Abstract

The objective of this thesis studying and deriving with some
modification as a new approach of Runge-Kutta method including explicit,
semi-explicit and implicit methods as well as studying stability of

convergence of these methods.

Also, one of most important themes of the thesis is to introduce
variable step size and variable order methods using an extrapolation method
which has the utility of controlling the local truncation error to be less than a

prespecified tolerance error.
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APPENDIX A

Following the computer programs used in this thesis:

1. ERK (Explicit Runge-Kutta Program):

{Computer Programming for Solving
y'=-y+x+1, y(0)=1
using explicit Runge-Kutta method]
program ar;
{uses crt;}
var x,y:ar ray[0..12] of real;
i,n:integer;
aa,bb,kl,k2,h,al,bl,error,ex:real;
fitext;
begin
x[0]1:=0;y[0]:=1;h:=0.1;aa:=0;bb:=1;n:=round ( (bb-aa)/h);
al:=1;bl:=al;
assign(f,'d:\resultex.txt");

rewrite(f);
writeln(f,’x vy exact er ror');
writeln(f,'--------=-==-=mmmm oo --";
fori:=0to n do

begin

x[1]:=x[0]+1i*h;
kl:=- yIil+x[1i]+1;
k2:=-y[i]- h*bl*kl+x[i]+al*h+1;

y[i+1l]:=y[1i]+0.5*h* (k1+k2);

ex:=exp(-x[i])+x]i];

error:=abs(y[i]-ex);

writeln(f,x[i]:2:1," ",y[i]:10:10," ',ex:10 :10,
',error:10:10);

writeln;

end;

close(f);

readin;
end.
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2. SERK (Semi Explicit Runge Kutta Program):

{Computer Programming for Solving
y'=-y+x+1, y(0)=1
using semi- explicit Runge-Kutta method}
program ar;
var ex,x,y:array[0..16] of real;
I,J,n:integer;

kl,k2,al,a2,a3,ad4,cl,c2,bll,bl2,b21,b22,aal,aa2,h,error:real;
f:text;

begin
n:=10;h:=0.1;
aal:=0.5-(1/(2 *sqrt(3)));
aa2:=0.5+(1/(2*sgrt(3)));
b11:=0.5- (1/(2*sgrt(3)));
bl2:=0;
b22:=0.25;

21:=0.25+(1/ (2*sqgrt (3)));

al:=1+bl1*h;

az:=0;

a3:=b21*h;

ad:=1+b22*h;

x[0]:=0;y[0]:=1;
fori:=0ton do

x[1]:=x[0]+1i*h;

fori:z=0ton do

begin

cl:=- y[i]l+x[i]+h*aal+1l;

c2:=- y[i]l+x[i]+h*aa2+1;
kl:=cl/al;

k2:=(c2- a3*kl) /a4;

yv[i+1]:=y[i]+0.5*h* (k1+k2);
ex[i]:=exp(-x[i+x[i];

end,

assign(f,'d:\resultSM.txt");

rewrite(f);

writeln(f,'i x vy exact err or');
writeln(’ ;

fori:=0to n do
writeln(f,i," ",x[i]:3:1," ",y[i]:10:10,
",ex[i]:10:10," ',abs(ex]i]- y[1]):10:10);
close(f);
readin;
end.

A-2



Appendix A

3. 2IRK (2-Stages | mplicit Runge-Kutta Program):

{Computer Programming for Solving
y'=-y+x+1, y(0)=1
using 2-stages implicit Runge-Kutta method}

program ar;
var ex,x,y:array[0..16] of real;
i,n:integer;
kl,k2,al,a2,a3,a4,cl,c2,bl 1,bl2,b21,b22,aal,aa2,h,error:real;
f:text;
begin
n:=10;h:=0.1;
aal:=0.5- (1/(2*sgrt(3)));

aa2:=0.5+(1/(2*sgrt (3)));
bl1l1:=0.25;b22:=bll;
b12:=0.25- (1/(2*sgrt(3)));
21:=0.25+(1/(2*sqgrt (3)));
al:=1+bll*h;
a2:=bl2*h;
a3:=b21*h;
ad:=1+b22*h;
x[0]:=0;y[0]:=1;
fori:=0to n do
x[1] :=x[0]+1*h;
fori:=0to n do

begin
cl:=- y[i]l+x[i]+h*aal+1l;
c2:=- y[i]l+x[i]+h*aa2+1;
k2:=(cl*a3-c2*al)/(a2*a3- al*ad);
k1:=(c1- a2*k2) /al;
y[i+1]:=y[i]+0.5*h* (k1+k2) ;
ex[i]:=exp(-x[i])+x[i];
end,
assign(f,'d:\ result2IM.txt"') ;
rewrite(f);
writeln(f,'i x vy exact err or');
writeln(f,' R

fori:=0to n do
writeln(f,i," ',x[i]:2:1," ',y[i]:10:10,
",ex[i]:10:10," ',abs(ex]i]- y[1]):10:10);
close(f);
readin;
end.
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4. 3IRK (3-Stages I mplicit Runge-Kutta Program):

{Computer Programming for Solving
y'=-y+x+1, y(0)=1

using 3-stages implicit Runge-Kutta metho d}
program ar;
var ex,x,y:array[0..16] of real;
I,J,n:integer;
k1,k2,k3,al,a2,a3,a4,a5,a6,a8,a7,c3,c1,c2,b11,b12,b 21,b22,b23
,032,033,b31,b13,aal,aa2,h,aa3,a%:real;
f:text;
begin
n:=10;h:=0.1;
aal:=0.5;

aa2:=0.5+(s grt (15)/10);

aa3:=0.5- (sgrt (15)/10) ;

b11:=0.5- (sgrt (15)/5);b22:=b11;b33:=bll;
bl2:=sgrt(15)/5;b23:=b12;b13:=0;031:=0;
b2l:=sqrt(15)/10;b32:=b21;
al:=1+bll*h;

a2:=bl2*h;
a3:=0;
ad:=b21*h;
ab:=1+b22*h;
a6:=b23*h;
a7:=0;

a8 :=b32*h;
a9:=1+b33*h;
x[0]:=0;y[0]:=1;
fori:=0ton do
x[1]:=x[0]+1i*h;
fori:=0ton do

begin

cl:=- y[i]l+x[i]+h*aal+1l;

c2:=- y[il+x[i]+h*aa2+1;

c3:=- y[i]+x[i]+h*aa3+1;

k2:=(al*a9*c2-a9*a4*cl-al*a6*c3)/(al*a5*a9-a2 *a9*a4-
al*a6*al8);

kl:=(cl- a2*k2)/al;

k3:=(c3- a8*k2)/a9;

y[i+1]:=y[i]+(1/9) *h* (4*k1+2.5%k2+2.5%k3) ;
ex(il:=exp(-x[il)+x[i];

end,

assign(f,'d:\ result3IMP.txt");

rewrite(f);

writeln(f,'i x vy exact err or');
writeln(f,’ ;

for i:=0 to n do
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writeln(f,i," ',x[i]:2:1," ',y[i]:10:10,

",ex[i]:10:10," ',abs(ex]i]- y[1]):10:10);
close(f);
readin;

end.

‘ROOT-RK Program
‘Evaluating the roots of Implicit Runge-Kutta method

CLS

OPEN "c\arsh.dat" FOR OUTPUT AS #1
PRINT" r h"

o] N ———

FOR h =-100 TO 100 STEP .001

r=1+(h-(25-SQR(3)/6)* h"2+(SQR(3)/24)* h~3)/(2-3* h/ 2+ (15/ 36)*h
A2+(3/72)* hA3)+ (h+(SQR(3)/6)*h2) / (2-h+ (U 6)* h"2)

IF ABS(r) <= 1 THEN PRINT r, h: PRINT #1, 1, h

NEXT h

CLOSE #1
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CHAPTER ONE

GENERAL RUNGE-KUTTA METHQODS

1.1 Introduction

After constructing a mathematical model for a aartaal life problem
as an ordinary differential equation, the next stefo find a solution. There
are two approaches for evaluating the solution, alidically" or
"numerically”. The analytic solution is usually abted directly from the
mathematical representation of the model formulatkile the numerical
solution is generally an approximate obtained atage node points. Most
numerical methods are iterative, that is, the smhuin a certain step uses the
solution of the previous steps, such as Newton-Baphmethod for

approximating the roots of non-linear equation.

Error are an important aspect of computationa) tiiey are every where
and unavoidable. However, by careful analysis efehror in any numerical
process, we can at least obtain bounds for theseseand therefore some
measure of the accuracy of our final solution whalst include the study of

the sources an the propagation of the errors.
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1.2 Basic Concepts

In this section, we shall present some of the bemicepts related to this

work.

1.2.1 Finite Difference Equations [Bellman, 1963]:

Let X, =Xo + nh, n=0, 1, ..., k; where h is the step length. A difference
equation of order k is an equation involving th&mmwn y, together with its

differences up to order k, that is, difference emunehas the form:

F(Xn; Yy Vet «oes York) = T(XR) coveeniee e, (1.1)

Hence the order k of the difference equation isdtiference between the

highest and lowest indices of y.
We canclassifydifferenceequation®ccordingo severahspectssuch as:
1. The finite difference equation is said to be lingd&r appears linearly in y.

2. The finite difference equation is said to be honmegeus if f(x) = O,

otherwise it is non-homogenous.

3. The finite difference equation is said to be of stant coefficients if the

coefficients of Y, Yn+1, ..., Yn+k @re constants.

1.2.2 Solution of Linear Difference Equations with Constant Coefficients:

We shall occasionally need the general solutiothefk-th order linear

difference equation with constant coefficients [loeart, 1973]:

AVn+k FacYn+kr T F@Yn = Fhee i, (1.2)

where n=1, 2,..., andaj =0, 1,..., k, are constants independent of n, and

a#0,a%0.
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A solution of such a difference equation will catf a sequence,yy.,
..., which will be indicated by {).

