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| Abstract .

In this work, we consider the Weibull distribution of two

parameters for its importance in statistics and its applications.
Mathematical and statistical properties of Weibull distribution are
considered, moments and higher moments are illustrated and unified.
Four methods of estimation to the distribution parameters namely
(Maximum  [iRelihood Method, Moments Method, Modified
Moments Method, Least Square Method) are discussed theoretically
and assessed practically by utilizing six procedures of Monte-Carlo
simulation for generating random variates from the distribution.
Efficiency of some procedures are found theoretically and compared
practically. Comparisons are made among four methods of

estimation by considering the mean square error measurement.
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Appendix A
Computer rograms of Estimation
Methods

'\-.'F’ 'q.l-

Derivation of Box and Muller Approach.
This procedure due to Box and Muller (1958) [27hene the Weibull

variates is generated by utilizing the standaranaddistn. .

If Uy and Y is ar.s. of size 2 frord (0,1) , then the r\

1 1
X1=(-2InU )2 co 20 ,) X ,=(- 2l ;)2 sif 2J ,) representar.s.
of size 2 fromN (0,1).

Since, the joint distn. of {and U are:
g(uyu,)=1,0<u; <1i =12

=0 eW .
The functionX , =(~2InU )2 cod 20 ,) X ,=(~ 21 )2 siff 2U ) is
defined(1-1) transformation that mags={(uy,u,):0 <x <1,i =1,3 on to
the spac@={(xy,x,): =0 <x; <o,i =1,3 with inverse transforms
x{ +x5=(-2Inu;) cos’( 2m ) + (- 2luy) sif( 2u )
:—2Inu1[co§( 2w, + siff( Zuz)}

_1(X2+X2)
2 2_ _ —fa 2 2
X{ +X5=-2lnu;=u;=e

and ~1 = tan( 27u,)=u, = 1 taﬁl(ﬁj
X5 2 X5
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With Jacobin transformation

122) 2

—f(x +X —}(x 21X )
-X 4€ 2\"1 "2 "1 "2

5 0(uu) _ [X} (1]
a(xl’XZ) ix—lz _1%

27T 21T
1+(X1] 1+(X2]
X1

1
_ e

27T
Then, the joint distn. of Xand X is:
_}(X2+X2) 1 X
f(x;,x,)=gle 2t "2/ —tanl| 22 |||J
(x.x) g[ v X2 o

2.2
1 —(x +X
— e 172

21T

X =(X,X ,) distributed as ar.v. vector of size 2 frén(0,1).
U

X—w<x<wJ=L2.

ThatisX; ON (0,1, i=1,2..
Algorithm:

1- Read wherer 4.

2- Generate Yand Y fromU (0,1) .
1 1
3- SetX; =(-2InU )2 cof 20U ,) X ,=(- 2IJ ;)2 sif 2U ,) .
4- DeIiver)é =(X1,X ,) as arandom vector of size 2 generated from

N(0,1).

1
2 .52 \g
5'Setzl:\/§X1,ZZ:\/§XzandR:(Z 1;2 2]
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6- Deliver R as a r.v. generated fromad/¥) .

7- Stop.

Program 1:Estimation by Maximum LiRelithood
Method

Enter your values of «, 0 and n

x:=|for jO0..n-1

for i00.n-1
ul « rnd(2)
u2 « rnd(1)

by, i - V-2h (u)os( 2tm2)
b2 - V=2h (U1)8in( 2tw2)
71 |61 j

zzﬂjémazlj

1
a

r @1’ + (22°
i © 2

Enter your values of o, 0 and n
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- e?nijo [(Xl,j)a“h(xl,jﬂ

pr=|n«u g:=|n«<u
a < a <
0 0 — 1
for i00..n-1 for id0.n-1
for jO0.n-1 for j00.n-1
0 n-1 n-1 q N n-1
133 o) -0 b ol a2 S )
i=0 i=0 i=0
N n-1 a n n-1 o
szE—Z(x”) fz*g‘ (XI,J)
i=0 i=0
n n-1 a 5 - n-1
- =503, [y, )] 2 -0 [fs)
(a) i=0 (o) i=0
n-1 a n-1 a
o -3 [l ) -3 [,
i=0 i=0
c. c.
©®° (6)
the_(—b[ﬂl+a[2112) hjhe_(—b[fa+a[21rz)
ae- (b) ale- (b)
o (et - bi2) L o (c-bm)
at - (b)° at - (b)2
6 () a - (3)
a - (3) 6 ()
o 0
0=
p=1
) a-1_-ox"

A-4
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0
Q=1
Var:=Q - (E)2
Var=1

Q::J o%am® e % o

a

X

-~

MSE:= Var+ ( Bia3“

MSE=1

o

Variance=\W- (Df

Variance= 1

mse:= War@arnes- ( Bia$i

mse=1

Program 2: Estimation by Moment Method

Enter your va
o= 0:=1

x:= | for

lues of o, 0 and n

jdo.n-1

for i00.n-1
ul « rd()
u2 « rd(2)

b1, - \~2h (u1)Bos( 2TW2)
b2|’j — \[~2In (u1)Bin( 2tm2)
71 Jﬁ[ﬂ)llyj
72 \/_emzlyj

1

a
@1’ + @27
TR e
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j:=0.n-1

pj :=for id0.n-1

0 if (|ovd — o, j]) <1

00
E::J smox® e O g

i:=0.n-1

n-1
1
w=—[] p
n |
i=0
W =1
1 n-1
S —;Dz >\i
i=0
s=1
00
o
o::J wadE e o o
0
0:=1
bias:=@-a
bias:=a

00
o
K ::J’ wleBr e 8% g
0
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s K=

Variance= K- J

. Variance=
Var.=S- If

. .2
var=ru mse:= Waianzs  (ias)
mse:=1

MSE:= Var+ ( Biag”
MSE=1

Program 3:Estimation by Modified Moment
Method

Enter your values of o, 0 and n

x:=|[for jO0.n-1

for iD0..n-1
ul « rd()
u2 —« rd(l)

b1, ; \/-20h (u1)Gos( Zt1W2)
b2 - \/~2h (u1)Ein( 2tW2)
z1 .~ \[6bl j

zzﬂjﬁmzlj

1
a

@1 + @27
TRl e

i:=0.n-1 j:=0.n-1

y :=min(X)
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al:=
Yl
Inf —
( Xj
1 n-1
a::FDZ 0(],I
i=0
a=u
r(1+ —1) -1
a 1
a
01:= ()
X -y)
1 n-1
k::EDZ o1
i=0 k=1
00
o
E= | a®® e m}d
0
E=1
bais:=E-6
bais=1
00
o
L:= | (k)ZEEammx)“ g m}w
0
L=a
Var::L—I:i
Var=1
MSE:= Var+ (oaisf
MSE=1

BIAS .=t -«
(o)
[of
w :J azﬁa[eﬁtq_l@_e& )d)
0
w=1

Variance=w-— f
Variance=
mse:= \Xaiianes ( BIAF

mse=1
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Program 4: Estimation by Least Square Method

Enter your vales of o, 0 and n

x:=|for jO0..n-1

for id0..n-1
ul « rd()
u2 —« rd(2)

b, - \J-20h (u1)Gos( 2tW2)
b2, - \/=2h (u1)BEin( 2tm2)
21 \[6b1 j

zzh\/Tamzlj

1
a

@1’ + @27
I’IJ — —2

i:=0.n-1 ji=0.n-1
u :=runif(n, 0,1) t :==In(=In(u))
1 n-1
Yj ::;[]Z ln()ﬁ,j)
i=0
n-1
T =%[]Z tIJ
i=0
i n-1 n-1 5 i
T =2 (4
I i=0 =0
J n-1 n-1 5
(TJ)DZ (tluh(xl.j)) _(YJ)DZ (tl)
| i=0 i=0 |
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a=—"04 al
n
j=0
a=u a 7
n-1 n-1
(D (8- (inlxs)m)
B i=0 i=0 o1,
n-1 n-1 :
2
T;0y  t- (1)
A1l :=e - =0 = )
K
n-1
1
b:==—010 o1
n J
j=0
b=
00 roo
1 —ar® = o _e&u]
EZ:J b@[ﬂ)&(x 1@ X d F._.J a[EGIBmX) . ?
O 0
F=1
E=1
Bias:=E- 6 Bais:=F-a
(o]
o Bais=1
w= | poen’ e o
0 ’ :
W= 0:= J e L
0
Bias=1 o
Var:=W - |=j n
Variance= @ F
Ve Variance=1

mse:= Waiianes ( Ba)s

)

MSE:= Var+ ( Biasz
mse=1

MSE =1

A-1C



Appendix B
Computer Programs for
Generating Random Variates of

Weibull Distribution .

-

Program 5: procedure (W-1)

Enter your values of o, 0 and n

x:=|for jO0.n-1
for iD0.n—-1
u « rnd(2)

-

b

B-1



Program 6: Procedure (W-2)

Enter your values of o, 0 and n

x:= |for jO0.n-1
for iD0.n-1
u « rmd(1)

bi,j < =In(u)

Program 7: Procedure (W-3)

Enter your values of o, 0 and n

B-2



i,j’

3o

ul — rmd(1)
u2 — rd(1)
2
-y
2

s3]

while ul > %Eel + yz)@

ul — rnd(1)
u2 — rnd(1)

ol

for j00.n-1
for td0.n-1

AN \fﬁﬁtt,j

22, i - \fﬁﬁtt,j

() + (72)°
- 5

r

1
a

B-3



Program 8: Procedure (W-4)

Enter your values of o, 0 and n

0:=1 a:=a n:=a
j:=0.n-1
8
i:=0.n-1 k=%
0, ;= [ul ~ rd(2)
x .= |ul « rnd(2) g
" u2 « rnd(2)
u2 — rnd(1) .
mn —In(tan(—mz))
-In| tan| —m2 4
y 4 y < T
“ 2
| 2 - 2[KLy
+
hile uL> & 2 |161+ e 2[E@) while ul > < £1 (: )
while ul > ~
-k 2k
2[k[e
ul — rnd(1)
e md u2 — rnd(1)
u2 — rnd(1) .
1 Yy <« tan[n[éuZ— —ﬂ
y « tan| Tt UZ—E 2
u3 ~ rnd(1)
u3 — rnd(1) .
1 -y if u3<—=
-y if u3<— 2
’ 1
1 y if u3>—=
y if u3>-— 2
2
R:=|for jO0.n-1
for t00.n-1
21, ; - VO
22 - \/?)m)t,j
1
a
2 2
() (72)
r
r




Program 9: Procedure (W-5)

Enter your values of o, 0 and n

n:=a 0:=1u a:=a
ji=0.n-1
i==0.n-1
W, = ul « rnd(2) 0= ul « rnd(2)
u2 — rnd(1) ’ u2 « rnd(1)
y < —-In(u2) Yy « =In(u2)
-0-° - y-1°
while ul>e 2 while uL>e 2
ul « rnd(2) ul « rnd(1)
u2 — rnd(1) u2 — rnd(1)
y < —-In(u2) y « =In(u2)
u3 < rnd(1) u3 « rnd(1)
. 1
-y if u3<5 -y if u3<—;
1
. 1 1
y if u3>2 y if u3>5
x:=[for jO0.n-1
for td0.n-1
71, ;- \/Tamvt,j
72, - \/Tmt’j
1
a
2 2
(24,)" + (z2,)
ro.
t,] 2
r
r

B-5



Program 10: Procedure (W-6)

Enter your values of o, 0 and n

i:=0.n-1

x:=|for t00.n-1

for iD0.n-1

for jO0..1

U < runif(m,0,1)

1 m-1
C o EDZ U
i=0

B-6
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Chapter One On Weibull Distribution

1.1 Introduction

The aim of this chapter is to find the estimatofsparameters for
Weibull distn. by using four methods of estimateomd we use Monte Carlo
simulation to generate sample from the Weibullrdidty using Box and
Muller Method, and comparison between these esbirmafre made to
recognize the best estimator from bias, variancerag@an square error and
display in tables (1.1) to (1.7).

