 Abstract

The main objective of thesis is oriented toward thgectives.
The first objective is to introduce and study nepet of differential
equations, which are the so called fuzzy fractiooaler differential
equations. This type of equations is the collechetween two different
theories in mathematics which are fuzzy set theamng theory of
fractional calculus, where the study include sothestrative examples
and theoretical aspects. The second objectivesistitement and proof
of the existence and uniqueness theorem of fuzagtiémal order

differential equations using Sadoviskii’'s fixed pbiheorem.
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Appendix A
Computer Programs

L — m—y
- =

Following the computer programs used in this thesis

Prog.1: { Computer programming for solving
VD (x) =5 F %exp(-1/5), §(0;a)=[0.1+0.90,1.5-0.50]

using explicit Euler's method and explicit Rungettiiumethod}.

h:=0.1
a:=0,0.2..1
go(a) :=0.1+0.9a

Vo(a) :=1.5-0.50

$(@) =(y0(e) **. ;{

§(o) :=(Fo @) ™. ;{

ki(a)=y(a)

K1(a) =5(@)

k2(a):= (yo(a)+h(5%* (@) exe(- 13(a)))

-1 (0)+ {%%(a) exf- Ty(a))

EZ(0():=(§0(0() (5% (o) exf~ 1 S0 o )))—5/4
exf =1 () + {5 (a) ext- (o))

1(a) :=¥0(a) +h. y(a)

I<1
;/

<1I
;/

exp

A-1



Appendix A
91 (o) :=Yo(@) +h. y(@)

. (Kl(or) +EZ(O())

Y1(a):=yo(a)+

V1(ar):=To () +. (ka(a) + k2(a))

o Nz

Prog.2: { Computer programming for solving
D¥%5(x)=5, §(0;a)=[0.5+0.50,1.25-0.25]
using Adem Bashforth method}.

h:=0.1
a:=0,0.2..1
Yo(a):=0.5+0.50

Vo (a) :=1.25-0.250
91 () :=Fo() +h

91 (o) =T (@) +h
Yo (o) =91 (ar) +%.(3J§/1(0() _\/ETO)
52 (@)=5a(0) +—= (34 34(a) %0

A-2
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General Comcepts

=

This chapter we present some general conceptedeta this work,
including fuzzy set theory and fractional calculU$is chapter consist of
three sections, in section 1.1 general introdudimofuzzy set theory is given
including basic definitions, general propertiesgedraic operation, the
membership function and the extension principle.

In section 1.2 primitive concept and definitioredated to fractional
calculus are given, including gamma function, bétaction, Riemann-
Liouville formula of fractional differentiation anohtegration as well as the
fractional integration and the fractional derivasvof the some well known
functions.

Finally in section 1.3 an introduction and statatite the problem of a

fuzzy fractional order differential equations (FFEB) is given.

1.1 Fuzzy Set Theory

In every day of real life, we are using so manypgrties, which cannot
be dealt with satisfactory simple “Yes” or “No” lhas Assigning each
individual in a population by “Yes” or “No”, i.e"1” or “0” values, as is done
in ordinary set theory, is not an adequate waydtaling with properties of
this type, [Zadeh, 1965].

In 1965, Zadeh suggested a modified approach wdrenedividual can
have a degree of membership value ranged overtanaam of values rather

than being either O or 1. He showed how set omeratsuch as union and
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intersection can be define for these “fuzzy” sats] developed a consistent
framework for dealing with such type of problem&isTsystem allows fuzzy
sets to be manipulated in a consistent and reaomghitive way, [Yan,
1994].

Lack of crispness is an aspect of many real wortipgrties, and one
must be catered in defining the linguistic termsdutd name these properties.
The framework provided by fuzzy sets is perhaps st natural and

accurate currently available for dong this, [Ya@94].

The fuzzy set theory was initiated by Zadeh in¢hdy 1960's 1964's.
Since 1965, fuzzy theoretical approach had develdyyeZadeh himself and
some other researchers as a tool for modeling huocesrtered systems

applied in a wide range of scientific and enginegareas.

The use of fuzzy sets in pattern recognition argsification may spot
some light on the general problem of decision mgidnd fuzzy processes in
general. Although a great amount of literatures haen published dealing
with fuzzy techniques in pattern recognition, chusanalysis, and related
topics, [Kandel, 1982].

It is frequently stated that the process of reciogmiand classification is
one of the most fundamental of human activities aAsatter of fact, one of
the most primitive and common activities of anin&isman beings included)
consists of sorting like items into groups. Theseugs are described by
patterns and what we perform is the act recognifarertain pattern and then

classification of them into groups, [Al-Doury, 2402

It has been claimed that the concept of vaguenasderlying fuzzy
theory is more appropriate of such systems thamptbleabilistic concepts of

randomness.
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1.1.1 Basic Definitions and General Properties of Fuzzy Sets:

This subsection consists of some basic definiteoms$ concepts related
to fuzzy set theory. These concepts and definitivexs an analogy from in
some cases, in non fuzzy set theory. As a claasiific between fuzzy and
non-fuzzy sets, each fuzzy set is assigned witrsyingbol ‘17 in the rest of

this work. We start first with the definition ofZmy sets:

Definition (1.1), [Zadeh, 1965]:

Let X be any set of elements. fizzy setA is characterized by a

membership functiom 3 (x): XO — I, where 1 is the closed unit interval [O,

1]. Then we can write a fuzzy sAt by the set of points:

A :{(x,uA (x))[xOX, 0<p,4 (x)s]}
The collection of all fuzzy sets in X will be deladtbylX , L.e.,

IX ={ A: A is a fuzzy subset of X}.

Following, some fundamental concepts related tokthsic algebraic
operations and relations of fuzzy sets ( [Zadel§5),9[Zimmerman, 1985]
and [Kandel, 1986]).

Let A and Bbe two fuzzy subsets of a universal set X with
membership functiong; (x) andpg (x) respectively, then:

1. A=0ifand only ifpz (x)=0, OXOX, whereD is theemptyfuzzy
set.

2. ADOBifand only if pg (x)<pg(x), OXOX.

3. A=Bifandonlyifuz (x)=pg(x), OxOX.
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4. The complementof A (denoted byA®) is a fuzzy set with

membership function
1o () =115 (¥).
5. The supportof A (denoted byS(A)), is the crisp set of all¥X
such thatu 5 (x)>0.
6. Theheightof A (denoted by hgt&)) is the supremum value of
U (x) over all XaX. If hgt (A) = 1, thenA is normal, otherwise

it is subnormal

7. A point xOX is said to berossover poinbf A if p; (x)=0.5.

8. C=A

n B is a fuzzy set with membership function
Hg (%) =Min{uz (x).ug (x)}, OxOX
9. D=A OB is afuzzy set with membership function

15 (x) = Max{yz (x) g ()}, OxOX

10. Them-th powerof Ais a fuzzy set with the membership function
m
Mgm (x)=[mz (x)]", OxOX.

11. The algebraic sumof A and B is a fuzzy setC( termed by
C=A+B) which is defined as:

C={(x,uA+|§ (x))|OxO X}
where
Ma+g (%) =Hg () + g (x) —uz (x)pg(X)
12. Thealgebraic productof A andB is a fuzzy setC ( termed by
C=AB) which is defined as:
(~2={(x,uAB(x))\ OxO X}

where
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Ma g (X)=Hz (x) g (X)
13. Theabsolute differencef A and B (denoted by "A- § and is
defined by:
g (X) =[Ha (x) =k (X))

14. If pz g =0, 0x0OX, thenA and B are said to beeparatedsets.

Example (1.1), [Kandel, 1986]:
Let the universal set be the interval [0, 120}thwi interpreted as the

age. A fuzzy subsefA of X labeled old may be defined by a grade of
membership function, such as:
0 , for0< x< 40

Mg (%)= x—40\2)
1+£ 5 j . for 40< x< 12(

Then S( A) is the interval (40, 120].
The hg(A) is equal to 1.

The crossover point oA is 45.

Definition (1.2), [Zimmermann, 1985]:

The (crisp) set of elements that belong to theyisetA at least to the

degrean is called thaveaka-level set(see Fig. (1.1)), is defined by:
Aq ={xOX:pz (x)=a}
while the“strong a-level set”or “strong a-cut”, is defined by:

Ay ={xDX:uA(x)>0(}
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Remarks (1.1), [Klir, 1997]:

Let A and B be two fuzzy subset of a universal setthen it is easily

checked that the following properties are satisfadcall al1(0, 1]:
. (ADE)G =A, OBy.
i (Ané)a =A, nBy,.
ii. If AOB thenA, OBy.
iv.  A=B equivalenttoA, =B, 0 ad(0, 1].
V. Aq NnAg=AgandA, DAg =A, if asp.

Fig.(1.1) Nested O-level sets.

Definition (1.3), [Zadeh, 1965]:

A fuzzy subsefd of a universal vector space Xdsnvexif and only if

the setsA, defined by:
A, ={x‘p;\ (x)za}
are convex for altt in the interval (0, 1].

