ABSTRACT

Thiswork has three objectives:

The first objective is to study fuzzy set theory including

definitions, notations and examples.

The second objective is to study and proof the existence and
unigqueness theorem of fuzzy boundary value problems directly without

transforming the problem into fuzzy initial value problem.

The third objective is to study the numerical solution of fuzzy

boundary value problems.
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FUZZY SET THEORY

In this chapter, we shall introduce the basic cptecand definitions
of fuzzy set with some examples to explain thesecepts. This chapter
consists of five sections. In section (1.1), basincepts related to fuzzy set

theory are given including basic definitions, iliated examples.

In section (1.2), a very strong notion which isated to fuzzy set
theory will be introduced, which is the conceptoelevel sets which has the
utility of expressing an element that belong to filnezy set, The extension
principle, which is used to generalize non-fuzzyaepts to fuzzy ideas is
given and discussed in section (1.3).In sectiod){1lwe present fuzzy
differential equations, In section( 1.5) includisgjution of fuzzy differential

equations, illustrated examples.



Chapter One Fuzzy Set Theory

1.1 BASIC CONCEPTSOF FUZZY SETS

In this section, some of the fundamental notiond basic concepts
are discussed which are related to fuzzy set thegymathematical notion,

and throughout this thesis, X will used to dendte tiniversal set with the
generic element x and be fuzzy subsets of X, which is distinguished from

ordinary set A by the symbol "~".

In order to distinguish between crisp (ordinansyend fuzzy sets, we
start first with the definition of the characterstunction of ordinary sets, and

then generalize this function for fuzzy sets.

Definition (1.1.1), [Dubois, 1980]:

The characteristic function in a classical (or nasy or crisp) subset

A of universal set X is often viewed as a functipg : X J - {0, 1} and is

denoted by:

1 if xOA
HA(X) - {

0 if xUA

where {0, 1} is called the valuation set.

If the valuation set is allowed to be the real im& [0, 1], then A is

called a fuzzy set (and is denoted By), where Mz (X) is the grade
membership of x inA [Zadeh, 1965]. The closer value pf (x) to 1, the

more x belong té, clearly A is a subset of X that has no sharp bam A

which could be completely characterized by theofwlhg alterative form for

representing the fuzzy SAt, by:

Az{(x,pA(x)):xDX, 0<pg(x)<1}
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Example (1.1.2), [Fadhel, 1998]:

We suppose a possible membership function for ulzeyf set of real

numbers, which are very close to zero. This fuazset is defined using the

membership functiop :[) 0 [-[0,1], defined by:

_ 1
()= —2L _ Ox 00
HABO= o2

Figure (1.1) illustrates the membership functiontfos fuzzy set.

Mg (COA

Fig. (1.1) The Membership function

Remarks (1.1.3), [Dubois, 19801, [Klir, 1997], [ Zimmermann, 1988]:

1. If the universal set X is finite and given by;{X%.....,X,}, then a fuzzy set

on X may be expressed as:

A = A (XD /X1 + HA (X)X + .. +HIZ (X)X

n
= > X)X

=1
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where )  refers to the union over the finite index set amdfers to the

restriction of the membership valm%(xi), di=1,2,...,n.

2. If the universal set X is infinite, or for continu® membership functions,

we expressA as:

A =IuA(x)/x

X

Wherej refers to the union over infinite index set.

3. Two fuzzy subsefA andB of X are said to be equal (denoted@y: §)
if:

Hz(X) =pg(x), O xOX.
4. Let A andB be two fuzzy subsets of X, thed O B if and only if:
HA() spg(x), O xOX,

5. The complement of a fuzzy sét (and is denoted bA®) is a fuzzy set,

with membership function:
uAC(x) =1-pz(x), OxOX.

6. The intersection of two fuzzy ses and B (denoted by,& N §) Is a

fuzzy set with membership function:
MA g (X) = Min {1z () 1509} OxOX.

7. The union of two fuzzy setd and B denoted by,& OB isa fuzzy set

with membership function:
MA0s(0) =Max {1z (), Hg ()}, Ox O X.

8. Afuzzy setA is convex if:
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Mz (g +(@L=A)x2) = Min { g (X9.Hg (X 2} . O %1, %0X, A O[0, 1]

9. Afuzzy numberM is a convex normalized fuzzy skt of the real line R,
such that:

i. There exists exactly ong ¥ R, with i (Xg) =1 (X is called the
mean value oM).

ii. Py (x) is piecewise continuous.
10.The height ofA is given by:

hgt(A) =suppiz (x)
XX

11.A is said to be normal if and only if there existdIxX, such that
H& (x) =1; otherwiseA is subnormal, and if it is subnormal then we can
normalized by the fuzzy set by dividing on the Imighe value of
membership function.

12.The fuzzy singletorx, of a fuzzy setA is defined by :

‘o w) = A, if w=A
A 0, if WA

for somed LJ[0, 1].

Among the important aspects in fuzzy set theorythis law of

ordinary set theory that is no longer valid heréurey set theory, which is so
called sometimes, the excluded middle law, bec#uge is a fuzzy set and
A°its complement thel n A°# 0 andA O A°# X. Since the fuzzy set

A has no definite boundary and neittAef, i.e., for all X0 X, we have:
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Min { Lz (x) , Hzc (X)} =05 and Maxfz (x) Hzc (x)}=0.5

and it can be seen thAt and A ¢ may overlap and theA O A °do not cover

X exactly.

Example (1.1.4):

Let X ={1, 2, 3, 4} and define a fuzzy subsktof X, by:

A ={(1,0.3),(2,0.5),(3,0.7), (4,1)}

Then

A°={(1,0.7), (2, 0.5), (3, 0.3), (4, 0)}
Hence

A nA®={(1,0.3), (2,0.5), (3, 0.3), (4, 0B
and

AOA®={(1, 0.7), (2, 0.5), (3, 0.7), (4, 1% X.

1.2a-LEVEL SETS

The scope of this section is to cover some bagicraost important
properties of an ordinary set that can be deriveohfcertain fuzzy set. These
sets are called the-level sets (ol-cuts), which corresponds to any fuzzy
set. Thea-level sets are those sets which collect betweeayfisets and
ordinary sets, which can be used to prove modtefésults that are satisfied
in ordinary sets are also satisfied here to fusty and rise versa, i.e., there is
also another approach in which the classical setd@zzy sets are connected
to each other [Yan, 1994].
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Definition (1.2.1), [Yan, 1994]:

Thea-level (ora-cut) set of a fuzzy séh , labeled by A, is the crisp

set of all xin X such thatz (& a,i.e.,
Aa={x OX|pz () 2a}, aOo, 1]

One can notice that ao-level set discards those points whose
membership values are less tharAlso, it is remarkable that in some
literatures, if the equality is dropped in the d#@fon of A, then it is called a

stronga-level set and is denoted by.Lor Ay-.

Remark (1.2.2), [Yan, 1994]:

~

If A, B are any two fuzzy subsets of a universal set ¥nth is

easily checked that the following properties hold:
1. (A OB)y=A, 0 B,.
2. (A nB)y=Aqn Bg.

3. If A OB then A OB,.

~

4. A =B equivalentto A= By, Ja O[O0, 1].
5. Aan Ag=Ag and AU A=A, foralla, [0, 1] anda < 3.

6. If a<f, then AU Ag.

Remark (1.2.3):

Sometimes for different fuzzy sefs and E, we have A = Bg for

differenta, B O [0, 1], as the following example illustrate:

Example (1.2.4), [Fadhel, 1998]:

10
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Consider:
X ={a, b, c, e}

which is considered here as the universal set.nBedifuzzy subsed of X

using the following membership function:

Mz (e)=1/2,uz ()= 1/3,uz (b)=1/4,u; (c)=1/4
Hence the image set & is given by:

Im(A) ={1/2, 1/3, 1/4}
with the level sets:

Ap={e}, As={e a}, Auw={e, a,b,c}

Now, we define another fuzzy sBt of X with membership function
defined by:

Ug(e)=4/5,ug(@)=2/5pug(b)=1/5ug(c)=1/5
which has the image set:
Im(B) = {4/5, 2/5, 1/5}
with the level sets:
Bus={e}, Bas={e, a}, Buys={e, a, b, c}
Thus the fuzzy setd andB have the same family of level sets, i.e.,
'&1/2= E4/5, '&1/3= E2/5, '&1/4= E1/5
But A andB are different, where:
A ={(e, 1/2), (a, 1/3), (b, 1/4), (c, 1/4)}

B ={(e, 4/5), (a, 2/5), (b, 1/5), (c, 1/5)}.

11
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1.4 THE EXTENSION PRINCIPLE OF FUZZY SETS

One of the most basic concepts of fuzzy set thawnych can be used
to generalize crisp mathematical concepts to fugets, is the extension

principle, which is defined as follows:

Definition (1.4.1) [Zimmermann, 1988]:

Let X be a Cartesian product of universgs X, ..., X, and ,&1, ,&2,
,&r be r-fuzzy sets in X X, ..., X, respectively, f is a mapping from X

to a universe Y (¥ (X, X2, ..., X)). Then a fuzzy seB in Y is defined by:

B ={(y, kg(¥) ) | Y= (X1, X, -y %), (%1, Yo, .y %) O X}

where:

sup  Minfuz Go)big (5 if PR )
Mg (Y) =9 (X DL (y)
0, otherwise

where f'is the inverse image of f.

For r=1, the extension principle, of course, reduces to:

B=f(A)=f{(x g (x)xOX}

where:

Sup Wi (%), if FH(y)z{0}
Hg(y) = xai )
0, otherwise

which is the image of a fuzzy set, i.e., may badusedefine a fuzzy function

between two fuzzy sets.

12
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Example (1.4.2), [Zimmermann, 1988]:

Let X={-1, 0, 1, 2}, and define a fuzzy set on X by:
A={(-1, 0.5), (0, 0.8), (1, 1), (2, 0.4)}

and consider f(xF X% then by applying the extension principle we abtai

fuzzy setB, defined by:

B ={(0, 0.8), (1, 1), (4, 0.4)}.

1.5FUZZY DIFFERENTIAL EQUATIONS[PEARSON, 1997]

We shall consider the fuzzy differential equatibatthas the property
of linear differential equations of the initial s#¢as described by a vector of
fuzzy numbers. The property is related directlythie matrix defining the
original non-fuzzy system by passing to the theofycomplex analysis
representation of the-level sets of the fuzzy system. In modeling real

systems, the fuzzy differential equation is:

X' =f(t, X), X(0)= Kgy ASTE D coooereeeeeeeeeeeeee e (1.1)

where xO0 0" a, b0 0 ;fis a given vector field; an&, is a fuzzy

number.

