
 

 
 

 

The main objective of thesis is oriented toward two objectives.  

The first objective is to introduce and study new type of differential 

equations, which are the so called fuzzy fractional order differential 

equations. This type of equations is the collection between two different 

theories in mathematics which are fuzzy set theory and theory of 

fractional calculus, where the study include some illustrative examples 

and theoretical aspects. The second objective is the statement and proof 

of the existence and uniqueness theorem of fuzzy fractional order 

differential equations using Sadoviskii’s fixed point theorem.        
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Following the computer programs used in this thesis: 

 

Prog.1: { Computer programming for solving   

( ) ( ) ( ) [ ](1 4) 3 4
y x y exp 1 y , y 0; 0.1 0.9 ,1.5 0.5

−= − α = + α − α% % % %  

using explicit Euler's method and explicit Runge-Kutta method}. 

 

h:=0.1 

α:=0,0.2..1 

0y ( )α% :=0.1+0.9.α 

0y ( )α% :=1.5-0.5.α 

y( )α% :=( ) 5 4
0

0

1
y ( ) .exp

y ( )

−  −α   α 
%

%
 

y( )α% :=( ) 5 4
0

0

1
y ( ) .exp

y ( )

−  −α  α 
%

%
 

( )k1 α% := y( )α%  

( )k1 α% := y( )α%  

        ( )k2 α% := ( ) ( ) ( )( )( )( ) 5 45 4
0 00y h y .exp 1 y .

−−α + α − α% % %  

                       ( ) ( ) ( )( )( )( )5 4
0 00exp 1 y h y exp 1 y−− α + α − α% % %  

 ( )k2 α% := ( ) ( ) ( )( )( )( ) 5 45 4
0 00y h y exp 1 y .

−−α + α − α% % %  

                    ( ) ( ) ( )( )( )( )5 4
0 00exp 1 y h y .exp 1 y−− α + α − α% % %  

       ( )1y α% := 0y ( )α% +h. y( )α%  
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( )1y α% := 0y ( )α% +h. y( )α%  

( )Y1 α% := 0
h

y ( ) .
2

α +% ( ) ( )( )k1 k2α + α% %  

( )Y1 α% := 0
h

y ( ) .
2

α +% ( ) ( )( )k1 k2α + α% %  

 

Prog.2: { Computer programming for solving    

( ) ( ) [ ]3 2
D y x y, y 0; 0.5 0.5 ,1.25 0.25= α = + α − α% % %  

using Adem Bashforth method}. 

 

h:=0.1 

α:=0,0.2..1 

0y ( )α% :=0.5+0.5.α 

0y ( )α% :=1.25-0.25.α 

( )1y α% := 0y ( )α% +h 

( )1y α% := 0y ( )α% +h 

( )2y α% := ( )1y α% ( )( )1 0
h

. 3. y y+ α −
π

% %  

( )2y α% := ( )1y α% ( )( )1 0
h

. 3. y y+ α −
π

% %  
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 This chapter we present some general concepts related to this work, 

including fuzzy set theory and fractional calculus. This chapter consist of 

three sections, in section 1.1 general introduction to fuzzy set theory is given 

including basic definitions, general properties, algebraic operation, the 

membership function and the extension principle. 

 In section 1.2 primitive concept and definitions related to fractional 

calculus are given, including gamma function, beta function, Riemann-

Liouville formula of fractional differentiation and integration as well as the 

fractional integration and the fractional derivatives of the some well known 

functions. 

 Finally in section 1.3 an introduction and statement to the problem of a 

fuzzy fractional order differential equations (FFODE's) is given.                                                                                                             

 

1.1 Fuzzy Set Theory 

In every day of real life, we are using so many properties, which cannot 

be dealt with satisfactory simple “Yes” or “No” basis. Assigning each 

individual in a population by “Yes” or “No”, i.e., “1” or “0” values, as is done 

in ordinary set theory, is not an adequate way for dealing with properties of 

this type, [Zadeh, 1965]. 

In 1965, Zadeh suggested a modified approach where an individual can 

have a degree of membership value ranged over a continuum of values rather 

than being either 0 or 1. He showed how set operations such as union and 
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intersection can be define for these “fuzzy” sets, and developed a consistent 

framework for dealing with such type of problems. This system allows fuzzy 

sets to be manipulated in a consistent and reasonably intuitive way, [Yan, 

1994]. 

Lack of crispness is an aspect of many real world properties, and one 

must be catered in defining the linguistic terms used to name these properties. 

The framework provided by fuzzy sets is perhaps the most natural and 

accurate currently available for dong this, [Yan, 1994]. 

The fuzzy set theory was initiated by Zadeh in the early 1960's 1964's. 

Since 1965, fuzzy theoretical approach had developed by Zadeh himself and 

some other researchers as a tool for modeling human centered systems 

applied in a wide range of scientific and engineering areas.  

The use of fuzzy sets in pattern recognition and classification may spot 

some light on the general problem of decision making and fuzzy processes in 

general. Although a great amount of literatures had been published dealing 

with fuzzy techniques in pattern recognition, cluster analysis, and related 

topics, [Kandel, 1982]. 

It is frequently stated that the process of recognition and classification is 

one of the most fundamental of human activities. As a matter of fact, one of 

the most primitive and common activities of animals (human beings included) 

consists of sorting like items into groups. These groups are described by 

patterns and what we perform is the act recognition of certain pattern and then 

classification of them into groups, [Al-Doury, 2002].                                

It has been claimed that the concept of vagueness underlying fuzzy 

theory is more appropriate of such systems than the probabilistic concepts of 

randomness. 
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1.1.1 Basic Definitions and General Properties of Fuzzy Sets: 

 This subsection consists of some basic definitions and concepts related 

to fuzzy set theory. These concepts and definitions has an analogy from in 

some cases, in non fuzzy set theory. As a classification between fuzzy and 

non-fuzzy sets, each fuzzy set is assigned with the symbol “∼” in the rest of 

this work. We start first with the definition of fuzzy sets: 

 

Definition (1.1), [Zadeh, 1965]: 

 Let X be any set of elements. A fuzzy set A%  is characterized by a 

membership function ( )A x :µ
%

 X→ I, where I is the closed unit interval [0, 

1]. Then we can write a fuzzy set A%  by the set of points: 

 ( )( ) ( ){ }A AA x, x x X, 0 x 1= µ ∈ ≤ µ ≤
% %

%  

The collection of all fuzzy sets in X will be denoted by XI , i.e.,  

 XI = { A : A% %  is a fuzzy subset of X}. 

 

Following, some fundamental concepts related to the basic algebraic 

operations and relations of fuzzy sets ( [Zadeh, 1965], [Zimmerman, 1985] 

and [Kandel, 1986]).  

Let A%  and B% be two fuzzy subsets of a universal set X with 

membership functions ( )A xµ
%

 and ( )B xµ
%

respectively, then: 

11..  A =% ∅ if and only if ( )A xµ
%

=0, ∀x∈X, where ∅ is the empty fuzzy 

set. 

22..  A B⊆% % if and only if  ( ) ( )BA x xµ ≤ µ
% %

, ∀x∈X. 

33..  A B=% %  if and only if ( ) ( )BA x xµ = µ
% %

, ∀x∈X. 
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44..  The complement of A%  (denoted by cA% ) is a fuzzy set with 

membership function  

                  ( ) ( )c AA
x 1 xµ = − µ

%

%

. 

55..  The support of A% (denoted by S(A)% ), is the crisp set of all x∈X 

such that ( )A xµ
%

>0. 

66..  The height of  A%  (denoted by hgt (A% )) is the supremum value of 

( )A xµ
%

 over all x∈X. If hgt (A% ) = 1, then A%  is normal, otherwise 

it is subnormal. 

77..  A point x∈X is said to be crossover point of A%  if ( )A x 0.5µ =
%

. 

88..  C A B= ∩% % %  is a fuzzy set with membership function 

                   ( ) ( ) ( ){ }BC Ax Min x , x , x Xµ = µ µ ∀ ∈
% % %

 

99..  D A B= ∪%% %  is a fuzzy set with membership function 

                   ( ) ( ) ( ){ }D BAx Max x , x , x Xµ = µ µ ∀ ∈
% % %

 

1100..  The m-th power of  A% is a fuzzy set with the membership function  

                   ( ) ( )m
m

AA
x x µ = µ %

%

, ∀ x∈X. 

1111..   The algebraic sum of A%  and B%  is a fuzzy set C% ( termed by 

C A B= +% % % ) which is defined as: 

                        ( )( ){ }A BC x, x x X+= µ ∀ ∈
% %

%  

            where:  

                        ( ) ( ) ( ) ( ) ( )B BA B A Ax x x x . x+µ = µ + µ − µ µ
% % % % %%

 

1122..   The algebraic product of A%  and B%  is a fuzzy set C%  ( termed by 

C A B= ⋅% % % ) which is defined as: 

                        ( )( ){ }A.BC x, x x X= µ ∀ ∈
% %

%   

                where:  
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                        ( )A.B xµ
% %

= ( ) ( )BA x . xµ µ
% %

 

1133..   The absolute difference of A%  and B% ( )denoted by A B−% %  and is 

         defined by:  

                ( ) ( ) ( )BAA B x x x−µ = µ − µ
% %% %

. 

1144..   If A B 0∩µ =
% %

, ∀ x∈X, then A%  and B%  are said to be separated sets. 

 

Example (1.1), [Kandel, 1986]: 

 Let the universal set be the interval [0, 120], with x interpreted as the 

age. A fuzzy subset A% of X labeled old may be defined by a grade of 

membership function, such as: 

 ( ) 12
A

0 , for 0 x 40

x x 40
1 , for 40 x 120

5

−−

≤ ≤

 µ =  − + < ≤      

%
  

Then ( )S A%  is the interval (40, 120]. 

The hgt( )A%  is equal to 1. 

The crossover point of A% is 45. 

 

Definition (1.2), [Zimmermann, 1985]: 

 The (crisp) set of elements that belong to the fuzzy set A%  at least to the 

degree α is called the weak α-level set, (see Fig. (1.1)), is defined by: 

   ( ){ }AA x X : xα = ∈ µ ≥ α
%

 

while the “strong α-level set” or “strong α-cut” , is defined by:   

( ){ }AA x X : xα′ = ∈ µ > α
%
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Remarks (1.1), [Klir, 1997]:  

Let A%  and B%  be two fuzzy subset of a universal set X, then it is easily 

checked that the following properties are satisfied for all α∈(0, 1]: 

i. ( )A B A Bα αα
∪ = ∪% % . 

ii. ( )A B A Bα αα
∩ = ∩% % . 

iii.  If A B⊆% %  then A Bα α⊆ . 

iv. A B=% %  equivalent to A Bα α= , ∀ α∈(0, 1]. 

v. A A Aα β β∩ =  and A A Aα β α∪ = , if α≤β. 

 

Fig.(1.1)  Nested α-level sets. 

 

Definition (1.3), [Zadeh, 1965]: 

  A fuzzy subset A%  of a universal vector space X is convex if and only if 

the sets Aα  defined by:  

 ( ){ }AA x xα = µ ≥ α
%

  

are convex for all α in the interval (0, 1]. 

Or equivalently, we can define a convex fuzzy set using directly its 

membership function to satisfy:   

( ) ( ) ( ){ }1 2 1 2A A Ax 1 x Min x , xµ λ + − λ ≥ µ µ  % % %
 

for all 1 2x , x X∈  and λ∈[0, 1]. 
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Among the definitions of fuzzy number, is the next definition given by 

[Zimmermann, 1985]. 

 

Definition (1.4), [Zimmermann, 1985]:  

A fuzzy number M% is convex normalized fuzzy set of the real line   

such that  

i. It exists exactly one x0∈ , with ( )0M x 1µ =
%

, (x0 is called the mean 

value of M% ). 

ii. ( )M xµ
%

 is a piecewise continuous function. 

 

Remarks (1.2), [Nguyen, 2000]:  

In fact, fuzzy number is fuzzy interval; the only difference is that fuzzy 

number contain the value 1 at only one place while a fuzzy interval can have 

several value of 1 on many places, (see Fig.(1.2) and Fig.(1.3)). 

