
ABSTRACT 

 

The Fractional Order Bounded Delay Differential Equations 

(FOBDDE’s) has been studied in this work. The Existence and Uniqueness 

theorems of such type of differential equation have been proved, by using 

the successive approximation techniques. Also, the analytic solution of 

(FOBDDE’s) are presented, using Laplace Transformation, and the 

numerical solutions are discussed, using general one-step methods and linear 

multi-step methods. The comparison, among these methods and the exact 

solutions are presented. 
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CHAPTER ONE 

FUNDAMENTAL CONCEPTS TO DELAY AND 

FRACTIONAL ORDER DIFFERENTIAL EQUATIONS 

 

In this chapter we shall deals with the basic of two kinds of differential 

equations known as delay and fractional order differential equation which are 

useful and have commonly used in the subject of this work. 

 

1.1 DELAY DIFFERENTIAL EQUATION 

Definition (1), [Bellman, 1963]: 

Involve the delay differential equation “DDE” is defined as an unknown 

function y(t) and some of its derivatives, evaluated at arguments that differ by 

any of fixed number of values 1, 2 k,...,τ τ τ . The general form of the n-th order 

DDE is given by 

(n)
1 k 1 kF(t, y(t), y(t ),..., y(t ), y (t), y (t ),..., y (t ),..., y (t),′ ′ ′− τ − τ − τ − τ  

(n) (n)
1 ky (t ),..., y (t )) 0− τ − τ =  .......................................................... (1.1) 

where F is a given functional and τ i, ∀ i = 1, 2, …, k; are given fixed positive 

number called the “time delay” [Bellman, 1963]. 

 

 



Chapter One                                                  Fundamental Concepts to Delay and Fractional 
Order Differential Equations 

2 
 

In some literature equation (1.1) is called a difference-differential 

equation or functional differential equation, [Bellman, 1963], or an equation with 

time lag [Halanay, 1966], or a differential equation with deviating arguments, 

[Driver, 1977]. 

The emphasis will be, in general, on the linear equations with constant 

coefficients of the first order and with one delay (because as in “ODE” any 

differential equation with higher order than one may be transformed into a linear 

system of differential equations of the first order) 

For example: 

0 1 0 1a y (t) a y (t ) b y(t) b y(t ) f (t)′ ′+ − τ + + − τ =  .................................. (1.2) 

where f(t) is a given continuous function and τ is a positive constant and a0, a1, 

b0, b1 are constants (also if f(t) = 0, then equation (1.2) is said to be homogenous; 

otherwise it is non homogenous). 

The kind of initial conditions that should be used in DDE’s differ from 

ODE’s so that one should specify in DDE’s an initial function on some interval 

of length τ, say [t0 − τ, t0] and then try to find the solution of equation (1.2) for 

all t ≥ t0. Thus, we set y (t) = ϕ0(t), for 00 ttt ≤≤τ−  where ϕ0(t) is some given 

continuous function. Therefore the solution of DDE consist of finding a 

continuous extension of ϕ0(t) into a function y(t) which satisfies (1.2) for all  

t ≥ t0, [Halanay, 1966]. 

Delay differential equation given by equation (1.2) can be classified into 

three types which are retarded, neutral and mixed. The first type means an 

equation where the rate of change of state variable y is determined by the present 

and past states of the equation, for example equation (1.2) where the coefficient 

of  y′(t − τ) is zero, i.e., (a0 ≠ 0, a1 = 0). If the rate of change of state depends on 
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its own past values as well on its derivatives, the equation is then of neutral type, 

for example equation (1.2) where the coefficient of y(t − τ) is zero, i.e.,(a0 ≠ 0,  

a1 ≠ 0 and b1 = 0), while the third type is a combination of the previous two 

types, i.e., (a0 ≠ 0, a1 ≠ 0, b0 ≠ 0 and b1 ≠ 0), [Al-Saady, 2000]. 

It is important to remark that, the theory of neutral differential equation is 

more complicated than of retarded type, [El’sgolt’c, 1973], [Al-Saady, 2000]. 

 

1.1.1 Solution of the First Order Delay Differential Equations, [Driver, 1977]: 

Because of the initial condition which is given for a time step interval 

with length equals to τ, we must find this solution for t ≥ t0 divided into steps 

with length τ also. 

 

1.1.1.1 The Method of Successive Integrations, [Driver, 1977]: 

The best well known method for solving DDE’s is the method of steps or 

the method of successive integrations which is used to solve a DDE of the form: 

y (t) f (t, y(t), y(t ), y (t ))′ ′= − τ − τ , t ≥ t0 ............................................. (1.3) 

with initial condition y(t) = ϕ0(t), for t0 − τ≤  t ≤  t0. 

For such equations the solution is constructed step by step as follows: 

Given that a function ϕ0(t) continuous on [t0 − τ, t0], therefore one can 

obtain the solution in the next step interval [t0, t0 +τ ] by solving the following 

equation: 

y (t)′ = f (t, y(t),ϕ 0( τ−t ), ′ϕ 0(t − τ)), for t0 ≤  t ≤  t0+τ 

with the initial condition y(t0) = ϕ0(t0). If we consider that ϕ1(t) is the desired 

first step solution, which exists by virtue of continuity hypotheses. 
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Similarly, if ϕ1(t) is defined on the whole segment [t0, t0+τ] then, one can 

find the solution )t(2ϕ  to the equation: 

y′(t) = f(t, y(t), ϕ1(t − τ), ′ϕ 1(t − τ)), for t0+τ ≤ t ≤ t0 + 2τ 

with the initial condition y(t0 + τ) = ϕ1(t0 + τ) 

In general, by assuming that ϕk−1(t), ,...)2,1k( =∀  is defined on the 

interval [t0+ (k − 2)τ, t0+ (k − 1)τ], then, one can find the solution )t(kϕ  to the 

equation: 

y′(t) = f(t, y (t), ϕ k-1(t − τ), ′ϕ k-1(t − τ)), for t0+(k − 1)τ ≤ t≤ t0 +kτ 

with the initial condition y (t0 + (k − 1)τ) = ϕk−1(t0 + (k − 1)τ).  

Now, we shall consider some illustrative examples for all types of DDE: 

 

Example (1.1.1), [Al-Saady, 2000]: 

Consider the retarded first order DDE: 

y (t) y(t 1)′ = − , t ≥ 0 

with the initial condition 

y(t) = ϕ0(t) = t, for −1 t 0≤ ≤  

To find the solution in the first step interval [0, 1] we have to solve the 

following equation: 

y (t)′ = ϕ0(t − 1) 

= t − 1, for 0 t 1≤ ≤  

Integrating both sides from 0 to t where 0 t 1≤ ≤ , we have: 
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∫ ∫ −=′
t

0

t

0

ds)1s(ds)s(y  

And hence after carrying some calculations we get the first time step 

solution:  

y(t) = 
2t

2
t− , for 0 ≤ t ≤ 1 

In order to find the solution in the second step interval, suppose that: 

ϕ1(t) = y1 (t) = 
2t

2
t− , 0 ≤ t ≤ 1 

Since ϕ1(t) is defined on the whole segment [0, 1]. 

Hence by forming the new equation: 

y′ (t) = ϕ1(t − 1), for 0 ≤ t ≤ 1 ............................................................. (1.4) 

with the initial condition ϕ1(t) = 
2t

2
 − t, for 0 ≤ t ≤ 1 

One can find the solution in the next step interval [1, 2], and we shall 

solve equation (1.4) 

y′(t) = ϕ1(t − 1), for 1 ≤ t ≤ 2 

= 
2(t 1)

2

−
(t 1)− −  

= 
2t

2
t− +

2

1
t 1− +  

= 
2t

2
2t+

2

3
, for 1 ≤ t ≤ 2 

Integrating both sides from 1 to t, where t ∈ [1, 2], we get: 
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y(t) = 
6

7− +
3t

6
2t− +

2

3
t, for 1 t 2≤ ≤  

Similarly, let: 

y2 (t) = t
2

3
t

6

t

6

7 2
3

+−+−
 

and suppose ϕ2(t) is the desired second step solution, i.e., 

ϕ2 (t) = y2 (t) = t
2

3
t

6

t

6

7 2
3

+−+−
 

Since ϕ2(t) is defined on the whole segment [1, 2] hence by forming the 

new equation: 

y′(t) = ϕ2(t − 1), for 2 ≤ t ≤ 3  

with the initial condition  

ϕ2(t) = t
2

3
t

6

t

6

7 2
3

+−+−
 

Similarly, one can find y3(t), y4(t) and so on. 

 

Example (1.1.2), [Al-Saady, 2000]:  

Consider the neutral first order DDE: 

y (t)′  = y (t 1) t′ − + , t ≥ 0 

with initial condition  

ϕ0(t) = t + 1, for −1 ≤ t ≤ 0 

To find solution of the first interval [0, 1]. We solve the following: 
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0y (t) (t 1) t′ ′= ϕ − + , for −1 ≤ t ≤ 0 

= 1+ t, for −1 ≤ t ≤ 0 

Integrating both sides from 0 to t where 0t 1≤ ≤ , we have:  

t t

0 0

y (s)ds (1 s)ds′ = +∫ ∫   

and hence: 

2

1
t

y (t) t 1
2

= + + , for 0 t 1≤ ≤  

In order to find the solution in the second step interval suppose that: 

ϕ1(t) = y1(t) = t +
2t

2
 + 1 

is the initial condition. Since ϕ1(t) is defined on the whole segment [0, 1]. Hence 

by forming the new equation: 

1y (t) (t 1) t′ ′= ϕ − + , for 1 ≤ t ≤ 2 ...................................................... (1.5) 

where ϕ1 (t) = t+
2t

1 
2

+ , for 0 ≤ t ≤ 1 

One can find the solution in the next step interval [1, 2], and solving 

equation (1.5) for y (t), we have: 

1y (t)′ ′= ϕ (t − 1) + t 

= 2t, for 1 ≤ t ≤ 2 

Integrating both sides from 1 to t where 1 ≤ t ≤ 2, we get: 

y(t) = 2 3
t

2
+ , for 1 ≤ t ≤ 2 
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Therefore, y(t) is the desired second step solution which is denoted by 

y(t) = ϕ2(t) = 2 3
t

2
+ , for 1 ≤ t ≤ 2 

Similarly, we proceed to the next intervals. 

