

AAbbssttrraacctt

The objective of this thesis studying and deriving with some

modification as a new approach of Runge-Kutta method including explicit,

semi-explicit and implicit methods as well as studying stability of

convergence of these methods.

Also, one of most important themes of the thesis is to introduce

variable step size and variable order methods using an extrapolation method

which has the utility of controlling the local truncation error to be less than a

prespecified tolerance error.

Acknowledgment

I would like to express my sincere appreciation to my research

supervisor, Dr. Fadhel Subhi Fadhel, for giving me the major steps to go

on to explore the subject, shearing with me the ideas in my research “Hand

Identification using Fuzzy-Neural” And perform the points that I felt

were important.

Also I wish to thank the Head of Department of Mathematics and

my supervisor, Dr. Akram M. Al-Abood, for his available advice and

encouragement.

I wish to say "thank you" to the Dr. Akram H. Al-Shather for his

help.

I wish to thank the staff of Mathematics Department at the AL-

Nahrain University for their help.

I would like to say "thank you" to my faithful friends for

supporting and giving me advises.

Appendix A

 A-1

AAPPPPEENNDDIIXX AA

Following the computer programs used in this thesis:

1. ERK (Explicit Runge-Kutta Program):

 {Computer Programming for Solving
 y'=-y+x+1, y(0)=1
 using explicit Runge-Kutta method]
program ar;
{uses crt;}
var x,y:ar ray[0..12] of real;
 i,n:integer;
 aa,bb,k1,k2,h,a1,b1,error,ex:real;
 f:text;
begin
 x[0]:=0;y[0]:=1;h:=0.1;aa:=0;bb:=1;n:=round((bb-aa)/h);
 a1:=1;b1:=a1;
 assign(f,'d:\resultex.txt');
 rewrite(f);
 writeln(f,'x y exact er ror');
 writeln(f,'------------------------------------ ---');
 for i:=0 to n do
 begin
 x[i]:=x[0]+i*h;
 k1:=- y[i]+x[i]+1;
 k2:=-y[i]- h*b1*k1+x[i]+a1*h+1;
 y[i+1]:=y[i]+0.5*h*(k1+k2);
 ex:=exp(-x[i])+x[i];
 error:=abs(y[i]-ex);
 writeln(f,x[i]:2:1,' ',y[i]:10:10,' ',ex:10 :10,'
',error:10:10);
 writeln;
 end;
 close(f);
 readln;
end.

Appendix A

 A-2

2. SERK (Semi Explicit Runge Kutta Program):

 {Computer Programming for Solving
 y'=-y+x+1, y(0)=1
 using semi- explicit Runge-Kutta method}
program ar;
var ex,x,y:array[0..16] of real;
 i,j,n:integer;

k1,k2,a1,a2,a3,a4,c1,c2,b11,b12,b21,b22,aa1,aa2,h,error:real;
 f:text;
begin
 n:=10;h:=0.1;
 aa1:=0.5-(1/(2 *sqrt(3)));
 aa2:=0.5+(1/(2*sqrt(3)));
 b11:=0.5- (1/(2*sqrt(3)));
 b12:=0;
 b22:=0.25;
 b21:=0.25+(1/(2*sqrt(3)));
 a1:=1+b11*h;
 a2:=0;
 a3:=b21*h;
 a4:=1+b22*h;
 x[0]:=0;y[0]:=1;
 for i:=0 to n do
 x[i]:=x[0]+i*h;
 for i:=0 to n do
 begin
 c1:=- y[i]+x[i]+h*aa1+1;
 c2:=- y[i]+x[i]+h*aa2+1;
 k1:=c1/a1;
 k2:=(c2- a3*k1)/a4;
 y[i+1]:=y[i]+0.5*h*(k1+k2);
 ex[i]:=exp(-x[i])+x[i];
 end;
 assign(f,'d:\resultSM.txt');
 rewrite(f);
 writeln(f,'i x y exact err or');
 writeln('______________________________________ ______');
 for i:=0 to n do
 writeln(f,i,' ',x[i]:3:1,' ',y[i]:10:10,'
',ex[i]:10:10,' ',abs(ex[i]- y[i]):10:10);
 close(f);
 readln;
end.

Appendix A

 A-3

3. 2IRK (2-Stages Implicit Runge-Kutta Program):

 {Computer Programming for Solving
 y'=-y+x+1, y(0)=1
 using 2-stages implicit Runge-Kutta method}
program ar;
var ex,x,y:array[0..16] of real;
 i,n:integer;

k1,k2,a1,a2,a3,a4,c1,c2,b1 1,b12,b21,b22,aa1,aa2,h,error:real;
 f:text;
begin
 n:=10;h:=0.1;
 aa1:=0.5- (1/(2*sqrt(3)));
 aa2:=0.5+(1/(2*sqrt(3)));
 b11:=0.25;b22:=b11;
 b12:=0.25- (1/(2*sqrt(3)));
 b21:=0.25+(1/(2*sqrt(3)));
 a1:=1+b11*h;
 a2:=b12*h;
 a3:=b21*h;
 a4:=1+b22*h;
 x[0]:=0;y[0]:=1;
 for i:=0 to n do
 x[i]:=x[0]+i*h;
 for i:=0 to n do
 begin
 c1:=- y[i]+x[i]+h*aa1+1;
 c2:=- y[i]+x[i]+h*aa2+1;
 k2:=(c1*a3-c2*a1)/(a2*a3- a1*a4);
 k1:=(c1- a2*k2)/a1;
 y[i+1]:=y[i]+0.5*h* (k1+k2);
 ex[i]:=exp(-x[i])+x[i];
 end;
 assign(f,'d:\ result2IM.txt');
 rewrite(f);
 writeln(f,'i x y exact err or');

writeln(f,'__ ____');
 for i:=0 to n do
 writeln(f,i,' ',x[i]:2:1,' ',y[i]:10:10,'
',ex[i]:10:10,' ',abs(ex[i]- y[i]):10:10);
 close(f);
 readln;
end.

Appendix A

 A-4

4. 3IRK (3-Stages Implicit Runge-Kutta Program):

 {Computer Programming for Solving
 y'=-y+x+1, y(0)=1
 using 3-stages implicit Runge-Kutta metho d}
program ar;
var ex,x,y:array[0..16] of real;
 i,j,n:integer;

k1,k2,k3,a1,a2,a3,a4,a5,a6,a8,a7,c3,c1,c2,b11,b12,b 21,b22,b23
,b32,b33,b31,b13,aa1,aa2,h,aa3,a9:real;
 f:text;
begin
 n:=10;h:=0.1;
 aa1:=0.5;
 aa2:=0.5+(s qrt(15)/10);
 aa3:=0.5- (sqrt(15)/10);
 b11:=0.5- (sqrt(15)/5);b22:=b11;b33:=b11;
 b12:=sqrt(15)/5;b23:=b12;b13:=0;b31:=0;
 b21:=sqrt(15)/10;b32:=b21;
 a1:=1+b11*h;
 a2:=b12*h;
 a3:=0;
 a4:=b21*h;
 a5:=1+b22*h;
 a6:=b23*h;
 a7:=0;
 a8 :=b32*h;
 a9:=1+b33*h;
 x[0]:=0;y[0]:=1;
 for i:=0 to n do
 x[i]:=x[0]+i*h;
 for i:=0 to n do
 begin
 c1:=- y[i]+x[i]+h*aa1+1;
 c2:=- y[i]+x[i]+h*aa2+1;
 c3:=- y[i]+x[i]+h*aa3+1;
 k2:=(a1*a9*c2-a9*a4*c1-a1*a6*c3)/(a1*a5*a9-a2 *a9*a4-
a1*a6*a8);
 k1:=(c1- a2*k2)/a1;
 k3:=(c3- a8*k2)/a9;
 y[i+1]:=y[i]+(1/9)*h*(4*k1+2.5*k2+2.5*k3);
 ex[i]:=exp(-x[i])+x[i];
 end;
 assign(f,'d:\ result3IMP.txt');
 rewrite(f);
 writeln(f,'i x y exact err or');
 writeln(f,'____________________________________ _______');
 for i:=0 to n do

Appendix A

 A-5

 writeln(f,i,' ',x[i]:2:1,' ',y[i]:10:10,'
',ex[i]:10:10,' ',abs(ex[i]- y[i]):10:10);
 close(f);
 readln;
end.

‘ROOT-RK Program
‘Evaluating the roots of Implicit Runge-Kutta method

CLS
OPEN "c:\arsh.dat" FOR OUTPUT AS #1
PRINT " r h"
PRINT "------------------------"
FOR h = -100 TO 100 STEP .001
r = 1 + (h - (.25 - SQR (3) / 6) * h ^ 2 + (SQR (3) / 24) * h ^ 3) / (2 - 3 * h / 2 + (15 / 36)*h
^ 2 + (3 / 72)* h ^ 3) + (h + (SQR (3) / 6)*h^2) / (2 - h + (1/ 6) * h ^ 2)
IF ABS(r) <= 1 THEN PRINT r, h: PRINT #1, r, h
NEXT h
CLOSE #1

 ا�ھ�اء

 �� ���ت ا�����	 و ر�
� �	 ا��
ا�	ا��

��� ��ا�� 	�� و ��$� �� أ"�	 ا�! �ء ����ء�

$&وا��%	 � ا�'

�	 ا)�.ق ,+�ن �(�	 ا)���� ا/�� ���

ا���1213ي وا

و 2'$1
ن �'$1	�� ���2
ن ����	 ا��

 	%
و أ�
ا%	أ�

 ا�������ا�������

� ھ�ة ا�ط�و�� ھ� �
را�� و أ���
ق ا��
ف ا������ ��$ #"! ا�� ���((
-Runge(� �ا�) را(' &�%

Kutta (�*��+,ا�)+ا� �ا� �) Semi-explicit (ا� �ا�+) �+�0 ا�,+��*�، (Explicit (و ا��� %�.+-

67
�5 ا�4 درا�� أ����ار�� و %�
رب ھ�ة ا� �ا�() Implicit (وا�.-��1
#.

 ��++++�
� أھ++++
اف ا7ط�و�++++� ا�7++++�
�5 ا�++++4 ذ�++++' 5++++9ن ++++6�
ھ++++� أ�++++�;
ام ا� �ا�++++(ذات ا�; ++++�ة #

ام ط�ا�++() Variable Order(و ط�ا�++(ا��%0++� ا�-�<�++�ة) Variable Step Size(ا�-�<�++�ة;�++�9#

 �5

ار%�
 و ا��+�) Extrapolation Method(ا��+�@-
ل ا�6++A B+�0Cة أ� �+��

ود ا�; +#9+� 4+DE

� H �-�G<��ةأF�*#G %@�ن � I.

Chapter One General Runge-Kutta Methods

 ٣

CCHHAAPPTTEERR OONNEE

GGEENNEERRAALL RRUUNNGGEE--KKUUTTTTAA MMEETTHHOODDSS

1.1 Introduction

After constructing a mathematical model for a certain real life problem

as an ordinary differential equation, the next step is to find a solution. There

are two approaches for evaluating the solution, "analytically" or

"numerically". The analytic solution is usually obtained directly from the

mathematical representation of the model formulate, while the numerical

solution is generally an approximate obtained at certain node points. Most

numerical methods are iterative, that is, the solution in a certain step uses the

solution of the previous steps, such as Newton-Raphson method for

approximating the roots of non-linear equation.

Error are an important aspect of computational life, they are every where

and unavoidable. However, by careful analysis of the error in any numerical

process, we can at least obtain bounds for these errors and therefore some

measure of the accuracy of our final solution which must include the study of

the sources an the propagation of the errors.

Chapter One General Runge-Kutta Methods

 ٤

1.2 Basic Concepts

In this section, we shall present some of the basic concepts related to this

work.

1.2.1 Finite Difference Equations [Bellman, 1963]:

Let xn = x0 + nh, n = 0, 1, …, k; where h is the step length. A difference

equation of order k is an equation involving the unknown yn together with its

differences up to order k, that is, difference equation has the form:

F(xn; yn, yn+1, …, yn+k) = f(xn) .. (1.1)

Hence the order k of the difference equation is the difference between the

highest and lowest indices of y.

We can classify difference equations according to several aspects, such as:

1. The finite difference equation is said to be linear if F appears linearly in y.

2. The finite difference equation is said to be homogeneous if f(xn) = 0,

otherwise it is non-homogenous.

3. The finite difference equation is said to be of constant coefficients if the

coefficients of yn, yn+1, …, yn+k are constants.

1.2.2 Solution of Linear Difference Equations with Constant Coefficients:

We shall occasionally need the general solution of the k-th order linear

difference equation with constant coefficients [Lambert, 1973]:

akyn+k +ak-1yn+k-1 +…+a0yn = fn ... (1.2)

where n = 1, 2,…, and aj, j = 0, 1,…, k, are constants independent of n, and

ak ≠ 0, a0 ≠ 0.

Chapter One General Runge-Kutta Methods

 ٥

A solution of such a difference equation will consist of a sequence y1, y2,

…, which will be indicated by {yn}.

Let { nŷ } be the general solution of the corresponding homogeneous

difference equation:

akyn+k +ak-1yn+k-1 +…+a0yn = 0 .. (1.3)

n = 1,2,…

If { nψ } is any particular solution of eq.(1.2), then the general solution of

eq.(1.2) is {yn}; y n = nŷ + nψ .

