
  

 Abstract 

 

This thesis consider the normal distribution with its important 

appearance in many statistical fields of applications. Some mathematical and 

statistical properties of the distribution have been collected and illustrated 

with moments and higher moments. Six related theorems have been studied in 

the applications of this type of distribution. 

 The estimation manner and its properties have been illustrated 

throughout two methods (Moment and Maximum Likelihood methods) which 

are used to estimate the distribution parameters theoretically. Equality and 

properties of estimation have been studied throughout many well-known 

theorems. 

Five methods to approximate the cumulative distribution function have 

been used namely: Trapezoidal, Simpson, Gaussian, Hit or Miss and Sample 

mean rules. The results of these rules have been compared in its behavior and 

error of approximation resulted from each method. The comparison shows 

clearly that the last method ''Sample mean rule'' is the best method among of 

five methods for approximating the solution for this type of functions. In 

addition to that the results of each method have been represented by curves 

line and numerical tables for helping in reading and comparing the results of 

each method with each other. 

Finally four procedures for generating random varieties from normal 

distribution are discussed which are Box-Muller, Acceptance-Rejection, 

Central limit theorem and Tocher procedures and their efficiencies which are 

compared theoretically and practically by Monte Carlo simulation. The results 

of comparison shows that the Box-Muller procedure is the best one among 

three methods for this type of generation in sense of time consuming. 
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Appendix 

A 
Approximation Programs 

 
A1: Approximation by Trapezoidal Rule 

program trapezod; 
uses crt; 
var 
  j,i,a,n:integer; 
  er,ex,b,x,h,sum,g,z,s:real; 
  g1,f1,f2:text; 
  function f(x:real):real; 
  begin 
    f:=exp((-1/2)*sqr(x)); 
  end; 
  begin 
 clrscr; 
  assign(f1,'h:\new\ex.dat'); 
  reset(f1); 
  assign(f2,'h:\new\x.dat'); 
  reset(f2); 
  a:=0; 
  b:=0; 
    writeln('   x       g(x)         Erorr'); 
    writeln('-------------------------------'); 
    j:=0; 
   while not eof(f2) do 
    begin 
         readln(f2,b); 
         h:=(b-a)/10; 
         sum:=0; 
         for i:=1 to 9 do 
           begin 
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             x:=a+i*h; 
             sum:=sum+2*f(x); 
           end; 
         g:=(h/2)*(f(a)+sum+f(b)); 
         z:=(1/sqrt(2*pi))*g; 
         s:=(1/2)+z; 
         readln(f1,ex); 
         er:=abs(ex-s); 
         writeln(b:6:3,'  ',s:15:8,'    ',er:15:8); 
         {b:=b+0.05;} 
         j:=j+1; 
         if j=33 then begin j:=0; readln; end; 
  end; 
  readln; 
end. 
 

A2: Approximation by Simpson Rule 
program simpson; 
uses crt; 
var 
  j,i,a,n:integer; b,x,h,sum1,sum2,g,z,s,ex,er:real; 
  g1,f1:text; 
  function f(x:real):real; 
  begin 
    f:=exp((-1/2)*sqr(x)); 
  end; 
  begin 
  clrscr; 
    a:=0; 
    assign(f1,'h:\new\ex.dat'); 
    reset(f1); 
    b:=0; 
    writeln('   x       g(x)         Erorr'); 
    writeln('-------------------------------'); 
     j:=0; 
    while not eof(f1) do 
    begin 
    h:=(b-a)/10; 
    sum1:=0; sum2:=0; 
    for i:=1 to 9 do 
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    begin 
      x:=a+i*h; 
      if i mod 2 =0  then 
      sum1:=sum1+2*f(x) 
      else sum2:=sum2+4*f(X) 
      end; 
      g:=(h/3)*(f(a)+sum1+sum2+f(b)); 
      z:=(1/sqrt(2*pi))*g; 
      s:=(1/2)+z; 
      readln(f1,ex); 
      er:=abs(ex-s); 
      writeln(b:6:2,'  ',s:6:3,'    ',er:15:8); 
       b:=b+0.05; 
       j:=j+1; 
       if j=5 then begin readln; j:=0; end; 
       end; 
       readln; 
end. 
 

A3: Approximation by Gaussian Quadrature Rule 
program gauss; 
{uses crt;} 
type 
c=array[1..100]of real; 
var 
j,i,a,n:integer; 
b,sum,v,g,z,ex,er:real; 
x,w:c; 
f1,f2:text; 
function f(x:real):real; 
begin 
  f:=(1/(sqrt(2*pi)))*exp(-sqr(x)/2); 
end; 
  begin 
  x[1]:=0.577350269189626; 
  x[2]:=-x[1]; 
  w[1]:=1.000000000000000; 
  w[2]:=w[1]; 
  assign(f1,'h:\new\ex.dat'); 
  reset(f1); 
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  assign(f2,'h:\new\x.dat'); 
  reset(f2); 
  a:=0; 
  b:=0; 
  writeln('   x       g(x)         Erorr'); 
  writeln('-------------------------------'); 
  n:=2; 
  j:=0; 
  while not eof(f2) do 
  begin 
  sum:=0; 
  readln(f2,b); 
  for i:=1 to n do 
      begin 
      v:=((b-a)/2)*x[i]+(b+a)/2; 
      sum:=sum+f(v)*w[i]; 
      g:=((b-a)/2)*sum; 
      z:=0.5+g; 
     end; 
  readln(f1,ex); 
  er:=abs(ex-z); 
  writeln(b:6:2,'  ',z:15:8,'    ',er:15:8); 
  {b:=b+0.05;} 
  j:=j+1; 
  if j=30 then begin j:=0; readln; end; 
  end; 
end. 
 

A4: Approximation by Hit or Miss Rule 
program HitMiss; 
var 
          N,i,j,NH:integer; 
          U:array [1..3500] of real; 
          U1:array [1..3500] of real; 
          xa:array [1..3500] of real; 
          g1,z,a,b,x,s,ex,er:real; 
          f1,f2:text; 
function g(x:real):real; 
begin 
     g:=exp((-1/2)*sqr(x)); 
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end; 
begin 
N:=40; 
a:=0; 
 
randomize; 
  assign(f1,'c:\tp\bin\ex.dat'); 
  reset(f1); 
  assign(f2,'c:\tp\bin\x.dat'); 
  reset(f2); 
  writeln('   x       g(x)         Erorr'); 
  writeln('-------------------------------'); 
while not eof(f2) do 
  begin 
       readln(f2,b); 
       readln(f1,ex); 
       {writeln(pi:10:5);} 
       NH:=0; 
        for i:=1 to N do 
            begin 
              U[i]:=random; 
              xa[i]:=a+U[i]*(b-a); 
            end; 
        for i:=1 to N do 
              U1[i]:=random; 
       for i:=1 to N do 
               if g(xa[i])>(g(b)*U1[i]) then 
                    NH:=NH+1; 
       g1:=g(b)*((b-a)*NH)/N; 
       z:=(1/sqrt(2*pi))*g1; 
       s:=(1/2)+z; 
  er:=abs(ex-s); 
  writeln(b:6:2,'  ',s:10:8,'    ',er:10:8); 
  j:=j+1; 
  if j=30 then begin j:=0; readln; end; 
  end; 
end. 
 

A٥: Approximation by Sample Mean Rule 
program Samplemean; 
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var 
          N,i,j,NH:integer; 
          U:array [1..3500] of real; 
          xa:array [1..3500] of real; 
          z,g1,a,b,x,s,sum,ex,er:real; 
          f1,f2:text; 
function g(x:real):real; 
begin 
     g:=exp((-1/2)*sqr(x)); 
end; 
begin 
N:=300; 
a:=0; 
randomize; 
  assign(f1,'c:\tp\bin\ex.dat'); 
  reset(f1); 
  assign(f2,'c:\tp\bin\x.dat'); 
  reset(f2); 
  writeln('   x       g(x)         Erorr'); 
  writeln('-------------------------------'); 
while not eof(f2) do 
  begin 
       readln(f2,b); 
       readln(f1,ex); 
        sum:=0; 
        for i:=1 to N do 
            begin 
              U[i]:=random; 
              xa[i]:=a+U[i]*(b-a); 
              sum:=sum+g(xa[i]); 
            end; 
           g1:=(b-a)*(1/N) * sum; 
           z:=(1/sqrt(2*pi))*g1; 
           s:=(1/2)+z; 
       er:=abs(ex-s); 
       writeln(b:6:2,'  ',s:10:8,'    ',er:10:8); 
       j:=j+1; 
       if j=30 then begin j:=0; readln; end; 
  end; 
end. 



Appendix 

B 
Estimation Programs 

 
B1: N-1 Procedure  

program acc_rej; 
uses crt; 
type 
 a=array[1..2000]of real; 
var 
  grd,grm,ercd,i,nx,ny,r,n:integer; 
  x:a; u,u1,u2,sumx,sumy,sumr,xb,c,v,sg,y,y2,avr:real; 
begin 
clrscr; 
  randomize; 
  n:=0; 
  while n<1000 do 
  begin 
    n:=n+100; 
  sumx:=0; sumy:=0; sumr:=0; 
   for i:=1 to n do 
  begin 
    r:=0; 
    repeat 
    r:=r+1; 
    u1:=random; 
    u2:=random; 
    y:=-ln(u2); 
    y2:=exp((-1/2)*sqr(y-1)) 
    until not(u1>y2); 
    u:=random; 
    if u1<=1/2 then x[i]:=y 
    else x[i]:=-y; 
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    sumx:=sumx+x[i]; 
    sumy:=sumy+sqr(x[i]); 
    sumr:=sumr+r; 
    end; 
    xb:=sumx/n; 
    sg:=(sumy-n*sqr(xb))/(n-1); 
    avr:=sumr/n; 
    c:=1/avr; 
    writeln(n:3,'Xb=',xb:7:3,'    Segma=  ',sg:7:3,avr:7:3,c:7:3); 
    end; 
    readln; 
end. 
 

B2: N-2 Procedure  
program BoxMuller; 
uses crt,dos; 
type 
a=array[1..1000]of real; 
var 
  h2,m2,s2,ms2:word; 
  i,n,k:integer; 
  x,y,v:a; u1,u2,z,sum,sumx,xb,sg,x1,y1,sumt,avr,c:real; 
  begin 
  clrscr; 
  randomize; 
  n:=0; 
  sumt:=0; 
  while n<100 do 
  begin 
  settime(0,0,0,0); 
  n:=n+10; 
  for i:=1 to n do 
 begin 
    u1:=random; 
    u2:=random; 
    x[i]:=sqrt(-2*ln(u1))*cos(2*pi*u2); 
    y[i]:=sqrt(-2*ln(u1))*sin(2*pi*u2); 
    writeln(x[i],y[i]); 
    end; 
   gettime(h2,m2,s2,ms2); 
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   sumt:=sumt+s2*100+ms2; 
   writeln(n:3,s2:3,ms2:3); 
   readln; 
   end; 
   avr:=sumt/10; 
   c:=1/avr; 
   writeln(avr:6:3,c:6:3); 
   for i:=1 to 200 do 
    begin 
    if i<=100 then 
    v[i]:=x[i] 
    else v[i]:=y[i-100]; 
    z:=(1/sqrt(2*pi))*exp((-1/2)*sqr(v[i])); 
    end; 
   n:=0; 
   while n<200 do 
   begin 
   n:=n+20; 
   sum:=0; sumx:=0; 
   for i:=1 to n do 
   begin 
   sum:=sum+v[i]; 
   sumx:=sumx+sqr(v[i]); 
   end; 
   xb:=sum/n; 
   sg:=(sumx-n*sqr(xb))/(n-1); 
   writeln; 
   writeln('Xb=',xb:7:3,'    Segma=  ',sg:7:3); 
   end; 
   readln; 
   readln; 
 end. 
 

B3: N-3 Procedure  
program Central; 
uses crt,dos; 
type 
 a=array[1..1000]of real; 
var 
h2,s2,m2,ms2:word; 
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i,j,nx,ny,n:integer; 
  x:a; u,u1,u2,sumx,sumy,sumu,xb,v,vb,ub,y,y2,avr:real; 
 begin 
  clrscr; 
  randomize; 
  n:=0; 
  while n<200 do 
  begin 
  settime(0,0,0,0); 
  n:=n+20; 
  sumx:=0; sumy:=0; 
   for i:=1 to n do 
  begin 
    sumu:=0; 
    for j:=1 to 10 do 
    begin 
      u1:=random; 
      sumu:=sumu+u1; 
    end; 
    ub:=sumu/10; 
    x[i]:=sqrt(12*10)*(ub-0.5); 
    writeln(x[i]:9:3); 
    sumx:=sumx+x[i]; 
    sumy:=sumy+sqr(x[i]); 
    end; 
    xb:=sumx/n; 
    vb:=(sumy-n*sqr(xb))/(n-1); 
    gettime(h2,m2,s2,ms2); 
    writeln(n:3,s2:3,ms2:3,'xb',xb:9:4,'vb',vb:9:4); 
    readln; 
    end; 
    readln; 
end. 
 

B4: N-4 Procedure  
program tocher; 
uses crt,dos; 
type 
 a=array[1..1000]of real; 
var 
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  h2,m2,s2,ms2:word; 
  i,nx,ny,n:integer; 
  x:a; u1,u2,sumx,sumy,xb,v1,v2,vb,y,k:real; 
 begin 
  clrscr; 
  randomize; 
  n:=0; 
  while n<200 do 
  begin 
  n:=n+20; 
  settime(0,0,0,0); 
  sumx:=0; sumy:=0; 
   for i:=1 to n do 
  begin 
      u1:=random; 
      u2:=random; 
      y:=0.5*sqrt(pi/2)*ln((1+u1)/(1-u2)); 
      if u2<=0.5 then x[i]:=y 
      else x[i]:=-y; 
    writeln(x[i]:9:3); 
    sumx:=sumx+x[i]; 
    sumy:=sumy+sqr(x[i]); 
    end; 
    xb:=sumx/n; 
    vb:=(sumy-n*sqr(xb))/(n-1); 
    gettime(h2,m2,s2,ms2); 
    writeln(n:3,s2:3,ms2:3,'xb',xb:9:4,'vb',vb:9:4); 
    readln; 
    end; 
    readln; 
   end. 



CHAPTER  

1 
The Normal Distribution 

 

1.1 Introduction  

Basic mathematical and statistical properties of normal distribution are 

discussed in this chapter which is involve six sections as follows. Section 1.2 

basic properties of normal distribution are given, while in section 1.3 we 

illustrated the moments of normal distribution. Some related theorems are 

given in section 1.4, while in section 1.5 two methods of parameters 

estimation (Moment and Maximum Likelihood) are theoretically discussed. 

Finally, section 1.6 equality of estimators are studied to reach to the best 

estimator for the unknown parameters.  

 

1.2 Basic Properties of Normal Distribution 

1.2.1 Definition [26] 

A continuous r.v. Χ  is said to have a normal distn., denoted by 

2( , )X µ σΝ� , if  Χ   has p.d.f.  

21
21

( )
2

x

f x e

µ
σ

πσ

− −  
 = , x−∞ < < ∞                             (1.1)  
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Where x−∞ < < ∞ , 2 0σ >  are known as location and scale parameters 

respectively with 2.7183e =  and 3.1416π = . The graphical representation 

of eq.(1.1) is 

 

 

 

 

 

 

 

 

 

Figure(1.1): The Normal Curve 

When 0µ =  and 2 1σ = , then (0,1)X Ν�  is said to have a standard normal 

distn. as shown in Figure(1.2) and the p.d.f. of eq.(1.1) reduce to  

21
21

( )
2

x
f x e

π

−
= , x−∞ < < ∞                              (1.2) 

 

 

 

 

 

 

 

 

 

 

Figure(1.2): The Standard Normal Curve 

0µ = x 

( )f x

µ x 

( )f x 

µ σ+ µ σ− 0 
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To verify that the function ( )f x of eq.(1.1) is valid p.d.f., we first note that 

( ) 0f x >  for all ( , )x ∈ −∞ ∞ . 

