
AN INVESTIGATION OF 

AXISYMMYTRIC 

VISCOELASTIC BODIES 

UNDER SELF WEIGHT 

A thesis 

Submitted to the College of Engineering of  

Al-Nahrain University in Partial Fulfillment 

of the Requirements for the Degree of Master 

of Science in Mechanical Engineering 

By 

UDAY SALAH SALMAN AL-KAABY 

(B.Sc 2001) 

 

Muharam 
February 

1424 
2004 
 

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Signature: 

Name: Dr.Imad Ahmed Hussain 

(Supervisor) 

Date:  

Signature: 

Name: Dr.Hisham Tawfiq Rashid 

(Head of Department) 

Date:  

Certification 
I certify that the preparation of this thesis entitled "An Investigation of 

Axisymmytric Viscoelastic Bodies under Self Weight" ,was prepared under 

my direct supervision by Eng.Uday Salah Salman at Al-Nahrain University / 

College of engineering in partial  fulfillment of The requirements for the 

degree of Master of Science in mechanical engineering. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Signature: 

Name: Dr.Imad Ahmed Hussain 

                  (Supervisor) 

 Date: 
 

Signature: 

Name: 

             (Chairman)  

 Date: 

Signature: 

Name:  

               (Member)  

Date: 

Signature: 

Name:  

               (Member)  

Date: 

 

Approval of college of engineering   

Signature: 

Name: prof.Dr. Fawzi .M.Al-Naima 

                      (Dean)  

Date: 

 

Certificate 
We certify, as an examining committee, that we have read the thesis entitled 

"An Investigation of Axisymmytric Viscoelastic Bodies under Self Weight" 

,and examined the student Uday Salah Salman and found that the thesis meet 

the standard for the degree of master of science in mechanical engineering. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://cbs.wondershare.com/go.php?pid=1140&m=db


ألوزن لمواد أللزجة ألمرنة تحت تأثیر أدراسة 

 ألذاتي
 

  رسالة مقدمة

 من جزءوهي  جامعة ألنهرین في إلى كلیة ألهندسة

   فيعلومماجستیردرجة متطلبات نیل 

 دسة ألمیكانیكیةألهن

  من قبل

   ألكعبيعدي صلاح سلمان

  2001بكالوریوس 

  
  

  
  
  

    
  
  

             
  
  

  
  
  
  
  
  
  
  
  
  

    
  
 

1424  
2004 

  محرم
 كانون ألثاني

http://cbs.wondershare.com/go.php?pid=1140&m=db


  ألخلاصة
 ألط رق  نأ, یهتم هذا ألبحث بدراسة ألمواد أللزجة ألمرنة بأس تعمال ألط رق ألنظری ة و ألط رق ألعددی ة           

ألنظریة تستخدم لحل ألحالات ألبسیطة مثل ألاسطوانات ألمجوف ة ألمعرظ ة لض غط أو تغی ر ف ي درج ة           

  (Transient)           أو متغیر (steady)   لط سواء كان ثابتألحرارة بأختلاف نوع ألحمل ألمس

 فه ي تس تخدم لأعط اء    (finite Element)ألطرق ألعددیة ألمستخدمة و هي طریقة ألعناصر المح ددة  

قیم دقیقة للاجهادات و ألأنفعالات بالرغم من ألأخطاء ألتي قد تحدث لق یم ألانفع الات وألاجه ادات عن د         

 وقد تم ألتغلب على هذه ألمشكلة بأستخدام    0.5من  (Poisson)ي یقترب معامل بوزوندراسة ألمواد ألت

(Isoparametric Element)     وبع د ذل ك ت م إس تخدام طریق ة (Smoothing technique)   لإیج اد

  .ألنتائج على نقاط ألعقد

لوقت أللازم لعودة ألمعرضة لحمل ألجاذبیة و معرفة أأن هذا ألبحث یهتم بدراسة ألمواد أللزجة ألمرنة

 . ألأجسام ألمشوهة والمخزنة لفترات زمنیة مختلفة إلى وضعها ألأصلي وذلك للحصول على أقل تشویه

 ألشكل واسطوانیة ألشكل ودراسة تم دراسة أشكال مختلفة من ألمواد أللزجة ألمرنة منها قطع مستطیلة

وقد تم ألتركیز على ألأشكال ذات ألسطح ألداخلي ألنجمي وذلك .ألأشكال ذات ألسطح ألداخلي ألنجمي

بأخذ معاملات صلادة مختلفة بالاعتماد على ألنتائج ألعملیة التي تم ألحصول علیها لثلاثة أنواع من 

 .   البولیمر

ها تثبیت ألسطح ألداخلي للجسم ألمشوه أو تدویر ألجسم ألمشوه هناك عدة طرق لتقلیل ألتشویه من

في هذه ألعملیة یتم عكس تأثیر وزن ألجسم ألمشوه .وفي هذا ألبحث تم اعتماد عملیة ألتدویر1800ب

  .للحصول على أقل تشویه

من وجد أن ألزمن أللازم لتقلیل ألتشویه وعودة ألجسم إلى شكله الأصلي بعد عملیة ألتدویر تختلف 

معدن إلى معدن حیث یعتمد على معامل ألصلادة الخاص بكل معدن فضلا عن اعتماده على ألوقت 

    .ألأصلي للتخزین
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Chapter One 

Introduction and Literature Review  
 

1.1 Definition 
   Viscoelastic is concerned with material, which exhibit strain rate 

effects in response to applied stress. [1] .The difference between viscoelastic 

media and more common elastic ones lies essentially in the relation between 

stress and strain. Whereas normal elastic analyses are based upon a (spring) 

constant proportionality between the two, with Young modulus as 

proportionality constant, the added general viscoelastic relation must allow 

for time or strain –rate effects. Conceptually, it turns out that the easiest way 

to incorporate rate effects into the mathematically model is to provide dashpot 

elements in addition to the elastic spring elements. [2] 

There is some conventional terminology associated with characteristic 

forms shown in Fig 1.1; the short time range is referred to a classy region 

where the material is stiff, brittle, and elastic. At the end of the classy state a 

very strong dispersion region developer called the softening region is 

followed by the rubbery region, the creep compliance or the relaxation 

modulus turns horizontal against time. [3] 

 

1.2 Solution Methods. 
The solution methods can be divided into two group's analytical and 

numerical solution. The analytical solution used for some simple two –

dimensional shapes problem, but when it is concerned with complex two-

dimensional or three dimensional analysis problems, numerical method may 

be used. Such as finite difference method (FDM), finite element method 
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(FEM) and other Finite difference is of limited using because it depends on 

simple geometry and cannot deal with complicated geometry, most widely 

used method is the finite element, which can be used to construct a simple 

program.  

