This thesis consider the normal distribution witts iimportant
appearance in many statistical fields of applicetidcSome mathematical and
statistical properties of the distribution have emllected and illustrated
with moments and higher moments. Six related thasreave been studied in
the applications of this type of distribution.

The estimation manner and its properties have b#astrated
throughout two methods (Moment and Maximum Liketidanethods) which
are used to estimate the distribution parametersrétically. Equality and
properties of estimation have been studied througmoany well-known
theorems.

Five methods to approximate the cumulative distrdsufunction have
been used namely: Trapezoidal, Simpson, Gaussiamr Miss and Sample
mean rules. The results of these rules have bempared in its behavior and
error of approximation resulted from each methode Tomparison shows
clearly that the last method "Sample mean rddahe best method among of
five methods for approximating the solution forstiype of functions. In
addition to that the results of each method hawnbepresented by curves
line and numerical tables for helping in reading aomparing the results of
each method with each other.

Finally four procedures for generating random wasefrom normal
distribution are discussed which are Box-Muller, cAptance-Rejection,
Central limit theorem and Tocher procedures ant #féciencies which are
compared theoretically and practically by Montel@armulation. The results
of comparison shows that the Box-Muller procedwéhie best one among

three methods for this type of generation in sefisene consuming.
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Al: Approximation by Trapezoidal Rule
program trapezod,;
uses crt;
var
J,i,a,n:integer;
er,ex,b,x,h,sum,g,z,s:real;
gl,f1,2:text;
function f(x:real):real;
begin
f:=exp((4/2)*sqr(x));
end,;
begin
clrscr,;
assign(fl,'h:\new\ex.dat’);
reset(fl);
assign(f2,'h:\new\x.dat";
reset(f2);
a:=0;
b:=0;
writeln(* X g(x) Erorr');
writeln('-------------==--==-m oo - Y
J:=0;
while not eof(f2) do
begin
readIn2,b);
h:=(ba)/10;
sum:=0;
fori:=1to 9 do
begin
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X:=a+i*h;
sum:=sum+2*f(x);
end;

g:=(h/2)*(f(a)+sum+f(b));
z:=(1/sqrt(2*pi))*g;
s:=(1/2)+z;
redin(fl,ex);
er.=abs(ex-s);
writeln(b:6:3,' ',s:15:8,' 'er:15:8);
{b:=b+0.05;}
J=jt
if j=33 then begin j:=0; readln; end;
end;
readin;
end.

A2: Approximation by Simpson Rule
program simpson;
uses crt;
var
j,L,a,n:integer; b,x,h,suml,sum2,g,z.s,ex,er:real;
gl,fl:text;
function f(x:real):real;
begin
f.=exp((4/2)*sqr(x));
end,;
begin
clrscr,;
a:=0;
assign(fl,'h:\new\ex.dat’);
reset(fl);
b:=0;
writeln(" X g(x) Erorr');
writeln('-------------==-===-o oo - Y
j:=0;
while not eof(f1) do
begin
h:=(b4)/10;
sum1:=0; sum2:=0;
fori:=1to 9 do
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begin
X:=a+i*h;
ifi mod 2 =0 then
suml:=suml1+2*f(x)
else sum2:=sum2+4*f(X)
end;

g:=(h/3)*(f(a)+suml1+sum2+f(b));

z:=(1/sqrt(2*pi))*g;
s:=(1/2)+z;
readIn(f1,ex);
er:=abs(ex-s);

writeln(b:6:2,' ',s:6:3," 'er:15:8)

b:=b+0.05;
3L

If ]|=5 thenbegin readln; j:=0; end;

end:;
readin;
end.

A3: Approximation by Gaussian Quadrature Rule

program gauss;

{uses crt;}

type

c=array[1..100]of real;

var

j,i,a,n:integer;

b,sum,v,g,z,ex,er:real;

X,W:C;

f1,f2:text;

function f(x:real):real;

begin
f:=(1/(sqrt(2*pi)))*exp(sqr(x)/2);

end;
begin
x[1]:=0.577350269189626;
X[2]:=x[1];
w[1]:=1.000000000000000;
w[2]:=w[1];
assign(fl,'h:\new\ex.dat’);
reset(fl);
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assign(f2,'h:\new\x.dat’);
reset(f2);
a:=0;
b:=0;
writeln(* X g(x) Erorr');
writeln('--------------------m oo - ;i
n:=2;
j:=0;
while not eof(f2) do
begin
sum:=0;
readIn(f2,b);
fori:=1tondo
begin
v:=((ba)/2)*x[i]*+(b+a)/2;
sum:=sum-+f(v)*w[i];
g:=((ba)/2)*sum;
z:=0.5+g;
end,
readIn(f1,ex);
er.=abs(ex-z);
writeln(b:6:2,' ',z:15:8,' ',er:15:8);
{b:=b+0.05;}
J=itL
if j=30 then begin j:=0; readln; end;
end;
end.

A4: Approximation by Hit or MissRule
program HitMiss;
var
N.,i,j,NH:integer;
U:array [1..3500] of real;
Ul:array [1..3500] of real;
xa:array [1..3500] of real;
gl,z,a,bx,s,ex,er:real;
f1,£2:text;
function g(x:real):real;
begin
g:=exp((1/2)*sqr(x));

A-4



Appendix A Approximation Programs

end;
begin
N:=40;
a:=0;

randomize;
assign(fl,'c:\tp\bin\ex.dat");
reset(f1);
assign(f2,'c:\tp\bin\x.dat");
reset(f2);
writeln(* X g(x) Erorr');
writeln('------==-====mmmmmmm e Y
while not eof(f2) do
begin
readIn(f2,b);
readIn(fl,ex);
{writeln(pi:10:5);}
NH:=0;
for i:=1 to N do
begin
U[i]:=random;
xa[il:=a+Ul[i]*(b-a);
end;
for i:=1 to N do
Ul[i]:=random;
fori:=1to N do
if g(xa[i])>(g(b)*U1[i]) then
NH:=NH+1;
g1:=g(b)*((b-a)*NH)/N;
z:=(1/sqrt(2*p1))*gl;
s:=(1/2)+z;
er.=abs(ex-s);
writeln(b:6:2,' ',s:10:8," 'er:10:8);
J=ItL
if j=30 then begin j:=0; readIn; end;
end,
end.

A¢: Approximation by Sample Mean Rule
program Samplemean;
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var
N.,i,j,NH:integer;
U:array [1..3500] of real;
xa:array [1..3500] of real;
z,gl,a,b,x,s,sum,ex,er:real;
f1,£2:text;
function g(x:real):real;
begin
g:=exp((1/2)*sqr(x));
end;
begin
N:=300;
a:=0;
randomize;
assign(fl,'c:\tp\bin\ex.dat");
reset(fl);
assign(f2,'c:\tp\bin\x.dat");
reset(f2);
writeln(" X g(x) Erorr');
writeln('------==-====mmmmmm e Y
while not eof(f2) do
begin
readIn(f2,b);
readIn(fl,ex);
sum:=0;
fori:=1to N do
begin
U[i]:=random;
xa[i]:=a+Ul[i]*(b-a);
sum:=sum-+g(xali]);
end;
g1:=(ba)*(1/N) * sum;
z:=(1/sqrt(2*p1))*gl;
s:=(1/2)+z;
er.=abs(ex-s);

writeln(b:6:2,' ',s:10:8," 'er:10:8);

J=tL
if j=30 then begin j:=0; readln; end;
end;
end.
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program acc rej;
uses crt;
type
a=array[1..2000]of real;
var
grd,grm,ercd,i,nx,ny,r,n:integer;
x:a; u,ul,u2,sumx,sumy,sumr,xb,c,v,sg,y,y2,avr:real;
begin
clrscr;
randomize;
n:=0;
while n<1000 do
begin
n:=n+100;
sumx:=0; sumy:=0; sumr:=0;
fori:=1tondo
begin
r:=0;
repeat
r:=r+1;
ul:=random;
u2:=random;
y:=-In(u2);
y2:=exp((-1/2)*sor(y-1))
until not(ul>y2);
u:=random;
if ul<=1/2 then x[i]:=y
elsex[i]:=-y;
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sumx:=sumx+x[i];
sumy:=sumy+sqr(x[i]);
SUMI:=SUMr+tr;

end;

xb:=sumx/n;

sg:=(sumy-n* sgr(xb))/(n-1);

avr:=sumr/n;
c:=1/avr;
writeln(n:3,'’Xb=",xb:7:3,'
end;
readin;

end.

program BoxMuller;

uses crt,dos;

type

a=array[1..1000]of real;

var
h2,m2,s2,ms2:word;
I,n,k:integer;

Segma= ',sg:7:3,avr:7:3,c:7:3);

B2: N-2 Procedure

x,y,v:a; ul,u2,z,sum,sumx,xb,sg,x1,y1l,sumt,avr,c:real;

begin

clrscr;

randomize;

n:=0;

sumt:=0;

while n<100 do

begin

settime(0,0,0,0);

n:=n+10;

fori:=1tondo

begin
ul:=random;
u2:=random;

X[1]:=sgrt(-2*In(ul))*cos(2*pi*u2);
y[i]:=sgrt(-2*In(ul))*sin(2*pi*u2);

writeln(x[i].y[i]);
end;
gettime(h2,m2,s2,ms2);
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sumt:=sumt+s2* 100+ms2;
writeln(n:3,s2:3,ms2:3);
readin;
end;
avr:=sumt/10;
c:=1/avr;
writeln(avr:6:3,¢:6:3);
for i:=1to 200 do
begin
if i<=100 then
v[i]:=x[i]
else v[i]:=y[i-100];
z:=(Usqrt(2*pi))* exp((-1/2)*sqr(v[i]));
end;
n:=0;
while n<200 do
begin
n:=n+20;
sum:=0; sumx:=0;
fori:=1tondo
begin
sum:=sum+v([i];
sumx:=sumx+sgr(v[i]);
end;
xb:=sum/n;
sg:=(sumx-n*sgr(xb))/(n-1);
writeln;
writeln('Xb=",xb:7:3,' Segma= ',sg:7:3);
end;
readin;
readin;
end.

B3: N-3 Procedure
program Central;
uses crt,dos;
type
a=array[1..1000]of real;
var
h2,s2,m2,ms2:word;
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1,J,nX,ny,n:integer;
x:a; u,ul,u2,sumx,sumy,sumu,xb,v,vb,ub,y,y2,avr:real;
begin
clrscr;
randomize;
n:=0;
while n<200 do
begin
settime(0,0,0,0);
n:=n+20;
sumx:=0; sumy:=0;
fori:=1tondo
begin
sumu:=0;
for j:=1to 10do
begin
ul:=random;
sumu:=sumu-+ul;
end;
ub:=sumu/10;
X[i]:=sgrt(12* 10)* (ub-0.5);
writeln(x[1]:9:3);
sumx:=sumx-+x[i];
sumy:=sumy-+sqr(x[i]);
end;
xb:=sumx/n;
vb:=(sumy-n* sgr(xb))/(n-1);
gettime(h2,m2,s2,ms2);
writeln(n:3,s2:3,ms2:3,'xb',xb:9:4,'vb',vb:9:4);
readin;
end;
readin;
end.

B4: N-4 Procedure
program tocher;
uses crt,dos,
type
a=array[1..1000]of real;
var
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h2,m2,s2,ms2:word;
I,nX,ny,n:integer;
x:a; ul,u2,sumx,sumy,xb,v1,v2,vb,y k:real;
begin
clrscr;
randomize;
n:=0;
while n<200 do
begin
n:=n+20;
settime(0,0,0,0);
sumx:=0; sumy:=0;
fori:=1tondo
begin
ul:=random;
u2:=random;
y:=0.5*sgrt(pi/2)* In((1+ul)/(1-u2));
if u2<=0.5 then x[i]:=y
else x[i]:=-y;
writeln(x[1]:9:3);
sumx:=sumx-+x[i];
sumy:=sumy+sqr(x[i]);
end;
xb:=sumx/n;
vb:=(sumy-n*sgr(xb))/(n-1);
gettime(h2,m2,s2,ms?2);
writeln(n:3,s2:3,ms2:3,'xb',xb:9:4,'vb',vb:9:4);
readin;
end;
readin;
end.
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CHAPTER

The Normal nistrihution

1.1 Introduction

Basic mathematical and statistical properties ofnab distribution are
discussed in this chapter which is involve six ise as follows. Section 1.2
basic properties of normal distribution are givernile in section 1.3 we
illustrated the moments of normal distribution. $omelated theorems are
given in section 1.4, while in section 1.5 two nueth of parameters
estimation (Moment and Maximum Likelihood) are tredally discussed.
Finally, section 1.6 equality of estimators aredstd to reach to the best

estimator for the unknown parameters.