Or equivalently, we can define a convex fuzzy sahag directly its

membership function to satisfy:
Mz [AX+(1-A) %, |2 Min{uA (x1), bz (X 2)}

for all X, Xxo X andAlJ[O, 1].
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Among the definitions of fuzzy number, is the ndgfinition given by

[Zimmermann, 1985].

Definition (1.4), [Zimmermann, 1985]:

A fuzzy numberM is convex normalized fuzzy set of the real line
such that

i.  Itexists exactly onedl , with g (Xo) =1, (X is called the mean

value of M).

i.  pg(x) is a piecewise continuous function.

Remarks (1.2), [Nguyen, 2000]:
In fact, fuzzy number is fuzzy interval; the onljference is that fuzzy

number contain the value 1 at only one place waifezzy interval can have

several value of 1 on many places, (see Fig.(h@)rRg.(1.3)).

;< da b c‘ck

Fig.(1.2) Triangular Fuzzy Number Fig.(1.3) Triangular Fuzzy Interval

The distance D between two fuzzy sets and V to be D:
E" x E"O — [0,:) given by:
D(0,V)= sup d U, ,\4)

O<a<l

10
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where E"is the set of fuzzy subsets franl' to [0, 1] and d is the Hausdorff
metric defined in:

d(A, B)= Max{sup infla— 1 , sup mﬂ \%
aDAbOB

where A, B are any two non-empty closed and boursidxets of] " and:

fa- ”‘{?:i(""‘ b)”Tn-

Then D is a metric ofE".

1. Also, D satisfies the following ( see[Song, 2000]):

2. (E” : D)is a complete metric space.

3. D(U+W,V+W)=D(0,V), forall 0,V,WOE".
V)= V),

4. D(kO,kV)=|k/D(0, V), forall 0,V OE" and KIR.

1.1.2 The Membership Function, [Kandel, 1986]:

An important task of the theory of fuzzy sets he tdefinition and
construction of membership functions, which adnuéstain properties of
fuzzy sets. The characteristic function assignedoh element x of X a

number,pi; (x), in the closed unit interval [0, 1] that charaiztes the degree

of membership of x irA , membership functions are functions of the form:
Uz :X0O— [0, 1].

In defining the membership function, the universat X always
assumed to be classical set.

The membership function falls into three categotoelse defined either
numerically or analytically or by inspection of treader (see [Zadeh , 1965],
[Al-Hamaiwand, 2001] and [Al-Doury, 2002]).

11
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1.1.3 The Extension Principle, [Zimmermann, 1985]:

One of the most basic concepts of fuzzy set thdwai can be used to
generalize crisp mathematical concepts to fuzzythsstry is the extension
principle. In its elementary from it was alreadypimed in Zadeh's first
contribution in 1965. Following Zadeh we define #dension principle as

follows:

Definition (1.6), [Zimmermann, 1985]:

Let X be the cartesion product of universes...,X¢ andA,..., A  be
s fuzzy sets irXy,..., X, respectively. f is a mapping from X to a univeyse
y =f (X1,...,Xs). Then theextension principleallows us to define a fuzzy set
Bin Y by:

B=f(A) ={(y, g (y))|y =f (x3,...xs), (xl,...,xs)DX}

where

sup  mifug, (Of) kg (%)} L IFFH( YD
Mg (Y) =9 (xax6)0F 2 (y) r{ A1 A }
0 , Otherwise

wheref ! is the inverse image of f.

For s=1, the extension principle, of course, reduoe
B=f (A) ={(y, ug (y))|y =f (x). x DX}
where

sup pg (%), iff(y)20
Hg (y) =1x0fX(y)
0 , Otherwise

12
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1.2 Fractional Calculus

Fractional calculus, is an important branch of liopmathematics,
which seems first to have many vague notationsikhnmigfined concepts to
the readers which are interest in this subjects Type of differentiation and
integration could be considered as a generalizatdhe usual definition of
differentiation and integration, [Oldham, 1974].

Recently, fractional derivatives have been useduiding models of
physical processes, leading to the formulation witctional differential
equations. The fractional calculus may be considlassan old and yet a new
topic. Since, it is an old topic since, startingnfrsome speculations of G. W.
Leibniz (1695, 1697) and L. Euler (1730), and newce it had been
developed up to now days.

A list of mathematicians, who have provided cdnmitions up to the
middle of the 18 century, includes P. S. Laplace (1812), J. B.alrier
(1822), N. H. Abel (1823- 1826), J. Liouville (1823873), B. Riemann
(1847), H. Holmgren (1865-1867), A. K. Grunwald X8 1872), A. V.
Letnikov (1868-1872), H. Laurent (1884), P. A. Nassov (1888), A. Krug
(1890), J. Hudamard (1892), O. Heariside (1892-2)9%. Pincherle (1902),
G. H. Hordy and J. E. Little Wood (1917-1928), HeW (1917), P. Levy
(1923), H. T. D. Avis (1924-1936), H. Kobor (194@, V. Widder (1941),
M. Riesz (1949), [Oldham, 1974].

As well, since only from a little more than to tager fifty years it has
been an object of specialized conferences andidesat For the first
conference the merit is a scribed to B. Ross whgameed the first
conference on fractional calculus and its apploati at the University of
New Haven in June 1974. For the first monographeat is a scribed to K.
B. Oldham and J. Spanier, (1974), who after a joollaboration started in

13
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1968, published a book devoted to fractional calsuh 1974, [Al-Saltani,
2003].

In recent years, considerable interest in fractiaalculus have been
stimulated by the applications that this subjentl$i in numerical analysis,
differential equations and different areas of agplsciences, especially in

physics and engineering, possibly including fraptetnomena [Kalil, 2006].

1.2.1 Fundamental Notions:

It is important to notice that fractional calcsilis so difficult to
understand and because of this difficulty we spedkent in this section the
most important notions and definitions that areessary for understanding

this subject.

1.2.1.1 Gamma and Beta Functions, [Oldham, 1974]:
Gamma functionl‘(x) plays an important role in the theory of

differentegration, since in fractional calculuse thamma function generalizes
the concepts of a factorial of a given natural nembto any real number and

it is defined by:

[oe)

F(X)= [y dy, X> Coovrirrrrrrrc s (1.1)

The following are the most important propertiegafmma function:
1. r(y)=1
2. T(x+1)=xr(x), x<0.
3. M(n+1y=n!, n0O0.

14
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5. r(i—njz -4 n!\/ﬁ.

2 (2n)!
o ety

n
ort| n* | Nzt k . .
7. T(nx)=,— 'l n+— |, and in particular:
=2 | (o) i

r(2)():4Xr( )N(F?H/z)

The following are some frequently encounter exaspd¢ gamma

functions for different value of x.

()=, F(0)=e, F(1)=1, T(2)=1, T(3)=2, F(zj 2

I i O T

Another type of functions is called the beta fumetdefined by:
B(p.q) = jyp Y9 dy, p.g>0

If either p or g is non-positive, the integral eliges otherwiseB(p,q)

is defined by the relationship:

r(p)r(a)
r(p+aq)

which valid for all p and q.

B(p.q)=

Both the beta and gamma functions have “incomplatalogs. The

incomplete beta function of argument x is defingdhe integral:

«(p.0)= Iyp (1- y)¥dy

15
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1.2.1.2 Rjemann- Liouville Formula of Fractional Differentiation and
Integration, [Oldham, 1974], [Nishimoto, 1997]:

Fractional differentiation and integration may ohxe Riemann-

Liouville formula of fractional order g>0, whichkes the form:

1 d" T y(u)

DY =
Xoy(x) I—(m_q) de

X0
where Dgo =1 (identity operator), and m is a positive integemter defined

by m-1<qg< m, and % is an initial condition.
Such equations have recently proved to be valualoks in modeling
many physical phenomena. The case of 0<qg<l seeni® tparticularly

important, but there are also some applicationgjfdr. It is well known that

DY has an m-dimensional kernel, and therefore weitgytneed to specify
m initial conditions in order to obtain a uniquéutmn of the straightforward

form of the fractional differential equation:

DIy (x)=f (%, (X)), XO[a,0] e (1.3)

where fis some given continuous function andaagbany real numbers. The
initial conditions of eq. (1.3) must takes the form
dd=k
dxd7k

whereb, 's are given constants and m is positive integer

y(Xg)=bk, k=1, 2, ..., m

1.2.1.3 The Fractional Integral, [Oldham, 1974]:

The most frequently encountered definition of mtegral of fractional
order is via an integral transform, which is callgeg Riemann-Liouville

integral. So, the generalization to non-integes:q i

16
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For the functionf (x)=x%texp(-1 x), using the formula (1.4) on

substitutingy = , we find:

( +1)
exp( 1] 1 Ty ext-1y
dxq{ A }_r(_)j [x-y]™* v
:exp( X T exg- j

I—( q) q+1o q+1

From eq. (1.1), the integral is evaluated simplyris-q) so that the final

result is given by:

d¢ {exp( q )} exf{- 1) (1.5)

o Tog [ gEL e,

We shall omit the proof of the more general ressish as:

-l

where eq. (1.5) is a special case when n=1.

