ABSTRACT

The objective of thisthesisis to study first the theory of fractional
calculus and some of well known methods for evaluating derivatives of
fractional orders for certain functions.

The second objective is to study the G-spline interpolation
functions and its construction using a new approach in formulating the

Heremite-Birkhoff problem using fractional derivatives instead of
integer order derivatives.
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CHAPTER ONE

BASIC CONCEPTS OF FRACTIONAL
CALCULUS

In the earlier work, the main application of fractal calculus as a
technique for solving integral equations and rdgeriractional
derivatives have been used to model physical psesewhich lead to
the formulation of the subject of fractional calesiland hence leading to
the formulation of the fractional differential eduwas which plays an
important role in most engineering and mathemati@at physics
problems. Therefore, in this chapter we give soimi® basic concepts
related to the subject of fractional calculus, udithg the basic
definitions and properties, as well as some ilatste examples of

fractional differentiation.

1.1 BASIC CONCEPTS

In the present section, some fundamental concedsed to the
theory of fractional calculus are given in orderalvoid vague notions

that may arise in this subject.

1.1.1 The Gamma and Beta Functions, [Oldham, 1974]:

Undoubtedly, among the basic functions encounterécctional
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calculus which is widely used is the Euler's ganfometion I (x), which
generalizes the ordinary definition of factoriainéion of a positive
integer number n and allows n to take also anyinteger positive and

even negative numbers or complex values.

As it is known, the gamma functidi(x) is defined by using the

following improper integral:
r(x)= j e O e o (1.1)
0

First of all, it is easy to show that the gammacfion for any

positive integer x can be proved also to be:
Q) I (x)=(x-21)!,x00

2) T ()= (x-1)T(x-1),x00*

1[4

@) rG-0="5 5
2n)W/T
(4) r@+n)=_ Zzn!“
_ :—ncsc(nx)
() T(=) M(x+1)

which enable us to calculate for any positive settie gamma function

in terms of the fractional part of x.

L C : r(j—-q)
For positive integer q and j witlp> j, the expression _
r=a)r(+1)

may be regarded as the binomial coefficient, dsvid:
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rg-a) _0-9-1H(-9-2)..ca+ Hhfq)
F(-a)r(j+1) J

|
where;(qu : Ek — ,j=0,12,...,c.
j !

A second function of important is the betaction B(m,n) which

is defined by:

1
B(m, n)= Ixm_l(l— X)X, N, M >0 e (1.3)
0

An important relationship connecting between gamara beta
functions is given by:

_ F(m)r (n)
S T(m+n)’

B(m, n)

1.1.2 Riemann — Liouville Formula of Fractional Devatives,
[Oldham, 1974].

Riemann and Liouville in (1832) introduced a diffetial operates

of fractional order g>0, which takes the form:

t

qymo 1 d” y(u)
DY%y(t) S t{ (t_u)q_m+1du ........................... (1.5)

where m is a positive integer number defined by in< g< m.
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Equation (1.5) is a Volterra integral equation wsthgular kernel.
Differential equations involving these fractionariyatives have been
proved to be valuable tolls in modeling many phglseand engineering

phenomenas.

1.2 FRACTIONAL DIFFERENTIATION AND INTEGRATION

Fractional differentiation and integration may befided and
evaluated using several approaches depending oumsttk definition of
differentiation or integration. Therefore, this see presents some of
such types of differentiation and integration which termed for

simplicity as differintegration.

1.2.1 Fractional Derivatives:

The usual formulation of the fractional derivativgiven in
standard references such as [Samko, 1993] and §@Ida974] is by
using the Riemann-Liouville formula that requiresitial values
expressed as fractional derivatives. This is vaopinvenient, since it is
usually not clear what the physical meaning of ¢h&actional order
initial value would be and they are therefore h&wdderive from a
physical system. In applications, it is often moosmvenient to use the
formulation of the fractional derivative suggestad Grinwald, Osler,

Caputo, etc. (see [Caputo, 1971]).

The Grunwald derivatives which requires the samartiat
conditions as in ordinary differential equationstlod next higher order.

The Grinwald definition of fractional derivativessgiven by:
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m: lim (Iilj_q l\lz_“lr(j_q)f (t—j(iD ............................ (1.6)

dt9 N-o [(-Q) i=0 r(j+1)l N

where g < 0 indicates fractional integration an@ gxdicates fractional

differentiation.

The Bertram Ross definition of fractional derivatias follows:

d_‘; ="y gy,
dt 2m . (u-t)

where he made a branch cut from t to infinity tlglodhe origin and the
integral curve C is an open contour which encleseshe positive sense

and ul] C (i.e., Cis an integral curve along that cut).

The equivalent between these formulas may be prdugdt have

more computations and therefore are omitted.

It iIs remarkable to notice that additional defiowts of fractional
derivatives may be found in liteatmes in additiorRiemann — Liouville

definition given by eq. (1.5).

1.2.2 Fractional Integration:
The common formulation for the fractional integoatican be

derived directly from a traditional expression loé trepeated integration
of a function. This approach is commonly referredas Riemann —

Liouville approach.

The Riemann-Liouville definition of fraonal integration is given

by:
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f(a, x)——j(x— t)97% (t)dt  (right hand integration)

b
fgxb)=——[(t-x)T(dt  (eft hand integration)
r@@;

where g<0.

Combining the least two egs. gives:

X

_ 1ot
% (x) =
e r(q)xj0 (x -yt

The Weyle definition of the right and left handdtianal integrals are

given respectively by:

fy (—00,X) —(i T — )T () At e (1.8)
fq (X, 00 =%J.(t—x)q"lf(t)dt ............................................. ) B

where f(t) is a periodic function and its mean eafor one period is
zero. But egs. (1.8) and (1.9) are used as thaitefi of the integration

without any condition at the present time.

Because we will concern ourselves to fometl differentiations
only, then we will focus our attention on fractibarivatives only and
give some illustrative examples for such type dfedentiations in the

next section.
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1.3 FRACTIONAL DERIVATIVESOF SOME WELL
KNOWN FUNCTIONS

In this section, some fractional derivatives usitige above
definitions of derivatives will be evaluated asillustrative examples to

fractional differentiations. Other functions detivas may be derived,

such as sinh(x ), sin(v/x ), etc., (see [Oldham, 1974]).

1. The Unit Functions, [Oldham, 1974]:

Consider first the differintegral to the order gtioé function =1,
for which it is found that it is convenient to rese the special notation

which function will be referred to as the unit ftioo.

Using Riemann-Liouville fractional derivatives givdy eq.(1.5)

with mg =0,t; = 0 to give

L f(u)
dxq fx) = M(- Q)I(x u)q+1

u,-1<qg< 0

Then with the unite functioh =1, we have

X

1 du
@ fo0 = r(‘CI)'([(x—u)q+1

_ 1 (x- u)_q‘X
r-a) a |

1 _
=qrqu0_xq)
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x_q
ar (-a)

X_q
ra-o)

2. The Constant Function,[Oldham, 1998]:

For a function f= ¢, where c is any constant including zero, then
the fractional differential of order g>0 may be irated using the

differential the fractional derivative of the ufutnction, then

d d
(c)=c
d(x-af d(x- af

(x-a)™

rd-aq)

@

and hence,

d
d(x-a)

() I T I K o PR (1.10)

3. The Function (x—a)°, [Oldham, 1998]:
The function of fractional degree that may be coesi in this

case is an important function given by fé&xx — af, where p is initially
arbitrary, and one can see that p must exedefbr differintegration to

have the properties that the researchers demarideobperator. For

integer n of either sign, one can show that:

d"xP
dx"

=p(p-1..(p- n+ D", n=0, 1, ...
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and from classical calculus, the first encountehwion-integer q, will
be restricted to negative q so that we may exghatRiemann-Liouville

definition. Thus:

dq(X a)p y a)p
(d(x-a))" (- Q)‘[ )q+1 W

_ VP
T (-q) '([ (x-a- v)q+1

dv,g<0

where v has replaced by-ya. By further replacement of v by txa)u,
then the integral may be cast into the structuréhefbeta function as

follows:

d9(x-a)° _(x-4"
(dx-a)?  T(=a) oup(l I

_T(p+y(x-a”™
F(p-q+1)

4. The Exponential Function exp(F cx):
With r and ¢ are an arbitrary constants, then tbegp-series

expansion okexp(r- cx) is given by:

(—c(x- a))

exp(r— cx)= exp(r caz ST

j=0
which is valid for all x- a

Differintegration term-by-term with respect to cfa), yields:
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—c(x - a)}J
r(i-q+1

d9exp(r- cx)_ -

~q _
(Ao ca)’ c(x—a)} " exp(r caz

The summation may be expressed as an incompletangam
function of argumentc(x — a) and parameterq, then the final result

appears to be as:

d¥ exp(r- cx)_ exp(r cx%/

(dex-a)t  (x-a"

wherey (-n,y)=y" for non negative integer n. The above result seems

(-a.-c(x- a)

to be reduced to the well-known formula for mukigifferentiation of

an exponential function, reduction to the simplerfola:

d exp(F x) _ exp(F X)y( qTx)
dx“

occurs on substitutingka= 0 and & 1 into the general result.

