
 
 

 

p.d.f.                                                                   Probability Density Function 

c.d.f.                                                           Cumulative Distribution Function  

m.g.f                                                                  Moment Generating Function  

r.v.                                                                                         Random Variable   

r.v.’s                                                                                      Random Variables   

r.s.                                                                                            Random Sample 

distn.                                                                                              distribution 

M.L.E.                                                          Maximum Likelihood Estimator  

m.l .e                                                               Maximum Likelihood Estimate 

W(α,θ)                                         Weibull Distribution With Parameters α, θ  

L.S.M.                                                                            Least Square Method 

M.M.                                                                                   Moments Method 

M.M.M.                                                               Modified Moments Method 

M.L.M.                                                           Maximum Likelihood Method 

IT                                                                                         Inverse Transform 

AR                                                                     Acceptance-Rejection Method 

rµ                                                                          r th moment about the mean  

 /
rµ                                                                         r th moment about the origin 

2δ                                                                                                       Variance    

CV.                                                                             Coefficient of Variation  

( ),Ext δ λ                       Extreme Value Distribution With Parameters δ , λ   



MSE                                                                                   Mean Square Error 

Exp(λ)                                      Exponential Distribution With Parameters λ 

N(0,1)                                                          Standardize Normal Distribution  

C(0,1)                             Cauchy Distribution with parameters α=0 and  β=1   

MVUE                                             Minimum Variance Unbiased Estimator 
S.S.E.                                                                                Sum of Square Error  

S.S                                                                                               Sample Space 



 
 

 

In this work, we consider the Weibull distribution of two 

parameters for its importance in statistics and its applications. 

Mathematical and statistical properties of Weibull distribution are 

considered, moments and higher moments are illustrated and unified. 

Four methods of estimation to the distribution parameters namely 

(Maximum likelihood Method, Moments Method, Modified 

Moments Method, Least Square Method) are discussed theoretically 

and assessed practically by utilizing six procedures of Monte-Carlo 

simulation for generating random variates from the distribution. 

Efficiency of some procedures are found theoretically and compared 

practically. Comparisons are made among four methods of 

estimation by considering the mean square error measurement.     
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Derivation of Box and Muller Approach. 

This procedure due to Box and Muller (1958) [27], where the Weibull 

variates is generated by utilizing the standard normal distn. . 

If U1 and U2 is a r.s. of size 2 from ( )0,1U  , then the r.v.’s  

( ) ( ) ( ) ( )
1 1
2 21 1 2 2 1 22ln cos 2 , 2ln sin 2X U U X U Uπ π= − = − represent a r.s. 

of size 2 from ( )0,1N . 

Since, the joint distn. of U1 and U2 are: 

( )1 2, 1,0 1, 1,2 .

0 , . .
ig u u u i

e w

= < < =
=

 

The function ( ) ( ) ( ) ( )
1 1
2 21 1 2 2 1 22ln cos 2 , 2ln sin 2X U U X U Uπ π= − = − is 

defined ( )1 1−  transformation that maps A ( ){ }1 2, : 1, 1,2u u o x i= < < = on to 

the space B ( ){ }1 2, : , 1,2ix x x i= −∞ < < ∞ = with inverse transforms  

( ) ( ) ( ) ( )
( ) ( )

( )

2 2 2 2
1 2 1 2 1 2

2 2
1 2 2

1 2 2
1 22 2 2

1 2 1 1

2ln cos 2 2ln sin 2

2ln cos 2 sin 2

2ln
x x

x x u u u u

u u u

x x u u e
− +

+ = − + −

 = − + 

+ = − ⇒ =

π π

π π  

and ( ) 11 1
2 2

2 2

1
tan 2 tan

2

x x
u u

x x
−  

= ⇒ =  
 

π
π
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With Jacobin transformation 

( )
( )

( ) ( )

( )

1 12 2 2 2
1 2 1 22 2

1 2

21 2
2
1 11 2

2 2
1 2

2 1

1 2 2
1 22

1,
1 1,

2 2
1 1

1

2

x x x x

x x

x e x e

xu u
J x xx x

x x
x x

e

− + − +

− +

− −

 −  ∂
 = =  

∂    

   
+ +   
   

−=

π π

π

 

Then, the joint distn. of X1 and X2 is: 

( ) ( )

( )

1 2 2
1 2 1 22

1 2
1

2 2
1 2

1
, , tan

2

1
, , 1,2 .

2

x x

x x

x
f x x g e J

x

e x i

π

π

− + −

− +

  
 =     

= − ∞ < < ∞ =

 

( )1 2,X X X=
�

 distributed as a r.v. vector of size 2 from ( )0,1N . 

That is iX ∼ ( )0,1N , i=1,2 . 

Algorithm: 

1- Read where ,α θ . 

2- Generate U1 and U2 from ( )0,1U  . 

3- Set ( ) ( ) ( ) ( )
1 1
2 21 1 2 2 1 22ln cos 2 , 2ln sin 2X U U X U Uπ π= − = − . 

4- Deliver ( )1 2,X X X=
�

 as a random vector of size 2 generated from  

    N(0,1). 

5- Set 1 1 2 2,Z X Z Xθ θ= = and 

1
2 2
1 2

2

Z Z
R

α +=  
 

 . 
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6- Deliver R as a r.v. generated from W(α,θ) . 

7- Stop. 

 
 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Program 1:Estimation by Maximum Likelihood      
                 Method   

Enter your values of α, θ and n 

α :=  n :=  θ :=  

x

u1 rnd 1( )←

u2 rnd 1( )←

b1
i j, 2− ln u1( )⋅ cos 2π u2⋅( )⋅←

b2
i j, 2− ln u1( )⋅ sin 2π u2⋅( )⋅←

z1 θ b1
i j, ⋅←

z2 θ b2
i j, ⋅←

r
i j, 

z1( )
2

z2( )
2+

2









1

α

←

i 0 n 1−..∈for

r

j 0 n 1−..∈for

r

:= n  

Enter your values of α, θ and n 
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p n ←

α ←

θ ←

f1
n

α
0

n 1−

i

ln x
i j, ( )∑

=

+ θ

0

n 1−

i

x
i j, ( )α

ln x
i j, ( )⋅



∑

=

⋅−←

j 0 n 1−..∈for

f2
n

θ
0

n 1−

i

x
i j, ( )α

∑
=

−←

a
n−

α( )
2

θ

0

n 1−

i

x
i j, ( )α

ln x
i j, ( )( )2⋅



∑

=

⋅−←

b

0

n 1−

i

x
i j, ( )α

ln x
i j, ( )⋅



∑

=

−←

c
n−

θ( )
2

←

h
j

θ
b− f1⋅ a f2⋅+( )

a c⋅ b( )
2−

−←

z
j

α
c f1⋅ b f2⋅−( )

a c⋅ b( )
2−

−←

θ h
j( )←

α z
j( )←

i 0 n 1−..∈for

α

:=  g n ←

α ←

θ ←

f1
n

α
0

n 1−

i

ln x
i j, ( )∑

=

+ θ

0

n 1−

i

x
i j, ( )α

ln x
i j, ( )⋅



∑

=

⋅−←

j 0 n 1−..∈for

f2
n

θ
0

n 1−

i

x
i j, ( )α

∑
=

−←

a
n−

α( )
2

θ

0

n 1−

i

x
i j, ( )α

ln x
i j, ( )( )2⋅



∑

=

⋅−←

b

0

n 1−

i

x
i j, ( )α

ln x
i j, ( )⋅



∑

=

−←

c
n−

θ( )
2

←

h
j

θ
b− f1⋅ a f2⋅+( )

a c⋅ b( )
2−

−←

z
j

α
c f1⋅ b f2⋅−( )

a c⋅ b( )
2−

−←

α z
j( )←

θ h
j( )←

i 0 n 1−..∈for

θ

:=  

g = 
p =p  

E
0

∞

xp α⋅ θ⋅ x
α 1−⋅ e

θ− x
α⋅⋅

⌠
⌡

d:= pp  
D

0

∞

xg α⋅ θ⋅ x
α 1−⋅ e

θ− x
α⋅⋅

⌠


⌡

d:= gg  

E =E  
D =D  

Bias E θ−:= E  
Bias1 D α−:= D  

Bias=Bias  
Bias1=Bias1  
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Q
0

∞

xp( )
2 α⋅ θ⋅ x

α 1−⋅ e
θ− x

α⋅⋅
⌠
⌡

d:= p  
W

0

∞

xg( )
2 α⋅ θ⋅ x

α 1−⋅ e
θ− x

α⋅⋅
⌠
⌡

d:= gg  

Q =Q  
W =W  

Var Q E( )
2−:= QQ  

Variance W D( )
2−:= WW  

Var =Var  
Variance=Variance  

MSE Var Bias( )
2+:= VarVar  

mse Variance Bias1( )
2+:= Variance  

MSE =MSE  
mse=mse  

 
 
 
 
 
 
 
Program 2: Estimation by Moment Method 

Enter your values of α, θ and n 

α :=  θ :=  n :=  

x

u1 rnd 1( )←

u2 rnd 1( )←

b1
i j, 2− ln u1( )⋅ cos 2π u2⋅( )⋅←

b2
i j, 2− ln u1( )⋅ sin 2π u2⋅( )⋅←

z1 θ b1
i j, ⋅←

z2 θ b2
i j, ⋅←

r
i j, 

z1( )
2

z2( )
2+

2









1

α

←

i 0 n 1−..∈for

r

j 0 n 1−..∈for

r

:= n  
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j 0 n 1−..:= n  

X
j

1

n
0

n 1−

i

x
i j, ∑

=

⋅:=X
j

1

n
0

n 1−

i

x
i j, ∑

=

⋅:=  

i 0 n 1−..:= n  
Β

j
1

n 1−
0

n 1−

i

x
i j, ( )2

∑
=

n X
j( )2⋅−











⋅:=Β
j

1

n 1−
0

n 1−

i

x
i j, ( )2

∑
=

n X
j( )2⋅−











⋅:=  β
i

0.5:=β
i

0.5:=  

β
i 1+ β

i
0.05+:=β

i 1+ β
i

0.05+:=  

cvd
j( )

Β
j

X
j( )2

:=cvd
j( )

Β
j

X
j( )2

:=  

φ
i j, 

Γ 1
2

x
i j, 

+







Γ 1
1

x
i j, 

+















2

−

Γ 1
1

x
i j, 

+







:=φ
i j, 

Γ 1
2

x
i j, 

+







Γ 1
1

x
i j, 

+















2

−

Γ 1
1

x
i j, 

+







:=  

p
j

φ
i j, cvd

j
φ

i j, −( ) 1≤if

i 0 n 1−..∈for:=p
j

φ
i j, cvd

j
φ

i j, −( ) 1≤if

i 0 n 1−..∈for:=  

w
1

n
0

n 1−

i

p
i∑

=

⋅:= p  
 

p
i

p  

w =w  

λ
j

Γ 1 p
j( )+ 

X
j









1

pj( )
:=λ

j

Γ 1 p
j( )+ 

X
j









1

pj( )
:=  

s
1

n
0

n 1−

i

λ
i∑

=

⋅:= λ  
λ =λ  

s =s  

E
0

∞

xs α⋅ θ⋅ x
α 1−⋅ e

θ− x
α⋅⋅

⌠
⌡

d:= s  O
0

∞

xw α⋅ θ⋅ x
α 1−⋅ e

θ− x
α⋅⋅

⌠
⌡

d:= w  

E =E  o :=  

Bias E θ−:= E  
Bias=Bias  bias O α−:= OO  

bias :=  

S
0

∞

xs
2 α⋅ θ⋅ x

α 1−⋅ e
θ− x

α⋅⋅
⌠


⌡

d:= s  K
0

∞

xw
2 α⋅ θ⋅ x

α 1−⋅ e
θ− x

α⋅⋅
⌠
⌡

d:= w  
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K =K  S =S  

Variance K O
2−:= K  

Var S E
2−:= S  

Variance=Variance  

Var =Var  mse Variance bias( )
2+:= VarianceVariance  

mse:=  
 MSE Var Bias( )

2+:= Var  
MSE =MSE  

Program 3:Estimation by Modified Moment  

                  Method    

Enter your values of α, θ and n 

α :=  θ :=  n :=  

x

u1 rnd 1( )←

u2 rnd 1( )←

b1
i j, 2− ln u1( )⋅ cos 2π u2⋅( )⋅←

b2
i j, 2− ln u1( )⋅ sin 2π u2⋅( )⋅←

z1 θ b1
i j, ⋅←

z2 θ b2
i j, ⋅←

r
i j, 

z1( )
2

z2( )
2+

2









1

α

←

i 0 n 1−..∈for

r

j 0 n 1−..∈for

r

:= n  

i 0 n 1−..:= n  j 0 n 1−..:= n  

y min x( ):= x  
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X
j

1

n
0

n 1−

i

x
i j, ∑

=

⋅:=X
j

1

n
0

n 1−

i

x
i j, ∑

=

⋅:=  

α1

ln
1

n








ln
Y

1

X









:=

 

 
a

1

n
0

n 1−

i

α1
i∑

=

⋅:= α1 

a =a  

θ1

Γ 1
1

a
+








1
1

n( )

1

a

−







⋅

X y−( )















a

:=

a

 

k
1

n
0

n 1−

i

θ1
i∑

=

⋅:= θ1 

k =k  

E
0

∞

xk α θ⋅ x( )
α 1−⋅ e

θ− x
α⋅⋅





⋅

⌠
⌡

d:= k  

E =E  

bais E θ−:= E  
bais =bais  

L
0

∞

xk( )
2 α θ⋅ x( )

α 1−⋅ e
θ− x

α⋅⋅




⋅

⌠
⌡

d:= k  

L =L  

Var L E
2−:= L  

Var=Var  

MSE Var bais( )
2+:= Var  

                                                     

t
0

∞

xa α θ⋅ x
α 1−⋅ e

θ− x
α⋅⋅





⋅

⌠
⌡

d:= a  

t =tt  

BIAS t α−:= t  

mse Variance BIAS( )
2+:= Variance  

mse=mse  

Variance=Variance  

MSE=MSE  

w
0

∞

xa
2 α θ⋅ x

α 1−⋅ e
θ− x

α⋅⋅




⋅

⌠
⌡

d:= a  

w =w  

Variance w t
2−:= w  
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Program 4: Estimation by Least Square Method 

Enter your vales of α, θ and n 

α :=  θ :=  n :=  

x

u1 rnd 1( )←

u2 rnd 1( )←

b1
i j, 2− ln u1( )⋅ cos 2π u2⋅( )⋅←

b2
i j, 2− ln u1( )⋅ sin 2π u2⋅( )⋅←

z1 θ b1
i j, ⋅←

z2 θ b2
i j, ⋅←

r
i j, 

z1( )
2

z2( )
2+

2









1

α

←

i 0 n 1−..∈for

r

j 0 n 1−..∈for

r

:= n  

i 0 n 1−..:= n  j 0 n 1−..:= n  

u runif n 0, 1, ( ):= n  t ln ln u( )−( )−:= u  

Y
j

1

n
0

n 1−

i

ln x
i j, ( )∑

=











⋅:=Y
j

1

n
0

n 1−

i

ln x
i j, ( )∑

=











⋅:=  

T
j

1

n
0

n 1−

i

t
i∑

=











⋅:=T
j

1

n
0

n 1−

i

t
i∑

=











⋅:=  

α1
j

T
j

0

n 1−

i

t
i∑

=

⋅

0

n 1−

i

t
i( )2∑

=

−

T
j( )

