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Chapter three Solutions Around Singular Point

3.1 I ntroduction:

In this chapter we obtain the fractional power series solution of
homogeneous linear fractional differential equation of order o (O<a<l)

around regular a-singular point x, of the equation

(x —x0)“D¥y(x) + p(x)y(x) = 0 (3.1)

where p(x), due to the regular a-singular character of x,,is an a-analytic

function around x,,.

Definition (3.1),[1]:

A point x, € [a,b] is said to be an a- singular point of the equation

(3.1), if thefunction p(x) isnot a-analytic at x,.

Definition (3.2), [1]:

Let x, € [a, b] be an a-singular point of the equation (3.1), then x, is
said to be a regular a-singular point of this equation if the functions (x —
x0)“p(a) is a-andytic in x,. Otherwise, x, is said to be an essentia a-
singular point.

For example a point x = x, > 1 is an ordinary point for the following

equation:

(x =D (x) —y(x) =0 (3.2)
thepoint x = 1 isaregular a-singular point for the equation (3.2).

23



Chapter three Solutions Around Singular Point

Theorem (3.1):

Let x, = a be aregular a-singular point of the differential equation
(3.1) of order a, and let

p() = ) pu(x = 1) ,(pn €R) (3:3)
n=0

be the power series expansion of the a-analytic function p(x).Then equation
(3.1) is solvable and the function

(00]

Y() = (X =x0)° ) an(x = 5", (@ € R) (3:4)

n=0
iIsthe solution for x € (x,, x, + p) where a, isanon-zero arbitrary constant,
s>-1isthereal solution to the equation

'(s+1)
[(s—a+1)

+p0=0

and the coefficients a,(n > 1) are given by the following recurrence

formula:

n-1
_Tna+s—-—a+1)
tn = F(na+s+1)

AiPn—i
i=0

Moreover, if the series (3.3) converges for all x intheinterval 0 < x — x, <

R (R > 0), then the series solution (3.4) of equation (3.1) is aso convergent

in the sameinterval.
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Chapter three Solutions Around Singular Point

Proof Theorem (3.1):

Seeking a solution to equation (3.1) in the form (3.4):

Y() = (6= %0)° ) an(x = x0)"™

e}

Y() = ) an(x — %)

n=0
and taking fractional differentiation of y(x) according to (1.29) we get:
= [ha+s+1) _
Do) = ) (x = xp)a*s e (3:5)

a"F(na+s—a+1)

n=0

and substituting the result (3.4) ,(3.3) and (3.5) in the general equation (3.1)

we have:

(r—x )aza na+s+1) (x — xS
0 "Tha+s—a+1) 0

n=0
- <Z P (x - x)) (Z an(x - x)) =0 (36)
n=0 n=0
we can write equation (3.6) as.

©o

Z lma+s+1)
anF(na+s—a+1)

n=0
- <§: pn(x — xo)”“) (i an(x — xo)na+s) =0
n=0 n

=0

(x _ xo)na+s

and we get:
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Chapter three Solutions Around Singular Point

i Iha+s+1) +zn: s
] tn lna+s—a+1) @iPn-i| (¥ = Xo)
n=

i=0

F(s+1
+ a, <F(s(j = +)1) + p0> (x—x0)°=0 (3.7)

I'(s+1)

now if we put f,(s) = (m + po

), then from (3.7) we obtain

aofo(s) =0 (3.8)
and
___'zngcupn—i
tn = fo(na +s) (39)

suppose that a, # 0, then f,(s) = 0. Thus, if sis the only real root of the
equationf,(s) = 0 , then the expression (3.9) provides, by recurrence ,the

coefficients a,, of (3.4) intermsof a,.

Now we prove the convergence of the series. Let 0 < r < R. Since the

series (3.3) is convergent, there exists a constant M > 0, such that

A4Tia
|Pn—il < na neN (3.10)
and therefore:
MOl
An-k
|an | < | | kel
fona +s) | k=1
now we define c, = |ay| and ¢, = LZ%& la’;;kl forn > 1. Then
‘ﬁﬂna+s)‘ r
Cnt1| M fo(na +s) 1
cn | [Ifo(+Da+9)|" fo((n+ Da+s|re
and we get
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Chapter three Solutions Around Singular Point

Cnp1(x — xo)(n+1)a

Cn (x - xo)na

|x — xo] ¢
ﬁ
r

when n — co. Therefore the series ), c,(x — x,)™* converges for al

xsuchthat 0 < |x — x| <.

From this we conclude that (3.4) converges for 0 < |x — xy| < R. And the

proof is complete.