 

         ( )A xµ
%

                                             ( )A xµ
%

 

        

           1                                                                     1   

             

                                                                                

           0    a             x0             b      x                         0     a         b                       c         d     x            

 

Fig.(1.2) Triangular Fuzzy Number              Fig.(1.3) Triangular Fuzzy Interval 

 

 

 The distance D between two fuzzy sets U%  and V%  to be D: 

n nE E× → [0,∞) given by: 

 ( ) ( )
0 1

D U,V sup d U ,Vα α
<α≤

=% %   
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where nE is the set of fuzzy subsets from n  to  [0, 1] and d is the Hausdorff 

metric defined in: 

 d(A, B)=Max
b B a Aa A b B

sup inf a b , sup inf a b
∈ ∈∈ ∈

 
− − 

 
 

where A, B are any two non-empty closed and bounded subsets of n
  and: 

( )
1 nn

n
i i

i 1

a b a b
=

 
− = − 

 
∑ . 

Then D is a metric on nE .  

11..  Also, D satisfies the following ( see[Song, 2000]): 

22..  ( )nE ,D is a complete metric space. 

33..  ( ) ( )D U W,V W D U,V+ + =% % % % % % , for all nU,V,W E∈% % % . 

44..  ( ) ( )D kU, k V k D U, V=% % % % , for all nU,V E∈% %  and k∈R . 

  

1.1.2 The Membership Function, [Kandel, 1986]: 

 An important task of the theory of fuzzy sets is the definition and 

construction of membership functions, which admits certain properties of 

fuzzy sets. The characteristic function assigns to each element x of X a 

number, ( )A xµ
%

, in the closed unit interval [0, 1] that characterizes the degree 

of membership of x in A% , membership functions are functions of the form: 

  A : Xµ
%

→ [0, 1]. 

 In defining the membership function, the universal set X always 

assumed to be classical set. 

The membership function falls into three categories to be defined either 

numerically or analytically or by inspection of the reader (see [Zadeh , 1965], 

[Al-Hamaiwand, 2001] and [Al-Doury, 2002]). 
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1.1.3 The Extension Principle, [Zimmermann, 1985]:  

 One of the most basic concepts of fuzzy set theory that can be used to 

generalize crisp mathematical concepts to fuzzy set theory is the extension 

principle. In its elementary from it was already implied in Zadeh's first 

contribution in 1965. Following Zadeh we define the extension principle as 

follows: 

 

Definition (1.6), [Zimmermann, 1985]: 

 Let X be the cartesion product of universes 1 sX , ,XK  and 1 sA ,...,A% %  be 

s fuzzy sets in 1 sX , ,XK , respectively. f is a mapping from X to a universe Y, 

( )1 sy f x , ,x= K . Then the extension principle allows us to define a fuzzy set 

B% in Y by: 

 ( ) ( )( ) ( ) ( ){ }1 s 1 sBB f A y, y y f x , ,x , x , ,x X= = µ = ∈
%

%%

K K   

where 

 ( ) ( ) ( )
( ) ( ){ } ( )

1 s1
1 s

1
1 sA A

x , ,x f yB

sup min x ,..., x , if f y
y

0 , Otherwise

−

−

∈

 µ µ ≠ ∅
µ = 



% %

K
%

  

where 1f −  is the inverse image of f. 

For s=1, the extension principle, of course, reduces to: 

 ( ) ( )( ) ( ){ }BB f A y, y y f x , x X= = µ = ∈
%

%%  

where 

 ( ) ( )
( ) ( )

1

1
A

x f yB

sup x , if f y
y

0 , Otherwise

−

−

∈

 µ ≠ ∅
µ = 



%

%
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1.2 Fractional Calculus 

 Fractional calculus, is an important branch of applied mathematics, 

which seems first to have many vague notations and ill defined concepts to 

the readers which are interest in this subject. This type of differentiation and 

integration could be considered as a generalization to the usual definition of 

differentiation and integration, [Oldham, 1974]. 

 Recently, fractional derivatives have been used in building models of 

physical processes, leading to the formulation with fractional differential 

equations. The fractional calculus may be considered as an old and yet a new 

topic. Since, it is an old topic since, starting from some speculations of G. W. 

Leibniz (1695, 1697) and L. Euler (1730), and new since it had been 

developed up to now days. 

 A list of mathematicians, who have provided contributions up to the 

middle of the 19th century, includes P. S. Laplace (1812), J. B. J. Fourier 

(1822), N. H. Abel (1823- 1826), J. Liouville (1823- 1873), B. Riemann 

(1847), H. Holmgren (1865-1867), A. K. Grunwald (1867- 1872), A. V. 

Letnikov (1868-1872), H. Laurent (1884), P. A. Nekrassov (1888), A. Krug 

(1890), J. Hudamard (1892), O. Heariside (1892- 1912), S. Pincherle (1902), 

G. H. Hordy and J. E. Little Wood (1917-1928), H. Weyl (1917), P. Levy 

(1923), H. T. D. Avis (1924-1936), H. Kobor (1940), D. V. Widder (1941), 

M. Riesz (1949), [Oldham, 1974]. 

 As well, since only from a little more than to the later fifty years it has 

been an object of specialized conferences and treatises. For the first 

conference the merit is a scribed to B. Ross who organized the first 

conference on fractional calculus and its applications at the University of 

New Haven in June 1974. For the first monograph the merit is a scribed to K. 

B. Oldham and J. Spanier, (1974), who after a joint collaboration started in 
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1968, published a book devoted to fractional calculus in 1974, [Al-Saltani, 

2003]. 

 In recent years, considerable interest in fractional calculus have been 

stimulated by the applications that this subject finds in numerical analysis, 

differential equations and different areas of applied sciences, especially in 

physics and engineering, possibly including fractal phenomena [Kalil, 2006]. 

 

1.2.1 Fundamental Notions: 

  It is important to notice that fractional calculus is so difficult to 

understand and because of this difficulty we shall present in this section the 

most important notions and definitions that are necessary for understanding 

this subject.  

 

1.2.1.1 Gamma and Beta Functions, [Oldham, 1974]:  

 Gamma function ( )xΓ  plays an important role in the theory of 

differentegration, since in fractional calculus, the gamma function generalizes 

the concepts of a factorial of a given natural number n to any real number and 

it is defined by: 

 ( ) x 1 y

0

x y e dy, x 0
∞

− −Γ ≡ >∫ .............................................................. (1.1) 

The following are the most important properties of gamma function: 

1. ( )1 1Γ = . 

2. ( ) ( )x 1 x xΓ + = Γ , x<0. 

3. ( )n 1 n!Γ + = , n∈ . 

4. ( ) ( )x
x 1

x 1

Γ
Γ − =

−
, x≠1. 
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5. 
[ ]

( )
n4 n!1

n
2 2n !

− π Γ − = 
 

. 

6. ( ) ( )
( )
csc x

x
x 1

−π π
Γ − =

Γ +
. 

7. ( )
nx n 1

k 0

2 n k
nx n

n n2

−

=

 π  Γ = Γ +   π    
∏ , and in particular: 

     ( ) ( ) ( )x4 x x 1 2
2x

2

Γ Γ +
Γ =

π
. 

The following are some frequently encounter examples of gamma 

functions for different value of x. 

( )1Γ − = ∞ , ( )0Γ = ∞ , ( )1 1Γ = ,  ( )2 1Γ = , ( )3 2Γ = , 
3 4

2 3

− Γ = π 
 

, 

3 1

2 2
 Γ = π 
 

,  
1

2
2

− Γ = − π 
 

,  
5 3

2 4
 Γ = π 
 

,  
1

2
 Γ = π 
 

. 

 

Another type of functions is called the beta function defined by: 

 ( ) ( )
1

q 1p 1

0

B p,q y 1 y dy−−= −∫ ,  p,q>0 

 If either p or q is non-positive, the integral diverges otherwise ( )B p,q  

is defined by the relationship:  

( ) ( ) ( )
( )
p q

B p,q
p q

Γ Γ
=

Γ +
 

which valid for all p and q. 

 Both the beta and gamma functions have “incomplete” analogs. The 

incomplete beta function of argument x is defined by the integral: 

 ( ) ( )
x

q 1p 1
x

0

B p,q y 1 y dy−−= −∫  
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1.2.1.2 Riemann- Liouville Formula of Fractional Differentiation and 

Integration, [Oldham, 1974], [Nishimoto, 1997]: 

 Fractional differentiation and integration may involve Riemann-

Liouville formula of fractional order q>0, which takes the form: 

 ( ) ( )
( )

( )0
0

xm
q
x m q m 1

x

y u1 d
D y x du

m q dx x u − +=
Γ − −

∫ ............................... (1.2) 

where 
0

0
xD I=  (identity operator), and m is a positive integer number defined 

by m 1 q m− < ≤ , and x0 is an initial condition. 

 Such equations have recently proved to be valuable tools in modeling 

many physical phenomena. The case of 0<q<1 seems to be particularly 

important, but there are also some applications for q>1. It is well known that 

qD  has an m-dimensional kernel, and therefore we certainly need to specify 

m initial conditions in order to obtain a unique solution of the straightforward 

form of the fractional differential equation: 

  ( ) ( )( )qD y x f x,y x , x [a,b]= ∈ .................................................... (1.3) 

where f is  some given continuous function and a,b are any real numbers. The 

initial conditions of eq. (1.3) must takes the form: 

 ( )
q k

0 kq k

d
y x b

dx

−

− = , k=1, 2, ... , m 

where kb 's are given constants and m is positive integer.  

 

1.2.1.3 The Fractional Integral, [Oldham, 1974]: 

 The most frequently encountered definition of an integral of fractional 

order is via an integral transform, which is called the Riemann-Liouville 

integral. So, the generalization to non-integer q is: 
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 ( ) ( )
xq

q 1
q

0

d 1
f x y f (y)dy, q 0

qdx

− −= − <
Γ − ∫ …………......………... (1.4)  

 For the function ( ) ( )q 1f x x exp 1 x−= − , using the formula (1.4) on 

substituting ( )
x

y
x z 1

=
+

 , we find: 

 

( )
( )

( )
[ ]

( )
( )

( )

q 1xq

q 1 q q 1
0

q 1 q 1
0

exp 1 x y exp 1 yd 1
dy

qdx x x y

exp 1 x exp z
dz

q x z

−

− +

∞

+ +

− − 
=  Γ − − 

− −
=

Γ −

∫

∫

 

From eq. (1.1), the integral is evaluated simply as ( )qΓ −  so that the final 

result is given by: 

 
( ) ( )q

q 1 q q 1

exp 1 x exp 1 xd

dx x x− +
− − 

= 
 

....................................................... (1.5) 

We shall omit the proof of the more general results, such as: 

 
( )
( )

q n 1
q n j n q

q
j 0

n 1j qd 1 1
x exp exp x

jx x qdx

−
− − −

=

−Γ −  − −    =      Γ −      
∑ , n=1, 2,...,  

where eq. (1.5) is a special case when n=1. 

 

1.2.1.4 The Fractional Derivatives [Oldham, 1974], [Bertram, 1974]: 

 As it is given in literatures, fractional differentiation is given by:  

 ( ) ( )
( ) ( )

qq N 1

q N j 0

j qd t t
f t Lim f t j

N q j 1 Ndt

− −

→∞ =

 Γ −   = −    Γ − Γ +     
∑ , q>0…. (1.6) 

 Similarly, as in natural differentiation, we can give the following 

examples for fractional differentiations: 

11..  
[ ]

( )
q q

q

d 1 x

1 qdx

−
=

Γ −
, x>0. 
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22..  [ ] ( ) ( )
q q q

q q

d d cx
c c 1

1 qdx dx

−
= =

Γ −
, c is a constant. 

33..  ( )
q

q

d
0 0

dx
= , for all q. 

44..  ( ) ( )
q p q

p
q

d x
x B p 1, q

qdx

−
= + −

Γ −
 

                  
( )
( )

p qp 1 x

p q 1

−Γ +
=

Γ − +
, p>-1, q<1. 

55..  
( )

( )
( )

( )
( )( )

q

q q

d exp k cx exp k cx
* q, c x a

d x a x a

− −
= γ − − −

− −
 

Since  * (c,x)γ  is the incomplete gamma function which is defined 

by: 

( ) ( ) ( )

( ) ( )

cx
x 1

0

j

j 0

c
* c,x y exp y dy

x

x
exp x .

j c 1

−
−

∞

=

γ = −
Γ

= −
Γ + +

∫

∑

 

66..  
( )

[ ]
q q

q q 1

q 1d x

1 xdx 1 x +

  Γ +
= −  − 

, q>-1. 

