Chapter one Basic concepts of Fractional calculus

In this chapter we discuss some basic necessacfidns that will arise in
our study. These are Gamma function, Beta functi@place transforms
and Mittag-Leffler function, the fractional integrand fractional derivative

has been presented.

1.1 BASIC MATHMATICAL FUNCTIONS
To understand the fractional calculus defom$éi and making their use to
be clear, we shall quickly discuss some basic madltieal functions are

addressed in the following subsections.

1.1.1Gamma Function [Erdelyi, 1981].

The Gamma functiod (X) is one of basic functions which plays an
important role on the theory of differentiation ageneralizes the ordinary
definition of factorial of an integer number n aaltbws n to take also any
non- negative integer.

The integral transform definition for tHe(X) is given by

ry=[y7edy,  xso (1.1)
0

The following are the most important propertiegamma function:

1. r(1)=1
2. T(x+1)=xrI(x), X is a non- negative integer.

3. F(n+1)=n!, nis positive integer.
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The following are some frequently encounter eXaspf gamma functions

for different value of x.
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Foo, M(1) =1, (2)=1T(3)=2, r(?j:g\/ﬁ,

r@:gﬁ, r('?lj:—zﬁ, r@:fﬁ.

These properties enable us to calculate forparsjtive real x the fraction

[ (x) in terms of the fractional part of x .The followiregample gives a good

illustration:

I' (7/12) =5/21" (5/2) = (5/2) (3/2Y" (3/2) = (5/2) (3/2) (1/2) (1/2)
wherel (1/2) =

1.1.2 Beta Function [Loverro, A,2004].

The Beta function is an important relationshpfiactional calculus. Its
solution not only defined through the use of midtiGamma Function, but
furthermore shares a form that is characteristicsitinilar to the Fractional
integral / derivative of many functions, such && Mittag-Leffler function
(which will be discussed next). For positive valuwéshe two parameters, p

and q, the function is defined by the followingeigtal

q-1

B(p.9)=[y"[i-y] dy. pg>0 (1.2)
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Is called complete Beta function, also, knownEager’s integral of the
second kind. If either p or g is non- positive geg the integral diverges,
The Beta function is related to the gamma functamtording to the

following formula:

r(p)r(a)
r(p+a0)
1.1.3 Laplace Transform [Loverro, A, 2004].

B(p.q) = (1.3)

The Laplace transform is a function $fanmation commonly used
in the solution of complicated differential edjons. With the Laplace
transform it is frequently possible to avoid wourkirwith equations of
different differential order directly by translagirthe problem into a domain
where the solution presents itself algebraicallye Tormal definition of the

Laplace transform is given by
L{f (1)} :Te'gf(t)dt =f(s), >0 A

The Laplace transform of the functiary) is said to be exist if (1.4) is a
convergent integral. The requirement for this &t th(t) does not grow at a

rate higher than the rate at which the exponet#iah € decreases
Also commonly used is the Laplace convolution, gitbg

f(h)*g(t) = [ f(t-n)g(r)dr = g() * (1) (1.5)

The convolution of two functions in the domamf t is sometime
complicated to resolve, however, in the Laplace @afs), the convolution

results in the simple function multiplication asim in
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L{F() * o)} = F(9T(9) (1.6)

One final important property of the Laplace sfamm that should be
addressed is the Laplace transform of a derivativenteger order n of a

functionf (t), given by

LT} =83 -3 s 1 0) (1.7)

1.1.4 Mittage —Leffler function [Dzherbashyan, 166].

The Mittage —Leffler function is an impant function that finds
widespread in the world of fractional calculus. tJas the exponential
naturally arises out of the solution to integerasrdifferential equations, the
Mittage —Leffler function plays an analogous ratethe solution of non-
integer order differential equations. In fact, thgonential function itself a
very specific form, one of an infinite series, bist seemingly omnipresent
function.

The standard definition of the Mittageefiler is given by

E,(2) = ;}m (1.8)

In particular, whem =1 anda=2, we have

E,(2) =e*and E,(z) =cosh)
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The generalized form of the Mittage —leffler étion E, ;(2), is

[oe]

£ @ 2 (L9)

k=0

In particular,

5 07E @, B0 £, "80
z

There are some special functions defined in terhithe Mittage-leffler

function E,,(z) these functions play the main role in investigatai what

so- called differential equations of fractional erdsuch as
2P E, (A z7)

and its Laplace transform formula
I

e, 0] == —

(A0C, [as7 <1 (1.10)