We also need to show that integral of ( )f x  over x−∞ < < ∞  is unity. Viz  

Consider the integral  

21
21

( )
2

x

I f x dx e dx

µ
σ

πσ

− ∞ ∞ −  
 

−∞ −∞
= =∫ ∫   

Make a simple transformation by setting 
x

y
µ

σ
−=  with dx dyσ= , we have 

 
21

21

2

y
I e dy

π

∞ −

−∞
= ∫  

Now,  

2 21 1
2 2 21 1

2 2

x y
I e dx e dy

π π

∞ ∞− −

−∞ −∞

  
  =   
    

∫ ∫  

    
( )2 21

21

2

x y
e dxdy

π

∞ ∞ − +

−∞ −∞
= ∫ ∫   

Changing to polar coordinates by setting  

cosx r θ= , siny r θ= , where 0 r< < ∞ , 0 2θ π< <   

The Jacobian of transformation  

2 2cos sin( , )
cos sin

sin cos( , )

x x
rx y rJ r r r

y y rr

r

θ θθ θ θ
θ θθ

θ

∂ ∂
−∂ ∂ ∂= = = = + =

∂ ∂∂
∂ ∂

 

and that implies dxdy rdrdθ= , therefore  

2 21 12 2 2
2 2 2

0 0 0 0
0

1 1 1
1

2 2 2

r r

r

I re drd e d d
π π π

θ θ θ
θ θ θ

π π π

∞
∞ − −

= = = =
= = − = =∫ ∫ ∫ ∫  



Chapter One                                                                                     The Normal Distribution 

 ٤ 

since 2 0I > , it follow that 1I = . 

 

1.2.2 Properties of Normal Curve  

 The graph of Figure (1.1) represents the curve of the normal p.d.f. 

( )f x   given by eq.(1.1), where curve has the following properties: 

1. The curve is symmetric about a vertical axis through the meanµ . 

2. The curve has the line 0y =  (x-axis) as a horizontal asymptote. 

3. The curve increasing for x µ−∞ < <  and decreasing for xµ < < ∞ . 

4. The curve has maximum point at x µ= . 

5. The curve have points of inflection at x µ σ= ± . 

6. The curve concave upward for x µ σ−∞ < < − , xµ σ+ < < ∞  and 

concave downward for xµ σ µ σ− < < + . 

7. The total area under the curve and above the horizontal axis is equal to 

one. 

1.2.3 Relation Between 
2( , )µ σΝ  and (0,1)Ν  

The relation between the normal and the standard normal distributions 

is given by the following theorem  

Theorem [14] 

The r.v. 2( , )X µ σΝ�  iff the r.v. ( ) (0,1)
x

Y
µ

σ
−= Ν� . 

 Proof: 

 ⇒Let 2( , )X µ σΝ� , then X  has p.d.f.  

 

21
21

( )
2

x

f x e

µ
σ

πσ

− −  
 =  

the function 
x

y
µ

σ
− =  

 
 define one-to-one transformation that maps  
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the space  { }:= −∞ < < ∞x xA  onto { }:= −∞ < < ∞y yB  with  

inverses x yσ µ= +  and the Jacobian is 
dx

J
dy

σ= =    

Then, the p.d.f. of r.v. y , say ( )g y , is  

2 21 1
2 21 1

( ) ( )
2 2

y y
g y f y J e eσ

πσ π

− −
= = = , y−∞ < < ∞   

which is the p.d.f. of the theorem is obvious. 

⇐  The converse of the theorem is obvious. 

 

1.2.4 The Cumulative Distribution Function  

The c.d.f. of r.v. 2( , )µ σΧ Ν�  defined as  

  ( ) ( ) ( )
x

x pr X x f t dt
−∞

Φ = ≤ = ∫  

         

21
21

2

tx
e dt

µ
σ

πσ

− −  
 

−∞
= ∫             (1.3) 

The integral side of eq.(1.3) can not be evaluated analytically because 

the derivative of 

21
2

t

e

µ
σ
− −  

   is not available under the integral sign 

therefore, table(1.1) below is prepared in most of statistical books 

which evaluate ( )
x x

pr x pr pr Y
µ µ µ

σ σ σ
Χ − − −   Χ ≤ = ≤ = ≤   

   
 

where (0,1)
x

y
µ

σ
−= Ν� . In this case the c.d.f of Y is  

21
21

( )
2

y t
y e dt

π

−

−∞
Φ = ∫                                                                     (1.4) 

More discussion is given in chapter two about several suggested 

procedures for approximating the integral side of eq.(1.4). 
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Table (1.1): The Normal Distribution of parameter 0µ = , 2 1σ =  

21
21

( ) ( )
2

( ) 1 ( )

y t
y pr Y y e dt

y y

π

−

−∞
Φ = ≤ =

Φ − = − Φ

∫ 

y Ф(y) y Ф(y) y  Ф(y) 

0.00 0.500 1.10 0.864 2.05 0.980 

0.05 0.520 1.15 0.875 2.10 0.982 

0.10 0.540 1.20 0.885 2.15 0.984 

0.15 0.560 1.25 0.894 2.20 0.986 

0.20 0.579 1.282 0.900 2.25 0.988 

0.25 0.599 1.30 0.903 2.30 0.989 

0.30 0.618 1.35 0.911 2.326 0.990 

0.35 0.637 1.40 0.919 2.35 0.991 

0.40 0.655 1.45 0.926 2.40 0.992 

0.45 0.674 1.50 0.933 2.45 0.993 

0.50 0.691 1.55 0.939 2.50 0.994 

0.55 0.709 1.60 0.945 2.55 0.995 

0.60 0.726 1.645 0.950 2.576 0.995 

0.65 0.742 1.65 0.951 2.60 0.995 

0.70 0.758 1.70 0.955 2.65 0.996 

0.75 0.773 1.75 0.960 2.70 0.997 

0.80 0.788 1.80 0.964 2.75 0.997 

0.85 0.802 1.85 0.968 2.80 0.997 

0.90 0.816 1.90 0.971 2.85 0.998 

0.95 0.829 1.95 0.974 2.90 0.998 

1.00 0.841 1.960 0.975 2.95 0.998 

1.05 0.853 2.00 0.977 3.00 0.999 
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1.3 The Moments of 
2( , )µ σΝ [26] 

 The m.g.f. of r.v. 2( , )µ σΧ Ν�  is defined by 

21
21

( ) ( ) ( )
2

x
tX tx tx

X t e e f x dx e e dx

µ
σ

πσ

− ∞ ∞ −  
 

−∞ −∞
Μ = Ε = =∫ ∫   

  

2 2
2

1
( ) 2

21

2

x tx
e dx

µ σ
σ

πσ

 − − −∞   

−∞
= ∫   

Consider the exponent  

2 2 2 2 2( ) 2 2 2x tx x x txµ σ µ µ σ− − = − + −  

  2 2 2 2 2 2 22( ) ( ) ( )x t x t tµ σ µ σ µ µ σ= − + + + + − +  

  
22 2 2 2 4 2( ) 2x t t tµ σ µ µ µσ σ = − + + − − −

 
 

  ( ) 2
2 2 2 21

2
2

x t t tµ σ σ µ σ  = − + − +     
 

Therefore, 

( ) 22

2 2
1

1 2
2 1

( )
2

x t

t t
X t e e dx

µ σ

σµ σ

πσ

 − +
 −  ∞+   

−∞
Μ = ∫   

Setting 
( )2x t

y
µ σ

σ

− +
=  that implies  

( )2x y tσ µ σ= + +  and dx dyσ=  

So,  

2 2 21 1
2 21

( )
2

t t y
X t e e dy

µ σ
σ

πσ

∞+ −

−∞
Μ = ∫   



Chapter One                                                                                     The Normal Distribution 

 ٨ 

 
2 2 21 1

2 21

2

t t y
e e dy

µ σ

π

∞+ −

−∞
= ∫  

The integral side of the above equation is unity  

Thus, 

2 21
2( )

t t
X t e

µ σ+
Μ =               (1.5) 

According to the theorem of section 1.2.3, the r.v. (0,1)
µ

σ
Χ −Υ = Ν�  has 

m.g.f.  

21
2( )

t
t eΥΜ =                (1.6) 

Maclaurian series expansion of 
21

2
t

e  leads to  

   

2 2 31 2 2 2 2
2 1 1 1

( ) 1
2 2! 2 3! 2 ! 2

r
t t t t t

t e
rΥ

     
Μ = = + + + + + +     

     
     

K K  

 ( ) ( )
2 4 6 2

1 1 1 3 1 3 5 1 3 5 2 1
2! 4! 6! 2 !

rt t t t
r

r
= + ⋅ + ⋅ + ⋅ ⋅ + + ⋅ ⋅ − +K K K 

So 2( )rΕ Υ  is the coefficient of ( )
2

2 !

rt

r
. That is  

( )2( ) 1 3 5 2 1r rΕ Υ = ⋅ ⋅ −K  

 ( )
( )

2 4 6 2 1 2 3 2
1 3 5 2 1

2 4 6 2 2 1 2r
r r

r
r r

⋅ ⋅ ⋅ ⋅= ⋅ ⋅ − =
⋅ ⋅ ⋅

K K
K

K K
 

( )2 2 !
( )

2 !

r
r

r

r
Ε Υ = , 1,2,3,r = K                       (1.7) 

and  

( )2 1 0r −Ε Υ = , 1,2,3,r = K                       (1.8) 
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1.3.1 Central Moments of 
2( , )µ σΝ  

Setting 
X µ

σ
−Υ = , in eq.(1.7) and eq.(1.8), we have  

2 (2 )!

2 !

r

r
r

r

µ
σ

 Χ − Ε =  
   

     leads to  

( )2 2(2 )!

2 !

r r
r
r

r
µ σ Ε Χ − =  

, 1,2,3,r = K           (1.9) 

and 

( )2 1 0rµ − Ε Χ − =  
, 1,2,3,r = K                   (1.10) 

(I) Mean 

Use of eq.(1.10) with 1r = , we have  

( ) 0µΕ Χ − =  and that implies ( ) µΕ Χ = , where µ  is called the mean of r.v. 

Χ  (or distn.). It is a measure of central tendency. 

(II) Variance 

Use of eq.(1.9) with 1r = , we have 

 ( )2 2µ σ Ε Χ − =  
, where 2σ  is called the variance of r.v. Χ  (or distn.). It is 

a measure of dispersion. 

(III) Coefficient of Skewness 

( )

( )
3

1 3/ 22

µ
γ

σ

 Ε Χ −  =  is called the coefficient of skewness. It is a measure 

of departure from symmetry of frequency curve. 

Use of eq. (1.10) with 2r = , we have 1 0γ = . 
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(IV) Coefficient of Kurtosis 

( )

( )
4

2 22
3

µ
γ

σ

 Ε Χ −  = −  is called the coefficient of kurtosis. It is a measure of 

degree of flatting of frequency curve. 

Use of eq. (1.9) with 2r = , we have  

4

2 4
3

3 0
σγ
σ

= − = . 

1.3.2 Other Central Moments   

(I) Mode  

A mode of a distn. is defined to be the value of x  which maximize the  

p.d.f. ( )f x . For continuous distributions, the mode x  is the solution of 

( )
0

df x

dx
=  and 

2

2
( )

0
d f x

dx
< . A mode is a measure of location. 

For 2( , )µ σΝ  distn. with p.d.f. of eq.(1.1), we have  

( )
21

3 21
( )

2

x

f x x e

µ
σσ µ

π

− −  −  ′ = − −    

( ) 0 0f x x xµ µ′ = ⇒ − = ⇒ =  

( )
21

23 2 21
( ) 1

2

x

f x x e

µ
σσ σ µ

π

− −  − −   ′′ = − − − +  
 

31
( ) 0

2
f µ σ

π
−′′ = − <  

Thus, the distn. mode is µ . 

(II) Median   

A median of a distn. is defined to be the value of x  such that the c.d.f. 

1
( )

2
F x = . 
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The median is a measure of location. 

For 2( , )µ σΝ  with c.d.f. of eq.(1.3), we have   

1
( )

2

x x
pr x pr pr

µ µ µ
σ σ σ

Χ − − −   = Χ ≤ = ≤ = Υ ≤   
   

  

where (0,1)Υ Ν�  and that implies from table(1.1)  0
x

x
µ µ

σ
− = ⇒ =   

thus, the distn. median is µ . 

 

1.4 Some Related Theorems [14] 

Theorem (1.4.1)  

If the r.v. (0,1)Χ Ν�  then the r.v. ( )2 2 1X χΥ = � , where the p.d.f. of 

y is 

1
1

2 2
1
2

1
( )

1
( )2
2

x

g y x e
− −

=

Γ

, 0 x< < ∞  

      0, . .e w=  

Theorem (1.4.2) 

If 1 2, , , nX X XK  are indep. r.v.’s with ( )2,i i iµ σΧ Ν� , 1,2, ,i n= K , 

then the r.v. 2 2

1 1 1
,

n n n

i i i i i i
i i i

k X k kµ σ
= = =

 
Υ = Ν  

  
∑ ∑ ∑� . 

Theorem (1.4.3) 

If 1 2, , , nX X XK  are indep. r.v.’s with ( )2
i irχΧ � , 1,2, ,i n= K , 

then the r.v. 2

1 1

n n

i i
i i

X rχ
= =

 
Υ =   

 
∑ ∑� . 

Theorem (1.4.4) 

 If 1 2, , , nX X XK  is a r.s. of size n from 2( , )µ σΝ , then the r.v. 
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2
2

1
( )

n
i

i

X
n

µ χ
σ=

− Υ =  
 

∑ �  where the p.d.f. of y is 

1
2 2

2

1
( )

( )2
2

n x

n
g y x e

n

− −
=

Γ

, 0 x< < ∞ , 1,2,3,n = K 

          0, . .e w=   

Theorem (1.4.5) 

 If the . 'sr v  X and Y are stochastically independent with 

(0,1)Χ Ν� and 2( )rχΥ � . Then, the r.v. ( )
X

t r
Y
r

Τ = � . 

 

1.4.1 Independence of Χ  and 

2

2
( 1)n S

σ
−

[26] 

For normal case, there are many techniques can be found throughout 

the literature providing the independency of the statistics  Χ  and 
2

2
( 1)n S

σ
−

 

[26]. 

To the best of our knowledge the following approach seem to be knew. 

Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from 2( , )µ σΝ  and let 
1

1 n

i
in =

Χ = Χ∑  and 

( )22

1

1

1

n

i
i

S X
n =

= − Χ
− ∑  be the sample mean and sample variance 

respectively. 

The aims are to show that Χ  and 
2

2
( 1)n S

σ
−

 are stochastically independent. 