In this chapter (section 1.2) we introduce someairtgmt mathematical
and statistical properties of Weibull distributiom section (1.3) The
derivation of the distn. is made by using two d#f® approaches where one
approach utilize Normal distn., and the second @gugr utilize Extreme
value distn. .

In section (1.4) Moments properties of the distre dlustrated and
unified, section (1.5) some important definitionfeorems about the
estimator are illustrated and four method of esiioma namely, Maximum
Likelihood Method, Moments Method, Modified Momenkéethod and
Least Squares Method, are discussed theoreticassassed practically.

In practice (section 1.6), we use Monte Carlo satiah to generate
sample from the Weibull distn. and the estimatibparameters is made by
these methods. Statistical properties of the esbtiraare displayed in tables
(1.1) to (1.7).



Chapter One On Weibull Distribution

1.2 Some Mathematical and Statistical Properties of Weibull
Distribution

Definition (1.1) [18]:
A continuous r.v. X is said to have a Weibull distith parametersr

and @, denoted by (a,6), if X has the following p.d.f.

. — a-1_-6x9
f(x;a,0)=af0x " e™ ,0<x <w (1.1)

=0 ,ew. ;wherea,8>0.

To verify that eq.(1.1) is valid p.d.f., we notetf (x)>0,0x 0(0,0) and

the integraljf (x;a,8)dx is unity. Viz
0
Let | =If (x;a,0)dx =_[a€x”‘1e‘exadx
0 0

Sety =6x“ impliesdy =a8x?dx , thenl :je"ydy =1.
0

We note that the Weibull distn. reduces to the Bendial distn. as a special
case wherr =1, and it reduce to Rayleigh distn. whar=2, and similar to
Normal curve when3< a < 4) [6].

The Weibull distn. depends on two parametersand & which are
referred to as shape and scale parameters resggciinie variety of p.d.f.
shapes can be generated by fixing the valuesg aince and letting? vary
and fixing the values of@ and letting a vary. The professional
MATHCAD, 2005 computer software is used to give aaphical
representation of Weibull p.d¥. Figure (1.1) and Figure (1.2) show

respectively some Weibull p.d>ffor fixed 8 witha varying and for fixed

2K

a with @ varying as follows:
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f(x)
A
5 2 T T T T T T T T T
,."’
18+ / .
16 =
14+ =
!
flx,05,1) 12F —
fix,1.1) \
f(x,1.5,1) |
fx2,1)
fx,3,1)
fx5.1) ogl .
. ..‘H
06 - N\
04
2k
0 >
%9

Figure (1.1)
Weibull p.d.f:° with =1 ando=0.5,1,1.5,2,3,5

K
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f(x)

16 =

fix,1,05)
Tty
(x.1,1.5)
ftx,1,2)
f(x,1,3)
fix,1,5)

Figure (1.2)
Weibull p.d.f°with a=1 and6=0.5,1,1.5,2,3,5
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In general we note that the Weibull distn. haveftlewing properties :

1- Have the x-axis as a horizontal asymptote.

1 1
2- Increasing fol0<x < (a_—lja and decreasing fc(ra—_lja <X <00,
af af
1
3- Have a maximum point at :(a_;lja :
a

1

30 +/502 - 67 + 1- 3}“
and

4- Have two inflection points atx =
2a6

1
y :[eu— 50 - 60+ 1- 3}”

2060

1
5a® - & + 1- 3}”

and

5- Concave up for0<x < -
2a6

<x <oo and Concave down for

1
30 +v5a%-6a+1- 3|9
206

1 1
3a - 5a2—6a+1—3"<x< I+ H - &+ + 37
2a06 2060 '

6- The distn. is limited to the left and unlimited ttee right, it is never
symmetric, but may appear symmetric for certaim@slofa .
7- The p.d.fis a bell shape far>1 and a J shape f@<a <1.

1K
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1.2.1 The Cumulative Distribution Function
The Weibull c.d.f. is defined as

X X
F(x)= If (t;a,0) dt :jaet”’le’aadt implies
—0 0
0,x<0

F(x)=Pr(X £x)={1-e™®" 0<x <o oo (1.2)
1,X — 0

1.3 Derivation of the Weibull Distribution

There are many ways in which one expected the Weddstn. can

arise to give a useful description of observedatem.

1.3.1 Genesis Derivation by ‘Utilizing Normal Distribution

A new derivation is made by extending the origidala as stated in the
following context. Suppose we are trying to locarteobject in plane and we
determine its distance from the origin by measuthrggdistance along the x
and y axes and applying the Phythagoras formélax 2 +y 2. Suppose the
measurements are subjecting to random errors wahdY representing the
errors in the measurement. The errors are assumed tndependent and

normally distributed with constant variance [8]. Woan develop the
1

L o . X24+Y 2\
derivation of Rayleigh distn. [20] to obtaine the.rR = =5 has

Weibull distn. .

K
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Theorem (1.1):
The idea of this derivation is developed from Regiedistn. [20]. If X

and Y are two independent r¥.N (0 Then the r.v.

1,
1\/5 .
2,v21
R :(%)a W (a,6) a>0,8>0.
Proof :
The joint p.d.f. of rviof X and Y is:

_0y24y2
f(X,y):zie Z(X Ty ), —00<X <00—00<Yy <00

2,v2 1
With transformationR :(%)“ , setWw =;(<— :

1
X2+ 2

2y )E . setw :% does not deﬂnél_l)

The functionsr =(

transformation that maps the space

A:{(x,y):—oo<x <o0,—00<Yy <oo} onto the space

B:{(r,w):0< I <oo,—oc0 <W <oo} . We write the spac@ as a union of two
disjoint subset say,={(x,y):=e0<x <0,-w <y <0,

A:={(x,y):0<x <o, 0<y <o} whereA=A, UA.

2 2 1
Xy )7, w =Y defined(1-1) transformation
X

Now, the functiong =(

that maps each @f andA.ontoB the with inverse transforms:
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In A,
a a
2 2
e NEE Vo
1+w 2 1+w 2
a_, a
_ar? Jor 2w
ox OX 2 3
5. 2000y) for aw|_ V2 Lo (L+w %)2
1~ — =
o(rw) |oy dy a,y a
or ow _ ar?2 w _ \/El’z
\/E‘\/ 1+w 2 (1+W 2)2
_ar? grow?2_ gret o ard?t
- 212 22 2 2(1+W )= 2
(1+w ) (1+w 9) (I+w 9) (+w )
In A,
a a
2 2
« =4 Jor ,y:+x/§r W
1+w 2 1+w 2
Then,the joint p.d.fof R and W is:
a_, a
ar? _erew
oxX  0X 2 3
L a(ky) far aw| VT ety
2= = =
o(rw) |dy oy a_ a
o owl |arz w Jor 2
\/E‘\/ 1+w 2 (1+W 2)2
_ar® grotw?2_ grot o ard?t
- 22+ 2\2 22(1+W )= 2
(1+w ) (1+w 9) Q+w 9) (I+w )

K



Chapter One On Weibull Distribution

a a a a
L Vere SJaraw Jrz2 Jaaw
g(rw)=f = — |9 +1 > = |92
\/1+W \/1+W \/1+W \/1+W
g Cudgrat g Sadgpal
27T 1+w? 2 1+w 2
=0’—¢9ra_1e_9ra ;0<r <oo,—oo<W <o
Td+w ?2)
The marginal p.d.f. of R is:
4 —g@r  dw
r)=[g(rw)dw =aor®te @’ [ W
(1) =Ja(rw) ow?)
since, | Lz =1, which is C(0,1).
S TTAFW )
6
= g,(r)=a6r? ™™ ,0<r<w ,a>00>0
=0 ew .
Which is the p.d.f. of Welibull distn. as givendxy.(1.1) .
Q.D.E.

1.3.2 Derivation by ‘Utilizing Extreme Value Distribution

This derivation to Weibull distn. can arise by gsthe Extreme Value
distn. . The details is given by theorem (1.2).

Theorem (1.2) [23]:
Let X [ Ext (d,4) then the p.d.f. of X is:

X=0

f(x):iex (x=2 —e_( A ) —00 <X <oo . If we rewritef(x)
A

1K
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o
f(x)=a0e e’ —w<x <o .Whereaz% and@=e”, then the r.v.

Y =e”* OW (a,8).
Proof:
The function y =e™ define a(l—l)transformation that maps the space

A={x 1~ <x <o} onto the spacB={y :0<y <o} with inverse transform

x ==In(y) and the Jacobin transform j3| :‘%‘ :‘_—‘ ==

Thus, the p.d.f. of Y is:

g(y)=f (-Iny)J|

implies g (y) —qyTe "’ %

We have
g(y)=ady® ", o<y <w
=0 Eew .
Which is the p.d.f. of Weibull distn. as givenégy.(1.1) .
QD.E.
1.4 Moments and Higher Moments Properties of Weibull
Distribution [18]
Moments are set of constants used for measuringsta. ¢properties and

under certain circumstance they specify the disirhe moments of r.v. X

(or distn.) are defined in terms of the mathemat&goectation of certain

power of X when they exist. For instancg :E(Xr)is called the

2K
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r"moment of X about the origin am:E[(X —u)r}is called the

r" central moments of X . That is
Zxrf (x) ,xisdiscretery.

