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Abstract 

 

 

 

In this work, we consider two Monte Carlo methods for evaluating the n-

dimensional integrals for bounded integrand. Statistical properties of these 

methods are illustrated and unified. The supported number of trials to estimate 

the integrals, confidence interval and the efficiency for each method were 

derived theoretically and assessed practically. Variance Reduction for Monte 

Carlo methods is discussed theoretically and explained by algorithms where 

four techniques are considers, namely, the Importance Sampling, the 

Correlated Sampling, the Partition of the region, and the Biased Estimator. 

The computer programs are illustrated in appendices by the run is made by 

using MathCAD 2001i. 
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Some Basic Concepts and Definitions 

 

 

      
    

    

    

    

    

    

    

    

In this chapter we introduce some methods for generating random numbers 

on digital computers and their properties associated with uniform random 

variates where the term “random number” is used instead of uniform random 

number [15]. 

This chapter involve four sections. In section 1.2 we introduce some basic 

concepts and definitions concerning the distn. of random variables, while in 

section 1.3 we introduce some techniques for generating random numbers on 

digital computers. In section 1.4 we consider two important methods for 

generating random variates from different probability distn., namely, the 

Inverse Transform method, and the Acceptance-Rejection method. These two 

methods are discussed theoretically and supported by examples. 
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Some Basic Concepts and Definitions 

    

In this section we shall illustrate some basic concepts and definitions 

which are needed for simulation and Monte Carlo procedures. 

 

    

Given a random experiment with S.S Ω , a vector function 

),,,( 21
~

nXXXX K=  which assign to each element Ω∈ω  one and only one 

n-tuples vector of real numbers 
~ ~

( )X xω =  is called an n-dimensional 

random vector. 

The space of 
~
X  is the set of ordered n-tuples real numbers 

A
~ ~ ~

{ : ( ), }x x X ω ω= = ∈Ω . The random vector
~
X  is classified into two 

types: 

(i) Discrete. 

(ii) continuous. 

 

A random vector 
~
X  is said to be discrete if it is 

defined on a countable S.S whether it is finite or infinite, otherwise, 
~
X  is 

called continuous random vector. 

 

    

Let 
~
X be an n-dimensional random vector "disc. or cont." define on S.S A. 

A function ),,,()( 21
~

nxxxfxf K=  is called multivariate or joint p.d.f of 
~
X  

"or distn" if )(
~
xf  satisfy the following two conditions: 
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i. ∈∀≥
~~

,0)( xxf A. 

ii. 

( ), .

1
( ) , .

x A

x A

f x X disc

f x dx X cont

∈

∈




= 



∑∑ ∑

∫ ∫ ∫
%

%

L
% %

L
% % %

        

 

    