The joint p.d.f. of the sets { }iΧ  is  
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2
2

11

1
( ) ( ) (2 ) exp

2

nn n
n i

i
ii

x
f x f x

µπ σ
σ

− −

==

 − = = −  
   

∑∏
%

, ix−∞ < < ∞  

1,2, ,i n= K                                                                                                  (1.11) 

If we consider the transformation i
iW

µ
σ

Χ −= , 1,2, ,i n= K , then according 

to the theorem of section 1.2.3, the r.v. (0,1)iW Ν�  and the joint p.d.f. of  

r.v.’s  1 2, , , nW W WK  is  

2
1 2

1

1
( , , , ) (2 ) exp

2

n n

n i
i

g w w w wπ
−

=

 
= − 

  
∑K , iw−∞ < < ∞ , 1,2, ,i n= K (1.12) 

Now,  

Let W
µ

σ
 Χ −=  
 

 and ( )
2 22

2
1 1

( 1)n n
i

i
i i

n S
W W

σ σ= =

 Χ − Χ −− = = 
 

∑ ∑   

Consider the transformation  

1 1 2

2 1 2

3 1 2 3

4 1 2 3 4

1 2 1

1 1 1

1 1

2 1 2 1
1 1 2

3 2 3 2 3 2
1 1 1 3

4 3 4 3 4 3 4 3

1 1 1 ( 1)

( 1) ( 1) ( 1) ( 1)

n

n n n

y W W W
n n n

y W W

y W W W

y W W W W

n
y W W W W

n n n n n n n n
−

= + + + 

= − ⋅ ⋅

= + −
⋅ ⋅ ⋅ 

= + + −

⋅ ⋅ ⋅ ⋅ 



−
= + + + −

− − − − 

K

M

M

K

                   

                                                                                                                     (1.13) 

 

The system of eqs.(1.13) can be written in a matrix form as  

WΥ = Α
% % %

, where  
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1 2( , , , )nY y y yΤ = K
%

, 1 2( , , , )nW W W W= K
%

 and ( )i j n n
a

×
Α =
%

 with  

1
1

ia
n

= , 
( 1)

( 1)
i i

i
a

i i

− −=
−

, 2,3, ,i n= K   

1

( 1)
i ja

i i
=

−
, 2,3, ,i n= K , 1,2, ,( 1)j i= −K   

 

The Jacobian of this transformation is J, where  

 1 2

1 2

1 ( , , , )

( , , , )
n

n

y y y

J w w w

∂=
∂

K

K
 

=

1 1 1 1

1 1
0 0 0

2 1 2 1
1 1 2

0 0
3 2 3 2 3 2
1 1 1 3

0 0
4 3 4 3 4 3 4 3

1 1 1 1 ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

n n n n

n

n n n n n n n n n n

−
⋅ ⋅

−
⋅ ⋅ ⋅

−
⋅ ⋅ ⋅ ⋅

− −
− − − − −

K K K

K K

K K

K

M M M M O M

M M M M O M

K K

 

1 1 1 1 1

2 1 3 2 4 3 ( 1)n n n
= ⋅

⋅ ⋅ ⋅ −
L  

                                       

1 1 1 1 1 1

1 1 0 0 0 0

1 1 2 0 0 0

1 1 1 3 0 0

1 1 1 1 4 0 0

1 1 1 1 1 ( 2) 0

1 1 1 1 1 1 1 ( 1)

n

n

−
−

−
−

− −
− −

K K K

K K K

K K K

L K K

K K

M M M M M O M

M M M M M O M

K K

K
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Multiply the 1st  row by (-1) and add to the thi  row ( 2,3, , )i n= K , we have 

1 1 1 1 1 1 1 1

0 2 1 1 1 1 1 1

0 0 3 1 1 1 1 1

0 0 0 4 1 1 1 1

0 0 0 0 5 1 1 1

0 0 0 0 0 0 ( 1) 1

0 0 0 0 0 0 0

k

n

n

− − − − − − −
− − − − − −

− − − − −
− − − −

=

− − −
−

K K

K K

K K

K K

K K

M M M M M O M M

M M M M M O M M

M M M M M O M M

K K

K K

  

where 1 1 1 1 1 1

2 1 3 2 4 3 ( 2)( 1) ( 1)
k

n n n n n
=

⋅ ⋅ ⋅ − − −
K   

The above is the determent of the upper triangular matrix whose value 

obtained by multiplying the elements of the main diagonal. 

 
1

(1)( 2)( 3)( 4) [ ( 1)]( )k n n
J

= − − − − − −KK  

   
1( 1) 1 2 3 4 5 ( 1)

1 2 3 ( 1) 1 2 3 ( 1)

n n n

n n n n

−− ⋅ ⋅ ⋅ ⋅ −=
⋅ ⋅ − ⋅ ⋅ −

KK

K K
  

  
1( 1) !

1
! !

n n

n n

−−= =  

1
1

J
=  implies 1J =  and  

2 2

1 1

n n

i i
i i

W Y
= =

=∑ ∑   

This show that the set { } 1
n

i iY =  represent a r.s. of size n from (0,1)Ν .  

Now,  

( )22 2 2 2
1

2 1 1

n n n

i i i
i i i

W nW
= = =

Υ = Υ − Υ = −∑ ∑ ∑   
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22 2

1 1
( )

n n

i i
i i

W nW W W
= =

− = −∑ ∑  

since  { } 1
n

i iY =  are indep. r.v.’s from (0,1)Ν , then according to theorems (1.4.3) 

and (1.4.4)  

2
2 2 2

2
2 1

( 1)
( ) ( 1)

n n

i i
i i

n S
W W nχ

σ= =

−Υ = − = −∑ ∑ �                 (1.14) 

Also, we have  

1Υ  is distributed independently of 
2

2
2

2

( 1)n

i
i

n S

σ=

−Υ =∑   

where 1
X

nW n
µ

σ
 −Υ = =  
 

 

It follows that 
2

2
( 1)n S

σ
−

 is indep. of n
µ

σ
Χ −

. 

 

1.4.2 Distribution of Χ  and 

2

2
( 1)n S

σ
−

  

Let 1 2, , , nΧ Χ ΧK  be a r.s. of size 2n ≥  from  2( , )µ σΝ , we shall 

consider first the distn. of the sample mean 
1

1 n

i
in =

Χ = Χ∑ . 

According to theorem (1.4.2) with 
1

ik
n

= , iµ µ= , 2 2
iσ σ= , 1,2,...,i k∀ =   

Then 
2

,
n

σµ
 

Χ Ν  
 
 

�                      (1.15) 

Also, 

 
22 2 2

1 1

1 1
( )

1 1

n n

i i
i i

S n
n n= =

 
= Χ − Χ = Χ − Χ − −   

∑ ∑  
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Consider  

22

1 1
( ) ( ) ( )

n n

i i
i i

µ µ
= =

 Χ − = Χ − Χ + Χ − ∑ ∑  

         2 2

1 1
( ) 2( ) ( ) ( )

n n

i i
i i

nµ µ
= =

= Χ − Χ + Χ − Χ − Χ + Χ −∑ ∑  

but 
1 1
( ) 0

n n

i i
i i

n n n
= =

Χ − Χ = Χ − Χ = Χ − Χ =∑ ∑  

So, 

2 2 2

1 1
( ) ( ) ( )

n n

i i
i i

nµ µ
= =

Χ − = Χ − Χ + Χ −∑ ∑  

         2 2( 1) ( )n S n µ= − + Χ −                    (1.16) 

by dividing both sides of eq.(1.16) by 2σ , we have  

2 2 2

2 2 2
1

( ) ( 1) ( )n
i

i

n S nµ µ
σ σ σ=

Χ − − Χ −= +∑  

2 2 2

2 2 2
1

( 1) ( ) ( )n
i

i

n S nµ µ
σ σ σ=

− Χ − Χ −= −∑                             (1.17) 

since 2( , )i µ σΧ Ν� , then according to the theorem of section 1.2.3, the r.v. 

(0,1)i µ
σ

Χ − Ν� . 

Also, according to theorems(1.4.1) and (1.4.4), the r.v. ( )
2

2 1i µ χ
σ

Χ − 
 
 

�  

and the r.v. 
2

2

1
( )

n
i

i
n

µ χ
σ=

Χ − Υ =  
 

∑ �  

Also, since the r.v. 
2

,
n

σµ
 

Χ Ν  
 
 

� , then the r.v. (0,1)

n

µ
σ

Χ − Ν�  
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and the r.v. ( )
2 2

2( )
1

n
n

µ µ χ
σ σ

   Χ − Χ −=   
  

� . 

and the r.v.’s Χ  and 
2

2
( 1)n S

σ
−

 are stochastically independent. Then, the r.v.’s 

2

1

n
i

i

µ
σ=

Χ − 
 
 

∑ and 
2

n
µ

σ
 Χ −
 
 

 are stochastically independent. 

and since from eq.(1.17), the r.v. 
2 2 2

2 2 2
1

( 1) ( ) ( )n
i

i

n S nµ µ
σ σ σ=

− Χ − Χ −= −∑   

then, the r.v. 
2

2
2

( 1)
( 1)

n S
nχ

σ
− −� . 

 

1.5 Estimation  

The problem of estimation can be defined as follows:  

Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from a distn. Whose p.d.f. is  

( , )f x θ
%

, where 1 2( , , , )kθ = θ θ θK
%

 is a vector of unknown parameters, we 

assume that the values 1 2, , , nx x xK  of r.v.’s 1 2, , , nΧ Χ ΧK  are observed. It 

is desired to estimate θ
%

 on the basis of the observed values 1 2, , , nx x xK . 

This estimation can be made in two ways: 

 

1.5.1 Interval estimation 

Is to find two statistics say 1 1 1 2( , , , )nU u X X X= K  and 

2 2 1 2( , , , )nU u X X X= K , 1 2( )U U≤  such that the unknown parameter say θ  

lie in between that  1 2U U≤ θ ≤  with certain prob. Say 1− α  (α is small). 

For normal case, we have two unknown parameters µ  and 2σ . We 

assume 1 2, , , nΧ Χ ΧK  be a r.s. of size n from 2( , )Ν µ σ  is available and a 

confidence interval for the distn. parameters are required with prob. 1− α . 
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(I) Confidence Interval for the Mean µ  

There are two cases: 

Case (1): when 2σ  is known  

According to section 1.4.2, we have  

2 ( )
, (0,1)

n

n
n

 σ Χ − µ Χ − µΧ Ν µ ⇒ Ζ = = Ν 
  σ σ 

� �  

So, we can find from (0,1)Ν  table two no.’s say 
1

2

Z α−
±  such that 

1 1
2 2

1pr Z Z Zα α α
− −

 
 − < < = −
 
 

  

Now, consider the event 

1 1 1 1
2 2 2 2

( )n
Z Z Z Z Zα α α α

µ
σ− − − −

Χ −− < < ≡ − < <   

1 1
2 2

Z Z
n n

α α
σ σµ

− −
Χ − < < Χ +  

therefore, the 100(1 )%α−  C.I for µ  is:  

1 1
2 2

,Z Z
n n

α α
σ σ

− −

 
 Χ − Χ +
 
 

. 

Case (2): when 2σ  is unknown  

 According to section 1.4.2, we have  

1) 
2 ( )

, (0,1)
n

n

σ µµ
σ

  Χ −Χ Ν ⇒ Ν 
 
 

� �  

2) 
2

2
2

( 1)
( 1)

n S
nχ

σ
− −�  

3) Χ  and 2S  are stochastically indep. 
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Then, according to theorem (1.4.5) 

the r.v. 
2

2

( ) ( )
( 1)

( 1)

( 1)

n n
t n

Sn S

n

µ σ µ

σ

Χ − Χ −Τ = = −
−

−

�  

So, from t -distn. table with ( 1)n −  dof, we can find two no.’s say 
1

2

t α−
±   

such that 
1 1

2 2

1pr t tα α α
− −

 
 − < Τ < = −
 
 

 

Now, consider the event 

1 1 1 1
2 2 2 2

( )n
t t t t

Sα α α α
µ

− − − −

Χ −− < Τ < ≡ − < <  

1 1
2 2

S S
t t

n n
α αµ

− −
Χ − < < Χ +  

therefore, the 100(1 )%α−  C.I for µ  is: 

1 1
2 2

,
S S

t t
n n

α α− −

 
 Χ − Χ +
 
 

. 

(II) Confidence Interval for the Variance 
2σ  

 There are two cases: 

Case (1): when µ  is known  

According to theorem of section 1.2.3 and theorems (1.4.1) and (1.4.4), we 

have  

2( , )i µ σΧ Ν� , 1,2, ,i n∀ = K  

(0,1)i µ
σ

Χ − Ν�  and 
2

2(1)i µ χ
σ

Χ − 
 
 

�  
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2
2

1
( )

n
i

i
n

µ χ
σ=

Χ − Υ =  
 

∑ �  

so, we can find from 2χ -distn. table two no.’s say 2

2
αχ  and 2

1
2
αχ

−
 such that  

2 2

1
2 2

1pr α αχ χ α
−

 
 < Υ < = −
  
 

 

Now, consider the event 

( )2
2 2 2 21

21 1
2 2 2 2

n

i
i

α α α α

µ
χ χ χ χ

σ
=

− −

Χ −
< Υ < ≡ < <

∑
  

( ) ( )2 2

21 1
2 2

1
2 2

n n

i i
i i

α α

µ µ
σ

χ χ
= =

−

Χ − Χ −
< <

∑ ∑
 

therefore, the 100(1 )%α−  C.I for 2σ  is  

( ) ( )2 2

1 1
2 2

1
2 2

,

n n

i i
i i

α α

µ µ

χ χ
= =

−

 
Χ − Χ − 

 
 
  
 

∑ ∑
. 

Case (2): when µ  is unknown 

According to section 1.4.2, we have  

2
2

2
( 1)

( 1)
n S

nχ
σ
−Υ = −�  when 

22 2

1

1

( 1)

n

i
i

S n
n =

 
= Χ − Χ −   

∑  is the sample 

variance  
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So, we can find two no.’s from 2χ -distn. table with ( 1)n −  dof, say 2

2
αχ  and 

2

1
2
αχ

−
 such that  

 2 2

1
2 2

1pr α αχ χ α
−

 
 < Υ < = −
  
 

 

Now, consider the event  

2
2 2 2 2

21 1
2 2 2 2

( 1)n S
α α α αχ χ χ χ

σ− −

−< Υ < ≡ < <  

2 2
2

2 2

1
2 2

( 1) ( 1)n S n S

α α
σ

χ χ
−

− −< <  

therefore, the 100(1 )%α−  C.I for 2σ  is  

2 2

2 2

1
2 2

( 1) ( 1)
,

n S n S

α αχ χ
−

 
 

− − 
 
  
 

. 

 

1.5.2 Point Estimation [21] 

 Point estimation is concerned with inference about the unknown 

parameters of a distribution from a sample. It provides a single value for each 

unknown parameter. Point estimation admits two problems: 

First, developing methods of obtaining a statistics whose values can be 

used to estimate the unknown parameters of the distribution, such statistics 

are called point estimators. 

Second, selecting criteria and technique to obtain a best estimator 

among possible estimators. 
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1.5.2.1 Definition (Estimator) [21] 

 Any statistic whose values are used to estimate the unknown parameter 

θ  or some function of θ , say ( )τ θ  is called point estimator. 

 

1.5.3 Methods of Finding Estimators 

 Many techniques have been proposed in the literatures for finding 

estimators of the distn. parameters such as Moments, Maximum likelihood, 

Minimum chi-square, Minimum distance, Least square and Bayesian method.  

These methods provide a single value for each unknown parameter of 

the distribution. For normal case, we shall discuss two methods: The method 

of Moments and the Maximum likelihood method. 

1.5.3.1 Moments Method 

 Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from a distribution whose p.d.f. 

( , )f x θ
%

, where 1 2( , , , )kθ θ θ θ= K
%

 is a vector of unknown parameters. 

Let ( )r
rµ′ = Ε Χ  be the thr  moment about origin of the distribution and 

let 
1

1 n
r

r i
in

µ
=

= Χ∑  be the thr  moment about origin of the sample. The 

method of moments can be described follows:  

Since, we have k  unknown parameters, equate  

rµ ′  to rµ  at ˆθ θ= . That is  

r rµ µ′ =  at ˆθ θ= , 1,2,3, ,r k= K . 

For these k  equations, we find a unique solution for 1 2
ˆ ˆ ˆ, ,..., kθ θ θ  and 

we say that̂rθ , ( 1,2, , )r k= K  is an estimate of rθ  obtained by method of 

moments and the corresponding statistic r̂θ  is the method of moments 

estimator of rθ . 
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Now, to estimate µ  and 2σ  for normal case by method of moments we 

let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from 2( , )µ σΝ  is taken. 