/4 =E(X r): X
jxrf (x)dx ,xiscontinuous rv.
X

and
D (x=m)'f(x) ,xisdiscretery.
f=E[(X ~p)' |= IX

(x =)' f (x)dx ,xiscontinuousry.
X

Sometimes they are defining the diStnand also have a particular
usefulness in connection with sums of independetit.r

The moment generating function of Weibull distneslmot have an implicit
form, so it is more convenient to find the momeotsWeibull distn. by

using direct expectation approach.

Ther™ momenty; =E (X ") of the distn. about the origin is
U =E(X") :jxrf (x;a,8)dx
0
:jxraex a-lg=0x gy
0

1 1
= =1
Setu=6x7 = x :(%Ja = dx :%(%ja du implies

@)1
LT TR (1.4)
ga °
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But,

@)1, . .
Iu @ e “du is known as incomplete gamma function and equal to
0

ra+).
a
Therefore;
-r
;/rzE(xf):ear(ui;) ..................................... (1.5)
1.4.1 Mean and Variance:

The mean and variance are respectively obtaineah f£q.(1.5) by
settingr =1,2.

(i) Mean:

E (X )=u=44 is called the mean of r.v. X (or distn.). It isveasure

of central tendency.

(i1) Variance:
Var (X )=06°=E [(X —,u)z} =E (X 2) — 1% is called the variance of
rv. X (or distn.). It is a measure of dispersionyhere

th=E(X D) =T (1+2)
00’
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Hence,

Var (X ) =02 =S P+ 2) =4 ST @ 2)b oo (1.7)
2 a E a
e e
1.4.2 Other Moments:
(i) Mode:

A mode of a distn. is the value x of r.v. X thatximize the p.d.f.
f(x).

For continuous distA.the mode x is a solution ofdfd—(x)zo and
X

d% (x

dx
The mode is measure of location. Also we note tiatmode may not exist
or we may have more than one mode.

For Weibull case with p.d.f.

f (x)=afx e ™’

df (x)
dx

:e"gxa[—(aex ""1)2 +a6?(a—1)x"‘2} ................... (1.8)

Equating eq.(1.8) to zero, and solving for x, weehaadx*+a-1=0

which implies the critical point is

X =(

1
a-la
agl) ........................................... (1.9)

This critical point satisfy that x is the distn. deowhere condition

2K
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2 1
d ;X(ZX) <0 at x =(aa01)a is hold .
(1) Median:

A median of a distn. is defined to the value x of X such that
F(x)=Pr(X <x) =%. The median is measure of location.

For Weibull case,

We equate the c.d.f. given by eq.(l.Z)%tothat IS

Solving for x in eq.(1.10) lead to the median

1
(In2)\a
X _(7j ........................................................ (1.11)

(i1i) Coefficient of Variation:
The variational coefficient of r.v. X (or distng defined by the ratio

— . Itis a measure of dispersion. It is independéscale measurement and
U

denoted by CV.

For Weibull case:
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(iv) Coefficient of Skewness:

ylzig is called the coefficient of Skewness. It is a suga of the

12
departure of the frequency curve from symmetryy; I£ 0, the curve is not
skewed, ); >0, the curve is positively skewed, ang<O0, the curve is

negatively skewed.

For Weibull case:

E(x?)=rar 3yimplies
= a

[aleg
3
r(1+2]—3r(1+;jr(1+5]+ {F( 1+;ﬂ
W= T e (1.13)
212
SR
a a
(v) Coefficient of Kurtosis:

Yo =i‘21 —3 is called the coefficient of Kurtosis . It is a aseire of the

H

departure of the degree of flatting of the freqyencurve. If y, =0, the
curve is not mesokurticy, >0, the curve is leptokurtic, angl, <0, the

curve is phtykuritic .

For Weibull case:

E (X 4) = %F(B ﬁj implies
4 a
00’

2K
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I G G G R G L R )
2

......... 1.14)

1.5 Estimation of Parameters for Weibull Distribution:

We shall introduce in this section some definitiomsethods, and
theorems that are needed for parameters estimation.
1.5.1 Point Estimation [27]:

Point estimation is concerned with inference abthd unknown
parameters of a distn. from a sample. It providesngle value for each
unknown parameter.

Point estimation admits two problems:

1% developing methods of obtaining statistics whodaaescould be used to
estimate the unknown parameters of the distn., statlstics are called point
estimators .

2" selecting criteria and technique that obtain a lesttmator among

possible estimators.

1.5.2 Some Basic Definitions:
Definition (1.2) (Statistic) [14]:

A statistic is a function of one or more r,which is not depends upon

any unknown parameters.

2K
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Definition (1.3) (Estimator) [14]:
Any statistic whose value is used to estimate tilenawn parameteé

or some function o8 sayr(6) is called point estimator.
Definition (1.4) (Unbiased Estimator) [18]:
An estimatord =u (X ;,X ,,...X ,) is defined to be an unbiased estimator of

@ iff E(é):e for all 80Q, where Q is a parameter space. The term

E (9) ~ @ is called the bias of the estimafbr
Definition (1.5) (Asymptotically Unbiased Estimator) [18]:
An estimator@=u(X,X ,,....X ,) is defined to be asymptotically

unbiased estimator fa# if lim E(&) =8.
n - oo

Definition (1.6) (Consistence Estimator) [18]:
Let the statistidd =u (X 1,X ,,....X , ) be an estimator of the unknown

parameterd is said to be consistent estimatorlirin Pr(‘é—@‘ >£) =0; for

n-oo

each6Q.
Definition (1.7) (Minimum Variance Unbiased Estimator) [18]:

Let X3, Xj,..., X, be a r.s. of size n whose p.dff.(x,8) . An
N

estimatord=u(X,X ,,....X ,) of @ is defined to be a minimum variance
unbiased estimator & iff
(i) E(0) =0, thatis ,8 is unbiased.

(if) The variance ofd is less than or equal to the variance of evergroth

unbiased estimators @f.

2K
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1.5.3 Methods of Finding Estimators [2]

Many technique have been proposed in the litezataf finding
estimators for the distn. parameters such as Man&taximum Likelihood,
Minimum Chi-square, Minimum Distance, Least Square] Bayesian
method. These methods provides a single valueaftint anknown parameter
of the distn. .

For Weibull case we shall consider four methoddifating the estimator of
distn. parameters.

(i) Maximum Likelihood Method .

(i) Moments Method.

(iii) Modified Moments Method.

(iv) Least square method.

Definition (1.8) (Likelthood Function) [2]:
The likelihood function of r.s. X X,,..., X, of size n from a distn.

having p.d.f.f (x;g), wheregz(el,ez,...ﬂk) is a vector of unknown

parameters, is defined to be the joint p.d.f. eftth:® Xy, X,,..., X, which

Is considered as a function gfand denoted byL (DH,>D<) that

sL=LEX)=F (XiO)=[]1 (:6).
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1.5.3.1 Estimation of Parameters by Maximum LiRelihood Method
[2]:

Let L (8,x)be the likelihood function of a r.s..XX,..., X, of size n
00

from a distn. whose p.d f. (x;¢D9) ,g:(el,az,...,ek) is a vector of unknown
parameters. Legézﬁ(é) =(u1(>D<),u2(>D<),...uk (>D< ))be a vector of unknown
statistics of observationﬁs =(X1,X 5,000 X ) - If é’ have the value og which
maximize L(é’,)ﬂ(), thené is the m/.e. of 6 and the corresponding

statistic©® =u(X ) is the M.L.E off . We note that
0 0 o

(i) Many likelihood function satisfy the condition tithe m./.e is a solution
of the likelihood eq..

(i) Since L@, x) and In L@, x) have their maximum at the same value of
B so sometimes it is easier to find the maximumheflogarithm of the

likelihood.
In such case, the./.e @ of 8 which maximizes L@ ,x) may be given
the solution of the likelihood et.

oInL(8,x) _

0,at 6=0 ,r=1.2,... k.
06, =

2K
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For Weibull distn. case:

Let X;, Xy, ..., X, be a r.s. of size n frow (a,8) where the distn.

p.d.f. is given by eq.(1.1). The likelihood functics

L(a,6,x) =f(x,a,0) =| |f(x;,a,0)
0ied={]
ﬁ 1 —9X
n a-1 _ggxia
=(a8)" {nxlj e il

InL =nIn@+ nina +(a —1)2 Inx, —BZ XA

i=1 i=1
olnL _ —n
——F+Zlnx - Zx“lnx .............................................. 1%)
And
onL _n <,
=8 "o izzllxi .............................................................. (1.16)
dlnL oinL _ A a_A
Se tW 0 andw—o ata=0a,0=0.
We have:
n n
—FINX =) XUNX =0 (1.17)
i=1 i=1 l
And
n
o3 XE 20 e (1.18)
i=l
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Solution for@ and 8 can not be found analytically from the non-linear
eq:°(1.17) and (1.18).

An approximate solution for and 6 from eq’® (1.17) and (1.18) can

be made iteratively by using Newton-Raphson metioodsolving a non-
linear eg? as follows:

" n N R
Let flzfl(c“r,ﬁ):%+ZInxi —6’fo’lnxi

and
A AN S 5
fo=f,(d,0)=2-> x/
a i3

Suppose tha(d®,6®) represent the approximate solution (@,6) at

stage (s). Then the approximate solution at stag#) (for (&(),6©)) is

A6 = 46) 4 51

......................................... (1.19)
GV =0 45, (1.20)
Where
of, of, "
s[4 aa's) 9l 1) get
"o, of, of, | \fy,)
9at  ad)
:ga:A—n—HZx (Inx; )
a’ "
_of, _of,
b= aé_ Y —Zx (Inx;)
c:af?:i—n
00 62
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We have
a)_ (a bY(f)_ -1 (¢ -b\(f,
(52]_ (b Cj (fzj_ac‘bz(_b aj(fzj

Then,

1
:_ac_bZ(Cfl_bf 2)
1
9, =‘m(‘bf1+af 2)

and according to the et(1.19) and (1.20), we have

s41) _ A(s) L
4\ 1)=a()—m(cfl—bf2) ........................................... (1.21)

6+ =4°) —ﬁ(—bfﬁaf 5) e (1.22)

1.5.3.2 Estimation of Parameters by Moments Method [2]:

Let Xy, X5, ..., X, be ar.s of size n from a distn. whose p.d.f

f (x;6), 0 =(0y, 8, ..., 0 is a vector of unknown parameters, let
a

n
W, =E(X") be the f moment of the distn. about origin ai, :%ZX{
i

be the ¥ moment of the sample about origin. The method afents can

be described as follows:

Since, we have k unknown parameters, equat® M . at 6=0 .
o o

That is

~

H,=M, at 6=0,r=1,2, ..., K.

2K
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For these k equations, we find a unique squticuré{oéz,...,ék and we
say thatér(r =12,...,k} is an estimate o, obtained by method of Moments

and the corresponding statisz; is an estimator 0@, .

Now, to estimate and® by method of moments we let XX,, ..., X,

be ar.s. of size n fromv (a,6) is taken.

