ABSTRACT

Fractional (or non-integer) differentiation is an important concept both
from theoretical and applicational points of view. The study of problems of
the calculus of variations with fractional derivativesis arather recent subject.

In this work, some properties and basic definitions of fractional integral
and derivatives of Riemann-Liouvill are presented. The optimality necessary
conditions for fractional variational problems are constructed for different
types of fractiona problems of calculus of variations having one and different
multi fractional order derivatives (FOD) on one and different multi-dependent
variables with one independent variable, along fixed and moving boundaries.
Several examples are presented to demonstrate the implementation of the

optimality necessary conditions.
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CHAPTER ONE BASIC CONCEPTS

1.1 INTRODUCTION:

In this chapter, we give some concepts about traati calculus, and

calculus of variation. Also some of theories antinikgons are presented that

needed then later.

1.2 FRACTIONAL CALCULUS:

This section presents some of the most basic apdriant concepts in

fractional calculus which are necessary for undexding the subject of

fractional calculus.

1.2.1 The Gamma Function:

The gamma function is represented by an improptgml and it's
defined by [15].

(00

I'(z) = f tZ7 et dt, z> 0. (1.1)
0
As will be clear later, the gamma function is insically tied to

fractional calculus by definition. The simple imegtation of the gamma
function is simply the generalization of the fracl for all positive real

numbers [9].

Some of the properties of the gamma function are:

1. (1) = 1.
SOR
3. T(0) = +oo.
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4. T(—n) =+ Vn € N,
5.T(z+1) =zT(2), z € RY,

6.T'(n)=mn-1)!, n € N.
1 n)!'Vr
7'F<§+">= )

F(l n) _ (—4)" n! \/E.

2 (2n)

1.2.2 De€finitions:

Riemann's modified form of Liouville's fractionaitegral operator is a

direct generalization of Cauchy's formula for afold- integral .

Xn-1

X X1 1 X
j dx, f dx, .. j Fde, = s | & f (tt))rn dt (1.2)

By n-fold here means that the integration is deptby-times. Since
(n —1)! =T'(n), Riemann realized that the RHS of (1.2) might haeaning
even whem takes non-integer values [16].

Thus perhaps it was natural to define fractiondgration as follows:
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Definition (1.2.2.1 ) [17], [18]:
Let f(t) € L[a,b], « € R*. The fractional (arbitrary) order integral of

the functionf (t) of ordera is defined as:

9 f(e) = %f(s) s, (13)

a

Whena = 0 we can write]*f(t) = I§f(t) = f(t) ®,(t), where;

{ta—l

O Jfort >0
cba(t):i @

0 fort <0

Definition (1.2.2.2 ) [17], [18]:

The fractional derivativeD* of order a € (0,1] of the absolutely

continuous functiorf (t) is defined as:

DEFWO =1 L@, t€[ab] (1.9

1.2.3 Riemann-Liouville Fractional | ntegrals And Fractional

Derivatives [10]:

We give the definitions of the Riemann-Liouvill@étional integrals and
fractional derivatives on a finite interval of theal line and present some of

their properties in spaces of continuous functions.

Let Q = [a, b] be a finite interval .

The Riemann-Liouville fractional integral§f andlj f of order;
a € C(Re(a) > 0) are defined by;

8
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f(t)dt

(I ) (x) = F(a)j(x nia’ (x > a,Re(a) > 0), (1.5)
and
b
o 1 f(t) dt
A7 Hx) = F(a)f G’ (x < b,Re(a) > 0), (1.6)

X

These integrals are called the left-sided and thlet-sided fractional

integrals.

The Riemann-Liouville fractional derivative®yy and Dy of order
a € C (Re(a) > 0) are defined by:

(Dgy)(x) ——(I” “y)(x)

B 1 dm r y(t) dt
" Tn—a)dx™) (x —t)e—n+1’
a

(n=[Re(x)]+1, x>a),

and;

Tl

Dy y)(x) = (= 1)”—(In “y)(x)

y(t) dt

F(Tl —a) (-1 )n j(t x)a-n+1’ (n=[Re(a)]+1, x<b),

where;[Re(a)] means the integer part Bé(a).

In particular, whena = n € N, then;
(DRy)(x) = (Dpy)(x) = y(x), (DEy)(x) = y™(x),
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and;

DFN) = (D"y™(x),  (mEeN), (1.9)

wherey™ (x) is the usual derivative of(x) of ordern.

If 0 < Re(a) < 1, then;

o B 1 d ; y(t)dt

(D&y)(x) = F = a)af (= pya-TReG@l” (0 < Re(a) <1,x >a)(1.10)
o I ; y(t)dt

(DFy)(x) = F1 = a)aj (¢ = xya-TReC@l” (0 <Re(a) <1,x<b)(1.11)

Whena € R*, then equations (1.7) and (1.8) take the followimmgns:

d”jx y(t) dt

DENW = o= dr ) Gope =+l x>a
--------------------- (1.12)

and;

(Dpy)(x) =

b
L an y(t) dt
m(_l) dx”j (t —x)a—n+1”’

n=[a]l+1,x<b), (1.13)

while, equations (1.10) and (1.11) are given by:

" B d r y(t)dt
(Day)(x)—r(l_a)a GO O<a<lx>a) (1.14)
and,
b
o -1 ad [ y@®adt
(Db y)(X) = mafm, (0 <a<lx< b) (115)

X

10
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1.2.4 Lemmag[10]:

In this subsection, we are presented the folloviing lemmas for fractional

integral and fractional derivatives.

Let L, =Ly[a,b] be the class of Lebesgue integrable functiongaoh],

a<b<o (1<p<m).

Lemma (1.2.4.1):
If Re(a) > 0 andRe(fB) > 0, then the equations;

(1618 £)@= (12" £) @ and (1515 F) @ = (5" f) @.  (1.16)
are satisfied at almost every pointe [a, b] for;
fE€L,(ab) (1<p<x).

If a4+ f > 1, then the relations (1.16) hold at any poinfagb].

