
 

ABSTRACT 

 

Fractional (or non-integer) differentiation is an important concept both 

from theoretical and applicational points of view. The study of problems of 

the calculus of variations with fractional derivatives is a rather recent subject.  

In this work, some properties and basic definitions of fractional integral 

and derivatives of Riemann-Liouvill are presented. The optimality necessary 

conditions for fractional variational problems are constructed for different 

types of fractional problems of calculus of variations having one and different 

multi fractional order derivatives (FOD) on one and different multi-dependent 

variables with one independent variable, along fixed and moving boundaries. 

Several examples are presented to demonstrate the implementation of the 

optimality necessary conditions.      
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1.1  INTRODUCTION: 

In this chapter, we give some concepts about fractional calculus, and 

calculus of variation. Also some of theories and definitions are presented that 

needed then later. 

 

 

1.2  FRACTIONAL CALCULUS: 

This section presents some of the most basic and important concepts in 

fractional calculus which are necessary for understanding the subject of 

fractional calculus. 

 

 

1.2.1  The Gamma Function: 

The gamma function is represented by an improper integral and it's 

defined by [15]. 

Γ��� = � ��	
	�		���
�

,											� > 0.																																																																			�1.1� 
As will be clear later, the gamma function is intrinsically tied to 

fractional calculus by definition. The simple interpretation of the gamma 

function is simply the generalization of the fractional for all positive real 

numbers [9]. 

 

Some of the properties of the gamma function are: 

�.		Γ�1� = 1. 
�.		Γ �12� = √�. 
�.		Γ�0� = ±∞. 
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 .		Γ�−"� = ±∞				∀	"	 ∈ 	ℕ&. 
'.		Γ�� + 1� = �	Γ���, � ∈ ℝ&. 
*.		Γ�"� = �" − 1�! ,													" ∈ ℕ. 
,.		Γ �12 + "� = �2"�! √�4.	"! . 
/.		Γ �12 − "� = �−4�.	"!	√��2"� . 
 

 

1.2.2  Definitions: 

Riemann's modified form of Liouville's fractional integral operator is a 

direct generalization of Cauchy's formula for an n-fold integral . 

 

 

��0

1
2

� �03
14
2

…	 � 6�0.��0.
1784
2

= 1�" − 1�!� 6����0 − ��
	. ��
1
2

																						�1.2� 
 

 

By n-fold here means that the integration is deployed n-times. Since �" − 1�! = Γ�"�, Riemann realized that the RHS of (1.2) might have meaning 

even when n takes non-integer values [16]. 

Thus perhaps it was natural to define fractional integration as follows: 
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Definition (1.2.2.1  ) [17], [18]: 

Let  6��� ∈ 9
[a,b],  : ∈ ℝ&. The fractional (arbitrary) order integral of 

the function 6��� of order :  is defined as: 

Ι2<6��� = � �� − =�<	
Γ�:�


2
6�=�	�=	,																																																																								�1.3� 

 

When ? = 0 we can write, Ι<6��� = Ι�<6��� = 6���	Φ<���, where; 

Φ<��� = AB
C�<	
Γ�:�					 , for	� > 0
0											, for	� ≤ 0

H 
 

Definition (1.2.2.2  ) [17], [18]: 

The fractional derivative Iα of order : ∈ �0H, H1J of the absolutely 

continuous function 6��� is defined as: 

I2<6��� = Ι2
	K ��� 6���	,					� ∈ L?, MJ																																																																	�1.4� 
 

 

1.2.3  Riemann-Liouville Fractional Integrals And Fractional        

Derivatives [10]: 

We give the definitions of the Riemann-Liouville fractional integrals and 

fractional derivatives on a finite interval of the real line and present some of 

their properties in spaces of continuous functions. 

 

Let Ω = L?, MJ be a finite interval . 

 

The Riemann-Liouville fractional integrals Ι2<6 and ΙO<6 of order; 

: ∈ ℂ�Q��:� > 0�  are defined by; 
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�Ι2<6��0� = 1Γ�:�� 6���	���0 − ��
	<
1
2

	,					�0 > ?, Q��:� > 0�	,																													�1.5� 
and 

�ΙO<6��0� = 1Γ�:�� 6���	���� − 0�
	<
O
1

	,						�0 < M, Q��:� > 0�	,																												�1.6� 
 

These integrals are called the left-sided and the right-sided fractional 

integrals. 

 

The Riemann-Liouville fractional derivatives  I2<U  and  IO<U  of order 

: ∈ ℂ	�Q��:� > 0�  are defined by: 

�I2<U��0� = �.�0. �Ι2.	<U��0� 
																				= 1Γ�" − :� �

.
�0.� U���	���0 − ��<	.&


1
2

	,					�" = LQ��:�J + 1,					0 > ?�	, 
																																																																																					-----------------------	�1.7�	

and; 

�IO<U��0� = �−1�. �.�0. �ΙO.	<U��0� 
										= 1Γ�" − :� �−1�. �.�0.� U���	���� − 0�<	.&


O
1

	,			�" = LQ��:�J + 1,				0 < M�	, 
																														-------------------	�1.8�	

where; LQ��:�J means the integer part of Q��:�. 
 

In particular, when  : = " ∈ ℕ , then; 

�I<�U��0� = �IO�U��0� = U�0�	,														�I2.U��0� = U�.��0�	, 
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and; 

�IO.U��0� = �−1�.U�.��0�	,										�" ∈ ℕ�	,																																																		�1.9� 
where U�.��0� is the usual derivative of U�0� of order ". 

 

If 0 < Q��:� < 1, then; 

�I2<U��0� = 1Γ�1 − :� ��0� U������0 − ��<	LZ[�<�J
1
2

, �0 < Q��:� < 1, 0 > ?��1.10� 
�IO<U��0� = −1Γ�1 − :� ��0� U������� − 0�<	LZ[�<�J

O
1

, �0 < Q��:� < 1, 0 < M��1.11� 
 

When : ∈ ℝ&, then equations (1.7) and (1.8) take the following forms: 

�I2<U��0� = 1Γ�" − :� �
.

�0.� U���	���0 − ��<	.&

1
2

	,					�" = L:J + 1,					0 > ?� 
	 	 	 	 	 	 	 	 				---------------------	�1.12�	

and; �IO<U��0� = 

1Γ�" − :� �−1�. �.�0.� U���	���� − 0�<	.&

O
1

	 , �" = L:J + 1, 0 < M�,										�1.13� 
while, equations (1.10) and (1.11) are given by: 

�I2<U��0� = 1Γ�1 − :� ��0� U������0 − ��<
1
2

,			�0 < : < 1, 0 > ?�																				�1.14� 
and; 

�IO<U��0� = −1Γ�1 − :� ��0� U������� − 0�<
O
1

,			�0 < : < 1, 0 < M�																				�1.15� 
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1.2.4  Lemmas[10]: 

In this subsection, we are presented the following two lemmas for fractional 

integral and fractional derivatives. 