Since, W (a,6’) distn. involve two unknown parameters,

~

We sety; =M, ata=a, 8=06 ,r=1,2 .

r =1 impliesy; = E(X) :(£)§F(1+—1) andM :EZH:X- =X .
! 0 a gl

e 122
r= 2 impliesy, = E(X*) = (6)“ |'(1+a)

And
n - —
M, ==Y 'x2=1"1g2, %2,
n< n

We set

1

(%)d T T (1.23)
2

(%)d r(1+§) :n—fls2 X e (1.24)

For finding the estimators af and @, we follow the approach made

by [7] as follows:

2K
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52
(CV )d :Iu_12 ................................................................... (1.25)

Since, the unbiased estimatord is S and the estimator qf is X , then

o2 T (1.26)

(X)?
Which can be calculated from the given set of olksen but, the

coefficient of variation is:

2. 5, 1
r(1+7)—|_ (1+T)
CV:é:\/ a 1 el (1.27)
H r(1+5)

By taking different configuration values @f in eq. (1.27), randomly. The

4
value & is adopted when CV is very close to ofCV ),. The scale

paramete(r&’) can then be estimated using eqg. (1.23) as

1.5.3.3 Estimation of Parameters by Modified Moments Method
[20] :

Let Xy, X5, ..., X, be ar.s of size n from a distn. p.d.fix,8) where
U
0=(6,6,,...6; )is a vector of k unknown parameters.
0

LetY,Y,,...Y ,represent the arrangement of the sampl¢>X$e} in a

ascending order of magnitude.

2T
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Let 12 =E(X ")be ther™ sample moment about the origin, r=1,2, ... .
In this method we equaté =E (X ")with r =1and ranking

E (Y; ) =Y, beginning withi =1 until i =k this process will gives k etto
provide a unique solution fd ,i =1,2,...k sayé} 1 =1,2,...k and the

obtainedé{ , this method is called modified moment estimator.

For Weibull case:
we have two unknown parametersand @ and if we take ar.s. of size n

from W (a,8), we letY, represent the first order statistic of the sample.

From the order statistic theory the p.d.f.\of is
g:(y1)=n (1_ F (yl))n_lf (vd)

— a-1,-n6y{
= gy(y1)=nady{™e 1 ,0<y <w

=0 ,eW . ;a,8>0
This shown thaty, JW (a,né).
1

1

(n6)a

Accordingly, E (Y,) = |'(1+%).

Now, we apply the Modified Moment Method by settigg= X and

E(Y,)=Y,ata =6, 6=8 which leads to

1
(i]“ r(1+71] 2 X e, (1.29)
0 a
1
1\a 1)
(n_é] r(1+gj_vl ........................................................ (1.30)

From eg? (1.29) and (1.30), the estimatorsafand @ are respectively

K
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a= |n(Y1) ..................................................................... (1.31)
X
a
1 1
1_73 r(1+7)
6= ”Xi_Y .................................................... (1.32)
1

1.5.3.4 Estimation of Parameters by Least Squares Method [20]:

The least squares method is general technique $&imating
parameters in fitting a set of points to generatarae whose trend might be
linear, quadratic, or of higher order. In ordeutdize this method, the error
terms due to experiment must satisfy the followgngditions:

(i) They have zero mean.

(if) They have same variance.

(iii) Must be uncorrelated.

For good result of fitting curve to the data skg error must be minimized
as small as possible .

Let us assume that we have a set of n data ppints ) through which we

desire to pass a straight line. This line is regméng the best fit in the least
square sense.

Suppose that the best fitting straight line todb&a(x; ,t; ) is x = 5 + it .
Where S, and £, are two unknown parameters representing respéctive

vertical intercept and the slop.

K
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To assist in visualizing the process, assume ttedfliine shown in figure
(1.3) which depicts the data points as well adlitteeto be fitted, unless the
data fall in a straight line, usually the generatve will not pass through all
of the data points. For convenience let us conster{" point where

ordinate of the point is given as .

Figure (1-3)

Figure (1.3) show the best fitted lineto the data (x; t; )
The ordinatex; as given by the general line |§, + S;t; . The difference
between these two values is the error of fit at tfe point

& =X; = (B, + Bt ) -Let the sum squares of all errors at the datatpdie

2K



Chapter One

n

n
SSE = &2 =3 (x; =B, - At;)* . For minimum, we set?

i =1 i=1
0SSE A A
W:O’atﬁozﬁ@ﬁlzlgl'
0SSE n A A
- =2 X =BGt )=0
0f | po=Fo Zl( )
B=p
0SSE n

> =23 '(x; =B -t )t =0
5,31 /5’0:,?0 iZ:;(XI /80 ﬁ1|)|
A=h

From (1.33) and (1.34) we can get two‘exp

Solving eqg? (1.35) and (1.36), lead to

B = [.Znix . j{lzn;tzj‘[iltzj izi:lxi j

and ,8’1=>T_’8°

™

Since,x =3, + Bf .

On Weibull Distribution

=0 and
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For Weibull case:
Suppose that X X, ..., X, be ar.s of size n from a distn. having cumulative

0,x<0

function F (x ) =Pr(X <x)= 1-e 7 0<x <o
1,X — 00

-ox 9 -ox 9 :
Thenuy; =1-e "' = e | =2%u =u; sincey; U (0,1), then

1-u; 0U (0,1) which implies

In(x; )z%ln(—Ln u, )—Elln(é’), I =2,2,00 N e (1.39)

Sety; =In(x; ), t; =In(-Inu; )i =1,2,....n andﬁoz—iln(e), B, =

Q[+

then , eq.(1.40) becomss =/§’0 +,Blti i =123,..n.

Utilizing eq.(1.39) for obtaining the estimatqﬁg and ,[3’1. Therefore; the

least squares estimatafsand @ can be obtained from the eq.(1.39F i
1
and = exp[—&} :
B

1.5.4 Some Important Concepts (Definitions and Theorems)
Definition (1.9) (Sufficient Statistic) [18]:

Let X;, X5,..., X, be a r.s. of size n whose joint p.d.f(x,8), where
U0
0=(6.6,,...8,) is a vector of unknown parameters and let
[

Yi =u; (X1,X,,...X,),i =1,2,.mbe k statistcs whose joint p.d.f.

2K
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g(y,0).Then the k statistics are called jointly sufficiestatistics for@ iff
o U 0

f (x,6)

L L_=H(x).WhereH (x) does not depends a@hfor all fixed values of
9(y.o) 0 0 0

0

Yi =U; (Xq,X5,.. X, ), =1,2,..m .
Theorem (1.3) (Neymann Factorization Theorem) [18]:
Let X;, X,,..., X, be a r.s. of size n whose p.dff.(>D<,6?), where,

0=(6,.6,,....6,) be a vector of unknown parameters. A set of sieis
[

Yi =u; (X1, X 5,..X ) i =1,2,..m are jointly sufficient statistics foé iff,
U

|
we can find two non-negative functioks andK, such that
F(x,0)=f (X1Xz0-Xn B162,--6m)
= Kl(ul()D()’uz()D()v"“m %( )i01.85,...6n K 2%( }

WhereK 2(>D<) Is independent of.
0

In general we note that every functions of a sidfit statistics is also

sufficient statistics.
Definition (1.10) (completeness) [18]:
Let X,,X,,...X, be ar.s. of size n from a distn. (continuous or

discrete) whose p.d.f. belongs to the family

{f (x,g),g:(el,ez,...ﬂm)DQm} of p.d.f*, and Ietu(>D<)be a continuous
function ofx = (X,,X,...x, ). If E[u()é )}:o, impliesu (x) = 0,00x , then

the family{f (x ,9),6’DQ} is called a complete family of p.df.
a

2K
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Remark_ [18]:

If Y =u(X) is a sufficient statistic for@ whose p.d.f. belong to the
a

complete family, then Y is a complete sufficieratstic for 8. We note that
Theorem (1.4) (Lehman-scheffe’-1° Theorem) [18]:
Let X4, X,..., X, be ar.s. of size n whose p.d.f()é,@), 61Q.

Let Y =u()é)be a sufficient statistic fé&@ whose p.d.f. belong to the

complete family{g (y,8),60Q} . If ®(Y )is a function of Y which is an

unbiased estimator fa# , then®(Y ) is a unique MVUE ford .
Definition (Exponential Family of p.d.f-*) (1.11) [18]:
Consider the family{f (X;H),HDQ'“} of p.d.f:* which can be
o 0

expressed as

f(x;6) =ex jZ:llpj Ok, (X)”Q(g)”s(x)}““b oo (1.40)

=0 W .

Such p.d.f. is said to be a member of exponentiascof p.d.f. and
satisfying the following conditions:
(i) Neither a nor b depends aDm: (6,6,,...0,).

(i) p;(6) is nontrivial, continuous functions & ,j =1,2,..m.
a

(iii) k; (x)#0 ands(x) is continuous function of for a<x <b.

(iv) q(9) is a continuous function of , =(6,,6,,....6,).
U
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Now, if a r.s.X;,X,,....X, is taken from a distn. whose p.df(x;8),
O

then the joint p.d.f. of the sample &, } is

f (>D<;D0)= !:llf (X; ;g): DlexpLzﬂpj (tDE?)kj x; )+q (g)+s(xi )} a<x<b

=exp Y p; @) k; )+nCI(g’)+ZS ;i )}
i=1 i=1

=

=exp{z P (g)ij ;i )+ng (g)] eXL{ZS ki )}

j=1 i=1 i=1

Then, according to factorization theorem (1.3), staistics
n n n
Y=Y Ky(Xi ). Y= ko(Xi )oY =D k(X))  are  jointly
i=1 i=1 i=1
sufficient statistics for m parametefis6,,...,6,, .
For Weibullw (a,H) with p.d.f.
f (x;a,6) —a0x e g<x <w
=0 ,eW . ;wherea,8>0.

Which can be written as

= f(x;a,6) — gIn(a8)+(a-1)Inx -6x 7

We note that there are three cases:

(i) f (x;a,6) is not exponential whemand6 are unknown.
@i) f (x ,a) Is not exponential whemis unknown and is known.

(i) f (x,6) is exponential when is known and is unknown.

K
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In caseifi) we writef (x,6) as

f (X'a’ 0) :e—exa+ln G+na+(a-1)Inx

Wherep(8)=-6, k(xX)= x*, q(8=1n6, s(x)=Ina+ (a-1)Inx

If a sample X, Xs,..., X, is taken fromV (a,H), (a known), then according

Is a sufficient statistic fob.
Theorem (1.5) (Lehman-scheffe’-2¢ Theorem) [18]:

Let X1, Xs,..., X, be ar.s. of size n whose p.d.f()é ,g) where
g?z (8,6,,...6,), belong to the exponential family and let Y5 ,...,Ym
be jointly sufficient statistics fo,é,,...,d,, , then the family of p.d.f.
{g(y ,DH),DHDQ”‘} is complete and the statistics, ¥Y> ,...,Y, are jointly

complete sufficient statistics f@,6,,...,6,, .