1.2 THE FRACTIONAL INTEGRAL [Loverro, A, 2004].

The formulation of the concept for fractionaiegrals and derivatives was
a natural outgrowth of integer order integrals aedivatives in such the
same way that the fractional exponent follows frdm more traditional
integer order exponent. For the latter, it is togation that makes the jump
seems obvious. While one can not imagine the nhigiijoon of a quantity a
fractional number of times, there seems no prdctesdriction to placing a

non- integer into the exponential position.
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The common formulation for the franal integral can be derived directly
from a traditional expression of the repeated iraegn of a function. This
approach is commonly refereed to as the Riemanuvilloapproach. The

following formula

1
(n=-1)!

j(t—r)"‘lf (r)dr (1.11)

[ff@)dr=
0 0

demonstrates usually attributed to Cauchy for etalg the n"integration

of the functionf(t). For the abbreviated representation of formuld1(},

we introduce the operatof as shown

1

TO= 00

Jt(t -7)" M (r)dr (1.12)

Often, one will also find another operator;, used in place ofi". While
they represent the same formulation of the repaatedral function, and
can be seen as interchangeable, one will findubkatof D™ may become
misleading, especially when multiple operatorsueed in combination.

For direct use in (1.12) , n is restricted to &e integer. The primary
restriction is the use of the fractional which ssence has no meaning for
non- integer values. The gamma function is howeweanalytic expansion
of the fractional for all reals, and thus can beduBy replacing the fractional
expression for its gamma function equivalent, we ganeralize (1.13) for

all a0OR,, as shown , below
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19 £ (t) :%I(t — 1) (r)dr (1.13)

This formulation of the fractional integral carriegith it some very
important Properties that will later show importarvehen solving equations
involving integrals and derivatives of fractionalder. First, we consider
integrations of orderr = 0 to be an identity operator

1° f(t) = f(t) (1.14)

Also, given the nature of the integral’'s defon and based on the
principle from which it came (Cauchy Repeated Irakgquation), we can
see that just as

IMm == m,ncd N (1.15)
So to,
1917 =19F = A7 a,B OR (1.16)

The one presupposed condition placed upon a fumdtt) that needs to be
satisfied for these and other similar propertiesetoain true, is that(t) be
a causal function, i.e. that it is vanishing foxt0. although this is a
conseguence of convention, the convenience ofctbmglition is especially
clear in the context of the property demonstrated i16). The effect is such
that f(0)=f (0)=f, (0)=0.

An additional property of the Reimann-Louivititegral appears after the
introduction of the function®, as

tdl

q)a
r(a)

-7)7?

M(a)

= ®,(0* (1) = J LDt (1
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where(t-1), denotes the function vanishes fok ® and hence, (17} is a
causal function. From the definition of the Lapla€envolution given in
(1.5), it follows that

1 (t) = () * f (1) :%j(t—r)”'lf(r)dr (1.18)

Here we shall also find the Laplace transfairthe Reimann-Louivill
fractional integral. In (1.17) we show that tfractional integral could be

expressed as the convolution of two termas, and f(t).The Laplace

Transform of t“* is given by
L{t"} = a s alR (1.19)

Thus, given the convolution relation to the franal integral throughp,

demonstrated in (1.19), and the Laplace Transfdrtheoconvolution shown

in (1.5), lead to The Laplace Transform of the tica@l integral to be

L{1°} =sf(3) @)2
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1.3 FRACTIONAL DERIVATIVE [J.D.Munkhammar, 2005].

Because the Reimann-Louivill approach to frectional derivative
began with an expression for the repeated integradf a function, one’s
first instinct may be to imitate a similar approdohthe derivative.lt is also
possible to formulate a definition for the fractborder derivative using the
definition already obtained for the analogous irdég

In the same fashion, as in the definition of fracél integral we let

sern_ 1 dfof@
D? f(X) = i) dx!(x—t)" at (1.21)

which is called the Riemann-Liouville fractiordgrivative of f of order
o ,where x.> a .The connection between the Rientaouville fractional
integral and derivative can, as Riemann realizes,traced back to the

solvability of Abel’s integral equation for any O (01)

_ 1o
f(x) = I'(a)!(x—t)l‘” dt, x>0 (1.22)

Equation (1.22) can be solved by changing tot and t to s
respectively, further by multiplying both sides thie equation byx-t)™

and integrating we get:

¢t d(s) ds _ f(t) dt
l(x t)* I(t ( )I(x—t)” (1.23)
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Interchanging the order of integration in the ledhd side we obtain

X

fx ®(s)ds = r(a)jx f (t_)t)d; (1.24)

J' dt
) (Xx=1)7 (t-9)" (x

The inner integral is easily evaluated after theange of variable

t =s+r(x-s) and use of the formulae of the Beta-function

jx(x—t)-”(t -9t = [7°*(1-1)“dr = B(a 1-a) = (@)r (- ) (1.25)

a

Therefore we get

4 1 f(t) dt
® = .
[o@d = ooy (1.26)
Hence after differentiation we have
_ 1 df)d
P00 = ri-a) dx!(x—t)” (1.27)

Thus if (1.22) has a solution it is necessarilyegiwy (1.27) for any O (0]) .

