f(t, u1) − f(t, u2), t ∈ [a, b] .............................................. (2.15)  

subject to: 

Mz(a) + Rz(b) = 0 .................................................................. (2.16) 
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As in the proofs of lemma (2.1) and theorem (2.3) for t ∈ [a, b], 

integrating the boundary value problem given by eq. (2.15) from a to t, 

yields:  

t
1

a
1 2

z( t) z(a) f (s,u ) f (s,u ) ds, t [a, b]
1

(t s)
( )

α−= + − ∈ −  Γ α ∫  . (2.17) 

Putting t = b, we have: 

[ ]
b

1
1

a
2z(b) z(a) 1 (b s) f (s, u ) f (s, u ) ds

( )
α−= + − −Γ α ∫  ................ (2.18) 

Now, substituting eq. (2.18) in eq. (2.16) gives: 

[ ]
b

1
1 2

a

Mz(a) R z(a)
1

(b s) f (s,u ) f (s,u ) ds 0
( )

α−+ +
 

− − = 
Γ α  

∫  . (2.19) 

and hence: 

[ ]
b

1
1 2

a

R
Mz(a) Rz(a) (b s) f (s,u ) f (s,u ) ds

( )
α−+ = − − −

Γ α ∫  

Therefore: 

[ ]
b

1
1 2

a

1
z(a)

(M R)

R
(b s) f (s,u ) f (s,u ) ds

( )
α−=

+

 − − − 
Γ α  

∫  ..... (2.20) 

So substituting eq. (2.20) in eq. (2.17), to get: 

[ ]

[ ]

b
1

1 2
a

t
1

1 2
a

1
z(t)

(M R)

                          ds

R
(b s) f (s,u ) f (s,u ) ds

( )

1
(t s) f (s,u ) f (s,u )

( )

α−

α−

= +
+

 − − − 
Γ α  

− −
Γ α

∫

∫
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taking the norm on both sides of the last equation, yields:  

[ ]

[ ]

b
1

1 2
a

t
1

1 2
a

1
|| z(t) ||

(M R)

                          ds

R
(b s) f (s,u ) f (s,u ) ds

( )

1
(t s) f (s,u ) f (s,u )

( )

α−

α−

= +
+

 − − − 
Γ α  

− −
Γ α

∫

∫

 

b
1

1 2
a

1 R
1 (b s) ds

M R
|| f (s,u ) f (s,u ) ||

( )
α−+ −

+
  ≤ −  Γ α   

∫  

b
1

at [a,b]

1 R
1 sup (b s) ds

M R
| z(t) | p(s)

( )
α−

∈
≤ + −

+
  
  Γ α   

∫  

and rearranging the last inequality, we obtain: 

b
1

t [a, b] a

1 R
sup | z(t) | 1 1 (b s) p(s) ds 0

( ) M R
α−

∈

   − + − ≤  Γ α +   
∫  

So we have ||z(t)|| = 0, ∀ t ∈ [a, b] and from the properties of the norm, 

we have z(t) = 0, i.e., u1(t) = u2(t), ∀ t ∈ [a, b], which shows the 

uniqueness of the solution.    � 
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Chapter Three 

Solution of Fractional Boundary 

Value Problems 

 

Some physical problems that are position depend rather than 

time-dependent are often described in terms of differential equation with 

conditions imposed at more than one point. Because of this reason and 

more the boundary conditions are required to solve some problems, 

[Burden, 1985]. 

Three types of boundary conditions are possible, [Hoffman, 

2001]: 

1. The function y(x) may be specified “called Dirichlet boundary 

conditions”. 

2. The derivative ordinary y′(x) or y(α)(x), α ∈ �  may be specified 

“called Neumann boundary conditions”. 

3. A combination of y(x) and y′(x) or y(α)(x) may be specified “called 

mixed boundary conditions”. 

This chapter deals with ordinary fractional boundary value 

problems and the methods for solving such kind of problems. This 

chapter consists of two sections. In section (3.1), the analytic solution of 

ordinary fractional boundary value problems is introduced and using the 

Green’s function to solve such problems. 
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In section (3.2), the numerical solution of boundary value 

problems of fractional order differential equations have been introduced 

using the Riesz-Feller fractional operator. 

 

3.1 Analytic Solution of Ordinary Fractional Boundary Value 

Problems 

The only analytical method proposed by a number of researchers 

to solve fractional differential equations with boundary conditions. In 

this section, we will discuss this method in details. 

 

3.1.1 Fractional Green’s Function Method for Solving Fractional 

Boundary Value Problems, [Zhang, 2006]: 

A Green function is one of the most important functions which 

can be used to solve differential equations. In this subsection, we first 

derive the corresponding Green’s function, named as fractional Green’s 

function with boundary conditions and then use this function it to solve 

these kind of fractional differential equations. 

Let h ∈ C[0, 1] be a given function, then the fractional boundary 

value problem is defined by: 

0
D u(t) h(t), 0 t 1, 1 2

u(0) u (0) 0, u(1) u (1) 0

+
α = < < < α ≤ 


′ ′+ = + = 

 ......................................... (3.1) 

Then a unique solution, given by: 

u(t) = 
1

0
∫ G(t, s)h(s) ds ............................................................. (3.2) 
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where: 

G(t, s)=

1 1 2

1 2

(1 s) (1 t) (t s) (1 s) (1 t)
, s t

( ) ( 1)

(1 s) (1 t) (1 s) (1 t)
, t s

( ) ( 1)

α− α− α−

α− α−

 − − + − − −+ ≤ Γ α Γ α −


− − − − + ≤ Γ α Γ α −

 . (3.3) 

and G(t, s) is called the Green’s function of the boundary value problem 

(3.1) and 
0

D +
α  is the Caputo fractional derivative which is described by 

eq.(1.6). 

Equation (3.2) may be proved as follows, since the equivalent 

integral equation is given by: 

u(t) = 
0

I +
α h(t) − c1 − c2t 

= 
t

0

1

( )Γ α ∫ (t − s)α−1h(s) ds − c1 − c2t ................................... (3.4) 

For some c1, c2 ∈ � .  

