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The objective of this thesis studying and deriving with some 

modification as a new approach of Runge-Kutta method including explicit, 

semi-explicit and implicit methods as well as studying stability of 

convergence of these methods. 

Also, one of most important themes of the thesis is to introduce 

variable step size and variable order methods using an extrapolation method 

which has the utility of controlling the local truncation error to be less than a 

prespecified tolerance error. 
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AAPPPPEENNDDIIXX  AA  
 

Following the computer programs used in this thesis: 

 

1. ERK (Explicit Runge-Kutta Program): 

       {Computer Programming for Solving 
           y'=-y+x+1, y(0)=1 
           using explicit Runge-Kutta method] 
program ar; 
{uses crt;} 
var x,y:ar ray[0..12] of real; 
    i,n:integer; 
    aa,bb,k1,k2,h,a1,b1,error,ex:real; 
    f:text; 
begin 
    x[0]:=0;y[0]:=1;h:=0.1;aa:=0;bb:=1;n:=round((bb-aa)/h); 
    a1:=1;b1:=a1; 
    assign(f,'d:\resultex.txt'); 
    rewrite(f); 
    writeln(f,'x      y            exact         er ror'); 
    writeln(f,'------------------------------------ ---'); 
    for i:=0 to n do 
     begin 
      x[i]:=x[0]+i*h; 
      k1:=- y[i]+x[i]+1; 
      k2:=-y[i]- h*b1*k1+x[i]+a1*h+1; 
      y[i+1]:=y[i]+0.5*h*(k1+k2); 
      ex:=exp(-x[i])+x[i]; 
      error:=abs(y[i]-ex); 
      writeln(f,x[i]:2:1,'  ',y[i]:10:10,'  ',ex:10 :10,'  
',error:10:10); 
      writeln; 
     end; 
     close(f); 
     readln; 
end. 
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2. SERK (Semi Explicit Runge Kutta Program): 

       {Computer Programming for Solving 
           y'=-y+x+1, y(0)=1 
           using semi- explicit Runge-Kutta method}  
program ar; 
var ex,x,y:array[0..16] of real; 
    i,j,n:integer; 
    
k1,k2,a1,a2,a3,a4,c1,c2,b11,b12,b21,b22,aa1,aa2,h,error:real; 
    f:text; 
begin 
   n:=10;h:=0.1; 
   aa1:=0.5-(1/(2 *sqrt(3))); 
   aa2:=0.5+(1/(2*sqrt(3))); 
   b11:=0.5- (1/(2*sqrt(3))); 
   b12:=0; 
   b22:=0.25; 
   b21:=0.25+(1/(2*sqrt(3))); 
   a1:=1+b11*h; 
   a2:=0; 
   a3:=b21*h; 
   a4:=1+b22*h; 
   x[0]:=0;y[0]:=1; 
   for i:=0 to n do 
     x[i]:=x[0]+i*h; 
   for i:=0 to n do 
    begin 
      c1:=- y[i]+x[i]+h*aa1+1; 
      c2:=- y[i]+x[i]+h*aa2+1; 
      k1:=c1/a1; 
      k2:=(c2- a3*k1)/a4; 
      y[i+1]:=y[i]+0.5*h*(k1+k2); 
      ex[i]:=exp(-x[i])+x[i]; 
    end; 
    assign(f,'d:\resultSM.txt'); 
    rewrite(f); 
    writeln(f,'i   x      y         exact       err or'); 
    writeln('______________________________________ ______'); 
    for i:=0 to n do 
     writeln(f,i,'  ',x[i]:3:1,'  ',y[i]:10:10,'  
',ex[i]:10:10,'  ',abs(ex[i]- y[i]):10:10); 
     close(f); 
    readln; 
end. 
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3. 2IRK (2-Stages Implicit Runge-Kutta Program): 

       {Computer Programming for Solving 
               y'=-y+x+1, y(0)=1 
   using 2-stages implicit Runge-Kutta method} 
program ar; 
var ex,x,y:array[0..16] of real; 
    i,n:integer; 
    
k1,k2,a1,a2,a3,a4,c1,c2,b1 1,b12,b21,b22,aa1,aa2,h,error:real; 
    f:text; 
begin 
   n:=10;h:=0.1; 
   aa1:=0.5- (1/(2*sqrt(3))); 
   aa2:=0.5+(1/(2*sqrt(3))); 
   b11:=0.25;b22:=b11; 
   b12:=0.25- (1/(2*sqrt(3))); 
   b21:=0.25+(1/(2*sqrt(3))); 
   a1:=1+b11*h; 
   a2:=b12*h; 
   a3:=b21*h; 
   a4:=1+b22*h; 
   x[0]:=0;y[0]:=1; 
   for i:=0 to n do 
     x[i]:=x[0]+i*h; 
   for i:=0 to n do 
    begin 
      c1:=- y[i]+x[i]+h*aa1+1; 
      c2:=- y[i]+x[i]+h*aa2+1; 
      k2:=(c1*a3-c2*a1)/(a2*a3- a1*a4); 
      k1:=(c1- a2*k2)/a1; 
      y[i+1]:=y[i]+0.5*h* (k1+k2); 
      ex[i]:=exp(-x[i])+x[i]; 
    end; 
    assign(f,'d:\ result2IM.txt'); 
    rewrite(f); 
    writeln(f,'i   x      y         exact       err or'); 
    
writeln(f,'________________________________________ ____'); 
    for i:=0 to n do 
     writeln(f,i,'  ',x[i]:2:1,'  ',y[i]:10:10,'  
',ex[i]:10:10,'  ',abs(ex[i]- y[i]):10:10); 
     close(f); 
    readln; 
end. 
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4. 3IRK (3-Stages Implicit Runge-Kutta Program): 

      {Computer Programming for Solving 
          y'=-y+x+1, y(0)=1 
          using 3-stages implicit Runge-Kutta metho d} 
program ar; 
var ex,x,y:array[0..16] of real; 
    i,j,n:integer; 
    
k1,k2,k3,a1,a2,a3,a4,a5,a6,a8,a7,c3,c1,c2,b11,b12,b 21,b22,b23
,b32,b33,b31,b13,aa1,aa2,h,aa3,a9:real; 
    f:text; 
begin 
   n:=10;h:=0.1; 
   aa1:=0.5; 
   aa2:=0.5+(s qrt(15)/10); 
   aa3:=0.5- (sqrt(15)/10); 
   b11:=0.5- (sqrt(15)/5);b22:=b11;b33:=b11; 
   b12:=sqrt(15)/5;b23:=b12;b13:=0;b31:=0; 
   b21:=sqrt(15)/10;b32:=b21; 
   a1:=1+b11*h; 
   a2:=b12*h; 
   a3:=0; 
   a4:=b21*h; 
   a5:=1+b22*h; 
   a6:=b23*h; 
   a7:=0; 
   a8 :=b32*h; 
   a9:=1+b33*h; 
   x[0]:=0;y[0]:=1; 
   for i:=0 to n do 
     x[i]:=x[0]+i*h; 
   for i:=0 to n do 
    begin 
      c1:=- y[i]+x[i]+h*aa1+1; 
      c2:=- y[i]+x[i]+h*aa2+1; 
      c3:=- y[i]+x[i]+h*aa3+1; 
      k2:=(a1*a9*c2-a9*a4*c1-a1*a6*c3)/(a1*a5*a9-a2 *a9*a4-
a1*a6*a8); 
      k1:=(c1- a2*k2)/a1; 
      k3:=(c3- a8*k2)/a9; 
      y[i+1]:=y[i]+(1/9)*h*(4*k1+2.5*k2+2.5*k3); 
      ex[i]:=exp(-x[i])+x[i]; 
    end; 
    assign(f,'d:\ result3IMP.txt'); 
    rewrite(f); 
    writeln(f,'i   x      y         exact       err or'); 
    writeln(f,'____________________________________ _______'); 
    for i:=0 to n do 
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     writeln(f,i,'  ',x[i]:2:1,'  ',y[i]:10:10,'  
',ex[i]:10:10,'  ',abs(ex[i]- y[i]):10:10); 
    close(f); 
    readln; 
end. 
 
‘ROOT-RK Program    
‘Evaluating the roots of Implicit Runge-Kutta method 
 
CLS 
OPEN "c:\arsh.dat" FOR OUTPUT AS #1 
PRINT "     r            h" 
PRINT "------------------------" 
FOR h = -100 TO 100 STEP .001 
r = 1 + (h - (.25 - SQR (3) / 6) * h ^ 2 + (SQR (3) / 24) * h ^ 3) / (2 - 3 * h / 2 + (15 / 36)*h 
^ 2 + (3 / 72)* h ^ 3) + (h + (SQR (3) / 6)*h^2) / (2 - h + (1/ 6) * h ^ 2) 
IF ABS(r) <= 1 THEN PRINT r, h: PRINT #1, r, h 
NEXT h 
CLOSE #1 
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CCHHAAPPTTEERR  OONNEE  
 

GGEENNEERRAALL  RRUUNNGGEE--KKUUTTTTAA  MMEETTHHOODDSS  

 

 

1.1 Introduction 

After constructing a mathematical model for a certain real life problem 

as an ordinary differential equation, the next step is to find a solution. There 

are two approaches for evaluating the solution, "analytically" or 

"numerically". The analytic solution is usually obtained directly from the 

mathematical representation of the model formulate, while the numerical 

solution is generally an approximate obtained at certain node points. Most 

numerical methods are iterative, that is, the solution in a certain step uses the 

solution of the previous steps, such as Newton-Raphson method for 

approximating the roots of non-linear equation. 

Error are an important aspect of computational life, they are every where 

and unavoidable. However, by careful analysis of the error in any numerical 

process, we can at least obtain bounds for these errors and therefore some 

measure of the accuracy of our final solution which must include the study of 

the sources an the propagation of the errors. 
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1.2 Basic Concepts 

In this section, we shall present some of the basic concepts related to this 

work. 

 

1.2.1 Finite Difference Equations [Bellman, 1963]: 

Let xn = x0 + nh, n = 0, 1, …, k; where h is the step length. A difference 

equation of order k is an equation involving the unknown yn together with its 

differences up to order k, that is, difference equation has the form: 

F(xn; yn, yn+1, …, yn+k) = f(xn) .......................................................... (1.1) 

Hence the order k of the difference equation is the difference between the 

highest and lowest indices of y. 

We can classify difference equations according to several aspects, such as: 

1. The finite difference equation is said to be linear if F appears linearly in y. 

2. The finite difference equation is said to be homogeneous if f(xn) = 0, 

otherwise it is non-homogenous. 

3. The finite difference equation is said to be of constant coefficients if the 

coefficients of yn, yn+1, …, yn+k are constants. 

 

1.2.2 Solution of Linear Difference Equations with Constant Coefficients: 

We shall occasionally need the general solution of the k-th order linear 

difference equation with constant coefficients [Lambert, 1973]: 

akyn+k +ak-1yn+k-1 +…+a0yn = fn ......................................................... (1.2) 

where n = 1, 2,…, and aj, j = 0, 1,…, k, are constants independent of n, and  

ak ≠ 0, a0 ≠ 0. 
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A solution of such a difference equation will consist of a sequence y1, y2, 

…, which will be indicated by {yn}. 

Let { nŷ } be the general solution of the corresponding homogeneous 

difference equation: 

akyn+k +ak-1yn+k-1 +…+a0yn = 0 .......................................................... (1.3) 

n = 1,2,… 

If { nψ } is any particular solution of eq.(1.2), then the general solution of 

eq.(1.2) is {yn}; y n = nŷ  + nψ . 

The solution of the difference equation can be evaluated easily by letting 

yn = βn, and considering the general solution of the difference equation 

depending on the roots of β whether it is a repeated or distinct real roots, or 

may be of complex roots, etc. 

 

1.2.3 Legendre Polynomials [Burden, 1985]: 

One of the most common sets of orthogonal polynomials is the set of 

Legendre polynomials {pn}, which are orthogonal on [−1, 1] with respect to 

the weighted function w(x) ≡ 1. These polynomials are defined recursively 

by: 

p0(x) = 1, p1(x) = x, pk(x) = (x − Bk)pk−1(x) − Ckpk−2(x), k = 2, 3, … 

Where: 
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Bk = 

∫

∫

−
−

−
−

1

1

2
1k

1

1

2
1k

dx)]x(p[

dx)]x(p[x

 

and 

Ck = 

∫

∫

−
−

−
−−

1

1

2
1k

1

1

2k1k

dx)]x(p[

dx)x(p)x(xp

 

We do not need the explicit representation of the Legendre polynomials, 

but only the knowledge that the polynomials pn, for each n, has n-distinct 

roots x1, x2, …, xn all of which lies in (−1, 1). 