Lemma (1.2.4.2):
If Re(a) >0 and f € L,(a,b), (1 <p <),then
(DE1G Py = f) and (DY 15 oy = f(x) ; (1.17)

1.2.5 Properties[10]:

In this subsection, we are presented spnoperties for fractional

integral and fractional derivatives.

Property (1.2.5.1):
If Re(a) >Re(B) >0, then for f€L,(ab), (1<p<o), the

relations;

(D18 F) @ =127 7o), (1.18a)

and;

11
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(Df 1 f) ) =1Pfx), (1.18b)
In particular, wheng = k € N and Re(a) > k, then;

(D 1& £ =157 f(x) ; (1.19a)

and

(DEIE )0 = (DFIF7* f(x). (1.19b)

Property (1.2.5.2):

Let Re(a) =0, m € N.

a. If the fractional derivativegDZ&y)(x) and (D&*™y)(x) exist, then;

(D™ DE y)(x) = (DFT™y)(x) . (1.20)
b. If the fractional derivativegD{y)(x) and (DF*™y)(x) exist, then;
(D™Dyy)(x) = (=1)™(Dy ™y) (x) - (1.21)

Now, some additional important properties of trecfional differential

operator D# are presented for completeness purpose[19]:

1. The operatob/ of order « = 0 is the identity operator.

2. The operatorDf is linear, i.e.,
DE(cy f(©) + ¢, 9(t)) = ¢y DE f(£) + ¢, DF g(t) , wherec, and
C, are constants.

3. The operatorD# is homogenous;

D {c f(©)} = ¢ D¢ f(1).

4. D¢ i fi(t) = in‘fi(t)

12
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1.2.6 Examples.

For the sake of illustration of the definition ofieRann-Liouville

fractional derivative, the following examples areem:

Example (1.1):

The definition of fractional calculus due to Reimddouville is
considered for the functioff (x) = ¢, where c is a constant.

then;

X
D%c = a - f(x — ) ledt
x dx™ |T(n — a)
a

]

B c d* [—(x — )"«
_F(n—a)dx”_ n—a
B c dm* [(x —a)* @
_F(n—a)dx”_ n—a

Now, if a=0.5, a=0 thenn =[Re(a)]+1 =1, then the above

results become;

d
D,?'5c=—c — ﬂ
[(05)dx \05

c

=

If ¢c=1, then;

1
D%l = —.

Vrx

13
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Ifc = 1 then;
¢ =5, then;
posl_ 1
2 2Jmx’

Fora =15, a=0 thenn =[Re(a)] +1

1.5 . _ - _ 1/2
Dy>c = F(OS)d 2f(x t)"4c dt
B —x—t|
- r(0.5)dx?2| 1/2 .
.
2T x3
If c=1, then;
-1
D1.51 — )
* 2V x3
Ifc = 1 then;
Cc = E en,
pisl 1 -1
N
Example (1.2):

Considerf(x) =x, a=0.

D;O.Sx

F(Os)f(x—t) 12 ¢ qt

43
=7

14

=2
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1.3 CALCULUS OF VARIATION [20]:

Functional are variable values which depend on m@abig running

through a set of functions, or on a finite numbleswch variables, and which

are completely determined by a definite choicehafse variable functions,

means that the functional are variable quantitibese values are determined
by the choice of one or several functions.

For instance, the length of a curve joining two given points on the
plane is a functional and the aneaf a surface is a functional.

The variational calculus gives methods for findithge maximal and
minimal values of functional, and the variationabliems are problems that
consist in finding maxima or minima of a functional

The variational calculus has been developing sir&@6, and it became
an independent mathematical discipline with its awsearch method after
the fundamental discoveries of a member of therBlateg Academy of
Sciences

Euler (1707-1783),whom we can claim with good ogaso be the

founder of the calculus of variation.

15
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There are three problems had considerable infludreelevelopment of
the calculus of variations which are the brachistone problem in 1696

Johann Bernoulli, the problem of geodesics in 188Fann Bernoulli, and

Isoperimetric problem by Euler.

1.3.1 Basic Definitions and Theories [20]:

Basic Definitions and the theories will be giverthirs subsection.

Definition (1.3.1.1 ):
The variable v is called functional depending on a functigiix) , in

writing v = v(y(x)), if to each functiony(x) from a certain class of

functions, there corresponds a certain value of

Definition (1.3.1.2):

The increment or variationy of the argumenty(x) of a functional

v(y(x)) is the difference of two function8y = y(x) — y, (x)

wherey, (x) is admissible curve .

Definition (1.3.1.3):

A functional v(y(x)) is continuous alongy = y,(x) in the sense of
closeness of ordek, if for arbitrary positive numbeg there exists a > 0
such that,[v(y(x)) — v(yo(x))| < &, whenever;
ly() =y () <6, [y(x) = o) <6, ...,

ly(x) =y ® ()< 6.
It is understood, that the functiory(x) is taken from the class of

functions for whichv(y(x)) is defined.

16
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Definition (1.3.1.4):

The functional v(y(x)) is called a linear functional, if it satisfieseth

conditions:

a. v(cy(x)) = cv(y(x)) , wherec is constant.

b. U(Y1(x) + ¥ (x)) = V()’1 (x)) + U()’z(x)) :

Definition (1.3.1.5):

A functional v(y(x)) takes on a maximum value along the curve

y =Y,(x) , if all the values of this functional/(y(x)) taken on along
arbitrary neighboring toy = y,(x), curves are not greater thafy,(x)),
i.e.Av = v(y(x)) —v(yo(x)) < 0.1f Av <0 andAv =0 only when

y =y,(x), then we say that the functiona(y(x)) takes on an absolute

maximum along the curveg = y,(x). Similarly we define a curve = y,(x)

along which the functional takes on a minimum value

Theorem(1.3.1.1 )[20]:

If the variation of a functionalv(y(x)) exists, and if v takes on a

maximum or minimum alongy = y,(x), thendv = 0 alongy = y,(x).

Proof :

See [20]

17
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Fundamental Lemma(1.3.1.1 )[21]:

Let G(x) be a fixed continuous function, defined on théenval

[x1,x,] and let:

X2

j n(x)G(x)dx =0 (1.22)

X1

where n(x) is any continuously differentiable function shtfiisg;

n(x) =n(x) =0 (1.23)
then G is identically zero on the intervdk,, x,].