Methods for treating such problems depend on #Heead properties
of fuzzy set theory. As a first case, suppose tor field is linear and all
the parameters are assumed to be known to a csuHioient accuracy, and

the initial values of the system are fuzzy, i.gquaion (1.1) takes the form
X'(t) = AX, X(0) I X5, ast<Db

where X is a fuzzy numbers, by using the properties oflemnnumber, we

can make the representation of the fuzzy dynansigsiem and to relate the

fuzzy dynamics to the original non-fuzzy lineartgys.

13
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A second case of fuzzy differential equations oscwhen the
coefficient of the matrix related to the vectoedllis constituted to be fuzzy

numbers, i.e., equation (1.1) takes the form
X'(t) = Ax, x(0) U Xp,ast<hb

where A is matrix of fuzzy numbers. Similarly, ttieg such systems is

similar to the first case, but with more complioats.

Also, it is important to notice that the conditionfsthe existence and
unigueness theorem for a solution of fuzzy difféiedrequations are assumed

to be imposed.

1.5 SOLUTION OF FUZZY DIFFERENTIAL EQUATIONS
[PEARSON, 1997]

In this section, we shall study, as a survey, tiiat®n of linear system

of fuzzy differential equations.

Consider the problem of solving the fuzzy linear mogenous

differential equation:

X'(t) = AX, X(0) I X, @S ESD i (1.2)

where xO 0", A is nxn matrix andX, is the initial condition which is

described by a vector made up of n-fuzzy numbers.

A fuzzy numberX,, can be prescribed easily by dtdevel sets, as:
[%o], ={sDx:%p(8)2a , O<a< }

Due to the properties of the so defined fuzzy nusiltlere corresponds to

Xo an interval for each given value @fl [0, 1], given by:

14
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Where Xy and X, represents the lower and upper bounds otithevel set of
the fuzzy numbeX,,.

Now, rewrite x as a fuzzy solutiok and suppose that each element of

the vector x in (1.2) may be represented imHsvel set, as:

it is shown that the evolution of the system (Icah be described by 2n-
differential equations for the end points of theemals, this is for each given
time instant t and value af. These equations for the end points of the

intervals are:

n , . . .
g =Min { Yagu :d 0[xq (1), X (01}
ji=1

n . _ . .
Xa()=Max{ > aqu :u O[xq(t),Xq(1)]}
ji=1
L " Kk _k —k __k
with initial conditionsxq (0) = Xo g and Xq (0) = Xag

The vector in (1.2) is linear, and then equatiod)inay be rewritten

as:
n
X (t) = D oAU s (1.5)
=1
where
; xb (1), if ay20
u =<
Xg](t), if akj<0
and

15
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where:

o XL (1), if a;=0
xb (1), if a<0

The method for solving directly the linear fuzzy sm is
meaningless; therefore an introduction of the regméation of the fuzzy

system using complex numbers is necessary.

Recall that, there are two equations of type (&rts) (1.6) which can

easily be written out explicitly.

Now, define new complex variables as follows:

ZE = XKD FTKE() oo (1.7)

and the two operations carried on the complex nusnée:

(a) The identity operation e, defined by:
BZK =z e (1.8)
(b) The flip operation g, defined by
9(ZK) = g(xX (1) +i %K) = %K) +ixK ) e, (1.9)
where §=e if k is even and*g- g if k is odd, and therefore:
(ug) z'& = (gu)z'& fOr ULILD o (1.10)

Using (1.7), (1.8) and (1.9), it is fairly easys® that equations (1.5) and

(1.6) can be written as:

2o ZB 2y, Zq(0)= Zygeeveveve e (1.11)

16
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where the elements of the matrix B are determinednfthose of A as

follows:

Now, X = Ax, has the solution % c€" and since x(0¥ Xo. Then:

X(t) = X €™
Similarly:
Za (1) = Zg € e (1.13)

But since the problem is to evaluate the exponknfidhe matrix B, then
certain elements are multiplied by the operatanaeg, where o= eg if a; >

0 and i = gg if @; < 0. This can be achieved for small values of d an
represent the matrix B as the sum of two matrices\@ D, one of which is

multiplied by the operator e and the other byaj, i.
B=eC+gD
and for small t, we have:
exp(tB) z,, = exp(t(eG gD))g,
= exp(teC) exp(tgD) Got Of(t)
where O (1) is a function of t, such that O(f)/t- 0 as t{1 - 0.

The first part exp(teC) is simply the standard ma&xponential,
because e is the identity operator. For the sepantdexp(tgD), noting that
g“= e if k is even and“g= g if it is odd and then proceed to calculate the

formal power series of exp (tgD) as follows :

17
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exp(tgD)z = [I +th+t2—|gzD2 +—g3D3 +..

2 t3

3!

— |+ﬁ 2p2 4
=|1+59 y

t2

3
.]zo + [th+ +t—gsD3 +"]ZO

3

3
=11 +ED2 +...]zo+ [tD++t3—!D3 +...]gzo

= cosh(tD)g + sinh(tD)gs
Hence:
Zqo(t) = exp(tC)(cosh(tD)g + sinh(tD)gzo)
Let ¢ (t) =exp(tC)cosh(tD) and (t) = exp(tC)sinh(tD). Then:
2§ = 0(0) 2o + Wi(H9ZLyg
but z& = xK(t) +i XK (t), one get:
xq (0) + 1 Xg(t) = 0u(® Zho *+ W(® 2o

= O (B)( XL o (1) + X o (D) WO (XL o (1) + i XL o (1))
Therefore:
X6 (0= Y0y (Ox} (O + Wi (O, (1)
=

j

X6 (0= 0igOX, (O +wgOx, (1)
j=1

and hence the fuzzy solution is given in termdoditlevel sets as:

[x®]g =[Xa(t). Xa(D)]-

18
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Example (1.6.1) [Pearson, 1997]:

1
Consider the linear systefi= AX , where A= { } with initial

values to be X0) about 1 and %0) about-1, which are fuzzy numbers and

using the membership functions defined by settiogexample:

0, s< 0
x(l)(s)= 2s-¢, K % |
0, s> 2
and
0, s<-2
X3(s)={-2s- ¢, - X x |
0, s> 0

Thus, fora O [0, 1], we can represent the initial conditiongggts a-levels

as.

[x0la = [X0, » X6, 1 = [1-V1-a, 1 +/1-a]

[x8la= x5, , X3 1=~ 1~ V1-a, -1 +1-a]

The fuzzy solutionk(t) is given by eq. (1.13) and if we let for simphcit

purpose:
a=1-J1l-a,b=1++1-a,c=-1-+vl1-a,d=-1++1-a
Then the approximate solution may be evaluatedl&safs:

To find B, recall that p=eg if 3 = 0 and h = gg; if a; < 0, then
a1 = -1 implies that Ip, = g(-1) = —i, &» =1 = 0 implies h, = e(1)=1 and so

on. Hence:

19
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5= {9311 9612} _ {—i 1 }
ed; 093y [0 -2

and we can rewrite the matrix B as the sum of tvatrices, the first matrix is

multiplied by the operator e and the other is rpli#d by g, as follows:
-1
B= _
{0 —ZJ
0 1
=-e +
oo

=eC+gD

-1 0
J 0O -2
| | L1t
It is easy to find €, which is &' = o 1 , and

cosh(tD)= 2! 4l
0 1+ 212+§t4+...

Therefore:

d(t) = €' cosh(tD)
2 .4 .
1+ U B+ 2B
2! 4l 3

0 1+ 212+§t4+...

Similarly, one can find sinh(tD), which takes tloerh:

- ]
_ _t_l_ 0
sinh(tD)= 3!
0 -2
i 3 7

20



Chapter One Fuzzy Set Theory

Hence:

W(t) = €' sinh(tD)

3
4t _o2_4:4_
: t-5—- 212 S0
_ot_43_
0 2t 3t3

therefore the approximate solution of equation3Li4 given by:

2 4 3
glo((t) = (1+%+%+ ) a+(t+2t3+%t5+~--)0 + (—t—%—--.) b +

(—2t2—%t4—---)d

2 4 3
Xa(t) :(1+%+%+ ) b+(t+2t3+%t5+“')d+ (—t—%—...) a+

(—2t2—%t4—---)c

x3(h=(1+22+2 1% ) o+ (20 -4 - ) d

t4
XG0 =(-2t0 gty e+ @+ 28+ £+ ) d
Similar approach followed in solving linear systesh ordinary
differential equations with fuzzy initial conditisrcan be used to solve linear

system of ordinary differential equations with fuzeoefficients and non

fuzzy initial conditions, as the following examplleistrates:-

Example (1.6.2), [Wuhaib, 2005]:

Consider the linear system of fuzzy differentialiatijons:
X' =Ax,x(0) =X,

where A is 22 fuzzy matrix, with entries:

21
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(1) a; approximately equals tel, with membership function:
uall(x) = ‘?‘L" X# O
(2) a, approximately equals to 1, with membership funttio
1
ualz(x) = Xz 0
(3) &, approximately equals to 0, with membership funttio
1
= z —
Ha21(x) 1+ X » X 1

(4) &, approximately equals te2, with membership function:

2
“azz(x) = ‘7 , X£20

and initial conditions ¥0) = 1 and %(0) = 2.