. x4 xP
5. The Functions and :
1-x 1-X

By using the Macluarion expansion of £1x) " and the technique
of term-by-term differentegration which is from th@nearity of

differentiation), one can arrive at:

A g
dxH (1 XJ Z 5 dx?

Identification of the summation as a Macluarionaxgion produces:
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dxH

d_q{x_q}:iwxj

=T (q+ 1)%{"“.‘ 1j )
j=o\ |

and hence:
dd [ xA _ F(g+1)
dxd\1-x ) (1-x)*

=T(g+1)(L- x) ™

P
The technique for differintegratin?% follows in such a similar

result above, that is, it will suffice to cite omgermediate and the final

result of differentiation:

d L xP ]: r(p+1)B(P-a.a+ 1)
dx| 1-x M (p-a)(1- x)q+1

_ (+1)
(1-x)%*

-V Y-
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F(p) (q)
M(p+q)

1 and p >1, which is assumed during the derivation.

whereB(p, q)= together with the restriction, namely, -1 < x <

1.4 SOME PROPERTIES OF FRACTIONAL ORDER
DIFFERENTIAL OPERATOR

Some properties of fractional differentiation opera are of great
importance in applications and in approximating clions using g-
spline, therefore some of such properties of fometi order differential
operator D will be stated.

(1) The operatoD; is linear, i.e.,
DS [erf (%) + c29(x)] = ey D f (x)+ ca05 g (%)

(2) The operatoD§, f gives the same results as the usual differéatiat

of ordernN, wherea = n is positive integer, and the same effect
of an n-fold integration it = —n, is negative integer.

(3) The operator of order = 0 is the identity operator, i.eDSf =f.
(4) Fora > 0 and3 > 0 (Rex > 0, R > 0) the additive index hold, i.e.,
D% D;Pf(x) = D;(“*Pf(x).

The proofs are obtained directly from the defimgo Other
properties may be found irBé¢rtram 1974], [Igor, 2001], Lixia,
1998].

1.5ILLUSTRATIVE EXAMPLES

Following are some examples which illustrate theligpbility of
fractional derivatives for some well known functson

-VY-
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Example (1.1):

Considerf(x) =x then the following may be carried using Riemann
— Liouville formula of functional derivatives:

(1) D)—(O.5 )—1/2 t

r (. 5)j(

4
3/

0.5 d —1/2
(2) Dy x= dx I (1- 05).[( )t

In generality, to derive the fractional derivativex™ whena = 1/2,
we get an important relation:

d"? m_ r(m+1) m-3
dX1/2 r(m+ 1)
B m! x™
S 135..2m W
2m

_ 2™mi2.4.....2m m
= X
Vmx1.2.3.....(2m 1).2m

-V\Y-
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_ 2M m1 2™ m m
M(Tx) (2m)!

(m)?(4x)"™
(2m)T (Tx)

Example (1.2):

Consider the function f(xr sinx, hence the fractional derivatives
of ordera = 1/2, may be evaluated as follows:

,D %% sinx= d[[j(x ) *Ssint dt}
T

then letting x- t = U7, which implise d& —2u du and so:

Ixo
oD > sinx= 1 d jSIn(Xz_lf)Zudu

Jrdx )
N
24 j(sinxcos&— cosxsint )d
Jrdx )
2 df f I
-_< = sinxj cosd du- cosif sinu di
Jmdx
0 0
Jx
_2 SlnXcosx+cosxj cost du
“Jn| T 2x )
_ Jx
cosxsinx . .
——22 “+sinx| sind du
2/x J

0

and using Fresnel Integrals given by [Kai, 1999]:

-Vé-
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(i) Fresenl sine integral is defined as:

s(xF \/%'[Sin W du
0

such that sk) = —s(x), s(0)= 0, sfo) = 1/2.

(i) Fresenl cosine integral which is defined as:

c(XE \/%jcosd' du
0

with c£x) = —c(x) and c(0)x 0, s¢o) = 1/2.
yields:

oD > sinx= %{cosx{% c6/7><))+ sin{% s(/ixﬂ

= J2cosx cf/x ) + ~/2sinx sE/x)

and following the same approach, one may arrive at:

2D %5 cosx= — — J2¢(v/X) Sinx +/2 S(x) cosx.

Jm

-Yo_



CHAPTER THREE

G-SPLINE INTERPOLATION USING
HERMITE-BIRKHOFF PROBLEM
WITH FRACTIONAL DERIVATIVES

Just over 138 years ago, since Lagrange in 187@drastructed
the polynomial of minimal degree such that the polpial assumed
prescribed values at a given knots and the deviesif certain orders of

the polynomial also assumed prescribed valuesedribts.

In 1968, Schoenberg extended the idea of Hermitsgbnes to
specify that the orders of the derivatives spegifreay vary from knot to
knot. Schoenberg used the term "G-spline" insteddgeneralized
splines, because the usual spline term "generalgeoes" already
described as an extension in a different directamit is mentioned in

section three of chapter two, [Schoenberg, 1968].

G-spline functions are used to interpolate the kiteeBirkhoff
data (problem), which is abbreviated by HB-probldéhe data in this
problem are the values of the function and its\dérres but without
Hermite's condition that only consecutive derivasivbe used at each

knot.
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Again, Schoenberge has defined G-splines as a dnpocgwise
polynomials, where the smoothness is governed éyrnitidence matrix
E, and then he proved that the G-splines satisfieat is called the
"minimum norm property", which is used for the omility of the
G-spline functions, which is given mathematically the following
inequality:

[ [f <m>(x)f dx > | [s““) (x)]2 dx

| |
where the function S is called a G-spline funcom it is a polynomial
spline of degree 2m 1 over the interval I. If the only polynomial that
solve the homogeneous HB-interpolation problendéntically the zero
polynomial, then the problem is said to be m-pais#&@ will see later
the consideration of the HB problem that the m-@adigroblem will play
an important role for the uniqueness of the sofutd the HB-problem
(that is if the HB-problem is m-poised, then thexe unique G-spline

function of degree 2m 1 that solves the HB-problem).

31 THE HERMITE-BIRKHOFF PROBLEM WITH
FRACTIONAL DERIVATIVES

As it is mentioned earlier, that the G-spline iptdation
functions are calculated using the HB-problem. s tsection a
modified approach is used to define and give thepriblem which is
by using the fractional derivatives instead of pesiinteger order

derivatives.

-¢Y)-
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First of all, a tractable formal definition of theatural G-spline

interpolation is given.
Let us consider the knots:
X1 <Xo<...< X%

to be distinct and real and letto be the maximum of the orders of the

derivatives given by:
r-l<acsr
wherea is fractional number and r is a natural number.
Define an incidence matrix E, by:
E=[g],1i=1,2,..,k;j=0,1, ..., r

where:

[0 (i) De
aj_{o, if (i,j) Oe

Here e= {(i, )} has been chosen in such a way that i takiee values 1,
2, ..., k; one or more times, whileéj {0, 1, ..., r} and j=r is attained in
at least one element (i, j) of e. Assume also #eth row of the
incidence matrix E and the last column of E shoatmhtain some

element equals 1.