One observe that (1.22) is in a sensesth@der integral and the inversion
(1.27) is then- order derivative.

10
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Partial Fractional Order Differential Equation

This chapter is devoted to derive the solutidnSauchy type problems of
partial fractional order differential equations afinite intervals and proving

their existence and uniqueness.

Many authers [{Gerasmov, A. N, 1948 ] [Zhemukhov,K. K,1986 |
[Conlan, J, 1983] ) derived and solved partial fractional ordkiferential

equations for special applied problems.

GerasimoJGerasimov, A. N, 1948] derived and solved fractional —order
partial differential equations for special appligblems. He studied two
problems of viscoelasticity describing the motidneoviscous fluid between
moving surfaces, and reduced these problems top#mgal differential
equations of fractional order. ZhemukH@&hemukhov,K. K,1986 ] studied
the second order degenerate loaded hyperbolic iegsatinvolving the
partial Riemann-Lioville fractional derivatives. Heduced these problems
to equivalent non-linear Voltera integral equatiafighe second kind and
proved their solvability by the method of the cation mapping principle,
and then solved Cauchy problems for these Voltewsmions in order to
obtain the solutions

Conlan[Conlan, J, 1983] considered the nonlinear partial differential
equation and used the Banach Contraction Mappimgciple, he proved
local theorems for the existence and the uniqueak#ise solution of the

corresponding integral equation.

20
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Partial Fractional Order Differential Equation

Atanackovic and StankovidAtanackovic, 2002 ] [Stankovic, 2002] )
used the Laplace transform to solve a systenauigb differential
equations with fractional derivatives. Kilbas anépit [Kilbas, 2004]
studied the mixed type Riemann-Lioville fractionlairivative.

In this work we consider a partial fractionatler differential equation of

the form

a
ot”
involving the partial RL-fractional derivative ofdera w.r.t t >0 defined

u(x,t)=A*Au(xt) (xOR", t>0, 0<a<1l) (3.1)

by (2.4) and the Laplacim u(x,t) w.rt xOR"

2 2
Tt v D
In particular, when n=1, the equation (3.1) takesform

A u(xt) = (nON) (3.2)

0 0%u(x,t
U =2’ % (3.3)
known as the fractional diffusion heat equatiorthwhe Cauchy type initial
condition
aa—l
e u(xt)_, = f(x) (3.4)

wherexOR", 0<a <1. Also, u@©t) =u_ (0t) =0.

21
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Partial Fractional Order Differential Equation

Theorem (3.1): [Oldham, 1974]

1 {0 e frop- S D |

aa
2_
RE
kaﬁlk a

a QB
34,{2 gﬁf( t)} sﬁ—F(xs) Zs pr=ele af(x,t))ltzo

k=0

_0°
: }_ax" F (X,S)

Where n is an integer such that nel< n .the term in the sum is vanishing
where ¢ -1- k) < 0.

Pr oof:

1- fora <0, so that the R-L definition

°f _ 1 Jx-f(x,y)d
o’ r-a)y -yt *<0

may be used in direct application of convolutibadrem which gives:

“f(xt)| _ 1 1-a
P = e ) @5

=s"L{f(x1t)}

22
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Partial Fractional Order Differential Equation

Fora > 0, we are using the property that:

07 f(xt))_0o"| 9°" fx)
ot o | @) ™) |
3 an aa’—n

= f(xt
ot" ot?™" (1)

Where n-1<a <n .Now we are making use of the Laplace transfilommula

of integer derivative, we find that

97 f (x,1) L, 99" f (x,1)
L ot? ot" | oate

| aa—nf (X,t) n-1 k an -1-k aa n
=S _ f(xt
Ll{ ata—n } Z atn Ain-1k ata n ( )

k=0

The first right-hand term may be evaluated bygi£B.5), since-n<0, the

composition rule may be applied to the terms with@ summation.

3 f(xt)] _ T, 0T (x Y
BULCD S L[
ot k=0 ot

a

2-Si 9
- Since 52

f(x,t) is not derivative w.r.t. t, it a function of x, dithe

. 07
laplace transform w.r.t. t ISGF F(x,s).