1.2 Basic Properties of Normal Distribution
1.2.1 Definition [26]

A continuous r.v.X is said to have a normal distn., denoted by

X 0 N(g,0%),if X has p.d.f.

Afx-p

2
f(x)= 217me 2( o j e <x <o (1.1)
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Where-oo <x <oo, >0 are known as location and scale parameters

respectively withe =2.718% gnd 77=3.141€. The graphical representation

of eq.(1.1) is
f (X)A

|

I

0 ,u'—a /1 ,UI+0 X

v

Figure(1.1): The Normal Curve

When =0 ando® =1, then X [ N(0,1) is said to have a standard normal
distn. as shown in Figure(1.2) and the p.d.f. ofed)) reduce to
12

f(x)=%7e 2"

—00 <X <00 (1.2)

f(x)]

v

H1=0 X
Figure(1.2): The Standard Normal Curve
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To verify that the functiorf (x)of eq.(1.1) is valid p.d.f., we first note that
f (x)>0 for all x [J(—c0,).

We also need to show that integralfgfx) over —o <x <o is unity. Viz

_1(X-/Jj2
g J dx

Consider the integral

= f(X)dx=——— | €
1100 o |
Make a simple transformation by settig;:gzﬂ with dx = ogdy , we have
o
o _1,2
1 -5y
| =—— | e 2" d
277_{0 d
Now,
w 1.2 o 12
2 1 X 1 5y
|“={—|e 2 dxyi—[e 2
{ 277—{0 2”—{0 v
0 ©o 2,.,2
-1 [ Je 2( )dxdy
2w

Changing to polar coordinates by setting

X =rcosd, y =rsind, where0<r <o, 0<8< 21

The Jacobian of transformation

oxX OX
FrY: sg -r sing
Jza(x’y)=ar 69=C9 r s =rcof@+r sirfh=r
o(r,d) |0y 0dy| |sind rcod
or 06

and that impliesixdy =rdrd @, therefore

o w  _1,2 o 1,2 2
12=L1 7 [re 2 dde=-—
27 g=0r =0 g0
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sincel 2 >0, it follow that| =1.

1.2.2 Properties of Normal Curve

The graph of Figure (1.1) represents the curvehef normal p.d.f.
f (x) given by eq.(1.1), where curve has the followpngperties:

1. The curve is symmetric about a vertical axis thiotige meap. .

2. The curve has the ling =0 (x-axis) as a horizontal asymptote.

3. The curve increasing fofco <x < i and decreasing far<x <o,

4. The curve has maximum pointat= /.

5. The curve have points of inflection at= y+ 0.

6. The curve concave upward feso<x <y-o, g+o<x <o and
concave downward fgr-o<x <u+og.

7. The total area under the curve and above the hdakaxis is equal to

one.

2
1.2.3 Relation Betweeh (#:7°) and N(0.1)

The relation between the normal and the standamhadalistributions

is given by the following theorem
Theorem [14]

The r.v.X [ N(u,02) iff the rv.Y =(C—#y1N(0,1).
g

Proof:

=Let X [J N(,u,az), thenX has p.d.f.

. . e_;(X;/JjZ

2710

X =

the functiony =[
o

j define one-to-one transformation that maps
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the spaceA ={x :-co<x <o} ontoB ={y -0 <y <oo} with
inversesx =gy + u and the Jacobian ll‘.—g—; =
Then, the p.d.f. of r.vy , sayg(y), is

2102 1.2
5y 1 2y

_ -1 -1
g(y)_f (y)‘J‘—\/ZTUe a‘me

which is the p.d.f. of the theorem is obvious.

, —0<Yy <00

0 The converse of the theorem is obvious.

1.2.4 The Cumulative Distribution Function

The c.d.f. of r.v.X 0 N(&,0?) defined as

P(x)=pr(X £x)= )} f (t)dt

—00

(t Uﬂj dt (1.3)

_j\/_

The integral side of eq.(1.3) can not be evaluatealytically because

t ,uj
the derivative ok 2( is not available under the integral sign

therefore, table(1.1) below is prepared in moststatistical books

which  evaluate pr(sz)=pr(X_’usX_’uj=pr(Y Sx—,u)
o o o

wherey = X“Hp N(0,1). In this case the c.d.f &f is
o

1
2 (1.4)

1 Y
q’(Y):F I €

More discussion is given in chapter two about saEveuggested

procedures for approximating the integral sidegp{ie4).
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Table (1.1): TheNormal Distribution of parameter ¢/ =0, o?=1
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1.3 The Moments of(#:7°)[26]

The m.g.f. of rv.X[] N(,u,az) is defined by

, - _1(X—/Jj2
My 1) =EEX )= [ e (x)dx = [ ———e¥e 2. 7 ) g
JO

J2r

© 4 —12[(x —,LI)2—20'2[X}

—00 —00

dx

Consider the exponent
(x —,u)2 —20%x =x 2- 2LX +,L12— 20 x

=x2—2(,u+a2t)x +(,u+a2t)2+,uz—(,u+a%):

=:x —(,u+02t)]2+,uz—,uz—2,uc72t —ot*

= _x —(,U+02t)}2 —ZJZLM +%02t 2)

Therefore,
2
1 x—(,u+02t)
(t+ig%2 o 1 2 o
e dx

~{u+R)

Settingy = that implies

X =0y +(,u+02t) anddx =gdy
So,

12tz 1.2
+=01< % 1 -y
M t)=e 2 e2 od
x () J- o7 y
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The integral side of the above equation is unity
Thus,

Y
My )= 27 (1.5)

According to the theorem of section 1.2.3, the K\i—?uﬂ N(0,1) has
o

m.g.f.
1,2
My (t) =e2 (1.6)

12
“t
Maclaurian series expansion®f leads to

1 2 3 r
2 t2 1(t? 1(t2 1(t2
My(@t)=e2 =1+—+|—| +=| —| +...+—|—| +...
2 2 2 3 2 rli 2

2! 4! 2r)!
2 t2r
So E(Y<") is the coefficient ofm. That is
rj!
E(Y?")=1B6..(2 - 3
11305 (2 _])2D4E6...2r _ 10203, 2
204[6... 2 of (1[2_1)
2r )1
ey2y=Z) o0 (1.7)
2" r 1
and
E(er_1)=0, r=1,2,3,.. (1.8)
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2
1.3.1 Central Moments of(#:9)

SettingY =X—_, in eq.(1.7) and eq.(1.8), we have
o

2r
E(uj }=m leads to

o 2"r1

B |
E (x—y)zr}@a2r r=12,3,.. (1.9)

L 2N
and

2r=1|_ _

E[(X—,u) }_o, r=12,3,.. (1.10)

(1) Mean

Use of eq.(1.10) withr =1, we have
E(X - ) =0 and that implieE(X) = £, wherey is called the mean of r.v.

X (or distn.). It is a measure of central tendency.

(1) Variance

Use of eq.(1.9) withr =1, we have

E[(X —,u)z} =02, whereo? is called the variance of r.X (or distn.). It is

a measure of dispersion.

(111 Coefficient of Skewness

)

= 3/2
G

is called the coefficient of skewness. It is a ne@s

of departure from symmetry of frequency curve.

Use of eq. (1.10) witlt =2, we havey; =0.
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(1V) Coefficient of Kurtosis
4
e[ (x=)*]
Vo = 2
(?)

degree of flatting of frequency curve.

-3 iIs called the coefficient of kurtosis. It is a maee of

Use of eq. (1.9) withr =2, we have

4
y =£4—3=o.
g

1.3.2 Other Central Moments
(D Mode

A mode of a distn. is defined to be the valuexofvhich maximize the

p.d.f. f (x). For continuous distributions, the modeis the solution of

2
df X) _ 5 and 9T X) 5. A mode is a measure of location.
dx dx 2

For N(,u,az) distn. with p.d.f. of eq.(1.1), we have

_1(x—/,1j2
v L -3 2l o
f'X)=—+F——0 (X —-u)e

()= -0 (x - 4)
f'X)=0=>x -u=0=>x=u

1 -3 2 "1()(_”)2
f"(X)Z—EJ_ |:—J_2(X ) +1}e 2\

Thus, the distn. mode is.
(1IN Median

A median of a distn. is defined to be the valuexo$uch that the c.d.f.

F(x)=%.
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The median is a measure of location.

For N(,u,az) with c.d.f. of eq.(1.3), we have

1:pr(sz):pr(X_'usX_’uj=pr(YsX_’uJ
2 g g g

whereY [1 N(0,1) and that implies from table(1.1§(_—’u =0=>x=u
o

thus, the distn. median 3.

1.4 Some Related Theorems [14]
Theorem (1.4.1)

If the r.v. X 0 N(0,1) then the r.vY =X 20 )(2(1), where the p.d.f. of
1, x
1 X2 e 2, 0<Xx <o

()22

yisg(y)=

=0,ew.

Theorem (1.4.2)

If X1,X5,...,X are indep. r.v’with X; [J N(,ui ,aiz), i =1,2,..n,

n n n 2 2
then the r.v.Y = > ki X ON| Y K, D ki “oi < |.
i=1 i =1 i=1

Theorem (1.4.3)

If X1,X 2,...,X, are indep. rviwith X; 0 x2(r; ), i =1,2,.. n,

n 2 n
thenthervyY =Y X; O x% X |-
i=1 i=1

Theorem (1.4.4)

If X1,X9,...,X Isar.s. ofsizen from(,u,az), then the r.v.

AR
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2
n/y. —
Y = Z(uj 0 x?(n) where the p.d.f. of y is
A
n X
1 o1
g(y)= ~x2 e 2,0<x<%,n=123,.
.
()22
)
=0,ew.

Theorem (1.4.5)

If the rv X and Y are stochastically independent with

XUON(O,DandY [J )(Z(r). Then, the r.vT =LD t(r).

v

(n -1)S?

1.4.1 Independence of and 0>  [26]

For normal case, there are many techniques camue fthroughout

d(n—1)s2

02

the literature providing the independency of thetistics X an

[26].
To the best of our knowledge the following approaebm to be knew.
_ n
Let X4,X>,..., X, be ar.s. of size n froml(,u,az) and letX =% > Xi and
=1

—\2 .
82=i2(xi—x) be the sample mean and sample variance

=15
respectively.
. _  (n-1s? o
The aims are to show tht and—2 are stochastically independent.
o

The joint p.d.f. of the sefsX; } is

VY



Chapter One The Normal Distribution

g

n _n 10y - 2
fo0) =M1 () =(2) 207" exr{——z('—”] ]s‘w<xi <o
i=1

i =1,2,..n (1)11

_KiTH 2o

If we consider the transformatioi; ....n, then according
o

to the theorem of section 1.2.3, the ¥. [ N(0,1) and the joint p.d.f. of
rv.® Wl,VV2,...,VVn S

_n n
gWwqwo,...wpn)=(27) 2 exp{—%Zwi } —oo <W; <oo, i =1,2,..n(1.12)

i=1
Now,
— (X-u n 2 N(x =X (n -1)S?
LetW =(—} andZ(\Ni —W) =Z( ' j = >
g i =1 i=i\ 9 a
Consider the transformation
y1= W +iW +. 1W
1- \/— 1 \/— 2 \/ﬁ n
1
=—W -——W
Y2 >0 1 500
v 1 Wa + 1
3= B a2 \/ T
1 W+ 1, 3,

:—W + — W 2— W
Ya= mmt Jam 2 Jai 2 Ja3 4

_ (n 1)

_ 1 1 1
Yn = Jn(n —1)W1+ Jn(n _1)W2+...+ Jn(n —1) Jnh- )

(1.13)

The system of egs.(1.13) can be written in a mébrim as
Y =AW , where

VY
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Y. =(y1.Y20eYn) W =W W, W) andA=(g ) with

nxn
W = Al = pey =23
D R s S

The Jacobian of this transformation is J, where

1_0(y1.Y2---:¥n)
J owiwo,...Wp)

1 1 1 1
7 N N U T
1 1
—— -— 0 0 ... .. 0
J2m Vo
2 0 0
= J3r NEWY I
B S S S 0
J4mB V4B J 403 J 413
1 1 1 1 -h-1
Jnin-1) Jnn-1) Jyn-1) Jnp-1) = n f — 1)
1 1 1 1 1
= [
Jn\20/3m@V 413 (n6- 1)
11 1 1 1 1
1 -1 0 0 O 0
11 -2 0 O 0
11 1 -3 0 . 0
11 1 1 -4 0 .. 0
11 1 1 1 -0-2) 0
11 1 1 1 1 1 —-6-1

)¢



Chapter One The Normal Distribution

Multiply the 1% row by (-1) and add to thé" row (i =2,3,.. n), we have

11 1 1 1 1 .. .. 1
0 -2 -1-1-1-1... ... -1 -
o0 -3-1-1-1..... -1 -
00 0 -4-1-1..... -1 -
o0 0 0 -5-1..... -1 -

=I( . . . . . . .
00 0 0 0 O0....-0-2-
00 0 0 0 O0.... 0 -n

wherek = 1 1 1 1 1 1

Jn2043mV 43 60— 20— /no- 1
The above is the determent of the upper triangukrix whose value

obtained by multiplying the elements of the maiagdinal.

