ABSTRACT

The main am of this work is classfied into four objects, these are

summarized as follows:

Thefirst objective isto study the theory of existence and the unigqueness of
the solutions for the periodic boundary value problems of the differential

eguations.

The second objective is to devote the existence theorems of the extremal

solutions of the above periodic boundary value problems.

The third objective is to give the existence and the uniqueness theorems of
the solutions for the periodic boundary value problems of the linear and
nonlinear ordinary integro-differential equations. Also, the existence theorems
of the extremal solutions for the above periodic boundary value problems is

introduced.

The fourth objective is to solve the periodic boundary value problems for

ordinary integro-differential equations by using the expansion methods.
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APPENDIX

Example (3.1):

%tu(t) +3u(t)= —Ku(t) + 3 - i—;’t -1
u@)=u(

with the boundary condition
This example is solved by using the collocationhmdt
The exact solution

u() = £ -t

where

1
Ku(t) = J t[S (s)ds
0

anc

13
t) = 3Eﬂ2 -—t-1
9() >
Approximate u as a polynomial of degree 2
u(t) ;= a0+ ali+ a2Ei2
u(t,a0,a? = a0- a2t+ a2[t2



1
-1 1
Ku(t,a0,a?2 = J tS(s, a0a? ds - —[{a2+ —[{ac
0 12 2

e(t,a0,ad) = %tu(t,ao,aZ) +3u(t,a0,a2 + Ku(t,a0,a2 - g(t)

13 1 13
e(t,a0,82) ~ ~a2~ 02+ 3@0+ 3@t + > @0~ 3 + Do+

Giver
e(0,a0a? =0 - —a2+3la0+1=C

1 =37 19 37
e -,a0,a2|=0 - —[@2+—@0+—=0
3 36 6 36

—a2+ 3[a0+1=0

=37 19 37
—[@2+—@a0+—==20
36 6 36

0
Find(a0, a2 - (J
Another approximate for u as a polynomial of de@ee
u(t) ;= a0+ allt+ a2[t2 + a3[i3
u(t,a0,a2,a3d = a0- (a2+ ajdl+ a2[t2 + a3[i3

1
-2 1 1
Ku(t,a0,a2,ad := J t8(s, a0a2,ad ds — — [MAa3- — [MAa2+ = [Ha
0 15 12 2

e(t,a0,a2,ad := %u(t,ao,az,a’o’) +3u(t,a0,a2,a3d + Ku(t,a0,a2,ad - g(t)
t



23 2 1 13
e(t,a0,82,a9 ~ -a2- a3+ A2+ 3[@3T + 3[@0- 3[a2+ a3d+ 3@ZT + @I - < 0@3+ a0~ 3 + S+
Giver

e(0,a0a2,a3 =0 - —a2-a3+3la0+1=0

o 1 a0a2a3]=0- @3+ Prao- Paxs Py
2 TEEER )T YT 120 4 24 24~

f(1,a0,a2,a3 =0 f(1,a0,a2,a3 =0

-a2—-a3+3[a0+1=20

~173 13 19 19

—— @3+ —@0- —@2+— =20

120 4 24 24

11 28 7 11

@2+ —@3+—-@0- — =0

12 15 2 12

0
Find(a0, a2ad - | 1

0
Another approximate for u as a polynomial of degtee

u(t) ;= a0+ alit+ aZEt2 + aBEi3 + a4[t4
u(t,a0,a2,a3,a4) :=a0- (a2+ a3+ad i+ a2[t2 + a3|]3 + a4Ei4
1
Ku(t,a0,a2,a3,a4) = J t(Slu(s, a0 a2,a3,ad) ds
0
gl(t,a0,al,a2,a3,ad = Ku(t,a0,a2,a3,ad) — g(t)
g2(t,a0,al,a2,a3,ad = %u(t,aO,aZ,aS,a4) + 30u(t, a0,a2,a3,ad)
t

e(t,a0,a2,a3,ad) := g2(t,a0,al,a2,a3,ad + gl(t,a0,al,a2,a3,ad



23 1 2 1 13
e(1,a0a2,a3,a4  ~a2- a3~ a4+ A2+ @3 + 4RAT + 3[@0- 3[a2+ a3+ ad) [+ @AM + 3@3IT + 324 - = @4~ @3+ 5 [FA0- 3 + S+l

Giver
e(0,a0a2,a3,a49 =0 - —a2-a3-a4+3la0+1=_C

1 -173 91 13 19 19
e —-,a0,a2,a3,a4|=0 - ——[@3-—=[@4+ —@0-—@2+—=0C
2 120 48 4 24 24

1 -37 8 101 19 37
el —,a0,a2,a3,a4|=0 - —[@2-—-[@3-—@4+ —[@A0+—=20
3 36 5 54 6 36

11 28 17 7 11
e(1l,a0a2,a3,a4) =0 - — @2+ —@3+ —[@4+-[@0-—=0C

12 15 6 2 12
—a2—a3—- a4+ 3[a0+1=0

-173 91 13 19

+ +
120 48 4 24 24

-37 8 101 19 37
—[[@2--@3-—[@4+—@0+—=0

36 5 54 6 36
11 28 17 7 11
—[@a2+-—@a3+—[@4+-@0-—=_C
12 15 6 2 12

0

Find(a0, a2a3,ad) -

o O



Example (3.2):

1 2 412
%{u(t)+u(t): Jo (t+2[9Mi(s)ds| + t_1+t2_[€_6j

with the boundary condition

u(0)=u(®
This example is solved by using the collocationhradt
The exact solution

u(t) ;= t2 -t
where

1
Ku(t) = J t[S[u (s) ds
0

anc

2
2 -1 1
)i=t-1+t"—| —-=
" (2.1
u(t) ;= a0+ all+ a2[i2
u(t,a0,a? = a0- a2t+ a2Ei2

1 2 1 1 2
Ku(t,a0,a?2 = J (t+29M(s,a0a? ds| - (€E\2—6[ﬂ@2+ aO+tE\O)
0

e(t,a0,a? = %tu(t,ao,aZ) + u(t,a0,a2 - Ku(t,a0,a2 - g(t)



-1 1 2 2 1 1 2
e(t,a0,a?d - —a2+t@2+ a0+ a2t - Kﬁz—gtﬂ@%amtﬂo —t+1-t"+ o

Giver

2
-1 37
e(0,a0a2=0- —-a2+a0-| —[@2+a0| +—==0
6 36
-1 2 g
e(1,a0a?2 =0 - a2+ a0- (?@2+ 2@10) —5: C
—a2+a0- _1B2+a0)2+37—0
6 36

-1 2 g
a2+ a0-| —@2+2@0| - =0

70

0O —

Find(a0, a2 81
ind(a0, a2 -

41

1 —

27
e(t,0,1) - C

70 41\ 28 14 14 11 11 ) (-1 1.\
it 2o L Sty S o S mm| o+ -2
81'27) " 81 27 27 18~ 18 6 6



Example (3.3):

%[u(t) +3u(t)= —2Ku(t) + 20t — 200) + 2 + 30t - 20) + 8 8in(t) + 24rcos (1)

u(0)= u( Z__III)

with the boundary condition

This example is solved by using the Galerkin's m@th
The exact solutions

u(t) := il - 2m)
where

2 [T
Ku(t) = J sin(t+ 9 (s)ds

0
anc
g(t) = 20 t— 2m0) + 12 + 3efit - 20m) + 8T ISin(t) + 24Cos ()
2 [T
%tu(t) + 3(L) + ZEJ sin(t+ 90 (s)ds - 20t — 20) + 2 + 3Lt — 20) + 24Ce0s ()T + 8EIN(H)E
0

Approximate u as a polynomial of degree 3
u(t) := a0+ alltt a2t + a3t
u(t,a0,a2,a3d := a0- (tha2+ 4@[2a3) [+ a2Et2 + aBEt3

p(t,a0,a2,a3) := 2maz+ 4303 + 220+ 337
2 [T

Ku(t,a0,a2,a3 = sin(t+ 9 (s, a0 a2,ad ds - 4m@2s$in(t) + 12@33in(t)ﬁr[2 + 12[&3cos(t)m
0



e(t,a0,a2,ad := p(t,a0,a2,ald + 3lu(t,a0,a2,ad + 2[Ku(t,a0,a2,ad — g(t

o(t,a0,a2,a3 — ~2[A2- AT @3+ 2[A2+ 3R + 3@0- alomaz+ amPad o+ 32 + 33T + BITAZSIN(t) + 24ra3Sin(t)ic + 24ra3dos (1)t — 20i{t - 20m) — 12 - 3t - 20) — 8IBIn(Y)T° - 24E0s(t)Tt

e(t,0,-2m,1) - —am@+ 20 - 6 + 30 — 208t - 20) - 3Erlt — 2)
Giver
-a2—-a3+3a0+1=0

-173__ 13 19 _ 19
— @3+ —@0- —@2+—=0

120 4 24 2
11@2+ 28@3+ 7@0_ 11 0
12 15 2 12
0
Find(a0, a2a3d - | 1
0

Another approximate for u as a polynomial of degtee
u(t) .= a0+ all+ a2[l2 + a3[l3 + a4Et4
u(t,a0,a2,a3,ad) :=a0- (a2+ a3+ad i+ a2Et2 + a3[l3 + a4[i4

1
Ku(t,a0,a2,a3,a4) = J tSu(s, a0a2,a3,ad) ds
0
gl(t,a0,al,a2,a3,ad = Ku(t,a0,a2,a3,ad) — g(t
g2(t,a0,al,a2,a3,ad = %u(t,aO,aZ,aS,a4) + 30U(t, a0,a2,a3,a4)
t

e(t,a0,a2,a3,ad) := g2(t,a0,al,a2,a3,ad + gl(t,a0,al,a2,a3,ad)

23 1 2 1
e(t,a0a2,a3,a4 -~ ~a2- a3~ ad+ T [MA2+ 3@3F + 4RAT + 3[0- 3[(a2+ a3+ ad) M+ AL + 3@IT + 34t - < 0a4- a3+ > {30~ 208t - 2) - 2 - 3Plt - 20) - BLIn(YF - 24Tc0s (LYt

Giver



e(0,a0a2,a3,a9 =0-

120 48 4 24 2

1 -173 91 13 19 1
e > ,a0,a2,a3,a4|=0 - ——[@3-—[@4+—[@0- —[@2-2(1/2 - - 2

8 101 19
5 54 6

8

1 -37 1 2 2 2_.
el —,a0,a2,a3,a4|=0 - —[@2--[@3- —-[@4+—[@0-2[1/3 - - 2[@ | - = + = [t - 8t [Si
3 36 3 9 3

e(1,a0a2,a3,a9) =0-
—a2—-a3—-a4+3la0+1=0

-173 91 13 19 19
——@3-—[@4+—@a0-—-@2+—-=4C

120 48 4 24 24
-37 8 101 19 37
——[@2-—-@3-—@4+—@0+_—==20

36 5 54 6 36
11 28 17 7 11
—[@a2+ —@3+—-@4+-@0-—=0C
12 15 6 2 12

0
Find(a0, a2a3,ad) - 0
0

Example (3.4):

15

2
%tu(t) + 6Mu(t) = —4EJ (t+9)mM(s)ds + (—8[’[‘?’ — 6 + 6 - 128_32
0

with the boundary condition

u(0)= u(?

5

!

5 3 2 . (1 1
- —+ - - 8l [Sin - | — 24mdoy -
2 2 2

— | — 24[m(doyg -
3 3

0

C



This example is solved by using the Least squarthaod
The exact solution

u(t) = £t - 2)
where

2

Ku(t) = J (t+s)(s)ds
0

anc

g(t) ::—8[ﬂ3—6[ﬂ2+6[ﬂ4—1—28—3—2[ﬂ
15 5

Approximate u as a polynomial of degree 4
u(t) .= a0+ all+ a2[t2 + a3|]3 + a4Ei4
u(t,a0,a2,a3,ad) := a0+ (- 22— 4a3- 8a4t + a2t + a3t + a4t

2
ku(t,a0,a2,a3,ad) := J (t+9) (s, a0az,a3,ad) ds
0

K1(t,a0,a2,a3,ad) := —2[A2 - 4[A3— 8[@d+ 2[A20 + @3 + 44T

k1(t,0,0,-2,1) + 6[u(t,0,0,-2,1) + 4lku(t,0,0,-2,1) —g(t) - C

e(t,a0,a2,a3,ad) = k1(t,a0,a2,a3,ad) + 6[u(t,a0,a2,a3,ad + 4lku(t,a0,a2,a3,ad) — g(t)
-22 316 152 10

192 128 32
e(t,a0a2,a3,a4) ~ —-[@2- @3- —"B4-  H@2+ 3P@3+ 44T + 14020+ 6[-2[@2 - 4[B3- 824 + 62T + 6@3F + 6@4T - = 034~ 160133+ BIA0+ 8IF + 60 - 611 + Tl

Here we minimize the functional:
2

f(a0,a2,a3,ad = J (e(t, aO,a2,a3,a4))2d1
0

an:=1



a2:=C

a3.=2

a4.==t

Giver

P := Minimiz€ f, a0,a2,a3,a4)

_7.548x 107 °

p=| 1.437x 167
-2

1
Approximate u as a polynomial of degree 5

u(t) ;= a0+ allt+ a2[12 + a3[i3 + a4[t4 + a5[F
u(t,a0,a2,a3,a4,a5) = a0+ (- 22— 4a3- 8ad— 16[agt + a2t + a3 + adf' + a5t

2
ku(t,a0,a2,a3,a4,ab = J (t +9) (s, alaz2,a3,a4,ad ds
0

K1(t,a0,a2,a3,a4,a5) = —2[@2- 4[A3— 8[A4— 16[A5+ 2[A20 + @RI’ + ARAT + S@AGH

e(t,a0,a2,a3,a4,ah = k1(t,a0,a2,a3,a4,ah + 6[u(t,a0,a2,a3,a4,ad + 4lku(t,a0,a2,a3,a4,ad — g(t)

-4094 2384 2 104
1%9 - 3? @5+ 120 + 400F + SASH + 65(-48 - 16089 + 2401 + 6@5E - 2 HA5— 020y

e(t,a0,a2,a3,a4,aH - 3 5
Here we minimize the functional:

2
f(a0,a2a3,a4,ab ::J (e(t,aO,aZ,aS,a4,a5)2dt
0

an:=1



a2.=72

a3.=.z

a4:=C

ab:=1

Giver

P := Minimiz€ f,a0,a2,a3,a4,ab

2.47x 10" %
~1.087x 10 3

P= -1.999
0.999

2.947x 104

Example (3.5):

1 2 41 1\
%{u(t)+u(t): Jo (t+29M(s)ds +t_1+t2_(€_6[ﬂj

with the boundary condition

u(0)= u(l

This example is solved by using the Least squaethaod
The exact solution

u(t) .= tl(t- 1)

where




1 2
Ku(t) = [J (t+29M(s)ds
0

anc
-1 1

2
i=t-1+t—| — - =

Approximate u as a polynomial of degree 4
u(t) ;= a0+ alit+ a2[t2 + a3[i3 + a4[t4

u(t,a0,a2,a3,a4) .= a0+ (—222—- 4a3- 8ait + a2[t2 + aBEi3 + a4|]4

2
1
ku(t,a0,a2,a3,ad) := {J (t + 29 (s, a0 a2,a3,ad) ds]
0

k1(t,a0,a2,a3,ad) := —a2—-a3- a4+ 2[@21+ 3@3]]2 + 4@14&]3

6 3 6 6
e(t,a0,a2,a3,ad) := ki1(t,a0,a2,a3,ad) + u(t,a0,a2,a3,ad) + —ku(t,a0,a2,a3,ad) — g(t)

2
19 ¥ 7 5 2
e(t,a0,a2,a3,ad) - —a2- a3- a4+ 2[@2+ 3 [@3+ 4[@AT" + a0+ (—2[@2- 4[@3- 824 [+ a2D2+a3[t3+a4Ei4—(—5@4—E[ﬂ@4—l—593—ztﬂm3—g@2—§[ﬂ@2+ aO+t@0) —t+1- t2+(

Here we minimize the functional:

2 2
ki(t,0,1,0,0) +u(t,0,1,0,0) + -ku(t,0,1,0,0) - g(t) — —[_—5—3 j —t+[_—1—E )

|
m‘l—‘
1
ol
E
N

1
f(a0,a2a3,ad) ::J (e(t,aO,aZ,aB,a4))2d1
0

a0n=1
a2.=72



a3:=C

a4d:=(

Giver

P := Minimiz€ f, a0,a2,a3,a4)
0.961

1.922
—-0.066
-0.031

Example (3.6):

2 ! 11
L uw +u(= —J (300 + ) [ (s)ds + STt — 1) + 2007 + 200t — )2 + (200t - 1)2 + — + —
dt 0 60 10
with the boundary condition

u(0)= u(l
d d
—Uu 0 =
dt ©) dt
This example is solved by using the collocationhradt

The exact solution
u(t) = £t - 1)°
where

u(l)

1
1 1
Ku(t) :J 30+ 9 (s- D2ds - Ku(t) = — +—0
0 60 10



anc

o(t) = 6Lt - 1)2 + 120t - 1) + 208 + 4Bt - 1)2 + o2 + 2O, 1042

—[0+—
21 105 15
Approximate u as a polynomial of degree 4

u(t) .= a0+ all+ a2[t2 + an + a4Ei4
u(t,a0,a3,ad) := a0+ (— a3- ad+ §a3+ 2a4) M+ (—g a3- Za%  + (a3 + aaf)

Ku(t,a0,a3,a4 = J (3 + s) (s, a0 a3,ad) ds

2
e(t,a0,a3,ad) = d—u(t a0,a3,ad) +u(t,a0,a3,ad) + Ku(t,a0,a3,ad - g(t)
dt
e(t,a0,a3,ad - %%1@3-4@“ 6H@a3+ 12@@2+290+t[€%93+ a4) +(%3m3-2@4)m2+a3[t3+a4d‘+%omm4+ 3[H@A0- Bt - 1) - 120P 0t - 1) - 2(F - 4E 0t - 1)2-2—? —%gm—i—gmz
Giver
0, a0a3, 0. a3 smar Smo- 2= ¢
e(0,a0a3,a9 =0 - 77 227217
e(E a0,a3 a4j =0 il|23\4+ 3[A0- 1 [@a3- 2213 _
2T T g0 120 840 ~
e(1,a0a3,a9 =0 E)@3 8—1@4+g@0—ﬂ— C
~ 120 10 2 35
ﬂ-IﬁB— 444+ §@O— 3—2 =C
120 2 21
-71 1 2213