  

1.3 Object of the Present Studies 
 The main objectives of the present work are: 

1- Present the formulation of the theory of linear viscoelasticity, and 

analytical solution of typical important cases. 

2- Derive the finite element equations and build a software of 2-D"plane 

strain and axisymmytric" to present the theory of viscoelastic problems. 

3- Making an experiment for a viscoelastic torsion specimen, to get on the 

relaxation modulus (G (t)) for three types of viscoelastic material. 

4- Using these results in study cases to show how the change in G(t) effect 

on the cases results. 
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Figure 1.1A: Shear relaxation in three regions vs. time 
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Figure 1.1B: Creep compliance in three regions vs. time 

Log J (t) 

Log t 

Glassy 
Region 

Glassy – Rubber 
 Transition Region 

Rubbery 
Region 

B 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

http://cbs.wondershare.com/go.php?pid=1140&m=db


                                                                                    

 - 5 - 

Literature review  
 

1.4 Introduction 
 Integral transform technique such as Laplace transformation provides 

simple and direct methods for solving linear viscoelastic problems. 

Application of transform operator reduces the governing linear 

integrodifferential equation to a set of algebraic relations between the 

transforms of unknown function. And the initial and boundary conditions. 

Inversion, either directly or through the use of appropriate convolution 

theorem, provides the time domain response. 

 This review includes two parts, depending on the methods of solution 

technique, the first one is the analytical solution, and the second is the finite 

element solution. 

1.5 Analytical Solution 
 Lee [4] extending the work of Alfery [5] and Tsien [6] and using 

Laplace transform, formulized the concept of elastic viscoelastic correspond 

principle based on the solution of a viscoelastic boundary value problem can 

be obtained from the solution to the associated elastic problem, where the 

stress strain relation may be separated in two parts devioteric and volumetric 

part as shown below. 

 

 

 

 

ijij

ijij
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SQSP
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εσ

)()(
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Deviatoric relation 

Volumetric relation 
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λ 

E 

σ σ 

And the material constant can defined as: 

)(
)(3,

)(
)(2 /

/

SP
SQK

SP
SQG ==  

 By applying the above relation on the elastic solution, the viscoelastic 

solution can be obtained by partial fraction or other method of inverse 

Laplace methods. Since inversion is much more easily carryout for low order 

operators P and Q, much of literature presents solution of Maxwell and 

Kelvin model where the viscoelastic model may represent as below. 

 

 

Model Element Arrangement 
Covering 

Equation 

 

Maxwell model 

 

 

 

 

 

σij (1+p1D) = εij (q1D) 
 

 

Voigt or Kelvin 

model 

 

 

 

 

σij (p1) = εij (1+q1D) 
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Most polymer exhibit more general than Maxwell or Kelvin material model 

which may represent the material by a number of Kelvin models connecting 

in series or by a number of Maxwell models connecting in parallel which may 

be more difficult task of using Laplace transformation and more difficult task 

of inverting, therefore numerical methods are needed. 

 Williams [7] and co-workers [8-12] use the elastic viscoelastic 

corresponding principle to solve the problems of solid propellant rocket fuels.  

 Hussain et al [13] use the elastic viscoelastic corresponding principle 

by represent the material properties by the zener’s model of first kind 

(standard linear solid), which is shown below. The material properties 

relaxation modulus G (t) were impose as s time dependent, then the Laplace 

transformation is required to modified the existing elastic solution into 

viscoelastic one to determine the unite responses of the mechanical or thermal 

loading. 

  

 

 

 

 

 

 Muki [14] employed an integral transform in term of convolution 

integral to generalize the viscoelastic solution of the previous work. Where 

the stress strain relation may be represent by more general hereditary integral 

forms of linear viscoelastic operator relation as indicated below. 

 
∫ −=

t
ij

dt
tdttGt /0 /

/
/ )()(2)( ε

σ  
 

 

λ1 

E1 

σ σ 

E0 

σij (1+p1D) = εij (1+q1D) 
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And by using the finite difference numerical integration procedure one can 

get the viscoelastic response. 

 Rogers [15] is applied this method in moving boundary condition by 

consider in a circular viscoelastic hollow cylinder encased in and bonded to 

an elastic cylinder shell to represent a cylindrical propellant grain in a solid 

fuel rocket, where the inner surface may ablate at an arbitrary rate. 

 Park [16] and Roger [17] based their work on the Boltzman 

superposition integral with the unit response function used as the kernel. The 

existing elastic solutions are used to determined the unite responses of the 

corresponding viscoelastic problem based on the correspondence established 

between the elastic and viscoelastic unite response. The solution procedure 

does not required an often complex inversion step associated with an integral 

transform based elastic viscoelastic correspondence principle (Laplace 

transformation).as an illustration of the method is presented through an 

analysis of the stresses and displacements in a three layer, elastic 

viscoelastic,composite half space subjected to a distributed surface load and 

different temperature condition. 

1.6 Finite Element Solution 
 Naylor [18] proposes the reduce – selective integration technique to 

over come the singularity due to incompressibility behavior of the polymer. 

He finds that in spite of gross error in the values at the centre and the edges of 

each element as the compressibility is reduced; all the stress components 

retain good accuracy at the reduced integration points using 2x2 Gauss 

quadrate. 

 Zienkiewiez [19] proposed a numerical algorithm of viscoelastic stress 

analysis based on elastic solution. By representing the viscoelastic behavior of 

a material by a number of Kelvin models connected in series and by keeping a 

running total of creep strain for each such model, where the constitutive 
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equation (stress – strain relation) are represented in terms of a differential 

form. The total strain were separated the total strain into its elastic and creep 

components.  

 Carpenter [20] employed FEM where the constitutive equations 

between stress and strain are expressed in terms of high order differential 

equation, the advantage of using Rung – Kutta integration formulation are 

indicated. 