3) - Lt{; ::;f( )} Lt{(;’ti(: f(xt)]}, using the definition (2.5)

23
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Partial Fractional Order Differential Equation

n-1 aﬁlk 07
t>} koskatﬂl_( f(x t>j\

aﬂ—l— aa'
ol

H{

Theorem (3.2):

The function

u(x,t) =D 'u(x, )t 'E, , (A2 /X)t7)]
is the solution of equation (3.3) with initial catidn (3.4), 0<a <1.
Proof:
Applying laplace transform formula to eqoat(3.3) w.r.tx

97 _ , 0°u(x,t)
L P u % 1)} _Lx{/] PV }

DU (s,t) = A2 (sU (s,t) - SU (0,t)-U., (01 ))
DU (s,t) = A*sU (s,t)

DU (st) 1
2o

LHU(st)} = —Daj(x 0 L'l{s }

U(st) =

u(x,t) = /]—Xz D u(x,t)

24
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Partial Fractional Order Differential Equation

which can be written as
DY u(x,t) = (A /x)u(xt) =0 (3.6)
This is Cauchy type problem of ordinary fracabrorder differential

equation, in which the variable is considered as a constant parameter.
Now, applying laplace transform w.rtt

L{Du(x.t) = (B /x)u(xt)} =0

LU 0} - $'Du(x )]~ (F/0L{ux 0} =0

_ Dt"‘lu(x,.t)L:0
L{u(x 1)} = I

and from (1.10)

SV1_V2

> A2Ix)s™"
= (FIx)’ ‘( )

<1

=g, |, (P10t} =

with y, =y =a

1

N ) e T

we can derive the following solution

u(x,t) =D/ u(X0) [t E, , (A* 1 X)t7)]

25
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Partial Fractional Order Differential Equation

Now, we could state the existence and uniqueness theor em:
Theorem (3.3):
Leto<a <1, and 0<y<1 be such thaty>1-a. Also, let A0R,if the

Lipschitz condition

Du(x,t,) - Dt”u(x,tz)‘ <L|u(xt)-u(xt,)
(L(t,~a)T (@)/T (2a))<1and

rd-y)

ku(x,t)u%[a’m < (|o—a)"m

Jux v, .,  are satisfied

Then the Cauchy type problem (3.6) with initial ddion (3.4) has a unique

solutionu(x,t)0C,_,[a,b] and this solution is given by

u(xt) = F(E, 4 (A°/ x)t)]

Proof:
First we are proving that the solution of Caugphgblem (3.6) with initial
condition (3.4) is equivalent to the solution oé tfollowing linear Volterra

integral equation of the second kind

u(xt) = (t>0) (3.7)

f()te™ A (/]Z/X)f u(x,r)
Ma)  T(@) ot-r)*

By applying the method of successive approxinmatio solve (3.6), we set

U (X,t) = % ™ (3.8)

26
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Partial Fractional Order Differential Equation

006 =)+ 0 [ [ 2 (3.9)

Using the definition (1 ), equation (3.8) and takaquation (2.3)

into account, we find:

U, (%,t) = Uy (%) + (A1 X) 17U, (x,t)

u(xt) = r((X; e+ (R /X) rf((zx))t2” 1 (3.10)

= f(x); (Ar (/k)g)_ <t

Similarly,

et = B 19 L s

=f(x)>] ():_ (/ kxc)r)_ (A 3.11)

k=1

Continuing this process, we derive the following

U (ot) = f( )mzﬂ“r(’kx))

By replacing the index of summation k by k+1¢aakinglim m - o

(/‘2 / X) tka+a—1
ST (ka +a)

@)1

u(x,t) = f (x)z (3.13)

27
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Partial Fractional Order Differential Equation

Taking into account the relation (1.9), we can r@athis solution in terms

of Mittag-Leffler FunctionE, ,(2):

uxt) =f ()t E, , (A / x)t?) (3.14)
This yields an explicit solution to the linear Y&rra integral equation of the
second kind (3.7) and hence from theorem (3.2pit® a solution to the

Cauchy type problem (3.6)
Now, if (3.6) satisfy the Lipschitz condition

Du(x,t) = Dfu(x.t,) < L [u(xt) —u(xt,) (3.15)

Where L > 0, does not depend anand defining the operator T by

_ (FIx) ¢ u(x,r)
TU(X1) = u,(x,t) + @ !(t R dr (3.16)

as a map from the space_,[ab] onto C_,[ab] where C_,[ab]is the

Banach space of functionsi(x,t) which are continuously differentiable on
[a,b] up to orderr [Banach, S, 1932] and have the derivativgt-u(x,t) on