0

n 1−

i

t
i
ln x

i j, ( )⋅( )∑
=

⋅ Y
j( )

0

n 1−

i

t
i( )2∑

=

⋅−



















−:=α1
j

T
j

0

n 1−

i

t
i∑

=

⋅

0

n 1−

i

t
i( )2∑

=

−

T
j( )

0

n 1−

i

t
i
ln x

i j, ( )⋅( )∑
=

⋅ Y
j( )

0

n 1−

i

t
i( )2∑

=

⋅−



















−:=  
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a
1

n
0

n 1−

j

α1
j∑

=

⋅:= α1  

a =a  

 

θ1
j

e

Yj( )
0

n 1−

i

ti( )∑
=

⋅

0

n 1−

i

ln xi j, ( ) ti⋅( )∑
=

−

T j

0

n 1−

i

ti∑
=

⋅

0

n 1−

i

ti( )2∑
=

−















− α1j⋅

:=θ1
j

e

Yj( )
0

n 1−

i

ti( )∑
=

⋅

0

n 1−

i

ln xi j, ( ) ti⋅( )∑
=

−

T j

0

n 1−

i

ti∑
=

⋅

0

n 1−

i

ti( )2∑
=

−















− α1j⋅

:=  

 

b
1

n
0

n 1−

j

θ1
j∑

=

⋅:= θ1  

b =b  
                                                       

F
0

∞

xa α θ⋅ x( )
α 1−⋅ e

θ− x
α⋅⋅





⋅

⌠
⌡

d:= a  E
0

∞

xb α⋅ θ⋅ x
α 1−⋅ e

θ− x
α⋅⋅

⌠
⌡

d:= b  

MSE Var Bias( )
2+:= Var  

Var W E
2−:= W  

Bias E θ−:= E  

W =W  

W
0

∞

xb
2 α⋅ θ⋅ x

α 1−⋅ e
θ− x

α⋅⋅
⌠
⌡

d:= bb  

E =E  
F =FF  

Bais F α−:= F  

Bais=Bais  

Var =Var  

MSE =MSE  

O =O  

O
0

∞

xa( )
2 α θ⋅ x( )

α 1−⋅ e
θ− x

α⋅⋅




⋅

⌠
⌡

d:= a  

Bias=Bias  

Variance O F
2−:= O  

Variance=Variance  

mse Variance Bais( )
2+:= Variance  

mse=mse  
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Program 5: procedure (W-1) 

Enter your values of α, θ and n 

α :=  θ :=  n :=  

x

u rnd 1( )←

b
i j, 

1−
θ

ln u( )⋅







1

α








←

i 0 n 1−..∈for

b

j 0 n 1−..∈for

b

:= n  

x :=          
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Program 6: Procedure (W-2)  
 
     Enter your values of α, θ and n 
 

 
 
 
 
 
 
 

 
 
Program 7: Procedure (W-3)  
 
     Enter your values of α, θ and n 

 

n :=  α :=  θ :=  

 

x =x  

n :=  θ :=  α :=  

j 0 n 1−..:= n  

i 0 n 1−..:= n  

x

u rnd 1( )←

b
i j, ln u( )−←

y
i j, 

1

θ

e
bi j, ( )−

⋅







←

i 0 n 1−..∈for

y

j 0 n 1−..∈for

y

:=
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R

Z1
t j, θ x

t j, ⋅←

Z2
t j, θ x

t j, ⋅←

r
t j, 

Z1
t j, ( )2

Z2
t j, ( )2+

2









1

α

←

r

t 0 n 1−..∈for

j 0 n 1−..∈for

r

:=

 

x =x  

x
i j, u1 rnd 1( )←

u2 rnd 1( )←

y tan π u2
1

2
−
















←

u1 rnd 1( )←

u2 rnd 1( )←

y tan π u2
1

2
−
















←

u1
1

2
1 y

2+( )⋅ e

y
2−

2⋅>while

y

:=
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Program 8: Procedure (W-4)  
 
     Enter your values of α, θ and n 

 
 

 

θ :=  α :=  n :=  

j 0 n 1−..:= n  

k
8

π
:=  

i 0 n 1−..:= n  

x
i j, u1 rnd 1( )←

u2 rnd 1( )←

y

ln tan
π
4

u2⋅















−

k
←

u1 rnd 1( )←

u2 rnd 1( )←

y tan π u2
1

2
−








⋅







←

u1
e

y
2

2









−
1 e

2− k⋅ y⋅+( )⋅

2 k⋅ e
k−⋅

>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=x
i j, u1 rnd 1( )←

u2 rnd 1( )←

y

ln tan
π
4

u2⋅















−

k
←

u1 rnd 1( )←

u2 rnd 1( )←

y tan π u2
1

2
−








⋅







←

u1
e

y
2

2









−
1 e

2− k⋅ y⋅+( )⋅

2 k⋅ e
k−⋅

>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=  
o

i j, u1 rnd 1( )←

u2 rnd 1( )←

y

ln tan
π
4

u2⋅















−

k
←

u1 rnd 1( )←

u2 rnd 1( )←

y tan π u2
1

2
−








⋅







←

u1
e

y
2

2









−
1 e

2− k⋅ y⋅+( )⋅

2 k⋅ e
k−⋅

>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=o
i j, u1 rnd 1( )←

u2 rnd 1( )←

y

ln tan
π
4

u2⋅















−

k
←

u1 rnd 1( )←

u2 rnd 1( )←

y tan π u2
1

2
−








⋅







←

u1
e

y
2

2









−
1 e

2− k⋅ y⋅+( )⋅

2 k⋅ e
k−⋅

>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=  

R =R  

R

Z1
t j, θ x

t j, ⋅←

Z2
t j, θ o

t j, ⋅←

r
t j, 

Z1
t j, ( )2

Z2
t j, ( )2+

2









1

α

←

r

t 0 n 1−..∈for

j 0 n 1−..∈for

r

:=

x
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Program 9: Procedure (W-5)  
 
     Enter your values of α, θ and n 
 

 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

n :=  θ :=  α :=  

j 0 n 1−..:= n  

i 0 n 1−..:= n  

w
i j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 e

y 1−( )
2−

2>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=w
i j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 e

y 1−( )
2−

2>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=  
o

i j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 e

y 1−( )
2−

2>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=o
i j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 e

y 1−( )
2−

2>while

u3 rnd 1( )←

y− u3
1

2
<if

y u3
1

2
>if

:=  

x

Z1
t j, θ w

t j, ⋅←

Z2
t j, θ o

t j, ⋅←

r
t j, 

Z1
t j, ( )2

Z2
t j, ( )2+

2









1

α

←

r

t 0 n 1−..∈for

j 0 n 1−..∈for

r

:=

w

 

x =xx  
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Program 10: Procedure (W-6)  
 
     Enter your values of α, θ and n 

 
 θ :=  α :=  n :=  m :=  

i 0 n 1−..:= n  

x

U runif m 0, 1, ( )←

c
1

m
0

m 1−

i

U
i∑

=

⋅←

b
j

12 m⋅ c
1

2
−








⋅←

j 0 1..∈for

b

z1 θ b
0

⋅←

z2 θ b
1

⋅←

r
i t, 

z1( )
2

z2( )
2+

2









1

α

←

i 0 n 1−..∈for

r

t 0 n 1−..∈for

r

:= n  

x =xx  
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1.1 Introduction 

 

The aim of this chapter is to find the estimators of parameters for 

Weibull distn. by using four methods of estimation and we use Monte Carlo 

simulation to generate sample from the Weibull distn. by using Box and 

Muller Method, and comparison between these estimators are made to 

recognize the best estimator from bias, variance and mean square error and 

display in tables (1.1) to (1.7).  

In this chapter (section 1.2) we introduce some important mathematical 

and statistical properties of Weibull distribution, in section (1.3) The 

derivation of the distn. is made by using two different approaches where one 

approach utilize Normal distn., and the second approach utilize Extreme 

value distn. . 

In section (1.4) Moments properties of the distn. are illustrated and 

unified, section (1.5) some important definitions, theorems about the 

estimator are illustrated and four method of estimation, namely, Maximum 

Likelihood Method, Moments Method, Modified Moments Method and 

Least Squares Method, are discussed theoretical and assessed practically. 

In practice (section 1.6), we use Monte Carlo simulation to generate 

sample from the Weibull distn. and the estimation of parameters is made by 

these methods. Statistical properties of the estimators are displayed in tables 

(1.1) to (1.7).     
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1.2 Some Mathematical and Statistical Properties of Weibull 
Distribution          

 
Definition (1.1) [18]: 

A continuous r.v. X is said to have a Weibull distn. with parameters α  

and θ , denoted by ( ),W α θ , if X has the following p.d.f. 

( ) 1; , ,0

0 , . . ; , 0.

xf x x e x

e w where

αα θα θ α θ
α θ

− −= < < ∞
= >

        ...………….…..(1.1) 

To verify that eq.(1.1) is valid p.d.f., we note that ( ) ( )0, 0,f x x> ∀ ∈ ∞  and 

the integral ( )
0

; ,f x dxα θ
∞

∫ is unity. Viz 

Let ( ) 1

0 0

; , xI f x dx x e dx
αα θα θ α θ

∞ ∞
− −= =∫ ∫  

Set y x αθ=  implies 1dy x dxααθ −=  , then 
0

1yI e dy
∞

−= =∫ .  

We note that the Weibull distn. reduces to the Exponential distn. as a special 

case when 1α = , and it reduce to Rayleigh distn. when 2α = , and similar to 

Normal curve when (3 4α≤ ≤ ) [6].     

The Weibull distn. depends on two parameters α  and θ  which are 

referred to as shape and scale parameters respectively. The variety of p.d.f. 

shapes can be generated by fixing the values of α  once and letting θ  vary 

and fixing the values of θ  and letting α  vary. The professional 

MATHCAD, 2005 computer software is used to give a graphical 

representation of Weibull p.d.f.,s. Figure (1.1) and Figure (1.2) show 

respectively some Weibull p.d.f.,s for fixed θ  withα  varying  and for fixed 

α  with θ  varying as follows: 
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Figure (1.1) 
Weibull p.d.f.,s with θ=1 and α=0.5,1,1.5,2,3,5    

f(x) 

x  
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 f (x) 

x

Figure (1.2) 
Weibull p.d.f.,s with  α=1 and θ=0.5,1,1.5,2,3,5  
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In general we note that the Weibull distn. have the following properties :  

1- Have the x-axis as a horizontal asymptote. 

2- Increasing for 

1

1
0 x

αα
αθ

− < <  
 

and decreasing for 

1

1
x

αα
αθ

−  < < ∞ 
 

. 

3- Have a maximum point at 

1

1
x

αα
αθ

− =  
 

. 

4- Have two inflection points at 

1

23 5 6 1 3

2
x

αα α α
αθ

 + − + −
 =
 
 

and 

1

23 5 6 1 3

2
x

αα α α
αθ

 − − + −
 =
 
 

. 

5- Concave up for  

1

23 5 6 1 3
0

2
x

αα α α
αθ

 − − + −
 < <
 
 

and 

1

23 5 6 1 3

2
x

αα α α
αθ

 + − + −
  < < ∞
 
 

 and Concave down for 

1 1

2 23 5 6 1 3 3 5 6 1 3

2 2
x

α αα α α α α α
αθ αθ

   − − + − + − + −
   < <
   
   

. 

 

6- The distn. is limited to the left and unlimited to the right, it is never 

symmetric, but may appear symmetric for certain values of α . 

7- The p.d.f is a bell shape for 1α >  and a J shape for 0 1α< ≤ .    
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1.2.1 The Cumulative Distribution Function 

The Weibull c.d.f. is defined as 

( ) ( ) 1

0

; ,
x x

tF x f t dt t e dt
αα θα θ α θ − −

−∞

= =∫ ∫  implies 

( ) ( )

0, 0

Pr 1 ,0

1,

x

x

F x X x e x

x

−

<
= ≤ = − < < ∞
 → ∞


αθ ……………………..(1.2) 

 
1.3 Derivation of the Weibull Distribution 

There are many ways in which one expected the Weibull distn. can 

arise to give a useful description of observed variation. 

 

1.3.1 Genesis Derivation by Utilizing Normal Distribution 

A new derivation is made by extending the original idea as stated in the 

following context. Suppose we are trying to locate an object in plane and we 

determine its distance from the origin by measuring the distance along the x 

and y axes and applying the Phythagoras formula 2 2 2r x y= + . Suppose the 

measurements are subjecting to random errors with X and Y representing the 

errors in the measurement. The errors are assumed to be independent and 

normally distributed with constant variance [8]. We can develop the 

derivation of Rayleigh distn. [20] to obtaine the r.v. 

1
2 2

2

X Y
R

α +=  
 

has 

Weibull distn. . 
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Theorem (1.1) : 

The idea of this derivation is developed from Rayleigh distn. [20]. If X 

and Y are two independent r.v.,s 1
(0, )N

θ
� . Then the r.v. 

( )
12 2

( ) , ; 0, 0
2

X Y
R Wα α θ α θ+= > >� . 

Proof : 

 The joint p.d.f. of r.v..s of X and Y is: 

2 2( )
2( , ) , ,

2

x y
f x y e x y

θθ
π

− +
= − ∞ < < ∞ − ∞ < < ∞  

With transformation 
12 2

( )
2

X Y
R α+= , set  

Y
W

X
=  . 

The functions 
12 2

( )
2

x y
r α+=  , set 

y
w

x
=  does not define (1 1)−  

transformation that maps the space 

A ( ){ }, : ,x y x y= −∞ < < ∞ − ∞ < < ∞ onto the space 

B ( ){ }, : 0 ,r w r w= < < ∞ − ∞ < < ∞ . We write the space A as a union of two 

disjoint subset say, A1 ( ){ }, : 0, 0x y x y= −∞ < < − ∞ < < , 

A2 ( ){ }, : 0 , 0x y x y= < < ∞ < < ∞ where A=A1 U A2. 

Now, the functions 
12 2

( )
2

x y
r α+= , 

y
w

x
=  defined (1 1)−  transformation 

that maps each of A1 and A2 onto B the with inverse transforms: 

2

2

2

1

r
x

w

α

= ±
+

, 
2

2

2

1

r w
y

w

α

= ±
+
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In A1 

2

2

2

1

r
x

w

α

= −
+

, 
2

2

2

1

r w
y

w

α

= −
+

 

 
 

 
In A2 

 
2

2

2

1

r
x

w

α

= +
+

, 
2

2

2

1

r w
y

w

α

= +
+

 

 
Then, the joint p.d.f. of R and W is: 

( )
( )

1
2 2

32
2 2

2
1

2 2

32
2 2

2

2 1
(1 ),

,
2

2 1
(1 )

r r w
x x

w
wx y r wJ

y yr w
r w rr w

w
w

α α

α α

α

α

−

−

−∂ ∂ + +∂ ∂ ∂= = =
∂ ∂∂
∂ ∂

+ +

 

1 1 2 1 1
2

2 2 2 2 2 2 2(1 )
(1 ) (1 ) (1 ) (1 )

r r w r r
w

w w w w

α α α αα α α α− − − −
= + = + =

+ + + +  

( )
( )

1
2 2

32
2 2

1
1

2 2

32
2 2

1 1 2 1 1
2

2 2 2 2 2 2 2

2

2 1
(1 ),

,
2

2 1
(1 )

(1 )
(1 ) (1 ) (1 ) (1 )

r r w
x x

w
wx y r wJ

y yr w
r w rr w

w
w

r r w r r
w

w w w w

α α

α α

α α α α

α

α

α α α α

−

−

− − − −

−∂ ∂ + +∂ ∂ ∂= = =
∂ ∂∂
∂ ∂ − −

+ +

= + = + =
+ + + +
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The marginal p.d.f. of R is: 

( ) ( ) 1
1 2

,
(1 )

r

w

dw
g r g r w dw r e

w

αα θαθ
π

∞
− −

−∞

= =
+∫ ∫   

Since, 
2

1
(1 )

dw

wπ

∞

−∞

=
+∫ , which is C(0,1). 