Let  9\ = 9\L?, MJ  be the class of Lebesgue integrable functions on L?, MJ,
? < M < ∞, �1 ≤ ] < ∞�. 
 

Lemma (1.2.4.1): 

If Q��:� > 0 and Q��^� > 0, then the equations; 

_Ι2< 	Ι2̀ 	6a �0� = _Ι2<&` 	6a �0�			and			 _ΙO< 	ΙÒ 	6a �0� = _ΙO<&` 	6a �0�.						�1.16� 
are satisfied at almost every point  0 ∈ L?, MJ  for; 

6 ∈ 9\�?, M�		�1 ≤ ] < ∞�. 
If   : + ^ > 1,  then the relations (1.16) hold at any point of L?, MJ. 
 

Lemma (1.2.4.2): 

If  Q��:� > 0  and  6 ∈ 9\�?, M�,			�1 ≤ ] < ∞�
 
, then 

�I2< 	Ι2<	6��1� = 6�0�  and  �IO< 	ΙO< 	6��1� = 6�0� ;																																								�1.17�	
 

 

1.2.5  Properties [10]: 

         In this subsection, we are presented some properties for fractional 

integral and fractional derivatives.  

 

Property (1.2.5.1 ): 

If  Q��:� > Q��^� > 0,  then for  6 ∈ 9\�?, M�, �1 ≤ ] < ∞�, the 

relations; 

_I2̀ 	Ι2< 	6a �0� = Ι2<	`6�0�	,																																																																												�1.18a� 
and; 
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_IÒ 	ΙO< 	6a �0� = ΙO<	`6�0�	,																																																																												�1.18b� 
In particular, when  ̂ = f ∈ ℕ  and  Q��:� > f, then; 

�I2g	Ι2K	6��0� = Ι2<	g 	6�0�	; 																																																																												�1.19a� 
and 

iIOg	ΙO< 	6j�0� = �−1�g	kO<	g 	6�0�	.																																																															�1.19b� 
 

Property (1.2.5.2 ): 

Let					Q��:� ≥ 0, p ∈ ℕ. 
a. If the fractional derivatives  �I2<U��0�  and  �I2<&qU��0�  exist, then; �Iq	I2< 	U��0� = �I2<&qU��0�	.																																																									�1.20� 
b. If the fractional derivatives  �IO<U��0�  and  �IO<&qU��0�  exist, then; 

�IqIO<U��0� = �−1�q�IO<&qU��0�	.																																														�1.21� 
 

Now, some additional important properties of the fractional differential 

operator  I<  are presented for completeness purpose[19]: 

 

1. The operator I< of order  α = 0  is the identity operator. 

2. The operator  I<  is linear, i.e., 

I<ir
	6��� + r3	s���j = r
	I< 	6��� + r3	I< 	s��� , where c1 and 

c2 are constants. 

3. The operator  I<  is homogenous; 

I< 	tr	6���u = r	I< 	6���	. 
 .					I<v6w���.

wx

=vI<6w���.

wx
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1.2.6  Examples: 

For the sake of illustration of the definition of Riemann-Liouville 

fractional derivative, the following examples are given: 

 

  Example (1.1): 

The definition of fractional calculus due to Reimann-Liouville is 

considered for the function  6�0� = r, where  c  is a constant. 

then; 

I1<r = �.�0. y 1Γ�" − :���0 − ��.	<	
	r	��1
2

z	 
									= rΓ�" − :� �

.
�0. {H−�0 − ��.	<" − : |2

1}	 
									= rΓ�" − :� �

.
�0. {�0 − ?�.	<" − : }	 

 

Now, if  : = 0.5,  a = 0  then " = LQ��:�J + 1 = 1, then the above 

results become; 

 

I1�.~r = rΓ�0.5� ��0 �√00.5�	 
												= r√�0	. 

 

If  � = � ,  then; 

I1�.~1 = 1√�0	. 
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If	� = �� , then; 
I1�.~ 12 = 12√�0	. 

 

For  : = 1.5 ,  a = 0  then  " = LQ��:�J + 1 = 2 

I1
.~r = 1Γ�0.5� �
3

�03��0 − ��	
 3⁄ r1
�

	��	 
											= rΓ�0.5� �

3
�03 yH−√0 − �1 2⁄ |�

1z	 
										= −r2√�	0�	. 

 

If c = 1, then; 

I1
.~1 = −12√�	0�	, 
 

If	� = �� 	then; 
I1
.~ 12 = −14√�	0�	. 
 

  Example (1.2): 

Consider  6�0� = 0 ,  ? = 0 . 

I1	�.~0 = 1Γ�0.5���0 − ��	
 3⁄ 	�	��1
�

	 
										= 4√0�3√� 	. 
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I1�.~0 = 1Γ�0.5� ��0��0 − ��	
 3⁄ 	�	��1
�

	 
									= 2√0√� 	. 
I1
.~0 = 1Γ�0.5� �

3
�03��0 − ��	
 3⁄ 	�	��1

�
	 

									= 1√�0	. 
 

 

1.3  CALCULUS OF VARIATION [20]: 

Functional are variable values which depend on a variable running 

through a set of functions, or on a finite number of such variables, and which 

are completely determined by a definite choice of these variable functions, 

means that the functional are variable quantities whose values are determined 

by the choice of one or several functions. 

For instance, the length L of a curve joining two given points on the 

plane is a functional and the area γ of a surface is a functional. 

The variational calculus gives methods for finding the maximal and 

minimal values of functional, and the variational problems are problems that 

consist in finding maxima or minima of a functional. 

The variational calculus has been developing since 1696, and it became 

an independent mathematical discipline with its own research method after 

the fundamental discoveries of a member of the Patersburg Academy of 

Sciences 

 Euler (1707-1783),whom we can claim with good reason to be the 

founder of the calculus of variation. 
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There are three problems had considerable influence the development of 

the calculus of variations which are the brachistochrone problem in 1696 

Johann Bernoulli, the problem of geodesics in 1697 Johann Bernoulli, and 

Isoperimetric problem by  Euler.        

 

 

1.3.1  Basic Definitions and Theories [20]: 

Basic Definitions and the theories will be given in this subsection. 

 

Definition (1.3.1.1  ): 

The variable  �  is called functional depending on a function  U�0� ,  in 

writing  � = �iU�0�j,  if to each function, U�0�  from a certain class of 

functions, there corresponds a certain value of  �. 

 

Definition (1.3.1.2): 

The increment or variation  �U  of the argument  U�0�  of a functional  

�iU�0�j  is the difference of two functions  �U = U�0� − U
�0� 
where U
�0� is admissible curve . 

 

Definition (1.3.1.3): 

A functional  �iU�0�j  is continuous along  U = U��0�  in the sense of 

closeness of order  f, if for arbitrary positive number  �  there exists a  � > 0  

such that,  ��iU�0�j − �iU��0�j� < �,  whenever; 

|U�0� − U��0�| < � ,  |U�0� − U�́�0�| < � , …, 

|U�0� − U��g�	�0�	| < � . 