Let yi(o‘i) for eachr, —1<a<¥ be a prescribed real numbers for

each (i, j)U e and leto = maxa;, with r-1<a <r, then the HB-problem
|

using fractional order derivatives is to find f(X) C** [x;,x,], which

satisfies the interpolatory condition:

-¢Y-
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§ (0 )(X ) = y(O( i)
forall r -1<a;, <r, 1=12,...,k, F 0,1,...,,r for (i, JJ

Therefore, in practical applications if-1<a; <t, we operate both
sides of f©®)(x,) =y(®) with D" operator to the both sides to get an

equivalent problem with:
f(ﬁ)(x) D 0(|y(0()

(G)Dﬁ G|a)

_ @ (x-a)t"
R CEER)

The matrix E will likewise describes the set of atjons (3.1) if

the set e is defined by:

e={())a=1}

then the integer:
n=) g
N

is really the number of interpolatory conditiongueed to constitute the

system (3.1).

Therefore, at each knot &f the system (3.1), we prescribes the

value of f(x) for all i =1,2,...,k and may be also a certain number of
consecutive derivativeé(“i)(xi) for j = 1, 2, ..., r;; where r satisfy

—1<a<g, for eachi.

-¢Y-
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As an illustration we consider first the followirtgB-problem

with positive integer derivative.

Example (3.1):

Consider the HB-problem:

f(X1) =y1, F'(X2) = ¥'2, f(X3) = Y.

Then the incidence matrix E takes the form:

m
I
P O K
o O

and the set e is given by:

e={(1,0), (2, 1), (3, 0);}

The next example discusses the HB-problwith fractional
derivatives with its transformation to an integeder HB-problem, but

with different function derivatives

Example (3.2):

Consider the HB-problem with fractional datives:

_ L) PR O P PR €
f(X0) =y f(Xd =yaf “(x3 =y7,f(x 2 =y of (X 3=y ;

In this problem we haven=} .a,=5 and r,=r,=1 and hence

r=max{r,r} =1, then it is 3-poised problem. The transformed

interpolatory conditions are:

=
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f(Xp) =Yoo f(Xp) =yaf (X9 =y'sf(x 3 =y of (x }=y";

The incidence matrix is given by:

a00 a)l
E=la, a,

Since we havé=0,1,2 and j=0,1 and the HB-set e will take the form:

e={(0,0),(1,0),(11),(2,0),(2

Definition (3.1), [Schoenberg, 1968]:

The HB-problem (3.1) is said to be ndrpravided that (3.1) can
always be solved uniquely by &(x) OM ,_;.

Remark (3.1):

The condition that the HB-problem (3.1) is nornmaby be
equivalently expressed by the following requirement

If
o0 LI OO (3.2)
PUOG) = 0, 0 (i, ) T €, vt (3.3)

then:
p(x)=0

_¢o_
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A closely related concept of the normal HB-problemresented

in the following definition:

Definition (3.2), [Schoenberg, 1968]:

Let m be a natural number, then the HB-problem)(.5aid to

be m-poised provided that:
P(X) U M-
pP(x)=0if (i,)) Oe
then:

p(x) = 0.

Remarks (3.2):

1- The HB-problem (3.1) is normal if and only if itmspoised.

2- If the HB-problem (3.1) is m-poised, then theqnality m < nmust
be hold.

3.2INTERPOLATION BY G-SPLINE FUNCTIONS

In this section, we shall assume that the HB-pmb(8.1) is

m-poised and r < n, wherer—1<a <r, a is the highest fractional
derivatives that appears in interpolation problem.

The definition of the G-spline function is faciliéal by defining a

matrix E* which is obtained from the incidence matE by adding

-¢7-
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m — r +1 columns of zeros to the matrix E, i.e., E*[a:j], where

i=1,2,...,k;j=0,1, ..., m), and:

* aj Jfj<r
ani =
. 0,if j=r+1,r+3,...,m

If j =r+1, then E*=E.

Definition (3.3), [ Schoenberge, 1968]:

A function S(x) is called natural G-spline for thenots
X1, X2, ..., % and the matrix E* of order m provided that it shés the

following conditions:

(1) S(X) 0 Moy in (X, Xer), i =1, 2, ..., k= 1.
(2) S(X) O My in (o0, ) and in (¥, ).

(3) S(x)0 C™ (-0, w).

@) If a

S2™(y; —0) = S¥™Y(x;+0), where x+ 0 and x- O refers to the
right and left hand limits of the functior?&™,

= 0, then §™™(x) is continuous at x= x; that is,

We denote the set of all natural G-splines inteaponh

polynomials of a given function with knots, X, ..., X, by:
Sm = S(E*s Xl’ X21 ey Xk)

Sm IS a non empty set and this is shown by the ingtueelation:

-¢Vv-
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I_Im—l [] Sm
Indeed, if S(x)J M1, then S(x) satisfies the conditions from (1) th (4

A special case when (3.1) is given by:
FOx) =y;, FOD(x) =y (@, @0 (5 ) = y (i)
forall i=1,2,...,kandr -1<q, <r

Then the HB-problem is equivalent to the Hermiteolgem in

approximation theory with integer order derivatives

It is clearly thata = maxa;, andr-1<a; <r where r< m< n;
|

S@™I(x) is continuous at x x;, for j=r,..., m— 1. In other words,
SY(x) is continuous at x x;, forv=m, m + 1, .,.., 2m r together with

condition (3), of definition (3.3) we conclude that

S(X)OC™ nearx=Xi, i=1,2, ccc, Kuvvoeoeereeeeeeeeen e AB

Conditions (1), (2) of definition (3.3) and eq.4Bshows tha§,
is identical with the natural spline function ofglee 2m— 1 having x

I =1, 2, ..., k; a multiple knot of multiplicity,, wherer, <m.

Another special case is the Lagrange problem whatturs if we

assume thatak +1and e{(i, 0),i=0, 1, ..., k}.
In this case, n¥ k and we can show th&t, is identical with the

class of natural spline functions of degree 2rh having knots

X0, X1, ..., X, [SChoenberg, 1968].

-¢A-
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The existence of a unique G-spline function maygbeerated

from the following theorem.

Theorem (3.1):

If the HB-problem (3.1) is m-poised, then thereséxia unique

G-spline function

S(X)OS, (B ;% X

such that

S(O(j)(xi )= Yo (x ) F 1< <f i (3.5)

In order to prove this theorem, first transform Hh@-conditions
(3.5) using the fractional operat@rl_aj to the both sides, yields:
. 1-0;
S(x)= ¥ (x)D " ()
1-a;
. X —a J
:y(aj)(xi)—( )
(o)
and hence the proof may proceed similarly as inubeal case (see
[Schoenberg, 1968]).

Now, the most difficulty in the study of G-splinetérpolation
functions is the constructing of the G-spline fumas itself, because
most of literatures give no details about thesections, therefore we

will illustrate in details the method of construetiof such functions.

-¢4-
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Next, the construction of the G-spline interpolatformula in a
more efficient approach leading to a system of anly n equations is
given as follows:

From conditions (1), (2) and (3) of definition (BiBis clear that
the most suitable form of the G-spline function)3(ust take the form:

m-1

_ (X=X;)
S - F)m—l ii .
()= Poa(x) + 21; 2% e 1)

2m-j-1
+

where R-1(x) U Mm-1, while the ¢ are constants to be determined. Any

function of the form (3.6) satisfies the conditid@$, (2) and (3) except:
S(X) O Mmeg 1 Xk S X (3.7)
and according to the definition of the truncated/@obasis, from (3.6).

One can see that®87™(x) is continuous at x x; if and only if
c; = 0, while condition (4) of definition (3.3) requiréhat $™(x) is

continuous if and only |‘a1J = 0. Leaving out all such terms, yields:

2m-j-1

(X_Xi)+
S(X) = Pm-1 i o e 3.8
W=B0 ¢ 3 oy (3.8)

In order to satisfy (3.8), expand all binomial terand equating
to zero those coefficients of' xx™?, ..., ¥™*, the following equations

are obtained:

Gjj 2m-j—-1 vei
> . (-x;)""1 =0, v=0,1,..., m-1...(3.9)
ipre ZmMm— j-DN2m-v-1
|5

and also have the equations:
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SPOG) = YP0G), (1 1) T8 e (3.10)

Therefore, we get n + m algebraic equations frorfl)(and (3.10) and
writing the solution of the unique G-spline so aekhibit the $(x)), ),
to get:

se)= Y yL(x)

(i,)ce

which is the final form of G-spline approximatioantction. It is clear
that the final form of the G-spline function depsrah the fundamental

G-spline functions (x), (i, j) U e.