Hence the lower and upper levels of A are given by:

R {—1—@ 1—@}
O fIta —2-V1ma

and

A :{—1+\/m l+\/ﬁ:|
Tl VIma -2+ a

and if § = 0, then ph =eg;,, and if § < O then p = gg;. This yields the

calculation ofB, andB, as:
_ Jol-vEa) drEa)
- g(—\/m) g(—Z—Jﬁ)

and

22
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5 - g(—lh/m) e(1+m)
’ e(x/m) g{—2+\/1——o()

For simplicity, if we let = v1-a , the matrixB, takes the form:

{g(—l— N edl- r)}
Bq =
g gEt2-7)

=e0 1—r+ -1-r 0 - eC, + gD,
0o o] 9 So T A

=T =2-r

Hence:

t{o 1—1 {o t-r)]
Cat:eO 0 =eo 0

e~ i
1 td-r)]
=]+ QC(t = ( )
0 1 |
and:
t2 2 t4 4
cosh (Dg) =1+ 5;Dg” + 4;Dq +0 (f)
i 2 2.2 7
1+t—+t2r+—t ' 0
N : . 2.2
312r 422 14212 4 ot2r 4 U1
2 2 |
Therefore:

8, (1) = €' cosh (Dg)

_ , 3
1ot Lare +t3(3r—1r2—r3j ta-r)+t3 p-32_1"
_ 2 2 2 2 2 2
2
t2(3r+rzj 1+t 2+2r+
2 2

23
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and similarly:

1 —r)+t (r N 2(r 4 -z)
“_r
t-4-3- 6) 2r+r2—%’5 3 r—gj
t4 Z +l I‘4
'~_po((t)= 6 "3

tr+t3(=Zr =372 t—o—p+t —4—op—2-1
tr+t( 5T —5r 2) (-2 r)+t( 3 2r—r 6)

Also, in a similar manner we can evaluate:

- . N
20l _pyr- 3 -3 24+
1+t (2 r+ Zj td+r)+t (2 L 2)

B, (1) = 3 5
311 2,1 2 r
+t2 =r-re+ - + - 2r+-=
tr+t (Zr r 2) 1+t (2 2r Zj
and
t(r—1)+t3(—1 +L_12 +r3J t2(-2—r+ rd)+ t4(r4—5 r3+ r2—2r—4j
6 2 2 6 6 6 3 3
Pa(t) =
t2(r-r?) +t4[_6r3_r22_r23 Héj t(r-2)+ tS[—%+ 2r- r2+r::3j

Now, letting t= 0.2 anda = 1, we have:

0(02) = {102 0216}

108

0.201333 -0.082133
—-0.410666

0 108

0.2) =
b(02) = —0410666

=
2='0" )
o

0.201333 -0. 082133j

24
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and hencex}(0.2)= 1.08639443(0.2) = 1.0863994 x2(0.2) = 1.33868 and
x£(0.2)=1.33868

It is clear that fora = 1, we havex%(t) = Xz(t) and xlz(t) = X1 (1),

which is the crisp value of the solution vector.
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THEORETICAL RESULTSIN
FUZZY BOUNDARY VALUE
PROBLEMS

This chapter consists of three sections. In se¢ah), we introduce
some basic and fundamental concepts in theordtiealy spaces and then
discuss fuzzy inner and normed spaces. In SecBd@®), (we introduce some
basic and fundamental concepts of fuzzy boundanevaroblems. In Section
(2.3), we state and prove the existence and une&ggetheorem of fuzzy
boundary value problems, in which the proof is givéirectly without

transforming the problem into a fuzzy initial valpeoblem.

21 FUZZY NORMED SPACES

Fuzzy normed spaces are not studied previouslythmgr sesearchers,
therefore in this section; we give a brief and newroduction as a

construction to the fuzzy normed spaces (to thedfesur knowledge).

We start first with the following definition of ontiary normed linear
spaces, that will be extended later to fuzzy sebiy using the extension

principle (given in chapter one).
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Chapter Two Theoretical Resultsin Fuzzy Boundary Value Problems

Definition (2.1.1), [Erwin, 1978]:

A vector space X is said to nermed space if to every x[1 X there is

an associated non-negative real number [|x|| ¢catlem of x), such that:
1-||x|| > 0if x¢ 0,0 x O X and ||x|E O if and only if x=0.
2- [Mx[|= A Ix[,2 x O X, A is a scalar.

3- [Ix + ylk [IX]] + lyllH x, y O X.

The pair (X, ||. ||) is called normed linear space.

As an examples of a normed spaces are the following

i- The Euclidean space ", where n is a fixed natural number which is the

space of all x= (Xq, X, ..., X,), with the norm

uxu{g\xi\pjﬂp

ii- The spacefP, where p> 1 is a fixed real number, which is the space bf al

sequences % <x,> with norm:

L (P
[ X[ =2[xn|" <o

n=1

lii- The space Cl[a, b] of all continuous real valuenctions on the closed

interval [a, b], with the following norm defined @n

lIX|[= sup| x(t)
ta, b]

For more details and examples, see [Erwin, 1978].
Depending on the extension principle, we can extdedEuclidian

normed space (X, ||. ||) to a fuzzy normed sggXce|. | ) , as follows:

ry
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Definition (2.1.2):

Let (X]|[.||) be a non fuzzy normed space, and let A be a fuzzy

subset of X, and let' be the set of all fuzzy subsets of X, and thenzzy

norm| .| : X0 07 is a function with membership function defined by:

sup  min{uz O3z Og)blg O P . i8= IIx]

0, JAf 7 |[x||
................................... (2.1)
Definition (2.1.3), [Al-Yassiri, 2000]:
The normed spac€X ™, ||.|[ ) is calledBanach space if the normed

space is complete.

Definition (2.1.4), [Al-Saeed, 2004]:

Let (X, <.,.>)be a scalar product space andAete a fuzzy vector

subspace of X, a mapping denoted<ay,>" from A XA into a field F g or

[1) is called duzzy scalar product if the following conditions hold:
1- <ai,bg>"=<bg,a;>".

2- <A@t +Aobg, > =A1<a;, G > +As<bg Cr>", A, A0F.
3-<a;, &> = ( where t 0 for all tO [0, 1].

4-<ai,a> = Cifand only if t=0.

where a;, b, g0 A ; a,bd X; and t, s, KJ [0, 1].

rA
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Definition (2.1.5), [Al-Saeed, 2004]:

Let (X, <.,.>)be a scalar product space, a gXir<.,.>") is said

to be afuzzy scalar product space if the mapping denoted by.,.>" from

AxA into a field F (I or[1) is a fuzzy scalar product on a fuzzy vector

subspace A of X.

Remark (2.1.6):

We can define a fuzzy norm on a fuzzy subset ofd be as follows:

(Al = ann

where @ bs are fuzzy singleton of A.

2.2 FUNDAMENTAL CONCEPTSOF FUZZY BOUNDARY
VALUE PROPLEMS

In order to study the existence and uniquenesseheof the solution

of a first-order fuzzy boundary value problem ginmsn
X = H(t, X), L [A, C] coeeeeeeiiiie e (2.2)

subject to the boundary condition:

Mx(@)+ RX(C)I B, BOEY e, (2.3)

wheref:[a, c]xE" O O~ E" is continuous, non-linear function, a and ¢ are

given constants, M and R are given constarit in} is a fuzzy number, and

we define E by:
EN={A/p0"00-[01)
and eachA OE" satisfies the following conditions:

re



Chapter Two Theoretical Resultsin Fuzzy Boundary Value Problems

i- A is a fuzzy convex set.
ii- A is semicontinuous, i.e., its-cuts are closed] a.
ili- A is normal.

iv-[A]°= cI{yDD "ux(y) >O} is compact.

It is remarkable that the solution of problem (42)lenoted byk( t)

rather than x(t), since it is fuzzy set.

Eq.(2.2) subject to eq.(2.3) is known as a fuzzynuary value
problem (FBVB.

An important formula that collects between fuzzyubdary value

problems and fuzzy integral equations is giverharext lemma

Lemma (2.2.1):

Suppose M + Rz 0 holds, and ifxOC([a,c];E") satisfies the
boundary value problem given by eqs (2.2) and (2h@n:

t
x(t) =A +jf (s,%) ds, tO[a,c

a

where:

1 C
A= [B—Rj (s, S()ds]
a

Proof:
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Integrating the boundary value problem given byagigm (2.2) from

atot, give:

t
K(t) = X(a)+_[f(s,3<) S R A 1= VDO 4p

a
and hence substituting=tc, yields

C

%(c) = x(a)+ j T 1 O (2.5)

a

So substituting (2.5) in (2.3) gives:

Cc
B0 Mx(a)+ R[S((a)+j f(s/X) d% ............................................. (2.6
a
and rearranging ed.(2.6), we obtain that:
1 ) c
%(a) o +R)[B_ R£ f(s,X) d% ............................................. 2.7)
So substituting eq.(2.7) in eq.(2.4) gives far fia, c]
1 _c t
K(t) [ VR [B— R£ f(s,X) ds} +£ TS X< TR (2.8)

and hence the proof is completem

As it is known obviously in the proof of the existe and uniqueness
theorem, the proof depends on certain fixed pdiabtem such as Brouwer
fixed point theorem, Schauder fixed point theorem$Sadoveskii fixed point

theorem , etc., depending on the nature of thel@nobinder consideration.
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Chapter Two Theoretical Resultsin Fuzzy Boundary Value Problems

Next, we state Schauder fixed point theorem whighbe used in the
proof of the existence and uniqueness theorem mtyflboundary value

problems:

Theorem (2.2.2), (Schauder Fuzzy Fixed Point), [Al-Hamaiwand, 2001]:

Let I* be a nonempty, closed, bounded and convex subsefuazy
Banach space B, and suppose fhiatl* 0 - 1* is a compact fuzzy operator,

thenT has a fuzzy fixed point.

Also, the next theorem is of great importance ia fvoof of the

existence and unigueness theorem of fuzzy boungdmng problems:

Theorem (2.2.3), (Finite Dimensional Ranq), [Erwin, 1978]:

Let X and Y be two normed space and T :[X- Y, a Linear

operator. If T is bounded and dim T(x}os then the operator T is compact.

Definition (2.2.4), [Al-Hamaiwand, 2001]:

Given a fuzzy poinb?ODE” and a number r > 0, we define on open

ball B of radius r and centetq, by:

B(Xq.r) ={ XOE": [%x=%q < r}

Definition (2.2.5), [Al-Hamaiwand, 2001]:

For every mapping T : XI = Y, then the fuzzy mapping : I O -
1Y, is defined by:

T(A) =supu; (W)

rr
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whereA is a fuzzy subset of X ang DT_l(x). If 1* and I are fuzzy Banach

spaces, thefl is calledfuzzy operator. Also, if:
T(ciA+c,B)= T (A) + ¢, T (B), OA,BOI* andcy,c,00 orl

ThenT is calledlinear operator.

Definition (2.2.6), [Erwin, 1978]:

Let X and Y be two ordinary normed space ahd* 017 a

linear fuzzy operator and let B be a fuzzy ball, then the fuzzy operaiois

said to bébounded if there is a real number k such that:

|Tx| < k|x|", forall xOB, ;.

Definition (2.2.7), [Al-Hamaiwand, 2001]:

A fuzzy setA is bounded fuzzy set if there exists a real number L >
0, such that:

|%x-9y| <L, OxyOA.

Definition (2.2.8), [Park, 1999]:

Suppose T= [c, d] O 7 be a compact interval, then a mapping
F: TO - E"is calledlevelwise continuous at % O T if the set-valued
mapping B(x) = [F(X)]” is continuous at x X, with respect to the Hausdorff

metric d for alla I [0, 1].