1.2.1.4 The Fractional Derivatives [Oldham, 1974], [Bertram, 1974]:

As it is given in literatures, fractional differiation is given by:

q L “GN-1 r('_ ) _
g 1) N“i“oo[(ﬁt] X ey ﬁﬂ 0. (1)

Similarly, as in natural differentiation, we canvey the following

examples for fractional differentiations:

q —_
d []] =_X ’ , x>0.
dxd4 T (1-q)

17
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2.

q q ~q
d—c]=cOI (]):rCX , Cis a constant.

dxd dxd (1-q)

I (0)=0, for al

—_— =0, 10ra

dxd a

d9 ,_ xP

—XV = B(p+1-

dxd r(‘Q) (P 9

p—q
M) ) e

M(p-q+1

d?exp( k- cX _ exf k- cX
dx-a*  (x-3"

Since y*(c,x) is the incomplete gamma function which is defined

v* (-a,—c(x - a))

y*(c,x) = (%) Jzyx_lexp(—y) dy

=exp(~X) Y =

j=0|‘(j+c+1)

dd| xd M(q+1)
qu 1—X_ [1 X]q+1 q

dd | xP =g (j+p+1) o)

axd|1-x | Z r(j+p-q+9

r(|o+1)-Bx(|o— 9.9+ )
r(p—q) [1- 4%

, 0<x<1 and p>-1.

[l— ]9 = 1o with |q] <1.

dxq

r-g){1-A’

{
L X]p_[1 X"~ q(B x(-0a-0 o

a)

dxq

18
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Chapter One
1.2.2 Some Properties of Fractional Differential Operator D, [Beteram,
1974], [Nishimoto, 1997]:
In this subsection, some important properties & tfractional
differential operatoD{ are presented for completeness perpouse:.
1. The operatoD] is linear, i.e.,
DI{cif (x) +co9(X)} = ¢ DY f(x)} + c, DY o ¥} .wherec;and
C, are constants.

2. DYDEF(x)=DI*Pf (x).

1.3 Fuzzy Fractional Order Differential Equations

In this section, a new type of differential eqaas is formulated by
mixing two well known types of differential equat® which are the
fractional order differential equations and fuzager differential equations.
This type of equations will be called fuzzy fractad order differential

equations and has the following form:

D (x) =1 (x,5(x)) (1.7)

797 (x0) =50, k=1,2,..,m L, & m 1

where n is an integer number apglJE" .
Now, for this type of equations, the same basicepts related to such

type of equations is considered, such as:
1. The statement and proof of the existence and ungggetheorem of
the solution of such type of equations.
2. Studying and introducing some method for solvinghstiype of

equations analytically and numerically.

The above two aspects will be considered in thé tvex chapters.

19



Among the important tasks in fuzzy order differahgquations and in
fractional order differential equations is the stahd proof of the existence
and uniqueness theorem. Therefore, several resrarbhd been studied this
theorem using either Brower fixed points theoreee(fLeipzig, 1986]) or
using Schauder fixed point theorem (see [Al-AniPDZ]). This chapter we
introduce a new approach in the study and proothaf theorem using
Sadoviskii fixed point theorem, as well as, anadtrction to some additional
concepts in non-linear functional analysis, such@s-compactness measure,

condensing mapping, etc. Also, in this chaptgerwill stands to denote the

solution of the fuzzy fractional order differenteduation.

Finally, this chapter consists of two sections.séttion 2.1 we give
some preliminary concepts of mixing between fuzagleo differential
equations and fractional order differential equadio/Vhile in section 2.2 we
state and prove the existence and uniqueness theoirduzzy fractional
order differential equations using Sadovislii's efixpoint theorem for
condensing mapping (this theorem seems to be newhdobest of our

knowledge).

20



Existence and Uniqueness Theorem of Fuzzy Fractional Order
Differential Equations

Chapter Two

2.1 Preliminaries
Assume thatf (x,§(x)):1* "0 - E" is a levelwise continuous
function, where the intervat ={x: x -x | < 8} andE" {y R" ., [0,1}.

Consider the fuzzy fractional order differentiguation (FFODE):

Y9 (x)=f (x,9(x))

§97(x0) =50, k=1,2,..,m L, < & m 1
where n is an positive integer number gpdIE".

The next definition collects between FFODE, andt¥®woé integral

equations through their solution.

Definition (2.1):

A mapping ¥:1*0 - E" is a solution to the FFODE, given by eq.

(2.1) and it is levelwise continuous function aatidies the Volterra singular

integral equation:

for O<g<1 and xdI*.

The eq. (2.2) can be written in operator form as:

7 1

F(q ]S (x —z)9" ]T (z,9(z)) dz, whereTy = §j............... (2.3)
X0

Returning to the main question of proving the &xise and uniqueness
of solution of eq. (2.2), we outline next a plalsimethod of attacking this

problem. We start by using the constant functi@a(x)=yo as an

21
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Differential Equations

approximation to the solution and substitute tipigraximation into the right-

hand side of eq. (2.2), and use the result:

X

f (x - z)q_]T (z.90(2)) dz

as a next approximation to the solution. Then aftebstituting this
approximationyl(x) again into the right-hand side of eq. (2.2) toaabt

what we hope is a still better approximatj@n{x), given by:

¥o(X) =90+ 1 T(x—z)q_lf(z,h(Z))dz

and so on continuing in this process. The finalgse to find a mappingy

with the property that when it is substituted ie tight-hand side of eq. (2.2),
the result is the same mappifg(i.e., ¥ is a Sadoviskii's fixed point). If we
continue in our approximation procedure, we mayehthyat the sequence of

functions{yk(x)}, called successive approximation, converges tomat |

function with this property. Under suitable hypatés this is the case, and
precisely this approach is used to prove the extgtef the solution of eq.
(2.2).

We shall consider problem (2.1), with f as a amndius function on the

rectangle:

R ={(x.9)| [ ~xo|sa, D(7.30)< 8§

centered a(Xg,¥o). We assume that f an%li; are bounded on R*, that is,

there exist constants M>0 and L>0, such that:

2

oy

[ 009, <M,

a
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for all a 0[0,1], and for all point{x,y) in R*. If (x,¥;) and(x,¥,) are any

two points in R*, then by the mean-value theoremeré exists a numbép

betweeny; andy,, such that:

152, [t ell, = 1 609)] (-l
_ aiyf (x,qJ)_q [CAREAR

Since the poin(x,qJ) is also in R*, theﬂif (x, @)} <L, and we obtain

oy

a

that:

d([f(x,yz)]a [t (x,yl)]q)s LA([V o)y [Ty )-ooerrrrerersreesn (2.5)

valid whenevel(x,y;) and(x,y,) are in R*.

Definition (2.2), [Al-Ani, 2005]:

A function |f (x,y(x))}a which satisfies inequality (2.5), for all

(x,%1), (x,¥2) in the region R* is said to satisfy a Lipschitznddion in

We have already indicated that we shall use anroappation
procedure to establish the existence of soluticv®w, let us define the

successive approximations in general case by thaties:

Yo(x) =90

and
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Before we can do anything with these successiypeoxpmations, we

must show that they are defined properly. This reghat in order to define

§; on some interval I*, we must first show that thanp (x,yj (x)) remains

in the rectangle R* for every x in I*.

Lemma (2.1):

Defined to be the smaller of the two positive number a laf. Then

the successive approximatiorfs(x),Jj=0,1,... given by eq. (2.6) are

defined on the interval I* given by — x| < 3. On this interval, we have:

D(yj(x),yo)s M[X = Xo| SMB <D, 20,12, e (2.7)
whereM = D( ) OO E", such that:
009 :{ X#0

and for any(x,y)0Jy , whereJy = 1*xB(¥,b), where a>0, b>0§, OE"
by:

B(yo,b)z{ym E"|D( ¥, %o) < t}
Proof:

We will prove this lemma by induction. It is obu® for |=0. Let

xI*, then for eq. (2.6), it follows however thatrfiz-1:

y1(x) =90 + F(lq) X)JS CEr I R T EA 7 €3) L L — (2.8)

which prove y;(x)is a levelwise continuous on I*, sinc, and f are

levelwise continuous. Moreover, for amy1[0,1], we have:
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d([3(x)], 1¥oly ) = d([3(¥)], ~[Vol, { &)

X

=dﬂr(lq) [ (x=2)"(2.%(2) dZ] { (}’]

< Td“ﬁ(x-@q 1f(2,%(2))} {O}H

................... (2.9)
Taking the supremum over allJ[0,1] of inequality (2.9), gives:

sup [ (<) [W]y) < i{p‘[

’ {0})dd) |
<] g d[rtat 7 et
{0})dz
Then:
D(%1(x).%0) < JO D[W(x—z)q‘ f(2.%0(2) Oj d%
<| [ Mdz< Mlx—x
MBS e 210

If |x —Xq| <3, whereM =D(f (x,y(x)),ﬁ), 00 E" and for anyx,y) 0 J.
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Now, assume that for 1<j-1<j;(x) is levelwise continuous o — xq| <3,

and that:
D(1-1(X).¥0) SM[X =X o SMBSD ccoooooiccccns (2.11)

From eq. (2.6), one can deduce trgqt(x) Is levelwise continuous on

| X —Xo|< 3, and sincey, and f are levelwise continuous. Then in a similar

manner as in inequality (2.10), we have:

D(9n (%), ¥0) SMX =X o SMESD ..o, (2.12)
If | x —Xo| <3, whereM =D(f (x,y(x)),ﬁ), 00 E" and for anyx,y) 0 J.