_ ()" M. 0- 1)
JIR2ER.. - 1n10203.. 6- Ly

)"y _

- Jniyn!

Jl =1 impliesJ =1 and

1

n n
SWiZ=YY;?
= =

This show that the s¢Y; }in=1 represent a r.s. of size n fron(0,1).

Now,

n n n .\
Y YiZ=Y ¥i2-v2= YW 2-(Vhw)
i =2 i=1 i=1

\o
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ZW nVV 2W| _W)

i =1 i=1

since {Yi }in:1 are indep. r.vZfromN(0,1), then according to theorems (1.4.3)

and (1.4.4)

2
ZYZ zo/v, ~W)2= %D X2n-1 (1.14)
i =2 i=1

Also, we have

n _ 2
Y is distributed independently o} Y; 2 =&

= o*
WhereY1=x/ﬁVV=\/ﬁ£X —,uj
o

a2
It follows that%' [

o

(n -1)S?
2

1.4.2 Distribution ofX and ¢

Let X1,X5...., X, be ar.s. of siza =2 from N(,u,az), we shall

_ n
consider first the distn. of the sample moar > X
Nz
1=1

According to theorem (1.4.2) witk =%, W = U, O 2202, 00 =1,2,..K
_ o
ThenX O N| u,— (1.15)
n
Also,

s2=1 S x -%) _—1{% Xi 2—nY2:|

n_l_l 1'_

1
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Consider

n n _ _
> (X -2 =3[ -X)+ (K-

i=1 i =1

n =2 o n o o 2
=3 (Xj =X)T+2(X =) Y (Xj =X)+n(X - )
= =

n . n _ _ _
but > (X; —X)=> X; —-nX=nX-nX=0

i=1 i=1
So,
L 2 _ < V2 4 (% — 02
2 (X =) =2 (X = X)“+n(X - )
i =1 i=1

=(n-1)S?+n(X - u)2 (1.16)

by dividing both sides of eq.(1.16) lay, we have

3 X4 ~)° _(n-18%  n(X-p)?

=R o? o*
N2 N oy — 02 X = 11)?
(n 12)5 -y i 2#) _nX 2ﬂ) (1.17)

since X [l N(,u,az), then according to the theorem of section 1.2&y1v.

Xi ZH 5 N(0,1).
o
X; - u\°
Also, according to theorems(1.4.1) and (1.4.4), rthe('T'u) D)(Z(l)

n _0\2

and the r.vy = ) (uj 0 x%(n)
A

. - o? X=u

Also, since the r.vX I N| ¢,— |, then the r.v: [1N(0,2)

n

g

7

\RY%



Chapter One The Normal Distribution

- 2 = 2
and the LV[M} =n£u] 1 x%(2).

g

. _ 2
and the r.v? X and%

g

are stochastically independent. Then, the®r.v.’

2 2
n P -
Z(MJ and n[x ,u] are stochastically independent.
-1\ O d

_1\e2 n 02 7 02
and since from eq.(1.17), the r%:Z(X' H)” _n(X 2'“)

o o o’ o

_ 2
then, the r.v.(n%D )(2(n -1).
o

1.5 Estimation

The problem of estimation can be defined as follows

Let X1,X5,...,X,, be a r.s. of size n from a distn. Whose p.d.f. is
f (x,8), where®=(8,6,,...,6; ) is a vector of unknown parameters, we
assume that the valueg,x,,...,X of r.v.” Xq,X5,...,X, are observed. It
is desired to estimaté on the basis of the observed valxgsx 5,...,Xp, .

This estimation can be made in two ways:

1.5.1 Interval estimation

Is to find two statistics sayUj=uj(X4,X,....X ) and
Us=Uys(X1,X 2...,.X), Ug=U5) such that the unknown parameter Say

lie in between that); <8 <U , with certain prob. Sag—a (ais small).
For normal case, we have two unknown paramegieasnd a®. We

assumexq,Xo,...,X, be a r.s. of size n fron\l(p,oz) is available and a

confidence interval for the distn. parameters ageired with probl-a.

YA



Chapter One The Normal Distribution

(1) Confidence Interval for the Mean¥

There are two cases:

Case(1): Whencr2 is known

According to section 1.4.2, we have

, _ _
X1 N[u,%]:>2=x_“ =\/ﬁ(§_“)u N(0,1)

0)

N

So, we can find fromN(0,1) table two no.’s sayw_LZ1 o Such that
2

pr {—Zl_a <Z< Zl—”} =1l-a
2 2

Now, consider the event

In(X = p)
7z <7<z ,=-7 . <MNWATH 7
1-7 -7 9 o +7
2 2 2 2
X - g <HUSX+—=
J_ -7 : J_ -7

therefore, thd00(1-a )% C.I for u is:

= g = g
X-——Z CX+—=Z )
[ Jn 1-¢ Jn 1—”}
2 2
Case (2): when 02 IS unknown

According to section 1.4.2, we have

, _
1) X[ N[;ﬁ%}:@ﬂ N(0,1)

2 (0= 1)52
0

0 x°(n-1)

3) X andS? are stochastically indep.

14
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Then, according to theorem (1.4.5)
In(X-p)/o _n(X-p)
(n -1)S?

0.2

(n-1)

therv.T=

Ot(n-1)

So, fromt-distn. table with(n —1) dof, we can find two no.’s saiytl a
2

such thatpr[—t1 a <T<t1 aJ=1—a
2 2

Now, consider the event

Jn(X - 4)
-t <T<t =— < <t
1-7 A S 7
2 2 2 2
- S - S
X=—2t , <pu<X+—t
na H Jn -9

therefore, thd00(1-a )% C.I for u is:

o S S
X=2t g X+t 4 |.
Jn1=2 T e

(1) Confidence Interval for the Varianceff2

There are two cases:
Case(1): when u is known

According to theorem of section 1.2.3 and theoréh®.1) and (1.4.4), we
have

Xi ON(u,0?), Oi =1,2,.. n

— - — 2
Xi ZH 1 N(0,) and(uj 7 x2()
g g
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2
n/x. —
Y= Z[—X' ”] 1 x%(n)
i=1\ 9
so, we can find frony(z-distn. table two no.’s sa))(czy and)(2 a such that

“ 1-
2 2

pr /\/Czr <Y <)(2a =1l-a
_ 1_i
2 2

Now, consider the event

L 2

, ., 2. (Xi ~4) ,

yo<Y<ys =yc<ia <X
a La Xa 2 .
2 2 2

N R

S -gf S k)

= <o?<izt
X a X5
2

2

therefore, thd00(1-a )% C.I for o2

(% -4 30 )

X2, X2

2

Case (2): when y is unknown
According to section 1.4.2, we have

2 —
(n 1)8 [ X (n 1) when 82 _ﬂ|:z X2 i| is the Samp|e
0_ —

variance

Y
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So, we can find two no.’s frorprz—distn. table with(n —1) dof, say)(czr and
2

X4 such that

1-2
2

pr )(g <Y </\/12a =l-a
2 2

Now, consider the event

2
2 2 _,2_(n-1S 2
Xg <Y <X =X, <5 <X
A
(n-1S® _ > _(n-187
2 2
X a Xg
2 2

therefore, thd00(1-a )% C.I for o? is

(n-1)S? (n-1s?

2 ’ 2
X a XO’
1-= had
2 2

1.5.2 Point Estimation [21]

Point estimation is concerned with inference abthg unknown

parameters of a distribution from a sample. It ptes a single value for each
unknown parameter. Point estimation admits two lgmols:

First, developing methods of obtaining a statisttt®se values can be
used to estimate the unknown parameters of thelisbn, such statistics
are called point estimators.

Second, selecting criteria and technique to obtaibest estimator

among possible estimators.

Yy



Chapter One The Normal Distribution

1.5.2.1 Definition (Estimator) [21]

Any statistic whose values are used to estimaaittknown parameter

6 or some function of, sayr () is called point estimator.

1.5.3 Methods of Finding Estimators
Many techniques have been proposed in the litersitdior finding

estimators of the distn. parameters such as Mom&tagimum likelihood,

Minimum chi-square, Minimum distance, Least squareé Bayesian method.
These methods provide a single value for each umkrmarameter of

the distribution. For normal case, we shall disdauwss methods: The method

of Moments and the Maximum likelihood method.

1.5.3.1 Moments Method

Let X1,X5,...,X, be a r.s. of size n from a distribution whose fp.d.

f (x,8), where@=(8,,6,,...,6¢ ) is a vector of unknown parameters.

Let 1 =E(X") be ther™ moment about origin of the distribution and

n
let 44 :iz X! be ther™™ moment about origin of the sample. The
=1

method of moments can be described follows:

Since, we havé unknown parameters, equate

i to e at@=4. Thatis

' =y atd=6,r=1,23,. k.

For thesek equations, we find a unique solution @réz,...,ék and
we say tha@r, (r=12... k)is an estimate of} obtained by method of

moments and the corresponding statisé,ic Is the method of moments

estimator ofé; .

Yy



Chapter One The Normal Distribution

Now, to estimatey and o2 for normal case by method of moments we

let X1,Xo,...,X,, be ar.s. of size n froml(,u,az) is taken.
SinceN(,u,az) distribution involve two unknown parameters

We sety, =4 at u=4, g?=4%r=12

r =1 implies

12 <
M=BX)=p, =2 X =

r =2 implies
1> =E(X?) = y? + 02 ,uz——ZXZ (nr:l)52+§2 where:
i =1

1
52_n_1{2x Z—nX }
r =1 implies ¢4 = 4 at = j1, o® =5, we obtain
=X (&)1
r =2 implies 14, = u, at y= j1, % =5, we obtain
[P +62 = ”n n-lg2, %2 (1.19)

solving egs. (1.18) and (1.19) we get

62 =”T_152 and 7= X (1.20)

are respectively the estimators @fand o? obtained by method of moments.
1.5.3.2 Maximum Likelihood Method [14]
Definition (likelihood function)

The likelihood of a r.sXq,X,,...,X, of size n from a distribution

having p.d.f.f (X,8) where 8§=(6,,6,,...,6) is a vector of unknown

Y¢



Chapter One The Normal Distribution

parameters is defined to be the joint p.d.f. ofnitrev.” X1,X5,...,X; which
Is considered as a function 8fand denoted by(8,X ), that is
n
L=L(gX)=f(X.0)=[]f (X;.0).
=1
Now,
Let L(&,X ) be the likelihood function of a r.%¢,X»,..., X, of size n

from a distribution whose p.d.f.(X,8), 8§=(8,,6,.....6¢) is a vector of
unknown parameters.
Let §=u(X)
= (U(X),u2(X),... uk (X))
be a vector function of the observatiods= (X1,X,...,Xp)

If é have the value of which maximized (é,)g) thené is the m.l.e of

@ and the corresponding statis@cis the M.L.E ofd. We note that:

()  Many likelihood function satisfy the condition thdte m.l.e is a
solution of likelihood equations

OLOX) -0, at=8,r=123,. k.
06, T
(1) SincelL(8,X) andInL(8,X) have their maximum at the same
value of @ so sometimes it is easier to find the maximumhef t
logarithm of the likelihood.
In such case, the m.Ié of @ which maximized.(8,X ) may be given

the solution of the likelihood equations

aInL(@.%) _,

Jatd=0,r=123.. k.
06, =T

For normal case

Yo
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Let Xq,X5,....X, be a r.s. of size n fromN(,u,az) where the

distribution p.d.f. is given by eq.(1.1), the likedod function is

L(1,0%%x)=f (x,1,0°)
L xi )2
_Hf(xl"ug' )= H;e 202

=1 i =1\ 2710

_n _n —1§ (xj —u)?
=(2m) 2(0'2) 2e 2i=

InL _——|n(2n)——|naz—i22(xi — u)?
20°i=1
dlnL _ 1 D
== (xi —u (1.21)
ou aziZ::l( | )
dnL _ n 1 1 n 2
AL RS Xi — U (1.22)
g2 2072 2(02)2;::1( ' ~H)
WesetLL—O dalilz'—o at =,[1,0'2=62
H ilea
we have
n ~ ~ 1 n
Y (xi —f)=0= == x; (1.23)
i =1 Ni=1
and -—" 1 i(x -p)%=0 (1.24)
262 26227

=X (1.25)
from eq.(1.24) and eq.(1.25), we have

&2=%_i (xi -x)°
=1

A\l
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_ 2
implies 62 :% (1.26)

1.6 Equality of Estimations [21]

In this section, we shall introduce some definisioand theorems
concern the equality of estimators which reachht liest estimators for the

unknown parameters.
1.6.1 Definition [21]

Let the statistia§=u(X1,X2,...,Xn) be an estimator of the unknown

parameterd, thend is said to be an

()  Unbiased estimator if and only E(9)=9, otherwised is called

biased estimator fo#. The termE(é) — @ is called the bias term.