 

Example (1.1.3), [Al-Saady, 2000]: 

Consider the mixed DDE: 

y (t) y(t 1) 2y (t 1)′ ′= − + − , t ≥ 1 

with initial condition 

ϕ0(t) = 1, for 0 ≤ t ≤ 1 

To find the solution in the first step interval [1, 2], we will to solve the 

following equation: 

0 0y (t) (t 1) 2 (t 1)′ ′= ϕ − + ϕ − , for 1 ≤ t ≤ 2 

y (t) 1′ =  

By integrating from 1 to t, where 1 ≤ t ≤ 2, we have: 

y (t) = t, for 1 ≤ t ≤ 2 

and suppose that ϕ 1(t) is the desired first step solution  

y1(t) = ϕ 1(t) = t, for 1 ≤ t ≤ 2 

Since ϕ 1(t) is defined on the whole segment [1, 2], hence by forming the new 

equation: 

1 1y (t) (t 1) 2 (t 1)′ ′= ϕ − + ϕ − , for 2 ≤ t ≤ 3 

with initial condition 
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y1(t) = ϕ 1(t) = t, for 1 ≤ t ≤ 2 

and so on, we proceed to the next intervals. 

 

The next example considers the solution of DDE with variable delay 

which can be solved by successive integration method. 

 

Example (1.1.4): 

Consider the retarded first order DDE 

ty (t) y(t e )′ = − − , for 0 ≤ t ≤ 1 

with initial condition: 

y(t) = ϕ 0(t)=1, for −1 ≤ t ≤ 0 

To find the solution in the first step interval [0, 1] we have to solve the following 

equation:  

t
0y (t) (t e )′ = −ϕ −  

= −1, for 0 ≤ t ≤ 1 

Integrating both sides from 0 to t where 0 ≤ t ≤ 1, we have: 

t t

0 0

y (s)ds ds′ = −∫ ∫  

Hence  

y(t) = t1− , for 0 ≤ t ≤ 1 

In order to find the solution in the second step interval suppose that: 

ϕ 1(t) = y1(t) = 1 − t 
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Therefore: 

y1(t) = 1 − t, for 0 ≤ t ≤ 1 

Since ϕ 1(t) is defined on the whole segment [0, 1]. 

Hence by forming the new equation: 

t
1y (t) (t e )′ = −ϕ −  

= t1 (t e )− + −  

Integrating both sides from 1 to t, where t ∈ [1, 2], yields: 

2
tt

y(t) 3.2 t e
2

= − + − , for 1 ≤ t ≤ 2 

Similarly, let: 

2
t

2
t

y (t) 3.2 t e
2

= − + − , for 1 ≤ t ≤ 2 

and suppose ϕ 2(t) is the desired second step solution, i.e., 

2 2

2
t

(t) y (t)

t
3.2 t e , for 1 t 2

2

ϕ =

= − + − ≤ ≤
 

Since ϕ 2(t) is defined on the whole segment [1, 2], hence by forming the new 

equation: 

t
2y (t) (t e )′ = −ϕ − , for 2 ≤ t ≤ 3 

with initial condition 

2
t

2
t

(t) 3.2 t e
2

ϕ = − + − , for 1 ≤ t ≤ 2 

similarly, one can find y3(t), y4(t) and so on. 
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1.1.1.2 Laplace Transformation Method, [Ross, 1984]: 

Laplace transformation method is also, one of the most widely use 

methods for solving DDE’s. It is important here to review the Laplace 

transformation of a given function. 

Suppose that f is a real-valued function of the real variable x defined for 

x > 0. Let s be a parameter that we shall assume to be real, and consider the 

function F defined by  

L{f} = sx

0

e f (x)dx
∞

−
∫  ........................................................................... (1.7) 

For all values of s for which this integral exists. The function L{f} 

defined by the integral (1.7) is called the Laplace transformation of the function f 

and we shall denote the Laplace transform L{f} of f by F(s). 

Also, as it is known, Laplace transformation method may be used to 

solve linear ODE’s and we can use it also to solve DDE by two approaches. The 

first approach is by mixing between method of steps and Laplace transform 

method and the other approach is by applying directly the Laplace transform 

method to the original DDE. 

 

1.1.1.2.1 The First Approach, [Brauer, 1973]: 

This approach depends mainly on applying first the method of steps to 

transform the DDE into ODE and then applying Laplace transformation method 

to solve the resulting equation. This approach can be explained in the following 

examples: 
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Example (1.1.5), [Marie, 2001]: 

Consider the following neutral DDE: 

y (t) y (t 1) t′ ′= − + , for 0 ≤ t ≤ 1 

with initial condition: 

y(t) = ϕ 0(t) = t+1, for 1 t 0− ≤ ≤  

To find the solution in the first step interval [0, 1], we apply the method of steps, 

to get: 

0y (t) (t 1) t′ ′= ϕ − +  

= 1 + t, for 0 ≤ t ≤ 1 

which is an ODE of the first order 

Now, taking the Laplace transformation approach: 

L{ y (t)′ }  = L {1} + L{t} 

sY(s) − y (0) = 
2

1 1

s s
+  

and so the Laplace transform of the solution y(t) into Y(s) is given by: 

2 3
1 1 1

Y(s)
ss s

= + +  

Taking inverse Laplace transform, we have: 

y(t) = L −1

2
1!

s

 
 
 

 +
!2

1
 L

 −1

3
2!

s

 
 
 

 + L −1 1

s
 
  

 

y(t) = t + 
2t

1
2

+ , for 0 t≤ 1≤  
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Hence, the solution in the first step interval is given by: 

y (t) = ϕ1(t) = 
2t

t 1
2

+ + , for 0 ≤ t ≤ 1 

In order to find the solution in the second step interval [1, 2], we proceed 

similarly as in the first step with initial condition 

2

1
t

(t) t 1,
2

ϕ = + +  for 0 ≤ t ≤ 1 

and hence: 

t)1t()t(y 1 +−ϕ′=′ , for 0 ≤ t ≤ 1 

with the equivalent ODE y (t) 2t,′ =  for 1 ≤ t ≤ ٢ with initial condition, y(1) = 
2

5
 

By making changing independent variable w = t − 1 then w ∈ [0, 1], so that 

5
y (w 1) 2(w 1), y(1 1)

2
′ + = + − =  

and by considering: 

z(w) = y(w + 1) 

Implies that: 

z (w) 2(w 1) 0′ − + = , with z (0) = 
5

2
, w ∈ [0, 1] 

Taking the Laplace transform of both sides, we have: 

sZ(s) − z (0) = 
2
2 2

ss
+  

where Z(s) is the Laplace transform of z(w) hence: 
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Z(s) = 
3 2
2 2 5

2ss s
+ +  

Taking inverse Laplace, we have: 

2 5
z(w) w 2w

2
= + +  

Hence the solution in the second step interval [1, 2] is given by: 

z(w) = y(t) = (t − 1)2 + 2(t − 1)+
2

5
 

Similarly, we proceed to the next intervals. 

Similarly, as in subsection (1.1.2.1) we can use Laplace transformation 

method to solve DDE with variable delay: 

 

Example (1.1.6): 

Consider the following DDE: 

ty (t) y (t e )′ ′= − +t, for 0 ≤ t ≤ 1 

with initial condition 

y (t) =ϕ 0(t) = t+1, for 1 t 0− ≤ ≤  

To find the solution in the first step interval [0, 1], we apply the method of steps, 

to get: 

t
0y (t) (t e ) t′ ′= ϕ − +  

= 1 + t − et, for 0 ≤ t ≤ 1 

and this is an ODE of the first order. 

Now, taking the Laplace transform produces: 
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L{ y (t)′ } = L{1} + L{t} − L{et} 

sY(s) – y (0) = 
2

1 1 1

s s 1s
+ −

−
 

and so the Laplace transform of the solution y(t) into Y(s) is given by: 

Y(s) = 
2 3

1 1 1 1

s s(s 1)s s
+ + −

−
 

Taking inverse Laplace transform, we have: 

y(t) = L −1 1

s
 
 
 

 + L −1

2
1!

s

 
 
 

 +  
!2

1
 L

 −1

3
2!

s

 
 
 

 − L −1 1
s(s 1)

 
 − 

 

y(t) = 2+ t +
2

tt
e

2
− , for 0 ≤ t ≤ 1 

 

1.1.1.2.2 Second Approach, [Brauer, 1973]:  

This approach is to solve DDE’s by using Laplace transform method 

directly without using the method of steps. Laplace transformation method is 

extremely useful in obtaining the solution of the linear DDE’s with constant 

coefficients. Let us illustrative this method by considering the following 

example: 

 

Example (1.1.7): 

Consider the following DDE: 

u (t) u(t 1)′ = −  

with initial condition: 

u(t) = ϕ 0(t) = t, for −1 ≤ t ≤ 0 
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such that u (0) = 0, u (0)′  = 1 

Applying the Laplace transform method to both sides of the equation, we 

get: 

sU(s) = st

0

u(t 1)e dt
∞

−−∫  

Using the transform z = t − 1, yields: 

st s(z 1)

0 1

u(t 1)e dt u(z)e dz
∞ ∞

− − +

−

− =∫ ∫  

= ∫∫
∞

−−

−

−− +
0

szs
0

1

szs dze)z(uedze)z(ue  

= ∫ ∫
−

∞
−−−− +

0

1 0

szsszs dz)z(uedze)z(e  

Since u(z) = z , for −1 ≤ z ≤ 0.  

Finally: 

U(s) = 
s

2 2 s
1 e 1 1

s s s s e

−

−

 −  − +   −   
 ...................................................... (1.8) 

From equation (1.8), it follows that: 

U(s) = 
s

2 2
1 e 1

s s s

− − − + 
  

s
1

s e−
 
 − 

 

and upon taking the inverse Laplace one can find the solution u(t), where it is so 

difficult to obtain, which in force us to prefer using the numerical method. 
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Now, after we started the basic needed about delay differential equations 

we shall start the next section, with another important type of differential 

equation, which is so called fractional order differential equations abbreviated by 

FODE’s. 

 

١٫٢ FRACTIONAL CALCULUS 

1.2.1 Basic Concepts: 

Understanding of definitions and use of fractional calculus will be made 

more clear by quickly discussing some necessary but relatively simple 

mathematical definitions that will arise in the study of these concepts. 

 

1.2.1.1 The Gamma Function: 
The gamma function is intrinsically tied to fractional calculus by 

definition. The simplest interpretation of the gamma function is simply the 

generalization of the factorial for all real numbers. 

Also, gamma function )z(Γ  plays an important role in the theory of 

differintegration the term “differintegration” means derivative or integral to 

arbitrary order. The definition of the gamma function is given by  

u z 1

0

(z) e u du
∞

− −Γ = ∫ , for all z > 0 ........................................................ (1.9) 

and integrating by parts, yields: 

(z 1) z (z)Γ + = Γ , when z ∈ �  

If z = n, where n is a positive integer, then: 

(i) Γ(n + 1) = n!. 