( ) 1
1 ,0 , 0, 0

0 , . .

xg r r e r

e w

θα ααθ α θ− −⇒ = < < ∞ > >
=

 

 

Which is the p.d.f. of  Weibull distn. as given by eq.(1.1) . 

                                                                                                            Q.D.E. 

1.3.2 Derivation by Utilizing Extreme Value Distribution 

 This derivation to Weibull distn. can arise by using the Extreme Value 

distn. . The details is given by theorem (1.2).  

Theorem (1.2) [23]: 

Let ( ),X Ext δ λ�  then the p.d.f. of X is:  

( ) 1
exp ,

x
x

f x e x

δ
λδ

λ λ

− − 
 

 −  = − − − ∞ < < ∞ 
  
 

 . If we rewrite f(x) 

( )
2 2 2 2

1 22 2 2 2

1 12 2
2 2

2 2

1
2

2 2 2 2
, , ,

1 1 1 1

2 21 1

;0 ,
(1 )

r r

r

r r w r r w
g r w f J f J

w w w w

r r
e e

w w

r e r w
w

α α α α

θ θα αα α

αα θ

θ α θ α
π π

αθ
π

− −− −

− −

   
   − −= +   

+ + + +   
   

= +
+ +

= < < ∞ − ∞ < < ∞
+



Chapter One                                                                                On Weibull Distribution 

                                       10 
 

( ) ,
xx ef x e e x

αα θαθ
−− −= − ∞ < < ∞  . Where 

1α
λ

=  and e
δ
λθ = , then the r.v. 

( ),XY e W α θ−= � . 

Proof: 

The function xy e −= define a ( )1 1− transformation that maps the space 

A { }:x x= −∞ < < ∞ onto the space B { }:0y y= < < ∞ with inverse transform 

( )lnx y= −  and the Jacobin transform is  
1 1dx

J
dy y y

−= = =  

Thus, the p.d.f. of Y is:  

              ( ) ( )lng y f y J= −   

implies ( ) 1yg y y e
y

αα θα θ −=  

We have  

( ) 1 , 0

0 , . .

yg y y e y

e w

αα θα θ − −= < < ∞
=

 

  Which is the p.d.f. of Weibull distn. as given by eq.(1.1) . 

                                                                                                              Q.D.E. 

1.4 Moments and Higher Moments Properties of Weibull      

      Distribution [18]             

Moments are set of constants used for measuring a distn. properties and 

under certain circumstance they specify the distn. . The moments of r.v. X 

(or distn.) are defined in terms of the mathematical expectation of certain 

power of X when they exist. For instance ( )r
r E Xµ′ = is called the 
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thr moment of X about the origin and ( )r
r E Xµ µ = −

 
is called the 

thr central moments of X . That is 

( )

( )

, . .

( )
, . .

r

xr
r r

x

x f x x is discrete r v

E X
x f x dx x is continuous r v

µ


′ = = 



∑

∫
 

and 

( ) ( ) , . .

( )
( ) ( ) , . .

r

xr
r r

x

x f x x is discrete r v

E X
x f x dx x is continuous r v

µ
µ µ

µ

 −
 = − =   −


∑

∫
 

Sometimes they are defining the distn.,s, and also have a particular 

usefulness in connection with sums of independent r.v.,s .  

The moment generating function of Weibull distn. does not have an implicit 

form, so it is more convenient to find the moments of Weibull distn. by 

using direct expectation approach. 

The thr  moment ( )r
r E Xµ′ = of the distn. about the origin is 

 0

1

0

( ) ( ; , )r r
r

r x

E X x f x dx

x x e dx
αα θ

µ α θ

αθ

∞

∞
− −

′ = =

=

∫

∫

 

Set 

1 1
1

1u u
u x x dx du

−
   = ⇒ = ⇒ =   
   

α ααθ
θ αθ θ

 implies  

(1 ) 1

0

1
r

u
r r

u e duα

α

µ
θ

∞ + − −′ = ∫          ………………………...…………………(1.4) 
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But,  

(1 ) 1

0

r
uu e duα

∞ + − −
∫  is known as incomplete gamma function and equal to 

(1 )
r

α
Γ + . 

 Therefore;  

 ( ) (1 )
r

r
r

r
E X αµ θ

α

−

′ = = Γ +                    …………………….…………(1.5) 

1.4.1 Mean and Variance: 

 The mean and variance are respectively obtained from eq.(1.5) by 

setting 1,2 .r =  

(i) Mean: 

( ) 1E X µ µ′= =  is called the mean of r.v. X (or distn.). It is a measure  

of central tendency. 

           
1

1 1
(1 )

α

µ
α

θ
= Γ + ………………………………………………....(1.6) 

(ii) Variance: 

( ) ( ) ( )22 2 2Var X E X E Xδ µ µ = = − = −
 

 is called the variance of 

r.v. X (or distn.). It is a measure of dispersion, where  

2
2 2

1 2
( ) (1 )E X

α

µ
α

θ

′ = = Γ +  
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Hence, 

( )
2

2
2 1

1 2 1 1
(1 ) (1 )Var X

α α

δ
α α

θ θ

 
 = = Γ + − Γ + 
 
 

………………………..(1.7) 

1.4.2 Other Moments: 

(i) Mode: 

A mode of a distn. is the value x of r.v. X that maximize the p.d.f. 

( )f x . 

For continuous distn.,s the mode x is a solution of  
( )

0
df x

dx
=  and 

( )2

2 0
d f x

dx
< . 

The mode is measure of location. Also we note that the mode may not exist 

or we may have more than one mode. 

For Weibull case with p.d.f. 

( ) 1 xf x x e
αα θα θ − −=  

( ) ( ) ( )
21 21xdf x

e x x
dx

αθ α ααθ αθ α− − − ⇒ = − + −  
……………….(1.8) 

Equating eq.(1.8) to zero, and solving for x, we have 1 1 0x ααθ α−− + − =  

which implies the critical point is 

                                   
1

1
( )x αα

αθ
−= ……………….……………………(1.9) 

This critical point satisfy that x is the distn. mode where condition  
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( )2

2
0

d f x

dx
<  at  

1
1

( )x αα
αθ

−=  is hold . 

(ii) Median: 

A median of a distn. is defined to the value x of r.v. X such that 

( ) ( ) 1
Pr

2
F x X x= ≤ = . The median is measure of location. 

For Weibull case, 

We equate the c.d.f. given by eq.(1.2) to 
1

2
, that is  

1
1

2
xe

αθ−= −             ………………………………………....……..….(1.10) 

Solving for x in eq.(1.10) lead to the median  

  

1

ln 2
x

α

θ
 =  
 

                 ……………….……………………………….(1.11) 

 (iii) Coefficient of Variation: 

The variational coefficient of r.v. X (or distn.) is defined by the ratio 

δ
µ

 . It is a measure of dispersion. It is independent of scale measurement and 

denoted by CV. 

For Weibull case:  

CV=

1
2

2

2
1

1
1

1

δ α
µ

α

   Γ +   = − 
   Γ +      

……………………………………….....(1.12) 

 

 



Chapter One                                                                                On Weibull Distribution 

                                       15 
 

(iv) Coefficient of Skewness: 

3
1 3

2
2

µγ
µ

=  is called the coefficient of Skewness. It is a measure of the 

departure of the frequency curve from symmetry. If 1 0γ = , the curve is not 

skewed, 1 0γ > , the curve is positively skewed, and 1 0γ < , the curve is 

negatively skewed. 

For Weibull case:  

( )3
3

1 3
(1 )E X

α
α

θ
= Γ + implies 

3

1 3
2 2

3 1 2 1
1 3 1 1 2 1

2 1
1 1

α α α αγ

α α

        Γ + − Γ + Γ + + Γ +                =
     Γ + − Γ +     
      

        …………...(1.13) 

 (v) Coefficient of Kurtosis: 

4
2 2

2

3
µγ
µ

= −  is called the coefficient of Kurtosis . It is a measure of the 

departure of the degree of flatting of the frequency  curve. If 2 0γ = , the 

curve is not mesokurtic, 2 0γ > , the curve is leptokurtic, and 2 0γ < , the 

curve is phtykuritic . 

For Weibull case: 

( )4
4

1 4
1E X

α
α

θ

 = Γ + 
 

 implies  
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2 4

2 22

4 1 3 2 1 1
1 4 1 1 6 1 1 3 1

2 1
1 1

α α α α α αγ

α α

              Γ + − Γ + Γ + + Γ + Γ + + Γ +                            =
     Γ + − Γ +     
      

                                                                                                 …………(1.14) 

 

1.5 Estimation of Parameters for Weibull Distribution: 

We shall introduce in this section some definitions, methods, and 

theorems that are needed for parameters estimation. 

1.5.1 Point Estimation [27]: 

Point estimation is concerned with inference about the unknown 

parameters of a distn. from a sample. It provides a single value for each 

unknown parameter. 

Point estimation admits two problems: 

1st developing methods of obtaining statistics whose values could be used to 

estimate the unknown parameters of the distn., such statistics are called point 

estimators . 

2nd selecting criteria and technique that obtain a best estimator among 

possible estimators. 

 

1.5.2 Some Basic Definitions: 

Definition (1.2) (Statistic) [14]: 

A statistic is a function of one or more r.v.,s which is not depends upon 

any unknown parameters. 
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Definition (1.3) (Estimator) [14]: 

Any statistic whose value is used to estimate the unknown parameter θ  

or some function of θ  say ( )τ θ  is called point estimator. 

Definition (1.4) (Unbiased Estimator) [18]: 

An estimator ( )1 2
ˆ , ,..., nu X X Xθ =  is defined to be an unbiased estimator of 

θ  iff ( )ˆE θ θ=  for all θ ∈Ω , where Ω  is a parameter space. The term 

( )ˆE θ θ−  is called the bias of the estimatorθ̂ . 

Definition (1.5) (Asymptotically Unbiased Estimator) [18]: 

 An estimator ( )1 2
ˆ , ,..., nu X X Xθ =  is defined to be asymptotically 

unbiased estimator for θ  if ˆlim ( )
n

E θ θ
→∞

= . 

Definition (1.6) (Consistence Estimator) [18]: 

 Let the statistic ( )1 2
ˆ , ,..., nu X X Xθ = be an estimator of the unknown 

parameter θ  is said to be consistent estimator if ( )ˆlim Pr 0
n

θ θ ε
→∞

− > = ; for 

each θ∈Ω . 

Definition (1.7) (Minimum Variance Unbiased Estimator) [18]: 

 Let X1, X2,…, Xn be a r.s. of size n whose p.d.f. ( , )f x θ
�

 . An 

estimator ( )1 2
ˆ , ,..., nu X X Xθ =  of θ  is defined to be a minimum variance 

unbiased estimator of θ  iff 

(i) ˆ( )E θ θ= , that is , ̂θ  is unbiased. 

(ii) The variance of ̂θ  is less than or equal to the variance of every other 

unbiased estimators of θ . 
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1.5.3 Methods of Finding Estimators [2] 

 Many technique have been proposed in the literatures of finding 

estimators for the distn. parameters such as Moments, Maximum Likelihood, 

Minimum Chi-square, Minimum Distance, Least Square, and Bayesian 

method. These methods provides a single value for each unknown parameter 

of the distn. . 

For Weibull case we shall consider four methods for finding the estimator of 

distn. parameters. 

(i) Maximum Likelihood Method . 

(ii) Moments Method. 

(iii) Modified Moments Method.  

(iv) Least square method. 

 

Definition (1.8) (Likelihood Function) [2]: 

 The likelihood function of r.s. X1, X2,…, Xn of  size n from a distn. 

having p.d.f. ( ; )f x θ
�

, where ( )1 2, ,..., kθ θ θ θ=
�

 is a vector of unknown 

parameters, is defined to be the joint p.d.f. of the r.v.,s  X1, X2,…, Xn which 

is considered as a function of θ
�

 and denoted by  ( , )L xθ
��

 that 

is
1

( , ) ( ; ) ( ; )
n

i
i

L L x f x f xθ θ θ
=

= = = ∏
� �� � �

. 
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1.5.3.1 Estimation of Parameters by Maximum Likelihood Method  

        [2]: 

         Let ( , )L xθ
��

be the likelihood function of a r.s. X1, X2,…, Xn of size n 

from a distn. whose p.d.f. ( ; )f x θ
�

, ( )1 2, ,..., kθ θ θ θ=
�

 is a vector of unknown 

parameters. Let 1 2
ˆ ( ) ( ( ), ( ),..., ( ))ku x u x u x u xθ = =

� � � �� �
be a vector of unknown 

statistics of observations ( )1 2, ,..., nx x x x=
�

. If θ̂
�

 have the value of θ
�

 which 

maximize ˆ( , )L xθ
��

, then θ̂
�

 is the m.l .e. of  θ
%

 and the corresponding 

statistic ˆ ( )u XΘ =
�� �

 is the M.L.E of θ
%

. We note that  

(i) Many likelihood function satisfy the condition that the m. .el  is a solution 

of the likelihood eq.,s . 

r

L( ,x)
0

∂ θ =
∂θ %% , at ˆθ= θ

% %
1,2,...,r k= . 

(ii) Since L(θ
%

, x
%
) and ln L(θ

%
, x
%
) have their maximum at the same value of 

θ
%

 so sometimes it is easier to find the maximum of the logarithm of the 

likelihood. 

In such case, the m. .el  θ̂
%

 of θ
%

 which maximizes L(θ
%

,x
%
) may be given 

the solution of the likelihood eq.,s . 

r

ln L( ,x)
0

∂ θ =
∂θ %% , at  ˆθ= θ

% %
 , r=1,2,…,k. 
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For Weibull distn. case:  

Let X1, X2, …, Xn be a r.s. of size n from ( ),W α θ  where the distn. 

p.d.f. is given by eq.(1.1). The likelihood function is   

~ ~
L( , ,x) f (x, , )α θ = α θ

n

i
i 1

f (x , , )
=

= α θ∏  

                

( )

1

1

1

1

1

n
x i

i
i

n
xn in i

i
i

x e

x e

αθα

αα θ

αθ

αθ

−−

=

− −
=

=

∑

=

 
=   

 

∏

∏
 

( )
n n

i i
i 1 i 1

lnL nln nln 1 lnx xα

= =
= θ + α + α − − θ∑ ∑  

i

n n

i i
i 1 i 1

lnL n
lnx x lnxα

= =

∂ −= + − θ∂α α ∑ ∑  .............................................. (1.15) 

And 

n

i
i 1

lnL n
xα

=

∂ = −∂θ α ∑     ................................................................... (1.16) 

 Set  
lnL

0
∂ =∂α  and 

lnL
0

∂ =∂θ  at ˆˆ ,α = α θ = θ .  