Since 2( , )µ σΝ  distribution involve two unknown parameters  

We set r rµ µ′ =  at ˆµ µ= , 2 2ˆσ σ= , 1,2r =  

1r =  implies  

1 ( )µ µ′ = Ε Χ = , 1
1

1 n

i
in

µ
=

= Χ = Χ∑   

2r =  implies 

2 2 2
2 ( )µ µ σ′ = Ε Χ = + , 

22 2
2

1

1 ( 1)n

i
i

n
S

n n
µ

=

−= Χ = + Χ∑  where: 

22 2

1

1

1

n

i
i

S n
n =

 
= Χ − Χ −   

∑  

1r =  implies 1 1µ µ′ =  at ˆµ µ= , 2 2ˆσ σ= , we obtain  

µ̂ = Χ                                                (1.18) 

2r =  implies 2 2µ µ′ =  at ˆµ µ= , 2 2ˆσ σ= , we obtain 

22 2 21
ˆ ˆ

n
S

n
µ σ −+ = + Χ                             (1.19) 

solving eqs. (1.18) and (1.19) we get  

2 21
ˆ

n
S

n
σ −=  and µ̂ = Χ                                                                         (1.20) 

are respectively the estimators of µ  and 2σ  obtained by method of moments. 

1.5.3.2 Maximum Likelihood Method [14] 

Definition (likelihood function) 

 The likelihood of a r.s. 1 2, , , nΧ Χ ΧK  of size n from a distribution 

having p.d.f. ( , )f X θ
%

 where 1 2( , , , )kθ θ θ θ= K
%

 is a vector of unknown 
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parameters is defined to be the joint p.d.f. of the n r.v.’s 1 2, , , nΧ Χ ΧK  which 

is considered as a function of θ
%

 and denoted by( , )L Xθ
%%

, that is  

1
( , ) ( , ) ( , )

n

i
i

L L X f X f Xθ θ θ
=

= = = ∏
% %% % %

. 

Now,  

Let ( , )L Xθ
%%

 be the likelihood function of a r.s. 1 2, , , nΧ Χ ΧK  of size n 

from a distribution whose p.d.f. ( , )f X θ
%

, 1 2( , , , )kθ θ θ θ= K
%

 is a vector of 

unknown parameters. 

Let ˆ ( )uθ = Χ
%%

 

 1 2( ( ), ( ), , ( ))ku u u= Χ Χ ΧK
% % %

 

be a vector function of the observations 1 2( , , , )nΧ = Χ Χ ΧK
%

  

If θ̂
%

 have the value of θ
%

 which maximizes ˆ( , )L θ Χ
%%

 then θ̂
%

 is the m.l.e of 

θ
%

 and the corresponding statistic Θ̂
%

 is the M.L.E of θ
%

. We note that: 

(I) Many likelihood function satisfy the condition that the m.l.e is a 

solution of likelihood equations 

( , )
0

r

L θ
θ

∂ Χ =
∂

%% , at ˆθ θ=
% %

, 1,2,3, ,r k= K . 

(II)  Since ( , )L Xθ
%%

 and ln ( , )L θ Χ
%%

 have their maximum at the same 

value of θ
%

 so sometimes it is easier to find the maximum of the 

logarithm of the likelihood. 

In such case, the m.l.e θ̂
%

 of θ
%

 which maximizes ( , )L Xθ
%%

 may be given 

the solution of the likelihood equations  

     
ln ( , )

0
r

L θ
θ

∂ Χ =
∂

%% , at ˆθ θ=
% %

, 1,2,3, ,r k= K . 

For normal case 
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Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from 2( , )µ σΝ  where the 

distribution p.d.f. is given by eq.(1.1), the likelihood function is 

2 2( , , ) ( , , )L x f xµ σ µ σ=
% %

   

 

2
2

1
( )

2 2
21 1

1
( , , )

2

ixn n

i
i i

f x e
µ

σµ σ
πσ

− −

= =
= =∏ ∏  

 
( )2

1

1
222 2(2 ) ( )

n
i

i

n n x
e

µ
π σ =

− −∑− −
=  

( )22
2

1

1
ln ln(2 ) ln

2 2 2

n

i
i

n n
L xπ σ µ

σ =
= − − − −∑  

( )2
1

ln 1 n

i
i

L
x µ

µ σ =

∂ = −
∂ ∑                                              (1.21) 

( )22 2 2 2
1

ln 1 1

2 2( )

n

i
i

L n
x µ

σ σ σ =

∂ = − + −
∂

∑        (1.22) 

we set 
ln

0
L

µ
∂ =
∂

 and 
2

ln
0

L

σ
∂ =
∂

 at ˆµ µ= , 2 2ˆσ σ=   

we have 

 ( )
1 1

1
ˆ ˆ0

n n

i i
i i

x x
n

µ µ
= =

− = ⇒ =∑ ∑                                                                 (1.23) 

and ( )22 2 2
1

1
ˆ 0

ˆ ˆ2 2( )

n

i
i

n
x µ

σ σ =
− + − =∑                            (1.24) 

This implies that: 

µ̂ = Χ                                (1.25) 

from eq.(1.24) and eq.(1.25), we have  

( )22

1

1
ˆ

n

i
i

x x
n

σ
=

= −∑  
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implies 
2

2 ( 1)
ˆ

n S

n
σ −=                                       (1.26) 

 

1.6 Equality of Estimations [21] 

 In this section, we shall introduce some definitions and theorems 

concern the equality of estimators which reach to the best estimators for the 

unknown parameters. 

1.6.1 Definition [21] 

 Let the statistic 1 2
ˆ ( , , , )nuθ = Χ Χ ΧK  be an estimator of the unknown 

parameter θ , then θ̂  is said to be an  

(I) Unbiased estimator if and only if ˆ( )θ θΕ = , otherwise θ̂  is called 

biased estimator for θ . The term ˆ( )θ θΕ −  is called the bias term. 

(II)  Consistent estimator if ( )ˆ 0
n
Lim pr θ θ ε
→∞

− < = . 

(III)  Asymptotically unbiased if ˆ( )
n
Lim θ θ
→∞

Ε = . 

(IV)  Minimum variance unbiased estimator (MVUE) if  

1. θ̂  is an unbiased estimator for θ . 

2. The variance of ̂θ  is less than or equal to the variance of every other 

unbiased estimators of θ . 

 

1.6.2 Definition (Sufficient Statistics) [2, 13] 

 Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from a distn. whose p.d.f. ( , )f x θ
% %

, 

where 1 2( , , , )mθ θ θ θ= K
%

 is a vector of unknown parameters and 

1 2( , , , )i i nuΥ = Χ Χ ΧK , 1,2, ,i m= K  be K statistics whose joint p.d.f. 

( , )g y θ
%%

. Then the K statistics are called jointly sufficient statistics for θ
%

 iff  



Chapter One                                                                                     The Normal Distribution 

 ٢٨ 

( , )
( )

( , )

f x
x

g y

θ
θ

= Η% %
%

%%

 

where ( )xΗ  does not depend on θ
%

 for all fixed values of ( )i i iy u x= , 

1,2, ,i m= K . 

 

1.6.3 Theorem (Neymann Factorization Theorem) [2] 

  Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from a distn. whose p.d.f. ( , )f x θ
%

, 

where 1 2( , , , )mθ θ θ θ= K
%

 is a vector of unknown parameters. A set of 

statistics ( )i iY u X=
%

, 1,2, ,i m= K  is jointly sufficient statistics for θ
%

 iff, we 

can find two nonnegative functions 1k  and 2k  such that  

 1 2 1 2( ; ) ( , , , ; , , , )n mf x f x x xθ θ θ θ= K K
% %

 

 1 1 2 1 2 2[ ( ), ( ), , ( ); , , , ] ( )m mk u x u x u x k xθ θ θ= ⋅K K
% % % %

  

where 2( )k x
%

 is free of θ
%

 for every values of 1 2, , , ky y yK  of  

1 2, , , mΥ Υ ΥK . 

For normal 2( , )µ σΝ  case, we have two unknown parameters µ  and 

2σ , where we assume a r.s. 1 2, , , nΧ Χ ΧK  is a available, then the joint p.d.f. 

can be written as  

( )
211 1 ( )

22 2 2 22 2

1 1
( ; , ) , , (2 ) ( )

ixn n

i
i i

f x f x e
µ

σµ σ µ σ π σ
− −− −

= =
= =∏ ∏

%
 

       

2 2
2

1 1

1
2

2 22 2( ) (2 )

n n
ii

i i

n nx x n

e
µ µ

σσ π= =

 
− − + − −

 
∑ ∑

= ⋅  

       2 2
1 2

1 1
, , , ( )

n n

i i
i i

k x x k xµ σ
= =

 
= ⋅ 

  
∑ ∑

%
 

where 2
2( ) (2 )

n

k x π
−

=
%

. 
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Thus according to factorization theorem (1.6.3), the statistics 

1
1

n

i
i =

Υ = Χ∑  and 2
2

1

n

i
i =

Υ = Χ∑  are jointly sufficient statistics for µ  and 2σ . 

Remark 

 If { }( )i iu XΥ =
%

, 1,2, ,i m= K  is a set of jointly sufficient statistics 

for 1 2( , , , )mθ θ θ θ= K
%

, then any set of one-to-one functions or 

transformations of 1 2, , , mΥ Υ ΥK  are also jointly sufficient statistics for θ
%

. 

For normal 2( , )µ σΝ  case, we have 
1

n

i
i =

Χ∑  and 2

1

n

i
i =

Χ∑  are jointly 

sufficient statistics for µ  and 2σ . 

But 
1

1 n

i
in =

Χ = Χ∑  and 
22 2

1

1

1

n

i
i

S n
n =

 
= Χ − Χ −   

∑  are one-to-one 

functions of 
1

n

i
i =

Χ∑  and 2

1

n

i
i =

Χ∑ . Then Χ  and 2S  are jointly sufficient 

statistics for µ  and 2σ . 

 

1.6.4 Definition (Completeness) [2, 13] 

 Let Χ  be a r.v. of either type (continuous or discrete) defined on S.S A 

and having p.d.f. as a member of the family { ( ; ), }f x θ θ ∈Ω  of p.d.f.’s, and 

let ( )u X  be a continuous function (not a function of θ  ). If [ ( )] 0u XΕ = , 

θ∀ ∈Ω  implies ( ) 0u x = , x∀ ∈ Α , then the family { ( ; ), }f x θ θ ∈Ω  is called 

a complete family of p.d.f.’s. 

Remark 

 If ( )u XΥ =
%

 is a sufficient statistic for θ  whose p.d.f. belong to the 

complete family of p.d.f.’s, then Υ  is called a complete sufficient statistic 

forθ . 
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1.6.5 Theorem (Lehmann-Scheffé Theorem-1st  Theorem) [2] 

 Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from a distn. whose p.d.f. 

( ; ),f x θ θ ∈Ω
% %

. Let ( )uΥ = Χ
%

 be a sufficient statistic for θ  whose p.d.f. 

belong to the complete family { ( ; ), }g y θ θ ∈Ω . 

If ( )Φ Υ  is a function of Υ  which is an unbiased estimator for θ , then 

( )Φ Υ  is a unique MVUE for θ . 

1.6.6 Definition (The Exponential Family of p.d.f.’s)[2, 13] 

 Several parameter cases  

Consider the family { ( ; ), }mf x θ θ ∈Ω
% %

 of p.d.f.’s which can be expressed as  

1
( ; ) exp ( ) ( ) ( ) ( )

m

j j
j

f x p k x q s xθ θ θ
=

 
 = + +
  
∑

%
, a x b< <  

 =0, e.w. 

Such p.d.f. is said to be a member of exponential class of p.d.f.’s and 

satisfying the following conditions: 

(i) Neither a  nor b  depends on 1 2( , , , )mθ θ θ θ= K
%

. 

(ii)  ( )jp θ
%

 is nontrivial, functionally independent, continuous functions 

of jθ , 1,2, ,j m= K . 

(iii)  ( ) 0jk x′ ≠  and ( )s x  is continuous function of x  for a x b< < . 

Now, if a r.s. 1 2, , , nΧ Χ ΧK  is taken from a distn. whose p.d.f. ( ; )f x θ
%

. 

Then the joint p.d.f. of the sample set { }iΧ  is  

11 1
( , ) ( , ) exp ( ) ( ) ( ) ( )

n n m

i j j i i
ji i

f x f x p k x q s xθ θ θ θ
== =

 
 = = + +
  
∑∏ ∏

% % % % %
 

       
1 1 1

( ) ( ) ( ) ( )
m n n

j i i i
j i i

Exp p k x nq s xθ θ
= = =

 
 = + +
  
∑ ∑ ∑

% %
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1 1 1

( ) ( ) ( ) ( )
m n n

j i i i
j i i

Exp p k x nq Exp s xθ θ
= = =

   
 = + ⋅  
     
∑ ∑ ∑

% %
 

Then according to the Factorization theorem (1.6.3), 

The statistics 1 1
1

( )
n

i
i

k x
=

Υ = ∑ , 2 2
1

( )
n

i
i

k x
=

Υ = ∑ ,…,
1

( )
n

m m i
i

k x
=

Υ = ∑  

are jointly sufficient statistics for the m  parameters 1 2, , , mθ θ θK . 

 

Note 

 If can be shown easily [2] that the joint p.d.f. of the sufficient statistics 

1 2, , , mΥ Υ ΥK  take the form  

1 2
1

( , , , )exp ( ) ( )
m

m j i
i

R y y y p y nqθ θ
=

 
+ 

  
∑K

% %
                                 (1.27) 

This p.d.f. of eq.(1.27) expressed as a member of the exponential family. 

 

1.6.6 Theorem (Lehmann-Scheffé-2nd  Theorem) [2] 

Let 1 2, , , nΧ Χ ΧK  be a r.s. of size n from a distn. whose p.d.f. ( ; )f x θ
%

, 

1 2( , , , )mθ θ θ θ= K
%

 belong to the exponential family and let 

1 2, , , mΥ Υ ΥK  be jointly sufficient statistics for 1 2, , , mθ θ θK , then the family 

of p.d.f.’s { ( ; ), }mg y θ θ∈Ω
% %

 is complete and the statistics 1 2, , , mΥ Υ ΥK  are 

jointly complete sufficient statistics for 1 2, , , mθ θ θK . 

*For 2( , )µ σΝ  with p.d.f.  

2
2

1
( )

2 21
( ; , )

2

x
f x e

µ
σµ σ

πσ

− −
= , x−∞ < < ∞   

which can be written as a member of the exponential family as  

2 2 2 2
2

1 1 1
( ; , ) exp ln(2 ) ln( ) ( 2 )

2 2 2
f x x xµ σ π σ µ µ

σ
 = − − − − + 
 
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2

2 2
2 2 2

1 1 1
exp ln ln(2 )

2 22 2
x x

µ µ σ π
σ σ σ

  
= − − + −  

    

 

Where 2
1 2
( , )p

µµ σ
σ

= , 2
2 2

1
( , )

2
p µ σ

σ
−= , 1( )k x x= , 2

2( )k x x= , 

2
2 2

2
1

( , ) ln
22

q
µµ σ σ
σ

 
= − + 

 
 

, 
1

( ) ln(2 )
2

s x π= −  

Now, if a sample set { }iΧ  is available, then the statistic 

1 1
1 1

( )
n n

i i
i i

k x
= =

Υ = = Χ∑ ∑  and 2
2 2

1 1
( )

n n

i i
i i

k x
= =

Υ = = Χ∑ ∑  are jointly sufficient 

statistics for µ  and 2σ . 

Since 
1

1 n

i
in =

Χ = Χ∑  and 
22 2

1

1

1

n

i
i

S n
n =

 
= Χ − Χ −   

∑  is a one-to-one functions 

of 1Υ  and 2Υ , then Χ  and 2S  are jointly sufficient statistics for µ  and 2σ . 

