ABSTRACGT

The Fractional Order Bounded Delay Differential Efjons
(FOBDDE'’s) has been studied in this work. The Eease and Unigueness
theorems of such type of differential equation haeen proved, by using
the successive approximation techniques. Also, ahalytic solution of
(FOBDDE’s) are presented, using Laplace Transfdonatand the
numerical solutions are discussed, using geneistep methods and linear
multi-step methods. The comparison, among thes&adstand the exact

solutions are presented.
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CHAPTER ONE

FUNDAMENTAL GONGEPTS T0 DELAY AND
FRAGTIONAL ORDER DIFFERENTIAL EQUATIONS

In this chapter we shall deals with the basic af winds of differential
equations known as delay and fractional order wiffeal equation which are

useful and have commonly used in the subject sflark.

1.1DELAY DIFFERENTIAL EQUATION

Definition (1), [Bellman, 1963]:

Involve the delay differential equation “DDE” isfdeed as an unknown
function y(t) and some of its derivatives, evaldasgd arguments that differ by

any of fixed number of values,; 1,,....T,. The general form of the n-th order
DDE is given by

FE Y, Y1), YT Y (Y (5T ) Y (BT Y™ (1),

Y =T, YN (=T )= O, (1.1)

where F is a given functional and, i =1, 2, ..., k; are given fixed positive

number called the “time delay” [Bellman, 1963].
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In some literature equation (1.1) is called a ddfee-differential
equation or functional differential equation, [Belin, 1963], or an equation with
time lag [Halanay, 1966], or a differential equatiwith deviating arguments,
[Driver, 1977].

The emphasis will be, in general, on the linearatigns with constant
coefficients of the first order and with one del@ecause as in “ODE” any
differential equation with higher order than oneyrba transformed into a linear

system of differential equations of the first onder

For example:

Y () +ay(t—T1)r hy(t+ byt ) f(t) e, (1.2)

where f(t) is a given continuous function ants a positive constant ang, a,
by, by are constants (also if f@) 0, then equatiofi.2) is said to be homogenous;

otherwise it is non homogenous).

The kind of initial conditions that should be usedDDE'’s differ from
ODE’s so that one should specify in DDE’s an ihiftanction on some interval
of lengtht, say [t — T, to] and then try to find the solution of equation2(lfor
all t= to. Thus, we set y (t) $o(t), for to — 1<t <ty wheredo(t) is some given
continuous function. Therefore the solution of DRénsist of finding a
continuous extension dfq(t) into a function y(t) which satisfies (1.2) fal

t > to, [Halanay, 1966].

Delay differential equation given by equation (1c2nh be classified into
three types which are retarded, neutral and miXéw first type means an
equation where the rate of change of state varialdaletermined by the present
and past states of the equation, for example emjuéti.2) where the coefficient
of y'(t—1)is zero, i.e., @ 0, a = 0). If the rate of change of state depends on

2
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its own past values as well on its derivatives,dfeation is then of neutral type,
for example equation (1.2) where the coefficieny@f- 1) is zero, i.e.,(@# O,

a # 0 and h = 0), while the third type is a combination of theeyaous two
types, i.e., (@ 0, a # 0, b # 0 and h # 0), [Al-Saady, 2000].

It is important to remark that, the theory of naltifferential equation is
more complicated than of retarded type, [El'sgolt673], [Al-Saady, 2000].

1.1.1 Solution of the First Order Delay Differential Equations, [Driver, 1977].

Because of the initial condition which is given fartime step interval
with length equals ta, we must find this solution forx t, divided into steps

with lengtht also.

1.1.1.1 The Method of Successive I ntegrations, [Driver, 1977].

The best well known method for solving DDE'’s is thethod of steps or

the method of successive integrations which is isetlve a DDE of the form:

V) =f(t,y(),yt—=1),Y(t=T1)), t2tg e (L.3
with initial condition y(t)= ¢o(t), for tp— 1< t < t.
For such equations the solution is constructed lsyegiep as follows:

Given that a functioy(t) continuous on §t— T, ty], therefore one can
obtain the solution in the next step intervg {§ +1] by solving the following

equation:
y®)=f(t y®).pot-1).¢'o(t-1)), forto< t < tott

with the initial condition y{ = ¢o(to). If we consider tha4(t) is the desired

first step solution, which exists by virtue of cioniity hypotheses.

3
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Similarly, if ¢4(t) is defined on the whole segmern f§+1] then, one can

find the solutiond, (t)to the equation:
y'(t) = f(t, y(), o2t — 1), ¢ 1(t - 1)), forfprr<t<tp+ 2t
with the initial condition y@+ 1) = ¢4(to + 1)
In general, by assuming thai_,(t), O(k=212,...) is defined on the

interval [b+ (k - 2)t, to+ (k — 1)t], then, one can find the solutigp, (t) to the

equation:
y'(®) =1t y (1), & kat = 1), 9" kalt = 1)), for tor(k — L)t <t<to+kt
with the initial conditiony @+ (k— 1)t) = ¢y-1(to + (k= 1)1).

Now, we shall consider some illustrative examptesall types of DDE:

Example (1.1.1), [Al-Saady, 2000]:

Consider the retarded first order DDE:
y'(t)=y(t-1),t=0

with the initial condition
Y(t) = do(t) =t, for-1<t<0

To find the solution in the first step interval [0, we have to solve the

following equation:
Y'() =¢o(t — 1)
=t-1,for0st<1

Integrating both sides from 0 to t whérgt <1, we have:
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t
j (sds= j(s—l)ds
0

And hence after carrying some calculations we petfirst time step

solution:

2
y(t)=%—t,for0stsl

In order to find the solution in the second steprval, suppose that:

b)) =y, () =— -t,0<st<1

v
2
Sinced,(t) is defined on the whole segment [0, 1].

Hence by forming the new equation:

Y (D) = 2(t = 1), FOF OZ 1L Lo (1.4)

2
with the initial conditiond,(t) = % -t,forO<st< 1

One can find the solution in the next step inteflal2], and we shall

solve equation (1.4)
y'(t) = ¢y (t-1), forlst<2

_ (- 1) ~(t-1)
2

=D elon
2 2
t2

——2t+§ forl<t<?2
2 2

Integrating both sides from 1 to t, wheré {1, 2], we get:

5
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7 13 2 3
)= ——+——t+—t, for 1<t<?2
y® 6 6 2

Similarly, let:

-7 2 , 3
)= — +— —t2 + >t
Y2 (1) 6 5 5

and suppos#é(t) is the desired second step solution, i.e.,

-7 2 , 3
=yo(t) = —+——-t°+t
d2 (1) =y2(1) 6 6

Sinced,(t) is defined on the whole segment [1, 2] hencéddogning the
new equation:

y'(t) =d(t—1), for2<t< 3
with the initial condition

-7 2 , 3
)= "4+ —t%+ ¢
o(t) s e 5

Similarly, one can find t), y4(t) and so on.

Example (1.1.2), [Al-Saady, 2000]:

Consider the neutral first order DDE:
y't) =y (t-D+t,t=0

with initial condition
Po(t) =t+ 1, for-1<t<0

To find solution of the first interval [0, 1]. Welse the following
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y(t)=¢pt-1)+t, for-1<t<0

=1+t for-1<t<O

Integrating both sides from 0 to t wherg <1, we have:
t t
[y(s)ds=| @ sy
0 0

and hence:

2
yl(t)=t+%+1, for0O<t<1

In order to find the solution in the second stepnmval suppose that:
£2
da(t) = ya(t) =t +E +1

Is the initial condition. Sincé(t) is defined on the whole segment [0, 1]. Hence
by forming the new equation:
V() =01t —D+t, for LSt< 2. (1.5)

2
whereg, (t) = t+%+1 ,forO<t<1

One can find the solution in the next step interfdal 2], and solving

equation (1.5) for y (t), we have:
y(t)=¢y(t-1) +1
=2t, for 1<t< 2

Integrating both sides from 1 to t where 1< 2, we get:

y(t) = t2+g,for 1<t<?2
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Therefore, y(t) is the desired second step solutibich is denoted by
2 3
y(t) = () =t +§, forl<t<?2

Similarly, we proceed to the next intervals.