[a,b].
Now, we chooset, 00 (a,b) such that the condition

(Lt,-a)7T (@) /T (2a))<1 (3.17)

28
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Partial Fractional Order Differential Equation

is satisfied, and rewrite the integral equatiom® the form
u(xt) =Tu(xt)

| Tu =Tu, <K [u-uy (3.18)

It follows from (3.8) that, 0OC _ [at]. SinceD u(x,t)0C _ [at], then
the integral in the right-hand side of (3.16) aketongs toC __[at], and
hence Tu(x,t)0C_,[at]. Now by (3.16), (3.8) and the definition gfu(xt),
using the lipschitzian condition (3.15) and appdythe relation

<G-ar A Fs gt (3.19)

Ctanl ra+ Cytapl

with y=1-a, b=t

We have
HTUl -Tu, 2licy,lat] — Ia( D”u(xt) D"u(x tZ)‘) ¢ rolat]
< I—H Ita ( ‘ul B Uz‘ ) Hcl_a[a,tl]
sL-a)" o fuul,
r(a)

which yields (3.18) withK = L(tl—a)”%. In accordance with (3.17),

0 <k <1, and by the classical “Banach fixed pdineorem”

29
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Partial Fractional Order Differential Equation

[Banach, S., 1932] in a complete metric space, there exists a unique
solution u (x,t) =u,(x,t)0C_,[a,t,]to the integral equation (3.7) on the
interval [a,t,]. Also, this solutionu” (x,t)is a limit of a convergent sequence

T™ug (X, t)

lim

m- oo

T"y,

¢outatg =9 (3.20)

If f(x)#0 in the initial condition (3.4), we can take (x,t) =u, (x,t)
defined by (3.8). the equation (3.20) can be re@nitin the form

lim | u (% 8) =u (1) ¢,y =0 (3.21)

where

U, (X,t) = T™uy (X,t) = U, (x,t) +

(/12/x)J.Tm Uy (X, r) (3.22)

Ma) 5 rye
Next, we consider the intervgalt,], wheret, =t, +h, h >0 are such that

t, <b. Rewrite (3.7) in the form

(AZ/X)I u(x, r)

u(x,t) =uy (x,t) + @) -

(3.23)

f(X) t,,_l+(/]2/x) ,[ u(x,r)

where w00 Ty L a-ne

(3.24)

is known function.
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Partial Fractional Order Differential Equation

Using the same arguments as above, we derivéhira exist a unique
solution u; (x,t)dC_,[t,t,] to the equation (3.7) on the interyalt,].
taking the next intervdk,,t,], where t, =t, +h,, h,>0 are such that, <b,
and repeating this process, we find that therd eximique solutiou(x,t)
to the equation (3.7) such thai(x,t) =u, (x,t) and u; (x,t)0C__[t _,,t],
(i=1...,n), where a=t, <t, <...<t, =b.

Then there exists a unigue solutiofx,t)JC,_,[a,b] on the whole interval
[a,b]. Thus there exists a unique solutiofx,t) =u (x,t)00C__[a,b] to the
linear Voltera integral equation of the second k{Bd7), and hence to the
Cauchy type problem (3.4) & (3.6).

Now, we show thabu(x,t)dC [a,b]. since y=1-a, then

H D/u,, — D/ u

Cy[a,b] = LH um _uHCy[a,b]

<L(ab)™

Uy~ |

C 1—a[avb]
Thus, by the above estimates and the Lipschitzioition (3.15), we find
that

Dfu,, —D/u =
c,[ab]

m

lim
m—'O

By the definition of the space
C/ labl ={uxt)0C, [ab: D'ux 1) OC[a H}
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Partial Fractional Order Differential Equation

Hence there exists a unique solutiar{x,t)0C,_,[a b]which has the
property D{u(x,t)00C [a,b].

Now, It is sufficient to prove the existermfea unique solutioru(x,t) to
linear Voltera integral equation of the second kif87). First we are
proving the necessity, by lettingu(x,t)0C“1-4 [, b] satisfy (3.4) & (3.6).
according to the definition (1)

Diu(x,t) = % 17u(x,t)

In which 1177u(x,t)0 AC_,[a,b], from the lemma in chapter (2)

Dta _1U (X ’O) t a-1
(@)

Since the integraﬂl .Dfu (x,t)) OL(a,b), exists almost every where on

17Dfu (X,t) =u (X,t) -

[a,b]. Applying the operatorl,” to the both side of (3.6) and the definition

of fractional integrall " we obtain the following

Mta_l_l_ (Azlx)j u(x,r)
M (a) Fa) 5 (t-r)"

u(x,t) = (3.7)

and hence the necessity is proved.
Now, applying the operatap’ to both sides of (3.7), we have
(X) aya-1 a 2
D u(xt) = @ )(D t?7) + D17 (A7 X)u (1))
from property (3), we have (3.6)
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Partial Fractional Order Differential Equation