Now, using the relation DαIαu(t) = u(t) and 0I
α

0I
β u(t) = 0I

α+β u(t), 

for some α, β > 0, one can have: 

u′(t) = 
t

0

1

( 1)Γ α − ∫ (t − s)α−2h(s) ds − c2 ...................................... (3.5) 

Equation (3.4) and the boundary conditions, yields: 

u(0) + u′(0) = 0 

which implies that c2 = −c1, and also: 
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u(1) = 
1

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds − c1 − c2 

and  

u′(1) = 
1

0

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds − c2 

Therefore: 

u(1) + u′(1) = 0 

implies that: 

1

0

1

( )Γ α ∫ (1−s)α−1h(s)ds − c1 − c2 + 
1

0

1

( 1)Γ α − ∫ (1−s)α−2h(s)ds −c2 = 0 

and hence 

c1 + 2c2 = 
1

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds + 
1

0

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds 

 .................................. (3.6) 

and substituting c2 = −c1 in eq.(3.6), gives: 

c1 − 2c1 = 
1

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds + 
1

0

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds 

hence: 

c1 = −
1

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds − 
1

0

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds .... (3.7) 

and 



Chapter Three                                                                 Solution of Fractional Boundary Value Problems 

٤٣ 
 

c2 = 
1

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds + 
1

0

1

( 1)Γ α − ∫(1 − s)α−2h(s) ds ....... (3.8) 

therefore, the unique solution of eq.(3.1) is: 

u(t) =
t

0

1

( )Γ α ∫ (t − s)α−1h(s) ds + 
1

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds + 

1

0

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds − 
1

0

t

( )Γ α ∫ (1 − s)α−1h(s) ds − 

1

0

t

( 1)Γ α − ∫ (1 − s)α−2h(s) ds 

Finally, to find the Green function, divide the interval (0, 1) into 

two subintervals (0, t) and (t, 1), yields: 

u(t) =
t

0

1

( )Γ α ∫ (t − s)α−1h(s) ds + 
t

0

1

( )Γ α ∫ (1 − s)α−1h(s) ds + 

1

t

1

( )Γ α ∫ (1 − s)α−1h(s) ds + 
t

0

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds + 

1

t

1

( 1)Γ α − ∫ (1 − s)α−2h(s) ds − 
t

0

t

( )Γ α ∫ (1 − s)α−1h(s) ds − 

1

t

t

( )Γ α ∫ (1 − s)α−1h(s) ds − 
t

0

t

( 1)Γ α − ∫ (1 − s)α−2h(s) ds − 

1

t

t

( 1)Γ α − ∫ (1 − s)α−2h(s) ds 

implies that: 
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u(t) = 
t 1 1 2

0

(1 s) (1 t) (t s) (1 s) (1 t)
h(s)ds

( ) ( 1)

α− α− α− − − + − − −+ Γ α Γ α −  
∫  + 

1 1 2

t

(1 s) (1 t) (1 s) (1 t)
h(s)ds

( ) ( 1)

α− α− − − − −+ Γ α Γ α −  
∫  

= 
1

0

G(t,s)h(s)ds∫  

which completes the proof of the relation. 

Now, the function G(t, s) has some properties that can be 

described as: 

1. G ∈ C([0, 1]×[0, 1]) and G(t, s) > 0, for t, s ∈ (0, 1). 

2. There exists a positive function γ ∈ C(0, 1), such that: 

31
4 4

t
min
≤ ≤

G(t, s) ≥ γ(s)M(s), s ∈ (0, 1) 

0 t 1
max

≤ ≤
G(t, s) ≤ M(s) 

where: 

M(s) = 
12(1 s)

( )

α−−
Γ α

 + 
1(1 s)

( 1)

α−−
Γ α −

, s ∈ [0, 1) 

for more details, see [Zhang, 2006]. 

The next example illustrate the above method of solution: 
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Example (3.1): 

Consider the fractional boundary value problem: 

3/ 2
0D u(t) = t, 0 ≤ t ≤ 1 

u(0) + u′(0) = 0, u(1) + u′(1) = 0 

Hence by substituting h(t) = t and α = 3/2 in G(t, s) of eq. (3.3), yields: 

G(t, s)=

1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

(1 s) (1 t) (t s) (1 s) (1 t)
, s t

(3/ 2) (1/ 2)

(1 s) (1 t) (1 s) (1 t)
, t s

(3/ 2) (1/ 2)

−

−

 − − + − − −+ ≤ Γ Γ


− − − − + ≤ Γ Γ

 

Then, put G(t, s) in eq.(3.2) one can have: 

U(t) = 
1

0

G(t,s)h(s)ds∫  = 
t 1/ 2 1/ 2

0

(1 s) (1 t) (t s)

(3/ 2)

 − − + − + Γ
∫  

1/ 2(1 s) (1 t)
sds

(1/ 2)

− − −
Γ 

 + 
1 1/ 2

t

(1 s) (1 t)

(3/ 2)

 − − + Γ
∫  

1/ 2(1 s) (1 t)
sds

(1/ 2)

− − −
Γ 

  

= 1.053(1 − t) + 0.3t5/2 

 

3.2 Numerical Solution of Fractional Boundary Value 

Problems 

Analytic solution of fractional boundary value problems is so 

difficult and limited and it does not work in all cases and functions, 

because of these reasons this section deals with the numerical solution to 
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an ordinary differential equations of fractional order, which is based on 

the finite difference method (FDM), [Smith, 1978], [Hoffman, 2001], 

but we start with the Riesz-Feller fractional operator and then describe 

an approximate method for solving fractional boundary value problems. 

 

3.2.1 Riesz-Feller Operator, [Ciesielski, 2006]: 

Consider an ordinary differential equation of fractional order of 

the following form: 

d

d | x |

α

α
θ

T(x) = 0, x ∈ � , 0 < α ≤ 2 .......................................... (3.9) 

where T(x) is a variable depending on x and 
d

d | x |

α

α
θ

T(x) is the Riesz-

Feller fractional operator, α is the real order of this operator and θ is a 

parameter. 

The Riesz-Feller fractional operator is defined as [Georenflo, 

1998]: 

d

d | x |

α

α
θ

T(x) = x Dα
θ T(x) 

= −[CL(α, θ) xDα
−∞ T(x) + CR(α, θ) x Dα

+∞ T(x)] ......... (3.10) 

for 0 < α ≤ 2, α ≠ 1, where: 

xDα
−∞ T(x) = 

m
m
x

d
I T(x)

dx
−α

−∞
       

 

 ....................... (3.11) 

x Dα
+∞ T(x) = (−1)m

m
m

x
d

I T(x)
dx

−α
+∞

       
 



Chapter Three                                                                 Solution of Fractional Boundary Value Problems 

٤٧ 
 

for m ∈ � , m − 1 < α ≤ m, and the coefficients CL(α, θ), CR(α, θ) (for  

0 < α ≤ 2, α ≠ 1, |θ| ≤ min{α, 2 − α}) are defined as: 

L

R

( )
sin

2
C ( , )

sin( )

( )
sin

2
C ( , )

sin( )

α − θ π 
  
  α θ =

απ 


α + θ π 
  α θ = απ 

 ................................................... (3.12) 

and the fractional integral operator of order α : xI
α

−∞ T(x) and x Iα
+∞ T(x) 

are defined as the left and right hand of Weyl fractional integration and 

when x ∈ [a, b], i.e., the integration is proper, then it is called Caputo’s 

fractional derivatives as in eqs.(1.6) and (1.7). 