Example (1.1.3), [Al-Saady, 2000]:

Consider the mixed DDE:

y()=y(t-1)+2y(t-1),t21
with initial condition

do(t) =1, for0<st<1

To find the solution in the first step interval [2], we will to solve the

following equation:
Y'(t)=dog(t—1)+ 20, (t—-1), for 1< t< 2
y(H)=1

By integrating from 1 to t, wheredt< 2, we have:
y({)=t forlst<?2

and suppose thdt,(t) is the desired first step solution
yit) = ¢ ,(t) =t, for1<st< 2

Since ¢ 4(t) is defined on the whole segment [1, 2], hengddoming the new

equation:
y'(t) = by (t—1)+ 297 (- 1), for 2< t< 3

with initial condition
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ya(t) = ¢o(t) =t, for 1<t< 2

and so on, we proceed to the next intervals.

The next example considers the solution of DDE wisiiable delay

which can be solved by successive integration nuetho

Example (1.1.4):

Considetrthe retarded first order DDE

y(t)=-y(t-¢€') for0O<t<1
with initial condition:
y(t) = ¢ o(t)=1, for-1<t< 0

To find the solution in the first step interval [lJ,we have to solve the following

equation:
Y (t)=—do(t-€")
=-1,for0<st< 1

Integrating both sides from 0 to t where 0< 1, we have:
t t
j y'(s)ds= j ~ ds
0 0

Hence
y(t) =1-t,forO<t<1
In order to find the solution in the second stepnval suppose that:

o) =yi(t) =1-t
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Therefore:
yi(t) = 1-t, for0st<1
Since ¢ 4(t) is defined on the whole segment [0, 1].

Hence by forming the new equation:
y'(t)=-¢;(t-€")
= -1+ (t—-¢€)

Integrating both sides from 1 to t, wheré {1, 2], yields:

2
y(t)=3.2—- t+%— d, forlst<?2
Similarly, let:
2

yo(t) =3.2- t+%— g forlst<?2

and suppos@ ,(t) is the desired second step solution, i.e.,

b (1) =ya(t)
2

=3.2- t+%—é fork t< ;

Since ¢ ,(t) is defined on the whole segment [1, 2], hengddsming the new
equation:
y'(t)=—¢,(t-€"), for2<t< 3

with initial condition

2
d,(t) =3.2- t+%— g forl<st<?2

similarly, one can find yt), y4(t) and so on.

10
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1.1.1.2 Laplace Transformation Method, [Ross, 1984]:

Laplace transformation method is also, one of thestnwidely use
methods for solving DDE’s. It is important here teview the Laplace

transformation of a given function.

Suppose that f is a real-valued function of thé vaaable x defined for
X > 0. Let s be a parameter that we shall assunte toeal, and consider the

function F defined by
Uf = j S (X)OX 1o eee e et (1.7)
0

For all values of s for which this integral exisfBhe function({f}
defined by the integral (1.7) is called the Laplaemsformation of the function f
and we shall denote the Laplace transféftnof f by F(s).

Also, as it is known, Laplace transformation methody be used to
solve linear ODE’s and we can use it also to s@lixE by two approaches. The
first approach is by mixing between method of stapd Laplace transform
method and the other approach is by applying dydbie Laplace transform
method to the original DDE.

1.1.1.2.1 The First Approach, [Brauer, 1973]:

This approach depends mainly on applying firstritethod of steps to
transform the DDE into ODE and then applying Lapla@nsformation method
to solve the resulting equation. This approachlzaexplained in the following

examples:

11
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Example (1.1.5), [Marie, 2001]:

Consider the following neutral DDE:
yt)=y'(t-1)+t,forOst<1

with initial condition:
y(t) = ¢ o(t) =t+1, for-1<t<O0

To find the solution in the first step interval [}, we apply the method of steps,

to get:
y'(t)=do(t-1)+t
=1+t forOst<1
which is an ODE of the first order
Now, taking the Laplace transformation approach:
Hy®)} =L{1} + {1}

1

S2

sY(s)-y (0) =—+

nlk

and so the Laplace transform of the solution y() iY(s) is given by:

Y(s):iz+i+—1

£ & s

Taking inverse Laplace transform, we have:

Y I L R - I I |
yo =t H IFh HL H
2

y(t) :t+%+1, forO<t<1

12
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Hence, the solution in the first step interval e by:

2
y (1) = dy(t) = t+%+1, for0<t< 1

In order to find the solution in the second stdpnval [1, 2], we proceed

similarly as in the first step with initial conct

2
b1 (1) :t+%+1, for0<t<1

and hence:

y'(t)=¢1(t-1)+t,for0O<t<1
with the equivalent ODB/'(t) = 2t, for 1< t< ¥ with initial condition, y(1)= g
By making changing independent variablew- 1 then w1 [0, 1], so that
' 5
y'(w+1)=2(w+1), y@d- 1)25

and by considering:
z(w) =y(w + 1)

Implies that:
Z(w)-2(w+1)= 0, with z (0)= g w [0, 1]
Taking the Laplace transform of both sides, we have

sZ(s)- 2 (0)= = +
S

NN

where Z(s) is the Laplace transform of z(w) hence:

13
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Z(s)= %+£+_5
S

&£ 2s
Taking inverse Laplace, we have:
z(w)= w? + 2W+g
Hence the solution in the second step interval]1s given by:

z(w) = y(t) = (t = 1) + 2(t- 1>+§

Similarly, we proceed to the next intervals.

Similarly, as in subsection (1.1.2.1) we can uspla@e transformation

method to solve DDE with variable delay:

Example (1.1.6):

Consider the following DDE:

y'(t) =y (t-e')+t, for 0Ost<1
with initial condition

y (t) =¢o(t) =t+1, for-1<t<O0
To find the solution in the first step interval [}, we apply the method of steps,
to get:

y(t)=p(t—e")+t

=1+t-¢€, for0st<1

and this is an ODE of the first order.
Now, taking the Laplace transform produces:

14
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Hy(®)} ={1}+ {t} - e}

1 1 1
SY(9) -y (0 =+ 5=
S s s—-1

and so the Laplace transform of the solution y(t9 iY(s) is given by:

1 1 1 1
Y(s)==—-+—+——
(5) s & & s(s1

Taking inverse Laplace transform, we have:

|1 4 1 42 4 1
y(t) =L {g}ﬂ {S—Z}+ EL {?} L {s(s— 1)}

2
y(t):2+t+%—et,for05tsl

1.1.1.2.2 Second Approach, [Brauer, 1973]:

This approach is to solve DDE’s by using Lapla@ns$form method
directly without using the method of steps. Lapla@sformation method is
extremely useful in obtaining the solution of theehr DDE'’s with constant
coefficients. Let us illustrative this method bynealering the following

example:

Example (1.1.7):

Consider the following DDE:
u(t)=u(t-12)

with initial condition:
u®) = ¢po(t) =t, for-1<t<0

15
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such that u (03 0, U'(0) =1

Applying the Laplace transform method to both sidiethe equation, we

get:
sU(s)= j u(t-1)estdi
0

Using the transform z t — 1, yields:

j u(t-1)eStdt= j u(z)es# g
0 -1

0 o
_e® I u(ze Sdz+e® I u(z)e >z
-1 0

0 00
= ¢S j (2)e"%dz+¢eS j u(z) "%z
-1 0

Since u(zFz, for-1<z<0.

Finally:

U(s) = {‘?1-2_24?1}{ - 1és} ................................................. (1.8)

From equation (1.8), it follows that:

-1 €% 1 1
U(s)= {?_5_24-?} [s— e_s}

and upon taking the inverse Laplace one can fiedstiution u(t), where it is so

difficult to obtain, which in force us to prefering the numerical method.

16
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Now, after we started the basic needed about dbfegrential equations
we shall start the next section, with another inguur type of differential
equation, which is so called fractional order diéf&tial equations abbreviated by
FODE's.

V.Y FRACTIONAL CALCULUS

1.2.1 Basic Concepts:
Understanding of definitions and use of fractiocalculus will be made

more clear by quickly discussing some necessary reldtively simple

mathematical definitions that will arise in thedjwf these concepts.

1.2.1.1 The Gamma Function:
The gamma function is intrinsically tied to fracta calculus by

definition. The simplest interpretation of the gamrunction is simply the
generalization of the factorial for all real number
Also, gamma function (z) plays an important role in the theory of

differintegration the term *“differintegration” mearderivative or integral to

arbitrary order. The definition of the gamma fuoatis given by

M(z)= Ie‘“ WAL, FOr all Z> 0, (1.9)
0

and integrating by parts, yields:
MN(z+1)=4 (z), when z1 [J

If z = n, where n is a positive integer, then:

O rMn+1)=nl

(ii) F(z+%j: (22- 1)!r(—3, wherer(%] = Jm.