Proof :
See [21]

18



CHAPTER THREE OPTIMALITY NECESSARY CONDITIONS OF FRACTIONAL
VARIATIONAL PROBLEMS ALONG MOVABLE BOUNDARIES

3.1 INTRODUCTION:

In this chapter we concerned with the constructighe optimality

necessary condition for the extremum of the fraiovariational problems
having one and different multi fractional orderidatives (FOD) on one and
different multi dependent variables of one indemerntdvariable along

movable boundaries

3.2 VARIATIONAL PROBLEMSWITH SINGLE (FOD):

Consider the functional of the form:

X1

v(x,y(x)) = j F(x,y,y(“)) dx, (3.1)

Xo

where;0 < ¢ <1 and one of the end points is variable (§ay,y,)), i.e.

(x1,y1) can move turning int@x; + 6x,,y; + 8y;).

The functional taken only along the curve of thequeturns into function of
X, andy;. It's variation turns into the differential of $hifunction, with

prescribed conditions on fixed boundary only if eesary.

y(x0) =yo andy(x;) = y;.

x1+8x1 X1
Av = j F(x,y + 6y,y(“) + Sy(“))dx — f F(x, y,y(“))dx
Xo X0
x1+6x1

= j F(x,y + 8y, y@ + §y@)dx

X1

X1

+ j (F(x,y + 68y, y@ + 6y(“)) — F(x, y,y(“))) dx. (3.2)

X0

50
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The first term of the right — hand side of equati®2) will be
transformed with the aid of the mean value thedieget:

x1+6x1

j F(x,y + 6y, y@ + 8y@)dx = Fly_y, +05x,6%1,

X1

where(0 < 6 < 1).

Furthermore, by virtue of continuity of the functig,
F|x=x1+96x1 = F(x' Y y(a))|x=x1 + &4,

where;

& —0 asdx; -0 anddy, - 0

Consequently;

X1+5xl

f F(x,y + 68y, y@ + Sy(“))dx = F(x, y,y(“))|x_x 6xq + &1dx,.(3.3)
-1

X1

To transform the second term of the right-hand siflequation (3.2),

Taylor formula should be utilized to get:

X1

f F(x,y + 68y, y@ + 6y(“)) — F(x, y,y(“))dx

X0

X1
= j (Fy(x, v,y @)8y + F(x, y,y(“))Sy(“)) dx + R;.

X0

R, is an infinitesimal of higher order thasy or §y@®

50
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By using the definitions (1.2.2.1) and (2.2); it can be found that;
24

DA(sy) = 6y @ = -2 L sy — sy (x—)
dx I'l—a)

We have;

X1

f F(x,y + 68y, y@ + 6y(“)) — F(x, y,y(“)) dx

X0

X1

X1
= fF 6ydx+;f(x_“F (a)53'/)dx
Y ['(1-a) y '

Xo

X0

Integrating by parts the second term to get:

x x
1 -a 1 1 -a
= j Fy 5}/ dx + m [X Fy(a) (Sy]xo - f d(x Fy(a)) 5}/ dx
Xo Xo
X1
= f E,é6y dx +
Xo
= ([ rw s
Ta—a|\F @],
X1 d
— f (—a x~ o1 Fy(a) + x_“aFy(a)> oy dx |. (3.4)
Xo
1 x
— —aR ,
= Ti—a [x F, 5y]x0

X1

1 d
T Foy———|—ax ® F a+x % —F
j(ygy ra )( ax ya +x 7 y())Sy)dx

X0

50
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X1
-a
Fy(a) 5y]x0

1
“T(-a) [x

1 d
+ f (Fy—m<—ax_“_1 Fy(a)+x_“aFy(a))5y)dx.

The values of the functional are taken only alomged x = x,

extremals.
Consequently;
a 1 d
Fp+——x"@F (- —————x*—F =0
Y T —a)” YO T —a)" dx Y@

Since the end poin{(x,, y,) is fixed ,it follows that §y| ,-,, = 0 and

therefore

X1

j (E, 8y + Fya 5y@)dx =

X0

—x*F 6 . 3.5
Ao e . (3.5)

Observe thaly|,_,, does not mean the samedag, the increment ofy,
for 8y, is the change of-coordinate of the free end point, when it is moved
from (x1,y1) to (x; + 6xq1,¥1 + 6y,), Whereasgy|,—,, is the change of y-
coordinate of an extremal produced at the pwirt x; when this extremal
changes from one that passes through the pdmtsy,) and (x,,y;) to
another one passing throu@ty, y,) and (x; + x4, y; + 6y;) (Fig. 1).

50
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A
- I il I VIR S, )
i
-
Ii{axy.20)
I |
| A : :
! I
| I
- — - = —-—-—I-—-— _—
7| iy oy ey oo
Fig. (1): Extremal Changes.
From Fig. (1):
BD = 6y|x=y, FC = 6y, EC = y(x;) x4
BD = FC — EC

5y|x=x1 = 53’1 - y(xl)le-

Consequently;

x1+6x1

f Fdx = Fly—y, 6xq,
X1

X1

f (F(x.y + 6y, 5@ + 8y @) = F(x,,y@)) dx

X0

1
~ - v
“T(l-a) [x F y(“)]x=x1 (631 — ¥ (x1)6xy),

where all approximate equations hold apart fronmitg@simal of fractional
order with respect téx; or 6y,;, and it follows from equations (3.3) and
(3.5), to get;

1 _ ,
OV = Fly—y, 621 + m(x “Fy(a>) . 0y — y(x1)6x4),

50
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then the fundamental necessary condition for areeximdév = 0 is;

x™¢ x~¢
Flyey 0% + ——— Fow|  6y1 ———— Fow|  3(xy) 2, = 0.
=0 rl-a ¥l rl-a) ¥l
x ¢ x™ ¢
F — (T y(a)> ox, + T Fy(a) 6y; =0
( o a) X=X1 ( - a) X=X1
------------------ (3.6)

If the variationsdx; and §y, are independent, then the necessary

condition for the extremum is;

—-a

X
F— (m y(a)> o, =0, (3.7a)
and
x4
m Fy(a) = 0. (37b)

X=X1

If the variationséx; anddy, are dependent, for instance, suppose the
end point(x,,y;) can move along a certain curgg = ¢(x;), then by
substitutingdy; = ¢(x;)dx,; in equation (3.6), the necessary condition for

the extremal is;

-

F - (ﬁ Fy(a)>3’1(x) -
P (rg—g Py )90 + ((ﬁ Fyo) qa(x))

x_a 7 VA
F — - (Y = (X)) F@

-

X
st ()
X1+ f1—a) 79)?

le=0

X=X1

5x1=0

X=X1

le = 0.