 Srinatha [21] discussed the solution of viscoelastic problem by FEM 

where the constitutive equations are represented in terms of integral form 

(convolution integral) instead of using the differential form.This approach 

have advantage that the material properties may be represent as a function of 

a prony series while the above two approaches are needed to represent the 

material properties as a differential form.   

 Yadagiri [22] use the preceding approach by representing the 

constitutive equation in terms of integral form (convolution integral) to 

developed an efficient special purpose code of FEM (VANIS) of nearly 

incompressible material, by using isoparametric elements with selective 

integration procedure which is third order Gauss rule (3x3 Gauss or 

integration points) for volumetric response where the stresses and strains are 

computed at the (2x2) Gauss points. 

 Jones [23] applies the ADINA finite element code. The ADINA 

thermoviscoelastic material model is intended to analyze solid propellant 

grain during the (cool down) period. The program was used to analyze two 

motor cases test problems provided by the JANNAF (Joint Army Navy – 

NASA– Air force) interagency propulsion committee design as standard test 

problems. In his work he showed that ADINA results were much closer to the 

experimental data the best of JANNAF members result.  
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 Hussain [24] used the approach of Finite Element formulation 

presented by reference [22] to develop an efficient special purpose cod 

“FEVES” which can be effectively employed for all the permissible values of 

Poisson’s ratio by using a selective integration procedure. But instead of 

getting the stresses and strains results at the (2x2) Gauss points the smoothing 

technique were used to extrapolate the stresses and strains results at the 

geometrical nodes. Where the results is compared with the analytical, 

published ones and ADINA finite element code from reference [23]. 

 Chen [3] predicts the failure mode and failure location of the solid 

propellant rocket fuel of HTPB type by using MSC/NASTRAN package to 

get the result of thermal response and compare it with experimental result of 

nondestructive test using the X-ray technique. 

 Henrikson [25] developed a general FE formulation for the analysis of 

nonlinear viscoelastic materials. A single integral constitutive law proposed 

by Schapery is used to describe viscoelastic material behavior. Cartesian 

strain components in terms of current and past stress state. Thus a stress 

operator that includes instantaneous compliance and hereditary strain that is 

updated by recursive computation conveniently defines strains. Equilibrium at 

each time step is insured with a modified Newton-Raphson technique 

incorporating convergence acceleration. Multi-axial stress formulation is 

intuitive analogue to that of linear elasticity. Work has focused on adhesives’ 

response under transient load application and temperature. 

1.7 Concluding Remarks 
 Having looked at the available literature, the following remarks can be 

concluded.  

1-In the analytical solution the use of the integration transform in terms of 

convolution integral is more general than the method of using direct Laplace 

transform "elastic viscoelastic corresponding principle" since the difficulties 
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associated with applying Laplace transform and the using the inverse Laplace 

transform are removed. 

2-In the finite element methods, the methods of applying the constitutive 

equation in terms of convolution integral are more general of using the 

differential operators, since the material properties of real applications may be 

represented in term of Prony series in the time domain. 
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Chapter Two 
Theory of linear Viscoelasticity 

 
 
2.1 Introduction 
 
 The stress strain relations in the linear theory of viscoelasticity yield 

mathematical tractable representation for stress-strain –time relations which 

permits reasonable simple solution for many stress analyses problem. 

Therefore, there has been considerable activity in this area in recent years to 

develop new mathematical representations of linear viscoelastic behavior and 

new methods for linear viscoelastic analysis. [1] 

 Any successful constitutive relationship must be capable of describing 

a number of distinct features of the time dependency such as illustrated below 

and shown in Fig. 2.1.  

 
I. Creep Behavior: if a stress σ is applied at zero time and held constant 

the strain ε increase with time t at a decreasing rate and the amount of 

the strain increases with stress, as shown in Fig. 2.1a. The behavior of 

an elastic material is shown as broken line. 

II. Relaxation behavior: when strain is applied at zero time and held 

constant then the stress decreases from its value at t = 0 as time passes, 

shown in Fig. 2.1b. 

III. Recovery behavior: if the stress is removed, either partially or entirely 

.the strain decreases or “recovers” as a function of time, in other words. 

There is delayed recovery, shown in Fig. 2.1c. 

IV. Constant rate stressing behavior: constant rate of stress application 

results in a non – linear increase of strain with time, a linearly elastic 

material would give linear strain increases. If stress – strain curves are 
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drawn for different stress states then the curve raises more steeply as 

strain rate increases (it is the same for all rates for an elastic material), 

as indicated in Fig. 2.1d. 

V. Constant rate straining behavior: the same behavior obtains in that with 

increasing strain rate, the stress – strain curves rises more steeply, as 

clear in Fig.2.1e. [26]. 

2.1.1 Maxwell Model 
 This model is formed by a spring and dashpot in series, as shown in 

Fig. 2.2. For simple tension as σ˚ is applied at t = 0, an immediate elastic 

strain εe of the spring occurs. Then a viscous strain εv of dashpot is added. The 

total strain is equal to the same of the strain in each component. While the 

stress acts on them is the same. The total strain can be written as: 
ve εεε +=  2.1 

Then the strain rate is: 

dt
d

dt
d

dt
d ve εεε

+=  2.2 

But elastic strain is: 

E
e σ

ε =  2.3 

And 

dt
d

Edt
d e σε 1

=  2.4 

Whereas the viscous strain rate is given by: 

λ
σε

=
dt

d v
 2.5 

Thus, the governing equation of Maxwell model is: 

λ
σσε

+=
dt
d

Edt
d 1

 2.6 

It is of interest to examine the response of such a material to various stress 

and strain hisrories, when applied constant stresses.eq (2.6) will reduce to: 
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λ
σε

=
dt
d

 2.7 

Then by integration, it can be found that: 

E
t °+=

σ
λ
σ

ε  2.8 

Eq. (2.8) explains that only viscous flow observed with time. After the time t1, 

the stress σ is removed, an immediate recovery of elastic component of strain 

occurs leaving irreversible strain of viscous element, as shown in Fig. 2.3.For 

the case of constant strain. 

dtEd
λσ

σ
−=  2.9 

By integration, as shown in Fig. 2.3, eq (2.9) will be: 

)(
/t

tExp −= σσ  2.10 

Where  
E

t λ
=/  is the relaxation time.fiq (2.3) showing creep, recovery and 

stress relaxation for Maxwell model . [27] 

2.1.2 Voigt or Kelvin Model 
 This model consists of spring and dashpot in parallel as shown in Fig. 

2.4.As σ0 is applied a dashpot prevents an instantaneous extension of the 

elastic spring. With time, the viscous behavior causes an increasing of strain. 