Now, to show that (3.4) also hold, we apply tperatorb™*(k=1,...,n)
to both sides of (3.7). By property (3) and prop¢4) we have:

D™ u(xt) = % D/t + D™ 7 ((A* I X)u (x,1))

:% t (A /) u ()

t

f(x) ety L f u(xr)
(k-1)! (k=1)!g (x=r)*™*

D™ u(xt)= (3.25)

If k=n, then , in accordance with property (5) gandperty (3) we obtain

f(X) tn—l+ 1 j‘ U(X,r)

D= Y e ey

(3.26)

Taking in (3.25) & (3.26) a limit ag -~ 0 almost everywhere, we obtain

(3.4) as n=1, and the sufficiency is proved.
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Chapter Two Partial Fractional Order Differential Equations

In this chapter we give the definitions and eomroperties of
multidimensional partial fractional integrals andadtional derivatives
presented byS.Samko, 1993 ]. Such operations of fractional integration and

fractional differentiation in the n- dimensional didean spaceRn (nON)
are natural generalizations of the correspondirg-elimensional fractional
integrals and fractional derivatives, being taketinwespect to one or several

variables.

2.1 BASIC DEFINITIONS
It is known

1 ¢ u)

(30 = o

(x>a)

and

a1 u)
(18u(X) = F(a)-[(t—x)l"" dt,  (x<b)

X

Therefore the partial Riemann-Liouville fractibmategrals of ordera, >0

with respect to théth variablex_are defined by

o uzy st [ U X o X X)
(20 =py | 505 e (a0 @)

and

G e = 1 bku(xl,...,xk_l,tk,xk+1 ..... X.)
(12,009 = s j e dt,  (<h)  (2.2)

11



Chapter Two Partial Fractional Order Differential Equations

These definitions are valid for functions u(x) =u(x,....x,) defined
for x, >a, and x <b., respectively. By analogy with the one-dimensionsl

case, the fractional integrals (2.1) and (2.2) @ked left- and right- sided

partial Riemann-Liouville fractional integrals.

The left- and right- sided partial Riemann-Lidie fractional derivatives of

ordera, 0C( R(a) = 0) with respect to th&th variablex are defined by

) =2

( (I T u(x))

1 aLk & U(X e Xy b Xag s eee X, )
- dt
r(I— O'k) 6 (Xk tk)a’k L+l k (Xk >ak) (23)

and
0%

ot ( u(x))

G

u(x)) = -

1 aLk UK - Xy B X o)
HenXda (4 <b) 24
Thma) o) e 5B (24)

where L, =[a,] +1.
take the following forms

6”k

( u(x)) = (| a2 U(X))

12



Chapter Two Partial Fractional Order Differential Equations

1 0 UK Xen s XKoo %)
2 dt (X >a)
“Ta-ay) axkaj (% —t)™ k R
aak - __i 1-ay A2
(Wu(x))_ axk(IbK u(x))
—_ 1 0 U(Xl Xk -1’ k’Xk+1’ Xn) dt <
rd-a,) ox, J (t — %)™ %c<h)

If @, =L ON,, we have the usual partial derivatives as foltows

S u() = u(x) and  (u()=(-1)" o

(a Ly abkk

u(x)
If we denote the following notations:

AC[ab]={f:[al ~C f(} =c+[f(ydt and (f(y DL ab)

AC_[abl={f:[al) ~C and (¥ OAQ ab}

where AC[a,b] is the space of all absolutely camims function.

13



Chapter Two Partial Fractional Order Differential Equations

Based on (2.1)-(2.3), we could state the folladefinition:

Definition (1): The partial fractional derivativ%% of ordera > 0 of

absolutely continuous function # )is defined as

= IQ‘”:—);U(X)
)gn—a—l f
= X >
rh-a) u (x) , for x>0 (2.5)
=0, for x<0O

Where n=[a]+1.

2.2 PROPERTIESAND THEORIES OF PARTIAL FRACTIONAL

aa
DERIVATIVE 5y

Property (1):

07 .y
The operator; & , a >0, is linear.