We have: 

i

n n

i i
i 1 i 1

n
lnx x lnx 0α

= =

− + − θ =α ∑ ∑  .................................................... (1.17) 

And 

n

i
i 1

n
x 0α

=
− =α ∑  …………………………………………………(1.18) 
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Solution for α̂  and θ̂  can not be found analytically from the non-linear 

eq.,s (1.17) and (1.18). 

An approximate solution for ̂α  and θ̂  from eq.,s  (1.17) and (1.18) can 

be  made iteratively by using Newton-Raphson method for solving a non-

linear eq.,s as follows: 

Let ˆ
1 1

1 1

ˆ ˆˆ( , ) ln ln
ˆ

n n

i i i
i i

n
f f x x xαα θ θ

α = =
= = + −∑ ∑  

and  

             ˆ
2 2

1

ˆˆ( , )
ˆ

n

i
i

n
f f x αα θ

α =
= = −∑  

Suppose that ( ) ( )ˆˆ( , )s sα θ  represent the approximate solution of ˆˆ( , )α θ  at 

stage (s). Then the approximate solution at stage (s+1) for ( ) ( )ˆˆ( , )s sα θ  is 

                            ( 1) ( )
1ˆ ˆs sα α δ+ = +    ………………………………..…(1.19) 

                            ( 1) ( )
2

ˆ ˆs sθ θ δ+ = +     …………………………………..(1.20) 

Where 

( ) ( )

( ) ( )

1
1 1

1 1

2 22 2

ˆˆ

ˆˆ

−∂ ∂ 
    ∂ ∂ = = −   ∂ ∂    
 ∂ ∂ 

�

s s

s s

f f
f

ff f

δ α θδ
δ

α θ

, Set 

        

( )

( )

2ˆ1
2

1

ˆ1 2

1

2
2

ˆ ln
ˆ ˆ

ln
ˆ ˆ

ˆ ˆ

n

i i
i

n

i i
i

f n
a x x

f f
b x x

f n
c

α

α

θ
α α

αθ

θ θ

=

=

∂ −= = −
∂

∂ ∂= = = −
∂∂

∂ −= =
∂

∑

∑  
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We have  

1
1 1 1

2
2 2 2

1f fa b c b

f fb c b aac b

δ
δ

− −        −= − =        −−          

Then, 

( )

( )

1 1 22

2 1 22

1

1

cf bf
ac b

bf af
ac b

δ

δ

= − −
−

= − − +
−

 

and according to the eq.,s (1.19) and (1.20), we have  

 ( ) ( ) ( )1
1 22

1
ˆ ˆs s cf bf

ac b
α α+ = − −

−
   ………….……………………......(1.21) 

( ) ( ) ( )1
1 22

1ˆ ˆs s bf af
ac b

θ θ+ = − − +
−

  …………..……………………….(1.22) 

 

1.5.3.2 Estimation of Parameters by Moments Method [2]: 

Let X1, X2, …, Xn be a r.s of size n from a distn. whose p.d.f  

( ; )f x θ
�

, θ
%

 = (θ1, θ2, …, θk) is a vector of unknown parameters, let 

r
r E(X )′µ =  be the rth moment of the distn. about origin and 

n
r

r i
i 1

1
M X

n =
= ∑  

be the rth moment of the sample about origin. The method of moments can 

be described as follows: 

Since, we have k unknown parameters, equate r′µ  to rM  at ˆθ θ=
� �

 . 

That is 

r rM′µ =   at  ˆθ = θ
% %

, r = 1, 2, …, k . 
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For these k equations, we find a unique solution for 1 2 k
ˆ ˆ ˆ, ,...,θ θ θ  and we 

say that r
ˆ (r 1,2,...,k)θ =  is an estimate of rθ obtained by method of Moments 

and the corresponding statistic rΘ̂  is an estimator of rθ . 

Now, to estimate α and θ by method of moments we let X1, X2, …, Xn 

be a r.s. of size n from ( ),W α θ  is taken. 

Since, ( ),W α θ  distn. involve two unknown parameters,  

We set r rM′µ =  at ˆα = α , ˆθ = θ   , r = 1,2  . 

r = 1 implies 
1

1
1 1

E(X) ( ) (1 )α′µ = = Γ +
θ α

 and 
n

1 i
i 1

1
M X X

n =
= =∑ . 

r = 2 implies 
2

2
2

1 2
E(X ) ( ) (1 )α′µ = = Γ +

θ α
  

And  

n
2 2 2

2 i
i 1

1 n 1
M X S X

n n=

−= = +∑ . 

We set 

1 1M′µ =  and 2 2M′µ =  at ˆα = α , ˆθ = θ  we have  

          
1
ˆ1 1

( ) (1 ) X
ˆ ˆ

α Γ + =
αθ

  ………………...……………….………….(1.23) 

  
2

2 2ˆ1 2 1
( ) (1 ) S X
ˆ ˆ n 1

α Γ + = +
α −θ

 …..…………………………...(1.24) 

For finding the estimators of α  and θ , we follow the approach made 

by [7] as follows: 
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               ( )
2

2
1

d
CV

δ
µ

= ………………………………………......................(1.25)  

Since, the unbiased estimator of 2δ  is 2S  and the estimator of µ  is X , then 

         
2

2
( )

( )
d

S
CV

X

∧

−= …..……………………………………………...(1.26) 

Which can be calculated from the given set of observation but, the 

coefficient of variation is: 

22 1
(1 ) (1 )

ˆ ˆ
1

(1 )
ˆ

CV
δ α α
µ

α

Γ + − Γ +
= =

Γ +
 …………………………………...(1.27) 

By taking different configuration values of α̂  in eq. (1.27), randomly. The 

value α̂  is adopted when CV is very close to  of  ( )dCV
∧

. The scale 

parameter( )θ  can then be estimated using eq. (1.23) as 

                  

ˆ
1

(1 )
ˆˆ

X

α

αθ
 Γ + 

=  
 
 

…………………………………………..(1.28) 

 

1.5.3.3 Estimation of Parameters by Modified Moments Method  

        [20] : 

Let X1, X2, …, Xn be a r.s of size n from a distn. p.d.f. ( , )f x θ
�

where 

 ( )1 2, ,..., kθ θ θ θ=
�

is a vector of k unknown parameters. 

Let 1 2, ,..., nY Y Y represent the arrangement of the sample set { }iX in a 

ascending order of magnitude. 
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Let ( )r
r E Xµ′ = be the thr  sample moment about the origin, r=1,2, … . 

In this method we equate ( )r
r E Xµ′ = with 1r = and ranking 

( )i iE Y Y= beginning with 1i =  until =i k  this process will gives k eq.,s to 

provide a unique solution for , 1,2,...,i i kθ = say ˆ , 1,2,...,i i kθ = and the 

obtained ̂ iθ , this method is called modified moment estimator. 

For Weibull case:  

we have two unknown parameters α  and θ  and if we take a r.s. of size n 

from  ( ),W α θ , we let 1Y  represent the first order statistic of the sample.  

From the order statistic theory the p.d.f. of  1Y  is  

       ( ) ( )( ) ( )1
1 1 1 11

n
g y n F y f y

−= −  

( ) 1 1
1 1 1 1,0

0 , . . ; , 0

n y
g y n y e y

e w

αθααθ
α θ

−−⇒ = < < ∞
= >

 

This shown that  ( )1 ,Y W nα θ� . 

Accordingly, ( )
( )

1 1

1 1
(1 )E Y

n α
αθ

= Γ + . 

Now, we apply the Modified Moment Method by setting 1′ = Xµ and 

( )1 1E Y Y= at ˆα = α , ˆθ = θ  which leads to  

1
ˆ1 1

1 X
ˆ ˆ

α   Γ + =   αθ   
 ………………………………………………….(1.29) 

 

1
ˆ

1
1 1

1 Y
ˆ ˆn

α   Γ + =   αθ   
 ………………………………………………..(1.30) 

From eq.,s (1.29) and (1.30), the estimators of α  and θ  are respectively  
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1

1
ln

ˆ
ln

 
 
 =
 
 
 

n
Y
X

α   …………………………………………………………...(1.31) 

ˆ

1
ˆ

1

1 1
1 (1 )

ˆ
ˆ n

X Y

α

α
α

θ

  
  − Γ +     =  −
 
 
 
 

 …………………………………………….(1.32) 

 

  1.5.3.4 Estimation of Parameters by Least Squares Method [20]: 

 The least squares method is general technique for estimating 

parameters in fitting a set of points to generate a curve whose trend might be 

linear, quadratic, or of higher order. In order to utilize this method, the error 

terms due to experiment must satisfy the following conditions: 

(i) They have zero mean. 

(ii) They have same variance. 

(iii) Must be uncorrelated.      

For good result of fitting curve to the data set, the error must be minimized 

as small as possible . 

 Let us assume that we have a set of n data points ( ),i ix t  through which we 

desire to pass a straight line. This line is representing the best fit in the least 

square sense.  

Suppose that the best fitting straight line to the data ( ),i ix t  is 0 1x tβ β= + . 

Where 0β  and 1β  are two unknown parameters representing respectively the 

vertical intercept and the slop. 
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To assist in visualizing the process, assume the fitted line shown in figure 

(1.3) which depicts the data points as well as the line to be fitted, unless the 

data fall in a straight line, usually the general curve will not pass through all 

of the data points. For convenience let us consider the ith point where 

ordinate of the point is given as ix .  

 

 
Figure (1.3) show the best fitted line to the data ( ),i ix t  

The ordinate ix as given by the general line is 0 1 itβ β+ . The difference 

between these two values is the error of fit at the ith point 

( )0 1i i ix tε β β= − +  .Let the sum squares of all errors at the data points be 
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( )22
0 1

1 1

n n

i i i
i i

SSE x tε β β
= =

= = − −∑ ∑ . For minimum, we set  
0

0
SSE

β
∂ =
∂

 and  

1

0
SSE

β
∂ =

∂
, at 0 0 1 1

ˆ ˆ,β β β β= = .  

 ( )0 1ˆ0 00 1
ˆ1 1

ˆ ˆ2 0ˆ

n

i i
i

SSE
x t

β β
β β

β β
β = =

=

∂ = − − − =
∂ ∑      ……………………….....(1.33) 

 ( )0 1ˆ0 01 1
ˆ1 1

ˆ ˆ2 0ˆ

n

i i i
i

SSE
x t t

β β
β β

β β
β = =

=

∂ = − − − =
∂ ∑   ….………………………(1.34) 

From (1.33) and (1.34) we can get two eq.,s as 

0 1
1 1

ˆ ˆ
n n

i i
i i

n t xβ β
= =

+ =∑ ∑  ………………………………………………….(1.35) 

2
0 1

1 1 1

ˆ ˆ
n n n

i i i i
i i i

t t t xβ β
= = =

+ =∑ ∑ ∑  …………………………………………...(1.36) 

 

Solving eq.,s (1.35) and (1.36), lead to   

2

1 1 1 1
0 2

2

1 1

ˆ

n n n n

i i i i i
i i i i

n n

i i
i i

x t t t x

t n t

β = = = =

= =

     
−          

     =
   

−      
   

∑ ∑ ∑ ∑

∑ ∑

    …………………………..(1.37) 

 and  0
1

ˆ
ˆ x

t

ββ −=                    …………………………………………..(1.38) 

 Since, 0 1
ˆ ˆx tβ β= + .     
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For Weibull case: 

Suppose that X1, X2, …, Xn be a r.s of size n from a distn. having cumulative 

function ( ) ( )

0, 0

Pr 1 ,0

1,

x

x

F x X x e x

x

−

<
= ≤ = − < < ∞
 → ∞


αθ  

Then 1 1
x xi i

i i iu e e u u
− −= − ⇒ = − =

α αθ θ
 since, ( ),iu U 0 1� , then 

( ),iu U−1 0 1�  which implies  

( ) ( ) ( )1 1
, 1,2,....,= − − =i iln x ln Ln u ln i nθ

α α
.   …………………(1.39) 

Set ( )=i iy ln x , ( ) 1,2,....,= − =i it ln ln u i n  and ( )0 1

1 1
,= − =lnβ θ β

α α
 

then , eq.(1.40) becomes 0 1
ˆ ˆ , 1,2,3,..., .i iy t i nβ β= + =  

Utilizing eq.(1.39) for obtaining the estimators 0β̂  and 1̂β . Therefore; the 

least squares estimators α̂  and θ̂  can be obtained from the eq.(1.39) 
1

1
ˆ

ˆ
α

β
=  

and 0

1

ˆ
ˆ exp

ˆ
βθ
β

 
= − 

 
. 

 

1.5.4 Some Important Concepts (Definitions and Theorems)  

Definition (1.9) (Sufficient Statistic) [18]: 

 Let X1, X2,…, Xn be a r.s. of size n whose joint p.d.f. ( , )f x θ
� �

, where 

( )1 2, ,..., mθ θ θ θ=
�

 is a vector of unknown parameters and let 

( )1 2, ,..., , 1,2,...,i i nY u X X X i m= = be k statistics whose joint p.d.f. 



Chapter One                                                                                On Weibull Distribution 

                                       30 
 

( , ).g y θ
��

Then the k statistics are called jointly sufficient statistics for θ
�

 iff 

( , )
( )

( , )

f x
H x

g y

θ

θ
=� �

�

��

.Where ( )H x
�

 does not depends on θ
�

 for all fixed values of  

( )1 2, ,..., , 1,2,...,i i ny u x x x i m= = . 

Theorem (1.3) (Neymann Factorization Theorem) [18]:  

Let X1, X2,…, Xn be a r.s. of size n whose p.d.f. ( , )f x θ
�

, where, 

( )1 2, ,..., mθ θ θ θ=
�

 be a vector of unknown parameters. A set of statistics 

( )1 2, ,..., , 1,2,...,i i nY u X X X i m= = are jointly sufficient statistics for θ
�

 iff, 

we can find two non-negative functions 1K  and 2K  such that  

( )1 2 1 2

1 1 2 1 2 2

( , ) , ,..., ; , ,...,

( ( ), ( ),..., ( ); , ,..., ) ( )

n m

m m

f x f x x x

K u x u x u x K x

θ θ θ θ

θ θ θ

=

=
� �

� � � �

 

Where 2( )K x
�

 is independent of θ
�

. 

In general we note that every functions of a sufficient statistics is also 

sufficient statistics.  

Definition (1.10) (completeness) [18]: 

Let 1 2, ,..., nX X X  be a r.s. of size n from a distn. (continuous or 

discrete) whose p.d.f. belongs to the family 

( ){ }1 2( , ), , ,..., m
mf x θ θ θ θ θ= ∈Ω

� �
of p.d.f.,s , and let ( )u x

�
be a continuous 

function of ( )1 2, ,..., nx x x x=
�

. If ( ) 0E u X  =
  �

,  implies ( ) 0,u x x= ∀
% %

, then 

the family { }( , ),f x θ θ ∈Ω
�

 is called a complete family of p.d.f.,s . 
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Remark  [18]:  

If  ( )Y u X=
�

 is a sufficient statistic for θ  whose p.d.f. belong to the 

complete family, then Y is a complete sufficient statistic for θ . We note that  

Theorem (1.4) (Lehman-scheffe’-1st Theorem) [18]: 

Let X1, X2,…, Xn be a r.s. of size n whose p.d.f. ( , ),f x θ θ ∈Ω
�

. 