Let {y,} be the general solution of the corresponding hgemzous
difference equation:

AY kAt F e F YN = Oooeeeeeeeeeeeeeeeeet e eee e enenme . (1.3)
n=1,2,...

If { ¢,}is any particular solution of eq.(1.2), then teneral solution of
eq.(1.2) is {yh yn= 9 + U,

The solution of the difference equation can be uatald easily by letting
y, = B", and considering the general solution of the diffiee equation
depending on the roots @fwhether it is a repeated or distinct real roots, o

may be of complex roots, etc.

1.2.3 Legendre Polynomials [Burden, 1985]:

One of the most common sets of orthogonal polyntsmgthe set of

Legendre polynomials {, which are orthogonal on-[L, 1] with respect to

the weighted function w(x¥ 1. These polynomials are defined recursively

by:
Po(X) = 1, pu(X) =X, PX) = (X = Bi)p-1(X) = Cupr2(X), k=2, 3, ...
Where:
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1
[ xIpi-s0017
Bk =1

1
[ [pc-1001% dx
-1

and

1
Ika—l (X)Pk -2 (x)dx
Ck =-1

1
[ [p-1001% dx
-1

We do not need the explicit representation of tagdndre polynomials,
but only the knowledge that the polynomials for each n, has n-distinct

roots x, X, ..., % all of which lies in £1, 1).

1.3 Runge-Kutta Methods [Butcher, 1987]

The idea of extending the Euler method by allowimga multiplicity of
evolutions of the function f within each step wasgimally proposed by
Runge (1895). Further contributions were made byrtH&900) and by Kutta
(1901). The latter completely characterized theo§&unge-Kutta method of
order 4 and proposed the first methods of ordeSpecial methods for
second-order differential equations were proposgdystrom (1925) who

also contributed to the development of methoddifst-order equations.

Since the advent of digital computers, fresh irgehad been focused on
Runge-Kutta methods, and a large number of reseaclkers have

contributed to recent extensions to the theory #mel development of
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particular methods. Although, early studies wereotied entirely to explicit
Runge-Kutta methods, interest has now extendethpdidit methods, which

are now recognized as appropriate for stiff difféia@d equations.

1.3.1 Formulation of Runge-Kutta Methods [Lambert, 1973]:

The general form of an r-stages Runge-Kutta metiodsen by:

r
Yne1=Yn + hzci kl

i=1

where
r
ki=f|x,+ha,y, + hz qj lﬁ
=1

and

where ¢ g and y, for all i, j=1, 2, ..., r; are constants to be determined.

For convenience, we design the process by an afragonstants, as

follows:

bll b12 v blj &
021 b2, . by, 22
biy bi2 o by a
C1 C, G
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and it is easy to classify Runge-Kutta method$obews:
If bj = 0,01 <}, then the method is called semi-explicit.
If bj = 0,01 <], then the method is called explicit.

- Otherwise it is called implicit.

1.3.2 Derivation of Some Runge-Kutta Methods [Lambert, 1973]:

We shall consider the derivation of some Runge-&uotethods namely,
2-stages explicit, the 2-stages semi-explicit drel2-stages implicit Runge-

Kutta methods for the purpose of studying the aacyof the methods.

1.3.2.1 Derivation of 2-Stages Explicit Runge-Kutta Method:

In order to derive two stages Runge-Kutta methadser first the

general form of two stages Runge-Kutta methodschvis given by:
Yne1= Yo + h(ak; + cko)
where:
K1 = f(Xn, Yn)
ko = f(Xn + &h, Yo + hbpiky)
and
& = by

Hence, in this problem we have three unknown constq, c,, and a

which must be determined.

Now, recall the Taylor series expansion for a fioxcg(x + h, y + k) of

two variables about (X, y), we have:
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h2
g(x+h, y+k) =g(x, y)+hg(x, y) +kgy(X, y) + jgxx(x, y) + hkgy(X, y)

K2
+ Egyy(x, y) + ...

So expanding kusing Taylor series about.(¥/,), we have:
ka = f(Xn + &h, Yo + hipiky)

a2h2

= f(Xna yn)+a2hf + hb21k1f t—— fxx+a2b21h2k2fxy +

b3k .
2

a2h2

= f + ah(f, + ff,) + (F + 2y + ) + .

So, the two stages Runge-Kutta method takes time for

Yne1 = Yn + N(GK1 + GKp)

2
=yn + h[af + c(f + &h(fx + ffy) + 22h (fux + 2ffyy + fzfyy) +...)]

= Yo+ h[Cif + Cof + Coagh(fy + fy) + =222 (fc + 2ffy + ) + ...]

c,& It
I

c2a2 2P

L Yo + (e + 6) + eau(fy + ffy) + (fux + 2ffy +

T2 ) F O(H) oo (1.4)

Since Taylor method takes the form:
h? h3 .
Yne1 L Yo+ hy| + — yn + 3 Y FON) e (1.5)

and since y=f(x, y), then y =f, + ff,, and

yul — fXX + ﬁ:xy + fy(fX + ffy) + f(fxy + ffyy)
= (fo + 2ffyy + Pfyy) + (R, + F7)
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Therefore, eq.(1.5) becomes:

2 3
Yer L Yo + hf + %(fx +1ff,) + %[(fxx + 2ty + Phy) + (B, + f12)]

Now, in order to get an agreement between Rung&aKmethod and

Taylor's method (i.e., between eq.(1.4) and eg.)lwée must have:
1
cL+c,=1and e = E
with local truncation error of order*hAlso, the order for Runge-Kutta

method with = 2 equals to 2.

The above two equations have an infinite numbegodditions, e.g., we

1
can take alsoi ¢, = > and a=1.

1.3.2.2 Derivation of 2-Stages Semi-Explicit Runge-Kutta Method:
Since r= 2, then Runge-Kutta formula takes the form:
Yn+1 = Yo + h(Gky + Gko)
where:
k; = f(x, + ah, y, + hak,)
ko = f(Xx, + @h, Y, + hbpky + hipok)
and a = by, & = by; + by,
To find these constants, consider the following po®eries:
Ki = AL+ DB A PG+ o oo (1.7)

Ko = Ap+ NBy 4 HCo + ot oot (1.8)
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Since:

2
k, U f+ h[af, + a(A; + hB, + IFC, + LOf + %[alzfxX + 2a(A; + hB;

3
+ WC)fyy + & (Ar + hBy + hCy + ..., + %[affxxx + 383 (A +

hBy + WCy + ...)fy + 3&2(A; + hBy + IFCy + ...\ f,, + (A, +
hBy + IPCy+ ... )y + O(H) v, (1.9)
Comparing equations (1.7) and (1.9), we have:
A =f

B: = a(fx + f,A1) = a(fx + ffy) = aF
_a 2
C1 - 2 (fxx + 2Alfxy + A1 1:yy) + alBlfy

2

N [

(fox + 2ff + FFy) + a2 (f, + ff)f,

N [,

G +a’Ff,

where:

G = f,, + 2ff,, + ff,y, and

3

2 2 a a a
Dl = alclfy + al B1fxy + al AlBlfyy + Efxxx + EAlfxxy + EAlfxxy +

3

%Alfyyy

3
= alFf] + alF(fy + ffy) + a)Gl, + T H

where: F=f, + ff,
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and H= fy, + 3ffy + 3P,y + Py,

and similarly:
ko L) f+ hlaf, + (ba(Ay + hBy + IFCy) + byo(Az + hB, + HCy))f ] +

2
h?[agfxx + 28(b21(A1 + hBy) + Boo(Az + hBy))fyy + (B2a(AL + hBy) +

h3
boo(A2 + hBZ))zfyy] + E [aifxxx + 3&3 (021A1 + BA)f iy + 38(021A,
+ oA ) Tryy + (021A1 + DALy J+ O e (1.10)
Comparing equations (1.8) and (1.10), we have:
A2 =f

B, = afy + (A1 + A,

2

1
Cy = (bB1 + bpBo)fy + %fxx + (A1 + DAY + E(b21A1 +
b22A2)2fyy, and
D5 = (021Cy + bpCo)fy + ap(021B1 + 1020B2) fuy + (1021A1 + D20A2) (021B1 +

3

a a; a, 2
b,2Bo)fyy + Efxxx + E(b21A1 + 02oA )y + > (b21A1 + broAL) Ty
1
+ 6(b21A1 + DA ) Fyyy

Since a= by, + by, therefore, using,do simplify and solve the last fore

equations, we obtain the following solution:
A, =f
B2 = afx + (bsf + boof)fy
= aofy + (o1 + ))ffy

= af, + aff,
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= a(fx + ffy) = &F
Co= (b + br)Fly + 2 G

where, G= f,, + 2ff,, + f,,, an similarly:

D, = [D21(b118q + b1oap) + o213y + bzzaz)]':fy2 + ap(boian + broap)F(fyy +
3
ffy) + (bnay + bpas)Gf, + % H
where H= fopy + 3fy + 3Py + Py
2
Sinceq(x, y, h)= Y ck . Hence:
i=1

Q= Cky + 6k
U c(Aq + hBy + FPCy + B°Dy) + 6(A; + hB, + HC, + B°D,) + O(H)

1 A1+ GA, + h(Q_Bl + Csz) + hz(C]_C]_ + C2C2) + hs(C]_D]_ + C2D2) +

where the coefficients;AB;, G and D, i =1, 2, are given above.

