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 The objective of this thesis is to study first the theory of fractional 

calculus and some of well known methods for evaluating derivatives of 

fractional orders for certain functions. 

The second objective is to study the G-spline interpolation 

functions and its construction using a new approach in formulating the 

Heremite-Birkhoff problem using fractional derivatives instead of 

integer order derivatives. 
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CCHHAAPPTTEERR  OONNEE  
 

BBAASSII CC  CCOONNCCEEPPTTSS  OOFF  FFRRAACCTTII OONNAALL  

CCAALLCCUULLUUSS  

In the earlier work, the main application of fractional calculus as a 

technique for solving integral equations and recently fractional 

derivatives have been used to model physical processes which lead to 

the formulation of the subject of fractional calculus and hence leading to 

the formulation of the fractional differential equations which plays an 

important role in most engineering and mathematical and physics 

problems. Therefore, in this chapter we give some of the basic concepts 

related to the subject of fractional calculus, including the basic 

definitions and properties, as well as some illustrative examples of 

fractional differentiation. 

     

 

1.1 BASIC CONCEPTS 

In the present section, some fundamental concepts related to the 

 theory of fractional calculus are given in order to avoid vague notions 

that may arise in this subject. 

 

1.1.1 The Gamma and Beta Functions, [Oldham, 1974]: 

Undoubtedly, among the basic functions encountered in fractional 
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calculus which is widely used is the Euler's gamma function Γ(x), which 

generalizes the ordinary definition of factorial function of a positive 

integer number n and allows n to take also any non-integer positive and 

even negative numbers or complex values. 

As it is known, the gamma function Γ(x) is defined by using the 

following improper integral: 

x 1 t

0

(x) t e dt, x 0
∞

− −Γ = >∫  ................................................................. (1.1) 

First of all, it is easy to show that the gamma function for any 

positive integer x can be proved also to be: 

(1)  Γ (x) = (x – 1)!, x ∈�  

(2)  Γ (x) = (x − 1) Γ(x − 1), x +∈�   

(3)  
x

1
2

[ 4] n!
( x)

(2n)!

− πΓ − =  

(4)  1
2 n

(2n)!
( n)

4 n!

πΓ + =  

(5)  
csc( x)

( x)
(x 1)

−π πΓ − =
Γ +

 

which enable us to calculate for any positive real x the gamma function 

in terms of the fractional part of x. 

For positive integer q and j with q j> , the expression ( j q)

( q) ( j 1)

Γ −
Γ − Γ +

 

may be regarded as the binomial coefficient, as follows: 
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( j q) ( j q 1)( j q 2)...( q 1)( q)

( q) ( j 1) j!

Γ − − − − − − + −=
Γ − Γ +

  

                              = j q
( 1)

j

 
−  

 
 ....................................................... (1.2) 

where; 
q q!
j j!(q j)!

 
=  − 

 , j 0,1,2,...,q= . 

  

         A second function of important is the beta function B(m,n) which 

is defined by: 

B(m, n) = 
1

m 1 n 1

0

x (1 x) dx− −−∫ , n, m > 0 .…………...…………...(1.3) 

An important relationship connecting between gamma and beta 

functions is given by: 

B(m, n) = 
(m) (n)

(m n)

Γ Γ
Γ +

, n,m 0>  ………………………...………(1.4) 

 

1.1.2 Riemann – Liouville Formula of Fractional Derivatives, 

[Oldham, 1974]: 

Riemann and Liouville in (1832) introduced a differential operates 

of fractional order q>0, which takes the form:  

0

tm
q

t m q m 1
t

1 d y(u)
D y(t) du

(m q)dt (t u) − +=
Γ − −∫ ……………………… (1.5) 

where m is a positive integer number defined by m − 1 < q ≤  m. 
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Equation (1.5) is a Volterra integral equation with singular kernel. 

Differential equations involving these fractional derivatives have been 

proved to be valuable tolls in modeling many physical and engineering 

phenomenas. 

 

1.2 FRACTIONAL DIFFERENTIATION AND INTEGRATION  

 
Fractional differentiation and integration may be defined and 

evaluated using several approaches depending on the used definition of 

differentiation or integration. Therefore, this section presents some of 

such types of differentiation and integration which is termed for 

simplicity as differintegration. 

 

1.2.1 Fractional Derivatives: 

The usual formulation of the fractional derivative, given in 

standard references such as [Samko, 1993] and [Oldham, 1974] is by 

using the Riemann-Liouville formula that requires initial values 

expressed as fractional derivatives. This is very inconvenient, since it is 

usually not clear what the physical meaning of these fractional order 

initial value would be and they are therefore hard to derive from a 

physical system. In applications, it is often more convenient to use the 

formulation of the fractional derivative suggested by Grünwald, Osler, 

Caputo, etc. (see [Caputo, 1971]). 

The Grünwald derivatives which requires the same starting 

conditions as in ordinary differential equations of the next higher order. 

The Grünwald definition of fractional derivatives is given by: 
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q

q N

d f (t)
lim

dt →∞
=

q

N 1

j 0

t
( j q) tN f t j

( q) ( j 1) N

−

−

=

 
  Γ −     −   Γ − Γ +   

∑  ............................ (1.6) 

where q < 0 indicates fractional integration and q>0 indicates fractional 

differentiation. 

The Bertram Ross definition of fractional derivative as follows: 

q

q q 1
C

d (q 1) y(u)
y(t) du

2 idt (u t) +
Γ +=

π −∫ ………………………………(1.7) 

where he made a branch cut from t to infinity through the origin and the 

integral curve C is an open contour which encloses t in the positive sense 

and u ∉ C (i.e., C is an integral curve along that cut). 

The equivalent between these formulas may be proved, but it have 

more computations and therefore are omitted. 

It is remarkable to notice that additional definitions of fractional 

derivatives may be found in liteatmes in addition to Riemann – Liouville 

definition given by eq. (1.5).   

 

1.2.2 Fractional Integration: 

The common formulation for the fractional integration can be 

derived directly from a traditional expression of the repeated integration 

of a function. This approach is commonly referred to as Riemann – 

Liouville approach. 

         The Riemann-Liouville definition of fractional integration is given 

by:  
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x
q 1

v
a

1
f (a, x) (x t) f (t)dt

(q)
+ −= −

Γ ∫     (right hand integration) 

b
q 1

q
x

1
f (x,b) (t x) f (t)dt

(q)
− −= −

Γ ∫        (left hand integration) 

where q<0. 

Combining the least two eqs. gives: 

          

0

x
q

1 q
x

1 f (u)
I f (x) du

(q) (x u) −=
Γ −∫   

The Weyle definition of the right and left hand fractional integrals are 

given respectively by: 

x
q 1

v
1

f ( , x) (x t) f (t)dt
(q)

+ −

−∞

−∞ = −
Γ ∫  .......................................... (1.8) 

q 1
q

x

1
f (x, ) (t x) f (t)dt

(q)

∞
− −∞ = −

Γ ∫  .............................................. (1.9) 

where f(t) is a periodic function and its mean value for one period is 

zero. But eqs. (1.8) and (1.9) are used as the definition of the integration 

without any condition at the present time. 

         Because we will concern ourselves to fractional differentiations 

only, then we will focus our attention on fractional derivatives only and 

give some illustrative examples for such type of differentiations in the 

next section. 
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1.3 FRACTIONAL DERIVATIVES OF SOME WELL 

KNOWN FUNCTIONS 

In this section, some fractional derivatives using the above 

definitions of derivatives will be evaluated as an illustrative examples to 

fractional differentiations. Other functions derivatives may be derived, 

such as sinh(x ), sin( x ), etc., (see [Oldham, 1974]).  

 

1. The Unit Functions, [Oldham, 1974]: 

Consider first the differintegral to the order q of the function f = 1, 

for which it is found that it is convenient to reserve the special notation 

which function will be referred to as the unit function.  

Using Riemann-Liouville fractional derivatives given by eq.(1.5) 

with 0 0m 0,t 0= =  to give 

xq

q q 1
0

d 1 f (u)
f (x) du, 1 q 0

( q)dx (x u) += − < ≤
Γ − −∫   

Then with the unite function f 1,=  we have 

 
xq

q q 1
0

d 1 du
f (x)

( q)dx (x u) +=
Γ − −∫  

                
xq

0

1 (x u)

( q) q

−−=
Γ −

 

                 ( )q1
0 x

q ( q)
−= −

Γ −
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qx

q ( q)

−
=

Γ −
 

                 
qx

(1 q)

−
=

Γ −
. 

 

2. The Constant Function,[Oldham, 1998]: 

For a function f = c, where c is any constant including zero, then 

the fractional differential of order q>0 may be indicated using the 

differential the fractional derivative of the unit function, then   

( )

q q

q q

q

d d
(c) c (1)

d(x a) d(x a)

x a
c

(1 q)

−

=
− −

−
=

Γ −

 

and hence, 

q

q
d

(0) 0
d(x a)

=
−

, ∀q ................................................................. (1.10) 

 

3. The Function (x − a)p, [Oldham, 1998]: 

The function of fractional degree that may be considerd in this 

case is an important function given by f(x) = (x − a)p, where p is initially 

arbitrary, and one can see that p must exceed −1 for differintegration to 

have the properties that the researchers demand of the operator. For 

integer n of either sign, one can show that: 

n p
p n

n

d x
p(p 1)...(p n 1)x

dx
−= − − + , n = 0, 1, … 
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and from classical calculus, the first encounter with non-integer q, will 

be restricted to negative q so that we may exploit the Riemann-Liouville 

definition.  Thus:  

( )
( )

( )
( )

xp pq

q q 1
a

d x a y a1
dy

( q)d(x a) x y +
− −

=
Γ −− −∫  

 = 
( )

x a p

q 1
0

1 v
dv

( q) x a v

−

+Γ − − −∫ , q < 0 

where v has replaced by y − a. By further replacement of v by (x − a)u,  

then the integral may be cast into the structure of the beta function as 

follows: 

( )
( )

( ) ( )
1p p qq

q 1p
q

0

d x a x a
u 1 u du,q 0

( q)d(x a)

−
− −− −

= − <
Γ −− ∫  

 
( )p q(p 1) x a

,p 1,q 1
(p q 1)

−Γ + −
= < > −

Γ − +
 ............................. (1.11) 

 

4. The Exponential Function exp(r − cx): 

With r and c are an arbitrary constants, then the power-series 

expansion of exp(r cx)−  is given by: 

( ) j

j 0

c(x a)
exp(r cx) exp(r ca)

( j 1)

∞

=

− −
− = −

Γ +∑  

which is valid for all x − a. 