In this section, consider eq.(3.9) for 1 < α ≤ 2 in one-dimensional 

domain Ω : L ≤ x ≤ R, with boundary conditions of the first kinds 

(Dirichlet conditions) as: 

L

R

T(L) g

T(R) g

= 
= 

 ........................................................................... (3.13) 

 

3.2.2 Approximation of Riesz-Feller Operator: 

In order to develop a discrete form of the operator in eq.(3.10), 

consider a homogeneous grid −∞ < … < xi−2 < xi−1 < xi < xi+1 < xi+2 <  

… < ∞, with uniform step size h = xk − xk−1.and denoting the value of the 

function T(x) at the point xk as Tk = T(xk), for k ∈ �  taking into account 

only the function of one variable in order to simplify notations and 

denote CL = CL(α, θ) and CR = CR(α, θ). 



Chapter Three                                                                 Solution of Fractional Boundary Value Problems 

٤٨ 
 

In accordance with changes parameter α in eq.(3.9) the following 

two cases will be described a discrete approximation of Riesz-Feller 

derivative depending on the value of the fractional derivative. 

 

Case (1):  

The first case includes changes in the parameter α in the range  

0 < α < 1, by rewriting the Riesz-Feller operator in eq.(3.10) using 

Caputo definition in eqs.(1.6) and (1.7) as: 

ix Dα
θ T(xi) = 

ix

L
i

1 T ( )
c d

(1 ) (x )α
−∞

 ′ ξ
− ξ −

Γ − α − ξ
∫  

i

R
ix

1 T ( )
c d

(1 ) ( x )

∞

α

′ ξ ξ
Γ − α ξ −


∫  

after using numerical integration schemes, replace the above integration 

by the sum of discrete integrals as: 

ix Dα
θ T(xi) = 

i k

i k 1

x

L
k 0 ix

1 T ( )
c d

(1 ) (x )

−

− −

∞

α
=

 ′− ξ ξ −
Γ − α  − ξ


∑ ∫  

i k 1

i k

x

R
k 0 ix

T ( )
c d

( x )

+ +

+

∞

α
=

′ ξ ξ
ξ −


∑ ∫  

≈ 
i k

i k 1

x

L i k
k 0 ix

1 1
c T d

(1 ) (x )

−

− −

∞

− α
=

−  ′ ξ −
Γ − α  − ξ


∑ ∫%  

i k 1

i k

x

R i k
k 0 ix

1
c T d

( x )

+ +

+

∞

+ α
=


′ ξ
ξ −


∑ ∫
%%  ............. (3.14) 
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where jT′%  and jT′%%  are the difference schemes which approximate the first 

derivative of integer order in the interval [xj−1, xj] and [xj, xj+1], 

respectively. The following weighted forms of these schemes are 

obtained: 

jT′%  = 
j j 1 1 j j 1 1 j 1 jT T (1 )(T T ) (T T )1

2 h h
− − +− − λ − + λ − 

+ 
 

 

= 1 j 1 1 j 1 j 1
1

T 2(1 )T ( 2)T
2h + − λ + − λ + λ −   ......................... (3.15) 

jT′%%  = 
j 1 j 1 j 1 j 1 j j 1T T (1 )(T T ) (T T )1

2 h h
+ + −− − λ − + λ − 

+ 
 

 

= 1 j 1 1 j 1 j 1
1

(2 )T 2( 1)T ( )T
2h + − − λ + λ − + −λ   .................... (3.16) 

where λ1 = λ1(α, θ) = α − |θ|, λ1 ∈ [0, 1]. 

The above formulae have been introduced in order to obtain 

various transitions between the difference schemes. For example, if 

substituting λ1 = 1 in eqs.(3.15) and (3.16) will give the central-

difference approximation of first derivative, and after putting λ1 = 0 get 

the backward difference equation in eq.(3.15) and forward difference 

equation in eq.(3.16). 

Denoting by: 

kvα  = 
i k

i k 1

x

ix

1 1
d

(1 ) (x )

−

− −
α ξ

Γ − α − ξ∫   
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= 
i k 1

i k

x

ix

1 1
d

(1 ) ( x )

+ +

+
α ξ

Γ − α ξ −∫  

= 
i k 1

i k

x1
i

x

( x )1

(1 ) 1

+ +

+

−α+ξ −
Γ − α −α +

 

and since Γ(2 − α) = (1 − α)Γ(1 − α), then: 

1

(2 )Γ − α
[(x i+k+1 − xi)

1−α − (xi+k − xi)
1−α]  

= 
1

(2 )Γ − α
[(x i+k + h − xi)

1−α − (xi + kh − xi)
1−α] 

= 
1

(2 )Γ − α
[(x i + kh + h − xi)

1−α − (xi + kh − xi)
1−α] 

= 
1 1[(k 1)h] k

(2 )

−α −α+ −
Γ − α

 

Hence: 

kvα  = h1−α
1 1(k 1) k

(2 )

−α −α+ −
Γ − α

 .................................................... (3.17) 

Now, substituting eqs.(3.15), (3.16) into eq.(3.14), yields: 

ix Dα
θ T(xi) ≈ L 1 i k 1 1 i k

k 0

1
c [ T 2(1 )T

2h

∞

− + −
=


− λ + − λ +

∑  

1 i k 1 k( 2)T ]vα
− −λ − − R 1 i k 1

k 0

1
c [(2 )T

2h

∞

+ +
=

− λ +∑  

]1 i k 1 i k 1 k2( 1)T ( )T vα
+ + −


λ − + −λ 


 ........................ (3.18) 
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Finally, from eqs. (3.17), (3.18) the discrete form of Riesz-Feller 

operator in eq.(3.10) for 0 < α < 1 can be written as: 

ix Dα
θ T(xi) ≈ ( , )

i k k
k

1
T w

h

∞
α θ

+α
=−∞
∑  ........................................... (3.19) 

where the coefficient wk = wk(α, θ) have the following form: 

1 1
1 1

1 1
1 1 L

1 1
1 1 1 L 1 R

( , ) 1
1 1 L Rk

1 1
1 1 1 R 1 L

(| k | 2) (| k | 1) (2 3 )

| k | (3 4) (| k | 1) (2 ) c , k 2

3 2 (2 3 ) 3 4 c c , k 1

1
w 2 3 2 (c c ), k 0

2 (2 )

3 2 (2 3 ) 3 4 c c , k 1

(k 2)

−α −α

−α −α

−α −α

α θ −α

−α −α

 + λ + + − λ +

λ − + − − λ ≤ −

 λ + − λ + λ − + λ = − 
−  = λ − λ + + = Γ − α

 λ + − λ + λ − + λ = 

+ 1 1
1 1

1 1
1 1 R

(k 1) (2 3 )

k (3 4) (k 1) (2 ) c , k 2

−α −α

−α −α












 λ + + − λ +
 λ − + − − λ ≥ 

 

................................ (3.20) 

 

Case (2): 

The second case involves changes in the parameter α for the 

range 1 < α ≤ 2 by rewriting the Riesz-Feller operator in eq.(3.10) using 

Caputo definition in eqs.(1.6) and (1.7) as: 

ix Dα
θ T(xi) = 

ix

L 1
i

1 T ( )
c d

(2 ) (x )α−
−∞

 ′′ ξ
− ξ +

Γ − α − ξ
∫  

i

R 1
ix

1 T ( )
c d

(2 ) ( x )