 

1.3 Runge-Kutta Methods [Butcher, 1987] 

The idea of extending the Euler method by allowing for a multiplicity of 

evolutions of the function f within each step was originally proposed by 

Runge (1895). Further contributions were made by Heun (1900) and by Kutta 

(1901). The latter completely characterized the set of Runge-Kutta method of 

order 4 and proposed the first methods of order 5. Special methods for 

second-order differential equations were proposed by NystrÖm (1925) who 

also contributed to the development of methods for first-order equations. 

Since the advent of digital computers, fresh interest had been focused on 

Runge-Kutta methods, and a large number of research workers have 

contributed to recent extensions to the theory and the development of 
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particular methods. Although, early studies were devoted entirely to explicit 

Runge-Kutta methods, interest has now extended to implicit methods, which 

are now recognized as appropriate for stiff differential equations. 

 

1.3.1 Formulation of Runge-Kutta Methods [Lambert, 1973]: 

The general form of an r-stages Runge-Kutta methods is given by: 

yn+1 = yn + h
r

i i
i 1

c k
=
∑  

where 

ki= 
r

n i n ij j
j 1

f x ha ,y h b k
=

 
+ +  

 
∑  

and 

ai = 
r

ij
j 1

b
=
∑  

where ci, ai and bij, for all i, j = 1, 2, …, r; are constants to be determined. 

For convenience, we design the process by an array of constants, as 

follows: 

 

b11 b12 … b1j a1 

b21 b22 … b2j a2 

M M O M M 

bi1 bi2 … bij ai 

c1 c2 … cj  
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and it is easy to classify Runge-Kutta methods, as follows: 

- If bij = 0, ∀ i < j, then the method is called semi-explicit. 

- If bij = 0, ∀ i ≤ j, then the method is called explicit. 

- Otherwise it is called implicit. 

 

1.3.2 Derivation of Some Runge-Kutta Methods [Lambert, 1973]: 

We shall consider the derivation of some Runge-Kutta methods namely, 

2-stages explicit, the 2-stages semi-explicit and the 2-stages implicit Runge-

Kutta methods for the purpose of studying the accuracy of the methods. 

 

1.3.2.1 Derivation of 2-Stages Explicit Runge-Kutta Method: 

In order to derive two stages Runge-Kutta method; consider first the 

general form of two stages Runge-Kutta methods, which is given by: 

yn+1 = yn + h(c1k1 + c2k2) 

where: 

k1 = f(xn, yn) 

k2 = f(xn + a2h, yn + hb21k1) 

and 

a2 = b21 

Hence, in this problem we have three unknown constants c1, c2, and a2 

which must be determined. 

Now, recall the Taylor series expansion for a function g(x + h, y + k) of 

two variables about (x, y), we have: 
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g(x + h, y + k) = g(x, y) + hgx(x, y) + kgy(x, y) + 
!2

h2
gxx(x, y) + hkgxy(x, y) 

+ 
!2

k2
gyy(x, y) + … 

So expanding k2 using Taylor series about (xn, yn), we have: 

k2 = f(xn + a2h, yn + hb21k1) 

 = f(xn, yn)+a2hfx + hb21k1fy+
!2

ha 22
2 fxx+a2b21h

2k2fxy + 
!2

kbh 2
1

2
21

2

fyy + … 

 = f + a2h(fx + ffy) + 
!2

ha 22
2 (fxx + 2ffxy + f2fyy) + … 

So, the two stages Runge-Kutta method takes the form: 

yn+1 = yn + h(c1k1 + c2k2) 

= yn + h[c1f + c2(f + a2h(fx + ffy) + 
!2

ha 22
2 (fxx + 2ffxy + f2fyy) + …)] 

 = yn + h[c1f + c2f + c2a2h(fx + ff y) + 

2 2
2 2c a h

2!
(fxx + 2ffxy + f2fyy) + …] 

   yn + hf(c1 + c2) + h2c2a2(fx + ff y) + 
2 3

2 2c a h

2!
(fxx + 2ffxy +  

f2fyy) + O(h4) ....................................................................... (1.4) 

Since Taylor method takes the form: 

yn+1   yn + h ny′  + 
!2

h2

ny ′′  + 
!3

h3

ny ′′′  + O(h4) ................................... (1.5) 

and since y′ = f(x, y), then y′′ = fx + ffy, and  

y′′′ = fxx + ffxy + fy(fx + ffy) + f(fxy + ffyy) 

= (fxx + 2ffxy + f2fyy) + (fxfy + f 2
yf ) 
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Therefore, eq.(1.5) becomes: 

yn+1   yn + hf + 
!2

h2
(fx + ffy) + 

!3

h3
[(f xx + 2ffxy + f2fyy) + (fxfy + f 2

yf )]  

+ O(h4) ................................................................................ (1.6) 

Now, in order to get an agreement between Runge-Kutta method and 

Taylor's method (i.e., between eq.(1.4) and eq.(1.6)), we must have: 

c1 +c2 = 1 and c2a2 = 
2

1
 

with local truncation error of order h3. Also, the order for Runge-Kutta 

method with r = 2 equals to p = 2. 

The above two equations have an infinite number of solutions, e.g., we 

can take also c1 = c2 = 
2

1
 and a2 = 1. 

 

1.3.2.2 Derivation of 2-Stages Semi-Explicit Runge-Kutta Method: 

Since r = 2, then Runge-Kutta formula takes the form: 

yn+1 = yn + h(c1k1 + c2k2) 

where: 

k1 = f(xn + a1h, yn + ha1k1) 

k2 = f(xn + a2h, yn + hb21k1 + hb22k2) 

and a1 = b11, a2 = b21 + b22. 

To find these constants, consider the following power series: 

k1 = A1 + hB1 + h2C1 + …  .............................................................. (1.7) 

k2 = A2 + hB2 + h2C2 + …  .............................................................. (1.8) 
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Since: 

k1   f + h[a1fx + a1(A1 + hB1 + h2C1 + …)fy + 
2h

2
[ 2

1a fxx + 2a1(A1 + hB1 

+ h2C1)fxy + 2
1a (A1 + hB1 + h2C1 + …)2fyy] + 

3h

6
[ 3

1a fxxx + 3 3
1a (A1 + 

hB1 + h2C1 + …)fxxy + 3 3
1a (A1 + hB1 + h2C1 + …)2fxyy + 3

1a (A1 + 

hB1 + h2C1 + …)3fyyy + O(h4) ................................................... (1.9) 

Comparing equations (1.7) and (1.9), we have: 

A1 = f 

B1 = a1(fx + fyA1) = a1(fx + ffy) = a1F 

C1 = 
2
1a

2
(fxx + 2A1fxy + 2

1A fyy) + a1B1fy 

= 
2
1a

2
(fxx + 2ffxy + f2fyy) + 2

1a (fx + ffy)fy 

= 
2
1a

2
G + 2

1a Ffy 

where: 

G = fxx + 2ffxy + f2fyy, and 

D1 = a1C1fy + 2
1a B1fxy + 2

1a A1B1fyy + 
3
1a

6
fxxx + 

3
1a

2
A1fxxy + 

3
1a

2
A1fxxy + 

3
1a

6
A1fyyy 

= 3
1a F 2

yf  + 3
1a F(fxy + ffyy) + 3

1a Gfy + 
3
1a

6
H 

where: F = fx + ffy 
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and H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy 

and similarly: 

k2   f + h[a2fx + (b21(A1 + hB1 + h2C1) + b22(A2 + hB2 + h2C2))fy] + 

2h

2
[ 2

2a fxx + 2a2(b21(A1 + hB1) + b22(A2 + hB2))fxy + (b21(A1 + hB1) + 

b22(A2 + hB2))
2fyy] + 

3h

6
[ 3

2a fxxx + 3 2
2a (b21A1 + b22A2)fxxy + 3a2(b21A1 

+ b22A2)
2fxyy + (b21A1 + b22A2)

3fyyy]+ O(h4) ........................... (1.10) 

Comparing equations (1.8) and (1.10), we have: 

A2 = f 

B2 = a2fx + (b21A1 + b22A2)fy 

C2 = (b21B1 + b22B2)fy + 
2
2a

2
fxx + a2(b21A1 + b22A2)fxy + 

1

2
(b21A1 + 

b22A2)
2fyy, and 

D2 = (b21C1 + b22C2)fy + a2(b21B1 + b22B2) fxy + (b21A1 + b22A2)(b21B1 + 

b22B2)fyy + 
3
1a

6
fxxx + 

2
1a

6
(b21A1 + b22A2)fxxy + 2a

2
(b21A1 + b22A2)

2fxyy 

+ 
1

6
(b21A1 + b22A2)

2fyyy 

Since a2 = b21 + b22, therefore, using a2 to simplify and solve the last fore 

equations, we obtain the following solution: 

A2 = f 

B2 = a2fx + (b21f + b22f)f y 

= a2fx + (b21 + b22)ff y 

= a2fx + a2ff y 
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= a2(fx + ffy) = a2F 

C2 = (b21a1 + b22a2)Ffy + 2a

2
G 

where, G = fxx + 2ffxy + f2fyy, an similarly: 

D2 = [b21(b11a1 + b12a2) + b22(b21a1 + b22a2)]F
2
yf  + a2(b21a1 + b22a2)F(fxy + 

ff yy) + (b21
2
1a  + b22

2
2a )Gfy + 

3
1a

6
H 

where H = fxxx + 3fxxy + 3f2fxyy + f3fyyy 

Since φ(x, y, h) = 
2

i i
i 1

c k
=
∑ . Hence: 

φ = c1k1 + c2k2 

  c1(A1 + hB1 + h2C1 + h3D1) + c2(A2 + hB2 + h2C2 + h3D2) + O(h4) 

  c1A1 + c2A2 + h(c1B1 + c2B2) + h2(c1C1 + c2C2) + h3(c1D1 + c2D2) + 

O(h4) ....................................................................................... (1.11) 

where the coefficients Ai, Bi, Ci and Di, i = 1, 2, are given above. 

Comparing with the total differential expansion of φ(x, y, h) of equation 

(1.11), we have: 

φ(x, y, h)   f + 
1

2
hF + 

1

6
h2(Ffy + G) + 

1

24
h3[(3fxy + 3ffyy + 2

yf )F + Gfy + 

H] + O(h4) .................................................................... (1.12) 

where: 

F = fx + ffy 

G = fxx + 2ffxy + f2fyy 
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H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy 

Comparing equations (1.11) and (1.12), we have the following case: 

(i) Two stages semi-explicit Runge-Kutta method of order one, if: 

c1 + c2 = 1 

(ii)  Two stages semi-explicit Runge-Kutta method of order two, if: 

c1 + c2 = 1 

c1a1 + c2a2 = 1/2 

(iii)  Two stages semi-explicit Runge-Kutta method of order three, if: 

c1 + c2 = 1 

c1a1 + c2a2 = 1/2 

c1
2
1a  + c2(b21a1 + b22a2) = 1/6 

c1
2
1a  + c2

2
2a  = 1/3 

(iv) Two stages semi-explicit Runge-Kutta method of order four, if: 

c1 + c2 = 1 

c1a1 + c2a2 = 1/2 

c1
2
1a  + c2(b21a1 + b22a2) = 1/6 

c1
2
1a  + c2

2
2a  = 1/3 

(c1b11 + c2b21) 
2
1a  + c2b22(b21a1 + b22a2) = 1/24 

c1
3
1a c2a2(b21a1 + b22a2) = 1/8 

c1
3
1a  + c2(b21

2
1a  + b22

2
2a ) = 1/12 
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c1
3
1a  + c2

3
2a  = 1/4 

From the above results, one can see that more accurate methods (of 

higher order) could be used with small stages. For example, one of the 

solutions to the fourth order method is given by: 

c1 = c2 = 
1

2
, a1,2 = 

1

2
 m  

3

6
, b11 = 

1

2
 − 

3

6
, b21 = a2 − 

1

4
 = 

1

4
 + 

3

6
 

and b22 = 
1

4
 

 

1.3.2.3 Derivation of 2-Stages Implicit Runge-Kutta Method: 

Consider the 2-stages implicit Runge-Kutta method, which takes the 

form: 

yn+1 = yn + h(c1k1 + c2k2) 

where: 

k1 = f(xn + ha1, yn + b11hk1 + b12hk2) 

k2 = f(xn + ha2, yn + b21hk1 + b22hk2) 

and a1 = b11 + b12, a2 = b21 + b22. 