(I)  Consistent estimator iL.im pr (‘67 - 9‘ < g) =0.

n — oo

()  Asymptotically unbiased ifLim E(é) =6.

n — oo

(IV) Minimum variance unbiased estimator (MVUE) if
1. 6 is an unbiased estimator f6r

2. The variance of is less than or equal to the variance of evergmth

unbiased estimators @&f.

1.6.2 Definition (Sufficient Statistics) [2, 13]

Let X1,X9,...,X, be ar.s. of size n from a distn. whose pid(,4),

where 8=(6,,6,....,6,) is a vector of unknown parameters and
Yi =uj (X1, X9,....Xp), 1 =1,2,.. . m be K statistics whose joint p.d.f.

g(y.8). Then the K statistics are called jointly suffitiestatistics forg iff

Yv
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f(.0)_,,

oy, "X

where H(x) does not depend o@ for all fixed values ofy; =u; (xj),
I =1,2,.. m.

1.6.3 Theorem (Neymann Factorization Theorem) [2]

Let Xq,X,...,X, be ar.s. of size n from a distn. whose pfd(x,8),

where 8=(8,,65....,6y) is a vector of unknown parameters. A set of

statisticsy; =u; (X ), i =1,2,... m is jointly sufficient statistics fo@ iff, we

can find two nonnegative functiokg andk, such that

f(x;8)=f (X1,X2,....X1:61.02... 6m )

=Kkq[ug(X),u2(X),...,.Um (X );62,85,... .6 JTK AX)

where Kko(X)

is free of & for every values ofyq,yo,...,.yx Of
Yi,Yo....¥m-

For normaIN(,u,Jz) case, we have two unknown parametgrand

0.2

, Where we assume a rxsg, X ,,..., X, is a available, then the joint p.d.f.
can be written as

, N D L 2—} ‘12(Xi -1)°
f o) =1 (xi.10?)=[1@m 202 2 20
i=1 =1
n —12{§xi2—2ﬂ§ i +nu2} n
=(02) 2 20°1i=1 i=1 [(2m) 2

n n 2 2
=k{2xi 22X MO }Dkz(x)

i=1 i=1

n
wherek,(x) =(2m) 2.

YA
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Thus according to factorization theorem (1.6.3)e tistatistics

n n
Y=Y Xj andY, =) X? are jointly sufficient statistics forr and 2.

=1 =1
Remark

If {Yi =u; (X)},i=12,..mis a set of jointly sufficient statistics

for 8=(6,6,.....6,,) ., then any set of one-to-one functions or
transformations ofY1,Y »....,Y ,, are also jointly sufficient statistics fét.

n n
For normal N(i,0°) case, we have) X; and inz are jointly

=1 =1
sufficient statistics fos and o?.
_ n n _
But X=12Xi and 82=i > X 2_nx%| are one-to-one
iz =172

n n _
functions of ) X; and ZX,Z . Then X and S? are jointly sufficient
=1 =1

statistics fory and o,

1.6.4 Definition (Completeness) [2, 13]
Let X be a r.v. of either type (continuous or discrelefined on S.S A
and having p.d.f. as a member of the faniflyx; 8, 80 of p.d.f.*, and

letu(X ) be a continuous function (not a function &f). If Eu(X)] =0,
060Q impliesu(x) =0, Ox OA, then the family{f (x; 8,80} is called
a complete family of p.d.f.

Remar k

If Y =u(X) is a sufficient statistic fod whose p.d.f. belong to the

complete family of p.d.f thenY is called a complete sufficient statistic
ford.

AR
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1.6.5 Theorem (Lehmann-Scheffé Theoreﬁ-Theorem) [2]

Let X1,X5,....X, be a r.s. of size n from a distn. whose p.d.f.

f(x;8),00Q. Let Y =u(X) be a sufficient statistic fos whose p.d.f.
belong to the complete famifyg(y; ), 1<} .

If d(Y) is a function ofY which is an unbiased estimator #r then
@(Y) is a unique MVUE forg.
1.6.6 Definition (The Exponential Family of p.d.f)[2, 13]

Several parameter cases

Consider the famil{f (x; §, 80Q™} of p.d.f.* which can be expressed as

f(x;60)=exp g pj @K K)+q@)+sk)|,a<x<b
j=1

=0, e.w.
Such p.d.f. is said to be a member of exponentasscof p.d.f° and
satisfying the following conditions:
(i)  Neithera norb depends o =(6,6.,...,6).

(i) pj (@) is nontrivial, functionally independent, continwoiunctions

of 6, j =1,2,..m.

(i) K '(x) #0 ands(x) is continuous function ok for a<x <b.

Now, if ar.s.Xq,Xo,..., X, is taken from a distn. whose p.d.f(x;8).

Then the joint p.d.f. of the sample $&¢;} is

n n m
F(x.0)=T1f xi.@)= HeX{Z Pj €Xj i )+q@)+sk; )}
i=1 =1 j=1

j=1 i=1 =1

m n n
=Exp| X pj (Q)_Z_: Ki (X )+HQ(Q)+_Z_: s(xj)
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m n n
=Exp| 2. pj (@) 2 ki (xj)+ HQ(Q)} EEXD{Z_‘, S(X; )}

j=1 i=1 =1
Then according to the Factorization theorem (1,6.3)
n n n
The statisticsY1= > kqy(Xj), Y2=D> Ko(Xi) o', Y = 2  Km (%)
i=1 i =1 i =1

are jointly sufficient statistics for then parameter,6,....,6, .

Note
If can be shown easily [2] that the joint p.dfitlee sufficient statistics
Y1.Y2,....Y p take the form

m
R(yl,yz,---,ym)exr{Z pj @i +nq 6)} (1.27)

i=1
This p.d.f. of eq.(1.27) expressed as a membdrenéxponential family.

1.6.6 Theorem (Lehmann—SchefférlOI Theorem) [2]

Let X1,X>5...., X, be ar.s. of size n from a distn. whose pd(;&),

0=(6,,6,....,6,) belong to the exponential family and let
Y1.Y 2,....Y y be jointly sufficient statistics fo#},6,,...,6,, then the family

of p.d.f.*{g(y; 8, 80Q™} is complete and the statisti¥g,Y ,...,Y , are

jointly complete sufficient statistics f&,6,....,6y, .

*For N(,u,az) with p.d.f.

- -2
e 20 . —00 <X <00

f (x;u,02)=5m

which can be written as a member of the exponefamally as

f (X 1,02) = exp| — 2127 - SIn(02) 1o (x 2= 2% + p?)
2 2 202

)
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2
=ex %x _%XZ_ 'u—2+élna2 ——1In(2ﬂ)
o 20 204 2 2

Where py(1,0%) =, py(u,0 )-2—1, k() =X, kp(x)=x2,

2
2y=_| # 12 -1

Now, if a sample set{X;} is available, then the statistic

Yq= z Ki(Xj) = z Xij andY, = z Ko(Xj) = z X2 are jointly sufficient
=1 i=1 =1 =1

statistics fory and o,

SinceX == Z X; andS? _i{z X; >~nX } is a one-to-one functions

Ni= n-1:23

of Y, andY ,, thenX andS? are jointly sufficient statistics foiz and o°.

As shown in sections 1.4.1 and 1.4.2 that

B 2 2
1. X[ N[,u,a—] d&DX (n-1).
n o2

2. X andS? are stochastically independent.
Then the joint p.d.f. oK andS? can be expressed as a member of the
exponential family and that implies that and S2 are minimal jointly

sufficient statistics fors and o,

Further more, we have

E(X) = u and E(SZ) =02, then from completeness we see thaand

S2 are M.V.U.E’s foru and o2 respectively.

Y



CHAPTER

3.1 Introduction

The first step in studying a certain problem undensideration is
building a mathematical model; the next step isidg a solution from this
model. The solution may be obtained analyticallp@merically. The analytic
solution is usually obtained directly from it's rhammatical representation in
the form of the formula, while a numerical solutios generally an
approximate solution obtained as a result of suligtn of numerical values
for the variables and parameters of the model. Mamyerical methods are
iterative, that is, each successive step in thatisol uses the results from the
previous step, such as Newton-Raphson method famozimating the roots
of a nonlinear equation. Two special types of nucaér methods are
simulation and Monte Carlo designed for a solutadndeterministic and

stochastic problems.

Simulation “in the wide scene” is defined as numeriechnique for
conducting experiments on a digital computer, whmnsiolve certain types of

mathematical and logical models that describe tystemn behavior over
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extended periods of time, for example, simulatiogtihall game, supersonic
jet flight, a telephone communication system, admMuannel, a large scale
military battle (to evaluate defensive or offensmeapon system), or a
maintenance operations (to evaluate the optimak ik repair crews).

Simulation is often viewed as a " Method of Lastsé&t® to be used when
everything else has failed, software building agxhbical developments have
made simulation one of the most widely used andpded tools for designer in

system analysis and operational research.

Simulation "in a narrow sence" (also called stobbasimulation) is
defined as experimenting with the model over tinteincludes sampling
stochastic varieties from probability distributioBecause sampling from a
particular distribution involve the use of randoommbers, stochastic simulation

sometimes called Monte Carlo Simulation.

Historically, the Monte Carlo method was consideasda technique
using random or pseudorandom numbers for solutiom onodel. These
random numbers are essentially independent randamables uniformly

distributed over unit interval [0, 1].

Actually there are arithmetic codes available ahgoter center (0 to
9) occurs with approximately equal probability "gnae flips of a fair ten-side

die". Such codes are called random number generator

In the beginning of the 3Bcentury the Monte Carlo was used to

examine the Boltzmann equation.

In 1908 the famous statistician Gosset (studerd¥ tise Monte Carlo
method for estimating the correlation coefficientis t-distribution, [9].

One of the earliest problems connected with Morgdodmethod is the
famous Buffon's needle problem, who found the gritihaof a needle of length L

thrown randomly onto a floor composed of parallehgs of width
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D>L isP =%which can be estimated as the ratio of the numbé#rrows

hitting the crack to the total number of throws.

A. N. Kolmogororv (1931) applies Monte Carlo metravdl showed the
relationship between Markov stochastic processed eertain Integro-

differential equations, [8].

In 1948 S.Ulam used Monte Carlo method for estiomtof the

eigenvalues of Schrodinger equation, [7].

The terms "Monte Carlo" was introduced by Von Nemmand Ulam
during World War 1, as a code word for secret watkLos Alamos, it was
suggested by the gambling casinos at the city aft&¢&arlo in Monaco. The
Monte Carlo method was then applied to problenage®lto the atomic bomb [3]
where the work involve direct simulation of behawioncerned with random
neutron diffusion in fissionable material. Shottigreafter Monte Carlo method
were used to evaluate complex multidimensionalgratis, solution of certain
differential and integral equations stochastic f@ols, deterministic problems
if they have the same formal expression as sonohattic process, evaluating
parameters of queues and networks, sampling randoieties from probability
distributions, and analyzing complex problems. Afukreference related to

Monte Carlo simulation is given by Rubinstein [2AH Norman [22].