Pr oof:

Letu,v O ACJa,b],r,r,0R, n=o]+1

a n

(5 U(R) + ()=l I ; (RU(X) + 1,V(X)
i | Xin

14



Chapter Two Partial Fractional Order Differential Equations

=0l 7 (ruy (X) +1,v, (X))

_r10XU(X)+r20XV(X)

=r —Uu(x) + 1, V(X)
Property (2):
if u Ll AC [a,b], then
0% 9” 0# 0% . 9"
S 3 U0 =~ 5o () = s u(x)
X7 0x’ ox" 0% 0%
Pr oof:
0% 9” _
= I = I1 —(JF
axax‘f() u,) = ( (ol “u,)
=170 u )= 177,
9”7 0 _ _ Y
Wa)ﬂ u(x) = p(oll u,)=o |l'8(—(|l _))

=170 u ) =17 u

X

Property (3): [Loverro, A, 2004]

r(p)

a(y _ ~\B-1 - _ Aa\fta-1
(Ia(t-a)") (X rB+a) (x-2a)
07 v FB) o pan
Gz "X F(3-a) (x-a)

15



Chapter Two Partial Fractional Order Differential Equations

and

(hf(b—t)ﬁ—l) (X) :% (b_x)ﬂ+a—l

O o-tP (0= Bl oy

e r(B-a)

In particular if f=1and a=0,then the Riemann-Lioville fractional

derivative of a constant are, in general, not etuakro.

On the other handpr j=1,2,....p ]+ 1,

0% o] — 0% v —
(aa"(t a)*’)(x) =0, (ab"(b t)"")(x)=0
Property (4): [Loverro, A, 2004]
If u(x)OL,(ab) the relations
aﬁa—_a—/}— d aﬁa—_a—ﬁ—
(@lau(x»—la u(x) an (WlbU(X)—lb u(x)

holds almost everywhere on [a,b]

In particular, wheng =k 0N and R(a) > K, then

aka—_n—k— a_ka—_a—k—
(G 2 U =17 u(x) and (o715 u(x) =17 u(X)

16



Chapter Two Partial Fractional Order Differential Equations

Property (5): [Loverro, A, 2004]
a-k a-k

ata'—k U(X,t) = Itl_r:rg ata'—k

u(xt), (I<k<n-1),n=[a]+1

=|t means the limit is taken at almost all pointshaf
right-sided neighborhoodo,0) (0> 0).

ata—n

u(x,t) = leir?) " u(x,t) (n#a)

=u(xt) |, (n=a)

Lemma: [Loverro, A, 2004]
Let a>0,n=[a]+1 and letu _, (X)=(1""u(X)) be the fractional integral
of order n-a.

(@) If1< p<oo and u(X)017(L,), then

(1. 3
(b) If u(x)0L,(a,b) and u,_,(X) OAC [ab], then the equality

L v n u(n J)(a)
g U00) = u(x) ;—r(a— P+1)

(5 (x-a)"

holds almost everywhere on [a,b].

In particular,if 0<a <1,then

ul— (a) a-1
r@ &7

17



Chapter Two Partial Fractional Order Differential Equations

where u,_, (X)=(17u(X)), while for a=n0ON,then the following

equality holds:

n-1 u(k) (a)
k=0 k

(x—a)"

an
In
(aaa”

Theorem (2.1):

a

0
Let U(X) & V(X)UAC[ab],— ox be the partial fractional derivative of

orderaD(o;l] ,and/A is any real number. Then

0 o U0+ :X V(%)
0“ _
() o (Au)(x) =
(i) a i V()

Proofs of (i) and (ii) are trivial from property)(1

Proof (iii): using equation (2.5)

—a

|‘(1 )a—( V)(X)

r(1— )[V(X)U (X) +u(X)v, (X)]
a _ )qa -a _
—V(X)r(1 )x() (X)r(l )V&(X)

= V(X) D{u(X) +u(X) Dy v(X)

18



Chapter Two Partial Fractional Order Differential Equations

a B a.p
From the theorem, one can be calculgtg., 62 and - as follows:
ox " ox*# a x“oy”

Let U= U(x,y),a >0, >0

a

uxy) =170 uxy), n=[a]+1

x> oX
B Xn—2a—1 an
" T(n-2a)ox" uex.y)
Similarly
g m-2 am
oy u(x,y) =1 ay—mU(X, y), m=[3]+1
m-25-1 m
=Y u(x, y)
M(m-24) oy™
Also,

O L (YN e 0L
ax‘oy’ ox* T(1-p) ox T (1-.5)

yu,))

1 X7

e Ll
ra-p)° "’ ra-a) ra-p)’°

=1 u,)

. Xyt
re-ayr@e-g "°
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A bstract

In this work, we obtain an analytical solution for
Cauchy type problem of partial fractional order
differential equation in terms of Mittage - Leffler
function using Laplace transformation. The existence
and uniqueness of the analytical solution also, is
reviewed by reducing the Cauchy type problem of
partial fractional order differential equation into linear
Volterra integral equation of the second kind and
showing that the solution of our Cauchy type problem
is equivalent to the solution of linear Volterra integral

equation of the second kind.
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D1is ]
In this work, based on Riemann — Liouville fiddon , we state the

partial Riemann — Liouville fractional integratcéh derivative , and we

give the definition and some properties of péartfeactional derivative

a

ox/”

of ordera > 0.