Now, according to Lehman- Schef?& theorem, the statistic given by

eq.(1.41)y = ZX . is complete sufficient statistic fér To find the
i=1

MVUE for 6, consider the transformatiah = X “.

The functionz =x“ define one-to-one transformation that maps theespa

1
A={x :0<x <o} onto the spack ={z:0<z <o} with inversex =z

K



Chapter One

1

and the Jacobin of transformatidn= j_x = 123
7z a

1 1,

1 1-= 1
g(z)=f (z7)|3|=a bz ”e“’y;z”

=0e™”, 0<z<w
= ew .

ThatisZ [J Exp(%) :

On Weibull Distribution

" Then the p.d.f. of is

Since)Y =) X =) Z,, then according to the additive property of
i=1 i=1

exponential distn. lead %6 [J G(n,%) with p.d.f.

0=

=0 Eew .

y"e™® 0<y <o

Now, consider the expectation

1. 1 g
E(Y—)=J'—h j—my e
! ORI

Accordingly, the MVUE foi© is nY—1: :1_1 :

>
i=1
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1.6 Monte Carlo Results:

To access the results obtained by the four metbbdstimation
practically, we generate the Normal variates adngrtb Box and Muller
Method [27], [See Appendix A] and then these nomaalates are trans-

feered to Weibull variate as shown in section (lr8practice sample from
W (%, 1) are generated with size= 5,10(5) 5C and the run size used is 100.

The estimates of the four methods are shown iretdbl).

Table (1.1)
Parameters Estimation

Estimation of(c“r, A)

Sanple
Size
3
4

- (0.502,1.13% | (0.461,1.10% | (0.486,0.945 W

- (0.498,0.939 | (0.495,0.96% | (0.491,0.962 | (0.501,1.01

0
0 :
0 ,
0
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This table show the bias of estimatbrwhich can be obtained by :
Bais(G)=E(&)-a .

Table (1.2)

Bias of Estimatof &)
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This table show the bias of estima®mwhich can be obtained by :

Bais(8) =E (6)-6.

Table (1.3)

Bias of Estimato(é)

Sampl Bias of Estimatior(é)

“ 0.151 -0.142 0.387 -0.007
0.11 0.03 0.306 -0.012

0.092 -0.048 0.216 -0.003
- 0.017 0.123 -0.077 -0.016

- 0.136 0.104 -0.055 -o 016
-o 061 -0.038 -o 038 o 019




Chapter One On Weibull Distribution

This table show the variance of estimatiowhich can bebtained by :

var (6)=E(6°)-[E(a)].

Table (1.4)

Variance of Estimatofd)

Variance of Estlmatlmﬁa

Sampl
“ 4.121x 107 3.284x 106 4.361x 106 3.411x 106
3.061x 107 | 3.245x 106 3.217x 106 3.697x 106
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This table show the variance of estimaiowhich can bebtained by :
var (6)=E (&) —[E (é)T.

Table (1.5)

Variance of Estimatc(n?)

Variance of Estimatioté)
Samplg
Size

“ 4.614x 10° | 3.041x 107 | 3.046x 107 | 5.241x 107
m 3572 10° | s5.118<107 | 2.602x 107 | 5.761x 107

2.863x 10° 3.698x 10 5.112x 10’ 5.321x 10”7

- 2346x10° | 2545107 | 7.81x107 | 4.404x 107

0
“ 2710x10° | 2.311x107 | 4.78x107 | 4513« 107

“ 2224x10° | 4.102x 107 | 4.102x 107 | 5.846x 107
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This table show the mean square error of estin@atahich can b@btained
by :
MSE (6) =Var (&) +(Bais())’.

Table (1.6)

Mean Square Error of Estimaf{ar)

Samplg Mean Square Error of Estimat(d)

0.00129 0.036 0.0049 0.0031
0.00048 0.008 0.010 0.00044

0.00052 0.007 0.001 0.00048
4

- 0.001 0.0002 18x10°®

0
0
I I Wi
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This table show the mean square error of estin@atahich can b@btained
by :

MSE (&) =Var (6) +(Bais(é))2.

Table (1.7)

Mean Square Error of Estimat@

Mean s or of Estimatioé@
Samplg
Size .
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Chapter Three Monte Carlo Application

3.1 Introduction
In this chapter we shall utilize the proceduresegiwn section (2.5) of
chapter two for generating random varaites from Bukki W (%,l)

distribution. Efficiency of some procedures was mateoritically and

assessed practicaly. The simulated Weibull sammie®bserved by the six
procedures mensioned in section (2.5.1), (2.52%.3), (2.5.4), (2.5.5) and
(2.5.6) of chapter two and used to estimate thiloligion parameters by the
four methods given by sections (1.4.3), (1.4.4)4.6), and (1.4.6) of

chapter one.

3.2 Application of Procedure (W -1)

A computer program for procedur(w —1)of section (2.5.1) which
utilize the Inverse Transform Method to generaie\/th(%,l) varaites is

shown in program (5) of Appendix (B). Sample size 5,10( 1() 5( are

taken. For high accuracy the procedure repeat$ 118@ times. The result is
displayed in table (3.1).
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Table (3.1)

Parameters estimation using procedie-1)

Sample Estimation of(c“r,é

(0.522,1.152 | (0.540,1.02%

3.3 Application of Procedure (W -2)

A computer program for procedw(w —2)of section (2.5.2) which

utilize theorem (1.2) to generate tWa(%,l) varaites is shown in program

(6) of Appendix (B). Sample sizex=5,10(10 5( are taken. For high

accuracy the procedure repeats itself 100 times. Résult is displayed in
table (3.3).
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Table (3.3)

Parameters estimation using procedive- 2)

Sample Estimation of(c“r, A)
- (0,541,1.24% || (0.562,1.155 | (0.510,1.283 W
- (0.405,1.085 || (0.533,0.905] (0.511,1.08% W

10 .
n(0.463,0.92;8 (0.453,1.04) (0.455,0.98$w
n(o.484,o.949) (0.460,1.033 | (0.495,1.085 W
"W 0.481,1.19) | (0.484,0.999 | (0.497,1.09
nw 0.493,1.013 | (0.499,0.959 ] (0.498,1.092

3.4 Application of Procedure (W -3)

A computer program for procedul(w —3)of section (2.5.3) which

utilize the Acceptance-Rejection method generaeevw%,l) varaites is

shown in program (7) of Appendix (B). Sample size 5(10) 5C are taken.

For high accuracy the procedure repeats itself tifd8s to calculates the
procedure efficiency and the run size 100 were mfadethe efficiency

average. The result is displayed in table (3.4).
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Table (3.4)
Efficiency of ProcedureN -3)

Theory Efficiency | Simulation Efficiency

0.40 0.399¢ 0.0001

Procedure W -3) is used to each one of the four methods of

estimation with sample size :5(10) 5C and the repetition is 100 was

made. The result are displayed in table (3.5).

Table (3.5)

Parameters estimation using procedive- 3)

Estimation of(c?, A)

0.562,1.125 || (0.583,1.363 W
0.543,1.003 || (0.550,0.93F W

(0.437,1.149 | (0.415,1.06%

0.521,1.037 || (0.433,0.91%] (0.529,1.05% W
W 0.453,1.14} | (0.460,0.93) m
W 0.483,0.917 | (0.470,0.995 | (0.495,0.107
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3.5 Application of Procedure (W -4)

A computer program for procedur(w —4)of section (2.5.4) which

utilize the Acceptance-Rejection method genera(zer(%,l) varaites is

shown in program (8) of Appendix (B). Sample size=5,10(10 5( are
taken. For high accuracy the procedure repeats$ 186 times to calculates
the procedure efficiency and the run size 100 weaee for the efficiency

average. The result is displayed in table (3.6).

Table (3.6)
Efficiency of Procedurdw - 4)

Theory Efficiency | Simulation Efficiency

ProcedurefW -4) is used to each one of the four methods of estimat

with sample sizen =5,10( 10 5( and the repetition is 100 was made. The

result are displayed in table (3.7).
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Table (3.7)

Parameters estimation using procedive- 4)

3.6 Application of Procedure (W -5)

A computer program for procedurf®V —5)of section (2.5.5) which

utilize the Acceptance-Rejection method generaee\/\ﬂ(%,l) varaites is

shown in program (9) of Appendix (B). Sample size 5,10( 1() 5( are

taken. For high accuracy the procedure repeats 186 times to calculates
the procedure efficiency and the run size 100 weaee for the efficiency

average. The result is displayed in table (3.8).
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Table (3.8)
Efficiency of ProcedurdW -5)

Theory Efficiency Simulation Efficiency || Error=Theory-Simulation

0.76 0.759 0.001

Procedure(\N —6) is used to each one of the four methods of

estimation with sample size :5,10( 1() 5( and the repetition is 100 was

made. The result are displayed in table (3.9).

Table (3.9)

Parameters estimation using procedive-5)

20

- 0.434,0.919 ] (0.401,1.02) || (0.460,1.213 W
n 0.439,0.98) | (0.537,1.159 | (0.464,1.058 W
m 0.483,0.95) | (0.440,1.248] (0.494,1.02} W
0

- 0.498,0.928 | (0.491,1.04% | (0.499,0.983] (0.500,0.972
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3.7 Application of Procedure (W -6)
A computer program for procedu(\A/ - 6) of section (2.5.6) which

utilize the Central Limit Theorem to generate Wis%,l) varaites is shown

in program (10) of Appendix (B). Sample sige=5,10( 10 5( are taken.

For high accuracy the procedure repeats itselftibd®s. The result is
displayed in table (3.10).

Table (3.10)

Parameters estimation using procedie- 6)

S ampl e Estimation of( )
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Various Techniques of Sampling Weibull

Chapter Two Variates by Monte Carlo Simulation

2.1 Introduction

The goal of this chapter is to generate randomatesifrom Weibull
distn. by using Inverse Transform Method, Theordn?)( Acceptance
Rejection Method and Central Limit Theorem. In EetTt(2.2) we
introduced the genesis of Monte Carlo simulatiod #re uses of Monte
Carlo methods; in section (2.3) we observed thedoan number
generation and the algorithm which will be usedgenerate random
variates. Section (2.4) show the random variateseigg¢ion from
continuous distr. which consist of two methods namely, Inverse
Transform method (IT) and Acceptance Rejection w@tfAR). Section
(2.5) we shall consider six procedures for genegatandom variates from
Weibull distn. by Inverse Transform method, Theor@n2), Acceptance
Rejection method and Central Limit Theorem.