X=X1

50
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VARIATIONAL PROBLEMS ALONG MOVABLE BOUNDARIES

Sincedx, is arbitrary, then the necessary condition becomes;

= 0. (3.8)

X=X1

x_a 7 VA
F — - () = ¢(0))F @

3.3 VARIATIONAL PROBLEMS WITH MULTI DIFFERENT
(FOD) ON ONE DEPENDENT VARIABLE:

Functional involving derivatives of multi fractioneorders (a;),

0<a’i<1.

X1

v(x,y(x)) = f F (x,y(x),y(“l)(x), ...,y(“m)(x)) dx. (3.9)

Xo
where one of the end points is variable, éayy,), i.e. (x;,y;) can move
turning into((x; + 6x1,y1 + 8y1)).
x1+6x1

Av = j F(x,y + 8y, y@ + 8y, y@ 4 gy, @
Xo

X1

+ 6y@m))dx — j F(x,y,y@),y@)  y@m))dy,

X0

x1+6x1

= j F(x,y + 5}/,}/(“1) + 5},(011), ___,y(am) + 5y(“m))dx
X0

X1

+ f (F(x,y + 8y, y@) 4 gy(@) y@) 4 syl@) qam)

X0

+ 8y@m) — F(x,y,y@,y@, ., y@m)) dx. (3.10)

The first term of the right-hand side of equatio®.10) will be
transformed with the aid of the mean value theaeget;

50
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VARIATIONAL PROBLEMS ALONG MOVABLE BOUNDARIES

x1+5x1

f F(x,y + 8y,y @ + 8y, ., y(@m) 4 §y@m))dx

X
= Fly=x,+06x, 0 %1
where;(0 < 8 < 1). Furthermore, by virtue of continuity of the fuioct F.
Fly—x,+65x,0%1 = Fly—y, + &1,

where;e; - 0,as éx; - 0 and dy; — 0.

Consequently;

X1+5xl

f F(x,y + 8y, y@ + 8y, ., ylem) 4 §y(@m))dx

X1

= le:x15x1 + Sldxl. (311)

To transform the second term of the right-hand sidequation (3.10),

Taylor formula should be utilized to get;

X1

j (F(x,y + 5y,y(0-’1) + 5y(a’1),y(az) + 5y(a2), m,y(am) + Sy(am))

Xo
— F(x,y,y@,y@), ___,y(am>)) dx
X1

= j (Fy 6y + F an §y@) + F @ §y©@2) ... + F am (Sy(“m))dx + R4
X0

X1
= j (Fy oy +
Xo

where;R; is an infinitesimal of higher order thady or §y@?, then by
using the definitions (1.2.2.1) and (1.2.2.2);

m
Fy 5y(“")) dx + Ry,
=1

i

D% (5y) = §y% = Il_aiié‘y =8y (L)
dx 'l—a;)

50
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We have;

X1

j (F(x,y + 5y,y(a’1) + 5y(a’1),y(az) + 5y(a2), m,y(am) + Sy(am))

X0

__F(xﬂ%jﬂaﬂ’yﬁh)“",y@Mﬁ))dx

X1 X1 m s
X l
= | F, éyd ——— F_(4) 0y | dx. 3.12
j Y yx+j<. r(1—a) v y) ¥ (3:12)
Xo Xo =1

By the same approach of section (3.2), to integogteart the second

term of equation (3.12), we get;

X1 X1

m
x~ %
ij(SYdX-F f ( 11_‘(1——0-’1') Fy(ai) SY)dX— ny5de+
1=

Xo X0 X0

X1

1
F(l - al-)

R

~
1l
[y

[X—ai Fy(“i) 5}/] ::

X1

—(a () @
— f (—aix (@i+1) Flay+ x (“l)aFy(ai)>6y dx

Xo

= i; [x‘“i F (Sy] +
& I(1 - a) ) S e,

X1 m
1 d
| —g. x(@i+1) —(ap)
j (Fy +ZF(1 —“i)< a; x Fy(“i) + x dxFy(“")>> Oy dx
1=

X0

The values of functional are taken only along fixed x, extremuls.

m
1 d
E E}————@m “(ath g ‘WL—Fw>=Q 3.13
y+_1H1_%) a; x yla) T X F (3.13)
1=
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We get;

X1 X1

m
x~ %
j E, dydx + f ( . m Fy(“i) 5}/) dx

X0 X0 i

m
1
= — [xT%F () O . 3.14
Zr(l—ai) b Py 9], (14
i=

Now, from the Fig. (1) in section (3.2), we get;
OYlx=x, = 6y1 — y(x1) 6x4

m
1
— - -a; v
60 = Flomy, 8% + Z T P ], O3 =3 6x)
1=

Then, the fundamental necessary condition for aresralév = 0 is;

m x—ai m x—ai
F. —Z—F | Sx, + Z—F o Sy, = 0
y L F(l _ ai) y( 4 ] 1 - 1"(1 _ ai) y( i) Y1

X=Xx1 X=X1

3.4 VARIATIONAL PROBLEMS WITH MULTI DIFFERENT

(FOD) ON MANY DEPENDENT VARIABLES:

FIRST:
We consider the functional dependence only on twmctions

y(x),and z(x)

X1

V= f F(x,y,z,y(“),z(ﬁ)) dx, (3.16)

X0
where,0 <a <1 and0 < g < 1.