Comparing with the total differential expansiongyx, y, h) of equation
(1.11), we have:

o, y, h)u f+ %hF +%h2(ny + G) +2—14h3[(3fxy + 3ffy, + f2)F + Gf, +
HI + O(N") oot (1.12)
where:
F="f,+ff,

G = fy + 2ffy + 1,y
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H = fo + 3ffy + 3FFyyy + Fhyy
Comparing equations (1.11) and (1.12), we havéath@ving case:

()  Two stages semi-explicit Runge-Kutta method of oatee, if:
ct+to=1

(i)  Two stages semi-explicit Runge-Kutta method of otde, if:
ate=1
Ciay + G =1/2

(i)  Two stages semi-explicit Runge-Kutta method of otbeee, if:
a+te=1
Ciay + G =1/2
Cial + (byan + brod) = 1/6
& +ga; =1/3

(iv) Two stages semi-explicit Runge-Kutta method of ofdar, if:
ct+to=1
Ciay + G =1/2
Cra’ + (byan + o) = 1/6
cia’ + ga; =1/3
(Cib11 + Gbay) & + Gla(byay + byodp) = 1/24
C1a Coap(b213y + byoap) = 1/8

13 + G(bp1al + bpas) = 1/12
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c.a +ga =1/4

From the above results, one can see that more aecurethods (of
higher order) could be used with small stages. &ample, one of the

solutions to the fourth order method is given by:

?, ?,bn—az

NP

b1 =

o|&

NI
g

o
=
I
Y
I
N
&
N
I
N~
-+l

1.3.2.3 Derivation of 2-Stages | mplicit Runge-Kutta Method:

Consider the 2-stages implicit Runge-Kutta methatijch takes the

form:
Yne1= Yo + h(ak; + cko)

where:
ki = f(X, + ha, y, + biihk; + biohky)
k2 =f(Xn + ha, Yo + baihk; + byohk;)

and a = by + b, & = byy + by
Now, expanding kusing Taylor series expansion abouj, (%), we

obtain that for £ 1, 2.
h?
Kill f(Xn, Yn) + h[afy + (bzka + Boko)fy] + 7[81- fux + 2a(liky + boko)fyy

h3
+ (kg + lJzkz)zfyy] + ?[ai&rxxx + 3ai2 (biks + boko)fyy + 3a(biks

+ BoKo) Fryy + (BaKa + 02K2)¥yyy] + O o (1.13)
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which will gives two implicit equations fors 1, 2. Hence, we can no longer
proceed as in previous derivations and Runge-Kuétnods. Therefore, as in

the semi-explicit methods, suppose that:

kil Aj+hB +HC + KD+ OM), i =1, 2o, (1.14)
Equating equations (1.13) and (1.14), we get:

A + hB + IFCi + I’D; U f + h[afy + (Bu(A1 + hBy + IPCy) + by(A; + hB,

+ PG| + h;[a&fxx + 2a(ba(As + hBY) + ha(Az + hB))f, + (Ba(As +

h3
hBy) + ha(Az + hBy))yy + 3 [ fro + 3312 (b A1 + BAL)f Ly + 3a(binAg

+ DA ryy + (AL + DoAYy ] + O(HY), =1, 2
Equating the coefficients of hh', i* and R, we obtain that:
A =f
Bi = afx + (biA1 + boAY)f,
C.= (B + BBofy + 7 8P+ A(buATH DoAYy + - (buhs +
biA)fyy
Di = (b1C1 + bC)fy + a(binBy +b2Bo)fyy + (B1A1 + BAL)(021B1 +

1 1 1
bi2B2)fyy + 5 a|'3fxxx + > 312 (b A1 + BoA)fy + > a(biAL +
2 1 3 :
Di2A2) Tyyy + E(bilAl + B2AL)fyyy, 1=1, 2.

Since a = by; + by and a = by; + by, Or in general notation; & by, + by.
Therefore, using the notation for @and a to simplify and solve the last form

equations, we obtain the following solution:
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A =f

Bi = afx + (buf + bf)f,
= afy + (b + b)ffy
= afy + affy

= g(fx + ffy) = aF

= (bpayF + hoaoF)fy, + = 31 2f o + a(bif + bpf)f,y + = (bilf + bizf)zfyy
- (bllal + bZaQ)Ff t - a| fxx + a1 ﬂ:xy + = a1 1:nyy
- (blla-l + bzaz) Ff t - a] (fxx + foxy + fzfyy)

1
= (bnay + boa)Ffy + 5 aizG

where G= fyy + 2ffyy + .

Similarly:
Di = [bia(buay + brse) + ba(basay + o) ]FF 2 + a(buay + boao)F(fey +
flp) + (buaf +0;23)GH + = a’H

where H= foy + 3ffy + 3Py + Fiyyy.

Since:
2
o, y, )= >.ck
i=1

Hence using eq.(1.14), one get:

¢ = ¢k + &k
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U c(Aq + hBy + FFCy + I'Dy) + G(A, + hB, + FFC, + I'D,) + O(H')

U GAL+ QA2 + h(GB1 + GBy) + (CiCy + 6Cy) + h(ciDy + D) +

where the coefficients;AB;, G and D, [1i =1, 2, are given above.

Comparing with the total differential expansiondgxk, y, h) of eq.(1.15)

d(x,y, h)yu f+ %hF + %hz(ny + G) +ih3[(3fxy + 3ff,, + fyZ)F + Gf,
F H] A+ O(H) e, (1.16)
where:
F=1f, + ff,
G = fy + 2ff, + 1,y
H = foxx + 3ffy + 3FFyyy + Fhyyy
Comparing (1.15) and (1.16), we have the followtages:
(i) Two stages implicit Runge-Kutta method of order,aohe
G+g=1
(i) Two stages implicit Runge-Kutta method of order o
ct+o=1
Ciy + G =1/2
(i) Two stages implicit Runge-Kutta method of order d, if:
ct+to=1
Ciy + Gy =1/2

Ci(bridan + bioa) + C(b2an + byoap) = 1/6
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clalz + Qa§ =1/3
(iv) Two stages implicit Runge-Kutta method of order 4, if:
ct+to=1
Ciy + G =1/2
C1(br1ay + biodp) + D21y + Do) = 1/6
clalz + Qa§ =1/3
(C1b11 + Gobag)(brady + bio) + (Cibiz + Gbzo)(D21ay + pop) = 1/24
Cran(buiay + biodp) + Gap(Da1dy + Iodp) = 1/8

cbna? +hyas) + o(bnal + hpas)=1/12
claf + c‘zag =1/4

From the above results, one can see that more aecurethods (of
higher order) could be obtained with small stadgas. example, one of the

solutions to the fourth order method is given by:

1 2 25 2 2 )

1
bll=b22=Zs bo=a -
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1.4 Stability and Convergence of Runge-Kutta
Methods [Butcher, 1987], [Lambert, 1973]

Since the purpose of numerical analysis is to sgTethe solution to
actual problems. It is important that what could t&led qualitative
properties of the numerical solution should resemthlose of the true

solution.

By stability analysis, we shall mean study of sqgclalitative properties
as boundedness and convergence to zero of numsalkdions, when these
properties are passed by the exact solution. Giaeslightly different
emphasis, this type of analysis is appropriate siodying the growth of

numerical errors in a computed solution to a défeial equation.

Remark [Atkinson, 1989], [Al-Kubeisy, 2004]:

Recalling the general form of Runge-Kutta metholicl is:

Y1 = Yn T DOXny Yoy D) e, (1.17)

which could be considered as a special case ofji¢heral Linear Multistep
Methods (for short LMM), given by:

k k
D0 ThY B s (1.18)
i=0 i=0

(indeed, one step explicit LMM). Therefore, the bsity of (1.17) is
equivalent to the convergence of (1.17) (i.e., istgband convergence of

Runge-Kutta are equivalent).
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Theorem (1.1):

Assume the consistency condition and suppose that:

Vort = Yn = DO (Xn, Vi D) ceree (1.19)

which is a special case of (1.18) as one step rdetith a; = 1, ap = -1,

Bo=1,B:=0and f=¢. Then (1.19) is converge if and only if it is zestable.
Proof:

Suppose that the method is convergent and to pgratethe method is

zero stable

Consider for simplicity the problem, ¥ 0, y(0) = 0, which has the exact

solution y(x)=0

Since =0, then for all i, we have k 0 and hencé =0

Therefore, the method takes the form:
Yn1~Yn=0

Therefore, the first characteristic polynonpét) is given by:
p(N=r—-1=0

thenr=1.

and since |& 1, then the method is zero stable

Conversely, suppose that the Runge-Kutta metha@ns stable and to

prove that the method is convergent
Similarly, for simplicity purpose considet y Ay, y(0)=1
To show that the term¢fiAh)]" in the general solution

Yo = [ro(Ah)]"

r
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will be converge to the exact solution y&)é™* on [0, b], and then can be

shown to be converge to the zero solution as-h 0
Expanding g(Ah) using Taylor’s theorem:

ro(Ah) = ro(0) + M\r'o(0) + O(H)
Hence:(using the consistency condition)

rro(o) — 0:(r0 (O))
P(r(0))

Since §(0) = 1. Then:

o) _
P'(D)

rlo(O) = 1

Hence:
ro(Ah) = 1 +Ah + O(Hf)
=" - o) + O(HF)
e
Therefore:
[FoA)]" = [ = & = &
Hence:

(I)\/Iaoé|[r0()\h)]”—e‘\Xn O-0asH -0 [J O

1.4.1 Stability of Explicit Runge-Kutta Method:

To obtain intervals of stability of 2-stages Rur§&ta method applied
to the test problem’ y= Ay,Re\) < 0, we have:

rr
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Yne1 = Yn + N(CK; + Cky)
where:
ky=1(Xn, Yn)
ko = f(x, + &h, Y, + &hky)
and for f(x, y)= Ay, we have:
K1 =Ayn
k2 = A(yn + a&Ahyy)
= Ayn + &\ °hy,
since:
Yns1= Y + N(@AYn + CAYn + GEohAYy)
= Vot (G + Q) AYn + Gahi %Yy, i =Ah
=Yoll + (G + Q) 7t + Gaoh ]

Hence, to find the roots of the first charactecigilynomialp(r) = 0, we have

to letting y,=1", so
M-l + (. +)h + Gaph? =0
{r —[1+(q+0) i +Gah’}t =0
and since't# 0, then:
r=[1+(a+c)h+cah’=0
le.,
r=1+(G+c)h +cah <1

since for 2-stages Runge-Kutta method, 2y we have:

re
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1
¢+ =1and QaQ=E
then:
r=14n 4+ L2
2

In order to get a method which is stable, we masehr| < 1, so:
u+h+1hﬂ<1
2
Then
1.,
-1<1+n+ 5 he<1l

Which implies that-2 < 7 < 0. So all = p=2 Runge-Kutta methods have an

interval of absolute stability to beZ, 0).