The total strain, elastic and viscous strain are equale.and each component 

support apportions of σ0, Therefore: 
ve σσσσ +==°  2.11 

This is equaled to 

dt
dE

v
e ε

λεσ +=  2.12 

But 
ve εεε ==  2.13 

Then  
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dt
dE ε

λεσ +=  2.14 

For creep case, where the model supports to constant stress, the solution of 

governing eq (2.14) is:  

)](1[
//t

tExp
E

−−= °σ
ε  2.15 

Where 
E

t λ
=//  is the retardation time. 

Comparison between Eq. (2.15) and eq (2.8) indicate that the predicated creep 

behavior of Kelvin model is more realistic, since the strain approach to σ0/E 

as time approach to infinity. The response of Kelvin model to constant load is 

more readily understood by considering the recovery response, where σ =0 

then: 

0=+=
dt
dE ε

λεσ  2.16 

 
 

By integration  

)(
//0

t
tExp −+= εε  2.17 

Figure 2.5 shows the creep and recovery behavior of Kelvin model. Consider 

now Kelvin model subjected to constant strain, as shown in Fig. 2.5, then eq 

(2.14) will reduced to:  

εσ E=  2.18 
Equation (2.18) implying that the material behaves as an elastic solid. This is 

an inadequate for general viscoelastic behavior. [27]. 

Now for comparison between Maxwell and Kelvin model. It has been shown 

that Maxwell model gives a reasonable predication of relaxation but it has 

unlimited deformation.wheares Kelvin model provide a better predication for 
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creep and recovery but it provide for a maximum displacement limited by the 

elastic deformation of the spring. [28]. 

2.1.3 The Standard Linear Solid 
 The simplest combination is shown in Fig. 2.6 and consists of a voigt 

model with spring in series. If the modulus of the additional spring is E1 and 

the modulus of the spring in the voigt model is E2then. Figure 2.7 illustrates 

the behavior of this model. 

 The differential equation is:  

λ
εεσ

σ
λ

1

00

10 11 E
dt
d

dt
d

EE
EE

+=+
+

 2.19 

From which it can be seen that both creep and relaxation result in satisfactory 

relationships. The creep compliance function is:  

)](1[11)(
121 t
tExp

EE
tJ −−+=  2.20 

Where  
2

1 E
t λ

=  and the relaxation modulus becomes. [26]. 

)](1[)(
221

2
1

1 t
tExp

EE
E

EtG −
+

−=  2.21 

Where 
21

2 EE
t

+
=

λ
 

2.1.4 Generalized Maxwell and Kelvin Model 
 Each Maxwell and Kelvin models are not capable of describing the 

properties of real system. The real system is a structure of many chains, each 

of which may itself posses both elastic and viscous nature. The models 

needed to describe the behavior of real materials may be composed of many 

Kelvin and Maxwell elements. The behavior of these models under an entirely 

different set of condition provides reasonable predication of real materials. 

[29]. 
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 Generalized Maxwell model (GMM) proposed to describe the stress 

relaxation of linear viscoelastic material. This model is shown in Fig. 2.8; 

consist of Maxwell elements arranged in parallel. 

In this arrangement the strain ε of all elements is the same, and the total stress 

on the system σ (t) is:  

][)( 10 t
G

ExpGGt
i

i
i

n
i λ

εεσ −+= ∑ =  2.22 

And  

][)( 10 t
G

ExpGGtG
i

i
i

n
i λ

−+= ∑ =  2.23 

For generalized Kelvin model (GKM) which consist of a series of 

arrangement of Kelvin elements. Each element has a different spring modulus 

Gi and viscous constant λi  ,as shown in Fig. 2.9. The voigt elements are 

connected in series with a single spring, which represent the instantaneous 

elastic response. Under constant stress, the elongation of the model can be 

expressed as:  

)](1[)( 10 t
J

ExpJJt
i

in
i i

λ
σσε −−+= ∑ =  2.24 

Therefore  

)(1[)( 10 t
J

ExpJJtJ
i

in
i i

λ
−−+= ∑ =  2.25 

2.2 Differential Representation Derive  
 Differential equations are the best and simplest relation, which describe 

the linear behavior of mechanical models. These models are constructed of 

elastic spring and viscous dashpot. [29] The constitutive equation of a rate 

sensitive linear material for a simple stress state, such as uniaxial stress or 

pure shear, may be expressed as a linear function. 

0),.........,,,........;,,( =°°°°°° εεεσσσf  2.26 
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Where σ =σ (t) describes the variation of stress with the time, ε =ε (t) 

describes the variation of strain with the time. The dots represent the 

derivatives with respect to time. Equation (2.26) is commonly written in more 

compact forms as mentioned previous in equation (1.1). Where  

r

r
a
r r t

pP
∂
∂

= ∑ =0  2.27 

 

r

r
b
r r t

qQ
∂
∂

= ∑ =0  2.28 

       A differential form of the constitutive equations obtained by combining 

equations (2.26), (2.27) and (2.28) as follows. 
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 2.29 

 
Where dots denotes the derivatives with respect to time and p0,p1,p2,…… and 

q0,q1,q2,……are material constants. In eq (2.29), there is no loss of generality 

by assuming p0 =1, taking the Laplace transforms of eq (2.29) for zero initial 

conditions yields. 
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2

210

2
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ssqsqsqqssQ

sspspsppssP
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a
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εε

σσ

++++==
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 2.30 

  Where s is the transform variable. From eq (2.30). 