This chapter involves three sections. Section (B.&jrated random number
generation. While section (3.3) discussed randornetis generation. Generation
random varieties from normal distribution are stddtheoretically and applied

practically in section (3.4).
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3.2 Random Number Generation

Many techniques for generating random numbers gitablcomputer by
Monte Carlo method and simulation have been suggdsisted and used in
recent years. Some of these methods are basedadonmgphenomena, others

on deterministic recurrence procedures.

Initially manual methods were used to generategaiesgce of numbers
such as coin flipping, dice rolling, card shufflingnd roulette wheels, but
these methods were to slow for general use, mordbeegenerated sequence

not reproduced.

Shortly following with the computer aid it becomesgible to obtain
random numbers. In 1951 Von Neumann [30] suggdsts mid-square
method using the arithmetic operations of a compiies idea is to take the
square of the preceding random number and exthacintiddle digits. For
instance, suppose we wish to generate 4-digits arsmb

1- Choose any 4-digit number, say 5232.
2- Square it, we have 27373824.
3- The next 4-digit number is the middle 4-digits &2, that is, 3738.

4- Repeat the process.

Von Neumann's method proved slow and awkward fatissical
analysis, furthermore the sequences tend to ciclend once a zero is
encountered the sequence terminates. One methageradrating random
numbers on a digital computer is published in 18IRAND Corporation
[24], the method consists of preparing a well kndalole of a million digits
and. storing it in the memory of the computer. @dgantage of this method is
reproducibility and it's disadvantage is its ladkspeed and risk of exhausting
the table.

It is noted in the literature that the random nurselgenerated by any
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method is good one if the random numbers are umlfordistributed,
statistically independent, reproducible, fast, agguires minimum capacity in

the computer memory.

The congruential methods for generating pseudoranciombers are

designed specifically to satisfy as many of thesglirements as possible.

These methods produce a non-random sequence oemsiadzording to
some recursive formula based on calculating thdues modulo of some integer
m of a linear transformation Although these proegesare completely
deterministic, Knuth in 1969 [16] show that the tams generated by such

sequence appear to be uniformly distributed aridtitally independent.

The congruential methods [19] are based on a fued&incongruence
relationship, which may be formulated as:
Xi+1= (aXj +¢) (mod m),i=1,2,.., 1 (3.1)
Where a is a multiplier, c is the increment, ang the modulusd, c, mare

non-negative integersyrod m) means that eq.(3.1) can be written as:

-+
Xis1=aX; +c-m{ X C:|

m

(3.2)

Where[Z] is the largest positive integer in Z.

Given an initial starting valueXq with fixed values o#, c, and m,
then eq.(3.2) yields congruence relationship (nwam) for any value i of the
sequence {¥. The sequence {X will repeat itself in at most m steps and will
be therefore periodic. For example,

Let a=c =X =%, and m =5, then the sequence obtained from the
recursive formula

Xi+1=(3X; + 3)(mod 5'is X;=3, 2, 4, 0, 3,.
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The random numbers on the unit interval [0, 1]lmawobtained by:

u=2L (3.3)

It fellow’s from eq.(3.3) thaX; <m, [0i , this inequality mean that the

period of the generator can not exceed m, th#ttessequence {X contains at
most m distinct numbers. So m must be chosen gs &8 possible to ensure a
sufficiently large sequence of distinct numberthim cycle.

It is noted in the literature [10, 18, 20] that dastatistical results can be

achieved from a computer by choosang 2 +1 c=1andm 235

3.3 Random Varieties Generation

Two well-known methods for generating random v&getform
continuous distribution, namely the inverse tramsfoanethod and acceptance-

rejection method.

3.3.1 Thelnverse Transform Method

Recall the properties of the c.d.f
Pr(X< x)=F(x) of r.v. X
O O<sFX)<I.
(i)  F(-0)=0, F(0)=1.
(i)  F(x)is non-decreasing function of x.

(iv) F(x) is continuous function to the righiteach x.

The inverse transform method is based on the follpineorem
Theorem (3.3.1.1) [18]

The rvU =F(X)0OU (0,2) if and only if the r.v.X =F_1(U) has
cdfpr(X <x)=F(X).

Proof
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= Consider the r\J =F (X )[U (0,1) then the c.d.f. o) is

0, u<oO
Gu)=prU <u)=<u, O<ucx<l
1, u=1

pr(X <x)=pr(FU)sx)=prlU <F(x))=F(x)
[J Considetther.v. X hasc.d.f F(X)=pr(X <x)
Gu)=prU su)=pr(F(X)<u)

= pr [X < F_l(u)]

=F [F_l(u)} =u

The IT algorithm describe the necessary steps émerting r.v. by
Inverse Transform Method
1) Generate U from U(O, 1).

2) SetX =F V).
3) Deliver X as ar.v. generated from the p.d.f f(x).

We note that, this method is valid when the clé(%) exists in a form

for which the corresponding inverse transform carstlved analytically.
3.3.2 The Acceptance-Relection Method [30]

This method consists of sampling a r.v. from anrappate distn. and

subjecting it to a test to determine whether orithwill be acceptance for use.
To carry out this method, the p.d.f. f(x) of thengeted r.v. X

represented ad (x)=ch(x)g(x), where c=1, h(x)is also p.d.f. and
0<g(x)<1. Then we generate twov.® U and Y from U (0, 1) and h(y)

respectively and test to see whether or not thguakty U < g(Y ) holds:

1. If the inequality hold, then accept Y=X as a r.engrated from
f(x).
2. if the inequality violated, then reject the pair, Y)Y and try again.
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The theory behind this method is based on thewiatlg theorem
Theorem (3.3.2.1) [27]
Let the p.d.f of r.v. X represented &¢x) =ch(x)g(x), wherec =1,

h(x)as also p.d.f., andd<g(x)<1. Let U and Y be distributed U (0, 1) and
h(y) respectively, thepr [Y =x|U <g(¥ )] =f (x).
Proof

pry =x,U <g()]
pru <g(v)]

_ prly =x,U <g()]
[prly =x,U <g(r)]dx

pry =x|U <g(v)]=

Using Bayes theorem [2], we have

pr[U Sg(Y)‘Y =x]pr(y =x)
priU <g()|Y =x]pr(y =x)dx

pry =x|U Sg(Y)]=J.

Sincepr[U <g(Y)|Y =x]=pr[U <g(x)]=g(x)and
prY =x)=h(x). Then:

g)h(x)  _ g(x)h(x)

J g0on0adx 1.0 g

X #0 X C

prly =x|U <g(y)]= c£0

= g(x)lh(X_) :Cg(x)h(X) =f (X)

C

The efficiency of Acceptance-Rejection is deterrdibg the inequality
U <g(Y ), where the efficiency pr[U < g(Y )] =El.

Since the trails are independent, the probabilitguzcess in each trail
is P =l. If N is a random variable represent the number ofsthaffore a

C

successful pair (U, Y), theN has geometric distribution with p.d.f.
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pr[N =n]=p@a-p)" %, n=12,..
=0, e.w.

and the expected number of trails is
E(N)=1=c
Y

The AR-Algorithm describes the necessary stepsenferating random
varieties by Acceptance-Rejection method.
AR-Algorithm
1) GeneratdJ fromU (0,1).

2) Generatey from h(y).

3)If U<g(yY), deliver (we accept) Y=X as a random varieties
generated fronf (x).

4) Go to step (1).
5) Stop.
Remark
For acceptance-Rejection method to be of practio&rest, the

following conditions must be satisfied:
1. It should be easy to generate ar.v. X frio(r).
2. The efficiency (probability) of the procedwﬂle should be large, that is
C

¢ should close to one.

lllustration of the Acceptance-Rejection method,cleosec =1 such that
f (x)<ch(x)=¢@Xx).

The problem then is to find the functiogp(x) and the function

h(x) =l¢(x) from which the random variable can be easily gateel:
c
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3.4 Generating Random Varieties from Normal

Distribution

3.4.1 Procedure N-1
This approach is due to Box and Muller (1958) [26}%

If Uy U, is a rs. of size 2 fromU(0,1), then the rv>

1/2 1/2
) )

X1=(-2InU1)" “co 20 5), X =(-2InU )" “sin( 21 ,) represent ar.s.
of size 2 fromN (0,1).
Proof

The joint distribution ofJ; andU , are

g(u,up)=1, O<y; <1,i =1,2

=0, ew.
: _ 1/2 _ 1/2
The functionsxy =(-2Inuy)™ “coq 2m5), X, =(-2Inuy)™" “sin( 2,) that
maps
1-1
A ={@upup):0<uj <1i =12 - B ={(x1,xp):i—0<xj <o,i =13
onto

with inversesx{ +x 5 = (~2Inuq) cos( 2w p) + (- 2l ) sirf( 2u )
=—2Inu1(co§( am,)+ sirf( Zzuz))
=—2|nu1

1 1(X2 Xz)
Inulz—E(xlz+x2) impliesu; =e 2V 1 2

X2 —tan( 2m,) = 2w, = tai ( Zj |mpI|esu2—itan 1()(2}
X1 X1 2m X1

The Jacobian of this transformation is
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2..,2 1. 2,.2
— (X7 +X — (X +X
du; dug| |X® 2( focd X2 2( ol
5= d(ug,Uo) _1ax1 0Xo| —X2 1

d(X1,Xo) |0up dup| | 1 (x))° 1
Y Av 2 2
Ox1 O0Xop 27T1+(X2j 2ﬂ1+(xzj

X1 X1
2 1 2 2
12,20 (X2 '2(X1+X2) 1 2, 2
g (Xl e sz [ (Xzﬂ
= - _ = |1+ 22
2 2 2 X1
2 1+(X2j o 1+(X2] 1+(X2j
X1 X1 X1
1 2. 2
e 2(X1+X2)
B 27T

21T
xF+3)
——| Xy +Xx
_e 2 1 2 1(X12+X§)
=) =—¢e 2 , —00 < X <00

X =(X1,X ) distributed as a random vector of size 2 frbing0,1). That is,
X: N (0,2), i =1,2.
Algorithm N-1

1) GeneratdJ, andU, fromU (0,1).

2) SetX 4 =(-2InU )" 2coq 2 5), X 5 =(=2InU ) sin( 2 ).
3) Deliver X =(X1,X ) asarandomvectorof size 2 generated from

N (0,1).
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A computer program as written in Appendix Bl forngemting a
sample of size n from normal distribution written Pascal language using
Microcomputer Pentium IV, CPU 1.7 GHz and the sige 2 is taken. The
results of mean and variance of standard normdiillision with efficiency

and time are tabulated in table (3.1).

Table (3.1): Valuesof Time, 4 and 6° with Difference n-Samples
Using N-1 Procedure

3.4.2 Procedure N-2

This procedure is based on the Acceptance-Rejeatiethod. Let the
r.v. X be distributed

2 —ox2
f(x)=,/—e 2 ,0<x<om (3.4)
T

=0, e.w.
Since the standard normal distribution is symioaitrabout zero, we

can assign a random sign to the r.v. generated émx3.4) and obtain an r.v.
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from N (0,1).

To generate an r.v. from (3.4) writgx) as

f (x)=ch(x)g(x)

Set(x ~1)22 0= x% - X + 1= 0= x 22 X - :

1 1
1 1 1 1 X 5 X
X X2 >x E-de —x2<——x Impliese 2 <e?

f(x)= \/:e 2 \/:ez = @(X)
—\/% =g(x)
T
Ch(x)=ﬂx):c:J§Te‘de :\/E
T, T

h(x)—%:e X 0<x <o

=0, e.w.

0, x<0

H(x)=<1-e*, 0<x <o
1, X=o

Setu=H (X)=x =-Inu

f(x) :e—zx :e—;(x —2x+1) _ —;(x—J)2
AX) 1

g(x)=

The efficiency of the method is equal%o= \/ZE =(0.76.
C e

The acceptance conditibdh< g(Y ) isU < exp[—(Y - ])2/2}
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Algorithm N-2
1) GeneratdJ, andU, fromU (0,1).

2) SetY =-InU,».

3) If U >g(Y)=exp[—(Y —])2/2] go to step (1).

4) GenerateJ fromU (0,1).

5 IfU s%, DeliverY =X as ar.v. generated froh *(0,1).

6) DeliverY =-X as ar.v. generated frod (0,1).