1.4.2 Stability of Semi-Explicit Runge-Kutta Method:

To obtain intervals of stability of 2-stages Rurggta methods. Also,

we consider the test problerh=yAy, where ReX) < O:
Yne1= Yo + h(ak; + cko)

where:
k1= A(yn + haky)
K2 = A(yn + hipiky + hbyoky)

SO.

re
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— )\yn[(l_hal)+hb21] —_ —_
ko = (1-7b,)1-713 ) , (I-7byy) (1-73) 20

SO.

AYa +Ayn[1—ha1+hb21]}
1-ha,  (-hb,)(Eha)

Vorr = Yo+
n+1 n 2

1, 1-hg+hb, }
)

_y .
ST Y e, (-nb, )t g

=y, + ﬁyn_(l_hbzz)"' A-na+n b21):|
27 (-nby,)1-1ra)

2(1-nb,) }
)

h
=Ynt ZVYn
727 @=nb,)a-na

h
=Vh 1
i)

So, the corresponding root is given by:

h o _1-ha+h _s+h
1-ha 1-ha S

r=1+ , h <0

Ss+h

Sor=—<1

Hence, the interval of stability is given by, 0).

1.4.3 Stability of Implicit Runge-Kutta Method:

To obtain intervals of stability of 2-stages, féurder Runge-Kutta

method given in section (1.3.2.3).

&4
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Consider the test problemy Ay, where ReX) < 0, hence:
Yne1= Yn + h(ak; + cko)
where:
ki = f(X, + ha, y, + biihk; + biohky)
k2 =f(Xn + ha, yn + baihk; + byohk;)
so for the test problem ¥ Ay, we have:

1 1 3
Ki=Ayn+ = hky+ (= — —)hk
1= AYn 5 1 (4 6) 2

1 /3 1
Ko=Ayn+ (= + ——)hki+ = hk
2 Yn (4 6) 1 1 2

Therefore, wheri = Ah, we have:

(411 +\/§Jh +(\/§Jh2_)\yn

6 24

3, 15 3

k=L L 1-She - 1P20
4 72 144
{1+\/§h})\yn
kz_ 1 1 ,1_lh+ih2¢0
2 12

and since:

Yn+1= Yn + h(GKy + Gky)

Therefore:

v
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I ERE) M) P P @h
N hy ., 4 6 24 N
yn+1 = yn
2 1 13545 Sy 1——1h+—1h2
4 72 144 2 12

T

— 6

=Yn| 1+ +

2—3h 15h2 3h3 2—h——1h2
2 36 72 6

So the corresponding characteristic root is given b

h— £i+\/§)h2+\/§ +£h2
_ 6
r=1+ +
2—§h 15h2 3h3 Z—h——lhz
2 36 72 6

Therefore, upon applying computer programm{(R@OT-RK Program), the

following interval of absolute stability is obtachewhich isz O (-

0 (-0.64, 0).

ry

1, -0.95)



CHAPTER TWO

MODIFIED RUNGE-KUTTA METHODS

2.1 Introduction

Derivations of explicit, semi-explicit and implidRunge-Kutta methods
are of great difficulties, especially when the swgof the method are
increased. Therefore, the need for simple andiefficmethods (with large

stages) is necessary.

In this chapter, we will present some modified Rexkgitta methods,
which has its basis on tridiagonally implicit metisoin which the diagonal
elements has an equal values. This method hasgdreeed to be stable and

convergent.

2.2 Fundamental Resultsin Runge-Kutta Methods

In this section, fundamental theoretical resultastoming Runge-Kutta

methods will be given, as well as, their proofs.

In order to give some results, for simplicity antheiut loose of

generality, the following ordinary differential eafion will be considered:

VR (07 ) I /s TP (2.1)

rA
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Therefore, one of the most important results (whare given in
[Butcher, 1987], [Butcher, 1964], [Al-Exander, 197ahd [Bickart, 1977]
without proof) in Runge-Kutta methods which hasuhibty of evaluating the
parameter of Runge-Kutta methods, namely. Bhis result will be stated in

the next theorem:

Theorem (2.1):

Consider the system:

A G I () B A - LD G Y (2.2)
then@= }, wherey = E Oi=1, 2, ..., randx, 3 are numerical coefficients
Yy a

independent of the form of f.
Proof:

Suppose that y, y* be the exact and approximatetisaks of equation

(2.2), respectively.

The equation defining y* for r-stages Runge-Kutitimods is:

r
y*=Yot hzci ki

i=1

where:

r
ki = f(yo'i'th”kJ], | = 1, 2, saay r

j=1
and g, ¢, 01, j=1,2, .., r; are constants to be determined.

The power series expansion of y and y* are respslgti

r
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r
Y=Yt ZGF?—' where F for the function f.

Y* = Yo+ ZBch -y

Since y and y* having the same order, then:

hl I
s B(pF(u ~1)!

and hence:

hl _ I
|(| -1)! B(pF(I -1)!

Therefore:

(p:

< Ik

o
It
The next lemma plays an important role in the baktheorem (2.2).

Lemma (2.1) [Butcher, 1987]:

Let U and V be 83 matrices, such that:

Wi Wiz O
uv = Wo1 Woo 0
0 0O O

Where w;wWs, — Wo1W1, Z 0. Then either the third row of U is the zero wect

or the third column of V is the zero vector.
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Remark:

Recalling the theory of Graphs and combining tng &iee with roots,¢
ra, .., ks then we write this tree symbolically as tg[t, .., t] and we can write
this conscience using the following notation whigthhe plans subscript on [

] to indicate repetition.

For example the treefit;tsto] can be written agt?] or [[[714] or [[74,.

Theorem (2.2):
Consider the system:

y'(X) = f(y), y = Yo at X=Xo

,fork<é&,where k=1, 2, ..., r, and

;
If o= =, r<g, thenZ:cjaE‘_1 =

1
y =

x|~

r is the number of stages of Runge-Kutta method &@edthe order of the

considered method.

Proof:

;

k-1 _

In order to prove thatZ:cjaj =
=1

, for k < &, we consider lemma

~|k

(2.1) in mind with:
UI =[cc & ¢

ul =l Ga Gay

r r ;
u§= ZCibiZ -Cr(l-ap) ZCibig -C3(l-a3) Zcibm —c4(l-ay)
i=1 i=1 i=1

1
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I r

o _152
ZbZJaJ 232
=1

ap a%
Vi=|ag|, V2= a% , V3 = Zb3]aj —%a%
ay as '
Zb4J j =32
with y(x) =k in@= l <&, where k<5 [Butcher, 1987], we have:
Y
ol vi= chak —@() = =
V([T]) 2
o= uvi=Y ol =qid) = —5— = 2
y([te) 3
T 3 3 1 1
Uz V2= ) Cpag =@([t]) = ==
; v’y 4

hence we can generalize the result for k > 3 taialihe formula:

chaj . fork<E

Remark [Butcher,1987]:

If the parameters,aa, &, ..., ¢ are those of a four-stage fourth-order
Runge-Kutta method it is possible to compufevi fori, j=1, 2, 3; since this

will be a linear combination of thg(x) for various x of order less than five

and will thus be equal to a certain number formmunfthe corresponding

Y(X).

s
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k
— a;
ak 1 _ 7

'
Hence the following formuIaZbij T cold be obtained to

Al

evaluate gs fori=1, 2, ..., rand k &.

2.3 Derivation of Some Implicit Runge-Kutta Methods

In this section, we shall try to derive some impliRunge-Kutta

methods including some modification and new ideaslériving.

2.3.1 Derivation of Two-Stages | mplicit Runge-Kutta Method:

Consider the two-stage implicit Runge-Kutta metheith the following

table of parameters:

11 D12 2]
021 22 29
Ct C

The Legendre polynomials will be used for derivihg method, where:

Po(X) = 1, pu(X) =X, PAX) = (X = B2)px(X) = Copo(X)

and
1 1
j x[p(x)]12dx [ x3dx
_ _ _
B, = 1 = 1 =0
j [py(x)]2 dx x2 dx
_1 *

rr
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1 1
prl (X)Po (x)dx Ixz dx
C,= -1 =1 = 1
2 1 1 3
[lootanZax [ x
-1 -1
Therefore:
1 _, 1
X) = (X-0)x— = =X"—=
P2(x) = ( ) 3 3

hence, the roots of the second degree polynoma) pt x=2a— 1 are given

by:

8,5~ F
g,2— 2

1
and a=

f 2 203

To find ¢ and ¢, use is made as given in section (2.2), whichsis a

i.e a—l
Ly —2

follows:

C1a] T 68 =1 ., (2.3)
1 1 _ 1
Ga; +Ga, = P (2.4)

Solving eq.(2.3) and (2.4) for end ¢, gives g = ¢, = %

Finally, to find k4, by, b; and B, use is made as given in section (2.2),

which is as follows:

re
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2 2K
> bjal™ ==t fori, k=1,2
=1 X

Hence:
b 0 0 _ — H—
18] +hoa, =a,k=1,i=1

bpad +had =ab, k=1,i=2

2
bual + hoab =a?1, k=2,i=1

2
boal + byab =a—22, k=2,i=2

Solving these equations fof', i, j= 1, 2, we have:
1 1 1 1 1 1
biy==,bp==-——F,bp==+—and ==
. 4blz 4 23 1 4 23 > 4

Therefore, as a result, we have the following fdenaf Runge-Kutta method:

h
Yns1=Yn + E(kl + ko)

where:

1 1 1

1
2—\/§)h, Yot —hky+ (= - 2—\/:—3)k2)

1
szXn+ -—_ =
1=K (2 4 4

1 1 1 1 1
ko =f(x, + (= + —=)h, y, + (= + —=)hk; + = hk,).