Now, expanding ki using Taylor series expansion about (xn, yn), we 

obtain that for i = 1, 2. 

ki   f(xn, yn) + h[aifx + (bi1k1 + bi2k2)fy] + 
2

h2
[ 2

ia fxx + 2ai(bi1k1 + bi2k2)fxy 

+ (bi1k1 + bi2k2)
2fyy] + 

6

h3
[ 3

ia fxxx + 3 2
ia (bi1k1 + bi2k2)fxxy + 3ai(bi1k1 

+ bi2k2)
2fxyy + (bi1k1 + bi2k2)

3fyyy] + O(h4) .............................. (1.13) 
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which will gives two implicit equations for i = 1, 2. Hence, we can no longer 

proceed as in previous derivations and Runge-Kutta methods. Therefore, as in 

the semi-explicit methods, suppose that: 

ki   Ai + hBi + h2Ci + h3Di + O(h4), i =1, 2 .................................. (1.14) 

Equating equations (1.13) and (1.14), we get: 

A i + hBi + h2Ci + h3Di   f + h[aifx + (bi1(A1 + hB1 + h2C1) + bi2(A2 + hB2 

+ h2C2))fy] + 
2h

2
[ 2

ia fxx + 2ai(bi1(A1 + hB1) + bi2(A2 + hB2))fxy + (bi1(A1 + 

hB1) + bi2(A2 + hB2))
2fyy + 

3h

6
[ 3

ia fxxx + 3 2
ia (bi1A1 + bi2A2)fxxy + 3ai(bi1A1 

+ bi2A2)
2fxyy + (bi1A1 + bi2A2)

3fyyy] + O(h4), i = 1, 2 

Equating the coefficients of h0, h1, h2 and h3, we obtain that: 

A i = f 

Bi = aifx + (bi1A1 + bi2A2)fy 

Ci = (bi1B1 + bi2B2)fy + 
2

1 2
ia fxx + ai(bi1A1+ bi2A2)fxy + 

2

1
(bi1A1 + 

bi2A2)
2fyy 

Di = (bi1C1 + bi2C2)fy + ai(bi1B1 +bi2B2)fxy + (bi1A1 + bi2A2)(b21B1 + 

bi2B2)fyy + 
6

1 3
ia fxxx + 

2

1 2
ia (bi1A1 + bi2A2)fxxy + 

2

1
ai(bi1A1 + 

bi2A2)
2fxyy + 

6

1
(bi1A1 + bi2A2)

3fyyy, i = 1, 2. 

Since a1 = b11 + b12 and a2 = b21 + b22, or in general notation ai = bi1 + bi2. 

Therefore, using the notation for a1 and a2 to simplify and solve the last form 

equations, we obtain the following solution: 
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A i = f 

Bi = aifx + (bi1f + bi2f)f y 

= aifx + (bi1 + bi2)ff y 

= aifx + aiff y 

= ai(fx + ffy) = aF 

Ci = (bi1a1F + bi2a2F)fy + 
2

1 2
ia fxx + ai(bi1f + bi2f)f xy + 

2

1
(bi1f + bi2f)

2fyy 

= (bi1a1 + bi2a2)Ffy + 
2

1 2
ia fxx + 2

ia ff xy + 
2

1 2
ia f2fyy 

= (bi1a1 + bi2a2)Ffy + 
2

1 2
ia (fxx + 2ffxy + f2fyy) 

= (bi1a1 + bi2a2)Ffy + 
2

1 2
ia G 

where G = fxx + 2ffxy + f2fyy. 

Similarly: 

Di = [bi1(b11a1 + b12a2) + bi2(b21a1 + b22a2)]F
2
yf  + ai(bi1a1 + bi2a2)F(fxy + 

ff yy) + (bi1
2
1a  + bi2

2
2a )Gfy + 

6

1 3
ia H 

where H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy. 

Since: 

ϕ(x, y, h) = 
2

i i
i 1

c k
=
∑  

Hence using eq.(1.14), one get: 

ϕ = c1k1 + c2k2 
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  c1(A1 + hB1 + h2C1 + h3D1) + c2(A2 + hB2 + h2C2 + h3D2) + O(h4) 

  c1A1 + c2A2 + h(c1B1 + c2B2) + h2(c1C1 + c2C2) + h3(c1D1 + c2D2) + 

O(h4) ....................................................................................... (1.15) 

where the coefficients Ai, Bi, Ci and Di, ∀ i =1, 2, are given above. 

Comparing with the total differential expansion of ϕ(x, y, h) of eq.(1.15) 

ϕ(x, y, h)   f + 
2

1
hF + 

6

1
h2(Ffy + G) + 

24

1
h3[(3fxy + 3ffyy + 2

yf )F + Gfy 

+ H] + O(h4) .............................................................. (1.16) 

where: 

F = fx + ffy 

G = fxx + 2ffxy + f2fyy 

H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy 

Comparing (1.15) and (1.16), we have the following cases: 

(i) Two stages implicit Runge-Kutta method of order one, if: 

c1 + c2 = 1 

(ii)  Two stages implicit Runge-Kutta method of order two, if: 

c1 + c2 = 1 

c1a1 + c2a2 = 1/2 

(iii)  Two stages implicit Runge-Kutta method of order p = 3, if: 

c1 + c2 = 1 

c1a1 + c2a2 = 1/2 

c1(b11a1 + b12a2) + c2(b21a1 + b22a2) = 1/6 
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c1
2
1a  + c2

2
2a  = 1/3 

(iv) Two stages implicit Runge-Kutta method of order p = 4, if: 

c1 + c2 = 1 

c1a1 + c2a2 = 1/2 

c1(b11a1 + b12a2) + c2(b21a1 + b22a2) = 1/6 

c1
2
1a  + c2

2
2a  = 1/3 

(c1b11 + c2b21)(b11a1 + b12a2) + (c1b12 + c2b22)(b21a1 + b22a2) = 1/24 

c1a1(b11a1 + b12a2) + c2a2(b21a1 + b22a2) = 1/8 

c1(b11
2
1a  + b12

2
2a ) + c2(b21

2
1a  + b22

2
2a ) = 1/12 

c1
3
1a  + c2

3
2a  = 1/4 

From the above results, one can see that more accurate methods (of 

higher order) could be obtained with small stages. For example, one of the 

solutions to the fourth order method is given by: 

c1 = c2 = 
2

1
, a1,2 = 

2

1
 m  

6

3
,  

b11 = b22 = 
4

1
, b12 = a1 − 

4

1
 = 

1

4
 − 

6

3
, b21 = a2 − 

4

1
 = 

4

1
 + 

6

3
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1.4 Stability and Convergence of Runge-Kutta  

Methods [Butcher, 1987], [Lambert, 1973] 

Since the purpose of numerical analysis is to represent the solution to 

actual problems. It is important that what could be called qualitative 

properties of the numerical solution should resemble those of the true 

solution.  

By stability analysis, we shall mean study of such qualitative properties 

as boundedness and convergence to zero of numerical solutions, when these 

properties are passed by the exact solution. Given a slightly different 

emphasis, this type of analysis is appropriate for studying the growth of 

numerical errors in a computed solution to a differential equation. 

 

Remark [Atkinson, 1989], [Al-Kubeisy, 2004]: 

Recalling the general form of Runge-Kutta method, which is: 

yn+1 = yn + hϕ(xn, yn, h) .................................................................. (1.17) 

which could be considered as a special case of the general Linear Multistep 

Methods (for short LMM), given by: 

k

j n j
j 0

y +
=

α∑  = h
k

j n j
j 0

f +
=

β∑  ................................................................... (1.18) 

(indeed, one step explicit LMM). Therefore, the stability of (1.17) is 

equivalent to the convergence of (1.17) (i.e., stability and convergence of 

Runge-Kutta are equivalent). 
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Theorem (1.1): 

Assume the consistency condition and suppose that: 

yn+1 − yn = hϕ(xn, yn, h) .................................................................. (1.19) 

which is a special case of (1.18) as one step method with α1 = 1, α0 = −1,  

β0 = 1, β1 = 0 and f = ϕ. Then (1.19) is converge if and only if it is zero stable. 

Proof: 

Suppose that the method is convergent and to prove that the method is 

zero stable 

Consider for simplicity the problem, y′ = 0, y(0) = 0, which has the exact 

solution y(x) = 0 

Since f = 0, then for all i, we have ki = 0 and hence ϕ = 0 

Therefore, the method takes the form: 

yn+1 − yn = 0 

Therefore, the first characteristic polynomial ρ(r) is given by: 

ρ(r) = r − 1 = 0 

then r = 1. 

and since |r| ≤ 1, then the method is zero stable 

Conversely, suppose that the Runge-Kutta method is zero stable and to 

prove that the method is convergent 

Similarly, for simplicity purpose consider y′ = λy, y(0) = 1 

To show that the term [r0(λh)]n in the general solution 

y0 = [r0(λh)]n 
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will be converge to the exact solution y(x) = eλx on [0, b], and then can be 

shown to be converge to the zero solution as h → 0 

Expanding r0(λh) using Taylor’s theorem: 

r0(λh) = r0(0) + hλr′0(0) + O(h2) 

Hence:(using the consistency condition) 

r′0(0) = 0

0

(r (0))

(r (0))

σ
′ρ

 

Since r0(0) = 1. Then: 

r′0(0) = 
(1)

(1)

σ
′ρ

 = 1 

Hence: 

r0(λh) = 1 + λh + O(h2) 

= eλh − O(h2) + O(h2) 

  eλh 

Therefore: 

[r0(λh)]n = [eλh]n = nheλ  = nxeλ  

Hence: 

n

n

xn
0

0 x b
Max |[r ( h)] e |λ

≤ ≤
λ −  → 0  as  h → 0.    █    ❚ 

 

1.4.1 Stability of Explicit Runge-Kutta Method: 

To obtain intervals of stability of 2-stages Runge-Kutta method applied 

to the test problem y′ = λy,Re(λ) < 0, we have: 
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yn+1 = yn + h(c1k1 + c2k2) 

where: 

k1 = f(xn, yn) 

k2 = f(xn + a2h, yn + a2hk1) 

and for f(x, y) = λy, we have: 

k1 = λyn 

k2 = λ(yn + a2λhyn) 

  = λyn + a2λ2hyn 

since: 

yn+1 = yn + h(c1λyn + c2λyn + c2a2hλ2yn) 

= yn + (c1 + c2)h yn + c2a2h
2yn, h  = λh 

= yn[1 + (c1 + c2) h  + c2a2h
2] 

Hence, to find the roots of the first characteristic polynomial ρ(r) = 0, we have 

to letting yn = rn, so  

rn+1 − rn[1 + (c1 + c2)h  + c2a2h
2] = 0 

rn{r − [1 + (c1 + c2) h  + c2a2h
2]} = 0 

and since rn ≠ 0, then: 

r − [1 + (c1 + c2) h  + c2a2h
2] = 0 

i.e., 

r = 1 + (c1 + c2) h  + c2a2h
2, |r| < 1 

since for 2-stages Runge-Kutta method, p = 2, we have: 



Chapter One                                                                          General Runge-Kutta Methods 

 ٢٤ 

c1 + c2 =1 and c2a2 = 
2

1
 

then: 

r = 1 + h  + 
2

1 2
h  

In order to get a method which is stable, we must have |r| < 1, so: 

|1 + h  + 
2

1
h

2| < 1 

Then 

−1 < 1 + h  + 
2

1
h

2 < 1 

Which implies that −2 < h  < 0. So all r = p = 2 Runge-Kutta methods have an 

interval of absolute stability to be (−2, 0). 