Differintegration term-by-term with respect to c(x − a), yields: 



Chapter One    Basic Concepts of Fractional Calculus  

-١٠- 

( )
{ } { } jq

q
q

j 0

c(x a)d exp(r cx)
c(x a) exp(r ca)

( j q 1)d(cx ca)

∞
−

=

− −− = − −
Γ − +−

∑  

The summation may be expressed as an incomplete gamma 

function of argument −c(x − a) and parameter −q, then the final result 

appears to be as: 

( ) ( )
( )

q
*

q q
d exp(r cx) exp(r cx)

q, c(x a)
d(x a) x a

− −= γ − − −
− −

 

where * n( n, y) yγ − =  for non negative integer n. The above result seems 

to be reduced to the well-known formula for multiple differentiation of 

an exponential function, reduction to the simple formula: 

q
*

q q
d exp( x) exp( x)

( q, x)
dx x

= γ −m m
m  

occurs on substituting k = a = 0 and c = ±1 into the general result. 

 

5. The Functions 
qx

1 - x
 and

px
1 - x

: 

By using the Macluarion expansion of (1 − x)−1 and the technique 

of term-by-term differentegration which is from the (linearity of 

differentiation), one can arrive at: 

q q q
j q

q q
j 0

d x d
x

1 xdx dx

∞
+

=

 
=  − 
∑  

Identification of the summation as a Macluarion expansion produces: 
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q q
j

q
j 0

d x ( j q 1)
x

1 x ( j 1)dx

∞

=

  Γ + += − Γ +  
∑  

                   j

j o

( j q)!
x

j!

∞

=

+=∑  

                        j

j o

( j q)!
q! x

j!q!

∞

=

+= ∑  

                   j

j 0

j 1
(q 1) x

j

∞

=

+ 
= Γ +  

 
∑  

                   j

j 0

q 1
(q 1) ( x)

j

∞

=

− − 
= Γ + − 

 
∑  

and hence: 

( )

q q

q q 1
d x (q 1)

1 xdx 1 x +

  Γ +=  − − 
 

                    (q 1)(q 1)(1 x)− += Γ + −  

The technique for differintegrating 
px

1 x−
 follows in such a similar 

result above, that is, it will suffice to cite one intermediate and the final 

result of differentiation:  

( )
( )( )

q p

q q 1

p 1 (p q,q 1)d x
1 xdx p q 1 x +

  Γ + β − +
=  − Γ − − 

 

  = 
( )q 1

(q 1)

1 x +
Γ +

−
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where B(p, q) = 
(p) (q)
(p q)

Γ Γ
Γ +

 together with the restriction, namely, -1 < x < 

1 and p > −1, which is assumed during the derivation. 

 

1.4 SOME PROPERTIES OF FRACTIONAL ORDER 
DIFFERENTIAL OPERATOR 

Some properties of fractional differentiation operators are of great 

importance in applications and in approximating functions using g-

spline, therefore some of such properties of fractional order differential 

operator D will be stated. 

(1) The operator xDα  is linear, i.e., 

       [ ]x 1 2 1 x 2 xD c f (x) c g(x) c D f (x) c D g(x)α α α+ = +  

(2) The operator xDα  f gives the same results as the usual differentiation 

of order n∈N , where α = n is positive integer, and the same effect 

of an n-fold integration if α = −n, is negative integer. 

(3) The operator of order α = 0 is the identity operator, i.e., 0xD f f= .  

(4) For α > 0 and β > 0 (Reα > 0, Reβ > 0) the additive index hold, i.e.,  

xD−α
xD−β f(x) = ( )

xD− α+β f(x). 

The proofs are obtained directly from the definitions. Other 

properties may be found in [Bertram, 1974], [Igor, 2001], [Lixia, 

1998]. 

 

 

1.5 ILLUSTRATIVE EXAMPLES 

       Following are some examples which illustrate the applicability of 

fractional derivatives for some well known functions. 
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Example (1.1): 

Consider f (x) x=  then the following may be carried using Riemann 

– Liouville formula of functional derivatives: 

(1) 0.5
xD − x = 

x

1/ 2

0

1
(x t) t dt

(0.5)
−−

Γ ∫  

 = 
34 x

3 π
 

(2) 0.5
xD x = 

x

1/ 2

0

d 1
(x t) t dt

dx (1 0.5)
−−

Γ − ∫  

 = 
x

2
π

 

(3) 1.5
xD x = 

x2
1/ 2

2 3
2 0

d 1
(x t) t dt

(1 )dx
−−

Γ − ∫  

 = 1
xπ

 

In generality, to derive the fractional derivative of xm when α = 1/2, 

we get an important relation: 

1
2

1/ 2 mm
1/ 2 1

2

d (m 1)
x x

(m )dx

−Γ +=
Γ +

 

                
m

1
2

m

m! x

1.3.5...(2m 1) ( ) x

2

=
− Γ

 

                
m

m2 m!2.4. ... .2m
x

x1.2.3. ... .(2m 1).2m
=

π −
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m m

m2 m! 2 m!
x

( x)(2m)!
=

Γ π
 

                 
2 m(m!) (4x)

(2m)! ( x)Γ π
 m = 0, 1, …, n ................................... (1.12) 

 

Example (1.2): 

 Consider the function f(x) = sinx, hence the fractional derivatives 

of order α = 1/2, may be evaluated as follows: 

0.5
0 xD sinx = 

x

0.5

0

d 1
(x t) sin t dt

dx
−

 
 −
 π
 
∫  

then letting  x − t = u2, which implise dt = −2u du and so: 

0.5
0 xD sinx = 

x 2

0

1 d sin(x u )
2u du

dx 2

 − 
 π
 
∫  

   = 

x

2 2

0

2 d
(sin x cosu cos xsin u )du

dx

 
 −
 π
 
∫  

   = 

x x

2 2

0 0

2 d
sin x cosu du cos x sin u du

dx

 
 −
 π
 

∫ ∫  

   =
x

2

0

2 sin x cos x
cos x cosu du

2 x


 + −
π


∫     

x

2

0

cos xsin x
sin x sin u du

2 x


+



∫  

and using Fresnel Integrals given by [Kai, 1999]: 
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(i) Fresenl sine integral is defined as: 

               s(x) = 

x

2

0

2
sin u du

π ∫  

         such that s(−x) = −s(x), s(0) = 0, s(∞) = 1/2. 

 

(ii)   Fresenl cosine integral which is defined as: 

               c(x) = 

x

2

0

2
cosu du

π ∫   

         with c(−x) = −c(x) and c(0) = 0, s(∞) = 1/2. 

yields: 

0.5
0 xD sinx = 

2
cos x c( x ) sin x s( x )

2 2

    π π+    
π      

 

   = 2cosx c( x ) + 2sinx s( x ) 

and following the same approach, one may arrive at: 

0.5
0 xD cosx = 

1

π
 − 2c( x ) sinx + 2 s(x) cosx. 
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CCHHAAPPTTEERR  TTHHRREEEE  
 

GG--SSPPLLIINNEE  IINNTTEERRPPOOLLAATTIIOONN  UUSSIINNGG  

HHEERRMMIITTEE--BBIIRRKKHHOOFFFF  PPRROOBBLLEEMM  

WWIITTHH  FFRRAACCTTIIOONNAALL  DDEERRIIVVAATTIIVVEESS  

 

Just over 138 years ago, since Lagrange in 1870 has constructed 

the polynomial of minimal degree such that the polynomial assumed 

prescribed values at a given knots and the derivatives of certain orders of 

the polynomial also assumed prescribed values at the knots. 

In 1968, Schoenberg extended the idea of Hermite for splines to 

specify that the orders of the derivatives specified may vary from knot to 

knot. Schoenberg used the term "G-spline" instead of generalized 

splines, because the usual spline term "generalized splines" already 

described as an extension in a different direction, as it is mentioned in 

section three of chapter two, [Schoenberg, 1968]. 

G-spline functions are used to interpolate the Heremite-Birkhoff 

data (problem), which is abbreviated by HB-problem, the data in this 

problem are the values of the function and its derivatives but without 

Hermite's condition that only consecutive derivatives be used at each 

knot. 
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Again, Schoenberge has defined G-splines as a smooth picewise 

polynomials, where the smoothness is governed by the incidence matrix 

E, and then he proved that the G-splines satisfies what is called the 

"minimum norm property", which is used for the optimality of the        

G-spline functions, which is given mathematically by the following 

inequality: 

2(m)

I

f (x) dx 
 ∫  > 

2(m)

I

S (x) dx 
 ∫  

where the function S is called a G-spline function and it is a polynomial 

spline of degree 2m − 1 over the interval I. If the only polynomial that 

solve the homogeneous HB-interpolation problem is identically the zero 

polynomial, then the problem is said to be m-poised. We will see later 

the consideration of the HB problem that the m-poised problem will play 

an important role for the uniqueness of the solution of the HB-problem 

(that is if the HB-problem is m-poised, then there is a unique G-spline 

function of degree 2m − 1 that solves the HB-problem). 

 

3.1 THE HERMITE-BIRKHOFF PROBLEM WITH 

FRACTIONAL DERIVATIVES 

As it is mentioned earlier, that the G-spline interpolation 

functions are calculated using the HB-problem. In this section a 

modified approach is used to define and give the HB-problem which is 

by using the fractional derivatives instead of positive integer order 

derivatives. 
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First of all, a tractable formal definition of the natural G-spline 

interpolation is given. 

 Let us consider the knots: 

x1 < x2 < … < xk 

to be distinct and real and let α to be the maximum of the orders of the 

derivatives given by: 

  r 1 r− < α ≤  

where α  is fractional number and r is a natural number.  