Let ( )Y u X=
�

be a sufficient statistic forθ  whose p.d.f. belong to the 

complete family ( ){ }, ,g y θ θ ∈Ω  . If ( )YΦ is a function of Y which is an 

unbiased estimator for θ , then ( )YΦ  is a unique MVUE for θ . 

Definition (Exponential Family of p.d.f.,s) (1.11) [18]: 

 Consider the family { }( ; ), mf x θ θ ∈Ω
� �

 of p.d.f.,s which can be 

expressed as  

1

( ; ) exp ( ) ( ) ( ) ( ) ,

0 , . .

m

j j
j

f x p k x q s x a x b

e w

θ θ θ
=

 
= + + < < 

  

=

∑
� � �   ……..........(1.40) 

Such p.d.f. is said to be a member of exponential class of p.d.f.,s and 

satisfying the following conditions: 

(i) Neither a nor b depends on ( )1 2, ,..., mθ θ θ θ=
�

. 

(ii)  ( )jp θ
�

 is nontrivial, continuous functions of , 1,2,...,j j mθ = . 

(iii) ( )' 0jk x ≠  and ( )s x  is continuous function of x for a x b< < . 

(iv) 
%

q(θ)  is a continuous function of  
%
θ , ( )1 2, ,...,=

�
mθ θ θ θ .  
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Now, if a r.s. 1 2, ,..., nX X X  is taken from a distn. whose p.d.f. ( ; )f x θ
�

, 

then the joint p.d.f. of the sample set { }iX  is 

  

11 1

1 1 1

1 1 1

( ; ) ( ; ) exp ( ) ( ) ( ) ( ) ,

exp ( ) ( ) ( ) ( )

exp ( ) ( ) ( ) exp ( )

n n m

i j j i i
ji i

m n n

j j i i
j i i

m n n

j j i i
j i i

f x f x p k x q s x a x b

p k x n q s x

p k x n q s x

θ θ θ θ

θ θ

θ θ

== =

= = =

= = =

 
= = + + < < 

  

 
= + + 

  

   
= +   

    

∑∏ ∏

∑ ∑ ∑

∑ ∑ ∑

� � � � �

� �

� �

 

Then, according to factorization theorem (1.3), the statistics 

( ) ( ) ( )1 1 2 2
1 1 1

, ,...,
n n n

i i m m i
i i i

Y k X Y k X Y k X
= = =

= = =∑ ∑ ∑  are jointly 

sufficient statistics for m parameters 1 2, ,..., mθ θ θ . 

  For Weibull ( ),W α θ  with p.d.f.  

( ) 1; , ,0

0 , . . ; , 0.

xf x x e x

e w where

αα θα θ α θ
α θ

− −= < < ∞
= >

 

Which can be written as  

( ) ( ) ( )ln 1 ln; , x xf x e
ααθ α θα θ + − −⇒ =  

We note that there are three cases:  

(i) ( ); ,f x α θ  is not exponential when α and θ are unknown. 

(ii) ( ),f x α  is not exponential when α is unknown and θ is known. 

(iii) ( ),f x θ  is exponential when α is known and θ is unknown. 
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In case (iii) we write ( ),f x θ  as 

( ) ( )ln ln 1 ln; , x xf x e
αθ θ α αα θ − + + + −=  

Where p(θ)=-θ, k(x)= xα , q(θ)=lnθ, s(x)=lnα+(α-1)lnx 

If a sample X1, X2,…, Xn is taken from ( ),W α θ , (α known), then according  

to factorization theorem (1.3), the statistic ( )
1 1

n n

i i
i i

Y k x X α

= =

= =∑ ∑ …..(1.41) 

Is a sufficient statistic for θ.   

Theorem (1.5) (Lehman-scheffe’-2nd Theorem) [18]: 

Let X1, X2,…, Xn be a r.s. of size n whose p.d.f. ( , )f x θ
� �

 where 

( )1 2, ,..., mθ θ θ θ=
�

, belong to the exponential family and let Y1, Y2 ,…,Ym 

be jointly sufficient statistics for 1 2, ,..., mθ θ θ , then the family of p.d.f.,s 

{ }( , ), mg y θ θ ∈Ω
� �

is complete and the statistics Y1, Y2 ,…,Ym  are jointly 

complete sufficient statistics for 1 2, ,..., mθ θ θ . 

Now, according to Lehman- Scheffe, 2nd  theorem, the statistic given by 

eq.(1.41) 
1

n

i
i

Y X α

=

=∑  is complete sufficient statistic for θ. To find the 

MVUE for θ, consider the transformation Z X α= . 

The function z x α=  define one-to-one transformation that maps the space 

A { }: 0= < < ∞x x  onto the space B { }: 0= < < ∞z z  with inverse 
1

x z α=  
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and the Jacobin of transformation 
1

11dx
J z

dz
α

α
−

= = . Then the p.d.f. of Y is 

( )
1 1 1

1 11
( )

, 0

, . .

y

z

g z f z J z e z

e z

e w

θα α α

θ

α θ
α

θ

− −−

−

= =

= < < ∞
=

    

That is 
1

( )Z Exp
θ

� . 

Since, 
1 1

n n

i i
i i

Y X Zα

= =

= =∑ ∑ , then according to the additive property of 

exponential distn. lead to 
1

( , )Y G n
θ

�  with p.d.f.  

( ) ( )
1 , 0

0 , . .

n
n yh y y e y

n

e w

θθ − −= < < ∞
Γ

=
 

Now, consider the expectation  

( )

( )
( )

1

0

1
( 1)

1
0

1 1 1
( )

( )

1

( 1) 1

n
n y

y y

n n
n y

n

E h y dy y e dy
Y y y n

n
y e dy

n n n

θ

θ

θ

θ θ θ
θ

∞
− −

=

∞ −
− −

−

= =
Γ

Γ −
= =

Γ Γ − −

∫ ∫

∫

  

Accordingly, the MVUE for θ is 

1

1 1
n

i
i

n n

Y X α

=

− −=
∑

. 
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1.6 Monte Carlo Results: 

 To access the results obtained by the four methods of estimation 

practically, we generate the Normal variates according to Box and Muller 

Method [27], [See Appendix A] and then these normal variates are trans- 

feered to Weibull variate as shown in section (1.3). In practice sample from  

1
( , 1)
2

W  are generated with size ( )5,10 5 50=n  and the run size used is 100. 

The estimates of the four methods are shown in table (1.1). 

   

Table (1.1) 

Parameters Estimation 

Sample 

Size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0.464,1.151 ( )0.310,0.858 ( )0.430,1.387 ( )0.444,0.993 

10 ( )0.478,1.110 ( )0.407,1.030 ( )0.397,1.306 ( )0.479,0.988 

20 ( )0.477,1.092 ( )0.413,0.952 ( )0.457,1.216 ( )0.522,0.997 

30 ( )0.480,1.017 ( )0.535,1.123 ( )0.460,0.923 ( )0.522,0.984 

40 ( )0.502,1.136 ( )0.461,1.104 ( )0.486,0.945 ( )0.504,0.984 

50 ( )0.498,0.939 ( )0.495,0.962 ( )0.491,0.962 ( )0.501,1.019 
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This table show the bias of estimator α̂  which can be obtained by : 

( ) ( )ˆ ˆBais Eα = α − α  . 

 
      Table (1.2) 

Bias of Estimator ( )α̂  

Sample 

Size 

Bias of Estimation ( )α̂  

M.L.M M.M M.M.M L.S.M 

5 -0.036 -0.19 -0.070 -0.056 

10 -0.022 -0.093 -0.103 -0.021 

20 -0.023 -0.087 -0.043 -0.022 

30 -0.020 0.035 -0.040 0.022 

40 0.002 -0.039 -0.014 0.004 

50 -0.002 -0.005 -0.009 0.001 
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This table show the bias of estimator θ̂  which can be obtained by : 

( ) ( )ˆ ˆBais Eθ = θ − θ . 

 
Table (1.3)  

  Bias of Estimator ( )θ̂  

Sample 

Size 

Bias of Estimation ( )θ̂  

M.L.M M.M M.M.M L.S.M 

5 0.151 -0.142 0.387 -0.007 

10 0.11 0.03 0.306 -0.012 

20 0.092 -0.048 0.216 -0.003 

30 0.017 0.123 -0.077 -0.016 

40 0.136 0.104 -0.055 -0.016 

50 -0.061 -0.038 -0.038 0.019 
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This table show the variance of estimator α̂  which can be obtained by : 

( ) ( ) ( )ˆ ˆ ˆVar E Eα = α − α  
22 .      

 

Table (1.4) 

  Variance of Estimator ( )α̂  

   

Sample 

Size 

Variance of Estimation ( )α̂   

M.L.M M.M M.M.M L.S.M 

5 74.121 10−×  63.284 10−×  64.361 10−×  63.411 10−×  

10 73.961 10−×  63.245 10−×  63.217 10−×  63.697 10−×  

20 73.629 10−×  63.559 10−×  63.988 10−×  63.371 10−×  

30 74.578 10−×  63.187 10−×  63.640 10−×  62.342 10−×  

40 74.359 10−×  63.081 10−×  64.44 10−×  62.101 10−×  

50 75.710 10−×  63.946 10−×  63.756 10−×  62.322 10−×  
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This table show the variance of estimator θ̂  which can be obtained by : 

( ) ( ) ( )ˆ ˆ ˆVar E E θ = θ − θ
 

2
2 .      

 

   Table (1.5) 

       Variance of Estimator ( )θ̂  

   

Sample 

Size 

Variance of Estimation( )θ̂   

M.L.M M.M M.M.M L.S.M 

5 64.614 10−×  73.041 10−×  73.046 10−×  75.241 10−×  

10 63.572 10−×  75.118 10−×  72.602 10−×  75.761 10−×  

20 62.863 10−×  73.698 10−×  75.112 10−×  75.321 10−×  

30 62.346 10−×  72.545 10−×  77.81 10−×  74.404 10−×  

40 62.710 10−×  72.311 10−×  74.78 10−×  74.513 10−×  

50 62.224 10−×  74.102 10−×  74.102 10−×                          75.846 10−×  
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This table show the mean square error of estimator α̂  which can be obtained 

by : 

 ( ) ( ) ( )( )ˆ ˆ ˆMSE Var Baisα = α + α 2
. 

 

  Table (1.6) 

Mean Square Error of Estimator( )α̂  

Sample 

Size 

Mean Square Error of Estimator ( )α̂  

M.L.M M.M M.M.M L.S.M 

5 0.00129 0.036 0.0049 0.0031 

10 0.00048 0.008 0.010 0.00044 

20 0.00052 0.007 0.001 0.00048 

30 0.0004 0.001 0.001 0.00048 

40 64 10−×  0.001 0.0002 618 10−×  

50 64 10−×  0.0002 58 10−×  63 10−×  
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This table show the mean square error of estimator α̂  which can be obtained 

by : 

 ( ) ( ) ( )( )ˆˆ ˆMSE Var Baisα = α + θ
2

. 

 

Table (1.7) 

  Mean Square Error of Estimator ( )θ̂  

   

Sample 

Size 

Mean square Error of Estimation ( )θ̂   

M.L.M M.M M.M.M L.S.M 

5 0.022 0.002 0.151 649 10−×  

10 0.012 0.0009 0.094 −× 614 10  

20 0.008 0.002 0.046 −× 69 10  

30 0.0002 0.015 0.005 −× 525 10  

40 0.018 0.011 0.003 −× 525 10  

50 0.003 0.001 0.001 −× 536 10  
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3.1 Introduction 
 

In this chapter we shall utilize the procedures given in section (2.5) of 

chapter two for generating random varaites from Weibull 
1

( ,1)
2

W  

distribution. Efficiency of some procedures was made theoritically and 

assessed practicaly. The simulated Weibull samples are observed by the six 

procedures mensioned in section (2.5.1), (2.5.2), (2.5.3), (2.5.4), (2.5.5) and 

(2.5.6) of chapter two and used to estimate the distribution parameters by the 

four methods given by sections (1.4.3), (1.4.4), (1.4.5), and (1.4.6) of 

chapter one. 

 

3.2 Application of Procedure ( )1W −  

A computer program for procedure ( )1W − of section (2.5.1) which 

utilize the Inverse Transform Method to generate the 
1

( ,1)
2

W  varaites is 

shown in program (5) of Appendix (B). Sample size ( )5,10 10 50n =  are 

taken. For high accuracy the procedure repeats itself 100 times. The result is 

displayed in table (3.1).          
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Table (3.1) 

Parameters estimation using procedure ( )1W −  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Application of Procedure ( )2W −  

A computer program for procedure ( )2W − of section (2.5.2) which 

utilize theorem (1.2) to generate the 
1

( ,1)
2

W  varaites is shown in program 

(6) of Appendix (B). Sample size ( )5,10 10 50n =  are taken. For high 

accuracy the procedure repeats itself 100 times. The Result is displayed in 

table (3.3).   

 

 

 

Sample 

Size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0.401,1.053 ( )0.547,0.858 ( )0.625,1.145 ( )0.571,1.316 

10 ( )0.522,1.502 ( )0.410,1.030 ( )0.591,1.172 ( )0.411,1.352 

20 ( )0.440,1.157 ( )0.514,0.952 ( )0.522,1.152 ( )0.540,1.024 

30 ( )0.458,1.299 ( )0.431,1.123 ( )0.476,0.900 ( )0.436,1.188 

40 ( )0.476,0.971 ( )0.453,1.104 ( )0.460,1.014 ( )0.510,1.053 

50 ( )0.494,0.902 ( )0.470,0.962 ( )0.501,0.950 ( )0.501,1.131 
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Table (3.3) 

Parameters estimation using procedure ( )2W −  

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Application of Procedure ( )3W −  

A computer program for procedure ( )3W − of section (2.5.3) which 

utilize the Acceptance-Rejection method generate the 
1

( ,1)
2

W  varaites is 

shown in program (7) of Appendix (B). Sample size ( )5 10 50n =  are taken. 

For high accuracy the procedure repeats itself 100 times to calculates the 

procedure efficiency and the run size 100 were made for the efficiency 

average. The result is displayed in table (3.4).       

 

Sample 

size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0,541,1.246 ( )0.562,1.155 ( )0.510,1.282 ( )0.412,0.721 

10 ( )0.405,1.085 ( )0.533,0.905 ( )0.511,1.082 ( )0.442,1.332 

20 ( )0.463,0.923 ( )0.453,1.040 ( )0.455,0.988 ( )0.480,1.169 

30 ( )0.484,0.940 ( )0.460,1.033 ( )0.495,1.085 ( )0.490,0.912 

40 ( )0.472,1.060 ( )0.481,1.191 ( )0.484,0.999 ( )0.497,1.096 

50 ( )0.498,0.905 ( )0.493,1.014 ( )0.499,0.950 ( )0.498,1.092 
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Table (3.4) 

Efficiency of Procedure ( 3W − ) 

Theory Efficiency Simulation Efficiency Error=Theory-Simulation 

0.40 0.3999 0.0001 

 

Procedure ( 3W − ) is used to each one of the four methods of 

estimation with sample size ( )5 10 50n =  and the repetition is 100 was 

made. The result are displayed in table (3.5). 