Let 
~
X be an n-dimensional random vector with p.d.f 

~
( )f x  defined on S.S 

A, we define the c.d.f of 
~
X "or distn.", denoted by ]Pr[)(

~~~
xXxF ≤= , as: 

1 2

1 2

1 2

1 2

1 2

1 2 1 2

( , , , ), .

( )

( , , , ) , .

n

n

n

n

x x x

n

t t t

x x x

n n

t t t

f t t t X disc

F x

f t t t dt dt dt X cont

=−∞ =−∞ =−∞

=−∞ =−∞ =−∞





= 




∑ ∑ ∑

∫ ∫ ∫

L K
%

%
L K K

%

 

Provided the sums or integrals converge analytically. 

Where )(
~
xF  satisfy the following properties: 

i. 1)(0
~

≤≤ xF . 

ii. ( ) 0F −∞ =
% %

 and ( ) 1F ∞ =
% %

. 

iii. ( )F x
%

 is a monotonic non-decreasing function of x
%

. 

iv. ( )F x
%

 is cont. function to the right at each x
%

. 

    

    

Let X
%

 be an n-dimensional random vector defined on S.S A with p.d.f 

( )f x
%

, and let  ( )u X
%

 be any function of X
%

, we define the mathematical 

expectation "or the expected value" of )(xu "denoted by )]([ xuE " as: 
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( ) ( ), .

[ ( )]
( ) ( ) , .

x A

x A

u x f x X disc

E u X
u x f x dx X cont

∈

∈

 ⋅


= 
⋅



∑∑ ∑

∫ ∫ ∫
%

%

L
% % %

% L
% % % %

 

Provided the sums or integrals converge analytically. 

In particular, for univariate case: 

1. if xxu =)( , then [ ( )]E u X  is called the mean of r.v X "or distn." and 

denoted by µ . 

2. if 
2( ) ( )u x x µ= − , then 

2[( ) ]E X µ−  is called the variance of the r.v X 

"or distn.", denoted by 
2σ or )var(X . The positive square root of the 

variance 
2σ is called the standard deviation, denoted by σ .which is measure 

of dispersion. 

In practice: 

   
2 2 2 2 2 2 2 2[( ) ] [ 2 ] [ ] 2 [ ] [ ]E X E X X E X E x E Xσ µ µ µ µ µ µ= − = − + = − ⋅ + = −  

   Moreover, for the multivariate case: 

1. If 1 2
1 2

1

( ) in

n
r r rr

n i

i

u x x x x x

=

= ⋅ ⋅ ⋅ = ∏L
%

, then 

1

1

1

( ) , .

( ) , .

i

i

i

n
r
i

n
x A ir

i n
ri
i

ix A

x f x X d is c

E x

x f x d x X c o n t

∈ =

=

=∈


⋅

  
=  

   ⋅



∑ ∑ ∑ ∏
∏

∏∫ ∫ ∫

%

%

L
% %

L
% % %

        

Which defines the multivariate moment of order (r1,r2,…,rn) about the 

origin of the distn. of 
~
X . 

2. If 1 1 2 2

1

( ) exp( ) exp( )
n T

t x
n n i i

i

u x t x t x t x t x e

=

= + + + = =∑ %%L
%

, 

then 
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1

1

exp( ) ( ), .

[ ( )]

exp( ) ( ) , .

n

i i

x A i

n

i i

ix A

t x f x X disc

E u X

t x f x dx X cont

∈ =

=∈


 ⋅



= 


⋅


∑∑ ∑ ∑

∑∫ ∫ ∫

%

%

L
% %

%

L
% % %

       

Which defines the multivariate moment generating function, and denoted 

by 1 2( ) ( , , , )
n

M t M t t t= K
%

 for the distn. of X
%

. 

 

    

A statistic is a function of one or more r.v
 s
 which is not depend upon any 

unknown parameter. 

 

    

Any statistic whose values are used to estimate the unknown parameter θ  

or some function of θ say τ(θ) is called point estimator. 

 

    

An estimator U= u(X1,X2,…,Xn) is said to be an unbiased estimator of θ  if 

and only if 1 2[ ] [ ( , , , )]nE U E u X X X θ= =K , denoted by θ̂ . 

The term θ−][UE  is called the bias of the estimator θ̂ . 

 

    

Let  X1,X2,…,Xn be a r.s of size n whose p.d.f ( , )f x θ
%

, an estimator 

U
*
=u

*
(X1,X2,…,Xn) of θ  is defined to be minimum variance unbiased 

estimator of θ  if and only if: 
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1. θ=][ *
UE , that is U

*
 is unbiased. 

2. )var()var( *
UU ≤  for any unbiased estimator U= u(X1,X2,…,Xn) of θ . 

 

    

Many techniques for generating random numbers have been suggested, 

tested, and used in recent years, some of these are based on random 

phenomena, others on deterministic recurrence procedures. 

Initially, manual methods were used, including such techniques as coin 

flipping, dice rolling, card shuffling, and roulette wheels, but these methods 

were too slow for general use, and moreover, sequences generated by them 

could not be reproduced. 

Shortly following with the computer aid it became possible to obtain 

random numbers. 

John Von Neumann (1951) [19] suggested the Mid-Square method, using 

the arithmetic operations of computer, his idea was to take the square of the 

preceding random number and extract the middle digits, for instance, if we 

wish to generating a sequence of four-digits numbers: 

1. Choose any 4-digit number, say 5232. 

2.  Square it, we obtain 27373824. 

3.  The next 4-digit number is of the middle 4-digit in step 2, that is 3738. 

4.  repeat the prosses. 

 But this sequence is not really random, it only seems so, in fact referred to 

as pseudorandom or quasi-random; still we call it random, with the 

appropriate reservation. Von Neumann's method likewise proved slow and 

awkward for statistical analysis. In addition the sequence tend to cyclicity, 

and once a zero is encountered the sequence terminates. 



 
 

  
7 

Some Basic Concepts and Definitions 

One method of generating random numbers on a digital computer consists 

of preparing a table and storing it in the memory of the computer. RAND 

Corporation (1955) [14] published a well known table of a million random 

digits that may be used in forming such a table. The advantage of this method 

is reproducibility, and its disadvantage is its lack of speed and the risk of 

exhausting the table. 

We say that the random numbers generated by this or any other method is 

good one if the random numbers are; 

1. Uniformly distributed. 

2. Statistically independent. 

3. Reproducible. 

Also a good method is necessarily fast and requires minimum memory 

capacity. 

The congruential methods for generating pseudorandom numbers are 

designed specifically to satisfy as many of these requirements as possible. 

Many random number generators in use today are linear congruential 

generators, introduced by Lehmer (1951) [9], which designed to generate 

sequences of pseudorandom numbers according to some recursive formula 

based on calculating the residues modulo of some integer m of a linear 

transformation. 

Knuth D.E (1969) [8] show that the numbers generated by these sequences 

appear to be uniformly distributed, and statistically independent. 

Congruential methods are based on a fundamental congruence 

relationship, which may be expressed as: 

))(mod(1 mcaXX ii +=+    , ni ,...,2,1=                                         ... (1.1) 

where a is the multiplier, c is the increment, and m is the modulus, where a, c, 

and m are nonnegative integers. The modulo notation ( mmod ) means that: 

1i i i
X aX c mk+ = + −                                                                        … (1.2) 
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Where ]/)[( mcaXk ii +=  denotes the largest positive integer in 

mcaX i /)( + . 

Given an initial starting value iX "also called the seed", with fixed values 

of a,c, and m, eq.(1.2) yields a congruence relationship "modulo m" for any 

value i for the sequence }{ iX . 

For example, let 30 === Xca  and 5=m , then the sequence obtained 

from the recursive formula )(mod331 mXX ii +=+  is: 3,0,4,2,3=iX . 

Clearly, such a sequence will repeat itself in at most m steps, and will 

therefore be periodic, 

It follow from eq.(1.2) that mX i <  for all i. This inequality means that the 

period of the generator can't exceed m, that is, the sequence iX  contains at 

most m distinct numbers. So we must to choose a, c, and m as better as 

possible to obtain the better and largest sequence of distinct random numbers. 

It is noted in literatures [7, 10, 12] that good statistical results with max. 

periodic no. can be achieved by choosing 127 +=a , 1=c  and 
352=m . 

Generators that produce random numbers according to eq.(1.1) are called 

"mixed Congruential generators". The random numbers on the unit interval 

(0,1) can be obtained by: 

m

X
U i

i =                                                                                          … (1.3) 

We note that in present days the IBM system/360 uniform random number 

generator, introduce a multiplicative Congruential generator of the form 

1 (mod )i iX aX m+ =  that utilizes the full word size, which is equal to 32 bits 

with 1 bit resaved for algebraic sign, therefore an obvious choice for m is 312 . 
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There are many techniques and several alternative algorithms for 

generating random variates from different distribution. However, nearly all 

these techniques can be classified according to their theoretical basis. 

We shall utilize two methods for generating r.v's of continuous type, 

namely Inverse Transform method and Acceptance-Rejection method. 

 

    

Let X be a cont. r.v with cumulative distribution function "c.d.f" )(xF . 

According to the properties given in section 1.2.4  )(xF  is non-decreasing 

function. The inverse function )(1
yF

−
 may be defined for any value of 

y between 0 and 1. 

The inverse transform method based on the following theorem: 

 

    

The r.v )1,0(~)( UxFU =  if and only if the r.v 
1( )X F U

−=  has c.d.f 

)(]Pr[ xFxX =≤ . 

 

    

1. Generate U from U(0,1). 

2. Set )(1
uFX

−= . 

3. Deliver X as a r.v generated from the distribution whose p.d.f )(xf . 

 

For illustration, we shall consider the following two examples. 
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 If we wish to generate r.v from the Weibull 

distribution " ),(~ βαWX ", with p.d.f: 





 ⋅⋅

=
⋅−−

0
)(

1 αβααβ x
ex

xf       
we

x

.

0 ∞<<
 

The c.d.f of X is: 

∫ ∫
∞−

⋅−⋅−⋅−− −=−=⋅⋅==≤=
x x

x
x

tt eedtetdttfxXxF
0

0

1 1)(]Pr[)(
ααα βββααβ

 

0, 0

( ) Pr[ ] 1 , 0

1,

x

x

F x X x e x

x

αβ− ⋅

≤


∴ = ≤ = − < < ∞
 = ∞


       

Now, set 

1

( ) 1 1 ln

1 1
ln ln

x x
u F x u e e u v x v

x v x v

α αβ β α

α
α

β

β β

− ⋅ − ⋅= ⇒ = − ⇒ = − = ⇒ − ⋅ = ⇒

 − −
= ⋅ ⇒ = ⋅ 

 

 

Where v have the same distn. of u 

Apply I.T algorithm: 

1. Read βα , . 

2. Generate U from U(0,1). 

3. Set 

1

1
lnX U

α

β

 −
= ⋅ 
 

. 

4. Deliver X as a r.v generated from ),( βαW  distribution. 

 

 

 Let X1,X2,…,Xn be a r.s of size n from the distn. 

whose p.d.f )(xf  and c.d.f. )(xF . Suppose we wish to generate Y1 and Yn 
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where Y1= min(X1,X2,…,Xn) and Yn= max(X1,X2,…,Xn). From order statistics 

theory, the c.d.f of the 1
st