Now, to demonstrate the application of the above theorem, we present

the following example:

Example:

Consider the fractional differential equation:
(x—1)*D%(x) —y(x) =0 (3.11)

whereD %y (x) represent the Riemann-Liouville fractional derivative.

Solution:

Since the point x = 1 is aregular a-singular point of (3.11), we shall
seek a solution to this equation around the point x = 1of the form:

(00

y() = (= 1)° ) an(x— D"

n=0

[00]

y() = ) ay(x = D (3.12)

n=0
and the fractional derivative of y(x) isgiven by:
- F(na +s+1
D%y (x) = Z ats+tD o pyrersa (3.13)

anF(na+s—a+1)

n=0
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Chapter three Solutions Around Singular Point

substitute (3.12) and (3.13) in the general (3.11) we get:

= ha+s+1) =
— 1)nats-ata _ z — 1)nats =
za"F(na+s—a+1)(x ) an(x —1)

n=0 n=0

and we obtain

[00] [00]

mha+s+1)
_1na+s_z _1na+s=0
ZanF(na+s—a+1)(x ) an(x—1)

n=0

n=0
= 'ha+s+1) =
_ — 1)nats = 0
[zanl“(na+s—a+1) Z“"](x )
n=0 n=0

. I'(s+1) Cw =0
‘Ts—a+1) 0
I'(s+1)
—1]=0
%o (F(s—a+1) >
suppose that a, # 0 then F(z(f;)l) —-1=0
'(s+1)
=1 > —1 3.14
[s—a+1) (s ) ( )

suppose that the solutioniss =, (-1 < <0).

It is directly verified that a,, =0 (n € N). Then the general solution to
equation (3.11) hasthe following form:

y(x) = ay(x — 1) a, # 0. (3.15)
Naturally, the result would be the same if we directly seek a solution as:

y(x)=C(x—1)° (3.16)
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Chapter Two Solutions Around Ordinary Point

2.1 I ntroduction:

The use of fractional orders differential and integral operators in
mathematical models has become increasingly widespread in recent year [3]
[16]. Severa forms of fractional differential equations have been proposed in
standard models and there has been significant interest in developing their
schemes solution [6], [11].

In this chapter and next chapter we shall discuss the existence solution
of fractional order differential equations with variable coefficients In this
chapter, we present the implementation of Laplace transform method to
construct the required solution and the power series method, to obtain the
ordinary of fractional order differential equation.

2.2 Power Series Method:

In this section we are going to use the power series method for
obtaining the solution around an ordinary points of the fractional differential

equation of order a.

The concept of a-analyticly function which generalized the concepts of
an analytic function is presented, and constructing the solution for the

eguation:

D%y(x) + p(x)y(x) =0 (2.1)
around an a-ordinary point x, € [a,b] with p(x) defined in the interval
[a,b] and a € (0,1). We consider D%y to represent the Riemann-Liouiville
fractional derivatives of order a of the function y(x) since x, is an a-

ordinary point , p(x) can be expressed in power series expansion as follows:

PG = ) palx =3 Pn€R) 22)
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Chapter Two Solutions Around Ordinary Point

this series being convergent for x € [x,, xo + p] with p>0.

Definition (2.1), [1]:

Let a € (0,1], f(x) be a function defined on the interva [a,b] and

€ [a,b]. Then f(x) issaid to be a-analytic at x,, if there exists an interval
N(x,) such that for al x € N(x,), f(x) can be expressed as a series of
natural power of (x — x,)%. That is f(x) can be expressed as Y.;>-, ¢, (x —
xQna Wwith 0<a<l1 (cn€ R) this series being absolutely convergent for

|lx — x| < p . Theradiusof convergence of the seriesis p.

Definition (2.2), [1]:

A point x, € [a, b] issaid to be an a-ordinary point of equation (2.1), if

the function p(x) isa-anaytic at x,.