It is understood, that the function  U�0�  is taken from the class of 

functions for which  �iU�0�j  is defined. 
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Definition (1.3.1.4): 

The functional  �iU�0�j  is called a linear functional, if it satisfies the 

conditions: 

a. �irU�0�j = r�iU�0�j ,  where  c  is constant. 

b. �iU
�0� + U3�0�j = �iU
�0�j + �iU3�0�j . 
 

 

Definition (1.3.1.5 ): 

A functional  �iU�0�j  takes on a maximum value along the curve  U = U��0� ,  if all the values of this functional  �iU�0�j  taken on along 

arbitrary neighboring to  U = U��0�,  curves are not greater than �iU��0�j,  
i.e. ∆� = �iU�0�j − �iU��0�j ≤ 0. If  ∆� ≤ 0  and  ∆� = 0  only when 

 U = U��0�,  then we say that the functional �iU�0�j takes on an absolute 

maximum along the curve  U = U��0�. Similarly we define a curve U = U��0�   
along which the functional takes on a minimum value. 

 

 

Theorem(1.3.1.1 )[20]: 

If the variation of a functional  �iU�0�j  exists, and if  �  takes on a 

maximum or minimum along  U = U��0�,  then  �� = 0  along  U = U��0�. 
 

Proof : 

 

See [20] 
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Fundamental Lemma(1.3.1.1 )[21]: 

Let  ��0�  be a fixed continuous function, defined on the interval  L0
, 03J  and let: 

� ��0�
1�
14

��0�	�0 = 0																																																																																									�1.22� 
where  ��0�  is any continuously differentiable function satisfying; 

��0
� = ��03� = 0																																																																																														�1.23� 
then  G  is identically zero on the interval  L0
, 03J. 
 

 

 

Proof : 

See [21] 
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3.1  INTRODUCTION: 

In this chapter we concerned with the constructing of the optimality 

necessary condition for the extremum of the fractional variational problems 

having one and different multi fractional order derivatives (FOD) on one and 

different multi dependent variables of one independent variable along 

movable boundaries. 

 

 

3.2  VARIATIONAL PROBLEMS WITH SINGLE (FOD): 

Consider the functional of the form: 

���, ����� = 
 ���, �, �����	����
��

,																																																																					�3.1� 
where; 0 < α < 1  and one of the end points is variable (say ���, ���), i.e. ���, ��� can move turning into ��� + ���, �� + ����. 
The functional taken only along the curve of the pencil turns into function of 

x1 and y1. It's variation turns into the differential of this function, with 

prescribed conditions on fixed boundary only if necessary. ����� = ��  and  ����� = ��. 

Δ� = 
 ���, � + ��, ���� + ��������������
��

− 
 ���, �, ���������
��

 

														= 
 ���, � + ��, ���� + ��������������
��
+ 
  ���, � + ��, ���� + ������ − ���, �, �����! ����

��
.								�3.2� 
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The first term of the right – hand side of equation (3.2) will be 

transformed with the aid of the mean value theorem to get: 


 ���, � + ��, ���� + ��������������
��

= #�|�%���&������, 
where �0 < ' < 1�. 

 

Furthermore, by virtue of continuity of the function �, #�|�%���&��� = #���, �, �����(�%�� + )�, 
where; )� → 0  as  ��� → 0  and  ��� → 0 

 

Consequently; 


 ���, � + ��, ���� + ��������������
��

= #���, �, �����(�%����� + )����. �3.3� 
 

To transform the second term of the right-hand side of equation (3.2), 

Taylor formula should be utilized to get: 


 ���, � + ��, ���� + ������ − ���, �, ���������
��

= 
 �+��, �, ������� + �+�,���, �, ����������!��
��

�� + -�. 
 -� is an infinitesimal of higher order than  ��  or  ����� 
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       By using the definitions (1.2.2.1) and (1.2.2.2); it can be found that;  

.����� = ����� = Ι�0� ��� �� = ��́ 2 �0�Γ�1 − 4�5. 
 

We have; 


 ���, � + ��, ���� + ��������
��

− ���, �, �����	��
= 
 �+	��	�� + 1Γ�1 − 4�

��
��


 �0� 	�+�,�	��́!	����
��

. 
 

Integrating by parts the second term to get: 

= 
 �+	��	�� + 1Γ�1 − 4�67�0� 	�+�,� 	��8���� − 
 � �0� 	�+�,�!	����
��

	��9��
��

 

 

= 
 �+��	��
��

��
+ 

1Γ�1 − 4�67�0� 	�+�,� 	��8����

− 
 2−4	�0�0�	�+�,� + �0� ��� �+�,�5 	��	����
��

9.																		�3.4� 
= 1Γ�1 − 4� ;�0�	�+, 	��<����

+ 
 2�+	�� − 1Γ�1 − 4� 2−4	�0�0�	�+, + �0� ��� �+�,�5 ��5����
��
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= 1Γ�1 − 4� 7�0�	�+�,� 	��8����
+ 
 2�+ − 1Γ�1 − 4� 2−4	�0�0�	�+�,� + �0� ��� �+�,�5 ��5 ����

��
. 

 

The values of the functional are taken only along fixed � = �� 

extremals.  

 

Consequently; 

 

�+ + 4Γ�1 − 4� �0������+�,� − 1Γ�1 − 4� �0� ��� �+�,� = 0 

 

Since the end point  ���, ��� is fixed ,it follows that  #��|		�%�� = 0 and 

therefore 


��+	�� + �+, 	����������
��

= 1Γ�1 − 4� #�0�	�+�,� 	��=�%�� .																									�3.5� 
 

      Observe that #��|�%�� does not mean the same as ���, the increment of y1, 

for ��� is the change of y-coordinate of the free end point, when it is moved 

from ���, ���  to  ��� + ���, �� + ����, whereas; #��|�%�� is the change of y-

coordinate of an extremal produced at the point � = �� when this extremal 

changes from one that passes through the points ���, ��� and ���, ��� to 

another one passing through ���, ���  and  ��� + ���, �� + ���� (Fig. 1). 
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Fig. (1): Extremal Changes. 

From Fig. (1): BD = #��|�%�� 																																	FC = ���																																	EC ≅ �́����	��� 

BD = FC − EC #��|�%�� ≅ ��� − �́�������. 
 

Consequently; 


 �	�� ≅ #�|�%�� 	���
������
��

, 

  ���, � + ��, ���� + ������ − ���, �, �����!��
��

��
≅ 1Γ�1 − 4� 7�0�	�+�,�8�%������ − �́��������, 

 

where all approximate equations hold apart from infinitesimal of fractional 

order with respect to ��� or ���, and it follows from equations (3.3) and 

(3.5), to get; 

�� = #�|�%����� + 1Γ�1 − 4� # �0��+�,�!=�%�� ���� − �́��������, 
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then the fundamental necessary condition for an extremum �� = 0 is; 

 

#�|�%����� + # �0�Γ�1 − 4�	�+�,�E�%�� ��� − # �0�Γ�1 − 4�	�+�,�E�%�� �́����	��� = 0. 
 