 

Table (3.5) 

Parameters estimation using procedure ( )3W −  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0.593,0.990 ( )0.562,1.126 ( )0.583,1.368 ( )0.588,0.771 

10 ( )0.557,1.263 ( )0.543,1.003 ( )0.550,0.937 ( )0.400,1.189 

20 ( )0.535,1.069 ( )0.437,1.149 ( )0.415,1.069 ( )0.411,1.127 

30 ( )0.521,1.037 ( )0.433,0.916 ( )0.529,1.056 ( )0.538,1.066 

40 ( )0.454,0.933 ( )0.453,1.143 ( )0.460,0.930 ( )0.444,1.122 

50 ( )0.477,1.026 ( )0.483,0.917 ( )0.470,0.995 ( )0.495,0.107 
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3.5 Application of Procedure ( )4W −  

A computer program for procedure ( )4W − of section (2.5.4) which 

utilize the Acceptance-Rejection method generate the 
1

( ,1)
2

W  varaites is 

shown in program (8) of Appendix (B). Sample size ( )5,10 10 50n =  are 

taken. For high accuracy the procedure repeats itself 100 times to calculates 

the procedure efficiency and the run size 100 were made for the efficiency 

average. The result is displayed in table (3.6).          

 

Table (3.6) 

Efficiency of Procedure ( )4W −  

Theory Efficiency Simulation Efficiency Error=Theory-Simulation 

0.266 0.263 0.003 

 

Procedure ( )4W −  is used to each one of the four methods of estimation 

with sample size ( )5,10 10 50n =  and the repetition is 100 was made. The 

result are displayed in table (3.7). 

 

 

 

 

 

 

 

 



Chapter Three                                                                            Monte Carlo Application  
 
 

 
 

 

71

Table (3.7) 

Parameters estimation using procedure ( )4W −  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Application of Procedure ( )5W −  

A computer program for procedure ( )5W − of section (2.5.5) which 

utilize the Acceptance-Rejection method generate the 
1

( ,1)
2

W  varaites is 

shown in program (9) of Appendix (B). Sample size ( )5,10 10 50n =  are 

taken. For high accuracy the procedure repeats itself 100 times to calculates 

the procedure efficiency and the run size 100 were made for the efficiency 

average. The result is displayed in table (3.8).  

 

 

 

Sample 

Size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0.409,1.116 ( )0.562,1.151 ( )0.522,0.969 ( )0.533,1.107 

10 ( )0.547,1.154 ( )0.523,1.360 ( )0.511,0.890 ( )0.520,0.982 

20 ( )0.532,1.393 ( )0.419,0.871 ( )0.437,1.161 ( )0.431,1.105 

30 ( )0.503,1.348 ( )0.441,1.262 ( )0.510,1.124 ( )0.444,1.103 

40 ( )0.481,1.011 ( )0.480,1.220 ( )0.477,1.001 ( )0.490,1.022 

50 ( )0.493,1.186 ( )0.499,1.099 ( )0.482,0.952 ( )0.496,1.058 
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Table (3.8) 

Efficiency of Procedure ( )5W −  

Theory Efficiency Simulation Efficiency Error=Theory-Simulation  

0.76 0.759 0.001 

 

Procedure ( )6W −  is used to each one of the four methods of 

estimation with sample size ( )5,10 10 50n =  and the repetition is 100 was 

made. The result are displayed in table (3.9). 

 

Table (3.9) 

Parameters estimation using procedure ( )5W −  

 

 

 

 

 

 

 

 

 

 

         

 

 

Sample 

size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0.522,1.007 ( )0.535,1.110 ( )0.531,0.983 ( )0.415,1.373 

10 ( )0.512,1.046 ( )0.526,0.824 ( )0.511,1.213 ( )0.433,1.023 

20 ( )0.434,0.919 ( )0.401,1.021 ( )0.460,1.213 ( )0.452,1.064 

30 ( )0.439,0.981 ( )0.537,1.150 ( )0.464,1.058 ( )0.483,1.099 

40 ( )0.483,0.951 ( )0.440,1.248 ( )0.494,1.023 ( )0.496,1.056 

50 ( )0.498,0.928 ( )0.491,1.044 ( )0.499,0.988 ( )0.500,0.972 
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3.7 Application of Procedure ( )6W −  

A computer program for procedure ( )6W −  of section (2.5.6) which 

utilize the Central Limit Theorem to generate the 
1

( ,1)
2

W  varaites is shown 

in program (10) of Appendix (B). Sample size ( )5,10 10 50n =  are taken. 

For high accuracy the procedure repeats itself 100 times. The result is 

displayed in table (3.10).    

 

Table (3.10) 

Parameters estimation using procedure ( )6W −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Size 

Estimation of ( )ˆˆ,α θ  

M.L.M M.M M.M.M L.S.M 

5 ( )0.512,1.056

 
( )0.411,1.245

 
(0.418,0.936
 

( )0.549,0.811

 
10 ( )0.510,1.099

 
( )0.531,1.084

 
( )0.527,0.922

 
( )0.530,0.806

 
20 ( )0.478,0.901

 
( )0.476,0.776 ( )0.423,1.022

 
( )0.409,1.083

 
30 ( )0.487,0.881 ( )0.509,1.232

 
( )0.453,0.926

 
( )0.452,1.020

 
40 ( )0.491,1.083 ( )0.485,0.928 ( )0.466,1.047

 
( )0.513,1.003

 
50 ( )0.498,1.020

 
( )0.501,1.074

 
( )0.496,1.037

 
( )0.495,1.199
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2.1 Introduction 

The goal of this chapter is to generate random variates from Weibull 

distn. by using Inverse Transform Method, Theorem (1.2), Acceptance 

Rejection Method and Central Limit Theorem. In section (2.2) we 

introduced the genesis of Monte Carlo simulation and the uses of Monte 

Carlo methods; in section (2.3) we observed the random number 

generation and the algorithm which will be used to generate random 

variates. Section (2.4) show the random variates generation from 

continuous distn.,s which consist of two methods namely, Inverse 

Transform method (IT) and Acceptance Rejection method (AR). Section 

(2.5) we shall consider six procedures for generating random variates from 

Weibull distn. by Inverse Transform method, Theorem (1.2), Acceptance 

Rejection method and Central Limit Theorem.           

After constructing a mathematical model for the problem under 

consideration, the next step is to derive a solution. There are analytic and 

numerical solution methods. The analytic solution is usually obtained 

directly from its mathematical representation in the form of formula, while 

the numerical solution is generally an approximate solution obtained as a 

result of substitution of numerical values for the variables and parameters 

of the model [27]. Many numerical methods are iterative, that is, each 

successive step in the solution uses the result from the previous step such 

as Newton’s method for approximating the root of non-linear eq. Two 

special types of numerical methods simulation and the Monte Carlo are 

designed for a solution of deterministic and stochastic problem. 

Simulation in a wide sense is defined as a numerical technique for 

conducting experiments on a digital computer which involve certain types 

of mathematical and logical models that describe the behavior of system 



                    

 43 

                          Various Techniques of Sampling Weibull  
                                 Variates by Monte Carlo Simulation 
 

Chapter Two  

over extended periods of real time, for example, simulating a football game, 

supersonic jet flight, a telephone communication system, wind tunnel [27], 

a large scale military battle (to evaluate defensive or offensive weapon 

system), or a mainterinance operation (to determine the optimal size of 

repair crews) and a live applications of real equipment in mock combat 

scenarios or firing range, these allow pilots, tank derivers and others 

soldiers to practice the physical activates of a war with their real equipment 

[26], etc. .     

Whereas simulation in a narrow sense (also called stochastic 

simulation) is defined as experimenting with the model over time, it 

includes sampling stochastic variates from probability distn. Often 

simulation is viewed as a “Method of Last Resort” to be used when every 

things else has failed [27]. Software building and technical development 

have made simulation one of the most widely used and accepted tools for 

designers in the system analysis and operation research. 

In this chapter, we shall introduce two methods to generate random 

variates from continuous probability distn., namely 

1- Inverse Transform Method. 

2- Acceptance-Rejection Method. 

These methods specifically applied on six procedures for generating 

random variates from Weibull distn. .       

 

2.2 Monte Carlo Simulation 

Stochastic simulation is sometimes called Monte Carlo simulation, 

because sampling from a particular distn. involve the use of random 

numbers [27]. Historically, the Monte Carlo method was considered as a 

technique using random or pseudorandom numbers for a solution of a 
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model. These random numbers are essentially independent random 

variables uniformly distributed over the unit interval [0,1]. 

 Actually there are arithmetic codes  available at computer center for 

generating sequence of pseudorandom number digits where each digits (0 

through 9) occurs with approximately equal probability (imagine flip of a 

fair ten-side die). Such codes are called random number generators.  

In the beginning of the 20th century the Monte Carlo method was used 

to examine the Boltzmann eq. [27]. 

In (1908) the famous statistician W.S.Gosset (student) used the Monte 

Carlo Method (experimental sampling) for estimating the correlation 

coefficient in his t-distn. [27]. One of earliest problem connected with 

Monte Carlo method is the famous Buffon’s needle problem, who found 

the probability of a needle of length L thrown randomly onto a floor 

composed of parallel planks of width D>L is 
2L

p
Dπ

=  which can be 

estimated as the ratio of the number of throws hitting the crack to the total 

number of throws.  

The term Monte Carlo was introduce by Von Numann and Ulam 

during world war II as a code word for the secret work at Los Alamos; it 

was suggested by the gambling casinos at the city of Monte Carlo in 

Monaco [30]. The Monte Carlo method was then applied to problems 

related to the a atomic bomb where the work involved direct simulation of 

behavior concerned with neutron random diffusion in fissionable material.  

Shortly thereafter Monte Carlo methods used to evaluate complex 

multidimensional integrals, stochastic problems, and deterministic 

problems if they have the same formal expressions as some stochastic 

process. Also Monte Carlo method is used for solution of certain integrals 
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and differential equations, sampling of random variates from probability 

distn.,s, and for analyzing complex problem (such as radiation transport to 

rivers). Useful references related to Monte Carlo simulation by Rubinstein 

(1981) [27] and Norman (1988) [22]. 

 

2.3 Random Number Generation [27] 

Many techniques for generating random numbers on digital computer 

by Monte Carlo method and simulation have been suggested, tested, and 

used in recent years. Some of these methods are based on random 

phenomena, others on deterministic recurrence procedures. 

Initially manual methods were used to generate, a sequence of 

numbers such as coin flipping, dice rolling, card shuffling, and roulette 

wheels, but these methods were too slow for general use and moreover the 

generated sequence of such methods could not reproduced .           

With the computer aid it becomes possible to obtained random 

numbers. In (1951) Von Neumann suggested the mid-square method using 

the arithmetic operations of a computer. His idea was to take the square of 

the preceding random number and extract the middle digits. For instance, 

suppose we wish to generate 4-digits numbers. 

1−Choose any 4-digits to generate 4-digits numbers, say 3201. 

2−Square it, to have 10246401. 

3−The next 4-digits numbers is the middle 4-digit in step (2), that is 

     2464. 

4−Repeat the process.           

 This method proved slow and not suitable for statistical analysis, 

furthermore the sequence tends to cyclicity, and once a zero is encountered 

the sequence terminates [27]. 
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One method of generating random numbers on digital computer was 

published by RAND Corporation (1955); consist of preparing a table of 

million random digits stored in the computer memory [25]. The advantage 

of this method is reproducibility and its disadvantage, was its slow and the 

risk of exhausting the table. 

We say that, the random numbers generated by any method is a 

“good” one if the random numbers are uniformly distributed, statistically 

independent and reproducible; moreover the method is necessarily fast and 

requires minimum capacity in the computer memory. 

The Congruential methods for generating pseudorandom numbers are 

designed specifically to satisfy as many of these requirements as possible. 

These methods produce a nonrandom sequence of numbers according 

to some recursive formula based on calculating the residues module of 

some integer m of a linear transformation. Knuth [27], show that numbers 

generated by such sequence appear to be uniformly distributed and 

statistically independent [4].  

The Congruential methods are based on a fundamental congruence 

relationship, which may be formulated as:    

 ( )( )1 modi iX aX c m+ = + , 1,2,...,i m= .        ………………... (2.1) 

where a is the multiplier, c is the increment, and m is the modulus (a, c, 

m are non-negative integers), (mod m) mean that eq.(3.1) can be written as:  

[ ]1i iX aX c m z+ = + −                           .……………………………….(2.2) 

where [ ] ia X c
z

m

+ =   
 is the largest integer in z. 

Given an initial starting value 1X  with fixed values of a, c and m, 

then eq. (2.2) yields congruence relationship (modulo m) for any values i 
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of the sequence {Xi}. The seq. { }iX  will repeat itself in at most m steps 

and will be therefore periodic.  

For example: 

Let 1 4a c X= = = , and 9m = , then the sequence obtained from the 

recursive formula 

( )( )1 4 4 mod 9i iX X+ = +  is 4,2,3,7,5,6,1,0,4,... ; 1,2,3,...iX i= =  . 

The random number on the unit interval [0,1] can be obtained by:  

i
i

X
U

m
= , 1,2,...,i m=  .      ……………………………………….(2.3) 

It follows from eq.(2.3) that iX m≤ , i∀ , this inequality mean that 

the period of the generator cannot exceed m, that is, the sequence { }iX  

contains at most m distinct numbers. So we should choose m as large as 

possible to ensure, a sufficiently large sequence of distinct numbers in the 

cycle. 

It is noted in the literature, [16] that good statistical result can be 

achieved from computers by choosing 7 12a +=  , 1c =  , and 352m = .   

  

2.4 Random Variates Generation From Continuous Distribution   

Many methods and procedures are proposed in the literature for 

generating random variates from different distribution. We shall utilize 

most well known methods namely, Inverse Transform Method (IT), and  

Acceptance-Rejection Method (AR). 

     

2.4.1 Inverse Transform Method [27]: 

Let X be a r.v. with c.d.f. F(x), since F(x) is non-decreasing function. 

The inverse function 1( )F y− may be defined for any value of y between 0 
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and 1 as 1( )F y− is the smallest x satisfying ( )F x y≥ , that is, 

( ){ }1( ) inf :F y x F x y− = ≥ .      ………….……………………………(2.4) 

It is important to prove the following theorem. 

 

Theorem (2.1) [27]: 

The random variable ( )U F X= ∼ ( )0,1U  if and only if, the random 

variable 1( )X F U−= has c.d.f. Pr( ) ( )X x F X≤ = .  

Proof :        

Let the random variable ( )U F X= ∼ ( )0,1U  then U has c.d.f.  

                ( )
0, 0

Pr( ) , 0 1

1, 1

u

G u U u u u

u

≤
= ≤ = < <
 ≥

  

Now,  

( ) ( )1Pr( ) Pr[ ( ) ] Pr[ ]X x F U x U F x F x−≤ = ≤ = ≤ = . 

Conversely, Let the random variable has X c.d.f. ( )Pr( )X x F x≤ =  

and let G(u) be the c.d.f. of random variable U, then 

( ) ( ) ( )1 1( ) Pr( ) Pr PrG u U u F X u X F u F F u u
− −   = ≤ = ≤ = ≤ = =      

                                                                                                                      

                                                                                                       Q.D.E.                                        

The algorithm of generating random variates by inverse transform 

method can be described by the steps of IT-Algorithm.  