A computer program is made in Appendix B2 for comagion the
values of efficiency with run size of 2 is takerhelresults of mean and
variance of standard normal distribution with a#fiecy are displayed in
Table (3.2) relative to the theoretical efficien@tue of 0.760.

Table (3.2): Valuesof ¢, z and * with Difference n-Samples
Using N-2 Procedure

Simulation | Theoretical

Efficiency | Efficiency
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3.4.3 Procedure N-3

This procedure relies on the Central Limit Theararhich says that if

X1,X9,...,Xn be a rs. of size n from any distribution (contos or

2

discrete) having meary and varianceg“ with existence of moment

generating functioM (t), then the r.v.
n(x -

X :M (3.10)

o

Converges asymptotically with n té¢ (0,1). Consider the particular case

when allX;, i =1,2,.. n are fromU (0,1). We find that
1
=Eu)==.
H=EU)=3
2 1
o =varu)=—.
u) T
JHLU__;] 1
X =———=2=412n (U_——] (3.11)
1 2
12

A good approximation can already be obtainednferl2.
Algorithm N-3
1) GenerateJ ,U»,... U, fromU (0,1).

_ 1Ah
2) SetU ==>'U; .
Ni=1

3) SetX =Jﬁ(u‘—%).

4) Deliver X asarandomvectorfrom N (0,1).

A computer program as written in Appendix B3 forngmting a
sample of size n from normal distribution written Pascal language using

Microcomputer Pentium IV, CPU 1.7 GHz and the sige 2 is taken. The
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results of mean and variance of standard normdiilalision with efficiency
and time are tabulated in table (3.3).

Table (3.3): Valuesof Time, 4 and 6° with Difference n-Samples
Using N-3 Procedure

3.4.4 Procedure N-4
This procedure due to Tocher (1963). The techniquéhis procedure

from generating fronN (0,1) is made by approximating the p.d.f.
2

X —kx
\/%e 2 :Zke—z (3.12)
[rre™]

Where0O<x <o andk =\/§.
T

Proof

By inverse transform method
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X X ke—kt
F(x)=[f (t)dt :zj—zdt
0 o(1+e‘kt)
2 X
1+e_kt 0
( 0, x<0
2
F(x)= i L 0<X <o
1+e %
1, X=o
setu=F(x)= -1=u
1+e—kX
U+1= 1 :>1+e_kx :_2
2 1+e_kx u+1l
e—kx — 2 1= 1-u
u+l 1+u

1-u 1 1-u
—kx =In(—):>x =——In(—)
1+u k 1+u
) } 1 1+u
implies x =—In(—J.
k 1-u
Algorithm N-4

1) GeneratéJ, andU , fromU (0,1).
2) SetX =\/ZTm 1+Uq |
8 |1-U,

3) IfU> s%, Deliver X =Y as ar.v. generated froht *(0,1).

4) Deliver X =-Y as ar.v. generated frohdd (0,1).

A computer program as written in Appendix B4 forngemting a
sample of size n from normal distribution written Pascal language using
Microcomputer Pentium IV, CPU 1.7 GHz and the sige 2 is taken. The
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results of mean and variance of standard normdiilalision with efficiency

and time are tabulated in table (3.4).

Table (3.4): Valuesof Time, 4 and ° with Difference n-Samples
Using N-4 Procedure
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CHAPTER

2.1 I ntroduction

The importance of good numerical integration sabems evident. There
are many deterministic quadrature formulas can tend throughout the
literature for computation of ordinary integralstiwivell behaved integrands. It
Is often more convenient to compute such integbgldMonte Carlo method,
which, although less accurate than conventionaldigiare formulas, but is
much simpler to use.

This chapter involves three numerical procedured dmo reduction

techniqgues for approximating of th&l(0,1) c.d.f. of eq.(1.4). The three

numerical procedure namely Trapezoidal, Simpson@auass-Quadrature Rules
are discussed in sections 2.2, 2.3 and 2.4 respgctWhile the two reduction
technigues namely Hit or Miss Monte Carlo and Sanrdean Monte Carlo
Rules are discussed in sections 2.5 and 2.6 resggct

For simplicity and computing purposes, we writgd4) as
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X _ltz
D)=+~ fe 2 o 2.1)
0

2 o

Finally section 2.7, the results of the five methaate tabulated and
compared with the literature table(1.1) given iagter one in order to obtain the

more efficient and accurate procedure.

2.2 Approximation by Trapezoidal Rule[12]

Trapezoidal method is used for approximating tteaainder a curve by

series of trapezoids. It has been shown theorhtitedt using an infinite number
of trapezoids give prefect accuracy, but roundihgroor will give us problems.
The trapezoidal rule procedure can be illustratetbbows:

Suppose we wish to approximate the integral

b
| = [f (x)dx , by using trapezoidal rule (2.2)

a

We divide the interval from a to b into n equaltpags shown in figure(2.1),

where the boundaries of the trapezoids»xagexy,..., Xy -

(i) ~ 00

/ f(Xi

a=xXy X1 Xo Xia X Xn=b

Figure(2.1): Integration by the Trapezoidal Rule.
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Let h =? be the width of the ith trapezoid that lies betweg _; and x;

whose heights at the left and right side are rasmdyg f (xj —1) andf (X;).

The area of the ith trapezoid is:
h
A ZE[f (Xi ) +f ()]

The total area of all n trapezoids is the trapesagghproximation to the integral

|. that is:

n
I:ZAi'

=1

O01F o)+ (] # fF (x) +1 (9] + O (x 9 +F (x 3]+

o[£ O0en) + £06)

h n-1
O[T o)+ (k) +2 X () (2.3)
i=1

Composite Trapezoid Rule Algorithm

Stepl: Input a, b (Interval of integration)
n (Number of subintervals)
Step2: Define f(x) (integrand)

Step3: Seth = (bn;a)

Step4: sum=0

StepS: Fori=1to n-1
Step6: x =a+i *h
Step6: sum=sum+2f(x)

Step?: g:%(f (a) +sum +f (b))
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Step8: Output g
Step9: Stop

Appendix (Al) involves a computer program writtenRascal language
using composite trapezoid rule for approximating thtegral side of eq.(2.1).
The x-values of the upper limit of the integral teken from the normal
distribution table (1.1). Table(2.1) gives togettiee approximate and the errors
value of F(x) while figure(2.2) shows the differenbetween the exact and

approximate results of thd(0,1) c.d.f. by Trapezoidal method. Also this figure

shows the minimum and maximum errors between tlaeteand approximate

result.

Table(2.1): Approximation by Trapezoidal Method

X Approx. Error X Approx. Error
0.00 0.500000; 0.00000( 1.60 0.944822| 0.00017
0.05 0.519939, 0.00006: 1.645 0.949633| 0.00036
0.10 0.539828, 0.00017: 1.65 0.950146| 0.00085
0.15 0.559617, 0.00038: 1.70 0.955049| 0.00004
0.20 0.579257, 0.00025° 1.75 0.959559| 0.00044
0.25 0.598701, 0.00029¢ 1.80 0.963686| 0.00031
0.30 0.617903| 0.00009° 1.85 0.967463| 0.00053
0.35 0.636817, 0.00018: 1.90 0.970909| 0.00009
0.40 0.655402| 0.00040: 1.95 0.974044| 0.00004
0.45 0.673617, 0.00038: 1.960 0.974636] 0.00036
0.50 0.691426, 0.00042¢ 2.00 0.976890| 0.00011
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0.55 0.708793| 0.00020° 2.05 0.979468| 0.00053}
0.60 0.725687| 0.00031: 2.10 0.981796 0.00020
0.65 0.742080| 0.00008(  2.15 0.983895| 0.00010%
0.70 0.757947| 0.00494° 2.20 0.985782 0.00021
0.75 0.773267| 0.00026° 2.25 0.987475 0.00052
0.80 0.788021| 0.00002: 2.30 0.988989 0.0000l
0.85 0.802195| 0.00019¢ 2.326 0.989712 O 00028
0.90 0.815778| 0.00022: 2.35 0.990341 0.00065
0.95 0.828762| 0.00023¢  2.40 0.991545 0.00045
1.00 0.841143| 0.00014: 2.45 0.992615 0.00038
1.05 0.852919| 0.00008: 2.50 0.993563 0.00043
1.10 0.864092| 0.00009: 2.55 0.994401| 0.00059%
1.15 0.874667| 0.00033: 2.576 0.994797 0.00020
1.20 0.884651| 0.00034¢ 2.60 0.995141] O 00014
1.25 0.894053| 0.00005:  2.65 0.995792 0.00020
1.282 0.899771 0.00022¢ 2.70 0.996363| O 00063
1.30 0.902886| 0.00011+ 2.75 0.996864| 0.00013%
1.35 0.911163] 0.00016¢ 2.80 0.997301] O 00030
1.40 0.918901| 0.00009¢ 2.85 0.997682 0.00031
1.45 0.926116/ 0.00011¢ 2.90 0.998014 0.00001
1.50 0.932828| 0.00017: 2.95 0.998302 0.00030
1.55 0.939057| 0.000057 3.00 0.998551| O 00044
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Figure(2.2): Shows the difference between the exaahd approximate
solutions to the c.d.f.®(x) by Trapezoidal Rule.

2.3 Approximation by Simpson Rule[17]

b
In Simpson method, we try to approximaﬁé (x)dx by a series of

a
parabolic segments hoping that parabola will méweety much to a given curve
of f(x) than it would be straight line in the tragoédal method.

Simpson rule (or Simpson% rule) is given by the equation
Alzg(fo+4f1+f 2)+O(h5) where A; denotes the area under the graph of
f(x) from the pointxgy to the pointx, and h =%n"Xo , (=1, 2, ...). This

n

equation calculates the integral over two segmentintegration. Repeated
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. . 1 : .
application of Slmpsopé rule over segment pairs of segments, and summation

of all the formulas over the total interval, givibe multiple segments Simpson
1

— Rule:

3
n h n-1 n-2 5

A=> A, :§ fo+tdd fj +2> f; +f, |+O () (2.4)
i=1 i =1 i=2

] ]
a=Xg X1 Xo X3 Xi-1 Xi Xi+1 Xn=Db X

Figure(2.3): Integration by the Simpson Rule.

Since, Simpson% Rule fits pairs of segments, the total intervalasinbe

divided into an even number of segments. The $mshmation terms in eq.(2.4)

sums up to odd-subscripted terms and the secondhatiom odds up to even-
subscripted terms, the order of the error of thétiple-segment Simpsoné rule

was reduced by one order of magnitude of')ofbr the same reason as in the
trapezoidal rule. For more details see [15, 25].