(ii) 
n

1 (2z 1)! 1
z

2 22

−   Γ + = Γ   
   

, where 
1

2
 Γ 
 

 = π . 
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1.2.1.2 Definitions: 

Riemann's modified the Cauchy's formula for an n-fold integral of a 

function f, to get its own definition of fractional integral operator: 

1 n 1x xx x

n n n 1 1 1 n
a a a a

1 f (t)
f (x )dx dx dx dt

(n 1)! (x t)

−

− −=
− −∫ ∫ ∫ ∫L L  ............ (1.10) 

By n-fold here means that the integration is deployed n-times. Since (n − 1)! = 

Γ(n), Riemann realized that the right hand side of (1.10) might have meaning 

even when n takes non-integer values, [Samko, 1993]. 

Thus perhaps it was natural to define fractional integration as follows: 

 

Definition (1), [Gorenflo, 1997]: 

Let f(t) ∈ L1[a, b], q +∈� . The fractional (arbitrary) order integral of the 

function f(t) of order q  is defined as: 

t
q q 1
a

a

1
I f ( t ) ( t s ) f (s )ds

(q )
−= −

Γ ∫  ........................................ (1.11) 

when a = 0 we can write, qq
q0I f (t) I f (t) f (t) (t)= = ∗ ϕ , where: 









≤

>
Γ=ϕ

−

0tfor,0

0tfor,
)q(

t
)t(

1q

q           

and “*” denoted the convolution operator. 
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Definition (3), [Gorenflo, 1997]: 

The fractional derivative Dq of order q ∈ (0, 1] of the absolutely 

continuous function f(t) is defined as: 

q 1 q
a a

d
D f ( t ) I f ( t ), t [a , b]

dt
−= ∈  ................................................... (1.12) 

 

1.2.1.3 Riemann-Liouville Fractional Integrals and Fractional Derivatives, 

[Kilbas, 2006]: 

We give the definitions of the Riemann-Liouville fractional integrals and 

fractional derivatives on a finite interval of the real line and present some of their 

properties in spaces of continuous functions. 

Let Ω = [a, b] be a finite interval. The Riemann-Liouville fractional 

integrals fIqa  and q
bI  of order q (Re(q) 0)∈ >� , are defined by: 

∫ >>
−Γ

= −

x

a
q1

q
a )0)qRe(,ax(,

)tx(

dt)t(f

)q(

1
)x)(fI(  ....................... (1.13) 

and 

∫ ><
−Γ

= −

b

x
q1

q
b )0)qRe(,bx(,

)xt(

dt)t(f
)q(

1
)x)(fI(  ...................... (1.14) 

These integrals are called the left-sided and the right-sided fractional 

integrals. 

The Riemann-Liouville fractional derivatives yDq
a  and yDq

b  of order  

q (Re(q) 0)∈ >�  are defined by: 
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n
q n q

a x an

d
( D y)(x) (I y)(x)

dx
−=  

xn

n q n 1
a

1 d y(t)dt
, (n [Re(q)] 1, x a, n 1 q n)

(n q) dx (x t) − += = + > − < ≤
Γ − −∫

 

 ..................................... (1.15) 

and 

n
q n n q

x ab n

d
( D y)(x) ( 1) (I y)(x)

dx
−= −  

bn
n

n q n 1
x

1 d y(t)dt
( 1) , (n [Re(q)] 1, x b)

(n q) dx (x t) − += − = + <
Γ − −∫  

 ..................................... (1.16) 

where [Re(q)] means the integer part of Re (q). 

In particular, when q = n ∈�  , then: 

0 0
a b(D y)(x) (D y)(x) y(x),= =  )x(y)x)(yD( )n(n

a = , 

and; 

)x(y)1()x)(yD( )n(nn
b −= ,   (n∈� ) ................................................. (1.17) 

where )x(y )n(  is the usual derivative of y(x) of order n. 

 

1.2.1.4 Properties, [Kilbas, 2006]: 

In this subsection, we are presenting an important property of fractional 

derivatives: 
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Let Re (q) 0≥ , m ∈ � . If the fractional derivatives  )x)(yD( q
a  and 

q m
a(D y)(x)+  exist, then: 

x)yD()x)(yDD( mq
a

q
a

m +=  ............................................................... (1.18) 

If the fractional derivatives )x)(yD( q
b   and )x)(yD( mq

b
+  exist, then: 

x)yD()1()x)(yDD( mq
b

mq
b

m +−=  ..................................................... (1.19) 

Now, some additional important properties of the fractional order 

differential operator  q
tD  are presented for completeness purpose, [Oldham, 

1974]: 

1. The operator q
tD  of order q = 0 is the identity operator. 

2. The operator  q
tD  is linear, i.e., 

q q q
1 2 1 2t t tD (c f (t) c g(t)) c D f (t) c D g(t)+ = +  

where c1 and c2 are constants. 

3. ∑∑
==

=
n

1i
i

q
t

n

1i
i

q
t )t(fD)t(fD . 

4. (i)   q
tD (1) = q1

t
(1 q)

−

Γ −
. 

(ii)  q
tD (c) = qc

t
(1 q)

−

Γ −
. 

(iii) q
tD ( pt ) = p q(p 1)

t
(p q 1)

−Γ +
Γ − +

. 
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1.2.2 Analytic Methods for Solving Fractional Order Differential Equations, 

[Oldham, 1974]: 

In this present subsection, some analytical methods are proposed for 

solving fractional order differential equations, and among such methods: 

 

1.2.2.1 Inverse operator method: 

Let f be an unknown function and let q be an arbitrary real number, F is 

known function, then we can construct the simplest of all fractional order 

differential equations by: 

F
dx

fd
q

q
=  .......................................................................................... (1.20) 

hence upon taking the inverse operator 
q

q

dx

d
−

−
, gives: 

f = 
q

q

d F

dx

−

−  

where it is clear that it is not always the case that they are equal, but this is not 

the most general solution, [Oldham, 1974]: 

0f
dx

d

dx

d
f

q

q

q

q
=− −

−
 .......................................................................... (1.21) 

additional terms must be added to equation (1.21), which are 

c1x
q−1,c2x

q−2,…,cmxq−m and hence: 

mq
m

2q
2

1q
1q

q

q

q
xc...xcxcf

dx

d

dx

d
f −−−

−

−
+++=−  
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where c1,c2,…,cm are an arbitrary constants to be determined from the initial 

conditions and q ≤ m < q + 1. 

Thus: 

F
dx

d
f

dx

d

dx

d
xc...xcxcf

q

q

q

q

q

q
mq

m
2q

2
1q

1 −

−

−

−
−−− ==−−−−  

Hence, the most general solution of eq. (1.20) is given by: 

mq
m

2q
2

1q
1q

q
xc...xcxcF

dx

d
f −−−

−

−
++++=  

where 0 < q ≤ m < q + 1. 

As an illustration, we consider the following example: 

 

Example (1.2.1), [Oldham, 1974]: 

Consider the fractional order differential equation: 

3
2

5
3
2

d f (x)
x

dx

=  ................................................................................... (1.22) 

with the initial condition: 

0

2

1

2

1

k

dx

)0(fd =  

Applying 

2

3

2

3

dx

d

−

−

 to both sides of equation (1.22), we get: 
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3
152
2

13
2

d x
f (x) c x

dx

−

−
= +  

and from the initial condition, we have 








Γ
=

2

3
k

c 0
1 , therefore: 

113
22

0k x(6)x
f (x)

15 3
( ) ( )

2 2

Γ= +
Γ Γ

 

 

1.2.2.٢. Laplace transform method, [Oldham, 1974]: 

 In this subsection, we seek a Laplace transform of qq dxfd  for all q and 

differintegrable f, i.e., we wish to relate: 

q q

q q
0

d f d f
exp( sx) dx

dx dx

∞   = − 
  

∫L  

to the Laplace transform L{f} of the differintegrable function. Let us first recall 

the well-known transforms on integer-order derivatives: 

{ }
q 1q k

q q 1 k
q k

k 0

d f d f (0)
s f s ,q 1,2,...

dx dx

−
− −

=

   = − = 
  

∑L L  

and multiple integrals: 

{ }
q

q
q

d f
s f ,q 0, 1,...

dx

   = = − 
  

L L     ................................................... (1.23) 

and note that both formulas are embraced by: 
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q 1q q 1 k
q k

q q 1 k
k 0

d f d f (0)
s {f} s ,q 0, 1,...,

dx dx

− − −

− −
=

   = − = 
  

∑ mL L     .................... (1.24) 

Also, formula (1.24), can be generalized to include non integer q ∈ � , as: 

{ }
n 1q q 1 k

q k
q q 1 k

k 0

d f d f (0)
s f s , for all q

dx dx

− − −

− −
=

   = − 
  

∑L L  .......................... (1.25) 

where n is integer such than n − 1 < q ≤ n. The sum vanishes when q ≤ 0. In 

proving (1.25), we first consider q < 0, so that the Riemann-Liouville definition: 

xq

q q 1
0

d f 1 f (y)
dy,q 0

( q)dx [x y] += <
Γ − −∫  

may be adopted and upon direct application of the convolution theorem 

[Churchill, 1948]: 

{ } { }
x

1 2 1 2

0

f (x y)f (y)dy f f
  − = 
  
∫L L L  

Then gives: 

{ } { } { }
q

1 q q
q

d f 1
x f s f ,q 0

( q)dx
− −   = = <  Γ −  

L L L L  ....................... (1.26) 

For positive non integer q, we use the result, [Oldham, 1974]: 

q n q n

q n q n

d f d d f

dx dx dx

−

−

   
=   

      
 .................................................................... (1.27) 

q n q n

q n q n

d f d d f

dx dx dx

−

−=  
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where n is an integer number such that n − 1 < q ≤ n. Now, on application of the 

formula (1.24), we find that: 

q n q n

q n q n

n 1q n n 1 k q n
n k

q n n 1 k q n
k 0

d f d d f

dx dx dx

d f d d f
s s (0)

dx dx dx

−

−

−− − − −

− − − −
=

       =     
        

    = −   
     

∑

L L

L

 

The difference q − n being negative, the first right-hard term may be 

evaluated by use of equation (1.26), since q − n < 0, the composition rule may be 

applied to the terms within the summation. The result: 

{ }
n 1q q 1 k

q k
q q 1 k

k 0

d f d f (0)
s f s ,0 q 1,2,...

dx dx

− − −

− −
=

   = − < ≠ 
  

∑L L  

follows from these two operations and is seen to be incorporated in (1.25). The 

transformation (1.25) is a very simple generalization of the classical formula for 

the Laplace transform of the derivative or integral of f. No similar generalization 

exists, however, for the classical formulas, [Oldham, 1974]: 

1 1

1 1

f d {f} d {f}
(s) ( )

x ds ds

− −

− −
−  = − ∞ 
 

L L
L  

{ } d {f}
xf

ds
− = L

L  

{ }
n

n
n

d {f}
[ x] f , n 1,2,...

ds
− = =L

L  .................................................... (1.28) 

As a final result of this section we shall establish the useful formula: 

q
kx q

q

d
exp( kx) [fe ] [s k] {f},q 0

dx

  − = + ≤ 
  

L L  ................................ (1.29) 
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in which equation (1.26), may be regarded as a special case, when k = 0 in 

equation (1.29). 