By similar calculations to that carried out in sect(3.2), then;

50
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x1+5x1

Av = f F(x,y +6y,z+ 8z, y @ + §y@, z(B) SZ(ﬁ))dx
Xo

X1

_ j F(x,y,2,y@, 28 dx

X0

x1+6x1

= j F(x,y+ 8y,z+ 62,y @ + 5y @,z 4+ §2(8))dx

X0

X1
+ f [F(x,y +6y,z+62,y@ + §y@®,zB) + 52(B)
X0

— F(x, Y, z,y(“),z(ﬁ))]dx, (3.17)

We apply the mean value theorem to the first tefthe right hand side
of equation (3.17), and refer to its continuityddvy the Taylor formula we
separate the main liner part from the second daggoation (3.17).We then
have;

OV = Fly=y,0%1
X1

+ j (Fy(Sy + F;6z + F @8y ® + FZ(B)SZ(ﬁ)) dx. (3.18)

X0

By using the definitions (1.2.2.1) and (1.2.2.2}an be found that;

x—a

De(8y) = 8y = 1"~ sy = 5y (=)
ri-a)/

dx
and

DB(87) = 528 = 118 Loy = 54 )
dx INGREN)
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Then;
OV = Flyp,0x1 +

X1
-

X , x‘ﬁ ,
j <Fy5y + FZ(SZ + Fy(a) (m) 5}/ + FZ(B) (F(l——ﬁ)> 5Z> dx.

X0

-------------------- (3.19)
Integrate the last two terms of equation (3.19pasts to get:
X1
x—a
f Fy(a) (m) 5}1 dx
Xo
X1
1 d
— -a _ _ -a
“Ti—o (x Fy(a)) x oy f T (x Fy(a))5y dx
X0
X1 x_ﬂ
F —|82d
j 2 <r(1 R B)) o
Xo
X1
—1 -B d -B
= Ta=5) (x Fz(ﬁ))|x=x16Z — f a(x Fz(ﬁ))5Z dx
Xo
Substitute in equation (3.19) to get:
X1
8V = Flyy, 6%1 + f (E, 6y + F,6z) dx
X0
X1
1 d
- - _ _ bl 4
+ =) (x Fy(a)) s oy f I (x Fy(a))(Sy dx
Xo
X1
1 -B d -B
+1_,(1—_[))) (x FZ(B))|x:x15Z— f a(x FZ(B))(SZ dx |.
X0
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OV = Fly =y, 0x

x‘“Fy(a)) &y

X=X1

1
1+F(1—a)(

1
A= & e, 5

X1

(5 Grma) s berve) o

X0

1
+<FZ (m—ﬁ))_(" ' Z(ﬁ))>5z dax:

1
8V = Flyzy, 6x1 + m(x “Fym))

8y

X=X1

1
Fra=p & e,

X1

f ; ax—(a+1) ; x~a d ; 5
* y I \Ta—o) " " Tad-adx »*)°%
X

0

<F B0 x~(B+D) B 4

r(1-p) F,e — T8 dx Z(ﬁ)>52) dx. (3.20)

The values of functional are taken only along fixed x, extremals.

P i T ALy 3.21
Y ' \T-a)) ¥ Td-—a)dx ¥~ " (3:21a)
and

3x—(ﬁ+1> B g
E, + F@ = 0. (3.21b)

TA—p “ Ta-pdx

Consequently;
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OV = Flyy,0x1 + oy

1
m (x_aFy(a))

1
+[‘(1——'8)(x_ﬁFZ(m)|x=x162' (322)

X=X1

By the same argument as that given in section ¢hd)from Fig. (1), it
can be obtained that;

OYlx=x, = 6y1 —Y(x1)6x; and 6zl —,, = 62y — z(x1)6xq,

Consequently;
x~ @ xP
F —mFy(a)J"(x) _F(l——[)’)FZ(B) Z(x) 6x1
X=Xxq
x~ @ xF
+mFy(a) x=x16y1 + N Fz(ﬁ)J 6z; =0

If the variationsSx,, §y; and§z; are independent, then the necessary

condition for the extremum is;

x~* x~P
F————F Y ——7>=F / =0, 3.24
T ) y(x) Fa =gy ® Z(x) (3.24a)
X=X1
x ¢
mF}’(a) e = O, (324b)
=X1
x_ﬁ
l_,(l—_ﬂ)FZ(ﬁ)LC:xl = 0. (324C)

If the boundary pointB(x;, y;,z;) can move along a certain curve

y1 = @(x;) andz; = n(x;), then §y; = ¢(x1)0x; and 6z = 1(xq).

50
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Hence equation (3.23) becomes

x™* x~F
F— —_a)Fym)y(x) “Ta-p F,m Z(x) 6xq +
X=X1
—a x—B

3 Py @O, + FR— 75

X
r(1-a F L 1(0)|x=x, 6%, = 0,

Or

x_a 7 ’
(F -0 (P() = p(x))F @

5x1 = 0.

o
TP (2(x) = 1(x1))F 0 )

X=X1

Sincedx; is arbitrary, then the necessary condition becomes

x_a 7 7
(F ) (Y(x) = p(x))F @

0. (3.25)

S (509~ )

X=X1
SECOND:
We construct the necessary conditions for the fanat v has the

form;

X1

v(y(x),z(x))z fF(x,y,y(“l),...,y(“m),z,z(“l),...,Z(“m))dx. (3.26)

Xo

With one variable boundary end point, then by aillamargument, we

find the necessary condition;
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U x_ai x_ﬁi

F—Z —F (a) ) —
.1[F(1—ai) e 09 7
1=

— . F 4 Z'(x)] 5x, +
- Bi) z(F) . !
m -G
S——
ZF(l—ai) y(a)
=1

X=X1

m
—Bi
X
o) z— F_(s. 6z, = 0. 3.27
y1+ L. T =g =60 z (3.27)

X=X =1 X=X

Now, we consider the general form;

X1

= fF(x,yllyl(all),___,yl(alm),

Xo

yZ, yz (a21)’ e yz (OCZm)’ . yn, yn(anl)’ e yn(ann))dx

With one variable boundary end point, then we dad the general

necessary conditions;

n m
X~
F— ZZF(l a)ijaly](x) 5%,

=1i=1
J X=X1

¥ ii r(1— al) 0y; =0. (3.28)

j=11i=1
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3.5 EXAMPLES:
To explain the approaches, the example will be idened to find the

extremal of the functional.