77..  
( )

( )
q p

p q j
q

j 0

j p 1d x
x x

1 x j p q 1dx

∞
−

=

  Γ + +
= − Γ + − +  

∑  

                               
( ) ( )

( ) [ ]
x

q 1

p 1 .B p q,q 1

p q . 1 x +
Γ + − +

=
Γ − −

, 0<x<1 and p>-1. 

88..  [ ] ( ) [ ]
q q

q 1
q

d x
1 x

1 q . 1 xdx

−
−− =

Γ − −
, with q <1. 

99..  [ ] [ ] ( )
( )

p qq
p x

q

1 x .B q,q pd
1 x

qdx

−− − −
− =

Γ −
, p>0. 
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1.2.2 Some Properties of Fractional Differential Operator q
xD , [Beteram, 

1974], [Nishimoto, 1997]: 

 In this subsection, some important properties of the fractional 

differential operator q
xD  are presented for completeness perpouse:. 

11..  The operator q
xD  is linear, i.e., 

( ) ( ){ } ( ){ } ( ){ }q q q
x 1 2 1 x 2 xD c f x c g x c D f x c D g x+ = + ,where 1c and  

2c are constants. 

22..  ( ) ( )q q
x x xD D f x D f xβ +β= . 

 

1.3 Fuzzy Fractional Order Differential Equations 

 In this section, a new type of differential equations is formulated by 

mixing two well known types of differential equations which are the 

fractional order differential equations and fuzzy order differential equations. 

This type of equations will be called fuzzy fractional order differential 

equations and has the following form: 

 
( ) ( )( )

( )

(q)

(q k)
0 0

y x f x,y x

y x y , k 1,2,...,n 1, n q n 1−

=

= = + < < +

% %

% %

AAAAA.......... (1.7) 

where n is an integer number and n
0y E∈% . 

Now, for this type of equations, the same basic concepts related to such 

type of equations is considered, such as: 

11..  The statement and proof of the existence and uniqueness theorem of 

the solution of such type of equations. 

22..  Studying and introducing some method for solving such type of 

equations analytically and numerically. 

 

The above two aspects will be considered in the next two chapters.        
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Among the important tasks in fuzzy order differential equations and in 

fractional order differential equations is the study and proof of the existence 

and uniqueness theorem. Therefore, several researchers had been studied this 

theorem using either Brower fixed points theorem (see [Leipzig, 1986]) or 

using Schauder fixed point theorem (see [Al-Ani, 2005]). This chapter we 

introduce a new approach in the study and proof of this theorem using 

Sadoviskii fixed point theorem, as well as, an introduction to some additional 

concepts in non-linear functional analysis, such as non-compactness measure, 

condensing mapping, etc. Also, in this chapter, y%  will stands to denote the 

solution of the fuzzy fractional order differential equation. 

Finally, this chapter consists of two sections. In section 2.1 we give 

some preliminary concepts of mixing between fuzzy order differential 

equations and fractional order differential equations. While in section 2.2 we 

state and prove the existence and uniqueness theorem of fuzzy fractional 

order differential equations using Sadovislii's fixed-point theorem for 

condensing mapping (this theorem seems to be new to the best of our 

knowledge).  
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2.1 Preliminaries 

 Assume that ( )( ) nf x, y x : I * E×% → nE  is a levelwise continuous 

function, where the interval { }0I* x : x x= − ≤ δ and { }n nE y : R [0,1]= →% .  

 Consider the fuzzy fractional order differential equation (FFODE): 

( ) ( )( )
( )

(q)

(q k)
0 0

y x f x,y x

y x y , k 1,2,...,n 1, n q n 1−

=

= = + < < +

% %

% %
AAAAA.................... (2.1) 

where n is an positive integer number and n
0y E∈% . 

The next definition collects between FFODE, and Volterra integral 

equations through their solution. 

 

Definition (2.1): 

 A mapping y : I *% → nE  is a solution to the FFODE, given by eq. 

(2.1) and it is levelwise continuous function and satisfies the Volterra singular 

integral equation:  

 ( ) ( ) ( ) ( )( )
0

x
q 1

0
x

1
y x y x z f z, y z dz

q
−= + −

Γ ∫% % % ................................... (2.2) 

for 0<q<1 and  x ∈I* . 

 

The eq. (2.2) can be written in operator form as: 

 
( ) ( ) ( )

0

x
q 1

x

1
Ty Iy x z f z,y(z) dz

q
−= − −

Γ ∫% % % , where 0Ty y=% % ............... (2.3) 

 

 Returning to the main question of proving the existence and uniqueness 

of solution of eq. (2.2), we outline next a plausible method of attacking this 

problem. We start by using the constant function ( )0 0y x y=% %  as an 
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approximation to the solution and substitute this approximation into the right-

hand side of eq. (2.2), and use the result: 

 ( ) ( ) ( ) ( )( )
0

x
q 1

1 0 0
x

1
y x y x z f z,y z dz

q
−= + −

Γ ∫% % %  

as a next approximation to the solution. Then after substituting this 

approximation ( )1y x%  again into the right-hand side of eq. (2.2) to obtain 

what we hope is a still better approximation( )2y x% , given by: 

 ( ) ( ) ( ) ( )( )
0

x
q 1

2 0 1
x

1
y x y x z f z,y z dz

q
−= + −

Γ ∫% % %  

and so on continuing in this  process. The final goal is to find a mapping y%  

with the property that when it is substituted in the right-hand side of eq. (2.2), 

the result is the same mapping y%  (i.e., y%  is a Sadoviskii's fixed point). If we 

continue in our approximation procedure, we may hope that the sequence of 

functions ( ){ }ky x% , called successive approximation, converges to a limit 

function with this property. Under suitable hypotheses this is the case, and 

precisely this approach is used to prove the existence of the solution of eq. 

(2.2).  

 We shall consider problem (2.1), with f as a continuous function on the 

rectangle:  

 ( ) ( ){ }0 0R* x,y x x a , D y,y b= − ≤ ≤% % % ,  

centered at ( )0 0x ,y% . We assume that f and 
f

y

∂
∂%

 are bounded on R*, that is, 

there exist constants M>0 and L>0, such that:  

 ( ) ( )f x, y M, f x,y L
yα

α

 ∂≤ ≤     ∂ 
% %

%
 .......................................... (2.4) 
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for all [0,1]α∈ , and for all points ( )x,y%  in R*. If ( )1x,y%  and ( )2x,y%  are any 

two points in R*, then by the mean-value theorem, there exists a number Ψ%  

between 1y%  and 2y% , such that: 

( ) ( ) ( ) [ ] [ ]( )

( ) [ ] [ ]

2 1 2 1

2 1

f x, y f x,y f x, y y
y

f x, . y y
y

α αα α
α

α α
α

 ∂− = Ψ −         ∂ 

 ∂= Ψ − ∂ 

%% % % %
%

% % %
%

 

Since the point ( )x,Ψ%  is also in R*, then ( )f x, L
y α

 ∂ Ψ ≤ ∂ 
%

%
, and we obtain 

that: 

 ( ) ( )( ) [ ] [ ]( )2 1 2 1d f x,y , f x, y Ld y , yα αα α ≤      % % % % ............................ (2.5) 

valid whenever ( )1x,y%  and ( )2x,y%  are in R*.  

 

Definition (2.2), [Al-Ani, 2005]: 

 A function ( )( )f x, y x
α

  %  which satisfies inequality (2.5), for all 

( )1x,y% ,  ( )2x,y%  in the region R* is said to satisfy a Lipschitz condition in 

R*. 

 

 We have already indicated that we shall use an approximation 

procedure to establish the existence of solutions. Now, let us define the 

successive approximations in general case by the equations: 

 ( )0 0y x y=% %  

and 

( ) ( ) ( ) ( )( )
0

x
q 1

j 0 j 1
x

1
y x y x z f z,y z dz, j 1,2,...

q
−

−= + − =
Γ ∫% % % .......... (2.6) 
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 Before we can do anything with these successive approximations, we 

must show that they are defined properly. This means that in order to define 

jy%  on some interval I*, we must first show that the point ( )( )jx,y x%  remains 

in the rectangle R* for every x in I*. 

 

Lemma (2.1): 

 Define δ to be the smaller of the two positive number a and b/M. Then 

the successive approximations ( )jy x , j 0,1,...∀ =%  given by eq. (2.6) are 

defined on the interval I* given by 0x x− ≤ δ . On this interval, we have: 

 ( )( )j 0 0D y x ,y M x x M b, j 0,1,2,...≤ − ≤ δ ≤ =% % ............................. (2.7) 

where ( )( ) nˆ ˆM D f x,y ,0 , 0 E= ∈% , such that:   

 
1, x 0

0̂(x)
0, x 0

==  ≠
 ,  

and for any ( ) 0x, y J∈%  , where ( )0 0J I * B y ,b= × % , where a>0, b>0, n
0y E∈%  

by:  

( ) ( ){ }n
0 0B y ,b y E D y,y b= ∈ ≤% % % % . 

Proof: 

 We will prove this lemma by induction. It is obvious for j 0= . Let 

x∈I*, then for eq. (2.6), it follows however that, for j=1: 

 ( ) ( ) ( ) ( )( )
0

x
q 1

1 0 0
x

1
y x y x z f z,y z dz

q
−= + −

Γ ∫% % % ............................... (2.8) 

which prove ( )1y x% is a levelwise continuous on I*, since 0y%  and f are 

levelwise continuous. Moreover, for any [0,1]α∈ , we have: 
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( ) [ ]( ) ( ) [ ] { }( )

( ) ( ) ( )( ) { }
0

1 0 1 0

x
q 1

0
x

d y x , y d y x y , 0

1
d x z f z,y z dz , 0

q

α αα α

−

α

= −      

  
  = −
 Γ    

∫

% % % %

%
 

                                            
( ) ( ) ( )( ) { }

0

x
q 1

0
x

1
d x z f z,y z , 0 dz

q
−

α

  
 ≤ −  Γ  

∫ %  

                                            ( ) ( ) ( )( )
0

x
q 1

0
x

1
d x z f z,y z ,{0} dz

q
−

α

  
 ≤ −  Γ  

∫ %  

                                                                                   ........................ (2.9) 

Taking the supremum over all [0,1]α∈  of inequality (2.9), gives: 

[ ] [ ]( ) ( ) ( ) ( )( )

{ }) )

( ) ( ) ( )( )

{ })

0

0

x
q 1

1 0 0
0 1 0 1 x

x
q 1

0
0 1x

1
sup d y (x) , y sup d x z f z, y z

q

, 0 dz

1
sup d x z f z,y z

q

, 0 dz

−
α α

≤α≤ ≤α≤ α

−

≤α≤ α

    ≤ −  Γ 

  
≤ −  Γ 

∫

∫

% % %

%

 

Then: 

 

( )( ) ( ) ( ) ( )( )
0

0

x
q 1

1 0 0
x

x

0
x

1 ˆD y x ,y D x z f z,y z ,0 dz
q

Mdz M x x

− 
≤ − Γ 

≤ ≤ −

∫

∫

% % %

 

    M b≤ δ ≤  .................................................................. (2.10) 

If 0x x− ≤ δ , where ( )( )( ) nˆ ˆM D f x,y x ,0 , 0 E= ∈%  and for any( ) 0x, y J∈% . 
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Now, assume that for 1<j-1<j, ( )jy x%  is levelwise continuous on 0x x− ≤ δ , 

and that:  

( )( )n 1 0 0D y x ,y M x x M b− ≤ − ≤ δ ≤% % .......................................... (2.11) 

From eq. (2.6), one can deduce that ( )jy x%  is levelwise continuous on 

0x x− ≤ δ , and since 0y%  and f are levelwise continuous. Then in a similar 

manner as in inequality (2.10), we have: 

 ( )( )n 0 0D y x ,y M x x M b≤ − ≤ δ ≤% % ….......................................... (2.12) 

If 0x x− ≤ δ , where ( )( )( ) nˆ ˆM D f x,y x ,0 , 0 E= ∈%  and for any( ) 0x, y J∈% . 

This establishes the lemma.    ■ 

 

2.2 Existence and Uniqueness Theorem Using Sadoviskii's Fixed-

Point Theorem for Condensing Mapping of FFODE's: 
 

 In this section we shall prove the existence and uniqueness theorem of 

FFODE, using Sadoviskii's fixed-point theorem. 

 Before, introducing this theorem, some fundamental concepts related to 

this theorem are given for completeness purpose. 