#� − 2 �0�Γ�1 − 4�	�+�,�5 �́���E�%�� ��� + # �0�Γ�1 − 4�	�+�,�E�%�� ��� = 0. 
	 	 	 	 	 	 	 	 											------------------	�3.6�	
 

If the variations ��� and ��� are independent, then the necessary 

condition for the extremum is; 

� − #2 �0�Γ�1 − 4�	�+�,�5 �́���E�%�� = 0,																																																												�3.7a� 
and 

# �0�Γ�1 − 4�	�+�,�E�%�� = 0.																																																																																			�3.7b� 
 

If the variations ��� and ��� are dependent, for instance, suppose the 

end point ���, ��� can move along a certain curve �� = K����, then by 

substituting ��� ≅ Ḱ������� in equation (3.6), the necessary condition for 

the extremal is; 

 

#� − 2 �0�Γ�1 − 4�	�+�,�5 �́���E�%�� ��� + #2 �0�Γ�1 − 4�	�+�,�5 Ḱ���E�%�� ��� = 0 

� − 2 �0�Γ�1 − 4�	�+�,�5 �́��� + #L2 �0�Γ�1 − 4�	�+�,�5 Ḱ���MN�%�� ��� = 0 

#� − �0�Γ�1 − 4� ��́��� − Ḱ����	�+�,�E�%�� ��� = 0. 
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    Since ��� is arbitrary, then the necessary condition becomes; 

#� − �0�Γ�1 − 4� ��́��� − Ḱ�����+�,�E�%�� = 0.																																																		�3.8� 
 

 

3.3 VARIATIONAL PROBLEMS WITH MULTI DIFFERENT 

(FOD) ON ONE DEPENDENT VARIABLE: 

Functional involving derivatives of multi fractional orders �4P�,          0 < 4P < 1. 

���, ����� = 
 �  �, ����, ��������,… , ���R����! ����
��

.																									�3.9� 
where one of the end points is variable, say ���, ���, i.e. ���, ��� can move 

turning into ���� + ���, �� + �����. 
∆� = 
 ���, � + ��, ����� + ������, ���U� + ����U�, … , ���R�

������
��

+ ����R���� − 
 ���, �, �����, ���U�, … , ���R������
��

. 
= 
 ���, � + ��, ����� + ������, … , ���R� + ����R����������

��
+ 
  ���, � + ��, ����� + ������, ���U� + ����U�, … , ���R�

��
��+ ����R�� − ���, �, �����, ���U�, … , ���R��! ��.														�3.10� 

 

The first term of the right-hand side of equation (3.10) will be 

transformed with the aid of the mean value theorem to get; 
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 ���, � + ��, ����� + ������, … , ���R� + ����R����������
�� = #�|�%���&������. 

where; �0 < ' < 1�. Furthermore, by virtue of continuity of the function F. #�|�%���&������ = #�|�%�� + )�, 
where; )� → 0, as  ��� → 0  and  ��� → 0. 

 

Consequently; 


 ���, � + ��, ����� + ������, … , ���R� + ����R����������
�� = #�|�%����� + )����.																																																																	�3.11� 

 

To transform the second term of the right-hand side of equation (3.10), 

Taylor formula should be utilized to get; 


  ���, � + ��, ����� + ������, ���U� + ����U�, … , ���R� + ����R����
�� − ���, �, �����, ���U�, … , ���R��!�� 

= 
 �+	�� + �+�,�� 	������ + �+�,U� 	����U� +⋯+ �+�,R�	����R�!����
��

+ -� 

= 
 L�+ 	�� +W�+�,X� 	����X�Y
P%� M����

��
+ -�, 

where; -� is an infinitesimal of higher order than  ��  or  ����X�, then by 

using the definitions (1.2.2.1) and (1.2.2.2); 

.�X���� = ���X = Ι�0�X ��� �� = ��́ 2 �0�XΓ�1 − 4P�5. 



OPTIMALITY NECESSARY CONDITIONS OF FRACTIONAL 
VARIATIONAL PROBLEMS ALONG MOVABLE BOUNDARIES 

 

CHAPTER THREE                                                

 

50 

We have; 


  ���, � + ��, ����� + ������, ���U� + ����U�, … , ���R� + ����R����
�� − ���, �, �����, ���U�, … , ���R��!�� 

= 
 �+	����
��

��
+ 
 LW �0�XΓ�1 − 4P�	�+�,X� 	��́Y

P%� M��.																																				�3.12���
��

 

 

By the same approach of section (3.2), to integrate by part the second 

term of equation (3.12), we get; 

 


 �+	����
��

��
+ 
 LW �0�XΓ�1 − 4P�	�+�,X� 	��́Y

P%� M����
��

= 
 �+ 	����
��

��
+ 

W6 1Γ�1 − 4P� Z#7�0�X 	�+�,X� 	��8����
Y
P%�

− 
 2−4P 	�0��X���	�+�,X� +	�0��X� ��� �+�,X�5 ��	��
��

��
[#9 

= W 1Γ�1 − 4P� 7�0�X 	�+�,X� 	��8�%�� +
Y
P%�  


 L�+ +W 1Γ�1 − 4P� 2−4P 	�0��X���	�+�,X� +	�0��X� ��� �+�,X�5Y
P%� M��	����

��
 

 

The values of functional are taken only along fixed � = ��  extremuls. 

�+ +W 1Γ�1 − 4P� 2−4P 	�0��X���	�+�,X� +	�0��X� ��� �+�,X�5Y
P%� = 0.									�3.13� 
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We get; 


 �+	����
��

��
+ 
 LW �0�XΓ�1 − 4P�	�+�,X� 	��́Y

P%� M����
��

 

= W 1Γ�1 − 4P� 7�0�X 	�+�,X� 	��8�%�� .																																																												�3.14�
Y
P%�  

 

Now, from the Fig. (1) in section (3.2), we get; #��|�%�� ≅ ��� − �́����	��� 

�� = #�|�%����� +W 1Γ�1 − 4P� 7�0�X 	�+�,X� 	8�%�� ���� − �́����	����Y
P%�  

 

Then, the fundamental necessary condition for an extremal �� = 0 is; 

\�+ −W �0�XΓ�1 − 4P� �+�,X��́���Y
P%� ]

�%��
��� + \W �0�XΓ�1 − 4P� �+�,X� 	Y

P%� ]
�%��

��� = 0 

	 	 	 	 	 	 	 	 					--------------------	�3.15�	
 

 

3.4 VARIATIONAL PROBLEMS WITH MULTI DIFFERENT 

(FOD) ON MANY DEPENDENT VARIABLES: 

FIRST:  

We consider the functional dependence only on two functions          ����, and		`��� 
� = 
 ���, �, `, ����, `�a��	����

��
,																																																																							�3.16� 

where; 0 < 4 < 1  and  0 < b < 1.  