 order statistics Y1 is: 

n
yFyYyG )](1[1]Pr[)( 11111 −−=≤=  

Set  ⇒=−=−⇒−−=⇒= uuyFyFuyGu
nn 1)](1[)](1[1)( 1111  

)1(1)()(1
111 1

111
nnn uFyuyFuyF −=⇒−=⇒=− −

 

and the c.d.f of the n
th

 order statistics Yn is: 

( ) Pr[ ] [ ( )]nn n n n nG y Y y F y= ≤ =  

Set  

1 11( ) [ ( )] ( ) ( )n nn
n n n n nu G y u F y F y u y F u

−= ⇒ = ⇒ = ⇒ =  

Apply I.T algorithm: 

1. Read n. 

2. Generate U from U(0,1). 

3. Set  
11

1 (1 )nY F U
−= −   and  

11
2 ( )nY F U

−= . 

4. Deliver Y1 and Yn as the 1
st
 and the n

th
 order statistics generated from 

the distn. whose p.d.f f(x). 

 

We note that  to apply the inverse transform method, the c.d.f F(x) must be 

exist in a form for which the corresponding inverse transform can be founded 

analytically, For example: 

1. )(~ λExpX  where  ∞<<⋅=
−−−

xexf
x 0,)(

11 λλ .    (possible) 

2. )1,2(~ GX  where  ∞<<⋅= −
xexxf

x 0,)( .            (difficult) 

3. )1,0(~ NX  where  
2

2

2

1
)(

x

exf
−⋅=

π
.                (impossible) 
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This method is dates back at least to Von Newman (1951) [19], and 

consists of sampling a random variate from an appropriate distribution and 

subjecting it to a test to determine whether or not it will be acceptable for use. 

To carry out the method we represent )(xf  of the generated r.v X as: 

)()()( xgxhcxf ⋅⋅= , where 1≥c , )(xh  is also p.d.f, and 1)(0 ≤< xg . 

Then we generate two r.v
s
, )1,0(~ UU , and Y from ( )h y , and test to see 

whether or not the inequality )(YgU ≤  holds: 

1. If the inequality holds, then accept Y=X as a r.v generated from )(xf . 

2. If the inequality violated, then reject the pair U,Y and try again. 

 

This method is based on the following theorem: 

 

    

Let the p.d.f of r.v X represented as  )()()( xgxhcxf ⋅⋅= , where 1≥c , 

)(xh  is also p.d.f, and 1)(0 ≤< xg . 

Let U and Y be distributed )1,0(U and ( )h y , respectively, then 

Pr[ ( )] ( )Y x U g Y f x= ≤ =  

 

    

1. Generate U from U(0,1). 

2. Generate Y from the p.d.f ( )h y . 

3. If )(YgU ≤ , Deliver X as a r.v generated from )(xf . 

4. Go to step 1. 
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Note: For this method to be of practical interest the following criteria must 

be used in selected )(xh : 

1. It should be easy to generate a r.v from )(xh . 

2. The efficiency "probability" of the procedure 
c

1  should be large, that 

is, c should be close to one "which accurse when )(xh  is similar to )(xf  in 

shape". 

 

Now, to illustrate this method, we choose c such that 

Ixxxhcxf ∈∀=⋅≤ ),()()( φ , where 1≥c . 

The problem then is to find a function )(xφ  and a function 
c

x
xh

)(
)(

φ= , 

from which the r.v's can be easily generated 

The maximum efficiency is achieved when Ixxxf ∈∀= ),()( φ . In this 

case 11 == c
c , 1)( =xg . 

There exist an infinite numbers of ways to choose h(x) to satisfy 

( ) ( ) ( )f x c h x g x= ⋅ ⋅ . 

For illustration, we shall consider the following two examples. 

        

 if we wish to generate r.v from the distn. whose 

p.d.f: 

2 2

2

2
( ) ,f x R x R x R

Rπ
= − − ≤ ≤  

We have 

[ ]2 2 , ,R x R x R R− ≤ ∀ ∈ − , 

2 2

2

2 2 2
( ) ( )R x f x x

R RR
φ

π ππ
− ≤ ⇒ ≤ =  . 
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Now :  
2 4

( ) ( ) ( ) ( )

R R R

R R R

c h x x c h x dx x dx c dx
R

φ φ
π π

− − −

⋅ = ⇒ ⋅ = ⇒ = =∫ ∫ ∫  

2
( ) 1

( )
4 2

x Rh x
c R

φ π

π

= = =  

and 
1

( ) ( )
2 2

x x

R R

x R
H x h t dt dt

R R
− −

−
= = =∫ ∫  

set 2 2 2( ) (2 1)
2

y R
u H y u y u R

R

−
= ⇒ = ⇒ = −  

and 

2 2

2
2 2 2 2 2

2

2
2

2

( ) 1 1
( ) (2 1)

2( )

1 (2 1)

R x
f y Rg y R x R R u

y R R

R

u

π
φ

π

−
= = = − = − −

= − −

 

 

Apply AR-Algorithm: 

1. Read R. 

2. Generate U1 and U2 from U(0,1). 

3. Set Y=(2U2-1)R. 

4. If 2
1 2( ) 1 (2 1)U g Y U≤ = − − , deliver “we accept” Y=X as a r.v 

generated from f(x). 

Go to step 2. 
 

 

 If we wish to generate r.v from beta distribution 

" ),(~ βαBeX " with p.d.f: 
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





−⋅⋅

Γ⋅Γ

+Γ

=
−−

0

)1(
)()(

)(

)(
11 βα

βα

βα
xx

xf         
we

x

.,

10, <<
 

   If we choose 
1)( −⋅= αα xxh , 10 << x , and 

1)1()( −−= β
xxg , in this case 

)()(

)(

βα

βα

Γ⋅Γ

+Γ
=c , 

So 

1

0 0

1
( ) ( )

x x

H x h t dt t dt x
α α

α
−= = ⋅ =∫ ∫  

Set αα
1

)()( 222 uyyuyHu =⇒=⇒= , and 1)1()( −−= β
yyg  

Apply A-R algorithm: 

1. read α  and β . 

2. Generate U1 and U2 from U(0,1). 

3. Set α
1

2UY = . 

4. If 
1

1 )1()( −−=≤ β
YYgU , Deliver "we accept" Y=X as a r.v generated  

from ),( βαBe . 

5. Go to step 2. 
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The importance of good numerical integration schemes is evident. There 

are many deterministic quadrature formulas for computation of ordinary 

integrals with well behaved integrands such as trapezoidal, Simpson's, and 

Gauss quadrature rules. But these numerical techniques become less attractive 

if the function fail to be regular “i.e. to have continuous derivatives of 

moderate order”, especially in the case of multidimensional integrals where 

application of such rules runs into severs difficulties. It is often more 

convenient to compute such integrals by Monte Carlo methods, which, 

although less accurate than conventional quadratures rules, but it is much 

simpler to use. 

This chapter involve tow sections, in section 2.2, we consider two 

techniques for computing the n-dimensional integrals namely the hit or miss 

Monte Carlo method, and the sample mean Monte Carlo method, where these 

two methods are supported by examples, Chebyshev's inequality is used to 
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evaluate the number of trails to perform according to hit or miss method as 

well as the confidence interval for the estimated integral is derived, 

efficiencies of the two methods are discussed. 

 

    

For computing n-dimensional integrals, 

1 2

1 2

1 2 1 2... ( , ,..., ) ...
n

n

b b b

n n
a a a

g x x x dx dx dxI = ∫ ∫ ∫                                      …(2.1) 

We shall consider two techniques, the 1
st
 is called "the hit or miss Monte 

Carlo method", which is based on the geometrical interpretation of an 

integrals as hyper volume under the surface of the integrand g(x1,x2,…,xn). The 

2
nd

 is called "the sample mean Monte Carlo method", which is based on the 

representation of an integral as an expected value, and the problem of 

estimating an integral by Monte Carlo method is equivalent to the problem of 

estimating an unknown parameter. 

    

    

Consider the problem of calculating the n-dimensional integral of eq.(2.1), 

where, for simplicity, we assume that the integrand g(x1,x2,…,xn) is bounded 

1 2 ,..., , 1,2,...,0 ( , ) ,
n i i i

x i ng x x c a x b =≤ ≤ ≤ ≤  

Let (X1,X2,…,Xn,Y) be a random vector uniformly distributed over the 

region { }1 2( , ,..., , ) : , 0 , 1,2,...,n i i ix x x y a x b y c i nΩ = ≤ ≤ ≤ ≤ = , 

with p.d.f  

1 2 1 2

1 1 2 2

1
( , ,..., , ) , ( , ,..., )

( )( )...( )

0, .

n n

n n

f x x x y x x x
c b a b a b a

ew

= ∈Ω
− − −

=

      ...(2.2) 
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Let p be the probability that the random vector (X1,X2,…,Xn,Y) is falls 

within the hyper-volume under g(x1,x2,…,xn), denoted by, 

1 2 1 2{( , ,..., ) : ( , ,..., )}
n n

V x x x y g x x x= ≤  and observing that the hyper-

volume under g(x1,x2,…,xn),  

1 2

1 2

1 2 1 2
... ( , ,..., ) ...

n

n

b b b

n n
a a a

g x x x dx dx dxhyper volumeV− = ∫ ∫ ∫  

We obtain: 

1 2

1 2

1 2 1 2

1 1 2 2

... ( , ,..., ) ...

( )( )...( )

n

n

b b b

n n

a a a

n n

g x x x dx dx dx

hyper volume V

hyper volume b a b a b a
p

−
=

− Ω − − −
=

∫∫ ∫
     

    
1 1 2 2( )( )...( )

n n

I

c b a b a b a
=

− − −
                     …(2.3) 

Let us assume that N independent random vectors (X11,X21,…,Xn1,Y1), 

(X12,X22,…,Xn2,Y2), …,(X1N,X2N,…,XnN,YN) are generated. The parameter p can 

be estimated by 

ˆ H
N

N
p =                …(2.4) 

Where NH is the number of occasions on which 

1 2( , ,..., ) , 1,2,...,i i ni ig x x x y i N≥ =  that is, the no. of "hits", and N-NH is 

the no. of "misses", we score a miss if 1 2( , ,..., ) , 1,2,...,i i ni ig x x x y i N< = . 

It follows from eq.(2.3), and eq.(2.4), that the integral I can be estimated by 

1 1 1 2 2
ˆ ( )( )...( ) H

n n

N
I c b a b a b a

N
θ≈ = − − −            …(2.5) 

In other wards, to estimate the integral I we take sample N from the distn. 

eq.(2.2), count the no. NH of hits "below the hyper-surface g(x1,x2,…,xn)", and 

apply eq.(2.5). 

The necessary steps to estimating the integral of eq.(2.5) by hit or miss 

Monte Carlo method can be describe by HM3-Algorithm: 
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1. Generate a seq. { }
( 1)

1

N n

i i
U

+

=
 of (n+1)N random numbers. 

2. Arrange the random numbers into N pairs, 11 21 ( 1)1( , ,..., ),
n

U U U
+

       

12 22 ( 1)2 1 2 ( 1)( , ,..., ),..., ( , ,..., )
n N N n N

U U U U U U
+ +

 in any fashion s.t each random 

no. Ui is used exactly once. 

3. Compute 

1 1 1 1 1 2 2 2 2 2( ) , ( ) , ..., ( )
i i i i Ni N N N Ni

X a b a U X a b a U X a b a U= + − = + − = + −

 and 
1 2( , ,..., ), 1,2,...,
i i ni

g X X X i N∀ = . 

4. Count the no. of cases NH for which 1 2 ( 1)( , ,..., )
i i ni n i

g X X X cU
+

> . 

5. Estimate the integral I by 1 1 2 2
ˆ ( )( )...( ) H
i n n

N
c b a b a b a

N
θ = − − − . 

 

1
θ̂1
θ̂ :::: 

Since each of the N trials constitutes a Bernoulli trial with prob. p of hit, 

then 

1 1 1 2 2

1 1 2 2

ˆ( ) ( )( )...( )

1
( )( )...( ) ( )

H
n n

n n H

N
E c b a b a b a E

N

c b a b a b a E N
N

θ
 

= − − −   

= − − −

 

1 1 1 2 2
ˆ( ) ( )( )...( )

n n
E p c b a b a b a Iθ = − − − =                …(2.6) 

That is, 1θ̂  is an unbiased estimator of I. 

The variance of 1θ̂  is: 

[ ]1 1 2 2
ˆ ˆvar( ) var ( )( )...( )

n n
c b a b a b a pθ = − − −  
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[ ]
2

1 1 2 2
ˆvar( ) ( )( )...( ) var H

n n

N
c b a b a b a

N
θ

 
= − − −   

                 

[ ]

[ ]

[ ] [ ]

[ ]

2

1 1 2 22

2

1 1 2 2

2

1 1 2 2 1 1 2 2

2

1 1 2 2

1
( )( )...( ) var( )

1
( )( )...( ) (1 )

( )( )...( ) ( )( )...( )

( )( )...( )

n n H

n n

n n n n

n n

c b a b a b a N
N

c b a b a b a p p
N