 

Definition (2.3), [Leipzig, 1986]: 

 Let N be a bounded set in a metric space (X, d). The Kuratowski 

noncompactness measure ( )Nχ   is defined to be the infimum of the set of 

all numbers ε>0 with the property that N can be covered by finitely many 

sets, each of whose diameter is less than or equal to ε, i.e.,  

 ( )Nχ = inf { 0 :ε >  N be a finite cover sets of diameter ≤ ε }. 
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 The measure of noncompactness determines the deviation from relative 

compactness of a set, i.e., ( )Nχ =0 is equivalent to relative compactness for 

N. As ( )Nχ  increases, N deviates more strongly, from relative compactness. 

 

 The following properties present some of the fundamental property of 

noncompactness measure. 

 

Proposition (2.1), [Leipzig, 1986]: 

 Let (X, d) be a Metric-space over K= ,  . Then for all bounded 

subsets N,N1,N2,..., Nn and M of X, we have the following results: 

11..  ( ) 0χ ∅ = . 

22..  ( )N 0χ =  if and only if N is relatively compact. 

33..  N ⊆ M   implies that ( ) ( )N Mχ ≤ χ . 

44..  ( ) ( )0 N diam N≤ χ ≤ . 

55..  ( ) ( ) ( )N M N Mχ + ≤ χ + χ .   

66..  ( ) ( )N Nχ β = β χ , for all β∈K. 

77..  ( ) ( )N Nχ = χ , where N stands for the closure of N . 

88..  ( ) ( ) ( ){ }
n

i 1 2 n
i 1

N max N , N ,..., N
=

 
χ = χ χ χ  
 
U . 

 

Definition (2.4), [Leipzig, 1986]: 

 Let ( )T : D T X⊆  →X be an operator on a Banach-space X. T is 

called a k-set contraction if and only if T is bounded and continuous and 

there is a number k ≥0, such that:  

 ( )( ) ( )T N k Nχ ≤ χ , for all bounded sets N in ( )D T . 
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 In addition, T is called condensing if and only if T is bounded and 

continuous, and ( )( ) ( )T N Nχ ≤ χ , for all bounded sets N in ( )D T  with 

( )N 0χ > . 

 

Lemma (2.2), [Leipzig, 1986]: 

 Let K, C: P ⊆ X→ X are operators on Banach-space X,  then K+C is 

also an operator which is k-contraction with 0 k 1≤ < , and also condensing, 

if:  

i. K is k-contraction, i.e., 

  Kx Ky k x y∞ ∞− ≤ − ...................................................... (2.13) 

                for all x,y∈P and fixed k∈[0,1). 

ii. C is compact. 

Proof: 

 Let N⊆P be a bounded set. 

By definition (2.3), if follows easily from (2.13), that ( )( ) ( )K N k Nχ ≤ χ   

By proposition (2.1) (2), ( )( )C N 0χ =  set T=K+C. 

Now: 

 
( )( ) ( )( )( )

( ) ( )( )
T N K C N

K N C N

χ = χ +

= χ +
 

                  ( )( ) ( )( )K N C N≤ χ + χ , (By proposition (2.1) (5)) 

                            ( )k N≤ χ      ■ 
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 Then statement of the Sadovskii fixed-point theorem is given in the 

next theorem. 

       

Theorem (2.1), (Sadovskii's Fixed-Point Theorem), [Leipzig, 1986]: 

 Suppose that: 

i. The operator T : N X⊆  →N is condensing. 

ii. N is a nonempty, closed, bounded and convex subset of a Banach-

space X. 

Then T has a fixed point. 

 

Theorem (2.2), (The Existence Theorem): 

 Consider the FFODE, (2.1) and suppose ( )0 0J I * B y ,b= × % , where   

( ) ( )( ){ }n
0 0B y ,b y E D y x ,y b= ∈ ≤% % % % , { }0I* x : x x= − ≤ δ  and  

nf (x, y(x)) : I * E×% → nE  be levelwise continuous and bounded function for 

any ( )0 0x , y J∈% , then there exist a solution of eq. (2.1) which passes through 

( )0x , y% . 

Proof: 

 In order to prove the existence of a solution to the FFODE, a use to the 

Sadoviskii fixed-point theorem will be used, i.e., we must prove that the two 

conditions of the theorem are satisfied. This is shown as follows:  

i. Consider defn. (2.1) and the eq. (2.3): 

      
( ) ( ) ( )

0

x
q 1

x

1
Ty Iy x z f z,y(z) dz

q
−= − −

Γ ∫% % % , where 0Ty y=% %  

     Then, we have to prove that T is condensing. 

     i.e., to prove T is bounded, continuous and ( )( ) ( )( )Ty x y xχ ≤ χ% % . 

     Since T is linear operator. 
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     Then it is either to prove that T is bounded or continuous, ( for simplicity,  

we prove T is bounded ). 

     Now, 

     

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

x
q 1

x

x
q 1

x

x
q 1

x I* x

1
Ty Iy x z f z, y(z) dz

q

1
Iy x z f z,y(z) dz

q

1
Iy sup x z f z,y(z) dz

q

−
∞

∞

−
∞

∞

−
∞

∈

= − −
Γ

≤ + −
Γ

≤ + −
Γ

∫

∫

∫

% % %

% %

% %

   

              0

0

x
q 1

x I*x

x
q 1

x

1
Iy (x z) sup f (z,y(z)) dz

(q)

f
Iy (x z) dz

(q)

−
∞

∈

−∞
∞

≤ + −
Γ

≤ + −
Γ

∫

∫

% %

%

                                 

     Since f is bounded function, then f c *∞ ≤ . Thus: 

       
( ) ( )

( ) ( )
0

x
q 1

x

q
0

c *
Ty Iy x z dz

q

c *
Iy x x

q q

−
∞ ∞

∞

≤ + −
Γ

≤ + −
Γ

∫% %

%

                            

     and hence if 0x x− ≤ δ , then: 

       ( )
qc *

Ty Iy M *
q 1∞ ∞≤ + δ ≤

Γ +
% %  

     where qΓ(q)=Γ(q+1), ( )( )
x I*

f sup f x,y x∞
∈

= %  and ( )
qc *

M* Iy
q 1∞= + δ

Γ +
%  

     Therefore, T is bounded operator and also continuous. 

     Also, to prove that ( )( ) ( )( )Ty x y xχ ≤ χ% % . 
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     By lemma (2.2), let ( )y x N∈%  which is a bounded set. 

     Set ( )( ) ( )( ) ( )( )T y x K y x C y x= +% % % , for ( )y x N∈% . 

     Now, from proposition (2.1) (5), imply that: 

  

( )( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( )

( )( )

T y x K y x C y x

K y x C y x

K y x

k y x

χ = χ +

≤ χ + χ

≤ χ

≤ χ

% % %

% %

%

%

 

     Since ( )( )( )C y x 0χ =% , by proposition (2.1) (2), and hence C is relatively     

compact   

     and since C is closed, then C is compact. 

     Thus, if k=1, then: ( )( )( ) ( )( )T y x y xχ ≤ χ% %  

     Therefore, the operator T : N X⊆ → N is condensing. 

 

ii. Suppose that: 

 ( ) ( ) ( ) ( ){ }0N y x B y ,b : y 0 0,y x B ,x I *β= ∈ ≅ ∈ ∈% % % %  

     where  

           ( ) ( ) ( ){ }0B x B y ,b : x 1β ∞= η ∈ η ≤ + β% %%   . 

     Now, to prove that N is a nonempty, closed, bounded and convex FFODE. 

subset of Banach-space X. 

     It is clear that N is nonempty, closed and bounded, (by construction). 

To prove that N is a convex set.  

Let ( ) ( )1 2y x , y x N∈% % , then: 

  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1 1

2 0 2 2

y x B y ,b , y 0 0, y x B

y x B y ,b , y 0 0, y x B

β

β

∈ ≅ ∈

∈ ≅ ∈

% % % %

% % % %
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To prove that: ( ) ( ) ( ) ( )1 2z x y x 1 y x N= λ + − λ ∈% % %  

i.e., to prove ( ) ( ) ( ) ( )0z x B y ,b , z 0 0, z x Bβ∈ ≅ ∈% % % %  

Now, since ( ) ( ) ( )1 2 0y x ,y x B y ,b∈% % %  and since the linear combination of 

levelwise continuous functions is also a levelwise continuous function. 

Hence z(x)%  is a levelwise continuous function, and 

  
( ) ( ) ( ) ( )

( )
1 2z 0 y 0 1 y 0

.0 1 .0 0

= λ + − λ

= λ + − λ =

% % %
 

therefore, ( ) ( )0z x B y ,b∈% %  

Moreover, to prove ( )z x N∞ ∈% , i.e., to prove ( )z x 1∞ ≤ + β%  

   

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 2

1 2

1 2

z x y x 1 y x

y x 1 y x

. y (x) 1 . y x

. 1 1 . 1

1

∞ ∞

∞ ∞

∞ ∞

= λ + − λ

≤ λ + − λ

≤ λ + − λ

≤ λ + β + − λ + β
≤ + β

% % %

% %

% %   

So ( ) ( ) ( ) ( )1 2z x y x 1 y x N= λ + − λ ∈% % %    

Hence, N is a convex set of FFODE's of Banach-space X. 

From, (i) and (ii), T has a fixed point.■  

 

 Let ( )y x%  and ( )*y x%  be two solution of eq. (2.1). 

Now, went to prove that this solution is unique, that is from: 

 
( ) ( ) ( )

0

x
q 1* * *

x

1
Ty Iy x z f z,y (z) dz

q
−= − −

Γ ∫% % % ……………………. (2.14) 

on 0x x− ≤ δ , it follows that ( )D Ty, Ty* 0≡% % . 

Indeed, from eq. (2.3) and eq. (2.14) 
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[ ]( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

0

0

0

x
q 1*

x

x
q 1* *

x

x
q 1

x

q 1* *

1
d Ty , Ty d Iy x z f z,y z dz ,

q

1
Iy x z f z,y z dz

q

1
d Iy x z f z,y z ,

q

1
Iy x z f z,y z dz

q

−
α α

α

−

α

−

α

−

α

  
   = − −

   Γ   

 
 − −
Γ    

  
≤ − −  Γ 

 
− −  Γ  

∫

∫

∫

% % % %

% %

% %

% %

 

By inequality (2.5), we have:                                             

[ ]( ) [ ]( )
0

x
* *

x

d Ty , Ty Ld y(z) , y (z) dzα αα α
   ≤
   ∫% % % %  

Taking the supremum over [0,1]α∈  to the both sides, give: 

 [ ]( ) [ ]( )
0

x
* *

0 1 0 1x

sup d Ty , Ty L sup d y(z) , y (z) dzα αα α≤α≤ ≤α≤
   ≤
   ∫% % % %  

Hence 

 ( ) ( ) ( )( )
0

x
* *

x

D Ty,Ty L D y z ,y z dz≤ ∫% % % %   

       

0

x

0
x

Lb dz Lb x x≤ = −∫  ........................................ (2.15) 

where 0x x− ≤ δ , therefore, repeating (2.15) n-times, yields: 

( )
n

0* n
n

x x
D Ty,Ty bL

n!

−
≤% % ...................................................... (2.16) 

Consequently, eq. (2.16) holds for any n, which leads to the conclusion 

that: 
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( ) ( )* *
nD Ty,Ty D Ty,Ty=% % % % → 0 as n→ ∞ 

 ⇒ ( )*D Ty,Ty 0≡% % , on 0x x− ≤ δ  as n → ∞ . 

⇒ *Ty Ty=% %  

i.e., ( ) ( )*y x y x , x= ∀% %  .................................................................... (2.17) 

From (2.17), we have (2.1) has a unique solution. ■ 
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 Pearson in 1997, introduced the analytical method for solving linear 

system of fuzzy differential equations with the cooperation of complex 

numbers, while the solution of fractional differential equations was 

introduced by several researchers either analytically or numerically. Analytic 

solution introduced by Oldham in 1974 using inverse operator method and 

Laplace transformation method, while numerical and approximate methods 

introduced by Al-Saltani in 2003 using variational approach, Kalil in 2006 

using supline interpolation function and by Al-Authab in 2005 using 

numerical methods. 