This establishes the lemmam

2.2 Existence and Unigqueness Theorem Using Sadoviskii's Fixed-
Point Theorem for Condensing Mapping of FFODE's:

In this section we shall prove the existence amdueness theorem of
FFODE, using Sadoviskii's fixed-point theorem.
Before, introducing this theorem, some fundamectakepts related to

this theorem are given for completeness purpose.

Definition (2.3), [Leipzig, 1986]:

Let N be a bounded set in a metric space (X, the Huratowski

noncompactness measung(N) is defined to be the infimum of the set of

all numberse>0 with the property that N can be covered by figitemany
sets, each of whose diameter is less than or ¢égjaai.e.,

X(N)=inf{e>0: N be a finite cover sets of diametet}.
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The measure of noncompactness determines thetidevisom relative

compactness of a set, i.e(.(N)=O Is equivalent to relative compactness for

N. As x(N) increases, N deviates more strongly, from relatmmmpactness.

The following properties present some of the funeatal property of

noncompactness measure.

Proposition (2.1), [Leipzig, 1986]
Let (X, d) be a Metric-space ovéi=[,[]. Then for all bounded

subsets N,NN,,..., N, and M of X, we have the following results:
1. x(O)=o.

2. x(N)=0 if and only if N is relatively compact.

3. NOM implies thatg(N)<x(M).

4. 0<x(N)=diam( N).

5. X(N+M)<x(N)+x(M).

6

X(BN) =[x (N), for all BOK.

7. X ( ) where N stands for the closure of N .

(
¢
(n)
o [0 J=maa() () (W)

i=1

Definition (2.4), [Leipzig, 1986]:
Let T:D(T)OX O —X be an operator on a Banach-space X. T is

called ak-set contractionif and only if T is bounded and continuous and

there is a number %0, such that:

X(T(N))s kx(N), for all bounded sets N iB(T).
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In addition, T is calleccondensingif and only if T is bounded and

continuous, andx(T(N))<x(N), for all bounded sets N iD(T) with

Chapter Two

X(N)>0.

Lemma (2.2), [Leipzig, 1986]
Let K, C: PO X0 - X are operators on Banach-space X, then K+C is

also an operator which is k-contraction willx k<1, and also condensing,

if:
K is k-contraction, i.e.,
[KX =Ky <KX =Y oo (2.13)

for all x,yIP and fixed kI[0,1).

. C is compact.

Proof:
Let NOP be a bounded set.
By definition (2.3), if follows easily from (2.13)hatx (K (N)) <kx(N)

By proposition (2.1) (2%(C(N)) = 0 set T=K+C.

Now:
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Then statement of the Sadovskii fixed-point thaoie given in the

next theorem.

Theorem (2.1), (Sadovskii's Fixed-Point Theoremlelpzig, 1986]:
Suppose that:

I. The operatofl : N O X [ - N is condensing.
. N is a nonempty, closed, bounded and convex susetBanach-
space X.

Then T has a fixed point.

Theorem (2.2), (The Existence Theorem):
Consider the FFODE, (2.1) and suppogg=1*xB(yo,b), where

B(y0.)={yOE"D(¥(X) %)<, F={x:k-x<gd  and
f(x,9(x)):1*€"0 ~ E" be levelwise continuous and bounded function for

any(xo,y)DJo, then there exist a solution of eq. (2.1) whickges through

(X0,9)-
Proof:

In order to prove the existence of a solutiom® EFODE, a use to the
Sadoviskii fixed-point theorem will be used, ig must prove that the two
conditions of the theorem are satisfied. This svainas follows:

i. Consider defn. (2.1) and the eq. (2.3):

X
Ty =1y -1 I (x —2)%7% (2,9(2)) dz, whereTy =y,
r(a)
Then, we have to prove that T is condensing.
i.e., to prove T is bounded, continuous @y (x))<x(¥(x)).

Since T is linear operator.
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Then it is either to prove that T is boundeaantinuous, ( for simplicity,
we prove T is bounded ).

Now,

9, =19 -—— [ (x-2)" ¥ (2.52) d%

00

<[, +

1 ) )j( (x —z)q_lf (z,9(2)) d%

(g %o

[oe)

T (x- z)q_1 f(z,y(z) d%

X0

sup
nly

<[] +——
9L+ 1S

j(x 2)%” 1sup\f(z V() d:

<[y
19l gy ] 02 s

<|1y[, + I (H°°) I (x —2)97ldz

Since f is bounded function, th#ﬂ\w <c*. Thus:

T (x —z)q_ldz

C*
19|, |||, +
79l <Iyl (@),

- c* q
<|I + X —X
51+ o (% o)

and hence ifk - x| <8, then:

C*
Ty <y — ¥ <M+
o <l + ey

X

C*
where (q)=T (q+1), f| , =sup|f(x,y( X)) andM* =|ly| +
fl. = suplf(x ) andhr =}y |, +

Therefore, T is bounded operator and alsoicootis.

Also, to prove thag (Ty(x)) < x(9(x)).
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By lemma (2.2), leg(x) DN which is a bounded set.

SetT(y(x)) =K(y(x)) +C(¥(x)). for y(x)ON.
Now, from proposition (2.1) (5), imply that:

X(T(9(x))=x(K (y(x)) +(9(x)))

Sincex(C(y(x))) =0, by proposition (2.1) (2), and hence C is reldgive

compact

and since C is closed, then C is compact.
Thus, if k=1, thenx(T(y(x))) <x(¥(x))

Therefore, the operatdr: N [0 X J - N is condensing.

i, Suppose that:
N ={y(x)0B(¥0.b):¥(0) DOY ¥ 0 B ,xJ 14

where

B ={A(x)0B(%0.b) :|A(x)], <1+8} .
Now, to prove that N is a nonempty, closedyrimted and convex FFODE.
subset of Banach-space X.
It is clear that N is nonempty, closed andrutad, (by construction).

To prove that N is a convex set.

Let §1(x),¥2(x)ON, then:

¥1(x)0B(Y0,b), ¥4(0) 00, %4( Y 0 By
V2(x)0B(Y0:b).¥2(0) 00, V5( Y1 By
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To prove thatz(x) =Ay;(x) +(1-A) ¥2(x)O N
i.e., to provez(x)OB(Yg,b), 2 00 0,4 30 B
Now, since¥,(x),¥,(x)0B(¥o,b) and since the linear combination of

levelwise continuous functions is also a levelwtsmtinuous function.

Hencez(x) is a levelwise continuous function, and
2(0)=A%(0) +(1-1) (9
=A\.0+(1-A).0= 0
therefore,z(x) 0 B( Yy, b)

Moreover, to prov#i(x) Hm [N, i.e., to provd‘ z(x) Hoo <1+P

12(3)],, =[A3(x) + (1-2) y2( %),
<|A51(x)],, +1@-2)32(x),
<IN 5209, #[(2-A) ] v2(%)
<A.(1+B)+(1-1) (1+B)
<1+

So Z(x) =Ay(x) +(1-A) Vo(X)O N

Hence, N is a convex set of FFODE's of Banach-space

HOO

HOO

From, (i) and (ii), T has a fixed poimt.

Let y(x) and ¥ (x) be two solution of eq. (2.1).

Now, went to prove that this solution is uniquettis from:

on |x —xo|< 8, it follows thatD(Ty, Ty*) =O0.
Indeed, from eq. (2.3) and eq. (2.14)
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o ,[W*L)=d[ - (-2 (2 (2) dz] ,

By inequality (2.5), we have:

d([Ty* 1. ,[Ty]a)s T Ld([y(z)]a |y (z)L) dz

X0

Taking the supremum over[J[0,1] to the both sides, give:

ARIRDURCA AT

O<ax<il

Hence

Consequently, eq. (2.16) holds for any n, whicld¢éeto the conclusion
that:
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D(Ty,Ty*)z D(Ty,Ty*n)D L 0asn o
= D(Ty,Ty*)EO, on|x —Xg|<d asn - .