As an illustration, we consider the following example: 

 

Example (1.2.2): 

Consider the semi differential equation: 

1 1 3
2 2 2

1 1
2 2

d f (x) d f (x) 2 x 4x
2f (x) 6 2x 4

x 3
dx dx

−

−+ + = + + + +
ππ π

 ............... (1.30) 

and in order to solve this equation using Laplace transformation method, first we 

take the Laplace transformation to the both sides of equation (1.30): 

{ } { }
1 1
2 2

1 1
2 2

d f (x) d f (x) 2 1 6
2 f (x) x

x
dx dx

−

−

   
     + + = +     

π π    
   

L L L L L  

                                                  { } { }
3
24

x 2 x 4
3

  + + + 
π   

L L L  

use equation (126), leads to: 

2

2

2s 3s 1 2 s 4s s
(f )

s (s 1 2 s)

+ + + +=
+ +

L  

2

(2s 1) (s 1 2 s)

s (s 1 2 s)

+ + + +=
+ +

 

2

2 1

s s
= +  

Then upon using the inverse Laplace transform, we have:  

f(x) = 2 + x 

as the solution of the fractional order differential equation. 
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CHAPTER THREE 

ANALYTIC AND NUMERICAL SOLUTIONS FOR 

SOLVING THE FRACTIONAL ORDER-BOUNDED DELAY 

DIFFERENTIAL EQUATION 

 

In this chapter, some analytic and numerical methods are presented in 

order to solve the fractional order-bounded delay differential equations, such as 

the Laplace transform method and linear multistep methods, numerical and 

approximate methods are used here, because some times such types of equations 

has a few difficulties in their methods of solutions, which could not be handled 

easily. 

The numerical solution of a differential equation can consist of a set of 

tabulated values of the dependent variable y to the required number of significant 

figures or, more particularly in some real time applications, the solution can be 

produced directly on a video screen in the from of a graph. 

However, it is important to recluse that the numerical solution of a 

differential equation is essentially a set of numbers which are approximations to 

the true solution at the corresponding values x0, x1, x2,… of the independent 

variable x; in general these points are equidistant, so that xn = x٠ + nh. The 

distance between any two successive points is: 
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n 1 n 0 0x x x (n 1)h x nh+ − = + + − −   

= h 

and the value of h is referred to as the step width. 

This chapter consists of four sections. In section 3.1 we introduce the 

analytic solution of fractional order -bounded delay differential equations using 

Laplace transform method, while in section 3.2 we study basic concepts of the 

numerical methods (general one step method, linear mutistep methods). 

In section 3.3 the solution of fractional order-bounded delay differential 

equations have been introduced using numerical methods which are presented  in 

section 3.2, finally in section 3.4 an illustrative example is given in order to 

compare between the exact and approximate solution. 

 

3.1 ANALYTIC METHOD FOR SOLVING FRACTIONAL 

ORDER-BOUNDED DELAY DIFFERENTIAL EQUATION 

Several analytical methods are proposed for solving fractional order-

bounded delay differential equations, and among such methods which we are 

used here in this work the Laplace transform method. 

 

3.1.1 Laplace Transformation Method: 

To explain the implementation of Laplace transformation method for 

solving fractional order-bounded delay differential equation we consider the 

following examples: 
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Example (3.1.1): 

Consider the FOBDDE: 

(1/ 2) 3/ 2 2 28
y (t) ty(t 1) y(t) t t(t 1) t

3
+ − + = + − +

π
 

with initial condition: 

y(t) = t2 

In order to solve the above FOBDDE using Laplace transformation 

method, first we take the Laplace transformation to both sides: 

{ } { }(1/ 2) 3/ 2 28
y (t) y(t) {t } t }

3
+ = +

π
L L L L {  

{ } 5/ 2 3
2 2

Y(s) 1 s
s s

+ = +  

3
2(1 s)

Y(s)
s (1 s)

+=
+

 

taking inverse Laplace transform. The solution is: 

y(t) = t2   

 

Example (3.1.2): 

Consider the FOBDDE: 

(1/ 2)y (t) y(t 1) y(t) sin t sin(t 1) sin(t)
4

π + − + = + + − + 
 

 

with initial condition: 

)tsin()t(y =  

(1/ 2)y (t) sin(t 1) y(t) sin t cos sin cos t sin(t 1) sin(t)
4 4

π π+ − + = − + − +  
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in order to solve the above FOBDDE using Laplace transformation method, first 

we take the Laplace transformation to both sides: 

{ }(1/ 2)y (t) +L L { } { }y(t) sin tcos sin cos t sin(t)
4 4

π π   = − +   
   

L L L  

{ } 2 2 2
1 1 1 s 1

Y(s) 1 s
2 2s 1 s 1 s 1

+ = − +
+ + +

 

2
1 s 2

Y(s)
2(s 1)(1 s)

− +=
+ +

 

taking inverse Laplace transform, we have: 

1
2

1 s 2
y(t)

2(s 1)(1 s)
−  − +=  

+ + 
L  

 

Example (3.1.3): 

Consider the FOBDDE: 

(1/ 2) t (t 1) t

1
1 t 2y (t) y(t 1) y(t) e t e e

1t
2

−

  −  
 + − + = + − + + 

π  π  
    

 

with initial condition: 

te)t(y =  

(1/ 2) (t 1) t (t 1) t

1
1 t 2y (t) e y(t) e t e e

1t
2

− −

  −  
 + + = + − + + + 

π  π  
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in order to solve the above FOBDDE using Laplace transformation method, first 

we take the Laplace transformation to both sides: 

{ } { } { }1/ 2 t 3/ 2 t1 1
(t) {y(t)} t e t {e }−+ = + +

ππ
L L L L L(1/2)y  

{ } 5/ 2
1 4 1 1

Y(s) 1 s
s 1s 3 (s 1)

+ = + +
−π −

 

3/ 2

5 / 2

3 4 s 3 s(s 1)
Y(s)

3 s(1 s)(s 1)

π + + π −=
π + −

 

taking inverse Laplace transform, we have:  

y(t) = L−1
3/ 2

5/ 2
3 4 s 3 s(s 1)

3 s(1 s)(s 1)

 π + + π −
 

π + −  
 

Because of the difficulties, in obtaining the Laplace inverse in some problems as 

in the preceding example, we are using the numerical methods, which are 

discussed in details in the next section. 

 

3.2 BASIC CONCEPTS  

In order to present, the numerical solution for solving fractional order 

bounded delay differential equation, we need to give some basic concepts of 

general one-step methods, and general linear multi -step methods, and with their 

derivation. 

 

3.2.1 General One-Step Methods: 

In this subsection we will describe a general one –step methods and 

hopping that we can use these formulas in order to solve the fractional order 

bounded delay differential equations in the next subsections. 
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In one-step method, only the current value yn of the solution is used in 

calculating the next value yn+1. Examples of one-step methods are Euler’s 

method and the Runge-Kutta methods, both of which are described in section 

3.2.1.  

 

3.2.1.1 Euler’s Method, [Lambert, 1973]: 

The simplest 1-step method available for the integration of the first order 

differential equation 
dy

dx
 = f(x, y), uses the relation: 

)y,x(hfyy nnn1n +=+  .................................................................... (3.1) 

in this formulation xn = x0 +nh (n = 1, 2, …), where x0 is an initial given value of 

x and h is the step width, while {yn} constitutes the set of numbers which 

approximates the set {y(xn)}, which represents the value of the exact solution to 

the initial value problem defined by: 

0 0
dy

f (x, y), y(x ) y
dx

= =  

the relation (3.1) can be seen to be derived from the Taylor expansion for the 

exact solution for the corresponding values of x: 

2 3

n 1 n n n n
h h

y(x ) y(x ) hy (x ) y (x ) y (x ) ...
2! 3!+ ′ ′′ ′′′= + + + +  

where: 

n
n

n n nx x
y y

dy
y (x ) f (x , y )

dx =
=

′ = =  

from the differential equation. 

If all terms involving h2 and higher powers are ignored, then: 

n 1 n n ny(x ) y(x ) hf (x , y )+ = +  
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3.2.1.2 Runge-Kutta Methods, [Lambert, 1973]: 

Euler’s method has a simple geometrical interpretation, since the more 

from yn to yn+1 occurs in the direction of the gradient calculated at (xn, yn). the 

general class of  Runge-Kutta methods attempt to improve upon this by using a 

weighted mean of the gradients at a set of points (xi, yi) in the neighborhood of 

the points (xn, yn). 

A particular feature of these methods in that the yi’s them selves involve 

the evaluation of the function f and thus considerably more calculation is 

involved per step than in Euler’s method. But these methods are used extensively 

in numerical applications mainly because they need no special starting 

arrangements, the step width h can be changed easily and storage requirements 

are minimal. 

In order to get a formula of the modified Euler. The derivation of the 

second- order scheme of the Runge-Kutta method will now be derived. 

The idea is to express yn+1 as a linear combination of the form 

n 1 n 1 2y(x ) y(x ) aK bK e+ = + + +  ...................................................... (3.2) 

where: 

1 n nK hf (x , y(x ))=  

2 n n 1K hf (x h,y(x ) K )= + θ + ϕ  

and a, b, θ  and ϕ  are parameters whose values are to be calculated in order that 

the error e in (3.2) be of order h3 . 

The calculation is done by expanding both sides in Taylor series and 

making use of the differential equation: 
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2

n 1 n n n
h

y(x ) y(x ) hy (x ) y (x ) ...
2!+ ′ ′′= + + +  

n

2

n n n
x

h f f
y(x ) hf (x , y(x )) f ...