 This chapter consists of four sections. In section 3.1 we introduce the 

analytic solution of fuzzy differential equations. In section 3.2 we introduce 

methods for solving fractional differential equations analytically and 

numerically. In section 3.3 the solution of fuzzy fractional order differential 

equations have been introduced using numerical methods (linear multistep 

methods and Runge-Kutta). Finally, section 3.4 introduces some numerical 

illustrative examples of fuzzy fractional order differential equation. 
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3.1 Solution of Linear Fuzzy Differential Equations: 

 This section consists of three cases for solving a linear system of fuzzy 

differential equation. As a first case, suppose the vector field is linear and all 

the parameters are assumed to be known to a certain sufficient accuracy, and 

the initial values of the system are fuzzy.  

 A second case of fuzzy differential equations occurs when the 

coefficient matrix related to the vector field constituted a fuzzy numbers.  

 Also, the third case of fuzzy differential equations occurs when the 

vector is fuzzy and the matrix is approximately fuzzy. 

 

3.1.1 Analytic Solution of Linear Fuzzy Differential Equations: 

 Each of the above cases will be considered in details with an 

illustrative example. 

 

Case (1), [Pearson, 1997]:  

 Consider the system: 

 0y Ay, y(0) y , x [a,b]′ = = ∈% % % %  ...................................................... (3.1)  

where n nA : →   , y%  is a fuzzy mapping ny∈%  → [0,1], where y%  is a 

vector made up of n-fuzzy mapping. 

 Suppose that each element of the vector y%  in (3.1) is a fuzzy number, 

which is similarly represented as the following α-level set: 

 k k ky (x) y (x), y (x) , k 1,2,...,nα α α = =
 

% % % .............................................. (3.2)  

it is shown that the evaluation of the system (3.1) can be described by 2n-

differential equations for the end points of the intervals (3.2), this is for each 

given x and each value of α. These equations for the end points of the 

intervals are: 



 

Chapter Three ــــــــــــــــــــــــــ Solution of Fuzzy Fractional Order Differential Equations 
 
 

37 
 

 
( ){ }
( ){ }

k i i i
k

k i i i
k

y (x) Min Au : u y (x), y (x)

y (x) Max Au : u y (x), y (x)

α α α

α α α

 ′ = ∈
 

 ′ = ∈
 

% % % % %

% % % % %

 ................................. (3.3) 

with the initial conditions 
0 0

k k k ky (0) y , y (0) yα α α α= =% % % %  , where:  

 ( ) j
kjkAu a u=% %  

is the thk  row of Au% . The vector field in eq. (3.1) is linear, and so the 

following rule applies in eq. (3.3).  

 k j
kjy (x) a uα′ =% % .................................................................................. (3.4) 

where: 
j

kjj
j

kj

y (x), if a 0
u

y (x), if a 0

α

α

 ≥= 
<

%
%

%

 

and   

 k j
kjy (x) a uα′ =% % ................................................................................... (3.5) 

where: 
j

kjj
j

kj

y (x), if a 0
u

y (x), if a 0

α

α

 ≥= 
<

%
%

%

 

Where 
n

j j
kj kj

j 1

a u a u
=

=∑% % . Equations (3.4) and (3.5) are called parametric 

equations.  

 

 Now, in order to solve the fuzzy system of differential equations, we let 

y%  to be a vector of fuzzy numbers, and hence: 

 ( ) ( ) 0y x Ay x , y(0) y , x [a,b]′ = ≈ ∈% % % %  

Recall that, there are two equations of the type of equations (3.4) and (3.5) 

which can easily be written out explicitly.  

 Now, define new complex variable as follows: 

 k k kz y (x) iy (x)α α α= +% % %  ....................................................................... (3.6) 
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and the two operations carried on the complex numbers are: 

a) The identity operation, e, such that: 

 k kez zα α=% % ........................................................................................... (3.7)  

b) The flip operation g, about the diagonal in the complex plane, i.e. 

  ( )k k kgz g y (x) iy (x)α α α= +% % %  

                   k ky (x) iy (x)α α= +% % ........................................................... (3.8) 

where 2g e=  and kg e=  if k is even and kg g=  if k is odd, and: 

 ( ) ( )k kg z g z , forα αν = ν ν∈% %  ............................................................ (3.9) 

From eq. (3.6), we have:    

  k k kz y (x) iy (x)α α α′ ′ ′= +% % %  

but  

k j k j
kj kjy (x) a u and iy (x) ia uα α′ ′= =% % % % . 

Then:  

k k j j
kj kjy (x) iy (x) a u ia uα α′ ′+ = +% % % %  

Hence: 

 ( )k j j
kjz a u iuα′ = +% % %  

   
( )
( )

k k
kj kj

k k
kj kj

a y iy , if a 0

a y iy , if a 0

α α

α α

 + ≥
=
 + <

% %

% %

 

             ( )
k

kj kj

k
kj kj

a z , if a 0

a gz , if a 0

α

α

 ≥
=
 <


%

%
 

Now, by using eq. (3.9), we have: 

 
k

kj kjk
k

kj kj

a z , if a 0
z

ga z , if a 0

α
α

α

 ≥
′ =
 <

%
%

%
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In order to simplify the last formula, let: 

 
ij ij

ij
ij ij

ea , if a 0
b

ga , if a 0

≥
=  <

 ..................................................................... (3.10)  

then: 

 
k

ij kjk
k

ij kj

b z , if a 0
z

b z , if a 0

α
α

α

 ≥
′ =
 <

%
%

%

  

or in matrix from:   

 
0

k kz Bz , z (0) zα α α α′ = =% % % %  

Now, y Ay′ =% % , which has the solution Axy ce=%  and since 0y(0) y=% % , then 

Ax
0y(x) y e=% % . Similarly: 

 
0

Bxz (x) z eα α=% % .............................................................................. (3.11) 

but since the problem is to calculate the exponential of the matrix B, and upon 

carrying some little calculations to solve eq. (3.11), we get: 

 ( ) ( )
0 0

j jk
kj kjz x z x gzα α α= ϕ + ψ% % %  

where ( ) ( )(x) exp xC cosh xDϕ = , ( ) ( )(x) exp xC sinh xDψ = , and B=eC+gD 

and since ( ) ( ) ( )k k kz x y x i y xα α α= +% % % , hence: 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0 0

0 0

n
j jk

kj kj
j 1

n
j jk

kj kj
j 1

y x x y x x y x

y x x y x x y x

α α α
=

α α α
=


= ϕ + ψ 



= ϕ + ψ 


∑

∑

% % %

% % %

........................... (3.12) 
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As an illustration, we consider the next example: 

 

Example (3.1), [Pearson, 1997]:  

 Consider the linear system y Ay′ =% % , where 
1 1

A
0 2

− =  − 
 with   initial  

values to be 1y (0)%  about 1 and 2y (0)% about -1, which are fuzzy numbers and 

using the membership function defined by setting for example: 

 1 2
0

0 ,x 0

y (x) 2x x ,0 x 2

0 ,x 2

<


= − ≤ <
 >


%  

and 

 2 2
0

0 ,x 2

y (x) 2x x , 2 x 0

0 ,x 0

< −


= − − − ≤ <
 >


%  

Thus, for α∈[ 0, 1], we can represent the initial condition in terms of its α-

levels: 

 

1 1 1
0 0 0

2 2 2
0 0 0

y y , y 1 1 , 1 1

y y , y 1 1 , 1 1

α α α

α α α

   = = − − α + − α  

   = = − − − α − + − α  

% % %

% % %

 

 Hence, carrying the above procedure, we can find the final solution in 

terms of the α-levels, as: 

 

( ) ( )
2 3

1 3

2 4

x x
y x 1 a x b x 2x c

2! 3!

4
2x x d

3

α
   

= + + − + + + + + −      
   

 + + 
 

% L L L

L
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( ) ( )
2 3

1 3

2 4

x x
y x 1 b x a x 2x d

2! 3!

4
2x x c

3

α
   

= + + − + + + + + −      
   

 + + 
 

% L L L

L

 

 

( ) ( )
( ) ( )

2 2 3

2 2 3

4
y x 1 2x c 2x x d

3

4
y x 1 2x d 2x x c

3

α

α

 = + + − + + 
 

 = + + − + + 
 

% L L

% L L

 

where a 1 1= − − α , b 1 1= + − α , c 1 1= − − − α  and d 1 1= − + − α . 

 For example, if 0.1α =  and x=0.2, then a 0.051317= , b 1.94868= , 

c 1.94868= −  and d 0.051317= − : 

 

( )
( )
( )
( )

1
0.1

1
0.1

2
0.1

2
0.1

y 0.2 0.7571089

y 0.2 2.1264348

y 0.2 2.085581

y 0.2 0.744947

= −

=

= −

=

%

%

%

%

 

 

Case (2), [Wuhaib, 2004]:  

 In this case, we discuss the solution of linear differential equations 

when the elements of the coefficient matrix are fuzzy numbers. We can solve 

such type of linear differential equations by using a modified approach of  

case (1). The linear differential equation is: 

   0y Ay, y(0) y′ = =%%  

where y∈ , A%  is n×n fuzzy matrix, i.e., all elements of A%  are approximate 

fuzzy numbers. Each elements of A%  could be written in its α-level as 

a a ,aα =   % % % , [0,1]α∈ . Then each entry of the matrix A% , could be give as: 

ij ij ija a ,aα
 =  % % %  and hence, at any x, we have: 
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 ij ij ija (x) a (x), a (x)α α α
 =  

% % % ........................................................... (3.13) 

It is shown that (as in case (1)) the evaluation of the system y Ay′ = % , 

0y(0) y=  can be described by 2n-differential equations for the points of the 

intervals in (3.13). This is for each x and each value of α, since 

ij ij ija (x) a (x; ), a (x; )α
 = α α % % % , which implies that: 

 

11 11 12 12 1n 1n

21 21 22 22 2n 2n

n1 n1 n2 n2 nn nn

a ,a a ,a a ,a

a ,a a ,a a ,a
A

a ,a a ,a a ,a

           
 
           =
 
 
            

% % % % % %L

% % % % % %L
%

M M O M

% % % % % %L

 

Let A%  be the matrix of all ija%  and A%  be the matrix of all ija% , i.e. 

 

11 12 1n

21 22 2n

n1 n2 nn

a a a

a a a
A

a a a

 
 
 =
 
 
 

% % %L

% % %L
%

M M O M

% % %L

   

and   

 

11 12 1n

21 22 2n

n1 n2 nn

a a a

a a a
A

a a a

 
 
 =
 
 
 

% % %L

% % %L
%

M M O M

% % %L

  

 Then, we can obtain two matrices B%  and B%  from A%  and A%  

respectively, to be defined as follows: 

 
ij ij

ij ij

ea , if a 0
B

ga , if a 0

≥
= 

<

% %
%

% %
    

and    

 
ij ij

ij ij

ea , if a 0
B

ga , if a 0

≥
= 

<

% %
%

% %
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Similarly as in case (1), we have:  

 ( ) ( )Cx Cx(x) e cosh xD , (x) e cosh xDθ = θ =
% %

% %% %      

and 

 ( ) ( )Cx Cx(x) e sinh xD , (x) e sinh xDψ = ψ =
% %

% %% %   

where C, D, C% %%  and D%  belongs to B%  and B%  respectively. 

 For illustration purpose, we will consider a system of 2×2 differential 

equations with fuzzy coefficients.  

 

Example (3.2), [Wuhaib, 2004]: 

 Consider the linear system of fuzzy differential equations: 

 0y Ay, y(0) y′ = =%  

where A%  is 2×2 fuzzy matrix, such that: 

11a%  approximately equals to -1, with membership function: 

 
11a

1
(y) , y 0

y

−µ = ≠%  

12a%  approximately equals to 1, with membership function: 

 
12a

1
(y) , y 0

y
µ = ≠%  

21a%  approximately equals to 0, with membership function: 

 
21a

1
(y) , y 1

1 y
µ = ≠ −

+%  

22a%  approximately equals to -2, with membership function: 

 
22a

2
(y) , y 0

y

−µ = ≠%  

and with initial conditions 1y (0) 1= , 2y (0) 2= . 