= Ty=Ty
1., (X) =T (X)s TX oo (2.17)

From (2.17), we have (2.1) has a unique solution.
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Sofstion of Fuzzy Fractional
. 0)?“@@'% .
~ W e

Pearson in 1997, introduced the analytical mettoodsolving linear

system of fuzzy differential equations with the pemtion of complex
numbers, while the solution of fractional diffenaht equations was
introduced by several researchers either analjgioalnumerically. Analytic

solution introduced by Oldham in 1974 using inveogerator method and
Laplace transformation method, while numerical apgroximate methods
introduced by Al-Saltani in 2003 using variatioragdproach, Kalil in 2006
using supline interpolation function and by Al-Aath in 2005 using
numerical methods.

This chapter consists of four sections. In sec8dnwe introduce the
analytic solution of fuzzy differential equatioris. section 3.2 we introduce
methods for solving fractional differential equatso analytically and
numerically. In section 3.3 the solution of fuzzgdtional order differential
equations have been introduced using numerical adstlilinear multistep
methods and Runge-Kutta). Finally, section 3.4ouices some numerical

illustrative examples of fuzzy fractional orderfdrential equation.

35



Chapter Three Solution of Fuzzy Fractional Order Differential Equations

3.1 Solution of Linear Fuzzy Differential Equations:

This section consists of three cases for solvihgear system of fuzzy
differential equation. As a first case, supposevileor field is linear and all
the parameters are assumed to be known to a cettHicient accuracy, and
the initial values of the system are fuzzy.

A second case of fuzzy differential equations oscwhen the
coefficient matrix related to the vector field conged a fuzzy numbers.

Also, the third case of fuzzy differential equasooccurs when the

vector is fuzzy and the matrix is approximatelyziyz

3.1.1 Analytic Solution of Linear Fuzzy Differential Equations:

Each of the above cases will be considered in Idetaith an

illustrative example.

Case (1), [Pearson, 1997]:

Consider the system:

V' =AY, ¥(0)=Vg, XO[@,D] i, (3.1)
whereA:0" - 0" | ¢ is a fuzzy mappingg0OC "O - [0,1], wherey is a
vector made up of n-fuzzy mapping.

Suppose that each element of the vegton (3.1) is a fuzzy number,

which is similarly represented as the followimdevel set:

yK (%) =[gl§ (x), 3K (x)], P L 120N SO (B.2

it is shown that the evaluation of the system (8dn be described by 2n-
differential equations for the end points of theemals (3.2), this is for each
given x and each value af. These equations for the end points of the

intervals are:
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Va () = Min{ (A0), :uim[yh(x»%(x)]}
5 09 = Max{ (Aa), :U O 5 00,3 ()]}

with the initial conditionsy (0) = Vs, . ¥ (0)= ¥y, . where:
(AG), =a,U

is the k™ row of Ad. The vector field in eq. (3.1) is linear, and $e t

following rule applies in eq. (3.3).

Tt (X) TG T s (3.4)
| gh(x), if a=0
where: ! =47
yo(x), if a<0
and
Tor (X) Z BT s (3.5)
VA (x), if ay 20
where: i =
¥4 (x), if a<0

N .
Where a;U =) g;d. Equations (3.4) and (3.5) are called parametric
j=1

equations.

Now, in order to solve the fuzzy system of diffetial equations, we let
y to be a vector of fuzzy numbers, and hence:

¥ (x)=Ay(x), ¥(0)=¥o, xO[a,b]
Recall that, there are two equations of the typedfations (3.4) and (3.5)

which can easily be written out explicitly.

Now, define new complex variable as follows:

ya (X)+ iy (x) .................................................................. (3.6)
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and the two operations carried on the complex nusne:

a) The identity operation, e, such that:

b) The flip operation g, about the diagonal in the ptam plane, i.e.
0% = of 3 (x)+ ¥ (%)
= TE(X) +IFEX) crrrrerrrmrereersneeeseeseess e (3.8)
whereg2 =e and gk =eifkis even ancgk =g if k is odd, and:

(vg)z'é =(g})i§ B o) oV [ U (3.9)

From eq. (3.6) we have:
ot () + ¥ (%)
but
~’k(x) 8y U and § (x)= @J

Then:

Yo' () + 19 () =ayt + iag U

Now, by using eqg. (3.9), we have:
z’k— akj~Zé ,|f Q(JZO
o~ :

g 8 % if g < (
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In order to simplify the last formula, let:

ea , ifg =
by = L (3.10)
gg;, if g <C
then:
Zak b,lg ,if a520
bjj Z a ,if g5 <0

or in matrix from:
2 =B%y, % (0= %,
Now, §¥' =AYy, which has the solutiori/:ce‘A‘X and sincey(0) =¥y, then

Y(x) = ¥o&™ . Similarly:

but since the problem is to calculate the expoaéafithe matrix B, and upon

carrying some little calculations to solve eq. {3,1ve get:
=y (X)zéo (%) Q%O
where ¢(x) =exp( xC) coslf xD), Y(x)=exp( x]) sin{ x0, and B=eC+gD

and sincezk (x) = K (x) +i& (x), hence:

I<z
II
M:

)+ g ()5 ()
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As an illustration, we consider the next example:

Example (3.1), [Pearson, 1997]:

Consider the linear systegfn=Ay, whereA = { )

1 . L
:|Wlth initial

values to beyl(O) about 1 anc§/2(0)about -1, which are fuzzy numbers and

using the membership function defined by settirrgefaample:

0 ,X<0
Yo(X)=| 2x - x? ,0< x<?2
0 ,X>2
and
0 X<=2
yg(x) =|-2x-x% ,-2<x<0
0 ,X>0

Thus, foral][ 0, 1], we can represent the initial conditiontémms of itsa-

levels:

Hence, carrying the above procedure, we can fiedfihal solution in

terms of thex-levels, as:

Z%, (X):(1+X?2|+...Ja—(x+§+..) b+( X+ 2% +) o

(2x2+gx4+---jd
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2 3
f/é (x): 1+X_+...]b—(x+%+---ja+(x+ 2% +) d-

wherea=1-+1-a, b=1++v1-a,c=-1-+1-a andd=-1++1-q.
For example, ifa =0.1 and x=0.2, thera= 0.05131, b=1.9486¢,
c=-1.9486¢ andd =-0.05131":

95.4(0.2) =-0.757108

5.1(0.2) = 2.1264348
961(0.2) =-2.085581
5 1(0.2) = 0.744947

Case (2), [Wuhaib, 2004]:

In this case, we discuss the solution of linedfedgntial equations
when the elements of the coefficient matrix areyuaumbers. We can solve
such type of linear differential equations by usengnodified approach of

case (1). The linear differential equation is:
¥ =Ay, y(0)=yo
wherey 00 , A is nxn fuzzy matrix, i.e., all elements Af are approximate

fuzzy numbers. Each elements &f could be written in itsa-level as

=[aa], a0[0,1]. Then each entry of the matrik, could be give as:

=|3 7 | and hence, at any x, we have:
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(X)= [ g, (0%, (xj .......................................

It is shown that (as in case (1)) the evaluationttad systemy' =Ay,

y(0) =y can be described by 2n-differential equationstiier points of the

intervals in (3.13). This is for each x and eachHu®aof a, since

3, (=3 (xm), 3 (xx )|, which implies that:

p-1)
1

Let A be the matrix of alg; andA be the matrix of aIEﬂ-, i.e.

1>
I

and

>
I

Then, we can obtain two matriceB and B from A

(&1 [B2:a2 - [fansad)
[321:%‘21] [:322:’:322] [lazr::@r]

(23] [Bead ~ [Canad)

(&) B, - Ay
D1 By -+ By
1 8h1 @n2 - Ban]
?‘11 _512 jain_
dp1 8o 0 Bp
(&1 B2 B

respectively, to be defined as follows:

and

osl]

e:a.l , |f§ >C
9, ifg <0
e:qj , |f:§} > C
98, ifg <0
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Similarly as in case (1), we have:

B(x) =€ cos{ XD , B (xF & cos(h x)

and
P(x) = sml‘( x[j P (x)= & SII’](I §I)J

whereC, D, C andD belongs toB andB respectively.
For illustration purpose, we will consider a systef 2x2 differential

equations with fuzzy coefficients.

Example (3.2), [Wuhaib, 2004]

Consider the linear system of fuzzy differentigliations:

y'=Ay, y(0)=yj
whereA is 2x2 fuzzy matrix, such that:

a,, approximately equals to -1, with membership fumcti
Mg, (Y) = ‘ ‘ y#0
y
a,, approximately equals to 1, with membership functio
1
Ha, (Y)=—, y#O0
y
a,, approximately equals to 0, with membership functio
1
Mag (V) =11 Y771
ty
ay» approximately equals to -2, with membership fumcti
Ha,, (¥) = ‘ y ‘ yz0

and with initial conditionsy,(0) =1, y,(0) = 2.