2n

17
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1.2.1.2 Definitions:

Riemann's modified the Cauchy's formula for an Id-fimtegral of a

function f, to get its own definition of fractionadtegral operator:

££ Ilf(xn)dxndxn—r”dxlz (nil)!-i(x f_(tt))l_n t oo, (1.10)

By n-fold here means that the integration is degibyp-times. Since (r 1)! =
"(n), Riemann realized that the right hand sidelot@) might have meaning

even whem takes non-integer values, [Samko, 1993].

Thus perhaps it was natural to define fractionsdgration as follows:

Definition (1), [Gorenflo, 1997]:

Let f(t) O L4[a, b], 00 *. The fractional (arbitrary) order integral of the

function f(t) of order q is defined as:

t
19F (1) = %I(t )T (S)AS oo (1.11)

when &= 0 we can write) % (t) =1 (t) =f(t) Op{t) , where:

S 0

—, Jor t >
¢q(t) =47 (a)

0 , for t<O0

and “*” denoted the convolution operator.

18
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Definition (3), [Gorenflo, 1997]:

The fractional derivative Dof order gL! (0, 1] of the absolutely

continuous function f(t) is defined as:

D 3f (t) :%|g‘qf(t),t LA, D] e, (1.12)

1.2.1.3 Riemann-Liouville Fractional Integrals and Fractional Derivatives,
[Kilbas, 2006]:

We give the definitions of the Riemann-Liouvill@aétional integrals and
fractional derivatives on a finite interval of theal line and present some of their

properties in spaces of continuous functions.
Let Q = [a, b] be a finite interval. The Riemann-Liouvilfeactional

integrals f fandl] of order qJ0 (Re(q)> O}, are defined by:

f (t)dt
(13f)(x) = J(x>a,Re(q)>0) cceceeeiene, (1.13)
: r@ £ (x - t)td
and
f(t)dt
(13F)(x) = g (X<DRe(@)>0) ccooooocciiiii (1.14)
P r(a) f ) (t-
These integrals are called the left-sided and itflet-sided fractional
integrals.

The Riemann-Liouville fractional derivative®! agnd D py of order

g 00 (Re(q)> 0) are defined by:

19
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n

(aDSY)(X) = (I a Y)(X)

1 d" J‘ y(t)dt (n=[Re(q)]+ 1,x> a,n~ X & n

S T(n-a)dx" ) (x- HF L

and

(xDpy)(X) = (= 1) (In y)(x)

n b
= (- S [ YU (n= Re(@l Lx< b
(x

:m dx" —)a
..................................... (1.16)
where [Re(q)] means the integer part of Re (q).
In particular, when g n 00 , then:
(DaY)(X) = (Dpy)(x) =y(x), (D5y)(x) =y (x),
and;
(DRY)X) = (=D"Y™(X), (MO0 ) e, (1.17)

Wherey(”) (x) is the usual derivative of y(x) of order n.

1.2.1.4 Properties, [Kilbas, 2006]:

In this subsection, we are presenting an impongpaoperty of fractional

derivatives:

20
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Let Re (q0, m O O . If the fractional derivatives (DJy)(x) and

(DI ™My)(x) exist, then:

(DTDIYY(X) = (DI ™MY)X et (1.18)

g+m

If the fractional derlvatlve$D y)(X) and(Dg y)( x) exist, then:

(D™DEYI(X) = (=)™ (DFTMY)X e, (1.19)

Now, some additional important properties of thacfional order

differential operator D are presented for completeness purpose, [Oldham,

1974j:
1. The operatorD{q of order g= 0 is the identity operator.

2. The operatorD{ is linear, i.e.,
Dy (caf (1) +c20(D) = G D (1) + c,D g (1)

where ¢ and ¢ are constants.

3. DY) fi()=> DIfi(t).
i=1 i=1

1
4. () DY@)= t79.
() Dy{(1) Fa-q)
(i) D¢ (c) ri-q)
Np+l) .,
DF(tP) = ————tP"4.
e Y

21



Chapter One Fundamental Conceptsto Delay and Fractional
Order Differential Equations

1.2.2 Analytic Methods for Solving Fractional Order Differential Equations,
[Oldham, 1974]:

In this present subsection, some analytical methavdsproposed for

solving fractional order differential equationsgdaamong such methods:

1.2.2.1 Inverse operator method:

Let f be an unknown function and let g be an aajtreal number, F is
known function, then we can construct the simpleltall fractional order

differential equations by:

—-q

where it is clear that it is not always the casa they are equal, but this is not

the most general solution, [Oldham, 1974]:

additional terms must be added to equation (1.2Which are

X7, ,cx¥™ and hence:

d™ 9 g - - _
! =cx9 4+ eox972 + L+ x4
dx ™ dx

f
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where g,c,,...,G, are an arbitrary constants to be determined frioeninitial

conditionsand g m<q + 1.
Thus:

a-m_ 479 d9 . d7d

f—cx9t—cox972 - ~c,,
dx 9dx%  dx™@

Hence, the most general solution of eq. (1.20)vsrgby:

d - _ -
f = Fropxdt+c,x972 4+ +cxd™Mm
dx

where0<gm<q+1.

As an illustration, we consider the following exdelp

Example (1.2.1), [Oldham, 1974]:

Consider the fractional order differential equation

with the initial condition:

1

d2f(0) _
1T

dx?2

Ko

3

2
Applying d—3 to both sides of equation (1.22), we get:

dx_5
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3
d 2x5 1

f(x) = 3 +C1X2
dx 2

and from the initial condition, we hawg = k—% , therefore:
it
2
13 1
F(6)x2  kgx?

=+
o) o)

f(x) =

1.2.2. 1. Laplace transform method, [Oldham, 1974]:

In this subsection, we seek a Laplace transfornﬂq{)fdxq for all g and

differintegrable f, i.e., we wish to relate:
dof | % dd%
L <——¢=|expFsx)— dx
{dxq} -([ Pt dx?

to the Laplace transforitff} of the differintegrable function. Let us firgiecall

the well-known transforms on integer-order derweast

dof 1k d*(0)
L i——t=siL {f} =) HHK g=12,..
{dxq} ¥ k=0 dx“

and multiple integrals:

L o =sIL {f}.4= 0/ 1.. o, (1.23)
dx?

and note that both formulas are embraced by:
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d% | _ 4 d" k)
L {@}—s L {f} - Zs Tk 4=0,FL.0, e, (1.24)
Also, formula (1.24), can be generalized to inclade integer 41 [] , as:
daf + «d74(0)
L —¢t=sIL {f}l-)» s yforall g, 1.25

where n is integer such thannl < q< n. The sum vanishes when<c0. In

proving (1.25), we first consider g < 0, so tha BRiemann-Liouville definition:

d% _ 1 T f(y)

dy,q< O
dxq I—(_q)o[x_y]q+l y q

may be adopted and upon direct application of tbavaelution theorem
[Churchill, 1948]:

1 {Tfl(x ) 2<y>dy}=L (3L {3

Then gives:

dif | 1 -1-q — a0
L{dxq}—r(_q)L{x LA} =5 {f},9<0 (1.26)

For positive non integer g, we use the result, faid, 1974]:

dif |_ d" | d9"f
S ETEM o

d9f _ d" d9 s
dx4 dx" dx@ "
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where n is an integer number such thath< g< n. Now, on application of the
formula (1.24), we find that:

q n Gn
el e e
dx“ dx"| dx® "

-n n-1 n-1k
=s"L {dq f}—ZSkd - {dq_nf}(m

dxd" ] A& dx™ K dxT "

The difference g~ n being negative, the first right-hard term may be
evaluated by use of equation (1.26), sineerg< 0, the composition rule may be

applied to the terms within the summation. The ltesu

follows from these two operations and is seen tinberporated in (1.25). The
transformation (1.25) is a very simple general@atof the classical formula for
the Laplace transform of the derivative or integrfa. No similar generalization

exists, however, for the classical formulas, [Oliha974]:

—f1_diL A}, d 7L .
e e
o 2L {f}
L {-xf} o
el d'L R}
L{[ x]f} L2 (1.28)

As a final result of this section we shall estdblise useful formula:

de
L {exp(— kx)ﬁ [fe ]}: [s+ KFL {f1,9 SO evveeiiieiee, (1.29)
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in which equation (1.26), may be regarded as aiapease, when k 0 in

equation (1.29).