 Hence the lower and upper α-levels of A%  are given by: 
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1 1 1 1

A
1 2 1

 − − − α + − α
=  

− − α − − − α  

%      

and     

 
1 1 1 1

A
1 2 1

 − + − α + − α
=  

− α − + − α  

%  

and if ija 0≥% , then ij ijb ea=% %  and if ija 0<% , then ij ijb ga=% % . This yields the 

calculation of  B%  and B%   as:  

 
( ) ( )

( ) ( )
g 1 1 e 1 1

B
g 1 g 2 1

 − − − α + − α
 =
 − − α − − − α
 

%   

and  

 
( ) ( )

( ) ( )
g 1 1 e 1 1

B
e 1 g 2 1

 − + − α + − α
 =
 − α − + − α
 

%  

 For simplicity, if we let s 1= − α , then the matrix B%  could be written 

as: 

 

( ) ( )
( ) ( )

i 1 s e 1 s
B

i s i 2 s

0 1 s 1 s 0
e g

0 0 s 2 s

eC gD

− − + 
=  − − − 

+ − −   
= +   − − −   

= +

%

% %

   

It easy to find Cxe
%

, to be:   

 Cx 1 x(1 s)
e

0 1

+ 
=  
 

%
 

and 
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 ( )
( )

( )

2
2

2 2
2 2

x
1 1 2s s 0

2cosh xD
x x

1 s 1 4 4s s
2 2

 
+ + + 

 =
 

+ + + + 
 

%  

Therefore: 

 

( )
( ) ( )
( ) ( )

Cx

11 12

21 22

(x) e cosh xD

x x

x x

θ =

 θ θ
=  θ θ 

%% %

% %

% %

 

where ( ) ( ) ( ) ( )
2 3

2 2 3
11

x x
x 1 1 2s s x 1 s s s

2 2
θ = + + + + + + +% ,  

 ( ) ( ) ( )
3

3 2
12

x
x x 1 s s 5s 8s 4

2
θ = + + + + +% , ( )

2
2

21
x

x xs s
2

θ = +%  and 

( ) ( )
2

2
22

x
x 1 4 4s s

2
θ = + + +%  

and similarly: 

 
( ) ( )
( ) ( )

11 12

21 22

x x
(x)

x x

ψ ψ 
ψ =  ψ ψ 

% %
%

% %
 

where ( ) ( ) ( ) ( ) ( )
3 4

2 2 3 2 3 4
11

x x
x x 1 s x s s s 3s 3s 1 s s

6 6
ψ = − + − + − + + + − +% , 

( ) ( ) ( )
4

2 2 4 3 2
12

x
x x s 3s 2 s 5s 6s 4s 8

6
ψ = − + + − + + + +% ,

( )
3 3

21
x s

x xs
6

ψ = − −%  and  ( ) ( ) ( )
3

3 2
22

x
x x 2 s s 6s 12s 8

6
ψ = − + − + + +%  

Also, in a similar manner we can evaluate ( )xθ%  and ( )xψ%  as: 

 ( ) ( ) ( )
( ) ( )

11 12

21 22

x x
x

x x

 θ θ
 θ =
 θ θ 

% %
%

% %
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where ( ) ( )
2

2
11

x
x 1 s 2s 1

2
θ = + − +% ,  ( ) ( ) ( )

3
3 2

12
x

x x 1 s s 3s 4
2

θ = + + − +% , 

( ) ( )
3

3 2
21

x
x xs s 2s s

2
θ = + − +%  and  ( ) ( )

2
2

22
x

x 1 s 4s 4
2

θ = + − +% . 

and  

 ( ) ( ) ( )
( ) ( )

11 12

21 22

x x
x

x x

ψ ψ 
ψ =  ψ ψ 

% %
%

% %
 

where ( ) ( ) ( )
3

3 2
11

x
x x s 1 s 3s 3s 1

6
ψ = − + − + −% , 

( ) ( ) ( )
4

2 2 4 3 2
12

x
x x s s 2 s 5s 6s 4s 8

6
ψ = − − + − + + −% , 

( ) ( ) ( )
4

2 2 4 3 2
21

x
x x s s s 3s 3s s

6
ψ = − + − + −% and 

( ) ( ) ( )
3

3 2
22

x
x x s 2 s 6s 12s 8

6
ψ = − + − + −%  

Therefore: 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

n
k

kj j kj j
j 1

n
k

kj j kj j
j 1

y x x y 0 x y 0

y x x y 0 x y 0

α
=

α
=

= θ + ψ

= θ + ψ

∑

∑

% %

% %

 

Now, letting x=0.2 and α=1, we have: 

 ( ) 1.02 0.216
0.2

0 1.08

 θ =  
 

% , ( ) 0.201333 0.0821333
0.2

0 0.410666

− − ψ =  − 
%  

 ( ) 1.02 0.216
0.2

0 1.08

 θ =  
 

% , ( ) 0.201333 0.0821333
0.2

0 0.410666

− − ψ =  − 
%  

and hence ( ) ( ) ( )1 1 2
1 1 1y 0.2 1.0864004, y 0.2 1.0864004, y 0.2 1.338668= = =  

and ( )2
1y 0.2 1.338668= . 
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It is clear that for α=1, we have:  

 ( ) ( ) ( )1 1 1
1 1y x y x y x= =  and ( ) ( ) ( )2 2 2

1 1y x y x y x= =  

which is the same as the crisp value of the solution vector. 

 

Case (3), [Wuhaib, 2004]:  

 In this case, we discuss the solution of linear differential equations 

when the vector of initial condition is fuzzy and the matrix is approximately 

fuzzy. We can solve this kind of problems by using a mix of case (1) and case 

(2) together, the formula to the lower and upper bounds of solutions are: 

 ( ) ( ) ( )( )0 0

n
j jk

kj kj
j 1

y x x y x yα α α
=

= θ + ψ∑ % %% % %  

and 

 ( ) ( ) ( )( )0 0

n
j jk

kj kj
j 1

y x x y x yα α α
=

= θ + ψ∑ % %% % %  

where ( )kj xθ% , ( )kj xθ% , ( )kj xψ%  and ( )kj xψ%  are obtained from the lower and  

upper bounds of the coefficient matrices and 
0

jyα% , 
0

jyα%  from the initial 

conditions which are also fuzzy. 

 
3.2 Solution of Fractional Differential Equations 

 In opposite to differential equations of integer order in which 

derivatives depends only on the local behaviour of the function. An important 

type of differential equations, which is called fractional differential equations 

where the differentegration is of fractional order. Such type of problems may 

be considered to have the form: 

 ( ) ( )(q) (q k)
0 0y f x, y , y x y−= = , k=1, 2,..., n+1, n<q<n+1. 

where n is an integer number q +∈ . 
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 This section consists of two approaches, the first approach is the 

analytic method, while the second are some of the numerical and 

approximation methods. 

 

3.2.1 Analytic Methods for Solving Fractional Differential Equations, 

[Oldham, 1974]: 

 Several analytical methods are proposed for solving fractional 

differential equations, and among such methods: 

 

1.  Inverse Operator Method: 

 Let f be an unknown function and let q be an arbitrary real number, F is 

known function, then we can construct the simplest of all fractional 

differential equations by:  

 
q

q

d f
F

dx
= .......................................................................................... (3.14) 

hence upon taking the inverse operator 
q

q

d

dx

−

− , gives: 

 
q

q

d F
f

dx

−

−=  

where it is clear that it is not always the case that they are equal, but this is 

not the most general solution: 

 
q q

q q

d d
f f 0

dx dx

−

−− = ......................................................................... (3.15) 

additional terms must be added to eq. (3.15), which are q 1 q 2
1 2c x ,c x ,− −  

q m
m,c x −

K  and hence: 

 
q q

q 1 q 2 q m
1 2 mq q

d d
f f c x c x c x

dx dx

−
− − −

−− = + + +L  
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where 1 2 mc ,c ,...,c  are an arbitrary constants to be determined from the initial 

conditions and q m q 1≤ < + .  

Thus: 

 
q q q

q 1 q 2 q m
1 2 m q q q

d d d
f c x c x c x f F

dx dx dx

− −
− − −

− −− − − − = =L  

Hence, the most general solution of eq. (3.14) is given by:  

  
q

q 1 q 2 q m
1 2 mq

d
f F c x c x c x

dx

−
− − −

−= + + + +L  

where 0 q m q 1< ≤ < +  or m=0 for q≤0.  

 As an illustration example, consider the fractional differential equation: 

 ( )1 2 1 2 1 2D y x , y 0 0.1−= =   

Now, since 1
2q =  and 1 2F x= , hence 1 1

2 2m 1< < + . Therefore, m=1. So 

with the cooperation of the initial condition:  

 

1 2 1 2 1 2
1

1 2

y D x c x

0.1
x x

2

− −

−

= +

π= +
π

 

  

2. Laplace Transformation  Method: 

 Laplace transformation method can be used to solve fractional 

differential equations; but first of all, we start with Reimann-Liouville 

formula: 

 ( ) ( ) ( ) ( )
0

xn
n q 1q

x n
x

1 d
D f x x t f t dt

n q dx

− −= −
Γ − ∫  

and letting: 

 

0

x
n q 1

x

g(x) (x t) f (t)dt− −= −∫  
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so that: 

 
n

q
x n

1 d
D f (x) g(x)

(n q)dx
=

Γ −
 

or equivalently ( ) ( ) ( )(n)g x n q h x= Γ − , where ( ) ( )q
xh x D f x= , and upon 

integrating the above equation n-times, leads to: 

 ( ) ( ) ( )( )
0 0 0 0

x x x x
n

x x x x

g x dx dx n q h x dx dx= Γ −∫ ∫ ∫ ∫L K L K  

 ( ) ( )
( ) ( ) ( )

0

x
n 1

x

n q
g x x t h t dt

n
−Γ −

= −
Γ ∫  

Since: 

 ( ) ( ) ( )
0

x
n q 1

x

g x x t f t dt− −= −∫  

Then: 

 
( )

( ) ( ) ( ) ( ) ( )
0 0

x x
n 1 n q 1

x x

n q
x t h t dt x t f t dt

n
− − −Γ −

− = −
Γ ∫ ∫  

Taking the Laplace transformation to the both sides, yields: 

 
( )

( )
n q

n

Γ −
Γ

 L ( ) ( )
0

x
n 1

x

x t h t dt−
 
 −
 
 
∫ = L ( ) ( )

0

x
n q 1

x

x t f t dt− −
 
 −
 
 
∫  

solving this equation for L (f) and evaluating the inverse Laplace transform to 

get the desired solution f. 

 As an illustrative example, consider: 

 1 2D y x= , ( )1 2y 0 0− =  

 ( ) ( ) ( )
0

x
1 21 2

x
x 0

1 d
D y x x t f t dt

dx
−

=
= −

π ∫  

and let  
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 ( ) ( ) ( )
x

1 2

0

g x x t f t dt−= −∫ , then:  

 ( )1 2
x

1
D y g x′=

π
 

or equivalently:  

 ( )g x x′ = π  

Therefore:  

( )
x

0

g x tdt
 

= π  
 
 
∫  

Hence 

 ( ) ( )
x x

1 2

0 0

t dt x t f t dt− 
π = − 
 
 
∫ ∫  

 Taking the Laplace transform and using the convolution theorem, one 

can find that: 

 π L 

x

0

t dt
 
 
 
 
∫  = L  

x
1 2

0

(x t) f (t)dt− 
− 

 
 
∫  

3 1 2

1
F(s)

s s

ππ =  

which implies that: 

 
5 2

1
F(s)

s
=  

and upon taking the inverse Laplace transform, we have: 

 3 21
f (x) x

(5 2)
=

Γ
 

as the desired solution to the fractional differential equation. 

 



 

Chapter Three ــــــــــــــــــــــــــ Solution of Fuzzy Fractional Order Differential Equations 
 
 

52 
 

3.2.2 Numerical and Approximate Methods for Solving 

Fractional Differential Equations: 

 Fractional differential equations can be solved using numerical and 

approximate methods. Therefore, in this section, some of the well known 

methods for solving such type of equations will be discussed. 

 

1. The Collocation Method, [Al-Saltani, 2003]: 

  One of the approximate methods for solving differential equations “in 

general” and fractional differential equations “in particular” is the so called 

collocation method, which has also other application in solving integral 

equations, partial differential equations, etc. This method has its basis on 

approximating the solution of the problem under consideration by a complete 

sequence of functions { }iφ  and certain function which satisfying the non-

homogenous initial and boundary conditions ( )xζ , such that: 

 ( ) ( ) ( )
n

i i
i 1

y x x a x
=

= ζ + φ∑   

where ( )i xφ  satisfy the homogenous conditions and ai's are constants to be  

determined. Evaluating the last equation, at some point of the region of 

definition to get a linear system of algebraic equations.  