Hence the lower and upperlevels of A are given by:
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A{—l—\/ﬁ 1+JH}
~J1-a -2-J1-«a

and

>

:{—u\/ﬁ 1+\/ﬁ}
JI-a  -2+1-«a

and if & >0, thenb; =eg and if &; <0, then by = g3 . This yields the

calculation of B andB as:

g(—1—ﬂ) e(1+x/1-—0()

B=
o) of-2- i)
and
[o(-1TE) { )
(V) o-2a)
For simplicity, if we lets=+/1- o, then the matrix@ could be written
as:

It easy to finde®*, to be:

&C:X ={1 x(1+ S)}
0 1

and
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cost{ ) - 1+X—22(1+ 25+ §) 0
a X2 X2
1+ 1+—(4+ At §)
L 2 2 i

Therefore:

where@ll(x)=l+x—22(1+ 2s+ §)+ X W );+X—23( S+ %

le(x)zx(1+s)+x—23(§+ 5¢ + 8% )ﬂ Q21(x)=xs+x_2232 and

8,,(x) :1+X—22(4+ 4s+ §)

and similarly:

{3 32t

where P4 (x) =-x(1+s) - ><2(s+ §)—X—63( §+ 36+ 3 )l—?( &t 4)5,

‘1’12(X)=‘X2(32+3S+ a_x_;( §+ 53+ 68+ 45 )

3.3 3
ng(X):_XS_% and L1’22(X)=—X(2+S)-%(s‘?’+ 6 + 123 }

Also, in a similar manner we can evaluéiex) and @(x) as:

8(x) =[611(X) glz(x)]
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3

where 511(X)=1+X—22(s2 - 2st i Bo(x) =x(1+ s)+x?(§— 38 + z)

621(x)=xs+x—23(s3 - 2&+ }rand 622(X)=1+X—22(32 - 4s+ %

and

— | W1a(x) Bia(x)

b= LT’Zl(X) LT’zz(XJ
wheref;4(x)=x(s-1) + X—;(é 3%+ 3s )]

(s— 53+ 68+ 4s ):,

=
'_\
N
P
<
N
I
<
N
—
" |
N
|
(V)]
|
\m/ 4=>
cu‘xb

lT"zl(x)zxz(sz—S)"‘X—;(S‘l— 3$+ 38- )sand

3

lT"zz(x):X(S—2)+X€(S°’— 6S + 12s }

Therefore:

(%) y;(0) + g (%) (0))

—
D
X

<

o=
—
X

N
I
L[ M=

| .
=

Vo (X)

() v (0)+ Ty (x) v (0))

—_
D
Iy

1
.MD

11
=

Now, letting x=0.2 andi=1, we have:

[1.02 0.21 5(0 2)_‘—0.201333—0.082133::
0o 1087 | 0 ~0.410666

Dt

(0.2)=

= [102 0218 _, . [-0.201333 - 0.082133
6(0.2= 0 1.08] (02) 0 ~0.410666

and hencey1(0.2) = 1.0864004,}( O)= 1.08640047(y P2 1.338

andy7 (0.2) = 1.33866..
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It is clear that fon=1, we have:
yi(x)=y1(x) =y'(x) andyf (x) =y§(x) = y*(x)

which is the same as the crisp value of the salutixctor.

Case (3), [Wuhaib, 2004]:

In this case, we discuss the solution of linedfetential equations
when the vector of initial condition is fuzzy arftetmatrix is approximately
fuzzy. We can solve this kind of problems by usangix of case (1) and case

(2) together, the formula to the lower and upparruats of solutions are:

Ya (%)= Zn:(ekj (%) Y5, * B (X)f’fuo)

=l

and

where 8, (x), ékj (x), By (x) and @y (x) are obtained from the lower and
upper bounds of the coefficient matrices a)_ﬁéio, f/(jlo from the initial

conditions which are also fuzzy.

3.2 Solution of Fractional Differential Equations

In opposite to differential equations of integerder in which
derivatives depends only on the local behaviouheffunction. An important
type of differential equations, which is calleddtianal differential equations
where the differentegration is of fractional ordguch type of problems may

be considered to have the form:
y @D = (x,y), y9 9 (x) =yg, k=1, 2,..., n+1, n<g<n+1.
where n is an integer numbeflq *.
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This section consists of two approaches, the fugproach is the
analytic method, while the second are some of thenamical and

approximation methods.

3.2.1 Analytic Methods for Solving Fractional Differential Equations,
[Oldham, 1974]:

Several analytical methods are proposed for solviractional

differential equations, and among such methods:

1. Inverse Operator Method:

Let f be an unknown function and let g be an aabjtreal number, F is
known function, then we can construct the simplettall fractional
differential equations by:

dif _

ﬁ =

hence upon taking the inverse operaé%# gives:
X

dx™@
where it is clear that it is not always the casa they are equal, but this is

not the most general solution:

additional terms must be added to eq. (3.15), whiohc;x9 1, c, x4 2,
...,y x9™™ and hence:

d4 g4
fo————f =cx9 e xT 24t X T

dx 9 dx“
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wherec;,c,,...,G, are an arbitrary constants to be determined framrtitial
conditions andg<s m< g+ 1.
Thus:
(O M d9 g4 £ o dgd

dx 9 dx4  dx 9

Hence, the most general solution of eq. (3.14)vsrgby:

-1 -2
f—cx4 —coxT - -,

where0< < m< g+ 1or m=0 for 0.
As an illustration example, consider the fractiatiferential equation:
DY2y =x¥2 y71 0)=0.1
Now, sinceq=1%, and F= xV2 hencel, <m< ¥ +1. Therefore, m=1. So
with the cooperation of the initial condition:
y= D—1/2X12+01X—12

VAN WRTE
1L

2. Laplace Transformation Method:

Laplace transformation method can be used to sdtaetional

differential equations; but first of all, we stantith Reimann-Liouville

formula

DSt (1) = (nl_ - ddxn T =) )

and letting:

g(x)= T (x - )" (t)dt
X0
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so that:

q _ 1 d"
Dyf(x) F(n-q) dxng(X)

or equivalentlyg(”)(x)zr(n— ) h( ¥, where h(x)=D$f(x), and upon

integrating the above equation n-times, leads to:

X X

I...jg”(x)dx...dx= T T (F(n- g H %) dx.. d>

Xo Xo X0 Xo

X:r(n_Q)X - 1)1
g(x) F () [ (x=9""h(t)dt

0 X0

Taking the Laplace transformation to the both sigiesdds:

r (r“(;)q) g{ T (x=t)"h(t) dt]= g{ T (x—t)"" 9 (t)dt}

X0 X0

solving this equation fafA(f) and evaluating the inverse Laplace transform to
get the desired solution f.

As an illustrative example, consider:

D2y =x, y¥2(0)=0

1
D} 2y(x)

— [ (-7 ()t

X0=0

and let
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g(x) =}((x ~t)7¥2 (t)dt, then:

or equivalently:
g'(x) =x

Therefore:
X
=/m [tdt
0
Hence

\/TT[](tdt)=]((x—t)_]/2f(t)dt

0
Taking the Laplace transform and using the cormimtutheorem, one

can find that:

JﬁyﬁtdtJ = U(X ~t)7Y 2f(t)dtJ
0 0

\/1_T = =F(s \/ﬁ
REE
which implies that:
1
Fs)= 57 52

and upon taking the inverse Laplace transform, axesh

_ 1 3
=152

as the desired solution to the fractional diffefarequation.
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3.2.2 Numerical and Approximate Methods for Solving

Fractional Differential Equations:

Fractional differential equations can be solvethgismumerical and
approximate methods. Therefore, in this sectiomesof the well known

methods for solving such type of equations willdiscussed.

1. The Collocation Method, [A[-Saltani, 2003]:

One of the approximate methods for solving ddferal equations “in
general” and fractional differential equations particular” is the so called
collocation method, which has also other applicatin solving integral
equations, partial differential equations, etc.sl'method has its basis on
approximating the solution of the problem undersideration by a complete

sequence of function@cg} and certain function which satisfying the non-

homogenous initial and boundary conditidi{x), such that:

y(X)=Z(X)+%a1-<n(X)

wheregq (x) satisfy the homogenous conditions arisl@e constants to be

determined. Evaluating the last equation, at som&tpof the region of
definition to get a linear system of algebraic dupres.