 

)(
)(

)(
)(

s
s

sP
sQ

ε
σ

=  2.31 

 
For the linear case, the pr and qr in eq (2.29) are independent of stress and 

strain, but may depend on time. 
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Equation (2.29) can be reduced to a special case of Maxwell model equation 

(2.6) by assuming that p0=1, p1=λ/E and q0=0,q1= λ, also eq(2.29) can be 

reduced to the Kelvin model equation(2.14) by assuming that p0=1,q0=E,q1= λ 

2.3 Integral Representation Derive: 
 Instead of the differential equations, integral may be employed as 

constitutive equation to describe the viscoelastic behavior of the material. The 

most important integral representation of viscoelastisity is given by boltzman 

and his theory is called Boltzman superposition theory. Boltzman proposed 

that: 

1-The creep in specimen is a function of entire loading history, and 

2-Each loading step makes an independent contribution to the final 

deformation, which is obtained by simple addition of each contribution. [16] 

If a constant stress σ1 is applied at t=ξ then: 

)()( 1 ξσσ −= tHt  2.32 
And the corresponding creep strain will be: 

)()()( 1 ξξσε −−= tHtJt  2.33 
Where )( ξ−tH  unit function, and as explained in appendix (b). 

If stress σ0 is applied at time t=0 to a linearly viscoelastic material and then at 

t=ξ1 ,σ1 is applied as shown in Fig.2.10.The strain output at any time 

subsequent to ξ1is given by the sum of the strains at that time due to the two 

stresses component as thought each were acting separately, this is the 

Boltzman superposition principle.  If the stress input σ (t) is arbitrary (i.e. 

variable with time) instead of constant, this arbitrary stress input can be 

expressed by the sum of the series of a constant stress inputs as shown in Fig. 

2.11 and described by 

)()( 1 i
r
i i tHt ξσσ −∆= ∑ =  2.34 
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 The Boltzman superposition principle states that the sum of the strain 

outputs resulting from each component of stress input is the same as the strain 

output resulting from the combined stress input. 

Therefore the strain output under variable stress σ (t) equals  

)()( 1∑ = −= r
i ii tt ξεε  2.35 

 
Or 

)()()( 1 ξξσε −−∆= ∑ = tHtJt r
i i  2.36 

If the number of the steps tends to infinity the total strain can be expressed by 

an integral representation as:  

 

)]([)()()(
0

ξσξξε dtHtJt
t

−−= ∫  2.37 

This equation is a stieltjes integrel.If the stress history is differentiable and 

since the dummy variable ξ is always less than or equal to time (t), the 

function H (t-ξ) is therefore always unity, in the range of the integration. 

Hence eq (2.37) reduced to the following form: 

 

ξ
ξ
ξσ

ξε dtJt
t

∂
∂

−= ∫
)()()(

0
 2.38 

Where )]([ ξσd has been replaced by ξ
ξ
ξσ d

∂
∂ )(

 in order that time may be the 

independent variable. 

This equation is an integral representation of creep and it can be used to 

describe (and to predict) the creep strains under any given stress history 

provided the creep compliance J (t) is known. 

An alternative form for eq (2.38) may be obtained by employing integration 

by parts, taking:  
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ξ
ξ
ξσ

ξ ddvtJu
∂

∂
=−=

)();(  2.39 

it will become 

∫ −−=
t

dtJJtt
0

)()()0()()( ξξσξσε  2.40 

Where  

ξ
ξ

ξ
∂

−∂
=−

)(
)(

tJ
tJ  2.41 

If the creep compliance J (t) is separated into a time – independent (elastic) 

compliance J0 and a time – dependent creep function φ (t), eq (2.38) becomes: 

ξ
ξ
ξσ

ξϕσε dttJt
t

∂
∂

−+= ∫
)()()()(

0
0  2.42 

Exactly the same arguments apply when step changes or arbitrary changes in 

strain are applied and the resulting change in stress as a function of time is 

determined, then Boltzman superposition principle can be restated by 

substituting stress for strain and strain for stress. Getting on. 

∫ ∂
∂

−=
t

dtEt
0

)()()( ξ
ξ
ξε

ξσ  2.43 

Separating the relaxation modulus E (t) into a time – independent (elastic) 

modulus E0 and a time-dependent stress relaxation function ψ (t) eq (2.43) 

becomes: [1] 

∫ ∂
∂

−−=
t

dttEt
0

0
)()()()( ξ

ξ
ξε

ξψεσ  2.44 

2.4 Material Properties 
 It is customary to assume that most viscoelastic materials are 

essentially incompressible, which is for small strains are equivalent to 

assuming an infinite bulk modulus or poison’s ratio of one half. There are 

three basic approaches of approximations to the material behavior. 
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ü The incompressibility in bulk but permitting viscoelastic shear 

behavior. 

)(3)(5.0)( sGsEsK === υα  2.45 
ü The second permits a finite value of the bulk modulus but neglect any 

time dependence thus replacing its actual time dependent behavior by 

an average constant. The shear behavior is assumed viscoelastic as 

before. 

)(3
)(9)(

)(26
)(23)()(

ssGK
sKGsE

ssGK
sGKsKsK

+
=

+
−

== υ
 2.46 

ü The last stage is assumed that both bulk and shear are viscoelastic.[1] 

 
In the work reported in the thesis, it will be based on the second approach. 

The reduced time hypothesis is valid, linear uncoupled thermoviscoelastic 

formulations, the material is isotropic and homogeneous and the relation 

between the stress and strain based on small displacement theory. 

The numerical package such as ADINA [23] and ANSYS [30] use the 

material properties in terms of shear relaxation function therefore they use the 

generalized Maxwell model (GMM) to represent the mechanical properties, 

where the ANSYS package use 10 elements as a maximum number of GMM 

elements. 

The relaxation modulus function can be obtained from a stress relaxation test, 

where a specimen is instantaneously deformed to, and held at, a given strain 

while the stress is measured over decades of time. The stress initially reflects 

the relatively stiff state of the material, and then gradually decreases through 

the so-called transition region, settling at considerably lower value, as the 

material becomes more complaints .the stress relaxation test generates a curve 

that can be approximated numerically by a prony – dirichlet series as below. 
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][)( 1
i

i
m
i t

tExpGGtG −+= ∑ =°  2.47 

Where relaxation coefficients and ti are their corresponding characteristic 

times (relaxation time). Eq (2.46) is the same of eq (2.23) where ti= λi/Gi. 