c b a b a b a I c b a b a b a I

N c b a b a b a

= − − −

= − − − −

− − − − − − −
= ⋅

− − −

 

 [ ]1 1 2 2( )( )...( )
n n

I
c b a b a b a I

N
= − − − −                     …(2.7) 

 

and the standard deviation 

{ }
2

1 1

2 2
ˆ 1 1 1 2 2

1ˆvar( ) ( )( )...( )
n n

I c b a b a b a I
N

θ
σ θ = = − − − −      …(2.8) 

Note that the precision of the estimator 1θ̂ , which is the measured by the 

inverse of standard deviation, is of order 
1

2N
−

. 

 

    

To evaluate how many trials do we have to perform according to the hit or 

miss Monte Carlo method, if we require 

1
ˆPr Iθ ε α − < ≥

 
             …(2.9) 

Chebyshev's inequality, 

1
1 2

ˆvar( )ˆPr 1I
θ

θ ε
ε

 − < ≥ −
 

            …(2.10) 

together with eq.(2.9), gives 

1

2

ˆvar( )
1

θ
α

ε
≤ −             …(2.11) 

substituting eq.(2.7) in eq.(2.11), we obtain 
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[ ]
2

1 1 2 2

2

(1 ) ( )( )...( )
1 n n

p p c b a b a b a

N
α

ε

− − − −
≤ −            …(2.12) 

by solving eq.(2.12) w.r.t N, we have 

[ ]
2

1 1 2 2

2

(1 ) ( )( )...( )

(1 )

n n
p p c b a b a b a

N
α ε

− − − −
≥

−
               …(2.13) 

Which is the required number of trials for eq.(2.9) to hold. 

For illustration, we shall consider the following two examples, by taking 

small (α) say 0.01, 0.05, and small (ε) say 0.001, 0.005, and a large (p) say 

0.99, 0.995 to get best result. 

 

    

For the large samples size, taken from non-Normal distn. “disc. or cont.”, 

we can find with help of the Central Limit theorem, an approximate C.I for I 

because most distn. has limiting Normal distn. ( n → ∞ ). 

Let 1 2
ˆ ˆ ˆ, , , nθ θ θK  be a r.s from a distn. that has mean I and variance 2σ with 

existence of m.g.f M(t), and suppose we required a C.I for I with probability 

1-α for a small α and unknown σ
2
 : 

According to C.L.T, the r.v 
ˆ( )

(0,1)
appn I

Y N
θ

σ

−
= � , 

Since, 
2 2. . .

2 2

2 2
. . .

1 1
conv conv conv

sto sto sto

S S
S vσ

σ σ
→ ⇒ → ⇒ = → , 

Then the r.v 
Y

Z
v

=  has a limiting distn. As Y, that is: 

.ˆ ˆ( ) ( )
(0,1)

appn I n I
Z N

S S

θ σ θ

σ

− −
= = � . 

So, we can find from N(0,1) table two no.
s
, 

2
1

z α−
± , s.t: 

αα
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2 2
1 1

Pr 1z Z zα α α
− −

 − < < = −
 

. 

Now, the event 

2 2 2 2
1 1 1 1

ˆ( )n I
z Z z z z

S
α α α α

θ
− − − −

−
− < < ≡ − < <  

2 2 2 2
1 1 1 1

ˆ ˆ ˆ( )
S S S S

z I z z I z
n n n n

α α α αθ θ θ
− − − −

≡− < − < ≡− − < − < − +  

2 2
1 1

ˆ ˆS S
z I z

n n
α αθ θ

− −
≡ − < < + . 

Therefore the approximate 100(1-α)% C.I for the integral I is: 

2 2
1 1

ˆ ˆ,
S S

z z
n n

α αθ θ
− −

 
− + 

 
. 

For illustration we shall solve the following examples. 

 

Calculating the 99.5% C.I for the integration 

 
2

1

0

x
I e dx

−
= ∫ .

 

    

    

For the best no. of trails N with 0.99, 0.001, 1p cε= = = : 

[ ] 4

2

(1 ) ( )
4 10

(1 )

p p c b a
N

α ε

− −
≥ = ×

−
 

By calculating 1θ̂  , according to the Hit or Miss Monte Carlo method with 

number of repetition n=25, and the result are tabulated in table(2.1): 
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Table(2.1) 

"The Estimators of 
2

1

0

x
I e dx

−
= ∫ , using the Hit or Miss Method" 

n 1θ̂  n 1θ̂  n 1θ̂  n 1θ̂  n 1θ̂  

1 0.737 6 0.737 11 0.741 16 0.743 21 0.744 

2 0.752 7 0.749 12 0.754 17 0.739 22 0.749 

3 0.753 8 0.743 13 0.744 18 0.745 23 0.745 

4 0.741 9 0.747 14 0.753 19 0.750 24 0.747 

5 0.748 10 0.744 15 0.746 20 0.740 25 0.747 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.746
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 5

1 1

1 1ˆ ˆ ˆ 0.746 2.343 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  

then 34.84 10S
−

= ×  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , s.t 

2 2
1 1

Pr 1z Z zα α α
− −

 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

3

0.995

4.84 10ˆ 0.746 2.6 0.743
5

S
z

n
θ

−
×

− = − ⋅ =  

3

0.995

4.84 10ˆ 0.746 2.6 0.749
5

S
z

n
θ

−
×

+ = + ⋅ =  

Therefore the 99.5% C.I for I is: ( )0.743 , 0.749  
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Calculation the 99% C.I for the integral 

1 1 1
1 2

3 2 1
0 0 0 3

sin( )

cos( )

x x
I dx dx dx

x

+
= ∫ ∫ ∫ . 

    

    

For the best no. of trails N with 0.99, 0.01p ε= = : 

[ ]1 1 2 2 3 3 3

2

(1 ) ( )( )( )
2.75 10

(1 )

p p c b a b a b a
N

α ε

− − − −
≥ = ×

−
 

By calculating 1θ̂  , according to the Hit or Miss Monte Carlo method with 

number of repetition n=25, and the result are tabulated in table(2.2): 

 

Table(2.2) 

"the estimators of 
1 1 1

1 2
3 2 1

0 0 0 3

sin( )

cos( )

x x
I dx dx dx

x

+
= ∫ ∫ ∫ ,using Hit or Miss" 

n 1θ̂  n 1θ̂  n 1θ̂  n 1θ̂  n 1θ̂  

1 0.935 6 0.931 11 0.940 16 0.971 21 0.960 

2 0.956 7 0.954 12 0.958 17 0.947 22 0.936 

3 0.944 8 0.937 13 0.949 18 0.975 23 0.975 

4 0.967 9 0.938 14 0.956 19 0.904 24 0.958 

5 0.949 10 0.965 15 0.938 20 0.973 25 0.927 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.950
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 4

1 1

1 1ˆ ˆ ˆ 0.950 2.950 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  
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then 0.017S =  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 95% C.I for the integral I is 0.95 0.95
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

0.95

0.017ˆ 0.950 1.645 0.944
5

S
z

n
θ − = − ⋅ =  

0.95

0.017ˆ 0.950 1.645 0.955
5

S
z

n
θ + = + ⋅ =  

Therefore the 95% C.I for I is:( )0.944 , 0.955 . 

 

Calculation the 99.5 % C.I for the integral 

2 2
1 2

1 1 2 2 3

3 4 5 1 2 3 4 5
0 0 1 0 1

2 sin( )
x x

I e x x x dx dx dx dx dx
+

= + − +∫ ∫ ∫ ∫ ∫ . 

 

    

For the best no. of trails N with 0.99, 0.01p ε= = : 

[ ]1 1 2 2 5 5 4

2

(1 ) ( )( )...( )
1 10

(1 )

p p c b a b a b a
N

α ε

− − − −
≥ = ×

−
 

By calculating 1θ̂  , according to the Hit or Miss Monte Carlo method with 

number of repetition n=25, and the result are tabulated in table(2.3): 
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Table(2.3) 

"the Estimators of 

2 2
1 2

1 1 2 2 3

3 4 5 1 2 3 4 5
0 0 1 0 1

2 sin( )
x x

I e x x x dx dx dx dx dx
+

= + − +∫ ∫ ∫ ∫ ∫ , 

using Hit or Miss Method" 

n 1θ̂  n 1θ̂  n 1θ̂  n 1θ̂  n 1θ̂  

1 19.960 6 20.477 11 20.381 16 20.452 21 20.000 

2 20.050 7 20.516 12 20.615 17 19.932 22 20.205 

3 20.460 8 20.213 13 19.964 18 20.210 23 20.157 

4 20.170 9 20.120 14 20.170 19 20.336 24 20.150 

5 19.970 10 20.610 15 20.350 20 20.270 25 20.370 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 20.244
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 -3

1 1

1 1ˆ ˆ ˆ 20.244 42.5 10
1 24

n

i i

i i

S
n

θ θ θ
= =

   = − = − = ×   −
∑ ∑  

then 0.206S =  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

0.995

0.206ˆ 20.244 2.6 20.137
5

S
z

n
θ − = − ⋅ =  

0.995

0.206ˆ 20.244 2.6 20.352
5

S
z

n
θ + = + ⋅ =  

Therefore the 99.5% C.I for I is: ( )20.137 , 20.352  
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Another way of computing the integral 

1 2

1 2

1 2 1 2
... ( , ,...., ) ...

n

n

b b b

n n
a a a

g x x x dx dx dxI = ∫ ∫ ∫  

by represent I as an expected value of some r.v. 

Indeed, let us rewrite the integral I as 

1 2

1 2

1 2
1 2 1 2

1 2

( , ,..., )
... ( , ,..., ) ...

( , ,..., )

n

n

b b b

n
n n

a a a n

g x x x
I f x x x dx dx dx

f x x x
= ∫ ∫ ∫           …(2.14) 

where f(x1,x2,…,xn) is any p.d.f, s.t f(x1,x2,…,xn)>0, when 

1 2( , ,...., ) 0
n

g x x x ≠ , then 

1 2

1 2

( , ,...., )

( , ,...., )

n

n

g X X X
I E

f X X X

 
=  

 
                             …(2.15) 

where the r.v X1,X2,…,Xn are independent r.v
s
 are distributed according to 

f1(x1), f2(x2),…, fn(xn) where : 

1 1 2 2 1 2( ) ( ) ... ( ) ( , ,..., )
n n n

f x f x f x f x x x⋅ ⋅ ⋅ =  

for simplicity, let us assume 

1 2

1 1 2 2

1
( , ,..., ) , , 1,2,...,

( ) ( )... ( )

0 , .

n i i i

n n

f x x x a x b i n
b a b a b a

ew

= < < ∀ =
− − −

=

     …(2.16) 

then  

[ ]

[ ]

1 2

1 1 2 2

1 1 2 2 1 2

( , ,..., )
( )( )...( )

( )( )...( ) ( , ,..., )

n

n n

n n n

I
E g X X X

b a b a b a

I b a b a b a E g x x x

= ⇒
− − −

= − − −

 

we can estimate I by 

2 1 1 2 2 1 2

1

1ˆ ( )( )...( ) ( , ,..., )
N

n n i i ni

i

b a b a b a g X X X
N

θ
=

= − − − ∑                …(2.17) 
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The necessary steps to estimating the integral of eq.(2.47) by sample mean 

Monte Carlo method can be describe by SM3-Algorithm: 

 

    

1. Generate a seq. { }
1

n N

i i
U

⋅

=
of n.N random numbers. 

2. Arrange the random numbers into N pairs (U11,U21,…,Un1), 

(U12,U22,…,Un2), …, (U1N,U2N,…,UnN) in any fashion s.t each random 

number Ui is used exactly once. 

3. Compute 

1 1 1 1 1 2 2 2 2 2( ) , ( ) , ..., ( )
i i i i ni n n n ni

X a b a U X a b a U X a b a U= + − = + − = + −

 ; and 
1 2( , ,..., ), 1,2,...,
i i ni

g X X X i N∀ = . 

4. Compute the sample mean 2θ  according to: 

2 1 1 2 2 1 2

1

1ˆ ( )( )...( ) ( , ,..., )
N

n n i i ni

i

b a b a b a g X X X
N

θ
=

= − − − ∑ , which 

estimates I. 

 

2
θ̂2
θ̂ :::: 

We can show that 2θ̂  is an unbiased estimator 

2 1 1 2 2 1 2

1

1ˆ( ) ( )( )...( ) ( , ,..., )
N

n n i i ni

i

E E b a b a b a g X X X
N

θ
=

 
= − − − 

 
∑  

1 1 2 2 1 2

1

1
( )( )...( ) ( , ,..., )

N

n n i i ni

i

b a b a b a E g X X X
N =

 
= − − −  

 
∑  

[ ]1 1 2 2 1 2

1

1
( )( )...( ) ( , ,..., )

N

n n i i ni

i

b a b a b a E g X X X
N =

= − − − ∑  

1 1 2 2

1 1 1 2 2

1
( )( )...( )

( )( )...( )

N

n n

i n n

I
b a b a b a

N b a b a b a=

 
= − − −  

− − − 
∑  
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2 1 1 2 2

1 1 2 2

1ˆ( ) ( )( )...( )
( )( )...( )

n n

n n

N I
E b a b a b a I

N b a b a b a
θ∴ = − − − =

− − −
 

The variance of 
2θ̂  is equal to ( ) ( )

2
2

2 2
ˆ ˆE Eθ θ −

 
 

1 2

1 2

2 1 1 2 2 1 2

1

2
2 2 2 21 2

1 1 2 2 1 2

1 1 2 2

1ˆvar( ) var ( )( )...( ) ( , ,..., )

1 ( , ,..., )
( ) ( ) ...( ) ... ...

( )( )...( )

n

n

N

n n i i ni

i

b b b

i i ni
n n n

n n
a a a

b a b a b a g X X X
N

g X X X
b a b a b a dx dx dx I

N b a b a b a

θ

=

 
= − − − 

  

 
 = − − − −

− − − 
 

∑

∫∫ ∫
 

1 2

1 2

2 2

2 1 1 2 2 1 2 1 2

1ˆvar( ) ( )( )...( ) ... ( , ,..., ) ... .
n

n

b b b

n n i i ni n

a a a

b a b a b a g X X X dx dx dx I
N

θ
 

= − − − − 
  

∫ ∫ ∫