As an illustration, we consider the following exdelp

Example (1.2.2):

Consider the semi differential equation:

1 -1 3

2 2 5

Q200 , 2 109, o )_L+6 ;'\)/(ﬁ+2x+4 ............... (1.30)
dx2 dx2

and in order to solve this equation using Laplaaesformation method, first we

take the Laplace transformation to the both sidesjoation (1.30):

1 -1
d2f(x) d 2f(x)
1 -1

L +2L {f(x)} =

O RAA- N

+L
dx?2 dx 2

3
4 =
+——L «x2:+2L {xt +L
3Jm { } SRS
use equation (126), leads to:

28+ 3s+ ¥ 2/ 3 4¢
S (s+ 1+ 2/ s)

_ (2s+ D+ (s+ ¥ 2 s
S (s+ 1+ 2/ s)

!
s &

L (F)=

[N

Then upon using the inverse Laplace transform, aveh
f(x) =2 +x
as the solution of the fractional order differehéiquation.
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CHAPTER THREE

ANALYTIC AND NUMERICAL SOLUTIONS FOR
SOLVING THE FRAGTIONAL ORDER-BOUNDED DELAY
DIFFERENTIAL EQUATION

In this chapter, some analytic and numerical methae presented in
order to solve the fractional order-bounded deldfgr@ntial equations, such as
the Laplace transform method and linear multistegthiwds, numerical and
approximate methods are used here, because soe®duunh types of equations
has a few difficulties in their methods of solusenvhich could not be handled

easily.

The numerical solution of a differential equatianaconsist of a set of
tabulated values of the dependent variable y togfaired number of significant
figures or, more particularly in some real time laggtions, the solution can be
produced directly on a video screen in the frora gfaph.

However, it is important to recluse that the nuwewrisolution of a
differential equation is essentially a set of nurshghich are approximations to
the true solution at the corresponding valugsxx X,... of the independent
variable x; in general these points are equidistantthat x = x. + nh. The

distance between any two successive points is:
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Xn+1—Xn =X+ (n+1)h—- Xg— nh
=h
and the value of h is referred to as the step width
This chapter consists of four sections. In sec8dh we introduce the
analytic solution of fractional order -bounded gethfferential equations using

Laplace transform method, while in section 3.2 welg basic concepts of the

numerical methods (general one step method, limedistep methods).

In section 3.3 the solution of fractional order-bdad delay differential
equations have been introduced using numericaladsttvhich are presented in
section 3.2, finally in section 3.4 an illustratiexample is given in order to

compare between the exact and approximate solution.

3. 1ANALYTIC METHOD FOR SOLVING FRACTIONAL
ORDER-BOUNDED DELAY DIFFERENTIAL EQUATION

Several analytical methods are proposed for sol¥ragtional order-
bounded delay differential equations, and amondy suethods which we are
used here in this work the Laplace transform method

3.1.1 Laplace Transformation Method:

To explain the implementation of Laplace transfarora method for
solving fractional order-bounded delay differentejuation we consider the

following examples:
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Example (3.1.1):

Consider the FOBDDE:

yUD() +ty(t 1)+ y(t) =—o— t3/ 2+ t(t-1)2+ t2
Tt

cNAY

with initial condition:
y(t) =t

In order to solve the above FOBDDE using Lapla@ndformation

method, first we take the Laplace transformatiohdth sides:
L {y¥ 2@} +L {y) ==L 33 +L ¢ §
3m

Y(s){1+\/_s} :55—2’2+ 2

S3

2(1++/s)

Y(S) = S3 (1+ \/_S)

taking inverse Laplace transform. The solution is:

y(t) =t

Example (3.1.2):

Consider the FOBDDE:
y 2ty +y(t-1) + y(t) = sin( t+gj + sin(t= 1+ sin(t

with initial condition:
y(t) =sin(t)

y2(t) +sin(t- 1)+ y(t)= sintco%— siFE cost sinft 1) si)
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in order to solve the above FOBDDE using Laplaaegformation method, first

we take the Laplace transformation to both sides:

L {y(”z)(t)} +L {y@®)} =L {sintcosl—-:}—L {sing cos}HL { sin(t

1 s 1
Y(S){lh/_s} s +1\/_ 2241 2+
_ 1-s++/2
RN TS
taking inverse Laplace transform, we have:
_ -1 1—S+\/_2
o=t {ﬁ(sz + 1)1+ fs)}

Example (3.1.3):

Consider the FOBDDE:

1
YD) +y(t-1)+ y() ==+ e —t—( . +d 04 g
Jnt T (1j
2
with initial condition:
y(t) = €'
)
y(1/2)(t)+e(t—1)+ y(t)_\/ﬁ + et£ _t 2) 4 drDy d

2

42



Chapter Three Analytic and Numerical Solutions for Solving the
Fractional Order-Bounded Delay Differential Equatio

in order to solve the above FOBDDE using Laplaaegformation method, first

we take the Laplace transformation to both sides:
(1/2) _ 1 -y, 1 3/2
L{y (t)}+L{y(t)} \/EL{I }+n|_ {e't }+L{e}

1 1

1 4
Y(S){1+\/_5} :$+ 3Jﬁ(s—1 ’2+s—1

3n+ a/s+ 3/m/ s(s D2
3Wm/s@+s)(s D2

taking inverse Laplace transform, we have:

4| 3+ a/s+ 3/m/s(s B2
/s s)(s- B2

Because of the difficulties, in obtaining the Laj@anverse in some problems as

Y(s)=

y(t) =L

in the preceding example, we are using the nunlernwzthods, which are

discussed in details in the next section.

3.2BASIC CONCEPTS

In order to present, the numerical solution forvew fractional order
bounded delay differential equation, we need tee gome basic concepts of
general one-step methods, and general linear rstégp methods, and with their

derivation.

3.2.1 General One-Step Methods:

In this subsection we will describe a general ostep- methods and
hopping that we can use these formulas in ordesotee the fractional order

bounded delay differential equations in the nekissgtions.
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In one-step method, only the current valyeof/the solution is used in
calculating the next value,y. Examples of one-step methods are Euler’'s
method and the Runge-Kutta methods, both of whrehd@&scribed in section
3.2.1.

3.2.1.1 Euler’'s Method, [Lambert, 1973]:

The simplest 1-step method available for the irstegn of the first order

differential equationg—y =f(x, y), uses the relation:
X

Vel =Y F (X, Y1) e (3.1)

in this formulation = xo+nh (n=1, 2, ...), where xis an initial given value of
x and h is the step width, while {y constitutes the set of numbers which
approximates the set {y(}, which represents the value of the exact solutm

the initial value problem defined by:

dy
—Z =f(x,y),yY(Xn) =
™ (X,¥),¥(Xg) =¥o

the relation (3.1) can be seen to be derived frioenTaylor expansion for the

exact solution for the corresponding values of x:

2 3
Y (nen) =YK1) + Y () + 2y (X )+ (X )+

where:

, d
Y(Xn):d_:: =f(XnYn)

X=X,
Y=Yn

from the differential equation.

If all terms involving A and higher powers are ignored, then:
Y(Xn+1) =Y(Xp) +hf (X, ¥ )
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3.2.1.2 Runge-Kutta Methods, [Lambert, 1973]:

Euler's method has a simple geometrical interpi@tatsince the more
from y, to y,+1 Occurs in the direction of the gradient calculasedx,, V). the
general class of Runge-Kutta methods attempt prawe upon this by using a
weighted mean of the gradients at a set of poxtsy] in the neighborhood of
the points (¥, V).

A particular feature of these methods in that tfetilem selves involve
the evaluation of the function f and thus considgramore calculation is
involved per step than in Euler's method. But thesthods are used extensively
in numerical applications mainly because they newd special starting
arrangements, the step width h can be changed eamll storage requirements

are minimal.

In order to get a formula of the modified Euler.eT@lerivation of the
second- order scheme of the Runge-Kutta methodawll be derived.