By similar calculations to that carried out in section (3.2), then; 
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∆� = 
 ���, � + ��, ` + �`, ���� + �����, `�a� + �`�a����������
��

− 
 ���, �, `, ����, `�a������
��

 

= 
 ���, � + ��, ` + �`, ���� + �����, `�a� + �`�a����������
��

+ 
 ;#���, � + ��, ` + �`, ���� + �����, `�a� + �`�a����
��− ���, �, `, ����, `�a��<#��,																																																										�3.17� 

 

We apply the mean value theorem to the first term of the right hand side 

of equation (3.17), and refer to its continuity, and by the Taylor formula we 

separate the main liner part from the second part of equation (3.17).We then 

have; �� = #�|�%�����
+ 
 �+�� + �c�` + �+�,������ + �c�d��`�a�!��

��
��.												�3.18� 

 

By using the definitions (1.2.2.1) and (1.2.2.2); it can be found that;  

.����� = ����� = e�0� ��� �� = ��́ 2 �0�Γ�1 − 4�5, 
and 

.a��`� = �`�a� = e�0a ��� �` = �`́ f �0aΓ�1 − b�g. 
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Then; �� = #�|�%����� + 


 f�+�� + �c�` + �+�,� 2 �0�Γ�1 − 4�5��́ + �c�d� f �0aΓ�1 − b�g�`́g
��

��
��. 

	 	 	 	 	 	 	 	 					--------------------	�3.19�	
 

Integrate the last two terms of equation (3.19) by parts to get: 


 �+�,� 2 �0�Γ�1 − 4�5��́	��
��

��
= 1Γ�1 − 4�6# �0��+�,�!=�%�� �� − 
 ���

��
��

 �0��+�,�!��	��9 


 �c�d� f �0aΓ�1 − b�g�`́	��
��

��
= 1Γ�1 − b�6#��0a�c�d��(�%���` − 
 ���

��
��

��0a�c�d���`	��9 

 

Substitute in equation (3.19) to get: 

�� = #�|�%����� + 
 ��+�� + �c�`�
��

��
��

+ 1Γ�1 − 4�6# �0��+�,�!=�%�� �� − 
 ���
��

��
 �0��+�,�!��	��9

+ 1Γ�1 − b�6#��0a�c�d��(�%���` − 
 ���
��

��
��0a�c�d���`	��9. 
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�� = #�|�%����� + 1Γ�1 − 4� # �0��+�,�!=�%�� ��
+ 1Γ�1 − b� #��0a�c�d��(�%���`
+ 
 6L�+ − 2 1Γ�1 − 4�5 ���  �0��+�,�!M����

��
+ L�c − 2 1Γ�1 − b�5 ��� ��0a�c�d��M�`9��. 

�� = #�|�%����� + 1Γ�1 − 4� # �0��+�,�!=�%�� ��
+ 1Γ�1 − b� #��0a�c�d��(�%���`
+ 
 6f�+ + f4�0�����Γ�1 − 4�g�+�,� − �0�Γ�1 − 4� ��� �+�,�g����

��
+ f�c + b�0�a���Γ�1 − b� �c�d� − �0aΓ�1 − b� ��� �c�d�g�`M��.						�3.20� 

 

The values of functional are taken only along fixed � = �h extremals. 

�+ + f4�0�����Γ�1 − 4�g�+�,� − �0�Γ�1 − 4� ��� �+�,� = 0,																																						�3.21a� 
and 

�c + b�0�a���Γ�1 − b� �c�d� − �0aΓ�1 − b� ��� �c�d� = 0.																																											�3.21b� 
 

Consequently; 
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�� = #�|�%����� + 1Γ�1 − 4� # �0��+�,�!=�%�� ��
+ 1Γ�1 − b� #��0a�c�d��(�%���`.																																																�3.22� 

      

By the same argument as that given in section (3.2) and from Fig. (1), it 

can be obtained that; #��|�%�� ≅ ��� − �́�������    and     #�`|�%�� ≅ �`� − `́�������, 
 

Consequently; 

#6� − �0�Γ�1 − 4��+�,�	�́��� − �0aΓ�1 − b��c�d�	`́���9i
�%��

���
+ �0�Γ�1 − 4� #�+�,�	=�%����� + �0aΓ�1 − b� #�c�d�j�%���`� = 0. 

	 	 	 	 	 	 	 	 				---------------------	�3.23�	
 

If the variations	���, ��� and �`� are independent, then the necessary 

condition for the extremum is; 

#6� − �0�Γ�1 − 4��+�,�	�́��� − �0aΓ�1 − b��c�d�	`́���9i
�%��

= 0,															�3.24a� 
�0�Γ�1 − 4� #�+�,�	=�%�� = 0,																																																																																	�3.24b� 
�0aΓ�1 − b� #�c�d�(�%�� = 0.																																																																																	�3.24c�	 

 

If the boundary point l���, 	��, `�� can move along a certain curve �� = K����  and ̀� = m����, then  ��� = Ḱ�������     and     �`� = ḿ����. 
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Hence equation (3.23) becomes  

#6� − �0�Γ�1 − 4��+�,�	�́��� − �0aΓ�1 − b��c�d�	`́���9i
�%��

��� + 

�0�Γ�1 − 4��+�,�	Ḱ#���|�%����� + �0aΓ�1 − b��c�d�	ḿ#���|�%����� = 0, 
 

Or 

 

#f� − �0�Γ�1 − 4� ��́��� − Ḱ������+�,�	
− �0aΓ�1 − b� �`́��� − ḿ������c�d�	gn�%�� ��� = 0. 

  

Since ��� is arbitrary, then the necessary condition becomes; 

#f� − �0�Γ�1 − 4� ��́��� − Ḱ������+�,�	
− �0aΓ�1 − b� �`́��� − ḿ������c�d�	gn�%�� = 0.																								�3.25� 

      

SECOND: 

We construct the necessary conditions for the functional  �  has the 

form; 

������, `���� = 
 ���, �, �����, … , ���R�, `, `����, … , `��R������
��

.									�3.26� 
 

With one variable boundary end point, then by a similar argument, we 

find the necessary condition; 
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#� −Wo# �0�XΓ�1 − 4P� �+�,X� 	�́��� − �0aXΓ�1 − bP�	�c�dX� 	`́���p#Y
P%� N

�%��
��� + 

#W �0�XΓ�1 − 4P�	�+�,X�
Y
P%� N

�%��
��� + #W �0aXΓ�1 − bP�	�c�dX�

Y
P%� N

�%��
�`� = 0.						�3.27� 

 

Now, we consider the general form; 

� = 
 ���, ��, �������, … , �����R�,#��
��

	
																						#�q, �q��U��, … , �q��UR�, … , �r, �r��s��, … , �r��ss����	

 

 

With one variable boundary end point, then we can find the general 

necessary conditions; 

 

t� −WW �0�XΓ�1 − 4P�	�+u,X 	�v́���Y
P%�

r
w%� x

�%��
���

+ tWW �0�XΓ�1 − 4P�	�+u,X
Y
P%�

r
w%� x

�%��
��w = 0.																														�3.28� 
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3.5  EXAMPLES: 

To explain the approaches, the example will be considered to find the 

extremal of the functional.             