                                                                                                                …(2.18) 

    

    

From sec.( 2.2.1.3) we can obtain that the approximation (1-α)100% C.I 

for I is 
2 2

1 1
ˆ ˆ,

S S
z z

n n
α αθ θ

− −

 
− + 

 
. 

For illustration we will solve the following examples. 

 

 

Calculating the 99.5% C.I for the integral 

 
2

1

0

x
I e dx

−
= ∫ . 

    

For the best no. of trails N with 0.99, 0.001p ε= = : 

αα
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[ ] 4

2

(1 ) ( )
4 10

(1 )

p p c b a
N

α ε

− −
≥ = ×

−
 

By calculating 2θ̂  , according to the Sample Mean Monte Carlo method 

with number of repetition n=25, and the result are tabulated in table(2.4): 

 

Table(2.4) 

"The Estimators of 
2

1

0

xI e dx−
= ∫ , using Sample Mean Method" 

n 2θ̂  n 2θ̂  n 2θ̂  n 2θ̂  n 2θ̂  

1 0.744 6 0.744 11 0.750 16 0.751 21 0.748 

2 0.746 7 0.745 12 0.749 17 0.750 22 0.745 

3 0.747 8 0.747 13 0.749 18 0.746 23 0.746 

4 0.746 9 0.750 14 0.745 19 0.748 24 0.749 

5 0.746 10 0.747 15 0.748 20 0.744 25 0.748 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.747
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 6

1 1

1 1ˆ ˆ ˆ 0.746 4.277 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  

then 32.068 10S
−

= ×  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 
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3

0.995

2.068 10ˆ 0.747 2.6 0.746
5

S
z

n
θ

−
×

− = − ⋅ =  

3

0.995

2.068 10ˆ 0.747 2.6 0.748
5

S
z

n
θ

−
×

+ = + ⋅ =  

therefore the 99.5% C.I for I is:( )0.746 , 0.748  

 

Calculation the 99% C.I for the integral 

1 1 1
1 2

3 2 1
0 0 0 3

sin( )

cos( )

x x
I dx dx dx

x

+
= ∫ ∫ ∫ . 

    

For the best no. of trails N with 0.99, 0.01p ε= = : 

[ ]1 1 2 2 3 3 3

2

(1 ) ( )( )( )
2.75 10

(1 )

p p c b a b a b a
N

α ε

− − − −
≥ = ×

−
 

By calculating 2θ̂  , according to the Sample Mean Monte Carlo method 

with number of repetition n=25, and the result are tabulated in table(2.5): 

 

Table(2.5) 

"The Estimators of 
1 1 1

1 2
3 2 1

0 0 0 3

sin( )

cos( )

x x
I dx dx dx

x

+
= ∫ ∫ ∫ , using Sample 

Mean method" 

n 2θ̂  n 2θ̂  n 2θ̂  n 2θ̂  n 2θ̂  

1 0.948 6 0.952 11 0.950 16 0.947 21 0.953 

2 0.956 7 0.941 12 0.957 17 0.959 22 0.955 

3 0.936 8 0.943 13 0.943 18 0.946 23 0.937 

4 0.939 9 0.964 14 0.945 19 0.957 24 0.963 

5 0.946 10 0.952 15 0.945 20 0.952 25 0.946 
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then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.949
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 5

1 1

1 1ˆ ˆ ˆ 0.949 5.788 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  

then -37.608 10S = ×  

now, we can find from the standard normal distn.’
s
 table two no'

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 95% C.I for the integral I is 0.95 0.95
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

-3

0.95

7.608 10ˆ 0.949 1.645 0.947
5

S
z

n
θ

×
− = − ⋅ =  

-3

0.95

7.608 10ˆ 0.949 1.645 0.952
5

S
z

n
θ

×
+ = + ⋅ =  

Therefore the 95% C.I for I is: ( )0.947 , 0.952 . 

 

Calculation the 99.5 % C.I for the integral 

2 2
1 2

1 1 2 2 3

3 4 5 1 2 3 4 5
0 0 1 0 1

2 sin( )
x x

I e x x x dx dx dx dx dx
+

= + − +∫ ∫ ∫ ∫ ∫ . 

    

    

For the best no. of trails N with 0.99, 0.01p ε= = : 

[ ]1 1 2 2 5 5 4

2

(1 ) ( )( )...( )
1 10

(1 )

p p c b a b a b a
N

α ε

− − − −
≥ = ×

−
 

By calculating 2θ̂  , according to the Sample Mean Monte Carlo method 

with number of repetition n=25, and the result are tabulated in table(2.6): 
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Table(2.3) 

"The Estimators of 

2 2
1 2

1 1 2 2 3

3 4 5 1 2 3 4 5
0 0 1 0 1

2 sin( )
x x

I e x x x dx dx dx dx dx
+

= + − +∫ ∫ ∫ ∫ ∫ , using 

Sample Mean method" 

n 2θ̂  n 2θ̂  n 2θ̂  n 2θ̂  n 2θ̂  

1 20.243 6 20.172 11 20.167 16 20.226 21 20.242 

2 20.090 7 20.125 12 20.257 17 20.170 22 20.175 

3 20.218 8 20.190 13 20.114 18 20.099 23 20.108 

4 20.117 9 20.200 14 20.254 19 20.194 24 20.167 

5 20.125 10 20.157 15 20.186 20 20.186 25 20.180 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 20.174
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 -3

1 1

1 1ˆ ˆ ˆ 20.174 2.419 10
1 24

n

i i

i i

S
n

θ θ θ
= =

   = − = − = ×   −
∑ ∑  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

0.995

0.049ˆ 20.174 2.6 20.149
5

S
z

n
θ − = − ⋅ =  

0.995

0.049ˆ 20.174 2.6 20.200
5

S
z

n
θ + = + ⋅ =  

Therefore the 99.5% C.I for I is: ( )20.149 , 20.200  
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Suppose two Monte Carlo methods exist for estimating the integral I. let 1θ̂  

and 2θ̂  be two estimates produced by these methods s.t : 

1 2
ˆ ˆE E Iθ θ   = =    . 

We denote by t1 and t2 the units of computing time required for evaluating 

the r.v
s
 1θ̂  and 2θ̂  respectively. 

Let the variance associated with the 1
st
 method be 1

ˆvar( )θ  and the 

associated with the 2
nd

 method be 2
ˆvar( )θ , then we say that the 1

st
 method is 

more efficient than the 2
nd

 method if   1 1

2 2

ˆvar( )
. 1

ˆvar( )

t
eff

t

θ

θ
= < . 

Let us compare now the efficiency of the hit or miss method with that of 

the sample mean method. 

 

2 1
ˆ ˆvar( ) var( )θ θ≤     

    

Subtracting eq.(2.18) from eq.(2.7), we obtain: 

1 2

1 2

2

1 2 1 1 2 2 1 2 1 2

1ˆ ˆvar( ) var( ) ( )( )...( ) ... ( , ,..., ) ...

n

n

b b b

n n n n

a a a

b a b a b a cI g x x x dx dx dx
N

θ θ
 
 − = − − − −
 
 
∫∫ ∫     

                                                                                                                                                                                                                                                                                                                                                                        ............(2.19) 

Note that 
1 2( , ,..., )

n
g x x x c≤ , 

Therefore  

1 2

1 2

2

1 2 1 2... ( , ,..., ) ... 0

n

n

b b b

n n

a a a

c I g x x x dx dx dx− ≥∫∫ ∫  

and further 
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1 2
ˆ ˆvar( ) var( ) 0θ θ− ≥     

Assuming that the computing times t1 and t2 for 1θ̂  and 2θ̂  are 

approximately equal, we conclude that the sample mean method is more 

efficient than the hit or miss method. 

If 1
ˆvar( )θ  and 2

ˆvar( )θ  are unknown, we can replace them by their 

estimators: 

2

2

1 2 1 1 2 2

1

1
( , ,..., )( )( )...( )

1

N

i i ni n n

i

S g X X X b a b a b a
N

θ
=

 
= − − − − −  

∑  

                                                                                                         …(2.20) 

and then estimated by 

2

1 1

2

2 2

.
t S

eff
t S

=                           …(2.21) 

By comparing examples (2.2.1.1) and (2.2.2.1), we can show that: 

2 4

1 1 1

2 6

2 2 2

(2.343 10 )
.

(4.277 10 )

t S t
eff

t S t

−

−

×
= =

×
, 

and by taking  1 2t t≈ then we get, . 547.814 1eff = > . 

Compare again examples (2.2.1.2) and (2.2.2.2), it is easily to evaluate 

2 4

1 1 1

2 5

2 2 2

(2.95 10 )
.

(5.788 10 )

t S t
eff

t S t

−

−

×
= =

×
, 

and take 1 2t t≈  then, . 5.097 1eff = > . 

Compare again examples (2.2.1.3) and (2.2.2.3), it is easily to evaluate 

2 3

1 1 1

2 3

2 2 2

(42.5 10 )
.

(2.419 10 )

t S t
eff

t S t

−

−

×
= =

×
, 

and take 1 2t t≈  then, . 17.569 1eff = > . 

which means that the sample mean method is more accurate than the hit or 

miss method. 
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It is interesting to note that, estimating the integral by 1θ̂  and 2θ̂ , we do not 

need to know the function g(x1,x2,…,xn) explicitly, we need only evaluate 

g(x1,x2,…,xn) at any point (x1,x2,…,xn). 
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In this chapter we shall discuss the variance reduction technique for 

estimating the n-dimensional integrals where four procedures of sampling are 

employed, namely, the Importance sampling, the Correlated sampling, 

Partition of the Region, and the Biased estimators. 

Some related theorems, corollaries, and propositions to these procedures 

are proved and discuss in details. 
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Variance reduction can be viewed as a means to use known information 

about the problem. In fact, if nothing is known about the problem, variance 

reduction cannot be achieved. At the other extreme, that is, complete 

knowledge, the variance is equal to zero and there is no need for simulation. 

Variance reduction cannot be obtained from nothing; it is merely a way of 

not wasting information. One way to gain this information is through a direct 

crude simulation of the process. Results from this simulation can then be 

used to define variance reduction techniques that will refine and improve the 

efficiency of a 2
nd

 simulation. Therefore the more that is known about the 

problem, the more effective the variance reduction techniques that can be 

employed. Hence it is always important to clearly define what is known 

about the problem. Knowledge of a process to be simulated can be 

qualitative, quantitative, or both. 

 

    

Let us consider the problem of estimating the n-dimensional integral 

1 2

1 2

1 2 1 2
... ( , ,..., ) ... ,

n

n

b b b
n

n n
a a a

I g x x x dx dx dx x R= ∈Ω ⊂∫ ∫ ∫   …(3.1) 

where { }1 2( , ,..., ) : , 1,2,...,n i i ix x x a x b i nΩ = ≤ ≤ =  

We suppose that 2 ( )g L x∈  ”in other words, that 

1 2

1 2

2

1 2 1 2
... ( , ,..., ) ...

n

n

b b b

n n
a a a

g x x x dx dx dx∫ ∫ ∫  exists and therefore that I exists”. 

The basic idea of this technique [11] consists of concentrating the distn. 

of  the sample point in the parts of the region Ω that are of most 

“importance” instead of spreading them out evenly. By analogy with 

eq.(2.14) and eq.(2.15) of chapter two we can represent the integral (3.1) as 
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1 2

1 2

1 2
1 2 1 2

1 2

( , ,..., )
... ( , ,..., ) ...

( , ,..., )

n

n

b b b

n
n n

a a a n

g x x x
I f x x x dx dx dx

f x x x
= ∫ ∫ ∫     

1 2

1 2

( , ,..., )

( , ,..., )

n

n

g X X X
E

f X X X

 
=  

 
                                  …(3.2) 

Here (X1,X2,…,Xn) is any random vector with p.d.f  f(x1,x2,…,xn), s.t 

f(x1,x2,…,xn)>0, for each (x1,x2,…,xn)∈Ω. 

The function f(x1,x2,…,xn) is called the importance sampling distn.. It is 