— @4+ 3E0- — @3- —— =
80@ 3180 120@3 840 C



359@3+ 81@4+ 9@0_ 246 0
120 10 2 35

18528577
17790675
-866196
1186045

304
705

Find(a0, a3a4) -

Example (3.7):

2 2
L u +au(= —Jo (t + 9 (s)ds + Bt — 2)° + 120 [t — 2) + 2[F + 4t - 2)° + ;i ¥ i_ggm i_gmz

dt

d d
—Uu 0 = —
dt ©) dt
with the boundary condition

u(0)=u(@?
This example is solved by using the Galerkin's m@th

The exact solution
u(t) = £t - 2)°
where

u(2)



2
2 3 32 256 16
Ku( = | (t+9°8(s- 2%ds - Ku(t) = 4 2f
( J; (t+9°%(s- 2% ds - Ku(h = o + =20+ o2

anc
32 256 16
) := 6t - 2)° + 1200t - 2) + 20 + 4Fqt - 2)° + o= + [+ [
g(t) = 61t - 2) -2 Q-2+ 7+ T+ o
Another approximation for u as a polynomial of dagb
u(t) .= a0+ allt+ a2Ei2 + a3|]l3 + a4[t4 + a5[i5

u(t,a0,a3,a4,a5 := a0+ (2a3+ 8a4 24aj M- (3[@3+ 84+ 200 {F + a3T + adf + a5
Ku(t,a0,a3,a4,ah = J (t+ s)ZIIh(s, a0a3,a4,ab) ds
0

2
e(t,a0,a3,a4,ah = d—zu(t,ao,aB,a4,a® +4u(t,a0,a3,a4,ad + Ku(t,a0,a3,a4,ab — g(t)
dt
Giver

2 80 32 1664 2816 4736
e(t,a0,a3,a4,a5 dt= 0 » —@A0- @3+ —— @4+ @5 @
Jo 3 15 315 63 315

2

6496 5568 18304 104 __ 2096
e(t,a0,a3,a4,a5 {f dt= 0 + 222%55+ A4+ — @3+ —[@0=C
Jo 225 ' 35 525 45 45

2

25472 88352 19904 2728 368
e(t,a0,a3,a4,a5 [ dt= 0 + @5+ - @4+ = @3+ 2°@o= ¢
Jo 525 = 315 315 525 5




Jz -3690496 4392704 7296 704 13120
+ @4+ 3+

e(t,a0,a3,a4,a5 P dt= 0 - a5+ A3+ ——“"@0= 0
0 ( d 24255 4851 35 35 63
4736 15712 80 __ 56 65984
- @5+ —@A0- —[@3- ——"@4=(
315 21 3 3 315
6496 137408 62592 1048 2096
- A5— —— ‘@l - a3+ @0= 0
225 105 175 45 45
25472 637856 172736 15752 _ 368
- - ad- A3+ —@o= 0
525 315 315 525 5
~3690496_ 26831104 155264, 1216 . 13120 =
24255 4851 105 21 63 B
0

Find(a0, a3a4,ab -

1

Example (3.8):

& ? 2 2 > 32 256_ 16
D) +au®)=—| (t+9°m(s)ds+ 6Tt - 2) + 120t - 2) + 2[F + At - 2)° + = + M+ (i
2 . 217105 15

with the boundary condition

u(0)= u(?



d d
—Uu 0 = —
dt ©) dt
This example is solved by using the least squarethon

The exact solution

u(t) = £t - 2)°
where

u(2)

2
32 256 16
Kmozj(H@%ﬁ@—aﬂquwo=—+——m+—ﬁ
. 21 105 15

anc
2 2 32 256 16
) 1= 6t - 2)° + 120P[t - 2) + 20 + 4t - 2)° + — + —— 0+ — [
g(t) := 6Tt - 2) -2 -2+ o+ 20+ e
Another approximation for u as a polynomial of deghb
u(t) ;= a0+ allt+ a2[t2 + a3[f7’ + a4[t4 + aSEF

U(t,a0,a3,a4,a5 := a0+ (2a3+ 8a4 24aj(f— (3a3+ 8as+ 20ay [ + a3T + adf + a5t
2

Ku(t,a0,a3,a4,ab = J (t+ S)2|I|I(S, a0 a3,a4,ab) ds
0

2
e(t,a0,a3,a4,ah = d—zu(t,ao,aS,a4,a5) +4u(t,a0,a3,a4,ab + Ku(t,a0,a3,a4,a5 — g(t)
dt
2
f(a0,a3a4,ab ::J (e(t,aO,aS,a4,a5))2dt
0

an:=1



a3.=2

a4d:=5

ab:=C

Giver

P := Minimizg f, a0,a3,a4,a5

~5.399x 10 °
4
4
1




CHAPTER

EXISTENCE OF THE EXTREMAL SOLUTIONS FOR THE
PERIODIC BOUNDARY VALUE PROBLEMS OF ORDINARY
DIFFERENTIAL EQUATIONS

I ntroduction

The periodic boundary value problems of the ordindifferential
equations has been widely studied in the last yaats has many real life
applications in physics, engineering and mathemhticology, [Nieto J.,
1991]. There are many authors who study the peridmiundary value
problem for the ordinary differential equations, r foexample,.
[Lakshmikantham V. and Leela S , 1983 ], studied periodic boundary
value problems for the first order ordinary diffietial equations, [Leela S.
and Nieto J., 1988] devoted the second order liaed nonlinear periodic
boundary value problems, [Aftabizadeh A., et a9 Jconcerned with the
periodic boundary value problems for the third ordedinary differential
equations and [Aggarwal R., 1986], studied the qukci boundary value

problems for higher order ordinary differential atjans

In this chapter, we study periodic boundary valuebfems which
consists of the first, second and third order aadindifferential equations
together with periodic boundary conditions. Thigdst include the existence

of the extremal solutions of equations.

This chapter consists of three sections.

5
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Problems of Ordinary Differential Equations

In section one; we introduce some necessary conditir the existence

of the extremal solutions for the first order pdimboundary value problems.

In section two, we devote the existence theoremthef extremal

solutions for the second order periodic boundatye/aroblems.

In section three, we discuss the existence of feemal solutions for

the third order periodic boundary value problems.

1.1 Existence of the Extremal Solutions for the Periodic Boundary Value

Problems of the First Order Ordinary Differential Equations:

In this section, we give the existence theoremhefdxtremal solutions
for the periodic boundary value problems for thestfiorder ordinary
differential equations. For this purpose, we starith some basic

mathematical concepts that will be needed later.

Definition (1.1), [Rama M., 1980]:

Let r(t) be any solution of the differential equetidefined by:

u'(t) = f(t, u(t))
on the interval |, r(t) is said to be the maximat{immal) solution of the above
differential equation if for every solution u(t) wfexisting on I, the inequality
u(t) < r@)(u(t) = r(t) )holds for all t1 1.

Remark (1.1), [Rama M., 1980]:

It easy to check that, the maximal and minimal sohs of the above

differential equation are unique.

Next, the following proposition gives some necegsamditions for the

existence of solutions for some special types afmblary value problems of
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the first order linear ordinary differential equats. It appeared in [Nieto J., et

al., 2000] without proof. Here we give its proof.

Proposition (1.1):

Consider the boundary value problem for the firsteo linear ordinary

differential equation which consists of the diffietial equation:

U'(t) + Mu(t) =o(t), tEI=[0, T]eeeeeeeeeeeeeineieeneee e (1.1a)
together with the following boundary conditions:
UO) = U(T) A oo e e (1.1b)

Then any solution of eq.(1.1) can be written as:
T
u(t) = j G(t, sp(s) ds + (), t0J
0

where A O 0, MO0 {0}, o OC(@J),

e M=) <<t T
Gt S)= ——F | _merste
1-6 eMTHS) o<t s T
and
a Ae—Mt
M = T—gwr
Proof:

Multiply eq.(1.1) by G(t, s) and integrating thesuéiing differential

equation from O to T to get:

T T
[u'(s) + Mu(s)]G(t,s) ds | G(t, sp(s) ds
0 0

{ {
1—_MT[I u'(s)eMt =9 ds +j Mu(s)e™™) ds +
-e
0

0

T T T
[ u(s) "™ ds + M[ u(s) "™ ds [ G(t, sp(s) ds
t t 0
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Thus:
t T T
d(  _M(t-s) A M(T+t-s) _
— | dS(ue )ds+ [ : S( ue ) d$ = [ G(t, sp(s) ds
0 t 0
Therefore:

—Mt T
U(t) + g [-U(0) + u(M]= [ G(t, sp(s) ds
1-e 0
But this solution must satisfy the boundary comditgiven by eq.(1.1b). Thus

—Mt T
u(t) - A ee-m = [ G(t, sp(s) ds
0

Hence

B AeMt T
u() = | Gt syp(s) ds =T [ Gt sp(s) ds + k()
0 0

is a solution of eq.(1.1). m
Next, the following proposition shows that the undenverse of the
previous proposition is true. This proposition agmeel in [Nieto J., et al.,

2000] without proof; here we give its proof.

Proposition (1.2):

If uJC (J) satisfies the equation
T

u(t) = j G(t, sp(s) ds + (), t 0 J,
0

then it is a solution of eq.(1.1).
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Proof:

From the definition of G(t, s) and,({), the above equation can be

written as:

1 t B e Mt
u(t) = [eMg(s)dst [ eMTH %0 (s)d +

-MT —MT
1-e 0 ¢ 1-e
then
, t T
u (t)zl— T [—Mje_M(t_S)G(s)ds+0 (t)- Mf eMT*15)5 (t)ds Mo (ﬁ;
0 t
AMe ™M
B 1—eMT
t T —Mt
“M(f = _ - AMe
=0(t)—l_ i {[e M=o (s)dst [ eMT)g (s)d}— —
0 t
T —Mt
AMe
=o(t) - M{J‘G(t,s)a (s)o%- =
. 1-¢
Thus

T T
u'(t) + Mu (t) = o(t) - Mjc;(t,s)o (s)ds + Mjc;(t,s)o (s)d
0 0

=0o(t)

which means that
T
u(®) = [ G(t, sp(s) ds + k)
0

is a solution of eq.(1.1a).

Moreover,
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T
—M(T = A
u(0)= e MTS)g(s)ds +
0= g [T Vo gy
and
T (T -MT
u(M = —— _[e (T=S)g (s)ds + — T
0
Thus
T M(T -s) M7
u(m) +A = e "V Yo(s)ds+ +A
0 +h= e [T Poeyas 2
1 T
= —— | €T ¥a(s)ds+ — = = u(0)
1-eMT 3§ -

which means that the function u defined by
T
u(® = | G(t, sp(s) ds + Ko,
0

is a solution of eq.(1.1b). Thus the function uiked above is a solution of
eq.(1.1). =

Next, the following proposition shows that undertam conditions, the

solution of eq.(1.1) is nonnegative .

Proposition (1.3):

Consider the boundary value problem given by ef){1f M >0,A =0

anda(t) = 0, for each t1J. Then eq.(1.1) has a nonnegative unique solution
Proof:

As seen before, eq.(1.1) has the unique solution

10
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.
u(t) = j G(t, sp(s) ds + (), t0J
0

where G andhare defined previously.

Since M > 0, then®" < 1 and hence G(t, s) > 0 for each (fJs)kJ. Thus
T
j G(t, sp(s) ds= 0
0

On the other hand, sinde= 0 and M > 0, thenlit) = 0. Therefore, u(tz 0

foreacht]J. m

Before we give the existence theorem of the extresolutions forthe
periodic boundary value problem of the first order ordinary diffenaht

equation, we need the following lemma.

Lemma (1.1), [Lakshmikantham V. and Legla S., 1983]:

Let m O C'[[0, 2r],0 ] and mi(t) < -Mm(t), 0 < t < 21, where M > 0.
Then m(29) = m(0), implies that m(tx O, on [0, 2.

Now the following theorem gives necessary condgido ensure the
existence of the extremal solutions fine boundaryvalue problem which

consists of the first order ordinary differentiguation:

U'(t) = f(t, u(t)) , tO [0, 2M. eveeeiiee e (1.2a)
together with the following periodic boundary ddion:

01(0) U 2 1 | SRS (1.2b)

where O C[[O, 2rx[] , [] ].

11
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This theorem appeared in [Lakshmikantham V. areld 8., 1989]. Here we

give the details of its proof

Theorem (1.1), [Lakshmikantham V. and Leela S., 1983]:

Consider theperiodicboundaryvalue problem given by eq.(1.2). If the

following conditions hold:
(1) There existr, p 0 CY[0, 2rd, [ ], such thati(t) < B(t) on [0, 2 and
(i) o' < f(t, ), t0 (0, 21 and
a(0) < a(2m).
(i) B' = f(t, ), t 0 (0, 2] and
B(0) = B(2m).
(2) There exists M>0 such that f(t)u- f(t, Up) = -M(uy - up), t 0 [0, 2rd
for any u u, such thati(t) < u, < uy < B(t).

Then there exist monotone sequencegt}} and {B.(t)}, with a, = q,

Bo=B, such thatlim an(t) = p(t), lim Ba(t) = r(t) uniformly and monotonically

n-o n - oo
on [0,2 and p, r are the minimal and the maximal solwgiofh the periodic

boundary value problem given by eq.(1.2).
Proof:

Foranyn O [a, B] = {n O C[[0, 2r],0 ], a(t) = n(®) < (1), t U [0, 2},

consider the linear periodimundaryalue problem which consists of the

first order ordinary differential equation

together with the following periodic boundary daion

T() R[N (1.3b)
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where G(t, uf f(t, n(t)) — M(u(t) — n(t))

By rewriting eq.(1.3) in the form
u' (t)+ Mu (t)=o(t), t O [0, 2]

together with the following periodic boundary cdrah:
u(0)=u(2m

wherea(t) = f(t, n(t)) + Mn(t), it is easy to see that
t
ut)=u(0)e™ + o (s)e"® d
0

is the solution of eq.(1.3a)

On the other hand,

211
u(0)= u@u)e?™ + [ g (s)g"™ ¢
0

Thus
1 21
U(O)zw J O-(S)élls d:
e -1 0
Therefore

u(t)=&+M1no(s)e_M(t_s) dsr J:)cr (s)eM(ts) ¢
is the solution of eq. (1.3)

Now, suppose that there exist two solutions w of eq.(1.3). Then,
setting v(t)= uy(t) — uy(t), we get:

V'(t) = f(t,n () — M(u1 (- n () — f(ENn () +M(uz (1) -n (1) = -Mv()

and

13
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v(2m) = ui(2m) — ux(21) = uy(0) — Ux(0) = v(0)

Therefore,v(t)zv(O)e_'VIt iIs a solution of the above differential equation.

But
v(0) = v(2m),
thus
v(0) = v(2rr) = v(0)e 2M™
Thus
v(O)[L- e2MM1= 0. Bute?Mm £ 1.

Hence v(0)F 0 and therefore v(8 0 is the solution of the above initial value

problem. This shows the uniqueness of the soluifay.(1.3).

For anyn O [a, B], we define a mapping A byrA= u, where u is the

unique solution of eq.(1.3). We shall show that:
(@) If n O[a, B], then Aq U [a, B].
(b) A is a monotone non-decreasing on [p].

To show (a), first we prove < An. To do this we consider; =a —An.

Thus
V=0 — U,
whereu, is the unique solution of eq.(1.3). Hence
vi(t) =a’(t) —ug(t) =o' (t) - f(t,n (1)) + M(uy(t) —n(t))
But from the hypothesisy'(t) < f(t,a(t))
hence

V(D) < f(t, a(t)) —f(t, n(t)) +M(uy(t) —n(t))

14
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from the condition (2) and sincgt)< n(t) <B(t), one can get
V'q(t) = M(n(t) —a(t)) +M(u(t) —n(t)) =-M(a(t) —u4(t)) =-Mv {t)
Also v;(0) = a(0)-uy(0) = a(0)—-uy(2r).
Sincea(0)<a(2m), thus
v1(0) < a(2r) - wy(2m) = vi(2m)
by using lemma (1.1), one can ge{() < 0 on [0, 2]. Thereforen < An.
Second we provp = An. To do this we consider, = An -p. Thus
Vy=Up-B
where u, is the unique solution of eq.(1.3).Thus
Vo(t) = Uz () =B(t) = f(t,n(t)) — M(u(t) —n(t) -B'(t)
But from the hypothesig'(t) > f(t,(t))

hence
Vo (t) < T(t, n(t)) — 1t B(t)) +M(u 5(t) —n(t)).
from the condition (2) and sinae(t) < n(t) <B(t), one can get
Vo (t) < M(B(t) —n(t)) +M(u (1) —n(t)) =-M(u (t) —B(t)) =-M(v 1))
Also V,(0)< U, (0)-B(0)= U, (21 )-B (0.
SinceB(0) = B(2r), thus
V2(0)= Up (21)-B (21)= v, (AT
and by using lemma (1.1), one can g€t)\< 0 on [0,24. ThereforeB = An.
In order to prove (b), lefs, n, O [a, ], such that); < 1, consider
Vs = Ans-Ans.

Thus

15
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V3(t) = tn(t) — ug(t)
where y and y are the unique solutions of eq.(1.3) with respeqgt; andn,
respectively.

Hence

v3(t) = uy (1) — Uz ()
=1 (t,ny(1)) —M(uy(t) —ny(0) —F(t, n A1) +M(u 1) —n 1))

from the condition (2) and sinogt)<n(t)<pB(t), one can get

V'3(t) < M(ny(t) —nq(t)) —M(u ((t) —u L)) =M(n £t) —n {t)) =-Mv §t)
Also

V3(0)=y(0)-u2(0)=n(21)—Uy(21)=V3(217)
Hence, by using lemma (1.1), one can g@) ¥ 0 on [0, 21. Therefore
An: < Ans.
It therefore follows that we can define the seqegfog}.{ B} with ag=a
Bo =B such that

o, =Ad,-;, NON

Br=ABny NON
we shall show that:

A SO SOnat SR NI e (1.4a)
To do this, we use the mathematical induction.

For n=1, we must prove

asa;<0,<f.

Since a <0y <, then from the part (a), one can gesAagp<f3, that is

a<a;<fB. Also from part (a) one can hawe< Ao, <3, that isa<a, <f3.

16
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Since, a<a<a;<fB, then from the part (b) one can obtain
a<Aa<Aq,<fB,thatisa<a;<a,<[. Therefore, ineq. (1.4a) holds for
n=1.

Assume ineq.(1.4a), holds fork, we must prove this inequality holds
for n=k + 1. Sincen:; = Aoy andoy O [a, B], then by using the property
(a), we obtain thati., L[, B]. Again, by using the property (a), one can get
Ok+2 = A0k O [a, B]. But o< a1, hence, by using the property (b), one can
havedy.; = Adg £ AQy+1 = Ok+1. Thereforea < oy < s < B and hence

ineq.(1.4) holds for all nllJ .