As shown in sections 1.4.1 and 1.4.2 that  

1. 
2

,
n

σµ
 

Χ Ν  
 
 

�  and 
2

2
2

( 1)
( 1)

n S
nχ

σ
− −� . 

2. Χ  and 2S  are stochastically independent. 

Then the joint p.d.f. of Χ  and 2S  can be expressed as a member of the 

exponential family and that implies that Χ  and 2S  are minimal jointly 

sufficient statistics for µ  and 2σ . 

Further more, we have  

( ) µΕ Χ =  and 2 2( )S σΕ = , then from completeness we see that Χ  and 

2S  are M.V.U.E’s for µ  and 2σ  respectively. 



CHAPTER  

3 
Generating Random Varieties from Normal 

Distribution 

 

3.1 Introduction 

 The first step in studying a certain problem under consideration is 

building a mathematical model; the next step is driving a solution from this 

model. The solution may be obtained analytically or numerically. The analytic 

solution is usually obtained directly from it’s mathematical representation in 

the form of the formula, while a numerical solution is generally an 

approximate solution obtained as a result of substitution of numerical values 

for the variables and parameters of the model. Many numerical methods are 

iterative, that is, each successive step in the solution uses the results from the 

previous step, such as Newton-Raphson method for approximating the roots 

of a nonlinear equation. Two special types of numerical methods are 

simulation and Monte Carlo designed for a solution of deterministic and 

stochastic problems. 

Simulation “in the wide scene” is defined as numerical technique for 

conducting experiments on a digital computer, which involve certain types of 

mathematical and logical models that describe the system behavior over 
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extended periods of time, for example, simulating football game, supersonic 

jet flight, a telephone communication system, a wind tunnel, a large scale 

military battle (to evaluate defensive or offensive weapon system), or a 

maintenance operations (to evaluate the optimal size of repair crews). 

Simulation is often viewed as a " Method of Last Resort" to be used when 

everything else has failed, software building and technical developments have 

made simulation one of the most widely used and accepted tools for designer in 

system analysis and operational research. 

Simulation "in a narrow sence" (also called stochastic simulation) is 

defined as experimenting with the model over time, it includes sampling 

stochastic varieties from probability distribution. Because sampling from a 

particular distribution involve the use of random numbers, stochastic simulation 

sometimes called Monte Carlo Simulation. 

Historically, the Monte Carlo method was considered as a technique 

using random or pseudorandom numbers for solution of a model. These 

random numbers are essentially independent random variables uniformly 

distributed over unit interval [0, 1]. 

Actually there are arithmetic codes available at computer center (0 to 

9) occurs with approximately equal probability "imagine flips of a fair ten-side 

die". Such codes are called random number generators. 

In the beginning of the 20th-century the Monte Carlo was used to 

examine the Boltzmann equation. 

In 1908 the famous statistician Gosset (student) uses the Monte Carlo 

method for estimating the correlation coefficient in his t-distribution, [9]. 

One of the earliest problems connected with Monte Carlo method is the 

famous Buffon's needle problem, who found the probability of a needle of length L 

thrown randomly onto a floor composed of parallel planks of width  
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D L>  is 
2L

P
Dπ

= which can be estimated as the ratio of the number of throws 

hitting the crack to the total number of throws. 

A. N. Kolmogororv (1931) applies Monte Carlo method and showed the 

relationship between Markov stochastic processes and certain Integro-

differential equations, [8]. 

In 1948 S.Ulam used Monte Carlo method for estimation of the 

eigenvalues of Schrodinger equation, [7]. 

The terms "Monte Carlo" was introduced by Von Neumann and Ulam 

during World War II, as a code word for secret work at Los Alamos, it was 

suggested by the gambling casinos at the city of Monte Carlo in Monaco. The 

Monte Carlo method was then applied to problems related to the atomic bomb [3] 

where the work involve direct simulation of behavior concerned with random 

neutron diffusion in fissionable material. Shortly thereafter Monte Carlo method 

were used to evaluate complex multidimensional integrals, solution of certain 

differential and integral equations stochastic problems, deterministic problems 

if they have the same formal expression as some stochastic process, evaluating 

parameters of queues and networks, sampling random varieties from probability 

distributions, and analyzing complex problems. A useful reference related to 

Monte Carlo simulation is given by Rubinstein [27] and Norman [22]. 

This chapter involves three sections. Section (3.2) illustrated random number 

generation. While section (3.3) discussed random varieties generation. Generation 

random varieties from normal distribution are studied theoretically and applied 

practically in section (3.4). 
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3.2 Random Number Generation 

Many techniques for generating random numbers on digital computer by 

Monte Carlo method and simulation have been suggested tested and used in 

recent years. Some of these methods are based on random phenomena, others 

on deterministic recurrence procedures. 

Initially manual methods were used to generate a sequence of numbers 

such as coin flipping, dice rolling, card shuffling, and roulette wheels, but 

these methods were to slow for general use, moreover the generated sequence 

not reproduced. 

Shortly following with the computer aid it become possible to obtain 

random numbers. In 1951 Von Neumann [30] suggests the mid-square 

method using the arithmetic operations of a computer. His idea is to take the 

square of the preceding random number and extract the middle digits. For 

instance, suppose we wish to generate 4-digits numbers 

1- Choose any 4-digit number, say 5232. 

2- Square it, we have 27373824. 

3- The next 4-digit number is the middle 4-digits of step2, that is, 3738. 

4- Repeat the process. 

Von Neumann's method proved slow and awkward for statistical 

analysis, furthermore the sequences tend to cyclicity and once a zero is 

encountered the sequence terminates. One method of generating random 

numbers on a digital computer is published in 1951 by RAND Corporation 

[24], the method consists of preparing a well known table of a million digits 

and. storing it in the memory of the computer. The advantage of this method is 

reproducibility and it’s disadvantage is its lack of speed and risk of exhausting 

the table. 

It is noted in the literature that the random numbers generated by any 
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method is good one if the random numbers are uniformly distributed, 

statistically independent, reproducible, fast, and requires minimum capacity in 

the computer memory. 

The congruential methods for generating pseudorandom numbers are 

designed specifically to satisfy as many of these requirements as possible. 

These methods produce a non-random sequence of numbers according to 

some recursive formula based on calculating the residues modulo of some integer 

m of a linear transformation Although these processes are completely 

deterministic, Knuth in 1969 [16] show that the numbers generated by such 

sequence appear to be uniformly distributed and statistically independent. 

The congruential methods [19] are based on a fundamental congruence 

relationship, which may be formulated as: 

( )i+1 iX = aX  + c  (mod m), i = 1, 2, , mK                                                         (3.1) 

Where a is a multiplier, c is the increment, and m is the modulus (a, c, m are 

non-negative integers), (mod m) means that eq.(3.1) can be written as: 

i
i+1 i

aX
X =aX +c-m

c

m

+ 
  

                                                                                        (3.2) 

Where [Z] is the largest positive integer in Z. 

Given an initial starting value 1X  with fixed values ofa, c, and m , 

then eq.(3.2) yields congruence relationship (modulo m) for any value i of the 

sequence {Xi}. The sequence {Xi} will repeat itself in at most m steps and will 

be therefore periodic. For example, 

Let 1a=c =X =3, and m = 5, then the sequence obtained from the 

recursive formula 

( )i+1 iX = 3X  + 3 (mod 5) is iX = 3, 2, 4, 0, 3,K  
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The random numbers on the unit interval [0, 1] can be obtained by: 

i
i

X
U =

m
                                                                                                                        (3.3) 

It fellow’s from eq.(3.3) that iX m≤ , i∀ , this inequality mean that the 

period of the generator can not exceed m, that is, the sequence {Xi} contains at 

most m distinct numbers. So m must be chosen as large as possible to ensure a 

sufficiently large sequence of distinct numbers in the cycle. 

 It is noted in the literature [10, 18, 20] that good statistical results can be 

achieved from a computer by choosing 7a = 2 +1, c=1 and m = 352 . 

 

3.3 Random Varieties Generation 

Two well-known methods for generating random varieties form 

continuous distribution, namely the inverse transform method and acceptance-

rejection method. 

3.3.1 The Inverse Transform Method 

Recall the properties of the c.d.f 

Pr(X x)=F(x)≤  of r.v. X 

(i)      0 F(x) l≤ ≤ . 

(ii)     F(- )=0∞ , F( )=1∞ . 

(iii)    F(x) is non-decreasing function of x. 

(iv)    F(x)  is continuous function to the right at each x. 

The inverse transform method is based on the following theorem:  

Theorem (3.3.1.1)  [18] 

The r.v ( ) (0,1)U F X U=   if and only if the r.v. 1( )X F U−=  has 

c.d.f ( ) ( )pr X x F X≤ = . 

Proof 
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⇒Consider the r.v. ( ) (0,1)U F X U=   then the c.d.f. of U  is  

0, 0

( ) ( ) , 0 1

1, 1

u

G u pr U u u u

u

≤
= ≤ = < <
 ≥

 

1( ) ( ( ) ) ( ( )) ( )pr X x pr F U x pr U F x F x−≤ = ≤ = ≤ =  

⇐Consider the r.v. X has c.d.f ( ) ( )F X pr X x= ≤  

( ) ( ) ( ( ) )G u pr U u pr F X u= ≤ = ≤  

                   1( )pr X F u− = ≤
 

 

                   1( )F F u u− = =
 

 

The IT algorithm describe the necessary steps for generating r.v. by 

Inverse Transform Method 

1) Generate U from U(0, 1). 

2) Set 1( )X F U−= . 

3) Deliver X as a r.v. generated from the p.d.f f(x). 

We note that, this method is valid when the c.d.f. F(x) exists in a form 

for which the corresponding inverse transform can be solved analytically. 

3.3.2 The Acceptance-Rejection Method [30] 

 This method consists of sampling a r.v. from an appropriate distn. and 

subjecting it to a test to determine whether or not it will be acceptance for use. 

To carry out this method, the p.d.f. f(x) of the generated r.v. X 

represented as ( ) ( ) ( )f x ch x g x= , where 1c ≥ , ( )h x is also p.d.f. and 

0 ( ) 1g x< ≤ . Then we generate two . .'sr v  U and Y from U (0, 1) and h(y) 

respectively and test to see whether or not the inequality ( )U g Y≤  holds: 

1. If the inequality hold, then accept Y=X as a r.v. generated from 

f(x). 

2. if the inequality violated, then reject the pair (U,Y) and try again. 
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The theory behind this method is based on the following theorem. 

Theorem (3.3.2.1) [27] 

Let the p.d.f of r.v. X represented as ( ) ( ) ( )f x ch x g x= , where 1c ≥ ,  

( )h x as also p.d.f., and  0 ( ) 1g x< ≤ . Let U and Y be distributed U (0, 1) and 

h(y) respectively, then [ ]( ) ( )pr Y x U g Y f x= ≤ = . 

Proof 

[ ] [ ]
[ ]

, ( )
( )

( )

pr Y x U g Y
pr Y x U g Y

pr U g Y

= ≤
= ≤ =

≤
 

                                    
[ ]

[ ]
, ( )

, ( )
x

pr Y x U g Y

pr Y x U g Y dx

= ≤
=

= ≤∫
 

Using Bayes theorem [2], we have  

[ ] [ ]
[ ]

( ) ( )
( )

( ) ( )
x

pr U g Y Y x pr Y x
pr Y x U g Y

pr U g Y Y x pr Y x dx

≤ = =
= ≤ =

≤ = =∫
 

Since [ ] [ ]( ) ( ) ( )pr U g Y Y x pr U g x g x≤ = = ≤ = and 

( ) ( )pr Y x h x= = . Then: 

[ ]
0

( ) ( ) ( ) ( )
( )

( )( ) ( )
x x

g x h x g x h x
pr Y x U g y

f xg x h x dx dx
c≠

= ≤ = =
∫ ∫

, c≠0 

                         
( ) ( )

( ) ( ) ( )
1

g x h x
cg x h x f x

c

= = = . 

The efficiency of Acceptance-Rejection is determined by the inequality 

( )U g Y≤ , where the efficiency [ ] 1
( )pr U g Y

c
= ≤ = . 

Since the trails are independent, the probability of success in each trail 

is 
1

P
c

= . If N  is a random variable represent the number of trials before a 

successful pair (U, Y), then N  has geometric distribution with p.d.f. 
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[ ] 1(1 )npr N n p p −= = − , 1,2,n = K 

                   0= , e.w. 

and the expected number of trails is 

1
( )N c

p
Ε = =  

The AR-Algorithm describes the necessary steps of generating random 

varieties by Acceptance-Rejection method. 

AR-Algorithm 

1) Generate U  from (0,1)U . 

2) Generate Y  from ( )h y . 

3) If ( )U g Y≤ , deliver (we accept) Y=X as a random varieties 

generated from ( )f x . 

4) Go to step (1). 

5) Stop. 

Remark 

 For acceptance-Rejection method to be of practical interest, the 

following conditions must be satisfied: 

1. It should be easy to generate a r.v. X from ( )h x . 

2. The efficiency (probability) of the procedure 
1

c
 should be large, that is 

c  should close to one. 

Illustration of the Acceptance-Rejection method, we choose 1c ≥  such that 

( ) ( ) ( )f x ch x xφ≤ = . 

The problem then is to find the function ( )xφ  and the function 

1
( ) ( )h x x

c
φ=  from which the random variable can be easily generated. 
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3.4 Generating Random Varieties from Normal 

Distribution 

3.4.1 Procedure N-1 

 This approach is due to Box and Muller (1958) [26]. Viz 

If 1 2,U U  is a r.s. of size 2 from (0,1)U , then the r.v.,s  

( ) ( )1/ 2
1 1 22ln cos 2X U Uπ= − , ( ) ( )1/ 2

2 1 22ln sin 2X U Uπ= −  represent a r.s. 

of size 2 from (0,1)N . 

Proof 

 The joint distribution of 1U  and 2U  are 

 1 2( , ) 1g u u = , 0 1iu< < , 1,2i =  

                         0= , e.w. 

The functions ( ) ( )1/ 2
1 1 22ln cos 2x u uπ= − , ( ) ( )1/ 2

2 1 22ln sin 2x u uπ= −  that 

maps 

{ }1 2( , ) : 0 1, 1,2= < < =iu u u iA { }
1 1

1 2( , ) : , 1,2
−

→ = −∞ < < ∞ =i
onto

x x x iB  

with inverses ( ) ( ) ( ) ( )2 2 2 2
1 2 1 2 1 22ln cos 2 2ln sin 2x x u u u uπ π+ = − + −  

                                     ( ) ( )( )2 2
1 2 22ln cos 2 sin 2u u uπ π= − +  

                                     12lnu= −  

 ( )2 2
1 1 2

1
ln

2
u x x= − +  implies 

( )2 2
1 2

1
2

1
x x

u e
− +

=  

 ( ) 12 2
2 2

1 1
tan 2 2 tan

x x
u u

x x
π π −  

= ⇒ =  
 

 implies 1 2
2

1

1
tan

2

x
u

xπ
−  

=  
 

 

The Jacobian of this transformation is 
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( ) ( )2 2 2 2
1 2 1 2

1 1
2 2

1 21 1
21 21 2 2

1 12 21 2
2 2

1 2 2 2

1 1

1( , )
1 1 1( )( , )

2 2
1 1

x x x x
x e x eu u

xx xu u
J

x xu ux x

x x x x
x x

π π

− + − +
− −∂ ∂

−∂ ∂∂= = =
∂ ∂∂
∂ ∂    

+ +   
   

 

( ) ( ) ( )
2 2
1 22 2 2 2

1 2 1 2

12
1 12 2 22 21 2

2 2 2 1
2 2 2

1 1 1

. 1

2 1 2 1 2 1

x x
x x x x

x
e

xe e x

xx x x

x x x
π π π

− +
− + − +

 
    − −   = − = +  

                    + + +     
               

 

( )2 2
1 2

1
2

2

x x
e

π

− +
−=  

Then, the joint distn. of 1x  and 2x  is  

( ) ( )2 2
1 2

1
1 22

1 2
1

1
, , tan

2

x x x
f x x g e J

xπ
− + −

 
  =    

 

  

                 
( ) ( )

2 2
2 21 2
1 2

1
1

2
21

(1)
2 2

x x
x xe

e
π π

− +
− +−= = , x−∞ < < ∞  

( )1 2,X X X=  distributed as a random vector of size 2 from (0,1)N . That is, 

(0,1)iX N , 1,2i = . 