Define an incidence matrix E, by: 

E = [aij], i = 1, 2, …, k; j = 0, 1, …, r 

where: 

aij = 
1, if (i, j) e

0, if (i, j) e

∈
 ∉

 

Here e = {(i, j)} has been chosen in such a way that i takes the values 1, 

2, …, k; one or more times, while j ∈ {0, 1, …, r} and j = r is attained in 

at least one element (i, j) of e. Assume also that each row of the 

incidence matrix E and the last column of E should contain some 

element equals 1. 

  Let i( )
iy α  for each i ir 1 r− < α ≤  be a prescribed real numbers for 

each (i, j) ∈ e and let i
i

maxα = α , with r 1 r− < α ≤ , then the HB-problem 

using fractional order derivatives is to find f(x) ∈ Cr+1 i k[x ,x ] , which 

satisfies the interpolatory condition: 
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ii ( )( )
i i

i i i i

f (x ) y

for all r 1 r , i 1,2,...,k, j 0,1,..., r for (i, j) e

αα = 


− < α ≤ = = ∈ 
 ……... (3.1)                                                

Therefore, in practical applications if i i ir 1 r− < α ≤ , we operate both 

sides of  ( )( ) ii
i if (x ) y αα =  with i irD −α  operator to the both sides to get an 

equivalent problem with:  

          ii i i ( )(r ) r
i if (x ) D y α−α=  

                        i i i( ) r
iy D (1)α −α=  

                        
( )
( )

i i
i

r
( )
i

i i

x a
y

r 1

α −
α −

=
Γ α − +

. 

The matrix E will likewise describes the set of equations (3.1) if 

the set e is defined by: 

e = {(i, j) | aij = 1} 

then the integer: 

n = ij
i, j

a∑  

is really the number of interpolatory conditions required to constitute the 

system (3.1). 

Therefore, at each knot xi of the system (3.1), we prescribes the 

value of f(xi) for all i 1,2,...,k=  and may be also a certain number of 

consecutive derivatives i( )
if (x )α  for j = 1, 2, …, ir ; where ri satisfy 

i ir 1 r− < α ≤ , for each i. 
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As an illustration we consider first the following HB-problem 

with positive integer derivative. 

 

Example (3.1): 

Consider the HB-problem: 

f(x1) = y1, f ′(x2) = y′2, f(x3) = y3. 

     Then the incidence matrix E takes the form: 

E = 

1 0

0 1

1 0

 
 
 
  

 

     and the set e is given by: 

e = {(1, 0), (2, 1), (3, 0)} 

 

            The next example discusses the HB-problem with fractional 

derivatives with its transformation to an integer order HB-problem, but 

with different function derivatives  

  

Example (3.2): 

       Consider the HB-problem with fractional derivatives:  

11 11
32 32

( )( ) ( )( )
0 0 1 1 1 2 2 21 2f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y= = = = =  

In this problem we have i , ji. j
n a 5= =∑  and 1 2r r 1= =  and hence 

1 2r max{r , r } 1= = , then it is 3-poised problem. The transformed 

interpolatory conditions are:    
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          0 0 1 1 1 1 2 2 2 2f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y′ ′ ′ ′= = = = =  

          The incidence matrix is given by: 

         

00 01

10 11

20 21

a a

E a a

a a

1 0

1 1

1 1

 
 =  
  

 
 =
 
  

 

Since we have i=0,1,2 and j=0,1 and the HB-set e will take the form: 

  { }e (0,0),(1,0),(1,1),(2,0),(2,1)=  

 

Definition (3.1), [Schoenberg, 1968]: 

           The HB-problem (3.1) is said to be normal provided that (3.1) can 

always be solved uniquely by an n 1f (x) −∈Π . 

 

Remark (3.1):  

 The condition that the HB-problem (3.1) is normal may be 

equivalently expressed by the following requirement. 

If: 

     p(x) ∈ Πn−1 ............................................................................... (3.2) 

p(j)(xi) = 0, if (i, j) ∈ e, ............................................................. (3.3) 

then: 

p(x) = 0 
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A closely related concept of the normal HB-problem is presented 

in the following definition: 

 

Definition (3.2), [Schoenberg, 1968]: 

Let m be a natural number, then the HB-problem (3.1) is said to 

be m-poised provided that: 

p(x) ∈ Πm−1 

p(j)(xi) = 0 if (i, j) ∈ e 

then: 

p(x) = 0. 

 

Remarks (3.2): 

1- The HB-problem (3.1) is normal if and only if it is n-poised. 

2- If the HB-problem (3.1) is m-poised, then the inequality m n≤ must 

be hold.  

 

3.2 INTERPOLATION BY G-SPLINE FUNCTIONS 

In this section, we shall assume that the HB-problem (3.1) is    

m-poised and  r < m ≤ n,  where r 1 r− < α ≤ , α is the highest fractional 

derivatives that appears in interpolation problem. 

The definition of the G-spline function is facilitated by defining a 

matrix E* which is obtained from the incidence matrix E by adding       
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m − r +1 columns of zeros to the matrix E, i.e., E* = [ *
ija ], where            

(i = 1, 2, …, k; j = 0, 1, …, m ), and: 

ija , if j r*aij
0, if j r 1,r 3,...,m

≤= 
= + +

 

If  j = r+1, then E* = E. 

 

Definition (3.3), [Schoenberge, 1968]: 

A function S(x) is called natural G-spline for the knots              

x1, x2, …, xk and the matrix E* of order m provided that it satisfies the 

following conditions: 

(1) S(x) ∈ Π2m−1 in (xi, xi+1), i = 1, 2, …, k − 1. 

(2) S(x) ∈ Πm−1 in (−∞, x1) and in (xk, ∞). 

(3) S(x) ∈ Cm−1(−∞, ∞). 

(4) If *
ija  = 0, then S(2m−j−1)(x) is continuous at x = xi; that is,     

S(2m−j−1)(xi −0) = S(2m−j−1)(xi+0), where xi + 0 and xi − 0 refers to the 

right and left hand limits of the function S(2m−j−1). 

 

We denote the set of all natural G-splines interpolation 

polynomials of a given function with knots x1, x2, …, xk, by: 

Sm = S (E*; x1, x2, …, xk) 

Sm is a non empty set and this is shown by the inclusion relation: 
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Πm−1 ⊂ Sm 

Indeed, if S(x) ∈ Πm−1, then S(x) satisfies the conditions from (1) to (4). 

A special case when (3.1) is given by: 

 1 i 11 i 1( ) ( )( ) ( )
i i i ii if (x ) y ,f (x ) y ,..., f (x ) y −−α αα α= = = , 

for all  i = 1, 2, …, k and  i i ir 1 r− ≤ α ≤  

Then the HB-problem is equivalent to the Hermite problem in 

approximation theory with integer order derivatives. 

It is clearly that α = i
i

maxα , and ir 1 r− < α ≤  where r ≤ m ≤ n; 

S(2m−j−1)(x) is continuous at x = xi, for j = r,…, m − 1. In other words, 

S(v)(x) is continuous at x = xi, for v = m, m + 1, .,.., 2m − r together with 

condition (3), of definition (3.3) we conclude that: 

S(x) ∈ C2m−r, near x = xi, i = 1, 2, …, k ................................... (3.4) 

Conditions (1), (2) of definition (3.3) and eq. (3.4) shows that Sm 

is identical with the natural spline function of degree 2m − 1 having xi,   

i = 1, 2, …, k; a multiple knot of multiplicity ir , where ir m≤ . 

Another special case is the Lagrange problem which occurs if we 

assume that n = k + 1 and e = {(i, 0), i = 0, 1, …, k}. 

In this case, m = k and we can show that Sm is identical with the  

class of natural spline functions of degree 2m − 1 having knots             

x0, x1, …, xk, [Schoenberg, 1968]. 
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The existence of a unique G-spline function may be generated 

from the following theorem. 

 

Theorem (3.1):     

If the HB-problem (3.1) is m-poised, then there exists a unique 

G-spline function 

*
m 1 kS(x) S (E ;x ,..., x )∈  

such that  

j i( ) ( )
i i j j jS (x ) y (x ), r 1 r

α α= − < α <  ………………………... (3.5) 

 

In order to prove this theorem, first transform the HB-conditions 

(3.5) using the fractional operator j1
D

−α
 to the both sides, yields: 

ji 1( )
i iS(x ) y (x )D (1)

−αα=  

         ( )
j

j
1

( )
i

j

(x a)
y (x )

−α
α −=

Γ α
 

and hence the proof may proceed similarly as in the usual case (see 

[Schoenberg, 1968]). 

Now, the most difficulty in the study of G-spline interpolation 

functions is the constructing of the G-spline functions itself, because 

most of literatures give no details about these functions, therefore we 

will illustrate in details the method of construction of such functions. 
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Next, the construction of the G-spline interpolation formula in a 

more efficient approach leading to a system of only m + n equations is 

given as follows: 

From conditions (1), (2) and (3) of definition (3.3) it is clear that 

the most suitable form of the G-spline function S(x) must take the form: 

S(x) = Pm−1(x) + 
2m j 1k m 1

i
ij

i 1 j 0

(x x )
c

(2m j 1)!

− −−
+

= =

−
− −∑∑  ................................ (3.6) 

where Pm−1(x) ∈ Πm−1, while the cij are constants to be determined. Any 

function of the form (3.6) satisfies the conditions (1), (2) and (3) except: 

S(x) ∈ Πm−1  if  xk < x .............................................................. (3.7) 

and according to the definition of the truncated power basis, from (3.6).  

One can see that S(2m−j−1)(x) is continuous at x = xi if and only if  

cij = 0, while condition (4) of definition (3.3) requires that S(2m−j−1)(x) is 

continuous if and only if *ija  = 0. Leaving out all such terms, yields: 

S(x) = pm−1(x) + 
2m j 1

i
ij

(i, j) e

(x x )
c

(2m j 1)!