Moreover, we shall show that:

ASBraaSBrSBNO e (1.4b)
To do this, we use the mathematical induction.

For n=1, we can prove

as<fB,<B;<PB.

Since a <y <[, then from the part (a), one can gec ABy<f, that is
a<B;<B. Again by using part (a) one can haee<Ap; <@, that is

a<B,<B. Since, thero <3, <B<f3, then from the part (b) one can obtain
a<AB;<AB<p, that isa<p,<B;<B. Therefore, ineq.(1.4b) holds for
n=1.

Assume ineq.(1.4b), holds formk, we must prove this inequality holds
for n=k + 1. Sincef«.1 = ABx and U [a, B], then by using the property
(a), we obtain 3¢, O [a, B]. Again, by using the property (a), one can get
Br+2 = ABk+1 U [a, B]. But Bx+1 < Bk, hence, by using the property (b), one can

17
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have Byio = ABk+1 < APk = Bis1. Therefore,a <By+» < Br+1 < B and hence

ineq.(1.4b) holds for all ol [1 .

Now we shall show thaty, < 3, for nJ U . To do this, we also use the

mathematical induction.
For n=1, sincen < ay <Py <P, then from the part (b), one can have
a<Adag<ABy<P, thatisa<a;<p;<PB.

Assume o <f3,, we must proved,. <PBys+1 Since a<a, <Py <PB,
then from the part (b), one can obtam<Aada, <AB<p, that is

O <041 <Br+1<B. Thereforea, <f,, for all nCIN.
Therefore r!immO(n(t) =p(t) andr!im00 Bn(t) = r(t) uniformly and monotonically
on [0, 21. We will show that p and r are solutions of eq2f1

Sincea,, =Aa,_4, then

() = G4t (1)
= f(to .1 (1)) MO, (H)—a 1 (1)

Taking the limit asn] [, o of the both sides of the above equation, we

have:

lim o (t) = lim f(t, ap,_{) = lim M(a {t) —a )

n - oo

Thus

p(t)=1(t, lim a,_q(1)) —I\/I[Iim a(t) —lim cxn_(t)}

= f(t,p()-M p(t)-p(t] = f(t.p®)
and hence p is a solution of eq.(1.2a).

Also, since

18
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an(0)=an,(2m)

and by taking the limit as [J [1» 0, one can get
p(0)= p(21)
Thus p is a solution of eq.(1.2).

Moreover, since3,, = AP, then

Bn(t) =G(t,Bn (1)
= f(tBn.1 (1))~ MB, ()—B-1(1))

Taking the limit asn [, o of the both sides of the above equation, we

have

lim Br(t) =f(t, lim B_{1) -M(lim Bgt) ~lim B, ()

n - oo

Thus
r'(t) =f(t,r(t))
Also r(0) =r(2m), hence r is a solution of eq.(1.2).

To prove that p, r are the minimal and maximal sohs of eq.(1.2), we have
to show that if u is any solution of eq.(1.2), sukht ull [a, ] on [0, 21,

thena<p<su<r<fon|0, 1.

To do this, we shall show that, for any solutiothaat <u<f3, we have
o,<us<pB, on [0,2n]. This can be proved by using the mathematical

induction.

For n= 1, sincea<a<us<f, then from the part (b), one can have
o <Aa <Au <. Also, sincea<u<p<f then from the part (b), one can

havea < Au<AB<f. Thusa; <Au <f3;. But u is a solution of eq.(1.2), thus

u'(t) =f(t,u(t)) - M(u(t) - u(t)

19
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and henceAu =u. Thereforea; <u<f;. Assumea, <us<f,, we must

prove g S U<Byyq.

Since oy <us<fy, then Aa, <Au <AfB,. But Au=u, Aay =Aa,,; and
ABy =Bx+1, henceay ; <u<pf,,q. Thereforea,<u<p, on[0,277] hence

a<psusr<fon[02n]. m=m

Remark (1.2):

From theorem(1.1), one can deduce that eq.(1.2) a@takast two

solutions .

Corollary (1.1):

Consider the periodic boundary value problem witcighsists of the first

order linear ordinary differential equation
u'(t)+a(t)u(t)= b(t), [0,

together with the periodic boundary condition:
u(0)=u(2)

If the condition (1) in the previous theorem holisd a(t)>-M for some

M >0, then the same previous result holds.

1.2 Existence of the Extremal Solutions for the Periodic Boundary Value
Problems of the Second Order Ordinary Differential Equations:

In this section, we give the existence theoremhefeixtremal solutions
for the periodic boundary value problems of theoseéc order ordinary

differentialequations.

For this purpose, we need the following lemma.

20
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Lemma (1.2), [Lakshminkantham V. and Ledla, S., 1984]:

Let mO C[0, 2rd, U ], and—m''(t) < -M°m(t), tO [0, 2rq for some M.
Then m(0)x= m(2m) andm’'(0)= n1 (2r1) implies that m(tk 0 on [0, 21.

Now the following theorem gives necessary condgido ensure the
existence of the extremal solutions tbe periodicboundaryvalue problem

which consists of the second order ordinary diffiéed equation:
=U"() = F(E, U)o (1.5a)

together with the following periodic boundary cdrahs:

u(0)= u(2r)
u'(0)=u (ZT)}

where fI C[[O, 2rx0 , U ].

Theorem (1.2), [Laskshminkantham V. and Ledla, S., 1984]:

Consider theperiodicboundaryvalue problem given by eq.(1.5). If the

following conditions hold:
(1) There existr, B 0 C[[0, 2rd, [ ], such thati(t) < B(t) on [0, 2] and
(i) —a” < f(t, ), tO [0, 2rd,
a(0) = a(2m anda’(0) = o' (2n).
(i) =" = 1(t, B), t U [0, 2,
B(0) = B(2m) andp'(0) < B'(2m).
(2) There exists M > 0 such that f(t) t f(t, u) = — M? (U - up), t0 [0, 2rd

for any y, u, such thati(t) < u, < u; < B3(t).
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Then there exist monotone sequencegty} and {B,(t)}, with ay = a,
Bo=B, such thatlim an(t) = p(t), lim Bx(t) = r(t) uniformly and monotonically
n - oo n - oo
on [0,21 and p, r are the minimal and the maximal solwioh the periodic
boundary value problem given by eq.(1.5).

Proof:

For anynU[a, B] = {nOC[[O, 2rq, U ], a(t) < n(t) < B(1), tU[0, 2},
consider the linear periodicoundaryvalue problem which consists of the

second order ordinary differential equation

together with the following periodic boundarynditions:

u(0)= u(2r)
u'(0)= Uf(2ﬂ)}

where G(t, uf f(t, n(t)) - M*(u(t) - n(t))

By rewriting eq.(1.6a) in the form
—u"+M?u = o(t), t O [0, 21

where

o(t) = f(t, n(t)) + M (Y),

the solution u(t) of eq.(1.6) is given by:
Mt e eVt Ms eM | Ms
t)= +tge —— s)e’™ ds—— s
U=+ g~y o @ TR

where

21T

1 2MTE-s)
o(s)é ds
2|\/I(e2M"—1)'([ )

C,-LZ
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and
1 21 é\/l
C, = a(s)e”s ds
2 2M(e2M"—l)'([ ®)

Now, suppose that there exist two solutions w of eq.(1.6). Then,

setting v(t)= uy(t) - uy(t), we get:
V" (1) = f(t,n(©)-M*(U—n (©)-f(EN ()M (LN (1) = -M*v(t)
and
v(2m) = uy (2m)- W (21)= U (0F W (OF ¥ (O
Vi(2m) = uy (2m)- by (21)= 4 (0 & (0F Y (0
The solution of the differential equation’(t) = -M2v(t) is
v(t) = ¢, M + c,eMt
But v(0) = v(2m), thus
C1+Cp= @M+ g, 82MT
and sincev'(0) = v (2m), then

2MTT _ —2MTt

Mc; —Mc, =c,Me c,Me

Therefore
2Mc; = 2Mc, M

2MTt and since € 2M™ £ 1. then

But €M™ 1, thus ¢c; = 0. Hencec, = c,€
C, = 0. Thereforev(t) =0and henceau, (t) = u, (t). This shows the uniqueness
of the solution of eq.(1.6).

For anyn O [a, B] , we define a mapping A byrA= u, where u is the

unique solution of eq.(1.6). We shall show that
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(@) Ifn O [a, B], then A0[a, B].
(b) A is a monotone non-decreasing an(j].

To show (a), first we provea < An. To do this we considernv a-An.
Thus

Vi=Ad — W
whereu, is the unique solution of eq.(1.6). Hence
~Vi(t) =-a’(t) + u(t) =—a" (1) - F(L,N(1) + M3 (uy(t) -n()
But from the hypothesis;a”(t) <f(t,a(t)), hence
~Vi(t) < f(t,a(t) = (t,n(t) +M*(uy(t) -n(t)
from the condition (2) and sinegt)< n(t) <B(t), one can get
~Vi(t) < M2(N(t) - a(t) +M Tuy(t) -n(t) =-M {a(t) —uyt) =-M % {t).
Also
v1(0)=a(0)- y (21)=a (21} u (I v (I, and
vi(0)=a'(0)- U (0)za’ (1) 4 (A1) § (&
by using lemma (1.2), one can ge(ty< 0 on [0, 27. Thereforea < An.
Second we provB = An. To do this we considerw An — .Thus
Vo= U, —3
whereu, is the unique solution of eq.(1.6).Thus
~V(t) = =Uy(t) + B (1) = F (£, (1) = MZ(u o(t) = (1) +B" ()

But from the hypothesis;3'(t) = f(t,3(t)) , hence

~V(t) < F(t,n(t) ~ (8, B(1)) =M *(u(t) ~n(t)
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from the condition (2) and sinegt)< n(t) <p(t),one can get

~V(t) S MZ(B(H) ~n(1)) =M {u (t) =n(B) =M {u 1) - B(1) =-Mv A1)
Also
V2(0)= Uy (0)-B(0)= U (AT )-B (I W (& , and
V5(0)= U (0)-B (02 Uy (Z1)-B (@) 4 (2.
and by using lemma (1.2), one can ggt)\x 0 on [0,21. Thereforef3 = An.
In order to prove (b), ley,, n. U [a, B], such thatf), < n,, consider
V3= AN — AN
Thus
Va(t) = ua(t) — up(t)
where y and y are the unique solutions of eq.(1.6) with respegtand n,

respectively. Hence
—V3(t) = —ug(t) + Uy ()= (N 1() - M*(uy(t) =N () - F(t.n D)+
M (g (trn )
from the condition (2)and sinagt) < n(t) < 3(t), one can get
~V3(1) < M2(o(t) ~nyD) ~M (U ) ~u AN -MAn £ -n () =M Y §0)
Also
va(0) = y(0) — Ux(0) = Wy(2M) — Ux(21) = v(21)
V2 (0) = Uy’ (0) — Uy’ (0) = uy' (2M) — Uy’ (21) = v5'(21)
Hence, by using lemma (1.2), one can gé) 0 on [0, 2] . Therefore
An; < An,
It therefore follows that we can define the seqesda,} and{B,} as in

theorem (1.1) and obtaimg < 0; < 0, £ ... S0 < B < ... £ B < Bo ON

[0, 2rg.
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Therefore lim a,(t) = p(t) and lim B,(t) = r(t), uniformly and monotonically
n - oo n - oo

on [0, 27
We will show that p and r are solutions of eq.(1.S)ncea, =Aa_4, then
-y = f(t; C(n—l) - Mz(an - an—l);

Taking the limit asn [ o of the both sides of the above equation, we

have:
—p" ()= f(t, p(t)) — M*(p(t) - p(t)) = f(t, p(t))

Also
p(0)= lim a,(0)= lim a,(2m) = p(2m ,and
p'(0)= lim a’'n(0) = lim a'n(2m) = p'(2m)

Similarly,

_B”n = f(t, Bn—l) - Mz(Bn - Bn—l),
Taking the limit asn0 [ o of the both sides of the above equation, we

have:
=r"(t) = f(t, () = M*(r(t) - r(t))
= (&, r(V)
Also:

r(0) = lim Bn(0)= lim B,(2m) = r(2m), and

n- oo n—- oo

r0)= lim B',(0)= lim 'y(2m) = r'(2m

n - oo n - oo
Hence p and r are solutions of eq.(1.5).

The proof that p, r are minimal and maximal solasicof eq.(1.5) is

similar to that in theorem (1.1). =
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1.3 Existence of the Extremal Solutionsfor the Periodic Boundary Value

Problems of the Third Order Ordinary Differential Equations:

In this section, we give some basic theorems thatrecessary for
establishing the existence of the extremal solgti@n the periodic boundary
value problem of the third order ordinary differ@htequations. For this

purpose, we need the following lemma.

Lemma (1.3), [Nieto J., 1991]:

Let qOC3[[0,2r],0 ] and g"(t)— Mg"(t)- Mq (t)+ M?q(t)=0 where
M >0. Then q(0)=q(2t), Ok (& and g'(0)=d (21). Implies that
q(t) = 0 on[0,2r1].

Next, the following theorem gives the necessaryamns to ensure the
existence of the extremal solutions for periodiauary value problem

which consists of the third order ordinary diffefiahequation:

u"'(t) = mu’(t) — mu(t) = f(t, u(®), tO [0, 21 ...evvrrrrieiiieeeeeeenn. (1.7a)
together with the following periodic boundary cainhs

u(0)= u(21)

V(O T 07 1 6 TSP (1.7b)

u"(0)=u' (21)

where m > 0 and{ C[[0, 2mx[ , [ ]

This theorem is a modification of the theorem tgpeared in [Nieto J.,

1991]. To the best of our knowledge this theoreenseto be new.

Theorem (1.3):

Consider theperiodicboundaryvalue problem given by eq.(1.7). If the

following conditions hold:
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(1) There existst, B 0 C[[0, 2, [ ], such thati(t) < B(t) on [0, 21 and
(i) a’'(t) - ma’ () -mar'(t) < f(t, a(t)), tO (O, 2
a(0) = a(2m), a’'(0) = a'(2m) and a'(0) < a'' (2m).
(i) B () = mB" (t) — mB'(t) = f(t, B(t)), tT (O, 2r,
B(0) = B(2m), B'(0) < B'(2r) and B"(0) = B"(2m)
(2) f satisfy the following inequality
f(t,u)) = f(t,u,)=-m? (U~ uy), 10,2
for any u, W, such thati(t) < u, < uy < B(t).
Then there exist monotone sequenpeg(t)} and{B,(t)} with as=a, Bo=p

such that lim ap(t) = p(t), lim By(t) = r(t) uniformly and monotonically on
n— oo

n — oo

[0, 2] and that p, r are the minimal and the maximaligohs of the periodic
boundary value problem given by eq.(1.7).

Proof:

For anyn U [a, B] ={n U C[[0, 2r], U [; a(t) = n < (), t U [0, 2},
consider the linear periodic boundary value problehich consists of the

third order ordinary differential equation:

u" (t) = mu' ()= md (O nf u(t= f(tn OF nf (E e, (1.8a)
together with the following periodic boundary camnahs:

u(0)= u(2r)

U (0)= U (ZT) b vt vee e (1.8b)

u"(0)= ' (2m)

since m> 0, then the above periodic boundary value problesdanique
solution, [Nieto J., 1991].
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For anyn O [a, B] define a mapping A by A = u, where u is the unique

solution of the above periodic boundary value peablWe shall show that:

(@) If n O[a, B], then Aq O [a, B].
(b) A is a monotone non-decreasing omn §].

To prove (a), first we provea<An. To do this we consider

vi=An-a. Thus
Vl =u-—-da
where u is the unique solution of eq.(1.8). Hence

VE(E) = MV () = mv (1) + P vy ()= U (t)-a” (8= md (D na” (t- miy (1)
+ mo’ (t)+ nfy ()~ nfa (t)

feh, () fm Xe(a”(t)-ma’(t)- ma' (1)- mfa (1)
> f(, & M ® fu ® faw)
>- fn( Mo (B ( @a (B O
Also
v1(0) =y (0)-a (0)= w (At )0 (2 ) \ (2,
Vi(0)= Uy (0)-0a' (0)= 4 (T}’ (0K Y (Zya' (¥ Y (&,
and
Vi(0)=t;(0)-0a" (0)= U (t)-a" (O G (ZYya" (¥ Y (&.

Then by using lemma (1.3), one can geft)2 O on [0, 27. Therefore
a < An.

Second we prov@ = An. To do this we consider, =3 -An. Thus
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Vo, =B-Ujp

where y is the unique solution of eq.(1.8). Thus

V5 (t) = mv5(t) = mv; (1) + P vy (1)=B" (t)= U (t)- nB" (ty+ mih (t)y- @' (b
mup (t)+ e (t)-mPuy (1)

=B" @® Bh)EmB 1)+ mBM)-FEn(®)-mn ()
> 1 ) B © o) -mne

>- B @n @) B @n NEO
Also

V2(0)=B(0)- u (0)=P (21}~ L (T F v, (2,

V2(0)=R(0)- U (0)=P (O k(I EP (Z)y G (ZF ¥ (7,
and

v2(0)=B"(0)~ Uz (0)2B" (A1)~ & (2t F % (2 .
Then by using lemma (1.3), one can gef(t)=0 on [0, 21. Therefore
B=Ans.

In order to prove (b), let;, n,U[a,B], such than, < n,, consider
v3=An,-An,

Thus
V3(t) =up(t) — ug(t)

whereu; and y are the unique solutions of eq.(1.8) with respect; and

N2, respectively. Hence
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VA(t) ~mV3(t) - mV3(t)+ NP V()= Uy ()= U (1 mlp (- miy (1 mipt) +
my (¢ nf y (- nf y (1)
> f(t, (O nn, () f(tng (O)F ning ()

> —m?(n,(t) - Ny(D) + M2 (M 2(t) ~N1(t)) = 0
Also,

V3(0)= Up (0)- (0= W, (I ) u (A ¥ (2,
V3(0)= 1 (0)- h (O (T ) 4 (@3 ¥ @,
and
V5(0)= Uy (0)- Lh (0= th (AT t (I ¥ 4 (2.
Hence, by using lemma (1.3), one can haye>An;.

It therefore follows that we can define the seqesdm,} and{B,} with

O =0, Bg=P such that

o, =Ada,_; nON

Pn=ABn-, NON

In the same manner as in theorem(1.1), one carcddtat
0<0p<01S...S0,SPBRS..<BL<B =B =B

Therefore lim a,(t) =p(t) and n"T,B” (t)= r(t). We will show that p and r

n—oo

are solutions of eq.(1.7).