Example (3.1):

Consider the functional of the form:

X1

j(xyﬁ-yy“/”)dx,
0

wherex, is movable along the given known cuggéx)

From equation (3.6), the necessary condition is;

- -

X X
F———F @y) 6x1 + ————= F @ 6y1 =0,
r(1—a) ¥ N~ FrA—a) Y,
x~1/2 -1/2
F—————F—F7-—<F y o — F 0y; =0
r(l-1/2) y(1/2) y(x) X1+ r(1—1/2) y(1/2) M1 )
X=xq X=x4
F=xy+yy®/?,
Foam =y
From the definitions (1.2.2.1) and (1.2.2.2)
1/2)-1 ’
y(1/2) = p1/2y = ),}x( /2 __J
r(1/2) /nx
then;
. -1/2 -1/2
yy X y y
y — y 1) 6y; =0
N x (F(1/2)>"v @ _ rram), T
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, y
XY| x=x, 6% + —— 6y, = 0.

VX x=x,

Case (1):
If the variationséx, anddy, are independent, then the above equation

will be:

xy|x=x1 =0,
x1 _'),] == O
Sincex; #0,theny =0

.y = constant.

and

- =0 = y=0, trivial solution

If the variationdx; anddy, are dependent, and the end pdin{, y;)

can move along a certain curyge= ¢(x;) .

The necessary condition will be:

-

F— h(()’(x) — (p(X)) Fy(a)) - =0
Yy x—(1/2) B
(xs +\/a)‘r(1 72y I~ o)y =0
LYy vy, 4
" e v

X1
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7 y 7
xy +—o(x =0

X=X1

’$¥¢@o=—mﬂm>

$0)  xmx
y(x1) B y(x1)

Which is a relation between the directionalftoents ¢ and y at the end

point. It is called transversality condition.
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CHAPTER TWO OPTIMALITY NECESSARY CONDITIONS OF FRACTIONAL
VARIATIONAL PROBLEMS ALONG FIXED BOUNDARIES

2.1 INTRODUCTION:

In this chapter, we restrict our attention to the use the Riemann-

Liouville fractiona derivative, to construct the optimality necessary condition
for the extremum of the fractional variational problems having one and
different multi fractional order derivative (FOD) on one and different multi-

dependent variables of one independent variable along fixed boundaries.

2.2 VARIATIONAL PROBLEMSWITH SINGLE (FOD):

Let us examine for extreme afunctional of the simplest form:

X1

v(y0) = [ F(xy@.y©w)ax, 1)

Xo
where;

0 < a < 1, and with given prescribed boundaries conditions.

It is aso assumed that the higher integer and fractional order derivatives
of the function F(x,y, y®) exists, where a isreal.

We aready know that a necessary condition for an extremum of a
functional is that its first variation vanishes. We take any admissible curve
y = y*(x), neighboring to y = y(x) and we set up one-parameter family of

CUrves,

v, ) = y(x) + Py () — y(x)) = y(x) + ¥dy.
Wheny = 0, wehavey = y(x),and wheny = 1 wehavey = y*(x).

The variation 6y = y*(x) — y(x) is a function of the variable vy, this

function can be differentiated once or more and we have:
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D(8y) = ()@ = ()@ — y@ = 5y,
D"(8y) = (6y)9 = (y) "D -y = gy,
Take on along the curve of the family y = y(x,y) only, then we have a

function of the variable vy :

v(y( ) = o).

It iswell known, the necessary condition that the function ¢ (1) has an

extremum for iy = 0 its derivative should vanish.

sv(y(x, ) = v(y(x) + 8y)
P=0
v =¢@{p) = ¢(0) =0.
Since;
o) = [ F(xyGw),y©@ew)ds (2.2)
we have;
'()—f (o) + oy ) | d (2.3)
o) = al/)}’XI/J v oY x,Y) |dx, :
where;
9
Fo=5F (0yn),y @), (24)
0
Py =3 F (27000, y@ ). (2.5)
Because of the relations:
0
30 y(x Y) = 0 — (y(x) + Yby) = 6y, (2.6)
and

AR
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0 )
R (73 = — (v(@ (@)} = (a)

it follows that:

X1

o) = [ (B (500, YO0 0) 8y

X0

+Fy (6300 1),y@ (6 9)) 6y @) dx, (2:8)

X1

®(0) = f (Fy (x,y(x),y(“) (x)) 8y + F @ (x,y(x),y(“) (x)) 5y(“)) dx.

X0

As we have adready remarked, ¢(0) is called a variation of the
functional and it is designated by év. The necessary condition for afunctional

v to have an extremum is that its variation should vanish v = 0.

X1

Sv = f (F, 6y + Fw 6y@)dx = 0, (2.10)
Xo
X4 X4

Sv = j (E, 6y)dx + j (Fy(a) Sy(“))dx = 0. (2.11)
Xo Xo

The second integral of (2.11):

X1

f (Fyw 8y@)adx. (2.12)

X0

By using the definitions (1.2.2.1) and (1.2.2.2); it can be found that;
-a

Da(sy) = 6y @ = 1-a L sy = sy (). (2.13)
Y Y dx Y I'l—a)

Substitute equation (2.13) in (2.12) to get:

YY
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X1

f ( (@ Sy @ ))d F(l — j @ Fy@ 5}'1)dx.

X0

By using the integrating by parts:

X1 X1

j (Fya 6y@)dx = ﬁ (x‘“ F z = j (d(x~ Fyw)8y) dx.

X0 X0

Since:
5y|x=x0 =0 and 6y|x=x1 =0
X1

d
(@) —a-1 -a
j ( (@ oy )d 1_,(1 — (1) f Fy(a) + x e Fy(a)> oy dx.

Xo

Substitute equation (2.14) in equation (2.11) to get:

X1

ov = j (F + Lx‘(‘”l)F (@ — ;x_“iF (a))5y dx =
Y Tl —a) y I'(1-—a) dx Y

X0

Since §y isan arbitrary function that subject to some general condition,
therefore; by using the fundamental lemma, it can be found that:

F, +Lx—(0&+1)p (@ —;x‘“iF @=20 (2.15)
ri—oa) y NG N9 dx ¥ ’ '

which is the necessary condition for extremum of the functional (2.1).