The solution of the difference equation can be evaluated easily by letting

yn = βn, and considering the general solution of the difference equation

depending on the roots of β whether it is a repeated or distinct real roots, or

may be of complex roots, etc.

1.2.3 Legendre Polynomials [Burden, 1985]:

One of the most common sets of orthogonal polynomials is the set of

Legendre polynomials {pn}, which are orthogonal on [−1, 1] with respect to

the weighted function w(x) ≡ 1. These polynomials are defined recursively

by:

p0(x) = 1, p1(x) = x, pk(x) = (x − Bk)pk−1(x) − Ckpk−2(x), k = 2, 3, …

Where:

Chapter One General Runge-Kutta Methods

 ٦

Bk =

∫

∫

−
−

−
−

1

1

2
1k

1

1

2
1k

dx)]x(p[

dx)]x(p[x

and

Ck =

∫

∫

−
−

−
−−

1

1

2
1k

1

1

2k1k

dx)]x(p[

dx)x(p)x(xp

We do not need the explicit representation of the Legendre polynomials,

but only the knowledge that the polynomials pn, for each n, has n-distinct

roots x1, x2, …, xn all of which lies in (−1, 1).

1.3 Runge-Kutta Methods [Butcher, 1987]

The idea of extending the Euler method by allowing for a multiplicity of

evolutions of the function f within each step was originally proposed by

Runge (1895). Further contributions were made by Heun (1900) and by Kutta

(1901). The latter completely characterized the set of Runge-Kutta method of

order 4 and proposed the first methods of order 5. Special methods for

second-order differential equations were proposed by NystrÖm (1925) who

also contributed to the development of methods for first-order equations.

Since the advent of digital computers, fresh interest had been focused on

Runge-Kutta methods, and a large number of research workers have

contributed to recent extensions to the theory and the development of

Chapter One General Runge-Kutta Methods

 ٧

particular methods. Although, early studies were devoted entirely to explicit

Runge-Kutta methods, interest has now extended to implicit methods, which

are now recognized as appropriate for stiff differential equations.

1.3.1 Formulation of Runge-Kutta Methods [Lambert, 1973]:

The general form of an r-stages Runge-Kutta methods is given by:

yn+1 = yn + h
r

i i
i 1

c k
=
∑

where

ki=
r

n i n ij j
j 1

f x ha ,y h b k
=

 
+ +  

 
∑

and

ai =
r

ij
j 1

b
=
∑

where ci, ai and bij, for all i, j = 1, 2, …, r; are constants to be determined.

For convenience, we design the process by an array of constants, as

follows:

b11 b12 … b1j a1

b21 b22 … b2j a2

M M O M M

bi1 bi2 … bij ai

c1 c2 … cj

Chapter One General Runge-Kutta Methods

 ٨

and it is easy to classify Runge-Kutta methods, as follows:

- If bij = 0, ∀ i < j, then the method is called semi-explicit.

- If bij = 0, ∀ i ≤ j, then the method is called explicit.

- Otherwise it is called implicit.

1.3.2 Derivation of Some Runge-Kutta Methods [Lambert, 1973]:

We shall consider the derivation of some Runge-Kutta methods namely,

2-stages explicit, the 2-stages semi-explicit and the 2-stages implicit Runge-

Kutta methods for the purpose of studying the accuracy of the methods.

1.3.2.1 Derivation of 2-Stages Explicit Runge-Kutta Method:

In order to derive two stages Runge-Kutta method; consider first the

general form of two stages Runge-Kutta methods, which is given by:

yn+1 = yn + h(c1k1 + c2k2)

where:

k1 = f(xn, yn)

k2 = f(xn + a2h, yn + hb21k1)

and

a2 = b21

Hence, in this problem we have three unknown constants c1, c2, and a2

which must be determined.

Now, recall the Taylor series expansion for a function g(x + h, y + k) of

two variables about (x, y), we have:

Chapter One General Runge-Kutta Methods

 ٩

g(x + h, y + k) = g(x, y) + hgx(x, y) + kgy(x, y) +
!2

h2
gxx(x, y) + hkgxy(x, y)

+
!2

k2
gyy(x, y) + …

So expanding k2 using Taylor series about (xn, yn), we have:

k2 = f(xn + a2h, yn + hb21k1)

 = f(xn, yn)+a2hfx + hb21k1fy+
!2

ha 22
2 fxx+a2b21h

2k2fxy +
!2

kbh 2
1

2
21

2

fyy + …

 = f + a2h(fx + ffy) +
!2

ha 22
2 (fxx + 2ffxy + f2fyy) + …

So, the two stages Runge-Kutta method takes the form:

yn+1 = yn + h(c1k1 + c2k2)

= yn + h[c1f + c2(f + a2h(fx + ffy) +
!2

ha 22
2 (fxx + 2ffxy + f2fyy) + …)]

 = yn + h[c1f + c2f + c2a2h(fx + ff y) +

2 2
2 2c a h

2!
(fxx + 2ffxy + f2fyy) + …]

  yn + hf(c1 + c2) + h2c2a2(fx + ff y) +
2 3

2 2c a h

2!
(fxx + 2ffxy +

f2fyy) + O(h4) ... (1.4)

Since Taylor method takes the form:

yn+1  yn + h ny′ +
!2

h2

ny ′′ +
!3

h3

ny ′′′ + O(h4) (1.5)

and since y′ = f(x, y), then y′′ = fx + ffy, and

y′′′ = fxx + ffxy + fy(fx + ffy) + f(fxy + ffyy)

= (fxx + 2ffxy + f2fyy) + (fxfy + f 2
yf)

Chapter One General Runge-Kutta Methods

 ١٠

Therefore, eq.(1.5) becomes:

yn+1  yn + hf +
!2

h2
(fx + ffy) +

!3

h3
[(f xx + 2ffxy + f2fyy) + (fxfy + f 2

yf)]

+ O(h4) .. (1.6)

Now, in order to get an agreement between Runge-Kutta method and

Taylor's method (i.e., between eq.(1.4) and eq.(1.6)), we must have:

c1 +c2 = 1 and c2a2 =
2

1

with local truncation error of order h3. Also, the order for Runge-Kutta

method with r = 2 equals to p = 2.

The above two equations have an infinite number of solutions, e.g., we

can take also c1 = c2 =
2

1
 and a2 = 1.

1.3.2.2 Derivation of 2-Stages Semi-Explicit Runge-Kutta Method:

Since r = 2, then Runge-Kutta formula takes the form:

yn+1 = yn + h(c1k1 + c2k2)

where:

k1 = f(xn + a1h, yn + ha1k1)

k2 = f(xn + a2h, yn + hb21k1 + hb22k2)

and a1 = b11, a2 = b21 + b22.

To find these constants, consider the following power series:

k1 = A1 + hB1 + h2C1 + … .. (1.7)

k2 = A2 + hB2 + h2C2 + … .. (1.8)

Chapter One General Runge-Kutta Methods

 ١١

Since:

k1  f + h[a1fx + a1(A1 + hB1 + h2C1 + …)fy +
2h

2
[2

1a fxx + 2a1(A1 + hB1

+ h2C1)fxy + 2
1a (A1 + hB1 + h2C1 + …)2fyy] +

3h

6
[3

1a fxxx + 3 3
1a (A1 +

hB1 + h2C1 + …)fxxy + 3 3
1a (A1 + hB1 + h2C1 + …)2fxyy + 3

1a (A1 +

hB1 + h2C1 + …)3fyyy + O(h4) ... (1.9)

Comparing equations (1.7) and (1.9), we have:

A1 = f

B1 = a1(fx + fyA1) = a1(fx + ffy) = a1F

C1 =
2
1a

2
(fxx + 2A1fxy + 2

1A fyy) + a1B1fy

=
2
1a

2
(fxx + 2ffxy + f2fyy) + 2

1a (fx + ffy)fy

=
2
1a

2
G + 2

1a Ffy

where:

G = fxx + 2ffxy + f2fyy, and

D1 = a1C1fy + 2
1a B1fxy + 2

1a A1B1fyy +
3
1a

6
fxxx +

3
1a

2
A1fxxy +

3
1a

2
A1fxxy +

3
1a

6
A1fyyy

= 3
1a F 2

yf + 3
1a F(fxy + ffyy) + 3

1a Gfy +
3
1a

6
H

where: F = fx + ffy

Chapter One General Runge-Kutta Methods

 ١٢

and H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy

and similarly:

k2  f + h[a2fx + (b21(A1 + hB1 + h2C1) + b22(A2 + hB2 + h2C2))fy] +

2h

2
[2

2a fxx + 2a2(b21(A1 + hB1) + b22(A2 + hB2))fxy + (b21(A1 + hB1) +

b22(A2 + hB2))
2fyy] +

3h

6
[3

2a fxxx + 3 2
2a (b21A1 + b22A2)fxxy + 3a2(b21A1

+ b22A2)
2fxyy + (b21A1 + b22A2)

3fyyy]+ O(h4) (1.10)

Comparing equations (1.8) and (1.10), we have:

A2 = f

B2 = a2fx + (b21A1 + b22A2)fy

C2 = (b21B1 + b22B2)fy +
2
2a

2
fxx + a2(b21A1 + b22A2)fxy +

1

2
(b21A1 +

b22A2)
2fyy, and

D2 = (b21C1 + b22C2)fy + a2(b21B1 + b22B2) fxy + (b21A1 + b22A2)(b21B1 +

b22B2)fyy +
3
1a

6
fxxx +

2
1a

6
(b21A1 + b22A2)fxxy + 2a

2
(b21A1 + b22A2)

2fxyy

+
1

6
(b21A1 + b22A2)

2fyyy

Since a2 = b21 + b22, therefore, using a2 to simplify and solve the last fore

equations, we obtain the following solution:

A2 = f

B2 = a2fx + (b21f + b22f)f y

= a2fx + (b21 + b22)ff y

= a2fx + a2ff y

Chapter One General Runge-Kutta Methods

 ١٣

= a2(fx + ffy) = a2F

C2 = (b21a1 + b22a2)Ffy + 2a

2
G

where, G = fxx + 2ffxy + f2fyy, an similarly:

D2 = [b21(b11a1 + b12a2) + b22(b21a1 + b22a2)]F
2
yf + a2(b21a1 + b22a2)F(fxy +

ff yy) + (b21
2
1a + b22

2
2a)Gfy +

3
1a

6
H

where H = fxxx + 3fxxy + 3f2fxyy + f3fyyy

Since φ(x, y, h) =
2

i i
i 1

c k
=
∑ . Hence:

φ = c1k1 + c2k2

 c1(A1 + hB1 + h2C1 + h3D1) + c2(A2 + hB2 + h2C2 + h3D2) + O(h4)

 c1A1 + c2A2 + h(c1B1 + c2B2) + h2(c1C1 + c2C2) + h3(c1D1 + c2D2) +

O(h4) ... (1.11)

where the coefficients Ai, Bi, Ci and Di, i = 1, 2, are given above.

Comparing with the total differential expansion of φ(x, y, h) of equation

(1.11), we have:

φ(x, y, h)  f +
1

2
hF +

1

6
h2(Ffy + G) +

1

24
h3[(3fxy + 3ffyy + 2

yf)F + Gfy +

H] + O(h4) .. (1.12)

where:

F = fx + ffy

G = fxx + 2ffxy + f2fyy

Chapter One General Runge-Kutta Methods

 ١٤

H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy

Comparing equations (1.11) and (1.12), we have the following case:

(i) Two stages semi-explicit Runge-Kutta method of order one, if:

c1 + c2 = 1

(ii) Two stages semi-explicit Runge-Kutta method of order two, if:

c1 + c2 = 1

c1a1 + c2a2 = 1/2

(iii) Two stages semi-explicit Runge-Kutta method of order three, if:

c1 + c2 = 1

c1a1 + c2a2 = 1/2

c1
2
1a + c2(b21a1 + b22a2) = 1/6

c1
2
1a + c2

2
2a = 1/3

(iv) Two stages semi-explicit Runge-Kutta method of order four, if:

c1 + c2 = 1

c1a1 + c2a2 = 1/2

c1
2
1a + c2(b21a1 + b22a2) = 1/6

c1
2
1a + c2

2
2a = 1/3

(c1b11 + c2b21)
2
1a + c2b22(b21a1 + b22a2) = 1/24

c1
3
1a c2a2(b21a1 + b22a2) = 1/8

c1
3
1a + c2(b21

2
1a + b22

2
2a) = 1/12

Chapter One General Runge-Kutta Methods

 ١٥

c1
3
1a + c2

3
2a = 1/4

From the above results, one can see that more accurate methods (of

higher order) could be used with small stages. For example, one of the

solutions to the fourth order method is given by:

c1 = c2 =
1

2
, a1,2 =

1

2
 m

3

6
, b11 =

1

2
 −

3

6
, b21 = a2 −

1

4
 =

1

4
 +

3

6

and b22 =
1

4

1.3.2.3 Derivation of 2-Stages Implicit Runge-Kutta Method:

Consider the 2-stages implicit Runge-Kutta method, which takes the

form:

yn+1 = yn + h(c1k1 + c2k2)

where:

k1 = f(xn + ha1, yn + b11hk1 + b12hk2)

k2 = f(xn + ha2, yn + b21hk1 + b22hk2)

and a1 = b11 + b12, a2 = b21 + b22.