− −
+

∈

−
− −∑  .................................. (3.8) 

In order to satisfy (3.8), expand all binomial terms and equating 

to zero those coefficients of xm, xm+1, …, x2m−1, the following equations 

are obtained: 

ij v j
i

(i, j) e
j v

c 2m j 1
( x ) 0

2m v 1(2m j 1)!
−

∈
≤

− − 
− = − −− −  

∑ , v=0,1,…, m−1 ... (3.9) 

and also have the equations: 
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S(j)(xi) = y(j)(xi), (i, j) ∈ e ........................................................ (3.10) 

Therefore, we get n + m algebraic equations from (3.9) and (3.10) and 

writing the solution of the unique G-spline so as to exhibit the f(j)(xi), ), 

to get: 

S(x) = ( j)
iji

(i, j) e

y L (x)
∈
∑  

which is the final form of G-spline approximation function. It is clear 

that the final form of the G-spline function depends on the fundamental 

G-spline functions Lij(x), (i, j) ∈ e. 

 

3.3 ILLUSTRATIVE EXAMPLES 

In this section, some illustrative examples are considered. The first 

example is for an ordinary case of the HB-problem without fractional 

derivatives. 

  

Example (3.3): 

            Consider the following HB-problem: 

f(−1) = y1, f ′(0) = y′2, f(1) = y3 

and to find the G-spline function which interpolate (3.2). In this problem  

we have r = 1, n = 3. 

Hence, the incidence matrix E is then given by: 
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E = 

1 0

0 1

1 0

 
 
 
  

 

and the HB-set e will take the form: 

e = {(1, 0), (2, 1), (3, 0)}.  

Therefore, the G-spline interpolation function will be: 

S(x) = a0 + a1x + 
1

6
c10

3(x 1)++  + 
1

2
c21

2x+  + 
1

6
c30

3(x 1)+−  

Now, we must solve the following linear system of algebraic 

equations obtained from eq. (3.9) and (3.10): 

1

6
c10 + 

1

6
c30 = 0 

1

2
c10 + 

1

2
c21 − 

1

2
c30 = 0 

a0 − a1 = y1 

a1 + 
1

2
c10 = y′2 

a0 + a1 + 
8

6
c10 + 

1

2
c21 = y3 

Hence, we get: 

c10 = 
3

2
y1 + 3y′2 − y3 

c21 = −3y1 − 6y′2 + 3y3 

c30 = − 3

2
y1 − 3y′2 + 

3

2
y3 
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a0 = 
1

4
y1 − 

1

2
y′2 + 

3

4
y3 

a1 = − 3

4
y1 − 

1

2
y′2 + 

3

4
y3 

where 1 2y , y′  and 3y  are given in applications. Therefore, for 

1 2y 1, y 0′= − =  and 3y 1=  we get the following G-spline function: 

S(x) = y1L10(x) + y′2L21(x) + y3L30(x) 

where: 

L10(x) = 
1

4
(1 − 3x) + 

1

4
3(x 1)++  − 

3

2
2x+  − 

1

4
3(x 1)+−  

L21(x) = − 1

2
(1 + x) + 

1

2
3(x 1)++  − 3 2x+  − 

1

2
3(x 1)+−  

L30(x) = 
3

4
 (1 + x) − 

1

4
3(x 1)++  + 

3

2
2x+  + 

1

4
3(x 1)+−  

The G-spline function and its comparison with the exact 

approximated function 3f (x) x , 1 x 1= − ≤ ≤  is given in fig. (3.1). 
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0.0

0.3

0.5

0.8

1.0
S(

x)
Approximate G-spline function.

Exact G-spline function.

 

Figure (3.1) Approximate Normal G-spline function for f(x) = x3. 

From the graph of the results of the last example, one can notice 

the error between the G-spline approximation for f(x) = x3 and f(x). This 

is because no usage to the derivative has been made at the knot points. 

 

 

Example (3.4): 

Consider the HB-problem  

0 0 0 0 1 1 1 1 2 2 2 2f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y′ ′ ′ ′ ′= = = = = =  

where 0 1 2x 1,x 0,x 1.= − = =  
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and to find the G-spline function which interpolate (3.2). In this problem 

we have i , ji. j
n a 6= =∑  and  r 1=  , then it is m-poised (5 poised). 

The incidence matrix is given by: 

 
00 01

10 11

20 21

a a

E a a

a a

 
 =
 
  

 

Hence, 

00 01

*
10 11

20 21

a a 0

E a a 0

a a 0

1 1 0

1 1 0

1 1 0

 
 =
 
  

 
 =
 
  

 

Since we have i=0,1,2 and j=0,1 and the HB-set e will take the form: 

 { }e (1,0),(1,1),(2,0), (2,1),(3,0), (3,1)=  

Form eq. (3.8) we get 

               
9 8 9

2 3
0 1 2 3 10 11 20

(x 1) (x 1) (x)
S(x) a a x a x a x c c c

9! 8! 9!
+ + ++ += + + + + + +  

                         
8 9 8

21 30 31
(x) (x 1) (x 1)

c c c
8! 9! 8!

+ + +− −+ + +  

and form (3.9) we get 

                10 20 30c c c 0+ + =  

               10 11 20 21 30 31c c c c c c 0+ + + + + =  
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              10 11 30 31
1 1 1 1

c c c c 0
7!2! 7! 8! 8!

+ + + =  

              10 11 30 31
1 1 1 1

c c c c 0
6!3! 6!2! 6!3! 6!2!

+ + + =  

Now from eq. (3.10) 

               0 10 11
1 1

a c c 0
9! 8!

+ + =  

               10 11c c 0+ =  

               0 1 2 3a a a a 1− + − = −  

               1 2 3a 2a 3a 3− + =  

               
9 8 9 8

0 1 2 3 10 11 20 21
2 2 2 2

a a a a c c c c 1
9! 8! 9! 8!

+ + + + + + + =   

               
8 7

1 2 3 10 11 20 21
2 2 1 1

a 2a 3a c c c c 3
8! 7! 8! 7!

+ + + + + + =   

Where 1 1 1 2 3y , y , y , y , y′ ′  and 3y′ are given in applications. Therefore, we 

get the following G-spline function: 

               
9

2 3 (x 1)
S(x) 0.262x 0.511x 1.253x 205.948

9!
++= − + + +  

                          
8 9 8

3(x 1) (x) (x)
205.948 1.648.10 411.896

8! 9! 8!
+ + +++ − −  

         
9 8

3 (x 1) (x 1)
1.442 10 617.843

9! 8!
+ +− −+ ⋅ +  
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Figure (3.2) Approximation G-spline function 

 

Example (3.4): 

Consider the HB-problem  

1 11 1
3 32 2

( ) ( )( ) ( )

0 0 1 1 1 1 2 2 2 2f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y= = = = =  

 where 0 1 2x 0,x 1,x 2= = =  . 

and to find the G-spline function which interpolate (3.2). In this problem 

we have i , ji. j
n a 5= =∑  and  r 1=  , then it is m-poised (3 poised). 

The incidence matrix is given by: 

 
00 01

10 11

20 22

a a

E a a

a a

 
 =
 
  

 

Hence, 
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00 01

*
10 11

20 12

a a 0

E a a 0

a a 0

1 0 0

1 1 0

1 1 0

 
 =
 
  

 
 =
 
  

 

Since we have i=0,1,2 and j=0,1 and the HB-set e will take the form: 

 { }e (0,0),(1,0),(1,1),(2,0),(2,1)=  

From (3.8) we have, 

5 5 2
2

0 1 2 00 10 11

5 4

20 21

(x 0) (x 1) (x 1)
S(x) a a x a x c c c

5! 5! 4!
(x 2) (x 2)

c c
5! 4!

+ + +

+ +

− − −= + + + + +

− −+ +
 

And from (3.9) we get 

 
00 10 20

10 11 20 21

1 1 1
c c c 0

5! 5! 5!
1 1 1 1

c c c c 0
4! 4! 4! 4!

+ + =

− + + + =
 

10 11 20 21

1 1 1 1
c c c c 0

12 6 3 3
+ + − =  

Now from eq. (3.10) 

           0a 0=  

            0 1 2 00

1
a a a c 1

5!
+ + + =  

            1 2 00

1
a 2a c 3

4!
+ + =  
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5

0 1 2 00 10 11

2 1 1
a 2a 4a c c c 8

5! 5! 4!
+ + + + + =  

            1 2 00 10 11

1 1
a 4a 0.667c c c 12

4! 3!
+ + + + =  

where 1 2y , y′  and 3y  are given in applications. Therefore, we get the 

following G-spline function: 

5 5 4
2 (x) (x 1) (x 1)

S(x) 0.618x 1.491x 15.275 37.393 11.853
5! 5! 4!

+ + +− −= − + + − −

 

  
5 4(x 2) (x 2)

22.118 18.697
5! 4!

+ +− −+ +  

-10

-8

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

Approximation

Exact

 

Figure (3.2) Approximate G-spline function 
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Example (3.5): 

Consider the HB-problem  

3 31 1
2 2 2 2

( ) ( ) ( ) ( )

0 0 1 1 1 1 2 2 2 2f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y ,f (x ) y= = = = =  

 where 0 1 2x 1,x 0,x 1= − = =  . 

and to find the G-spline function which interpolate (3.2). In this problem 

we have i , ji. j
n a 5= =∑  and  r 2=  , then it is m-poised (3 poised). 

The incidence matrix is given by: 

 
00 01 02

10 11 12

20 21 22

a a a

E a a a

a a a

 
 =
 
  

 

Hence, 

1 0 0

E 1 1 0

1 0 1

 
 =
 
  

 

Since we have i=0,1,2 and j=0,1,2 and the HB-set e will take the form: 

 { }e (0,0),(1,0),(1,1),(2,0),(2,2)=  

From (3.8) we have, 

3 3 2
2

0 1 2 00 10 11

5
1

20 22

(x 1) (x) (x)
S(x) a a x a x c c c

3! 3! 2!
(x 1)

c c (x 1)
5!

+ + +

+
+

+= + + + + +

−+ + −
 

And from eq. (3.9) we get 
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00 20

00 10 20

1 1
c c 0

5! 5!
1 1 1

c c c 0
4! 4! 4!