Yy
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2.3 VARIATIONAL PROBLEMSWITH MULTI DIFFERENT
(FOD) ON ONE DEPENDENT VARIABLE:

Functions involving derivatives of m-different fractional orders («a;);

X1

v(xy0) = [ F(ry@,y @@,y @@, .y @)dx. (216

Xo

where;, 0<a; <1, i=1,2,..,m ,andwith given prescribed boundaries

conditions.

Consider a one-parameter family of functions:

vy, ) = y() + (v (x) —y(x),

or
y(x, ) = y(x) + ¢ 6y.

For =0, y(x,9) = y(x),andfor ¥ =1, y(x,9) = y*(x)

If we consider the values taken by the functional v(y(x)) along the
curves of the family, y = y(x, ) only, then this functional turnsinto an
ordinary function of the parameter 1, that has an extremum for i = 0.
Consequently,

d
@ v(y(x, 1/))) ‘1/;:0 = 0.

The necessary condition for afunctional v to have an extremum is that

its variation should vanish v = 0.

X1

v = j (Fy 8y + F a8y ™) + F a8y + - + Fy(am)5y(“m)) dx.

Xo

Y¢
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By using the definitions (1.2.2.1) and (1.2.2.2) , it can be found that;

d x %
a; — (aj) — 7l—op = —717% S — S —
D% 8y = Jy I I oy =1""6y 5yr(1 ) (2.18)
Substitute equation (2.18) in equation (2.17) to get:
X1
x % x %2
ov = f (Fy oy + Fy(al) <5y—r(1 — C¥1)) + Fy(az) ((Sy—r(l — “2)) +
Xo
X~ %m
+ Fy(am) (5_’)/ m) dx,
s oY =
’ F x ™% F x~%2 F x~%m
j E, 8y + (= A i aa § 2 P
YTy "TA-a) T T - |
Xo
------------------ (2.19)
X1
5v = j (F 6y+<zr(1 3 y(al)>6y) dx =0
Xo
Xq Xq
-
j F,8y dx + z j m Fa)) 09 dx = 0. (2.20)
Xo

Integrating by part the second term of equation (2.20) to get;

Yo
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m 1 X1
_Zm—ai)f" y(a) 0F &
=1 Xo

m 1 Xy
X

ZF(l——ai) |x—ai F () x:— j (d (x—ai Fy(aa) 5y) dx |. (2.21)

i= 2

Since 8yly=x, =0 and 8yl,—x, = 0, then equation (2.21) will be:

m 1 X1

_— TEE 0y dx =
Zm—ai)f" yieo 85 &
i=

1
d
- 1R “l—Fa>5d
ZF(l—al)_[ T TG Dylen ) OY 4

X1

s oY = j Fy 5)/ dx

Xo

-1 d
_ —a; x 4L FE - | a_)g d
+Zr(1—ai)j( *ix yla) TX e Pyl | OY X
=1 X0
X1

d
F, Z—( x 4L E Y% —F a) oy d
f( FLTA ey T R g e ) J oy e
Xo

Since, §y isan arbitrary function that subjected to conditions that
satisfied the fundamental lemma, it can be found that the necessary condition

IS

(_ ) —a-—l -a; d —
F, + Z e < TUF g+ x a(lry(ai))) =0.  (223)

A\l



CHAPTER TWO OPTIMALITY NECESSARY CONDITIONS OF FRACTIONAL
VARIATIONAL PROBLEMS ALONG FIXED BOUNDARIES

2.4 VARIATIONAL PROBLEMSWITH MULTI DIFFERENT

(FOD) ON MANY DEPENDENT VARIABLES:

FIRST:
We consider the functional dependence only on two functions

y(x),and z(x).

v(y(x),z(x))z fF(x,y,z,y(“),Z(ﬂ))dx, (2.24)

Xo
where; 0 <a <1 and 0 < f <1, andwith given prescribed boundaries

conditions.

Varying only y(x) and having z(x) being fixed. Then similarly the
necessary conditions for afunctional v to have an extremum is that its

variation should vanish év = 0.
X1
Sv = j (Fy 8y + Fw 8y @ +E, 62+ F ) 5z<ﬁ>)dx. (2.25)

X0

By using the definitions (1.2.2.1) and (1.2.2.2), it can be found that;
-a

d
D* 8§y = 6y@ = Il_“a&/ =118y = Sy

ri1-—oa)
and
d x~F
ﬁ = (ﬁ) = 1_8— = 1_B 7 — A
DFP 6z = 6z | deZ I 0Z 6ZF(1 =5

Then;
5 [ E 8y 4 F o 69—+ B 624 Fcp 65—\ d
v = f y 0Y + y@ ym‘F ', 0Z + 2B Zl"(l——,B) X.

X0

Yv
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By using the same argument in the above section, we get system of two

necessary conditions.

ax~@tD) X% d
E, + m Fy(a) — m aFy(a) =0, (2.26a)
and

,Bx_(ﬁ“) x B d

E, + F(l 5 F.p — Ta=p EFZ(B) = 0. (2.26b)

SECOND:

We construct the necessary conditions for the functional v has the form;

X1

v(y(x),z(x))z fF(x,y,y(“l),...,y(“m),z,z(“l),...,Z(“m))dx. (2.27)

Xo

where;, 0<a; <1, i=1,2,..,m ,andwith given prescribed boundaries

conditions.

By varying only y(x) and having kept z(x) fixed, and perform the same
approach asin section (2.3), we find that any pair of functions y(x), z(x)
that gives an extremum of this functional.

( 1) x i~ 1 a; d
F, + r( —a; x Foa) + X7 F (a)) = 0, (2.28)

and by varying z(x), having kept y(x) fixed, we obtain;

(-1 d
_ﬁi_l _ﬂi _ —
Fo+ Z ra-g) ( Fz(ffi) + X dx FZ(Bi)> 0. (2.29)

YA



CHAPTER TWO OPTIMALITY NECESSARY CONDITIONS OF FRACTIONAL
VARIATIONAL PROBLEMS ALONG FIXED BOUNDARIES

Now, we consider the general form;

X1

b= jF(x,yl,yl(an),___,yl(ama,

Xo

y2, yz (a21), e yz (O—'Zm), e yn, yn(anl), e yn(ann))dx
with given prescribed boundaries conditions.