Also, we derive the solution of partial fractal order differential
equation which is known as the fractional diffuslteeat equation , with the
caushy type initial condition , the existence amiqueness is proved by
reducing our caushy type problem into linear Volentegral equation of
the second kind and showing that its solutiorggvelant to the solution of

caushy type problem .
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| ntroduction

Fractional calculus is a field of mathemdtgtady that grows out of the
traditional definitions of the calculus integraldaderivative operators in
much the same way fractional exponents is an owtyrof exponents
with integer value. Any one can verify that = xxx, how might one
describe the physical meaning of*, or moreover the transcendental
exponentx”.One cannot conceive what it might be like to nplytia number
or quantity by it self 3.4 times, artimes, and yet these expressions have a
definite value for any value x, verifiable by inte series expansion, or
more practically, by calculator. Now, in the sama&yveonsider the integral
and derivative. Fractional calculus has its oggim the generalizations of
the differential and integral calculs ubich, 1986 ]. It deals with the
investigation and applications of integrals andwdgive of arbitrary order.
Fractional derivative have been used in buildingdet® of physical
processes, leading to the formulation with fractiodifferential equation.
The fractional calculus may be considered asldnand yet a new topic
which is still under development and investigaj®or enflo et al., 2000] .

Fractional calculus considered as a novattag well, since only from a
little more than to the later fifty years it hasebean object of specialized
conferences and treatises. Most authors on this tofll cite a particular
date as the birthday of so called “Fractional Claled. In a letter dated
September 30, 1695 L’Hopital wrote to Leibniz asking him aboua

particular notation he had used in his publicaiolor the nth —



derivative% of the linear functionf(x)=x, L'Hopital's posed the
X

guestion to Leibniz , what would the result be Mm=1/2 . Leibniz's

response:” An apparent paradox, from which one uksful consequences
will be drawn.” In these words fractional calculuss born. Following

L'Hopital’'s and Leibniz’s first inquisition, fraatnal calculus was primarily
a study reserved for the best minds in mathemdfiasrier,Euler, Laplace
were among the many that dabbled with fractiondcutas and the

mathematical consequendeis .Nishimoto, 1991 ]. Many found, using their
own notation and methodology, definitions thatthe concept of a non-
integer order integral or derivative .The most fasithese definitions that
have been popularized in the word of fractionatwlais are the Riemann —

Liouville and Grunwald-Letnikove definitions.

The pioneers in the early of last century, nigaontributions have been
made to both theory and applications of fractionalculus, Weyl (1917),
Hardy (1917), Hardy and little wood (1925), ndaPost (1930) used
difference quotients to define generalized défdration for operatot (D),
where D denotes differentiation antl is a suitable restricted function.
Furthermore Kober (1940) and Kauthner (1953) exanwome rather
special, but natural properties of differe integraf functions belonging to

Lebesgue class.

In the recent years, considerable interest in ifsaat calculus has been

stimulated by the applications that it find in difént fields of science,



including numerical analysis, physics, engineerlmglogy, economics and
finance[Gorenflo et al., 2000] For more details in historical development of
the fractional calculus we refer to “the fractiooalculus”’[Oldham, 1974].

Nowadays, many researchers are interested anfidhd of fractional
calculus[Al-Shather, H. A., 2003], solved a fractional order multiple delay
integro- differential equations using the collentimethod and a varitional
approach. AlsofAl-Azawi, S. N., 2004], studied some results in fractional
calculus,[Aziz, 2006], discussed analytical study of partial fractioneder
differential equations, &Al-Saltani B. K., 2003 ] ,studied the solution of
some fractional differential equations. Moreo&alih H. M., 2005 | used

an approximate method to solve fractional diffiéied equations.

This thesis concern with Partial Fractional OrBéferential Equation. It
consists of three chapters: The first chapter pteslethe basic concepts of
Fractional calculus. The second chapter presenteshgons definitions and
theories for Partial Fractional Order Differentiajuations. In chapter three
we are presented the solutions of Cauchy type enabl for Partial
Fractional Order Differential Equations and theiiseence and uniqueness is

proved.
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