Simpson Rule Algorithm

Stepl: Input a, b (Interval of integration)

n (Number of subintervals)
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Step2: Define f(x) (integrand)

Step3: Seth = @

Step4: sum1=0, sum2=0

Step5: Fori=1to n-1

Step6: x =a+i *h

Step7: If i is even then suml=suml+2f(x)

Else sum2=sum2+4f(x)
Step8: g D%[f (@) +suml+sum2+f ©)]

Step9: Output g
Stepl0: Stop

Appendix (A2) involves a computer program writtenRascal language
using Simpson rule for approximating the integrdé=f eq.(2.1). The x-values
of the upper limit of the integral is taken fronethormal distribution table (1.1).
Table (2.2) gives together the approximate andetiners value of F(x). while
figure(2.3) shows the difference between the eaact approximate results of

the N(0,1) c.d.f. by Simpson method. Also this figure shotws minimum and

maximum errors between the exact and approximatdtre

Table(2.2): Approximation by Simpson Method

0.500000; 0.00000C 1.60 0.945201

0.05 0.519939| 0.00006: 1.645 0.950015 0.00001

0.10 0.539828| 0.00017: 1.65 0.950529| 0.00047

0.15 0.559618; 0.00038: 1.70 0.955435| 0.00043
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|

|

0.20 0.579260| 0.00026(  1.75 0.959941| 0.00005§
0.25 0.598706| 0.00029« 1.80 0.964069| 0.00006}
0.30 0.617911] 0.00008¢ 1.85 0.967843 0.00015
0.35 0.636831| 0.00016¢ 1.90 0.971283] 0.00028§
0.40 0.655422| 0.00042: 1.95 0.974411 0.00041
0.45 0.673645| 0.00035¢ 1.960 0.975001) 0.00000;
0.50 0.691462| 0.00046: 2.00 0.977249| 0.00024%
0.55 0.708840/ 0.00016( 2.05 0.979817| 0.00018]
0.60 0.725747) 0.00025¢ 2.10 0.982134| 0.00013

0.65 0.742154| 0.00015¢ 2.15 0.984221] 0.00022j
0.70 0.758036| 0.00503¢ 2.20 0.986095| 0.00009%
0.75 0.773373| 0.00037: 2.25 0.987773| 0.00022

0.80 0.788145| 0.00014: 2.30 0.989274| 0.00027

0.85 0.802338| 0.00033¢ 2.326 0.989988, 0.00001f
0.90 0.815940/ 0.00006( 2.35 0.990611| 0.00038%
0.95 0.828944| 0.00005¢ 2.40 0.991800; 0.00020

1.00 0.841345| 0.00034: 2.45 0.992854| 0.00014%
1.05 0.853141| 0.00014: 2.50 0.993787| 0.00021§
1.10 0.864334| 0.00033«¢ 2.55 0.994611| 0.00038%
1.15 0.874928| 0.00007: 2.576 0.994999, 0.00000]
1.20 0.884931| 0.00006¢ 2.60 0.995335| 0.00033%
1.25 0.894351] 0.00035. 2.65 0.995972| 0.00002§
1.282 0.900079,  0.00007¢  2.70 0.996529| 0.00047]
1.30 0.903200; 0.00020C  2.75 0.997017| O OOOOl
1.35 0.911492) 0.00049: 2.80 0.997441] 0.00044]
1.40 0.919244| 0.00024: 2.85 0.997810; 0.00019¢
1.45 0.926471] 0.00047: 2.90 0.998131] 0.00013]j
1.50 0.933193] 0.00019¢ 2.95 0.998408| 0.00040%
1.55 0.939430; 0.00043( 3.00 0.998647| 0.00035§
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Figure(2.3): Shows the difference between the exa@hd approximate
solutions to the c.d.f.®(x) by Simpson Rule.

2.4 Approximation by Gaussan Quadrature Method [25]

To introduce the ideas involved in Gaussian Quadeawe consider the

b
more general integrajlvv (x)f (x)dx , wherew (x) >0 is a weight function.
a

We are interested only in the caséx) =1 but different choices do play
very important roles in numerical integration andiscussion of these can be
found in [17]. The orthogonal polynomials correspioig to this weight function
are known as the Legendre polynomials. Quadratsirggithese polynomials is
called Gauss-Legendre Quadrature or, simply, Gang3uadrature which have

the general formula
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1
[ (x)dx O iwif (x) (2.5)
-1 i =0

The coefficientsw; (i =0,1,2,.. n ) could be calculated, but this is not
necessary because they, and the poxjts have already been tabulated for a

large value of n see [12, 15]. Some of the rootthefLegendre polynomials and
the corresponding weights are used. We need inntkithod transforming the

interval [a, b] in to [-1, 1], by using the simpieear transformation.

T{(bla)}(Zx —a-b) which providedb >a, the Legendre polynomials

reduce to approximate
}(b—a)f ((b—a)t +(a+b)}jt
2 2

Where f is any function that can be evaluated atréguired region of points.

Gaussian Quadrature Rule Algorithm

Stepl: Input a, b (Interval of integration)
n<6 (Number of subintervals)
Step2: Define f(x) (integrand)
Initialize  Array x(n, i), w(n, i) for the Gaus®des and weights in table(2.3) as
shown below, x(n, i) is the ith nonnegative nodetfe Gauss n-point formula,
and w(n, i) is the corresponding weight.
Step3: Set h:= (b-a)/2
m:= (a+hb)/2
x:= h x(n, 1)
Stepd: If nis odd then g: =h w(n, 1)f(x)
Else g: =h w(n, 1)(f(-x+m)+f(x+m))
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n+1

Steps: Fori =2 to [T} set x:= h x(n, 1)

Step6: g:= g+h w(n, i) (f (-x+m) + f (x+m))

Step7: Output g
Step8: Stop

Table(2.3): Shows Numerical Values of the Gauss Nesl and Weights

2 0.577350269189626 1.00000000000000P
0.000000000000000 0.888888888888888
> 0.774596669241483 0.555555555555556
0.339981043584856 0.652145154862546
: 0.861136311594053 0.347854845137454
0.000000000000000 0.568888888888889
5 0.538469310105683 0.478628670599366
0.906179845938664 0.236926885056189
0.238619186083197 0.467913934572691
6 0.661209386466265 0.360761573048139
0.932469514203152 0.171324492379170
0.183434642495650 0.362683783378362
0.525532409916329 0.313706645877887
° 0.796666477413627 0.222381034453374
0.960289856497536 0.101228536290376
0.148874338981631 0.295524224714753
0.433395394129247 0.269266719309996
10 0.679409568299024 0.219086362515982

0.865063366688985
0.973906528517172

0.149451349150581
0.066671344308688
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0.125233408511469 0.249147045813403
0.367831498998180 0.233492536538355
. 0.587317954286617 0.203167426723066

0.769902674194305
0.904117256370475
0.981560634246719

0.160078328543346
0.106939325995318
0.047175336386512

Appendix (A3) involves a computer program writtenRascal language
using Gaussian Quadrature Rule for approximatiegintegral side of eq.(2.1).
The x-values of the upper limit of the integral teken from the normal
distribution table (1.1). Table (2.4) gives togettiee approximate and the errors
value of F(x). while figure(2.4) shows the diffecenbetween the exact and

approximate results of theN(0,1) c.d.f. by Gaussian Quadrature Method. Also

this figure shows the minimum and maximum errorsveen the exact and

approximate result.

Table (2.4): Approximation by Gaussian Quadrature Method

Approx. Error Approx.
0.00 0.500000; 0.00000( 1.60 0.945176
0.05 0.519939, 0.00006: 1.645 0.949982
0.10 0.539828, 0.00017: 1.65 0.950495
0.15 0.559618, 0.00038: 1.70 0.955389
0.20 0.579260, 0.00026( 1.75 0.959881
0.25 0.598706, 0.00029¢ 1.80 0.963992
0.30 0.617911, 0.00008¢ 1.85 0.967744
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0.35 0.636831| 0.00016¢ 1.90 0.971158| 0.00015

0.40 0.655422| 0.00042: 1.95 0.974256| 0.00025%
0.45 0.673645| 0.00035¢ 1.960 0.974840, 0.00016Q
0.50 0.691462| 0.00046: 2.00 0.977059| 0.00005%
0.55 0.708840| 0.00016(  2.05 0.979586| 0.00041

0.60 0.725747| 0.00025: 2.10 0.981856| 0.00014

0.65 0.742154| 0.00015¢ 2.15 0.983889| 0.00011}j
0.70 0.758036| 0.00503¢  2.20 0.985702| 0.00029%
0.75 0.773373| 0.00037: 2.25 0.987313| O 00068
0.80 0.788145| 0.00014: 2.30 0.988737| 0.00026]
0.85 0.802338| 0.00033¢ 2.326 0.989410 0.00059p
0.90 0.815940/ 0.00006(  2.35 0.989991| 0.00100%
0.95 0.828945| 0.00005¢  2.40 0.991088| 0.00091}
1.00 0.841346| 0.00034¢t 2.45 0.992043] 0.00095

1.05 0.853142| 0.00014: 2.50 0.992867| 0.00113}
1.10 0.864335| 0.00033¢ 2.55 0.993574| 0.00142%
1.15 0.874929| 0.00007: 2.576 0.993900, 0.00110p
1.20 0.884931| 0.00006¢ 2.60 0.994175] 0.00082%
1.25 0.894350| 0.00035(  2.65 0.994680, 0.00132§
1.282 0.900078| 0.00007¢ 2.70 0.995100; 0.00190

1.30 0.903199| 0.00019¢ 2.75 0.995442| 0.00155%
1.35 0.911490| 0.00049C 2.80 0.995717| 0.00128}
1.40 0.919239| 0.00023¢ 2.85 0.995932| 0.00206%
1.45 0.926463| 0.00046: 2.90 0.996095| 0.00190%
1.50 0.933181] 0.00018: 2.95 0.996212| 0.00178%
1.55 0.939412| 0.00041: 3.00 0.996291| 0.00270%
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Figure(2.4): Shows the difference between the exa@hd approximate
solutions to the c.d.f.®(x) by Gaussian Rule.

2.5 Approximation by Hit or Miss Monte Carlo Method [27]
In this section, we consider a simple techniqueclmamputing the one-

dimensional integral:

b
| = [f (x)dx qR.

a
By Monte Carlo method. Viz
For simplicity we assume that the integrand f(X})asinded G< f(x) <c,
a< x<b. LetQ denote the rectangle as shown in Figure(2.5)
Q={(x,y):a<x<h,0<y<c}
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Let (X ,Y ) be a random vector uniformly distributed over teetangleQ2 with

joint p.d.f.

1
, vy )UQ
a(x.y)=1co-a &Y (2.7)

0, otherwise
Let P be the probability that the random vedrY )falls within the area under

the curve f(x), and let S= {(x, y): ¥ f{(X)}. The area under the curve f(x) is:

b
Area under f(x) = area §# (x)dx ,
a
f X A
(x) )
Clocoooo
o Miss
ﬁ\&
o Hit
S >
0 a b X

Figure (2.5): Graphical Representation of the
Hit or Miss Monte Carlo method.

We obtain
b
[T (x)dx
aeas _ g

_ = (2.8)
aeaQ c(b-a) c(b-a)

Assume that N independent random vectots,Y 1), (X 2Y 2),..., X Y5 ) are
generated. Then the probability P can be estimated
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No.of Hits _ Ny

> (2.9)
Total no.of trials N

B =

Where N, is the number of occasions on whichx; (=2 y; , i=1, 2, ..., N,
that is, the number of “hits” and NgNs the number of “misses”; we score a
miss if
f (Xi )<yi c1=1,2, ..., N.
It follows if P=P then from egs.(2.8) and (2.9) that the integralah be

estimated by:

_cb-a)Ny

< (2.10)

| Ny .
= implies| =
cb-a) N P !

In other words we estimate the integral | by sampIN from the distn. of

ed.(2.7), count the numbeg;Nf hits and apply eq.(2.10).
Hit or Miss Monte Carlo Method Algorithm
Stepl: Input a, b and ¢

2N
=1 of 2N random numbers.

Step2: Generate a sequen{léj} _

Step3: Arrange the random numbers into N pairs
UgU1),U U 5)....,UN Uy ') in any fashion such that each randogrid)

used exactly once.

Step4: SetX; =a+U; (b —a) and computd (x;), i=1, 2, ..., N.

Step5: Count the number of cases Ffor whichf (x; ) >cU; .
Step6: Estimate the integral | by

q:c(b—a)’\:\l—"'.