Algorithm N-1 

1) Generate 1U  and 2U  from (0,1)U . 

2) Set ( ) ( )1/ 2
1 1 22ln cos 2X U Uπ= − , ( ) ( )1/ 2

2 1 22ln sin 2X U Uπ= − . 

3) Deliver 1 2( , )X X X=
%

 as a random vector of size 2 generated from 

(0,1)N . 
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A computer program as written in Appendix B1 for generating a 

sample of size n from normal distribution written in Pascal language using 

Microcomputer Pentium IV, CPU 1.7 GHz  and the run size 2 is taken. The 

results of mean and variance of standard normal distribution with efficiency 

and time are tabulated in table (3.1). 

Table (3.1): Values of Time, µ̂  and 2σ̂   with Difference n-Samples  
Using N-1 Procedure 

n µ̂  2σ̂  Time 
Average 

Time 

4 0.066 0.997 00 

10.9 

6 0.035 0.957 05 

8 0.072 0.856 05 

10 0.058 0.951 05 

12 0.103 0.939 10 

14 0.023 0.997 10 

16 0.043 0.947 16 

18 0.053 0.973 21 

20 0.038 1.014 21 

22 0.062 0.981 21 

 

3.4.2 Procedure N-2 

 This procedure is based on the Acceptance-Rejection method. Let the 

r.v. X be distributed 

21
22

( )
x

f x e
π

−
= , 0 x< < ∞                                                                      (3.4) 

          0= , e.w. 

  Since the standard normal distribution is symmetrical about zero, we 

can assign a random sign to the r.v. generated from eq.(3.4) and obtain an r.v. 
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from (0,1)N . 

To generate an r.v. from (3.4) write ( )f x  as 

( ) ( ) ( )f x ch x g x=  

Set ( )2 2 21 0 2 1 0 2 1x x x x x− ≥ ⇒ − + ≥ ⇒ ≥ −  

2 21 1 1 1

2 2 2 2
x x x x≥ − ⇒ − ≤ −  Implies 

21 1
2 2

x x
e e

− −
≤  

21 1
2 22 2

( ) ( )
x x

f x e e xφ
π π

− −
= ≤ =  

                                                 
2

( )xe
e xφ

π
−= =                                       (3.5) 

0

2 2
( ) ( ) xe e

ch x x c e dxφ
π π

∞
−= ⇒ = =∫                                                    (3.6) 

( )
( ) xx

h x e
c

φ −= = , 0 x< < ∞                                                                    (3.7) 

                0= , e.w. 

0, 0

( ) 1 , 0

1,

x

x

H x e x

x

−
≤


= − < < ∞
 = ∞


 

Set ( ) lnu H x x u= ⇒ = −  

( ) ( )
2

22
1

1 1
2 1 12

2 2
1
2

( )
( )

( )

x
x x x

x

f x e
g x e e

x
e

φ

−
− − + − −

−
= = = =                                  (3.8) 

The efficiency of the method is equal to 
1

0.76
2c e

π= ≈ . 

The acceptance condition ( )U g Y≤  is ( )2exp 1 2U Y ≤ − −  
                (3.9) 
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Algorithm N-2 

1) Generate 1U  and 2U  from (0,1)U . 

2) Set 2lnY U= − . 

3) If ( )2( ) exp 1 2U g Y Y > = − −  
, go to step (1). 

4) Generate U  from (0,1)U . 

5) If 
1

2
U ≤ , Deliver Y X=  as a r.v. generated from (0,1)N + . 

6) Deliver Y X= −  as a r.v. generated from (0,1)N − . 

A computer program is made in Appendix B2 for computation the 

values of efficiency with run size of 2 is taken. The results of mean and 

variance of standard normal distribution with efficiency are displayed in 

Table (3.2) relative to the theoretical efficiency value of 0.760.  

Table (3.2): Values of c, µ̂  and 2σ̂   with Difference n-Samples  
Using N-2 Procedure 

N µ̂  2σ̂  
Simulation 

Efficiency 

Theoretical 

Efficiency 
Error 

Average 

Error 

4 0.169 0.929 0.798 

0.760 

0.038 

0.014 

6 0.170 0.944 0.772 0.012 

8 0.174 0.983 0.769 0.009 

10 0.211 0.955 0.797 0.037 

12 0.202 1.004 0.776 0.016 

14 0.181 0.916 0.770 0.010 

16 0.178 0.980 0.758 0.002 

18 0.211 0.993 0.757 0.003 

20 0.204 0.960 0.756 0.004 
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3.4.3 Procedure N-3 

 This procedure relies on the Central Limit Theorem, which says that if 

1 2, , , nX X XK  be a r.s. of size n from any distribution (continuous or 

discrete) having mean µ  and variance 2σ  with existence of moment 

generating function ( )M t , then the r.v. 

( )n X
X

µ
σ

−
=                                                                                        (3.10) 

Converges asymptotically with n to (0,1)N . Consider the particular case 

when all iX , 1,2, ,i n= K  are from (0,1)U . We find that 

1
( )

2
uµ = Ε = . 

2 1
var( )

12
uσ = = . 

1
12 12
21

12

n U
X n U

 − 
  = = − 
 

                                                            (3.11) 

A good approximation can already be obtained for 12n = . 

Algorithm N-3 

1) Generate 1 2, , , nU U UK   from (0,1)U . 

2) Set 
1

1 n

i
i

U U
n =

= ∑ . 

3) Set 
1

12
2

X n U = − 
 

. 

4) Deliver X  as a random vector from (0,1)N . 

A computer program as written in Appendix B3 for generating a 

sample of size n from normal distribution written in Pascal language using 

Microcomputer Pentium IV, CPU 1.7 GHz  and the run size 2 is taken. The 
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results of mean and variance of standard normal distribution with efficiency 

and time are tabulated in table (3.3). 

Table (3.3): Values of Time, µ̂  and 2σ̂   with Difference n-Samples  
Using N-3 Procedure 

n µ̂  2σ̂  Time 
Average 

Time 

2 0.040 0.978 00 

24.1 

4 0.012 0.987 05 

6 0.007 0.655 10 

8 0.174 1.064 21 

10 0.110 0.905 21 

12 0.158 1.125 27 

14 0.024 0.997 32 

16 0.079 0.950 38 

18 0.102 0.894 38 

20 0.087 1.010 49 

 

3.4.4 Procedure N-4 

 This procedure due to Tocher (1963). The technique for this procedure 

from generating from (0,1)N  is made by approximating the p.d.f.  

( )

2

2
2

2 2

1

x kx

kx

ke
e

e
π

−−

−
≈

+
                                                                            (3.12) 

Where 0 x< < ∞  and 
8

k
π

= . 

Proof 

 By inverse transform method  
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( )20 0

( ) ( ) 2
1

x x kt

kt

ke
F x f t dt dt

e

−

−
= =

+
∫ ∫  

          
0

2

1

x

kte −=
+

 

0, 0

2
( ) 1, 0

1
1,

kx

x

F x x
e

x

−

 ≤

= − < < ∞

+
 = ∞

 

set 
2

( ) 1
1 kx

u F x u
e −= ⇒ − =

+
 

1 1 2
1

2 11

kx
kx

u
e

ue

−
−

+ = ⇒ + =
++

 

2 1
1

1 1
kx u

e
u u

− −= − =
+ +

 

1 1 1
ln ln

1 1

u u
kx x

u k u

− −   − = ⇒ = −   + +   
 

implies 
1 1

ln
1

u
x

k u

+ =  − 
. 

Algorithm N-4 

1) Generate 1U  and 2U  from (0,1)U . 

2) Set 1

2

1
ln

8 1

U
X

U

π  +=  − 
. 

3) If 2
1

2
U ≤ , Deliver X Y=  as a r.v. generated from (0,1)N + . 

4) Deliver X Y= −  as a r.v. generated from (0,1)N − . 

A computer program as written in Appendix B4 for generating a 

sample of size n from normal distribution written in Pascal language using 

Microcomputer Pentium IV, CPU 1.7 GHz  and the run size 2 is taken. The 
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results of mean and variance of standard normal distribution with efficiency 

and time are tabulated in table (3.4). 

Table (3.4): Values of Time, µ̂  and 2σ̂   with Difference n-Samples  
Using N-4 Procedure 

n µ̂  2σ̂  Time 
Average 

Time 

2 0.285 1.077 00 

27.5 

4 0.370 1.033 00 

6 0.304 0.742 16 

8 0.448 0.714 21 

10 0.365 1.008 27 

12 0.343 0.951 32 

14 0.324 0.905 38 

16 0.348 1.091 43 

18 0.530 1.115 49 

20 0.340 0.862 49 

 

 

 



CHAPTER  

2 
An Approximation to the Cumulative Distribution 

Function of Normal Distribution 

 

2.1 Introduction 

 The importance of good numerical integration schemes is evident. There 

are many deterministic quadrature formulas can be found throughout the 

literature for computation of ordinary integrals with well behaved integrands. It 

is often more convenient to compute such integrals by Monte Carlo method, 

which, although less accurate than conventional quadrature formulas, but is 

much simpler to use.  

This chapter involves three numerical procedures and two reduction 

techniques for approximating of the (0,1)Ν  c.d.f. of eq.(1.4). The three 

numerical procedure namely Trapezoidal, Simpson and Gauss-Quadrature Rules 

are discussed in sections 2.2, 2.3 and 2.4 respectively. While the two reduction 

techniques namely Hit or Miss Monte Carlo and Sample Mean Monte Carlo 

Rules are discussed in sections 2.5 and 2.6 respectively. 

For simplicity and computing purposes, we write eq.(1.4) as  
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21
2

0

1 1
( )

2 2

x t
t e dt

π

−
Φ = + ∫                                                               (2.1) 

 Finally section 2.7, the results of the five methods are tabulated and 

compared with the literature table(1.1) given in chapter one in order to obtain the 

more efficient and accurate procedure. 

 

2.2 Approximation by Trapezoidal Rule [12] 

 Trapezoidal method is used for approximating the area under a curve by 

series of trapezoids. It has been shown theoretically that using an infinite number 

of trapezoids give prefect accuracy, but rounding of error will give us problems. 

The trapezoidal rule procedure can be illustrated as follows: 

Suppose we wish to approximate the integral 

( )
b

a

I f x dx= ∫ , by using trapezoidal rule                                                    (2.2) 

We divide the interval from a to b into n equal parts as shown in figure(2.1), 

where the boundaries of the trapezoids are 0 1, , , nx x xK . 

 

 

 

 

 

 

  

  

 

Figure(2.1): Integration by the Trapezoidal Rule. 

f(x) 

xn=b xi xi-1 x2 x1 a=x0 

f(x i) 

f(x i-1) 

x 
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Let 
b a

h
n

−=  be the width of the ith trapezoid that lies between 1ix −  and ix  

whose heights at the left and right side are respectively 1( )if x −  and ( )if x . 

The area of the ith trapezoid is: 

[ ]1( ) ( )
2i i i
h

f x f x−Α = +  

The total area of all n trapezoids is the trapezoidal approximation to the integral 

I. that is: 

1

n

i
i

I
=

≈ Α∑ . 

[ ] [ ] [ ]0 1 1 2 2 3( ) ( ) ( ) ( ) ( ) ( )
2 2 2

h h h
f x f x f x f x f x f x≅ + + + + + +  

                                                                                    [ ]1( ) ( )
2 n n
h

f x f x−+ +K  

1

0
1

( ) ( ) 2 ( )
2

n

n i
i

h
f x f x f x

−

=

 
≅ + + 

  
∑                                                                  (2.3) 

Composite Trapezoid Rule Algorithm 

Step1: Input a, b (Interval of integration) 

n (Number of subintervals) 

Step2: Define f(x) (integrand) 

Step3: Set 
( )b a

h
n

−=   

Step4: sum=0 

Step5: For i=1 to n-1 

Step6: *x a i h= +   

Step6: sum=sum+2f(x) 

Step7:  ( ( ) ( ))
2

h
g f a sum f b= + +  
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Step8: Output g 

Step9: Stop 

 

Appendix (A1) involves a computer program written in Pascal language 

using composite trapezoid rule for approximating the integral side of eq.(2.1). 

The x-values of the upper limit of the integral is taken from the normal 

distribution table (1.1). Table(2.1) gives together the approximate and the errors 

value of F(x) while figure(2.2) shows the difference between the exact and 

approximate results of the (0,1)Ν  c.d.f.  by Trapezoidal method. Also this figure 

shows the minimum and maximum errors between the exact and approximate 

result.  

Table(2.1): Approximation by Trapezoidal Method 

Pr ( X ≤ x) 

x Approx. Error x Approx. Error 

0.00 0.500000 0.000000 1.60 0.944822 0.000178 

0.05 0.519939 0.000061 1.645 0.949633 0.000367 

0.10 0.539828 0.000172 1.65 0.950146 0.000854 

0.15 0.559617 0.000383 1.70 0.955049 0.000049 

0.20 0.579257 0.000257 1.75 0.959559 0.000441 

0.25 0.598701 0.000299 1.80 0.963686 0.000314 

0.30 0.617903 0.000097 1.85 0.967463 0.000537 

0.35 0.636817 0.000183 1.90 0.970909 0.000091 

0.40 0.655402 0.000402 1.95 0.974044 0.000044 

0.45 0.673617 0.000383 1.960 0.974636 0.000364 

0.50 0.691426 0.000426 2.00 0.976890 0.000110 
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0.55 0.708793 0.000207 2.05 0.979468 0.000532 

0.60 0.725687 0.000313 2.10 0.981796 0.000204 

0.65 0.742080 0.000080 2.15 0.983895 0.000105 

0.70 0.757947 0.004947 2.20 0.985782 0.000218 

0.75 0.773267 0.000267 2.25 0.987475 0.000525 

0.80 0.788021 0.000021 2.30 0.988989 0.000011 

0.85 0.802195 0.000195 2.326 0.989712 0.000288 

0.90 0.815778 0.000222 2.35 0.990341 0.000659 

0.95 0.828762 0.000238 2.40 0.991545 0.000455 

1.00 0.841143 0.000143 2.45 0.992615 0.000385 

1.05 0.852919 0.000081 2.50 0.993563 0.000437 

1.10 0.864092 0.000092 2.55 0.994401 0.000599 

1.15 0.874667 0.000333 2.576 0.994797 0.000203 

1.20 0.884651 0.000349 2.60 0.995141 0.000141 

1.25 0.894053 0.000053 2.65 0.995792 0.000208 

1.282 0.899771 0.000229 2.70 0.996363 0.000637 

1.30 0.902886 0.000114 2.75 0.996864 0.000136 

1.35 0.911163 0.000163 2.80 0.997301 0.000301 

1.40 0.918901 0.000099 2.85 0.997682 0.000318 

1.45 0.926116 0.000116 2.90 0.998014 0.000014 

1.50 0.932828 0.000172 2.95 0.998302 0.000302 

1.55 0.939057 0.000057 3.00 0.998551 0.000449 
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Figure(2.2): Shows the difference between the exact and approximate  
solutions to the c.d.f. ( )xΦ  by Trapezoidal Rule. 

 

2.3 Approximation by Simpson Rule [17]  

In Simpson method, we try to approximate ( )
b

a

f x dx∫  by a series of 

parabolic segments hoping that parabola will more closely much to a given curve 

of f(x) than it would be straight line in the trapezoidal method. 