Now, expanding ki using Taylor series expansion about (xn, yn), we

obtain that for i = 1, 2.

ki  f(xn, yn) + h[aifx + (bi1k1 + bi2k2)fy] +
2

h2
[2

ia fxx + 2ai(bi1k1 + bi2k2)fxy

+ (bi1k1 + bi2k2)
2fyy] +

6

h3
[3

ia fxxx + 3 2
ia (bi1k1 + bi2k2)fxxy + 3ai(bi1k1

+ bi2k2)
2fxyy + (bi1k1 + bi2k2)

3fyyy] + O(h4) (1.13)

Chapter One General Runge-Kutta Methods

 ١٦

which will gives two implicit equations for i = 1, 2. Hence, we can no longer

proceed as in previous derivations and Runge-Kutta methods. Therefore, as in

the semi-explicit methods, suppose that:

ki  Ai + hBi + h2Ci + h3Di + O(h4), i =1, 2 (1.14)

Equating equations (1.13) and (1.14), we get:

A i + hBi + h2Ci + h3Di  f + h[aifx + (bi1(A1 + hB1 + h2C1) + bi2(A2 + hB2

+ h2C2))fy] +
2h

2
[2

ia fxx + 2ai(bi1(A1 + hB1) + bi2(A2 + hB2))fxy + (bi1(A1 +

hB1) + bi2(A2 + hB2))
2fyy +

3h

6
[3

ia fxxx + 3 2
ia (bi1A1 + bi2A2)fxxy + 3ai(bi1A1

+ bi2A2)
2fxyy + (bi1A1 + bi2A2)

3fyyy] + O(h4), i = 1, 2

Equating the coefficients of h0, h1, h2 and h3, we obtain that:

A i = f

Bi = aifx + (bi1A1 + bi2A2)fy

Ci = (bi1B1 + bi2B2)fy +
2

1 2
ia fxx + ai(bi1A1+ bi2A2)fxy +

2

1
(bi1A1 +

bi2A2)
2fyy

Di = (bi1C1 + bi2C2)fy + ai(bi1B1 +bi2B2)fxy + (bi1A1 + bi2A2)(b21B1 +

bi2B2)fyy +
6

1 3
ia fxxx +

2

1 2
ia (bi1A1 + bi2A2)fxxy +

2

1
ai(bi1A1 +

bi2A2)
2fxyy +

6

1
(bi1A1 + bi2A2)

3fyyy, i = 1, 2.

Since a1 = b11 + b12 and a2 = b21 + b22, or in general notation ai = bi1 + bi2.

Therefore, using the notation for a1 and a2 to simplify and solve the last form

equations, we obtain the following solution:

Chapter One General Runge-Kutta Methods

 ١٧

A i = f

Bi = aifx + (bi1f + bi2f)f y

= aifx + (bi1 + bi2)ff y

= aifx + aiff y

= ai(fx + ffy) = aF

Ci = (bi1a1F + bi2a2F)fy +
2

1 2
ia fxx + ai(bi1f + bi2f)f xy +

2

1
(bi1f + bi2f)

2fyy

= (bi1a1 + bi2a2)Ffy +
2

1 2
ia fxx + 2

ia ff xy +
2

1 2
ia f2fyy

= (bi1a1 + bi2a2)Ffy +
2

1 2
ia (fxx + 2ffxy + f2fyy)

= (bi1a1 + bi2a2)Ffy +
2

1 2
ia G

where G = fxx + 2ffxy + f2fyy.

Similarly:

Di = [bi1(b11a1 + b12a2) + bi2(b21a1 + b22a2)]F
2
yf + ai(bi1a1 + bi2a2)F(fxy +

ff yy) + (bi1
2
1a + bi2

2
2a)Gfy +

6

1 3
ia H

where H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy.

Since:

ϕ(x, y, h) =
2

i i
i 1

c k
=
∑

Hence using eq.(1.14), one get:

ϕ = c1k1 + c2k2

Chapter One General Runge-Kutta Methods

 ١٨

 c1(A1 + hB1 + h2C1 + h3D1) + c2(A2 + hB2 + h2C2 + h3D2) + O(h4)

 c1A1 + c2A2 + h(c1B1 + c2B2) + h2(c1C1 + c2C2) + h3(c1D1 + c2D2) +

O(h4) ... (1.15)

where the coefficients Ai, Bi, Ci and Di, ∀ i =1, 2, are given above.

Comparing with the total differential expansion of ϕ(x, y, h) of eq.(1.15)

ϕ(x, y, h)  f +
2

1
hF +

6

1
h2(Ffy + G) +

24

1
h3[(3fxy + 3ffyy + 2

yf)F + Gfy

+ H] + O(h4) .. (1.16)

where:

F = fx + ffy

G = fxx + 2ffxy + f2fyy

H = fxxx + 3ffxxy + 3f2fxyy + f3fyyy

Comparing (1.15) and (1.16), we have the following cases:

(i) Two stages implicit Runge-Kutta method of order one, if:

c1 + c2 = 1

(ii) Two stages implicit Runge-Kutta method of order two, if:

c1 + c2 = 1

c1a1 + c2a2 = 1/2

(iii) Two stages implicit Runge-Kutta method of order p = 3, if:

c1 + c2 = 1

c1a1 + c2a2 = 1/2

c1(b11a1 + b12a2) + c2(b21a1 + b22a2) = 1/6

Chapter One General Runge-Kutta Methods

 ١٩

c1
2
1a + c2

2
2a = 1/3

(iv) Two stages implicit Runge-Kutta method of order p = 4, if:

c1 + c2 = 1

c1a1 + c2a2 = 1/2

c1(b11a1 + b12a2) + c2(b21a1 + b22a2) = 1/6

c1
2
1a + c2

2
2a = 1/3

(c1b11 + c2b21)(b11a1 + b12a2) + (c1b12 + c2b22)(b21a1 + b22a2) = 1/24

c1a1(b11a1 + b12a2) + c2a2(b21a1 + b22a2) = 1/8

c1(b11
2
1a + b12

2
2a) + c2(b21

2
1a + b22

2
2a) = 1/12

c1
3
1a + c2

3
2a = 1/4

From the above results, one can see that more accurate methods (of

higher order) could be obtained with small stages. For example, one of the

solutions to the fourth order method is given by:

c1 = c2 =
2

1
, a1,2 =

2

1
 m

6

3
,

b11 = b22 =
4

1
, b12 = a1 −

4

1
 =

1

4
 −

6

3
, b21 = a2 −

4

1
 =

4

1
 +

6

3

Chapter One General Runge-Kutta Methods

 ٢٠

1.4 Stability and Convergence of Runge-Kutta

Methods [Butcher, 1987], [Lambert, 1973]

Since the purpose of numerical analysis is to represent the solution to

actual problems. It is important that what could be called qualitative

properties of the numerical solution should resemble those of the true

solution.

By stability analysis, we shall mean study of such qualitative properties

as boundedness and convergence to zero of numerical solutions, when these

properties are passed by the exact solution. Given a slightly different

emphasis, this type of analysis is appropriate for studying the growth of

numerical errors in a computed solution to a differential equation.

Remark [Atkinson, 1989], [Al-Kubeisy, 2004]:

Recalling the general form of Runge-Kutta method, which is:

yn+1 = yn + hϕ(xn, yn, h) .. (1.17)

which could be considered as a special case of the general Linear Multistep

Methods (for short LMM), given by:

k

j n j
j 0

y +
=

α∑ = h
k

j n j
j 0

f +
=

β∑ ... (1.18)

(indeed, one step explicit LMM). Therefore, the stability of (1.17) is

equivalent to the convergence of (1.17) (i.e., stability and convergence of

Runge-Kutta are equivalent).

Chapter One General Runge-Kutta Methods

 ٢١

Theorem (1.1):

Assume the consistency condition and suppose that:

yn+1 − yn = hϕ(xn, yn, h) .. (1.19)

which is a special case of (1.18) as one step method with α1 = 1, α0 = −1,

β0 = 1, β1 = 0 and f = ϕ. Then (1.19) is converge if and only if it is zero stable.

Proof:

Suppose that the method is convergent and to prove that the method is

zero stable

Consider for simplicity the problem, y′ = 0, y(0) = 0, which has the exact

solution y(x) = 0

Since f = 0, then for all i, we have ki = 0 and hence ϕ = 0

Therefore, the method takes the form:

yn+1 − yn = 0

Therefore, the first characteristic polynomial ρ(r) is given by:

ρ(r) = r − 1 = 0

then r = 1.

and since |r| ≤ 1, then the method is zero stable

Conversely, suppose that the Runge-Kutta method is zero stable and to

prove that the method is convergent

Similarly, for simplicity purpose consider y′ = λy, y(0) = 1

To show that the term [r0(λh)]n in the general solution

y0 = [r0(λh)]n

Chapter One General Runge-Kutta Methods

 ٢٢

will be converge to the exact solution y(x) = eλx on [0, b], and then can be

shown to be converge to the zero solution as h → 0

Expanding r0(λh) using Taylor’s theorem:

r0(λh) = r0(0) + hλr′0(0) + O(h2)

Hence:(using the consistency condition)

r′0(0) = 0

0

(r (0))

(r (0))

σ
′ρ

Since r0(0) = 1. Then:

r′0(0) =
(1)

(1)

σ
′ρ

 = 1

Hence:

r0(λh) = 1 + λh + O(h2)

= eλh − O(h2) + O(h2)

 eλh

Therefore:

[r0(λh)]n = [eλh]n = nheλ = nxeλ

Hence:

n

n

xn
0

0 x b
Max |[r (h)] e |λ

≤ ≤
λ − → 0 as h → 0. █ ❚

1.4.1 Stability of Explicit Runge-Kutta Method:

To obtain intervals of stability of 2-stages Runge-Kutta method applied

to the test problem y′ = λy,Re(λ) < 0, we have:

Chapter One General Runge-Kutta Methods

 ٢٣

yn+1 = yn + h(c1k1 + c2k2)

where:

k1 = f(xn, yn)

k2 = f(xn + a2h, yn + a2hk1)

and for f(x, y) = λy, we have:

k1 = λyn

k2 = λ(yn + a2λhyn)

 = λyn + a2λ2hyn

since:

yn+1 = yn + h(c1λyn + c2λyn + c2a2hλ2yn)

= yn + (c1 + c2)h yn + c2a2h
2yn, h = λh

= yn[1 + (c1 + c2) h + c2a2h
2]

Hence, to find the roots of the first characteristic polynomial ρ(r) = 0, we have

to letting yn = rn, so

rn+1 − rn[1 + (c1 + c2)h + c2a2h
2] = 0

rn{r − [1 + (c1 + c2) h + c2a2h
2]} = 0

and since rn ≠ 0, then:

r − [1 + (c1 + c2) h + c2a2h
2] = 0

i.e.,

r = 1 + (c1 + c2) h + c2a2h
2, |r| < 1

since for 2-stages Runge-Kutta method, p = 2, we have:

Chapter One General Runge-Kutta Methods

 ٢٤

c1 + c2 =1 and c2a2 =
2

1

then:

r = 1 + h +
2

1 2
h

In order to get a method which is stable, we must have |r| < 1, so:

|1 + h +
2

1
h

2| < 1

Then

−1 < 1 + h +
2

1
h

2 < 1

Which implies that −2 < h < 0. So all r = p = 2 Runge-Kutta methods have an

interval of absolute stability to be (−2, 0).

1.4.2 Stability of Semi-Explicit Runge-Kutta Method:

To obtain intervals of stability of 2-stages Runge-Kutta methods. Also,

we consider the test problem y′ = λy, where Re(λ) < 0:

yn+1 = yn + h(c1k1 + c2k2)

where:

k1 = λ(yn + ha1k1)

k2 = λ(yn + hb21k1 + hb22k2)

so:

k1 = n

1

y

1 a

λ
− h

 , 1−ha1≠ 0

Chapter One General Runge-Kutta Methods

 ٢٥

k2 = n 1 21

22 1

y [(1 a) b]

(1 b)(1 a)

λ − +
− −

h h

h h
 , (1−hb22) (1−ha1) ≠ 0

so:

yn+1 = yn +
h

2
n n 1 21

1 22 1

y y [1 a b]

1 a (1 b)(1 a)

 λ λ − ++ − − − 

h h

h h h

 = yn +
2

h
yn

1 21

1 22 1

1 1 a b

1 a (1 b)(1 a)

 − ++ − − − 

h h

h h h

 = yn +
2

h
yn

22 1 21

22 1

(1 b) (1 a b)

(1 b)(1 a)

 − + − +
 − − 

h h h

h h

 = yn +
2

h
yn

22

22 1

2(1 b)

(1 b)(1 a)

 −
 − − 

h

h h

 = yn
1

1
1 a

 
+ − 

h

h

So, the corresponding root is given by:

r = 1 +
11 a−

h

h
 = 1

1

1 a

1 a

− +
−
h h

h
 =

s

s

+ h
, h < 0

So |r| =
s

s

+ h
 < 1

Hence, the interval of stability is given by (−∞, 0).