obvious from eq.(3.2) that if 

1 2

1 2

( , ,..., )

( , ,..., )

n

n

g X X X

f X X X
ζ =  

is an unbiased estimator for I, with the variance 

1 2

1 2

2
21 2

1 2 1 2

1 2

( , ,..., )
var( ) ... ( , ,..., ) ...

( , ,..., )

n

n

b b b

n
n n

a a a n

g x x x
f x x x dx dx dx I

f x x x
ζ = −∫ ∫ ∫  

                                                                                                           …(3.3) 

In order to estimate the integral we take a samples (X11,X21,…,Xn1), 

(X12,X22,…,Xn2), …, (X1N,X2N,…,XnN) from the p.d.f  f(x1,x2,…,xn) and 

substitute its values in the sample-mean formula 

1 2
3

1 21

1 ( , ,..., )

( , ,..., )

N

i i ni

i i nii

g X X X

N f X X X
θ

=

= ∑                                                         …(3.4) 

The necessary steps for estimating the integrals by the importance 

sampling technique can be describe by IS-Algorithm: 

 

 

1. Generate a seq. { }
1

n N

i i
X

⋅

=
 of n.N random numbers which distributed 

with the p.d.f  f(x1,x2,…,xn).    
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2. Arrange the random numbers into N pairs (X11,X21,…,Xn1), 

(X12,X22,…,Xn2), …, (X1N,X2N,…,XnN) in any fashion s.t each random 

number X is used exactly once.    

3. Estimate the integral by:    

1 2
3

1 1 2

1 ( , ,..., )ˆ
( , ,..., )

N

i i ni

i i i ni

g X X X

N f X X X
θ

=

= ∑ . 

For illustration we shall solve the following example 

    

Calculating the 99.5% C.I for the integral 

 
21

0

x
I e dx

−= ∫   . 

    

For the best no. of trials N with 0.99, 0.001p ε= = : 

[ ] 4

2

(1 ) ( )
4 10

(1 )

p p c b a
N

α ε

− −
≥ = ×

−
 

By calculating 3θ̂  according to the Importance Sampling technique with 

using the standard normal distn. as an importance sampling distn., and the 

number of repetition n=25, and the result are tabulated in table(3.1): 
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Table(3.1) 

"The Estimators of
21

0

x
I e dx

−= ∫ , using The Importance Sampling 

Technique" 

n 3θ̂  n 3θ̂  n 3θ̂  n 3θ̂  n 3θ̂  

1 0.737 6 0.737 11 0.736 16 0.739 21 0.737 

2 0.737 7 0.739 12 0.736 17 0.737 22 0.738 

3 0.736 8 0.737 13 0.737 18 0.738 23 0.739 

4 0.737 9 0.734 14 0.733 19 0.737 24 0.736 

5 0.735 10 0.737 15 0.737 20 0.737 25 0.736 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.73676
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 6

1 1

1 1ˆ ˆ ˆ 0.746 1.94 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  

then 31.393 10S
−= ×  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

3

0.995

1.393 10ˆ 0.73676 2.6 0.736036
5

S
z

n
θ

−×
− = − ⋅ =  

3

0.995

1.393 10ˆ 0.73676 2.6 0.737484
5

S
z

n
θ

−×
+ = + ⋅ =  

Therefore the 99.5% C.I for I is: ( )0.736036 , 0.737484  
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We now show how to choose the distn. of the random vector 

(X1,X2,…,Xn) in order to minimize the variance of ζ, which is the same as to 

minimize the variance of θ3. 

    

    

The minimum of var(ζ) is equal to 

1 2

1 2

2

2

0 1 2 1 2var( ) ... ( , ,..., ) ...

n

n

b b b

n n

a a a

g x x x dx dx dx Iζ
 
 = −
 
 
∫∫ ∫                     …(3.5) 

and occurs when the random vector (X1,X2, …,Xn) is distributed with 

p.d.f 

1 2

1 2

1 2

1 2

1 2 1 2

( , ,..., )
( , ,..., )

... ( , ,..., ) ...

n

n

n

n b b b

n n

a a a

g x x x
f x x x

g x x x dx dx dx

=

∫∫ ∫
                   …(3.6) 

    

The formula of eq.(3.5) follows directly if we substitute eq.(3.6) into 

eq.(3.3). 

In order to prove that  var(ζ0) ≤ var(ζ), it is enough to prove that 

1 2 1 2

1 2 1 2

2

2

1 2
1 2 1 2 1 2

1 2

( , ,..., )
... ( , ,..., ) ... ... ...

( , ,..., )

n n

n n

b b b b b b

n
n n n

n
a a a a a a

g x x x
g x x x dx dx dx dx dx dx

f x x x

 
  ≤
 
 
∫∫ ∫ ∫∫ ∫

                                                                                                                …(3.7) 

but 
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[ ]
[ ]

1 2

1 2

1 2

1
2

1
2

1 2

2

1 2 1 2

2

1 2

1 2 1 2

1 2

... ( , ,..., ) ...

( , ,..., )
... ( , ,..., ) ...

( , ,..., )

n

n

n

n

b b b

n n

a a a

b b b

n

n n

na a a

g x x x dx dx dx

g x x x
f x x x dx dx dx

f x x x

 
  =
 
 

 
 
 
 

∫∫ ∫

∫∫ ∫
 

and by extended Cauchy-Schwarz inequality 

[ ]
[ ]

1 2

1
2

1
2

1 2

1 2 1 2

1 2 1 2

2

1 2

1 2 1 2

1 2

2

1 2
1 2 1 2 1 2

1 2

( , ,..., )
... ( , ,..., ) ...

( , ,..., )

( , ,..., )
... ... ... ( , ,..., ) ...

( , ,..., )

n

n

n n

n n

b b b

n

n n

na a a

b b b b b b

n
n n n

n
a a a a a a

g x x x
f x x x dx dx dx

f x x x

g x x x
dx dx dx f x x x dx dx dx

f x x x

 
  ≤
 
 

⋅

∫∫ ∫

∫∫ ∫ ∫∫ ∫
 

1 2

1 2

2

1 2
1 2

1 2

( , ,..., )
... ...

( , ,..., )

n

n

b b b

n
n

n
a a a

g x x x
dx dx dx

f x x x
= ∫∫ ∫                                            …(3.8) 

    

    

If  g(x1,x2,…,xn)>0, then the optimal p.d.f is 

1 2
1 2

( , ,..., )
( , ,..., ) n

n

g x x x
f x x x

I
=                                                      …(3.9) 

and var(ζ) =0. 

 

It has been shown that [15] that this method is unfortunately useless, since 

the optimal density contains the integral 
1 2 1 2

... ( , ,..., ) ...
n n

g x x x dx dx dx∫ ∫ ∫ , 

which is practically equivalent to computing I. In the case where 

g(x1,x2,…,xn) has a constant sign it is precisely equivalent to calculating I. 

But if we already have I, we do not need Monte Carlo methods to estimate it. 
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In particular, if we choose f(x1,x2,…,xn) as a uniform density function with  

1
( ) ,

0, .

i i i i

i i

f x a x b
b a

e w

= ≤ ≤
−

=

 

then we will get the Monte Carlo sample mean method itself. 

Not all is lost, however. The variance can be essentially reduced if 

f(x1,x2,…,xn) is chosen in order to have a shape similar to that of 

|g(x1,x2,…,xn)|. When choosing  f(x1,x2,…,xn) in such a way we have to take 

into consideration the difficulties of sampling from such a p.d.f, especially if 

|g(x1,x2,…,xn)| is not a well behaved function. 

Consider the problem of choosing the parameters of the distn. 

f(x1,x2,…,xn) in an optimal way. We assume that the p.d.f  f(x1,x2,…,xn) is 

determined up to the vector of parameters α, that is  

f(x1,x2,…,xn)=f(x1,x2,…,xn,α). For instance, if f(x1,x2) represents two-

dimensional Normal distn., that is (X1,X2)∼N(µ1,µ2,σ1,σ2,ρ), then the 

unknown parameters can be the values of µ1, µ2, σ1, σ2 and ρ. 

Generally if we want to choose the vector of parameters α to minimize 

the variance of θ3, that is 

1 2

1 2

1 2
3

1 21

2
21 2

1 2

1 2

1 ( , ,..., )
min var

( , ,..., , )

1 ( , ,..., )
min ... ...

( , ,..., , )

n

n

N

i i ni

i i nii

b b b

n
n

n
a a a

g x x x

N f x x x

g x x x
dx dx dx I

N f x x x

α

α

θ
α

α

=

 
= = 

  

 
 −
 
 

∑

∫∫ ∫
 

                                                                                                         …(3.10) 

Which equivalent to  

1 2

1 2

2

1 2
1 2

1 2

( , ,..., )
min ... ...

( , ,..., , )

n

n

b b b

n
n

n
a a a

g x x x
dx dx dx

f x x xα α∫∫ ∫                                    …(3.11) 

and the function 
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1 2

1 2

2

1 2
1 2

1 2

( , ,..., )
... ...

( , ,..., , )

n

n

b b b

n
n

n
a a a

g x x x
dx dx dx

f x x x α∫∫ ∫                  …(3.12) 

can be multiextremal and generally it is difficult to find the optimal α. 

 

    

Correlated sampling is one of the most powerful variance reduction 

techniques. 

Frequently, the primary objective of a simulation study is to determine the 

effect of a small change in the system. The sample mean Monte Carlo 

method would make two independent runs, with and without the change in 

the system being simulated, and subtract the results obtained. Unfortunately, 

the difference being calculated is often small compared to the separate 

results, while the variance of the difference will be the sum of the variance in 

the two runs, which is usually significant. If, instead of being independent, 

the two simulations use the same random numbers, the results can be highly 

positively correlated, which provides a reduction in the variance. Another 

way of viewing correlated sampling through random numbers control is to 

realize that the use of the same random numbers generates identically 

histories in those parts of the two system, that are the same. Thus the aim of 

the correlated sampling is to produce a high positive correlated between two 

similar processes so that the variance of the difference is considerably 

smaller than it would be if the two processes were statistically independent. 

Unfortunately, there is no general procedure that can be implemented in 

correlated sampling. However, in the following two situations correlated 

sampling can be successfully employed: 

1. The value of the small change in a system is to be calculated. 
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2. The difference in a parameter in two or more similar cases is of more 

interest than its absolute value. 

Let us assume that we desire to estimate 

1 2
I I I∆ = −  

where 

1 1 1 2 1 1 2 1 2... ( , ,..., ) ( , ,..., ) ...n n nI g x x x f x x x dx dx dx= ∫ ∫ ∫             …(3.13) 

2 2 1 2 2 1 2 1 2... ( , ,..., ) ( , ,..., ) ...n n nI g x x x f x x x dx dx dx= ∫ ∫ ∫            …(3.14) 

Then the procedure for correlated sampling is as follows: 

1. Generate (X11, X21, …, Xn1), …,(X1N, X2N, …, XnN) from f1(x1,x2,…,xn) 

and (Y11,Y21,…,Yn1), …,(Y1N,Y2N,…,YnN) from f2(x1,x2,…,xn). 

2. Estimate ∆I using 

1 1 2 2 1 2

1 1

1 1
( , ,..., ) ( , ,..., )

N N

i i ni i i ni

i i

g X X X g Y Y Y
N N

θ
= =

∆ = −∑ ∑  

1

1
N

i

i
N =

= ∆∑ ,                                                                                …(3.15) 

where 1 1 2 2 1 2( , ,..., ) ( , ,..., ) , 1,2,...,i i i ni i i nig X X X g X X X i N∆ = − ∀ =  

the variance of ∆θ is 

2 2 2
1 2 1 2

ˆ ˆ2cov( , )σ σ σ θ θ= + −                                                             …(3.16) 

where 

1 1 1 2

1

1ˆ ( , ,..., )
N

i i ni

i

g X X X
N

θ
=

= ∑ , 

2 2 1 2

1

1ˆ ( , ,..., )
N

i i ni

i

g Y Y Y
N

θ
=

= ∑ , 

22
1 1 1

ˆE Iσ θ = −  , 

22
2 2 2

ˆE Iσ θ = −  , and 
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1 2 1 1 2 2
ˆ ˆ ˆ ˆcov( , ) ( )( )E I Iθ θ θ θ = − −  . 