Now, define the fuzzy operator related to the fubbyindary value

problem given by egs. (2.2) and (2.3), by:
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t

J‘f(s )ds—J‘ f(s,)ds, B[ a] .o (2.9)

a

=+

(l\/I R)

and if f is taken to be linear then (2.9), takesftbrm:

t
jK(s) ds—j K(s).ds, B[ a]

a

=+

(l\/I R)

where K(s) is an ordinary function oflsjs the identity operator.

Lemma (2.2.9):

The fuzzy operatof is linear.
Proof:

Since from the definition of the fuzzy operatorated to the boundary

value problems, we have:

ol

T(x(t)) =

M+R) °

R c t
= £ K(s) X(t) ds— j K(s)X(t) ds=

a

X(t) + v

Hence:

c t
%(t) =g —M—TR j K(s) X(t) ds+ j K(s)(t) ds
a

a
Now, to prove thafl is linear, we must prove that:
T(cXq + CoXp) =T Xq+Col X

Now:

ré
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c

K(s) (efxg+ c5x0) ds
(M +R) -£

T(crXg + CoX2) = (g X+ X )+

t
JK(s)(er%q + 6 %) d
a

C
=Xt CoXot (EI_(M +R)J' K(s)%q dst

IK(S) Xo ds - cl'[ K(s)¥ ds— (‘2'[ K(s)y» d:

jK(s) X1 ds—j K(s)> d%

(l\/I R) A

IK(s) Xo ds—j K(s)» d%

(M R)? a

(M+R)2 A

l
A
[ j K(s) . ds— f K(s). o% X+
e

t
| j K(s).ds— j K(s). o%

a

Hencel is linear. m

2.3 THE EXISTENCE AND UNIQUENESS THEOREM

The study of the existence and uniqueness theolaya pn important

roll in the theory of fuzzy differential equatioms general, and in fuzzy

boundary value problems in particular, thereforéhia section we shall study

and prove the existence and the uniqueness theafrumzy boundary value

problems directly without transforming the problamin some literatures into

fuzzy initial value problem.
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Chapter Two Theoretical Resultsin Fuzzy Boundary Value Problems

Theorem (2.3.1), (The Existence Theorem):

Suppose M + B 0 holds and@ C([a, c]x E' ;:E"). If there exist function kI

C([a, c]{1 ™), such that:

[Tt @) <k@®|a| ", foralltOfa,cl, GOE .. (2.10)

and if:

H 1
(M +R)

Then the fuzzy boundary value problem (2.2)-(28 at least one solution in
C(la, c;E").
Proof:

The existence of at least one solution to the fuzayndary value
problem (2.2)-(2.3) is equivalent to the proof ttied fuzzy integral equation
given by eq. (2.8) has a fixed point, therefore ghmof will be dependent on

Schauder fixed point theorem.

Consider the mapping : C([a, c];E")O0 - C([a, c];E"), defined by:

c t
T(X(1)) = M }_R)[S—ij(s,x(s)) d%ﬂ.‘ { s7x(9) d........... (2.12)
a a

foralltd [a, c].

Thus our problem is reduced to prove the existaicat least oneX, such
that:

T(X) =

X
—_
N
|_\
w
N

Now, from (2.13), we see that for dll[a, C]

P
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| %ty |~ s\ T x(t) H~

r R)[B ijsx(s) % jf(sx(s)) N,

and since tl [a, c], i.e., & c, hence:

t C
[1(s.x(s) ds< [F(s,x(s)) d
a a

c
- ~ 1
| %ty | 5(1 ‘(Mm) Uj (s.x(s)| dg‘(M+R)

(1
Therefore:

- 1 i~ [
I%(t)] s(1+(M R Rj [mrr[];xc] x| [ k(s) d%

a

c
R}jus)\kx(sr o5 e 18]
a

So rearranging the last inequality and taking thh@remum over all t [a, c]

we obtain that:

il
sup x| < ‘MJ’R‘H | R (2.14)

C
tfa,c] 1—(1+ 1 R jj k(s)ds
M+R) | )

Now, define the open ball with center 0 and radia$ by:

B| .1 ={ % 0C([a, c;EM):[%()|” <L +1,0t0]a, c]}

We can see from inequality (2.14) that all possibidution of eq.(2.13)

satisfies:

ry
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|%(t)| <L +1, forall tO [a, c]
Now, we will defined a fuzzy operatdt, as follow
T:B ,;0- C([acE")OB ,,

To prove, B, is closed, bounded and convex fuzzy subseE€@é, c];E")

First, it is clear that, B, is closed and bounded fuzzy set (by construction)
Now to Prove, B.; is convex set of fuzzy solutions.
Let X4(t), Xo(t)U B +1, hence we have:
%,()0C([a, c]; E"), where | %,(t) | <L +1,0t0]a, c]
and
%,()0C([a, cl; E') where | %,(1) |~ <L +1, OtO[a, c]

To prove:
X(1) =A X () +(@L-A) X,() OB 44

i.e., to prove thak(t) JC([a, c] ;E") and| x(t)| <L +1

Now since, X4(t), >~<2(t)E]C([a,c];En ), and since the linear combination of

levelwise continuous functions is also a levelwasatinuous function, hence

(t)0C([a, c];E"). Also:
[ =A%, + @-2) %,
<IN+ @A) %)

=M@ [ +1=2f | x20] "
SAL+(1-A)L

=L<L+1

rA
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Hence,| x(t)| <L +1,ie.,x(t)0B 4
Hence, B, is convex set

Now, to prove thatT is bounded, i.e., to prov#’rf( B <2| x|, for any

%(t)0C([a, c];E"), we have:

o] t
'T')~<(t):>~((t)+(MljR)£f(S,X(S)) ds—{l { sx(9 d

and therefore

c

t
MFer _[f(s, X(s)) ds—j f( s7x(s) d§
( ) A

()| =] %(t)+

- 1 el s [~
<[ x| +(1+ R R Muf(s, x(s) |~ ds

e 1 ; k-
<|x()]| +£1+ v +R)R ]_Dk(s)” x(s) ds

< sup \~x(tj+[1+
ta,c]

1 C
R - k(s)d
(M +R) D tD[Sau,f:)]‘ X(I‘)‘L ©)

jjq k(s) d% sup ~ x(t)

<|1+[1+|—L1 __R
[-{ +‘(M+R) ta, c]

<2|x["

1
(M +R)R

IS d% Kl

Hence, the fuzzy operatdr is bounded.

re



Chapter Two Theoretical Resultsin Fuzzy Boundary Value Problems

Then using theorem (2.2.3), we halids compact fuzzy operator,

Finally, by using Schauder fixed point theorem vet that T has a fuzzy
fixed point which shows that the existence of asteone solution in B; and
hence to (2.2), (2.3). =

Theorem (2.3.2), (The Unigueness Theorem):

Suppose M + Rt 0 holds andf OC([a, c]x E";E") If there exists a
function k C([a, c];[0,]), such that:

| £(t, @)~ f(t,9)|” <k(®)| a-v|", foralitO[a,c], uvd &

and eq.(2.11) holds, then the fuzzy boundary vaheblem (2.2)-(2.3) has a
unique solution inC([a, c];E")
Proof:

Suppose that there exist two fuzzy soluti@jsand i, to equations

(2.2) and (2.3), and lex =ty — Uy. Now consider the fizzy boundary value

problem:
Z=f(t, U) =~ F(t, Un), tO[A, Cluriiiiiiieieieeeieeee e, (2.16)
M Z(2)F RZ(CY] Curroreeeeee et (2.17)

Arguing as in the proofs of lemma (2.2.1) and tkeewoi(2.3.1) for t1 [a, c].
Integrating the boundary value problem given byagigu (2.16) from a to t,
gives:

t

Z(t)=2(a)+j[f(s,q F sty ) ds, @ [a, oo (2.18)

a
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and at t= c, we have:

C

2(c) = z(a)+ j [ 574 > F(STY ] Ao (2)19

a

So substituting (2.19) in (2.17) gives:

C
00 Mz(a)+ R{~z(a}+j[ f(siy > f(s7y ) d} ......................... (2.20)
a
and rearranging (2.20) we obtain that:
1 Cc
7(a)= o +R)[— R_£ [f(s7y ) f(sTy) o% ............................. (2.21)

So substituting eq. (2.21) in eq. (2.18), to get:

1
(M +R)

c t
2(t)= [—Rj[f(s,m—f(sruz ) d%j[ f(Su) fS o)
a a

taking the norm on both sides of the last eq. dgiel

1

201" = G

c t -
[—Rj[f(s,vl)—f(sfuz )| ds}j[ fSuy f(Sy) NS
a a

S(1+ 1 R

C
m[ feu)few)| d
a

(M +R)
1 @ N
s[1+ (M+R)R]£k(s) | T - | d

1 C
<|1+ R Z(t k(s)d
( (M +R) j[tﬂr?:,)élu 2(1‘ £ ) %

£
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and rearranging we obtain

1 C
R RDI k(s)d%s
M+R) | !

1
(M +R)

max | z(t)| [1—[ T+
ta, c]

R

So we havez(t)|” =0, forall tO [a, ] but[l_[“

ﬁ k(s) d%#O
a

Cc
] Ik(s) ds< . and from the properties of the norm,
a

1
(M +R)

since [1+

we havez(t)=0, i.e., 0y(t) = Uy(t), O tU[a, c], which the uniqueness of the

solution. m

£y



SOLUTION OF FUZZY
BOUNDARY VALUE
PROBLEMS

In chapter one, we studied methods for evaluatoigtisns o fuzzy
initial value problems. In an initial value probldhre values of the solution
and lower order derivative up to order one lessntllae order of the
differential equation are specified at the initiale. Another type of problems
that arises frequently in applications is a fuzouidary value problem in
which in addition to the differential equation infeation about the solution
and perhaps some derivatives is specified at twWierdnt values of the

independent variable.

This chapter consists of the numerical solutiohrefar and nonlinear
fuzzy boundary value problems using the shootinghowe and finite
difference method, as well as some well known tesul ordinary boundary
value problems and its generalization to the umadtert problem of fuzzy

boundary value problems.
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Chapter Three Solution of Fuzzy Boundary Value Problems

3.1SOME THEORETICAL RESULTS

3.1.1 Sturm-Liouville Boundary value Problef®agan, 1961]

Consider the second order ODE:

%[P(X)y’] + [Q(X) +AR(X)]y = 0, XU [@, B].eeeeieeiiiiiiiiiiiii (3.1)

with boundary conditions:

apy(@)+ aoy (aF ((3}
ag1y(b)+ apoy (b=

where @,0i, j = 1, 2 are prescribed constants and R, ® and R are

continuous functions on the intervalsax < b. Furthermore, P(x) > 0 and

R(x) > 0, for all x[J [a, b] and\ is a constant called the eigenvalue.