 

  Example (3.1): 

Consider the functional of the form: 


���́ + �	��� q⁄ ��	����
�

, 
where �� is movable along the given known curve K��� 

 

From equation (3.6), the necessary condition is; 

#� − �0�Γ�1 − 4�	�+�,� 	�́���E�%�� 	��� + # �0�Γ�1 − 4�	�+�,�E�%�� 	��� = 0, 
 

#� − �0� q⁄Γ�1 − 1 2⁄ �	�+�� U⁄ � 	�́���n�%�� 	��� + # �0� q⁄Γ�1 − 1 2⁄ �	�+�� U⁄ �n�%�� 	��� = 0, 
 � = �	�́ + �	��� q⁄ �, �+�� U⁄ � = � 

 

From the definitions (1.2.2.1) and (1.2.2.2) 

��� q⁄ � = .� q⁄ � = �́ ��� q⁄ �0�Γ�1 2⁄ � = �́√{� 

then; 

#��́ + �́	�√{� − f�0� q⁄ 	�Γ�1 2⁄ �g �́���n�%�� 	��� + #�0� q⁄ 	�Γ�1 2⁄ �n�%�� ��� = 0, 
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#��́|	�%����� + # �√{�E�%�� ��� = 0. 
 

Case (1): 

If the variations ��� and ��� are independent, then the above equation 

will be: 

 #��́|�%�� = 0, 
��	�́ = 0 

Since ��	 ≠ 0 , then  �́ = 0 ∴ � = constant. 
 

and 

# �√{�E�%�� = 0															 ⇒ 												� = 0, trivial	solution 

 

 

Case (2): 

If the variation ��� and ��� are dependent, and the end point ���, ��� 
can move along a certain curve �� = K���� . 

 

The necessary condition will be: 

� − # �0�Γ�1 − 4�  ��́��� − Ḱ����	�+�,�!E�%�� = 0 

#2��́ + �	�́√{�5 − �0�� q⁄ �
Γ�1 − �1 2⁄ �� ��́��� − Ḱ�����n�%��

= 0 

#��́ + �	�́√{� − �	�́√{� + �√{� Ḱ���E�%�� = 0 
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#��́ + �√{� Ḱ���E�%�� = 0 

�����√{� 		Ḱ���� = −	���́���� 
Ḱ����́���� = −��√{������  

 

    Which is a relation between the directional coefficients Ḱ	and	�́	 at the end 

point. It is called transversality condition. 
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٢٠ 

 

2.1  INTRODUCTION: 

In this chapter, we restrict our attention to the use the Riemann- 

Liouville fractional derivative, to construct the optimality necessary condition 

for the extremum of the fractional variational problems having one and 

different multi fractional order derivative (FOD) on one and different multi-

dependent variables of one independent variable along fixed boundaries. 

 

2.2 VARIATIONAL PROBLEMS WITH SINGLE (FOD): 

Let us examine for extreme a functional of the simplest form: 

������� = 	 
 ��, ����, ������� ����
��

,																																																												�2.1� 
where; 0 < � < 1 , and with given prescribed boundaries conditions. 

 

It is also assumed that the higher integer and fractional order derivatives 

of the function 
��, �, ���� exists, where  α  is real. 

We already know that a necessary condition for an extremum of a 

functional is that its first variation vanishes. We take any admissible curve � = �∗���, neighboring to � = ���� and we set up one-parameter family of 

curves; ���, �� = ���� + ���∗��� − ����� = ���� + ���. 
 

When � = 0, we have � = ����, and when � = 1 we have � = �∗���. 
 

The variation �� = �∗��� − ���� is a function of the variable �, this 

function can be differentiated once or more and we have: 
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٢١ 

 

����� = ������ = ��∗��� − ��� = ����, � ���� = ����� � = ��∗�� � − �� � = ��� �. 
Take on along the curve of the family   � = ���, �� only, then we have a 

function of the variable � : �����, ��� = !���. 
 

It  is well known, the necessary condition that the function !��� has an 

extremum for � = 0 its derivative should vanish. 

������, ��� = " ##� 	������ + ���$%&' 

�� = !́��� = !́�0� = 0. 
Since; 

!��� = 	 
 ��, ���, ��, �����, ��� ��,																																																								�2.2���
�)

 

we have; 

!́��� = 	 *
+ ##����, �� + 
+�,� ##������, ��-��
��
�)

,																														�2.3� 
where; 


+ = ##� 
 ��, ���, ��, �����, ���,																																																																			�2.4� 

+�,� = ##��� 
 ��, ���, ��, �����, ���.																																																									�2.5� 
 

Because of the relations: ##����, �� = ##� ����� + ���� = ��,																																																													�2.6� 
and 
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٢٢ 

 

##������, �� = ##� ������� + ������ = ����,																																							�2.7� 
it follows that: 

!́��� = 	 �
+ ��, ���, ��, �����, �����
��
�) + 
+�,� ��, ���, ��, �����, ��� ����� ��,																														�2.8� 

!́�0� = 	 �
+ ��, ����, ������� �� + 
+�,� ��, ����, ������� �������
��
�)

. 
												-----------------	�2.9�	As we have already remarked, !́�0� is called a variation of the 

functional and it is designated by ��. The necessary condition for a functional	�		to have an extremum is that its variation should vanish �� = 0. 
�� = 	�
+	�� + 
+�,� 	�������

��
�)

= 0,																																																										�2.10� 
�� = 	 �
+	�����

��
�)

+ 	�
+�,� 	�������
��
�)

= 0.																																												�2.11� 
 

The second integral of (2.11): 

	�
+�,� 	�������.																																																																																														�2.12�
��
�)

 

 

By using the definitions (1.2.2.1) and (1.2.2.2); it can be found that; 

����� = ���� = Ι78 ��� �� = ��́ 9 �8Γ�1 − ��;.																																						�2.13� 
Substitute equation (2.13) in (2.12) to get: 
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	�
+�,� 	�������
��
�)

= 1Γ�1 − �� 	 ��8 	
+�,� 	��́���
��
�)

. 
 

By using the integrating by parts: 

	�
+, 	�������
��
�)

= 1Γ�1 − �� 9"�8 	
+�,� 	��<�)�� " − 	 ����8 	
+�,�������
��
�)

. 
 

Since: "��|�&�) = 0   and   "��|�&�� = 0 

	�
+�,� 	�������
��
�)

= −1Γ�1 − �� 	 9−�	�887	
+�,� + �8 ��� 
+�,�; ��	��.
��
�)

 

	 	 	 	 	 	 	 	 										-----------------	�2.14�	
Substitute equation (2.14) in equation (2.11) to get: 

�� = 	 9
+ + �Γ�1 − �� �8�>7�
+�,� − 1Γ�1 − �� �8 ��� 
+�,�; ��	��
��
�)

= 0. 
 