The idea is to express.y as a linear combination of the form
Y(Xp41) SY(X ) FaK i+ bKot @ (3.2)
where:
K1 =hf(Xpn,y(Xp))
K, =hf(x,+6h,y(x,)+ K,
and a, b@ and ¢ areparameters whose values are to be calculated ar tnet
the error e in (3.2) be of ordet h

The calculation is done by expanding both sideJaglor series and

making use of the differential equation:
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2
y(xn+1>:y(xn>+hy(xn)+%y'<xn)+...

h (of . of
= y(Xa) +hf (X, V(X)) +—d — +f —
y(Xp) +hf (X, y(Xn)) 2!{6x ay}xn

Ky =hf(xp, y(Xy) =hf,
Ko =hf(X, +8h,y(x,) + Ky

of of 3
= hf (X, y(Xp)) + 8h® — + hp K;— + o(h
(Xn,Y(Xn)) W hblay (h*)
if the coefficients of powers of h are now equate(B.2)
h:1=a+b

h?: % = bg; = = b
2 2

Three of the parameters can be expressed in tefrtte dourth, thus

giving the resulting formula:

1 h
yn+1=yn+(1—2—ej g+ g f (X +Bh.y o+ BhF )

where ¥ = y(x,) and f,= f(X,, y(X,)), a particular value 06 lead to well known

case.:
1 1 1
9:51 Yn+1 =Yn +hi(x +§h1y+§hfn)

which is the modified Euler method.
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3.2.2 General Linear Multi Step Methods, [Atkinsoh985]:

In this subsection, we establish some basic notsfiobat will be used in
order to solve the fractional order bounded deldfer@ntial equation. Let y(t)

be the exact solution of the initial value problems

"(t)=f(t,y(t)), ast<b
YO =F(ty) } ........................................................ (3.3)
y(@)= Yo
An approximate solution y at only a discrete satades, say:
ASt < b < . < ES D (3.4)

In this work, we will be taken these nodes to bently spaced:
t,=a+nh, 0,1, 2, ..., N.

The following notations are all used for the appmate solution at the
node points yto obtain a solution y at points in [a, b]. Ottiean those in (3.4),
some form of interpolation must be used. In thesgné stage, such problems

will be not considered.

The linear multistep method will be used to compyte as an

approximation to y() as a linear combination ofyand f., Jj=0, 1, ..., k.

This method is called Linear Multistep Methods (LNbf step number
k, or a linear k-step method.

The general form of LMM may thus be written as:

k k
D 0 Yt T By faf ceveereeeereeeiemies e (3.5)
j=0 j=0

for some fixed numbers,, a4, ..., Oy, Bo, By, .-, Bk
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It may happen, of course, thag or 3y is zero, but we assume that this is
not the case for both of them. Also since equat#h) can be multiplied on both
sides by the same constant without altering thetiogiship, we can assume that

oy=1.

As a classification to the LMM, whefi, = 0, the method is called
explicit or open whe8, # 0, the method is called implicit or closed, silyg&
occurs on both sides of equation (3.5) and is detexd only implicitly.
Depending on f(t, y) to be either linear or norean function, [Lambert, 1973].

Definition (3.1):

The Local Transaction Error (LTE) (denoted by Téfided as:

k k
T = Yo y(t, +h) =hY B f(t, +ih, y(t, +5h)) e, (3.6)
i=0 i=0

In order to evaluate the constantg C,, ..., G, expand y( + jh), y(t, + jh)

using Taylor series expansion abgubhe get

j2h2 j3h3

Y(tat J) = y(t) +jhy () + “= =y () + T =y () +
j2h2

Y (titih) =y () + Iy () + = =y (t) + oo

Hence substituting in the LTE:

k
T= Z(O(j y(tn +jh)_hI3j f(tn +jhry(tn +Jh))

=0
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2;:2

K - a;h®j
= (o y(t,) +ajhjy'(t,) +

=0 2

Y(t,) ..o

.2
hB; ¥ ()= iBh° Y (1) - S B Y ().

K H ] Jza H /]
= Z o; y(t,) +(ja; _Bj)hY(tn)"'[Tj_JBj]hzy (t,) +J
j=0
=Coy(t) + CLhy(ty) + ... + GHPYP (t) oveeiieieieeeeeeee, (3.7)
where:
Co=0ap+ay+ ... +0y
Ci=ar+ 20+ ... +kap—Bo+Br+B2+ ... +By)
1 _ _
Cp= —!(a1+2'° Oxt...+KP ap) - 0 _l)!([31+2'° Bot...+kP By
p=2,3, ....

Definition (3.2), [Lambert, 1973]:

The order of LMM is pif, in (3.7)
Co=Ci=... :Cp:O but Q,+1¢0

Definition (3.3), [Lambert, 1973]:

The LMM is said to be consistent if it has an orger1l, i.e., consistent

methods implies = C,=0 but G# 0, or:
k k

szo and Z]GJ:ZBJ
j=0 j=0

49

k
j=0



Chapter Three Analytic and Numerical Solutions for Solving the
Fractional Order-Bounded Delay Differential Equatio

Definition (3.4), [Lambert, 1973]:

The first and second characteristic polynomialsLMM (3.5) are
respectively, gives by:
k

p) = > ajrl =ag+agrt +. oy
=0

k
k .

o(r) = ZBer =By + Byt +...+ Byrk.
j=0

Definition (3.5), [Jain, 1984]:

The LMM is said to be convergent, if, for all imitivalue problem (3.3)

subject to the hypothesis of the existence andugmegss theorem, we have that:

lim -y, =y(t,)

nh=t,-a

holds for all t [a, b], and for all solutions {) of the difference equation (3.5)

satisfying starting conditions, ¥ yo.(h) for which LimO Yodh) =V¥o, V=0, 1, ...,

k-1.

Definition (3.6), [Atkinson, 1989]:

The LMM’s is said to be zero-stable (O-stable)llitlae zeros (roots)’s,
j =1, ..,k of p(r) = 0 satisfy |f < 1 and if y is a multiple zero op(r) then
5l < 1.
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Theorem (3.1), [Atkinson, 1989]:

Assume the consistency conditions, then the LMMasvergent if and

only if its zero stability is satisfied.

Example (3.3.1):

Suppose we have a one step implicit LMM

h
Yne1— Yn = E (fn + fn+1)

e, k=1,00=-1,0,=1,3=

, B1

NI~

1
2

To test the convergence, the roots be evaluatet by using the first

characteristic polynomigd(r) of LMM, which is:

k .
p(r)=> a;r' =a, +ayr
j=0
therefore
p(r) =-1+ Ixr

which has the roots £ 1. Then by using the definition of the zero-stahil

Hence the method is zero-stable.

To test the consistency for the method, one have:

1
Coz ZO(J-=—1+1= 0
j=0

1 1
Ci= ) jaj=) B
i=0 i=0
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Ci=a;-Bo—Bs
= —E—E:O
2 2

Therefore, the method is consistent, and as a trdkel method

convergent.

3.2.3 Derivation of Linear Multistep Methods, [Laneit, 1973]:

In the days of desk computation, it was commonractiice to write the
right-hand side of a LMM in terms of a power serddifference operator. A
typical example is

1.1 1.3

yn+1_yn:h(1_ED_1—2D2_?4D ...jfn+1 ................................. (38)

Truncating the series after the second term, gives:
1
Yne1— Yn= = h (fer + 1),
2
which is the Trapezoidal rule.
While truncating of third term, gives
1
Ynt1 = Yn= E h(5 fs2+ 8 f1- fr)
a method which is equivalent to the two-step AdamegHton method, is:
h
Yne2 = Yna1 = E (5 fn+2 +8 fn+1_ fn)

One reason for expressing a humerical algorithia form such as (3.8)
lay in the technique common in desk computationnaiiding higher difference
of f if they became significantly large at somegstaf the calculation. This is

equivalent to exchanging the LMM for one with ahleg step number. Although

52



Chapter Three Analytic and Numerical Solutions for Solving the
Fractional Order-Bounded Delay Differential Equatio

this will not affect the zero-stability (which is fnction only of the first

characteristic polynomial p(r)).

Other stability phenomena which are functions of tlsecond
characteristic polynomiat(r) as well as of the first, and these will be afésl in
higher differences of f are arbitrarily introducetihus the practice can be

dangerous unless supported by adequate analysis.

In any event, when a digital computer is used migh more convenient
to computer with a fixed LMM and alters the stepdth if a demand for greater
accuracy required at a later stage of the calawlatlhe existence of formulae
like (3.8) has resulted in family name being givenclasses of LMM'’s, of
different step number, which share a common form finst characteristic

polynomialp(r).
Thus methods for which p(8 r*- r“* are called Adams methods.

They have the property that all the spurious robts are located at the

origin, such methods are thus zero-stable.

Adams methods which are explicit are called AdarasHBorth methods,
while those which are implicit are called Adams-NMono methods. Explicit
methods for whichp(r) = r — r*? are called Nystrom methods, and implicit
methods with the same form fprare called generalized Mile -Simpson methods
both these families are clearly zero-stable, sthey have one spurious root at

-1 and the rest at the origin.

Clearly there exist many LMM’s which do not belotm any of the
families named above.
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It is important to notice that, there are otherhmods for derivation of
LMM, which are by using Taylor expansion method awdnerical integration,
see [Lambert, 1973].