The problem of solving eq.(3.1) under the boundamyditions (3.2)
Is called the Sturm-Liouville problem's, in parfi@u(self adjoint BVP's, in

general).

A parameten for which eq.(3.1) has a nontrivial solution idled an
eigenvalue (characteristic value) and the corredipgn solution is an

eigenfunction (characteristic function) of Sturnouville problem.

The problem of evaluating such values »fand y(x) is called

eigenvalue problem (characteristic value problem).

3.1.2 Eigenvalues and Eigenfunctions of Sturm-Lialle Problem:

The asymptotic properties of the eigenvalues argkrgunctions
related to Sturm-Liouville have been studied praslg. These results can be
summarized in the following theorems that will bheem here without proof
(see [William and Richard, 1986], [Mustafa, 1996]).
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Theorem (3.1.2.1):

All the eigenvalues of Sturm-Liouville problem (3.and (3.2) are

real.

.Theorem (3.1.2.2):

If Q(X) is non-positive, then the eigenvalues ofur8t-Liouville

problem (3.1)-(3.2) are positive.

Remark (3.1.2.3):

If P(x), Q(x) and R(x) are continuous functionsx)pié differentiable
and P(x) > 0, R(x) > 0, for XI [a, b]. Then, the eigenvaluas, A,, ... of
Sturm-Liouville problem satisfies; <A, < ..., for which the Sturm-Liouville

problem (3.1)-(3.2) has a nontrivial solution.

Theorem (3.1.2.4):

If Qi and Q, i # j are two eigenfunctions of the Sturm-Liouville
problem (3.1)-(3.2) corresponding to the eigenvaiheandA;, respectively,

then:

b
j R(X)Q(X)Q(x) dx=0, provided that @ Q and A # A

a

where R(X) is the weighted function.

Remark (3.1.2.5):

From the above theorems, one can see that the sealgpends
mainly of the differential equation (not on the bdary conditions). Hence,
the generalization to fuzzy BVP's is quite simsance the fuzziness appears

in the boundary conditions.
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Example (3.1.2.6):

Consider the fuzzy BVP of Sturm-Liouville type:

V' HFAY =0, 0SS X STl e e e e (3.3)
with fuzzy boundary conditions:

y(0)u Oandyf) L O

in this case the parametric equations of eq.(a/@)given by:

Ya(X) + A Yq(X) =0, XO [0, T oo (3.4)
with:

Ya(0)=0-+1-a and yu(m) =0-+1-a
and

Vo (X) + AV (X) =0, XO [0, THeeveiieeiereieieieeeee e (3.5)
with:

Vq(0) =0++1-a and yu(m =0++1-a
which are both ordinary BVP with different boundagndition.

It is easy to see that associated wkh> 0.The general solution

corresponding to this problem is given by:
yx) =¢ sin\/Xx +C, COS+/A X
Using the first boundary conditions, the generdlitsan reduced to:

yx) =¢ sin\/Xx

and by using the second boundary condition, we h@e= n, for some

positive integer, therefork = n’.

Hence, the corresponding nontrivial solutions ddag written in the form:
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Xn(X) - aqSin(nX), n= 1’ 2;
This shows that all the eigenvalues are positivelasx A ,<A < ...

The orthogonally of eigenfunctions also can be pdoeasily, since

for any two eigenfunctiong n(x) andy m(x) with n# m, we have:

Tt
Y(X) Ym(X) dx = j a.sin(nx)a.sin(mx) dx

O t—

0
n cos(nx— mx)- cos(n¥ mx
= &am I > dx
0

:anam[ sin(m- m)x_ sin(r m)T{ 0o

2 n—-m n+m |

Hencey_/n is orthogonal oy m, On#m.

Similarly, we can find the upper solutign,.

Therefore,y« = [Ya Ydl is the solution of the original fuzzy BVP.

3.2 BOUNDARY VALUE PROBLEMSOF FUZZY
DIFFERENTIAL EQUATIONS

Solution of fuzzy boundary value problems have lme¢n discussed
previously in details, either analytically or numsatly. Therefore, in the next
two subsections, we will discuss the numerical sotuof fuzzy boundary
value problems of linear and nonlinear case. Wesicemned the general form

of a fuzzy BVP is :
y'=pMX)y+a(x)y + r(x), as x<b

y(@u &,y B
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3.2.1 The Shooting Method for Solving Fuzzy LineBWP's:

The shooting method for solving fuzzy linear eqoiatis based on the
replacement of the fuzzy boundary value problemitbytwo related fuzzy
initial value problems, as it is usual case in s@won-fuzzy boundary value

problems.

Now, consider the linear second order fuzzy boundalue problem:

V' = pX)Y+ qxX)y + r(X), & X< Do (3.6)

V(A) L G, V(D) L B oot (3.7)
hence, the related two fuzzy initial value probleans given by:

U’ = px)u+ qu, a<x<b, u@L O, U@L L.oeoeeeeereeene. (3.8)
and

V' = p)V+ gV + r(x), a x< b, v(@)L @, V(@)L O........ (3.9

To find the solutions of the fuzzy initial valuegtiems (3.8) and (3.9),

respectively, then the-level equations these fuzzy differential equatiares
[U"]a = POY[UTa + A0, [U@k U O, [U (@) U La woovveennns (3.10)
and
[V']a = POOVIa + GO)IVIa + 1(X), [V(@)k 1 6o V(@) U Oq. (3.11)

Hence, for solution in the range<ax < b, where a and b are finite,
suppose that the differential equations satistesexistence and uniqueness
theorem (as illustrated in chapter two). The solutf egs.(3.10) and (3.11)

are denoted, respectively, by:
[UX)]a = [u(x; a), T(x; a)], a O[O, 1]
and

V)] = [V (x; @), V(x; a)], a L0, 1]
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whereu, U, v andV are the lower ad upper ordinary solutions relatethe
fuzzy initial value problems at certain level. Alsbe initial conditions can be

rewritten as:

U@ = [0]a = [0(a), O(a)], [U'(@)s = [1]a = [1(a), 1(@)].... (3.12)
and

V(@) = [6]a = [a (a), & ()], [V' (@) = [0]a = [0(a), 0(a)] .. (3.13)

and hence the final solution of the fuzzy BVP carobtained using previous

discussed methods which are given for lower ancupases by:

y(x) = v(x) + Au(x)

....................................................... (3.14)
V() =V(x) +AT(X)
where:
A= B_M(b), u(b) 20 and A = B:‘_’(b),—(b) 20
u(b) u(b)
Eq. (3.14) is derived for the lower case, by lgftin
Y(X) = CLV(X) + QU(X) o (3.15)

and it is easily found that = 1 and ¢ = % by using the boundary

conditions at a and b. Also, we can check thed) is really the solution of the

original fuzzy BVP, since:

B-v(®)

y'(x)=v'(x) + u(b)

and
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B-v(b)
Y09 =700 + £ urn
So:
Y ()=P()Y (%) + AO () + F(x) + B; (yb()b) (P()U’(x) + GO (X))
= 0000+ PYO) rr a0t ve0 + B0 G e
u(b) u(b)
= p(X)Y'(¥) + G (X) + r(x)
Moreover:
z(a)=y(a)+%g(a)
=0 + B_y(b) x0=
u(b)
and

B-v(b)
b)=v(b u(b
yb)=v(d) + = u(b)

v(b)

-V(b)+[3 ub)=v()+p -vb)=p
u(b)

Hence,y(x) is the unique solution to the linear BVP, pued, of course, that
u(b)# 0.
Similarly, as in upper case, we have:

B-v(b)
u(b)

The following example illustrates the above apphoac

y(x) = V(x) + U(x)
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Example (3.2.1.1):

To solve the non-homogeneous fuzzy BVP:

y" _—y +—y+x2 1<x<?2

y() U 1,y U 2

by using the liner shooting method. This problers thee exact crisp solution:

Now, to solve the homogeneous problem:

u' = —2u +£u u(l)u 0, u(d)ul
X x2
Letw =u,theni=w and so i = _—uz + %ul. Therefore in matrix form:
X X
U 0 1 u
2 X2 X 2

So, the desired system of homogeneous systemtdal imalue problem, and

carrying out similar wheneverx2, we have for akx I [0, 1]

22

W@ =2a+2c- 2 =0

94, u® (2) = —c+2b +—d

and

W@ =a+Ze-2d uP @)= e rb

where e=-+1-a,b=+v1-a,c=1-+vl1-a,d=1++1-q.
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To check the validity of the results,af= 1, then &= 0, b=0, c=1,

d =1, and hence:
ul ) =1l (2) =0.666666 and uP(2) = ul?(2) = 0.666666

Also, for the non-homogeneous problem:

v+ %v +x, v()L 1,v@)u 0
X

rn _2
V _
X
which has an equivalent matrix form:

1

MEEE MEMEH

X

So, the desire non-homogeneous system of diffedeatjuations with fuzzy
initial conditions could also be solved. Solving thon-homogeneous system
using Euler's method given in parametric form fo0)\and y(x). In this case is

given as follows:

V(x,a) = y(x,a), V(x,a) = y(x,0)
.. (3.16)

Y(x,0) =SV -2y 42, Y(x0) =5V - 27+
- X X = X

2
x2
With initial conditions are given for atl [ [0, 1], by:
viLa) U 1, v(La)u 1
y@do) U 0, y1a)u 0
Using fist order explicit Euler method:

Vnea(0) = Vo(a) + hR(Xn, Vi(a),Yn())

V(@) = V(@) + hR(Xn, Vi(01), Yn(01))
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and

Yne1(0) = Yn(Q) + hGi(Xn, Vn(0), Yn(a1))

............................ (3.18)
V(@) = Yn(a) + hGy(Xn, Vn(a),Yn(01))
Using eq.(3.16) with eqs.(3.17) and (3.18), we get:
V() = Va(a) + hyn(a)
............................................... (3.19)
V() = V() + hy(a)
and
Yoerl®) = Y(@) + (S5 vy = 2=y + )
Xn Xn
......................... (3.20)

= _ 2 _ 2 _
Yoa(@) = ¥a@) + (S Vo= = ¥+ )
Xn Xn

Hence, by using the first problem of egs.(3.19) é€hd0), we get the
following results which are given in table (3.9r &ll x 1 [1, 2], h=0.1 and

a=1.

Table (3.1).

The lower level of fuzzy solution of egs.(3.19) ai3d20)

And by using the second problem of egs.(3.19) @120) we get the
following results which are given in table (3.2)y &l x [0 [1, 2] and h= 0.1,

a=1.