1.4.3 Stability of Implicit Runge-Kutta Method:

To obtain intervals of stability of 2-stages, fourth order Runge-Kutta

method given in section (1.3.2.3).

Chapter One General Runge-Kutta Methods

 ٢٦

Consider the test problem y′ = λy, where Re(λ) < 0, hence:

yn+1 = yn + h(c1k1 + c2k2)

where:

k1 = f(xn + ha1, yn + b11hk1 + b12hk2)

k2 = f(xn + ha2, yn + b21hk1 + b22hk2)

so for the test problem y′ = λy, we have:

k1 = λyn +
1

4
h k1 + (

1

4
 −

6

3
)h k2

k2 = λyn + (
1

4
 +

6

3
)h k1 +

1

4
h k2

Therefore, when h = λh, we have:

k1 =

2
n

2 3

1 3 3
1 y

4 6 24

3 15 3
1

4 72 144

    
− + + λ    

     

− + −

h h

h h h

 , 2 33 15 3
1

4 72 144
− + −h h h ≠ 0

k2 =
n

2

3
1 y

6
1 1

1
2 12

 
+ λ 

 

− +

h

h h

 , 21 1
1

2 12
− +h h ≠ 0

and since:

yn+1 = yn + h(c1k1 + c2k2)

Therefore:

Chapter One General Runge-Kutta Methods

 ٢٧

yn+1 = yn + ny

2

h

2

2 3 2

1 3 3 3
1 1

4 6 24 6
3 15 3 1 1

1 1
4 72 144 2 12

      
− + + +      
      +

 
− + − − + 

  

h h h

h h h h h

= yn

2 3
2

2 3 2

1 3 3 3
4 6 24 61
3 15 3 1

2 2
2 36 72 6

  
− + +   +
  + +

 
− + − − − 

  

h h h
h h

h h h h h

So the corresponding characteristic root is given by:

r =

2 3
2

2 3 2

1 3 3 3
4 6 24 61
3 15 3 1

2 2
2 36 72 6

 
− + +  +
 + +

− + − − −

h h h h h

h h h h h

Therefore, upon applying computer programming (ROOT-RK Program), the

following interval of absolute stability is obtained, which is h ∈ (−1, −0.95)

∪ (−0.64, 0).

Chapter Two Modified Runge-Kutta Methods

 ٢٨

CCHHAAPPTTEERR TTWWOO

MMOODDIIFFIIEEDD RRUUNNGGEE--KKUUTTTTAA MMEETTHHOODDSS

2.1 Introduction

Derivations of explicit, semi-explicit and implicit Runge-Kutta methods

are of great difficulties, especially when the stages of the method are

increased. Therefore, the need for simple and efficient methods (with large

stages) is necessary.

In this chapter, we will present some modified Runge-Kutta methods,

which has its basis on tridiagonally implicit methods in which the diagonal

elements has an equal values. This method has been proved to be stable and

convergent.

2.2 Fundamental Results in Runge-Kutta Methods

In this section, fundamental theoretical results consuming Runge-Kutta

methods will be given, as well as, their proofs.

In order to give some results, for simplicity an without loose of

generality, the following ordinary differential equation will be considered:

y′ = f(y), y(x0) = y0... (2.1)

Chapter Two Modified Runge-Kutta Methods

 ٢٩

Therefore, one of the most important results (which are given in

[Butcher, 1987], [Butcher, 1964], [Al-Exander, 1977] and [Bickart, 1977]

without proof) in Runge-Kutta methods which has the utility of evaluating the

parameter of Runge-Kutta methods, namely bj's. This result will be stated in

the next theorem:

Theorem (2.1):

Consider the system:

y′(x) = f(y), y = y0 at x = x0 ... (2.2)

then φ =
γ
1

, where γ =
α
βi

, ∀ i =1, 2, …, r and α, β are numerical coefficients

independent of the form of f.

Proof:

Suppose that y, y* be the exact and approximate solutions of equation

(2.2), respectively.

The equation defining y* for r-stages Runge-Kutta methods is:

y* = y0 + h
r

i i
i 1

c k
=
∑

where:

ki =
r

0 ij j
j 1

f y h b k
=

 
+ 

 
 

∑ , i = 1, 2, …, r

and bij, ci, ∀ i, j = 1, 2, .., r; are constants to be determined.

The power series expansion of y and y* are respectively:

Chapter Two Modified Runge-Kutta Methods

 ٣٠

y = y0 + ∑
=

α
r

1i

i

!i

h
F where F for the function f.

y* = y0 + ∑
= −

βφ
r

1i

i

)!1i(

h
F

Since y and y* having the same order, then:

!i

h
F

i
α =

)!1i(

h
F

i

−
βφ

and hence:

)!1i(i

h
F

i

−
α =

)!1i(

h
F

i

−
βφ

Therefore:

φ =
β
α
i

 =
γ
1

. █

The next lemma plays an important role in the basis of theorem (2.2).

Lemma (2.1) [Butcher, 1987]:

Let U and V be 3×3 matrices, such that:

UV =

















000

0ww

0ww

2221

1211

Where w11w22 − w21w12 ≠ 0. Then either the third row of U is the zero vector

or the third column of V is the zero vector.

Chapter Two Modified Runge-Kutta Methods

 ٣١

Remark:

Recalling the theory of Graphs and combining t is any tree with roots r1,

r2, .., rs, then we write this tree symbolically as t=[t1, t2, .., ts] and we can write

this conscience using the following notation which is the plans subscript on [

] to indicate repetition.

For example the tree [t1t1t1t2t2] can be written as 2 2
1 2[]t t or [[[]]]τ τ or 2 2[[]]τ τ .

Theorem (2.2):

Consider the system:

y′(x) = f(y), y = y0 at x = x0

If φ =
γ
1

, r ≤ ξ, then ∑
=

−
r

1j

1k
jjac =

k

1
, for k ≤ ξ, where k = 1, 2, …, r, and

r is the number of stages of Runge-Kutta method and ξ is the order of the

considered method.

Proof:

In order to prove that ∑
=

−
r

1j

1k
jjac =

k

1
, for k ≤ ξ, we consider lemma

(2.1) in mind with:

T
1u = [c2 c3 c4]

T
2u = [c2a2 c3a3 c4a4]

T
3u =












−−−−−− ∑∑∑

===
)a1(cbc)a1(cbc)a1(cbc 44

r

1i
4ii33

r

1i
3ii22

r

1i
2ii

Chapter Two Modified Runge-Kutta Methods

 ٣٢

v1 =

















4

3

2

a

a

a

, v2 =
















2
4

2
3

2
2

a

a

a

, v3 =





























−

−

−

∑

∑

∑

=

=

=

r

1j

2
42

1
jj4

r

1j

2
32

1
jj3

r

1j

2
22

1
jj2

aab

aab

aab

with γ(x) = k in φ =
γ
1

, r ≤ ξ, where k ≤ 5 [Butcher, 1987], we have:

T
1u v1 = ∑

k
kkac = φ([τ]) =

])([

1

τγ
 =

2

1

T
1u v2 = T

2u v1 = ∑
k

2
kkac = φ([τ2]) =

])([

1
2τγ

 =
3

1

T
2u v2 = ∑

k

3
kkac = φ([τ3]) =

])([

1
3τγ

 =
4

1

hence we can generalize the result for k > 3 to obtain the formula:

∑
=

−
r

1j

1k
jjac =

k

1
, for k ≤ ξ

Remark [Butcher,1987]:

If the parameters a2, a3, a4, …, c4 are those of a four-stage fourth-order

Runge-Kutta method it is possible to compute T
iu vi for i, j = 1, 2, 3; since this

will be a linear combination of the φ(x) for various x of order less than five

and will thus be equal to a certain number formed from the corresponding

γ(x).

Chapter Two Modified Runge-Kutta Methods

 ٣٣

Hence the following formula ∑
=

−
r

1j

1k
jijab =

k

ak
j

 cold be obtained to

evaluate aj's for i = 1, 2, …, r and k ≤ ξ.

2.3 Derivation of Some Implicit Runge-Kutta Methods

In this section, we shall try to derive some implicit Runge-Kutta

methods including some modification and new ideas for deriving.

2.3.1 Derivation of Two-Stages Implicit Runge-Kutta Method:

Consider the two-stage implicit Runge-Kutta method, with the following

table of parameters:

b11 b12 a1

b21 b22 a2

c1 c2
The Legendre polynomials will be used for deriving this method, where:

p0(x) = 1, p1(x) = x, p2(x) = (x − B2)p1(x) − C2p0(x)

and

B2 =

∫

∫

−

−
1

1

2
1

1

1

2
1

dx)]x(p[

dx)]x(p[x

 =

∫

∫

−

−
1

1

2

1

1

3

dxx

dxx

 = 0

Chapter Two Modified Runge-Kutta Methods

 ٣٤

C2 =

∫

∫

−

−
1

1

2
0

1

1

01

dx)]x(p[

dx)x(p)x(xp

 =

∫

∫

−

−
1

1

1

1

2

dx

dxx

 =
3

1

Therefore:

p2(x) = (x −0)x −
3

1
 =x2 −

3

1

hence, the roots of the second degree polynomial p2(x) at x =2a − 1 are given

by:

a1,2 =
2

1
 m

38

4

i.e., a1 =
2

1
 −

32

1
 and a2 =

2

1
 +

32

1

To find c1 and c2, use is made as given in section (2.2), which is as

follows:

∑
=

−
2

1j

1k
jjac =

k

1
, for k = 1, 2

hence for k = 1, 2, we have:

c1
0
1a + c2

0
2a = 1 ... (2.3)

c1
1
1a + c2

1
2a =

2

1
 .. (2.4)

Solving eq.(2.3) and (2.4) for c1 and c2, gives c1 = c2 =
2

1
.

Finally, to find b11, b12, b21 and b22 use is made as given in section (2.2),

which is as follows:

Chapter Two Modified Runge-Kutta Methods

 ٣٥

∑
=

−
2

1j

1k
jijab =

k

ak
i , for i, k = 1, 2

Hence:

b11
0
1a + b12

0
2a = a1, k = 1, i = 1

b21
0
1a + b22

0
2a = 1

2a , k = 1, i = 2

b11
1
1a + b12

1
2a =

2
1a

2
, k = 2, i = 1

b21
1
1a + b22

1
2a =

2

a2
2 , k = 2, i = 2

Solving these equations for bij 's, i, j = 1, 2, we have:

b11 =
4

1
, b12 =

4

1
 −

32

1
, b21 =

4

1
 +

32

1
 and b22 =

4

1

Therefore, as a result, we have the following formula of Runge-Kutta method:

yn+1 = yn +
2

h
(k1 + k2)

where:

k1 = f(xn + (
2

1
 −

32

1
)h, yn +

4

1
hk1 + (

4

1
 −

32

1
)k2)

k2 = f(xn + (
2

1
 +

32

1
)h, yn + (

4

1
 +

32

1
)hk1 +

4

1
hk2).

The stability of 2-stages implicit Runge-Kutta method had been

discussed previously in section (1.4.3) of chapter one.

Chapter Two Modified Runge-Kutta Methods

 ٣٦

2.3.2 Derivation of Tridiagonals Three-Stages Implicit Runge-Kutta

Method:

In this section, a modification is made in order to derive a new formula

of triadiagonals implicit Runge-Kutta method with the property that the

elements of each diagonal are equal, for simplicity, the parameters related to

this method are presented in the following table:

ω σ 0 a1

δ ω σ a2

0 δ ω a3

c1 c2 c3

Following similar approach as in section (2.3.1), one can find the values

of a1, a2 and a3 by solving the third degree Legendre polynomial, the obtained

results are:

a1 =
2

1
, a2 =

2

1
 +

10

15
 and a3 =

2

1
 −

10

15

Similarly, using theorem (2.2) in section (2.2), we can find c1, c2 and c3,

where:

∑
=

−
3

1j

1k
jjac =

k

1
, for k = 1, 2, 3

hence for k = 1, 2 and 3, we have:

c1 + c2 + c3 = 1 ... (2.5)

c1a1 + c2a2 + c3a3 =
2

1
 .. (2.6)

Chapter Two Modified Runge-Kutta Methods

 ٣٧

c1
2
1a + c2

2
2a + c3

2
3a =

3

1
 ... (2.7)

Solving the above system for c1, c2 and c3, we have:

c1 = 4/9 and c2 = c3 = 5/18

Finally to find, ω, δ and σ use is made as given in section (2.2) in which

the consistent equations are:

b11
1k

1a − + b12
1k

2a − + b13
1k

3a − =
k

ak
1 , for i = 1

b21
1k

1a − + b22
1k

2a − + b23
1k

3a − =
k

ak
2 , for i = 2

b31
1k

1a − + b32
1k

2a − + b33
1k

3a − =
k

ak
3 , for i = 3

Hence for k = 1, we have:

11 12 13 1

21 22 23 2

31 32 33 3

b b b a

b b b a

b b b a

+ + = 
+ + = 
+ + = 

 ... (2.8)

For k = 2, we have:

2
1

11 1 12 2 13 3

2
2

21 1 22 2 23 3

2
3

31 1 32 2 33 3

a
b a b a b a

2

a
b a b a b a

2

a
b a b a b a

2


+ + = 




+ + = 



+ + = 


 .. (2.9)

Chapter Two Modified Runge-Kutta Methods

 ٣٨

and for k = 3, we have:

3
2 2 2 1

11 1 12 2 13 3

3
2 2 2 2

21 1 22 2 23 3

3
2 2 2 3

31 1 32 2 33 3

a
b a b a b a

3

a
b a b a b a

3

a
b a b a b a

3


+ + = 




+ + = 



+ + = 


 .. (2.10)

Since b11 = b22 = b33 = ω, b12 = b23 = σ, b21 = b32 = δ and b13 = b31 = 0

From equations (2.8), we have:

ω + σ + 0 =
2

1
 .. (2.11)

δ + ω + σ =
2

1
 +

10

15
 ... (2.12)

0 + δ + ω =
2

1
 −

10

15
 .. (2.13)

Solving equations (2.11), (2.12) and (2.13) for ω, δ and σ, we have:

ω =
2

1
 −

15

5
, σ =

15

5
 and δ =

10

15

In summary, the results are given in the following table:

Chapter Two Modified Runge-Kutta Methods

 ٣٩

2

1
 −

15

5

15

5
 0

1

2

10

15

2

1
 −

15

5

15

5

2

1
 +

10

15

0
10

15

2

1
 −

15

5

2

1
 −

10

15

4

9

5

18

5

18

2.4 Stability of Tridiagonals Three-Stages Implicit Runge-Kutta

Method:

To obtain intervals of stability of 3-stages Runge-Kutta method, we

consider the test problem y′ = λy, where Re(λ) < 0. Recall the tridiagonals

three steps implicit Runge-Kutta method:

yn+1 = yn + h(c1k1 + c2k2 + c3k3)

where:

k1 = λ(yn + hb11k1 + hb12k2 + hb13k3)

k2 = λ(yn + hb21k1 + hb22k2 + hb23k3)

k3 = λ(yn + hb31k1 + hb32k2 + hb33k3)

Hence, we have:

k1 = λyn + h (
2

1
 −

15

5
)k1 + h

15

5
k2, h = λh (2.14)

and

Chapter Two Modified Runge-Kutta Methods

 ٤٠

k2 = λyn + h
10

15
k1 + h (

2

1
 −

15

5
)k2 + h

15

5
k3 (2.15)

Also:

k3 = λyn + h
10

15
k2 + h (

2

1
 −

15

5
)k3 .. (2.16)

Substituting equations (2.14) and (2.16) in equation (2.15), we get:

k2 = λyn + h
10

15 n 2
15

y k
5

1 15
1

2 5

 
 λ +
 
  
 − − 
   

h

h

 + h (
2

1
 −

15

5
)k2 +

h
15

5

n 2
15

y k
10

1 15
1

2 5

 
 λ +
 
  
 − − 
   

h

h

Then after some simplifications, we have:

k2 = λyn 2

2

1 15
1

2 2

1 15 3
1

2 5 5

   − − 
  
 
    

− − −   
     

h

h h

 ,

2

21 15 3
1

2 5 5

  
− − −  

   
h h ≠ 0

Substituting k2 in equation (2.14), yields:

Chapter Two Modified Runge-Kutta Methods

 ٤١

k1 =

n n 2

2

1 15
1

2 215
y y

5 1 15 3
1

2 5 5

1 15
1

2 5

   − − 
  λ + λ  
   

− − −   
     
 

− − 
 

h

h

h h

h

Then after some simplification, we get:

k1 = λyn

2

2

3 15 7 3 15
1 1

5 4 10

2 15 1 15 1 15
1 1 1

5 4 5 2 5

    
+ − + −    

    
         
 − − + − − −        
             

h h

h h h

 ,

22 15 1 15 1 15
1 1 1

5 4 5 2 5

        
− − + − − −        

           
h h h ≠ 0

substituting k2 in equation (2.16)

k3 =

n n 2

2

1 15
1

2 215
y y

10 1 15 3
1

2 5 5

1 15
1

2 5

   − − 
  λ + λ  
   

− − −   
     
 

− − 
 

h

h

h h

h

Hence, after some simplifications:

Chapter Two Modified Runge-Kutta Methods

 ٤٢

k3 = λyn

2

2

15 15
1 1 1

2 4

2 15 1 15 1 15
1 1 1

5 4 5 2 5

    
+ − + −    

    
         
 − − + − − −        
             

h h

h h h

 ,

22 15 1 15 1 15
1 1 1

5 4 5 2 5

        
− − + − − −        

           
h h h

Therefore:

yn+1 = yn + hyn

2

2

3 15 7 3 15
1 1

5 4 104

9 2 15 1 15 1 15
1 1 1

5 4 5 2 5

    
+ − + −    

    
         
 − − + − − −        
            

h h

h h h

 +

2

2

1 15
1

2 25

18 1 15 3
1

2 5 5

 
− − 
 

  
− − −  

   

h

h h

 +

2

2

15 15
1 1 1

2 45

18 2 15 1 15 1 15
1 1 1

5 4 5 2 5

   
+ − + −    

   
        
− − + − − −        
            

h h

h h h

Hence, as a result, we have:

Chapter Two Modified Runge-Kutta Methods

 ٤٣

yn+1 = yn

2 3

2

73 15 49 15
13 13 19

10 20
1

1 2 15 1 15 1 15
18 1 1

2 5 4 5 2 5

    
+ − + −    

    +         
 − − + − − −        
            

h h h

h h h

 +

2

2

2

5 5 15
5

2 2

1 15 54
18 1

2 5 5

  + − 
 


   
− − −   

     

h h

h h

, yn = rn

Hence the corresponding root is given by:

r =

2 3

2

73 15 49 15
13 13 19

10 20
1

1 2 15 1 15 1 15
18 1 1

2 5 4 5 2 5

   
+ − + −   
   +

        
− − + − − −        

           

h h h

h h h

 +

2

2

2

5 5 15
5

2 2

1 15 54
18 1

2 5 5

 
+ − 
 

  
− − −  

   

h h

h h

using computer facilities, one can find the values of h , which satisfying |r|<1.

Therefore, upon applying computer programming (ROOT-RK Program),

the following interval of absolute stability is obtained, which is h ∈ (−9.5,−1)

∪ (−0.637, 0).

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 44

CCHHAAPPTTEERR TTHHRREEEE

VVAARRIIAABBLLEE SSTTEEPP AANNDD VVAARRIIAABBLLEE

OORRDDEERR RRUUNNGGEE--KKUUTTTTAA MMEETTHHOODDSS

3.1 Introduction

Modifying the results obtained from numerical approaches is one of the

fundamental aspects in numerical analysis in which the aim is to reduce the

error terms imbedded in the methods, or the local trunction error.

Hence this chapter consist of introducing two fundamental approaches

for reducing the error terms, which are the variable step size methods and

variable order methods for the numerical solution of ODE using Runge-Kutta

methods.

3.2 Variable Step Rung-Kutta Methods [James, 1992], [Jassim,
1999]
Error terms for members of the Runge-Kutta family are rather

complicated than in LMMS. They become more so for higher-order methods

such as classical Runge-Kutta which is locally O(h5). Fortunately it turns out

that reasonably effective estimates of stepsize required to attain a specified

local truncation error can be found that use only the order of the local

truncation error and do not require further knowledge of the form of the error

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 45

term. The first variable-stepsize method, which will be consider here, is based

upon comparison of the estimates for one and two steps for the value of y at

some time obtained by a Runge-Kutta method with local truncation error term

that is of the form Chn, where C is a constant to be determined. Suppose that

one are already in position of an estimating yx for y(x) and a candidate

stepsize h0. The Runge-Kutta method is used to calculate
0

(1)
x hy + and

0

(2)
x hy + ,

approximations to y(x+h0) using stepsizes of h0 and h0/2, respectively. If

0 0

(1) (2)
est x h x hE : y y+ += − is less than certain tolerance (tol), than the more accurate

of the two approximations,
0

(2)
x hy + , is accepted as the approximation for y(x +

h0). Whether or not the approximation is accepted, we need a new estimate htol

of the stepsize that will produce an approximation within the specified

tolerance. If the approximation was accepted, this value will be used as h0 in

the next step; if not, then it will be used as h0 repeating the current step. To

find htol , it is noticeable that

0 0

n
(1) (2) n n n0

est x h x h 0 0

h
E y y Ch C (1 2)Ch

2
−

+ +
 = − − = − 
 

� (3.1)

This gives the value of C, to be:

est
n n

o

E
C

(1 2)h−−
� .. (3.2)

Since htol is to satisfy tol≈ n
tolCh , then it is found that

1/ nn

tol 0
est

(1 2)tol
h h

E

− −=  
 

 .. (3.3)

At the start of the application of the variable-stepsize process, we

have
0x 0y y= . Locking any better information, h0 is taken to be xf-x0.

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 46

3.3 Variable Order Methods [James, 1992], [Jassim, 1999]

Let A(h) be a scheme for approximating some quantity A(0); that is,

0
lim

→h
A(h) = A(0). The parameter h is typically the interval width. It is assumed

that the error of approximation A(0) − A(h) has an expansion in powers of h

whence.

2 3 4
1 2 3 4A(0) A(h) a h a h a h a h ...= + + + + + (3.4)

Recall that Richardson entrapolation entails using approximations A(h0),

A(h1), A(h2),…with h0 > h1 > h2… to successively eliminate the terms in the

error expansion. Thereby producing approximations of higher and higher

order. The sequence used was hj:= h/2j, j = 0, 1,2, …, where h is some starting

interval width; however, for our present purposes other sequences {hj} may

be more advantageous. If a1 in (3.4) is not zero, then the approximation

scheme A(h) is only O(h). To obtain an O(h2) approximation we note that

2 3 4
0 1 0 2 0 3 0 4 0

2 3 4
1 1 1 2 1 3 1 4 1

A(0) A(h) a h a h a h a h ...

A(0) A(h) a h a h a h a h ...

= + + + + + 


= + + + + + 
 (3.5)

Upon subtracting h0 times the second equation from h1 times the first and

solving for A(0), one can obtain.

2 21 0 0 1
2 0 1 3 0 1 0 1 4 0 0 1 1

1 0

h A(h) h A(h)
A(0) a h h a h h (h h) a (h h h h) ...

h h

−
= − − + − + + −

−

2 21 0
1 2 0 1 3 0 1 0 1 4 0 0 1 1

0 1

A(h) A(h)
A(h) a h h a h h (h h) a (h h h h) ...

h /h 1

−
= + − − + − + + −

−
(3.6)

Thus:

1 0
1 0 1

0 1

A(h) A(h)
A (h) : A(h)

h / h 1

−
= +

−
 ... (3.7)

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 47

Is an O(2
0h) approximation to A(0) since h1<h0. Since any pair hj, hj+1

could be used in the elimination process above, thus it is easily seen that:

j 1 j
1 j j 1

j j 1

A(h) A(h)
A (h) : A(h)

h / h 1
+

+
+

−
= +

−
 .. (3.8)

is an O(2
jh) approximation to A(0). It is know have:

2 2
1 0 2 0 1 3 0 2 0 1 4 0 1 0 0 1 1

2 2
1 1 2 1 2 3 1 2 1 2 4 1 2 1 1 2 2

A(0) A (h) a h h a h h (h h) a h h (h h h h) ...

A(0) A (h) a h h a h h (h h) a h h (h h h h) ...

= − − + − + + − 


= − − + − + + − 

(3.9)

Upon eliminating the terms involving a2,

2 0 3 0 1 2 4 0 1 2 0 1 2
A(0) A (h) a h h h a h h h (h h h) ...= + + + + + (3.10)

where:

1 1 1 0
2 0 1 1

0 2

A (h) A (h)
A (h) : A (h)

h / h 1

−
= +

−
 .. (3.11)

is an O(3
0h) approximation to A(0).

More generally:

1 1j 1 j
2 1j j 1

j j 2

A (h) A (h)
A (h) : A (h)

h / h 1
+

+
+

−
= +

−
 (3.12)

is an O(3
jh) approximation to A(0). Continuity in this manner, then

recursively, a sequence can be defined by:

0 j jA (h) : A(h)= ... (3.13)

and

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 48

n 1 n 1j 1 j
n n 1j j 1

j j n

A (h) A (h)
A (h) A (h)

h / h 1
− −+

− +
+

−
= +

−
, n = 1,2,…

is obtained.

On the basis of the results for A(hj) and A2(hj), it seems that An(hj)

provides an n 1
jO(h)+ approximation to A(0). This may be verified directly by

following the evaluation of the general term anh
n in the error expansion but is

perhaps obtained more easily by an alternative approach.

The recurrence relations, could be illustrated in table (3.1).

Table (3.1)

Level O(hj) O(2
jh) O(3

jh) O(4
jh)

0 0 0A (h)

1 0 1A (h) 1 0A (h)

2 0 2A (h) 1 1A (h) 2 0A (h)

3 0 3A (h) 1 2A (h) 2 1A (h) 3 0A (h)

The Lagrange interpolating polynomial for the distinct points (h0,A(h0)),

(h1,A(h1)),…,(hn,A(hn)) is

nn n n n nn 1 n 1 n 2P (h) : A[h] A[h ,h](h h) A[h ,h ,h](h h)− − −= + − + −

n 1 n n 1 0 n n 1
(h h) A[h ,h ,...,h ,h](h h)(h h)...