Sincea,, =Aa,_4, then

arp (£) = mar (1) = ma'y (6)+ Mo (1= F(ta (D) + Mo o(t)
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Taking limit asn — o, we get
p" (t) = mg (1)~ mp (t+ nf p(t) f(Lp(HF nf p(t
Thus
p" (1) = mg ()= mp ()= f(t,p(t);
and hence p is a solution of eq.(1.7a). Moreover
ap(0) =0, (2m)= p(0)= p(ar.
ap(0) =0y (2m)= P (0)= P (2t
ap(0)=a}p(2m= P (0)= P (a1)

Therefore p is a solution of eq.(1.7). Similarlyneocan deduce that r is
another solution of eq.(1.7). The proof that p arade the minimal and the

maximal solutions of eq.(1.7) is similar to thatheorem(1.1). m

Remarks (1.4):

(1) Nieto J. in 1991 gives necessary conditions tfa existence of the
extremal solutions of the periodic boundary valusbpem which consists

of the third order ordinary differential equation:
u”(t)=f(t,u(t)), tO[0,A1]
together with the periodic boundary conditions:
u® )= (21), = 0,1,

(2) To the best of our knowledge, the problem fmidihg the extremal
solutions for the periodic boundary value problemmol consists of the

n-th order ordinary differential equation:

u™M ) =f(t,u(t), t3[0,at]
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together with the periodic boundary conditions:
u® )= (21), = 0,1,...,n-

is still open. However, this problem under certeamditions has at least one

positive solution, [Yongxiang L., 2002].
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CHAPTER

EXPANSION METHODS FOR SOLVING PERIODIC BOUNDARY
VALUE PROBLEMS OF THE ORDINARY INTEGRO-
DIFFERENTIAL EQUATIONS

| ntroduction:

In many real life problems it is so difficult sormeés to find the exact
solution, especially for problems of nonlinear typéerefore, more attention
had been paid to the approximation methods. Sthisnchapter the treatment
for the periodic boundary value problems of theirady integro-differential
equations centered mainly about finding the appnaxe solutions by using

expansion methods
This chapter consists of two sections.

In section one, we give the expansion methods teesthe periodic
boundary value problems of first-order linear imtedifferential equations

with some illustrative examples.

In section two, we use the same above methods|ve $loe periodic
boundary value problems of the second-order linesegro-differential

equations with some illustrative examples.
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3.1 Methods of Solution for the Periodic Boundary Value Problem of the

First Order Ordinary I ntegro-Differential Equations:

In this section, we give some approximation methausmely the
expansion methods to solve the periodic boundaevaroblem for the first
order integro-differential equations which cotsisf the integro-differential

equation.

u'(t) + Mu(t) = =N[KU]J(t) + O(t) covveeeeieeeeiee e (3.1a)
together with the periodic boundary conditions

U(O) = U(T) teeeeeeeee ettt e et n e eeen e eeeen. (3.1b)
where t0J=[0, T, M,NO [0 ,oc 0 C(J) and K: CJJ - C(J) is the
integral operator

.
[Ku](t) = j k(t, s)u(s) ds
0

Here, we use three methods of expansion methosslve the periodic

boundary value problems given by eq.(3.1).

3.1.1 The Collocation Methods:

The collocation method is one of the most commonhods used to
approximate the solution of the differential antegral equations, [Doyce D.,
2001] and [Delves L., Mohamed J., 1985].

Here, we use this method to solve the periodic Hagnvalue problem

of the first order ordinary integro-differentialegtion given by eq.(3.1).

This method is based on approximating the unknametfon u(t) as a

n

linear combination of n+1 linearly independent fiimies {; (t)}._,, that is

write
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n
U() = D 801 (1) cervrcrieeieeece e (3.2)
i=0
and by substituting this approximated solution ie¢p(3.1b), one can obtain:
n n
D 805 (0)= > 3 0; (T) corvverrrireerieeeieeeereeeseeenas (3.3)
i=0 i=0

Hence, we illustrate the following three cases:

Case(1):If ¢,(0) # 0, for some kKO, 1, ..., n}, then

> ad (T)-> ah (0)
i=0 i=0
i Zk

¢, (0)

and hence the approximated solution given by &).(&an be written as

ak=

u(t)= "> ad; (t) + adi(t)
i=0
iZzk

By substituting this approximated solution into(8dla), one can obtain:

D adi (D+ad'®+M| D ad; ()+ady ()| =<(t, a)
i=0 i=0
izk izk

T n
—NI kt, s)| D aid; (S)+ &by (S) ds 4o(t)
. i—0

izk

that is
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e(t, @)= > adi (1) +ad'®) + M ad; (1) +Madut) +
i=0 i=0

iZk i£k

n T T
ND & [ k(tshi (s)ds Na[ k(t4) (ds-o().....(3.4)
-0 0 0
izk
whereg(t, a) is said to be the error in the approximation @{&.1), wherea

is a vector of n of;& that must be determined .

Next to finda, one must choose n points say, ¥ =1,2,..,n in which the

error function given by eq.(3.4) vanishes at thasiats. That is

D adi (t) +ad'(t)+M Y ad; (t) +Madi(tr)+
i=0 i=0
izk i £k

izk
By evaluating eq.(3.5) at eadh= 1,2,...,n. one can get a system of n linear

equations which can be solved by any suitable noetbdind the values of n

of §'s that appeared in eq.(3.4).

Case (2)If ¢;(T) # O, for some[j}{0, 1, ..., n}, then:

. — i Z]
3 Gy (3.6)

> ad; (0)-) ady (T)
i=0 =0

and hence the approximated solution given by &).(&an be written as

u(t)= "> ad; ()+ 39 ()
i=0
iZ]
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where ais defined by eq.(3.6).

By substituting this approximated solution into(8dla), one can obtain

D adi (1) + a0 + M| D ad; ()+ad; ()] =£(t, )
i=0 i=0
i£] %]

—Nj- k(t, s) Zaicpl (s)+ ad; (s ds Ho(t)

=0
I¢j

that is

€(t, 8) = > adf () +a¢'() + M adi () +Mao )+
i;j i:t?
NZa j K(t, S (S N,aj KEL®) (ds—o(t).om....... (3.7)

i-0 0
i%]

In this casea is also a vector of n of'a that must be determined by choosing
n points say ¢, ¢ = 1,2,...,n in which the error function given by (8qg7)

vanishes at these points . That is

D adi(t) +adite) + MY ad; (t,) +Madtr)+
Z £

I£] iZ]

Nquk(tg sh (sy Ngj kit .$) (ds-o(tr)=0,/=12,...,n... (3.8)
i=0 0o
i%
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By evaluating eq.(3.8) at ea¢h= 1, 2,..., n one can get a system of n linear
equations which can be solved by any suitable noetbdind the values of n

of §’s that appeared in eq.(3.7).

Case (3)iIf ¢i(0) = ¢(T) for each =0,1,..,n.

That is, if the approximated solution given by 8] is automatically satisfy

the periodic boundary condition given by eq.(3.1bgn

(t,a) = Zacb. (t) + MZavh 0+NYa I kt.sh (s ds— o(t)

i=0 0

wherea = {a;}{l is a vector that must be determined.

Next, to finda, one must choose n+1 points , say,£ =0, 1, ..., n;in

which the error given by eq.(3.9) vanishes at thpgsets. That is
th (t)+ MZach )+ NYa j k(t; ,shi (sds—oa(tr) =0 ..(3.9)
i=0 0

By evaluating eq.(3.9) at ea¢h=0,1,.. ,n, one can get a system of n+1 linear

equations with n+1 unknown@}l; which can be solved by any suitable

method.

To illustrate this approximated method, considerftillowing example.

Example (3.1):

Consider the periodic boundary value problem witighsists of the first

order linear integro-differential equation:-

d 2 13
—u(t) +3u(t)= —-Ku(t) +3tt ——t -1
~u(D + 3u() = -Ku( e
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t I [0, 1],together with the periodic boundary conutiti

BT(0) U () ST (3.10b)
where

1
Ku(t) = J tsu (s)ds

0

We solve this periodic boundary value problem byngisthe collocation
method, to do this, first, approximate the unknofumction u(t) by a

polynomial of degree two, that is, write:-
ut)=gg+atr a?

This solution must satisfy the periodic boundaryndibons given by
e(.(3.10b), thus u(t) becomes:

u(t) = & — at + at?
By substituting this solution into eq.(3.10a), @aa get:

3('[,30,32):—65—1—2 3 t 33+ 3§2t+—; @t 8&%2)’ + . (3.11)

where g(t, &, &) is the error function andpaand a are the unknown

parameters that must be determined.

To find & and @, we choose two points in the interval [0, 1] inig¥hthe

error given by eq.(3.11) vanishes at them.

Here we takeyt= 0, t, = 1/2, such that(ty, a, &) = £(t1, &, &) =0 to get
the following system of equations, which has theitsen & =0 and a = 1.
Thus:

ut)=t* -t

Is the solution of the periodic boundary value peabgiven by eq.(3.10).
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Second, if we approximate the solution of eq.(3/49Y)r polynomial of

degree three, that is

u(t)=a+at+ a2t2 + a3t3

This solution must satisfy the periodic boundaryndibons given by
ed.(3.10b), thus u(t) becomes:

u(t)=a - (a2 + a3)[ﬂ+ a2[ﬂ2 + agttﬁ

Hence

E(t, a, &, &) = —H— & + EQ’taQ + 3at’ + 33 — 3(a + &)t + 3at° + 3at®

12
2 1 13
—1—5ta3+§t80—312+1—2t+1

and by taking¢t=0, t, = 1/2 and £=1/3; in which

8(tO’ a)’ @’ a?)) = 8(tl’ a)’ &1 a?)) = 8(1:2’ a)1 &1 a&) = Ol to get the fO”OWIng
system of equations:

—a-—ag+35p+1=0
-173 13 19 19

— Tmt—ag-—ap+—=0
120 BT 3 0T 22 7
n_,28 7 1
1227 g8 TR0 T ST

which has the solutionna& 0, =1, and a= 0. Therefore, u(tFr ? — tis the
solution of eq.(3.10).

Third, if we approximate the solution of eq.(3.23 a polynomial of

degree four. That is:

u)=gp+at+ 32+ g3+ a1
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This solution must satisfy the periodic boundarydidons given by
ed.(3.10b), thus u(t) becomes

u(t) = a - (a+ast agt + at™+ at™+ at*
By substituting this solution into eq.(3.10a) imsthase(t,a,a,8,a;) takes in
the appendix, example(3.1)), whex(gay,a,as,a4) is the error function and,a
&, & &, are the unknown parameters that must be determireetind a, &,

as and a choose four points in the interval [0,1] in whittte error function

vanishes at them.

Here we takeot0, t,=1/2, 3,t=1/3, =1 such that(t;, &, &, &, a) = 0,

I = 1,2,3,4t0 get the following system of equations:

—ap-—ag—a+3x+1=0

173 91 13
120 B g% T %

19 19

—a+—=0C
24 24

-37 8 101 19 37
325 M e g
Ea +§a +1—7 +
T TR

11
280 12

which has the solutionh& 0, =1, and a= 0 §=0. Therefore, u(tF t? —t, is
the solution of eq.(3.10).

For more details, see the appendix, example(3.1))

Remark (3.1)

The collocation method can be used to solve thiegierboundary value
problems of the first order nonlinear integro-diffetial equations, given by
eq.(2.23).

To see this, consider the following example:
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Example (3.2):

Consider the periodic boundary value problem wiiehsists of the first

order nonlinear integro-differential equation:
2
d ! o (-1 1)
—u(t) +u(t)= (t+29u(s)ds| +|t—-1+t"—| — ——t
dt 0 6 6

t I [0, 1], together with the periodic boundary coiuht

U(0) = U e, (3.12b)

We solve this periodic boundary value problem bingisghe collocation
method, to do this, first, approximate the unknofumction u(t) by a

polynomial of degree two, that is, write:

u)=ap+tat+ a#
This solution must satisfy the periodic boundarydibons given by
eq.(3.12b), thus u(t) becomes:

ut)=gg-apt+ 3 ¢
By substituting this solution into eq.(3.12a), @aa get

2
1 1
e(t,ay, 3 F- 3+ ta+ g+ §‘2t‘(§ 2 Att @& o%

2

-1 1

—t+1—1t2 -
t+i-t +(6 6tj

where g(t, &, &) is the error function andpaand a are the unknown

parameters that must be determined.
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To find & and @, we choose two points in the interval [0,1] in efhthe

error given by eq.(3.13) vanishes at them.

Here we takept= 0, t = 1/2, such that(ty, &, &) = (1, &, &) = 0 to get

the following nonlinear system of equations:

-1 2 37

—az+ao—(gaz+3o t5x=0

8
a2+ao—(?a2+280 —§:O

which has the solutionsya& 0 and a = 1. Therefore, u(tF ? - tis the

approximated solution of eq.(3.12).
For more details, see the appendix,(example(3.2)).

3.1.2 The Galerkin's Method:

The Galerkin's method is also one of the importaethods that can be
used to approximate the solution of the differdndiad integral equations
[Chambers L., 1976] and [Doyce D., 2001].

Here we use this method to solve the periodic bapndalue problems

of the first order ordinary integro-differentialegiion by eq.(3.1).

Like the collocation method, this method is basedpproximating the

unknown function u(t) as given in eq.(3.2).

Next we consider the same previous cases:

Case(1):- The Galerkin’s method here establishes n condititmtessary for
determination of n of ;asthat appeared in eq.(3.4) by making the error
function defined by eq.(3.4) orthogonal to n giviemearly independent
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T
functions{y (1)} =; on the interval [0,T]. That isJ. W, (t)e(t,a)dt=G, ¢ =
0

1,2,...,n. In other word write

n T T n T
Do [ W, (00 Ot g [W, (8h (Ode- MY afw, (i (o
i=0 o 0 i=0 0o

ik ik
T n T T
May [ W, (D (Dd+ND " 3 [ W, (t{ ICE? (s)o% dt
0 i=0 0 0
ik

T T T
Nakng (t)[j K(t,SP, (s)o% d—JLIJE(t)G(t)dt =0,/=1,2,....n
0 0 0

By evaluating eq.(3.14) at each=l,2,...,n, one can get a system of n linear
equations which can be solved by any suitable noetbdind the values of n

of g 'sthat appeared in eq.(3.14).

Case(2):The Galerkin's method here establishes n condith@tessary for
determination of n of;& appeared in eq.(3.7) by making the error function

defined by eq.(3.7) orthogonal to n given lineairiglependent functions

{Y (1)} 7, on the interval [0, T]. That is,

n T T n T T

2@ Jw, o oder g [w, @ e 0 alw, @ (e Ma[w, @ (Oc*
= 0 0 1= 0 0

i#] i#]

T T
wé(t)[j K(t,sh; (s)ds] der N?jwé, (t%j k(t, 9) (s)d]s d{ng @)tYdt = 0
0 0

0 0

n
NZ aj

i=0

i#]

o —-
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By evaluating eq.(3.15) at ea¢h=1,2,...,n. one can get a system of n linear
equations which can be solved by any suitable noetbdind the values of n

of g's that appeared in eq.(3.15).

Case(3):-The Galerkin's method here establishes n+1 comdititecessary
for determination of n+1 of, & that appeared in eq.(3.9) by making the error

function defined by eq.(3.9) orthogonal to n+1 givenearly independent

functions{W (t)} ), on the interval [0,T]. That is

n T n T
>a _[ W, (0 (Hdt+M> 3 _[ W, (h (tdt+

i=0 0 i=0 0

n T T T
NZa,-ILng (t)[j K(t, S (s)o% dt—J‘ng © ()c=0,¢ =0,1,...,n
0 0

i=0 o

By evaluating eq.(3.16) at each=0, 1, ..., n. one can get a system of n+1
linear equations can be solved to find the valdestd of a's that appeared
in eq.(3.16).

To illustrate this method, consider the followingmple:

Example (3.3):

Consider the periodic boundary value problem witighsists of the first

order linear integro-differential equation:

%tu(t) + 3u(t)= —2Ku(t) + 2t(t - 2@{) 2+ 3t2(t - 21'[) + 81'[25in(t) + 241tcos(t)

/ \

t 1 [0,2 1, together with the periodic boundary condition
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where

21
Ku(t) = j sin(t + s)u(s) ds
0

We solve this periodic boundary value problem byngisthe Galerkin's
method, to do this, first, approximate the unknofumction u(t) by a

polynomial of degree three, that is, write:

u)=ap+tatr a2+ ad
This solution must satisfy the periodic boundaryndibons given by
eq.(3.17), thus u(t) becomes

U(t) = & — (& + ag)t + at’ + agt’

By substituting this solution into eq.(3.17a), wet gft,a,a,&) takes in

the appendix ,example(3.3)

we choose three linearly independent functions $ay; £ to be orthogonal
to the error function defined by appendix to get following system of

equations:

—ap—ag+35p+1=0
-173 13 19 19

——agg+t—a——a+—=0
120 BT 30722
n_.28 7 1
22T BT TS

which has the solutiong & 0, =1 and @ = 0, Therefore, u(t) is a solution
of eq.(3.17).

For more details, see the appendix.
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Remark (3.2):

The Galerkian's method can be used to solve thedietboundary value
problems of the first order nonlinear integro-diffetial equations, given by
eq.(2.23):

Remark (3.3):

The linear independent functiotg (t), i = 0,1,2, used in the Galerkin's
method are in general different from(t), i = 0,1,2, that used in the
approximated solution given by eq.(3.2).¢if(t) = W;(t), i =0, 1, 2, then

the Galerkin's method said to be the moment method.

3.1.3 The Least Square Method:

This method is also one of the approximated methsesl to solve the
integral and integro-differential equations [MohaaurS., 2002], [Salih A.,
2003], [Kareem R., 2003].

Here, we use it to solve periodic boundary valugbf@ms for the first

order ordinary integro-differential equation giveyneq.(3.1).

Like the collocation method, this method is basedapproximating the
unknown function u(t) as given in eq.(3.2). Nexte wonsider the same

previous cases.
Case (1):The least square method requires minimizing tinetianal:

.
L(a) = j [(t, 2)]2w(t) dt
0
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T| n n
L@)=[| X a0 0+ adi () MY ah O+ pd (t)+

o] i=0 i=0

izk i 2k

- . +2

T n
N[k(t:s) D a0 () b (5) dso (O w(t)c..(3.18)
0 i=0
izk

To do this differentiate L{) with respect to n of;'a that appeared in
eq.(3.18), and equating to zero, to get a system lofear equations which
can be solved to find the values of n ¢¢ ghat appeared in eq.(3.18)where

w(t) is any positive function defined in the regibrand it is called the weight

function.