3.3ILLUSTRATIVE EXAMPLES
In this section, some illustrative examples aresatered. The first

example is for an ordinary case of the HB-probleitheut fractional

derivatives.

Example (3.3):

Consider the following HB-problem:
f(-1) =y, t'(0)=y2 f(1)=ys
and to find the G-spline function which interpol&8e2). In this problem

we have =1, n= 3.

Hence, the incidence matrix E is then given by:

-0Y-
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m
I

P O K

O B O

and the HB-set e will take the form:
e={(1, 0), (2, 1), (3, 0)}.

Therefore, the G-spline interpolation function viaé:
_ 1 3,1 2, 1 3
S(X)=a +ax + Eclo(x +1)5 + §C21X+ + ECso(X =13

Now, we must solve the following linear system dfjedbraic

equations obtained from eq. (3.9) and (3.10):

1 1

—Cio+ =C30=0
610 630

1

1 1
—Cigt =Cy1— =C30=0
5 G0t 5 C1™ 5 Cao
=Y
1 '
al"'EClO:yZ
8 1
+a+ ~Clo+ —Cy =
o t+ta 61o 221 Y3
Hence, we get:
3
Clo—EY1+3Y2—Y3
C1=—3Yy1 —6Y,+ 3ys

3 3
C3pp=——VY1— 3y, + —
30 2y1 Yo 2)/3

-oY-



Chapter Three G-Spline Interpolation Using Hermite-Birkhoff Problem
with Fractional Derivatives

a):ly —Ey’ +§y
41 2 2 43

a:—gy —ly’ +§y
i 41 2 2 43

where y,;,y, and y; are given in applications. Therefore, for

y; =-1¥, =0 andy; =1 we get the following G-spline function:

S(X) = y1L1o(X) + ¥Y2L21(X) + YyaL30(X)

where:

Llo(x)——(l 3x)+ (x+1)2 - gxi—%(x—lﬁ

L21(x)———(1+x>+ (x+1)2 - 3x3—%(x—1ﬁ

Lao(X) =§ (1+X)- % (x+1)2 +§x3 + 1 x-1)3

The G-spline function and its comparison with theact

approximated functioh(x) = x3,-1<x<lis given in fig. (3.1).

-oYy.-
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1.0 —

—@ — Approximate G-spline function.
—J} Exact G-spline function.

0.8 —

S(x)

Figure (3.1) Approximate Normal G-spline function for f(x) =x°.

From the graph of the results of the last examphe, can notice
the error between the G-spline approximation fey # x* and f(x). This

IS because no usage to the derivative has been ah#ue knot points.

Example (3.4):

Consider the HB-problem
f(xo) =yof'(xo =yof(x ) =y 1f (X } =y'af(x =y o (x p=y’

wherexg=-1,x,=0,x,=1

_0¢-
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and to find the G-spline function which interpolé8e2). In this problem
we haven = Zi'j a,=€and r=1,thenitis m-poised (5 poised).

The incidence matrix is given by:

WM
E=la, a,
a20 a21
Hence,
(3, &, O
E=la a O
3, &, O
11 0
=11 O
110

Since we havé=0,1,2 and j=0,1 and the HB-set e will take the form:
e={(1,0),(11),(2,0),(2,2),(3,0), (3}
Form eq. (3.8) we get

9
S)=a+ax g X+ a X+ @071)* 1(XTD++ ‘50%

and form (3.9) we get
Cip* Cyot C3p= 0

Cip+ Cp1t Copt Coyt C3pt Ca= (

-00.
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i +_10 +—1C +_1C =C
71217107 7,17 g, C30™ g, Car
i +ic +—1C +— ¢ —C
6131 20" g1 A1 i3 “30T g C31°

Now from eq. (3.10)
ao+éclo+écuzc
Co+C11=0
PGty =
- 2%+ 3g= .

9 9
Pptayt et 5!3+2— Eo+£ 91+£ CzoJré Gr
9! 8! ol 8!

3 7

1 1
&+ 28 + 3%+§ fot—; Gitg %ot Gf

Where y;,¥1,Y1,Y», Y= and y;are given in applications. Therefore, we

get the following G-spline function:

9
S(x)=-0.262% 0.511%+ 1.253% 205.9&5@;17+

8 9 8
+205.948(X;7|1)+— 1.648.130();—);’— 411.8 8)'+

9 8
+1.442m6("9—|1)++ 617.84% Y-

-of-
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30 -
20 -
10 -
— Exact
;1 ) é 4 —— Approximation
Figure (3.2) Approximation G-spline function
Example (3.4):

Consider the HB-problem
F(Xo) =Y (x) =y, F9x) =y P.f(x ) =y ,f P(x ) =y
wherex, =0,x, =1,X,= 2.

and to find the G-spline function which interpol&8e2). In this problem

we haven=» g, ="5and r=1, then itis m-poised (3 poised).

The incidence matrix is given by:

Ay By
E=la, a,
a20 a22

Hence,

_ovy-
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a, &, O
E=la, a
a, a, 0

o

I
e
P = O
© o o

Since we havé=0,1,2 and j=0,1 and the HB-set e will take the form:
e={(0,0),(1,0),(1,1),(2,0),(24

From (3.8) we have,

(X 1) (x=1)

(x -0)+
TG T

S(X)=g+ax+t g X+ g-—— "

(x-2)7,  (x- 2

+C
2 gl 24

And from (3.9) we get

1 1 1
Ecoo +§C10 +§ Czo
1 1 1 1
_ﬁcw +$C11+E czo+$ Cc,,= C

=0

1 1 1 1
1_2010 + _6C11+_3020__3C21_ C

Now fromeq. (3.10)

a, =0

+a + +£ =

QGTaTa 5!%0
1 —

al+2az+m%o-~

—_OA-
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+2+4+2—5 +i +—l =
% 4 &}5!{:’05!(;04!(;’l

1 1
a+4a+ 0.667g;)+Z B+§ g= 1

where y;,y, and y; are given in applications. Therefore, we get the

following G-spline function:

5 _ N5 A
S(x)=—-0.618x+ 1.491%+ 15.2%5)%— 37. 5|)+_ 11. 4|)+

_9\5 _n\4
+22.118(X57|2)++ 18.697% |2)+

— Approximation
— Exact

[NEN
D

Figure (3.2) Approximate G-spline function

-o04.
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Example (3.5):

Consider the HB-problem
F(Xo) =Y, f () =y, f P(x ) =y P, f(x ) =y ,F Px ) =y T
wherex, =-1,X,=0,x,=1.

and to find the G-spline function which interpol&8e2). In this problem

we haven = Zi'j a,=3and r=2, then itis m-poised (3 poised).

The incidence matrix is given by:

Qo Y Gy
E=la, a, &,
aZO a21 a22
Hence,
1 0O
E={1 1 O
1 0 1

Since we have=0,1,2 and j=0,1,2 and the HB-set e will take the form:
e:{ (0,0),(1, O),(l,l),(2,0),(2,}2

From (3.8) we have,

(X )2

(x+ ) (x).

S(x)=a,+ax+ a X+ g Tt G T e,

X_
+C20( 5 )+ + sz(x 1)1

And from eq. (3.9) we get
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Ecoo +aczo =0

—Coo +_Clo__1020= 0
4| 41 41

1_2000 +1_2020 +_3|C22 =0
Now from eq. (3.10)

8, -8+ 8=-"
1 _
ao+acio_ 0
+1 + =(
Gl 2!Coo Coo
+a + +1 +i =
Htata 3 Go ol G

28,+ G+ G, = €

where y;,y, and y; are given in applications. Therefore, we get the
following G-spline function:

3 3
S(x)=-0.182+ 5.455% 4.636x 10.9 +|1+— 21.dfar

3l
2 3
—25.091%+ 10.908" 3|1 +

- -
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30

20 +

10

— Exact

—— Approximation

Figure (3.3) Approximate G-spline function
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CHAPTER TWO

APPROXIMATION BY SPLINE
FUNCTIONS

The name "spline function" comes from the fact thathird
degree spline function approximates the behavibunexchanical spline,
a device used by draughtsmen to draw a smooth ctiraeconsists of a
flexible strip to which weights are attached att&ier points in order to

force a fit to the given data points, [Ahlberg, I6

In order to avoid the oscillatory in approximatiday high degree
polynomials, it is important to remark that the isel function is a
piecewise polynomial function drawn in such a wiagttits derivatives
up to and including the order one less the degirpelgnomials used are

continuous everywhere in the domain of definition.