− − −
− + + − −

1 0
(h h)(h h)− − ... (3.14)

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 49

It is easily seen that Pn(0)=An(h0), which is why the process is referred to

as extrapolation. From the remainder term of the lagrange formula recalling

that, the K-th divided difference of a function f(x) can be approximated by:

()(k 1)

0 1 k

f
f [x ,x ,...,x]

(k 1)!

+ ζ
=

+

for some point ζ in the interval spanned by x0, x1, …, xk.

It follows that error made in approximating A(0) by Pn(0) is

(n 1) (n 1)

0 1 n

(1) A ()
h h ...h

(n 1)!

+ +− η
+

 with 0 ≤ η ≤ h0 whence it is an O(n 1
0h +)

approximation.

Table (3.1) shows that the extrapolation sequence generated by the

formulas (3.13). Only the first column requires application of the method

A(h). The higher-order refinements are generated by simple arithmetic

computations and thus are inexpensive in terms of computing time.

3.3.1 Richardson Extrapolation

Let A(h) be a scheme for approximating numerically a quantity A(0)

which depends upon a parameter h in such away that
0

lim
→h

A(h) = A(0).

Suppose moreover that the error made in approximating A(0) by A(h)

has for some N≥1 a power series expansion in h of the form

N
2 j 2N 1

2 j
j 1

A(0) A(h) a h O(h)+

=

− = +∑ ... (3.15)

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 50

3.3.1.1 The Central Difference Formula

Consider the central difference formula for approximating the first

derivative.

cent,h
f (x h) f (x h)

f (x) f :
2h

+ − −′ ∇ =� ... (3.16)

Let us show that the expansion of the error made by the central

difference formula has the form (3.15). For f ∈ C2N+1 we have from Taylor’s

theorem

2N 2N

j 0 j 0

(j) j (j) j
2N 1 2N 1

cent,h
1 f (x)h f (x)(h)

f O(h) O(h)
2h j! j!= =

+ + −∇ = + − + 
  
∑ ∑ (3.17)

Observe that the even powers of h cancel where as the odd powers sum

together, this gives:

N 1
(2k 1) 2k 2N

cent,h
k 1

f (x) f f (x)h O(h)
−

+

=

′ − ∇ = − +∑ (3.18)

which is of the form (3.15).

The process of Richardson extrapolation consists of successively

eliminating terms in the error expansion to produce approximations of higher

order.

From (3.15), we have:

N
2 j 2N 1

2 j
j 1

N
2 j 2N 1

2 j
j 1

A(0) A(h) a h O(h)

h h
A(0) A() a () O(h)

2 2

+

=

+

=

= + +

= + +

∑

∑
 ... (3.19)

Multiplying the second equation in (3.19) by 4 and subtracting the first

yields.

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 51

N

j 2

2 j 2N 1
2 j2 j 2

h 1
3A(0) 4A A(h) 1 a h O(h)

2 2=

+
−

   = − + − +   
   

∑ (3.20)

The multiplicative factor 4 was chosen to make the h2 terms canceled.

Equation (3.20) shows that

1

h
4A A(h)

2A (h) :
3

  − 
 = ... (3.21)

is an O(h4) approximation to A(0). Observe that we did not actually need to

know the value of the coefficient a2 but only that the error expansion had the

form (3.15). In a similar manner, the process can be continued. From (3.20) it

is know that:

4
1 4

3
A(0) A (h) a h ...

4
= − + .

By eliminating the h4 term, the order-six approximation will be obtained,

given by:

1 1
2

16A (h / 2) A (h)
A (h)

15

−
= ... (3.22)

In general, one obtains recursively the O(h2n+2) approximations

A0(h) := A(h)

n
n 1 1

n n
4 A (h / 2) A (h)

A (h) :
4 1

− −
=

−
 .. (3.23)

for the Richardson extrapolation process.

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 52

3.3.1.2 Extrapolation of The Central Difference Formula

Substituting the central difference approximation (see section 3.3.1.1),

A(h) = [f(x + h) − f(x − h)]/2h into (3.21), the fourth-order approximation,

will be obtained as:

1
f (x h) 8f (x h / 2) 8f (x h / 2) f (x h)

A (h)
6h

− − − + + − += (3.24)

to the first derivative. In turn, substituting (3.24) into (3.22) yields the

sixth-order approximation.

2
1 h h h h

A (h) = -f(x -h)+16f x - -64f x - +64f x+ -16f x+ +f(x+h)
30h 2 4 4 2

        
        
        

 (3.25)

Clearly, using the extrapolation formula (3.23) to generate formulas for

higher-order approximations becomes very cumbersome. Fortunately, it is not

necessary to have explicit formulas available to calculate the numerical values

of the higher-order approximations.

3.3.1.3 Euler-Maclaurian Summation Formula

Observe that while in (3.15),it is assumed that the error expansion had

only even powers of h, this is not strictly necessary. The process could be

carried out if the error expansion was of the form

N
j N 1

j
j 1

A(0) A(h) a h O(h)+

=

− = +∑ ... (3.26)

however, at each level of the extrapolation table the order of the

approximation on the diagonal would be only one greater than on the

succeeding level rather than two greater for the extrapolation table for (3.15).

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 53

For the reason extrapolation is more effective when the underlying

method of approximation A(h) has an error expansion of the form (3.15).

The reason for the choice of the trapezoid rule as the base method of

approximation is that its error expansion is of the form (3.15); that is, it has

only even powers of h. This is the content of the Euler-Maclaurin Summation

formula, which is used as well in order branches of mathematics such as

number theory. The formula involves Bernoulli numbers which will be

discussed shortly.

Before setting up Euler’s theorem, first the following for constructing,

the so called Bernoulli’s numbers using recurrence relation will be

introduced.

3.3.1.4 Bernoulli Numbers [Knuth, 1973]

The Bernoulli numbers are defined by

j

jt 0 tj
d t

B : Lim
dt e 1→

 =  − 
 j = 0, 1, … ... (3.27)

From this definition they are easily seen to the numerators of the

coefficients of the Maclaurin expansion

j j
t

j 0

Bt
t

e 1 j!

∞

=

=
− ∑ ... (3.28)

The Bernoulli numbers may be calculated from the following theorem.

Theorem (3.1)

The Bernoulli numbers satisfy the recurrence relation:

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 54

B0 = 1,
j 1

j k
k 0

j 11
B B

kj 1

−

=

+ = −  +  
∑ , j = 1, 2,… (3.29)

Proof:

From (3.28), we have:

j j t

j 0

B
t t (e 1)

j!

∞

=

 
= − 
 
∑

j 0 k 1

j k
k

j 0 k 0

k
j j

k

B t
t

j! k!

B t t

k! (j k)!

∞ ∞

= =

−∞ ∞

= =

  
=    

  

=
−

∑ ∑

∑∑

j 1
j k

j 1 k 0

B
t

k!(j k)!

−∞

= =

=
−∑ ∑ .. (3.30)

Equating like powers of t gives B0 = 1 and

j 1

k 0

kB
0

k!(j k)!

−

=

=
−∑

for j = 1,2,3,…. Solving for Bj-1 yields

j 2
k

k 0

j 2

k 0

j 1

k

B
B (j 1)!

k!(j k)!

j1
B

kj

−

=

−

=

− = − −
−

 
= −  

 

∑

∑
 ... (3.31)

which is eq.(3.29).

From (3.29) it can be verified that B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0,

and B4 = −1/30. It turns out that Bj = 0 for odd j ≥ 3. █ ❚

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 55

Theorem (3.2) (The Euler-Maclaurian summation formula):

For f ∈ C2n+1[a,b],

b N 1

i
i 0a

h
f (x)dx h f (x) [f (b) f (a)]

2

−

=

= + −∑∫ −

n

j 1

2 j
2 j (2 j 1) (2 j 1) 2n 1

B h
[f (b) f (a)] O(h)

(2 j)!=

− − +− +∑ (3.32)

where xi = a + ih, i = 0, 1…, N, with h = (b − a)/N, and the B2j are Bernoulli

numbers.

The first two terms on the right-hand side of (3.32) together constitute

the composite trapezoid rule. Hence the Euler-Maclaurin formula status that

the error expansion for the trapezoid rule approximation to a definite integral

has the form (3.15)

n

j=1

2j
2j (2j-1) (2j-1) 2n+1

Ctrap

B h
E (f) = - [f (b) - f (a)] + O(h)

(2j)!
∑ (3.33)

Proof:

Let:

b

a

I(f) : f (x)dx= ∫ ,
N 1

i
i 0

NR (f) : h f (x)
−

=

= ∑ , N NE (f) : I(f) R (f)= −

Observe that RN(f) is simply the Riemann sum approximation to I(f) for

N subintervals with left endpoint evaluation and that EN(f) is the error made

by this approximation. To show that for f ∈ Cm+1[a, b],

m

j 1

j

j (j) m 1
N

B h
E (f) I(f) O(h)

j!=

+= − +∑ ... (3.34)

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 56

Upon setting m = 2n and noting that B1 = −1/2, B2j+1 = 0 for j ≥ 1, and

(j) (j 1) (j 1)I(f) f (b) f (a)− −= − , this becomes the Euler-Maclaurin formula

(3.32).

Note that:

N 1

i 0
i

x hi

N i
x

E (f) f (x)dx hf (x)
−

=

+ 
 = −
 
 

∑ ∫

N 1

ii 0
: e (h)

−

=
= ∑ ... (3.35)

Let us first find the Maclaurin series expansion for the error ei(h) on the

ith subinterval with respect to the subinterval width h. Let f∈Cm+1[a, b].

Immediately ei(0) = 0, and since i i ie (h) f (x h) f (x)′ = + − , ie (0) 0′ = also.

From then on (j) (j 1)
i ie (0) f (x)−= . This gives the Maclaurin expansion:

j m 2m 1
(j 1) (m 1)

i i i
j 2

h h
e (h) f (x) f ()

j! (m 2)!

++
− +

=
= + ξ

+∑ (3.36)

where ζi ∈ (xi,xi+1). Substituting (3.36) into (3.35);

j m 2N 1m 1 N 1
(j 1) (m 1)

N i i
i 0 j 2 i 0

h h
E (f) f (x) f ()

j! (m 2)!

+− + −
− +

= = =
= + ξ

+∑ ∑ ∑ (3.37)

Now:

N 1
(m 1)

i
i 0

m 2 m 1N 1
(m 1)

i
i 0

h h (b a)
f () f ()

(m 2)! (m 2)! N

−
+

=

+ +−
+

=

−ξ ≤ ξ
+ +∑ ∑

m 1
(m 1)

a x b

h (b a)
max f (x)

(m 1)!

+
+

≤ ≤

−≤
+

 (3.38)

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 57

Thus the remainder term in (3.37) is O(hm+1). Upon interchanging the

order of summation (3.37), one can:

jm 1 N 1
(j 1) m 1

N i
j 2 i 0

h
E f (x) O(h)

j!

+ −
− +

= =
= +∑ ∑

j 1m 1
(j 1) m 1

Nj 2

h
R (f) O(h)

j!

−+
− +

=
= +∑ ... (3.39)

After a shift of the index j this gives:

jm
(j) m 1

N N
j 1

h
I(f) R (f) R (f) O(h)

(j 1)!
+

=
= + +

+∑ (3.40)

Substituting IN-EN for RN yields finally:

j
(j) (j)

m
m 1

N Nj 1

h
E (f) I(f) E (f) O(h)

(j 1)!
+

=
 = − +
 +∑ (3.41)

Note that a particular consequence of (3.36) is that if f ∈ C1[a, b], then

EN(f) is O(h). Thus if f ∈ C2[a, b], then f′ ∈C1[a, b] whence EN(f′) is O(h), and

again from (3.41), it follows that:

2
N

h
E (f) I(f) O(h)

2
′= +

2

1B h O(h)= − + .. (3.42)

which is (3.34) for m = 1.

We now establish (3.34) in general by induction on the degree of

differentiability m+1. Assume that for L < m, f ∈ CL+1[a, b] implies that:

kL
(k) L 1k

N
k 1

B h
E (f) I(f) O(h)

k!
+

=
= − +∑ ... (3.43)

Chapter Three Variable Step and Variable Order Runge-Kutta Methods

 58

Let us show that (3.43) holds for L = m. If f ∈ Cm+1[a,b], then

(j) m j 1f C [a,b]− +∈ whence (3.43) holds with L = m − j + 1. Substituting this

into (3.41), gives:

kj m jm
(j) (j k) m 1k

N
j 1 k 1

B hh
E (f) I(f) I(f) O(h)

(j 1)! k!

−
+ +

= =

 
= + + 

+   
∑ ∑

j kj m jm m

(j) (j k) m 1k

j 1 j 1 k 1

B hh
I(f) I(f) O(h)

(j 1)! k!(j 1)!

+−
+ +

= = =
= + +

+ +∑ ∑∑ .. (3.44)

Rearrangement of the double sum in (3.44) yields in turn

j 1

k 1

jm m
(j) j (j) m 1k

N
j 1 j 1

Bh
E (f) I(f) h I(f) O(h)

(j 1)! k!(j k 1)!

−

=

+

= =
= + +

+ − +∑ ∑ ∑

j 1m

j 1 k 1

j (j)
m 1

0 k

j 1h I(f)
B B O(h)

k(j 1)!