2! x y

 ∂ ∂= + + + + ∂ ∂ 
 

1 n n nK hf (x , y(x )) hf= =  

2 n n 1K hf (x h,y(x ) K )= + θ + ϕ   

= 2 3
n n 1

f f
hf (x , y(x )) h h K o(h )

x y

∂ ∂+ θ + ϕ +
∂ ∂

 

if the coefficients of powers of h are now equated in (3.2) 

ϕ=θ=

+=

b
2

1
;b

2

1
:h

ba1:h

2  

Three of the parameters can be expressed in terms of the fourth, thus 

giving the resulting formula: 

n 1 n n n n n
1 h

y y 1 hf f (x h,y hf )
2 2+

 = + − + + θ + θ θ θ 
 

where yn = y(xn) and fn = f(xn, y(xn)), a particular value of θ  lead to well known 

case: 

:
2

1=θ  )hf
2

1
y,h

2

1
x(hfyy nn1n n

+++=+  

which is the modified Euler method. 
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3.2.2 General Linear Multi Step Methods, [Atkinson, 1985]: 

In this subsection, we establish some basic notations that will be used in 

order to solve the fractional order bounded delay differential equation. Let y(t) 

be the exact solution of the initial value problems: 

( )
0

y (t) f t , y(t) , a t b

y(a) y

′ = ≤ ≤ 


= 
 ............................................................. (3.3) 

An approximate solution y at only a discrete set of nodes, say: 

a ≤ t1 < t2 < … < tn ≤ b ...................................................................... (3.4) 

In this work, we will be taken these nodes to be evently spaced: 

tn = a + nh, n = 0, 1, 2, …, N. 

The following notations are all used for the approximate solution at the 

node points yn to obtain a solution y at points in [a, b]. Other than those in (3.4), 

some form of interpolation must be used. In the present stage, such problems 

will be not considered. 

The linear multistep method will be used to compute yn, as an 

approximation to y(tn) as a linear combination of yn+j and fn+j, ∀ j = 0, 1, …, k. 

This method is called Linear Multistep Methods (LMM) of step number 

k, or a linear k-step method. 

The general form of LMM may thus be written as: 

k k

j n j j n j
j 0 j 0

y h f+ +
= =

α = β∑ ∑  ................................................................... (3.5) 

for some fixed numbers α0, α1, …, αk, β0, β1, …, βk. 
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It may happen, of course, that α0 or β0 is zero, but we assume that this is 

not the case for both of them. Also since equation (3.5) can be multiplied on both 

sides by the same constant without altering the relationship, we can assume that 

αk = 1. 

As a classification to the LMM, when βk = 0, the method is called 

explicit or open when βk ≠ 0, the method is called implicit or closed, since yn+k 

occurs on both sides of equation (3.5) and is determined only implicitly. 

Depending on f(t, y) to be either linear or non linear function, [Lambert, 1973]. 

 

Definition (3.1): 

The Local Transaction Error (LTE) (denoted by T), defined as: 

T = 
k k

j n j n n
j 0 j 0

y(t jh) h f (t jh, y(t jh))
= =

α + − β + +∑ ∑ ……………… (3.6)   

In order to evaluate the constants C0, C1, …, Cp expand y(tn + jh), y′(tn + jh) 

using Taylor series expansion about tn, one get  

y(tn + jh) = y(tn) + jhy′(tn) + 
!2

hj 22
y″(tn) + 

!3

hj 33
y ′′′ (tn) + … 

y′(tn+jh) = y′(tn) + jhy″(tn) + 
!2

hj 22
y″(tn) + … 

Hence substituting in the LTE: 

T = 
k

j n j n n
j 0

( y(t jh) h f (t jh, y(t jh))
=

α + − β + +∑  
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= 
2 2k

j
j n j n n

j 0

h j
( y(t ) hjy (t ) y (t ) ...

2=

α
′ ′′α + α + −∑  

2
2 3

j n j n j n
j

h y (t ) j h y (t ) h y (t ) ...
2

′ ′′ ′′′β − β − β −  

= 
2k

j 2
j n j j n j n

j 0

j
y(t ) ( j ) h y (t ) j h y (t ) ...

2=

  α
′ ′′ α + α − β + − β + 

  
  

∑  

= C0 y(tn) + C1 hy′(tn) + … + Cph
py(p) (tn) ....................................... (3.7) 

where: 

C0 = α0 + α1 + … + αk 

C1 = α1 + 2 α2 + … + k α12 − (β0 + β1 + β2 + … + βk)  

   M 

Cp = 
!p

1
(α1+2p α2+…+kp αp) − 

!)1p(

1

−
(β1+2p−1β2+…+kp−1 βp) 

p = 2, 3, …. 

 

Definition (3.2), [Lambert, 1973]: 

The order of LMM  is p if, in (3.7)  

C0 = C1 = … = Cp = 0 but Cp+1 ≠ 0 

Definition (3.3), [Lambert, 1973]: 

The LMM is said to be consistent if it has an order p ≥ 1, i.e., consistent 

methods implies C 0 = C 1 = 0 but C2 ≠ 0, or: 

k

j
j 0

0
=

α =∑    and   
k k

j j
j 0 j 0

j
= =

α = β∑ ∑  
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Definition (3.4), [Lambert, 1973]:  

The first and second characteristic polynomials of LMM (3.5) are 

respectively, gives by: 

ρ(r) = ∑
=

α++α+α=α
k

0j

k
k

1
10

j
j r...rr  

σ(r) = ∑
=

β++β+β=β
k

0j

k
k

1
10

j
j r...rr . 

 

Definition (3.5), [Jain, 1984]: 

The LMM is said to be convergent, if, for all initial value problem (3.3) 

subject to the hypothesis of the existence and uniqueness theorem, we have that: 

n

n n
h 0

nh t a

lim y y(t )
→
= −

=  

holds for all t ∈ [a, b], and for all solutions {yn} of the difference equation (3.5) 

satisfying starting conditions yv = y0v(h) for which 
h 0
lim

→
y0v(h) = y0, v = 0, 1, …,  

k − 1. 

 

Definition (3.6), [Atkinson, 1989]: 

The LMM’s is said to be zero-stable (0-stable) if all the zeros (roots) rj’s, 

j = 1, …, k; of ρ(r) = 0 satisfy |rj| ≤ 1 and if rj is a multiple zero of ρ(r) then  

|rj| < 1. 
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Theorem (3.1), [Atkinson, 1989]: 

Assume the consistency conditions, then the LMM is convergent if and 

only if its zero stability is satisfied. 

 

Example (3.3.1): 

Suppose we have a one step implicit LMM  

yn+1 − yn = 
2

h
 (fn + fn+1) 

i.e., k = 1, α0 = −1, α1 = 1, β0 = 
2

1
, β1 = 

2

1
 

To test the convergence, the roots be evaluated first by using the first 

characteristic polynomial ρ(r) of LMM, which is: 

k
j

j 0 1
j 0

(r) r r
=

ρ = α = α + α∑  

therefore  

ρ(r) = −1 + 1×r 

which has the roots r = 1. Then by using the definition of the zero-stability. 

Hence the method is zero-stable. 

To test the consistency for the method, one have: 

C0 = 
1

j
j 0

1 1 0
=

α = − + =∑  

C1 = 
1 1

j j
j 0 j 0

j
= =

α − β∑ ∑  
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C1 = α1 − β0 − β1 

= 1 − 
2

1
 − 

2

1
 = 0 

Therefore, the method is consistent, and as a result the method 

convergent. 

 

3.2.3 Derivation of Linear Multistep Methods, [Lambert, 1973]: 

In the days of desk computation, it was common in practice to write the 

right-hand side of a LMM in terms of a power series of difference operator. A 

typical example is  

yn+1 − yn = h 2 3
n 1

1 1 1
1 ... f

2 12 24 +
 − ∇ − ∇ − ∇ − 
 

 ................................. (3.8) 

Truncating the series after the second term, gives: 

yn+1 − yn = 
2

1
 h (fn+1 + fn), 

which is the Trapezoidal rule. 

While truncating of third term, gives 

yn+1 − yn = 
12

1
 h(5 fn+1 + 8 fn - fn−1) 

a method which is equivalent to the two-step Adams-Moulton method, is: 

yn+2 − yn+1 = 
12

h
(5 fn+2 + 8 fn+1 − fn) 

One reason for expressing a numerical algorithm in a form such as (3.8) 

lay in the technique common in desk computation, of including higher difference 

of f if they became significantly large at some stage of the calculation. This is 

equivalent to exchanging the LMM for one with a higher step number. Although 
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this will not affect the zero-stability (which is a function only of the first 

characteristic polynomial p(r)). 

Other stability phenomena which are functions of the second 

characteristic polynomial σ(r) as well as of the first, and these will be affected in 

higher differences of f are arbitrarily introduced. Thus the practice can be 

dangerous unless supported by adequate analysis. 

In any event, when a digital computer is used it is much more convenient 

to computer with a fixed LMM and alters the step length if a demand for greater 

accuracy required at a later stage of the calculation. The existence of formulae 

like (3.8) has resulted in family name being given to classes of LMM’s, of 

different step number, which share a common form the first characteristic 

polynomial ρ(r). 

Thus methods for which p(r) = rk − rk−1 are called Adams methods. 

They have the property that all the spurious roots of ρ are located at the 

origin, such methods are thus zero-stable. 

Adams methods which are explicit are called Adams-Bashforth methods, 

while those which are implicit are called Adams-Moulton methods. Explicit 

methods for which ρ(r) = rk − rk−2 are called Nystrom methods, and implicit 

methods with the same form for ρ are called generalized Mile -Simpson methods 

both these families are clearly zero-stable, since they have one spurious root at 

−1 and the rest at the origin. 

Clearly there exist many LMM’s which do not belong to any of the 

families named above. 
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It is important to notice that, there are other methods for derivation of 

LMM, which are by using Taylor expansion method and numerical integration, 

see [Lambert, 1973]. 

 

3.2.4 Derivation of two-step Adam-Bash fourth Method, [Lambert, 1973]: 

To begin the derivation of the Adam-Bash fourth two step methods, note 

that the solution to the initial-value problem 

α=≤≤=′ )a(y,bxa),y,x(fy  

if integrated over the interval [xn, xn+1] has the property that: 

dx)y,x(f)x(y)x(y
1n

n

x

x

n1n ∫
+

=−+  

Since, we can note integrate f(x, y(x)) without knowing y(x), the solution 

to the problem, we instead integrate an interpolating polynomial which is the 

Newton backward-difference formula. Hence: 

n 1

n

x
2

n 1 n n
x

t(t 1)
y(x ) y(x ) 1 t ... f dx

2

+

+
+ − = + ∇ + ∇ + 

 ∫  

where x = xn + th 

Changing of variables, and integrate, we get the following result: 

2
n 1 n n

1 5
y(x ) y(x ) h 1 ... f

2 12+
 − = + ∇ + ∇ +  

 

truncating after the second term, we get: 

[ ]n 1 n n n 1
h

y y 3f f
2+ −− = −  
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which implies 

[ ]n 2 n 1 n 1 n
h

y y 3f f
2+ + +− = −  

which is the two-step Adam-Bashfourth method. 