 Simpson rule (or Simpson 
1

3
 rule) is given by the equation 

5
1 0 1 2( 4 ) ( )

3

h
f f f O hΑ = + + +  where 1Α  denotes the area under the graph of 

f(x) from the point 0x  to the point 2x  and  0nx x
h

n

−=  , (n=1, 2, …). This 

equation calculates the integral over two segments of integration. Repeated 
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Minimum  Error  = 0.000011 at x=2.3  
Maximum Error  = 0.004947 at x=0.7 
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application of Simpson 
1

3
 rule over segment pairs of segments, and summation 

of all the formulas over the total interval, gives the multiple segments Simpson 

1

3
 Rule: 

1 2
5

0
1 1 2

4 2 ( )
3

n n n

i i i n
i i i

h
f f f f O h

− −

= = =

 
Α = Α = + + + + 

  
∑ ∑ ∑                                     (2.4)  

 

 

 

 

 

 

 

                      

Figure(2.3): Integration by the Simpson Rule. 

Since, Simpson  
1

3
 Rule fits pairs of segments, the total intervals must be 

divided into an even number of segments. The first summation terms in eq.(2.4) 

sums up to odd-subscripted terms and the second summation odds up to even-

subscripted terms, the order of the error of the multiple-segment Simpson  
1

3
 rule 

was reduced by one order of magnitude of o(h4) for the same reason as in the 

trapezoidal rule. For more details see [15, 25]. 

Simpson Rule Algorithm 

Step1: Input a, b (Interval of integration) 

 n (Number of subintervals) 

f(x) 

xn=b xi xi-1 x2 x1 a=x0 x3 xi+1 

f(x) 

x 
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Step2: Define f(x) (integrand) 

Step3: Set 
( )b a

h
n

−=   

Step4: sum1=0, sum2=0 

Step5: For i=1 to n-1 

Step6: *x a i h= +    

Step7: If i is even then sum1=sum1+2f(x) 

Else sum2=sum2+4f(x) 

Step8:  [ ]( ) 1 2 ( )
3

h
g f a sum sum f b≅ + + +  

Step9: Output g 

Step10: Stop 

Appendix (A2) involves a computer program written in Pascal language 

using Simpson rule for approximating the integral side of eq.(2.1). The x-values 

of the upper limit of the integral is taken from the normal distribution table (1.1). 

Table (2.2) gives together the approximate and the errors value of F(x). while 

figure(2.3) shows the difference between the exact and approximate results of 

the  (0,1)Ν  c.d.f. by Simpson method. Also this figure shows the minimum and 

maximum errors between the exact and approximate result.  
 

Table(2.2): Approximation by Simpson Method 

Pr ( X ≤ x) 

x Approx. Error x Approx. Error 

0.00 0.500000 0.000000 1.60 0.945201 0.000201 

0.05 0.519939 0.000061 1.645 0.950015 0.000015 

0.10 0.539828 0.000172 1.65 0.950529 0.000471 

0.15 0.559618 0.000382 1.70 0.955435 0.000435 
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0.20 0.579260 0.000260 1.75 0.959941 0.000059 

0.25 0.598706 0.000294 1.80 0.964069 0.000069 

0.30 0.617911 0.000089 1.85 0.967843 0.000157 

0.35 0.636831 0.000169 1.90 0.971283 0.000283 

0.40 0.655422 0.000422 1.95 0.974411 0.000411 

0.45 0.673645 0.000355 1.960 0.975001 0.000001 

0.50 0.691462 0.000462 2.00 0.977249 0.000249 

0.55 0.708840 0.000160 2.05 0.979817 0.000183 

0.60 0.725747 0.000253 2.10 0.982134 0.000134 

0.65 0.742154 0.000154 2.15 0.984221 0.000221 

0.70 0.758036 0.005036 2.20 0.986095 0.000095 

0.75 0.773373 0.000373 2.25 0.987773 0.000227 

0.80 0.788145 0.000145 2.30 0.989274 0.000274 

0.85 0.802338 0.000338 2.326 0.989988 0.000012 

0.90 0.815940 0.000060 2.35 0.990611 0.000389 

0.95 0.828944 0.000056 2.40 0.991800 0.000200 

1.00 0.841345 0.000345 2.45 0.992854 0.000146 

1.05 0.853141 0.000141 2.50 0.993787 0.000213 

1.10 0.864334 0.000334 2.55 0.994611 0.000389 

1.15 0.874928 0.000072 2.576 0.994999 0.000001 

1.20 0.884931 0.000069 2.60 0.995335 0.000335 

1.25 0.894351 0.000351 2.65 0.995972 0.000028 

1.282 0.900079 0.000079 2.70 0.996529 0.000471 

1.30 0.903200 0.000200 2.75 0.997017 0.000017 

1.35 0.911492 0.000492 2.80 0.997441 0.000441 

1.40 0.919244 0.000244 2.85 0.997810 0.000190 

1.45 0.926471 0.000471 2.90 0.998131 0.000131 

1.50 0.933193 0.000193 2.95 0.998408 0.000408 

1.55 0.939430 0.000430 3.00 0.998647 0.000353 
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Figure(2.3): Shows the difference between the exact and approximate  
solutions to the c.d.f. ( )xΦ by Simpson Rule. 

 

2.4 Approximation by Gaussian Quadrature Method [25] 

 To introduce the ideas involved in Gaussian Quadrature, we consider the 

more general integral ( ) ( )
b

a

w x f x dx∫ , where ( ) 0w x >  is a weight function. 

We are interested only in the case ( ) 1w x =  but different choices do play 

very important roles in numerical integration and a discussion of these can be 

found in [17]. The orthogonal polynomials corresponding to this weight function 

are known as the Legendre polynomials. Quadrature using these polynomials is 

called Gauss-Legendre Quadrature or, simply, Gaussian Quadrature which have 

the general formula  

Minimum  Error  = 0.000001 at x=1.96 
Maximum Error  = 0.005036 at x=0.70 
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1

01

( ) ( )
n

i
i

f x dx w f x
=−

≅ ∑∫                                                                                   (2.5) 

The coefficients ( 0,1,2, , )iw i n= K  could be calculated, but this is not 

necessary because they, and the points ix , have already been tabulated for a 

large value of n see [12, 15]. Some of the roots of the Legendre polynomials and 

the corresponding weights are used. We need in this method transforming the 

interval [a, b] in to [-1, 1], by using the simple linear transformation.  

1
(2 )

( )
x a b

b a

 Τ = − − − 
 which provided b a> , the Legendre polynomials 

reduce to approximate 

1

1

( ) ( ) ( )

2 2

b a b a t a b
f dt

−

− − + + 
 
 

∫  

Where f is any function that can be evaluated at the required region of points. 

Gaussian Quadrature Rule Algorithm 

Step1: Input a, b (Interval of integration) 

 n≤6 (Number of subintervals) 

Step2: Define f(x) (integrand) 

Initialize    Array x(n, i), w(n, i) for the Gauss nodes and weights in table(2.3) as 

shown below, x(n, i) is the ith nonnegative node for the Gauss n-point formula, 

and w(n, i) is the corresponding weight.  

Step3: Set h:= (b-a)/2 

        m:= (a+b)/2 

          x:= h x(n, 1) 

Step4: If n is odd then g: =h w(n, 1)f(x) 

Else g: =h w(n, 1)(f(-x+m)+f(x+m)) 
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Step5: For 
1

: 2
2

n
i to

+ =   
 set x:= h x(n, i) 

Step6:  g:= g+h w(n, i) (f (-x+m) + f (x+m)) 

Step7: Output g 

Step8: Stop 

Table(2.3): Shows Numerical Values of the Gauss Nodes and Weights 

N ±xi wi 

2 0.577350269189626 1.000000000000000 

3 
0.000000000000000 

0.774596669241483 

0.888888888888888 

0.555555555555556 

4 
0.339981043584856 

0.861136311594053 

0.652145154862546 

0.347854845137454 

5 

0.000000000000000 

0.538469310105683 

0.906179845938664 

0.568888888888889 

0.478628670599366 

0.236926885056189 

6 

0.238619186083197 

0.661209386466265 

0.932469514203152 

0.467913934572691 

0.360761573048139 

0.171324492379170 

8 

0.183434642495650 

0.525532409916329 

0.796666477413627 

0.960289856497536 

0.362683783378362 

0.313706645877887 

0.222381034453374 

0.101228536290376 

10 

0.148874338981631 

0.433395394129247 

0.679409568299024 

0.865063366688985 

0.973906528517172 

0.295524224714753 

0.269266719309996 

0.219086362515982 

0.149451349150581 

0.066671344308688 
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12 

0.125233408511469 

0.367831498998180 

0.587317954286617 

0.769902674194305 

0.904117256370475 

0.981560634246719 

0.249147045813403 

0.233492536538355 

0.203167426723066 

0.160078328543346 

0.106939325995318 

0.047175336386512 

 

Appendix (A3) involves a computer program written in Pascal language 

using Gaussian Quadrature Rule for approximating the integral side of eq.(2.1). 

The x-values of the upper limit of the integral is taken from the normal 

distribution table (1.1). Table (2.4) gives together the approximate and the errors 

value of F(x). while figure(2.4) shows the difference between the exact and 

approximate results of the  (0,1)Ν  c.d.f.  by Gaussian Quadrature Method. Also 

this figure shows the minimum and maximum errors between the exact and 

approximate result.  
 

Table (2.4): Approximation by Gaussian Quadrature Method 

Pr ( X ≤ x) 

x Approx. Error x Approx. Error 

0.00 0.500000 0.000000 1.60 0.945176 0.000176 

0.05 0.519939 0.000061 1.645 0.949982 0.000018 

0.10 0.539828 0.000172 1.65 0.950495 0.000505 

0.15 0.559618 0.000382 1.70 0.955389 0.000389 

0.20 0.579260 0.000260 1.75 0.959881 0.000119 

0.25 0.598706 0.000294 1.80 0.963992 0.000008 

0.30 0.617911 0.000089 1.85 0.967744 0.000256 
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0.35 0.636831 0.000169 1.90 0.971158 0.000158 

0.40 0.655422 0.000422 1.95 0.974256 0.000256 

0.45 0.673645 0.000355 1.960 0.974840 0.000160 

0.50 0.691462 0.000462 2.00 0.977059 0.000059 

0.55 0.708840 0.000160 2.05 0.979586 0.000414 

0.60 0.725747 0.000253 2.10 0.981856 0.000144 

0.65 0.742154 0.000154 2.15 0.983889 0.000111 

0.70 0.758036 0.005036 2.20 0.985702 0.000298 

0.75 0.773373 0.000373 2.25 0.987313 0.000687 

0.80 0.788145 0.000145 2.30 0.988737 0.000263 

0.85 0.802338 0.000338 2.326 0.989410 0.000590 

0.90 0.815940 0.000060 2.35 0.989991 0.001009 

0.95 0.828945 0.000055 2.40 0.991088 0.000912 

1.00 0.841346 0.000346 2.45 0.992043 0.000957 

1.05 0.853142 0.000142 2.50 0.992867 0.001133 

1.10 0.864335 0.000335 2.55 0.993574 0.001426 

1.15 0.874929 0.000071 2.576 0.993900 0.001100 

1.20 0.884931 0.000069 2.60 0.994175 0.000825 

1.25 0.894350 0.000350 2.65 0.994680 0.001320 

1.282 0.900078 0.000078 2.70 0.995100 0.001900 

1.30 0.903199 0.000199 2.75 0.995442 0.001558 

1.35 0.911490 0.000490 2.80 0.995717 0.001283 

1.40 0.919239 0.000239 2.85 0.995932 0.002068 

1.45 0.926463 0.000463 2.90 0.996095 0.001905 

1.50 0.933181 0.000181 2.95 0.996212 0.001788 

1.55 0.939412 0.000412 3.00 0.996291 0.002709 
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Figure(2.4): Shows the difference between the exact and approximate  
solutions to the c.d.f. ( )xΦ  by Gaussian Rule. 

 

2.5 Approximation by Hit or Miss Monte Carlo Method [27] 
 In this section, we consider a simple technique for computing the one-

dimensional integral: 

 ( )
b

a

I f x dx= ∫                                                                                                    (2.6) 

By Monte Carlo method. Viz 

For simplicity we assume that the integrand f(x) is bounded 0 ≤ f(x) ≤ c, 

a ≤ x ≤ b. Let Ω denote the rectangle as shown in Figure(2.5) 

 Ω= {(x, y): a ≤ x ≤ b, 0 ≤ y ≤ c}. 

Minimum  Error  = 0.000008 at x=1.8 
Maximum Error  = 0.005036 at x=0.7 
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Let ( , )X Y  be a random vector uniformly distributed over the rectangle Ω with 

joint p.d.f. 

1
, ( , )

( )( , )

0,

x y
c b ag x y

otherwise

 ∈Ω −= 



                        (2.7) 

Let P be the probability that the random vector ( , )X Y falls within the area under 

the curve f(x), and let S= {(x, y): y ≤ f(x)}. The area under the curve f(x) is: 

Area under f(x) = area S= ( )
b

a

f x dx∫ , 

 

 

 

 

 

 

  

 
Figure (2.5): Graphical Representation of the  

Hit or Miss Monte Carlo method. 
 

We obtain 

( )

( ) ( )

b

a

f x dx
area S I

P
area c b a c b a

= = =
Ω − −

∫
                        (2.8) 

Assume that N independent random vectors 1 1 2 2( , ), ( , ), , ( , )n nX Y X Y X YK  are 

generated. Then the probability P can be estimated by: 

Miss 

Hit 

S 
a b 

c 

0 x 

f(x) 
f(x) 

Ω 
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.ˆ
.

HNo of Hits N
P

Total no of trials N
= =                          (2.9) 

Where NH is the number of occasions on which ( )i if x y≥ , i=1, 2, …, N, 

that is, the number of “hits” and N-NH is the number of “misses”; we score a 

miss if  

( )i if x y< , i=1, 2, …, N. 

It follows if ˆP P≈  then from eqs.(2.8) and (2.9) that the integral I can be 

estimated by: 

( )
HI N

c b a N
≈

−
 implies 1

( ) Hc b a N
I

N
θ −≈ =            (2.10) 

In other words we estimate the integral I by sampling N from the distn. of 

eq.(2.7), count the number NH of hits and apply eq.(2.10). 

Hit or Miss Monte Carlo Method Algorithm 

Step1: Input a, b and c 

Step2: Generate a sequence { }2

1

N
j j

U
=

 of 2N random numbers. 

Step3: Arrange the random numbers into N pairs 

1 1 2 2( , ),( , ), ,( , )N NU U U U U U′ ′ ′
K  in any fashion such that each random U1 is 

used exactly once. 

Step4: Set ( )i iX a U b a= + −  and compute ( )if x , i=1, 2, …, N. 

Step5: Count the number of cases NH for which ( )i if x cU ′> . 

Step6: Estimate the integral I by  

1 ( ) HN
c b a

N
θ = − . 

Appendix (A4) involves a computer program written in Pascal language 

using Hit or Miss Monte Carlo Method for approximating the integral side of eq. 



Chapter Two                                                            An  Approximation to the Cumulative             
Distribution Function of Normal Distribution 

 50

(2.1). The x-values of the upper limit of the integral is taken from the normal 

distribution table (1.1). Table (2.5) gives together the approximate and the errors 

value of F(x). The run size is 1000 is made. While figure(2.6) shows the 

difference between the exact and approximate results of the  (0,1)Ν  c.d.f.  by Hit 

or Miss Monte Carlo Method. Also this figure shows the minimum and 

maximum errors between the exact and approximate result.  
 