For the purposes of interpolation, the use of gplianction
offers substational advantages such as by emplopoignomials of
relatively low degree, and then one can often aviid marked
undulatory behaviour that commonly arises frominfgt a single
polynomial exactly to a large number of empiricabservations,
[Ahlberg, 1967].

A spline function obviously provides continuity tife greatest

possible number of derivatives for the interpolatiumction which must

-V1-



Chapter Two Approximation by Spline Functions

be consistent with the use of polynomials of lowegree than would be

required to fit all data points by using polynom{&@choenberg, 1963].

2.1 POLYNOMIAL INTERPOLATION

One cause of using polynomials for approximationd an
interpolation of a given function or data pointstieat they may be
evaluated, differentiated and integrated easily iarfthitely many steps
using just the basic mathematical operations oftiaah subtraction and

multiplication.

Following are the most elementary types or methads

interpolation.

2.1.1 The Lagrange I nterpolation Polynomial:
Suppose that an approximation of a functionlfC[a,b] is
evaluated by a polynomial of degree n (or order)rasl
n .
P(X)= D GX', S XS D, (2.1)
i=0
where ¢, ,00i=0,1,2,...,r; are the polynomial coefficients must be
evaluated and hence, the problem here is reducbe tevaluation of the
coefficients ¢s, i = 0, 1, ..., n. The most straightforward method for
evaluating p(x) is to calculate the value of fratt(1) distinct points s,

1=0,1, ..., nof [a, b] and to satisfy the equations:

DO = FX5), 1= 0, 1y ooy Mo (2.2)

which will give a linear system of algebraic eqaas in g, C, ..., G.

-VYv-



Chapter Two Approximation by Spline Functions

The following theorem shows that one can determihe
polynomial pI M, uniquely, wherd1, is the set of all polynomials of

degree at most L[] .

In addition the next result is given [Burden, 198%jt we give

here more details about the proof for completeness.

Theorem (2.1.1):

Letx, =0, 1, ..., n, be any set of (n + 1) distinct point§a, b],
and let f C[a, b]. Then there is exactly one polynomialldl, that

satisfy the equations of interpolatory conditions:
p(x) =f(x),1=0,1, ...,n
Proof:

To prove the existence, define the functidég(x) as the basis

functions, by:

C(X) = |_| (E(Xk_

|¢k

,asx<b, k=0, 1,

then /7 (x) O I, has the values:
fk(Xi) :6ki, i,k: 0,1, ...,n

such that:

1, k=i
Oi = I
0, k#zi

It follows that the function:

-YA-
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p(X) = D F(X) £ (X)

k=0

isinl,and
JEAEDRICHIACY
k=0

n
= > (X)) 8y
k=0
=f(x;), i =0,1,...,n
and therefore p(x) satisfy the condition (2.2).

To prove the uniqueness, suppose that there existher
polynomial g(x) M, such that g = f(x;), foralli=0, 1, ..., n, i.e.,
g(x) satisfy also condition (2.12); and define a function
H(X) = p(x)—g(x). Now,

H(x) =p(x)-g(x)

n

=3 (X)) LX) = D 9% ) (X)

k=0 k=0

= (F(xK) —9(x)) £ (X)
k=0

=D HXE) 0 (X).
k=1

hence, H(x)J N, and also:
H(x;) =p(x)—9(x)
=f(x;) =f(x;) =0

-V4-
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therefore H(¥ =0,i=0,1, ..., n
Hence from the fundamental theorem of algebra, Hés) (n+1) roots.

Therfor H(x) must be identically zero for al[a,b] (since H is a

polynomial of degree n that has n+1 roots).
therefore p(x)=g(x)[Jx L[a, b]

Hence, p(x) is unique |

If e denotes the error function encountered inaiygroximation,

by Lagrange method, i.e.,
e(X)=f(X) = p(X), A< XS Do (2.3)

where p(x)O I, and satisfies the interpolatory conditions (2.R).
should be clear that, if f is changed by addingnelet ofl1,, then the

interpolation process automatically adds the salmment to p, which

leaves e unchanged. Expressions for the error dlstaw this property.
It is therefore appropriate, wherifC™[a, b] to state e in terms of the

derivative f"*V, which is given in the next theorem:

The next theorem is given also in [Burden, 1985] are give
here more details of the proof.

Theorem (2.1.2):

For any set of distinct interpolation points,{k=0, 1, ..., n} in
[a, b] and for any f1C"™™)a, b], let p M, that satisfies (2.3). Then, for

any xLl[a, b], the error of Lagrange interpolation polymal is:
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e(x)= o +1)If (D)%) |‘| € I (2.4)

whereé Li[a, b] that depends on x.

Proof:

For certain x if x = %, for k = 0, 1, ..., n; then

f(xx) = p(X) and choosing(xx) arbitrarily in (a, b) to satisfy (2.4).

If X # X, for any k=0, 1, ..., n; define a function g for t[a, b] by:

9() = 1) - ()~ [109 ~ PO |‘| ((i 3

since fO C™Ya, b], pO C”[a, b], and x x, for any k, it follows that
g O C™'[a, b]. For t= ., g(x) = 0. Moreover:

0050 = 1040 ~p0x) =100 -600) [] )

=0-(f(x)-g(x))00="0
Also

(X =xi)

g(x) = f(x) = p(x) = (f(x) ~p(x)) |_|( %)

=f(x) —p(x) —f(x) +p(x)
=0, Ox0[a, b]

Thus, g vanishes at the n + 2 distinct numbers,%:X..., X.

-YY-
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By the generalized Roll's theorem, there exésts &(x) in (a, b) for
which d™™(€) = 0.

Evaluating §* at€ gives:

= ) = 1) - p""E) - () — (9]

(X —X;)
[]

Since p is a polynomial of degree at most n, th&i"@) must be

identically zero. Hence:

B ST CTE N DA
(= g O]k x) .

2.1.2 Hermite I nterpolation Polynomial:

In certain cases, it happens that in addition &ftimction values
f(x;), 1 =0, 1, ..., n, some additional values of the denatf f are
required also. The general Hermite interpolatioobpem is to calculate

p I M, that satisfies the interpolatory conditions:
PV0) = fO(x), j=0,1, ...,00, 1 =0, 1, cccy M (2.5)

where the number of coefficients of p equals to mlbenber of data
points, anda; it is the highest derivative of f ix;, for all i=0,1,...,n

which implies that n is defined by the followinguagion:

n

N+ L= (0 +1) coiec s (2.6)
i=0

The polynomial p may be obtained from an intergs@rtension

of Newton's interpolation method (or Newton's dedd difference

-YY-
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formula). The data on the right hand side of (2iBjine the required

interpolation polynomial uniquely, as shown in tbhowing theorem:

Theorem (2.1.3), [Powell, 1981]:

Let {x;,i=0, 1, ..., m} be a set of distinct points from [4, &nd
let the real numbers ¥{x;), j =0, 1, ...,a;, i = 0, 1, ..., n} be given.
Then there is exactly one polynomial(p[l, that satisfies eq. (2.5),

where the value of n is defined by eq. (2.6).
Proof:

The first part of the proof is a highly useful gea method for
demonstrating the uniqueness of approximation ftieenlinear space of

all polynomial functions.

The approximating functions are parameterized lyoshng a basis for
the linear space and in the present case every areofld1, can be

expressed in the form

n

PX)=YcX, as X< keoviiiiii (2.7)

(
i=0

because the number of conditions on p equals to nimaber of
parameters, the required coefficier{ts ZiZO,l,...,I’} satisfy a square
system of linear algebraic equations.

It is therefore sufficient to prove that the matixthe system obtained is
non-singular.

An equivalent condition is that, setting the ridjatad sides of the

equations to zero, then they are satisfied ordl ithe parameters equals

-Yy-
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to zero. Hence it suffices to prove that, if akk ttoefficientsc; 's,[1i are

zero, then p is identically zero.
Hence, when the data are zero, then p is a mulaplée following

polynomial

|£|(x—xi)"+l, as< x< b,
i=0

Because this polynomial includes the tefin, the multiplying factor
must be zero.