After constructing a mathematical model for the bbeon under
consideration, the next step is to derive a satutidhere are analytic and
numerical solution methods. The analytic solutienusually obtained
directly from its mathematical representation ia trm of formula, while
the numerical solution is generally an approximsdkition obtained as a
result of substitution of numerical values for treiables and parameters
of the model [27]. Many numerical methods are tieea that is, each
successive step in the solution uses the resutt thee previous step such
as Newton’s method for approximating the root ofidioear eq. Two
special types of numerical methods simulation drel Monte Carlo are
designed for a solution of deterministic and ststicgroblem.

Simulation in a wide sense is defined as a numetazzdnnique for
conducting experiments on a digital computer whiclolve certain types

of mathematical and logical models that descrilee hhavior of system

2 [22]¢



Various Techniques of Sampling Weibull

Chapter Two Variates by Monte Carlo Simulation

over extended periods of real time, for examplausating a football game,
supersonic jet flight, a telephone communicatiostesy, wind tunnel [27],
a large scale military battle (to evaluate defemsiv offensive weapon
system), or a mainterinance operation (to deterrtiv@eoptimal size of
repair crews) and a live applications of real emept in mock combat
scenarios or firing range, these allow pilots, tatdrivers and others
soldiers to practice the physical activates of awith their real equipment
[26], etc. .

Whereas simulation in a narrow sense (also -callemthastic
simulation) is defined as experimenting with the deloover time, it
includes sampling stochastic variates from prolagbitistn. Often
simulation is viewed as a “Method of Last Resoot'be used when every
things else has failed [27]. Software building @adhnical development
have made simulation one of the most widely usetlantepted tools for
designers in the system analysis and operatioanmgse

In this chapter, we shall introduce two methodgenerate random
variates from continuous probability distn., namely

1- Inverse Transform Method.

2- Acceptance-Rejection Method.

These methods specifically applied on six proceslui generating

random variates from Weibull distn. .

2.2 Monte Carlo Simulation

Stochastic simulation is sometimes called MonteldCamulation,
because sampling from a particular distn. involiie use of random
numbers [27]. Historically, the Monte Carlo methwds considered as a

technique using random or pseudorandom numbers fsolution of a

2 [5]¢



Various Techniques of Sampling Weibull

Chapter Two Variates by Monte Carlo Simulation

model. These random numbers are essentially indepénrandom
variables uniformly distributed over the unit intak[0,1].

Actually there are arithmetic codes available@nhputer center for
generating sequence of pseudorandom number diggseweach digits (O
through 9) occurs with approximately equal probgb{imagine flip of a
fair ten-side die). Such codes are called randomi@u generators.

In the beginning of the 30century the Monte Carlo method was used
to examine the Boltzmann eq. [27].

In (1908) the famous statistician W.S.Gosset (stt)desed the Monte
Carlo Method (experimental sampling) for estimatitige correlation
coefficient in his t-distn. [27]. One of earliestoplem connected with
Monte Carlo method is the famous Buffon’s needlebf@m, who found
the probability of a needle of length L thrown randy onto a floor

composed of parallel planks of width D>L '[5:2—:5 which can be
T

estimated as the ratio of the number of throwsnigitthe crack to the total
number of throws.

The term Monte Carlo was introduce by Von Numand &ham
during world warll as a code word for the secret work at Los Alamios; i
was suggested by the gambling casinos at the ¢itWlante Carlo in
Monaco [30]. The Monte Carlo method was then appte problems
related to the a atomic bomb where the work invlggect simulation of
behavior concerned with neutron random diffusiofigsionable material.

Shortly thereafter Monte Carlo methods used to uatal complex
multidimensional integrals, stochastic problems,d awleterministic
problems if they have the same formal expressiansamne stochastic

process. Also Monte Carlo method is used for smiutf certain integrals

) L]
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and differential equations, sampling of random at@s from probability
distn:®, and for analyzing complex problem (such as rahiagransport to
rivers). Useful references related to Monte Cantaugation by Rubinstein
(1981) [27] and Norman (1988) [22].

2.3 Random Number Generation [27]

Many techniques for generating random numbers gitatlicomputer
by Monte Carlo method and simulation have been essigd, tested, and
used in recent years. Some of these methods ared bas random
phenomena, others on deterministic recurrence guves.

Initially manual methods were used to generate,equance of
numbers such as coin flipping, dice rolling, caldifiing, and roulette
wheels, but these methods were too slow for gemsealnd moreover the
generated sequence of such methods could not regedd

With the computer aid it becomes possible to oletimandom
numbers. In (1951) Von Neumann suggested the midregmethod using
the arithmetic operations of a computer. His ides to take the square of
the preceding random number and extract the mididjiés. For instance,
suppose we wish to generate 4-digits numbers.

1-Choose any 4-digits to generate 4-digits numbens3201.

2—-Square it, to have 10246401.

3-The next 4-digits numbers is the middle 4-digistep (2), that is

2464.

4-Repeat the process.

This method proved slow and not suitable for statl analysis,
furthermore the sequence tends to cyclicity, anmeanzero is encountered

the sequence terminates [27].

2 [5]¢
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One method of generating random numbers on digaalputer was
published by RAND Corporation (1955); consist oéparing a table of
million random digits stored in the computer mem[#y]. The advantage
of this method is reproducibility and its disadeg#, was its slow and the
risk of exhausting the table.

We say that, the random numbers generated by arifjothas a
“good” one if the random numbers are uniformly disited, statistically
independent and reproducible; moreover the methogcessarily fast and
requires minimum capacity in the computer memory.

The Congruential methods for generating pseudoranaambers are
designed specifically to satisfy as many of thesgiirements as possible.

These methods produce a nonrandom sequence of rmuatmrding
to some recursive formula based on calculatingrésedues module of
some integer m of a linear transformation. Knuth][2how that numbers
generated by such sequence appear to be uniformlyibdted and
statistically independent [4].

The Congruential methods are based on a fundameatgruence
relationship, which may be formulated as:

Xiag=(aX; +c)(modm), i =1,2,.m. ., (2.1)

where a is the multiplier, c is the increment, ang the modulus (a, c,
m are non-negative integers), (mod m) mean th&Bdqg.can be written as:
Xig=aX;+c-mz] (2.2)

Where[z] :[axi +C} is the largest integer in z.
m

Given an initial starting valuX, with fixed values of a, ¢ and m,

then eq. (2.2) yields congruence relationship (nmado) for any values i

> [a]¢
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of the sequence {X The seq{X;} will repeat itself in at most m steps

and will be therefore periodic.
For example:

Leta=c=X,=4, andm =9, then the sequence obtained from the

recursive formula

Xi4=(4X; +4)(mod 9 is X; =4,2,3,7,5,6,1,0,4,... ;i =1,2,3,... .
The random number on the unit interval [0,1] caob&ined by:
Ui =20 0 20200 0 o 2.3)
m

It follows from eq.(2.3) thaK; <m, Ui, this inequality mean that
the period of the generator cannot exceed m, thahe sequendeX; }

contains at most m distinct numbers. So we shohttbse m as large as
possible to ensure, a sufficiently large sequeriahisbinct numbers in the
cycle.

It is noted in the literature, [16] that good stftal result can be

achieved from computers by choosiag 2’ , ¢ =1, andm =2,

2.4 Random Variates Generation From Continuous Distribution

Many methods and procedures are proposed in tkeatlire for
generating random variates from different disthdt We shall utilize
most well known methods namely, Inverse Transforathdd (IT), and

Acceptance-Rejection Method (AR).

2.4.1 Inverse Transform Method [27]:
Let X be a r.v. with c.d.fE(x), sinceF(x) is non-decreasing function.

The inverse functiorr “}(y) may be defined for any value of y between 0

2 [a7]¢
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and 1 asF7'(y) is the smallest x satisfying (x)=y , that is,

FAy)=inf{x:F(X)2y}. (2.4)

It is important to prove the following theorem.

Theorem (2.1) [27]:
The random variable =F (X )[U (0,1) if and only if, the random

variableX =F }(U )has c.d.fPr(X <x)=F (X ).
Proof :
Let the random variablé =F (X )[U (0,1) then U has c.d.f.

Qu<O0
G(u)=Pry su)=<u,0<u<1
lLu=1

Now,
PrX <x)=PrF U )sx1=PrJ <F(x)]=F (x).
Conversely, Let the random variable has X c.BrfiX <x)=F(x)

and let G(u) be the c.d.f. of random variable &nth

G()=PrU <u)= PF (X )su]= P{X <F () |=F|F () |=u

Q.D.E.

The algorithm of generating random variates by fisgetransform
method can be described by the steps of IT-Algorith
IT-Algorithm:
1- Generate U fron (0,1).

2- SetX =F “(U).
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3- Deliver X as a random variable generated from tdef.f (x) .

4- Stop.
As an application of IT- Algorithm, we shall consrdthe following two
examples.

2.4.2 Examples:

Example (2.1) [27]:
Generate ar.v. X fror@ (0,1) where the distn. p.d.f.

1

O )

—0<X <00

Solution:

The c.d.f. of this p.d.f. is

f 17 1
F(xX)=Pr(X <x)=|f (t)dt == dt
(=P x)= [T (=7 [ 120
-1
F(x)= tan X +§1 setu=F(x) implies
1
X =tan 70 -=)| .
o)

Apply IT-Algorithm:
1- Generate U fron (0,1).

1
2- SetX =tan[ﬂu _E)}

: 1

3- Deliver X as ar.v. generated froh({x) =—-.

g oi(x) A0+ x?)

4- Stop.
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Example (2.2) [27]: Generate a random variable X from the distribution

whose distn. p.d.f.

Solution:

The c.d.f. of this p.d.f. is

O,X — —00

X
[ f(t)dt, —e<x<0

F(x)=Pr(X <x)

0 X
[ f(t)dt+[f (t)dt, 0<x <eo
—00 0

1,X — 00

So,

For —o<x <0, setu=F(x) =u =%ex implies x =In(2u) , for
O<u<1.
2

For 0sx <o, setu=F(x) =u =1—%e"x implies x ==In(2u),

for 1£u <1.
2
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Apply IT-Algorithm:
1- Generate U fron (0,1).

2- If O<U <% setX =In(2U); go to step (4).

3- Else, setX =-In(2U ).
4- Deliver X as a random variable generated from.
f (X)=%e_x,—oo<x < oo,
5- Stop.
We note that:

To apply Inverse Transform Method the c.cEI(x) must exist in a form

for which the corresponding inverse transform caonfl analytically.
Some probability distn., it's either impossible difficult to find the

X
inverse transform, that is, to solwe=F (x ) = If (t)dt

For example :

X

1- X OExp(A) wheref (x) =%e_ﬂ, 0<x <o (possible) .