Table (2.5): Approximation by Hit or Miss Monte Carlo Method  

Pr ( X ≤ x) 
x Approx. Error x Approx. Error 

0.00 0.500000 0.000000 1.60 0.944849 0.000151 

0.05 0.519945 0.000055 1.645 0.949989 0.000011 

0.10 0.539845 0.000155 1.65 0.950647 0.000353 

0.15 0.559656 0.000344 1.70 0.954674 0.000326 

0.20 0.578766 0.000234 1.75 0.959956 0.000044 

0.25 0.598735 0.000265 1.80 0.963948 0.000052 

0.30 0.617920 0.000080 1.85 0.967882 0.000118 

0.35 0.636848 0.000152 1.90 0.970802 0.000198 

0.40 0.654620 0.000380 1.95 0.973712 0.000288 

0.45 0.673681 0.000320 1.960 0.974999 0.000001 

0.50 0.690607 0.000393 2.00 0.976826 0.000174 

0.55 0.708864 0.000136 2.05 0.979872 0.000128 

0.60 0.725785 0.000215 2.10 0.981906 0.000094 

0.65 0.741869 0.000131 2.15 0.983845 0.000155 

0.70 0.753719 0.004281 2.20 0.985934 0.000067 

0.75 0.772683 0.000317 2.25 0.987841 0.000159 

0.80 0.787877 0.000123 2.30 0.988808 0.000192 

0.85 0.801713 0.000287 2.326 0.989992 0.000008 

0.90 0.815949 0.000051 2.35 0.990747 0.000253 

0.95 0.828952 0.000048 2.40 0.991870 0.000130 
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1.00 0.840724 0.000276 2.45 0.992905 0.000095 

1.05 0.852887 0.000113 2.50 0.993862 0.000138 

1.10 0.863733 0.000267 2.55 0.994747 0.000253 

1.15 0.874942 0.000058 2.576 0.994999 0.000001 

1.20 0.884945 0.000055 2.60 0.994782 0.000218 

1.25 0.893719 0.000281 2.65 0.995982 0.000018 

1.282 0.899937 0.000063 2.70 0.996694 0.000306 

1.30 0.902840 0.000160 2.75 0.996989 0.000011 

1.35 0.910606 0.000394 2.80 0.996713 0.000287 

1.40 0.918805 0.000195 2.85 0.997877 0.000124 

1.45 0.925647 0.000353 2.90 0.997915 0.000085 

1.50 0.932855 0.000145 2.95 0.997735 0.000265 

1.55 0.938678 0.000323 3.00 0.998771 0.000229 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure(2.6): Shows the difference between the exact and approximate  
solutions to the c.d.f. ( )xΦ by Hit or Miss Monte Carlo Method 
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Minimum  Error  = 0.000001 at x=1.96 
Maximum Error  = 0.004281 at x=0.70 
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2.6 Approximation by the Sample-Mean Monte Carlo 
Method [27] 
 Another way of computing the integral  

( )
b

a

I g x dx= ∫  

is to represent it as an expected value of some random variable. Indeed, let us 

rewrite the integral as 

( )
( )

( )

b

x
xa

g x
I f x dx

f x
= ∫                         (2.11) 

Assuming that ( )xf x  is any p.d.f. such that ( ) 0xf x >  when ( ) 0g x ≠ . 

Then 

( )
( )x

g X
I

f X

 
= Ε  

 
                         (2.12) 

Where the random variable X is distributed according to ( )xf x . 

Let us assume for simplicity  

1
,

( )( )

0,
x

a x b
b af x

otherwise

 < < −= 



                       (2.13) 

Then  

[ ]( )
I

g X
b a

Ε =
−

                         (2.14) 

and 

[ ]( ) ( )I b a g X= − Ε                         (2.15) 

An unbiased estimator of I is its sample mean 

2
1

1
( ) ( )

N

i
i

b a g X
N

θ
=

= − ∑                         (2.16) 
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Sample-Mean Monte Carlo Method Algorithm 

Step1: Input a, b and c 

Step2: Generate a sequence { } 1
N

i iU =  of N random numbers. 

Step3: Set ( )i iX a U b a= + − , i=1, 2, …, N 

Step4:  compute ( )ig X , i=1, 2, …, N. 

Step5: compute the sample mean which estimates the integral I by 

 2
1

1
( ) ( )

N

i
i

b a g X
N

θ
=

= − ∑  

 

Appendix (A5) involves a computer program written in Pascal language 

using Sample Mean Monte Carlo Method for approximating the integral side of 

eq.(2.1). The x-values of the upper limit of the integral is taken from the normal 

distribution table (1.1). Table(2.6) gives together the approximate and the errors 

value of F(x). while figure(2.7) shows the difference between the exact and 

approximate results of the (0,1)Ν  c.d.f. by Sample Mean Monte Carlo Method. 

Also this figure shows the minimum and maximum errors between the exact and 

approximate result.  

 

Table(2.6): Approximation by the Sample-Mean Monte Carlo Method 

Pr ( X ≤ x) 

x Approx. Error x Approx. Error 

0.00 0.500000 0.000000 1.60 0.944900 0.000101 

0.05 0.519954 0.000046 1.645 0.949993 0.000008 

0.10 0.539871 0.000129 1.65 0.950765 0.000236 

0.15 0.559714 0.000287 1.70 0.954783 0.000218 

0.20 0.578805 0.000195 1.75 0.959971 0.000030 
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0.25 0.598780 0.000221 1.80 0.963966 0.000035 

0.30 0.617933 0.000067 1.85 0.967922 0.000079 

0.35 0.636873 0.000127 1.90 0.970873 0.000127 

0.40 0.654684 0.000317 1.95 0.973815 0.000185 

0.45 0.673734 0.000266 1.960 0.975000 0.000000 

0.50 0.690677 0.000323 2.00 0.976888 0.000112 

0.55 0.708888 0.000112 2.05 0.979918 0.000082 

0.60 0.725823 0.000177 2.10 0.981940 0.000060 

0.65 0.741892 0.000108 2.15 0.983901 0.000099 

0.70 0.754475 0.003525 2.20 0.985957 0.000043 

0.75 0.772739 0.000261 2.25 0.987898 0.000102 

0.80 0.787899 0.000102 2.30 0.988877 0.000123 

0.85 0.801763 0.000237 2.326 0.989996 0.000004 

0.90 0.815958 0.000042 2.35 0.990864 0.000136 

0.95 0.828961 0.000039 2.40 0.991930 0.000070 

1.00 0.840793 0.000207 2.45 0.992949 0.000051 

1.05 0.852915 0.000085 2.50 0.993925 0.000075 

1.10 0.863800 0.000200 2.55 0.994864 0.000136 

1.15 0.874957 0.000043 2.576 0.995000 0.000000 

1.20 0.884959 0.000041 2.60 0.994883 0.000117 

1.25 0.893789 0.000211 2.65 0.995990 0.000010 

1.282 0.899953 0.000047 2.70 0.996835 0.000165 

1.30 0.902880 0.000120 2.75 0.996994 0.000006 

1.35 0.910705 0.000295 2.80 0.996846 0.000154 

1.40 0.918854 0.000146 2.85 0.997934 0.000067 

1.45 0.925765 0.000236 2.90 0.997954 0.000046 

1.50 0.932904 0.000097 2.95 0.997857 0.000143 

1.55 0.938785 0.000215 3.00 0.998876 0.000124 
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Figure(2.7): Shows the difference between the exact and approximate 
solutions to the c.d.f. ( )xΦ by Sample Mean Monte Carlo Method 

 

2.7 Error of Approximation  

In order to compare the five methods, table(2.8) shows the error of 

approximation of each method at a specific x-value. When x-values selected 

according to minimum and maximum errors resulted from each method. 

 

 

 

 

 

 

Minimum  Error  = 0.000000 at x=1.96 
Maximum Error  = 0.003525 at x=0.70 
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Table(2.8): Error of approximation comparison for five methods  

x-Value 
Trapezoidal 

Rule 

Simpson 

Rule 

Gaussian- 

Quadrature 

Rule 

Hit or 

Miss Rule 

Sample 

Mean Rule 

0.70 0.004947 0.005063 0.005063 0.004281 0.003525 

1.80 0.000314 0.000069 0.000008 0.000052 0.000035 

1.96 0.000364 0.000001 0.000160 0.000001 0.000000 

2.30 0.000011 0.000274 0.000263 0.000192 0.000123 

 



Conclusions and Future Work 

 

Conclusion 

1. Simpson rule is more accurate than trapezoidal rule because the function in 

Simpson rule is nearly quadratic on the close interval [a, b]. 

2. Gaussian Quadrature is more efficient than the trapezoidal and Simpson rule 

because if formula of degree n then the error will be of order (2n-1). 

3. Hit or Miss Monte Carlo method is more efficient than Gaussian formula 

and the accuracy of this method increase as the sample size increases. 

4. The Sample mean Monte Carlo method gives results superior than all 

methods of approximation for the c.d.f. of normal distribution which 

produce minimum errors and the accuracy increase as the sample size 

increases. 

5. The best of our procedures for generating sample varieties from normal 

distribution is Box and Muller procedure which has less time consuming in 

comparison with the other method of generation. 
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Future Work 

1. The methods of approximation to the c.d.f. for normal distribution can be 

used for other non-normal distributions. 

2. It can be generate r.v. ,s  from normal distribution by other new procedures 

which can be compare their efficiency with our used procedures. 
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Introduction 

 

The most important continuous probability distribution in the entire field 

of statistics is the "Normal Distribution", whose graph is symmetric bell shaped 

curve, extending indefinitely in both directions which describes so many sets of 

data that occur in nature, industry, research, and provided basis upon much of the 

theory of statistical inference has been developed. 

The normal distribution was discovered by De Moiver in (1733) who 

derived  the mathematical equation of the normal curve which is considered the 

best tool of statistical inference theory. 

The normal distribution is often referred to as Gaussian distribution in 

honor of the German scientist Gauss (1773-1855), who also derived its equation 

from a study of errors in repeated measurements of the same quantity.  

Laplace (1749-1827) studies in Astronomy gave results as Gauss obtained. 

Although the normal distribution may often give a very reasonable fit to an 

empirical distribution of some varieties, for example, height of people, 

component dimension, score in an aptitude test, etc, its primary importance 

occurs in connection with sampling theory. Thus when samples are drawn from 

populations, the distribution of measures commonly computed from samples, 

such as sample mean or proportions, often approach to normal distribution quite 

rapidly as the sample size increases (central limit theorem). 

Sheppard (1903) [28] published accurate, famous and elaborate tables 

related to the basic integral of the standard normal c.d.f. Ф(x). 

Adams A.G. (1969) [1] used the inverse Gussian distribution algorithm to 

evaluate the standard normal distribution. 
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 II 

Pettis (1974) [23] and Strecok (1968) [29] used a stable algorithm for 

computing the inverse error function in the “Tail-End” reign for standard normal 

integral. 

B.D. Bunday, etal (1997)[4] developed new algorithms for the rapid, 

efficient and accurate evaluation of the standard normal integral and its tail. 

Dmitry Danilov (2005) [6] generalized the problem of estimating the first 

K coefficients in a regression equation with K+1 variables to the case where the 

unknown variance is estimated by least squares and found that main properties of 

the Laplace estimator only change marginally. Therefore, he recommends the 

neutral Laplace estimator to be used in practice. 

Jade Freeman and Reza Modarres (2006) [11] studied the moments of the 

power normal family and obtained expressions for its mean and variance. The 

quantile functions and a quantile measure of skewness are discussed to show that 

the power normal family is ordered with respect to the transformation parameter. 

C.S. Withers and P.N. McGavin (2006) [5] gave a new expression for 

Mills’ ratio and five expressions for repeated integrals of the univariate normal 

density, or equivalently for the Hermite functions and they also gave the 

derivatives of Mills’ ratio and its inverse. 

Yeh lam, etal (2006) [31] studied a sequential variable sampling plan. 

Supposed that the quality of an item in a batch in measured by a normally 

distributed random variable with a known variance, but the mean is unknown 

with a normal prior distribution. Then by using Bayesian approach and 

considering a Markoov decision process, the optimality equations for the 

minimum total expected cost are formulated. They showed that an optimal 

decision rule will have a control limit structure and they presented the statistical 

procedure for conducting the sequential sampling plan. 
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 III 

In this thesis mainly three chapters involved. The normal distribution is 

discussed  in chapter one throughout six sections which include basic properties 

and moments of normal distribution, some related theorems, two methods of 

parameters estimation and equality of estimators. While, chapter two gives a full 

discussion for the approximation to the cumulative distribution function of the 

standard normal distribution by three numerical procedures namely: Trapezoidal, 

Simpson and Gaussian-Quadrature rules and two reduction techniques namely; 

Hit or Miss Monte Carlo and Sample Mean Monte Carlo rules. The 

approximation results of the five methods are tabulated and compared with the 

normal distribution table in order to obtain the more efficient and accurate 

procedure.  

Chapter three presents three sections which include random number 

generation and four procedures for random varieties generation from normal 

distribution. The efficiency of these procedures is discussed theoretically and 

assessed destitution practically.   



Notation and Abbreviation 

 

 

 

 

Distn. : Distribution 

r.v. : Random variable 

p.d.f. : Probability density function 

c.d.f. : Cumulative Distribution Function 

m.g.f. : Moment Generating Function.  

Iff : If and only if 

r.s. : Random sample 

indep. : Independent 

M.L.E : Maximum Likelihood Estimator  

IT : Inverse transform 

2( , )X N µ σ�  : The r.v. X has normal distribution with mean µ  

and variance 2σ    

2 ( )X nχ�  : The r.v. X has chi – Square distribution with 

parameter n 

c : Efficiency  

Prob. : probability 

C.I : confidence interval 

dof : degree of freedom 

S.S : sample space 

M.V.U.E : Minimum variance unbiased estimator 
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  صـا������
  

فـــي   هلأهميتـــ ''Normal distribution'' تطرقنـــا إلـــى التوزيــع الطبيعـــي  الأطروحــةهـــذه  فــي

والعــزوم  والإحصـائية اض وتوحيـد لخــواص التوزيـع الرياضـيةمجـالات الإحصـاء وتطبيقاتـه مــن حيـث اسـتعر 

  .في تطبيقات هذا التوزيع ةست نظريات مهم ةوتم دراس. والعزوم العليا

طــريقتين لتخمــين معلمــات التوزيــع نظريــا وهمــا  ةومناقشــالتخمــين وخواصــه  اســلوبلــى ثــم التطــرق إ

 Maximum likelihood'' التـــرجيح الأعظـــم ةوطريقـــ ''Moment method''العـــزوم  ةطريقـــ

method''  حيث نوقشت جودة المخمنات وخواصها من خلال مبرهنات التخمين المعروفة.  

 ,Trapezoidal''التوزيـــع التجميعيـــة وهـــي طريقـــه ق لتقريـــب دالـــه ائـــتـــم اســـتخدام خمـــس طر 

Simpson, Gaussian, Hit or Miss and Sample mean Rules"  وتم مقارنـه نتـائج هـذه

طريقـه تـم اسـتخدامها هـي  آخـر أن إلـىالمتولد من كل طريقـه والتوصـل  والخطأالطرق من حيث التصرف 

 ةبمنحنيات وجداول عددي ةذلك تم تمثيل نتائج كل طريق إلى إضافة .مثل هذه الدالةللحل لتقريب ا الأفضل

  .مقارنة النتائج ةلسهول

-Box-Muller, Acceptance"وهي  عشوائيةلتوليد متغيرات  أساليب أربع إلىوأخيرا تطرقنا 

Rejection, Central Limit theorem and Tocher"  ًحيـث قورنـت كفـاءة هـذه الطـرق نظريـا

هـي أكفـأ طريقـه لتوليـد هـذه  "Box-Muller"لو وأظهـرت النتـائج بـان ر مونـت كـا وعمليـاً باسـتخدام محاكـاة

   .من حيث الوقت المستغرق في توليد العينة المتغيرات
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