∞

α−

′′ ξ ξ
Γ − α ξ −


∫  
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Similarly, as in case (1) after using numerical integration 

scheme, replace the above integral by the sum of discrete integrals as: 

ix Dα
θ T(xi) ≈ 

i k

i k 1

x

L i k 1
k 0 ix

1 1
c T d

(2 ) (x )

−

− −

∞

− α−
=

−  ′′ ξ +
Γ − α  − ξ


∑ ∫%  

i k 1

i k

x

R i k 1
k 0 ix

1
c T d

( x )

+ +

+

∞

+ α−
=


′′ ξ
ξ −


∑ ∫
%%  ....................... (3.21) 

where jT′′%  and jT′′%%  are difference schemes of the second derivative of 

integer order, which approximated by the following formulae: 

j 1 j j 1 2 j 1 j j 1 2 j j 1 j 2
j 2 2

T 2T T (1 )(T 2T T ) (T 2T T )1
T

2 h h

+ − + − − −− + − λ − + + λ − + 
′′= + 

 

%  

= 
2

1

2h
[(2 − λ2)Tj+1 + (3λ2 −4)Tj + (2 − 3λ2)Tj−1 + λ2Tj−2] (3.22) 

j 1 j j 1 2 j 1 j j 1 2 j 2 j 1 j
j 2 2

T 2T T (1 )(T 2T T ) (T 2T T )1
T

2 h h

+ − + − + +− + − λ − + + λ − + 
′′= + 

 

%%  

= 
2

1

2h
[λ2Tj+2 + (2−3λ2)Tj+1 + (3λ2−4)Tj + (2−λ2)Tj−1] ..... (3.23) 

where λ2 = λ2(α, θ) = 2 − (α + |θ|), λ2 ∈ [0, 1]. 

By letting λ2 = 0 into eqs.(3.22) and (3.23), the classical central 

difference schemes are obtained, and for λ2 = 1 in eq. (3.22) the 

backward four-point of the second derivative of integer order is obtained 

and in eq.(3.23) the forward four-point of the second derivative of 

integer is also obtained. 

Denoting by: 
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kuα  = 
i k

i k 1

x

1
ix

1 1
d

(2 ) (x )

−

− −
α− ξ

Γ − α − ξ∫   

= 
i k 1

i k

x

1
ix

1 1
d

(2 ) ( x )

+ +

+
α− ξ

Γ − α ξ −∫  

= 
i k 1

i k

x2
i

x

( x )1

(2 ) 2

+ +

+

−α+ξ −
Γ − α − α

 

and since Γ(3 − α) = (2 − α)Γ(2 − α), then: 

1

(3 )Γ − α
[(x i+k+1 − xi)

2−α − (xi+k − xi)
2−α]  

= 
1

(3 )Γ − α
 [(xi + kh + h − xi)

2−α − (xi + h − xi)
2−α] 

= 
1

(3 )Γ − α
 [(h(k + 1))2−α − (kh)2−α] 

Hence: 

kuα  = h2−α
2 2(k 1) k

(3 )

−α −α+ −
Γ − α

 ................................................... (3.24) 

Now, substituting eqs.(3.22), (3.23) into eq.(3.21), yields: 

ix Dα
θ T(xi) ≈ L 2 i k 1 2 i k2

k 0

1
c [(2 )T (3 4)T

2h

∞

− + −
=


− − λ + λ − +

∑  

2 i k 1 2 i k 2 k(2 3 )T T ]uα
− − − −− λ + λ + R 2 i k 22

k 0

1
c [ T

2h

∞

+ +
=

λ +∑  

]2 i k 1 2 i k 2 i k 1 k(2 3 )T (3 4)T (2 )T uα+ + + + −


− λ + λ − + − λ 

 .. (3.25) 
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Finally, from eqs.(3.24) and (3.25) the discrete form of the Riesz-

Feller operator in eq.(3.10) for 1 < α ≤ 2 can be written as: 

ix Dα
θ T(xi) ≈ ( , )

i k k
k

1
T w

h

∞
α θ

+α
=−∞
∑  ........................................... (3.26) 

Where the coefficient wk = wk(α, θ) have the following form: 

2 2 2
2 2

2 2
2 2 2 L

2 2
2 2 2 L 2 R

( , ) 2
2 2 L Rk

2
2

(| k | 2) (2 ) (| k | 1) (4 6) | k |

(6 6 ) (| k | 1) (4 2) (| k | 2) ( ) c , k 2

3 (2 ) 2 (4 6) 6 6 c (2 )c , k 1

1
w 2 (2 ) 4 6 (c c ), k 0

2 (3 )

3 (2 )

−α −α −α

−α −α

−α −α

α θ −α

−α

 + − λ + + λ − +

− λ + − λ − + − −λ ≤ −


 − λ + λ − − λ + + − λ = − 
−  = − λ + λ − + =

 Γ − α
− λ + 2

2 2 R 2 L

2 2 2
2 2

2 2
2 2 2 R

2 (4 6) 6 6 c (2 )c , k 1

(k 2) (2 ) (k 1) (4 6) k (6

6 ) (k 1) (4 2) (k 2) ( ) c , k 2

−α

−α −α −α

−α −α










  λ − − λ + + − λ = 
 + − λ + + λ − + −
 λ + − λ − + − −λ ≥ 

 

 ............................... (3.27) 

In both cases, when α = 1, the Riesz-Feller operator is singular, 

and hence the method failed to be applied. 

 

3.2.3 Finite Difference Method for Fractional Differential 

Equations: 

In this subsection, 
d

d | x |

α

α
θ

T(x)  can be described using the finite 

difference by restricting the numerical solution in comparison with 

eq.(3.9) where the discritization of the fractional derivative can be 

approximated using the central difference method of the second order. 

The difference appears in the setting of boundary conditions. 
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Here, replace eq.(3.9) by eqs.(3.19) and (3.26) depending on α as: 

( , )
i k k

k

1
T w

h

∞
α θ

+α
=−∞
∑  = 0 .......................................................... (3.28) 

But eq.(3.28) includes unbounded domain −∞ < x < ∞ and this 

unbounded domain has no practical implementation in computer 

simulation. So, to solve this problem in the finite domain Ω : L ≤ x < R 

with boundary conditions (3.13), one can follow the following 

procedure: 

Divide the domain Ω into N subdomains with step length  

h = 
R L

N

−
, N ∈ � , and in order to introduce the Dirichlet boundary 

conditions, propose a numerical treatment which assumes that the values 

of the function T in outside points are identical as the values in the 

boundary nodes x0 or xN, i.e.,  

T(xk) = 0 L

N R

T(x ) g , for x 0

T(x ) g , for x N

= <
 = >

 ............................................ (3.29) 