The stability of 2-stages implicit Runge-Kutta nmmdh had been

discussed previously in section (1.4.3) of chaptes.

o
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2.3.2 Derivation of Tridiagonals Three-Stages | mplicit Runge-Kutta
Method:

In this section, a modification is made in ordedgrive a new formula
of triadiagonals implicit Runge-Kutta method withet property that the
elements of each diagonal are equal, for simpli¢itg parameters related to

this method are presented in the following table:

() o &
o o 27
0 0 &
C1 G Cs

Following similar approach as in section (2.3.X)e @an find the values

of &, & and g by solving the third degree Legendre polynomiag, obtained

results are:
alzl’gb:£+@and _1—@
2 2 10 2 10

Similarly, using theorem (2.2) in section (2.2), van find ¢, ¢; and g,

where:

chak 1=— ,fork=1, 2,3

hence for k=1, 2 and 3, we have:

ra
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claf + Qa% + Q,ag =

Solving the above system fof, €, and g, we have:
c,=4/9 and ¢=c3;=5/18

Finally to find,w, d ando use is made as given in section (2.2) in which

the consistent equations are:

k
_ - - a .
brak™ + bpas ™t + bysal 1=?1, fori=1
k k k a$
b21a1_1 + bzzaz_l + b23a3_1 = ?2, fori=2

K
_ _ 4 a .
barak™ + byas L + bysals 1=—k3,for|=3

Hence for k= 1, we have:

by + bt b=y
Do+ 00+ Doa= Agr o (2.8)

bs; + gy + baa= a5

For k=2, we have:

2
a
byja + byay+ bisaezfl
_a
b,,a,+ by,a,+ b23ag—? ....................................................... (2.9)

2
a:
bssa + byra,+ bssafzs

ry
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and for k= 3, we have:

a

b113‘% + b.L26?f2+ b13é3=§

3
1

a
3

b21a§ + bzz"’?fz"' b, &=

3
a
b31a§+ b32°)"2+ b3 233

Since Q1 =Dy =033 =W bio=0by=0, 1 =bs;=0and h3=b3; =0

From equations (2.8), we have:

w+ao+ Ozé ........................................................................... (2.11)

E‘>+m+cr:1 +£ .............................................................. (2.12)
2 10

048+ W= = = S ] (2.13)
2 10

Solving equations (2.11), (2.12) and (2.13)dpd ando, we have:

I BN

w=— andd= —
2 5 5 10

In summary, the results are given in the followiable:

A
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1415 15 0 1
2 5 5 2
s 1 VB VB | 1 415
10 2 5 5 2 10
0 5 1 15 | 1_ S
10 2 5 2 10
4 3 3
9 18 18

2.4 Stability of Tridiagonals Three-Stages | mplicit Runge-Kutta

Method:

To obtain intervals of stability of 3-stages Run¢gta method, we

consider the test problem ¥ Ay, where ReX) < 0. Recall the tridiagonals

three steps implicit Runge-Kutta method:

Yne1 = Yn + N(GK1 + GKz + k)

where:

K1 =A(yn + hbyiKs + hboks + higigks)
Kz = A(yn + hiyiKy + hipoks + higygks)

ks = A(yn + hisiKy + hisoky + higgks)

Hence, we have:

1
Ki=Ay, + h(E

and

N T

—)k1 h ?kz, BZAR e, (2.14)

r4
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k2=)\yn+ h@kl"' h(1 E)k2 h£k3 ....................... (215)
10 2 5
Also:
Ks=Ay,+ & @kz + 7 (l E)kg .......................................... (2.16)
10 2
Substituting equations (2.14) and (2.16) in equitib15), we get:
J15
Y, h—k2
kzz)\Yn+h\/l—5 "‘h(1 E)kz
10 1- 1 \/_5 2
2 5
J15
p V15 Mo th g e
5 1 15
1-| =——|n
Then after some simplifications, we have:
1‘@ ‘J;_S]"’ JE) T
— [ (3] 2o
1- 1 _@ A —§h2
2 5 5

Substituting k in equation (2.14), yields:
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Then after some simplification, we get:

1+[3\/E—1]h+[7—3/_5jh2

1
5 4 10

[ (o5

BB

substituting kin equation (2.16)

Ki=Ayn

1 15
J15 Pl
Ay, +AY, I

Tenle

2 5 5

1__[1_@],@

2 5

Hence, after some simplifications:

£
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1+[*/E —1);-1 +[1—*/1_5]h2
2 4

BB
BB B

k3 = )\yn

Therefore:
1+(3@—1]h+(7—ﬁ5]h2
Yn+t1=Yn t+ hyn ﬂ > 4 10
(SGsREsatEa)
I 5 4 5 2
([ 115),
5 2 2

R
2 5 5

s o i
A (]

Hence, as a result, we have:

£y
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13h+[731\/1_5—13Jh2+[19—M5J
U ]
i 2 5 4 2 5
N srs] ’
2 2 )

1yn=r

18 1- 1—@ h 54h
2 5 5
Hence the corresponding root is given by:

1% +£73I{)E— 13);-12 +[ 19—J

N[y See

5h+(5 5\/—5j

r=1+

2
18{1— (l —\/Ejh} 54h
2 5 5

using computer facilities, one can find the valagg , which satisfying |r|<1.

Therefore, upon applying computer programm{R@OT-RK Program),
the following interval of absolute stability is @oted, which ish O (-9.5;-1)
[ (-0.637, 0).

£r



CHAPTER THREE

VARIABLE STEP AND VARIABLE
ORDER RUNGE-KUTTA METHODS

3.1 Introduction
Modifying the results obtained from numerical agmioes is one of the
fundamental aspects in numerical analysis in witheaim is to reduce the

error terms imbedded in the methods, or the |agoalction error.

Hence this chapter consist of introducing two fundatal approaches
for reducing the error terms, which are the vagafitep size methods and
variable order methods for the numerical solutib@BE using Runge-Kutta

methods.

3.2 Variable Step Rung-Kutta Methods [James, 1992], [Jassim,
1999]

Error terms for members of the Runge-Kutta familge aather
complicated than in LMMS. They become more so fghar-order methods
such as classical Runge-Kutta which is locally {(Rortunately it turns out
that reasonably effective estimates of stepsizeireq to attain a specified
local truncation error can be found that use otlg order of the local

truncation error and do not require further knowleaf the form of the error
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term. The first variable-stepsize method, whicH té consider here, is based
upon comparison of the estimates for one and tepsstor the value of y at
some time obtained by a Runge-Kutta method withll&rcincation error term
that is of the form Ch where C is a constant to be determined. Suppade t
one are already in position of an estimatingfgr y(x) and a candidate

stepsize h The Runge-Kutta method is used to calculgfg and y)

x+hg ?
approximations to y(x+f) using stepsizes ofphand k/2, respectively. If

Eest =

Yidn — y(j)h)‘ is less than certain tolerance (tol), than theenamrcurate

of the two approximationsy'?) , is accepted as the approximation for y(x +

x+hg ?
ho). Whether or not the approximation is acceptednesd a new estimatg,h
of the stepsize that will produce an approximatisithin the specified
tolerance. If the approximation was accepted, thlse will be used asyhn
the next step; if not, then it will be used asdpeating the current step. To

find hy, , it IS noticeable that

n h " n
et =Y, —y‘j}rb\m Chy- C(?OJ = (1= 2")CH e (3.1)
This gives the value of C, to be:
oL T (3.2)
(L-2")K

Since R, is to satisfy to¥Ch_ , then it is found that

tol ?

h, = {a%)to'} Pl veeveesetereeeeese st reen e (3.3)

est

At the start of the application of the variablepsize process, we

havey, =Yy,.Locking any better information, s taken to be xXo.
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3.3 Variable Order Methods [James, 1992], [Jassim, 1999]

Let A(h) bea scheme for approximating some quantity A(0); that is,
Iri]rrg A(h) = A(0). The parameter h is typically the intervabit. It is assumed

that the error of approximation A(8)A(h) has an expansion in powers of h

whence.
A(Q)=A(h)+ah+alf+ af+ ah+ i, (3.4)

Recall that Richardson entrapolation entails usipgroximations A(),
A(hy), A(hy),...with hy > h; > h,... to successively eliminate the terms in the
error expansion. Thereby producing approximatiohsigher and higher
order. The sequence used was h/2,j=0, 1,2, ..., where h is some starting
interval width; however, for our present purposésep sequences fhmay
be more advantageous. If & (3.4) is not zero, then the approximation

scheme A(h) is only O(h). To obtain an &(approximation we note that

A(0)=A(h,) +ah,+ a, i+ a B+ g fy+ |
A(0)=A(h)+ah +a K+ af+ gh+ .|

Upon subtracting dtimes the second equation fromtimes the first and
solving for A(0), one can obtain.

h,A(h,)—h,A(h
A0) = 1A r?l)‘h(())A( l)“"‘zhohl‘""efbhl(hb+ hy a By b 4o

h,)—A(h
o)+ - an 1 2y b D) GO
Thus:
A,(hg):=A(h) + Ay =AM (3.7)

hy/h -1
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Is an OfZ) approximation to A(O) since;khy. Since any pair hhy
could be used in the elimination process aboves this easily seen that:

Alh;,)-Ah)
hi/h, -1

Al(hj) = A(hj+1) b 3.8)

Is an O(njz) approximation to A(0). It is know have:

(3.9)

AQ)=Ah) -ahgh- ahphy (hy iy g hh s ke %) }
A©) =Ayh) -ahh,- aghh, (h+ ) g hh (i iy *hy)

Upon eliminating the terms involving,a

A(0) =A2(h0)+a3h0h1h2+ a4ho hlhz (h0+ h1+ hz-b ............. (3.10)
where:
Ah)-A(hy
A.(h.)=A,h)+ 11 B, 311
o(hg)=A4hy) hy 7, — 1 ©)

is an Of?) approximation to A(0).
More generally:

A (h...)-Ah)
. 1Mjn 1\
ASN) = A (N ) e 3.12
2 J) i J+1) hj/hj+2—1 ( )

IS an Oh?) approximation to A(0). Continuity in this mannethen

recursively, a sequence can be defined by:

Ag(h))ZAMN) e (3.13)

and
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An—l(hj+1) —A n—l(hj) n

Anh)=A__(h )+ n=1.2,...
i h/h,, -1

iS obtained.