 

Since �� is an arbitrary function that subject  to some general condition, 

therefore; by using the fundamental lemma, it can be found that: 


+ + �Γ�1 − �� �8�>7�
+�,� − 1Γ�1 − �� �8 ��� 
+�,� = 0,																							�2.15� 
 

which is the necessary condition for extremum of the functional (2.1). 
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2.3   VARIATIONAL PROBLEMS WITH MULTI DIFFERENT 

(FOD) ON ONE DEPENDENT VARIABLE: 

Functions involving derivatives of m-different fractional orders ��?�; 
���, ����� = 	 
 ��, ����, �������, ��A����, … , ��C���������

��
.									�2.16� 

where;   0 < �? < 1		,			D = 1,2,… ,E  , and with given prescribed boundaries 

conditions. 

 

Consider a one-parameter family of functions: ���, �� = ���� + ���∗��� − �����,  
or ���, �� = ���� + �	��.  

 

For  � = 0,  ���, �� = ����, and for  � = 1,  ���, �� = �∗��� 
 

If we consider the values taken by the functional  �������  along the 

curves of the family,  � = ���, ��  only, then this functional turns into an 

ordinary function of the parameter  �, that has an extremum for  � = 0. 

Consequently, 

" ��� �����, ���$%&' = 0. 
 

The necessary condition for a functional  �  to have an extremum is that 

its variation should vanish  �� = 0. 

�� = 	�
+	�� + 
+�,������� + 
+�,A����A� +⋯+ 
+�,C����C��	����
��

. 
				 	 	 	 	 	 	 										-----------------	�2.17�	
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By using the definitions (1.2.2.1) and (1.2.2.2) , it can be found that; 

�G 	�� = ���G� = Ι78αH	 ��� �� = Ι78αH 	��́ = ��́ �8G
Γ�1 − �?�.																				�2.18� 

 

Substitute equation (2.18) in equation (2.17) to get: 

�� = 	 *
+	�� + 
+�,�� 9��́ �8�
Γ�1 − �7�; + 
+�,A� 9��́ �8A

Γ�1 − �I�; + ⋯	
��
��

+ 
+�,C� 9��́ �8C
Γ�1 − �J�;-��, 

 ∴ �� = 

	 L
+	�� + L
+�,��	�8∝�
Γ�1 − �7� + 
+�,A�	�

8∝A
Γ�1 − �I� + ⋯+ 
+�,C� 	�8∝C

Γ�1 − �J� N ��́N ��
��
��

. 
								------------------	�2.19�		

�� = 	 *
+�� + *O �8G
Γ�1 − �?�

J
?&7 
+�,G�-��́- 	�� = 0��

��
 

						= 	 
+��	�� +O 	 9 �8G
Γ�1 − �?�	
+�,G�; ��́	��

��
��

J
?&7

��
��

= 0.																						�2.20� 
 

 

    Integrating by part the second term of equation (2.20) to get; 
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O 1
Γ�1 − �?� 	 �8G 	
+�,G� 	��́	�� =

��
��

J
?&7  

O 1
Γ�1 − �?�P<�8G 	
+�,G� 	��<���� − 	 �� ��8G 	
+�,G�� 	��� 	��

��
��

QJ
?&7 .					�2.21� 

 

Since  "��|�&�� = 0   and   "��|�&�� = 0, then equation (2.21) will be: 

O 1
Γ�1 − �?� 	 �8G 	
+�,G� 	��́	��

��
��

J
?&7 = 

O −1
Γ�1 − �?� 	 9−�? 	�8G87	
+,G + �8G ���	
+�,G�; ��	��

��
��

J
?&7 . 
∴ �� = 	 
+	��	��

��
��

+O −1
Γ�1 − �?� 	 9−�? 	�8G87	
+�,G� + �8G ��� 
+�,G�; ��	��

��
��

J
?&7  

= 	 *
+ +O −1
Γ�1 − �?� 9−�? 	�8G87	
+�,G� + �8G ��� 
+�,G�;

J
?&7 -��	��.��

��
 

								------------------	�2.22�	
 

Since, �� is an arbitrary function that subjected to conditions that 

satisfied the fundamental lemma, it can be found that the necessary condition 

is: 


+ +O �−1�
Γ�1 − �?� *−�? 	�8G87	
+�,G� + �8G ��� �
+�,G��- = 0J

?&7 .										�2.23� 



OPTIMALITY NECESSARY CONDITIONS OF FRACTIONAL 
VARIATIONAL PROBLEMS ALONG FIXED BOUNDARIES 

 

CHAPTER TWO                                                

  

٢٧ 

 

2.4 VARIATIONAL PROBLEMS WITH MULTI DIFFERENT 

(FOD) ON MANY DEPENDENT VARIABLES: 

FIRST:  

We consider the functional dependence only on two functions          ����, and		U���. 
������, U���� = 	 
��, �, U, ���, U�V����,																																																	�2.24���

�)
 

where; 0 < � < 1   and   0 < W < 1, and with given prescribed boundaries 

conditions. 

 

Varying only ���� and having  U���  being fixed. Then similarly the 

necessary conditions for a functional v to have an extremum is that its 

variation should vanish  	�� = 0. 

�� = 	�
+	�� + 
+�,� 	���� + 
X 	�U + 
X�Y�	�U�V����
��
�)

.																									�2.25� 
 

By using the definitions (1.2.2.1) and (1.2.2.2), it can be found that; 

� 	�� = ���� = Ι78Z ��� �� = Ι78Z	��́ = ��́ �8
Γ�1 − ��, 

and 

�V 	�U = �U�V� = Ι78[ ��� �U = Ι78[	�Ú = �Ú �8V
Γ�1 − W�. 

 

 Then; 

�� = 	 L
+	�� + 
+�,� 	��́ �8Γ�1 − �� + 
X	�U + 
X�Y� 	�Ú �8VΓ�1 − W�N��.
��
�)
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     By using the same argument in the above section, we get system of two 

necessary conditions. 

 


+ + ��8�>7�Γ�1 − ��	
+�,� − �8Γ�1 − ��	 ��� 
+�,� = 0,																																									�2.26a� 
and 


X + W�8�V>7�Γ�1 − W� 	
X�Y� − �8VΓ�1 − W�	 ��� 
X�Y� = 0.																																									�2.26b� 
 

SECOND: 

We construct the necessary conditions for the functional v has the form; 

������, U���� = 	 
��, �, ����, … , ��C�, U, U���, … , U�C������
��

.									�2.27� 
 

where;   0 < �? < 1		,			D = 1,2,… ,E  , and with given prescribed boundaries 

conditions. 

 

By varying only ���� and having kept U��� fixed, and perform the same 

approach as in section (2.3), we find that any pair of functions ����, U��� 
that gives an extremum of this functional. 