3.2.4 Derivation of two-step Adam-Bash fourth MethgLambert, 1973]:

To begin the derivation of the Adam-Bash fourth wstep methods, note
that the solution to the initial-value problem

y' =f(x,y),asx< by@=a
if integrated over the interval [xx,.1] has the property that:

Xn+1
Y(ns1) = Y(Xn) = [ F(x,y)x

Xn

Since, we can note integrate f(x, y(x)) without g y(x), the solution
to the problem, we instead integrate an interpadapolynomial which is the

Newton backward-difference formula. Hence:

Xn+1
Y(Xn+1) —Y(Xp) = j (1+ t0 +t(t—;1)52 + ] f.dx

Xn
where x = x+ th

Changing of variables, and integrate, we get tHeviing result:
1 5 -
Y(Xn+1) —Y(Xp) = h{l"'ED +1_2D + } fn
truncating after the second term, we get:
_h
Yn+17Yn —E[an_f n—]]
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which implies

h
Yn+2_yn+1:E[3fn+1_f ]

which is the two-step Adam-Bashfourth method.

3.3 NUMERICAL SOLUTION FOR SOLVING FRACTIONAL
ORDER BOUNDED DELAY DIFFERENTIAL EQUATION

In this section the numerical formulas which we @diszussed in section
3.2 are used here in order to find the numericlaitiom for solving the fractional

order bounded delay differential equation as foiow

3.3.1 Euler’'s Method for solving FOBDDE's:

To use the Euler's method to solve fractional ordeunded delay

differential equation, the following approach idaved:

Consider the FOBDDE's:

y () =f(t, y(1), y(t - 1))
y() =¢(t),to—T<t<tg
and since Euler method reads as follows:
Yne1=Yn*+hyn+O(H)
=y, +hD"9D%, +O(h?)
=y + D% (tp, y(ty), y(t, 1))+ O(h?)
=y + D% (ty, y(ty).0(t,~ 1)) + O(h?)

where Dl_qf(t,y(t),(])(tn—r))+O(h2) could be evaluated easily by using
fractional calculus.
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3.3.2 Modified Euler's Method for Solving Fractiorlaorder Bounded Delay
Differential Equation:

As, we do in the subsection 3.3.1, the same aphbradtbe considered
in order to use the modified Euler's method to edlwe fractional order bounded

delay differential equation as follows:

Consider the FOBDDE's:

y D) =f(t,y(),y(t-1)
y(t) =9(1). to - T t< g

Recall that the modified Euler’'s method written as
Yn+1=YnthKy

whereK; =f(t,y ) andK, =f(t,+1/2h,y,+1/2hK;). Hence:

yn+1=yn+hK*2

where:
K’y =D % (t Y py(ta=1),
K =D % (t , +1/2h,y, + 1/ 2hKq, y(t,— T )+ 1/ 2hK; ]

where K, and K, could be evaluated directly by using fractiondtuhus.

3.3.3 Two-step Adam-Bashfourth method for solvirrgdtional order bounded
delay differential equation:

The following scheme is look likes the previous qadures in
subsections (3.3.1) and (3.3.2), therefore:

Consider the FOBDDE's:
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y D) =f(t,y(0),y(t-1))

y(t) =o(t),to —T<st<tg

Recall that, two-step Adam-Bashforth method areemivin the
subsection (3.2.4) as

h
Yn+2 _Yn+1=§[3Ym 1~ yr]

Hence:

h - _
Yn+2_Yn+1:E[3D1 CII:)q3’n+1_ D* chg’n}

yn+2_Yn+1:g|:3Dl_qf(t Yt Yt e £T)-
DK (1 (V) Y =) |

where DY (tn,1,Y(ths1),Y(thsr = T)) and DY (t,,y(ty),y(t, 1)) are

evaluated easily by fractional calculus.

34ILLUSTRATIVE EXAMPLES

In this section, an illustrative example will bevgm as a comparison
between the numerical methods and focus on the fowagpproaches used in
solving this new field in differential equations,hiwh is a fractional order
bounded delay differential equations.

Example (3.4.1):

Consider the FOBDDE:

YD) +y(t—1)+ y(t) = —o— t3/2+ (t—1) 2+ t?

3Vn
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with initial condition:
y(t)=t%, -1<t<0

In order to solve this equation, we given the fwilog alterative form:
y = Dllz{—y(t) gt -1)+—S 324 (1-1)24 tz} ........................ (3.9)
3Vn

the numerical methods will be used here with siepls= 0.1.
Using Euler's method on the interval [0, 1], eqoati(3.9) will be

written as:

y' = -DY2y(t) - DY (1 -1) + 8 DY%3/2, pY3t-1) % p 12

3Jm
and upon using the initial condition
y(t)=t%,-1<t<0
in order to evaluate By(t — 1), we get:

y,:_D1/2y(t)_D1/2(t_1)2+ 8 D1/2t3/2+D1/%t_1) 2+D 1/?

3n

hence, by using fractional calculus we get:

Y S V() F 2L =12 oo, (3.10)

recall that Euler method was given as

Y1 =Y + DY 2 (0, Y, V(En = T)) oo (3)11

then from equations (3.10) and (3.11):

Yn+1 =Yn thly, +2t, _tzn]
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and for the interval [1, 2], we shall used a linapproximation for evaluating
Dllzy(t —1) in equation (3.9) depending on the informationjohwe get it in

the interval [0, 1], therefore equation (3.9) viad written as:

y =y(t)+y(t-1)- 212 + At— 1- Dllzy(t_ 1)_i dr2,

I
- St B

then from equation (3.11) and (3.12):

yn+1=yn+h{ y(t)+y(t,—1-2t2+ 4t — - OV ?y(t,~ 1)

4,12, 1, -u2, 8 . 30

—t
Jn ' Jm” N
Similarly, (Rung-Kutta method, modified Euler medf)aan be applied
on the interval [0, 1], which has the form:

Yn+1=Ynt+hK>
where:

K1:yn"'2tn_tn2

2
1 1 1
Ky,=y,+=hK;+2| t,+=h|-| t,+=h
2=Yn 51 (n 2} (n 2}
while for the interval [1, 2] takes the form:

Yn+s1=YnthK;

where:
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K1:Yn+Y(tn_1)_2tn2+4tn_1_ Dl/ZY(t 1/2

- 1)-
\/_
1. 12, 8, 32

—t +—t,
Ja " 3m "

and
1 1 1.)? 1
Ks=y,+=hK,+y(t,-1)+=hK,-2|t.+=h| +4 t.+—=h|-
ZYn21Y(n)21(n2){n2j

1/2 -1/2
1- DY 2y(t, -1)- \/_(t+1h] +1(t+_1h] +

N
3/2
%(t + 1hJ

Finally, two-step Adam-Bash fourth method also banapplied which

has the following form on [0, 1]:

h
Yn+2=Yne1t 5 [3(yn+1+2tﬁr1 tr+1) (y g 2t _tn)]

while for the interval [1, 2]

h
Yn+2 :yn+1+§[3(Yn+1+ y(t §a 1_1)_ 2t A %"‘ a4t m I 1- Dl/zY(t AT 1)

4 1/2 1 ~1/2, 8 3/ 2
—t +-—t +——t —(y oty 5 )—2t 2+
\/ﬁ n+1 \/ﬁ n+1 3\/?[ n1 % (yn y( n—i n
1 £ -12, 8 £ 312

4 12
-—t Y24 = —
) \/?[ n \/?[ n 3\/1__[ n

The numerical results are illustrated in table a4 follows:

4t, —1- DY 2y(t, -
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Table (3.1)

The comparison between the numerical results of exde (3.4.1).

Euler method

Runge-Kutta
(Modified Euler )

Adam Bash fourth
method

61




Chapter Three Analytic and Numerical Solutions for Solving the
Fractional Order-Bounded Delay Differential Equatio

Example (3.4.2):

Consider the neutral FOBDDE:

YUy +y (t-1) =5 3124 2(t- 1)
Tt

3T

with initial condition:

y() =5, -1<t<0
and carrying similar calculations as in exampled., we get the results
presented in table (3.2).

Table (3.2)
The comparison between the numerical results of exde (3.4.2).