The same line of argument applies in the discussion of extrema of
similar functional depending on an arbitrary number f functions; then varying
any function y; (x) and keeping the remaining ones fixed, we find that the

necessary conditions for an extremum as,

m
E, + & —qx 4Tl + x‘“iiF =0 (2.30)
VLT —a)\ yi dx' ¥ ) 7 |

L

fordl j=1,...,n.

Y4
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2.5 EXAMPLES:

To explain the approaches, considering the example, to find the extremal

of the functional.

Example (2.1):

Consider the functional of the form;

1
v = f(y;'/ + x**t1D%y)dx
0

From equation (2.15), the necessary condition is;

a 1 d
x~ @D p _a_Fy(a) = 0.

F, Q) —
y(@ F(l—a)x dx

U e
F, =y, F,@=x“"

a x ¢ d

y +mx—(a+1)xa+1 _ m - x@tl =
a x~ ¢

5}+F(1—a) — —a (a+1)x* =0

) - (a+1)

Y ra-otra-o

, —ata+1

YT Ta-a)

) 1

’TTa-a)

Which is afirst order nonhomogenous ordinary differential equation.
1

y = m x+k

Which is a straight line and k is constant, its value depend on the given

prescribed boundary condition.
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DISCUSSION AND FUTURE WORKS

DISCUSSI ON:
In this work, the optimality necessary conditions are constructed for

fractiona variational problems with multi-dependent variables along fixed
and movable boundaries, in which from of the necessary conditions are
constructed depending on the structures from of the considered example.
Where first ordinary differential equation has been obtained as in the example
(2.1) in chapter two and second ordinary differential equation has been

obtained as in the example (3.1) in chapter three.

FUTURE WORK:

We may look to construct;

1. The optimality necessary conditions for fractional variational
problems with multi-independent variables.

2. The optimality sufficient conditions, for fractional variational
problems with one and multi-independent variables.

3. The optimality necessary and sufficient conditions for fractional
variational problems with additional constraints (may have integer or

fractional order derivatives).
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INTRODUCTION

Fractional calculus is a branch of mathematics wideals with the
investigation and applications of integrals andw#ives of arbitrary order.
fractional calculus may be considered as old ané yevel topic, actually, it
Is an old topic since starting from some spectrditneibniz (1695-1697) and
Euler (1730) who said "Whem is an integer, the rati@"P, P is a function
of x, to dx™ can be made ifn is fraction?", it has been developed up to
nowadays. In fact, the idea of generalizing theomoof derivative to non —
integer order, in particular to the order of 1/2@h is called semi — integral
or semi — derivative) is found in the correspon@eoicLeibniz and Bernoulli,
L'Hopital and Wallis. Euler took the first step bigserving that the result of
the derivative evaluation of the power function hameaning for non integer
order thanks to his Gamma function [1].

There are wide areas of applications for the fometi calculus, such as
viscoplasticity [2] and viscoelastic constitutivguations [3] which are good
applications. That is the constitutive equationgegoing these phenomenon
involve differential equations fractional order.idtalso applied in potential
field data [4] where the use of fractional gradeeptovides a much greater
flexibility which is generating enhanced analytignal data. Also any
application which uses the computation of velo@tyd acceleration is an
application of fractional differ integration [5]nlphysics there are wide
applications such as the pressure behavior ofgoahsf different Medias [6]
and the diffusion equations [7] and [8]. In engimeg, the fractional calculus
is applied in Tensili-Flexral strength of disorderaterials and signal
processing [9].

In addition, of course, to the theories of diffdraly integral, and
integro—differential equations, of mathematical by as well as their
extensions and generalization in one and more blasasome of the areas of

present day applications of fractional calculuslude Fluid Flow, Porous

Y
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Structures, Diffusive Transport Akin to Diffusiorglectrical Networks,
Probability and Statistics, Control Theory of Dyneah System,
Viscoelasticity, Electrochemistry of Corrosion, @heal Physics, Optics and
Signal Processing, and so on [10].

The calculus of variations essentially is an exten®f minimizing or
maximizing a function of one variable to problemsalving minimizing or
maximizing a functional. Typically, a functional ian integral whose
integrand involves an unknown function and its vbgives; the objective is to
find the (not necessarily unique) function that emlthe integral stationary
within a given class of functions [11].

The study of problems of the calculus of variatiomgh fractional
derivatives is a rather recent subject, the masultebeing the fractional
necessary optimality condition of Euler — Lagratmée obtained [11].

Riewe [12], [13] obtained a version of the EuleLagrange equations
for problem of the Calculus of Variations with ftmnal derivatives, that
combines the conservative and non — conservatigescaviore recently,
Agrawal [14] gave a formulation for variational ptems with right and left
fractional derivatives in the Riemann — Liouvillense.

This work, concerns with fractional varational peshs, in which the
optimality necessary conditions are obtained, fawbems having one and
different multi-fractional order derivatives (FODpn one and multi-
dependent variables of one independent variabtegafixed and moving
boundaries, with examples . This work consisthofé chapters.

Chapter one presents the basic concepts of frattimalculus such as
Gamma function, Beta function, the Riemann-Liowvilefinition and some
properties and lemmas. It also presents the basicepts of calculus of
variation such as fundamental lemma. Some Examg@tesgiven in this

chapter.
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Chapter two presents the optimality necessary tiondi for fractional
variational problems of calculus of variation hayione and different multi
fractional order derivatives (FOD) on one and dédfé multi-dependent
variable of one independent variable along fixedralaries. Solved examples
had been presented for each case.

Chapter three presents the optimality necessargitoms for fractional
variational problems of calculus of variation hayione and different multi
fractional order derivatives (FOD) on one and dédfé multi-dependent
variable of one independent variable along movdidendaries. Solved

examples had been presented for each case.
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