IT-Algorithm: 

1- Generate U from ( )0,1U . 

2- Set ( )1
X F U

−= . 
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3- Deliver X as a random variable generated from the p.d.f. ( )f x  . 

4- Stop. 

As an application of IT- Algorithm, we shall consider the following two 

examples. 

 

2.4.2 Examples: 

Example (2.1) [27]: 

Generate a r.v. X from ( )0,1C  where the distn. p.d.f. 

2

1
( )

(1 )
f x

xπ
=

+
 , x− ∞ < < ∞  

Solution: 

The c.d.f. of this p.d.f. is 

( ) ( ) 2

1 1
( ) Pr

1

x x

F x X x f t dt dt
tπ

−∞ −∞

= ≤ = =
+∫ ∫  

( )
1tan 1

2

x
F x

π

−
= +  set u=F(x) implies 

 
1

tan ( )
2

x uπ = −  
 .  

Apply IT-Algorithm: 

1- Generate U from ( )0,1U . 

2- Set 
1

tan ( )
2

X Uπ = −  
. 

3- Deliver X as a r.v. generated from 
2

1
( )

(1 )
f x

xπ
=

+
. 

4- Stop. 
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Example (2.2) [27]: Generate a random variable X from the distribution 

whose distn. p.d.f.  

  ( )
1

, 0
1 2

12
,0

2

x

x

x

e x
f x e

e x

−

−

 − ∞ < <= = 
 ≤ < ∞


 

  Solution: 

The c.d.f. of this p.d.f. is  

( ) ( )
( )

( ) ( )
0

0

0,

, 0

Pr

, 0

1,

x

x

x

f t dt x

F x X x

f t dt f t dt x

x

−∞

−∞

→ −∞

 − ∞ < <
= ≤ = 
 + ≤ < ∞

 → ∞

∫

∫ ∫

 

So, 

( )

0,

1
, 0

2
1

1 , 0
2

1,

x

x

x

e x
F x

e x

x

−

→ −∞

 − ∞ < ≤
= 
 − ≤ < ∞

 → ∞

 

For 0x−∞ < < , set ( )u F x= ⇒
1

2
xu e= implies ( )ln 2x u= , for 

1
0

2
u< < . 

For 0 x≤ < ∞ , set ( )u F x=  ⇒
1

1
2

xu e −= − implies ( )ln 2x u= − , 

for 
1

1
2

u≤ < . 
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Apply IT-Algorithm:  

1- Generate U from ( )0,1U . 

2- If 
1

0
2

U< <  set ( )ln 2X U= ; go to step (4). 

3- Else, set ( )ln 2X U= − . 

4- Deliver X as a random variable generated from. 

         ( ) 1
,

2
xf x e x−= −∞ < < ∞ . 

5- Stop. 

We note that: 

To apply Inverse Transform Method the c.d.f. ( )F x  must exist in a form 

for which the corresponding inverse transform can found analytically. 

Some probability distn., it’s either impossible or difficult to find the 

inverse transform, that is, to solve  ( ) ( )
x

u F x f t dt
−∞

= = ∫    

For example : 

1- X ∼ ( )Exp λ  where ( ) 1
, 0

x

f x e x
−

= < < ∞λ
λ

 (possible) . 

2- X ∼ ( )2,1G  where ( ) , 0xf x x e x−= < < ∞  (difficult) . 

3-  X ∼ ( )0,1N  where ( )
1 2
21

,
2

x
f x e x

π
−

= − ∞ < < ∞  (impossible) . 

   

2.4.3 Acceptance Rejection Method [16] 

This method is due to Von Neumann. This method can be applied to 

generate variable from an appropriate distn. and subjecting it to a test to 

determine whether or not it will be acceptable for use.    
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To carry out the method, we represent the p.d.f. ( )f x  of the 

generated random variable X as ( ) ( ) ( )f x c h x g x=  where 1c ≥ , h(x) is 

also a p.d.f. and ( )0 1g x≤ ≤  . Then we generate two random variables U 

and Y from ( )0,1U  and h(y), respectively, and test to see whether or not 

the inequality ( )U g Y≤  holds. 

1- If the inequality holds, then accept Y=X as a variate generated from 

         ( )f x . 

2- If the inequality is violated, reject the pair U, Y and try again. 

Theorem (2.2) [27]: 

Let X be a random variable distributed with the p.d.f. ( )f x  ,  x I∈ , 

which is represented as ( ) ( ) ( )f x c h x g x=  where 1c ≥ , h(x) is also a 

p.d.f. and ( )0 1g x≤ ≤  . 

Let U and Y be a distributed ( )0,1U and h(y), respectively, then 

( ) ( )Pr Y x U g Y f x = ≤ =  . 

Proof : 

( ) ( )
( )

( )
( )

Pr ,
Pr

Pr

Pr ,

Pr ,
x

Y x U g Y
Y x U g Y

U g Y

Y x U g Y

Y x U g Y dx

= ≤   = ≤ =  ≤  

= ≤  =
= ≤  ∫

 

Using Bayes theorem [18], we have: 

( ) ( )( ) ( )
( ) ( )

Pr Pr
Pr

Pr Pr
x

U g Y Y x Y x
Y x U g Y

U g Y Y x Y x dx

≤ = =
 = ≤ =  ≤ = =  ∫
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Since, 

( ) ( ) ( )Pr PrU g Y Y x U g x g x≤ = = ≤ =       and ( ) ( )Pr Y x h x= =   

Therefore ; 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
Pr

1
x

x

g x h x g x h x g x h x
Y x U g Y

f xg x h x dx dx
cc

 = ≤ = = = 
∫ ∫

 

                                         ( ) ( )c h x g x= .    

The efficiency of Acceptance-Rejection Method is to determined by the 

inequality ( )U g Y≤  where efficiency is: ( ) 1
Pr U g Y p

c
≤ = =   . 

Because the trails are independent, the probability of success in each 

trials is 
1

p
c

= . The number of trials N before a successful pair (U,Y) has 

geometric distn. with p.d.f.  

( ) ( ) 1Pr 1 , 1,2,3,...

0 , . .

n
N n p p n

e w

−= = − =
=

 

With the expected number of trails ( ) 1
E N c

p
= = .  

The AR-Algorithm describes the necessary steps of generating a 

random variable by Acceptance-Rejection Method. 

AR-Algorithm: 

1- Generate U from ( )0,1U  . 

2- Generate Y from h(y) . 

3- If ( )U g Y≤ , deliver (we accept) Y=X as a random variable                       

generated from the p.d.f. ( )f x . Go to step (5).        

4- Else go to step (1). 

5- Stop. 
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We note that, for the Acceptance-Rejection method to be of practical 

interest, the following criteria must be used. 

(i) It should be easy to generate from h(x). 

(ii) The efficiency (probability) of the procedure 
1

c
 should be large, that 

is, c closed to one . 

As an application of AR-Algorithm, we shall consider the following 

two example. 

To illustrate the method, we choose c≥1 such that 

( ) ( ) ( ),f x c h x x x Iϕ≤ = ∀ ∈ . Then the problem is to find the function 

( )xϕ  and the function ( ) ( )x
h x

c

ϕ
=  from which the r.v. can be generated.   

2.4.4 Examples 

Example(2.3) [27]: 

Solution: 

Since, [ ]2 2 , ,R x R x R R− ≤ ∀ ∈ −  

Then, ( ) ( )2 2
2 2

2 2 2R
f x R x x

R R R
ϕ

π π π
= − ≤ = =  

But, ( ) ( )c h x xϕ=  implies ( ) 2 4R R

R R

c x dx dx
R

ϕ
π π− −

= = =∫ ∫  

So ( ) ( )
2

1
,

4 2

x R
h x R x R

c R

ϕ π

π

= = = − ≤ ≤  and 

( ) ( )
( )

2 2f x R x
g x

c h x R

−= =  . 

Now, the c.d.f. of the p.d.f. h(x) is:  
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( ) ( ) 1

2 2

x x

R

x R
H x h t dt dt

R R
−∞ −

+= = =∫ ∫ . 

Set  

( )2 2

y R
u H y

R

+= =  implies ( )22 1y u R= − .  

Apply AR-Algorithm: 

1- Read R. 

2- Generate U1 and U2 from ( )0,1U  . 

3- Set ( )22 1Y u R= − . 

4- If ( )1U g Y≤ = 2 21
R Y

R
− , deliver (we accept) Y=X as a r.v. 

generated from f(x).Go to step (6).  

5- Else Go to step (2). 

6- Stop. 

The expected number of trials 
4

1.273c
π

= =  and the efficiency is: 

1
0.785

4c
= =π

.  

Example(2.4) [27]: 

Generate a r.v. from the distn. p.d.f. 

 
( )( ) 6 1 ,0 1

0 , . .

f x x x x

e w

= − < <
=

 

Solution: 

Since, ( )1x x x− ≤ ⇒  ( ) ( ) ( )6 1 6f x x x x xϕ= − ≤ =  

( ) ( )c h x xϕ=  ⇒ ( ) ( )
1 1

0 0

c h x dx x dxϕ=∫ ∫  ⇒  
1

0

6c x dx= ∫  implies 3c = .  
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 Then, 

 ( ) 2 ,0 1

0, . .

x x
h x

e w

< <= 


 

( ) ( )
( )

( ) ( )f x x x x x
g x

c h x x x

− −
= = =

×
6 1 6 1

3 2 6
( ) ( )1 ,0 1g x x g x⇒ = − < < .  

 Now,  

( ) ( ) 2

0, 0

Pr ,0 1

1, 1

x

H x X x x x

x

≤


= ≤ = < <
 >

 setting ( ) 2
2u H y y= =  

implies 2y u=  . 

Apply AR-Algorithm: 

1- Generate U1 and U2 from ( )0,1U . 

2- Set ( )
1
22Y U=  . 

3- If 1 1 ,U Y≤ −  deliver Y=X as a r.v. generated from p.d.f. 

( ) ( )6 1f x x x= − . 

4- Else go to step (1). 

5- Stop 

The expectation number of trials 3c = , and the efficiency is: 

1 1
0.333

3c
= =   

2.5 Procedures for Generating Random Variates for Weibull         

     Distribution 

In this section we shall consider six procedures for generating random 

variates from Weibull distn. by using Inverse Transform method, Theorem 

(1.2), Acceptance-Rejection method and Central Limit Theorem.  
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2.5.1 Procedure (W-1):   

This procedure is based on Inverse Transform Method. 

( ) 1 ,0

0 , . . ; 0, 0

xf x x e x

e w

αα θαθ
α θ

− −= < < ∞
= > >

 

The c.d.f. of this p.d.f. is 

( ) ( ) ( ) 1

0

Pr
x x

tF x X x f t dt t e dt
αα θαθ − −

−∞

= ≤ = =∫ ∫ implies 

( ) 1 xF x e
αθ−= − , setting ( )u F x=  implies 1 xu e

αθ−= − implies 

( )
1

1
lnx u

α

θ
− =  
 

. 

Algorithm (W-1):  

1- Read ,α θ . 

2- Generated U from ( )0,1U . 

3- Set ( )
1

1
lnX u

α

θ
− =   

. 

4- Deliver X as a r.v. generated from  ( ) 1 xf x x e
αα θαθ − −= . 

5- Stop. 

 

2.5.2 Procedure (W-2): 

This procedure is based on Theorem (1.2) as follows: 

 Algorithm (W-2): 

1- Read ,α θ . 

2- Generate U from ( )0,1U . 
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3- Set ( )lnX U= − . 

4- Set XY e −= . 

5- Deliver Y as a r.v. generated from W(α,θ). 

6- Stop. 

  

2.5.3 Procedure (W-3): 

The procedure is based on Acceptance-Rejection method, where the 

Weibull variate is generated by utilizing the standard normal distn. as 

follows: 

The p.d.f. of r.v. X ∼ ( )0,1N  is  

( )
2

21
,

2

x

f x e x
π

−
= − ∞ < < ∞  where we make use the inequality 

2

2
2

2
, ( , )

1

x

e x
x

−

≤ ∀ −∞ ∞
+

 . 

To apply the Acceptance-Rejection method, we need to write the p.d.f. 

as ( ) ( ) ( )f x c h x g x=  as shown in section (2.4.3). 

Now, we consider the inequality 

2

2
2

2

1

x

e
x

−

≤
+

⇒

2

2
2

1 1 2

2 2 1

x

e
xπ π

−

≤
+

, then 

( ) ( )
2

2
2

1 1 2

2 2 1

x

f x e x
x

ϕ
π π

−
= ≤ =

+
 . 

                                                                                                                   

( ) ( ) ( ) ( )c h x x x dx dx c
x

∞ ∞

−∞ −∞

= ϕ ⇒ ϕ = ⇒ = π
π +∫ ∫ 2

2
2

2 1
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2

2

2
( ) 1(1 )

( )
(1 )2

x x
h x

c x

ϕ π
ππ

+= = =
+

. 

( ) 1 1 1
2

1 1 1 1
tan (tan ) tan

(1 ) 2 2

x xdx
H x t x x

x
− − −

−∞

= = = + = +
−∞+∫

π
π π π π

 

( )
2

2 2( ) 1
(1 )

( ) 2

x
f x

g x x e
x

−
= = +

ϕ
, where ( )0 1g x≤ ≤ . 

Set  1 1
2 2

1 1 1
( ) tan ( ) tan

2 2
u H y y u y− −= = + ⇒ − =π

π
implies 

2
1

tan ( )
2

y u = − 
 
π . 

The number of trials equal to 2 2.51c π= ≈ and the efficiency 

(probability) of the method is equal to 
1 1

0.40
2c π

= ≈  

Algorithm (W-3): 

1- Read α,θ. 

2- For i=1 to 2. 

3- Generate U1 and U2 from ( )0,1U  . 

4- Set 2
1

tan ( )
2

Y uπ = − 
 

 . 

5- If U1>g(Y) go to step (3). 

6- Else set Xi=Y as a r.v. generated from ( )0,1N . 

7- Next i. 

8- Set 1 1Z X= θ , 2 2Z X= θ and 

1
2 2

1 2

2

Z Z
R

 +=  
 

α
. 

9- Deliver R as a r.v. generated from W(α,θ). 
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10- Stop. 

  

 2.5.4 Procedure (W-4): 

This procedure is based on Acceptance-Rejection method, where the 

Weibull variate is generated by utilizing the Normal distn. as follows: 

Since, the standard Normal distn. is symmetric about origin, then the 

p.d.f. of r.v. ( )0,1X N +
�  can be written as: 

( )
2

22
, 0

0 , . .

x

f x e x

e w
π

−
= < < ∞

=

 

We can make use of the inequality 

2

2
2

6

1

x kx

kx

ke
e

e

−−

−≤
+

, where 
8

k
π

=  

[27] . 

To apply the Acceptance-Rejection method, we need to write the p.d.f. as 

( ) ( ) ( )f x c h x g x=  as shown in section (2.4.3). 

Now, we consider the inequality  

2

2
2

6
, 0

1

x kx

kx

ke
e x

e

−−

−≤ < < ∞
+

 .  