As an illustrative example, consider the fracailodifferential equation:
D2y =x¥2 y€12(0)=0.1
and in order to solve this problem approximatelyngsthe collocation

method, we let:

0.1

r(J/z)X_]/Z+a1X+ a x2 + & x

y(x) =

Then:
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DY2 0.1 x_12+a X+ 8, X2+ x3}= Xt -
{r(n/z) TR

Hence

0.1 12 ,-12 12 12,2 D/lz 3 1
—-D7“x +a, D" “X+a D" x4+ X=X
r(v2) 1 i ®

hence carrying out some simplifications, gives:

X]/2 N 2 2, 2_ Az
(J/z)” (33 (53" " (73’? *
x¥?2 a2 2 24 g 2_
ity (s X Ay

6

32,

& |2, 2 52_
[r(s?Z) 1sz %r (52X 373" " °

& _ q  _ _ 3)_ oA
we get -1=0=>———-=1=a=l]—|= 088, &= a&=0, and
J r(3/2 r(32 A (2 ¥
therefore the approximation solution, is given by:
0. 1 ~12
X +0.886 x
y(x) = Nk

As a comparison, this problem has the exact saiutio

y(X) = OT'ix_]/z +0.886 x

2. The Least-Squares Method :

Among the popular methods used to approximate sthiation of
fractional differential equations is the so callegst-square method. To

illustrate this method, consider the following fiiaoal differential equation:
DYy =g(x)

g CJ[0,1], g>0 and approximate the solution by:
Yn(x)=ag+ax+ & X+ + g X
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Hence substituting in the differential equationlgse

DXyn (x)=9(x)
The polynomialy,, is of degree at most n is required to minimizedher:

b 2
g(x)— Dy y, (X X, 0<g< doii 8)1
J(a(x) - DY yn (x)) ®

a
To determine such least- square approximatingnmoiyal, that is, a
polynomial that minimizes the expression (3.16), mest evaluate its

coefficientay ,& ,.. ,g,. For this purpose define:

Hence, the problem now is reduced to find real fawefts a, , & ,.. , g, that

minimizes E. From the calculus of functions of sav@ariables, a necessary

condition for the coefficients,,& ,.. ,g which minimizes E is thafafE =0

aaj

for each j=0, 1, ..., n. Since from eq. (3.17, ave:

e=Jlaa 028 af 43 @t 4w 3 0 8 4] o

Hence
OE b _ n b .
Ez_zjg(x),[)g X dx+ 2) g [ O A b, 0=0,1,...,n
j a k=0 a

Hence to findy,,, the following (n+1) linear system:

n
D ijq XK dx= jg( O X dX, F 0Ly e (3.18)
k=0
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must be solved for the (n+1) unknowas, j=0,1,...,n.

As an illustration to this method, consider théofwing example of

solving the fractional differential equation:
DY%y, (x)=x> x0[0,1]
Suppose thaty, (x)=ag+ & x+ & ¥, hence the related linear system

obtained from eq. (3.18), is given by:

y 2 va 4 ' a 16 _ 2
Jnoot3m T1sdm 1vm

a0i+ai 16 ' a 12 _ 4
W 1s/m C7O(7/2) 13/m
16 12 48 16

s 27T (@2 BT 92) a5/m
which is a linear system of three unknowas, aand a, which is solved
using any numerical method for solving linear sys®f algebraic equations,
to give:

ag = 0.22, 3 =-3.12¢ anda, = 3.66¢.

Consequently the least-squares polynomial appratkom of degree

two for Dj/zy(x) =x°on [0, 1] is:

yo(x)=0.221- 3.129% 3.666%.

3.3 Solution of Fuzzy Fractional Order Differential Equations

A fuzzy fractional order differential equation ofder g, 0<g<1, is an

equation of the form:

YD (x) =1 (%, ¥(X)), XOT=[X 0B oo (3.19)

wheref (x,¥(x)):I xE"O — E" is a levelwise continuous function, with an

initial condition given as a fuzzy numbgfxy) =¥,
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wherey, OE" andx, 01, (see [ Add, 2005]).

We start with the numerical solution of fuzzy fiaoal order

differential equations using LMM, which seems tongsv:

3.3.1 Linear Multistep Methods:
Consider the fuzzy fractional order differentigjuation given by eq.

(3.19), then the-level set related to this equation is given by:

Y =t (X,9)s T (X0) = Ty -orrrrrrreervvemmmesemmssssssereeeeeneieeennee (3.20)

Then we seek for a solution in the rangg[xq,b], wherex, and b

are finite, and we assume that f satisfies the tiomd of the existence and

uniqueness theorem, which we shall indicate by :
Va (x)=[y(x;u),§/(x;a)] ad[o, 1].
Consider the sequence of poinfg,} defined by x, =xq+nh,

n=0,1,...The parameter h, which will always be rdgd as constant, except
where otherwise indicated, is called the step lengh essential property of
the majority computational methods for the solutaineq. (3.20) is that of

discretization; that is, we seek for a numericélison not on the continuous

interval xo<x<b, but on the discrete points of the det,|n=0,1,...
(b=xo)/h}.

Let §,(a) be an approximation to the theoretical solutiorxatthat
is, t0 ¥4 (Xn) and letG, (a) =Gy (X,,V,). If a computational method for
determining the sequenc{@n(a)} takes the form of a linear relationship
betweeny . j(a), Gn.j(a), j=0.1,...,.k or a linear k-step method.

It is we known that, the general form of linearlistep method may

thus be written as:
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k Kk
ZQJ yn+l(a):hZBJGn+J (C() ............................................... .Z:B)
j=0 j=0

In the case of lower and upper solutions, eq.1)3c2n be decomposed

into the following two equations:

k k
ZQJZMJ(O‘):“Z(:)BJ'QH] (a)
J:

j=0
and - (3.22)
K Kk
> Qj Vn+j (a)=h> B+ (a)
j=0 j=0

where Q?,Qj,[f} andp; are constants to be determined. The arbitrariness

will be removed by assuming throughout this subsecby letting QL =1

andQ, =1. Hence, eq. (3.22) can be rewritten equivalerdly a

k k-1
Inek (@) =hD BiGnsj(a) = 2 Qj Vn+j(a)
=0 =0
and  ———— (3.23)
B k k-1
Yk (0) =D BiRsj(a) = 2 Q%+ ()
=0 =0

Remark (3.1):
1. Such equations are so difficult to handle theoadliichan are non-

linear FFODE.'s, but they have practical advant#dgsermitting us
to compute the sequenég,, (a)} numerically. In order to do this,
one must supply a set of starting valugg(a),y,(a),....Vi-1(a)
(supply by using any explicit one step method),e($Al-Ani,
2005])).
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2. The two eq.'s in (3.23) are explicit n;]*(:o and B, =0, and

implicit if B, #0 andpBy #0.
3. In eq.'s (3.23) each equation is a k-step methadl each one

contain 2k-1 unknowns, (see [Lambert, 1973]).

3.3.2 Euler's Method for Solving Fuzzy Fractional Order Differential
Equations:
To use the Euler's method to solve fuzzy fractiarder differential

equation, the following approach is followed:
Consider the FFODE's:

9D =1 (x,5(x)), 9(xo0)="Yo
and since Euler's method withlevel reads as follows:
Iner(@) = Yn(a) +hy (o) + Of )
Hence:
Tne1(a) = ¥a(a) + D 9Dy + O h?)
=, (o) + hD' 9 (x,¥(x);0) + O(hz)

Yo (o) + hf*(x,y(x);<>()+0(hz) ................................. (3.24)

wheref” (x,¥(x);a) =D (x,y(x);a) could be evaluated easily by using

fractional calculus.

Remark (3.2):
Consider the first order of FFODE, given by:

y'(x)=t"(x.9(x))
9(%0) =¥ } ................................................................ (3.25)
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wheref” (x,§(x)) =D""% (x,y(x);a)and §(xq) = ¥ is a fuzzy number.
Thea-level set of§(x) for xO[x,b] is ¥4 (X)= [ y(x:a),¥(x;a)].

Also ¥, (X) =[ ¥'(x;a),¥ (x;a) ], and

Because o' =f  (x,¥(x)), we have:

¥ (xa)=f (x,9(x);a) =G (x,9(x:a),Y(X:0)) ccorrvreeirrrrrneeen (3.26)

Also:

Yo (X0) =Y, =[¥o(a).¥o(a)]

3.3.3 General Concepts of Runge-Kutta Methods:

There are two approaches for evaluating the solutif an ordinary
differential equation, “analytically” or “numeridgf. The analytic solution is
usually obtained directly from the mathematicalresgntation of the model
formulation, while the numerical solution is gerigraan approximate
solution obtained at certain node points.

The idea of extending the Euler method by allowimiga multiplicity

of evolutions of the functiori within each step was originally proposed by
Runge (1895). Further contributions were made byrHa900) and by Kutta
(1901). The letter completely characterized theo§&unge-Kutta method of
order 4 and proposed the first methods of ordeBSgecial methods for
second-order differential equations were proposgdNysstrom (1925) who

also contributed to the development of methoddifst-order equations.
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Since from advent of digital computers, a freskterest had been
focused on Runge-Kutta methods, and a large numbezsearch workers
have contributed to recent extensions to the thaory the development of
particular methods. Although, early studies wereotied entirely to explicit
Runge-Kutta methods, interest has now extendethpdigit methods, which
are now recognized as appropriate for stiff difféi@ equations. (see
[Butcher, 1964]).

3.3.3.1 Formulation of Runge-Kutta Methods:

The general form of an R-stages Runge-Kutta metbiosolving fuzzy
fractional ordinary differential equation in islevel sets (for simplicity the

a-level sets is termed by(a) instead ofy, ) is given by:

R ~
Ynea(0) =¥n(a)+hd ciki(a)
i=1
wherea [J[0,1] and,
(0)=1 [y +h 33 0+ 15
s=1
and
R
q = Z bs
s=1

wherec;, g andb, for all i, s=1,2,...,R; are constants to be determined.