 As an  illustrative example, consider the fractional differential equation: 

 ( )1 2 1 2 ( 1 2)D y x , y 0 0.1−= =  

and in order to solve this problem approximately using the collocation 

method, we let: 

 ( )
1 2 2 3

1 2 3
0.1

y(x) x a x a x a x
1 2

−= + + +
Γ

 

Then: 
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 ( )
1 2 1 2 2 3 1 2

1 2 3
0.1

D x a x a x a x x
1 2

−  + + + = Γ  
  

Hence 

 ( )
1 2 1 2 1 2 1 2 2 1 2 3 1 2

1 2 3
0.1

D x a D x a D x a D x x
1 2

− + + + =
Γ

 

hence carrying out some simplifications, gives: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
3 2 5 2 1 2

1 2 3

1 2
1 2 3 2 5 2

1 2 3

1 2 3 2 5 21
2 3

0.1 x 2 6
(0) a a x a x x

1 2 3 2 5 2 7 2

x 2 6
a x a x a x 0

3 2 5 2 7 2

a 2 6
1 x a x a x 0

3 2 5 2 7 2

+ + + =
Γ Γ Γ Γ

− + + =
Γ Γ Γ

 
− + + = Γ Γ Γ 

 

we get ( ) ( )
1 1

1
a a 3

1 0 1 a 0.886
3 2 3 2 2

 − = ⇒ = ⇒ = Γ = Γ Γ  
, a2= a3=0, and 

therefore the approximation solution, is given by: 

 1 20.1
y(x) x 0.886x−= +

π
 

As a comparison, this problem has the exact solution: 

 1 20.1
y(x) x 0.886x−= +

π
 

 

2. The Least-Squares Method : 

  Among the popular methods used to approximate the solution of 

fractional differential equations is the so called least-square method. To 

illustrate this method, consider the following fractional differential equation: 

 ( )qD y g x=  

g C[0,1]∈ , q>0 and approximate the solution by: 

 ( ) 2 n
n 0 1 2 ny x a a x a x a x= + + + +L  
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Hence substituting in the differential equation yields: 

 ( ) ( )q
x nD y x g x=  

The polynomial ny  is of degree at most n is required to minimize the error: 

 ( ) ( )( )
b 2q

x n
a

g x D y x dx, 0 q 1− < <∫ .............................................. (3.16) 

 To determine such least- square approximating polynomial, that is, a 

polynomial that minimizes the expression (3.16), we must evaluate its 

coefficient 0 1 na ,a , ,aK . For this purpose define: 

 ( ) ( )
2b n

q k
0 1 n x k

k 0a

E a ,a , ,a g x D a x dx
=

 
= −  

 
∑∫K  

 ( )
2b n

q k
k x

k 0a

g x a D x dx
=

 
= −  

 
∑∫ .............................. (3.17) 

Hence, the problem now is reduced to find real coefficients 0 1 na ,a , ,aK  that 

minimizes E. From the calculus of functions of several variables, a necessary 

condition for the coefficients 0 1 na ,a , ,aK  which minimizes E is that 
j

E
0

a

∂ =
∂

 

for each j=0, 1, ... , n.  Since from eq. (3.17), we have: 

 ( )( ) ( )
2b b bn n2 q k q k

k x k x
k 0 k 0a a a

E g x dx 2 a g x D x dx a D x dx
= =

 
= − +   

 
∑ ∑∫ ∫ ∫  

Hence 

 ( )
b bn

q j q j k
x k x

j k 0a a

E
2 g x .D x dx 2 a D x dx

a
+

=

∂ = − +
∂ ∑∫ ∫ , ∀j=0, 1,…, n 

 Hence to find ny , the following (n+1) linear system: 

 ( )
b bn

q j k q j
k x x

k 0 a a

a D x dx g x D x dx, j 0,1,...,n+

=
= =∑ ∫ ∫ ......................... (3.18) 
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must be solved for the (n+1) unknowns ja  , j=0,1,...,n.  

 As an illustration to this method, consider the following example of 

solving the fractional differential equation: 

 ( )1 2 5
nD y x x , x [0,1]= ∈  

Suppose that ( ) 2
n 0 1 2y x a a x a x= + + , hence the related linear system 

obtained from eq. (3.18), is given by: 

 

0 1 2

0 1 2

0 1 2

2 4 16 2
a a a

3 15 11
4 16 12 4

a a a
7 (7 2)3 15 13

16 12 48 16
a a a

7 (7 2) 9 (9 2)15 45

+ + =
π π π π

+ + =
⋅ Γπ π π

+ + =
⋅ Γ ⋅ Γπ π

 

which is a linear system of three unknowns 0 1a , a and 2a  which is solved 

using any numerical method for solving linear systems of algebraic equations, 

to give:  

0a 0.221= , 1a 3.129= −  and 2a 3.666= . 

 Consequently the least-squares polynomial approximation of degree 

two for ( )1 2 5D y x x=  on [0, 1] is: 

 ( ) 2
2y x 0.221 3.129x 3.666x= − + . 

 

3.3 Solution of Fuzzy Fractional Order  Differential Equations 

 A fuzzy fractional order differential equation of order q, 0<q<1, is an 

equation of the form: 

 ( ) ( )( )(q)
0y x f x,y x , x I [x ,b]= ∈ =% % ............................................ (3.19) 

where ( )( ) nf x, y x : I E×% → nE  is a levelwise continuous function, with an 

initial condition given as a fuzzy number ( )0 0y x y=% % , 
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where n
0y E∈%  and 0x I∈ , (see [ Add, 2005]). 

 We start with the numerical solution of fuzzy fractional order 

differential equations using LMM, which seems to be new: 

 

3.3.1 Linear Multistep Methods: 

 Consider the fuzzy fractional order differential equation given by eq. 

(3.19), then the α-level set related to this equation is given by: 

 ( ) ( )(q)
0 0y f x,y , y x y

αα α α= =% % % % ...................................................... (3.20) 

 Then we seek for a solution in the range 0x [x ,b]∈ , where 0x  and b 

are finite, and we assume that f satisfies the conditions of the existence and 

uniqueness theorem, which we shall indicate by : 

 ( ) ( ) ( )y x y x; , y x;α  = α α % % % , [0, 1]α∈ . 

 Consider the sequence of points { }nx  defined by n 0x x nh= + , 

n=0,1,...The parameter h, which will always be regarded as constant,  except 

where otherwise indicated, is called the step length. An essential property of 

the majority computational methods for the solution of eq. (3.20) is that of 

discretization; that is, we seek for a numerical solution not on the continuous 

interval 0x x b≤ ≤ , but on the discrete points of the set { nx |n 0,1,...,=  

( ) }0b x h− .  

 Let ( )ny α%  be an approximation to the theoretical solution at nx  that 

is, to ( )ny xα%  and let ( ) ( )n n nG G x ,yαα ≡ % . If a computational method for 

determining the sequence ( ){ }ny α% takes the form of a linear relationship 

between ( ) ( )n j n jy , G , j 0,1,...,k+ +α α =% , or a linear k-step method. 

 It is we known that, the general form of linear multistep method may 

thus be written as: 
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 ( ) ( )
k k

j n j j n j
j 0 j 0

y h G+ +
= =

Ω α = β α∑ ∑% ................................................ (3.21)      

 In the case of lower and upper solutions, eq. (3.21) can be decomposed 

into the following two equations: 

 ( ) ( )
k k

* * *
j n j j n j

j 0 j 0

y h G+ +
= =

Ω α = β α∑ ∑%  

and                                                                          .................................. (3.22) 

 ( ) ( )
k k

j n j j n j
j 0 j 0

y h F+ +
= =

Ω α = β α∑ ∑%  

where * *
j j j j, , andΩ Ω β β  are constants to be determined. The arbitrariness 

will be removed by assuming throughout this subsection by letting *
k 1Ω =  

and k 1Ω = . Hence, eq. (3.22) can be rewritten equivalently as: 

 ( ) ( ) ( )
k k 1

* * *
n k j n j j n j

j 0 j 0

y h G y
−

+ + +
= =

α = β α − Ω α∑ ∑% %  

and                                                                           ................................. (3.23) 

 ( ) ( ) ( )
k k 1

n k j n j j n j
j 0 j 0

y h F y
−

+ + +
= =

α = β α − Ω α∑ ∑% %  

 

Remark (3.1): 

11..  Such equations are so difficult to handle theoretically than are non-

linear FFODE.'s, but they have practical advantage of permitting us 

to compute the sequence ( ){ }ny α%  numerically. In order to do this, 

one must supply a set of starting values, ( ) ( ) ( )0 1 k 1y ,y ,..., y −α α α% % %  

(supply by using any explicit one step method), (see [Al-Ani, 

2005]).   
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22..  The two eq.'s in (3.23) are explicit if *k 0β =  and k 0β = , and 

implicit if *
k 0β ≠  and k 0β ≠ . 

33..  In eq.'s (3.23) each equation is a k-step method and each one 

contain 2k-1 unknowns, (see [Lambert, 1973]). 

 

3.3.2 Euler's Method for Solving Fuzzy Fractional Order  Differential 

Equations: 

 To use the Euler's method to solve fuzzy fractional order differential 

equation, the following approach is followed: 

 Consider the FFODE's: 

 ( )( ) ( )(q)
0 0y f x, y x , y x y= =% % % %  

and since Euler's method with α-level reads as follows: 

 ( ) ( ) ( ) ( )2
n 1 ny y hy O h+ ′α = α + α +% % %  

Hence: 

 
( ) ( ) ( )

( ) ( )( ) ( )
1 q q 2

n 1 n

1 q 2
n

y y hD D y O h

y hD f x,y x ; O h

−
+

−

α = α + +

= α + α +

% % %

% %

  

 ( ) ( )( ) ( )* 2
ny hf x,y x ; O h= α + α +% % ................................. (3.24) 

where ( )( ) ( )( )* 1 qf x, y x ; D f x,y x ;−α = α% %  could be evaluated easily by using 

fractional calculus. 

 

Remark (3.2): 

 Consider the first order of FFODE, given by: 

 
( ) ( )( )

( )
*

0 0

y x f x,y x

y x y

′ = 


= 

% %

% %
..................................................................... (3.25) 
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where ( )( ) ( )( )* 1 qf x, y x D f x, y x ;−= α% % and ( )0 0y x y=% %  is a fuzzy number. 

 The α-level set of ( )y x%  for 0x [x ,b]∈  is ( )y xα =%  ( ) ( )y x; , y x; α α % % . 

Also ( ) ( ) ( )y x y x; , y x;α′ ′ ′ = α α % % % , and 

 
( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

* * *

*

f x, y x f x,y x ; , f x, y x ;

G x, y x; , y x; ,F x, y x; , y x;

α  = α α
 

 = α α α α
 

% % %

% % % %

  

Because of ( )( )*y f x, y x′ =% % , we have: 

 ( ) ( )( ) ( ) ( )( )* *y x; f x, y x ; G x, y x; , y x;′ α = α = α α% % % % ...................... (3.26) 

 ( ) ( )( ) ( ) ( )( )*y x; f x, y x ; F x, y x; , y x;′ α = α = α α% % % % ......................... (3.27) 

Also: 

 ( ) ( ) ( )0 0 0 0y x y y , y
αα  = = α α % % % %  

 

3.3.3 General Concepts of Runge-Kutta Methods: 

 There are two approaches for evaluating the solution of an ordinary 

differential equation, “analytically” or “numerically”. The analytic solution is 

usually obtained directly from the mathematical representation of the model 

formulation, while the numerical solution is generally an approximate 

solution obtained at certain node points. 

 The idea of extending the Euler method by allowing for a multiplicity 

of evolutions of the function *f within each step was originally proposed by 

Runge (1895). Further contributions were made by Heun (1900) and by Kutta 

(1901). The letter completely characterized the set of Runge-Kutta method of 

order 4 and proposed the first methods of order 5. Special methods for 

second-order differential equations were proposed by Nystrom (1925) who 

also contributed to the development of methods for first-order equations. 
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 Since from advent of digital computers, a fresh interest had been 

focused on Runge-Kutta methods, and a large number of research workers 

have contributed to recent extensions to the theory and the development of 

particular methods. Although, early studies were devoted entirely to explicit 

Runge-Kutta methods, interest has now extended to implicit methods, which 

are now recognized as appropriate for stiff differential equations. (see 

[Butcher, 1964]). 