 


+ +O �−1�
Γ�1 − �?� 9−�? 	�8G87	
+�,G� + �8G ��� 
+�,G�; = 0J

?&7 ,																�2.28� 
 

and by varying z(x), having kept y(x) fixed, we obtain; 


X +O �−1�
Γ�1 − W?� 9−W? 	�8VG87	
X�YG� + �8VG ��� 
X�YG�; = 0J

?&7 .																	�2.29�	
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Now, we consider the general form; 

� = 	 
��, �7, �7����, … , �7��C�,"
��
��

	
																						"�I, �I�A��, … , �I�AC�, … , � , � �]��, … , � �]]����		

    with given prescribed boundaries conditions. 

 

         The same line of argument applies in the discussion of extrema of 

similar functional depending on an arbitrary number f functions; then varying 

any function �̂ ��� and keeping the remaining ones fixed, we find that the 

necessary conditions for an extremum as;	
 

 


+_ +O �−1�
Γ�1 − �?� L−�?�8G87	
+_�,G� + �8G ��� 
+_�,G�N = 0J

?&7 ,															�2.30� 
for all  j= 1,…,n. 
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2.5  EXAMPLES: 

To explain the approaches, considering the example, to find the extremal 

of the functional. 

 

Example (2.1): 

Consider the functional of the form; 

� = 	���́ + �>7�����7
'

 

From equation (2.15), the necessary condition is; 


+ + �Γ�1 − �� �8�>7�
+�,� − 1Γ�1 − �� �8 ��� 
+�,� = 0. 
 
+ = �́	,			
+�,� = �>7 

�́ + �Γ�1 − �� �8�>7��>7 	− 	 �8Γ�1 − ��	 ���	�>7 = 0 

�́ + �Γ�1 − ��	− 	 �8Γ�1 − ��	�� + 1�� 	= 0 

�́ = −�Γ�1 − �� +	 �� + 1�Γ�1 − ��		 
�́ = −� + � + 1Γ�1 − �� 		 
�́ = 1Γ�1 − ��		 
Which is a first order nonhomogenous ordinary differential equation.  

� = 1Γ�1 − �� 		� + ` 

Which is a straight line and `	is constant, its value depend on the given 

prescribed boundary condition. 
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DISCUSSION AND FUTURE WORKS 

 

DISCUSSION: 

    In this work, the optimality necessary conditions are constructed for 

fractional variational problems with multi-dependent variables along fixed 

and movable boundaries, in which from of the necessary conditions are 

constructed depending on the structures from of the considered example. 

Where first ordinary differential equation has been obtained as in the example 

(2.1) in chapter two and second ordinary differential equation has been 

obtained as in the example (3.1) in chapter three.     

 

 

FUTURE WORK: 

We may look to construct; 

1. The optimality necessary conditions for fractional variational 

problems with multi-independent variables. 

2. The optimality sufficient conditions, for fractional variational 

problems with one and multi-independent variables. 

3. The optimality necessary and sufficient conditions for fractional 

variational problems with additional constraints (may have integer or 

fractional order derivatives). 
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Fractional calculus is a branch of mathematics which deals with the 

investigation and applications of integrals and derivatives of arbitrary order. 

fractional calculus may be considered as old and yet a novel topic, actually, it 

is an old topic since starting from some spectrum of Leibniz (1695–1697) and 

Euler (1730) who said "When � is an integer, the ratio ���, �  is a  function 

of  �, to  ���  can be made if  � is fraction?", it has been developed up to 

nowadays.  In fact, the idea of generalizing the notion of derivative to non – 

integer order, in particular to the order of 1/2 (which is called semi – integral 

or semi – derivative) is found in the correspondence of Leibniz and Bernoulli, 

L'Hopital and Wallis. Euler took the first step by observing that the result of 

the derivative evaluation of the power function has a meaning for non integer 

order thanks to his Gamma function [1]. 

There are wide areas of applications for the fractional calculus, such as 

viscoplasticity [2] and viscoelastic constitutive equations [3] which are  good 

applications. That is the constitutive equations governing these phenomenon 

involve differential equations fractional order. It is also applied in potential 

field data [4] where the use of fractional gradients provides a much greater 

flexibility which is generating enhanced analytic signal data. Also any 

application which uses the computation of velocity and acceleration is an 

application of fractional differ integration [5]. In physics there are wide 

applications such as the pressure behavior of transport of different Medias [6] 

and the diffusion equations [7] and [8]. In engineering, the fractional calculus 

is applied in Tensili–Flexral strength of disorder materials and signal 

processing [9]. 

In addition, of course, to the theories of differential, integral, and 

integro–differential equations, of mathematical physics as well as their 

extensions and generalization in one and more variables, some of the areas of 

present day applications of fractional calculus include Fluid Flow, Porous 
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Structures, Diffusive Transport Akin to Diffusion, Electrical Networks, 

Probability and Statistics, Control Theory of Dynamical System, 

Viscoelasticity, Electrochemistry of Corrosion, Chemical Physics, Optics and 

Signal Processing, and so on [10]. 

The calculus of variations essentially is an extension of minimizing or 

maximizing a function of one variable to problems involving minimizing or 

maximizing a functional. Typically, a functional is an integral whose 

integrand involves an unknown function and its derivatives; the objective is to 

find the (not necessarily unique) function that makes the integral stationary 

within a given class of functions [11]. 

The study of problems of the calculus of variations with fractional 

derivatives is a rather recent subject, the main result being the fractional 

necessary optimality condition of Euler – Lagrange to be obtained [11]. 

 Riewe [12], [13] obtained a version of the Euler – Lagrange equations 

for problem of the Calculus of Variations with fractional derivatives, that 

combines the conservative and non – conservative cases. More recently,  

Agrawal [14] gave a formulation for variational problems with right and left 

fractional derivatives in the Riemann – Liouville sense. 

This work, concerns with fractional varational problems, in which the 

optimality necessary conditions are obtained, for problems having one and 

different multi-fractional order derivatives (FOD), on one and multi-

dependent variables of one independent variable, along fixed and moving 

boundaries, with examples . This work consists of three chapters. 

Chapter one presents the basic concepts of fractional calculus such as 

Gamma function, Beta function, the Riemann-Liouville definition and some 

properties and lemmas. It also presents the basic concepts of calculus of 

variation such as fundamental lemma. Some Examples are given in this 

chapter. 
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Chapter two presents the optimality necessary conditions for fractional 

variational problems of calculus of variation having one and different multi 

fractional order derivatives (FOD) on one and different multi-dependent 

variable of one independent variable along fixed boundaries. Solved examples 

had been presented for each case. 

Chapter three presents the optimality necessary conditions for fractional 

variational problems of calculus of variation having one and different multi 

fractional order derivatives (FOD) on one and different multi-dependent 

variable of one independent variable along movable boundaries. Solved 

examples had been presented for each case. 
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	 ا������� ��ة ��	ة �� ا�������� ا����� وا�������� ذات ا��� ���� و�
	 درا �. ا�
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