53



Chapter Three Solution of Fuzzy Boundary Value Problems

Table (3.2).

The upper level of fuzzy solution of egs.(3.19) aBd20)

_B-v(b) _ 2-1.95 _
u(b)  0.66666¢

0.075

and

y=Bovb) _ 2-195 o o
U(b)  0.66666€

As a result, the general solution of the fuzzy B¥$ing the linear

shooting method is given by:
y (i) = v(xi) + A u(x)
)_/(Xi) = \_/(Xi) + XU(Xi)

The results may be checked by comparing the solwtith the crisp

solution ata = 1, and for x= b =2, we have:
y(2)=v(2) +Au(2)
=1.95+ 0.07%0.666666-= 2
Y(2)=V(2) +AT(2)
=1.95 + 0.0750.666666= 2

Clearly y (x) andy(x) are equal only whea = 1.
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The results of the calculations using=NLO and h= 0.1, are given in
table (3.3).

Table (3.3).

The lower and upper levels of fuzzy solution foraemple (3.2.1.1)

Exact solution

3.2.2 The Shooting Method for Solving Non Linear BV

The idea behind the shooting technique for solving nonlinear

second order fuzzy boundary value problem:

Yy =f(X, ¥, Y),a,x<b, y@U &, Y0O) U B (3.21)

Is similar to that in linear case, except thatsbkition to a nonlinear problem
cannot be simply expressed as a linear combinafitime solutions of the two
initial value problems. Instead, we will need talizg the solutions to a

sequence of fuzzy initial value problem of the form

Yy =X, y,¥),a,x< b, y@u @, Y (@)L T oo, (3.22)
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where y (x), Y(x) denotes the solution to the BVP (3.21) in lowaed upper

case andy (x, ), v(x, ?k) denotes the solution to the IVP (3.22) in lower

and upper cases, which involves a parameter, toogppate the solution to

our BVP. We do this by choosing the parametgrén lower and upper cases

as andfk in a manner which will ensure that:

lim y(b, )=y(®)=p and Im y(x §)=y(b)=p
This method is called the "shooting method" by agglwith the procedure of
firing objects at a stationary target.

We start with parameterdy and ?O which determines the initial

elevation at which the object is fired from themddga, & ) and along the curve

described by the solution to the IVP:

y'=f(x,y,¥),asx<b,y@u a,y@LU i
If y(b, 1) andy (b, TO) is not sufficiently close t@, we attempt to correct
our approximation by choosing another elevatitj_‘nsi and so on until
y(b, &) andy (b, %) are sufficiently close to the "hitting® .

The next theorem may be considered as consequesad to the

non-fuzzy case of BVP's:

Theorem (3.2.2.1):

The boundary value problem:

Yy =f(X, ¥, Y),a,x<b, y@u &, Y0O) U B, (3.23)

and the initial value problem:

y'=f(x,y,¥),a,x<b,y@u 6,Y@) 0L T, (3.24)
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In lower and upper cases and for an arbitrary patarst and T, will have a

unique solutionsy andy on [a, b] provided that foy andy on:

D={(X,y,Y)|asx<h,—0 <y <o, -0 <Yy < o0}

H Ll anda—f, are continuous.

oy oy

(i) A constant M exists wit%% < M.
y

(i) A constant L exists Witlfgi > 0.
Yy

To determine how the parameteis and Tk can be chosen, suppose

that we have a boundary value problem of the f@r23), which satisfies the

hypotheses of theorem (3.2.2.1).
If y(x, 1) and y(x, T) are used to denote the solution to the IVP

(3.24) in lower and upper cases, the question V8 toochooset and 1, so

that:

y(b, I)-P=0 and (0, 1) =B =0 (3.25)

We will carry for simplicity the approach of lowease only, as

follows:

If we wish to employ the secant method to solvepitodlem, we need

to choose initial approximationg, and f; and then generate the remaining

terms of the sequence by:

s _r_ bA)-B)(1 - be2)
o y(b, 1)~ y(b.i-2)

,k=2,3, ...
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In order to use the more powerful Newton's methmdédnerate the

sequence {,}, only one initial value,t; is needed. However, the iterations

would have the form:
RUCK SHR P T A A St

dy . - 't 't
d_t(b’_tk—l)

... (3.26)

§ = G

IS

This present a difficulty, sincg(b,¥) is known only fort = %, &, ...,

Be1-

Suppose we rewrite the IVP (3.24), emphasizing that solution
depends on both x antt

Yy B) =0y, 1), y'(x 1)), asx<sb o (3.27)
with boundary conditions:

y@li)u a,y(@i)u i
. . . _dy .
Since we are interested in determlnrg?(b, t), whent = t,_4, we

will first take the partial derivative of eq.(3.2®)th respect tot . This implies

that:

Y %, 1) = Lix, yix, T, y'x 1)
af y L at v ) v =) Y y L

0 N o znO0X 0 Y
= = {0y ), y'(x 1))£ + a—yf(x, y(x 1), y'(x,

.0 - N .oy .

1»%(& t)+ a‘; f(x, y(x, ©), y'(, 1»%(& f)
0 RN PR i
= i y0o D,y D) 300 D)+ 55100 y o )

N ) L
y'(x, L))ﬁ(x, 1)

for a< x < b, and the initial conditions give:
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a)—/(a tyu 0 and aX’(a Hyu 1l
ot~ ot = '~
o . . - ay .
If we simplify the notation by using (x, t) to denoteﬁ (x, t) and

assume that the order of differentiation with resp® x andt can be

reversed, we have the IVP:

z¢|=ﬂ(x, y,y)z+ of
oy = =

!

Newton's method would therefore require that twdiah value

problems be solved for each iteration, since ed6j§3vould become:

. y(biq)-B
T e (3.29)

Similar approach may be carried for evaluatipgas in lower case of

solution, we have:

Tosty YO B (3.30)

The following example illustrates the above discuss

Example (3.2.2.2):

Consider the homogeneous non-linear fuzzy boungge problem:

y' =2y 1<x< 1.3,y ¥ y(1.3)0 0.77

and to solve this problem using the shooting metfmdfuzzy nonlinear
BVP's.
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Now, the problem requires the following equivalenitial value

problems:
y =2y ¥y B = % S ST (3.31)
7' =6y°Z, Z(D)U & ZQ) U & e, (3.32)

eq.(3.31) can be written in system form, as:
y'=v=FXY,V)
V' =2y =G(X, Y, V)

the parametric form of y(x) and v(x) in this casejiven by:
y'(x, a) = v(x a), Y'(x, a) = V(x, a)

and
v'(x, o) = 2y°(x, a), V'(X, ) = 2y *(x, o)

With initial conditions given for alx O [0, 1] and¥) = -0.77 and% =-0.77.
yaou ¥ ya,e. ¥

and
v(l,a) U-0.77, V(1,a) L —0.77

Using Euler's method, we have:

Ynea(0) = Yn(@) + hFR(Xn, yn(a), va(ar)) r

Yut(@) = Yol@) + Wk, Yol@), Vo(@)) 3
and

Mn+1(0) = M”(a) + hGl(Xn’ Xn(a)’yn(a)) r
Ve2(0) = Vo (0) + hGo(Xn, Y1), V(X)) %
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Applying F, F, G, and G in egs.(3.33) and (3.34) yields:

Ynea(0) = Yn(0) + hvy(a) 1"

Voes(@) = Yol@) + V(@) |

and
Voea(@) = V(@) + 2hy; (@) r
Voa(@) = V(@) + 2hY; (0) |

Hence, by using the first problem of eq.(3.35) #dralfirst problem of

eq.(3.36), we get the following results which areeg in table (3.4), for all

x 0[1, 1.3] and k= 0.1,a = 1 with ¥ =-0.77.

Table (3.4).

The lower level of fuzzy solution of eqs.(3.35) af3d36)

Since y(1.3, %) = 0.825, and by using the second problem of

ed.(3.35) and the second problem of eq.(3.36), &tetlie following results
which are given in table (3.5) for allx [1, 1.3] and for b= 0,1,a = 1 with

‘%{9=—o.~77.
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Table (3.5)

The upper level of fuzzy solution of eqs.(3.35) gB3d36)

Sincey (1.3, T?{5?) =0.825. Also, eq.(3.32) can be written as:
Z =v=H(, z,V)
V' = 6y’z = B(X, Z, V)

The parametric form z(x) and v(x) in this caseiigeg by:
z'(x,a)=v(x,a), Z'(x,a) = V(x, )

and
V(X o) = 6y*(x, a) z(x, a), V'(x, &) = 6Y*(X, a) Z(X, a)

with initial conditions are given for adl (1 [0, 1], by:
z(L, o)L O z@1,0) U ¥

and
v, o) ¥ v@,a)u ¥

And similarly, using Euler's method for solving tireear system, we have:
Zna(0) = 2o(0) + h¥o(@)
Z0ui0) = Z4(0) + V(o) }

and
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V@) = Vo(a) + BhyF Zo
1J ............................................. 3.38)

V@) = Vo(a) + 6hy5 Z,

Hence, by using the first problem of eq.(3.37) dralfirst problem of

ed.(3.38), we get the following results which areeg in table (3.6) for all

x O [1, 1.3] and for i 0.1,a = 1 with % =-0.77.

Table (3.6)
The lower level of fuzzy solution of eqs.(3.37) af3d38)

Since z(1.3, %) = 0.3, and by using the second problem of eq.(3.37)

and the second problem of eq.(3.38), we get thievimhg table of results
which are given in table (3.7) for alliX [1, 1.3] and for b= 0.1,a = 1 with

‘%{9=—o.~77

Table (3.7)
The upper level of fuzzy solution of egs.(3.37) aBd38)
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Sincez (1.3, %) =0.3.
Now, we can evaluai’faand?f by using egs.(3.29) and (3.30), we get:

_y@3®)-B _ 0o
z(1.3,p) '

Bn-z

4

YL3B)B _ g

170" S0ay)

Now, the initial condition ofy, =-0.9 andf = -0.9 are given for all
a [0, 1], by:

y@ou ¥y au ¥
and

v(l,a) U- 09, v(l,a) L - 0.9

Hence, using the first problem of eq.(3.35) and ftlet problem of

eq.(3.36), we get the following results which areeg in table (3.8) for all

x 0[1, 1.3] and for k= 0.1,a =1 with § =- 0.9.

Table (3.8).

The lower level of fuzzy solution of eqs.(3.35) af3d36)

64



Chapter Three Solution of Fuzzy Boundary Value Problems

Since y(1.3, %) =077= B, and by using the second problem of
ed.(3.35) and second problem of eq. (3.36), walgetollowing result which
are given in table (3.9) for allX [1, 1.3] and forx = 1 with le -0.9.