+ =

+ − =
 

00 20 22

1 1 1
c c c 0

12 12 3!
+ + =  

Now from eq. (3.10) 

           0 1 2a a a 1− + = −  

            0 10

1
a c 0

5!
+ =  

            1 00 22

1
a c c 0

2!
+ + =  

            0 1 2 10 11

1 1
a a a c c 1

3! 2!
+ + + + =  

            2 10 112a c c 6+ + =  

where 1 2y , y′  and 3y  are given in applications. Therefore, we get the 

following G-spline function: 

3 3
2 (x 1) (x)

S(x) 0.182 5.455x 4.636x 10.909 21.818
3! 3!

+ ++= − + + − −  

  
2 3(x) (x 1)

25.091 10.909
2! 3!

+ +−− +  
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Figure (3.3) Approximate G-spline function 
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CCHHAAPPTTEERR  TTWWOO  
 

AAPPPPRROOXXIIMMAATTIIOONN  BBYY  SSPPLLIINNEE  

FFUUNNCCTTIIOONNSS 

The name "spline function" comes from the fact that a third 

degree spline function approximates the behaviour of mechanical spline, 

a device used by draughtsmen to draw a smooth curve, that consists of a 

flexible strip to which weights are attached at certain points in order to 

force a fit to the given data points, [Ahlberg, 1967]. 

In order to avoid the oscillatory in approximation  by high degree  

polynomials, it is important to remark that the spline function is a 

piecewise polynomial function drawn in such a way that its derivatives 

up to and including the order one less the degree of polynomials used are 

continuous everywhere in the domain of definition. 

For the purposes of interpolation, the use of spline function 

offers substational advantages such as by employing polynomials of 

relatively low degree, and then one can often avoid the marked 

undulatory behaviour that commonly arises from fitting a single 

polynomial exactly to a large number of empirical observations, 

[Ahlberg, 1967].  

A spline function obviously provides continuity of the greatest 

possible number of derivatives for the interpolatory function which must 
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be consistent with the use of polynomials of lower degree than would be 

required to fit all data points by using polynomial, [Schoenberg, 1963]. 

 

2.1 POLYNOMIAL INTERPOLATION 

One cause of using polynomials for approximation and 

interpolation of a given function or data points is that they may be 

evaluated, differentiated and integrated easily and in finitely many steps 

using just the basic mathematical operations of addition, subtraction and 

multiplication. 

Following are the most elementary types or methods of 

interpolation. 

 

2.1.1 The Lagrange Interpolation Polynomial: 

Suppose that an approximation of a function f ∈ C[a,b] is 

evaluated by a polynomial of degree n (or order n+1) as: 

p(x) = 
n

i
i

i 0

c x
=
∑ , a ≤ x ≤ b .......................................................... (2.1) 

where ic , i 0,1,2,...,n∀ = ; are the polynomial coefficients must be 

evaluated and hence, the problem here is reduced to the evaluation of the 

coefficients ci's, i = 0, 1, …, n. The most straightforward method for 

evaluating p(x) is to calculate the value of f at (n + 1) distinct points xi's, 

i = 0, 1, …, n of [a, b] and to satisfy the equations: 

p(xi) = f(xi), i = 0, 1, …, n ........................................................ (2.2) 

which will give a linear system of algebraic equations in c0, c1, …, cn. 
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The following theorem shows that one can determine the 

polynomial p ∈ Πn uniquely, where Πn is the set of all polynomials of 

degree at most n∈� . 

In addition the next result is given [Burden, 1985], but we give 

here more details about the proof for completeness.     

 

Theorem (2.1.1): 

Let xi, i = 0, 1, …, n, be any set of (n + 1) distinct points in [a, b], 

and let f ∈ C[a, b]. Then there is exactly one polynomial p ∈ Πn that 

satisfy the equations of interpolatory conditions: 

p(xi) = f(xi), i = 0, 1, …, n 

Proof: 

To prove the existence, define the function l k(x) as the basis 

functions, by: 

l k(x) = 
n

i

k ii 0
i k

(x x )

(x x )=
≠

−
−∏ , a ≤ x ≤ b, k = 0, 1, …, n 

then l k(x) ∈ Πn, has the values: 

l k(xi) = δki, i,k = 0, 1, …, n 

such that: 

δki = 
1, k i

0, k i

=
 ≠

 

It follows that the function: 
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p(x) = 
n

k k
k 0

f (x ) (x)
=
∑ l  

is in Πn and  

            
n

i k k i
k 0

p(x ) f (x ) (x )
=

=∑ l  

                      
n

k ki
k 0

f (x )
=

= δ∑  

                      if (x ), i 0,1,...,n.= ∀ =  

and therefore p(x) satisfy the condition (2.2). 

To prove the uniqueness, suppose that there exist another 

polynomial g(x) ∈ Πn, such that g(xi) = f(xi), for all i = 0, 1, …, n, i.e., 

g(x) satisfy also condition (2.12); and define a function 

H(x) p(x) g(x)= − . Now, 

H(x) p(x) g(x)= −  

         
n n

k k k k
k 0 k 0

f (x ) (x) g(x ) (x)
= =

= −∑ ∑l l  

         ( )
n

k k k
k 0

f (x ) g(x ) (x)
=

= −∑ l  

         
n

k k
k 1

H(x ) (x)
=

=∑ l . 

hence, H(x) ∈ Πn, and also:  

                     i i iH(x ) p(x ) g(x )= −  

                               i if (x ) f (x ) 0= − =  
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therefore H(xi) = 0, i = 0, 1, …, n 

Hence from the fundamental theorem of algebra, H(x) has (n+1) roots.  

Therfor H(x) must be identically zero for all x [a,b]∈  (since H is a 

polynomial of degree n that has n+1 roots).    

therefore p(x)=g(x), x [a,b]∀ ∈  

Hence, p(x) is unique     � 

 

If e denotes the error function encountered in the approximation, 

by Lagrange method, i.e., 

e(x) = f(x) − p(x), a ≤ x ≤ b ...................................................... (2.3) 

where p(x) ∈ Πn and satisfies the interpolatory conditions (2.2). It 

should be clear that, if f is changed by adding element of Πn, then the 

interpolation process automatically adds the same element to p, which 

leaves e unchanged. Expressions for the error should show this property. 

It is therefore appropriate, when f ∈ Cn+1[a, b] to state e in terms of the 

derivative f(n+1), which is given in the next theorem: 

The next theorem is given also in [Burden, 1985] and we give 

here more details of the proof.  

 

Theorem (2.1.2): 

For any set of distinct interpolation points {xi, i = 0, 1, …, n} in 

[a, b] and for any f ∈ C(n+1)[a, b], let p ∈ Πn that satisfies (2.3). Then, for 

any x ∈[a, b], the error of  Lagrange interpolation polynomial is: 
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e(x) = 
n

(n 1)
i

i 0

1
f ( ) (x x )

(n 1)!
+

=
ξ −

+ ∏  .......................................... (2.4) 

where ξ ∈[a, b] that depends on x. 

 

Proof: 

For certain xk, if x = xk, for k = 0, 1, …, n; then  

f(xk) = p(xk) and choosing ξ(xk) arbitrarily in (a, b) to satisfy (2.4). 

If x ≠ xk, for any k = 0, 1, …, n; define a function g for t ∈[a, b] by: 

g(t) = f(t) − p(t) − [f(x) − p(x)] 
n

i

ii 0

(t x )

(x x )=

−
−∏  

since f ∈ Cn+1[a, b], p ∈ C∞[a, b], and x ≠ xk, for any k, it follows that  

g ∈ Cn+1[a, b]. For t = xk, g(xk) = 0. Moreover: 

( )
n

k i
k k k

ii 0

(x x )
g(x ) f (x ) p(x ) f (x) g(x)

(x x )=

−= − − −
−∏   

           ( )0 f (x) g(x) 0 0= − − ∗ =  

Also 

            ( )
n

i

ii 0

(x x )
g(x) f (x) p(x) f (x) p(x)

(x x )=

−= − − −
−∏  

                    f (x) p(x) f (x) p(x)= − − +  

                    0, x [a,b]= ∀ ∈  

Thus, g vanishes at the n + 2 distinct numbers x, x0, x1, …, xn.  
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By the generalized Roll's theorem, there exists ξ = ξ(x) in (a, b) for 

which g(n+1)(ξ) = 0. 

Evaluating g(n+1) at ξ gives: 

0 = g(n+1)(ξ) = f(n+1)(ξ) − p(n+1)(ξ) − [f(x) − p(x)] n

i
i 0

(n 1)!

(x x )
=

+

−∏
 

Since p is a polynomial of degree at most n, then p(n+1)(ξ) must be 

identically zero. Hence: 

e(x) = 
n

(n 1)
i

i 0

1
f ( ) (x x )

(n 1)!
+

=
ξ −

+ ∏ .    � 

 

2.1.2 Hermite Interpolation Polynomial: 

In certain cases, it happens that in addition to the function values 

f(x i), i = 0, 1, …, n, some additional values of the derivative of f are 

required also. The general Hermite interpolation problem is to calculate 

p ∈ Πn that satisfies the interpolatory conditions: 

p(j)(xi) = f(j)(xi), j = 0, 1, …, αi, i = 0, 1, …, n .......................... (2.5) 

where the number of coefficients of p equals to the number of data 

points, and iα it is the highest derivative of f in ix , for all i 0,1,...,n=  

which implies that n is defined by the following equation: 

n + 1 = 
n

i
i 0

( 1)
=

α +∑  ................................................................... (2.6) 

The polynomial p may be obtained from an interesting extension 

of Newton's interpolation method (or Newton's divided difference 
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formula). The data on the right hand side of (2.5) define the required 

interpolation polynomial uniquely, as shown in the following theorem: 

 

Theorem (2.1.3), [Powell, 1981]: 

Let {x i, i = 0, 1, …, m} be a set of distinct points from [a, b], and 

let the real numbers {f(j)(xi), j = 0, 1, …, αi, i = 0, 1, …, n} be given. 