On the basis of the results for A(rand A(h;), it seems that &h;)
provides anO(thJ’l) approximation to A(0). This may be verified ditlgdy

following the evaluation of the general terghain the error expansion but is
perhaps obtained more easily by an alternativecsmbr.

The recurrence relations, could be illustratecalvie (3.1).

Table (3.1)

Ao(hy)

Aolhy) —5 Ay(hg)

T~

Ag(hy) 3 Ayhy) — A0y

T~

Aq(hy) T Ah,) — 3AL(h)— AN

The Lagrange interpolating polynomial for the distipoints (g,A(hg)),
(hy,A(hy)),...,(h,A(hy)) is

P (h) = Alhp ]+ Alh L J(h=hp)+ Alhg, by b S0(h= 1y
(h—h _)+..# Alh ,h ..k bl b b

(D= )= 1 ) (3.14)
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It is easily seen that,@®)=A,(hy), which is why the process is referred to
as extrapolation. From the remainder term of tlgealage formula recalling

that, the K-th divided difference of a function)@an be approximated by:

()

XXy X, 1= (k+1)!

for some point in the interval spanned by,x, ..., X.

It follows that error made in approximating A(0) bi,(0) is

h,..h with 0 < n < hy whence it is an Q")

approximation.

Table (3.1) shows that the extrapolation sequersmeemted by the
formulas (3.13). Only the first column requires kgation of the method
A(h). The higher-order refinements are generatedshwple arithmetic

computations and thus are inexpensive in termgwipeiting time.

3.3.1 Richardson Extrapolation

Let A(h) be a scheme for approximating numericalyuantity A(O)

which depends upon a parameter h in such awayma}t(h) = A(0).

Suppose moreover that the error made in approxigati(0) by A(h)

has for some Kl a power series expansion in h of the form

A(0) - A(h) = iamhzi TS Y(LiadieD DO 13)
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3.3.1.1 The Central Difference Formula

Consider the central difference formula for appneting the first

derivative.

cent =T +h)2"hf(x L (3.16)

f'(x)0 O

Let us show that the expansion of the error madethgy central

difference formula has the form (3.15). Fdd {C*"*! we have from Taylor's

theorem
on £()) ' 2N £()) '
ol =2—t ;@ +O(h2N+1)—j;:W+O(h2N*1) ........... (3.17)

Observe that the even powers of h cancel wherkeasdd powers sum
together, this gives:

N-1
F'(X) = Ogene,f ==DF @R *HO(M ) (o, (3.18)
k=1

which is of the form (3.15).

The process of Richardson extrapolation consistsswécessively
eliminating terms in the error expansion to prodapproximations of higher

order.

From (3.15), we have:
A©) = A(h) + a7+ O(™*)
A =AC) + Y a, )1+ O(F™)

Multiplying the second equation in (3.19) by 4 aubtracting the first
yields.
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3A(0) = 4A(gj—A(h)+i(zz—}_2—1jazj )+ 0Nt (3.20)

The multiplicative factor 4 was chosen to makettheerms canceled.
Equation (3.20) shows that

h

4A(2j -A(h)
A(h):= T ——— (3.21)

is an O(H) approximation to A(0). Observe that we did nauadly need to
know the value of the coefficient Aut only that the error expansion had the
form (3.15). In a similar manner, the process cawdntinued. From (3.20) it

Is know that:
_ 3_ 4
A(0) —Al(h)—za4h + ...
By eliminating the fiterm, the order-six approximation will be obtained
given by:

6A. (h/2)- A, (h
A, (h) = 2oA 15) A (3.22)

In general, one obtains recursively the ¥ approximations
Ao(h) = A(h)

A"A_(h/2)- Ay (h)
4 -1

Ap(h) =

for the Richardson extrapolation process.
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3.3.1.2 Extrapolation of The Central Difference Formula

Substituting the central difference approximatiseg section 3.3.1.1),
A(h) = [f(x + h) = f(x = h)}/2h into (3.21), the fourth-order approximatio

will be obtained as:

AL(h) = f(x —h) —8f (x —h/2)(;rh8f(x+ hi2yfxeh) (3.24)

to the first derivative. In turn, substituting (8)2into (3.22) yields the

sixth-order approximation.
Ah) =i{—f(x -h) +16f(x —Dj - 64f( X —hj + 64( X +—hj —16( X +—g +1(x+ h)}
30h 2 4 4,

Clearly, using the extrapolation formula (3.23)generate formulas for
higher-order approximations becomes very cumberséorunately, it is not
necessary to have explicit formulas available touwtate the numerical values

of the higher-order approximations.

3.3.1.3 Euler-Maclaurian Summation Formula

Observe that while in (3.15),it is assumed thateéher expansion had
only even powers of h, this is not strictly necegsdahe process could be

carried out if the error expansion was of the form

A(0) - A(h) =ZN:aj 0 (4 U (3.26)

however, at each level of the extrapolation tabte torder of the
approximation on the diagonal would be only oneatge than on the

succeeding level rather than two greater for tlieapwlation table for (3.15).
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For the reason extrapolation is more effective wiiee underlying

method of approximation A(h) has an error expansiatime form (3.15).

The reason for the choice of the trapezoid rulehasbase method of
approxXmation is that its error expansion is of the form (3.15); that is, it has
only even powers of h. This is the content of thbeEMaclaurin Summation
formula, which is used as well in order branchesmaithematics such as
number theory. The formula involves Bernoulli numsbavhich will be

discussed shortly.

Before setting up Euler’'s theorem, first the follog/ for constructing,
the so called Bernoulli’'s numbers using recurremregation will be

introduced.

3.3.1.4 Bernoulli Numbers [Knuth, 1973]
The Bernoulli numbers are defined by

oood oty
B, = 'T'mﬁ(et—-lj TZ0, 1, e e, (3.27)

From this definition they are easily seen to themaerators of the

coefficients of the Maclaurin expansion

t _<Bi
L =N T oo (3.28)

The Bernoulli numbers may be calculated from th¥ang theorem.

Theorem (3.1)

The Bernoulli numbers satisfy the recurrence refati
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1 i+1
Bo=1,B. '_1_11 (Jk jBk,jzl, 2 e e, (3.29)
k=0

Proof:
From (3.28), we have:

t:(iB_—ljtjj(et 1)

=0 J

Equating like powers of t gives,B 1 and

j-1 Bk _
Zk!(j —k)!

k=0

forj=1,2,3,.... Solving for B, yields

B,
L=~ )'Z—k,( T

k=0

2N e,
2w
Jizo\k

which is eq.(3.29).

From (3.29) it can be verified thayB 1, B, = -1/2, B, = 1/6, B = 0,
and B,=-1/30. Itturns out that;B-0 forodd j=3. ] O
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Theorem (3.2) (The Euler-Maclaurian summation formula):

For fO0 C*"™Ya,b],

Jr0dx=h3-1(x) + Dif(0) ~1(@)] -

n B,h3 .
2 — —
Zﬁ[f @i D) -f Cr@))+0oh?" Y ... (3.32)
j=1 -
where x=a +ih, i=0, 1..., N, with h= (b — a)/N, and the B are Bernoulli

numbers.

The first two terms on the right-hand side of (3.8®%yether constitute
the composite trapezoid rule. Hence the Euler-Maclaformula status that
the error expansion for the trapezoid rule appratiom to a definite integral
has the form (3.15)

2j

. B,h3 |
Ecyag( = - [f @D(0) - f @D@)+ 0(h®"™Y)....oooo (3.33)
P (@)
Proof:
Let:

I(f):= [f(x)dx , Ry (f)= hZf(xi), Ey, (F):=1(f) =R (f)

Observe that Rf) is simply the Riemann sum approximation to f¢y
N subintervals with left endpoint evaluation andtthy(f) is the error made
by this approximation. To show that foEfC™a, b],

~Bh
E,, () =—Z#I(f DY + O™ e, (3.34)

=
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Upon setting m= 2n and noting that B= -1/2, By, = 0 for j= 1, and
I(f (D) =f (j_l)(b) —f (j_l)(a), this becomes the Euler-Maclaurin formula

(3.32).
Note that:

| %th
EN(f):Z[ j f(x)dx—hf(xi)]

i=0 )(i

N-1
= 20 e (2 RS (3.35)

Let us first find the Maclaurin series expansiontfee error gh) on the
ith subinterval with respect to the subinterval thich. Let 1C™a, b].
Immediately €0) = 0, and sinceg (h)=f(x + h)-f(x ), € (0)=C also.