Then the general form of an upper R-stages Rung&aknethods is
given by:
— — R ~
Yn+1(a) =9n(a) +hY ciki(a)
i=1

where
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ki(a)=T" (xn +hay 3, (o) + hgbsl(a)J

Similarly, the general form of lower R-stages Ruiggta method is given

by:
Srea()=5(a) + o)

where
ki(a)=tf" [xn +hay 3, (o) + hglbsiks(a)J

For convenience, we design the process by an afr@pnstants, as

follows:
by by - bir| &
boy by -+ bor| @
bjr bor - bpr| 2R
C_I_ C2 cen CS

And it is easy to classify Runge-Kutta methoddodews:

e If by =0, Ui<j, then the method is called semi-explicit.
e If by =0, Uigj, then the method is called explicit.

# Otherwise it is called implicit.

3.4 Numerical Examples:

In this section, some illustrative examples aneegias a comparison
between the numerical methods and focuse on thenbolapproaches used

in solving this new field in differential equatignshich are fuzzy fractional

order differential equations.
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Example (3.3):

Consider the non-linear FFODE:

VD (x) =5 F %exp(-1/5), §(0;0)=[0.1+0.90,1.5-0.50]

over the interval [0, 1].
In order to solve this equation, we given thedwaihg alterative form:

§ =DV 1/4( 34exp( 1”)
**exp(-17)
and since:
§=y° exp( 1Y), 9(0;a)=[0.1+0.90,1.5-0.50] ....c......... (3.28)

Now, then from eq. (3.28), we have:

¥'(xa) =" (x,9(x);a) =G (x,y(x;a),9(xa))

=57 (x:at) exp(-1/ 3 (x:01))

(0 y(x)ia) =F(xy(xa),y(xa))
=579 (x:a) exp(~1/ 3(x:1)

This example has no analytic solution therefore ewwal methods will be

used with step size h=0.1.

Using Euler's method:

Ina(o) =n(@) *hG (x3(0xa) xe)) (3.30)
In+1(a) =¥ n(a) + hF{x,¥( x0) , ¥( xx))
Then from eq. (3.29) and eq. (3.30):
v (a)=¥ 4 (a) ex a)
Tnea(®)=9n(a) +h( 5 ) (3.31)

Fnea(0) =Tn(a) + (T #(o) ex(~ 1 V(a))
Similarly, Runge-Kutta methodatan be applied which has the form:

Yn+r(0) =9 n(a)+ h(Clkl(O‘) + CZNKZ(O‘))
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and

ko (a) =1 (x +ash, yo(a) + hby k)
= (90 (0) + h{55* (@) ex(~ 130())))
exp{- 1 () + H{ 8 (ct) ex- 1))
Ka(o) =T (xn +5h, V(@) + hbyik)
= (3n(e) + (57 (a) exp(~ 1 Wn(a)) "
expl~1 % (@) + {%7%(a) ex- 1°%())))

Also, carrying these two eq.'s (3.31) and (3.32)rg0, 1, ..., we get the

following results in table (3.3) using program (§ra).
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Table (3.3)

Numerical results of example (3.3)

Euler's Method Runge-Kutta
=90 +h h
Yher =+ 0 Yorwr =P+ 5| R4+ RG]
¥6a) 9%%a) ¥a) %)

0 0.1 1.519 0.1 1.51
0.2 0.294 1.421 0.287 1.412
0.4 0.49 1.324 0.479 1.314
0.6 0.677 1.228 0.664 1.216
0.8 0.858 1.132 0.8433 1.118
1.0 1.037 1.037 1.022 1.022

For comparison perpouse, the crisp solution colodd evaluated

numerically, using Euler method which is given by:=1.03678¢, while

using Runge-Kutta method we hawg:=1.0211°.

Example (3.4):
Consider the FFODE:

D¥*%(x)=5, §(0;a)=[0.5+0.50,1.25-0.250]
over the interval [0,1].

In order to solve the above FFODE, we multiplytosides byD1_3/2,
to get:

y(x)=D""%%

Then from eq. (3.33), we have:
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¥ (xia) =t (x,9(x):a) =G (x,y(x:a) §(xa))=—= 2 (xa)

¥ (xia)=F" (x,y(x):a) =F(x,y(xa),¥(xa)) == 5"2(xa)

o Tt

Using Adam-Bashforth method:

From eq. (3.34) and eq. (3.35), we have:

zn+2() yn+1 (3)/]/ y]/2 ))
Tnea(@) =Tnes(a) + = (3752 (@) - 547())

For n=0 and taking h=0.1, 0.05, then we have:
7 (@) = 9a(c0) + (354 (@) - 55 °(a)
2 () =91 (a +—(3Y]/2 ~12 )

The results of eq. (3.36) are presented in tab#® (&ing program (Prog. 2).
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Table (3.4)
Numerical results of example (3.4) using Adam's method

Adam-Bashforth with Adam-Bashforth with
h=0.1 h=0.05

¥6a) Y0 §6a) Y6a)
0 0.691 1.484 0.593 1.365
0.2 0.798 1.431 0.696 1.314
0.4 0.904 1.379 0.8 1.262
0.6 1.01 1.326 0.903 1.211
0.8 1.116 1.274 1.006 1.16
1 1.221 1.221 1.109 1.109

Comparing the fuzzy solution with level=1 with the crisp solution is
given by: y, =1.221 at h=0.1 and/, =1.10¢ at h=0.05.
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Conclusions and Qecommendations

Form the present study, we can conclude the following:
Exact solution of fuzzy fractional differential equations, may be in
sometimes so difficult to be evaluated, especially in non-linear cases.
The method of successive approximations for solving integral
eguations can be used to solve fuzzy fractional ordinary differential

equations.

Also, we can recommend the following problems for future
work:
Studying the existence and uniqueness theorem of fuzzy fractional
differential equations using, such as, Bourbaki-Kneser fixed point
theorem, Amann and Tarski fixed point theorem, etc.
Extending the work of this thesis to study the solution of fuzzy
fractional partial differential equations, numerically and analytically.
Studying fuzzy fractional differential equations with boundary

conditions.
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 Introduction

Since its inception of 40 years ago, the theorfypty sets has advanced
in a variety of ways and in many disciplines. Apptions of this theory can
be found, for example, in artificial intelligencepmputer science, control
engineering, decision theory, expert systems, |ogianagement, science
operation research and robotics. Further moregastdeveloped theoretically
and it has been applied to new areas of real fiddlpms. Moreover, in every
day life, we are used too properties which canbeotlealt with satisfactorily
on a simple “belong” or “not belong” basis. Whethieese properties perhaps
best indicated by a shade of gray, rather tharméytack or white, assigning
each individual in a population on a “belong” orotrbelong” value, as is
done in ordinary set theory is not an adequate afalealing with properties
of this type.

Zadeh had introduced fuzzy set theory in 1965, imch, Zadeh’s
original definition of fuzzy sets could be given falows “a fuzzy set is a
class of objects with a continuum grades of mentiyersSuch a set is
characterized by a membership (characteristic)tfonavhich assigns to each
object a grade of membership value ranging betweem and one”, [Zadeh ,
1965].

Since 1965, fuzzy theoretical approach had develdyeZadeh himself
and about 300 other researchers as a tool of nmpddluman centered
systems, in which they applied this theory in aevidnge of scientific and

engineering areas, [Yan, 1994].

Also, the theory of fuzzy sets have been applied965 by Zadeh for
solving fuzzy differential equations. In additiamthis thesis new area to the
subject is devoted to solve fuzzy fractional ordéferential equations, in
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which fractional differential equation could be satered as an important
type of differential equations, where the diffetegration that appears in the
equation is of non-integer order. Such type of [wis may be considered to

have the form:

y(Q):f(X,y), y(q—k)(xo):yo
where k=1, 2,..., n+1; n<q<n+1, and n is an integer number.

Real life problems with fractional differential wations are of great
importance, since fractional differential equatioascumulate the whole
information of the function in a weighted form. $thas many applications in
physics, chemistry, engineering, etc. For thatorasve need a method to
solve such equations, effectively, easy to use apgdlied in different
problems.

However, the well known methods used for solvingctional
differential equations have some difficulties rattiean that of usual methods
for solving ordinary differential equations, aneéfore this thesis is oriented
towards introducing a new type of equations catledfuzzy fractional order
differential equation and to introduce some methodsolving such type of
equations by using sutible numerical methods.

This thesis consists of three chapters, the flrapter devoted to discuss
the general concepts of fuzzy differential equatod fractional differential
equation, which is necessary for understanding aal¥ing the fuzzy
fractional order differential equation, as wellsmne of the basic definitions

in mathematics.

Chapter two discuss the existence and uniquemessam of fuzzy
fractional order differential equations (FFODE'sing Sadoviskii's fixed-

point theorem for condensing mapping.
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In chapter three, we discuss some types of fuzagtibnal order
differential equations and they are solution usage well known analytical

methods and numerical methods.
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