 

3.3 NUMERICAL SOLUTION FOR SOLVING FRACTIONAL 

ORDER BOUNDED DELAY DIFFERENTIAL EQUATION 

In this section the numerical formulas which we are discussed in section 

3.2 are used here in order to find the numerical solution for solving the fractional 

order bounded delay differential equation as follows:- 

 

3.3.1 Euler’s Method for solving FOBDDE’s: 

To use the Euler’s method to solve fractional order bounded delay 

differential equation, the following approach is followed: 

Consider the FOBDDE’s: 

(q)y (t) f (t, y(t), y(t ))= − τ  

0 0y(t) (t), t t t= ϕ − τ ≤ ≤  

and since Euler method reads as follows: 

2
n 1 n ny y hy O(h )+ ′= + +  

1 q q 2
n ny hD D y O(h )−= + +  

1 q 2
n n n ny hD f (t , y(t ), y(t )) O(h )−= + − τ +  

1 q 2
n n n ny hD f (t , y(t ), (t )) O(h )−= + ϕ − τ +  

where 1 q 2
nD f (t, y(t), (t )) O(h )− ϕ − τ +  could be evaluated easily by using 

fractional calculus. 
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3.3.2 Modified Euler’s Method for Solving Fractional order Bounded Delay 

Differential Equation: 

As, we do in the subsection 3.3.1, the same approach will be considered 

in order to use the modified Euler’s method to solve the fractional order bounded 

delay differential equation as follows: 

Consider the FOBDDE’s: 

(q)y (t) f (t, y(t), y(t ))= − τ  

0 0y(t) (t), t t t= ϕ − τ ≤ ≤  

Recall that the modified Euler’s method written as 

n 1 n 2y y hK+ = +  

where 1 n nK f (t , y )=  and 2 n n 1K f (t 1/ 2h,y 1/ 2hK )= + + . Hence: 

*
n 1 n 2y y hK+ = +  

where: 

* 1 q
1 n n nK D f (t , y , y(t ))−= − τ , 

* 1 q
2 n n 1 n 1K D f (t 1/ 2h,y 1/ 2hK ,y(t ) 1/ 2hK )−= + + − τ +  

where K*
1 and K*

2 could be evaluated directly by using fractional calculus.  

 

3.3.3 Two-step Adam-Bashfourth method for solving fractional order bounded 

delay differential equation: 

The following scheme is look likes the previous procedures in 

subsections (3.3.1) and (3.3.2), therefore: 

Consider the FOBDDE’s: 
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))t(y),t(y,t(f)t(y )q( τ−=  

00 ttt),t()t(y ≤≤τ−ϕ=  

Recall that, two-step Adam-Bashforth method are given in the 

subsection (3.2.4) as 

[ ]n 2 n 1 n 1 n
h

y y 3y y
2+ + +′ ′− = −  

Hence: 

1 q q 1 q q
n 2 n 1 n 1 n

h
y y 3D D y D D y

2
− −

+ + + − = −
 

 

1 q
n 2 n 1 n 1 n 1 n 1

1 q
n n n

h
y y 3D f (t , y(t ), y(t ))

2

D f (t , y(y ), y(y ))

−
+ + + + +

−

− = − τ −


− τ


 

where ))t(y),t(y,t(fD 1n1n1n
q1 τ−+++

−  and ))t(y),t(y,t(fD nnn
q1 τ−−  are 

evaluated easily by fractional calculus. 

 

3.4 ILLUSTRATIVE EXAMPLES 

In this section, an illustrative example will be given as a comparison 

between the numerical methods and focus on the powerful approaches used in 

solving this new field in differential equations, which is a fractional order 

bounded delay differential equations. 

 

Example (3.4.1): 

Consider the FOBDDE: 

(1/ 2) 3/ 2 2 28
y (t) y(t 1) y(t) t (t 1) t

3
+ − + = + − +

π
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with initial condition: 

y(t) = t2, −1 ≤ t ≤ 0 

In order to solve this equation, we given the following alterative form: 

1/ 2 3/ 2 2 28
y D y(t) y(t 1) t (t 1) t

3

 ′ = − − − + + − + 
π 

 ........................ (3.9) 

the numerical methods will be used here with step size h = 0.1. 

Using Euler’s method on the interval [0, 1], equation (3.9) will be 

written as: 

1/ 2 1/ 2 1/ 2 3/ 2 1/ 2 2 1/ 2 28
y D y(t) D y(t 1) D t D (t 1) D t

3
′ = − − − + + − +

π
 

and upon using the initial condition 

y(t) = t2, −1 ≤ t ≤ 0 

in order to evaluate D1/2y(t − 1), we get: 

1/ 2 1/ 2 2 1/ 2 3/ 2 1/ 2 2 1/ 2 28
y D y(t) D (t 1) D t D (t 1) D t

3
′ = − − − + + − +

π
 

hence, by using fractional calculus we get: 

2tt2)t(yy −+=′  ........................................................................... (3.10) 

recall that Euler method was given as  

))t(y,y,t(fhDyy nnn
2/1

n1n τ−+=+  ............................................ (3.11) 

then from equations (3.10) and (3.11): 

]tt2y[hyy n
2

nnn1n −++=+  
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and for the interval [1, 2], we shall used a linear approximation for evaluating 

)1t(yD 2/1 −  in equation (3.9) depending on the information, which we get it in 

the interval [0, 1], therefore equation (3.9) will be written as: 

2 1/ 2 1/ 24
y y(t) y(t 1) 2t 4t 1 D y(t 1) t′ = + − − + − − − − +

π
1/ 2 3/ 21 8

t t
3

− +
π π

 ........................................... (3.12) 

then from equation (3.11) and (3.12): 

2 1/ 2
n 1 n n n n n ny y h y(t ) y(t 1) 2t 4t 1 D y(t 1)+

= + + − − + − − − −  

+
π

2/1
nt

4 2/3
n

2/1
n t

3

8
t

1

π
+

π
−  

Similarly, (Rung-Kutta method, modified Euler method) can be applied 

on the interval [0, 1], which has the form: 

n 1 n 2y y hK+ = +  

where: 

2
1 n n nK y 2t t= + −   

2

2 n 1 n n
1 1 1

K y hK 2 t h t h
2 2 2

   = + + + − +   
   

 

while for the interval [1, 2] takes the form: 

n 1 n 2y y hK+ = +  

where:  
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2 1/ 2 1/ 2
1 n n n n n n

4
K y y(t 1) 2t 4t 1 D y(t 1) t= + − − + − − − − +

π
 

1/ 2 3/ 2
n n

1 8
t t

3
− +

π π
 

and 

2

2 n 1 n 1 n n

1/ 2 1/ 2
1/ 2

n n n

3/ 2

n

1 1 1 1
K y hK y(t 1) hK 2 t h 4 t h

2 2 2 2

4 1 1 1
1 D y(t 1) t h t h

2 2

8 1
t h

23

−

   = + + − + − + + + −   
   

   − − − + + + +   π π   

 + π  

 

Finally, two-step Adam-Bash fourth method also can be applied which 

has the following form on [0, 1]: 

2 2
n 2 n 1 n 1 n 1 n 1 n n n

h
y y 3(y 2t t ) (y 2t t )

2+ + + + + = + + − − + −
 

 

while for the interval [1, 2] 

2 1/ 2
n 2 n 1 n 1 n 1 n 1 n 1 n 1

1/ 2 1/ 2 3/ 2 2
n 1 n 1 n 1 n n 1 n

1/ 2 1/ 2 1/ 2 3/ 2
n n n n n

h
y y [3(y y(t 1) 2t 4t 1 D y(t 1)

2
4 1 8

t t t ) (y y(t ) 2t
3

4 1 8
4t 1 D y(t 1) t t t )]

3

+ + + + + + +

−
+ + + −

−

= + + − − + − − −

− + + − + − +
π π π

− − − − + +
π π π

 

The numerical results are illustrated in table (3.1) as follows: 
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Table (3.1) 

The comparison between the numerical results of example (3.4.1). 

ti Euler method 
Runge-Kutta  

(Modified Euler ) 
Adam Bash fourth 

method 

0.1 0 0.01 0.01 

0.2 0.019 0.041 0.04 

0.3 0.057 0.093 0.09 

0.4 0.114 0.166 0.16 

0.5 0.189 0.261 0.25 

0.6 0.283 0.377 0.36 

0.7 0.395 0.515 0.49 

0.8 0.526 0.675 0.64 

0.9 0.674 0.856 0.81 

1 0.841 1.06 1 

1.1 1.17 1.196 1.21 

1.2 1.342 1.396 1.435 

1.3 1.516 1.6 1.667 

1.4 1.689 1.807 1.893 

1.5 1.862 2.015 2.122 

1.6 2.031 2.222 2.353 

1.7 2.194 2.427 2.584 

1.8 2.351 2.628 2.814 

1.9 2.498 2.822 3.041 

2 2.631 3.006 3.263 
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Example (3.4.2): 

Consider the neutral FOBDDE: 

(1/ 2) 3/ 28
y (t) y (t 1) t 2(t 1)

3
′+ − = + −

π
 

with initial condition: 

y(t) = t2, −1 ≤ t ≤ 0 

and carrying similar calculations as in example (3.4.1), we get the results 

presented in table (3.2). 
 

Table (3.2) 

The comparison between the numerical results of example (3.4.2). 

ti Euler method Runge-Kutta (Modified Euler) Adam Bashfourth method 

0.1 0 0.01 0.01 
0.2 0.02 0.04 0.04 
0.3 0.06 0.09 0.09 
0.4 0.12 0.16 0.16 
0.5 0.2 0.25 0.25 
0.6 0.3 0.36 0.36 
0.7 0.42 0.49 0.49 
0.8 0.56 0.64 0.64 
0.9 0.72 0.81 0.81 
1 0.9 1 1 

1.1 1.249 1.098 1.326 
1.2 1.623 1.413 1.678 
1.3 2.022 1.753 2.054 
1.4 2.445 2.12 2.456 
1.5 2.892 2.511 2.882 
1.6 3.364 2.927 3.333 
1.7 3.86 3.369 3.808 
1.8 4.38 3.835 4.307 
1.9 4.924 4.326 4.831 
2 5.492 4.841 5.379 
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CHAPTER TWO 

EXISTENCE AND UNIQUENESS THEOREM OF 

FRACTIONAL ORDER-BOUNDED DELAY  

DIFFERENTIAL EQUATION 

 

In this chapter, a new type of differential equation is formulated by 

mixing two well known types of differential equations which are the fractional 

order differential equations and bounded delay differential equations. This type 

of equations will be called fractional order-bounded delay differential equations 

“FOBDDE’s” and has the following form: 

(q)
1 my (t) f (t, y(g (t)),..., y(g (t)))=  

where gj(t) is a retarded argument , i.e., gj(t) ≤ t  for  j = 1,…,m,  ٠ < q < 1. With 

the initial condition: 

y(t) (t)= θ , for t 0−τ ≤ ≤  

where θ  is a given initial function mapping [−τ, 0] → D. 

and the following problems may be consider:  

1- The solution existence and uniqueness theorem of the such type equations, 

is discussed in this chapter. 