−

= =

++  
= + +  +   
∑ ∑

m

j 1

j (j)
m 1

j
h I(f)

(j!B) O(h)
(j 1)!=

+= − +
+∑ (3.45)

from theorem (3.1). This demonstrates (3.34) and hence the Euler-Maclaurin

formula. █ ❚

Chapter Four Numerical and Comparison result

٥٩

CCHHAAPPTTEERR FFOOUURR

NNUUMMEERRIICCAALL AANNDD CCOOMMPPAARRIISSOONN

RREESSUULLTTSS

4.1 Introduction

This chapter, is devoted for illustrating the numerical Runge-Kutta

methods derived and discussed in chapter one and two, this is done by solving

examples using these methods, then comparing the results with the exact

solution which given have for comparison propose.

The results are presented and tabulated in a table which consists also

the error terms.

In addition, numerical examples illustrating variable order and variable

stepsize methods discussed in chapter three are present, with its comparison

with the exact solution.

4.2 Numerical Examples
Example (4.1):

Consider the first ordering differential equation:

y′ = −y + x + 1

with initial solution y(0) = 1.

Chapter Four Numerical and Comparison result

٦٠

In order to give a comparison and describe the precision of the

previously derived methods of Runge-Kutta, we can easily find the exact

solution:

y(x) = e−x + x

Therefore using the 2-stage explicit, 2-stage semi-explicit, 2-stage

implicit and tri-diagonal implicit Runge-Kutta methods, and upon exciting the

computer programs (ERK), (SERK), (2IRK) and (3IRK), we get the results

presented in tables (4.1) and (4.2) with step lengths h = 0.1 and h = 0.01.

One can see from error estimation of the results that (2-stage implicit)

is the more accurate. Also three stages implicit tri-diagonal gives reasonable

agreement exact solution.

Table (4.1) Numerical results of example (4.1) with step length h = 0.1.

xi Exact

Explicit Semi-explicit Two stages implicit Three stages implicit

Numeric
solution

Error
Numerical

solution
Error

Numerical
solution

Error
Numerical

solution
Error

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000

0.1 1.00483741 1.00500000 0.00016258 1.00482757 0.00000984 1.00483743 0.00000001 1.00466161 0.00017580

0.2 1.01873075 1.01902500 0.00029424 1.01871293 0.00001781 1.01873077 0.00000002 1.01841263 0.00031811

0.3 1.04081822 1.04121762 0.00039940 1.04079403 0.00002418 1.04081825 0.00000003 1.04038650 0.00043171

0.4 1.07032004 1.07080195 0.00048190 1.07029087 0.00002917 1.07032008 0.00000003 1.06979924 0.00052079

0.5 1.10653065 1.10707576 0.00054510 1.10649766 0.00003299 1.10653070 0.00000004 1.10594167 0.00058898

0.6 1.14881163 1.14940356 0.00059193 1.14877580 0.00003582 1.14881168 0.00000004 1.14817217 0.00063946

0.7 1.19658530 1.19721022 0.00062492 1.19654748 0.00003782 1.19658535 0.00000004 1.19591032 0.00067498

0.8 1.24932896 1.24997525 0.00064629 1.24928985 0.00003911 1.24932901 0.00000005 1.24863103 0.00069793

0.9 1.30656965 1.30722760 0.00065794 1.30652984 0.00003981 1.30656971 0.00000005 1.30585927 0.00071038

1.0 1.36787944 1.36854098 0.00066154 1.36783941 0.00004002 1.36787949 0.00000005 1.36716530 0.00071413

Chapter Four Numerical and Comparison result

٦٢

Table (4.2) Numerical results of example (4.1) with step length h = 0.01.

xi Exact

Explicit Semi-explicit Two stages implicit Three stages implicit

Numeric
solution

Error
Numerical

solution
Error

Numerical
solution

Error
Numerical

solution
Error

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000

0.1 1.00483741 1.00483893 0.00000151 1.00483731 0.00000010 1.00483741 0.00000000 1.00483581 0.00000159

0.2 1.01873075 1.01873350 0.00000274 1.01873057 0.00000018 1.01873075 0.00000000 1.01872785 0.00000289

0.3 1.04081822 1.04082195 0.00000373 1.04081797 0.00000024 1.04081822 0.00000000 1.04081429 0.00000392

0.4 1.07032004 1.07032454 0.00000450 1.07031974 0.00000029 1.07032004 0.00000000 1.07031530 0.00000473

0.5 1.10653065 1.10653575 0.00000509 1.10653032 0.00000033 1.10653065 0.00000000 1.10652530 0.00000535

0.6 1.14881163 1.14881716 0.00000552 1.14881126 0.00000036 1.14881163 0.00000000 1.14880581 0.00000581

0.7 1.19658530 1.19659114 0.00000583 1.19658491 0.00000038 1.19658530 0.00000000 1.19657916 0.00000614

0.8 1.24932896 1.24933500 0.00000603 1.24932856 0.00000040 1.24932896 0.00000000 1.24932261 0.00000635

0.9 1.30656965 1.30657580 0.00000614 1.30656925 0.00000040 1.30656965 0.00000000 1.30656319 0.00000646

1.0 1.36787944 1.36788561 0.00000617 1.36787903 0.00000040 1.36787944 0.00000000 1.36787294 0.00000650

Example (4.2):

Consider the first ordering differential equation:

y′ =-2y+2x2+2x

with initial solution y(0) = 1.

In order to give a comparison and describe the precision of the

previously derived methods of Runge-Kutta, we can easily find the exact

solution

y(x) = e2x+x2

Therefore using the 2-stage explicit, 2-stage semi-explicit, 2-stage

implicit and tri-diagonals implicit Runge-Kutta methods, and upon exciting

the computer programs (ERK), (SERK), (2IRK) and (3IRK), we get the

results presented in tables (4.3) and (4.4) with step lengths h = 0.1 and

h = 0.01.

One can see from error estimation of the results that (2-stage implicit)

is the more accurate. Also three stages implicit tri-diagonal gives reasonable

agreement exact solution.

Table (4.3) Numerical results of example (4.2) with step length h = 0. 1.

xi Exact

Explicit Semi-explicit Two stages implicit Three stages implicit

Numeric
solution

Error
Numerical

solution
Error

Numerical
solution

Error
Numerical

solution
Error

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000

0.1 0.82873075 0.83100000 0.00226925 0.82862297 0.00010779 0.82873112 0.00000036 0.82647915 0.00225160

0.2 0.71032005 0.71422000 0.00389995 0.71013659 0.00018346 0.71032064 0.00000060 0.70648957 0.00383048

0.3 0.63881164 0.64386040 0.00504876 0.63857652 0.00023512 0.63881237 0.00000073 0.63390472 0.00490692

0.4 0.60932896 0.61516553 0.00583656 0.60905998 0.00026898 0.60932976 0.00000080 0.60371746 0.00561151

0.5 0.61787944 0.62423573 0.00635629 0.61758963 0.00028981 0.61788026 0.00000082 0.61183550 0.00604394

0.6 0.66119421 0.66787330 0.00667909 0.66089300 0.00030122 0.66119502 0.00000081 0.65491428 0.00627993

0.7 0.73659696 0.74345611 0.00685914 0.73629104 0.00030593 0.73659773 0.00000077 0.73022029 0.00637667

0.8 0.84189652 0.84883401 0.00693749 0.84159052 0.00030600 0.84189724 0.00000072 0.83551949 0.00637703

0.9 0.97529889 0.98224389 0.00694500 0.97499593 0.00030296 0.97529955 0.00000066 0.96898602 0.00631287

1.0 1.13533528 1.14223999 0.00690470 1.13503735; 0.00029793 1.13533589 0.00000060 1.12912761 0.00620768

Chapter Four Numerical and Comparison result

٦٥

Table (4.4) Numerical results of example (4.2) with step length h = 0.01.

xi Exact

Explicit Semi-explicit Two stages implicit Three stages implicit

Numeric
solution

Error
Numerical

solution
Error

Numerical
solution

Error
Numerical

solution
Error

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000

0.1 0.82873075 0.82875099 0.00002024 0.82872962 0.00000113 0.82873075 0.00000000 0.82871258 0.00001817

0.2 0.71032005 0.71035484 0.00003480 0.71031812 0.00000192 0.71032005 0.00000000 0.71028912 0.00003093

0.3 0.63881164 0.63885671 0.00004507 0.63880917 0.00000247 0.63881164 0.00000000 0.63877200 0.00003964

0.4 0.60932896 0.60938110 0.00005214 0.60932614 0.00000282 0.60932896 0.00000000 0.60928362 0.00004535

0.5 0.61787944 0.61793626 0.00005682 0.61787640 0.00000304 0.61787944 0.00000000 0.61783058 0.00004886

0.6 0.66119421 0.66125396 0.00005975 0.66119105 0.00000316 0.66119421 0.00000000 0.66114343 0.00005078

0.7 0.73659696 0.73665838 0.00006141 0.73659376 0.00000321 0.73659696 0.00000000 0.73654538 0.00005158

0.8 0.84189652 0.84195869 0.00006217 0.84189331 0.00000321 0.84189652 0.00000000 0.84184493 0.00005159

0.9 0.97529889 0.97536118 0.00006229 0.97529571 0.00000318 0.97529889 0.00000000 0.97524781 0.00005108

1.0 1.13533528 1.13539727 0.00006199 1.13533216 0.00000312 1.13533528 0.00000000 1.13528505 0.00005024

Example (4.3):

Suppose one have to approximate the solution of y(0.3) to within an

accuracy of tol = 0.05 for the initial value problem y′ = 5(x − 1)y, y(0) = 5.

The Runge-Kutta method which will be used, and hence n = 2 in (3.3).

The process is started with y0 = 5, h0 = 0.3. Thus we have:

Step1: First try:

x = 0, h0 = 0.3, x + h0 = 0.3

Applying the Runge-Kutta method with one and than two steps gives

(1)
0.3y 2.5626= , (2)

0.3y 1.598= , estE 0.9645=

which is still slightly above the specified tolerance On the basis of the new

value of Eest, formula (3.3) now predicts that htol = 0.0592 will suffice. This

gives:

Second try:

x = 0, h0 = 0.0592, x + h0 = 0.0592

The Runge-Kutta method approximations are

(1)
0.0592y 3.7699= , (2)

0.0592y 3.7558= , Eest = 0.0141

and thus the estimated error is now within the given tolerance. Hence we

have the approximation y(0.0592) � 3.7558. In fact, from the actual

solution y(0.0592) = 3.7517, and thus the true error, 0.004, is smaller than

the estimated error Eest. On the basis of the new value of Eest, formula (3.3)

predicts that a stepsize of htol = 0.0965 is required to attain the error

tolerance. We use this as the initial h0 in the next step.

Step.2: First try:

x = 0.0592, h0 = 0.0965, x + h0 = 0.1557

Chapter Four Numerical and Comparison
result

٦٧

The Runge-Kutta approximations are

(1)
0.1557y 2.4856= , (2)

0.1557y 2.45= , Eest = 0.0356

and thus the tolerance is achieved the first try. Hence y(0.1557) � 2.45,

and formula (3.3) gives the estimate htol = 0.0991 for use in the next step.

The actual value of the solution is y(0.1557) = 2.4389, and thus at this point

we are in error by 0.011.

Step.3: First try:

x = 0.1557, h0 = 0.0991, x + h0 = 0.2548

The Runge-Kutta approximations are

(1)
0.2548y 1.6744= , (2)

0.2548y 1.6567= , Eest = 0.0177

and the error estimate is again within tolerance. Formula (3.3) suggests a

stepsize of 0.1442; however, the distance to xf = 0.3 is only 0.0452.

Thus we use the stepsize h0 = 0.0452.

Step.4: First try:

x = 0.2548, h0 = 0.0452, x + h0 = 0.3

The Runge-Kutta approximations are

(1)
0.3y 1.4082= , (2)

0.3y 1.4073= , Eest = 0.0009

and we obtain the approximation y(0.3)� 1.4073, which is in error by 0.01.

When it is specified that an appropriate solution is desired with an

error no more than 0.05, this is, of course, a statement concerning the

global truncation error, while the choice (3.3) of htol is made to control the

local truncation error at each step.

Thus it is fat from certain that we will obtain the specified accuracy.

However, note that while htol is chosen so that the one-step approximation

Chapter Four Numerical and Comparison
result

٦٨

0

(1)
x hy + is accurate to within the given tolerance, the two-step approximation

0

(2)
x hy + which is more accurate by a factor of 2n, is actually used. This help

to compensate for the fact that we are controlling local, rather than global,

error.

Example (4.4):

Suppose one have to approximate the solution of y(0.5) to within an

accuracy of tol = 0.05 for the initial value problem y′ = 5x − 2y, y(0) = 1.

The Runge-Kutta method which will be used, and hence n = 2 in (3.3).