 

1.4.2 Stability of Semi-Explicit Runge-Kutta Method: 

To obtain intervals of stability of 2-stages Runge-Kutta methods. Also, 

we consider the test problem y′ = λy, where Re(λ) < 0: 

yn+1 = yn + h(c1k1 + c2k2) 

where: 

k1 = λ(yn + ha1k1) 

k2 = λ(yn + hb21k1 + hb22k2) 

so: 

k1 = n

1

y

1 a

λ
− h

 , 1−ha1≠ 0 
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k2 = n 1 21

22 1

y [(1 a ) b ]

(1 b )(1 a )

λ − +
− −

h h

h h
 , (1−hb22) (1−ha1) ≠ 0 

so: 

yn+1 = yn + 
h

2
n n 1 21

1 22 1

y y [1 a b ]

1 a (1 b )(1 a )

 λ λ − ++ − − − 

h h

h h h
 

 = yn + 
2

h
yn

1 21

1 22 1

1 1 a b

1 a (1 b )(1 a )

 − ++ − − − 

h h

h h h
 

 = yn + 
2

h
yn

22 1 21

22 1

(1 b ) (1 a b )

(1 b )(1 a )

 − + − +
 − − 

h h h

h h
 

 = yn + 
2

h
yn

22

22 1

2(1 b )

(1 b )(1 a )

 −
 − − 

h

h h
 

 = yn
1

1
1 a

 
+ − 

h

h
 

So, the corresponding root is given by: 

r = 1 + 
11 a−

h

h
 = 1

1

1 a

1 a

− +
−
h h

h
 = 

s

s

+ h
, h  < 0 

So |r| = 
s

s

+ h
 < 1 

Hence, the interval of stability is given by (−∞, 0). 

 

1.4.3 Stability of Implicit Runge-Kutta Method: 

To obtain intervals of stability of 2-stages, fourth order Runge-Kutta 

method given in section (1.3.2.3).  



Chapter One                                                                          General Runge-Kutta Methods 

 ٢٦ 

Consider the test problem y′ = λy, where Re(λ) < 0, hence: 

yn+1 = yn + h(c1k1 + c2k2) 

where: 

k1 = f(xn + ha1, yn + b11hk1 + b12hk2) 

k2 = f(xn + ha2, yn + b21hk1 + b22hk2) 

so for the test problem y′ = λy, we have: 

k1 = λyn + 
1

4
h k1 + (

1

4
 − 

6

3
)h k2 

k2 = λyn + (
1

4
 + 

6

3
)h k1 + 

1

4
h k2 

Therefore, when h  = λh, we have: 

k1 = 

2
n

2 3

1 3 3
1 y

4 6 24

3 15 3
1

4 72 144

    
− + + λ    

     

− + −

h h

h h h

 , 2 33 15 3
1

4 72 144
− + −h h h ≠ 0 

k2 = 
n

2

3
1 y

6
1 1

1
2 12

 
+ λ 

 

− +

h

h h

 , 21 1
1

2 12
− +h h ≠ 0 

and since: 

yn+1 = yn + h(c1k1 + c2k2) 

Therefore: 
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yn+1 = yn + ny

2

h

2

2 3 2

1 3 3 3
1 1

4 6 24 6
3 15 3 1 1

1 1
4 72 144 2 12

      
− + + +      
      +

 
− + − − + 

  

h h h

h h h h h

 

= yn

2 3
2

2 3 2

1 3 3 3
4 6 24 61
3 15 3 1

2 2
2 36 72 6

  
− + +   +
  + +

 
− + − − − 

  

h h h
h h

h h h h h

 

So the corresponding characteristic root is given by: 

r = 

2 3
2

2 3 2

1 3 3 3
4 6 24 61
3 15 3 1

2 2
2 36 72 6

 
− + +  +
 + +

− + − − −

h h h h h

h h h h h

 

Therefore, upon applying computer programming (ROOT-RK Program), the 

following interval of absolute stability is obtained, which is h  ∈ (−1, −0.95) 

∪ (−0.64, 0). 
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CCHHAAPPTTEERR  TTWWOO  
 

MMOODDIIFFIIEEDD  RRUUNNGGEE--KKUUTTTTAA  MMEETTHHOODDSS  

 

 

2.1 Introduction 

Derivations of explicit, semi-explicit and implicit Runge-Kutta methods 

are of great difficulties, especially when the stages of the method are 

increased. Therefore, the need for simple and efficient methods (with large 

stages) is necessary. 

In this chapter, we will present some modified Runge-Kutta methods, 

which has its basis on tridiagonally implicit methods in which the diagonal 

elements has an equal values. This method has been proved to be stable and 

convergent. 

 

2.2 Fundamental Results in Runge-Kutta Methods 

In this section, fundamental theoretical results consuming Runge-Kutta 

methods will be given, as well as, their proofs. 

In order to give some results, for simplicity an without loose of 

generality, the following ordinary differential equation will be considered: 

y′ = f(y), y(x0) = y0........................................................................... (2.1) 
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Therefore, one of the most important results (which are given in 

[Butcher, 1987], [Butcher, 1964], [Al-Exander, 1977] and [Bickart, 1977] 

without proof) in Runge-Kutta methods which has the utility of evaluating the 

parameter of Runge-Kutta methods, namely bj's. This result will be stated in 

the next theorem: 

 

Theorem (2.1): 

Consider the system: 

y′(x) = f(y), y = y0 at x = x0 ............................................................. (2.2) 

then φ = 
γ
1

, where γ = 
α
βi

, ∀ i =1, 2, …, r and α, β are numerical coefficients 

independent of the form of f. 

Proof: 

Suppose that y, y* be the exact and approximate solutions of equation 

(2.2), respectively. 

The equation defining y* for r-stages Runge-Kutta methods is: 

y* = y0 + h
r

i i
i 1

c k
=
∑  

where: 

ki = 
r

0 ij j
j 1

f y h b k
=

 
+ 

 
 

∑ , i = 1, 2, …, r 

and bij, ci, ∀ i, j = 1, 2, .., r; are constants to be determined. 

The power series expansion of y and y* are respectively: 



Chapter Two                                                                        Modified Runge-Kutta Methods 

 ٣٠ 

y = y0 + ∑
=

α
r

1i

i

!i

h
F     where F for the function f. 

y* = y0 + ∑
= −

βφ
r

1i

i

)!1i(

h
F  

Since y and y* having the same order, then: 

!i

h
F

i
α  = 

)!1i(

h
F

i

−
βφ  

and hence: 

)!1i(i

h
F

i

−
α  = 

)!1i(

h
F

i

−
βφ  

Therefore: 

φ = 
β
α
i

 = 
γ
1

.    █     

 

The next lemma plays an important role in the basis of theorem (2.2). 

 

Lemma (2.1) [Butcher, 1987]: 

Let U and V be 3×3 matrices, such that: 

UV = 

















000

0ww

0ww

2221

1211

 

Where w11w22 − w21w12 ≠ 0. Then either the third row of U is the zero vector 

or the third column of V is the zero vector. 
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Remark: 

Recalling the theory of Graphs and combining t is any tree with roots r1, 

r2, .., rs, then we write this tree symbolically as t=[ t1, t2, .., ts] and we can write 

this conscience using the following notation which is the plans subscript on [  

] to indicate repetition.  

For example the tree [t1t1t1t2t2] can be written as 2 2
1 2[ ]t t  or [[[ ] ]]τ τ  or 2 2[ [ ] ]τ τ . 

Theorem (2.2): 

Consider the system: 

y′(x) = f(y), y = y0 at x = x0 

If φ = 
γ
1

, r ≤ ξ, then ∑
=

−
r

1j

1k
jjac  = 

k

1
, for k ≤ ξ, where k = 1, 2, …, r, and 

r is the number of stages of Runge-Kutta method and ξ is the order of the 

considered method. 

Proof: 

In order to prove that ∑
=

−
r

1j

1k
jjac  = 

k

1
, for k ≤ ξ, we consider lemma 

(2.1) in mind with: 

T
1u  = [c2    c3    c4] 

T
2u  = [c2a2    c3a3    c4a4] 

T
3u =












−−−−−− ∑∑∑

===
)a1(cbc)a1(cbc)a1(cbc 44

r

1i
4ii33

r

1i
3ii22

r

1i
2ii  
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v1 = 

















4

3

2

a

a

a

, v2 = 
















2
4

2
3

2
2

a

a

a

, v3 = 





























−

−

−

∑

∑

∑

=

=

=

r

1j

2
42

1
jj4

r

1j

2
32

1
jj3

r

1j

2
22

1
jj2

aab

aab

aab

 

with γ(x) = k in φ = 
γ
1

, r ≤ ξ, where  k ≤ 5 [Butcher, 1987], we have: 

T
1u v1 = ∑

k
kkac  = φ([τ]) = 

])([

1

τγ
 = 

2

1
 

T
1u v2 = T

2u v1 = ∑
k

2
kkac  = φ([τ2]) = 

])([

1
2τγ

 = 
3

1
 

T
2u v2 = ∑

k

3
kkac  = φ([τ3]) = 

])([

1
3τγ

 = 
4

1
 

hence we can generalize the result for k > 3 to obtain the formula: 

∑
=

−
r

1j

1k
jjac  = 

k

1
, for k ≤ ξ 

 

Remark [Butcher,1987]: 

If the parameters a2, a3, a4, …, c4 are those of a four-stage fourth-order 

Runge-Kutta method it is possible to compute T
iu vi for i, j = 1, 2, 3; since this 

will be a linear combination of the φ(x) for various x of order less than five 

and will thus be equal to a certain number formed from the corresponding 

γ(x). 
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Hence the following formula ∑
=

−
r

1j

1k
jijab  = 

k

ak
j

 cold be obtained to 

evaluate aj's for i = 1, 2, …, r and k ≤ ξ. 

 

2.3 Derivation of Some Implicit Runge-Kutta Methods 

In this section, we shall try to derive some implicit Runge-Kutta  

methods including some modification and new ideas for deriving. 

 

2.3.1 Derivation of Two-Stages Implicit Runge-Kutta Method: 

Consider the two-stage implicit Runge-Kutta method, with the following 

table of parameters: 

b11 b12 a1 

b21 b22 a2 

c1 c2  
The Legendre polynomials will be used for deriving this method, where: 

p0(x) = 1, p1(x) = x, p2(x) = (x − B2)p1(x) − C2p0(x) 

and 

B2 = 

∫

∫

−

−
1

1

2
1

1

1

2
1

dx)]x(p[

dx)]x(p[x

 = 

∫

∫

−

−
1

1

2

1

1

3

dxx

dxx

 = 0 
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C2 = 

∫

∫

−

−
1

1

2
0

1

1

01

dx)]x(p[

dx)x(p)x(xp

 = 

∫

∫

−

−
1

1

1

1

2

dx

dxx

 = 
3

1
 

Therefore: 

p2(x) = (x −0)x − 
3

1
 =x2 −

3

1
 

hence, the roots of the second degree polynomial p2(x) at x =2a − 1 are given 

by: 

a1,2 = 
2

1
 m  

38

4
 

i.e., a1 = 
2

1
 − 

32

1
 and a2 = 

2

1
 + 

32

1
 

To find c1 and c2, use is made as given in section (2.2), which is as 

follows: 

∑
=

−
2

1j

1k
jjac  = 

k

1
, for k = 1, 2 

hence for k = 1, 2, we have: 

c1
0
1a  + c2

0
2a  = 1 ............................................................................... (2.3) 

c1
1
1a  + c2

1
2a  = 

2

1
 .............................................................................. (2.4) 

Solving eq.(2.3) and (2.4) for c1 and c2, gives c1 = c2 = 
2

1
. 

Finally, to find b11, b12, b21 and b22 use is made as given in section (2.2), 

which is as follows: 
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∑
=

−
2

1j

1k
jijab  = 

k

ak
i , for i, k = 1, 2 

Hence: 

b11
0
1a  + b12

0
2a  = a1, k = 1, i = 1 

b21
0
1a  + b22

0
2a  = 1

2a , k = 1, i = 2 

b11
1
1a  + b12

1
2a  = 

2
1a

2
, k = 2, i = 1 

b21
1
1a  + b22

1
2a  = 

2

a2
2 , k = 2, i = 2 

Solving these equations for bij 's, i, j = 1, 2, we have: 

b11 = 
4

1
, b12 = 

4

1
 − 

32

1
, b21 = 

4

1
 + 

32

1
 and b22 = 

4

1
 

Therefore, as a result, we have the following formula of Runge-Kutta method: 

yn+1 = yn + 
2

h
(k1 + k2) 

where: 

k1 = f(xn + (
2

1
 − 

32

1
)h, yn + 

4

1
hk1 + (

4

1
 − 

32

1
)k2) 

k2 = f(xn + (
2

1
 + 

32

1
)h, yn + (

4

1
 + 

32

1
)hk1 + 

4

1
hk2). 