2.4.1 The Linking Between The material Properties In Terms of 

(S) Domain 
 The linear stress strain relations for a homogenous and isotropic 

viscoelastic solid, it will introduce the deviatoric components of a stress and 

strain through: 

σδσ ijijijS
3
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−=  2.48 

 

δσσ
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−=S  2.49 

 

εδε ijijije
3
1

−=  2.50 

Where        KKKK εεσσ == ,  

In which ijδ is the kronecker delta. Turning first to constitutive law of integral 

form, the relaxation integral law. 
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Here )(,)( 21 tGtG are the relaxation moduli (in shear and isotropic 

compression) at the uniform temperature under consideration in this 

connection. It is clear that stipulate that 2,1,0)( == itGi  for –α <t<0. 

Alternatively, for a medium with a finite and discrete spectrum of relaxation 

and retardation times, the linear constitutive law admits the differential 

operator representation, equations (2.27), (2.28) and (2.30). 

The familiar connection between the foregoing three variants of stress strain 

law is obtained with the aid of the Laplace transform. 

It concludes under suitable regularity assumption that eq (2.51) and (2.52) are 

equivalent if: 

)(
1)(

2 SJS
tG

i
i =  2.53 

Similarity the equivalent of eq (2.49) and (2.30) is assured by  

)(
)(

)(
SPS

SQ
tG

i

i
i =  2.54 

  While eq (2.51) and (2.30) are equivalent provided  

)(
)(

)(
SQS

SP
tJ

i

i
i =  2.55 

 Equation (2.54) and (2.55) permits the passage from a given differential 

operator law to an equivalent stress strain law in integral form. 

In addition to the relaxation moduli in shear and isotropic compression 

(dilatation), it shall have occasion to make use of the “relaxation modulus 

extension” and of “Poisson’s ratio” for a viscoelastic material. The definition 

of these concepts may be used on a uniaxial tensile relaxation test at constant 

strain, which is characterized by. 

0,0
)(,)(

3322

1111011

===
==

ij

ttH
σσσ

σσεε
 2.56 
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 The defining equations for tensile modulus E (t) and for Poisson’s ratio ν (t) 

both of which are time dependent properties now appear as: 

0

22

0

11 )(,
)(

)(
ε
ε

ν
ε

σ −
== t

t
tE  2.57 

Making a connection between eq (2.56), (2.48) and by eliminating from eq 

(2.51) all components of stress and strain except σ11(t) and ε22(t) on applying 

the Laplace transform to the resulting  pair of equations ,it is arrive at: 

)](2)[()(
)]()[()(

220211

220111
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SSSGS

εεσ
εεσ
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−=

 2.58 

 
In view of eq (2.55) 
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SGSGS
SGSG

S
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SE
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=
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ν
 2.59 

If the employing the usual notation for inverse transform .it will be helpful for 

our future purposes to particularize the preceding discussion for certain 

important special viscoelastic media. In the case of the elastic solid the 

constant entering eq(2.30)have the values.p0=1,q1=2μ in shear and p0=1 

,q1=3K in extension then the equation(2.30) becomes 

),(3),(

),(2),(

txKtx

txetxS ijij

εσ

µ

=

=
 2.60 

In which µ is the shear modulus and K is the bulk modulus. It will also be 

convenient to recall the relations.  
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Where E and ν are the (constant) Young’s modulus and Poisson’s ratio of the 

elastic material. By using the differential operators of elastic model and eq 

(2.54), (2.55) and (2.30) therefore:  

S
KSG

S
SG 3)(,2)( 21 ==

µ
 2.62 

And substituting into eq (2.59) ,then: 
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 2.63 

For Maxwell solid the differential operator values are p0=1/λ , p1=1 , q0=0 

,q1=2μ applying the same procedure to get on 
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For Kelvin solid the differential operator values are p0=1,q0=2μ,q1=2μλ 

applying the same procedure to get on 
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2.4.2 Evaluating the Stress Relaxation Modulus  
 When the experimental results are available then it easy to find the G 

(t) by using a prony series by the following. [31] 
I. Fitting eq (2.47) to a single experimental curve, it is sufficient to 

choose m relaxation times per decades [31] in the times interval 

of the experimental curve.At time tk, the calculated relaxation is 

][)( 10
i

k
i

m
ikc t

t
ExpGGtG −+= ∑ =  2.66 

Where the transient relaxation is expressed in the form of prony series and ti 

is the relaxation time. If there are n data points in the experimental curve then 

eq (2.66) becomes: 

∑ ∑ ∑= = = −+= n
k

n
k

i

k
i

m
ikc t

tExpGGtG 1 1 10 ][)(  
2.67 

II. Defining a residual R such that 

∑ = −= n
k kekc tGtGR 1

2)]()([  2.68 
III. Finding the linear parameter by using the least square technique. 

The least square technique is to find the known linear parameters 

G0 and Gi (i=1……….m) which minimized R, i.e.  

0
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∂
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G
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∂
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iG
R  for all i  , As Ge has no dependence on the 
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Where 

1
)(

0
=

∂
∂

G
tG kc  2.70 

 

 

http://cbs.wondershare.com/go.php?pid=1140&m=db


   28

Similarly, 

∑ = =
∂

∂
−=

∂
∂ n

k
i

kc
kekc

i G
tG

tGtG
G
R

1 0
)(

)]()([  2.71 

Where   
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From eq (2.70) and (2.71), it can be shown that 

∑ ∑= ==n
k

n
k kekc tGtG1 1 )()(  2.73 

By substituting eq (2.67) into eq (2.73), the following expression is obtained: 

∑∑ ∑ == = =−+ n
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Similarly eq (2.71) and (2.72), the following can be deduced 
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By substituting eq (2.67) into eq (2.75), the following expression is obtained: 
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IV. Making expression in a matrix form for equations (2.74) and 

(2.76) as follow: 

 YXA =][  
Where X is the set of unknowns G0 and Gi and Y is a vector calculated from 

the experimental data points. Therefore: 
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2.5 Time -Temperature Effect on Mechanical Behavior 
 In general mechanical properties of viscoelastic material depend not 

only on time (or load duration) but also on temperature; especially some of 

mechanical properties of amorphous polymers (see appendix C) have a strong 

dependence on temperature. The linear thermoviscoelasticity theory does not 

allow, in general the mechanical properties to vary with temperature and the 

properties corresponding to a particular fixed temperature should be used 

throughout the solution procedure; otherwise the formulation becomes non 

linear in that the material property functions depend on material temperature 

that again only can be determined when material properties function are 

known. However, there exists a special class of material whose temperature 

dependence of mechanical properties is trials is referred to as being 

thermorheologically and the corresponding description of temperature-

dependent properties was first proposed by leader man. [23]  

The simplifying feature of the thermorheologically simple materials is that 

when material property (e.g. relaxation modulus or creep compliance) curves 

measured at different constant temperatures are all plotted against time on 

logarithmic scales, the curves can be superposed so as to form a single curve 

(called a master curve) corresponding to an arbitrary fixed temperature (called 
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reference temperature) by means of horizontal shift only as shown in Fig. 