From then orei(j) (0)= £ (% ). This gives the Maclaurin expansion:

T h™*2
e (h)= Z -f ()ﬁ)+( n2)

1=2

where(; [ (X;,Xi+1). Substituting (3.36) into (3.35);

—1m+1 N-1 ,m+2
E, (f f(J 1) SLLFIC 3.37
N ()= Zoé i (X )+Z(m+2)! (&) (3.37)
Now:
N-L hm+2 (rT’H-l) 1 (b_ AL -
> et s B g
sw max | f(M* 1 (x){ ...................... (3.38)

(M+1)! acxchd

56



Chapter Three Variable Step and Variable Order Runge-Kutta Methods

Thus the remainder term in (3.37) is O®. Upon interchanging the

order of summation (3.37), one can:
m+1hJ

En=2

=2 '

m+1,i-1
-y g (f(J DY O™ Y e, (3.39)
= |
After a shift of the index j this gives:

I(f) =R (f) + mh—R NEDY+O(™) e, (3.40)
J-l( 1)'

Substituting {-Ey for Ry yields finally:

m pi J J I
E ()= Z(Hl)'[l(f”) “E (f”)}+0(h Y (3.41)

JEil

Note that a particular consequence of (3.36) isififad C'[a, b], then
Ex(f) is O(h). Thus if fO C[a, b], then fOC[a, b] whence K(f') is O(h), and
again from (3.41), it follows that:

Ey (f) =gl(f') +0(h?)

= =B+ O(h? )i (3.42)

which is (3.34) for n¥ 1.
We now establish (3.34) in general by induction tbe degree of
differentiability m+1. Assume that for L < m[F C-*"'[a, b] implies that:

k

L B, h s
Ey (f) =—kz::1%|(f N O™ e, (3.43)
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Let us show that (3.43) holds for £ m. If f O C™Ya,b], then
f O OC™a,b] whence (3.43) holds with E m — j + 1. Substituting this
into (3.41), gives:

Ey (f) = Z 1(F Dy + Z I(f U [+o(h ™Y

= (j+1)! (= k!
N m+
& () %)+ Zlkz—lkl( +1)! ( fU%) +0(h™) . (3.49)

Rearrangement of the double sum in (3.44) yieldsiin

o o e B me
= JZI(J"']-)I(f )+Zh « )Zk'( Sy o)
m th f(J) ' J+1 -
"2 (Jil)'){B +Z( k JBK}Mh )
oL hj|(f(1)) iB hm+1 3.45
2 (j+1)! (=01B ) +O(™) oo (3.45)

from theorem (3.1). This demonstrates (3.34) anttéehe Euler-Maclaurin
formula. | O
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CHAPTER FOUR

NUMERICAL AND COMPARISON
RESULTS

4.1 Introduction

This chapter, is devoted for illustrating the numerical Runge-Kutta
methods derived and discussed in chapter one and two, thisis done by solving
examples using these methods, then comparing the results with the exact

solution which given have for comparison propose.

The results are presented and tabulated in a table which consists also

the error terms.

In addition, numerical examples illustrating variable order and variable
stepsize methods discussed in chapter three are present, with its comparison

with the exact solution.

4.2 Numerical Examples
Example (4.1):

Consider thefirst ordering differential equation:
y=-y+x+1
with initial solution y(0) = 1.
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In order to give a comparison and describe the precision of the
previously derived methods of Runge-Kutta, we can easily find the exact

solution:
y(X) =e” + X
Therefore using the 2-stage explicit, 2-stage semi-explicit, 2-stage
implicit and tri-diagonal implicit Runge-Kutta methods, and upon exciting the

computer programs (ERK), (SERK), (2IRK) and (3IRK), we get the results
presented in tables (4.1) and (4.2) with step lengthsh = 0.1 and h = 0.01.

One can see from error estimation of the results that (2-stage implicit)
IS the more accurate. Also three stages implicit tri-diagonal gives reasonable

agreement exact solution.



1.00000000

Table (4.1) Numerical results of example (4.1) with step length h =0.1.

Explicit

Semi-explicit

Two stagesimplicit

Three stagesimplicit

Numeric
solution

1.00000000

0.00000000

Numerical
solution

1.00000000

Error

0.00000000

Numerical
solution

1.00000000

Error

0.00000000

Numerical
solution

1.00000000

Error

0.00000000

1.00483741

1.00500000

0.00016258

1.00482757

0.00000984

1.00483743

0.00000001

1.00466161

0.00017580

1.01873075

1.01902500

0.00029424

1.01871293

0.00001781

1.01873077

0.00000002

1.01841263

0.00031811

1.04081822

1.04121762

0.00039940

1.04079403

0.00002418

1.04081825

0.00000003

1.04038650

0.00043171

1.07032004

1.07080195

0.00048190

1.07029087

0.00002917

1.07032008

0.00000003

1.06979924

0.00052079

1.10653065

1.10707576

0.00054510

1.10649766

0.00003299

1.10653070

0.00000004

1.10594167

0.00058898

1.14881163

1.14940356

0.00059193

1.14877580

0.00003582

1.14881168

0.00000004

1.14817217

0.00063946

1.19658530

1.19721022

0.00062492

1.19654748

0.00003782

1.19658535

0.00000004

1.19591032

0.00067498

1.24932896

1.24997525

0.00064629

1.24928985

0.00003911

1.24932901

0.00000005

1.24863103

0.00069793

1.30656965

1.30722760

0.00065794

1.30652984

0.00003981

1.30656971

0.00000005

1.30585927

0.00071038

1.36787944

1.36854098

0.00066154

1.36783941

0.00004002

1.36787949

0.00000005

1.36716530

0.00071413
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1.00000000

Table (4.2) Numerical results of example (4.1) with step length h =0.01.

Explicit

Semi-explicit

Two stagesimplicit

Three stagesimplicit

Numeric
solution

1.00000000

Error

0.00000000

Numerical
solution

1.00000000

Error

0.00000000

Numerical
solution

1.00000000

Error

0.00000000

Numerical
solution

1.00000000

Error

0.00000000

1.00483741

1.00483893

0.00000151

1.00483731

0.00000010

1.00483741

0.00000000

1.00483581

0.00000159

1.01873075

1.01873350

0.00000274

1.01873057

0.00000018

1.01873075

0.00000000

1.01872785

0.00000289

1.04081822

1.04082195

0.00000373

1.04081797

0.00000024

1.04081822

0.00000000

1.04081429

0.00000392

1.07032004

1.07032454

0.00000450

1.07031974

0.00000029

1.07032004

0.00000000

1.07031530

0.00000473

1.10653065

1.10653575

0.00000509

1.10653032

0.00000033

1.10653065

0.00000000

1.10652530

0.00000535

1.14881163

1.14881716

0.00000552

1.14881126

0.00000036

1.14881163

0.00000000

1.14880581

0.00000581

1.19658530

1.19659114

0.00000583

1.19658491

0.00000038

1.19658530

0.00000000

1.19657916

0.00000614

1.24932896

1.24933500

0.00000603

1.24932856

0.00000040

1.24932896

0.00000000

1.24932261

0.00000635

1.30656965

1.30657580

0.00000614

1.30656925

0.00000040

1.30656965

0.00000000

1.30656319

0.00000646

1.36787944

1.36788561

0.00000617

1.36787903

0.00000040

1y

1.36787944

0.00000000

1.36787294

0.00000650




Example (4.2):

Consider the first ordering differential equation:
y' =-2y+2x%+2X
with initial solution y(0) = 1.

In order to give a comparison and describe the precision of the
previoudy derived methods of Runge-Kutta, we can easily find the exact

solution
Y(x) = Ex°
Therefore using the 2-stage explicit, 2-stage semi-explicit, 2-stage
implicit and tri-diagonals implicit Runge-Kutta methods, and upon exciting
the computer programs (ERK), (SERK), (2IRK) and (3IRK), we get the
results presented in tables (4.3) and (4.4) with step lengths h = 0.1 and
h=0.01.

One can see from error estimation of the results that (2-stage implicit)
IS the more accurate. Also three stages implicit tri-diagonal gives reasonable

agreement exact solution.



1.00000000
0.82873075
0.71032005
0.63881164
0.60932896
0.61787944
0.66119421
0.73659696
0.84189652
0.97529889
1.13533528

Table (4.3) Numerical results of example (4.2) with step length h =0. 1.

Explicit

Semi-explicit

Two stages implicit

Three stagesimplicit

Numeric
solution

1.00000000
0.83100000
0.71422000
0.64386040
0.61516553
0.62423573
0.66787330
0.74345611
0.84883401
0.98224389
1.14223999

Error

0.00000000
0.00226925
0.00389995
0.00504876
0.00583656
0.00635629
0.00667909
0.00685914
0.00693749
0.00694500
0.00690470

Numerical
solution

1.00000000
0.82862297
0.71013659
0.63857652
0.60905998
0.61758963
0.66089300
0.73629104
0.84159052
0.97499593
1.13503735;

Error

0.00000000
0.00010779
0.00018346
0.00023512
0.00026898
0.00028981
0.00030122
0.00030593
0.00030600
0.00030296
0.00029793

Numerical
solution

1.00000000
0.82873112
0.71032064
0.63881237
0.60932976
0.61788026
0.66119502
0.73659773
0.84189724
0.97529955
1.13533589

Error

0.00000000
0.00000036
0.00000060
0.00000073
0.00000080
0.00000082
0.00000081
0.00000077
0.00000072
0.00000066
0.00000060

Numerical
solution

1.00000000
0.82647915
0.70648957
0.63390472
0.60371746
0.61183550
0.65491428
0.73022029
0.83551949
0.96898602
1.12912761

Error

0.00000000
0.00225160
0.00383048
0.00490692
0.00561151
0.00604394
0.00627993
0.00637667
0.00637703
0.00631287
0.00620768
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Numerical and Comparison result

1.00000000
0.82873075
0.71032005
0.63881164
0.60932896
0.61787944
0.66119421
0.73659696
0.84189652
0.97529889
1.13533528

Table (4.4) Numerical results of example (4.2) with step length h =0.01.