The stability of 2-stages implicit Runge-Kutta method had been 

discussed previously in section (1.4.3) of chapter one. 
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2.3.2 Derivation of Tridiagonals Three-Stages Implicit Runge-Kutta 

Method: 

In this section, a modification is made in order to derive a new formula 

of triadiagonals implicit Runge-Kutta method with the property that the 

elements of each diagonal are equal, for simplicity, the parameters related to 

this method are presented in the following table: 

 

ω σ 0 a1 

δ ω σ a2 

0 δ ω a3 

c1 c2 c3  
 

Following similar approach as in section (2.3.1), one can find the values 

of a1, a2 and a3 by solving the third degree Legendre polynomial, the obtained 

results are: 

a1 = 
2

1
, a2 = 

2

1
 + 

10

15
 and a3 = 

2

1
 − 

10

15
 

Similarly, using theorem (2.2) in section (2.2), we can find c1, c2 and c3, 

where: 

∑
=

−
3

1j

1k
jjac  = 

k

1
, for k = 1, 2, 3 

hence for k = 1, 2 and 3, we have: 

c1 + c2 + c3 = 1 ................................................................................. (2.5) 

c1a1 + c2a2 + c3a3 = 
2

1
 ...................................................................... (2.6) 
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c1
2
1a  + c2

2
2a  + c3

2
3a  = 

3

1
 ................................................................. (2.7) 

Solving the above system for c1, c2 and c3, we have: 

c1 = 4/9 and c2 = c3 = 5/18 

Finally to find, ω, δ and σ use is made as given in section (2.2) in which 

the consistent equations are: 

b11
1k

1a −  + b12
1k

2a −  + b13
1k

3a −  = 
k

ak
1 , for i = 1 

b21
1k

1a −  + b22
1k

2a −  + b23
1k

3a −  = 
k

ak
2 , for i = 2 

b31
1k

1a −  + b32
1k

2a −  + b33
1k

3a −  = 
k

ak
3 , for i = 3 

Hence for k = 1, we have: 

11 12 13 1

21 22 23 2

31 32 33 3

b b b a

b b b a

b b b a

+ + = 
+ + = 
+ + = 

 ....................................................................... (2.8) 

For k = 2, we have: 

2
1

11 1 12 2 13 3

2
2

21 1 22 2 23 3

2
3

31 1 32 2 33 3

a
b a b a b a

2

a
b a b a b a

2

a
b a b a b a

2


+ + = 




+ + = 



+ + = 


 ............................................................ (2.9) 
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and for k = 3, we have: 

3
2 2 2 1

11 1 12 2 13 3

3
2 2 2 2

21 1 22 2 23 3

3
2 2 2 3

31 1 32 2 33 3

a
b a b a b a

3

a
b a b a b a

3

a
b a b a b a

3


+ + = 




+ + = 



+ + = 


 .......................................................... (2.10) 

Since b11 = b22 = b33 = ω, b12 = b23 = σ, b21 = b32 = δ and b13 = b31 = 0 

From equations (2.8), we have: 

ω + σ + 0 = 
2

1
 ................................................................................ (2.11) 

δ + ω + σ = 
2

1
 + 

10

15
 ................................................................... (2.12) 

0 + δ + ω = 
2

1
 − 

10

15
 .................................................................... (2.13) 

Solving equations (2.11), (2.12) and (2.13) for ω, δ and σ, we have: 

ω = 
2

1
 − 

15

5
, σ = 

15

5
 and δ = 

10

15
 

In summary, the results are given in the following table: 
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2

1
 − 

15

5
 

15

5
 0 

1

2
 

10

15
 

2

1
 − 

15

5
 

15

5
 

2

1
 + 

10

15
 

0 
10

15
 

2

1
 − 

15

5
 

2

1
 − 

10

15
 

4

9
 

5

18
 

5

18
  

 

2.4 Stability of Tridiagonals Three-Stages Implicit Runge-Kutta 

Method: 

To obtain intervals of stability of 3-stages Runge-Kutta method, we 

consider the test problem y′ = λy, where Re(λ) < 0. Recall the tridiagonals 

three steps implicit Runge-Kutta method: 

yn+1 = yn + h(c1k1 + c2k2 + c3k3) 

where: 

k1 = λ(yn + hb11k1 + hb12k2 + hb13k3) 

k2 = λ(yn + hb21k1 + hb22k2 + hb23k3) 

k3 = λ(yn + hb31k1 + hb32k2 + hb33k3) 

Hence, we have: 

k1 = λyn + h (
2

1
 − 

15

5
)k1 + h

15

5
k2, h  = λh ............................ (2.14) 

and 
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k2 = λyn + h
10

15
k1 + h (

2

1
 − 

15

5
)k2 + h

15

5
k3 ....................... (2.15) 

Also: 

k3 = λyn + h
10

15
k2 + h (

2

1
 − 

15

5
)k3 .......................................... (2.16) 

Substituting equations (2.14) and (2.16) in equation (2.15), we get: 

k2 = λyn + h
10

15 n 2
15

y k
5

1 15
1

2 5

 
 λ +
 
  
 − − 
   

h

h

 + h (
2

1
 − 

15

5
)k2 + 

h
15

5

n 2
15

y k
10

1 15
1

2 5

 
 λ +
 
  
 − − 
   

h

h

 

Then after some simplifications, we have: 

k2 = λyn 2

2

1 15
1

2 2

1 15 3
1

2 5 5

   − − 
  
 
    

− − −   
     

h

h h

 , 

2

21 15 3
1

2 5 5

  
− − −  

   
h h ≠ 0 

Substituting k2 in equation (2.14), yields: 
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k1 = 

n n 2

2

1 15
1

2 215
y y

5 1 15 3
1

2 5 5

1 15
1

2 5

   − − 
  λ + λ  
   

− − −   
     
 

− − 
 

h

h

h h

h

 

Then after some simplification, we get: 

k1 = λyn

2

2

3 15 7 3 15
1 1

5 4 10

2 15 1 15 1 15
1 1 1

5 4 5 2 5

    
+ − + −    

    
         
 − − + − − −        
             

h h

h h h

 ,  

22 15 1 15 1 15
1 1 1

5 4 5 2 5

        
− − + − − −        

           
h h h ≠ 0 

 

substituting k2 in equation (2.16) 

k3 = 

n n 2

2

1 15
1

2 215
y y

10 1 15 3
1

2 5 5

1 15
1

2 5

   − − 
  λ + λ  
   

− − −   
     
 

− − 
 

h

h

h h

h

 

 

Hence, after some simplifications: 
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k3 = λyn

2

2

15 15
1 1 1

2 4

2 15 1 15 1 15
1 1 1

5 4 5 2 5

    
+ − + −    

    
         
 − − + − − −        
             

h h

h h h

 , 

 

22 15 1 15 1 15
1 1 1

5 4 5 2 5

        
− − + − − −        

           
h h h  

 

Therefore: 

yn+1 = yn + hyn

2

2

3 15 7 3 15
1 1

5 4 104

9 2 15 1 15 1 15
1 1 1

5 4 5 2 5

    
+ − + −    

    
         
 − − + − − −        
            

h h

h h h

 + 

2

2

1 15
1

2 25

18 1 15 3
1

2 5 5

 
− − 
 

  
− − −  

   

h

h h

 + 

2

2

15 15
1 1 1

2 45

18 2 15 1 15 1 15
1 1 1

5 4 5 2 5

   
+ − + −    

   
        
− − + − − −        
            

h h

h h h

 

 

Hence, as a result, we have: 
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yn+1 = yn

2 3

2

73 15 49 15
13 13 19

10 20
1

1 2 15 1 15 1 15
18 1 1

2 5 4 5 2 5

    
+ − + −    

    +         
 − − + − − −        
            

h h h

h h h

 + 

2

2

2

5 5 15
5

2 2

1 15 54
18 1

2 5 5

  + − 
 


   
− − −   

     

h h

h h

, yn = rn 

Hence the corresponding root is given by: 

r = 

2 3

2

73 15 49 15
13 13 19

10 20
1

1 2 15 1 15 1 15
18 1 1

2 5 4 5 2 5

   
+ − + −   
   +

        
− − + − − −        

           

h h h

h h h

 + 

2

2

2

5 5 15
5

2 2

1 15 54
18 1

2 5 5

 
+ − 
 

  
− − −  

   

h h

h h

 

using computer facilities, one can find the values of h , which satisfying |r|<1. 

Therefore, upon applying computer programming (ROOT-RK Program), 

the following interval of absolute stability is obtained, which is h  ∈ (−9.5,−1) 

∪ (−0.637, 0). 
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CCHHAAPPTTEERR  TTHHRREEEE  
 

VVAARRIIAABBLLEE  SSTTEEPP  AANNDD  VVAARRIIAABBLLEE  

OORRDDEERR  RRUUNNGGEE--KKUUTTTTAA  MMEETTHHOODDSS  

 

 

3.1 Introduction  

Modifying the results obtained from numerical approaches is one of the 

fundamental aspects in numerical analysis in which the aim is to reduce the 

error terms imbedded in the methods, or the local trunction error. 

Hence this chapter consist of introducing two fundamental approaches 

for reducing the error terms, which are the variable step size methods and 

variable order methods for the numerical solution of ODE using Runge-Kutta 

methods. 

 

3.2 Variable Step Rung-Kutta Methods [James, 1992], [Jassim, 
1999] 
Error terms for members of the Runge-Kutta family are rather 

complicated than in LMMS. They become more so for higher-order methods 

such as classical Runge-Kutta which is locally O(h5). Fortunately it turns out 

that reasonably effective estimates of stepsize required to attain a specified 

local truncation error can be found that use only the order of the local 

truncation error and do not require further knowledge of the form of the error 
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term. The first variable-stepsize method, which will be consider here, is based 

upon comparison of the estimates for one and two steps for the value of y at 

some time obtained by a Runge-Kutta method with local truncation error term 

that is of the form Chn, where C is a constant to be determined. Suppose that 

one are already in position of an estimating yx for y(x) and a candidate 

stepsize h0. The Runge-Kutta method is used to calculate 
0

(1)
x hy +  and 

0

(2)
x hy + , 

approximations to y(x+h0) using stepsizes of h0 and h0/2, respectively. If 

0 0

(1) (2)
est x h x hE : y y+ += −  is less than certain tolerance (tol), than the more accurate 

of the two approximations, 
0

(2)
x hy + , is accepted as the approximation for y(x + 

h0). Whether or not the approximation is accepted, we need a new estimate htol 

of the stepsize that will produce an approximation within the specified 

tolerance. If the approximation was accepted, this value will be used as h0 in 

the next step; if not, then it will be used as h0 repeating the current step. To 

find htol , it is noticeable that 

0 0

n
(1) (2) n n n0

est x h x h 0 0

h
E y y Ch C (1 2 )Ch

2
−

+ +
 = − − = − 
 

�  ...................... (3.1) 

This gives the value of C, to be: 

est
n n

o

E
C

(1 2 )h−−
�  ................................................................................ (3.2) 

Since htol is to satisfy tol≈ n
tolCh , then it is found that 

1/ nn

tol 0
est

(1 2 )tol
h h

E

− −=  
 

 .................................................................. (3.3) 

At the start of the application of the variable-stepsize process, we 

have
0x 0y y= . Locking any better information, h0 is taken to be xf-x0.  
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3.3 Variable Order Methods [James, 1992], [Jassim, 1999] 

Let A(h) be a scheme for approximating some quantity A(0); that is, 

0
lim

→h
A(h) = A(0). The parameter h is typically the interval width. It is assumed 

that the error of approximation A(0) − A(h) has an expansion in powers of h 

whence. 

2 3 4
1 2 3 4A(0) A(h) a h a h a h a h ...= + + + + +  .................................... (3.4) 

Recall that Richardson entrapolation entails using approximations A(h0), 

A(h1), A(h2),…with h0 > h1 > h2… to successively eliminate the terms in the 

error expansion. Thereby producing approximations of higher and higher 

order. The sequence used was hj:= h/2j, j = 0, 1,2, …, where h is some starting 

interval width; however, for our present purposes other sequences {hj} may 

be more advantageous. If a1 in (3.4) is not zero, then the approximation 

scheme A(h) is only O(h). To obtain an O(h2) approximation we note that 

2 3 4
0 1 0 2 0 3 0 4 0

2 3 4
1 1 1 2 1 3 1 4 1

A(0) A(h ) a h a h a h a h ...