Then there is exactly one polynomial p ∈ Πn that satisfies eq. (2.5), 

where the value of n is defined by eq. (2.6). 

Proof: 

 The first part of the proof is a highly useful general method for 

demonstrating the uniqueness of approximation from the linear space of 

all polynomial functions. 

The approximating functions are parameterized by choosing a basis for 

the linear space and in the present case every member of Πn can be 

expressed in the form 

 
n

i
i

i 0

p(x) c x , a x b
=

= ≤ ≤∑ …………………………………(2.7) 

because the number of conditions on p equals to the number of 

parameters, the required coefficients { }ic : i 0,1,...,n=  satisfy a square 

system of linear algebraic equations.  

It is therefore sufficient to prove that the matrix of the system obtained is 

non-singular.  

An equivalent condition is that, setting the right-hand sides of the 

equations to zero, then they are satisfied only if all the parameters equals 
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to zero. Hence it suffices to prove that, if all the coefficients ic 's, i∀  are 

zero, then p is identically zero. 

Hence, when the data are zero, then p is a multiple of the following 

polynomial   

 i

n
l 1

i
i 0

(x x ) , a x b+

=
∏ − ≤ ≤ .         

Because this polynomial includes the termn 1x + , the multiplying factor 

must be zero.  

Hence p is identically zero.    � 

 

Remark (2.1.1): 

 The Hermite interpolation polynomial may be generalized for 

any node point in terms of i 1x −  and i 1x +  which is the so called Hermite-

Berkhoff problem. 

 

2.2 SPLINE FUNCTIONS 

Suppose one want to interpolate n-given data points (xi, yi), for 

all i = 1, 2, …, n; and a = x1 < x2 < … < xn = b, by means of a function S, 

which has continuous derivatives of order 1, 2, …, k; where k is an 

integer number and 1 ≤ k ≤ n. Furthermore, to find an approximation 

function S, which minimizes: 

σ = 
b

a
∫ [g(k)(x)]2dx 

overall approximation functions g. 
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The problem just described does not have a unique solution if  

k > n, because there is an infinite number of polynomials of degree  

k − 1 that interpolate with the data points exactly and all of these 

polynomials lead to σ = 0. 

For k < n, there is a unique solution which is a picewise function 

given in any interval [xi, xi+1], i=1,2,…,n-1 by a polynomial of degree  

2k − 1, which is, moreover, by a different polynomial in each such 

interval. 

Furthermore, the polynomial functions that make the graph of the 

function S "join smoothly" in the sense that, for each two polynomials 

that represent g on the subintervals [xi−1, xi] and [xi, xi+1], we have to the 

left and to the right of xi the same ordinate and the same values of the 

derivatives of order 1, 2, …, 2k − 2 for x = xi. 

The function S also satisfies the following property; in each of 

the intervals (−∞, x1) and (xn, ∞) it is reduced to a polynomial of degree 

k − 1. This function, which we described just now belongs to a class of 

functions known as spline functions. 

The next definition gives the alternate mathematical definition of 

the spline functions. 

 

Definition (2.2.1), [Greville, 1967]: 

A spline function S(x) of degree m∈�  with knots or "nodes"  

a= x1 < x2 < … < xn = b is a function which satisfies following two 

conditions: 
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(i) In each of the intervals (−∞, x1), [x1, x2), …, [xn, ∞), the spline 

function S(x) is a polynomial of degree m. 

(ii)  S(x) ∈ Cm−1(−∞, ∞). 

 

It is important to mention that, there is an essential difference 

between spline of even and odd degrees. One finds, for example, that, 

polynomial splines of even degree interpolating a prescribed function at 

certain mesh points need not to be exist, and for more details see 

[Ahlberg, 1967], while for an odd degree this problem is violated. 

 

Definition (2.2.2), [Greville, 1967]: 

A spline function S(x) of odd degree 2m − 1,m∈�  with knots  

a = x0 < x1 < … < xn = b is called a natural spline function if it satisfies 

the following conditions: 

(i) S(x) ∈ Π2m−1 in 1 2 2 3 n 1 n[x , x ),[x ,x ),...,[x , x ]− . 

(ii)  S(x) ∈ C2m−2(−∞, ∞). 

(iii)  S(x) ∈ Πm−1 in (−∞, x0) and (xn, ∞). 

where the symbol Πm−1 is used to denote the set of all polynomials of 

degree less than or equal to m − 1. 

 

It is clear that from the above definitions that any sum or 

difference of spline functions of a given degree with given knots is also 

a spline function of the same degree with the same knots. Perhaps, the 
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simplest spline function is the truncated power function mx+ , defined by 

[Schoenberg, 1946]: 

mx+  = 
mx , x 0

0, x 0

 >


≤
 

where m is a positive integer. The differentiation rule for this function is 

similar to that for ordinary powers: 

d

dx
mx+  = m m 1x −

+  

The m-th derivative of mx+  is m! 0x+ , where 0x+  is taken to be the 

Heaviside function, defined as: 

0x+  = 
1, x 0

0, x 0

>
 ≤

  

for the rest of this work, a function of the form m(x c)+− , which is 

defined by: 

m(x c)+−  = 
m(x c) , x c

0, x c

 − >


≤
 

will be called an elementary spline function or the truncated power basis 

where c is a real constant. The m-th derivative of this function has its 

only discontinuity at x = c, in which there is a jump of magnitude m!. 

Schoenberg and Whitney [Schoenberg, 1953], have pointed out 

that any spline functions may be expressed uniquely as the sum of a 

polynomial and a linear combination of elementary spline functions. 

This perhaps most easily seen by considering the jumps, at the knots of 
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the spline function of its m-th derivative, where m is the splines degree. 

In other words, let the spline function S1(x) of degree m have knots xi, 

and corresponding jumps si in its m-th derivative, for i = 1, 2, …, n. It is 

assumed that xi < xj if i < j. Also, let pm(x) to denote the polynomial of 

degree m, which is identical with S1(x) for x ≤ x1. Now, define a 

function S(x) by: 

S(x) = pm(x) + 
n

m
j j

j 1

c (x x )+
=

−∑  

where cj = sj/m!, and the S(x) is a spline function of degree m having the 

required knots and the required jump in the m-th derivative at each joint, 

and it is identical with S1(x) for x ≤ x1. Moreover, S1(x) − S(x) is a spline 

function of degree m and also belongs to Cm; therefore it is a polynomial 

as it is identically zero for x ≤ x1, it is identically zero everywhere. 

For the case of natural spline function of degree 2k − 1, 

[Greville, 1964], [Schoenberg, 1953], S(x) takes the form: 

S(x) = pk−1(x) + 
n

2k 1
j j

j 1

c (x x ) −
+

=
−∑  ........................................... (2.8) 

For this form, one can notice that, condition (iii) of definition 

(2.2.2) is immediately satisfied for the interval (−∞, x1). 

In order to satisfy condition (iii) of definition (2.2.2) for the 

interval (xn, ∞). Equating to zero the coefficients of k k 1 2k 1x ,x ,..., x+ − , 

then condition (iii) implies that: 

n
i

j j
j 1

c x
=
∑  = 0, i = 0, 1, …, k − 1 ................................................. (2.9) 
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This is equivalent to the following condition: 

n

j j
j 1

c Q(x )
=
∑  = 0 ....................................................................... (2.10) 

for every polynomial Q(x) of degree at most k − 1.  

 

The next theorem discusses the existence of a unique natural 

spline function of odd degree which is of great importance in 

applications, the details of the proof is given for completeness. 

  

Theorem (2.2.3), [Greville, 1967]: 

For k ≤ n and given knots x1 < x2 < … < xn, there is a unique 

natural spline function S(x) of degree 2k − 1 having the knots xi and 

satisfying the equations: 

S(xi) = yi, i = 1, 2, …, n ......................................................... (2.11) 

for given arbitrary yi. 

Proof: 

Take a = x1 and b = xn for notational convenience.  

Substituting (2.8) into (2.11) give the following equations: 

pk−1(xi) + 
n

2k 1
j i j

j 1

c (x x ) −
+

=
−∑  = yi, i = 1, 2, …, n .................... (2.12) 

Together eqs. (2.12) and (2.9) constitute a system of n + k equations of       

n + k unknown of parameters. 
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To show that the related system of equations is non-singular or, what 

amounts to the same thing, that the corresponding homogenous system 

has only the trivial solution in which cj = 0, for all j and pk−1 is 

identically zero. 

Consider the quantity: 

            σ0 = 
b

a
∫ [S(k)(x)]2dx ................................................................... (2.13) 

Then repeated differentiation of eq. (2.8) up to order k, give: 

( )
n k 1k

j j
j 1

S (x) (2k 1)(2k 2)...(k) c x x
−

+=
= − − −∑  

         ( )
n k 1

j j
j 1

(2k 1)(2k 2)...(k)(k 1)!
c x x

(k 1)!

−

+=

− − −= −
− ∑  

          = 
(2k 1)!

(k 1)!

−
−

n
k 1

j j
j 1

c (x x ) −
+

=
−∑  ......................................... (2.14) 

and observing that S(k)(x), S(k+1)(x), …, S(2k−2)(x) vanish for x = a by eq. 

(2.14), and for x = b by eq. (2.14) and (2.10). 

Successive integration by parts to the right hand side of eq. (2.13) yields: 

σ0 = S(k)(x)S(k−1)(x)
b

a
 − S(k+1)(x)S(k−2)(x)

b

a
 + … ± S(2k−2)(x)S′(x)

b

a
 

+ (−1)k−1
b

(2k 1)

a

S (x)S (x)dx−′∫  

Therefore: 
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            σ0 = (−1)k−1
b

(2k 1)

a

S (x)S (x)dx−′∫   

     = (−1)k−1
j 1

j

xn 1

j 1 x

+−

=
∑ ∫ S′(x)S(2k−1)(x) dx 

Hence: 

σ0 = (−1)k−1 j 1

j

n 1
x(2k 1)
x

j 1

S (x)S(x) +
−

−

=
∑  

which is a jump of S(2k−1) at xj of magnitude (2k − 1)!. 