Euler method | Runge-Kutta (Modified Euler)  Adam Bafjurth method
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CHAPTER TWO
EXISTENGE AND UNIQUENESS THEOREM OF

FRAGTIONAL ORDER-BOUNDED DELAY
DIFFERENTIAL EQUATION

In this chapter, a new type of differential equatis formulated by
mixing two well known types of differential equat® which are the fractional
order differential equations and bounded delayediffitial equations. This type
of equations will be called fractional order-bouddtelay differential equations
“FOBDDE’s” and has the following form:

YOO = (6, Y(91(1), -, V(g (1))

where ¢t) is a retarded argument , i.g(tgst for j=1,....m,+ <q< 1. With

the initial condition:

y(t) =96(t), for -1<t<0
where® is a given initial function mapping{, 0] 0 - D.
and the following problems may be consider:

1- The solution existence and uniqueness theoremeddubh type equations,

Is discussed in this chapter.

2- The analytical and numerical solutions for solveugh type of equations,

are discussed in the next chapter.
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2.1 BASIC DEFINITIONS

Some needed definitions and notations that usqudee the existence

and uniqueness theorem of FOBDDE are

Many practical problems give rise to bounded déferal equations
having constant or not constant delays.

y'(t) =f(t, y(91 (1)), (g (1))

t-t=<g;(t)<t, t=0

for some constartt= 0, then the initial condition

y(t) =06(t), for -t<t<0

The set C(t,0], 0 ") of all continuous functions mappingt} 0] 0 -

0" will be denoted byl and if A is any set il ", we will let

0, =C([-1,0],A).

Definition (2.1), [Driver, 1977]:

For a functiong 00 , it is convenient to define a measure of magnitude

of ¢ by|[¢], = sup0||¢<6>||

-r<o<

In the special case when®0", 0 =0 is a linear space and |} i|a

norm onC] .this means that || . $jatisfies the following conditions:

1- |¢[, 20, forall ¢ OO .

2- |¢]| =0 = ¢ =0(the zero function).
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3- |cdf, =|d|4],. forall $ 00 and all ¢IR.

4- |6+ <|d|, +|8| . for all ¢, 00 (the triangle inequality).

(we shall refer to || ; fs the r-norm).

2.2 EXISTENCE AND UNIQUENESS THEOREM FOR
FRACTIONAL ORDER-BOUNDED DELAY
DIFFERENTIAL EQUATION

In this section, we shall state and prove the em and uniqueness
theorem of fractional order differential equatiagaghe case of delay differential

systems with bounded delays.

Consider a FOBDD system, such as:

YD) = (6, Y(G1(1)s Y (G (1)) coveeereeee e, (2.1)

We shall assume that
t-t<gj(t)st, fort=0,j=1,2, .., m0<q<1
For some constartt> 0.then the initial condition takes the form

V(1) ZB(L), FOr =TS T 0o (2.2)

We assume that f is defined onfpxD" 0 — 0" for somep > 0 and some
opensetDI 0",

Equation (2.1) can be rewritten as:

A () = (70 OO (2.3)
whereF(t,y; ) = f(t, y(g (1)),.... (o (D).
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Definition (2.2), [Driver, 1977]:

If y is a function defined at least ontt, t] 0 - 0", then we

define anew function y: [-t, 0] 0 - 0", by:

yi(8) = y(t+38), for—-1<8<0

When we using the notation of equation (2.3), wallshiso rewrite the

initial condition (2.2) .
Equation (2.2) is equivalent to & = 6(d) for —1<d<0 or simply

Yo = 6o introducing¢ = 6, this becomes:

it is important to recognize that (2.4) meand)£ ¢(d) or, by letting t= & then
y(t) =¢(t), for -t1<t<0

and in particular

y(0) =¢(0)

Continuity Condition, [Driver, 1977]:

If F:[0, B)x0Op O O- 0 "satisfied that F(t, y is continuous with respect

to tin [0, B) for each given continuous function:
y:[-t,8)0 - D

then a continuous function
y:[-1,B1) 0 - D, for someB; (0]

IS a solution of:
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(@ 4y =
z q_(g =Rty )} ........................................................................ (2.5)
0=
if and only if:
d(t),-t<t<0
Y 0 R T R T TR (2.6)

t
¢(0)+% £ (t-sf " F(s,y )ds.@ €B;

Definition (2.3), [Driver, 1977]:

The functional F:JO O-0" is locally Lipschitzian if for each given

(t,P) O[0,B)x , there exist numbers a > 0 and b > 0, such that:
E=([t-at+alNI=[0,P) x{wOD : |y -], <b}
is a subset of =[O, B)x p and F is Lipschitzian o§.

In other words, for some number K (a Lipschitz ¢ans depending on

&),
[Ft. W) - F(t. §) < Ky - g,

whenever (ty) and (tip)OE.

Theorem (2.1) (The Existence and Unigueness Theorem):

Let F:[0,8)x0p 0 00" satisfy the continuity condition and let it be
locally Lipschitzian. Then, for each U0 p, there exists a solution to equation

(2.1) on 1, A) for someA >0, and this solution is unique:
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Proof:

Choose any a > 0 and b > 0 sufficiently small, so that:
&=[0,a]x{y00: |w-¢| <b}
is a subset of [B) x5 and F is Lipschitzian o& (say with Lipschitz constant
K).
Define a continuous functiop on [0- 1, a]=[-1, a]0 - 0", by:

o(t),~T<t<0

vy :{¢(0),0s t< a

Then F(ty,) depends continuously on t, and hefieg,y,)| < B, on [0,a] for

some constarf,

Now definef3 =kb+[3; choose g (0, a],such that:

[Vt = ¢ll, =Yt = Vo, b, for0<st<ay
chooseA >0, such that:

1

A< min al,(@jq and[ Ak )<1

rq+1

this condition may be neglected.

Let S be the set of all continuous functions yt [A] O - 0" ,such that:
y(t) = ¢(t) , for-t<t<0
ly(t)-¢(©)|<b, for 0st<A

Note that if yO S and t1[0,A], then:
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[yt =V, <b
so that:
[F(t o <[ty )— F(y )+ F(E )
<k|y; = Ve[ +B, =B
To prove that S is invariant, for eactilyS define a function Ty orr-t, A] by:
(1), -1<t<0
(Ty)(t) =

¢(0)+ mf“ sPLF(s,y )ds, & £A

|F(ty )]t

[(Ty)(®) - ¢ ()< F@+D

Ry A
~ T(g+1)

< pa™
r(q+1)

w— b, forO< t<A
M(g+1)pB

Also Ty is continuous, then Ty S and we can say that T maps Sonto S.

Let us now construct “successive approximation’htegue choosing g U S
and then defining:

Yo = TYor Yo = TYw ---

bear in mind that each,(t) = ¢(t) on [-T,0]. Itis clear that to show that:
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Yo -Yo (t)‘ <2b

t
Y-y 0] sb+ s J s R (o) ¢

<b+ B AY =2b
r(q+1)

|

t
[y -y = j (t=f (s, yp (S)dls = @ j & G Fsy ()
0

r@g

“r@) j(t 99 Fey ©) - Fey o) ©)ds

r()_[(t 99y © - Elds

- 2bkt
RECEX

szb[ % ]
M(q+1)

t
=lr @) 9" Feye &)~ Fevg (s)))d%
0

“Fal j (t=sY"F(s,y2) () F(s.iy (sf)

@) j (=" y2) ) ¥y (] d
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< op KA [ A% J
Mg+ r(g+d

kAY ?
5 Zb( ]
Mq+1)

one can prove by induction that:

/
[Yery =y ®)| < Zb[ ] for¢=0,1,2,..

MNq+1)

Now the series:

°° > ka9 Y
pZ:‘Z)Hy(p+1)(t) - Y(p)(t)H < EOZb( Q- 1)]

o2 kat Y
_sz(r(q+1)]

p=0

q
converges, the convergence comes from the concﬁtli_eflfqﬁ—l)] <1
q

put y(t) = limy(t), which is the desired solution and this complédte t
RN

proof.