A(0) A(h ) a h a h a h a h ...

= + + + + + 


= + + + + + 
 ............................... (3.5) 

Upon subtracting h0 times the second equation from h1 times the first and 

solving for A(0), one can obtain. 

2 21 0 0 1
2 0 1 3 0 1 0 1 4 0 0 1 1

1 0

h A(h ) h A(h )
A(0) a h h a h h (h h ) a (h h h h ) ...

h h

−
= − − + − + + −

−
 

2 21 0
1 2 0 1 3 0 1 0 1 4 0 0 1 1

0 1

A(h ) A(h )
A(h ) a h h a h h (h h ) a (h h h h ) ...

h /h 1

−
= + − − + − + + −

−
(3.6) 

Thus: 

1 0
1 0 1

0 1

A(h ) A(h )
A (h ) : A(h )

h / h 1

−
= +

−
 ................................................... (3.7) 
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Is an O( 2
0h ) approximation to A(0) since h1<h0. Since any pair hj, hj+1 

could be used in the elimination process above, thus it is easily seen that: 

j 1 j
1 j j 1

j j 1

A(h ) A(h )
A (h ) : A(h )

h / h 1
+

+
+

−
= +

−
 ................................................ (3.8) 

is an O( 2
jh ) approximation to A(0). It is know have: 

2 2
1 0 2 0 1 3 0 2 0 1 4 0 1 0 0 1 1

2 2
1 1 2 1 2 3 1 2 1 2 4 1 2 1 1 2 2

A(0) A (h ) a h h a h h (h h ) a h h (h h h h ) ...

A(0) A (h ) a h h a h h (h h ) a h h (h h h h ) ...

= − − + − + + − 


= − − + − + + − 

(3.9) 

Upon eliminating the terms involving a2, 

2 0 3 0 1 2 4 0 1 2 0 1 2
A(0) A (h ) a h h h a h h h (h h h ) ...= + + + + +  ............ (3.10) 

where: 

1 1 1 0
2 0 1 1

0 2

A (h ) A (h )
A (h ) : A (h )

h / h 1

−
= +

−
 ............................................ (3.11) 

is an O( 3
0h ) approximation to A(0). 

More generally: 

1 1j 1 j
2 1j j 1

j j 2

A (h ) A (h )
A (h ) : A (h )

h / h 1
+

+
+

−
= +

−
 ....................................... (3.12) 

is an O( 3
jh ) approximation to A(0). Continuity in this manner, then 

recursively, a sequence can be defined by: 

0 j jA (h ) : A(h )=  ............................................................................. (3.13) 

and  
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n 1 n 1j 1 j
n n 1j j 1

j j n

A (h ) A (h )
A (h ) A (h )

h / h 1
− −+

− +
+

−
= +

−
, n = 1,2,…  

is obtained. 

On the basis of the results for A(hj) and A2(hj), it seems that An(hj) 

provides an n 1
jO(h )+   approximation to A(0). This may be verified directly by 

following the evaluation of the general term anh
n in the error expansion but is 

perhaps obtained more easily by an alternative approach. 

The recurrence relations, could be illustrated in table (3.1). 

 

Table (3.1) 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh ) 

0 0 0A (h )     

1 0 1A (h )      1 0A (h )    

2 0 2A (h )     1 1A (h )  2 0A (h )   

3 0 3A (h )      1 2A (h )  2 1A (h )        3 0A (h )  

 

The Lagrange interpolating polynomial for the distinct points (h0,A(h0)), 

(h1,A(h1)),…,(hn,A(hn)) is 

nn n n n nn 1 n 1 n 2P (h) : A[h ] A[h ,h ](h h ) A[h ,h ,h ](h h )− − −= + − + −  

n 1 n n 1 0 n n 1
(h h ) ..... A[h ,h ,...,h ,h](h h )(h h )...

− − −
− + + − −  

1 0
(h h )(h h )− − ............................................................... (3.14) 
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It is easily seen that Pn(0)=An(h0), which is why the process is referred to 

as extrapolation. From the remainder term of the lagrange formula recalling 

that, the K-th divided difference of a function f(x) can be approximated by: 

( )(k 1)

0 1 k

f
f [x ,x ,...,x ]

(k 1)!

+ ζ
=

+
 

for some point ζ  in the interval spanned by x0, x1, …, xk. 

It follows that error made in approximating A(0) by Pn(0) is 

(n 1) (n 1)

0 1 n

( 1) A ( )
h h ...h

(n 1)!

+ +− η
+

 with 0 ≤ η ≤ h0 whence it is an O(n 1
0h + ) 

approximation. 

Table (3.1) shows that the extrapolation sequence generated by the 

formulas (3.13). Only the first column requires application of the method 

A(h). The higher-order refinements are generated by simple arithmetic 

computations and thus are inexpensive in terms of computing time. 

 

3.3.1 Richardson Extrapolation 

Let A(h) be a scheme for approximating numerically a quantity A(0) 

which depends upon a parameter h in such away that 
0

lim
→h

A(h) = A(0). 

Suppose moreover that the error made in approximating A(0) by A(h) 

has for some N≥1 a power series expansion in h of the form  

N
2 j 2N 1

2 j
j 1

A(0) A(h) a h O(h )+

=

− = +∑  ............................................... (3.15) 
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3.3.1.1 The Central Difference Formula 

Consider the central difference formula for approximating the first 

derivative. 

cent,h
f (x h) f (x h)

f (x) f :
2h

+ − −′ ∇ =�  ........................................... (3.16) 

Let us show that the expansion of the error made by the central 

difference formula has the form (3.15). For f ∈ C2N+1 we have from Taylor’s 

theorem 

2N 2N

j 0 j 0

(j) j (j) j
2N 1 2N 1

cent,h
1 f (x)h f (x)( h)

f O(h ) O(h )
2h j! j!= =

+ + −∇ = + − + 
  
∑ ∑  ........... (3.17) 

Observe that the even powers of h cancel where as the odd powers sum 

together, this gives: 

N 1
(2k 1) 2k 2N

cent,h
k 1

f (x) f f (x)h O(h )
−

+

=

′ − ∇ = − +∑  .................................. (3.18) 

which is of the form (3.15). 

The process of Richardson extrapolation consists of successively 

eliminating terms in the error expansion to produce approximations of higher 

order. 

From (3.15), we have: 

N
2 j 2N 1

2 j
j 1

N
2 j 2N 1

2 j
j 1

A(0) A(h) a h O(h )

h h
A(0) A( ) a ( ) O(h )

2 2

+

=

+

=

= + +

= + +

∑

∑
 ........................................... (3.19) 

Multiplying the second equation in (3.19) by 4 and subtracting the first 

yields. 
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N

j 2

2 j 2N 1
2 j2 j 2

h 1
3A(0) 4A A(h) 1 a h O(h )

2 2=

+
−

   = − + − +   
   

∑  ......... (3.20) 

The multiplicative factor 4 was chosen to make the h2 terms canceled.  

Equation (3.20) shows that 

1

h
4A A(h)

2A (h) :
3

  − 
 =  ............................................................... (3.21) 

is an O(h4) approximation to A(0). Observe that we did not actually need to 

know the value of the coefficient a2 but only that the error expansion had the 

form (3.15). In a similar manner, the process can be continued. From (3.20) it 

is know that: 

4
1 4

3
A(0) A (h) a h ...

4
= − + . 

By eliminating the h4 term, the order-six approximation will be obtained, 

given by: 

1 1
2

16A (h / 2) A (h)
A (h)

15

−
=  ......................................................... (3.22) 

In general, one obtains recursively the O(h2n+2) approximations  

A0(h) := A(h) 

n
n 1 1

n n
4 A (h / 2) A (h)

A (h) :
4 1

− −
=

−
 .................................................... (3.23) 

for the Richardson extrapolation process. 
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3.3.1.2 Extrapolation of The Central Difference Formula 

Substituting the central difference approximation (see section 3.3.1.1), 

A(h) = [f(x + h) − f(x − h)]/2h  into (3.21), the fourth-order approximation, 

will  be obtained as: 

1
f (x h) 8f (x h / 2) 8f (x h / 2) f (x h)

A (h)
6h

− − − + + − +=  ............. (3.24) 

to the first derivative. In turn, substituting (3.24) into (3.22) yields the 

sixth-order approximation. 

2
1 h h h h

A (h) = -f(x -h)+16f x - -64f x - +64f x+ -16f x+ +f(x+h)
30h 2 4 4 2

        
        
        

 

 .............................. (3.25) 

Clearly, using the extrapolation formula (3.23) to generate formulas for 

higher-order approximations becomes very cumbersome. Fortunately, it is not 

necessary to have explicit formulas available to calculate the numerical values 

of the higher-order approximations. 

 

3.3.1.3 Euler-Maclaurian Summation Formula 

Observe that while in (3.15),it is assumed that the error expansion had 

only even powers of h, this is not strictly necessary. The process could be 

carried out if the error expansion was of the form 

N
j N 1

j
j 1

A(0) A(h) a h O(h )+

=

− = +∑  ................................................... (3.26) 

however, at each level of the extrapolation table the order of the 

approximation on the diagonal would be only one greater than on the 

succeeding level rather than two greater for the extrapolation table for (3.15). 
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For the reason extrapolation is more effective when the underlying 

method of approximation A(h) has an error expansion of the form (3.15). 

The reason for the choice of the trapezoid rule as the base method of 

approximation is that its error expansion is of the form (3.15); that is, it has 

only even powers of h. This is the content of the Euler-Maclaurin Summation 

formula, which is used as well in order branches of mathematics such as 

number theory. The formula involves Bernoulli numbers which will be 

discussed shortly. 

Before setting up Euler’s theorem, first the following for constructing, 

the so called Bernoulli’s numbers using recurrence relation will be 

introduced. 

 

3.3.1.4 Bernoulli Numbers [Knuth, 1973] 

The Bernoulli numbers are defined by 

j

jt 0 tj
d t

B : Lim
dt e 1→

 =  − 
 j = 0, 1, …   ............................................... (3.27) 

From this definition they are easily seen to the numerators of the 

coefficients of the Maclaurin expansion 

j j
t

j 0

Bt
t

e 1 j!

∞

=

=
− ∑  ............................................................................. (3.28) 

The Bernoulli numbers may be calculated from the following theorem.  

 

Theorem (3.1) 

The Bernoulli numbers satisfy the recurrence relation: 
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B0 = 1, 
j 1

j k
k 0

j 11
B B

kj 1

−

=

+ = −  +  
∑ , j = 1, 2,…  . ............................... (3.29) 

Proof: 

From (3.28), we have: 

j j t

j 0

B
t t (e 1)

j!

∞

=

 
= − 
 
∑  

j 0 k 1

j k
k

j 0 k 0

k
j j

k

B t
t

j! k!

B t t

k! ( j k)!

∞ ∞

= =

−∞ ∞

= =

  
=    

  

=
−

∑ ∑

∑∑

 

j 1
j k

j 1 k 0

B
t

k!( j k)!

−∞

= =

=
−∑ ∑  ...................................................................... (3.30) 

Equating like powers of t gives B0 = 1 and 

j 1

k 0

kB
0

k!( j k)!

−

=

=
−∑  

for j = 1,2,3,…. Solving for Bj-1 yields 

j 2
k

k 0

j 2

k 0

j 1

k

B
B ( j 1)!

k!( j k)!

j1
B

kj

−

=

−

=

− = − −
−

 
= −  

 

∑

∑
 ........................................................... (3.31) 

which is eq.(3.29). 

From (3.29) it can be verified that B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, 

and B4 = −1/30.  It turns out that Bj = 0 for odd j ≥ 3.   █    ❚ 
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Theorem (3.2) (The Euler-Maclaurian summation formula): 

For f ∈ C2n+1[a,b], 

b N 1

i
i 0a

h
f (x)dx h f (x ) [f (b) f (a)]

2

−

=

= + −∑∫  −  

n

j 1

2 j
2 j (2 j 1) (2 j 1) 2n 1

B h
[f (b) f (a)] O(h )

(2 j)!=

− − +− +∑  ........... (3.32) 

where xi = a + ih, i = 0, 1…, N, with h = (b − a)/N, and the B2j are Bernoulli 

numbers. 