Table (3.9)

The upper level of fuzzy solution of eqs.(3.35) gB3d36)

Sincey (1.3, §) =0.77=f.
The solution requires one iteration ane t0.9. The results obtained

for this value of t are shown in table (3.10).

Table (3.10).

The lower and upper levels of fuzzy solution foraemple (3.2.2.2)
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3.2.3 Finite Difference Method for Solving Fuzzy héar Boundary Value

Problems:

The methods we will present here have better sabiharacteristics,

but generally require more computations to obtgineaspecified accuracy.

Methods involving finite differences for solving dnadary value
problems consist of replacing each of the deriestivn the differential
equation by an appropriate difference approximatidre difference equation

is generally chosen so that a certain order ofcttian error is maintained.

The finite difference method for the linear seconder fuzzy BVP:
V' =pX)Y + gX)y + 1(X), & XS Do 39)
y@u a,y(b) B

requires that the difference approximations be dsedpproximating both'y
and y'. To accomplish this, we select an integer N > @ dinride the interval

[a, b] into N + 1 equal subintervals, whose endfsoare the mesh points=x
a+ih, fori=0,1, ..., N+ 1; where h = H. Choosing the constant h in

this manner will facilitate the application of a tma algorithm, which in this

form will require of solving a linear system thavolves NkN matrix.

In this case, the parametric equations related {8 9) are given by:
y"=pX)y' +q(x)y +r(x),asx<b
With boundary conditions:

Yo(@)=&-+1-a and yqb)=H-V1-a

and

V'=p(X)y' +gX)y +r(X),asx<b
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with boundary conditions:
Vo(@)= & ++1-a and Yq(b)=H+1-a

As in the previous work, we will carry the discussifor lower case

problem and we notify that similar approach is iea@in upper case.
Y (0)= PO Y (Xi) + A0 Y (i) F TG o (3.40)
Expanding y in a third-degree Taylor polynomial abg evaluated at;x and

Xi-1, and assuming 0 C*[X;1, X.+1], we have:

Yy (Xis1) = Y (Xi + h)

2 3 4
= y(x) + hy'() + - y"(x) + Byro o YE)

for some poin€;*, x; <& < X1, and:

Y (Xi-1) = y(Xi = h)

2 3 4

T A L RPN | (IR LI
=y (xi) —hy'(x) + 23_/(x.) 5 Y (x.)+243_/ &)

for some poing;, x-; <& < X.
If these equations are added together, the terwmdvimg y’'(x;) and

y'"'(x;) are eliminated, and a simple algebraic maniporfegjives:

2
y"(x) = h_12[ Y (Xier) = 2y (%) + Y (Xi-0)] = %[ y9EN + y9EN]

The intermediate value theorem can be used to dynfhle last

equation even further:

Y= Ly () = 2y (6) + y (xi0)] - —y“”(z) ................. (3.41)

for some poirf;, Xi-; < & < X+1.
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Equation (3.41) is called the central differencerfola for y "' (x;).

A central-difference formula foy'(x;) can be obtained in a similar

manner, resulting in:

Y00 = -2 [y () = y 6] = 2y (3.42)
pA | 2h pA 1+1 pA i-1 6 pA [)esssne st nnaasnnnnnnnnns .

for somen);, where x1 <N < X1.

The use of these central-difference formulas i3240) results in the

equation:
h_12[ Y (Xira) = 2y (X)) + y(Xi-a)] = p(n)%[ Y (Xira) = Y (Xi-1)] + q(x)

h2
5[2p(x) y"(n) - y @]

y(xi) +r(x) — 1

A finite difference method wit truncation error ofder o(H) results

by using this equation together with the boundasgdttions y(a) = & -

v1-a andy(b)=B - v1-a, to define:
Yo=08 - v1-a andyn.=f - v1-a

and
1 1 _
F[ZXi = Yir1 — Xi—l]"'% PO Yir1 = Yial+a(Xi) yi=-r(x) .. (3.43)

foreachi=1, 2, ..., N.

In the form we will consider eq.(3.43) is rewrittas:

B DB+ (24 a0 ) Y- B D P Eaa = -r(6)

68



Chapter Three Solution of Fuzzy Boundary Value Problems

and the resulting system of algebraic equatiomxmessed in the tridiagonal

NxN matrix form:

AYED . (3.44)
where:
- ) ]
2+h7a0q) ~1+- p(x) O mmmmmmmmmmm e 0
h h o i
1-0p0g) 2+ d0e) — = plg) T ;
N L f?q(@\ ~ %5 PO o
| : > B -0
l h
! \ . \ _1+Ep(xn_1)
O e 0 ~1-2p0n) " 2+ I a0t )
i} i ]
o ~h2r(x;)+ (1+ n p(xl)j Yo
Y1
)7 ~h?r(x3)
y = . b= :
= Yi ~h2r(x;)
IN-L ~hZr(xy 1)
L YN h
~h?r(xy)+ (1_Ep(XN )jA/N+1

Example (3.2.3.1):

Consider the fuzzy BVP:

y”=£y’+£2y+x2,1sxsz ............................................ (3.45)
X X

V) U YY) U Foeeeeeeeeeeeeeeeeeeeeeeeeeeee e, (3.46)

For this example, we will use ¥ 9, so that h= 0.1. In this case, the

parametric equations related to egs.(3.45) and)3ate:
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" 2 2
y O(() 7! (X)+?XG(X)+X2!XD[1’2]
With boundary conditions:
Ya(1)=1-+v1-a and yq(2)=2-+1-a

which is a non fuzzy BVP.

By using eq.(3.42), we get:

Now, define:
Yo(1)=1-+1-a and yio(2)=2-v1-a
Hence:
2Y; - Xi+21' Yi-1 _EMl+£ yi=—xi2 .................. (3.47)
h X 8 2h { X|2 -

Foreachk 1, 2, ..., 9.

In this form, we will consider eq.(3.47) which daa written as:

S hs o= 2,2
- gl- —= 2+—h— 1+— =-x{h
E bt e R i =

and the resulting system of algebraic equations tmyexpressed in the

triadiagonal &9 matrix form:
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2+—2h2 L 0 0 0 0 0 0 0
Xl X]_
L 2+—22h2 _- N 0 0 0 0 0 0
X2 X5 X2
0 Ll 2+_22 e 0 0 0 0 0
X3 X3 X3
0 0 L 2+_22 N 0 0 0 0
X4 X3 X4
A=| 0 0 0 Ll 2+£2r% N 0 0 0
X5 Xg X5
0 0 0 0 UL 2+—22t?r r 0 0
Xg Xg Xg
0 0 0 0 0 L 3%}% L 0
X7 X7 X7
0 0 0 0 0 0 L 2+—22|% -
Xg Xg Xg
0 0 0 0 0 0 0 L ;}%ﬂ
L X9 X5 |
2.2 h
-h?x¢+| 1-— |(1-1-a)
o X1
Y1 2 2
_h X2
Y2 h2y2
-h“Xx
Y3 3
2.2
Y4 ~hx3
y=|¥s | b= ~h?x¢
Y6 ~h?x§
Y7 2.2
- _h X7
Y8 22
-h“Xx
| Yo | 8
h
—h2x§+[1+— (2-1-a)
Xg

We can carry similar calculations as it is followked lower case of solution
and find the upper case of solution from the follayvsystem of algebraic

equations:
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Where
2+£2h2 - 0 0 0 0 0 0 0
Xl X]_
L 2+32h2 - 0 0 0 0 0 0
X2 X5 X2
2 h
0 1+ — 2+_2h2 -1 0 0 0 0 0
X3 X3 X3
0 0 L 2+£2r? A 0 0 0 0
X4 X7 X4
2 h
A= 0 0 0 -1+ — 2+—2r% - 0 0 0
X5 X5 X5
0 0 0 0 UL 2+£2r’r L 0 0
X6 Xg Xe
0 0 0 0 0 L 2% Bo-x 0
X7 X7 X7
0 0 0 0 0 0 L 2rizﬁ -
Xg X§ Xg
0 0 0 0 0 0 0 L z%ﬁ
L X9 Xg |
2.2 h
-h?x +| 1-— |(1++/1-a)
o X1
Y1
_ —hzxg
Yo
< ~h2x2
Y3 , 2
Va4 —h*x3
Yo ~h?x2
v 13
Ys 5 o
— —h X8
L Yo |
h
—h2x§+(1+— (2+\/1—a)
Xg

Wherea is a parameter between 0 and 1, and wherl, the results are given

in table (3.11) which represented the crisp sofutio
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Table (3.11)

The lower and upper levels of fuzzy solution foraemple (3.2.3.1)

Hence y =[Ya, Y4 is the solution of the original fuzzy BVP.

3.2.4 Finite Difference Method for Solving Fuzzy Nd.inear Boundary
Value Problem:

For the general non linear fuzzy BVP:

y@u a,y()u B

the difference method is similar to the method iggllo linear problem. Here,
however, the system of equations which are derwiddhot be linear, so an

iteration process is required to solve the problem.

For the development of the procedure, we will assthmoughout that

f satisfies the following conditions:
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(i) f and the partial derivatives &nd {, are all continuous on:
D={xy,y)|a,x, breo<y<wo, o<y <}

(i) fy(x, y, ¥) =2 6> 0 on D for someé > 0.

(iif) constants K and L exist, with:

ﬂ(x,y,)/)‘, L= max
ay (x,y,y% D

of

K= max -
oy

(x,y,y9¢ D

(x,y,s/)‘

As in the linear case, we dived [a, b] into N +gqual subintervals se
endpoints are at the mesh pointsa + ih, fori=0, 1, ..., N + 1. Assuming
that the exact solution has a bounded fourth devirallows us to replace
y"'(x;) and y(x;) in each of the equations. In this case, the panacrequations
related to eq.(3.50) are given by:

y"=f(x,y,y"),asxs<b
with boundary conditions:

ya@=a-+v1-a andydb)=p-+1-a
and

y'=f(x,y,y¥'),asx<b
with boundary conditions:

Va@=0a+V1-a andy(b)=p+1-a

As in the previous work, we will carry the discussifor lower case

problem an we notify that similar approach i catrie upper case.
y"(xi) =f(xi, y(x), y'(x)

By the appropriate centered-difference formula giveeqgs.(3.41) and (3.42),

to obtain, for each* 1, 2, ..., N.
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Chapter Three Solution of Fuzzy Boundary Value Problems

Y(Xi+1)- th(;i)JfX(Xi-l)=f§<i’z(xi)’X(Xi+1)éhX(Xi-1)_ h? yh )_

+ h—Zy(“)(zi) ........................................... (3.51)
12

for some pointg;, n; in the interval (X1, X+1).