For example a point x = x, > 0 is an ordinary point for the following

eguation:

Dey(x) —x%y(x) =0

Theorem (2.1)

Leta € (0,1] and a, € R and let x, € [a, b] be an a -ordinary point for
the equation (2.1) is solvable and the function

[00]

y() = (X =%)"Y ay(x =)™ ,(ay € R) (23)

n=0

Isitssolution, for x € (xq,x,+p) and a, istheinitial condition.
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Chapter Two Solutions Around Ordinary Point

Proof Theorem (2.1):

We shall seek for a solution of equation (2.1) as follows:

Y() = (6 =50 ) an(x =1 = ) an(x —x) ™V (24)
n=0 n=0

and the different ion of the equation (2.4) we get

Dey() = ) At Dal -~ xpynet (2.5)

in order to obtain the recurrence formula, we put (2.2),(2.4) and (2.5) in (2.1)
we get:

- I'[(n+ Da
Z I'(na)

+ (Z Pn(x — xo)na> (Z an (X = xo)(n+1)a—1) =0 (2.6)

=0

an (x — xo)"*

n=0

We can write equation (2.6) as:

I'(n+ Da]
I'(na)

= - <Z Pn(x — xo)na> (Z an (x — xo)(n+1)a_1> (2.7)
n=0 n

=0

an (x - xo)na—l

s

0

S
Il

from equation (2.7) we can write as:

I'(a) _ (2a) o (Ba) o
_F(O) ag(x —xo)~t + r@ a;(x —x0)% 1 + T 2a) a,(x —x9)%* 1t +
I 1

= —[(Po + P1(x = %0)* + Pp(x — %)+ -+ P (x — x0)"% ...)
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Chapter Two

Solutions Around Ordinary Point

(ap(x — x0)*~

La (e —x)%* 1+ a, (0 —x)3% L 4 -

et ap(x — xp) DT 4 L]

r(2a a1 T 1
T T WO T X gy R T x) T
I'[(n+ 1Da] .
F(na) an(x xO) 1 +

= —[Poao(x — x0)* ™" + Poas (x — x0)** " + poaz (x — %)’ + -

et Doty (x — xo) VAT 4

+p1a0(x — x0)?* L+ pra; (x — x0)3* + pray (x — xp)* T+

Apia, (x — xp)MHDe1 4

+p,a0(x — x0)3% T pyas (x — x)**7 L + pyay (x — x9)%%7 L + -

et pra, (x — xp) DT 4

+Pnao(x — x0) "V 4y (x = x0) T 4pa, (x — xp) I

4]

Since a, is arbitrary:

£za) a1=—Po4o
I'a)
r(3a)
F(ZZ) a; = —(p1ag+poas)
r'(4a)
p(3z) az = —(p2aptp1a4 + poay)
I'[(n+2)a]
M(n+ Da] ™~ ~(Pndo + Pr-1a1 + Pn-2z2+ + Pon).
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Chapter Two Solutions Around Ordinary Point

from this result we obtain the following recurrence formula which allows us

toexpressa, (n > 0)intermsof a, :

2
EZi 1%2 An+1 = Z Pn—kQg (2-8)

where k = (0,1,2,3,...)
we show that for x € (x,, x, + p) the seriesin (2.4) converges.
let r < p since (2.2) converges. There existsaconstant M > 0 such that:

M,r.ka
|pn—k| = rna

and therefore,

I'(n+2)a]
Mot Da] 19 <

M:

k=

denoting b, = |a,| by recurrence we define b,,(n € N)asfollows:

I'n+ Z)a B
M+ Da] 2 = nazb"r

where (n € N,). Itisclear that 0 < |a,| < b, for n € Nythe series:

9r(0) = ) bax = xg)" T = (1 = %)@V Y by (x = )™
n=0 n=0

isconvergent for |x — x| < r .And the following estimate is holds

|bn+1(x—x o) e | |x—x0 | )

n—>00 b, (x — xy)"% r

this proves the convergence of (2.4) for x € (xg,xo + p)
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Chapter Two Solutions Around Ordinary Point

Example:

Consider the following fractional differential equation of order
a(0<a<l):

D% (x)+ (x+ 1)%y(x) =0 (2.9)

Solution :
The point x, = —1 isan «a -ordinary point for this equation.

Let us find the general solution to (2.9) around the point x, = —1. We seek

solutions of the form:

y(x) = (x + 1)1 z a,(x + 1)@ = z a,(x + 1)n+Da-1 (2.10)

to find a,, substiute (2.10) into the original equation (2.9):

(D“ z an (x + 1)("“)“‘1) + (x + D (Z a, (x + 1)(n+2>“—1) =0

(00 (0]

'n+1

z (;l(n )C( an(x + 1)na—1 - _ z an(x + 1)(n+2)a—1

n=0 n=0
wehave a,;,.; =0 (k €EN) (2.11)
and ay = (=1)*Q(k)ay, (212)

i r2ia)
with Q (k) = [T L it na] (2.13)
therefore the general solution to (2.9) has the form:
Y0 = ao(x + D+ Y (~DFQ(R)a(x + DRV (2.14)

k=1
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Chapter Two Solutions Around Ordinary Point

y(x) = ap(x + )

1+ ) (=D Qk)(x + 1)%*e]. (2.15)

The particular solution to (2.9) which satisfies y(0) = 1 is given by (2.15),

with a, given by:

1
T 1+ 3o, (—DFQk)

g (2.16)
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Conclusions and Future Work

The main conclusions of this work are that we chtaio the solution
of fractional order differential equation with valie coefficients by using the
power series solution in the same manner as imargidifferential equation.