As S(2k−1)(x) is constant in each subinterval (xj, xj+1), for all                      

j = 1, 2, …, n − 1 and vanish outside of (x1, xn), this gives: 

σ0 = (−1)k
n 1

j 1

−

=
∑ S(xj)[S

(2k−1)(xj+0) − S(2k−1)(xj−0)] 

= (−1)k(2k − 1)! 
n 1

j 1

−

=
∑ cjS(xj) = yi = 0 .................................. (2.15) 

In the homogeneous system (2.12): 

yi = 0, i = 1, 2, …, n ............................................................... (2.16) 

and therefore eqs. (2.11) and (2.15) gives  

 σ0 = 
n 1

k
j j

j 1

( 1) (2k 1)! c y
−

=
− − ∑  

     
n 1

k
j

j 1

( 1) (2k 1)! c 0 0
−

=
= − − ⋅ =∑  
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From eq. (2.13) and from the continuity of S(k)(x) implies that S(k)(x) is 

identically zero in (a, b). 

Substituting (k)S (x) 0=  in eq. (2.13), yields: 

 
n

k 1
j j

j 1

(2k 1)!
c (x x ) 0, x (a,b)

(k 1)!
−

+
=

− − = ∀ ∈
− ∑  , k 1,2,...,n∀ =  

Which is true only if c1 = c2 = … = cn = 0 

This result together with eqs. (2.12) and (2.16) give: 

pk−1(xi) = 0 

since k − 1 < n and the xi's are distinct, then it follows that from the 

fundamental theorem of algebra that pk−1(x) is identically zero.    � 

 

Theorem (2.2.4), [Greville, 1967]: 

Let f(x) be any continuous function on [a, b] together with its 

derivatives of order 1, 2, …, k ≤ n and let the equations: 

f(x i) = yi, i = 1, 2, …, n .......................................................... (2.17) 

hold, where x1 < x2 < … < xn. If S(x) is the unique natural spline 

function with knots xi, satisfying eq. (2.11), then: 

b

a
∫ [f (k)(x)]2dx ≥ 

b

a
∫ [S(k)(x)]2dx 

with the equality satisfied only if f(x) = S(x). 

Proof: 

Since S(k)(x) vanishes for x outside of the interval (x1, xn) and let 

us take a = x1 and b = xn 
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Now: 

b

a
∫ [f (k)(x)]2dx = 

b

a
∫ [S(k)(x)]2dx + 

b

a
∫ [f (k)(x) − S(k)(x)]2dx +  

2
b

a
∫S(k)(x) [f (k)(x) − S(k)(x)] dx 

To show that the last integration in the right hand side is vanished. 

Since, successive integrations by parts give: 

b
(k) (k) (k )

a

S f (x) S (x) dx − ∫ = (−1)k−1
j 1

j

xn 1

j 1 x

+−

=
∑ ∫ S(2k−1)(x) [f  ′(x)  

                                             − S′(x)] dx 

Therefore, in each subinterval (xj, xj+1), S(2k−1)(x) is constant function, 

while f(x) − S(x) vanishes at the end points, because of equations (2.11) 

and (2.17), the integral therefore vanishes.  

Therefore: 

 
2 2b b b

(k) 2 (k) (k ) (k )

a a a

[f (x)] dx S (x) dx S (x) S (x) dx   = + −   ∫ ∫ ∫  

Since 

 
2b

(k) (k )

a

S (x) S (x) dx 0 − ≥ ∫ . 

Hence: 

 
b b

2 2(k) (k )

a a

f (x) dx S (x) dx   ≥   ∫ ∫ .    � 
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2.3 SOME TYPES OF SPLINE FUNCTIONS 

It is convenient after we give the definition of the spline function 

and some of its related theorems to discuss and list some of the well 

known and widely used types of spline functions. 

Among such types of spline functions, are the following types: 

 

2.3.1 Generalized Splines: 

In general, it is assumed that we have an n-th order linear 

differential operator L, defined by: 

L ≡ an(x)Dn + an−1(x)Dn−1 + … + a0(x) 

where each n
ja (x) C [a,b], j 0,1,..., n;∈ ∀ =  an(x) does not vanish on [a, b] 

and 
d

D
dx

= . Let L* be the formal adjoint operator of L. Thus: 

L* = (−1)nDn{an(x).}+(−1)n−1Dn−1{an−1(x).}+…−D{a1(x).}+a0(x) 

If ∆ : a = x0 < x1 < … < xN = b, is a mesh on [a, b], then the generalized 

spline of deficiency k (0 ≤ k ≤ n) with respect to ∆ is a function S∆(x) 

which is in K2n−k(a, b) (by Kn(a, b), we mean the class of all functions 

f(x) defined on [a, b] which posses an absolutely continuous (n − 1)th 

derivatives on [a, b] and whose n-th derivative is in L2(a, b) and satisfies 

the differential equation: 

L*LS ∆ = 0 

on each open mesh interval of ∆. We also say that S∆(x) has an order 2n 

when we want to indicate the order of the operator L*L defining S∆(x). 
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The following theorems gives the optimality, existence and 

uniqueness of the generalized splines, respectively. 

 

Theorem (2.3.1): 

Let ∆ : a = x0 < x1 < … < xN = b and Y = { iy
α

}, i = 0, 1, …, N;  

α = 0, 1, …, k −1, be given. Then of all functions f(x) in Kn(a, b), such 

that f(α)(xi) = iy
α

 (i = 0, 1, …, N; α = 0, 1, …, k − 1), the generalized 

spline S∆(Y; x) of type k, when it exists, minimizes: 

b
2

a

{Lf (x)} dx∫  

(a generalized spline S∆(f; x) of deficiency k on ∆ is a spline 

interpolation of type k if ( )S α
∆ (f, x) (α =0, 1, …, k −1) interpolates to the 

values of f(α)(x) at the mesh points of ∆ and {LS∆(x)} (α) = 0,                   

α = 0, 1, …, n − k − 1; at x = a and x = b). 

Proof: See [Ahlberg, 1967].    � 

 

Theorem (2.3.2): 

Let ∆ : a = x0 < x1 < … < xN = b and Y = { iy
α

}, i = 0, 1, …, N;  

α = 0, 1, …, k −1, be given. In addition, let L and ∆ be such that; if  

Lg ≡ 0 and g(α)(xi) = 0 (i = 0, 1, …, N; α = 0, 1, …, k − 1), then  g(x) ≡ 0. 

Under these conditions, the generalized spline S∆(Y, x) of type k on ∆, 

such that ( )S α
∆ (Y; xi) = iy

α
 (i = 0, 1, …, N; α = 0, 1, …, k − 1) exists. 

Proof: See [Ahlberg, 1967].    � 
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Theorem (2.3.3): 

Let ∆ : a = x0 < x1 < … < xN = b and Y = { iy
α

}, i = 0, 1, …, N;  

α = 0, 1, …, k −1, be given. In addition, let L and ∆ be such that, if  

Lg = 0 and g(α)(xi) = 0, i = 0, 1, …, N; α = 0, 1, …, k − 1, then g(x) ≡ 0. 

Under these conditions, there is at most one generalized spline S∆(Y; x) 

of type k on ∆, such that ( )S α
∆ (Y; xi) = iy

α
 (i = 0, 1, …, N;                      

α = 0, 1, …, k − 1). 

Proof: See [Ahlberg, 1967].    � 

 

2.3.2 Basis Splines (B-splines): 

In this subsection, we give the definition of the basis spline 

functions which is usually denoted by B-splines and also record various 

properties of the B-spline in order to make it therefore as familiar and 

real as possible as an object of approximation theory. 

 

Definition (2.3.4), [deBoor, 1978]: 

Let t = {t i} be a non-decreasing sequence (which may be finite or 

infinite). The i-th normalized B-spline of order k for the knot sequence t 

is denoted by Bi,k,t and is defined by the rule: 

Bi,k,t(x) = (ti+k − ti)[t i, ti+1, …, ti+k]
k 1(. x) −
+− , ∀ x ∈ �  

where [ti, ti+1, …, tj]f is the divided difference of order j − i of f at the 

points ti, ti+1, …, tj. 
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Properties of B-Splines: 

1. It is notable that it is right a way that Bi,k,t has small support, i.e.,  

Bi,k,t(x) = 0, for all x ∉ [ti, ti+k]. 

2. For all r st x t< < : 

    
i
∑ Bi,k,t(x) = 1. 

3. Bi,k,t(x) > 0, for ti < x < ti+k. 

 

The following theorem permits the construction of the B-spline 

basis for any particular piecewise polynomial space Pk,ξ,v (Pk,ξ,v  is a 

linear subspace of Pk,ξ consisting of those elements which satisfy the 

continuity conditions specified by v) it gives a recipe for an appropriate 

knot sequence t. 

 

Theorem (2.3.5), (Curry and Schoenberg Theorem): 

For a given strictly increasing sequence ξ = h 1
i i 1{ } +

=ξ , and a given 

non-negative integer sequence v = h
i i 2{v } =  with vi ≤ k for all i, set: 

n = k + 
h

i
i 2

(k v )
=

−∑  = kh − 
h

i
i 2

v
=
∑  = dim Pk,ξ,v 

and let t = n k
i i 1{t } +

=  be any non-decreasing sequence, so that: 

1. t1 ≤ t2 ≤ … ≤ tk ≤ ξ1 and ξ h 1+  ≤ tn+1 ≤ … ≤ tn+k. 

2. For i = 2, 3, …, h, the number ξi occurs exactly k − vi times in t. 
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Then the sequence B1, B2, …, Bn of B-splines of order k for the knot 

sequence t is a basis for Pk,ξ,v, considered as a functions on [tk, tn+1]. 

Then: 

$k,t = Pk,ξ,v on [tk, tn+1] 

($k,t = span(Bi,k,t), linear space of splines of order k with knot sequence t). 

Proof: See [deBoor, 1978].    � 

 

Because of this theorem, Schoenberg  called the functions Bi as 

the basis splines, or B-splines, [Schoenberg, 1967]. 