 

3.3.3.1 Formulation of Runge-Kutta Methods: 

 The general form of an R-stages Runge-Kutta method for solving fuzzy 

fractional  ordinary differential equation in its α-level sets (for simplicity the 

α-level sets is termed by ( )y α%  instead of yα%  ) is given by: 

 ( ) ( ) ( )
R

n 1 n i i
i 1

y y h c k+
=

α = α + α∑ %% %  

where [0,1]α∈  and, 

 ( ) ( )
R

*
i n i n is s

s 1

k f x ha , y h b k
=

 
α = + α +  

 
∑% %%  

and 

 
R

i is
s 1

a b
=

=∑  

where ic , ia  and isb , for all i, s=1,2,...,R; are constants to be determined. 

 Then the general form of an upper R-stages Runge-Kutta methods is 

given by: 

  ( ) ( ) ( )
R

n 1 n i i
i 1

y y h c k+
=

α = α + α∑ %% %   

where 
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   ( ) ( ) ( )
R

*
i n i n is s

s 1

k f x ha , y h b k
=

 
α = + α + α  

 
∑% %%    

Similarly, the general form of lower R-stages Runge-Kutta method is given 

by: 

 ( ) ( ) ( )
R

n 1 n i i
i 1

y y h c k+
=

α = α + α∑ %% %  

where 

 ( ) ( ) ( )
R

*
i n i n is s

s 1

k f x ha , y h b k
=

 
α = + α + α  

 
∑% %%  

 For convenience, we design the process by an array of constants, as 

follows: 

11 12 1R

21 22 2R

1R 2R nR

b b b

b b b

b b b

L

L

M M O M

L

 

1

2

R

a

a

a

M
 

1 2 sc c cL   

 

And it is easy to classify Runge-Kutta methods, as follows: 

 If ijb 0= , ∀i<j, then the method is called semi-explicit. 

 If ijb 0= , ∀i≤j, then the method is called explicit. 

 Otherwise it is called implicit. 

 

3.4 Numerical Examples: 

 In this section, some illustrative examples are given as a comparison 

between the numerical methods and focuse on the powerfull approaches used 

in solving this new field in differential equations, which are fuzzy fractional 

order differential equations. 
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Example (3.3): 

 Consider the non-linear FFODE: 

 ( ) ( ) ( ) [ ](1 4) 3 4y x y exp 1 y , y 0; 0.1 0.9 ,1.5 0.5−= − α = + α − α% % % %  

over the interval [0, 1]. 

 In order to solve this equation, we given the following alterative form:  

 
( )( )

( )

1 1 4 3 4

5 4

y D y exp 1 y

y exp 1 y

− −

−

′ = −

= −

% % %

% %

 

and since: 

 ( )5 4y y exp 1 y−′= −% % % , ( ) [ ]y 0; 0.1 0.9 ,1.5 0.5α = + α − α% .............. (3.28) 

Now, then from eq. (3.28), we have: 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

* *

5 4

*

5 4

y x; f x, y x ; G x,y x; , y x;

y x; exp 1 y x;

y x; f x, y x ; F x, y x; , y x;

y x; exp 1 y x;

−

−

′ α = α = α α

= α − α

′ α = α = α α

= α − α

% % % %

% %

% % % %

% %

...................... (3.29) 

This example has no analytic solution therefore numerical methods will be 

used with step size h=0.1. 

Using Euler's method: 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

*
n 1 n

n 1 n

y y hG x,y x; , y x;

y y hF x, y x; , y x;

+

+

α = α + α α

α = α + α α

% % % %

% % % %
............................... (3.30) 

Then from eq. (3.29) and eq. (3.30): 

 
( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

5 4
n 1 n n n

5 4
n 1 n n n

y y h y exp 1 y

y y h y exp 1 y

−
+

−
+

α = α + α − α

α = α + α − α

% % % %

% % % %

........................ (3.31) 

Similarly, Runge-Kutta method can be applied which has the form: 

 ( ) ( ) ( ) ( )( )n 1 n 1 1 2 2y y h c k c k+ α = α + α + α% %% %  
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such that 1 2 2 21c , c 1 2, a b 1= = =  and 

  
( ) ( )( ) ( ) ( )( )

( ) ( )( )

* *
1 n

5 4
n n

k f x, y G x,y x; , y x;

y exp 1 y−

α = α = α α

= α − α

% % % %

% %

 

 
( ) ( )( ) ( ) ( )( )

( ) ( )( )

*
1 n

5 4
n n

k f x, y F x, y x; , y x;

y exp 1 y−

α = α = α α

= α − α

% % % %

% %

 

and 

 

( ) ( )( )
( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )

*
2 n 2 n 21 1

5 4
5 4

n n n

5 4
n n n

k f x a h, y hb k

y h y exp 1 y .

exp 1 y h y exp 1 y

−−

−

α = + α +

= α + α − α

− α + α − α

% %%

% % %

% % %

 

 

( ) ( )( )
( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )

*
2 n 2 n 21 1

5 4
5 4

n n n

5 4
n n n

k f x a h, y hb k

y h y exp 1 y .

exp 1 y h y exp 1 y

−−

−

α = + α +

= α + α − α

− α + α − α

% %%

% % %

% % %

 

Hence 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

n 1 n 1 2

n 1 n 1 2

h
y y k k

2
h

y y k k
2

+

+

α = α + α + α

α = α + α + α

% %% %

% %% %

......................................... (3.32) 

Also, carrying these two eq.'s (3.31) and (3.32) for n=0, 1, ..., we get the 

following results in table (3.3) using program (Prog. 1). 
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Table (3.3) 

Numerical results of example (3.3) 
  

 

 

 For comparison perpouse, the crisp solution could be evaluated 

numerically, using Euler method which is given by: 1y 1.036788= , while 

using Runge-Kutta method we have: 1y 1.02115= . 

 

Example (3.4): 

 Consider the FFODE: 

 ( ) ( ) [ ]3 2D y x y, y 0; 0.5 0.5 ,1.25 0.25= α = + α − α% % %  

over the interval [0,1]. 

 In order to solve the above FFODE, we multiply both sides by 1 3 2D − , 

to get:  

 ( ) 1 3 2y x D y−′ =% %  

 1 22
y=

π
% .............................................................................. (3.33) 

Then from eq. (3.33), we have: 

 
h=0.1 

α 

Euler's Method 

n 1 n ny y hy+ ′= +% % % 
Runge-Kutta 

n 1 n 1 2
h

y y k k
2+  = + + 

% %% %  

y( )α%  y( )α%  y( )α%  y( )α%  

0 0.1 1.519 0.1 1.51 
0.2 0.294 1.421 0.287 1.412 
0.4 0.49 1.324 0.479 1.314 
0.6 0.677 1.228 0.664 1.216 
0.8 0.858 1.132 0.8433 1.118 
1.0 1.037 1.037 1.022 1.022 
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( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

* * 1 2

* 1 2

2
y x; f x,y x ; G x,y x; , y x; y x;

2
y x; f x,y x ; F x, y x; , y x; y x;

′ α = α = α α = α π 

′ α = α = α α = α
π 

% % % % %

% % % % %

          

               ........................ (3.34) 

Using Adam-Bashforth method: 

 

( ) ( ) ( ) ( )( )(
( ) ( )( ))

( ) ( ) ( ) ( )( )(
( ) ( )( ))

*
n 2 n 1 n 1 n 1 n 1

*
n n n

n 2 n 1 n 1 n 1 n 1

n n n

h
y y 3G x , y , y

2

G x ,y r , y r

h
y y 3F x , y , y

2

F x , y , y

+ + + + +

+ + + + +

α = α + α α −

α = α + α α −

α α

% % % %

% %

% % % %

% %

   ........ (3.35) 

From eq. (3.34) and eq. (3.35), we have: 

 ( ) ( ) ( ) ( )( )1 2 1 2
n 2 n 1 nn 1

h
y y 3y y+ + +α = α + α − α

π
% % % %  

 ( ) ( ) ( ) ( )( )1 2 1 2
n 2 n 1 nn 1

h
y y 3y y+ + +α = α + α − α

π
% % % %  

For n=0 and taking h=0.1, 0.05, then we have: 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 1 2
2 1 1 0

1 2 1 2
2 1 1 0

h
y y 3y y

h
y y 3y y

α = α + α − α
π

α = α + α − α
π

% % % %

% % % %

................................... (3.36) 

The results of eq. (3.36) are presented in table (3.4) using program (Prog. 2). 
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Table (3.4) 

Numerical results of example (3.4) using Adam's method 
 

 

 

 

 

 Comparing the fuzzy solution with level α =1 with the crisp solution is 

given by:  2y 1.221=   at  h=0.1 and 2y 1.109=   at  h=0.05.  

 
 

α 

 
Adam-Bashforth with 

h=0.1 

 
Adam-Bashforth with 

h=0.05 
y( )α%  y( )α%  y( )α%  y( )α%  

0 0.691 1.484 0.593 1.365 
0.2 0.798 1.431 0.696 1.314 
0.4 0.904 1.379 0.8 1.262 
0.6 1.01 1.326 0.903 1.211 
0.8 1.116 1.274 1.006 1.16 
1 1.221 1.221 1.109 1.109 
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  Form the present study, we can conclude the following: 

1. Exact solution of fuzzy fractional differential equations, may be in 

sometimes so difficult to be evaluated, especially in non-linear cases. 

2. The method of successive approximations for solving integral 

equations can be used to solve fuzzy fractional ordinary differential 

equations. 

 

Also, we can recommend the following problems for future 

work: 

1. Studying the existence and uniqueness theorem of fuzzy fractional 

differential equations using, such as, Bourbaki-Kneser fixed point 

theorem, Amann and Tarski fixed point theorem, etc. 

2. Extending the work of this thesis to study the solution of fuzzy 

fractional partial differential equations, numerically and analytically. 

3. Studying fuzzy fractional differential equations with boundary 

conditions. 
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Since its inception of 40 years ago, the theory of fuzzy sets has advanced 

in a variety of ways and in many disciplines. Applications of this theory can 

be found, for example, in artificial intelligence, computer science, control 

engineering, decision theory, expert systems, logic, management, science 

operation research and robotics. Further more, it has developed theoretically 

and it has been applied to new areas of real life problems. Moreover, in every 

day life, we are used too properties which can not be dealt with satisfactorily 

on a simple “belong” or “not belong” basis. Whether these properties perhaps 

best indicated by a shade of gray, rather than by the black or white, assigning 

each individual in a population on a “belong” or “not belong” value, as is 

done in ordinary set theory is not an adequate way of dealing with properties 

of this type. 

Zadeh had introduced fuzzy set theory in 1965, in which, Zadeh’s 

original definition of fuzzy sets could be given as follows “a fuzzy set is a 

class of objects with a continuum grades of membership. Such a set is 

characterized by a membership (characteristic) function which assigns to each 

object a grade of membership value ranging between zero and one”, [Zadeh , 

1965]. 

Since 1965, fuzzy theoretical approach had developed by Zadeh himself 

and about 300 other researchers as a tool of modeling human centered 

systems, in which they applied this theory in a wide range of scientific and 

engineering areas, [Yan, 1994]. 

Also, the theory of fuzzy sets have been applied in 1965 by Zadeh for 

solving fuzzy differential equations. In addition in this thesis new area to the 

subject is devoted to solve fuzzy fractional order differential equations, in 
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which fractional differential equation could be considered as an important 

type of differential equations, where the differeintegration that appears in the 

equation is of non-integer order. Such type of problems may be considered to 

have the form: 

 ( ) ( )(q) (q k)
0 0y f x, y , y x y−= =  

where k=1, 2,..., n+1; n<q<n+1, and n is an integer number. 

 Real life problems with fractional differential equations are of great 

importance, since fractional differential equations accumulate the whole 

information of the function in a weighted form. This has many applications in 

physics, chemistry, engineering, etc. For that reason, we need a method to 

solve such equations, effectively, easy to use and applied in different 

problems. 

 However, the well known methods used for solving fractional 

differential equations have some difficulties rather than that of usual methods 

for solving ordinary differential equations, and therefore this thesis is oriented 

towards introducing a new type of equations called the fuzzy fractional order 

differential equation and to introduce some methods for solving such type of 

equations by using sutible numerical methods. 

This thesis consists of three chapters, the first chapter devoted to discuss 

the general concepts of fuzzy differential equation and fractional differential 

equation, which is necessary for understanding and solving the fuzzy 

fractional order differential equation, as well as some of the basic definitions 

in mathematics. 

 Chapter two discuss the existence and uniqueness theorem of fuzzy 

fractional order differential equations (FFODE's) using Sadoviskii's fixed-

point theorem for condensing mapping. 
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 In chapter three, we discuss some types of fuzzy fractional order 

differential equations and they are solution using some well known analytical 

methods and numerical methods. 
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