Hence p is identically zero. m

Remark (2.1.1):

The Hermite interpolation polynomial may be gefizea for
any node point in terms of,_; andx;,; which is the so called Hermite-

Berkhoff problem.

2.2 SPLINE FUNCTIONS

Suppose one want to interpolate n-given data pdxats), for
alli=1,2,...,n;anda=X%X; < X < ... <X =Db, by means of a function S,
which has continuous derivatives of order 1, 2, ..., k; where k is an
integer number and & k < n. Furthermore, to find an approximation

function S, which minimizes:
b
o = [[g™(0)]dx
a

overall approximation functions g.

-Yé-
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The problem just described does not have a uniqueien if
k > n, because there is an infinite number of poMgials of degree

k — 1 that interpolate with the data points exacthd ail of these

polynomials lead t@ = 0.

For k < n, there is a unique solution which is @epiise function
given in any interval [X x.1], iI=1,2,...,n-1 by a polynomial of degree
2k — 1, which is, moreover, by a different polynomial éach such

interval.

Furthermore, the polynomial functions that makegtraph of the
function S "join smoothly" in the sense that, faclk two polynomials
that represent g on the subintervals;[%;] and [, X+1], we have to the
left and to the right of xthe same ordinate and the same values of the

derivatives of order 1, 2, ..., 2k2 for x= x;.

The function S also satisfies the following propgeih each of
the intervals €, x;) and (%, ) it is reduced to a polynomial of degree
k — 1. This function, which we described just now Iogje to a class of

functions known aspline functions.

The next definition gives the alternate mathematedinition of

the spline functions.

Definition (2.2.1), [Greville, 1967]:
A spline function S(x) of degreen[] with knots or "nodes"

a=x < X < ... < X% = b is a function which satisfies following two

conditions:

-Yo_
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() In each of the intervals—¢, Xi), [X1, X2), ..., [Xn ), the spline

function S(x) is a polynomial of degree m.

(i) S(x) 0 C™(~o00, o0).

It is important to mention that, there is an edsérdifference
between spline of even and odd degrees. One findgxample, that,
polynomial splines of even degree interpolatingespribed function at
certain mesh points need not to be exist, and forendetails see
[Ahlberg, 1967], while for an odd degree this peshlis violated.

Definition (2.2.2), [Greville, 1967]:
A spline function S(x) of odd degree 2ml1,m[l with knots

a=x%<X<...<x=Dbis called a natural spline function if it shts

the following conditions:
() SO D Mameg iN [Xy X)X X s [X 0 X ]
(i) S(x) 0 C™(~00, ).
(iii) S(X) O My in (=00, X) and (¥, ).

where the symboll,; is used to denote the set of all polynomials of

degree less than or equal to-m.
It is clear that from the above definitions thatyasum or

difference of spline functions of a given degreévgiven knots is also

a spline function of the same degree with the sknws. Perhaps, the
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simplest spline function is the truncated powercfion x7', defined by
[Schoenberg, 1946]:
) = x™, x>0
0, x<0

where m is a positive integer. The differentiatrafe for this function is

similar to that for ordinary powers:

d _
— xM =mx™?
dx

The m-th derivative ok™ is m!x2, wherex? is taken to be the

Heaviside function, defined as:

0 _
=

{1, x>0
X

0, x<0

for the rest of this work, a function of the for@x —c)T', which is
defined by:

(x—c)T:{(X_C)m’
0, X< C

will be called an elementary spline function or thencatedoower basis
where c is a real constant. The m-th derivativehed function has its

only discontinuity at X ¢, in which there is a jump of magnitude m!.

Schoenberg and Whitney [Schoenberg, 1953], havetqubiout
that any spline functions may be expressed unigaslyfhe sum of a
polynomial and a linear combination of elementapjine functions.

This perhaps most easily seen by considering tmgpgu at the knots of
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the spline function of its m-th derivative, whereisithe splines degree.
In other words, let the spline function(® of degree m have knots, x
and corresponding jumpsis its m-th derivative, for£ 1, 2, ..., n. Itis
assumed that;x x if i <]. Also, let py(x) to denote the polynomial of
degree m, which is identical withy(&) for x < x;. Now, define a

function S(x) by:
S() = p(x) + D ¢j(x= )T
j=1

where ¢=s/m!, and the S(x) is a spline function of degrebawing the
required knots and the required jump in the m-tfivdéve at each joint,
and it is identical with §x) for x < x;. Moreover, §Xx) — S(x) is a spline
function of degree m and also belongs 4 tberefore it is a polynomial

as it is identically zero for £ x,, it is identically zero everywhere.

For the case of natural spline function of degrée 21,
[Greville, 1964], [Schoenberg, 1953], S(x) takes fibrm:

S(X) = pea(X) + icj (X=X)2 T s (2.8)
ji=1

For this form, one can notice that, condition (oif) definition
(2.2.2) is immediately satisfied for the intervad( x,).
In order to satisfy condition (iii) of definition2(2.2) for the

interval (%, o). Equating to zero the coefficients gl X<, ek

then condition (iii) implies that:

n .
Dcix; =0,i=0,1, o, k= Lo (2:9)
j=1
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Chapter Two Approximation by Spline Functions

This is equivalent to the following condition:

n

for every polynomial Q(x) of degree at most &.

The next theorem discusses the existence of a engural
spline function of odd degree which is of great ampnce in

applications, the details of the proof is givendompleteness.

Theorem (2.2.3), [Greville, 1967]:

For k< n and given knots;x< x, < ... < X, there is a unique
natural spline function S(x) of degree 2kl having the knots;xand

satisfying the equations:

S(X) =Y 1= 1, 2, o Mo (2.11)
for given arbitrary y
Proof:

Take a= x; and b= x, for notational convenience.

Substituting (2.8) into (2.11) give the followingueations:
¢ 2k-1
Pea() + D C (% = X)5 T =Y i= 1,2, o M (2.12)
j=1

Together egs. (2.12) and (2.9) constitute a system+ k equations of

n + k unknown of parameters.

-Y4a-



Chapter Two Approximation by Spline Functions

To show that the related system of equations isswoegular or, what
amounts to the same thing, that the correspondamgolyenous system
has only the trivial solution in which; & 0, for all j and p; is

identically zero.

Consider the quantity:

b
0o = j IS8 1 T (2.13)

Then repeated differentiation of eq. (2.8) up weork, give:

k-1

S (x)= (2k- 1)(2k- 2)...(ki o x ¥

+

_(2k=-1)(2k- 2)...(kK)(k= Do Lk

- (k—l)! ;CJ’(X Xi)+

_ (2k-DI¢ c k-1

= (X = X ) e (2.14)
(k-1)! Jzzl: : :

and observing that®§x), S*V(x), ..., S*?(x) vanish for x= a by eq.
(2.14), and for x b by eq. (2.14) and (2.10).

Successive integration by parts to the right hade sf eq. (2.13) yields:

0o = S90S V() 2 - SV D) [ + .. £ S*AS (x) ||
b
+ (1) [S (026D (x) ¥

Therefore:
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b
0o = (1) j S (x)S2k-1) (x) dx

n-1%j+1
= (-1)“21 Jj S (x)S?(x) dx

J=L X;

Hence:

n-1
0o = (-1)* DSk (x)S(xf, "
=1 ’

which is a jump of 8 at x of magnitude (2k 1)!.