Explicit

Semi-explicit

Two stages implicit

Three stagesimplicit

Numeric
solution

1.00000000
0.82875099
0.71035484
0.63885671
0.60938110
0.61793626
0.66125396
0.73665838
0.84195869
0.97536118
1.13539727

Error

0.00000000
0.00002024
0.00003480
0.00004507
0.00005214
0.00005682
0.00005975
0.00006141
0.00006217
0.00006229
0.00006199

Numerical
solution

1.00000000
0.82872962
0.71031812
0.63880917
0.60932614
0.61787640
0.66119105
0.73659376
0.84189331
0.97529571
1.13533216

Error

0.00000000
0.00000113
0.00000192
0.00000247
0.00000282
0.00000304
0.00000316
0.00000321
0.00000321
0.00000318
0.00000312

Numerical
solution

1.00000000
0.82873075
0.71032005
0.63881164
0.60932896
0.61787944
0.66119421
0.73659696
0.84189652
0.97529889
1.13533528

Error

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

Numerical
solution

1.00000000
0.82871258
0.71028912
0.63877200
0.60928362
0.61783058
0.66114343
0.73654538
0.84184493
0.97524781
1.13528505

Error

0.00000000
0.00001817
0.00003093
0.00003964
0.00004535
0.00004886
0.00005078
0.00005158
0.00005159
0.00005108
0.00005024




Example (4.3):

Suppose one have to approximate the solution of y(0.3) to within an
accuracy of tol = 0.05 for the initial value problemy’ =5(x — 1)y, y(0) = 5.
The Runge-Kutta method which will be used, and hencen=2in (3.3).

The processis started with y, = 5, hg = 0.3. Thus we have:
Stepl: First try:
Xx=0,hy=0.3,x+hy=0.3
Applying the Runge-Kutta method with one and than two steps gives
ySl = 25626, y{?) =1.598, E,, =0.9645

which is still slightly above the specified tolerance On the basis of the new
value of Eeg, formula (3.3) now predicts that hy, = 0.0592 will suffice. This
gives.

Second try:

x =0, hy =0.0592, x + hy = 0.0592

The Runge-Kutta method approximations are
yg.-)0592 = 376991 yg?())592 = 37558, Eest =0.0141

and thus the estimated error is now within the given tolerance. Hence we
have the approximation y(0.0592) I 3.7558. In fact, from the actual
solution y(0.0592) = 3.7517, and thus the true error, 0.004, is smaller than
the estimated error E4. On the basis of the new value of Ecg, formula (3.3)
predicts that a stepsize of hy = 0.0965 is required to attain the error

tolerance. We use thisasthe initial hy in the next step.
Step.2: First try:

X =0.0592, hy = 0.0965, x + hy = 0.1557
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The Runge-K utta approximations are
vy =2.4856, y3A.. =245 E=0.0356
0.1557 . v J0.1557 ' ) —edt :

and thus the tolerance is achieved the first try. Hence y(0.1557) LI 2.45,
and formula (3.3) gives the estimate hy, = 0.0991 for use in the next step.
The actual value of the solution isy(0.1557) = 2.4389, and thus at this point

we arein error by 0.011.
Step.3: First try:
X =0.1557, hy = 0.0991, x + hy = 0.2548

The Runge-K utta approximations are
Y§heis =1.6744, y{2c,e =1.6567, Eey = 0.0177

and the error estimate is again within tolerance. Formula (3.3) suggests a

stepsize of 0.1442; however, the distance to x; = 0.3 isonly 0.0452.
Thus we use the stepsize hy = 0.0452.
Step.4: First try:
X =0.2548, hy = 0.0452, x + hy = 0.3
The Runge-K utta approximations are
ySk =1.4082, y{2 =1.4073, E = 0.0009

and we obtain the approximation y(0.3)1 1.4073, which isin error by 0.01.

When it is specified that an appropriate solution is desired with an
error no more than 0.05, this is, of course, a statement concerning the
global truncation error, while the choice (3.3) of hy, is made to control the

local truncation error at each step.

Thus it is fat from certain that we will obtain the specified accuracy.

However, note that while hy, is chosen so that the one-step approximation

v
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yf(llho IS accurate to within the given tolerance, the two-step approximation

y2y, which is more accurate by a factor of 2", is actually used. This help

to compensate for the fact that we are controlling local, rather than global,

error.

Example (4.4):

Suppose one have to approximate the solution of y(0.5) to within an
accuracy of tol = 0.05 for the initial value problemy' = 5x — 2y, y(0) = 1.
The Runge-Kutta method which will be used, and hencen=2in (3.3).

The processis started with y, = 1, hy = 0.5. Thus we have
Step.1: First try:
X=0,hp=05,x+hy=0.5
Applying the Runge-Kutta method with one and than two steps gives:
y§l =1.125, y{2 =0.8789, E, =0.2461

Which is gtill slightly above the specified tolerance On the basis of the new
value of E., formula (3.3) now predicts that hy = 0.1952 will suffice. This
gives

Second try:

X =0, hg =0.1952, x+hy = 0.1952
The Runge-Kutta method approximations are

Y§hes2 =0.7811, y{Ags, = 0.7652, Ee = 0.0159

and thus the estimated error is now within the given tolerance. Hence we

have the approximation y(0.1952) 1/ 0.7652. In fact, from the actual

TA
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solution. y(0.1952) = 0.7608, and thus the true error, 0.004, is smaller than

the estimated error E.4. On the basis of the new value of Ecg, formula (3.3)
predicts that a stepsize of hy = 0.2998 is required to attain the error

tolerance. We use thisasthe initial hy in the next step.
Step.2: First try:

X =0.1952, hy = 0.2998, x + hy = 0.495
The Runge-K utta approximations are

yos =0.8735, yiA: =0.8355, Ee = 0.038

and the error estimate is again within tolerance. Formula (3.3) suggests a

stepsize of 0.2978, however, the distanceto x; = 0.5 isonly 0.005.
Thus we use the stepsize hy = 0.005.
Step.3: First try:
X =0.495, hy =0.005, x + hy = 0.5
The Runge-K utta approximations are
ySl =0.8396, y{2 =0.8395, E = 0.0001

and we obtain the approximation y(0.5) I 0.8395, which is in error by
0.012.

Example (4.5):

Consider the following differential equation y' = f(x, y), y(0) = 5
where f(X, y) =5(x — 1)y . The process is started with y, = 5, hg = 0.1. Thus

we have
x =0, hO:O.l,X+h0=O.1

Applying the Runge-Kutta method with one and then two steps gives:

14
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y$ =3.1875, y{2 =3.1262
Substituting y§} and y{2) into eq.(3.7), we have:

y(xn) = 3.064

with estimated error equals to 0.045.

Example (4.6):

Consider the following differential equation y' = f(x, y), y(0) = 1
where f(x, y) = 5x — 2y . The processis started with y, = 1, hy = 0.3. Thus,

we have:
Xx=0,hp=0.3,x+hy=0.3

Applying the Runge-Kutta method with one and then two steps gives
y§L =0.805, y{%) =0.7488

Substituting ygl_é and yg?% into eq.(3.7), we have:

y(X,) =0.692

with estimated error equals to 0.043.



Conclusions and Recommendation

From the present study of this thesis we conclude and recommend the following

1.

The 2-stages implicit Runge-Kutta method is the most accurate method
than other Runge-K utta method.

The improved tridiagonal method is so easy to drive which are indeed
implicit method and therefore to drive improved method with five
diagonal and proving its stability.

Variable step size and order methods are the most accurate methods which
had reduce the error bounds.

Comparing between variable order and variable step size Runge-Kutta
methods.

Using Runge-Kutta method for solving delay differential equations.
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| ntroduction

There is no general agreement on how the phrasaémcal analysis"
should be interpreted. Some see “analysis” as tevkord and wish to
embed the subject entirely in rigorous modern asig/yothers suggests that
the "numerical" is the vital word and the algorithenthe only respectable
yield. Numerical methods usually produces errorgl ave say that any
numerical technique is a good one if the error appin quickly or rapidly to
zero and the method requires a minimum computeaagpand less time

consuming as possible.

In the eighteenth century, mathematicians encoedtedifference
differential equations because they were tryingxtend their knowledge of
the mechanics of discrete particles to the meckawfithe continuum, which

later came to be studied in terms of partial déferal equations.

On the other hand, many complicated physical probléescribable in
terms of partial differential equations can be appnated by much simpler
problems describable in terms of difference difftiad equations, [Piney,
1959].

This thesis, consist of four chapter. In chapter,ome introduce general
Runge-Kutta methods for solving ordinary differahtiequations which
consist of three types explicit, semi-explicit angplicit as well as there are

mathematical derivation.



I ntroduction

Also in this chapter we stay the stability and cenges of the prove of
proving the equivalence between stability of Rukgita methods.

In chapter two, we present some fundamental reswit€erning with
Runge-Kutta methods (see Theorem (1.1), Lemma ghdl) Theorem (2.2))
which are needed in the derivation of Runge-Kutethods deterministic.
Also, in this chapter we present the derivationaoiodified Runge-Kutta
method which is three steps Runge-Kutta methodsyusidiagonal systems
as well as studying the stability of the modifiedthod.

Chapter three consist of variable step size andhbiar order Runge-
Kutta methods, which has the utility of reducingdbtruncation error at the

node points.

Chapter four presents numerical examples, whichbesh solved using
explicit, semi-explicit and implicit and in prov&linge-Kutta method as well
as there are comparisons with the exact solutiororoter describe the

accuracy of the methods.

It's important, to note that the results are giwetabulated form and the
programs (given in PASCAL language) are executegarsonal computer
Pentium IV.
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