Now, if 1θ̂  and 2θ̂  are statistically independent, then 1 2
ˆ ˆcov( , ) 0θ θ = , and 

2 2 2
1 2σ σ σ= + . 

However, if the random vectors X and Y are positively correlated and if 

g1(x1,x2,…,xn) is similar to g2(x1,x2,…,xn) in shape, then the r.v
s
 1θ̂  and 2θ̂  will 

also be positively correlated, that is, 1 2
ˆ ˆcov( , ) 0θ θ > , and the variance of ∆θ 

may be greatly reduced. 

Thus the key to reducing the variance of ∆θ is to insure positive 

correlation between the estimates 1Î  and 2Î . This can be achieved in  

several ways. The easiest way is to obtain correlated samples through 

random number control. Specifically, this can be accomplished by using the 

same "common" sequence of random vectors (U11,U21,…,Un1), 

(U12,U22,…,Un2)…, (U1N,U2N,…,UnN) in both simulations, that is, the 

sequences (X11,X21,…,Xn1), (X12,X22,…,Xn2),…, (X1N,X2N,…,XnN) and 

(Y11,Y21,…,Yn1), (Y12,Y22,…,Yn2),…, (Y1N,Y2N,…,YnN) are generated using 

Xi=F1
-1

(U1i,U2i,…,Uni)  and Yi=F2
-1

(U1i,U2i,…,Uni) respectively. Clearly, if f1 

is similar to f2, the r.v
s
 Xi and Yi will be highly positively correlated since 

they both used the same random numbers. 

It has been note that [15] it is difficult to be specific as to how random 

number control should be applied generally. As a rule, however, to achieve 

maximum correlation common random number
s
 should be used whenever the 

similarities in problem structure will permit this. 

 

 

In this technique [17] we break the region 

{ }1 2( , ,..., ) : , 1,2,...,n i i ix x x a x b i nΩ = < < = , 
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into two parts 1 2Ω = Ω ΩU ,where 

{ }1 1 2( , ,..., ) : , 1,2,...,n i i ix x x a x c i nΩ = ≤ ≤ = , and  

{ }2 1 2( , ,..., ) : , 1,2,...,n i i ix x x c x b i nΩ = ≤ ≤ = , 

Representing the integral I as 

1 2

1 2

1 2

1 2

1 2 1 2

1 2 1 2

... ( , ,..., ) ...

... ( , ,..., ) ...

n

n

n

n

b b b

n n
a a a

c c c

n n
a a a

I g x x x dx dx dx

g x x x dx dx dx

=

=

∫ ∫ ∫

∫ ∫ ∫
                                                                                                           

1 2

1 2
1 2 1 2... ( , ,..., ) ...

n

n

b b b

n n
c c c

g x x x dx dx dx+∫ ∫ ∫              …(3.17) 

Let us assume the integral 

1 2

1 2
1 1 2 1 2... ( , ,..., ) ...

n

n

c c c

n n
a a a

I g x x x dx dx dx= ∫ ∫ ∫                                 …(3.18) 

can be calculated analytically, and let us define a truncated p.d.f 

1 2
1 2 1 2 2

( , , , )
( , , , ) , ( , , , )

1

0 , .

n
n n

f x x x
h x x x if x x x

p

e w

= ∈Ω
−

=

K
K K

       …(3.19) 

where 
1 2

1 2 1 2

1 2

... ( , ,..., ) ...

c c cn

n n

a a an

p f x x x dx dx dx= ∫ ∫ ∫ . 

Formula (3.17) can be written as 

1 2

1 2

1 2

1 2

1 1 2 1 2

1 2
1 1 2 1 2

1 2

1 2
1

1 2

... ( , ,..., ) ...

( , ,..., )
... ( , ,..., ) ...

( , ,..., )

( , ,..., )

( , ,..., )

n

n

n

n

b b b

n n
c c c

c c c
n

n n
a a a

n

n

n

I I g x x x dx dx dx

g x x x
I h x x x dx dx dx

h x x x

g X X X
I E

h X X X

= +

= +

 
= +  

 

∫ ∫ ∫

∫ ∫ ∫  

1 2
1

1 2

( , ,..., )
(1 )

( , ,..., )

n

n

g X X X
I p E

f X X X

 
= + −  

 
                                             …(3.20) 

an unbiased estimator for I is then 
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1 2
1

1 2

( , ,..., )
(1 )

( , ,..., )

n

n

g X X X
Y I p

f X X X
= + −                                                   …(3.21) 

and the integral I can be estimated by 

1 2
4 1

1 21

1 ( , ,..., )ˆ (1 )
( , ,..., )

N
n

ni

g X X X
I p

N f X X X
θ

=

= + − ∑                                         …(3.22) 

The necessary steps for estimating the integrals by the partition of the 

region technique can be describe by PR-Algorithm: 

    

 

1. Read a1,a2,…,an,b1,b2,…,bn,c1,c2,…, and cn.    

2. Compute:    
1 2

1 2
1 1 2 1 2... ( , ,..., ) ...

n

n

c c c

n n
a a a

I g x x x dx dx dx= ∫ ∫ ∫ , and 

1 2

1 2

1 2 1 2... ( , ,..., ) ...
n

n

c c c

n n
a a a

p g x x x dx dx dx= ∫ ∫ ∫ , where f(x1,x2,…,xn) is a 

p.d.f.    

3. Generate a seq. { }
1

nN

i i
X

=
 of nN random numbers which distributed with 

the p.d.f  1 2
1 2

( , ,..., )
( , ,..., )

1

n
n

f x x x
h x x x

p
=

−
.    

4. Arrange the random numbers into N pairs (X11,X21,…,Xn1), 

(X12,X22,…,Xn2), …, (X1N,X2N,…,XnN) in any fashion s.t each random 

number X is used exactly once.    

5. Estimate the integral by:    

1 2
4 1

1 1 2

1 ( , ,..., )ˆ (1 )
( , ,..., )

N

i i ni

i i i ni

g X X X
I p

N f X X X
θ

=

= + − ∑ . 

For illustration we will solve the following example 
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  Calculating the 99.5% C.I for the integral 

 
2 2 2

11 1
2

1 210 0
2

x x x
I e dx e dx e dx I I

− − −= = + = +∫ ∫ ∫   . 

    

For the best no. of trails N with 0.99, 0.001p ε= = : 

[ ] 4

2

(1 ) ( )
4 10

(1 )

p p c b a
N

α ε

− −
≥ = ×

−
 

By calculating 4θ̂  according the Partition of the Region technique, and 

using the standard normal distn. as an importance sampling distn., with 

I1=0.461 which calculated by MathCAD standard forms, and the number of 

repetition n=25, and the results are tabulated in table(3.2): 

 

Table(3.2) 

"The Estimators of
21

0

x
I e dx

−= ∫ , using The Partition of The Region 

Technique" 

n 4θ̂  n 4θ̂  n 4θ̂  n 4θ̂  n 4θ̂  

1 0.736 6 0.735 11 0.738 16 0.737 21 0.736 

2 0.736 7 0.737 12 0.737 17 0.739 22 0.738 

3 0.737 8 0.738 13 0.734 18 0.737 23 0.737 

4 0.737 9 0.739 14 0.736 19 0.740 24 0.737 

5 0.739 10 0.737 15 0.737 20 0.737 25 0.739 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.7372
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  
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and 
252 2

2 6

1 1

1 1ˆ ˆ ˆ 0.746 1.83 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  

then 31.354 10S
−= ×  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

3

0.995

1.354 10ˆ 0.7372 2.6 0.736496
5

S
z

n
θ

−×
− = − ⋅ =  

3

0.995

1.354 10ˆ 0.7372 2.6 0.737904
5

S
z

n
θ

−×
+ = + ⋅ =  

Therefore the 99.5% C.I for I is: ( )0.736496 , 0.737904  

 

4 3
ˆ ˆvar( ) (1 )var( )pθ θ≤ −     

 

We have from eq.(3.4) that 

1 2

1 2

2
21 2

3 1 2
1 2

( , ,..., )ˆvar( ) ... ...
( , ,..., )

n

n

b b b
n

n
a a a

n

g x x x
N dx dx dx I

f x x x
θ = −∫ ∫ ∫    

1 2

1 2

1 2

1 2

2
1 2

1 2
1 2

2
21 2

1 2
1 2

( , ,..., )
... ...

( , ,..., )

( , ,..., )
... ...

( , ,..., )

n

n

n

n

c c c
n

n
a a a

n

b b b
n

n
c c c

n

g x x x
dx dx dx

f x x x

g x x x
dx dx dx I

f x x x

=

+ −

∫ ∫ ∫

∫ ∫ ∫
         …(3.23) 

 

and correspondingly, from eq.(3.22) that 
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1 2

1 2

1 2

1 2

2
2 1 2 1 2

4 1 22
1 2

2

1 2 1 2
1 2

1 2

( , ,..., ) ( , ,..., )ˆvar( ) (1 ) ... ...
(1 )( , ,..., )

( , ,..., ) ( , ,..., )
(1 ) ... ...

( , ,..., ) (1 )

n

n

n

n

b b b
n n

n
c c c

n

b b b
n n

n
c c c

n

g x x x f x x x
N p dx dx dx

pf x x x

g x x x f x x x
p dx dx dx

f x x x p

θ = −
−

 
− − 

− 

∫ ∫ ∫

∫ ∫ ∫
 

1 2

1 2

1 2

1 2

2
1 2

1 2

1 2

2

1 2 1 2

( , ,..., )
(1 ) ... ...

( , ,..., )

... ( , ,..., ) ...

n

n

n

n

b b b
n

n
c c c

n

b b b

n n
c c c

g x x x
p dx dx dx

f x x x

g x x x dx dx dx

= −

 
−   

∫ ∫ ∫

∫ ∫ ∫
     …(3.25) 

Multiplying eq.(3.23) by (1-p) and subtracting eq.(3.25), we obtain 

1 2

1 2

1 2

1 2

2
1 2

3 4 1 2

1 2

2
2

1 2 1 2

( , ,..., )ˆ ˆ(1 ) var( ) var( ) (1 ) ... ...
( , ,..., )

(1 ) ... ( , ,..., ) ...

n

n

n

n

c c c
n

n
a a a

n

b b b

n n
c c c

g x x x
N p p dx dx dx

f x x x

p I g x x x dx dx dx

θ θ − − = − 

 
− − +   

∫ ∫ ∫

∫ ∫ ∫
 

Therefore 

1 2

1 2

2
1 2

3 4 1 2

1 2

2 2
1

( , ,..., )ˆ ˆ(1 ) var( ) var( ) (1 ) ... ...
( , ,..., )

(1 ) ( )

n

n

c c c
n

n
a a a

n

g x x x
N p p dx dx dx

f x x x

p I I I

θ θ − − = − 

− − + −

∫ ∫ ∫

 

                                                                                                         …(3.26) 

Now, introducing 

1 2

1 2

1 2

1 2

2 2
2 1 2 1

1 2

1 2

2

1 2 1
1 2 1 2

1 2

( , ,..., )
... ...

( , ,..., )

( , ,..., )
... ( , ,..., ) ...

( , ,..., )

n

n

n

n

c c c
n

n
a a a

n

c c c
n

n n
a a a

n

g x x x I
c dx dx dx

f x x x p

g x x x I
f x x x dx dx dx

f x x x p

= −

 
= − 

 

∫ ∫ ∫

∫ ∫ ∫
                                                                                                             

                                                                                                         …(3.27) 

 

we have 
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2
1 1

2 2 2
3 4 1
ˆ ˆ(1 ) var( ) var( ) (1 ) 0N p p c p I p Iθ θ

−  − − = − + − ≥    
 

and the proposition is proved. 

As a result of a proposition, we find that this technique is at least (1-p)
-1

 

times more efficient than the sample mean Monte Carlo method. 

Practically, from examples (3.2.1.1) and (3.2.3.1): 

2 6

3
ˆvar( ) 1.94 10Sθ −≈ = ×  , 2 6

4
ˆvar( ) 1.83 10Sθ −≈ = ×   , and p=0.99 

then 6 8

3 4
ˆ ˆ(1 ) var( ) (0.01) (1.94 10 )1.94 10 1.83 var( )p θ θ− −− = ⋅ × × ≤ =  

 

 

Until now we have considered unbiased estimators for computing 

integrals. Using biased estimators, we can some times achieve useful results. 

Let us estimate the integral 

1 2

1 2
1 2 1 2... ( , ,..., ) ...

n

n

b b b

n n
a a a

I g x x x dx dx dx= ∫ ∫ ∫                                 …(3.28) 

by 

1 2

1
5

1 2

1

( , ,..., )

ˆ

( , ,..., )

N

i i ni

i
N

i i ni

i

g U U U

f U U U

θ =

=

=

∑

∑
                                                             …(3.29) 

Instead of using the usual sample mean estimator 

1 2
3

1 21

1 ( , ,..., )ˆ
( , ,..., )

N
i i ni

i i nii

g X X X

N f X X X
θ

=

= ∑ , 

Here U is distributed uniformly in Ω, that is 

1
( ) ,

0 , .

h u if u
V

e w

= ∈Ω

=
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where   
1 2

1 2

1 2

... ...

b b bn

n

a a an

V dx dx dx= ∫ ∫ ∫                                                   …(3.30) 

and (X1,X2,…,Xn) is distributed according to f(x1,x2,…,xn). 

The necessary steps for estimating the integrals using the biased estimator 

technique can be describe by BE-Algorithm: 

 

    

1. Generate a seq. { }
1

nN

i i
U

=
 of nN uniform random numbers.    

2. Arrange the random numbers into N pairs (U11,U21,…,Un1), 

(U12,U22,…Un2), …, (U1N,U2N,…UnN) in any way s.t each random 