As S*M(x) is constant in each subinterval;,(xx.:), for all

j=1,2, ..., n- 1and vanish outside of {xx,)

, this gives:

Oo = (—1)knz_:1 SRS P(x+0) - S*(x-0)]

j=1
n-1

= (-1)(2k-1)! Y. 6S(§) =% =0
j=1

In the homogeneous system (2.12):
Vi =0,1=1,2, .., Mo

and therefore egs. (2.11) and (2.15) gives

n-1
0= (- (2k-1)D gy,
=1

n-1

=(-1)* (2k-D!>_ ¢ 0= ¢
=1
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Chapter Two Approximation by Spline Functions

From eq. (2.13) and from the continuity dP&) implies that &(x) is

identically zero in (a, b).
SubstitutingS® (x)= 0 in eq. (2.13), yields:

(2k-1)1¢

() 26 0X) =0, Ox0 @b, Dk =12,
—1): j=u
Whichis trueonlyife=c=...=¢,=0

This result together with egs. (2.12) and (2.16¢0Qi
Pr-1(xi) =0

since k— 1 < n and the s are distinct, then it follows that from the

fundamental theorem of algebra that(x) is identically zero. =

Theorem (2.2.4), [Greville, 1967]:

Let f(x) be any continuous function on [a, b] tdgat with its

derivatives of order 1, 2, ...,%«n and let the equations:
fX) =YL =1, 2, o N (2.17)

hold, where x < x < ... < %. If S(x) is the unique natural spline

function with knots x satisfying eq. (2.11), then:
b b
j [f®(x)])%dx = j [S®(x)]2dx
a a

with the equality satisfied only if f(x) = S(x).
Proof:

Since ¥(x) vanishes for x outside of the interval,(x,) and let

us take & x; and b= x,

-YY-



Chapter Two Approximation by Spline Functions

Now:

b b b
[ 1900 dx = [[S©e01%dx + [ [F¥(x) — S¥x)Tdx +

b
2 j S9x) [FR(x) = S¥X)] dx

To show that the last integration in the right hait is vanished.
Since, successive integrations by parts give:

b n-1Xj+

[S11%900=89 ()]dx= (1YY [ S*V0) [F(%)
a =1 Xj
— S(x)] dx

Therefore, in each subinterval;,(x:1), S* () is constant function,
while f(x) — S(x) vanishes at the end points, because of emsa(R.11)

and (2.17), the integral therefore vanishes.

Therefore:
[t @001x = [[s900] dx+ [[89 (0- 8 (] o
Since

T[s“ (x)- 89 (x)] dxz C.

a

Hence:

b

T[f W) Tdxz [[SY ()] dx. =

a

-Yy-



Chapter Two Approximation by Spline Functions

2.3 SOME TYPESOF SPLINE FUNCTIONS

It is convenient after we give the definition o&thpline function
and some of its related theorems to discuss ahdgdime of the well

known and widely used types of spline functions.

Among such types of spline functions, are the foilg types:

2.3.1 Generalized Splines:

In general, it is assumed that we have an n-throlidear
differential operator L, defined by:

L =a,(x)D" + a.4(x)D™" + ... + a(X)

where eactaj(x)DC”[a,b],Dj =0,1,...,n; &(x) does not vanish on [a, b]

andD =di' Let L* be the formal adjoint operator of L. Thus:
X

L* = (-1)"DY{an(X).}+(-1)""' D" Y{a,1(X).}+... ~D{a:(x).}+an(x)
If A:a=Xo<X <...<X =Db,isamesh on [a, b], then the generalized
spline of deficiency k (& k < n) with respect td\ is a function &X)

which is in x¥*"(a, b) (byx"(a, b), we mean the class of all functions

f(x) defined on [a, b] which posses an absolutagtmuous (n— 1)th
derivatives on [a, b] and whose n-th derivativinit(a, b) and satisfies

the differential equation:
L*LSA=0
on each open mesh interval&fWe also say that,8) has an order 2n

when we want to indicate the order of the operatardefining Sa(x).

-Ye-



Chapter Two Approximation by Spline Functions

The following theorems gives the optimality, existe and

uniqueness of the generalized splines, respectively

Theorem (2.3.1):

LetA:a=Xo <X <..<x=band Y:{yia}, 1 =0,1,...,N;

a=0,1, ..., k-1, be given. Then of all functions f(x) i'(a, b), such
that f(x) = y;_ (i=0,1,...,N;a =0, 1, ..., k- 1), the generalized

spline Q(Y; x) of type k, when it exists, minimizes:
b
j ILF (x)} 2dx
a

(a generalized spline A8; x) of deficiency k onA is a spline
interpolation of type k i (f, x) (a =0, 1, ..., k-1) interpolates to the
values of f)(x) at the mesh points ofA and {LS\(X)}“ = O,
a=0,1,...,n~k-1;atx =aand x b).

Proof: See [Ahlberg, 1967]. =

Theorem (2.3.2):

LetA:a=Xg<X <..<x=band Y:{yia},i:O, I, ..., N;

a=0,1, ..., k-1, be given. In addition, let L anfl be such that; if
Lg=0and §'(x)=0(i=0,1,...,Na=0,1, ..., k- 1), then g(xEO.
Under these conditions, the generalized splig@,Sx) of type k onA,
such thatS{ (Y; x) =y (i=0,1,..,N;a =0, 1, ..., k- 1) exists.

Proof: See [Ahlberg, 1967]. =
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Theorem (2.3.3):

LetA:a=xg<X <..<X=band Y:{yia}, I =0,1,...,N;
a=0,1, .., k-1, be given. In addition, let L aml be such that, if
Lg=0and §(x)=0,i=0,1,...,N;a=0, 1, ..., k- 1, then g(xE O.
Under these conditions, there is at most one gbpnedaspline ¥(Y; X)
of type k onA, such thatS(AO‘)(Y; Xij) = Yi, i=20,1, ..., N;
a=0,1, ..., k-1).

Proof: See [Ahlberg, 1967]. =

2.3.2 Basis Splines (B-splines):

In this subsection, we give the definition of thasis spline
functions which is usually denoted by B-splines afsb record various
properties of the B-spline in order to make it #iere as familiar and

real as possible as an object of approximationrtheo

Definition (2.3.4), [deBoor, 1978]:

Let t={t;} be a non-decreasing sequence (which may be fanite
infinite). The i-th normalized B-spline of orderfdér the knot sequence t

is denoted by R and is defined by the rule:
Bixi(X) = (tiek = t)[ti, ez, -y b (=), Ox O 0

where [t, t:1, ..., §]f is the divided difference of order- i of f at the

points f, tuq, ..., §.

-y1-



Chapter Two Approximation by Spline Functions

Properties of B-Splines:

1. Itis notable that it is right a way thatBhas small support, i.e.,
Bik«(X) =0, for all x[I [t;, t].

2. Forallt, <x<tg:
Z Bixi(x) = 1.
i

3. BikiX) >0, fort<x <.

The following theorem permits the construction loé B-spline
basis for any particular piecewise polynomial spé&ge, (Pczv IS a
linear subspace ofyPconsisting of those elements which satisfy the
continuity conditions specified by v) it gives aige for an appropriate

knot sequence t.

Theorem (2.3.5), (Curry and Schoenberg Theorem):

For a given strictly increasing sequeréce {¢;} ihzzl, and a given

non-negative integer sequence {v ;} ih:2 with v; < k for all i, set:

h h
n=KkK+ Z(k_vi) =kh - ZVi =dim Re.v

1=2 1=2

and let t={t } i”;lk be any non-decreasing sequence, so that:
1.6 ... S < El andEh+1 <t ... < ik

2. Fori=2, 3, ..., h, the numbéf occurs exactly k v; times in t.

-Yv-



Chapter Two Approximation by Spline Functions

Then the sequence;BB,, ..., B, of B-splines of order k for the knot
sequence t is a basis fog:R, considered as a functions oR, [ti].
Then:

$k,t - I:)k,E,v on [tk, tn+1]
($c:=span(Bx,), linear space of splines of order k with knotisere t).

Proof: See [deBoor, 1978]. m

Because of this theorem, Schoenberg called thetibns B as

the basis splines, or B-splines, [Schoenberg, 1967]

2.3.3 Cubic Spline:

A general cubic spline function is a polynomial thie third
degree which involves four constants. There isigefit flexibility in
using the cubic-spline procedure to ensure not dmdy the interpolant
function is continuously differentiable on the int&l, but also that it has
a continuous second derivative on the interval. @twstruction of the
cubic spline does not however, assume that thevateres of the
interpolation function agree with those of the fume, even at the

nodes.

Given a data g}, g(t), ..., g(t) witha=t, <t < ... <t =Db.
Then the a piecewise cubic interpolant P to g $asisfies the following

conditions:

1. Each Ris a cubic polynomial on the interval,[t.;] for each
j=0,1,...,n1.
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Chapter Two Approximation by Spline Functions

2. B(t) =9(), foreach 0, 1, ..., n- 2.
3. P1(tj+1) = B(tj+1), foreach 0, 1, ..., n— 2.

4. P4 (tw1) = P (t0), foreach 50, 1, ..., n- 2.
5. Py (t) = P (), foreach 0, 1, ..., n= 2.

The j-th piecewise polynomial Ras the form:
P() =a+b(t-1t) +g(t-t)° +d(t-t)°
where the coefficients,d3, g and ¢lare constants to be determined.