Case (2):The least square method requires minimizing tinetfanal:

.
L(a) = j [(t, 2)]2w(t) dt
0

Tl n n
L@ = [| D a0 0+ 30f (0 MY a4 (O p§ (1) +

ol i=0 i=0

I Z] i ]

- - 42

T n
Njk(t,s) > a0 (s) aby (s) dso () w(t).. (3.19)
0 i=0
REd

The values ofa can be obtained by the following the same previous

steps as in case (1).

Case (3): The least square method requires minimizing tinetfanal:
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-
L(a) = j [(t, 2)]2w(t) dt

0

2

T n
L(a)= j[Zaq». 0+ M[Z«w (t)}NZ [ ko) (s)dso () w(o)
oLl

i=0

The values ofd can be obtained by following the same previougsstes

in case (1).
To illustrate this method, consider the followingmple:

Example (3.4):

Consider the periodic boundary value problem wiltighsists of the first

order linear integro-differential equation:

g—tu(t) +But) = —4EJO (t+s)u(s)ds + (— 8t — 6t2 + 6t - % _ %t)
......................... (3.21a)
t O[O, 2], together with the periodic boundary coiuit
U(O)= U et (3.21b)

We solve this periodic boundary value problem bingighe least square
method, to do this, first, approximate the unknofamction u(t) by a

polynomial of degree four, that is, write
ut)=a + at + at’ + at’ + at’

This solution must satisfy the periodic boundaryndibons given by
eq.(3.21b), thus u(t) becomes
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u(t) = & — (Qat+da+8a)t + at’ + at’ + at*

By substituting this solution into eq.(3.21a), aran get the error term

defined in the appendix ,then by minimizing thedtional:
2
L (a0, &, &, a) = j ((20, &, &, a))” dt
0

one can get@= 7.54&10°% a = 1.43%107, & = -2 and a= 1. Therefore,
u(t) U t* - 28 is the approximated solution of eq.(3.21).

For more details, see the appendix.

Remark (3.4):

The least square method can be used to solve thedjgeboundary
value problems of the first order nonlinear intedifferential equations,
given by eq.(2.23).

To see this, consider the following example:

Example (3.5):

Consider the periodic boundary value problem wiltighsists of the first

order nonlinear integro-differential equation:

1 2
%tu(t) +u(t) = {L (t+ 2s)u(s)ds} +t-1+t2 - (%1 __;Oz

together with the periodic boundary condition
U(0) = U(D et (3.22b)

This solution must satisfy the periodic boundargditons given by

eq.(3.22), thus u(t) becomes

101



Chapter Three Expansion Methdds Solving the Periodic Boundary Value
Protvls of the Ordinary Integro-Differential Equations

u(t) = a + at + at® + at’ + at*

This solution must satisfy the periodic boundaryndibons given by
eq.(3.22b), thus u(t) becomes

u(t) = & -(Qa+da+8ay)t+ at™+ at® + at’

By substituting this solution into eq.(3.22), ongncget the error function
defined by

g(t,a, 85,8 ——dp—ag— a+ 25t +3 at™+4 at’+agt (—a— a— a)t+ at’+ at+

1 3 4 1 1 1 1
a4t4—(—§a4-mta4—Eag——drtag——(staw 3+ t@zj—t+1—t2—(—€——6t)2

then we minimize the functional:
1
L(30, & 3 @) = [ (E(@0, @ & &))" dt
0

to get @1.556x<10° 2=1.001, a=-1.348&10° and a=6.535x10".
Therefore, u(t)/ t(t — 1) is the approximated solution of eq.(3.22).

For more details, see the appendix (example(3.5)).

3.2 Method of Solution for Periodic Boundary Value Problems of the

Second Order Ordinary | ntegro-Differential Equations:

In this section, we use the same previous methodsolve periodic
boundary value problems of the second order ordimaegro-differential

equation.

3.2.1 The Collocation Method:

As seen before the collocation method is used teesthe periodic

boundary value problems of the first order intedifberential equations. Here
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we used to solve the periodic boundary value probMhich consists of the

second order integro- differential equation:

u'’(t) + Mu(t) = —=N[K u](t) + O(t) ceevvreiiieeeeeeec e 23a)
together with the periodic boundary conditions

u(0)=u(T)

u'(0) = u'(T)
where K, M, N ana are defined similar to the previous.

This method is based on approximating the unknowmction u(t) given
ineq.(3.2)and by substituting this approximatedisoh into eq.(3.23b), one

can obtain;:

D &y (0)= D ad; (T)
i=0 i=0

a0 (0= a (T)

=0 i=0

Hence , the error functiaeft, a),is given by :

n n n T
e (ta)=| > ad (D+M D> ad, (t)+N[KZai [ketsm, (s)o%—o(t)
i=0 i=

i=0 i=0

wherea is a vector of j of & wheran—1< j< n+ 1. Similar to the previous

to find @ one must choose | points say,t/ = 1, 2, ..., j; in which
e(ty, @)=0,/= 1,2,...,) to get system of linear equations whean be
solved to finda.

To illustrate this method, consider the followingeple:

103



Chapter Three Expansion Methdds Solving the Periodic Boundary Value
Protvls of the Ordinary Integro-Differential Equations

Example (3.6):

Consider the periodic boundary value problem whsomsists of the

second order linear integro-differential equation:

2 1
j—tzu(t) +u(t) = —JO (3t+u(s)ds+8t(t— 1) + 22+ 2(t- D%+ t2(t - )2 + % + 1—10t
......................... (3.26a)
t I [0, 1], together with the periodic boundary corutis
u(0) = u(1)
...................................................................... (3.26b)
u'(0)=u()

Approximate the solution of the periodic boundaajue problem given by

eq.(3.26) by a polynomial of degree four, i.e.,
ut)=a + at + at’ + at’ + at’

By substituting this solution into eq.(3.26b), a@n get
3 3
uit)=a + (-a;;—a4+§ &t2 aq)t+(—§ -2 aq)t2 + %t3 + att

where ¢ (t, & &, &) Iis the error function defined in the
appendix(example(3.6))and @& and g are the unknown parameters that

must be determined.

To find @ & and a, choose three points in the interval [0, 1] in e¥hi

the error function given in the appendix vanisheham.

Here we takegt=0, t=1/2, § =1, we get:
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—361

o0 BT AT BO___
Ty g 28

120 840
Sl — g+ By - =0
120 10

which has the solutionsgya=1.041, g = -0.73, @ =0.559Therefore,

u(t)d t2 (t-12 s the approximated solution of eq.(3.26).

For more details, see the appendix.

3.2.2 The Galerkin's Method:

As seen before, the Galerkin's method can be wsedlve the periodic
boundary value problems for the first order lin@ad non-linear integro-

differential equations.

Here we use it to solve the periodic boundary vagblems given by
equation (3.23).

The Galerkin's method is based on choosing | ligesrdependent
functions{ L|Jf(t)}i=1 that are orthogonal on the error functeg) a) given by

eq.(3.25), where+1 < j < n+1 to get a system of linear equations that @an b

solved to obtaira.

To illustrate method, consider the following exaepl

Example (3.7):

Consider the periodic boundary value problem whiehsists of the first

order non linear integro-differential equation:
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2 2 32 256_ 16
3—f2u(t)+4u(t):—n(t+s)2u(s)ds+6t(t 22+ 128(t - 2) + 28 + 463t - .2)2+2—1 e 1—5t2
.................... (3.27a)

t U [0, 2], together with the periodic boundary coiuis

u@)=u(?
TR0 R L2 DO (3.27b)

We solve this periodic boundary value problem byngishe Galerkin's
method method, to do this, approximate the unkndwnrction u(t) by a

polynomial of degree five, that is, write
ut)=gg+at+r a8+ g3+ g4+ 33
This solution must satisfy the periodic boundargditons given by

ed.(3x7b), thus u(t) becomes

u(t) = & +(2a+8a +24a)t - (3a+8a+20a)t* + at’ + at’ +at’

By substituting this solution into eq.(3.27a), azen get (t, &, & , &)
wheree (t, &, & , &a) IS error function defined in the appendix
(example(3.7)) andyga ,a& and g are the unknown parameters that must be

determined.

To find & , & a,and g, choose fou points in the interval [0, 1] in whitte

error given in the appendix vanishes at them

Here we takeyt=0, t=1/2, t =1/3 and 4= 1, we get:
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2816 80 32, 1664 4736
63 B3 15387 315 %" 315

-6496 5568 18304 104 2096

+ + +——an+ -0
225 T35 BT g5 BT g8 450
25472 88352 19904 2728 368 _
505 | 315 B 315 ¥ 55 BT 5 o=

-3690496 4392704 7296 704 13120 _
24255 4851 ® ' 35 4T 35 BT g3 %~

which has the solutiong & 0, & = 4, a = -4 and g@= 1. Therefore u(tF
t3(t - 2)%s the approximated solution of eq.(3.27).

For more details, see the appendix.

3.2.3 The Least Square Method:

This method is based on minimizing the functional:
T

L () = [e(t.a)]* w( dt,
0

where a is a vector of j of & ande(t, &) is the error function defined by
eq.(3.25)

To illustrate this method, consider the followingmple:

Example (3.8):

Consider the periodic boundary value problem whsonsists of the

second order linear integro-differential equation:

2
2
d 2 2 2 3,3 2 32 256 162
—u(t) +4u(®)=—-{ (t+ ds+6t(t—2 "+ 12 (t-2) +2t +4(t-2)" + — + — [+ —t
Sou() +4u(y L( 9°u(s)ds+6i(t- 2% + 126(t - 2) (t-2)%+ 22+ 000+ o7
......................... (3.28a)
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t [0, 2], together with the periodic boundary cdiudtis
u(0)=u(2)
u'(0)=u(2)

We solve this periodic boundary value problem bypgishe least square
method, to do this, first, approximate the unknofumction u(t) by a

polynomial of degree five, that is, write
ut)=a + at + at” + at’ + at™+at®
By substituting this solution into eq.(3.28 b), aran get
u(t) = & + (2a+8a+24a)t - (3a+8a+20a)t’ + at’ + at’

By substituting this solution into eq.(3.28a), aten get the error function

defined in the appendix(example(3.8)), then weirmize the functional:
2
L(@0, &, 3 .,a)) = | (e(a, @ a,a))” dt
0

one can getyae -5.39%10°¢, &=4,a=-4and &1.

Therefore, u(t) t*(t-2)%s the approximated solution of eq.(3.28).
For more details, see the appendix.

Remark (3.5):

The other methods of expansion methods can beuslst to solve the
periodic boundary value problems of the ordinargegno-differential

equations, say the moment method and the partitiethod.
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CHAPTER

2

PERIODIC BOUNDARY VALUE PROBLEMS FOR ORDINARY
INTEGRO-DIFFERENTIAL EQUATIONS

I ntroduction:

Periodic boundary value problems of ordinary intedifferential
equations has been widely studied in the last yaadshas many real life
applications in various mathematical problems, Hlakikantham V. & Hu
S., 1986] studied the periodic boundary value mwisl for the integro-
differential equations of Volterra types. [Nieto&Liz E., 1994] devoted the
periodic boundary value problems for the Fredholmegro-differential
equations with general kernel. [Hong Xu H. & Nielg 1997] gave the
extremal solutions of a class of nonlinear intedifferential equations in

Banach spaces.

In this chapter, we study periodic boundary valuebfems which
consist of first order linear and nonlinear ordynantegro-differential
equation together with periodic boundary conditioRsis study includes the
existence and the uniqueness of the solutions aerdekistence of the

extremal solutions for such type of equations..

This chapter consists of three sections. In sestmme, we give some

basic concepts of the ordinary integro-differenéig@liations.

In section two, we devote the existence and theuemess of the

periodic boundary value problems for the first ortieear ordinary integro-
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differential equations. Also the existence of tkreamal solutions for them is

discussed.

In section three, the same above study for thalticase is extended to
include the periodic boundary value for the firster nonlinear ordinary

integro-differential equations.

2.1 Integro-Differential Equations (Definition and Types):

In this section we present the definition and typiethe first, second and

n-th order linear and nonlinear ordinary integrfediential equations,

An integro differential equation is an equation alwng unknown
function u, together with both differential andagtal operation on u. This
means that it is an equation contains unknown fancti, which appears
inside the differential and integral signs,[Chansder 1976].

If the derivative is always taken with respect t@ wariable, the integro-
differential equation is called ordinary. Othereigto-differential equations,
on the contrary, which often occur in mathematiqdlysics, contain
derivatives with respect to different variablese aralled partial integro
differential equations, [Vito Volterra., 1959].

In this work we restrict ourselves to study pertodthoundary value

problems of the one dimensional ordinary integrfedential equations.

Recall that the general form for the first ordedionary integro-

differential equation is given by:
F(t, u(t), u(t), [Ku](t)) =0, tO[a, B] coceeeeieeieeeeeieeeeeeeii, (2.1)

B(t)
[Ku](t) = j k(t, s, u(t), u(s), t), u(s)) ds
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wheref3 is the known functions of t and a is the knowonstants. I1f3(t) =t
then it is called the general form for the firstier VVolterra ordinary integro-
differential equation. If3(t) = b then it is called the general form for first
order Fredholm ordinary integro-differential eqoati This equation is said to

be linear if it takes the form:

a(Hu'(t) + a(Hu(t) + a(t)[Ku](t) + as(t)[Lu](t) =o(d) ............... (2.2)
where
B()
[Ku](t) = j k(t, s)u(s) ds,
y(t)
[Lu](t) = j /(t, s)U'(s) ds,

{ai}4i=1,[3,v, o are known functions of t. Otherwise, it is said he

nonlinear. The initial value problem for the firetder ordinary integro-
differential equation consists of the ordinary gredifferential equation

given by eq.(2.1) together with the initial condliti
u@a)= oy

The periodic boundary value problem for the finstex ordinary integro-
differential equation consists of the ordinary grte differential equation

given by eq.(2.1) together with the periodic bougdandition

On the other hand the general form for the secorderointegro-

differential equation is:
F(t, u(t), ut), u'(t), [Ku](t)) =0, tO[a, B] e, (2.4)

where
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B
[Ku](t) = j K(t, s,u(t),u(s), i), u(s), u'(t) ,u'(s)) ds
a
If B(t) =t then it is called the general form for secondeorVVolterra ordinary
integro-differential equation. B(t) = b then it is called the general form for
the second order Fredholm ordinary integro-diffaednequation. This

equation is said to be linear if it takes the form:

a(fu”(t) + a(u'(t) + a(tu(t) + at)[Ku](t) + as(t)[L1 u] (H+

B6(D[LU](1) = O(t), £ 01 A, B] e (2.5)
where
B()
[Ku](t) = j k(t, s)u(s) ds,
ya(t)
[L,u(t) = j 04(t, S)u'(s) ds,
and
Ya(t)
[L,oul(t) = j 05, S (s) ds

{ai}Gizl, B,O,{yi}zizl are known functions of t. Otherwise, it is saidb®
nonlinear

The initial value problem for the second order pady integro-
differential equation consists of the ordinary grtedifferential equation

given by eq.(2.4) together with the initial condits:
u(@=a;

u(@=a,
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The boundary value problem for the second ordernarg integro-
differential equation consists of the ordinary gre differential equation

given by eq.(2.4) together with the boundary caods:
a,u(@) +PaU' (@) =y
au(b) +B2u'(b) =y,

The periodic boundary value problem for the seconder ordinary
integro-differential equation consists of the oafin integro-differential

equation given by eq.(2.4) together with the peddmbundary conditions:
u(a)=u(b)
u'(a)=u'(b)

So, the general form for the n-th order ordinaryegno-differential

equation is
F(t, u(t), u(), ..., V%), [Ku](t)) =0, tO [a, b]eeeeeeeeeeeeereene. (2.6)
where

B
[Ku](t) = j k(t, s, u(t), u(s), t), u(s), U”(), u"(s)) ds

a

Similar to the pervious, one can easily recogninee Fredholm and Volterra

types for the above n-th order ordinary integrdediéntial equation.

The above integro-differential equation is saidbéolinear if it takes the

form:

> a (U 0+ [ (K u(®)] = o(t)

i=0 1=0

where

rA
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Bi (®)
[Ku(t) = j ki(t, s)d’(s) ds, i= 0,1,2,...n,

a
and{a,-}ni=0 { b}nizo,{Bi}nizo ,0 are known functions of t.

Otherwise, it is said to be nonlinear.

The initial value problem for the n-th order ordypantegro-differential
equation consists of the ordinary integro-differ@ntequation given by

eq.(2.6) together with the initial conditions:
uwW@=a;,i=0,1,.., n1

The boundary value problem for the n-th order cadmnintegro-
differential equation consists of the ordinary grte differential equation

given by eq.(2.6) together with the boundary caods:
n-1 ) .
Zaiju(l) (g)=y;,i=0,1,....,n1
=

where @] [a, b]for each j=0,1,2,...~-1.

The periodic boundary value problem for the n-tthesrordinary integro-
differential equation consists of the ordinary grte differential equation

given by eq.(2.6) together with periodic boundasydition

2.2 Existence of the Extremal Solutions for the Periodic Boundary Value

Problem for the Linear | ntegro-Differential Equations:

In this section we present some theorems thateressary to establish
the existence and the uniqueness of the solutionsgecial types of the
periodic boundary value problems which consistshaf first order linear

integro-differential equation together with theipdic boundary condition.

re
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Also, some theorems are introduced to ensure thgteexe of the
extremal solutions for the periodic boundary vglueblems of the first order
linear integro-differential equations. To the bes$tour knowledge, these

theorems seem to be new.

We start this section by the following theorem.sltiieorem gives some
necessary conditions for the existence of the mwistfor special types of the
boundary value problems of the first order lineategro-differential
equations. It appeared in [Nieto J., et al., 200@fhout proof. Here we give

its proof.