The first two terms on the right-hand side of (3.32) together constitute 

the composite trapezoid rule. Hence the Euler-Maclaurin formula status that 

the error expansion for the trapezoid rule approximation to a definite integral 

has the form (3.15) 

n

j=1

2j
2j (2j-1) (2j-1) 2n+1

Ctrap

B h
E (f) = - [f (b) - f (a)] + O(h )

(2j)!
∑  .................. (3.33) 

Proof: 

Let: 

b

a

I(f ) : f (x)dx= ∫ ,  
N 1

i
i 0

NR (f ) : h f (x )
−

=

= ∑ ,  N NE (f ) : I(f ) R (f )= −  

Observe that RN(f) is simply the Riemann sum approximation to I(f) for 

N subintervals with left endpoint evaluation and that EN(f) is the error made 

by this approximation. To show that for f ∈ Cm+1[a, b], 

m

j 1

j

j ( j) m 1
N

B h
E (f ) I(f ) O(h )

j!=

+= − +∑  ........................................... (3.34) 
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Upon setting m = 2n and noting that B1 = −1/2, B2j+1 = 0 for j ≥ 1, and 

( j) ( j 1) ( j 1)I(f ) f (b) f (a)− −= − , this becomes the Euler-Maclaurin formula 

(3.32). 

Note that: 

N 1

i 0
i

x hi

N i
x

E (f ) f (x)dx hf (x )
−

=

+ 
 = −
 
 

∑ ∫  

 

N 1

ii 0
: e (h)

−

=
= ∑  ......................................................................... (3.35) 

Let us first find the Maclaurin series expansion for the error ei(h) on the  

ith subinterval with respect to the subinterval width h. Let f∈Cm+1[a, b]. 

Immediately ei(0) = 0, and since i i ie (h) f (x h) f (x )′ = + − , ie (0) 0′ =  also. 

From then on ( j) ( j 1)
i ie (0) f (x )−= . This gives the Maclaurin expansion: 

j m 2m 1
( j 1) (m 1)

i i i
j 2

h h
e (h) f (x ) f ( )

j! (m 2)!

++
− +

=
= + ξ

+∑  ............................... (3.36) 

where ζi ∈ (xi,xi+1). Substituting (3.36) into (3.35);  

j m 2N 1m 1 N 1
( j 1) (m 1)

N i i
i 0 j 2 i 0

h h
E (f ) f (x ) f ( )

j! (m 2)!

+− + −
− +

= = =
= + ξ

+∑ ∑ ∑  .................. (3.37) 

Now: 

N 1
(m 1)

i
i 0

m 2 m 1N 1
(m 1)

i
i 0

h h (b a)
f ( ) f ( )

(m 2)! (m 2)! N

−
+

=

+ +−
+

=

−ξ ≤ ξ
+ +∑ ∑  

m 1
(m 1)

a x b

h (b a)
max f (x)

(m 1)!

+
+

≤ ≤

−≤
+

 ...................... (3.38) 
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Thus the remainder term in (3.37) is O(hm+1). Upon interchanging the 

order of summation (3.37), one can: 

jm 1 N 1
( j 1) m 1

N i
j 2 i 0

h
E f (x ) O(h )

j!

+ −
− +

= =
= +∑ ∑  

j 1m 1
( j 1) m 1

Nj 2

h
R (f ) O(h )

j!

−+
− +

=
= +∑  ........................................... (3.39) 

After a shift of the index j this gives: 

jm
( j) m 1

N N
j 1

h
I(f ) R (f ) R (f ) O(h )

( j 1)!
+

=
= + +

+∑  .............................. (3.40) 

Substituting IN-EN for RN yields finally: 

j
( j) ( j)

m
m 1

N Nj 1

h
E (f ) I(f ) E (f ) O(h )

( j 1)!
+

=
 = − +
 +∑  ....................... (3.41) 

Note that a particular consequence of (3.36) is that if f ∈ C1[a, b], then 

EN(f) is O(h). Thus if f ∈ C2[a, b], then f′ ∈C1[a, b] whence EN(f′) is O(h), and 

again from (3.41), it follows that: 

2
N

h
E (f ) I(f ) O(h )

2
′= +  

 
2

1B h O(h )= − +  .................................................................. (3.42) 

which is (3.34) for m = 1. 

We now establish (3.34) in general by induction on the degree of 

differentiability m+1. Assume that for L < m, f ∈ CL+1[a, b] implies that: 

kL
(k) L 1k

N
k 1

B h
E (f ) I(f ) O(h )

k!
+

=
= − +∑  ........................................... (3.43) 
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Let us show that (3.43) holds for L = m. If f ∈ Cm+1[a,b], then 

( j) m j 1f C [a,b]− +∈  whence (3.43) holds with L = m − j + 1. Substituting this 

into (3.41), gives: 

kj m jm
( j) ( j k) m 1k

N
j 1 k 1

B hh
E (f ) I(f ) I(f ) O(h )

( j 1)! k!

−
+ +

= =

 
= + + 

+   
∑ ∑  

 
j kj m jm m

( j) ( j k) m 1k

j 1 j 1 k 1

B hh
I(f ) I(f ) O(h )

( j 1)! k!( j 1)!

+−
+ +

= = =
= + +

+ +∑ ∑∑  .. (3.44) 

Rearrangement of the double sum in (3.44) yields in turn 

j 1

k 1

jm m
( j) j ( j) m 1k

N
j 1 j 1

Bh
E (f ) I(f ) h I(f ) O(h )

( j 1)! k!( j k 1)!

−

=

+

= =
= + +

+ − +∑ ∑ ∑  

j 1m

j 1 k 1

j ( j)
m 1

0 k

j 1h I(f )
B B O(h )

k( j 1)!

−

= =

++  
= + +  +   
∑ ∑  

m

j 1

j ( j)
m 1

j
h I(f )

( j!B ) O(h )
( j 1)!=

+= − +
+∑  ....................................... (3.45) 

from theorem (3.1). This demonstrates (3.34) and hence the Euler-Maclaurin 

formula.   █   ❚ 
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CCHHAAPPTTEERR  FFOOUURR  
 

NNUUMMEERRIICCAALL  AANNDD  CCOOMMPPAARRIISSOONN  

RREESSUULLTTSS  

 

 

4.1 Introduction 

This chapter, is devoted for illustrating the numerical Runge-Kutta 

methods derived and discussed in chapter one and two, this is done by solving 

examples using these methods, then comparing the results with the exact 

solution which given have for comparison propose. 

The results are presented and tabulated in a table which consists also 

the error terms. 

In addition, numerical examples illustrating variable order and variable 

stepsize methods discussed in chapter three are present, with its comparison 

with the exact solution. 

 

4.2 Numerical Examples 
Example (4.1): 

Consider the first ordering differential equation: 

y′ = −y + x + 1 

with initial solution y(0) = 1. 
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In order to give a comparison and describe the precision of the 

previously derived methods of Runge-Kutta, we can easily find the exact 

solution: 

y(x) = e−x + x 

Therefore using the 2-stage explicit, 2-stage semi-explicit, 2-stage 

implicit and tri-diagonal implicit Runge-Kutta methods, and upon exciting the 

computer programs (ERK), (SERK), (2IRK) and (3IRK), we get the results 

presented in tables (4.1) and (4.2) with step lengths h = 0.1 and h = 0.01. 

One can see from error estimation of the results that (2-stage implicit) 

is the more accurate. Also three stages implicit tri-diagonal gives reasonable 

agreement exact solution.  

 

 

 

 

 

 

 

 

 



  

 

Table (4.1) Numerical results of example (4.1) with step length h = 0.1. 

xi Exact 

Explicit Semi-explicit Two stages implicit Three stages implicit 

Numeric 
solution 

Error 
Numerical 

solution 
Error 

Numerical 
solution 

Error 
Numerical 

solution 
Error 

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 

0.1 1.00483741 1.00500000 0.00016258 1.00482757 0.00000984 1.00483743 0.00000001 1.00466161 0.00017580 

0.2 1.01873075 1.01902500 0.00029424 1.01871293 0.00001781 1.01873077 0.00000002 1.01841263 0.00031811 

0.3 1.04081822 1.04121762 0.00039940 1.04079403 0.00002418 1.04081825 0.00000003 1.04038650 0.00043171 

0.4 1.07032004 1.07080195 0.00048190 1.07029087 0.00002917 1.07032008 0.00000003 1.06979924 0.00052079 

0.5 1.10653065 1.10707576 0.00054510 1.10649766 0.00003299 1.10653070 0.00000004 1.10594167 0.00058898 

0.6 1.14881163 1.14940356 0.00059193 1.14877580 0.00003582 1.14881168 0.00000004 1.14817217 0.00063946 

0.7 1.19658530 1.19721022 0.00062492 1.19654748 0.00003782 1.19658535 0.00000004 1.19591032 0.00067498 

0.8 1.24932896 1.24997525 0.00064629 1.24928985 0.00003911 1.24932901 0.00000005 1.24863103 0.00069793 

0.9 1.30656965 1.30722760 0.00065794 1.30652984 0.00003981 1.30656971 0.00000005 1.30585927 0.00071038 

1.0 1.36787944 1.36854098 0.00066154 1.36783941 0.00004002 1.36787949 0.00000005 1.36716530 0.00071413 
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Table (4.2) Numerical results of example (4.1) with step length h = 0.01. 

 

 

xi Exact 

Explicit Semi-explicit Two stages implicit Three stages implicit 

Numeric 
solution 

Error 
Numerical 

solution 
Error 

Numerical 
solution 

Error 
Numerical 

solution 
Error 

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 

0.1 1.00483741 1.00483893 0.00000151 1.00483731 0.00000010 1.00483741 0.00000000 1.00483581 0.00000159 

0.2 1.01873075 1.01873350 0.00000274 1.01873057 0.00000018 1.01873075 0.00000000 1.01872785 0.00000289 

0.3 1.04081822 1.04082195 0.00000373 1.04081797 0.00000024 1.04081822 0.00000000 1.04081429 0.00000392 

0.4 1.07032004 1.07032454 0.00000450 1.07031974 0.00000029 1.07032004 0.00000000 1.07031530 0.00000473 

0.5 1.10653065 1.10653575 0.00000509 1.10653032 0.00000033 1.10653065 0.00000000 1.10652530 0.00000535 

0.6 1.14881163 1.14881716 0.00000552 1.14881126 0.00000036 1.14881163 0.00000000 1.14880581 0.00000581 

0.7 1.19658530 1.19659114 0.00000583 1.19658491 0.00000038 1.19658530 0.00000000 1.19657916 0.00000614 

0.8 1.24932896 1.24933500 0.00000603 1.24932856 0.00000040 1.24932896 0.00000000 1.24932261 0.00000635 

0.9 1.30656965 1.30657580 0.00000614 1.30656925 0.00000040 1.30656965 0.00000000 1.30656319 0.00000646 

1.0 1.36787944 1.36788561 0.00000617 1.36787903 0.00000040 1.36787944 0.00000000 1.36787294 0.00000650 



  

 

Example (4.2): 

Consider the first ordering differential equation: 

y′ =-2y+2x2+2x 

with initial solution y(0) = 1. 

In order to give a comparison and describe the precision of the 

previously derived methods of Runge-Kutta, we can easily find the exact 

solution 

y(x) = e2x+x2 

Therefore using the 2-stage explicit, 2-stage semi-explicit, 2-stage 

implicit and tri-diagonals implicit Runge-Kutta methods, and upon exciting 

the computer programs (ERK), (SERK), (2IRK) and (3IRK), we get the 

results presented in tables (4.3) and (4.4) with step lengths h = 0.1 and  

h = 0.01.  

One can see from error estimation of the results that (2-stage implicit) 

is the more accurate. Also three stages implicit tri-diagonal gives reasonable 

agreement exact solution.  

 

 

 

 

 

 

 



  

 

Table (4.3) Numerical results of example (4.2) with step length h = 0. 1. 