Because of the large type of splines, we will netdss here the
outlines of such type of spline functions. Therefdris appropriate to
list some of them and for more details one can [de&oor, 1978],
[Stephen Weston, 2002]:

Auto-tension splines.

Parabolic splines.

Gatmull-Rom or Overhauster splines.
Non-uniform rational basis splines.
Quintic splines.

Uniform-tension splines

X-splines.

-ya-



CONGLUSION AND REGOMINDATIONS

From the present study, the following conclusions may be drawn:
1- Increasing the HB-problem data will increase the accuracy of the
results.
2- The results obtained by using the HB-problem with fractional
derivatives increasing the results of the G-spline interpolation

function obtained from the usual HB-problem

Also, from this work, we can recommend the following open
problems for future work:
1- Introducing the proof of theorem (3.1) without transforming the
fractional order derivativesinto an integer order derivatives.
2- Studying multi dimensional G-spline interpolation with HB-

problem of fractional derivatives.

-y-
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INTRODUGTION

The fractional calculus may be considered as ampttlyet as a
novel topic. It is an old topic since it's starting (1695), were
L’'Hospital was the first researcher whose ask ieteer to Leibniz on
the possibility to perform calculations by meangrattional derivatives
of order r= %. Leibniz answered this question looked as ad®ara
[Madueno, 2002].

The earliest more or less systematic studies seehmve been
made in the beginning and middle of the™1€entury by Liouville
(1832), Holmgren (1864), Riemann (1953), althoughleE (1730),
Lagrange (1772), and other made contributions eaagtier. Liouville
(1832) who expanded functions in series of expaaksnand defined the
g-th derivative of such a series by operating tegrterm as though q,

where a positive integer, [Oldham, 1974].

Riemann in (1953), proposed a different definittbat involve a
definite integral and was applicable to power snéth no integer
exponents. Also, Grunwald in (1867), disturbed bg testriction of

Liouville’s approach, [Samko, 1993].

Then these theoretical beginnings are developedséyeral
applications of fractional calculus to various gdeshs. The first
development was discovered by Able in (1823), thatsolution of the

integral equation for the tautochrone problem mayabcomplished via
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an integral transform with fractional derivativéspowerful stimulus to
the use of fractional calculus for solving rea¢ Igroblems was provided
by the development of Boole in (1844) as symbolethmds for solving

linear differential equations with constant coeéfids, [Oldham, 1974].

In the twentieth century, some notable contribigidrave been
made to both of the theory and application of foaal calculus, Weyl
(1917), Hardy (1917), Hardy and Littewood (1932phi¢r (1940), and
Kuttner (1953), examined some rather special, latumal, properties of
differintegrals of functions belonging to the Lefas and Lipschitz
classes. Erdely (1954) and Oster (1970) gave dieinsi of
differintegrals with respect to an arbitrary fuocts, and Post (1930)
used difference quotient to define generalized eddfitiations for
fractional operators. Riesz (1949), has developé#teary of fractional
integration for functions of more than one varialidedely (1965), has
applied the fractional calculus to integral equagi@and Higgins (1967),
has used fractional integral operators to solvéedihtial equations,
[Igor Poldlubny, 2001].

However, fractional calculus may be considered as\e&l topic,
as well as, from eighty four years ago, it has beenobject of
specialized conferences and treatises. For thedmsference the merit
is ascribed to B. Ross who organized the first emarfce on fractional
calculus, and its application at the University ddéw Haven in June
(1974), [Igor Poldlubny, 2001].

For the first monograph the merit is ascribed tB RIdham and J.
Spanier (1974), who after a joint collaboratiornrtetd in 1968, published

a book devoted to fractional calculus in 1974. Thet texts and
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proceedings devoted solely or partly to fractiomalculus and its

applications are, [Igor Poldlubny, 2001]

In addition, spline functions have transformed agpnation
techniques and theory, because they are not onlyeceent and suitable
for computer calculations, but also they providdiropl theoretical
solutions to the estimation of functions from liedt data, [Oldham,
1974].

Moreover, splines may be considered as mathematicalels
that associate a continuous representation of eooir surface with a
discrete set of points in a given space. Splinindjtis an extremely
popular form of a piecewise approximation usingioas forms of
polynomials of degree n or more general functiars,an interval in
which they are fitting functions at specified psinknown as control

points or nodes or knots.

The polynomial used can change, but the derivatokshe
polynomials are required to match up to degreelnat each side of the
knot, or to meet related interpolatory conditioBsundary conditions,

are also imposed on the end points of the interjatdberg, 1967].

It is near 60 years ago since |. J. Schoenber@doted the
subject of "spline functions" as a method for apprating functions
which are so complicated or hard to be used iniegbdns. Since then,
splines have proved to be enormously importantanous branches of
mathematics, such as approximation theory, numnieremaalysis,
numerical treatment of ordinary, integral and pédrtdifferential

equations and statistics, etc., [Schoenberg, 1946].
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Several types of spline functions are given in réiteres,
including generalized splines [Ahlberg, 1967], basi cardinal splines
[deBoor, 1978], [Powell, 1981], Gatmull-Rom or Okauster splines,
non-uniform rational basis splines [Stephen, 200#f;. The most
important of these types of splines which is nemgst the work of this

thesis is the so called G-spline.

In this work a new approach is followed to constiithe Heremite-
Birkhoff problem and then to evaluate the G-spliméerpolation
functions by using the idea of fractional orderi#ives instead of the

integer order derivatives of Heremite-Birkhoff plex.
This thesis consists of three chapters.

Chapter one entitled (Basic Concepts of Fractiddalculus) is
oriented to study and give the most important anchifve concepts
related to the theory of fractional calculus. Ttiepter consists of five
sections. In section 1.1 presents some of the nmopbrtant basic
concepts related to fractional calculus, includthg Gamma function,
Beta function and Riemann-Liouville formula of ftmmal derivatives.
Section 1.2 presents some methods of fractiondérdifitiation and
integration. In section 1.3 the fractional derivai of some well
selected examples are given for completeness painptéch may be
used in the calculation of Heremite-Birkhoff prafleSection 1.4, some
properties of fractional order operators is givEmally, in section 1.5
additional examples with their fractional derivasvare given using

Riemann-Liouville Formula.

Chapter two entitled (Approximation by Spline Fuogs)

presents the fundamental aspects of spline intatipal functions. This

-1V-



Introduction

chapter consists of three sections; in sectiorazhssical discussion of
polynomial interpolation using Lagrange interpadati polynomial is
given. In section 2.2, we discuss the theory ahgpiunctions in general
and some of its related concepts including thecatsd power function
(or Heaviside function) and some other concepts.séction 2.3,
additional types of spline functions are discussedshort, such as

generalized spline, B-spline and cubic spline fioms.

In chapter three entitled (G-Spline Interpolatiosing) Hermite-
Birkhoff Problem with Fractional Derivatives), whicconsist of three
sections. In section 3.1, we present the HeremiteaBff problem and
some of its general properties including the m-@aiproblem. Section
3.2 presents the method of constriction of G-splimections using
Heremite-Birkhoff problem of fractional order desitives. Finally, as an
illustrative to the proposed approach, we give sdlmgtrative examples

in section 3.3, in which one is solved in details.

The results are sketched in figures for differeades of Heremite-
Birkhoff problem, where the results are calculatesthg the computer

software Mathcad Professional 2001.i.



LIST OF SYMBOLS

The Gamma function of x

The Betafunction of m and n.

The fractional derivative of order a for x.

The set of al continuous functions on [a,b].

Cronecer delta.

The Lagrange basis function of x.

The spline function of x.

Truncated power function of m.

Basis spline.

The i-th normalized B-spline of order k for knot sequencet.
The j-th piecewise polynomial interpolation function.

I ncidence matrix.

Set of al continuously n-differentiable of [a,b].

Set of all polynomial of degree less than or equal to n.

The adjoint operator of L.
The Hermmite-Birkhoff problem.
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Abstract

The objective of this thesis is to study first the theory of fractional

calculus and some of well known methods for evaluating derivatives of
fractional orders for certain functions.

The second objective is to study the G-spline interpolation
functions and its construction using a new approach in formulating the

Heremite-Birkhoff problem using fractiona derivatives instead of
integer order derivatives.
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