On the basis of the above considerations, modify eqs.(3.19) and 

(3.26) for the discritization of the Riesz-Feller derivative, as: 

ix Dα
θ T(xi)  ≈ ( , )

i k k
k

1
T w

h

∞
α θ

+α
=−∞
∑  

= 
i 1 N i

( , ) ( , ) ( , )
i k i k i kk k k

k k i k N i 1

1
T w T w T w

h

− − − ∞
α θ α θ α θ

+ + +α
=−∞ =− = − +

 
+ + 

 
∑ ∑ ∑  

= 
i 1 N i

( , ) ( , ) ( , )
L i k Rk k k

k k i k N i 1

1
g w T w g w

h

− − − ∞
α θ α θ α θ

+α
=−∞ =− = − +

 
+ + 

 
∑ ∑ ∑  
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Hence: 

ix Dα
θ T(xi) ≈ 

N i
( , ) ( , ) ( , )

i k L Rk i N i
k i

1
T w g L g R

h

−
α θ α θ α θ

+ −α
=−

 
+ δ + δ 

 
∑  .. (3.30) 

for i = 1, 2, …, N − 1, where: 

( , )
jL α θδ  = 

j 1
( , )
k

k

w
− −

α θ

=−∞
∑   

= 
L j

L j

c ( , )r , for 0 1

c ( , ) , for1 2

α θ < α <
 α θ < α ≤ l

 ...................................... (3.31) 

δ ( , )
jR α θ  = ( , )

k
k j 1

w
∞

α θ

= +
∑  

= 
R j

R j

c ( , )r , for 0 1

c ( , ) , for1 2

α θ < α <
 α θ < α ≤ l

 ...................................... (3.32) 

and 

rj = 
1 1 1

1 1 1( j 2) ( j 1) (2 2 ) j ( 2)

2 (2 )

−α −α −α+ λ + + − λ + λ −
Γ − α

 

 .... (3.33) 

jl =
2 2 2

2 2 2( j 2) (2 ) ( j 1) (3 4) j (2 3 )

2 (3 )

−α −α −α+ − λ + + λ − + − λ +
Γ − α

 

2
2( j 1)

2 (3 )

−α− λ
Γ − α

 

Substituting eq.(3.30) into eq.(3.28), the following finite 

difference scheme have been obtained: 
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N i
( , ) ( , ) ( , )

i k L Rk i N i
k i

T w g L g R 0
−

α θ α θ α θ
+ −

=−
+ δ + δ =∑  .......................... (3.34) 

for i = 1, 2, …, N − 1, with boundary conditions: 

T0 = gL, TN = gR 

Finally, eq.(3.34) may be written as a linear system in matrix 

form as: 

AT = B ................................................................................... (3.35) 

where: 

1 0 1 2 N 3 N 2 N 1

2 1 0 1 N 4 N 3 N 2

3 2 1 0 N 5 N 4 N 3

4 3 2 1 N 6 N 5 N 4

N 2 N 3 N 4 N 5 0 1 2

N 1 N 2 N 3 N 4 1 0 1

1 0 0 0 0 0 0

a a a a a a a

a a a a a a a

a a a a a a a

A a a a a a a a

a a a a a a a

a a a a a a a

0 0 0 0 0 0 1

− − − −

− − − − −

− − − − − −

− − − − − − −

− + − + − + − +

− + − + − + − + −

 
 
 
 
 
 
 =
 
 
 



 

L

L

L

L

L

M M M M O M M M

L

L

L





 

 ................................ (3.36) 

and  

B = [gL, b1, b2, …, bN−1, gR]t 

with 

aj = ( , )
kw α θ , for j = −N+1, −N+2, …, N−1 

bj = ( , ) ( , )
L Rj jg L g Rα θ α θδ + δ , for j = 1, 2, …, N−1 
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and 

T = [T0, T1, …, TN]t 

is the vector of unknown values of the function T, and t is the matrix 

transportation. 

The next example illustrate the above method of numerical 

solution: 

 

Example (3.2): 

Consider the fractional boundary value problem: 

i
1.01

x 0.1D T(x) = 0 

T(xk) = 0

N

T(x ) 2, for x 0

T(x ) 1, for x 10

= <
 = >

 

where α = 1.01 and θ = 0.1, 0 ≤ x ≤ 1, and to solve this problem using 

Riesz-Feller operator. 

Let the number of node points be equal to 9, i.e., N = 10 and 

hence h = 0.1. To solve this problem, the resulting finite difference 

equation from eq.(3.34): 

10 i
(1.01,0.1) (1.01,0.1) (1.01,0.1)

i k L Rk i 10 i
k i

T w g L g R 0
−

+ −
=−

+ δ + δ =∑ , i = 1,2,…,9 

First, from eq.(3.12), cL = −31.519 and cR = −31.362. 

Second, after carrying out some calculations from eq.(3.27), wj 

with λ2 = 0.89, j = 1, 2, …, 9, yields: 
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w−9 = 3.847×10−3, w−8 = 4.892×10−3, w−7 = 6.434×10−3,  

w−6 = 8.851×10−3, w−5 = 0.013, w−4 = 0.21, w−3 = 0.041,  

w−2 = 0.154, w−1 = 3.352, w0 = −7.43, w1 = 3.509, w2 = 0.153,  

w3 = 0.041, w4 = 0.021, w5 = 0.013, w6 = 8.807×10−3,  

w7 = 6.402×10−3, w8 = 4.868×10−3, w9 = 3.828×10−3 

Then, from eq.(3.31) and after carrying some calculations, δL j, j = 1, 2, 

…, 9, becomes: 

δL1 = 0.285, δL2 = 0.131, δL3 = 0.09, δL4 = 0.069, δL5 = 0.056, 

δL6 = 0.047, δL7 = 0.041, δL8 = 0.036, δL9 = 0.032 

and δRj, j =1, 2, …, 9, from eq.(3.32), yields: 

δR1 = 0.284, δR2 = 0.13, δR3 = 0.09, δR4 = 0.069, δR5 = 0.056, 

δR6 = 0.047, δR7 = 0.041, δR8 = 0.036, δR9 = 0.032 

Finally, from the results of the finite difference equation (3.34) 

the linear system may be written as in the following matrix form: 

AT = b 

where: 
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3 3 3
7.43 3.509 0.153 0.041 0.021 0.013 8.807 10 6.402 10 4.868 10

3 3
3.352 7.43 3.509 0.153 0.041 0.021 0.013 8.807 10 6.402 10

3
0.154 3.352 7.43 3.509 0.153 0.041 0.021 0.013 8.807 10

0.041 0.154 3.352 7.43 3.509 0.153 0.0

A

− − −− × × ×
− −− × ×

−− ×
−

=
41 0.021 0.013

0.021 0.041 0.154 3.352 7.43 3.509 0.153 0.041 0.021

0.013 0.021 0.041 0.154 3.352 7.43 3.509 0.153 0.041
3

8.851 10 0.013 0.021 0.041 0.154 3.352 7.43 3.509 0.153
3 3

6.434 10 8.851 10 0.013 0.021 0.041 0.154 3.352 7.