( )
2

2
2

2

2 3
( )

1

x kx

kx

k e
f x e x

e
ϕ

π

−−

−= ≤ =
+

 

( ) ( )c h x xϕ=  ⇒  ( )
2

2
0 0

3

1

kx

kx

k e
c x dx dx

e
ϕ

∞ ∞ −

−= =
+∫ ∫  implies 3

2
c

π=  

( ) 2

2

2
( ) ,0

1
0, . .

kx

kx

x k e
h x x

c e
e w

−

−= = < < ∞
+

=

ϕ
π   
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( ) ( ) ( ) ( )1

0, 0

4
Pr 1 tan , 0

1,

x kx

x

H x X x h t dt e x

x

− −
−∞

≤
= ≤ = = − < < ∞


→ ∞

∫ π
 

( ) ( )
( )

( )
2

2
2 2

22
2

1
(1 )

8 6
3

x
xkx

kx

kx
kx

e ef x e e
g x

x ke
ke

−− − −

−
−

+ += = =π
ϕ

π

 where   

Set ( )2u H y=  ⇒ ( )1
2

4
1 tan kyu e

π
− −= −  implies    

2
1

ln tan ( )
4

y u
k

  = −   
  

π
 .  

The number of trials equal to 3 3.76
2

c
π= ≈  and the efficiency 

(probability) of the method is equal to 
1 1 2

0.266
3c π

= ≈  

Algorithm (W-4): 

1- Read where α, θ, k. 

2- For i=1 to 2. 

3- Generate U1 and U2 from ( )0,1U . 

4- Set ( )2
1

ln tan
4

Y u
k

π  = −   
  

 . 

5- If U1>g(Y) go to step(3). 

6- Generate U3 from ( )0,1U . 

7- If 3
1

2
U <  set  Xi=−Y as a r.v. generated from ( )0,1N − .  

8- Else set Xi=Y as a r.v. generated from ( )0,1N + . 
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9- Next i. 

10- Set 1 1 2 2,Z X Z Xθ θ= = and 

1
2 2
1 2

2

Z Z
R

α +=  
 

. 

11- Deliver R as a r.v. generated from W(α,θ) . 

12- Stop.  

 

2.5.5 Procedure (W-5):   

This procedure is based on Acceptance-Rejection method, where the   

Weibull variate is generated by utilizing the standard normal distn. as 

follows: 

Since the  standard normal distn. is symmetric about origin, then the 

p.d.f. of r.v. X ∼ ( )0,1N +  can be written as: 

( )
2

22
, 0

0 , . .

x

f x e x

e w
π

−
= < < ∞

=

 

Where we use of inequality ( )21 0x − ≥  [27].  

To apply the Acceptance-Rejection method, we need to write the p.d.f. 

as ( ) ( ) ( )f x c h x g x=  as shown in section (2.4.3). 

 Now, we consider the inequality( )21 0x − ≥ ⇒ 2 2 1 0x x− + ≥  .   

⇒

2 12
2 21

2 2

x
xx

x e e
− −− ≤ − ⇒ ≤ , then 

( )
2 1

2 22 2 2
x

x xe
e e e xϕ

π π π

− − −≤ = = . 
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( ) ( ) ( )
0 0

2 xe
c h x x c x dx e dxϕ ϕ

π

∞ ∞
−= ⇒ = =∫ ∫  implies 

2e
c

π
=   

( ) ( )
,0

0 , . .

xx
h x e x

c
e w

ϕ −= = < < ∞

=
 

( ) ( ) ( )
0

0, 0

Pr 1 , 0

1,

x

x

H x X x h t dt e x

x

∞
−

≤


= ≤ = = − < < ∞
 → ∞

∫  

( ) ( )
( )

( )21

2

x
f x

g x e
xϕ

−
−

= =  where ( )0 1g x< < . 

Set ( )2u H y=  ⇒ 2 1 yu e −= − ⇒y = ( )2ln u− . 

The number of trails equal to 
2

1.32
e

c
π

= ≈  and the efficiency 

(probability) of the method is equal to 
1

0.76
2c e

π= ≈   

Algorithm (W-5): 

1- Read where ,α θ . 

2- For i=1 to 2.  

3- Generate U1 and U2 from ( )0,1U . 

4- Set ( )2lnY u= − . 

5- If U1>g(Y) go to step (3) . 

6- Generate U3 from ( )0,1U  . 

7- If 3
1

2
U <  set Xi=−Y as a r.v. generated from ( )0,1N − .  

8- Else set X=Y as a r.v. generated from ( )0,1N + . 
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9- Next i. 

10- Set 1 1 2 2,Z X Z Xθ θ= = and 

1
2 2
1 2

2

Z Z
R

α +=  
 

. 

11- Deliver R as a r.v. generated from W(α,θ). 

12- Stop. 

 

2.5.6 Procedure (W-6): 

This procedure is based on a Central Limit Theorem [27], viz. For 

large n, Let X1, X2, …, Xn be a r.s of size n  from any distn. . (discrete. and 

continuous) having mean µ and variance δ2 with existence of M(t). Then 

the r.v. 
( )n X

X
µ

δ
−

= ∼ ( )0,1app N .  

To apply this procedure, we consider a r.s. U1, U2, …, Un of size n from 

( )0,1U  where p.d.f.  

  
( ) 1 ,0 1

0 , . .

g u u

e w

= < <
=

 

Since, ( )E Uµ = = 1

2
 and ( )2 Var Uδ = = 1

12
 implies 

1
( ) 12 12 ( )

21
12

n U
X n U

−
= = − .  

Algorithm (W−6): 

1- Read where ,α θ . 

2- For i=1 to 2. 

3- Generate U1, U2, …, Un from ( )0,1U . 
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4- Set 
1

1 1
, 12 ( )

2

n

i i
i

U U X n U
n =

= = −∑  . 

5- Set 1 1 2 2,Z X Z Xθ θ= = and 

1
2 2
1 2

2

Z Z
R

α +=  
 

. 

6- Deliver R as a r.v. generated from W(α,θ). 

7- Stop. 
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From the present study, we can conclude the following: 
 
1-  Inverse Transform procedure has less time consuming in comparison with 

the other procedures of generation.    

2- The theory and practice show that the efficiency of procedure (W-5) is 

superior than procedures (W-3) and (W-4). 

3- For all sample sizes, the M.L.M and L.S.M give estimates α̂  and θ̂  

which is close to the exact values of α and θ. 

4- For moderate sample sizes, the M.M.M gives estimate close to the exact 

values of α and θ. 

5- The M.M.M. and M.M.  gives small bias for estimatingα , while M.M.M 

and M.M.  gives small bias for estimating θ  in comparison with other 

methods of estimation.  

6- M.L.M. gives small variance of α̂  in comparison with other methods. 

7- L.S.M. gives small variance of θ̂  in comparison with other methods. 

8- M.L.M. and L.S.M.  gives small MSE of α̂  in comparison with other 

methods. 

9- L.S.M. gives small MSE of θ̂  in comparison with other methods. 

10- The disadvantage of Monte-Carlo methods depends on generating 

pseudorandom variates and that might carry dirty data.  
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     Future Work and Recommendation 

 
1- This work can be use for generalized Weibull distribution of three 

parameters and other life distribution.  

2- Another methods can be used to estimate the distribution parameters 

α and  θ like Minimum Chi-square, Minimum Distance, Bayesian 

Method, … etc.   

 3- It can be generate r.v.,s from Weibull distribution by other new 

procedures which can be compare their efficiency with our used 

procedures.  

4- The bias of estimation is a r.v. of unknown distribution which can be 

investigated approximately by using well-known statistical tests such 

as Chi-Square Goodness-of-Fit Test, Kolmogorov-Smirnov Goodness-of-

Fit Test, Serial Test, …etc. 
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The Weibull distn. has been widely used as a model in many areas of 

applications, specifically in the studies of failure components and as a model 

for product life. It has also been used as the distn. of strength of certain 

materials. It is named after the Swedish scientist Weibull [31] who first 

proposed the distn. in connection with his studies on strength of materials 

[31]. One reason for its popularity is that it has a great variety of shapes, 

which make it extremely flexible in fitting many kinds of empirical data. 

Weibull [32] showed that the distn. is also useful in describing the “wear-out” 

or fatigue failures. The distn. has been showed to provide a useful 

probabilistic model for time to failure of system, which consist of a large 

number of components where system failure occurs as soon as one component 

fails. Kao [19] used it as a model for vacuum tube failure [15], Mann gave a 

variety of situations in which the distn. is used for other types of failure data, 

Whitmore and Altschalerf used it in studies on the time interval to the 

occurrence of tumors in human population. Cohen [5] derived the maximum 

likelihood eq.,s to estimate the distn. parameters from (i) complete sample (ii) 

singly censored samples and (iii) progressively (multiple) censored samples. 

Bain and Antle [17] used a Maximum Likelihood method to obtain two 

simple estimators of parameters for Weibull distn. . These estimators are 

similar to the estimators given by Gumbel, Miller, Freund, and Menon. Some 

useful properties of these estimators are developed to make it practical use in 

Monte Carlo methods to determine the variance and biases of the estimators 

for various sample sizes. Comparison between the estimators are made and 

unbiasing factors calculated in some cases. The variance of the estimators 

were also compared with the Cramer-Rao lower bounds for regular unbiasing 



 II

estimators. Darrel, et al [10]. stated the problems of estimation and testing 

hypothesis regarding the parameters of the Weibull distn., and they obtained 

the following result (i) Exact confidence intervals for the parameters based 

upon maximum likelihood estimators. (ii) A table of unbiasing factors 

(developing upon sample size) for the maximum likelihood estimator of the 

shape parameters. (iii) Tests of hypotheses regarding the parameters and the 

power of the test regarding the shape parameter are developed. Nancy [21] 

assumed the Weibull distn. model of two parameters to obtain the exact 

confidence bounds for the shape parameter and for reliable life and shown 

that the analytically derived bounds for a few ordered observations be highly 

efficient w.r.t. those derivable made by Monte Carlo procedures using all 

order observation. Pandey and Upadhyay [24] studied shrinkage method to 

estimate the two parameters of Weibull distn. when the shape parameter 

known and when the scale parameter, shape parameter unknown. Al-Badhani 

[1] developed a new parameterization and general form for the distn. with 

three parameters. This formulation avoids many problems that appear in 

estimation and applications where his studied concern the strength of ceramic 

materials. 

Ishioka and Nonaka [28] presented a stable technique for obtaining the 

maximum Likelihood estimate of Weibull parameters of the life distn.,s of 

two components that form a series system. This technique requires much 

more computation than a previously published procedure. The simulation 

results, however, showed the standard deviation of the estimated values of the 

Weibull parameters greatly reduced. This technique does not require the 

concomitarite indicator, and can be applied not only for complete data but for 

randomly censored data. Seki and Yokoyama [29] were proposed robust 

estimation methods for the Weibull parameters, and applies bootstrap 

estimators of order statistics to the parametric estimation procedure. Estimates 

of the Weibull parameters are equivalent to the estimates using the extreme 
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value distn. .They examined the bootstrap estimators of order statistics for the 

parameters of the extreme value distn. . Accuracy and robustness for outliers 

are examined by Monte Carlo experiments which indicate adequate efficiency 

of the proposed estimators for data with some outliers. Al-Ali [3] studied 

some estimators of parameters and reliability function for Weibull distn. and 

suggested four methods to estimate the shape parameter when the scale 

parameter is known. Al-Fawzan [7] presented two categories methods, (i) 

graphical method and (ii) analytic method, for estimating the shape and scale 

parameters of Weibull distn., and he reported the computational experiments 

on the present methods. Dongfung and Guanzhong [11] used Monte Carlo 

simulations to search for the optimal probability estimator for estimating 

Weibull parameters with the linear regression method. Compared with 

commonly used probability estimators, the optimal one obtained gives a more 

accurate estimation of the Weibull modulus and the same estimation precision 

of the scale parameter. They will also concluded that the maximum likelihood 

method results in the highest precision, however, less conservative than the 

linear regression method. Abed [12] compared the parameters and reliability 

function of Weibull distn. with three parameters expressed as a failure model, 

using some classical methods of estimation (Maximum Likelihood Method, 

Moment Method), and Bayesian Methods (Bayes Method, shrinkage Method), 

and he used the Monte Carlo simulation to compare these methods. 

Montanari, et al. [13], applied unbiasing procedures for the maximum 

likelihood method to parameters of Weibull function are dealt with. The 

performance of unbiasing methods applied to expected values and point 

estimates of the Weibull parameters, as well they discussed the Monte Carlo 

method for the estimation of the expected values, and they shown that the 

accuracy of the unbiasing methods can be significantly affected by several 

factors, such as the value of the shape parameter and the estimation of the 
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expected value, and that some methods can be successfully applied to the 

point estimates of the Weibull parameters.   

The aim of thesis is to estimates the parameters of Weibull distn. by 

using four methods of estimation and generating a procedures of random 

variates from Weibull distn. by using Monte Carlo simulation. The 

professional MATHCAD, 2005 computer software is used in make the 

programs of thesis.    

This thesis includes three chapters. In chapter one, we present some 

important mathematical and statistical properties of Weibull distn. . 

Genesis of the distn. is derived by extending the idea of obtaining the 

Rayleigh distn. which utilize some specific transformation related to Normal 

distn. . Also, we show that the Weibull distn. can arise by two different 

approaches. Moment properties of the distn. are illustrated and unified. Four 

methods of estimation for the distn. parameters are discussed theoretically and 

assessed practically. Monte Carlo simulation is made by four methods of 

estimation. 

In chapter two, we introduce some concepts of the history of stochastic 

simulation. Procedures for generating random numbers and random variates 

from different distn. is discussed theoretically and supported by various 

examples. 

Six procedures for generating random variates from Weibull distn. are 

considered, and then some of these are discussed with efficiency and with out 

efficiency and number of trails are illustrated. 

In chapter three, we utilize practically the procedures of generating 

variates from Weibull distn. as discussed theoretically in chapter two. These 

procedures are applied from parameters estimation with efficiency of some 

procedures.      
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  صخلَ ستَ المُ 
 

 

لأهميتـــه فـــي    إلـــى توزيـــع ويبـــل ذو المعلمتـــين  لرســـالةتطرقنـــا فـــي هـــذه ا

مجــالات الإحصــاء وتطبيقـاتـــه مــن حيـــث اســتعراض لخـــواص التوزيــع الرياضـــية  

ثم تطرقنا إلى التخمين وخواصـه ومناقشـة  . والإحصائية والعزوم والعزوم العليا

  :وهي  معالم التوزيعلتخمين   طرق أربعة

طريقــة العــزوم المعدلــة وطريقــة  ، طريقــة العــزوم، تــرجيح الأعظــمطريقــة ال

  .  المربعات الصغرى

مـن    أسـاليب ةسـت  باسـتخدامنظريـا و طبقـت عمليـا    هذه الطـرق  نوقشت  

  أوجـدت. محاكاة مونت كارلو لتوليد المتغيرات العشوائية من توزيع ويبـل

ـــاءة   ـــا  الأســـاليبعـــض هـــذه  بكفـ ـــة بـــين   .نظريـــا و قورنـــت عملي تمـــت المقـارن

            .مقيــــــاس معــــــدل مربعــــــات الخطــــــأ  باســــــتخدامالتخمينيــــــة  الأربعــــــة  الطرائــــــق  
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