Appendix (A4) involves a computer program writtenRascal language
using Hit or Miss Monte Carlo Method for approximngtthe integral side of eq.
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(2.1). The x-values of the upper limit of the imalgis taken from the normal
distribution table (1.1). Table (2.5) gives togettlee approximate and the errors
value of F(x). The run size is 1000 is made. WHiture(2.6) shows the
difference between the exact and approximate sestithe N(0,1) c.d.f. by Hit

or Miss Monte Carlo Method. Also this figure showlse minimum and

maximum errors between the exact and approximatdtre

Table (2.5): Approximation by Hit or Miss Monte Carlo Method

0.500000{ 0.00000( 0.944849 :
0.05 0.519945| 0.00005¢ 1.645 0.949989, 0.00001]
0.10 0.539845| 0.00015¢ 1.65 0.950647| 0.00035]
0.15 0.559656| 0.00034: 1.70 0.954674| 0.00032
0.20 0.578766| 0.00023« 1.75 0.959956| 0.00004
0.25 0.598735] 0.00026¢ 1.80 0.963948| 0.00005
0.30 0.617920| 0.00008( 1.85 0.967882| 0.00011§
0.35 0.636848| 0.00015: 1.90 0.970802| 0.00019
0.40 0.654620| 0.00038(C 1.95 0.973712] 0.00028%
0.45 0.673681| 0.00032( 1.960 0.974999  0.00000
0.50 0.690607| 0.00039¢ 2.00 0.976826| 0.00017
0.55 0.708864| 0.00013¢ 2.05 0.979872| 0.00012§
0.60 0.7257/85] 0.00021: 2.10 0.981906| 0.00009
0.65 0.741869| 0.00013: 2.15 0.983845| 0.00015%
0.70 0.753719| 0.00428. 2.20 0.985934 0.00006
0.75 0.772683| 0.00031. 2.25 0.987841| 0.00015%
0.80 0.787877) 0.00012¢ 2.30 0.988808| 0.00019j}
0.85 0.801713| 0.00028° 2.326 0.989992 O OOOOO
0.90 0.815949| 0.00005.  2.35 0.990747 0.00025
0.95 0.828952| 0.00004¢ 2.40 0.991870,  0.00013f
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1.00 0.840724, 0.00027¢ 2.45 0.992905 0.00009
1.05 0.852887, 0.00011: 2.50 0.993862| 0.00013g
1.10 0.863733| 0.00026° 2.55 0.994747) 0.00025]
1.15 0.874942, 0.00005¢ 2.576 0.994999| 0.00000j
1.20 0.884945, 0.00005¢ 2.60 0.994782| 0.00021
1.25 0.893719, 0.00028: 2.65 0.995982| 0.00001
1.282 0.899937| 0.00006: 2.70 0.996694, 0.00030%
1.30 0.902840, 0.00016( 2.75 0.996989| 0.00001]
1.35 0.910606, 0.00039¢ 2.80 0.996713| 0.00028
1.40 0.918805, 0.00019¢ 2.85 0.997877 0.00012
1.45 0.925647, 0.00035: 2.90 0.997915 0.00008
1.50 0.932855, 0.00014¢ 2.95 0.997735 0.00026
1.55 0.938678, 0.00032: 3.00 0.998771 0.00022%

F(x) Values

—— Exact —— Approx

1.000

0.950 +

0.900 +

0.850 +

0.800 +

0.750 +

0.700 +

0.650 + Minimum Error = 0.000001 at x=1.96

0.600 |- Maximum Error =0.004281 at x=0.70

0.550 +

0.500

x- Values

Figure(2.6): Shows the difference between the exaahd approximate
solutions to the c.d.f.®d(x) by Hit or Miss Monte Carlo Method
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2.6 Approximation by the Sample-Mean Monte Carlo
Method [27]

Another way of computing the integral

b
| =[g(x)dx

a

IS to represent it as an expected value of somdorarvariable. Indeed, let us

rewrite the integral as

b
_r 9(x)
| —ifx(x)fx(x)dx (2.11)
Assuming thaff, (x) is any p.d.f. such thdt, (x) >0 wheng(x) #O0.
Then
| :E{ g(X) } (2.12)
fx (X)

Where the random variable X is distributed accaydmf , (x).

Let us assume for simplicity

, a<x<b

fy(x)=1(-a) (2.13)

0, otherwise
Then

I
Elg(X)]|=—— 2.14
[900]=— (2.14)

and
| =(b-a)E[g(X)] (2.15)
An unbiased estimator of | is its sample mean

1 N
6’2=(b—a)WZg(Xi) (2.16)

=1
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Chapter Two

Sample-Mean Monte Carlo Method Algorithm
Stepl: Input a, b and ¢

Step2: Generate a sequenfig; }iN=1 of N random numbers.
Step3: SetX; =a+U; (b -a),i=1,2, ..., N

Stepd: computeg (X ), i=1, 2, ..., N.

Step5: compute the sample mean which estimates the altegy

1 N
92:(b—a)ﬁzg(xi)
=

Appendix (A5) involves a computer program writtenRascal language
using Sample Mean Monte Carlo Method for approxingathe integral side of
eq.(2.1). The x-values of the upper limit of theegral is taken from the normal
distribution table (1.1). Table(2.6) gives togettter approximate and the errors
value of F(x). while figure(2.7) shows the diffecenbetween the exact and

approximate results of thH(0,1) c.d.f. by Sample Mean Monte Carlo Method.

Also this figure shows the minimum and maximum egroetween the exact and

approximate result.

Table(2.6): Approximation by the Sample-Mean MonteCarlo Method

0.500000{ 0.00000( 0.944900
0.05 0.519954| 0.00004¢ 1.645 0.949993 0.00000
0.10 0.539871] 0.00012¢ 1.65 0.950765| 0.00023
0.15 0.559714| 0.00028. 1.70 0.954783] 0.00021
0.20 0.578805| 0.00019¢ 1.75 0.959971] 0.00003
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0.25 0.598780| 0.00022: 1.80 0.963966| 0.00003}
0.30 0.617933] 0.00006. 1.85 0.967922 0.00007
0.35 0.636873| 0.00012° 1.90 0.970873 0.00012
0.40 0.654684| 0.000317 1.95 0.973815| 0.00018%
0.45 0.673734| 0.00026¢ 1.960 0.975000 0.00000
0.50 0.690677| 0.00032: 2.00 0.976888| 0.00011%
0.55 0.708888| 0.00011: 2.05 0.979918| O 00008
0.60 0.725823| 0.00017. 2.10 0.981940 0.00006
0.65 0.741892| 0.00010¢ 2.15 0.983901 0.00009
0.70 0.754475| 0.00352¢ 2.20 0.985957 0.00004
0.75 0.772739] 0.00026: 2.25 0.987898 0.00010
0.80 0.787899| 0.00010: 2.30 0.988877 0.00012
0.85 0.801763| 0.00023° 2.326 0.989996 0.00000
0.90 0.815958| 0.00004: 2.35 0.990864| 0.00013
0.95 0.828961| 0.00003¢ 2.40 0.991930 0.00007
1.00 0.840793| 0.00020° 2.45 0.992949 0.00005
1.05 0.852915| 0.00008: 2.50 0.993925 0.00007
1.10 0.863800| 0.00020C  2.55 0.994864 0.00013
1.15 0.874957| 0.00004: 2.576 0.995000 0.00000
1.20 0.884959| 0.00004: 2.60 0.994883 0.00011
1.25 0.893789| 0.00021: 2.65 0.995990| 0.00001p
1.282 0.899953  0.00004° 2.70 0.996835| 0.00016%
1.30 0.902880| 0.00012( 2.75 0.996994| 0.00000%
1.35 0.910705| 0.00029¢ 2.80 0.996846| O 00015
1.40 0.918854| 0.00014¢ 2.85 0.997934| O 00006
1.45 0.925765| 0.00023¢ 2.90 0.997954| 0.00004
1.50 0.932904| 0.00009° 2.95 0.997857 0.00014
1.55 0.938785| 0.00021¢ 3.00 0.998876| O 00012
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Chapter Two An Approximation to the Cumulative
Distribution Function of Normal Distribution

\ — Exact — Approx \

1.000
0.950 /
0.900 /
0.850 /
0 0.800
E /
g 0.750
S /
= 0.700 /
0.650
Minimum Error = 0.000000 at x=1.96
0.600 T Maximum Error = 0.003525 at x=0.70
0.550
o.s00 +—+—+"4—"+-—+4+--+4+-—-+—+—+—+—+—+—+t+t+t+tt++tFFFFFF 1
O H D M N o P B DN o H o >
x- Values

Figure(2.7): Shows the difference between the exaahd approximate
solutions to the c.d.f.®(x) by Sample Mean Monte Carlo Method

2.7 Error of Approximation

In order to compare the five methods, table(2.8)wsh the error of
approximation of each method at a specific x-vaM#en x-values selected

according to minimum and maximum errors resultedhfeach method.
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Chapter Two

An Approximation to the Cumulative
Distribution Function of Normal Distribution

Table(2.8): Error of approximation comparison for five methods

x-Value

Trapezoida

Rule

Simpson

Rule

Gaussian-
Quadraturg

Rule

Hit or

Miss Rule

Sample

Mean Rul

0.004947

0.005064

0.005063

0.0042

0.000314

0.00006¢

0.0000(

)8

0.0000

0.000364

0.000001

0.0001¢

)0

0.0000

0.000011

0.000274

0.0002¢

)3
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0.0001




Conclusion

1. Simpson rule is more accurate than trapezoidal rule because the function in
Simpson rule is nearly quadratic on the close interval [a, b.

2. Gaussian Quadrature is more efficient than the trapezoidal and Simpson rule
because if formula of degree n then the error will be of order (2n-1).

3. Hit or Miss Monte Carlo method is more efficient than Gaussian formula
and the accuracy of this method increase as the sample size increases.

4. The Sample mean Monte Carlo method gives results superior than all
methods of approximation for the c.d.f. of normal distribution which
produce minimum errors and the accuracy increase as the sample size
INncreases.

5. The best of our procedures for generating sample varieties from normal

distribution is Box and Muller procedure which has less time consuming in
comparison with the other method of generation.



Conclusions and Future work

Future Work

1. The methods of approximation to the c.d.f. for normal distribution can be

used for other non-normal distributions.

2. It can be generate r.v.”> from normal distribution by other new procedures

which can be compare their efficiency with our used procedures.
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The most important continuous probability distribatin the entire field
of statistics is the "Normal Distribution”, whoseagh is symmetric bell shaped
curve, extending indefinitely in both directions iatn describes so many sets of
data that occur in nature, industry, research,paadided basis upon much of the
theory of statistical inference has been developed.

The normal distribution was discovered by De Moiver(1733) who
derived the mathematical equation of the normavewvhich is considered the
best tool of statistical inference theory.

The normal distribution is often referred to as &aan distribution in
honor of the German scientist Gauss (1773-1855), alko derived its equation
from a study of errors in repeated measuremeritseofame quantity.

Laplace (1749-1827) studies in Astronomy gave tesd Gauss obtained.
Although the normal distribution may often give ary reasonable fit to an
empirical distribution of some varieties, for exdepheight of people,
component dimension, score in an aptitude test, ietcprimary importance
occurs in connection with sampling theory. Thus mbeamples are drawn from
populations, the distribution of measures commardynputed from samples,
such as sample mean or proportions, often apprimacbrmal distribution quite
rapidly as the sample size increases (central teibrem).

Sheppard (1903) [28] published accurate, famous eladorate tables
related to the basic integral of the standard nbenaaf. d(x).

Adams A.G. (1969) [1] used the inverse Gussiarritigion algorithm to

evaluate the standard normal distribution.



Introduction

Pettis (1974) [23] and Strecok (1968) [29] usedtabls algorithm for
computing the inverse error function in the “Tan¢E reign for standard normal
integral.

B.D. Bunday, etal (1997)[4] developed new algorishifor the rapid,
efficient and accurate evaluation of the standaminal integral and its tail.

Dmitry Danilov (2005) [6] generalized the probleihestimating the first
K coefficients in a regression equation with K+iahles to the case where the
unknown variance is estimated by least squarescamdl that main properties of
the Laplace estimator only change marginally. Tloges he recommends the
neutral Laplace estimator to be used in practice.

Jade Freeman and Reza Modarres (2006) [11] stdldgechoments of the
power normal family and obtained expressions femiiean and variance. The
guantile functions and a quantile measure of skes/aee discussed to show that
the power normal family is ordered with respedtie transformation parameter.

C.S. Withers and P.N. McGavin (2006) [5] gave a resgression for
Mills’ ratio and five expressions for repeated gras of the univariate normal
density, or equivalently for the Hermite functiomsd they also gave the
derivatives of Mills’ ratio and its inverse.

Yeh lam, etal (2006) [31] studied a sequential alalg sampling plan.
Supposed that the quality of an item in a batchmasured by a normally
distributed random variable with a known varianieet the mean is unknown
with a normal prior distribution. Then by using EBgyn approach and
considering a Markoov decision process, the optigpnadquations for the
minimum total expected cost are formulated. Thegwad that an optimal
decision rule will have a control limit structuredathey presented the statistical

procedure for conducting the sequential sampliag pl



Introduction

In this thesis mainly three chapters involved. Tloemal distribution is
discussed in chapter one throughout six sectidnshninclude basic properties
and moments of normal distribution, some relategbtbms, two methods of
parameters estimation and equality of estimatotsl@N\chapter two gives a full
discussion for the approximation to the cumulatiNgribution function of the
standard normal distribution by three numericacpoures namely: Trapezoidal,
Simpson and Gaussian-Quadrature rules and two tieduechniques namely;
Hit or Miss Monte Carlo and Sample Mean Monte Carldes. The
approximation results of the five methods are tataal and compared with the
normal distribution table in order to obtain the rencefficient and accurate
procedure.

Chapter three presents three sections which inchaselom number
generation and four procedures for random variageseration from normal
distribution. The efficiency of these proceduredliscussed theoretically and

assessed destitution practically.
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