2.12. The horizontal shifts between master curve and the isothermal curve are 

independent of time but depend only on temperature, this feature has a 

significant consequence in that the dependent of the material property on both 

time and temperature can be represented by dependence on single variable 

called reduced time, and the feature is often referred to as the time – 

temperature superposition. 

The φ (T) is a temperature – dependent material shifting function and reflects 

the influence of temperature on the internal viscosity of the material as 

defined below. [30] 

For the temperature above the class transition temperature of material, the 

shift factor φ (T) for thermorheogically simple material usually is expressed 

in the following form: 

( )
)(
)(

log
2

1

R

R

TTc
TTc

T
−+
−−

=ϕ  2.78 

Where c1, c2 and TR constants.eq (2.48) is commonly referred to as the WLF 

equation shown in Fig. 2.13. [30] 
 
2.5.1 Modification of the Constitutive Law 
 
 The constitutive laws discussed in the preceding section rest on the 

assumption that the entire body is permanently maintained at a uniform 

temperature. Accordingly the response function G (t) and J (t) entering the 

previous equations as well as material parameters p and q are to be regarded 

as having been determined at the relevant fixed “Base temperature”.[14] 

It now turns to the modification arising in the stress strain law if the 

temperature field is variable with position and time. With a view toward the 

analytical formulation of the temperature time equivalent hypothesis it 

confine our attention at first to the effect of a uniform temperature change, 
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i.e., a change in the base temperature, and consider merely the temperature 

dependence of the relaxation moduli.to this end let G (t, T) at the constant 

temperature T so that, in accordance to: 

 
)]([log),( TtfTtGi ψ+=  2.79 

Where the “shift function” )(Tψ  obeys 

00)( 0 >=
dT
dT ψ

ψ  2.80 

Setting  

)(log)( TT ϕψ =  2.81 

Where )(Tϕ is the shift factor and according to eq (2.80) is conform to  

00)(1)( 0 >>=
dT
dTT ϕ

ϕϕ  2.82 

And is thus a positive, monotone increasing function of T throughout the 

range of validity of eq (2.80). Also, this equation, by virtue of eq (2.79) and 

(2.81), yield 

)(),( ξii GTtG =  2.83 

Provided the “reduced time” ξ is defined by 

)(Ttϕξ =  2.84 

Consequently, the entire one-parameter family of response-function pairs Gi 

(t, T) is completely determined by its single member Gi(t0)=Gi(t, T) once ψ 

(T) is known for the temperature range in problem. The shift function ψ (T), 

and hence the shift factor φ (T), in turn, represent an intrinsic property of the 

material under consideration. 

Equations (2.83), (2.84) enable us to pass from eq (2.51), which holds at the 

base temperature T0, to the corresponding relaxation integral law applicable at 
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any constant temperature T. this transition is evidently effected by replacing 

Gi(t-t/)in eq(2.51)with Gi(ξ-ξ/),where ξ is given by eq(2.84) and ξ/=t/ 

φ(T),provided the body (in the absence of the load) is considered to be in the 

unstrained stat at the uniform temperature T. 

Next suppose the medium is under the influence of a variable temperature 

field T(t,T) .In this event the foregoing modification of the constitutive law 

eq(2.51) requires a twofold amendment .First , to allow for the temperature 

dependence of the response functions in the presence of a time-dependent 

temperature distribution, the definition in eq(2.84) of the reduced time ξ must 

be generalized consistent with the postulated temperature time 

equivalence.Scond,thermal expansion must be taken into account in the 

equation governing the dilatational response of the material. In this manner 

Morland and Lee [14] arrived at the generalized relaxation integral law. 
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Where  
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txfdttxTtxf t
=== ∫ ξϕξ  2.86 

 

While the “θ” is defined by 

)(,)(1),( 00
),( //

0 0

TdTTtx txT
T

ααα
α

θ == ∫  2.87 

Here α (T) is the temperature dependent coefficient thermal expansion and α0 

its value at the base temperature T0,G1(t) and G2(t),as before ,are the 

relaxation moduli measured at the base temperature . 
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Equations (2.86), in contrast to eq (2.84), imply a dependence of the reduced 

time ξ upon both position and the physical time. 

 If, in particular,α(T)is constant,eq(2.85)become α(T)= α0 , θ(x,t)=T(t,T)-

T0.further,in case T(x,t) is constant, the educed time ξ given in eq(2.86) 

coincides with that defined in eq(2.84).finally, eq(2.85) degenerate into 

eq(2.51) when T(x,t)=T0 .examining the structure of eq(2.85),and bearing in 

mind eq(2.86),(2.87) ,one notes that the temperature enters eq(2.85) both 

through the reduced time ξ and the temperature function θ. 

Analogous consideration applies to the generalization of the creep law eq 

(2.52), which-under no isothermal conditions, assumes the modified form.  
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txdttxS
t

Jtxe

ij
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ij

t

ij

,3),()(),(

),(),()(),(
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/
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/
/

/
1

θασξξε

ξξ

α

α

+
∂

∂
−=

∂

∂
−=

∫

∫

−

−  2.88 

Here Ji(t) are the creep compliances at the base temperature T0 .it is expedient 

to eliminate any explicit reference to t from these equations in favor of the 

reduced time ξ .for this purpose. it note from eq(2.86),with the aid of eq(2.82) 

that the reduced time is taken for fixed(x1,x2,x3),is a monotone increasing 

function of t .Hence f(x,t) in eq(2.86) may be inverted with respect to t ,so 

that 

 
),(,),( // ξξ xgtxgt ==  2.89 

Also, by eqs (2.86) and (2.89). 