number U is used exactly once.    

3. Estimate the integral by:    

1 2

1
5

1 2

1

( , ,..., )
ˆ

( , ,..., )

N

i i ni

i

N

i i ni

i

g U U U

f U U U

θ =

=

=
∑

∑
. 

and to show the reduction of this method we will solve the following 

example: 

 

  Calculating the 99.5% C.I for the integral 

 
21

0

x
I e dx

−= ∫   . 

    

For the best no. of trails N with 0.99, 0.001p ε= = : 

[ ] 4

2

(1 ) ( )
4 10

(1 )

p p c b a
N

α ε

− −
≥ = ×

−
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By calculating 5θ̂  according to the Biased Estimator method, with using 

the standard normal distn. as an importance sampling distn., and the number 

of repetition n=25, and the result are tabulated in table (3.3): 

 

Table(3.3) 

"The Estimator of
21

0

x
I e dx

−= ∫ , using The Biased Estimator Technique" 

n 5θ̂  n 5θ̂  n 5θ̂  n 5θ̂  n 5θ̂  

1 0.737 6 0.739 11 0.738 16 0.734 21 0.737 

2 0.737 7 0.735 12 0.736 17 0.737 22 0.740 

3 0.74 8 0.737 13 0.741 18 0.735 23 0.735 

4 0.736 9 0.738 14 0.739 19 0.737 24 0.734 

5 0.741 10 0.731 15 0.737 20 0.734 25 0.737 

 

then we can find 

25

1 1

1 1ˆ ˆ ˆ 0.737
25

n

i i

i in
θ θ θ

= =

= = =∑ ∑  

and 
252 2

2 6

1 1

1 1ˆ ˆ ˆ 0.746 4.833 10
1 24

n

i i

i i

S
n

θ θ θ −

= =

   = − = − = ×   −
∑ ∑  

then 32.198 10S
−= ×  

now, we can find from the standard normal distn.’
s
 table two no.

s
 

2
1

z α−
± , 

s.t: 
2 2

1 1
Pr 1z Z zα α α

− −
 − < < = −
 

 

and the 99.5% C.I for the integral I is 0.995 0.995
ˆ ˆ,

S S
z z

n n
θ θ
 

− + 
 

 

3

0.995

2.198 10ˆ 0.737 2.6 0.736
5

S
z

n
θ

−×
− = − ⋅ =  



 
 

  
56 

Variance Reduction Techniques  

3

0.995

2.198 10ˆ 0.737 2.6 0.738
5

S
z

n
θ

−×
+ = + ⋅ =  

Therefore the 99.5% C.I for I is: ( )0.736 , 0.738  

 

it is clear that 5
ˆE Iθ  ≠  , that is 5θ̂  is a biased estimator for I. let us 

show that 5θ̂  is consistent. And to prove consistency let us represent 5θ̂  as a 

ratio of two r.v
s
 5θ̂ ′  and 5θ̂ ′′ , that is 

( )

( )

1 2

5 1
5

5
1 2

1

( , ,..., )
ˆ

ˆ
ˆ

( , ,..., )

N

i i ni

i
N

i i ni

i

V g U U U
N

V f U U U
N

θ
θ

θ

=

=

′
= =

′′

∑

∑
                                         …(3.31) 

where 

5 1 2

1

ˆ ( , ,..., )
N

i i ni

i

V
g U U U

N
θ

=

′ = ∑                                                        …(3.32) 

and 

5 1 2

1

ˆ ( , ,..., )
N

i i ni

i

V
f U U U

N
θ

=

′′ = ∑                                                        …(3.33) 

further 

1 2

5 1 2 1 2 1 2

1 2

ˆ ... ( , ,..., ) ( , ,..., ) ...

b b bn

n n n

a a an

E V g u u u h u u u du du duθ ′ =
  ∫ ∫ ∫  

1 2

5 1 2 1 2

1 2

ˆ ... ( , ,..., ) ...

b b bn

n n

a a an

E g u u u du du duθ ′ =
  ∫ ∫ ∫                               …(3.34) 

and 

1 2

5 1 2 1 2 1 2

1 2

ˆ ... ( , ,..., ) ( , ,..., ) ...

b b bn

n n n

a a an

E V f u u u h u u u du du duθ ′′ =
  ∫ ∫ ∫  
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1 2

1 2 1 2

1 2

... ( , ,..., ) ...

b b bn

n n

a a an

g u u u du du du= ∫ ∫ ∫                               …(3.35) 

With these results in hand we conclude that 5θ̂ ′  and 5θ̂ ′′  converge to I and 

1, respectively, when N → ∞ , which also means that 

1 2
.1

1 2

1

( , ,..., )

lim

( , ,..., )

N

i i ni
a si

NN

i i ni

i

g U U U

I

f U U U

=

→∞

=

 
 
 →
 
 
  

∑

∑
 

if ,  
1 2

1 2 1 2

1 2

... ( , ,..., ) ...

b b bn

n n

a a an

g x x x dx dx dx < ∞∫ ∫ ∫                               …(3.36) 

and this shows that 5θ̂  is a consistent estimator of I. 

The bias of 5θ̂  follows from 

1 21 2
11

5

1 2 1 2
1 1

( , ,..., )( , ,..., )

ˆ

( , ,..., ) ( , ,..., )

NN

i i nii i ni
ii

N N

i i ni i i ni
i i

E g U U Ug U U U

E E I

f U U U E f U U U

θ ==

= =

  
  
    = ≠ =     

   
    

∑∑

∑ ∑
 

                                                                                                         …(3.37)                                         

One major advantage of this method is that the sample is taken from the 

uniform distn. rather that from a general f(x1,x2,…,xn) from which the 

generation of r.v
s
 can be difficult "recall for instance that is importance 

sampling f(x1,x2,…,xn) has to be proportional to 1 2( , ,..., )ng x x x , and if 

g(x1,x2,…,xn) is a complicated function, it is difficult to generate from 

f(x1,x2,…,xn) ". 

Powell and Swann [13] called this method weighted uniform sampling. 

They showed that for sufficiently large N this method is 
1

2N  times more 

efficient than the sample mean method. 
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Table(3.4) show the deference between the M.S.E and the confidence 

intervals of the Monte  Carlo methods and the variance reduction techniques 

for the integral 
21

0

x
I e dx

−= ∫ . 

Table(3.4) 

M.S.E Comparison 

 M.S.E C.I length 

HM 2.343×10
-5 

(0.743000 , 0.749000) 0.006000 

SM 4.277×10
-6 

(0.746000 , 0.748000) 0.002000 

IS 1.94×10
-6 

(0.736036 , 0.737484) 0.001448 

PR 1.83×10
-6 

(0.736496 , 0.737904) 0.001408 

BE 2.45×10
-4 

(0.736000 , 0.738000) 0.002000 
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1. The sample mean method is more efficient than the hit or miss method 

where the estimators for both methods are unbiased, but its shown 

theoretically and practically that the variance of the sample mean 

estimator less than the variance of the hit or miss estimator. 

2. The advantage of the sample mean Monte Carlo method that it is needs N 

random variants, while the hit or miss Monte Carlo method method need 

to 2N random variants for estimating the integrals and that save time and 

less storage in the computer memory. 

3. The disadvantage of the Monte Carlo methods are: 

i. Monte Carlo methods are depends completely on generating 

pseudorandom variates which might carry dirty data. 

ii. The accuracy of both methods decreases when the dimension of 

integrals increases. 

4. The usage of variance reduction techniques lead to higher accuracy and 

small confidence intervals for estimating integrals. 
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1. The errors produced from the estimation of integrals by Monte Carlo 

methods or by variance reduction techniques are a r.v’
s
 and it must have 

a distn.. This distn. can be approximated to a well-known distn. by using 

statistical methods, such as, Chi square goodness of fit test, Kolmogorov-

Smirnov goodness of fit test, Cramer-Von Miser goodness of fit test, 

…etc. 

2. Finding new techniques for estimating integrals with noise which can be 

compared with the techniques given in this thesis. 

3. Solving the difficulties of finding p.d.f which have the same shape with 

the integrand function in estimating integrals by variance reduction 

techniques. 

4. Finding methods for evaluating improper integrals by Monte Carlo 

simulation. 
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Introduction 

 

    

 

The Monte Carlo method is a method for approximately solving 

mathematical and real life problems by simulation of random quantities. 

Historically, Monte Carlo methods are considered as a technique, using 

random or pseudorandom no.
s
 to solve a certain models, these random no.

s
 are 

essentially independent r.v.
s
 uniformly distributed over the interval [0,1]. 

In the 2
nd

 half of the 19
th

 century (1873), one of the earliest problems 

connected with Monte Carlo method is the famous “Buffon’s needle problem” 

where it was found that the probability of a needle of length L thrown 

randomly onto a floor composed of parallel planks of width D>L is 

2LP
Dπ

=  which can be estimated as the ratio of the no. of throws hitting the 

crack to the total no. of throws. In the beginning of the 20
th

 century, the 

Monte Carlo was used to examine the Boltzmann equation. In (1908) the 

famous statistician W. S. Gosset “student” used the Monte Carlo method 

“experimental sampling” for estimating the correlated coefficient in his t-

distribution [٢٠]. 

The term “Monte Carlo” was introduced by Van Neumann and Ulam 

during the World War II (1944) as a secret code name for a secret work at 

Los-Alamos involving research related to the atomic bomb “H-bomb”. The 

name comes from the city of Monte Carlo the capital of the principality of the 

Monaco, famous for it’s gambling house. The general accepted birth date of 

the Monte Carlo methods is (1949) when the first article entitled “The Monte 

Carlo Methods” by N. Metropolis and S. Ulam appeared in the Journal of the 

American Statistical Association, 1949 [١٨]. Shortly therefore, Monte Carlo 

methods used to evaluate complex integrals [٥], and solution of certain 

differential and integral equations [٤]. 



 
 

  
IX 

Introduction 

 

The evaluation of definite and multiple integrals is one of the most 

important fields of applications of Monte Carlo methods. A large no. of 

deterministic formulas is available for the evaluation of single integrals [٣]. 

The Monte Carlo methods are not competitive in this case. However, in the 

case of the multi-dimensional integral, numerical techniques, such as 

Trapezoidal and Simpson’s rules become less attractive. It is more convenient 

to compute such integrals by Monte Carlo methods which becomes 

indispensable, which, although less accurate than conventional quadrature 

formulas, but it is simpler to use [١٦]. 

The problems handled in this thesis are divided into three chapters, the 1
st
 

chapter introduce definitions and some concepts for the simulation and 

generating random variables. The 2
nd

 discusses the methods of the Monte 

Carlo simulation for solving the integrals “the Hit or Miss Method and the 

Sample Mean method” with three sections. The 1
st
 section for the one 

dimensional integrals and the efficiency between the two methods with 

examples and. The 2
nd

 extended these methods for the two dimensional 

integrals and the efficiency between them also with examples. And the last 

section discusses the solution of the n-dimensional integrals by these methods 

with the efficiency and examples. Finally the 3
rd

 chapter take four techniques 

for reducing the variance of the Monte Carlo methods, which are: The 

importance sampling, Correlated coefficient, Partition of the region, and 

Biased estimator 
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