2- The analytical and numerical solutions for solving such type of equations, 

are discussed in the next chapter. 
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2.1 BASIC DEFINITIONS 

Some needed definitions and notations that used to prove the existence 

and uniqueness theorem of FOBDDE are 

Many practical problems give rise to bounded differential equations 

having constant or not constant delays. 

1 my (t) f (t, y(g (t)),..., y(g (t)))′ =  

jt g (t) t− τ ≤ ≤ , t 0≥  

for some constant τ ≥ 0, then the initial condition 

)t()t(y θ= , for t 0−τ ≤ ≤  

The set C([−τ,0], n
� ) of all continuous functions mapping [−τ, 0] → 

n
�  will be denoted by ℘ and if A is any set in n

� , we will let 

A C([ ,0],A)℘ = −τ . 

 

Definition (2.1), [Driver, 1977]:  

For a function Dϕ∈℘ , it is convenient to define a measure of magnitude 

of ϕ  by )(sup
0r

r
δϕ=ϕ

≤δ≤−
 

 

In the special case when D = n
� , ℘=℘D  is a linear space and || . ||r is a 

norm on ℘.this means that || . ||r satisfies the following conditions: 

1- 0r ≥ϕ , for all ℘∈ϕ . 

2- 
r

0 0ϕ = ⇔ ϕ = (the zero function). 
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3- 
r r

c cϕ = ϕ , for all ℘∈ϕ  and all c∈R. 

4- 
r r r

ϕ + ϕ ≤ ϕ + ϕ% % , for all ℘∈ϕϕ ~,  (the triangle inequality). 

(we shall refer to || . ||r as the r-norm). 

 

2.2 EXISTENCE AND UNIQUENESS THEOREM FOR 

FRACTIONAL ORDER-BOUNDED DELAY 

DIFFERENTIAL EQUATION 

In this section, we shall state and prove the existence and uniqueness 

theorem of fractional order differential equations to the case of delay differential 

systems with bounded delays. 

Consider a FOBDD system, such as: 

(q)
1 my (t) f (t, y(g (t)),...y(g (t)))=  ..................................................... (2.1) 

We shall assume that 

jt g (t) t− τ ≤ ≤ , for ,0t ≥  j = 1, 2, …, m, 0 < q < 1 

For some constant τ 0≥ .then the initial condition takes the form 

),t()t(y θ=  for t 0−τ ≤ ≤  .................................................................. (2.2) 

We assume that f is defined on [0,)β ×Dn → n
�

 for  some β  > 0 and some 

open set D ⊂ n
� . 

Equation (2.1) can be rewritten as: 

)y,t(F)t(y t
)q( =  ............................................................................... (2.3) 

where t 1 mF(t, y ) f (t, y(g (t)),..., y(g (t)))= . 
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Definition (2.2), [Driver, 1977]: 

If y is a function defined at least on [t − τ, t] → n
� , then we 

define a new function yt : [−τ, 0] → n
� , by: 

yt(δ ) =  y(t + δ ),   for 0≤δ≤τ−  

 

When we using the notation of equation (2.3), we shall also rewrite the 

initial condition (2.2) . 

Equation (2.2) is equivalent to y(δ ) = )(δθ  for 0−τ ≤ δ ≤  or simply  

y0 = θ0 introducing 0ϕ = θ  this becomes: 

ϕ=0y  .............................................................................................. (2.4) 

it is important to recognize that (2.4) means y(δ) = )(δϕ  or, by letting t = δ  then 

)t()t(y ϕ= , for t 0−τ ≤ ≤  

and in particular 

)0()0(y ϕ=  

 

Continuity Condition, [Driver, 1977]: 

If F:[0, β ) n
D×℘ →� satisfied that F(t, yt) is continuous with respect 

to t in [0, β ) for each given continuous function: 

y : [− τ ,β ) → D 

then a continuous function  

y : [− τ , β1) → D,  for some ],0(1 β∈β  

is a solution of: 
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(q)
t

0

y (t) F(t, y )

y

= 


= ϕ 
 ............................................................................. (2.5) 

if and only if: 

t
q 1

s 1
0

(t), t 0

y(t) 1
(0) (t s) F(s,y )ds,0 t

(q)
−

ϕ −τ ≤ ≤


= ϕ + − ≤ < β Γ


∫
 ........................... (2.6) 

 

Definition (2.3), [Driver, 1977]: 

The functional F: J n→�  is locally Lipschitzian if for each given 

( t ,ψ ) ×β∈ ),0[ D℘ , there exist numbers a > 0 and b > 0, such that: 

}b:{)),0[J]at,at([ r ≤ψ−ψ℘∈ψ×β=+−=ξ I  

is a subset of ,0[J = β ) D℘×  and F is Lipschitzian on ξ . 

In other words, for some number K (a Lipschitz constant depending on 

ξ), 

r
~K)~,t(F),t(F ψ−ψ≤ψ−ψ  

whenever (t, ψ ) and (t,ψ~ )∈ξ . 

 

Theorem (2.1) (The Existence and Uniqueness Theorem): 

Let n
DF:[0, )β ×℘ →�  satisfy the continuity condition and let it be 

locally Lipschitzian. Then, for each D℘∈ϕ , there exists a solution to equation 

(2.1) on [− τ , ∆ ) for some 0>∆ , and this solution is unique: 
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Proof: 

Choose any a > 0 and b > 0 sufficiently small, so that: 

r
[0,a] { : b}ξ = × ψ ∈℘ ψ − ϕ <  

is a subset of [0,)β D×℘  and F is Lipschitzian on ξ (say with Lipschitz constant 

K). 

Define a continuous function y  on [0 − τ, a] = [−τ, a] → n
� , by: 

(t), t 0
y(t)

(0),0 t a

ϕ −τ ≤ ≤
= ϕ ≤ ≤

 

Then F(t, ty ) depends continuously on t, and hence 1t )y,t(F β≤  on [0,a] for 

some constant 1β  

Now define 1kbβ = + β  choose a1 ∈ (0, a], such that: 

byyy r0trt ≤−=ϕ− , for 1at0 ≤≤  

choose 0>∆ , such that: 


























β
+Γ≤∆ q

1

1
b)1q(

,amin   and  1
)1q(

kq
<














+Γ
∆

  

this condition may be neglected. 

Let S be the set of all continuous functions y : [− τ , ∆ ] → n
� ,such that: 

y(t) = )t(ϕ  , for t 0−τ ≤ ≤  

b)0()t(y ≤ϕ− , for ∆≤≤ t0  

Note that if y ∈ S and t ],0[ ∆∈ , then: 
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t t r
y y b− ≤  

so that: 

t t t tF(t, y ) F(t, y ) F(t, y ) F(t, y )≤ − +  

t t 1k y y≤ − + β = β  

To prove that S is invariant, for each y ∈ S define a function Ty on [− τ , ∆ ] by: 

t
q 1

s
0

(t), t 0

(Ty)(t) 1
(0) (t s) F(s,y )ds, 0 t

(q)
−

ϕ − τ ≤ ≤


= ϕ + − ≤ ≤ ∆ Γ


∫
 

)1q(

t)y,t(F
)0()t)(Ty(

q
t

+Γ
≤ϕ−  

q
tF(t, y )

(q 1)

∆
≤

Γ +
 

q

(q 1)

β∆≤
Γ +

 

(q 1)b
b, for0 t

(q 1)

βΓ +≤ = ≤ ≤ ∆
Γ + β

 

Also  Ty  is continuous, then Ty ∈ S and we can say that T maps S on to S. 

Let us now construct “successive approximation” technique choosing y(0) ∈ S 

and then defining: 

y(1) = Ty(0), y(2) = Ty(1), … 

bear in mind that each ( )y (t) (t)= ϕl  on [ 0,τ− ]. It is clear that to show that: 
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b2)t(y)t(y )0()1( ≤−  

t
q 1

(1) (0) (0)

0

1
y (t) y (t) b (t s) F(s,y (s)) ds

(q)
−− ≤ + −

Γ ∫  

qb 2b
(q 1)

β≤ + ∆ =
Γ +

 

t t
q 1 q 1

(2) (1) (1) (0)
0 0

1 1
y (t) y (t) (t s) F(s, y (s))ds (t s) F(s,y (s))ds

(q) (q)
− −− = − − −

Γ Γ∫ ∫  















+Γ
∆≤

+Γ
≤

−−
Γ

≤

−−
Γ

=

∫

∫

−

−

)1q(

k
b2

)1q(

bkt2

ds)s(y)s(y)st(
)q(

k

ds))s(y,s(F))s(y,s(F)st(
)q(

1

q

q

t

0

)0()1(
1q

t

0

)0()1(
1q

 

∫ −−
Γ

=− −
t

0

)1()2(
1q

)2()3( ds)))s(y,s(F))s(y,s(F()st(
)q(

1
)t(y)t(y  

=
t

q 1
(2) (1)

0

1
(t s) F(s,y (s)) F(s,y (s)) ds

(q)
−− −

Γ ∫  

t
q 1

(2) (1)

0

k
(t s) y (s) y (s) ds

(q)
−≤ − −

Γ ∫  
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q qk k
2b

(q 1) (q 1)

 ∆ ∆≤   Γ + Γ + 
 

2qk
2b

(q 1)

 ∆≤   Γ + 
 

one can prove by induction that: 

q

( 1) ( )
k

y (t) y (t) 2b , for 0,1,2,...
(q 1)+

 ∆− ≤ =  Γ + 

l

l l l  

Now the series: 

pq

(p 1) (p)
p 0 p 0

k
y (t) y (t) 2b

(q 1)

∞ ∞

+
= =

 ∆− ≤   Γ + 
∑ ∑  

pq

p 0

k
2b

(q 1)

∞

=

 ∆=   Γ + 
∑  

converges, the convergence comes from the condition 














+Γ
∆

)1q(

k q
 < 1. 

put y(t) = ( )lim y (t)
→∞

l
l

, which is the desired solution and this complete the  

proof.    � 

 

Now, to prove the uniqueness, we need the following lemma: 
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Lemma (2.1), [Driver, 1977]:  

Let y : [− τ , β ) → n
�  be continuous, then, given any t [0, )∈ β  and 

any  ε > 0, there exist δ > 0, such that: 

ε<−
rtt yy , whenever t [0, )∈ β and t t− < δ  

   

Now, to continue the proof of the uniqueness, let F : [0,β )× n
D℘ →�  

satisfy the continuity condition and 
)q(

)st(k 1q

Γ
− −

 must be non-negative and 

continuous and let F be locally Lipschitzian, and suppose (for contradiction) that 

for some ],0(1 β∈β  there are two solutions y and y%  mapping [−τ, β1) → D, 

with y y~≠  

Let: 

)}t(y~)t(y:),0(tinf{t 11 ≠β∈=  ......................................................... (2.7) 

then 0 1t≤ < β  and 

y(t) = 1y(t),for t t− τ ≤ ≤%  

since (t1, 1t
y ) D1),0[ ℘×β∈ , there exist numbers a>0 and b>0 such that the set: 

}by:{]att[
rt1,1 1

≤−ψ℘∈ψ×+=ξ  

is contained in [0,β ) D℘×  and F is Lipschitzian on ξ (with Lipschitz constant k). 