The process is started with y0 = 1, h0 = 0.5. Thus we have

Step.1: First try:

x = 0, h0 = 0.5, x + h0 = 0.5

Applying the Runge-Kutta method with one and than two steps gives:

(1)
0.5y 1.125= , (2)

0.5y 0.8789= , estE 0.2461=

Which is still slightly above the specified tolerance On the basis of the new

value of Eest, formula (3.3) now predicts that htol = 0.1952 will suffice. This

gives

Second try:

x = 0, h0 = 0.1952, x+h0 = 0.1952

The Runge-Kutta method approximations are

(1)
0.1952y 0.7811= , (2)

0.1952y 0.7652= , Eest = 0.0159

and thus the estimated error is now within the given tolerance. Hence we

have the approximation y(0.1952) � 0.7652. In fact, from the actual

Chapter Four Numerical and Comparison
result

٦٩

solution. y(0.1952) = 0.7608, and thus the true error, 0.004, is smaller than

the estimated error Eest. On the basis of the new value of Eest, formula (3.3)

predicts that a stepsize of htol = 0.2998 is required to attain the error

tolerance. We use this as the initial h0 in the next step.

Step.2: First try:

x = 0.1952, h0 = 0.2998, x + h0 = 0.495

The Runge-Kutta approximations are

(1)
0.495y 0.8735= , (2)

0.495y 0.8355= , Eest = 0.038

and the error estimate is again within tolerance. Formula (3.3) suggests a

stepsize of 0.2978, however, the distance to xf = 0.5 is only 0.005.

Thus we use the stepsize h0 = 0.005.

Step.3: First try:

x = 0.495, h0 = 0.005, x + h0 = 0.5

The Runge-Kutta approximations are

(1)
0.5y 0.8396= , (2)

0.5y 0.8395= , Eest = 0.0001

and we obtain the approximation y(0.5) � 0.8395, which is in error by

0.012.

Example (4.5):

Consider the following differential equation y′ = f(x, y), y(0) = 5

where f(x, y) = 5(x − 1)y . The process is started with y0 = 5, h0 = 0.1. Thus

we have

x = 0, h0 = 0.1, x + h0 = 0.1

Applying the Runge-Kutta method with one and then two steps gives:

Chapter Four Numerical and Comparison
result

٧٠

(1)
0.1y 3.1875= , (2)

0.1y 3.1262=

Substituting (1)
0.1y and (2)

0.1y into eq.(3.7), we have:

y(xn) = 3.064

with estimated error equals to 0.045.

Example (4.6):

Consider the following differential equation y′ = f(x, y), y(0) = 1

where f(x, y) = 5x − 2y . The process is started with y0 = 1, h0 = 0.3. Thus,

we have:

x = 0, h0 = 0.3, x + h0 = 0.3

Applying the Runge-Kutta method with one and then two steps gives

(1)
0.3y 0.805= , (2)

0.3y 0.7488=

Substituting (1)
0.3y and (2)

0.3y into eq.(3.7), we have:

y(xn) = 0.692

with estimated error equals to 0.043.

CCoonncclluussiioonnss aanndd RReeccoommmmeennddaattiioonn

From the present study of this thesis we conclude and recommend the following

1. The 2-stages implicit Runge-Kutta method is the most accurate method

than other Runge-Kutta method.

2. The improved tridiagonal method is so easy to drive which are indeed

implicit method and therefore to drive improved method with five

diagonal and proving its stability.

3. Variable step size and order methods are the most accurate methods which

had reduce the error bounds.

4. Comparing between variable order and variable step size Runge-Kutta

methods.

5. Using Runge-Kutta method for solving delay differential equations.

CCoonntteennttss

Introduction ... 1

Chapter One: General Runge-Kutta Methods ... 3

1.1 Introduction ... 3

1.2 Basic Concepts .. 4

1.2.1 Finite Difference Equations .. 4

1.2.2 Solution of Linear Difference Equations with Constant

Coefficients ... 4

1.2.3 Legendre Polynomials .. 5

1.3 Runge-Kutta Methods ... 6

1.3.1 Formulation of Runge-Kutta Methods ... 7

1.3.2 Derivation of Some Runge-Kutta Methods 8

1.4 Stability and Convergence of Runge-Kutta Methods 20

1.4.1 Stability of Explicit Runge-Kutta Method 22

1.4.2 Stability of Semi-Explicit Runge-Kutta Method 24

1.4.3 Stability of Implicit Runge-Kutta Method 25

Chapter Two: Modified Runge-Kutta Methods 28

2.1 Introduction ... 28

2.2 Fundamental Results in Runge-Kutta Methods 28

2.3 Derivation of Some Implicit Runge-Kutta Methods 33

2.3.1 Derivation of Two-Stages Implicit Runge-Kutta Method 33

Contents

2.3.2 Derivation of Tridiagonals Three-Stages Implicit Runge-

Kutta Method .. 36

2.4 Stability of Tridiagonals Three-Stages Implicit Runge-Kutta

Method .. 39

Chapter Three: Variable Step and Variable Order Runge-Kutta

Methods ... 44

3.1 Introduction ... 44

3.2 Variable Step Rung-Kutta Methods .. 44

3.3 Variable Order Methods .. 46

3.3.1 Richardson Extrapolation ... 49

Chapter Four: Numerical and Comparison Results 59

4.1 Introduction ... 59

4.2 Numerical Examples ... 59

References .. 71

Appendix A: Computer Programs .. A-1

.���� ا������ أر�� أدھ� أ���: ا���
Arshed Adham Ahmed khalil Al-Dulaimee

�-ا�����- د����:ا����ان��� ا�"!ك- ھ�
٤٢:دار، ٦:ز(�ق، ٢٠:"$�#

٣/٥/٢٠٠٥: "�.� ا����(-#
:أ�� ا�ط2و�#

(A Novel Approach for Deriving Some Runge-Kutta Methods)
Emil: ars-4280@ yahoo.com

Introduction

 ١

IInnttrroodduuccttiioonn

There is no general agreement on how the phrase "numerical analysis"

should be interpreted. Some see “analysis” as the key word and wish to

embed the subject entirely in rigorous modern analysis, others suggests that

the "numerical" is the vital word and the algorithm is the only respectable

yield. Numerical methods usually produces errors and we say that any

numerical technique is a good one if the error approach quickly or rapidly to

zero and the method requires a minimum computer capacity and less time

consuming as possible.

In the eighteenth century, mathematicians encountered difference

differential equations because they were trying to extend their knowledge of

the mechanics of discrete particles to the mechanics of the continuum, which

later came to be studied in terms of partial differential equations.

On the other hand, many complicated physical problems describable in

terms of partial differential equations can be approximated by much simpler

problems describable in terms of difference differential equations, [Piney,

1959].

This thesis, consist of four chapter. In chapter one, we introduce general

Runge-Kutta methods for solving ordinary differential equations which

consist of three types explicit, semi-explicit and implicit as well as there are

mathematical derivation.

Introduction

 ٢

Also in this chapter we stay the stability and converges of the prove of

proving the equivalence between stability of Runge-Kutta methods.

In chapter two, we present some fundamental results concerning with

Runge-Kutta methods (see Theorem (1.1), Lemma (2.1) and Theorem (2.2))

which are needed in the derivation of Runge-Kutta methods deterministic.

Also, in this chapter we present the derivation of a modified Runge-Kutta

method which is three steps Runge-Kutta methods using tridiagonal systems

as well as studying the stability of the modified method.

Chapter three consist of variable step size and variable order Runge-

Kutta methods, which has the utility of reducing local truncation error at the

node points.

Chapter four presents numerical examples, which had been solved using

explicit, semi-explicit and implicit and in proved Runge-Kutta method as well

as there are comparisons with the exact solution in order describe the

accuracy of the methods.

It’s important, to note that the results are given in tabulated form and the

programs (given in PASCAL language) are executed in personal computer

Pentium IV.

٨٨- ھ�د

 ا
	ظ�م �دق �

.���� ا������ أر�� أدھ� أ���: ا���
Arshed Adham Ahmed khalil Al-Dulaimee

�-ا�����- د����:ا����ان��� ا�"!ك- ھ�
٣/٥/٢٠٠٥: "�&� ا����%$#
:أ�� ا�ط,و�#

(A Novel Approach for Deriving Some Runge-Kutta Methods)
Emil: ars-4280@ yahoo.com

References

• Butcher J.C., "The Numerical Analysis of Ordinarily Differential

Equations", John Wiley, and Sons, Ltd., 1987.

• James L. Buchanan and Peter R. Turner," Numerical Methods and

Analysis", McGraw-Hill, Inc., 1992.

• Lambert J.D.," Computational Methods in Ordinary Differential

Equations", John Wiley and Son, Ltd., 1973.

• Burden R.L and Faires J.D., "Numerical Analysis", 3rd Edition, PWS,

1985.

• Atkinson K.E., "An Introduction to Numerical Analysis", John Wiley and

Sons, Inc., 1989.

• Bellman, R. and Cooke, K.L., "Differential Equations", Academic press

Inc., New York, 1963.

• Brauer, F. and Nohel, J.A., "Ordinary Differential Equations", W.A.

Benjamin, Inc., 1973.

• Henrici R.P., "Discrete Variable Methods in Ordinary Differential

Equations", John Wiley and Sons Inc., 1962.

• Jassim, F.A., "Variable Order and Variable step-size Methods for Initial

Value Problem", M.Sc. Thesis, Department of Mathematics, Al-Nahrain

University, Baghdad, Iraq, 1999.

• Isaacson, E. and H.B. Keller, "Analysis of Numerical Methods", John

Wiley and Sons Inc., 1966.

• Pinney, E., "Ordinary Differential Equation", University of California,

1959.

• Butcher J.C., "Implicit Runge-Kutta Processes", J. of Math. Comp., V.18,

pp. 50-64, 1964.

• AL-Exander. R. "Diagonally Implicit Runge-Kutta Methods for Stiff

Ordinary Differential Equations", Siam. J. Numer Anal. V.14, No.6, pp.

1006-1021, 1977.

• AL-Kubeisy S.W., "Numerical Solution of Delay Differential Equations

Using Linear Multistep Methods", M.Sc. Thesis, Department of

Mathematics, Al-Nahrain University, Baghdad, Iraq, 2004.

• Smith G.D., "Numerical Solution of Partial Differential Equations",

Larendon Press. Oxford, 1978.

• Ames W.F., "Numerical Methods for Partial Differential Equations",

Academic Press, New York San Francisco, 1977.

• Gear C. W.,"Numerical Initial Value Problems in Ordinary Differential

Equations",Prentice-Hall,Inc. Englewood Cliffs, New Jersey,1971.

• Stetter H. J. ,"Analysis of Discretization Methods for Ordinary Differential

Equations",Springer-Verlag Berlin Heidelberg New York,1973.

• Rainville D.Earl,"Elementary Differential Equations", Macmillan

Publishing Company, A Division of Maemillan, Inc., 1989.

• Knuth D. E.,"The Art of Computer Programming", Addison-Wesley

Publishing Company, Inc., 1973.

Supervisor Certification

I certify that this thesis was prepared under our supervision at the

Department of Mathematics and Computer Application, Collage of Science /

Al-Nahrain University as partial fulfillment of the requirements of the degree

of Master of Science in Applied Mathematics.

Signature: Signature:

Name: Dr. Fadhel Subhi Fadhel Name: Dr. Akram M. Al-Abood

Date: / /2005 Date: / /2005

In view of the available recommendation, I forward this thesis for debate

by the examination committee.

Signature:

Name: Assist. Prof. Dr. Akram M. Al-Abood

Title: Chairman of Mathematics Department.

Date: / /2005

Ministry of Higher Education
and Scientific Research
Al-Nahrain University

College of Science

A Novel Approach for Deriving
Some Runge-Kutta Methods

A Thesis

Submitted to the Collage of Science, Al-Nahrain University as a Partial

Fulfillment of the Requirements for the Degree of Master of

Science in Mathematics and Computer Applications

By

Arshed Adham Ahmed
(B.Sc. 2002)

Supervised by

Dr. Fadhel S. Fadhel and Dr. Akram M. Al-Abood

March 2005

 وزارة ا�����م ا����� وا�
	ث ا�����
 ����ــــ� ا���ر�ن

 ���� ا���وم

��ق
�ض��� أ!�وب �طور
 طرا$ق را�ك �و��

 ر!���
�د�� إ�& ���� ا���وم %� ����� ا���ر�ن�

 وھ� �زء �ن ��ط�
�ت ��ل در�� ���!��ر (�وم
��ت ا�	�!وب�
 %� (�وم ا�ر��.��ت و�ط

 �ن /
ل

 أر�د أدھم أ	�د
٢٠٠٢
���ور�وس (�وم، ((

5�راف

 أ�رم �	�د ا��
ود.د %�.ل 6
	� %�.ل. د

 ٢٠٠٥ آذار

	Microsoft Word - ABSTRACT.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - appendix.pdf
	Microsoft Word - ÇáÃåÏÇÁ.pdf
	Microsoft Word - ÇáãÓÊÎáÕ.pdf
	Microsoft Word - ch1.pdf
	Microsoft Word - ch2.pdf
	Microsoft Word - ch3.pdf
	Microsoft Word - Ch4.pdf
	Microsoft Word - Conclusions and Recommendation.pdf
	Microsoft Word - contents.pdf
	Microsoft Word - full Information.pdf
	Microsoft Word - introduction.pdf
	Microsoft Word - kuraan.pdf
	Microsoft Word - lãÚáæãÇÊ ÚÇãÉ.pdf
	Microsoft Word - refrence.pdf
	Microsoft Word - supervisor certification.pdf
	Microsoft Word - title 1.pdf
	Microsoft Word - title 2.pdf