 

 

xi Exact 

Explicit Semi-explicit Two stages implicit Three stages implicit 

Numeric 
solution 

Error 
Numerical 

solution 
Error 

Numerical 
solution 

Error 
Numerical 

solution 
Error 

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 

0.1 0.82873075 0.83100000 0.00226925 0.82862297 0.00010779 0.82873112 0.00000036 0.82647915 0.00225160 

0.2 0.71032005 0.71422000 0.00389995 0.71013659 0.00018346 0.71032064 0.00000060 0.70648957 0.00383048 

0.3 0.63881164 0.64386040 0.00504876 0.63857652 0.00023512 0.63881237 0.00000073 0.63390472 0.00490692 

0.4 0.60932896 0.61516553 0.00583656 0.60905998 0.00026898 0.60932976 0.00000080 0.60371746 0.00561151 

0.5 0.61787944 0.62423573 0.00635629 0.61758963 0.00028981 0.61788026 0.00000082 0.61183550 0.00604394 

0.6 0.66119421 0.66787330 0.00667909 0.66089300 0.00030122 0.66119502 0.00000081 0.65491428 0.00627993 

0.7 0.73659696 0.74345611 0.00685914 0.73629104 0.00030593 0.73659773 0.00000077 0.73022029 0.00637667 

0.8 0.84189652 0.84883401 0.00693749 0.84159052 0.00030600 0.84189724 0.00000072 0.83551949 0.00637703 

0.9 0.97529889 0.98224389 0.00694500 0.97499593 0.00030296 0.97529955 0.00000066 0.96898602 0.00631287 

1.0 1.13533528 1.14223999 0.00690470 1.13503735; 0.00029793 1.13533589 0.00000060 1.12912761 0.00620768 
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Table (4.4) Numerical results of example (4.2) with step length h = 0.01. 

 

 

xi Exact 

Explicit Semi-explicit Two stages implicit Three stages implicit 

Numeric 
solution 

Error 
Numerical 

solution 
Error 

Numerical 
solution 

Error 
Numerical 

solution 
Error 

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 

0.1 0.82873075 0.82875099 0.00002024 0.82872962 0.00000113 0.82873075 0.00000000 0.82871258 0.00001817 

0.2 0.71032005 0.71035484 0.00003480 0.71031812 0.00000192 0.71032005 0.00000000 0.71028912 0.00003093 

0.3 0.63881164 0.63885671 0.00004507 0.63880917 0.00000247 0.63881164 0.00000000 0.63877200 0.00003964 

0.4 0.60932896 0.60938110 0.00005214 0.60932614 0.00000282 0.60932896 0.00000000 0.60928362 0.00004535 

0.5 0.61787944 0.61793626 0.00005682 0.61787640 0.00000304 0.61787944 0.00000000 0.61783058 0.00004886 

0.6 0.66119421 0.66125396 0.00005975 0.66119105 0.00000316 0.66119421 0.00000000 0.66114343 0.00005078 

0.7 0.73659696 0.73665838 0.00006141 0.73659376 0.00000321 0.73659696 0.00000000 0.73654538 0.00005158 

0.8 0.84189652 0.84195869 0.00006217 0.84189331 0.00000321 0.84189652 0.00000000 0.84184493 0.00005159 

0.9 0.97529889 0.97536118 0.00006229 0.97529571 0.00000318 0.97529889 0.00000000 0.97524781 0.00005108 

1.0 1.13533528 1.13539727 0.00006199 1.13533216 0.00000312 1.13533528 0.00000000 1.13528505 0.00005024 



  

 

Example (4.3): 

Suppose one have to approximate the solution of y(0.3) to within an 

accuracy of tol = 0.05 for the initial value problem y′ = 5(x − 1)y, y(0) = 5. 

The Runge-Kutta method which will be used, and hence n = 2 in (3.3). 

The process is started with y0 = 5, h0 = 0.3. Thus we have: 

Step1: First try: 

x = 0, h0 = 0.3, x + h0 = 0.3 

Applying the Runge-Kutta method with one and than two steps gives 

(1)
0.3y 2.5626= , (2)

0.3y 1.598= , estE 0.9645=  

which is still slightly above the specified tolerance On the basis of the new 

value of Eest, formula (3.3) now predicts that htol = 0.0592 will suffice. This 

gives: 

Second try: 

x = 0, h0 = 0.0592, x + h0 = 0.0592  

The Runge-Kutta method approximations are 

(1)
0.0592y 3.7699= , (2)

0.0592y 3.7558= , Eest = 0.0141 

and thus the estimated error is now within the given tolerance. Hence we 

have the approximation y(0.0592) �  3.7558. In fact, from the actual 

solution y(0.0592) = 3.7517, and thus the true error, 0.004, is smaller than 

the estimated error Eest. On the basis of the new value of Eest, formula (3.3) 

predicts that a stepsize of htol = 0.0965 is required to attain the error 

tolerance. We use this as the initial h0 in the next step. 

Step.2: First try: 

x = 0.0592, h0 = 0.0965, x + h0 = 0.1557  
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The Runge-Kutta approximations are 

(1)
0.1557y 2.4856= , (2)

0.1557y 2.45= , Eest = 0.0356 

and thus the tolerance is achieved the first try. Hence y(0.1557) �  2.45, 

and formula (3.3) gives the estimate htol = 0.0991 for use in the next step. 

The actual value of the solution is y(0.1557) = 2.4389, and thus at this point 

we are in error by 0.011. 

Step.3: First try: 

x = 0.1557, h0 = 0.0991, x + h0 = 0.2548 

The Runge-Kutta approximations are 

(1)
0.2548y 1.6744= , (2)

0.2548y 1.6567= , Eest = 0.0177 

and the error estimate is again within tolerance. Formula (3.3) suggests a 

stepsize of 0.1442; however, the distance to xf = 0.3 is only 0.0452. 

Thus we use the stepsize h0 = 0.0452. 

Step.4: First try: 

x = 0.2548, h0 = 0.0452, x + h0 = 0.3 

The Runge-Kutta approximations are 

(1)
0.3y 1.4082= , (2)

0.3y 1.4073= , Eest = 0.0009 

and we obtain the approximation y(0.3)� 1.4073, which is in error by 0.01. 

When it is specified that an appropriate solution is desired with an 

error no more than 0.05, this is, of course, a statement concerning the 

global truncation error, while the choice (3.3) of htol is made to control the 

local truncation error at each step. 

Thus it is fat from certain that we will obtain the specified accuracy. 

However, note that while htol is chosen so that the one-step approximation 
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0

(1)
x hy +  is accurate to within the given tolerance, the two-step approximation 

0

(2)
x hy +  which is more accurate by a factor of 2n, is actually used. This help 

to compensate for the fact that we are controlling local, rather than global, 

error. 

 

Example (4.4): 

Suppose one have to approximate the solution of y(0.5) to within an 

accuracy of tol = 0.05 for the initial value problem y′ = 5x − 2y, y(0) = 1. 

The Runge-Kutta method which will be used, and hence n = 2 in (3.3). 

The process is started with y0 = 1, h0 = 0.5. Thus we have  

Step.1: First try: 

x = 0, h0 = 0.5, x + h0 = 0.5 

Applying the Runge-Kutta method with one and than two steps gives: 

(1)
0.5y 1.125= , (2)

0.5y 0.8789= , estE 0.2461=  

Which is still slightly above the specified tolerance On the basis of the new 

value of Eest, formula (3.3) now predicts that htol = 0.1952 will suffice. This 

gives  

Second try: 

x = 0, h0 = 0.1952, x+h0 = 0.1952  

The Runge-Kutta method approximations are 

(1)
0.1952y 0.7811= , (2)

0.1952y 0.7652= , Eest = 0.0159 

and thus the estimated error is now within the given tolerance. Hence we 

have the approximation y(0.1952) �  0.7652. In fact, from the actual 
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solution. y(0.1952) = 0.7608, and thus the true error, 0.004, is smaller than 

the estimated error Eest. On the basis of the new value of Eest, formula (3.3) 

predicts that a stepsize of htol = 0.2998 is required to attain the error 

tolerance. We use this as the initial h0 in the next step. 

Step.2: First try: 

x = 0.1952, h0 = 0.2998, x + h0 = 0.495  

The Runge-Kutta approximations are 

(1)
0.495y 0.8735= , (2)

0.495y 0.8355= , Eest = 0.038 

and the error estimate is again within tolerance. Formula (3.3) suggests a 

stepsize of 0.2978, however, the distance to xf = 0.5 is only 0.005. 

Thus we use the stepsize h0 = 0.005. 

Step.3: First try: 

x = 0.495, h0 = 0.005, x + h0 = 0.5 

The Runge-Kutta approximations are 

(1)
0.5y 0.8396= , (2)

0.5y 0.8395= , Eest = 0.0001 

and we obtain the approximation y(0.5) �  0.8395, which is in error by 

0.012. 

 

Example (4.5): 

Consider the following differential equation y′ = f(x, y), y(0) = 5 

where f(x, y) = 5(x − 1)y . The process is started with y0 = 5, h0 = 0.1. Thus 

we have 

x = 0, h0 = 0.1, x + h0 = 0.1 

Applying the Runge-Kutta method with one and then two steps gives: 
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(1)
0.1y 3.1875= , (2)

0.1y 3.1262=  

Substituting (1)
0.1y   and (2)

0.1y  into eq.(3.7), we have: 

y(xn) = 3.064 

with estimated error equals to 0.045. 

 

Example (4.6): 

Consider the following differential equation y′ = f(x, y), y(0) = 1 

where f(x, y) = 5x − 2y . The process is started with y0 = 1, h0 = 0.3. Thus, 

we have: 

x = 0, h0 = 0.3, x + h0 = 0.3 

Applying the Runge-Kutta method with one and then two steps gives 

(1)
0.3y 0.805= , (2)

0.3y 0.7488=  

Substituting (1)
0.3y  and (2)

0.3y  into eq.(3.7), we have: 

y(xn) = 0.692 

with estimated error equals to 0.043. 



CCoonncclluussiioonnss  aanndd  RReeccoommmmeennddaattiioonn  
 
From the present study of this thesis we conclude and recommend the following 

1. The 2-stages implicit Runge-Kutta method is the most accurate method 

than other Runge-Kutta method. 

2. The improved tridiagonal method is so easy to drive which are indeed 

implicit method and therefore to drive improved method with five 

diagonal and proving its stability. 

3. Variable step size and order methods are the most accurate methods which 

had reduce the error bounds. 

4. Comparing between variable order and variable step size Runge-Kutta 

methods. 

5. Using Runge-Kutta method for solving delay differential equations.   
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IInnttrroodduuccttiioonn  

 
There is no general agreement on how the phrase "numerical analysis" 

should be interpreted. Some see “analysis” as the key word and wish to 

embed the subject entirely in rigorous modern analysis, others suggests that 

the "numerical" is the vital word and the algorithm is the only respectable 

yield. Numerical methods usually produces errors and we say that any 

numerical technique is a good one if the error approach quickly or rapidly to 

zero and the method requires a minimum computer capacity and less time 

consuming as possible. 

In the eighteenth century, mathematicians encountered difference 

differential equations because they were trying to extend their knowledge of 

the mechanics of discrete particles to the mechanics of the continuum, which 

later came to be studied in terms of partial differential equations. 

On the other hand, many complicated physical problems describable in 

terms of partial differential equations can be approximated by much simpler 

problems describable in terms of difference differential equations, [Piney, 

1959]. 

This thesis, consist of four chapter. In chapter one, we introduce general 

Runge-Kutta methods for solving ordinary differential equations which 

consist of three types explicit, semi-explicit and implicit as well as there are 

mathematical derivation.  
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Also in this chapter we stay the stability and converges of the prove of  

proving the equivalence between stability of Runge-Kutta methods. 

In chapter two, we present some fundamental results concerning with 

Runge-Kutta methods (see Theorem (1.1), Lemma (2.1) and Theorem (2.2)) 

which are needed in the derivation of Runge-Kutta methods deterministic. 

Also, in this chapter we present the derivation of a modified Runge-Kutta 

method which is three steps Runge-Kutta methods using tridiagonal systems 

as well as studying the stability of the modified method. 

Chapter three consist of variable step size and variable order Runge-

Kutta methods, which has the utility of reducing local truncation error at the 

node points. 

Chapter four presents numerical examples, which had been solved using 

explicit, semi-explicit and implicit and in proved Runge-Kutta method as well 

as there are comparisons with the exact solution in order describe the 

accuracy of the methods. 

It’s important, to note that the results are given in tabulated form and the 

programs (given in PASCAL language) are executed in personal computer 

Pentium IV. 
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