−
−

−× −
− −× × − 43 3.509
3 3 3

4.892 10 6.434 10 8.851 10 0.013 0.021 0.041 0.154 3.352 7.43
− − −× × × −

 
 
 
 
 
 
 
 
 
 
 
 
 
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T

T

T

T

T

T

T

T

T

 
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 
 
 
 
 
 
 
 
 
 
 

    and    b = 

7.314

0.611

0.309

0.236

0.207

0.202

0.226

0.365

3.685

− 
 − 
 −
 − 
 −
 
− 
 −
 
− 
 − 

 

Solving this system, one can get the following numerical results 

presented in table (3.1). Also, the results for α = 1.01 and θ = 0, 0.1, 0.3, 

0.5 are also illustrated in figure (3.1). 
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Table (3.1) 

Numerical results of example (3.2). 

xi Numerical results Residue error 

x1 1.924 1×10−3 

x2 1.797 1×10−3 

x3 1.687 2×10−3 

x4 1.587 2×10−3 

x5 1.492 1×10−3 

x6 1.4 1×10−3 

x7 1.308 2×10−3 

x8 1.214 2×10−3 

x9 1.115 3×10−3 
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Fig.(3.1) The results of example (3.2) with α = 1.01 and  

θ = 0, 0.1,0.3, 0.5. 
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3.2.4 Other Types of Boundary Conditions (Neumann Condition) for 

Solving Fractional Differential Equations by Riesz-Feller 

Operator: 

In this subsection, two kinds of new boundary conditions that 

may be encountered in boundary value problem are considered, which 

are: 

 

I- The First type of boundary conditions: 

This kind can describe the boundary conditions in the shape of 

the ordinary differential equation which may be converted into a 

Dirichlet condition by the forward and backwards difference method, 

then solving the problem using Riesz-Feller operator as in subsection 

(3.2.3). 

So, the boundary conditions may be described as follows: 

T(xk) = 0 L

N R

T (x ) g , for k 0

T (x ) g , for k N

′ ′= <
 ′ ′= >

 ......................................... (3.37) 

The following example illustrates the above conditions: 

 

Example (3.3): 

Consider the boundary value problem: 

0.1
x 0D T(x) = 0 

T(xk) = 0

9

T (x ) 2, for k 0

T (x ) 1, for k 9

′ = <
 ′ = >
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for α = 0.1 and θ = 0, 0 ≤ x ≤ 1, and let the number of node points be 

equal to 10, i.e., N = 9 and hence h = 1/9. 

Hence, using the forward and backward difference methods to 

convert the conditions (3.37) to Dirichlet conditions as; for i = 0, by 

forward difference method 

−T0 + T1 = 0.222 

and for i = 9, by backward difference method 

−T8 + T9 = 0.111 

and for i = 1, 2, …, 8 from eq.(3.34) the finite difference equation to 

solve this problem is: 

9 i
(0.1,0) (0.1,0) (0.1,0)

i k L Rk i 9 i
k i

T w g L g R 0
−

+ −
=−

+ δ + δ =∑  

from eq.(3.12) and since θ = 0, then 

cL(α, θ) = cR(α, θ) = 0.506 

and after carrying out some calculations from eq.(3.20), wj with λ1 = α − 

θ = 0.1, j = 0, 1, …, 8  and since θ = 0, therefore: 

w0 = −0.993, w±1 = 0.042, w±2 = 0.023, w±3 = 0.014,  

w±4 = 0.01, w±5 = 8.054×10−3, w±6 = 6.584×10−3, w±7 = 5.554,  

w±8 = 4.795×10−3 

Then, from eq.(3.31) and after some calculations for δL j and δRj, j = 1, 

2, …, 8, yields: 

δL1 = δR1 = 0.454, δL2 = δR2 = 0.432, δL3 = δR3 = 0.417, 
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δL4 = δR4 = 0.407, δL5 = δR5 = 0.399, δL6 = δR6 = 0.393, 

δL7 = δR7 = 0.387, δL8 = δR8 = 0.382 

Finally, from the result of the finite difference equation as in 

eq.(3.34) and the forward, backward difference methods, the linear 

system AT = b, can be written as the following matrix form: 

3 3 3

3 3

3

1

A

1 0 0 0 0 0 0 0 0

0.496 0.993 0.042 0.023 0.014 0.01 8.054 10 6.584 10 5.554 10 0.387

0.455 0.042 0.993 0.042 0.023 0.014 0.01 8.054 10 6.584 10 0.393

0.431 0.023 0.042 0.993 0.042 0.023 0.014 0.01 8.054 10 0.4
0.417 0.01

− − −

− −

−

−

=

− × × ×
− × ×

− ×

3

3 3

4 0.023 0.042 0.993 0.042 0.023 0.014 0.01 0.407
0.407 0.01 0.014 0.023 0.042 0.993 0.042 0.023 0.014 0.417

0.4 8.054 10 0.01 0.014 0.023 0.042 0.993 0.042 0.023 0.431

0.393 6.584 10 8.054 10 0.01 0.014 0.023 0.042 0.993 0.042 0

−

− −

−
−

× −
× × −

3 3 3
.455

0.387 5.554 10 6.584 10 8.054 10 0.01 0.014 0.023 0.042 0.993 0.496
0 0 0 0 0 0 0 0 1 1

− − −

 
 
 
 
 
 
 
 
 
 
 
 × × × −
 − 

 

T = 

0

1

2

3

4

5

6

7

8

9

T

T

T

T

T

T

T

T

T

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    and    b = 

0.222

0

0

0

0

0

0

0

0

0.111

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Solving this system using any numerical method, one can get the 

following numerical results presented in table (3.2). Also, the results for 

α = 0.1,0.75,1.01,1.25,1.75 and θ = 0, are also illustrated in figure (3.2). 
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Table (3.2) 

Numerical results of example (3.3). 

xi Numerical results Residue error 

x0 −68.184 0 

x1 −67.962 2.552×10−5 

x2 −68.048 3.435×10−4 

x3 −68.002 3.267×10−4 

x4 −67.927 1.71×10−4 

x5 −67.923 7.9×10−5 

x6 −67.989 2.889×10−4 

x7 −68.023 5.066×10−4 

x8 −67.92 5.912×10−6 

x9 −67.809 0 
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Fig.(3.2) The results of example (3.3) with α = 0.1, 0.75, 1.01,  

1.25, 1.75 and θ = 0. 
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II- The Second  type of boundary conditions: 

This kind can be described as the boundary conditions in the 

shape of the fractional differential equation, which can be described as 

follows: 

T(xk) = 
( ) ( )

0 L

( ) ( )
N R

T (x ) g , for k 0

T (x ) g , for k N

α α

α α

 = <


= >
 ................................. (3.38) 

and may be converted into Drichlit condition by the following finite 

difference method. To do this, let us write the boundary conditions as: 

T(α)(xi) = f(xi, T(xi)) ............................................................... (3.39) 

where xi = L + ih, i = 0, 1, …, N, h = 
R L

N

−
, where N ∈ �  is the 

number of subintervals of the interval [L, R]. 