By above lemma, (0,a]∃ δ∈  such that (t, ty ) ∈ ξ and (t, ξ∈)y~t  for t1 1t t≤ ≤ + δ , 

moreover, both y and y%  satisfy (2.4) for −τ 1t t≤ ≤ + δ .thus, for 

δ+≤≤ 11 ttt  
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t

q 1
s s

0

1
y(t) y(t) (t s) (F(s,y ) F(s, y )ds

(q)
−− = − −

Γ ∫% %  

dsy~y)st(
)q(

k
rss

t

t

1q

1

−−
Γ

≤ ∫
−  

Now, since the right hand side is an increasing function of t and since 

0)t(y~)t(y =−  for 1 1t t t− τ ≤ ≤  

By Reid’s lemma [Driver, 1977] it follows that )t(y  = )t(y~  on 1 1[t , t )+ δ  which 

contradiction for the definition of equation (2.7).    � 
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CONCLUSIONS AND RECOMMENDATION 

 

From the present study, we can conclude the following: 

1. From the results of table (3.1), one can notice that the Adam-Bashforth 

method give more accurate results than Euler’s method and Modified Eulers 

method. 

2. From the results of table (3.2), one can notice that the Modified Euler 

method give more accurate results than Adam-Bashforth method and 

Euler’s method, this is due to the instability of the Adam-Bashforth method. 

3. The accumulation error resulting in tables (3.1) and (3.2) for the second 

interval [1, 2] is due to the approximation of D1/2y(t − 1) and D1/2y′(t − 1), 

using the linear approximation. 

 

Also, we can recommend the following problems for future work: 

1. Studying the solution of partial fractional order delay differential equations, 

with boundaries conditions. 

2. Studying the fractional order bounded delay differential equation by 

converting it into equivalence integral equation. 

3. Studying the stability of fractional order bounded delay differential 

equation.  
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INTRODUCTION 

 

The concept of fractional calculus is popularly be lived to have stemmed 

from a question raised in the year 1695 by L’hopital (1661-1704) to Leibniz 

(1646-1716), which sought the meaning of Leibniz’s (currently popular) notation 

n

n

dx

yd
 for the derivative of order n ∈ N0 := {0, 1, …} when n = 

2

1
(what if  

n = 
2

1
?) In his reply, dated 30 September 1695, Leibniz wrote to L’hopital as 

follows: “… This is an apparent paradox from which, one day, useful 

consequences will be drawn. …” . 

We shall introduce some literature survey concern the delay differential 

equations together with fractional calculus. 

Delay differential equations were initially introduced in the 18th century 

by Laplace and Condorect, [Ulsoy, 2003]. However, the rapid development of 

the theory and applications of those equations did not come until after the 

Second World War, and continues till today. The basic theory concerning the 

stability of systems described by equations of this type was developed by 

Pontryagin in 1942. Important works have been written by Smith in 1957, 

Pinney in 1958, Bellman and Cooke in 1963, Halanay in 1966, Myshkis in 1972, 

Hale 197٧, Yanusherski in 1978 and Marshal in 1979, [Ulsoy, 2003]. 

On the other hand, many complicated physical problems described in 

terms of partial differential equations can be approximated by much simpler 

problems described in terms of delay differential equations, [Pinney, 1958]. 
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The impetus has mainly been due to the developments in many fields, 

such as the control theory, mathematical biology, and mathematical economics, 

etc. Minorsky, [Hale, 1977] was one of the first investigators of modern times to 

study the delay differential equation: 

y (t) f (t, y(t), y(t ))′ = − τ  

and its effect on simple feed-back control systems in which the communication 

time can not be neglected. 

The abundance of applications is stimulating a rapid development of the 

theory of differential equations with deviating argument and, at present, this 

theory is one of the most rapidly developing branches of mathematical analysis. 

Equations with a deviating argument describe many processes with an 

effect; such equations appear, for example, any time when in physics or 

technology we consider a problem of a force, acting on a material point, that 

depends on the velocity and position of the point not only at the given moment 

but at some moment preceding the given moment, [El’sgolt’c, 1973]. 

Fractional calculus is a field of mathematical study that grows out of the 

traditional definitions of the calculus integral and derivative operators in the 

same way fractional exponents is an outgrowth of exponents with integer value, 

[Loverro, 2004]. 

Many found, using their own notation and methodology, definitions that 

fit the concept of a non-integer order integral or derivative. The most famous of 

these definitions that have been popularized in the world of fractional calculus 

are the Riemann-Liouville and Grünwald-Letnikov definition. Also, Caputo, 

[Podlubny, 1999] reformulated the more "classic" definition of the Riemann-

Liouville fractional derivative in order to use integer order initial conditions to 
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solve his fractional order differential equations. Recently, [Kolowankar, 1996] 

reformulated again, the Riemann-Liouville fractional order derivative, in order 

to, differentiate no-where differentiable fractal functions. 

In recent years, considerable interest in fractional calculus have been 

simulated by the applications that this subject finds in numerical analysis, 

differential equations and different areas of applied sciences, especially in 

physics and engineering, possibly including fractal phenomena, [Al-Husseiny, 

2006]. 

Fractional calculus (that is, calculus of integrals and derivatives of any 

arbitrary real or complex order) has gained considerable popularity and 

importance during the past three decodes or so, due mainly to its demonstrated 

applications in numerous seemingly diverse and widespread fields of science and 

engineering. 

This subject, devoted exclusively to the subject of fractional calculus in 

the book by Oldham and Spanier [Oldham, 1974] published in 1974. One of the 

most recent works on the subject of fractional calculus in the book of Podlubny 

[Podlubny, 1999], published in 1999 which deals principally with fractional 

order differential equations, and today there exist at least two international 

journals which are devoted almost entirely to the subject of fractional calculus; 

(i) Journal of fractional calculus and (ii) Fractional calculus and Applied 

Analysis. 

Delay differential equations, (DDEs) which is arise in many areas of 

mathematical modeling: for example population dynamics (taking into account 

the gestation times), infections diseases (accounting for the incubation periods), 

physiological and pharmaceutical kinetics (modeling for example, the body’s 
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reaction to CO2, etc. in circulating blood ) and chemical kinetics (such as mixing 

reactants), the navigational control of ships and aircraft (with respectively large 

and short lags), and more general control problems. 

There exists now collection of books that indicate applications areas form 

DDEs and we cite in particular, the books [Driver, 1977], [Halanay, 1966], and 

[Kuang, 1993]. Whilst ordinary differential equations (ODEs) model problems in 

which the variables react to current conditions, DDEs (and related functional 

differential equations) model problems where there is an after- effect affecting at 

least one of the variables. 

Also, many authors and researchers concerned with the fractional 

differential equations say Al-Shather A. in 2003, presented some 

approximated solutions for the fractional delay integro-differential 

equation, Abdul-Razzak B.T. in 2004, gave new algorithm for solving 

fractional order Fredholm integro-differential equation, Al-Azawi S., in 

2004, presented some results in fractional calculus, Al-Rahhal D. in 2005, 

used the numerical solutions for the fractional integro-differential equation, 

Gorial I. in 2005, used the finite difference method to solve the eigenvalue 

problems for the partial fractional  differential equation, Abdul-Jabber in 

2005, discussed the inverse problem of the fractional integro-differential 

equation, and Abdul-Jabbar R.S. in 2005 studied the inverse problems of 

some fractional order Integro-differential equations, and Khalil E. in 2006, 

used linear multi-step methods to solve some fractional order ordinary 

differential equations, and Aziz S. in 2006 used some approximated 

methods for solving partial fractional differential equations, and Al-
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Husseiny R. in 2006, discussed the existence of uniqueness solution of 

some fuzzy fractional order ordinary differential equations. 

While in delay differential equations, several authors studied this 

subject, and upon them, Al-Saady A. S. 2000, studied the approximate 

solution of delay differential equations using cubic spline interpolation 

techniques. Nadia K. M. in 2001 studied the variational formulation of 

delay differential equations, Thikra A. in 2001 studied the approximate 

solution of delay integral equations using variational approach. Maha A. in 

2003 studied the inverse problem of delay integral equations using 

variational approach. Haifaa M. B. in 2004 studied the variational 

formulation of partial delay differential equations. Finally, Gadeer J. M in 

2007 studied the numerical solution of linear partial delay differential 

equations using the finite difference methods. 

The purpose of this work is to combine between fractional and delay 

differential equations to obtain the so called fractional delay differential 

equations. 

This work consists of three chapters, as well as, this introduction. In 

chapter one, the fundamental concepts for delay and fractional order differential 

equation is given, while in chapter two, the existences and uniqueness solution 

theorem of fractional order bounded delay differential equation is stated and 

proved. Finally in chapter three the analytic and numerical solution for such type 

of differential equations is presented, as well as, the comparison between these 

methods and the exact solutions are presented. 
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� درا�� ا���د	ت ا� �اھ�� � ���ط��� ذات ا���� ا���ا����� ا�� �!� ���

)FOBDDE’s(  ت	د���0 �/ ا.��ت )-��� ا�%,%د وا�%*(ا)�� �'� ھ�ا ا�&%ع #" ا�*

��1�����2��ت ا���4(ام ط���2 ا���1  ��� �!�  .ا�

��ط������ ا�� �!�ذات ا����  و8��9 �/ �7ض ا��%ب *� ا���د	ت ا�

��  )FOBDDE’s(��� ا������'�(Analytically)  1;س	4(ام �'%�;ت ���1

(Laplace Transformation) و7(د��  (Numerically) دة)���4(ام ط�ا<= #��1

ذات ا�4?%ة ا�%ا*(ة  وط�ا<=  (linear multi-steps methods)ا�4?%ات 

(general-one step methods) �/ ا�'�  �و�@ A# ھ�ه ا�?�ق D>��#2�ر)� )

�%ط� E  .(Exact solutions values)ا�
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