Theorem (2.1):

Consider the boundary value problem for the firskeo linear Fredholm
ordinary integro-differential equations which catsi of the integro-

differential equation

u'(t) + Mu(t) = -N[Ku](t) + o(t), tOJI=[0, T] eeeereeirereeirenne (2.7a)
together with the boundary conditions

U(O) S U(T) F A e (2.7b)

where NA OO, MO0 Y0}, o O C(J),and K:C(JJ - C(J) is an integral

operator defined by
T
[Ku](t) = j k(t, s)u(s) ds
0
If u O C'(J) is a solution of eq.(2.7) then
T
U = [ G(t, SHENIKUI(S) + O(S)} dS + B(D) oo (2.8)
0

where
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M) s i T

Gt s)= —— ¢
T 1-eMT e MTHS)  oc ta s T

and

Ae—Mt
M= T—gwr

Moreover if ul C(J) satisfies eq.(2.8), then it is a solutiorgf(2.7).
Proof:

Multiply eq.(2.7a) by G(t, s) and integrating thesulting integro-
differential equation from O to T, to get:

T T
[ U'(s) + Mu(s)IG(t, 5) ds | G(t, SH-N[Ku](s) +a(s)} ds

Then from the definition of G(t,s), the above equateduces to:

. [ju(s)e M(t=s) dsrj Mu(s)eM(t=s) d-B'[ u (HTHS) g,

e
T
[Mu(g)eMT+=) ds} = [ G(t, s)f-N[Ku](s) +a(s)} ds
t

Thus

—Mt T
() + g [-U(0) + u(M]= [ G(t, ENIKUIS) +0(s)} ds
But u(0)=u(T) +A, then

)\e—Mt
_ e—MT

;
u(t)= j G(t, s)-N[Ku](s) + o(s)} ds + -

.
- j G(t, s){-N[Ku](s) + a(s)} ds + R(t)
0

Is a solution of eq.(2.7).

£
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Conversely, if ud C'(J) satisfies eq.(2.8), then from the definition of
G(t, s) and K(t), eq.(2.8) can be written as:

t
u(t) = — = - { [e M- N[Ku](s)+ o (s} ds+
1-e ™M |3

T )\e—Mt
Je—M(T+t—S){—N[Ku](s)+0’($} dS:|+ VT
t

Then

u'(t)=

t
= el_MT [—M [e™M9){-N[Ku](s) + o (s} ds+ {-N[Ku()+o(®)} -
0

.
M j e M=) _N[Ku](s) + o (s} ds- éMT{- N[Ku](ty-o (t)}
t

Mae Mt
1M

t
= -N[Ku](t) + o(t) - - Z‘IMT {je‘“"(“s){— N[Ku](s)+ o (s} ds+
0

Mie Mt
SN

T
J‘e—M(T+t—S){ —N[Ku](s)+ O'(S} dS} -
t

T MAe Mt
= —N[Ku](t) + o(t) - M j G(t,s) - N[Ku](s)+o (s} de 1_aMT
0

Thus

;
u'(t) + Mu(t) = =N[Ku](t) + o(t) = M j G(t,s) - N[Ku](s)+o (s} d+
0

T -M
M j G(t,s) - N[Ku](s)+ o (s} d:+2/|)\e_M;
0

= =N[Ku](t) + a(t)

which means that eq.(2.8) is a solution of eq.(R M@reover

£y
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T
_ _ A
u(0)= — = [e™MT D {=N[Ku](s)+ 0 (s} ds+ —
1-e 5 1-
and
T —MT
1 _M(T = Ae
u(T) = ——= je MT=S){ - N[Ku](s)+ o (s} ds + ——
1-e 0 -
Thus
1 T Ae MT
u(T) +A = — Je—M(T—S){—N[Ku](s)+o(s} ds + LT + A
0
1t omes)
- — =) ] ] _
S { € {=N[Ku](s)+0o(s} d+ [ - UO)

which means that the function defined by eq.(2s8x isolution of eq.(2.7b).
Thus, the function u defined by eq.(2.8) is a sofubf eq.(2.7). =

The proof of the following corollary is clear, thue omitted it.

Corollary (2.1):

Consider the periodic boundary value problem fer fist order linear
Fredholm ordinary integro-differential equation wainiconsists of the integro-

differential equation:

u'(t) + Mu(t) = =N[Ku](t) + o(t), tOI=[0,T] .cccvereerrrrreereen (2.9a)
together with the periodic boundary conditions

01(0) U (1) RSO URR (2.9b)

where NOI [0 , M O [0 {0}, o OO C(J), and K is the integral operator defined
previously. Then if & C'(J) is a solution of eq.(2.9), then:

£&r
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u(t) = j G(t, SH-NKU](S) + O(S)} dS werereeeeeeeeeeeeeeeeeeeeene. @)1

where G defined previously. Moreover it (J) satisfies eq.(2.10), then it is

a solution of eq.(2.9).

Remark (2.1):

It is easy to check that the fixed points of the emapors
A;CO)O - CJ) and AC(J)O - C(J), which are defined by:

T
[Aqu](t) = f G(t, s){-N[Ku](s) +a(s)} ds + K(1), t T I=[0, T]
0
and
T
[Aou](t) = j G(t, s){~N[Ku](s) + a(s)} ds, tOO0 J=[0, T]
0

are precisely the solutions of the boundary valgblem given by eq.(2.7)

and eq.(2.9) respectively.

Next in the following theorem we find sufficientruitions to ensure the
existence and the uniqueness of solution for thenOary value problem
given by eq.(2.7). This theorem appeared in [Nieiet al., 2000]. Hence, we

give the details of this proof.

Theorem (2.2):

Consider the boundary value problem given by eg).(2.

| |
Kl < ——
Ikl IN|T

where N ,M0O [0 {0}, o O C(J), and K is the integral operator defined

previously Then eq.(2.7) has a unique solution.

£f
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Proof:

We show that the operator A : C(J)- C(J), defined by
T
[Au](t) = f G(t, s){-N[Ku](s) +o(s)} ds + h(t)
0
IS a contraction operator. To do this, consider:

[|Au— Av|| =

.
j G(t,sf~ N[Ku](s)+o (s} ds- h (t
0

F

.
j G(t,s) [Ku](s)- [Kv](s} d%
0

.
j G(t,sf - N[KV](s)+a (s} ds- K (
0

< |N] max
t10,T]

.
<TIN| max|| ], [u- [ 1G(t.s)d
0

{10, T]
_ TN
=LK (u=v|_.
] [kl =,
But |k|._, <%, thus%”knﬁl. Therefore one can conclude that A is a

contraction operator and hence A has a unique fp@idt, which is the

solution of eq.(2.7). =

The proof of the following corollary is easy, thue omitted it.

Corollary (2.2):

Consider the periodic boundary value problem givgeq.(2.9). If

o
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M|

kll, <
|[k]k INIT

where N ,M0O [0 {0}, o O C(@J), and K is the integral operator defined

previously .Then eq.(2.9) has a unique solution.

Next we find a kind of Green's function to reprdsée solution for the
boundary value problem given by eq.(2.7). This theoappeared in [Nieto
J., et al., 2000]. Here, we give the details oprisof.

Theorem (2.3):

Consider the boundary value problem given by eg).(Assume

M
K[l < ——=
Ik < o7

where N ,M< [0 [1 {0}, o O C(J), and K is the integral operator defined
previously. Then there exist H, [Q C(JJ), such that the solution of eq.(2.7)

is given by
T T
u(t)= [ H(t, spo(s) ds +[ Q(t, s)h(s) ds + h(t), t0 J
0 0

where

H=G+F,

.
F(t, s)= [ Q(t, NG, s) dr,
0

Q(t, s)= i RO(E, S) ettt (2.11)
i=1

and R are the iterated kernels of R, i.e®’R R and for (t, s}JxJ.

.
ROt s)= [ Rt S)R(, S) A B 2. (2.12)
0

£
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Proof:

Since A is a contraction operator, then the sequefdterates {Aug}

converges to the solution u, for anytuiC(J). Let:

.
Uo(t) = [ G(t, sy(s) ds + Rt), t0J
0

By using Fubini's theorem and the mathematicaletida one can have:

T

]
[A"(t) = w(®) + | Qut, s)(s) ds +[ F(t, s)o(s) ds, e 1
0 0

where
.
Fo(t, )= | Qult, NG(r, s) dr,
0
and
it 9= 3 RO, 9
i=1

Since

M
K[l < ——=
Ik < 7

Then one can have the following estimate:

INTITK K
IRlb<—4

:d<l
T

In consequence, we show that:

IRV < @T)" %, n> 1

£y
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To do this, we use the mathematical induction.

Let n=1, then:
IRPIL = [|RJ} < d
= (dT)"d
Let n= 2, then:
.
IRl = | [RENR(r.5)d
0
.
= maij(t,r)R(r,s)d
t,d1J 0
.
< maxj| R(t,1)||R(r,s)|d
t,d1J 0
.
< [ () dr
0
=T =(dTy'd
Assume

IRl < (dT)"'d

Then:

IRk, =

.
jR(k) (t,r)R(r,s)dH
0

= max
t,91J

.
jR“‘) (t,r)R(r,s)d}
0

A
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T
< max [|RY (t.n)[|R(r,5)|d
t,SDJO

< (dT)*d(dT) = (dT)d
Therefore

IRV < @T)"'d, n= 1

Since T > 0, then 0< dT < 1, thus the seEeR(i) (t,s)is absolutely and
i=1

uniformly convergent in C&Il) and ZR(D (t,s)=Q O C(XJ). Then the
i=1

sequence Hs convergent in C&D) to a function F. =

Remark (2.2):

The unique solution of the periodic boundary vatweblem given by

eq.(2.9) is given by
T
u(t)= | H(, spo(s) ds
0

where H is defined previously. Thus we say H & @&reen's function of the

integro- differential problem given by eq.( 2.9).

Next, the following theorem gives necessary coadgifor the periodic
boundary value problem given by eq.(2.9) to enshecexistence of a non-
negative unique solution. This theorem appearefiNiato J., et al., 2000].

Hence, we give the details of this proof.

£9
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Theorem (2.4), [Nieto J., et al., 2000]:

Consider the periodic boundary value problem givgeq.(2.9). If

MZe—|M|T

NIV

where N ,M0O [0 {0}, o OO C(@J), and K is the integral operator defined
previously .Then eq.(2.9) has a unique solutiomdi i&@M > 0,0 = 0 on J,
and hence

u(t)=0 on J.
Proof:

First of all we use corollary (2.2) to ensure thgt(2.9) has a unique
solution. Second if M > 0 and = 0 on J, then we must prove utp on J .To

do this we obtain

S RO (t,s{

i=1

QI =

00

< DRV |,
i=1
<M @dn)td=——
Z( ) 1- dT
This implies that

INIg Mm% MIT

——=— where ¢
IM=|N|gT IN|[1+ (M| T-1eMIT

IQIk =

Hence

IFs —Nla
M(M=IN|cT)
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Recall that, < |F| and-F < |F| and |H ||F||, which implies that:

F=—|F|= —|[F||
Hence, for every (t, ) JxJ, we get:

-MT

H(t, s)> ~|IFIL =0

-MT

Hence

ut)=0 onJ. =

Next the following theorem gives another necesseoynditions to
guarantee the existence of non-negative uniqueisolaf the boundary value
problem given by eq.(2.7). This theorem appearefNito J., et al., 2000].

Here, we give the details of its proof.

Theorem (2.5):

Consider the boundary value problem given by ef)(2Assume that
M>0,N>0,A=0,000C(J) ando(t) = 0, for each t1 J=[0, T]. Assume
also that K1 C(XxJ), k=0, and

MT _ 1)2 T _
s M| e -1 ba_g -1
2NT MT MT

Then eq.(2.7) has a unique solution, with u(t) fo®each t1 J.

Proof:

Let
MT 2 T
M eMl -1 e -1
c= +4-
2NT MT MT

o
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then it is easy to check that:

M
klh,<c<s —
|[Kl} NT

Thus, by using theorem (2.2), eq.(2.7) has a unsgligion.
Next, we prove u(tx 0, for each t1 J.

Since N > 0 and k 0 then Nk= 0 on XJ and hence:
T
R(t, S)= —NjG(t,r)k(r,s) d<< 0, on ¥J
0

In consequence:
(-1)RY(t, sp0on XJfori=1,2, ...
where R is the function defined by eq.(2.12).

If we consider the series formed by odd terms & #eries defined by

ed.(2.11), we have

Q(t, s)=Q(t, s)= i R@ ), s), t, SO J

k=1

Then
Q1L < 11D R,
k=1

d

< = d 2k—2d - 4
= é( R 1-(dT)?

where d= -~ |[K[L
M

Thus:

ofr
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dsﬂc
M

and hence
2
1-(dTF=21- (ﬂch
M

therefore

d NcM

121k < 1- (dTY = M?Z —(NcT)?

Then for every (t, s JxJ

H(t, s)=G(t, s) + F(t, s)
T
=G(t, s) + j Q(t,1G(r,s) di
0

Since Q(t, sk Q*(t, s), t, sLJ J, and Q*(t, sk ||Q*||, t, <7 J, Hence:

Q(t, s)= Q*(t, s)= —{|Q*|, 1, s J

On the other hand, G(t, B)mgi]nJG(t, S). Thus:
t,

.
H(, 3)2—||Q*||,°I G(r, s) dr +minG(t, s)
0 t,91J
It is easy to check that:
T
1
G(r, s) dr= —
£ (r,s) dr=

and

. 1
minG(t, S)= —
t,91J (t, s) eMT _1

or
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So
|| Q* Il 1
H(t, s)=> - +
(t, s) v M1
-NcM 1
> +

- M?2-(NcT)? eMT -1

Now
2 MT _ )2 T 22 T
s i P i PPY it L
4 MT MT MT

_ M? Z[eMT—1j2+4_ S & -1 2}[ T — ﬁ

MT MT MT

MT _ 1)\2 T
Ne= M| [e 1 +4éw 1
2T MT MT

o¢
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From inequality (2.13) and inequality (2.14), oa get:

-Ne _-M T
MZ-(NcT)2~ T M(eMT—l)

Therefore:

-Nc 1
H(t, s)= +
M2 -(NcT)? eV -1

Sincea(t) = 0, for each t1 J. Therefore:
T
j H(t, s)o(s) ds= 0
0

on the other hand

T T
| @t s)h(s) ds + bty = =lIQ¥Ik | hn(s) ds +min hy()
0 0

)\e Ms A
= —||Q* ds+ mine™
Ik j —
;
= NI sl AMT oMt
M (1—e‘MT) 1-¢
0

l-X4
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_”Q*“ao)\ (e—MT_1)+ A

Y (1—e‘MT) MT 1
QL , A

>\ -Nc N 1
— (M%2-(NcT)? eMT-1
>\(0)=0

From the above results, one can conclude that

T T
u(t)= j H(t, s)o(s) ds + j Q(t, s)h(s) ds + k(t) = 0, for each £1J. m
0 0

The proof of the following corollary is straightfeard.

Corollary (2.3):

Consider the boundary value problem given by e@)(2Assume that
M >0, N> 0,000 C(J) andao(t) = O, for each t1J=[0, T]. Assume also that
k OC(XJ), k=0

MT _1)2 T _
s M| e -1 bq_g -1
2NT MT MT

Then eq.(2.9) has a unique solution u, with &()for each t1 J.

Now, we are in a position that we can give theolelhg theorem. This
theorem shows that the existence of the extrematisos for the periodic
boundary value problem which consists of the fostler linear integro-

differential equation

o1
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U (0) = =N[KUJD), € T I=0, T] eovereeeeeeeeeeeeeeeeeeeseesseesseess e (215a)

together with the following periodic boundaryndition:

V() 1 T (2.15b)

to the best of our knowledge, this theorem seerhe toew.

Theorem (2.6):

Consider the periodic boundary value problem gi\Bn eq.(2.15).
Suppose that there exist B O C'(J), such thatr < B on J. Assume in
addition that:

(1) o'(t) = -N[Ka](t), and
a(0)<a(T)
(2)B'(1) 2 -N[Kf]
B(0) = B(T)
(3) There exists a constant M > 0, such that:
N[KX](®) — N[Ky]{®) =2 -M(y - x)(t)
for each 1 J anda(t) < x(t) < y(t) < B(t).
Then there exist monotone sequenfaes(t)} and{B,(t)} with ao=a,Bo=p

such that lim ap(t) = p(t), lim By(t) = r(t) uniformly and monotonically on
n— oo

n - oo

[0, 2] and that p, r are the minimal and the maximaligohs of the periodic
boundary value problem given by eq.(2.15).

Proof:

For anyn U [a, B]={n O C[[0, 2r], U], a(t)=n(t)<p(t), tT[O, 2},
consider the linear periodic boundary value problehich consists of the

first order ordinary differential equation

oV
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U'(E) + MU(E) = On(E),eeeeeeeieeieesre e (2.16a)
together with the following periodic boundary cdrahs:

0 (0) i U (1) PR (2.16b)
wherea,(t) = Mn(t) — N[Kn](t)
From proposition (1.1)-(1.2), eq.(2.16) has a uaiqalution.

We consider the solution operator A, B] O — C(J), which is defined by
An = v, where v is the unique solution of eq.(2.16). Wi# show that A

satisfies the following properties:

(@) Ifa<n <P, thena < An <.

(b) fa<n;<n,<B, thena < An;<An, <.
To show (a), first we provepA= a

To do this, we consider, ¥+ An —a. Thus
Vi=Uu—a

where y is the unique solution of eq.(2.16). Thus
Va(t) + Mvy(t) = uy' (1) — a'(t) + Mug(t) — Ma(t)

= uy'(1) + Muy(t) —a'(t) — Ma(t)
2 Mn(t) - N[Kn](t) + N[Ka](t) - Ma(t)
=M[n(®) - a®] - N[Kn](®) + N[Ka](t)

2 M[n(t) —a()] = M[n() —a)] =0
Also
v1(0) = uy(0) - a(0)

= Uy (T) —a(T)

= vy(T)

on
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thus by using proposition (1.3) one can ggt)\> 0O, for each t1 J. Thus
An =a.

Second, to prove A< . Consider y= — An.
Thus

Vo =[3— .
where y is the unique solution of eq.(2.16). Then

Va(t) + Mvy(t) = B (t) + MB(Y) — [u'z(t) + Mup (1)]

2 =N[KB](t) + MB(t) - Mn(t) + N[Kn](t)

2 -M[B(®) - n(®] + M[B(t) -n()] =0

Also:

v2(0) = B(0) — ux(0)

2 B(T) — ux(T) = vo(T)

Thus by using proposition (1.3) one can ggt)v= 0 for each [{lJ, hence
An <B.

To prove (b), assume that< n; < n, < . From the part (a), one can get
a < An; £ B, anda £ An, < B. Thus, it is sufficient to prove thatfA< An..
To do this, consider:

V3 =An; - An;

=Up— Uy

where 4y, W, are the unique solutions of eq.(2.13) with respect; andn,,
respectively. Then

V'3(t) + Mvs(t) = U',(t) + Muy(t) —u'1(t) — Mv(t)

= Mn3(t) = N[Kn2](t) — Mna(t) + N[Kn4](t)

2 M[Nn2(t) = N1(t)] = M[Nn2(t) —n1(t)] =0
Also

o9
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Vv3(0) = Ux(0) = uy(0) = Up(T) = va(T) = va(T)

Thus by using proposition (1.3), one can g#t)\= O, for each t1 J. Hence
Ani < Ang.