Now, recall the left-hand fractional derivatives of Grünwald 

definition: 

d

dx

α

α T(x) = 
N
lim
→∞

N

j
j 0

1
g T(x jh)

hα
=

−∑  ...................................... (3.40) 

where g0 = 1, and: 

gj = 
( 1)( 2)...( j 1)

j!

α α − α − α − +
, for j = 1, 2, … 

Next, to obtain a good approximation, define the left hand shifted 

Grünwald estimate to left hand derivative. 

d

dx

α

α T(x) = 
N

j
j 0

1
g T(x ( j 1)h)

hα
=

− −∑  
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Therefore: 

T(α)(xi) = 
N

j
j 0

1
g T(x ( j 1)h)

hα
=

− −∑  

= 
N

j i j 1
j 0

1
g T

h
− +α

=
∑ ......................................................... (3.41) 

and by substituting eq.(3.41) in eq.(3.39), one can have: 

i 1

j i j 1
j 0

1
g T

h

+

− +α
=
∑  = f(xi, Ti), i = 0, 1, …, n − 1 .......................... (3.42) 

To illustrate this method, consider the following design example: 

 

Example (3.4): 

Consider the boundary value problem: 

0.5
x 0D T(x) = 0, 0 ≤ x ≤ 1 

T(xk) = 
( )

0

( )
9

T (x ) 1, for k 0

T (x ) 0, for k 9

α

α

 = <


= >
 

and if we let N = 9, then h = 0.111 

The first step is to convert the two boundary conditions to 

Dirichlet conditions using eq.(3.42) for i = 0 and i = 9, respectively as 

follows: 

1

j i j 1
j 0

1
g T

h
− +α

=
∑  = 1 

and 
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9

j i j 1
j 0

1
g T

h
− +α

=
∑  = 0 

Now, for i = 1, 2, …, 8, from eq.(3.34) the finite difference 

equation to solve this problem is: 

9 i
(0.5,0) (0.5,0) (0.5,0)

i k L Rk i N i
k i

T w g L g R 0
−

+ −
=−

+ δ + δ =∑  

from eq.(3.12) and since θ = 0, then: 

cL(α, θ) = cR(α, θ) = 0.707 

and after carrying some calculations from eq.(3.20), wj with λ1 = α −  

|θ| = 0.5, j = 0, 1, …, 8, and since θ = 0, therefore: 

w0 = −0.963, w±1 = 0.17, w±2 = 0.068, w±3 = 0.036,  

w±4 = 0.024, w±5 = 0.017, w±6 = 0.013, w±7 = 0.01,  

w±8 = 8.498×10−3 

Then, from eq.(3.31)and after some calculations δL j, δRj, j = 1, 2, 

…, 8, yields: 

δL1 = δR1 = 0.311, δL2 = δR2 = 0.244, δL3 = δR3 = 0.208, 

δL4 = δR4 = 0.184, δL5 = δR5 = 0.167, δL6 = δR6 = 0.154, 

δL7 = δR7 = 0.144, δL8 = δR8 = 0.135 

Finally, from the result of the finite difference equation as in 

eq.(3.34) and by eqs.(3.42), then the system AT = b, which can be 

written as the following matrix form: 
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0.5 1 0 0 0 0 0 0 0 0
0.481 0.963 0.17 0.068 0.036 0.024 0.017 0.013 0.01 0.143
0.312 0.17 0.963 0.17 0.068 0.036 0.024 0.017 0.013 0.154
0.244 0.068 0.17 0.963 0.17 0.068 0.036 0.024 0.017 0.167
0.208 0.036 0.068 0.17 0.963 0.17 0.068 0.03A =

−
−

−
−

− 6 0.024 0.184
0.184 0.024 0.036 0.068 0.17 0.963 0.17 0.068 0.036 0.208
0.167 0.017 0.024 0.036 0.068 0.17 0.963 0.17 0.068 0.244
0.154 0.013 0.017 0.024 0.036 0.068 0.17 0.963 0.17 0.312
0.143 0.01 0.013 0.017 0.024 0.036 0.068 0.17 0.9

−
−

−
− 63 0.481

0.011 0.013 0.016 0.021 0.027 0.039 0.063 0.1230.5 1

 
 
 
 
 
 
 
 
 
 
 
 − − − − − − − − − 
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    and    b = 

0.333

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Solving this system using any numerical method, one can get the 

following numerical results presented in table (3.3). Also, the results for 

α = 0.1, 0.5, 1.25, 1.5 and θ = 0, are also illustrated in figure (3.3). 
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Table (3.3) 

Numerical results of example (3.4). 

xi Numerical results Residue error 

x0 0.866 0 

x1 0.766 8.8×10−5 

x2 0.743 1.61×10−4 

x3 0.725 1.79×10−4 

x4 0.71 1.42×10−4 

x5 0.695 1.91×10−4 

x6 0.68 2.62×10−4 

x7 0.662 3.81×10−4 

x8 0.636 3.3×10−4 

x9 0.536 4.62×10−4 
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Fig.(3.3) The results of example (3.4) with α = 0.1, 0.5, 1.25, 1.5  

and θ = 0. 
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Conclusions and Recommendations 

 

The following conclusions may be drown from the present study: 

1. The finite difference method used in the numerical solution of 

fractional differential equations depends on the Grüunwald fractional 

derivative approximation of the fractional order derivative, which is 

the only applicable method for solving FBV’s. 

2. The accuracy of the results may be improved when considering 

fractional differential equations with Drichlit boundary conditions, of 

integer or fractional order (see examples (3.3) and (3.4)). 

3. From the illustrative figures of examples (3.2), (3.3) and (3.4), one 

can see that the behavior of the solutions is unchanged for different 

values of α and θ. 

 

Also, the following problems may be recommended for future 

work as an open problems: 

1. Solving fractional boundary value problems using Riesz-Feller 

fractional derivative with fractional order α > 2. 

2. Using the Green’s function method to solve fractional boundary value 

problems with boundary conditions of fractional order. 

3. Proposing a modified approach for solving partial differential 

equations with fractional order derivatives using Riesz-Feller 

fractional derivative. 
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4. Modifying the present approach for solving homogeneous fractional 

boundary value problems to solve non-homogeneous fractional 

boundary value problems. 

5. Solving nonlinear fractional boundary value problems using Riesz-

Feller fractional derivative. 

6. Using other methods for solving fractional boundary value problems, 

such as the shooting method, the collocation method, etc. 
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Introduction 

 i 

Introduction 

 

From the 16th century until now, the fractional calculus have an 

important place in many fields, because it deals with the investigation 

and applications of integrals and derivatives of arbitrary order. 

Moreover, it has played a significant role in engineering, science, 

economy and more particularly in transport of chemical contaminant 

through water around rocks, diffusion process involving cells, signals 

theory such as radar and sonar applications, control theory and many 

more, [El-Sayed, 2006].  