 

2.3.3 Cubic Spline: 

A general cubic spline function is a polynomial of the third 

degree which involves four constants. There is sufficient flexibility in 

using the cubic-spline procedure to ensure not only that the interpolant 

function is continuously differentiable on the interval, but also that it has 

a continuous second derivative on the interval. The construction of the 

cubic spline does not however, assume that the derivatives of the 

interpolation function agree with those of the function, even at the 

nodes. 

Given a data g(t0), g(t1), …, g(tn) with a = t0 < t1 < … < tn = b. 

Then the a piecewise cubic interpolant P to g that satisfies the following 

conditions: 

1. Each Pj is a cubic polynomial on the interval [tj, tj+1] for each          

j = 0, 1, …, n − 1. 
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2. Pj(tj) = g(tj), for each j = 0, 1, …, n − 2. 

3. Pj+1(tj+1) = Pj(tj+1), for each j = 0, 1, …, n − 2. 

4. j 1P+′ (tj+1) = jP′ (tj+1), for each j = 0, 1, …, n − 2. 

5. j 1P+′′ (tj+1) = jP′′(tj+1), for each j = 0, 1, …, n − 2. 

The j-th piecewise polynomial Pj has the form: 

Pj(t) = aj + bj(t − tj) + cj(t − tj)
2 + dj(t − tj)

3 

where the coefficients aj, bj, cj and dj are constants to be determined. 

Because of the large type of splines, we will not discuss here the 

outlines of such type of spline functions. Therefore it is appropriate to 

list some of them and for more details one can see [deBoor, 1978], 

[Stephen Weston, 2002]: 

Auto-tension splines. 

Parabolic splines. 

Gatmull-Rom or Overhauster splines. 

Non-uniform rational basis splines. 

Quintic splines. 

Uniform-tension splines 

X-splines. 
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 CCOONNCCLLUUSSIIOONN  AANNDD  RREECCOOMMIINNDDAATTIIOONNSS  
 

From the present study, the following conclusions may be drawn: 

1- Increasing the HB-problem data will increase the accuracy of the 

results. 

2- The results obtained by using the HB-problem with fractional 

derivatives increasing the results of the G-spline interpolation 

function obtained from the usual HB-problem 

 

Also, from this work, we can recommend the following open 

problems for future work: 

1- Introducing the proof of theorem (3.1) without transforming the 

fractional order derivatives into an integer order derivatives. 

2- Studying multi dimensional G-spline interpolation with HB-

problem of fractional derivatives.         
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IINNTTRROODDUUCCTTIIOONN  

  

The fractional calculus may be considered as an old and yet as a 

novel topic. It is an old topic since it’s starting in (1695), were 

L’Hospital was the first researcher whose ask in a letter to Leibniz on  

the possibility to perform calculations by means of fractional derivatives 

of order r = ½. Leibniz answered this question looked as a Paradox 

[Madueno, 2002].  

The earliest more or less systematic studies seem to have been 

made in the beginning and middle of the 19th century by Liouville 

(1832), Holmgren (1864), Riemann (1953), although Euler (1730), 

Lagrange (1772), and other made contributions even earlier. Liouville 

(1832) who expanded functions in series of exponentials and defined the 

q-th derivative of such a series by operating term-by-term as though q, 

where a positive integer, [Oldham, 1974]. 

Riemann in (1953), proposed a different definition that involve a 

definite integral and was applicable to power series with no integer 

exponents. Also, Grünwald in (1867), disturbed by the restriction of 

Liouville’s approach, [Samko, 1993]. 

Then these theoretical beginnings are developed by several 

applications of fractional calculus to various problems. The first 

development was discovered by Able in (1823), that the solution of the 

integral equation for the tautochrone problem may be accomplished via 
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an integral transform with fractional derivatives. A powerful stimulus to 

the use of fractional calculus for solving real life problems was provided 

by the development of Boole in (1844) as symbolic methods for solving 

linear differential equations with constant coefficients, [Oldham, 1974]. 

In the twentieth century, some notable contributions have been 

made to both of the theory and application of fractional calculus, Weyl 

(1917), Hardy (1917), Hardy and Littewood (1932), Kober (1940), and 

Kuttner (1953), examined some rather special, but natural, properties of 

differintegrals of functions belonging to the Lebesgue and Lipschitz 

classes. Erdely (1954) and Oster (1970) gave definitions of 

differintegrals with respect to an arbitrary functions, and Post (1930) 

used difference quotient to define generalized differentiations for 

fractional operators. Riesz (1949), has developed a theory of fractional 

integration for functions of more than one variable, Erdely (1965), has 

applied the fractional calculus to integral equations and Higgins (1967), 

has used fractional integral operators to solve differential equations, 

[Igor Poldlubny, 2001]. 

However, fractional calculus may be considered as a novel topic, 

as well as, from eighty four years ago, it has been an object of 

specialized conferences and treatises. For the first conference the merit 

is ascribed to B. Ross who organized the first conference on fractional 

calculus, and its application at the University of New Haven in June 

(1974), [Igor Poldlubny, 2001]. 

For the first monograph the merit is ascribed to K.B Oldham and J. 

Spanier (1974), who after a joint collaboration started in 1968, published 

a book devoted to fractional calculus in 1974. The first texts and 
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proceedings devoted solely or partly to fractional calculus and its 

applications are, [Igor Poldlubny, 2001] 

In addition, spline functions have transformed approximation 

techniques and theory, because they are not only convenient and suitable 

for computer calculations, but also they provide optimal theoretical 

solutions to the estimation of functions from limited data, [Oldham, 

1974]. 

Moreover, splines may be considered as mathematical models 

that associate a continuous representation of a curve or surface with a 

discrete set of points in a given space. Spline fitting is an extremely 

popular form of a piecewise approximation using various forms of 

polynomials of degree n or more general functions, on an interval in 

which they are fitting functions at specified points, known as control 

points or nodes or knots. 

The polynomial used can change, but the derivatives of the 

polynomials are required to match up to degree n − 1 at each side of the 

knot, or to meet related interpolatory conditions. Boundary conditions, 

are also imposed on the end points of the intervals, [Ahlberg, 1967]. 

It is near 60 years ago since I. J. Schoenberg introduced the 

subject of "spline functions" as a method for approximating functions 

which are so complicated or hard to be used in applications. Since then, 

splines have proved to be enormously important in various branches of 

mathematics, such as approximation theory, numerical analysis, 

numerical treatment of ordinary, integral and partial differential 

equations and statistics, etc., [Schoenberg, 1946].  
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Several types of spline functions are given in literatures, 

including generalized splines [Ahlberg, 1967], basis of cardinal splines 

[deBoor, 1978], [Powell, 1981], Gatmull-Rom or Overhauster splines, 

non-uniform rational basis splines [Stephen, 2002], etc. The most 

important of these types of splines which is necessary to the work of this 

thesis is the so called G-spline. 

  In this work a new approach is followed to construct the Heremite-

Birkhoff problem and then to evaluate the G-spline interpolation 

functions by using the idea of fractional order derivatives instead of the 

integer order derivatives of Heremite-Birkhoff problem. 

 This thesis consists of three chapters. 

Chapter one entitled (Basic Concepts of Fractional Calculus) is 

oriented to study and give the most important and primitive concepts 

related to the theory of fractional calculus. This chapter consists of five 

sections. In section 1.1 presents some of the most important basic 

concepts related to fractional calculus, including the Gamma function, 

Beta function and Riemann-Liouville formula of fractional derivatives. 

Section 1.2 presents some methods of fractional differentiation and 

integration. In section 1.3 the fractional derivatives of some well 

selected examples are given for completeness purpose which may be 

used in the calculation of Heremite-Birkhoff problem. Section 1.4, some 

properties of fractional order operators is given. Finally, in section 1.5 

additional examples with their fractional derivatives are given using 

Riemann-Liouville Formula. 

Chapter two entitled (Approximation by Spline Functions) 

presents the fundamental aspects of spline interpolation functions. This 
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chapter consists of three sections; in section 2.1 a classical discussion of 

polynomial interpolation using Lagrange interpolation polynomial is 

given. In section 2.2, we discuss the theory of spline functions in general 

and some of its related concepts including the trancated power function 

(or Heaviside function) and some other concepts. In section 2.3, 

additional types of spline functions are discussed in short, such as 

generalized spline, B-spline and cubic spline functions.  

In chapter three entitled (G-Spline Interpolation Using Hermite-

Birkhoff Problem with Fractional Derivatives), which consist of three 

sections. In section 3.1, we present the Heremite-Birkhoff problem and 

some of its general properties including the m-poised problem. Section 

3.2 presents the method of constriction of G-spline functions using 

Heremite-Birkhoff problem of fractional order derivatives. Finally, as an 

illustrative to the proposed approach, we give some illustrative examples 

in section 3.3, in which one is solved in details. 

The results are sketched in figures for different cases of Heremite-

Birkhoff problem, where the results are calculated using the computer 

software Mathcad Professional 2001i. 

 



 LLIISSTT  OOFF  SSYYMMBBOOLLSS  
 

 

(x)Γ    The Gamma function of x 

(m,n)Β   The Beta function of m and n. 

xDα    The fractional derivative of order α  for x. 

C[a,b]   The set of all continuous functions on [a,b]. 

kiδ    Cronecer delta. 

l k(x)   The Lagrange basis function of x. 

S(x)   The spline function of x. 

mX+    Truncated power function of m. 

B-Spline  Basis spline. 

i,k,tB (x)   The i-th normalized B-spline of order k for knot sequence t. 

jP (t)    The j-th piecewise polynomial interpolation function. 

E   Incidence matrix. 

nC [a,b]   Set of all continuously n-differentiable of [a,b]. 

nΠ    Set of all polynomial of degree less than or equal to n. 

L*   The adjoint operator of L. 

HB   The Hermmite-Birkhoff problem.   
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Abstract 

 

The objective of this thesis is to study first the theory of fractional 

calculus and some of well known methods for evaluating derivatives of 

fractional orders for certain functions. 

The second objective is to study the G-spline interpolation 

functions and its construction using a new approach in formulating the 

Heremite-Birkhoff problem using fractional derivatives instead of 

integer order derivatives. 
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