As in the linear case, the difference method reswtien the error

terms are deleted and the boundary conditions graglo

XOU G’XN{LU B

and

_Yi+1- 2y|+y| f§<“ I,Y|+1 Yi- 1—_O

foreachi=1, 2, ..., N.

The NN non linear system obtained from this method

a/

—y1+2y2- y3+hzfé<2,y2,z3_ XEE:
2rretz ) 25 |
A . (3.52)
YN- YN 25 ]
—)_/N—2+23_/N—1_XN+hzf§<N- LYN 1,—'\‘2—#\‘2;5:

By
_)_/N—2+2)_/N+h2fé<N,XN,% -#=0

will have a unique solution, provided thax2/L.

To approximate the solution to this system, we wile Newton's
method for nonlinear system. A sequence of |ter{s(tg§<) y(k) - Xf\'f))}

is generated which will converge to the solution®62), provided that the
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initial approximation {(3_/&0), 3_/(20), 3_/(|\?))} Is sufficiently close to the

solution {(y; , , Yn)} and that the Jacobian matrix for the system is

Yo .-

nonsingular defined by:

of, ofy of
0X; O0Xo X p,
of, odf, of 5
J(X)=| 0X; 0X, X p,
of, of, o |,
| 0% OX, 0Xp, |
However, for the system (3.52), the Jacobian malfyx ,y,,...,Yn)
is triadiagonal.
2+ hf (Xl ylythj —1+2 fy(xl Y1 Zha] 0{:::: """"""""""" 0
_1_%1:!()(2,)/2 y3 yl] 2+h2f (XZ yzxsleJ\\ \\\\‘\\\\\‘\\~‘\~‘\\~‘ i
0. T RN ) Tl
I )= . 6
.: \\‘\\ e RN \\\\ ‘1+gfz'(XN—1’yN—1'XN_2%1'\‘_2]
T R —1—:2fxy[xN,yN,B_§']“'lJ PR [XN ' P yN 1}

Newton's method for non linear system requires dh&ach iteration,

the NxN linear system:

3(3_/1’2’2’---’B_/N)(\_/1,\_/2,---,MN)t=‘E Y1~ Yo~ &+
- 80, Yi:
h2f§<, , S oy, 42 +hzf§< B Ay
LY = oh % “Yi1tZ2y>—Ys 2:Y2 on % YN-2
YN- Y
+ ZXN—l_ Ynt hZfEXN- YN 1,TM YNt ZYN

—+

E{Q Yy -
B, YN s —
pov o3

gL B L
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Solving forv, , v,, ..., vy, since:

Xi(k) _ Xi(k- D 4 gk D

foreachi=1, 2, ..., N.

Example (3.2.4.1):

Consider the fuzzy BVP:
Y T 2) R LS X S B oo (3.53)
N NI A () (I A (3.54)

For this example we will use 4, so that = 0.1. In this case, the parametric

equations related to egs.(3.53) and (3.54).

y"o(X) = 2y°%(x), x O [1, 1.3]
with boundary conditions:

Ya(1)=1-+1-a and y.(1.3)=0.77- V1-a
which is a non fuzzy BVP.

By using eq.(3.51), we get:

Yir1™ 2Yit Y1

2 = 22’3i

We define:
yo()=1-+V1-a and ys(1.3)=0.77- J1-a
Hence:

_Yis1m 2Yit Vi |
h2 24
foreach i= 1, 2, 3, 4.
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In this form, we will consider egs.(3.55) which damrewritten as:
~Yiert 2¥i- Yiog t2MFY5=0

The 4x4 non linear system obtained from this method:
2y1- Yo+ 2Hy% - (1- V1-a)=0
~Y1+ 2y, Y3+ 2ify%=0
Yyt 2ya yat 2??3_/33 Lo e
-y3+ 2y, + 2ify% - (0.77- V1-a) =0

Newton's method has been used to approximate tbheasowhen the initial

approximation is:

y9=(1,1,1,1)

The Jacobin matrix () for the system (3.56) is given by:

246 -1 0 0
-1 2+6H -1 0
JY1uY2YsYa) = -
0 -1 2+6ify -1
0 0 -1 2+ 6 if |

Thus, at the k-th step, the4tlinear system:
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i 2
2+ 612 ( <) -1 0 0
2
-1 2+ 6t ( ) -1 0
2
0 -1 2+ 61 ) -1
2
0 0 -1 2+ 6t V)
y(kD 2y kD _ kD o2 (DR - iq )
ygk—l) _ _X:Ek—l) + ZX(Zk—l) _X:(J,k_l) + 2h2 (_y(zk—l))S
y\(?,k—l) _X(Zk_l) + Zyi(ak_l) _Xglk_l) + 2h2 (_ygk—l))f.%
VD] |y D oy kD o2 (DY 077V Ea )

Be solved or eachk 1,2, ...; since:

Xi(k) _ yi(k- 1 . Mi(|<- 1)

for each i=1, 2, 3, 4; where a is a parameter between 0 and 1, when 1;

the results are presented in table (3.12).

Table (3.12)

The lower level of fuzzy solution for example (3121)

We can carry similar calculations as it is followkd lower case of

solution an fin the upper solution from the folloisystem:
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i 2
2+ 62 (%) -1 0 0
2
-1 2+ 61 () -1 0
0 -1 2+ ar?(—;g"‘l))z -1
2
0 0 -1 2+ 61 (YY)
] (k-1) _ (k-1 2 +—(k-1),3 7
. 2y - g5+ 2p? (VP - V1)
yikD _ YD 4 gyl gDy o2 (gD
s YD 4 oyl gDy o2 (pleDy?
| LT 2 P - 77 Fa )
Va7

be solved for eachk 1, 2, 3; since:

y k) _ yi(k- 1, \—/i(k- 1)

for each i= 1, 2, 3, 4, Where is a parameter between 0 and 1, when 1,

the results are presented in table (3.13)

Table (3.13).

The upper level of fuzzy solution for example (3L2.)
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CONCLUSIONS AND REGOMMENDATIONS

From the present study, the following conclusions are drowning:

1. In some cases, it is so difficult to generalize the ordinary concepts of

set theory to fuzzy set theory, unless using the extension principle.

2. Some literatures state and prove the existence and uniqueness theorem

of boundary value problemsin terms of initial value problems.

3. The approximate solution of the shooting method for linear problems
seems to be more accurate than the other numerical method in

comparison with the exact solution.

Also, we can recommend the following statements for the future work

as open problems:

1. Studying fuzzy boundary value problems with generalized boundary
conditions, including derivatives in the boundary conditions.

2. Studying fuzzy periodic boundary value problems.

3. Studying new methods of solution for solving fuzzy boundary value

problems, such as the collocation method.

A
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INTRODUCTION

Fuzzy set theory has been studied extensively thvepast 40 years.
Most of the early interest in fuzzy sets pertaitecepresenting uncertainty in
human cognitive processes. Fuzzy set theory is applied to problems in
engineering, business, model and related healtbnsgj and the natural
sciences, in this basic sciences, we constructtaxathematical model of
empirical phenomena and then w use these modaiake predictions. While
some aspects of the real world problems alwayspest@m such precise
mathematical models and usually there is an elusegactness as a part of
the original model, [Kandel, 1986].

One of the aims of fuzzy set theory is to develop methodology of
the formulations and solutions of problems that tae@ complicated or ill-

defined to be acceptable to analysis by conventieeaniques.

Since 1965, fuzzy theoretical approach had beerldpgd by Zadeh
himself and some other researchers in which thefyapis theory in a wide
range of scientific and engineering areas, in wiiiadeh's original definition
of fuzzy set is as follow "a fuzzy set a class bjeats with a continuum of
grades of membership. Such a set is characterizeda bmembership
(characteristic) function which assign to each cotbge grade of membership

ranging between zero and one", [Pal, 1986].

Such a type of objects most encountered in realpgrbblems, which
do not have precisely well defined criteria of memdhip function. For
example, the class of animals clearly includes dmyses, birds, etc., and
clearly excludes such objects as rock, plants, ltevever, such objects as

starfish, bacteria, etc., have an ambiguous statilisrespect to the class of



I ntroduction

animal, such type of elements may be classifiedyeasing fuzzy set with

the cooperation of the membership function, [Al-3ies2000].

Kaufmann and Gupta (1988) reported that over 7@20ch papers,
reports, monographs, and books on fuzzy set thandy applications have
been published since 1965.

Katsara A. K. (1984) defined the fuzzy noremd spadaut the
concept of fuzzy normed spaces which were introdiugeWu Congxin and
Fang Ginxuon (1984).

Kandel and Byatt (1978 and 1980) applied the conoépfuzzy
differential equations to the analysis of fuzzy aymcal problems, but the
boundary value problems was treated, rigorouslyLakshmikantham, V.,
Murty, K. N. and Turner, J. (2001).

Henderon, J. and Peterson, A. (2004) obtained arehe of the
existence and uniqueness of solutions for the bayndalue problems of
fuzzy differential equations. Al-Saedy, A. J. in0B0studied the solution of

boundary fuzzy differential equations.

This thesis consists of three chapters. Chapteremigled "Fuzzy set
Theory" consists of five sections. Section one e®f basic concepts and
definitions related to fuzzy set theory which arecessary for the
completeness of this work. Section two and becaisthe importance in
solving fuzzy differential equations, we stuahlevel sets, as well as, some of
its properties. Section three was devoted to defimenembership function in
general without details. Section four presentsetktension principle which is
necessary to generalize crisp (nonfuzzy) mathealaticoncepts of
mathematical logic. Finally, in section five, wesdliss linear fuzzy
differential equation, as well as their solutionambkver the fuzziness occurs

in the initial conditions or in the coefficient tife system.
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Chapter two, entitled "Theoretical Results in Boamyd Value
Problems" consists of three sections. In sectia# ae introduce some basic
and fundamental concepts of fuzzy normed spacessebition two, we
introduce the fundamental concepts of fuzzy boundatue problems with
some related definitions. In section three, we ystinddetails the statement
and the proof of the existence n uniqueness theofdnezy boundary value

problems using Schauder fuzzy fixed point theorem.

Finally, chapter three, entitled "Solution of FuzBpundary Value
problems" consists of three sections. In sectior; ame introduce some
theoretical results of boundary value problems,hsas Sturm-Liouville
equation. In section two, we discuss boundary vateblems for fuzzy
differential equations in details, using the shogtmethod for linear and non
linear problems and finite difference method faeh and non linear problems

to solve numerically boundary value problems
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