In future work, we suggested the following casesttly:

1. Differential equations with variable coefficisritaving multi-

fractional ordera such thatxr > 1

2. Differential equations with variable coefficisrttaving fractional

order a such thatr > 1

3. Non-homogenous fractional order differentiai@&ipns with

variable coefficients.

4. Other definitions of fractional order diffeteh equations (such as
Caputo, Hadmard,...etc) to be considered to inveastithee solutions of such

fractional order differential equations

5. The solutions of the system of fractional ordifferential equations

with variable coefficients.
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Abstract

In this work the solutions of ordinary homogenouacfional order
(with values between zero and one) differential atigms with variable
coefficients are investigated. Also the existendetlee solution is by
presenting theorems, using the method of PowereSdar ordinary and
singular type of fractional order differential etjpas with variable

coefficients. Example has been presented for easé. c
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Introduction

Fractional Calculus is a field of mathematical gtildat grows out of
the traditional definitions of the calculus integamd derivative operators in
much the same way fractional exponents is an owthrof exponents with
integer value. According to our primary knowledg@a@nents provide a short
notation for what is essentially a repeated mudtgtion of numerical value.

This concept in itself is easy to grasp and sttaigtward. However,
this physical interpretation can clearly becomefgsed when considering
exponents of non integer value. While almost anycareverify thate® = x -

x - x, how might one describe the physical meaning %f or moreover the
transcendental exponernt. One cannot conceive what it might be like to
multiply a number or quantity by itself 3.4 times o times and yet these
expressions have a definite value for any valueerifiable by infinite series
expansion, or more practically by calculator.[10]

Most authors on this topic will cite a particulaatd as the birthday of
so called ‘fractional calculus'. In a letter daSeptember 30,1695 L'Hopital
wrote to Leibniz asking him about a particular tiota he had used in his
publications for the nth-derivative of the lineaun€tionf(x) = x
L'Hopital's posed the question to Leibniz, what lddhe result be ih = 1/2
Leibniz's response:"An apparent paradox, from Wwhane day useful

consequences will be drawn". In these words fvaeli calculus was born.

Following L'Hopital's and Liebniz's first quisitipifiractional calculus
was primarily a study reserved for the best mindsnathematics. Fourier,
Euler, Laplace are among the many that dabbled fratttional calculus and
the mathematical consequences [7].



Many found, using their own notation and methodg|agefinitions that fit
the concept of a non-integer order integral orvdgirve. The most famous of
these definitions that have been popularized imtbied of fractional calculus
are the Riemann-Liouville and Grolnwaled-Letnikefinition.

Most of the mathematical theory applicable to thedyg of fractional
calculus was developed prior to the turn of th& 2éntury. However it is in
the past 100 years that the most intriguing leapengineering and scientific
application have been found. The mathematics hasome cases had to
change to meet the requirements of physical redligputo reformulated the
more 'classic' definition of the Riemann-Liouvilfeactional derivative in
order to use integer order initial conditions tdveohis fractional order

differential equations [16].

As recently in 1996, Kolowankar reformulated agdime Riemann-
Liouville fractional derivative in order to diffenéiate no-where differentiable
fractal functions [8].Leibniz's response, basedmmies over the intervening
300 years, has proven at least half right. Itéacthat within the 20century
especially numerous applications and physical meatations of fractional
calculus have been found. However, these applrsitand the mathematical
background surrounding fractional calculus areffam paradoxical. While
the physical meaning is difficult (arguably impdss) to grasp, the
definitions themselves are no more rigorous thasehof their integer order

counterparts [10].

In this work we are studying and investigating éxéstence solutions

of fractional order differential equations with i\able coefficients.
This thesis consists of three chapters:

In chapter one, we study the fundamental concapdsdefinitions
related to fractional calculus, while the main ahije of this chapter is to

give an overview about fractional differentiatiamdantegration.



In chapter two we discussed the existence of thetiso of the
fractional differential equations with variable ffo@ents around ordinary

point by using Power Series Method.

In chapter three we discussed the existence ofstilation of
fractional differential equations with variable ffo@ents around singular

point of fractional differential equations of ordeK a < 1.
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