2- X 0G(2,1) wheref (x)=xe™,0<x <co (difficult) .

2

1
-=X
ie 2 -0 <X <o (impossible) .

3- X ON (0,1) wheref (x)= >
T

2.4.3 Acceptance Rejection Method [16]

This method is due to Von Neumann. This methodlmam@pplied to
generate variable from an appropriate distn. arjesting it to a test to

determine whether or not it will be acceptableuse.

2 [51]¢
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To carry out the method, we represent the pfifx) of the
generated random variable X fagx ) =ch(x)g(x) wherec 21, h(x) is
also a p.d.f. an@<g(x)<1. Then we generate two random variables U
and Y fromU (0,1) and h(y), respectively, and test to see whetherobr
the inequalityd <g (Y ) holds.

1- If the inequality holds, then acceyt X as a variate generated from
f(x).
2- If the inequality is violated, reject the pair U,and try again.
Theorem (2.2) [27]:

Let X be a random variable distributed with the.p.ti(x) , x Ol ,
which is represented ds(x )=ch(x)g(x) wherec=1, h(x) is also a
p.d.f.and0<g(x)<1.

Let U and Y be a distributed (0,1) and h(y), respectively, then

Pr[Y =x|U Sg(Y)]=f (x).
Proof :
_PrlY =xU <g(Y)]
PrU <g(Y)]
_ PrlY =xU <g(Y)]

~[PY =x U =g(v )]

Using Bayes theorem [18], we have:

s __ Prusg(v)¥ =x)Pdr =x)
Py =x|u sg(Y )}_jpr[u <g(v )Y =x Py =x)dx
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Since,
PrlU <g(Y )Y =x |=PfU <g(x)]|=g(x) andPr(y =x)=h(x)

Therefore ;

PrlY =x|U <g(Y)]=

g(x)h
ng(x)h(x)dx J‘Xf

=ch(x)g(x).
The efficiency of Acceptance-Rejection Method isletermined by the

inequalityU < g (Y ) where efficiency isPrfU <g (Y ) :% =

Because the trails are independent, the probalofityuccess in each

trials is p =1. The number of trials N before a successful pdiiv§ has
C

geometric distn. with p.d.f.
Pr(N =n)=p(1-p)" " ,n=123,..
=0 ,ew .

With the expected number of traiis(N )=l =c .

Y
The AR-Algorithm describes the necessary steps eferating a
random variable by Acceptance-Rejection Method.
AR-Algorithm:
1- Generate U fronu (0,) .
2- Generate Y from h(y) .

3-1f U<g(Y), deliver (we acceptly=X as a random variable

generated from the p.dff.(x ). Go to step (5).

4- Else go to step (1).
5- Stop.
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We note that, for the Acceptance-Rejection metlwobet of practical
interest, the following criteria must be used.

(i) It should be easy to generate fro(r).

(ii) The efficiency (probability) of the procedu%eshould be large, that
c

IS, ¢ closed to one .

As an application of AR-Algorithm, we shall considée following
two example.

To illustrate the method, we choasel such that
f (x)<ch(x)=¢(x),0x OI . Then the problem is to find the function

#(x) and the functior‘n(x)zM from which the r.v. can be generated.

c
2.4.4 Examples
Example(2.3) [27]:
Solution:
Since,vR*-x*<R, OxO[-R,R]
= 2 2 _y? 2R :_2:
Then,f(x)—]7R2 R?-x SnRZ = é(x)
- moliesc = | _f 2402
But,ch(x)=¢(x) |mpl|esc—__L¢(x)dx —_J; anX -
2
Soh(x)=¢(x)=ﬂR =1 —R<x<R and
C 4 2R
T

g(x)=;h((xx)) SIS

Now, the c.d.f. of the p.d.h(X) is:

) [5a]¢
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[ [ 1. x+R
H = | h(t)dt = dt = :
()= [ (e = ppa =52
Set
u,=H (y) =% impliesy =(2u, -)R.

Apply AR-Algorithm:
1- Read R.
2- Generate Yand Y fromU (0,1) .

3- SetY =(2u,-1R.
4- 1f U, <g(Y )2%\”?2 =Y ?, deliver (we accept) Y=X as ar.v.

generated from(x).Go to step (6).
5- Else Go to step (2).

6- Stop.
The expected number of triats=ﬂ =1.27% and the efficiency is:
T
170785
c 4
Example(2.4) [27]:

Generate a r.v. from the distn. p.d.f.
f (x)=6x(1-x),0<x <1
=0 ew .
Solution:
Since,x (1-x)<x = f (x)=6x (1-x)< & =¢(x)

1 1
j¢(x)dx = c=j6xdx impliesc =3.
0 0

O
=
—
X
~
I
.
—
x
~
o +—Fr
O
=y
—
X
~
Q.
X
1
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Then,
h(x)={

o (x)= f(x) _6x(1-x)_6x (1-x)

2x,0<x <1
Oew.

= g(x)=1-x,0<g(x)<1.

“ch(x)  3x2x 6X
Now,
0,x<0
H(x)=Pr(X <x)={x%0<x <1 settingu, =H (y)=y?
1,x>1

implies y =\/@ :
Apply AR-Algorithm:
1- Generate Wand Y fromU (0,1).

2- SetY =(u2)§ .

3- If U;<1-Y , deliverY=Xas ar.v. generated from p.d.f.
f (x)=6x(1-x).

4- Else go to step (1).

5- Stop

The expectation number of triads= 3, and the efficiency is:

£=—1=0.333
c 3

2.5 Procedures for Generating Random Variates for Weibull
Distribution
In this section we shall consider six proceduregygnerating random

variates from Weibull distn. by using Inverse Tifans method, Theorem

(1.2), Acceptance-Rejection method and Central Lirheorem.

2 [55]¢
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2.5.1 ®Procedure (W-1):
This procedure is based on Inverse Transform Method
f (x)=a6x e 0<x <o

=0 ,ew. ;0>0,6>0

The c.d.f. of this p.d.f. is

X X
F(x)=Pr(X <x)= [ (t)dt :aejt”"le"aadt implies
— 0

F(x)=1-e " settingu =F (x) impliesu =1-e %" implies
1 1
- a
X =(;In(u)} .
Algorithm (W-1):
1- Reada,f.
2- Generated U frorty (0,1).

3- SetX = {%In (u )f’ .

4- Deliver X as a r.v. generated from (x ) = a8x e " |

5- Stop.

2.5.2 ®Procedure (W-2):

This procedure is based on Theorem (1.2) as follows
Algorithm (W-2):
1- Reada,6.
2- Generate U fronu (0,1).
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3- SetX =-In(U).

4- Sety =e™* .
5- Deliver Y as a r.v. generated from ¥\f).
6- Stop.

2.5.3 ®rocedure (W-3):

The procedure is based on Acceptance-Rejectionadgethere the
Weibull variate is generated by utilizing the starttinormal distn. as

follows:
The p.d.f. of r.v.X ON (0,1) is

2
X
f(x) L ¢72 —w<x <o where we make use the inequality
2

=—e
N2
—X

— 2
2 <—— _[Ix(—00,00) .
Lo 2 ( )

To apply the Acceptance-Rejection method, we neexrite the p.d.f.

e

asf (x)=ch(x)g(x) as shown in section (2.4.3).

Now, we consider the inequality

= 2 1 o 1 2
7_ 2 < - th
© <1+x2:>\/277e = 21+ X2 en

1 X 1 2

f(x)=——e 2 < =

(x) 2 J2rr1+x2 #(x)
ch(x)=¢(x):>]3¢(x)dx=°f 2 dx = c=+/2m

2 2 \/21'[(1 + x2)

) [5]¢
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N2
)= 00 _mexh) 1
c Vom oma+x?)

x 1 (tan*x + )=—1 tan'x o1
—00 T 2T 2

.
~—~
x
~
l\)

Setu,=H(y)= 1tan y+%:>ﬂ(|2 —)— tan 'y implies

1
=tan U, ——)|.
y ( (1P 5 j
The number of trials equal to=+/2/7=2.5Jand the efficiency

. . 1
robability) of the method is equal %10=—:0.4O

Algorithm (W-3):

1- Ready,0.

2- Fori=1to 2.

3- Generate Wand Y fromU (0,1) .

4- Sety =tan(n(12 —%)j :

5- If U;>g(Y) go to step (3).
6- Else seXi=Y as ar.v. generated froh (0,1).
7- Nexti.

1
2. 52\y
8- Setz, =X ,, Z, =/OX ,andR =£Zl—;’zzj .

O- Deliver R as a r.v. generated froma/é).

2 [59]¢
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10- Stop.

2.5.4 Procedure (W-4):

This procedure is based on Acceptance-Rejectiomadetwhere the
Weibull variate is generated by utilizing the Nofrdsstn. as follows:

Since, the standard Normal distn. is symmetric alooigin, then the

p.d.f. of rv.X [N ¥(0,1) can be written as:
—_
f(x)=,=e 2,0<x<w
T
=0 ew.

2

_L 6ke—kX 8
We can make use of the inequality 2 < S+ Wherek =, /—
1+e T

[27] .
To apply the Acceptance-Rejection method, we needrite the p.d.f. as
f (x)=ch(x)g(x) as shown in section (2.4.3).

2
X
Now, we consider the inequalitg 2 <

x? 2_—k

/ - K e ™
f(x)=,]—e 2 <s————=¢(x
) Vi 1+ 2 ¢()

TkET™
ch(x)=¢(x) = c=J'¢(x)dx =I%dx |mpI|esc=3\/§

Bke ™

1+ e—2kX

O<X <o ,

g '1+e
é(x 2 k%™
h(x)zﬁz lre ,0<X <o
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0,x<0
H (x)="Pr(X sx)zjx h(t)dt = 1—£tan‘1(e"kx) L KX <00
0 T
l, X — 00

X
¢(X) \/gske_kx 6ke_kx
T

Setu, =H (y) = u, =l—%tan‘1(e""y) implies

(50

The number of trials equal to= 3\/ZZT =3.76 and the efficiency

(probability) of the method is equal J(é:loz —;\/é =(0.266
s

Algorithm (W-4):
1- Read where, 6, k.
2- Fori=1to 2.
3- Generate Yand Y fromU (0,1).

4- Sety =—%In{tan(g(u2)ﬂ :

5- If U;>g(Y) go to step(3).
6- Generate fromU (0,1).

7-1f U, <% set Xi=-Y as ar.v. generated froh ~(0,1).

8- Else seX=Y as ar.v. generated froh *(0,1).

) [ar]¢
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9- Nexti.
1
2 .72 \g
10- Setlex/gxl,ZZ:\/Ex zand R :(Z 1 ZZ 2)

11- Deliver R as a r.v. generated fromd/@j .
12- Stop.