It therefore follows that we can define the seqesra,} and {,} with

0o =0 andfy =B such thati, = Ad,.1, B =ABn1, N=1, 2, ...

Moreover, as seen before in theorem (1.1) the segsefn,} and {3}

satisfy the following inequality:
a=0p=a;= ... SC(nSBnS SB]_S |30=|3.

Therefore lim a,(t) =p(t), lim B,(t) =r(t) uniformly and monotonically
n - oo

n— oo

on [0, T]. Since

Onh = Ad,. then

a'n(t) + Ma(t) = Ma,,.1(t) = N[Kap-q](t).
Therefore

lim a',(t) + M lim a,(t) =M lim ap-1(t) = N[K lim a,-](t).

n- oo n- oo n- oo n_ oo
and hence
p'(H)+Mp(t) = Mp(t) — N[Kp](t).
That is p(t) = -N[Kp](t).
In other words p is a solution of eq.(2.15a). Also
an(0) = an(T)
thus p(0)= p(T). That is p is a solution of eq.(2. 15b).
Similarly, since

Bn = ABn-1, then
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B'n(t) + MBr(t) = MPBn-1(t) = N[KBn-](t).

Therefore

im B'a(t) + M lim Bu(®) =M lim Bua(t) = N[K lim Ba](t).

n - oo

and hence
r'(t) + Mr(t) = Mr(t) — N[Kr](t).
That is
r'(t) = —N[Kr](t).
In other words r is a solution of eq.(2.15a).Also
Bn(0) = Bn(T)
thus r(0)=r(T). That is p is a solution of eq.(2.15b).

Hence p and r are solutions of eq.(2.15). To pitna p and r are the
minimal and maximal solutions of eq.(2.15) we h&vshow that if u is any

solution of eq.(2.15) such thatlu[a, B] on [0,T], thena<p<u<r<p on
[0, T].

To do this it is easy to check that for any solutio of eq.(2.15) with

asus<f, we havea<a,<u<P,<p on [0, T], taking the limits as

n[ - o, we can conclude that<p<u<r<fon[0,T]. =

Next, the following theorem shows that the exiseeatthe minimal and

maximal solutions of the periodic boundary valuelypem:
u'(t) = =N[Ku](t) + o(t), tO I=[0, T]ueeerrrrrrriiieiiiiieieeeeeeeeeeeen,s (2.07a
together with the following periodic boundary cdrah:

T1(0) E T T (2.17b)

7
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To the best of our knowledge, this theorem seembetmew and it is a

generalization of the previous theorem.

Theorem (2.7):

Consider the periodic boundary value problem gi\Bn eq.(2.17).
Suppose that there exist B O C'(J), such that < B on J. Assume in
addition that:

(1) a’(t) < -N[Ka] + o(t), and
a(0) < a(T)
(2) B'(t) = -N[KB] + o(t), and
B(0) = B(T)
(3) There exists a constant M > 0, such that:
N[Kx](®) = NIKy](t) 2 -M(y —x)(t)
for each 1 J anda(t) < x(t) < y(t) < B(1).
(4) o(t) = 0 for each € J.

Then there exist monotone sequenfieg(t)} and{B,(t)} with ao=a, Bo=p

such that lim ap(t) = p(t), lim By(t) = r(t) uniformly and monotonically on
n— oo

n - oo

[0, 2r] and that p, r are the minimal and the maximalisohs of the periodic
boundary value problem given by eq.(2.17).

Proof:

For anynU[a, B] = {nUC[[0, 2], 0], a()=n(®)=p(t), [0, 2},
consider the linear periodic boundary value problehich consists of the

first order ordinary differential equation

U'(t) + MU(t) = On(), oo, (2.18a)

Y
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together with the following periodic boundary cdrah:

01(0) U () PRSP (2.18b)
whereag,(t) = Mn(t) - N[Kn](t) + o(t)
From proposition (1.1)-(1.2), eq.(2.18) has a uaigqalution.

We consider the solution operator A, B] O — C(J), which is defined by
An = u, where u is the unique solution of eq.(2.18). Wik show that A

satisfy the following properties:
(@) Ifa <n<pB, thena < An <.
(b) Ifa<n;<n,< B, thena < An;<An, <.
To show (a), first we provep= a
To do this, we consider, ¥+ An —a. Thus
Vi=u —a
where y is the unique solution of eq.(2.18). Thus
V'1(t) + Mvy(t) = u/(t) — a'(t) + Mug(t) -Ma(t)
=Mn() - N[Kn](t) + o(t) - o’(t) - Ma(t)
> Mn(t) — N[Kn](t) + ao(t) + N[Ka](t) —o(t) + Ma(t)
2 M[n(t) - a(®)] - M[n(® -a()] =0
Also
v1(0) = uy(0) — a(0)
> uy(T) —a(T)
= vy(T)

thus by using proposition (1.3) one can ggt)v= 0, for each fJ. Thus
An =a.

T
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Second, to prove A< 3. Consider y=[ — An.
Thus
Vo= B — Up.
Where
U is the unique solution of eq.(2.18). Then
V'a(t) + Mva(t) = (1) + MB(t) — [u'2(t) + Mu, (1)]
2 -N[KB](t)+0o(t)+ MB(t) - Mn(t) + N[Kn](t) )- o(t)
2 -M[B(t) —n(®] + M[B(t) —n(®)] =0
Also
v2(0) = B(0) - ux(0)
2 B(T) — () = vo(T)
Thus by using proposition (1.3) one can ggt)v= 0 for each [{lJ, hence
An <B.
To prove (b), assume that< n; < n, < B. From the part (a), one can get

a < An; £ B, anda £ An, < B. Thus, it is sufficient to prove thathfA< An..

To do this, consider:
Va3=UW — U

where 4y, W, are the unique solutions of eq.(2.18) with respect; andn,,

respectively. Then
V'5(t) + Mvs(t) = U'5(t) + Mup(t) —u's(t) — Mug(f)
= Mn3(t) — N[Kng](t)+a(t)-Mn(t) —o(t) + N[Kn4](t)

2 M[N2(t) = N1(t)] = M[Nn2(t) —n1(t)] =0
Also

£
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v3(0) = Ux(0) — uy(0)
= Wp(T) = uy(T) = v3(T)

Thus by using proposition (1.3), one can gg#t)\= 0, for each t1 J. Hence
Ar]]_ < Anz

It therefore follows that we can define the seqasr{a,} and {3} with

0o =0 andfy =B such thati, = Ad -1, Brn = ABn-1, N=1,2,...

Moreover, as seen before in theorem (1.1) the segse{,} and {{3.}

satisfy the following inequality:
ad=0p=s0a;=s... SC(nSBnS SB]_S [30:[3.
Therefore

lim op(t) =p(t), lim Bo(t) =r(t)

uniformly and monotonically on [0, T]. Since

o, =A0,1
then

a’'n(t) + May(t) = Mo (t) — N[Kan-4](t) + o(t).
Therefore

im o' o) + M lim ant) =M lim oma(®)-N[K lim oqq](t) + o(t)

and hence

p'(t) + Mp(t) = Mp(t) — N[Kp](t) + o(t)
That is p(t) = -N[Kp](t) + o(t).

In other words p is a solution of eq.(2.17a). Also
0n(0)=an(T)

thus p(0)=p(T). That is p is a solution of eq.(D)L7

70
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Therefore, p is a solution of eq.(2.17).

In the same manner, one can easily prove thatar gslution of eq.(2.17).
Moreover, as seen before in theorem (2.6), one easily have

a<psusr<sfon[0,T]. =

Now, the following theorem is a generalizationhe previous theorems
which gives the extremal solutions for the line&ripdic boundary value

problem, which consists of the first order lineategro differential equation:
u'(t) + Mu(t) = =N[Ku](t) + o(t), tOI=[0, T] .eevrreerirrereennne (2.19a)
together with the following boundary conditions:
01(0) U () SRR (2.19b)

To the best of our knowledge, this theorem seerbe toew.

Theorem (2.8):

Consider the periodic boundary value problem gi\Bn eq.(2.19).
Suppose that there exist BOCY(J), such thatt < B on J= [0, T]. Assume in
addition that:

(1) a'(t) + Ma(t) < -N[Ka] + o(t)
a(@)<a(T)

(2) B'(t) + MB(t)= -N[K B] + o(t), and
B(0) = B(T)

(3) There exists a constant;M 0, such that:
N[KX](®) — NIKy](t) 2 =My —x)(1)
for each 11 J anda(t) < x(t) < y(t) < B(Y).

(4)M > 0 ando(t) = 0 for each t J.

7
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Then there exist monotone sequenfeg(t)} and{p,(t)} with ao=a, B =

B such thatlim an(t) = p(t), lim By(t) = r(t) uniformly and monotonically on
n — oo

n — oo
[0, 2r] and that p, r are the minimal and the maximalisohs of the periodic
boundary value problem given by eq.(2.19).

Proof:

For anynU[a, B] = {nOCI[0, 2r, U ], a(t) < n(t) < B(), tJ[O, 2r},
consider the linear periodic boundary value problgmch consists of the

first order ordinary differential equation

U'(t) + (M + MDU(E) = G1(), oo (2.20a)
together with the following periodic boundary ddions:

01 (0) i U (1) P USSR (2.20b)
whereag,(t) = Mn(t) — N[Kn](t)
From proposition (1.1)-(1.2), eq.(2.20) has a uaiqalution.

We consider the solution operator Ax, B] O - C(J), which is defined by
An = u, where u is the unique solution of eq.(2.20). Wik show that A

satisfies the following properties:

(@) Ifa<n <P, thena < An <.

(b) fa<n;<n,<B, thena < An;<An, <.
To show (a), first we provep= a

To do this, we consider,+ An —a. Thus
Vi=u—d

where y is the unique solution of eq.(2.20). Thus

v
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V' 1 (1) +H(M+M)Vvy(t) = uy'(t) — a’(t) + Muy(t) —Ma(t) + Myuy(t) — M;a(t)
= ur/(t) + (M+My)uy(t) —a'(t) — Ma(t) — Mya(t)
> Min(t) — N[Kn](t) +o(t)+ N[Ka](t) — a(t) — Mja(t)
=My [n(®) —a(t)] - N[Kn](t) + N[Ka](t)
2 My[n(t) —a()] -M[n® -a@®] =0
Also
v1(0) = w(0) —a(0)
> W (T) —a(T)
= va(T)

thus by using proposition (1.3) one can ggt)\> O, for each tJ J. Thus
An =a.

Second, to prove A< B. Consider y=3 — An.
Thus
Vo= — .
Where y is the unique solution of eq.(2.20). Then
Via(t) +(M+My)v(t) = B'(D) + MaB(t) — [u'o(t) + Mu; (1) + Myu; (D]+
MB(t)
2 =N[KB]()+a(t) + MB(t) - Min(t) + N[Kn](t) - o(t)
2 =My[B(t) -n(®] + M [B(t) —n(®)] =0
Also:
v2(0) = B(0) — ux(0)

> [B(T) — ux(T) = va(T)

A
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Thus by using proposition (1.3) one can gg€t)\w 0, for each t1J, hence
An <.
To prove (b), assume that< n; < n, < 3. From the part (a), one can get

a < An; £ B, anda £ An; < B. Thus, it is sufficient to prove thathfA< An..

To do this, consider:
V=W — U

where 4y, W, are the unique solutions of eq.(2.20) with respect; andn,,

respectively. Then

V'a(t) + (M+Myvs(t) = U'x(t) + Muy(t) + Mouy(t) —U's(t) — Muy(t) -
M]_Ul(t)

= Mana(t) = N[Kn2J(®) = Mana(t) + N[Kn4](t)
2 My[Nn2(t) = Na(t)]= Ma[na(t) —N2(H] =0
Also
V3(0) = U(0) = un(0) = Ux(T) — va(T) = v5(T)

Thus by using proposition (1.3), one can gg#t)\= 0, for each t1 J. Hence
Ani < Ang.

It therefore follows that we can define the seqesr{a,} and {3} with ag =

a and = such thatr, = Adp-1, Br = ABr-1, N=1,2,...

Moreover, as seen before in theorem (1.1) the segse{,} and {{3.}
satisfy the following inequality:
a=0p=sa;=s... SC(nSBnS SB]_S [30:[.)).
Therefore  lim a,(t) =p(t), lim B,(t) =r(t) uniformly and
n— oo n - oo

monotonically on [0,T]. Since

Gn = Aan—ll

749
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then
a'n(t) + (M + My)ay(t) = My (t) = N[Kanq](t) + o(t)
Therefore

im o' y(O)+(M + My) im dn(t) = My lim oy ()-N[K lim oq](6)+0(t)

n - oo N - co N - oo n - o0
and hence

p'(t) + (M + My)p(t) = Map(t) - N[Kp](t) + oft)
That is p(t) + M p(t) = N[Kp](t) + o(t).
Also a,(0) = a,(T), that is p(OF p(T). Thus p is a solution of eq.(2.19b). In
the same manner, one can easily prove that r dutian of eq.(2.19). The

proofs that p and r are the extremal solutionsgof2219) is similar to that in
theorem(2.7). =

2.3 Existence of the Extremal Solutionsfor the Periodic Boundary Value

Problem for the Nonlinear | ntegr o-Differential Equations:

In this section we give some theorems to guarahiexistence and the
unigueness of the solutions for special types efghriodic boundary value

problems of the first order nonlinear integro-diéfietial equation:
u'(t) = f(t, u(t), [Ku](t)), tO I=]0, Tl (221

together with the periodic boundary conditions

T1(0) E T T (2.21b)

where T >0, f:30°0 - is a continuous function and K : C@)- C@1)

is an integral operator defined by

.
[Ku](t) = j k(t, s)u(s) ds
0
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Moreover, the existence of the extremal solutions the periodic

boundary value problem given by eq.(2.21) is diseds

We start this section by the following theorem.sTtineorem appeared in

[Nieto J., et al., 2000] without proof; here we @its proof.

Theorem (2.9):

Consider the boundary value problem for the firsleo non-linear

integro-differential which consists of the integiibferential equation
u'(t) + Mu(t) = g(t, u(t), [KUJ(t)) «eeeeeneeeeeeeiiee e (2.22a)
together with the boundary condition
U(O)ZU(T) A oo eee e e (2.22b)

where T > 0A 0O 0O, g0 C(XU, 0), M O O\0}, J =10, T] and
K:C@Q)O - C(J) is an integral operator defined by

.
[Ku](t) = j k(t, s)u(s) ds
0
If u 0 C(J) is a solution of eq. (2.22) then
T
u@® = [ G(t s)g(s, u(s), [Kul(s)ds )
0

where G is defined previously.
Moreover if i C'(J) satisfies eq.(2.22),
then it is a solution of eq.(2.22).

Proof:

Multiply eq.(2.22a) by G(t, s) and integrating thesulting integro-

differential equation from O to T, to get:

v
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T T
[ [U'(s) + Mu(s)IG(t, s) ds [ G(t, s) g(s, u(s), [Ku](s)) ds
0 0

Then from the definition of G(t,s), the above equateduces to:

t ¢ T
;—MT|:J.UI(S)6_M0_S) dS"J. MU(S)—eM(t—S) d'BJ. ru (S-)M(T+t—8) df
1-e 0 0 t

T

.
[Mu(g)eMT+=) ds} = [ G(t. s)g(s. u(s), [Ku](s)) ds
t 0

Thus

-M T
u(t) + %[—u(m +u(m)]= [ G(t, s) g(s, u(s), [Kul(s)) ds
0

But u(0)=u(T) +A, then

—Mt

)
u M= [ 6t 9) o(s, u(s), [Kulis)) ds +2°
0

.
:J' G(t, s) g(s, u(s), [Ku](s))ds )
0

is a solution of eq.(2.22).

Conversely, if il C(J) satisfies eq.(2.22), then from the definitian
G(t, s) and K(t),the solution

;
u(® = | G(t, )g(s, u(s), [Kul(s))ds it
0

can be written as:

vy



Chapter Two Periodic Boundary Value Problems for Ordinary
| ntegro-Differential Equations

t
u)= — { [eM=)g(s, u(s), [Ku](s))ds
1-e 0

t M (T +t— Ae™
[e™MT*S)g(s, u(s), [Kul(s)) ds+ i
t

Then

t
U= — [—M [e™M (s, u(s), [Kul(s)ds
l1-e 0

;
g(t, u(), [Kule)] - M [e M g(s, u(s), [Kul(s)) ds
t

Mt
& [gtt, v, (Kel)] - 17

t
=g(t, u(t), [Ku](r)- . Z_'MT [e™M)g(s, u(s), [Kul(s))}ds-
0

~Mt
. e_MT Je M(T +t S){ g(S U(S) [KU](S}) d- M)\ee -
t MAe Mt
= g(t, u), [Ku®) - M [G(ts) g(s, u(s), [KUl(s)) ¢~ ——=
0

Thus
t
uay+MwU:gaJK&[mnm)—MjGa$Xg@JK$ij&Dc+
0

t
M [G(t,s) s, u(s), [Kul(s)) c
0

= 9(t, u(v), [Ku](1)

14
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which means that
T
u(®) = [ G(t, s)g(s, u(s), [Kul(s))ds )
0

is a solution of eq.(2.22a). Moreover

_ 1 T ~M(T -s) g A
U(0)= —— { e g(s, u(s), [Kul(sh o+ 7
and
T -MT
u(T) = 1- :-—MT Je_M(T_S){ g(s, u(s), [Ku](sp d+ )\_ee—MT
0
Thus
1 —M(T -s) Ae™MT
u(m) +A= — [e {g(s, u(s), [Kul(s)) d+ — +A
0

1t m— A
= —— [ €T (s, u(s), [Kul(s) d+ — =g =u(0)
0

1-e

which means that
T
u(® = | G(t, )g(s, u(s), [Kul(s))ds i)
0

Is a solution of eq.(2.22b). Thus, the functionefimed above is a solution of
eq.(2.22).

Corollary (2.4):

Consider the periodic boundary value problem far finst order non-

linear integro-differential which consists of tiikegro-differential equation

Ve
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U (1) + MUC) = G(E, U, [KUJ(D) corvrrererereeeeee e meem e (2.23a)

together with the periodic boundary condition
U(O) = U(T) e (2.23b)

where T > 0,1 C(X0 , ), MO0 {0} =[0, T]and K:C(IJ - C(J) is an

integral operator defined by
T
[Ku](t) = j k(t, s)u(s) ds
0
Then if ud C'(J) is a solution of eq. (2.23) then

T
u(t) = J G(t, S)g(s, u(s), [KUJ(S))AS....covieerrieermmmmme e (2.24)
0

where G is defined previously.