Now, to prove the uniqueness, we need the followengma:
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Lemma (2.1), [Driver, 1977]:

Lety: [T, B) O -~ 0" be continuous, then, given aryJ[0,B) and

any € > 0, there exisd > 0, such that:

vt = yi[, <&, whenever@[0,B)and |t - | <3

Now, to continue the proof of the uniqueness, lefGB)x0, 0 -0 "

_qud-1
satisfy the continuity condition andu must be non-negative and

(@)
continuous and let F be locally Lipschitzian, angEose (for contradiction) that

for some, U (0, Jthere are two solutions y and mapping T, 1) U - D,

withy £y
Let:

ty =INF{tO(O,B1) 1 V(1) ZY(E)} woveeeeeiie e (2.7)

then Gt <f3; and
y(t) = y(t),for-1<st<ty

since (i, ytl)D [0,37) x p, there exist numbers a>0 and b>0 such that the set

&=[tyty +al {00 |y -y, | <b)

is contained in [@3) %0 , and F is Lipschitzian o§ (with Lipschitz constant k).
By above lemmalJd0(0,a] such that (ty;) O & and (ty;) ¢ for i<t < t; +90,
moreover, both y andy satisfy (2.4) for -t <t<t, +d.thus, for

ty<t<ty +0
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t
[y(® -y = H%j(t - (F(s, % - F(sy )c{
0

t
k _ ~
< t-s)9 7ty -
< () tJ-l( S) HYS YSHrdS

Now, since the right hand side is an increasingction of t and since

ly(t) = y(t)|=0 for t; —t<t<ty

By Reid’s lemma [Driver, 1977] it follows that(t) = y(t) on[ty,t;+d) which

contradiction for the definition of equation (2.7)m
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CONCLUSIONS AND REGOMMENDATION

From the present study, we can conclude the follgwi

From the results of table (3.1), one can noticé tha Adam-Bashforth
method give more accurate results than Euler’s otetimd Modified Eulers

method.

From the results of table (3.2), one can noticég tha Modified Euler
method give more accurate results than Adam-Basshfarethod and
Euler's method, this is due to the instability lo¢ tAdam-Bashforth method.

The accumulation error resulting in tables (3.1 48.2) for the second
interval [1, 2] is due to the approximation of®(t — 1) and B"%y'(t - 1),

using the linear approximation.

Also, we can recommend the following problems tdufe work:

Studying the solution of partial fractional ordexialy differential equations,

with boundaries conditions.

Studying the fractional order bounded delay diffiticd equation by

converting it into equivalence integral equation.

Studying the stability of fractional order boundetklay differential

equation.
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INTRODUCTION

The concept of fractional calculus is popularlylived to have stemmed
from a question raised in the year 1695 by L’hdpii®61-1704) to Leibniz
(1646-1716), which sought the meaning of Leibn{zisrrently popular) notation

n
ay for the derivative of order ] Ny := {0, 1, ...} when n= %(what if

dx"
n= %?) In his reply, dated 30 September 1695, Leibniatevto L’hopital as

follows: “... This is an apparent paradox from whicbne day, useful

consequences will be drawn. ...” .

We shall introduce some literature survey conchmdelay differential

equations together with fractional calculus.

Delay differential equations were initially introckd in the 18 century
by Laplace and Condorect, [Ulsoy, 2003]. Howevke tapid development of
the theory and applications of those equations rail come until after the
Second World War, and continues till today. Theidb#seory concerning the
stability of systems described by equations of tiyise was developed by
Pontryagin in 1942. Important works have been emitby Smith in 1957,
Pinney in 1958, Bellman and Cooke in 1963, Halandy966, Myshkis in 1972,
Hale 197, Yanusherski in 1978 and Marshal in 1979, [UI2803].

On the other hand, many complicated physical problelescribed in
terms of partial differential equations can be appnated by much simpler

problems described in terms of delay different@laions, [Pinney, 1958].
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The impetus has mainly been due to the developmentsany fields,
such as the control theory, mathematical biologyl mathematical economics,
etc. Minorsky, [Hale, 1977] was one of the firstestigators of modern times to
study the delay differential equation:

y'(t) =f(t,y(t), y(t - 1))

and its effect on simple feed-back control systemshich the communication
time can not be neglected.

The abundance of applications is stimulating ad&@velopment of the
theory of differential equations with deviating angent and, at present, this

theory is one of the most rapidly developing braaschf mathematical analysis.

Equations with a deviating argument describe mamggsses with an
effect; such equations appear, for example, anye tishen in physics or
technology we consider a problem of a force, acnga material point, that
depends on the velocity and position of the poottanly at the given moment

but at some moment preceding the given momentsgglt'c, 1973].

Fractional calculus is a field of mathematical sttigat grows out of the
traditional definitions of the calculus integraldaderivative operators in the
same way fractional exponents is an outgrowth pbeents with integer value,

[Loverro, 2004]

Many found, using their own notation and methodg|adgfinitions that
fit the concept of a non-integer order integratlerivative. The most famous of
these definitions that have been popularized invtbdd of fractional calculus
are the Riemann-Liouville and Gmwald-Letnikov definition. Also, Caputo,
[Podlubny, 1999] reformulated the more "classicfidBon of the Riemann-

Liouville fractional derivative in order to use @gter order initial conditions to
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solve his fractional order differential equatiofecently, [Kolowankar, 1996]
reformulated again, the Riemann-Liouville fractiboeader derivative, in order

to, differentiate no-where differentiable fractah€tions.

In recent years, considerable interest in fraclia@dculus have been
simulated by the applications that this subjecddinn numerical analysis,
differential equations and different areas of agplisciences, especially in
physics and engineering, possibly including fragtaénomena, [Al-Husseiny,

2006]

Fractional calculus (that is, calculus of integraisl derivatives of any
arbitrary real or complex order) has gained conmsiole popularity and
importance during the past three decodes or sondhiely to its demonstrated
applications in numerous seemingly diverse and sydead fields of science and

engineering.

This subject, devoted exclusively to the subjecfrattional calculus in
the book by Oldham and Spanier [Oldham, 1974] gukll in 1974. One of the
most recent works on the subject of fractional daile in the book of Podlubny
[Podlubny, 1999], published in 1999 which dealsng@pally with fractional
order differential equations, and today there exsistleast two international
journals which are devoted almost entirely to thbject of fractional calculus;
() Journal of fractional calculus and (ii) Fractad calculus and Applied

Analysis.

Delay differential equations, (DDEs) which is arise many areas of
mathematical modeling: for example population dymanftaking into account
the gestation times), infections diseases (accogritr the incubation periods),

physiological and pharmaceutical kinetics (modeling example, the body’s



| ntroduction

reaction to C@ etc. in circulating blood ) and chemical kinet{sach as mixing
reactants), the navigational control of ships aincrat (with respectively large

and short lags), and more general control problems.

There exists now collection of books that indicpelications areas form
DDEs and we cite in particular, the books [DrivE®,77], [Halanay, 1966], and
[Kuang, 1993]. Whilst ordinary differential equate(ODES) model problems in
which the variables react to current conditions,H3(and related functional
differential equations) model problems where ther@n after- effect affecting at

least one of the variables.

Also, many authors and researchers concerned Wwihfractional
differential equations say Al-Shather A. in 2003regented some
approximated solutions for the fractional delay egrb-differential
equation, Abdul-Razzak B.T. in 2004, gave new athor for solving
fractional order Fredholm integro-differential etjan, Al-Azawi S., in
2004, presented some results in fractional calcWlirRahhal D. in 2005,
used the numerical solutions for the fractionaggno-differential equation,
Gorial I. in 2005, used the finite difference matho solve the eigenvalue
problems for the partial fractional differentiajuation, Abdul-Jabber in
2005, discussed the inverse problem of the fraatiomegro-differential
equation, and Abdul-Jabbar R.S. in 2005 studiedirtiierse problems of
some fractional order Integro-differential equasipand Khalil E. in 2006,
used linear multi-step methods to solve some fraeli order ordinary
differential equations, and Aziz S. in 2006 usednsoapproximated

methods for solving partial fractional differenti@quations, and Al-
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Husseiny R. in 2006, discussed the existence afuemess solution of

some fuzzy fractional order ordinary differentiguations.

While in delay differential equations, several aughstudied this
subject, and upon them, Al-Saady A. S. 2000, studiee approximate
solution of delay differential equations using aulsipline interpolation
techniques. Nadia K. M. in 2001 studied the vavizi formulation of
delay differential equations, Thikra A. in 2001 died the approximate
solution of delay integral equations using variadibapproach. Maha A. in
2003 studied the inverse problem of delay integegluations using
variational approach. Haifaa M. B. in 2004 studidte variational
formulation of partial delay differential equatiortsnally, Gadeer J. M in
2007 studied the numerical solution of linear @artielay differential

equations using the finite difference methods.

The purpose of this work is to combine betweentivaal and delay
differential equations to obtain the so called tiawal delay differential

equations.

This work consists of three chapters, as well bs introduction. In
chapter one, the fundamental concepts for delayfraational order differential
equation is given, while in chapter two, the exisgs and uniqueness solution
theorem of fractional order bounded delay diffei@néquation is stated and
proved. Finally in chapter three the analytic ancharical solution for such type
of differential equations is presented, as wellths,comparison between these

methods and the exact solutions are presented.
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