2.5.5 ®Procedure (W-5):

This procedure is based on Acceptance-Rejectiohadetvhere the
Weibull variate is generated by utilizing the startdnormal distn. as
follows:

Since the standard normal distn. is symmetric abogin, then the

p.d.f. of rv.X ON (0,1 can be written as:

2

f(x)= \/;e_2 0<X <co

=0 ,ew.

Where we use of inequalifi —1)2 >0 [27].
To apply the Acceptance-Rejection method, we neewrite the p.d.f.
asf (x)=ch(x)g(x) as shown in section (2.4.3).

Now, we consider the inequal(ty —1)°>0=>x2-2x +1= 0.

-x? 1 2 1y
:>— ——x:>e 2 <e? | then

N
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ch(x)=¢(x)=>c =I¢(x)dx =\/%Ie"xdx impliesc =\/%

h(x)=¢(x)=e"x,0<x < oo

Chapter Two

C
=0 .ew.
. 0x<0
H (x)=Pr(X <x)=[h(t)dt =¢1-e™, 0<x <eo
0 l,X — 00
f(x) -0

=e 2 where0<g(x)<1.
Setu,=H (y) =>u,=1-e” =y=-In(u,).

The number of trails equal to= ,/§ =1.32 and the efficiency
T

(probability) of the method is equal élg: \/gz 0.76

Algorithm (W-5):
1- Read where 6.
2- Fori=1to 2.
3- Generate Yand Y fromU (0,1).

4- Sety =-In(u,).
5- 1If U;>g(Y) go to step (3) .
6- Generate bfromU (0,1) .

7-1f U, <% setX;=-Y as a r.v. generated froh ~(0,1).

8- Else seX=Y as ar.v. generated fron *(0,1).

) [es]¢
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9- Next i.
1
2 .72 \g
10- SetZ, =/6X ,Z ,=/6X ,andR =[%j .

11- Deliver R as a r.v. generated fromd/@y.
12- Stop.

2.5.6 Procedure (W-6):
This procedure is based on a Central Limit Thedi@m viz. For
large n, Let %, X,, ..., X, be ar.s of size n from any distn. . (discretel a

continuous) having megnand varianc&” with existence oM(t). Then

i (X - )

the rv.X = Capp N (0,1).

To apply this procedure, we consider a r.§.W, ..., U, of size n from
U (0,1 where p.d.f.

g(u)=1 ,0<u<1
=0 ew.

Since,u=E(U) =% andd” =Var (U) = 1—12 implies

— 1
X =mu—12)=ﬁ 0-2)
12
Algorithm (W-6):
1- Read where 6.
2- Fori=1to 2.

3- Generate Y U,, ..., U, fromU (0,1).

) el
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— 1 — 1
4- SetU =—>» U, X, =./12n -—).
n; e U 2)

1
2 2 \go
5-SetZ,=v0X,Z,=/6X ,andR :(%} .

6- Deliver R as a r.v. generated fr&¥c, 6).
7- Stop.



| Conclusions '

L

From the present study, we can conclude the following:

1- Inverse Transform procedure has less time consuming in comparison with
the other procedures of generation.
2- The theory and practice show that the efficiency of procedure (W-5) is
superior than procedures (W-3) and (W-4).
3- For all sample sizes, the M.L.M and L.5.M give estimates & and 6
which is close to the exact values of o and ©.

4- For moderate sample sizes, the M.M.M gives estimate close to the exact

values of o and 0.

5- The M.M.M. and M. M. gives small bias for estimatinga , while M. M. M
and M. M. gives small bias for estimating € in comparison with other
methods of estimation.

6- M.L.M. gives small variance of & in comparison with other methods.

7- L.5.M. gives small variance of 8 in comparison with other methods.

8- M.LM. and LS. M. gives small MSE of & in comparison with other
methods.

9- L.8.M. gives small MSE of 8 in comparison with other methods.

10- The disadvantage of Monte-Carlo methods depends on generating

pseudorandom variates and that might carry dirty data.

2 [7a)S




Future Work and Recommendation

e .
1- This work can be use for generalized Weibull distribution of three
parameters and other life distribution.

2- Another methods can be used to estimate the distribution parameters

o and O like Minimum Chi-square, Minimum Distance, Bayesian
Method, ... etc.

3- It can be generate r.v.° from Weibull distribution by other new
procedures which can be compare their efficiency with our used
procedures.

4- The bias of estimation is a r.v. of unknown distribution which can be
investigated approximately by using well-Rnown statistical tests such
as Chi-Square Goodness-of-Fit Test, Kolmogorov-Smirnov Goodness-of-
Fit Test, Serial Test, ...etc.
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I ntrozfuctionr

The Weibull distn. has been widely used as a modehany areas of

L

applications, specifically in the studies of fadurtomponents and as a model
for product life. It has also been used as thendisf strength of certain
materials. It is named after the Swedish scieté&ibull [31] who first
proposed the distn. in connection with his studiasstrength of materials
[31]. One reason for its popularity is that it hegyreat variety of shapes,
which make it extremely flexible in fitting manyrids of empirical data.
Weibull [32] showed that the distn. is also uséfullescribing the “wear-out”
or fatigue failures. The distn. has been showedptovide a useful
probabilistic model for time to failure of systemvhich consist of a large
number of components where system failure occus®als as one component
fails. Kao [19] used it as a model for vacuum ttditure [15], Mann gave a
variety of situations in which the distn. is used dther types of failure data,
Whitmore and Altschalerf used it in studies on time interval to the
occurrence of tumors in human population. Coherdfs]ved the maximum
likelihood eq? to estimate the distn. parameters fr@jrcomplete sampléi)
singly censored samples aid) progressively (multiple) censored samples.
Bain and Antle [17] used a Maximum Likelihood medhto obtain two
simple estimators of parameters for Weibull distiThese estimators are
similar to the estimators given by Gumbel, MillEreund, and Menon. Some
useful properties of these estimators are develtpeaake it practical use in
Monte Carlo methods to determine the variance aaseb of the estimators
for various sample sizes. Comparison between ttima&®srs are made and
unbiasing factors calculated in some cases. Thanae of the estimators

were also compared with the Cramer-Rao lower bofmdiegular unbiasing
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estimators. Darrel, et al [LOftated the problems of estimation and testing
hypothesis regarding the parameters of the Wethsth., and they obtained
the following result(i) Exact confidence intervals for the parameters dase
upon maximum likelihood estimatorgii) A table of unbiasing factors
(developing upon sample size) for the maximum if@d estimator of the
shape parameter@ii) Tests of hypotheses regarding the parametershaend t
power of the test regarding the shape parametedareloped. Nancy [21]
assumed the Weibull distn. model of two parameter®btain the exact
confidence bounds for the shape parameter andef@ble life and shown
that the analytically derived bounds for a few oedeobservations be highly
efficient w.r.t. those derivable made by Monte Gaprocedures using all
order observation. Pandey and Upadhyay [24] studiethkage method to
estimate the two parameters of Weibull distn. witle@ shape parameter
known and when the scale parameter, shape paraomteown. Al-Badhani
[1] developed a new parameterization and generah flor the distn. with
three parameters. This formulation avoids many lprab that appear in
estimation and applications where his studied conttee strength of ceramic
materials.

Ishioka and Nonaka [28] presented a stable tecleniquobtaining the
maximum Likelihood estimate of Weibull parametefghe life distn.® of
two components that form a series system. Thisnigde requires much
more computation than a previously published praoedThe simulation
results, however, showed the standard deviatidgheoéstimated values of the
Weibull parameters greatly reduced. This technigoes not require the
concomitarite indicator, and can be applied noy doit complete data but for
randomly censored data. Seki and Yokoyama [29] wemgposed robust
estimation methods for the Weibull parameters, amplies bootstrap
estimators of order statistics to the parametticredion procedure. Estimates

of the Weibull parameters are equivalent to the@reges using the extreme
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value distn. .They examined the bootstrap estimaiborder statistics for the
parameters of the extreme value distn. . Accurackrabustness for outliers
are examined by Monte Carlo experiments which mi@i@dequate efficiency
of the proposed estimators for data with some enstli Al-Ali [3] studied
some estimators of parameters and reliability fimnctor Weibull distn. and
suggested four methods to estimate the shape parameen the scale
parameter is known. Al-Fawzan [7] presented twegaties methods(j)
graphical method an(i) analytic method, for estimating the shape and scale
parameters of Weibull distn., and he reported traputational experiments
on the present methods. Dongfung and Guanzhonguddqd Monte Carlo
simulations to search for the optimal probabilitstimator for estimating
Weibull parameters with the linear regression meéth@ompared with
commonly used probability estimators, the optima obtained gives a more
accurate estimation of the Weibull modulus andsire estimation precision
of the scale parameter. They will also concluded the maximum likelihood
method results in the highest precision, howewss Ilconservative than the
linear regression methodbed [12] compared the parameters and reliability
function of Weibull distn. with three parameterpmssed as a failure model,
using some classical methods of estimation (Maxintukelihood Method,
Moment Method), and Bayesian Methods (Bayes Methlodnkage Method),
and he used the Monte Carlo simulation to compdrese methods.
Montanari, et al. [13], applied unbiasing procegurfer the maximum
likelihood method to parameters of Weibull functiane dealt with. The
performance of unbiasing methods applied to expestues and point
estimates of the Weibull parameters, as well thegu$sed the Monte Carlo
method for the estimation of the expected values, they shown that the
accuracy of the unbiasing methods can be significaifected by several

factors, such as the value of the shape parametethe estimation of the
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expected value, and that some methods can be stdbespplied to the
point estimates of the Weibull parameters.

The aim of thesis is to estimates the parameterd¢/ebull distn. by
using four methods of estimation and generatingracqulures of random
variates from Weibull distn. by using Monte Carlamglation. The
professional MATHCAD, 2005 computer software is dise make the
programs of thesis.

This thesis includes three chapters. In chapter, e present some
iImportant mathematical and statistical propertied/eibull distn. .

Genesis of the distn. is derived by extending ttemiof obtaining the
Rayleigh distn. which utilize some specific tramgfation related to Normal
distn. . Also, we show that the Weibull distn. camse by two different
approaches. Moment properties of the distn. anstihted and unified. Four
methods of estimation for the distn. parametersis®issed theoretically and
assessed practically. Monte Carlo simulation is enhgl four methods of
estimation.

In chapter two, we introduce some concepts of thtoty of stochastic
simulation. Procedures for generating random nusnbad random variates
from different distn. is discussed theoreticallydasupported by various
examples.

Six procedures for generating random variates fugibull distn. are
considered, and then some of these are discusle@fiiciency and with out
efficiency and number of trails are illustrated.

In chapter three, we utilize practically the prosex$ of generating
variates from Weibull distn. as discussed theoa#itian chapter two. These
procedures are applied from parameters estimatitim efficiency of some

procedures.
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