The subject of fractional calculus may be considered as an old 

and yet novel topic. It is an old since, starting from some speculations of 

G. W. Leibniz (1695, 1697), L. Euler (1730) who suggested to use this 

relationship for negative or non-integer (rational) values of n. 

Historically, S. Locroix (1819) first mentioned derivatives of 

arbitrary order in a text published in (1819) and it has been developed up 

to nowadays by J. B. Fourier (1820-1822) who put the first steps to the 

generalization of the notion of differential equations of arbitrary 

function. Also, the first application of fractional derivatives was given in 

(1823) by Abel who applied the fractional calculus in the solution of an 

integral equations. Liouville (1832) who attempted to give logical 

definitions of fractional derivatives. 

Moreover, one can state that the whole theory of fractional 

derivative and calculus was established on the bounds of many scientists 
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in the 2nd half of the 19th century (for more detailed overview concerning 

the history of fractional derivative and calculus, see [Ross, 1975]). 

Many books and papers on fractional calculus, fractional 

differential equations have appeared recently, such as [Samko, 1993], 

[Diethelm, 1997], [Podlubny, 1997], [Gorenflo, 1998], [Odibat, 2006]. 

Many scientists who works in fractional calculus starting from G. 

W. Leibniz (1695-1697), P. S. Laplace (1812), J. B. Fourier (1822), N. 

H. Abel (1823-1828), J. Liouville (1832-1873), B. Riemann (1847), H. 

Holmgren (1865-1867), A. K. Grünwald (1867-1872) until the 19th 

century like S. Pincherle (1902), G. H. Hordy and J. E. Littlewood 

(1917-1928), E. R. Love (1938-1996), A. Erdelyi (1939-1965), H. Kober 

(1940), D. V. Widder (1941), M. Riesz, (1949), etc., [Oldham, 1974]. 

Finally, in recent years, the interesting of fractional calculus have 

been stimulated by using the subject in many applications like the 

subject of finding the numerical solution of differential equations and in 

sciences, such as physics and engineering, etc., [Al-Hussieny, 2006]. 

Nowadays, many researchers works in fractional differential 

equations with initial conditions and the methods of solution it such as 

[Al-Shather, 2003] who presented some approximate solutions for 

fractional delay integro-differential equations, [Al-Azawi, 2004] who 

gave some results in fractional calculus, [Al-Authab, 2005] gave some 

numerical methods for solving fractional differential equations, [Khalil, 

2006] used linear multistep method to approximate some fractional order 

differential equations, [Aziz, 2006] use some approximated methods for 

solving fractional partial differential equations, [Al-Husseiny, 2006] 

who gave some type of solution in fuzzy fractional differential 
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equations, [Ghareeb, 2007] used the finite difference methods for 

solving fractional differential equations and [Farjo, 2007] used the 

Laplace transformation method to solve ordinary fractional differential 

equations with constant coefficients. But a little of mathematicians or 

papers deals with fractional differential equation with boundary 

conditions like [Zhang, 2006], [Ciesielski, 2006] and [Zhanbing, 2005], 

thus this thesis is oriented towards introducing fractional boundary value 

problems and the numerical methods for solving such type of equations. 

This thesis consists of three chapters, the first chapter devoted to 

introduce the general concepts of fractional calculus and fractional 

differential equations, while the main objective of this chapter is to give 

an overview about fractional differential equations with initial 

conditions, these problems has the form: 

Dqy(x) = f(x, y(x)), Dq −ky(x0) = k
0y , q > k 

where k = 1, 2, …, m + 1; m − 1 < q ≤ m, and m is a positive integer. 

The methods used to solve the above problems are discussed with some 

illustrative examples, which are necessary for understanding these 

methods of solution. 

In order to ensure the existence of a unique solution, chapter two 

is devoted to discusses the existence and uniqueness theorem of 

solutions of fractional differential equations with boundary conditions 

using the Schauder’s fixed point theorem. 

Finally, in chapter three we present the only well known 

fundamental analytic method for solving fractional differential equations 

with boundary conditions. Since the numerical methods may be 

sometimes the most applicable methods for solving differential 
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equations, in general, and fractional differential equations, in particular, 

therefore in this chapter we derived one of the most successful methods 

for solving fractional boundary value problems and present some 

illustrative examples are given. 
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، قمنــا بتقــديم اســلوب مطــور لحــل المعــادلات التفاضــلية الحدوديــة الرســالةفــي هــذه 

حيــث . (Fractional order boundary value problems)ذات الرتــب الكســرية 

ـــــــــــــــــى ـــــذا الاســـــــــــــــــلوب عل ـــــــــــــــــي هــــــــــــ ــــــــــــــدنا ف ـــــــــــــــــق  اعتمـــ ـــــــــــــــــر-مـــــــــــــــــؤثر رايســـــــــــــــــز تطبي   فيل

(Riesz-Feller operator) ة الفروقـات المنتهيـة يغة المطورة لمعادلـصوالحصول على ال

  .المناظرة للمعادلة التفاضلية الحدودية الكسرية

هـــــو دراســـــة مبرهنـــــة وجـــــود ووحدانيـــــة حلـــــول كمـــــا وان مـــــن أهـــــداف هـــــذا العمـــــل 

المعـــادلات التفاضـــلية الحدوديـــة الكســـرية، وتقـــديم برهـــان لهتـــين المبـــرهنتين بالاعتمـــاد علـــى 

للمؤثر التكـاملي  (Schauder fixed point theorem)مبرهنة شاودر للنقطة الصامدة  

 .(Fractional integral operator)الكسري 
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  المستخلص

دلات التفاضــلية الحدوديــة ذات الرتــب الكســرية ، قمنــا بتقــديم اســلوب مطــور لحــل المعــاالرســالةفــي هــذه 

(Fractional order boundary value problems) . حيـث اعتمـدنا فـي هـذا الاسـلوب علـى تطبيـق  مـؤثر

والحصـول علـى الصـيغة المطـورة لمعادلـة الفروقـات المنتهيـة المنـاظرة  (Riesz-Feller operator) فيلـر-رايسز

  .كسريةللمعادلة التفاضلية الحدودية ال

كما وان من أهداف هذا العمل هو دراسة مبرهنة وجود ووحدانية حلـول المعـادلات التفاضـلية الحدوديـة 

 Schauder fixed)الكسـرية، وتقـديم برهـان لهتـين المبـرهنتين بالاعتمـاد علـى مبرهنـة شـاودر للنقطـة الصـامدة  

point theorem)  للمؤثر التكاملي الكسري(Fractional integral operator). 
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ABSTRACT 

In this thesis, we introduce a modified approach for solving fractional 

order boundary value problems. This approach is given by applying the Riesz-

Feller operator to obtain a modified finite difference equation, which is 

symmetric to the equation of fractional boundary value problems. 

Also, the main objective of this work is to study the existence and 

uniqueness theorem of solutions of the fractional boundary value problems, and 

to present their proof depending on Schauder fixed point theorem for fractional 

order integral operator. 
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