Moreover if Ul C(J) satisfies eq.(2.24), then it is a solutior@f(2.23).

Remarks (2.2):

1. Its easy to check that the fixed points of the aper A:C(J)1 - C(J)
which is defined by

.
[Au](®) = I G(t, s)g(s. u(s), [Ku](s))ds Hr), tL J= [0, T]
0

are precisely the solutions of the boundary valuveblem given by

eq.(2.22) where G and, hare defined previously.

2. Its easy to check that the fixed points of the apmr A:C(J)1 - C(J)
which is defined by

ye
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-
[Au](t) = J G(t, s)g(s, u(s), [Ku](s))ds,@ J=[O, T]
0

are precisely the solutions of the periodic boupdaaslue problem

given by eq.(2.23) where G is defined previously.

Next, in the following theorem we give sufficiendraitions to ensure
the existence and the uniqueness of solution fof2&f). This theorem

appeared in [Nieto J., et al., 2000]. Here we ¢gineedetails of its proof.

Theorem (2.10), [Nieto J., et al., 2000]:

Consider eq.(2.22). Suppose that g satisfies tpschitz condition with

respect to, i.e., there exist,lL, =0, such that

g(t,x,u)= g(t,y,v)< L|x= y+ Lju=V,t0J,x,y, u, Va0

and

|IM]-L,
K L S e e 2.26
1Kl T, (2.26)

Then eq.(2.22) has a unique solution.
Proof:

We show that the operator A defined by:
T
AU = [ Gt $)g(s, u(s), Kul(s))ds H)
0
IS a contraction operator.

To do this, consider

v
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IIAU—AVII=‘ G(t,s)g(s,u(s).[Ku](s))ds )h (B

‘T
0
T

[G(t,5)(g(s, v(s).[KVI(s))ds | #

0

max j G(ts) (s, u@E)KUIE) g(s.v(s), [KV](S]))%

IN

max _”G(ts [ Lyfu= |+ Ly Ku= K] ds

IN

J\G(ts LyfJu=j+ Lof[H, [ u- ] o

tE[O T]

1
= ] R [ T ———— (2.27)
L

M-

T, , thus:

But |||} <

[M]-

Ly
TL, T

L L1+ Lp———=

W

1
M{L 1+ Lyl [K[LT} <
\M\ IM| =

Therefore A is a contraction operator and henceaé d unique fixed point

which is the unique solution of eq.(2.22)m
The proof of the following corollary is clear arttuis we omitted it.

Corollary (2.5):

Consider eq.(2.21). Assume the same hypothesis dsebrem (2.10)
then the periodic boundary value problem given gy221) has a unique

solution.

144
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Now, the following theorem shows that under certeamditions the
existence of the extremal solutions for the peddabundary value problem
given by eq.(2.21) This theorem appeared in [Nieieet al., 2000]. Here we

give the details of its proof.

Theorem (2.11):

Consider the periodic boundary value problem givmn eq.(2.21).
Suppose that, BOC* (), such thatt < on J. Assume in addition that:

(L)a' () < f(t, a(t), [Ka](t), t 0 J anda(0) < a(T).
(2)B'(t) 2 1(t, B, [KBI(1), t O J andB(0) = B(T).
(3)f is continuous and there exist constants M > 0MdO, such that:
f(t, X, y) - f(t, u, V)= -M(x — u) = N(y — V)
for each 0 J,a(t) < u < B(t), and [Ka](t) < v <y < [KB](D).

(4)The kernel KJ C(JxJ) is such that B 0 on XJ and satisfies the inequality:

MT _ )2 T _
KL< M -1, -1
2NT MT MT

Then there exist monotone sequenfaes(t)} and{p,(t)} with ao=a,Bo=p

such that lim ap(t) = p(t), lim By(t) = r(t) uniformly and monotonically on
n — oo

n - oo
[0, 2] and that p, r are the minimal and the maximaligohs of the periodic
boundary value problem given by eq.(2.21).

Proof:

For anynU [a, B] = {nOC[[O, T], U ] : a(t =n(t)<B (v, tJ[O,T]}, we
define the modified linear periodic boundary vatweblem which consists of

the first order linear ordinary differential equaati

VA
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u'(t) + Mu(t) = =N[KU](t) + 0q(t), tO I eeeiiiieeeeeee (2.28a)
together with the periodic boundary conditions:

0 (0) i V(1) SRRSO (2.28b)
whereay (t)= Mn(t) + N[Kn](t) + f(t, n(t), [Kn](1)).
Thus by using theorem (2.2), a unique solutiontex® eq.(2.28).

Define the solution operator Aa[B] O - C(J) such that A = u, where u is

the unique solution for eq.(2.28).
We shall show that A possessing the following proes:
(@) If asn <B, thena < An < (.
(D) fa<sni<n,<B, thena < An < AN <.
To show (a), we must proven&2 a and A <3
First, we prove A = a. To do this, consider;\= An — a.
Thus v = u;— a, where yis the unique solution of eq.(2.28). Hence:
vy () +Mva()+N[Kv (1) = u'1(t)—a’(t) + M(uy(t) — a(t)) + N[K(up —a)](t)
But K is a linear operator, then:

v1'(t) + Mvy(t) + N[Kva](t) = uy'(t) — a’(t) + Mug(t) — Ma(t)) + N[Ku(t)
— N[Ka](®)

= W' (t) + Muy (1) + N[Kuy](t) —a’(t) - Ma(t) - N[Ka](t)
= Mn(H)+N[Kn](©)+(t,n(0).[Kn](1)) —o' () -Ma(t)-N[K a](t)
but from the condition (1) one can get

Vi'(8) + Mvy (1) + N[Kv](t) 2 Mn()+N[Kn]()+(t,n (), [Kn](®) -
f(t,a(t),[Kal() - Ma(t) - N[Ka](t)

Ve
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=M () —a®)+ f(tn(0), [Knl®) - f(ta®),[Ka](t) +
N([Kn](t) - N[Ka]()

Now since k= 0 anda(t) < n(t), then k(t, sx(s) < k(t, sn(s), (t, s) JxJ

T T
and hence [K](t) = j K(t, s)i(s) ds< jk(t, sN(s) ds= [Kn](t)
0 0
On the other hand, since®andn(t)<p(t), then
T T
[Knl® = [ k(t, sn (s)ds< [ k(t, sB(s)ds= [KBI)
0 0

Therefore, fora(t) < a(t) < n(t) < B(t) and [Ka](t) < [Ka](t) < [Kn]@) <
[KB](t),. one can get:

f(t, n(t).[Kn](®) —f(t, a(®),[Ka](t))z -M(n (1) - a(®) -N(Kn](®) -
[Ka](t)

Therefore,
vi'(t) + Mvy(f) + N[Kvq](©) 2 M(n(®)- a(©))+N(Kn](®) - [Ka]®) -
M(n(®) —a()) - N(Kn]@®) - [Kal(t)
=0
Also
V1(0) =ty (0} a(0) = uy (T) = a(0) 2 uy (T) — a(T) = va(T)
Therefore y(0) - vy(T) = 0

Then by using theorem (2.5)we have(ty = 0, for each tJ J and
An(t) = af(t) on J.

Second we prove #<[3. To do this, we consider ¥ 3 — An, thus

Vo2=B -
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where y is the unique solution of eq.(2.28). Hence
V2'(t) + My (1) + N[Kvo](t) = B'(t) —up' ()+MB(t) — Mug (t) + N[KB](t) +
N[Ku](t)
But from the condition (2), one can obtain
V2'(t) + Mv (t) + N[Kv2](t) = f(t, B(t), [KB](t)) + MPB(t) + NIKPB](t) +
N[Ku](t) = Mn(t) = N[Kn](t) - f(t.n(0),
[Knl®)
Now, sincea(t) < n(t) < B(t) < B(t) and [Ka](t) < [Kn]() < [KB]() < [KP](H),
then from condition (3), one can have
f(t, B(r), [KBI(Y) )— f(t, n(t), [Kn](1)) = -M(B(t) — n(1)) - N(KB](t) -
[Kn](®)
Thus
V2'(t) + Mv; (f) + N[KvZ](t) = -M(B(t) — n(t)) - N(KB](t) - [Kn](t)) + M(B(t)
- n(t) + N(KB](t) - [Kn]®)) =0
Also, v5(0) = B(0) = Up(0) = B(T) — W(T) = vo(T)
Therefore, y(0) — vy(T) =0
Then by using theorem (2.5), we hawftyv> 0, for each tJ J and hence
An < B.

In order to prove (b), lefy;, N, O [a, B], such tham; < n,. Consider
vz = An, — Ani. Thus y(t) = uy(t) — u(t), where y and y are the unique
solution of eq.(2.28) with respect tp, andn, respectively. Hence:

V3'(t) + Mvs (1) + N[Kva](t) = U'a(t) — U's(t) + Mup(t) — Muy(t) +

N[Ku](t) = N[Ku](t)

Thus

A
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v (f) + Mvs (f) + N[Kvs](t) = Mny(t) + N[Kn](1) + f(t, na(t), [Knal(t)) -

D) — N[KN (1) = 1(t, na(0), [Kn](1)
Next, sincea < n,(t) < B anda < ny(t) < B, then from the part (a), one can
have a < Anq(t) < B and a < Any(t) < B. Also, sincen; < n, then
[Kn4() = [Kn2](©).
Hence, fora(t) < ni(t) < nx(t) < B(t) and [Ka](t) < [KNn(t) < [KnoJ(t) <

[KB](t), one can have:

f(t, n2(t), [Kn2](D) —1(t, na(t), [Kna](®) = -Mna(t) + Mna(t) - N[Kn](t)
+ N[Kn4](t)

Therefore:
V3 (t) + Mvs(t) + N[Kvs](t) 2 M(n2(t) = na(t)) + N(Kn2)(t) - [Kni(©) -
M(n2(t) = na(t)) = N([Kn2](t) = [Kn](1)
=0
Also
V3(0) = Ux(0) = w(0) = Ux(T) — () = vs(T),
thus, w(0) —v3(T) =0

Hence by theorem (2.5) one can ggt)v= 0, for each t1 J and hence
An, = An,. Therefore, it follows that we can define the satpes ¢} and
{Bn} defined byay =a, Bo =, such thati,=Ad,-4,

n = ABn—l’ n:1’2,
From theorem (1.1), one can get:

A=00<S01<...SU,SBrS...SB1<Bo=P

AY
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and nIimOOO(n(t) =p(t), r!imoo Bn (t) =n(t) uniformly and monotonically on J. We
will show that p and r are solutions of eq.(2.21).
Sincea, = Ad,-1, then

a'y(t) + Ma(t) = -N[Kap](t) + Map-4(t) + N[Kan-q](t) +

flin-a(t),[Kan-](1), t O J

Taking limit as N — o, one can have

p'(®) + Mp(t) = =N[Kp](t) + Mp(t) + N[Kp](t) + f(t, p (1), [Kp](t)), t 0 J
that is

PO =1t p (O), [Kp](1), T J
also, sincax,(0) = an(T), then p(0x p(T)

Therefore, p is a solution of eq.(2.21). Similakke can easily check that r is
another solution of eq.(2.21). The proof that p aade the extremal solutions
of eq.(2.21) is similar to that in theorem (1.1)m

AL



CONCLUSIONS AND RECOMMENDATIONS

From the present study, we can conclude the following:

One of the motivations for the study of the periodic boundary value
problems for the integro-differential equations is the application to higher
order mixed boundary value problems using a suitable change of variable to
reduce the order.

Finding the extremal solutions of the periodic boundary value problems of
the nonlinear ordinary differential equation is based on transforming it into
one which islinear ordinary differential equations with the same order.
Finding the extremal solutions of the periodic boundary value problems of
the linear and nonlinear integro-differential equation depends on reducing it
into one which islinear integro-differential equation with the same order.
The expansion methods are powerful methods that can be used to solve the
linear and nonlinear periodic boundary value problems for n-th order

ordinary integro-differential equations.

Also for future work, we can recommend the introduction of the following

open problems:

1.

Finding the extremal solutions for the periodic boundary vaue problems of
partial differential equations and partial integro-differential equations.
Devote some numerical and approximation methods to find the extremal

solutions of the periodic boundary value problems.

109



zConclusions and Recommendations

Generalize the previous study to include the linear ordinary differential
equation with non-constant coefficients and the integro-differential
equations with order greater than one.

Solve some real life applications in which its mathematical modeling can be

reduced to the periodic boundary value problems.
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INTRODUGTION

One of the most important, sources in mathemasiahe subject of the
boundary value problems, such type of problemsansmany fields of daily
life, such as biology (the rate of growth of miarganism), [Aiba S., 1965],
chemical engineering (an exothermic chemical reactiheat conduction
associated with radiation effects, deformationtalls), [Kamenetskii D., 1966],
hydrodynamics (flow of non-Newtonian fluids on ati@al plate, effect of fluid
motion on a free surface shape), [Bender C. & @wsz&., 1999], classical
mechanics (calculation of N-body trajectories, nwdr oscillation, stress
analysis of solid propellant grains), [Courant RH&bert D., 1953] and so on.
Therefore, the boundary value problems (with ohauit parameters) have been
a subject of study for more than two centuries ago.

Generally speaking, a boundary value problem (with without
parameters) consists of an equation (linear orineat) this equation may be
(differential equation, integro-differential equati delay differential equations)
with boundary conditions (linear or nonlinear). Bese of this variety, a
considerable amount of theoretical and numericalyshas been devoted to this
type of problems.

For the boundary value problems (without paramgtehere are many
authors who study this type of problems such ase[l., 1944] and [Coddington
E. & Levinson N., 1955] gave some theorems forakistence and uniqueness
of solution for special types of linear boundarjueaproblems in ordinary
differential equations, [Bernfeld S. & Lakshmikanain V., 1974] used some
technigues such as differential inequalities amabshg type methods to ensure
the existence and uniqueness of solution for spgga of nonlinear boundary
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value problems. [Maha A., 1983] treated with these&xce and unigueness
theory of the solution for the boundary value peoh$ of fractional order.

[Kubicek M., 1983] gave some methods for solvingheaypes of the linear and
nonlinear boundary value problems in ordinary défeaial equations like the

method of adjoints and the Green's function metfiddrden R., 1985] used the
shooting method and the finite-difference method stdve the linear and

nonlinear second order differential boundary vadtablems.

Recall that, in a boundary value problems if thesftoents of the
differential equation and / or of the boundary atods depend upon a
parameters, it is frequently of interest to deteenthe value or values of the
parametes for which such nontrivial solutions existese parameters are called
eigenvalues and the corresponding solutions akedcalgenfunctions and in this
case these problems are said to be eigenvalueepmebbr boundary value
problems with parameters.

The boundary value problems, especially the periodiue problems have
many real life applications in stability theory, mmical systems, physics,
engineering and mathematical biology, [Nieto J919

Many researchers studied the periodic boundary evghtwoblems, say
[Krylov., 1929] gave some approximated methods gotving the periodic
boundary value problems for the ordinary differahéquations.[ Berernes Jand
Schmitt K., 1973] studied the periodic value profdevalue problems for
systems of second order ordinary differential eiguat [Nieto J., 1988] studied
non-linear second order periodic boundary valueblpros.[ Rachnkoba 1.,
Tvrdy M., 2002] gave the periodic boundary valuehtems for nonlinear
second order differential equations with impul§&&da V. & Nieto J. and Lois
M., 1992] devoted periodic boundary value probldéonsion-linear higher-order
ordinary differential equations. [Liz., 1996] degdtthe periodic boundary value
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problems for a class of functional differential atjans. [Xu H. & Nieto J., 1997]
discussed the extremal solutions of a class of lim@ar integro-differential

equations in Banach spaces. [Nieto J., 2002] siuttie periodic boundary value
problems for the first-order impulsive ordinary fdiential equations.

[Yongxiang L., 2004] studied the existence of gasitsolutions of higher-order
periodic boundary value problems.

The main purpose of this work is to study the plodboundary value
problem for the integro-differential equations.

This study includes the existence and the uniqeeatthe solution for the
periodic boundary value problem of the first ortieear and nonlinear integro-
differential equations. Also, the existence of #adremal solutions for such
periodic boundary value problem is discussed.

Moreover, some approximated methods are devotsdlt@ such types of

the periodic boundary value problems.

This thesis consists of three chapters. In chaptex, we give some
theorems that guarantee the existence of the eatrsatution of the periodic
boundary value problem for the ordinary differengéguations. This chapter

consists of three sections.

In section one, the existence of the extremal mwistfor the periodic
boundary value problem of the first order ordinafyferential equation is
discussed. In section two, we give some necessamgditions that ensure the
existence of the extremal solutions of the periddiandary value problem of the
second order ordinary differential equations. latisa three, the same previous
study is devoted for the third order ordinary diffietial equations.

In chapter two, we devote the existence of theeexat solutions for the
periodic boundary value problem of the first ortieear and nonlinear integro-
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differential equation. This chapter consists okthsections. In section one; we
give some basic concepts of the integro-differémiipation. In section two, we

give some existence and uniqueness theorems fgpethedic boundary value

problem of the first order linear integro-differerhitequation. Also, the existence
theorems of the extremal solution for the peridibandary value problem of the
first order linear ordinary integro-differential wafion are presented. In section
three, we generalize the above study to be vatidhi® periodic boundary value

problem of the first nonlinear ordinary integrofdrential equation. This section

constitutes the main part of our work and to thst lo¢ our knowledge is seems
to be new.

In chapter three, we give some approximation methathmely the
expansion methods to be used to solve the perimmliadary value problem for
the first order and nonlinear integro-differentegjuation. This chapter consists
of two sections. In section one, we give the exjmensnethods, say the
collocation, Galerkian and least square methodsolee the periodic boundary
value problems of the first-order linear integitiedential equations with some
illustrate examples. In section two, we use theesabove methods to solve the
periodic boundary value problems of the second+didear integro-differential
equations with some illustrate examples.
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Abstract

The main aim of this work is classified into folnjects, these are
summarized as follows:

The first objective is to study the theory of egrate and the
uniqueness of the solutions for the periodic bowndalue problems of
the differential equations.

The second objective is to devote the existencaréimes of the

extremal solutions of the above periodic boundatye problems.



The third objective is to give the existence ar&uhiqueness

theorems of the solutions for the periodic boundaiye problems of the
linear and nonlinear ordinary integro-differentgjuations. Also, the
existence theorems of the extremal solutions feratove periodic

boundary value problems is introduced.

The fourth objective is to solve the periodic boanydvalue
problems for ordinary integro-differential equasdoy using the

expansion methods.

The numerical solutions of chaotic Lorenz and Chsg’stem before and
after controlling their behaviors are simulated ahdwn in graphs and
tables.
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