∂
∂

=
∂
∂

=
∂
∂

t
ttxT

t
ξ

ξ
ϕ

ξ ,)],([  2.90 

Suppose F (x, t) is any function of position and time. Then to avoid 

ambiguity, we shall consistently adopt the notation 

)],(,[),(),( / ξξ xgxFxFtxF ==  2.91 
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It should be emphasized that F and F/ distinct functions unless ξ=t, i.e., unless 

φ(T)=1 ,moreover, F/ needs to be distinguished from F(x,t),the values of 

which are obtained by replacing the argument t in F(x,t) with ξ ,rather than by 

subjecting t to the first of the transformations eq(2.89).Using this equation 

.Eqs(2.85),(2.88) may be changed to the following forms. 

////
/

/
2

/

//
/

/
1

/
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And  
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ξθαξξσ
ξ

ξξξε
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α
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ij
t

ij
t

ij

+
∂

∂
−=
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∂
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∫

∫

−

−  2.93 

The extent on of the constitutive law eq (2.30) to non-isothermal conditions 

(for a thermorheologically simple material) will be discussed. This 

generalization may be reached economically by taking the Laplace transform 

of eq (2.92) with respect to ξ and by subsequent use of eq (2.54).On applying 

the corresponding inverse transforms, one thus the modified differential 

operator law may be written as: 

)],(3),()[(),()(

),()(),()(
/

0
//

2
//

2

//
1

//
1

ξθαξεξσ

ξξ

xxDQxDP

xeDQxSDP

ijij

ijij

−=

=
 2.94 

In which  

ξ∂
∂

=/D  2.95 

And the polynomial operators Pi,Qi ,as before, are given by 

eq(2.30),when(x,t)=T0. 

Eq (2.94) may be reduced to eq (2.30). If the medium is elastic, the 

differential operators have the values p0=1,q1=2μ in shear and p0=1 ,q1=3K in 
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extension, fail to evolve the reduced time, whence the response is independent 

of the temperature in this special instance. Elastic materials with temperature 

dependent characteristics thus don’t belong to the class of 

thermorheologically simple viscoelastic solid, i.e. the assumption that the 

“elastic constants” vary with temperature is inconsistent with the temperature 

- time equivalence hypothesis. 

The temperature - time equivalence hypothesis implies that the temperature 

dependence of the response of the material is governed by a single function of 

the temperature, namely by the shift – factor φ (T).  

For Maxwell and Kelvin models and by using the differential operators of 

these models and accordance with eqs (2.6) and (2.14), and using eqs (2.89), 

(2.90) and (2.91), one obtains for a thermorheologically simple Maxwell and 

Kelvin solid. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )],,[2,

,2,1,

txetxe
t

TtxS

txe
t

txS
T

txS
t

ijijij

ijijij

+
∂
∂

=

∂
∂

=+
∂
∂

λµ

µ
λ

 2.96 

 

Where  

( )
)(

0

T
T

ϕ
λ

λ =  2.97 

Comparing eq (2.96) with eqs (2.6) and (2.14), we identify the function λ (T) 

in eqs (2.96) as a temperature – dependent relaxation time and retardation 

time respectively may be identified. 
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Figure 2.2: Maxwell Model 
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Figure 2.3: Creeps, Recovery and Relaxation Behavior of Maxwell Model 
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Figure 2.6:Standard Linear Solid Model 
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Figure 2.5: Creeps, Recovery and Relaxation Behavior of Kelvin Model 
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Figure 2.7: Creeps, Recovery and Relaxation Behavior of Standard Linear Solid Model 
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Figure 2.9: Generalized Kelvin model 
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Chapter Three 
Finite Element Formulation for 

Thermoviscoelastic Analysis 
 
3.1 Introduction  

The Finite Element Method "FEM" has become a powerful tool for the 

numerical solution of a wide range of engineering problems. In this method of 

analysis a complex region-defining a continuum is disecritized into simple 

geometric shape called elements, which are connected, at a finite number of 

points known as nodal points. The material properties and the governing 

relationships are considered over these elements and expressed in terms of 

unknown values at element corners. An assembly processed, duly considering 

the loading and constraints, results in a set of equations. Solution of these 

equations gives the approximate behavior of the continuum. 

Analytical solution is preferred to solve any engineering problem 

governed by differential or integral equation. There are many situations where 

the analytical solution is difficult to obtain, especially when the region under 

consideration is irregular and mathematically impossible to describe the 

boundary of the problem domain or the material is represented by a series of 

Maxwell (GMM) to represent as a Prony series, which is more difficult to 

solve analytically. 

In this chapter the Finite Element technique, which has been 

demonstrated to provide an excellent analysis tool of problems with a 

complex geometrical configuration subjected to gravitational loading, has 

been extended to provide analysis for a linear viscoelastic solids. 
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3.2 Thermoviscoelastic Stress-Strain Relations 
The Thermoviscoelastic stress-strain relation may be obtained by using 

the elastic stress strain relation. The general thermoelastic stress-strain 

relation can be written as [32]: - 

 ( ) ( ) ( ) ( )xTKxGkxGx oijkkijijij ∆−





 −+= αδεδεσ 3

3
22  (3.1) 

The elastic viscoelastic corresponding principle can be applied to deduce the 

following stress component in Laplace domain [33].as illustrated in appendix 

(B). 

 
( ) ( ) ( ) ( ) ( ) ( )
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−





 −+=

αδ

εδεσ
 (3.2) 

 Inverse Laplace transformation (convolution integral) can be employed to 

obtain the stress variation with the time domain: 
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 (3.3) 

The discontinuity at t=0, may be eliminated from the above expression to 

obtain the following expression: 
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(3.4) 

Integration by parts can be applied to the second and fourth terms to simplify 

the above equation into: 
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(3.5) 

Equation (3.5) can be written in matrix form as shown below where the 

spatial variables x in the arguments are suppressed for simplicity:  

 ( ) [ ] ( ) [ ]10 DtDt += εσ £ ( ){ } ( )( ){ }ItTKt ∆− αε 3  (3.6) 

Where  
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Where for 
1. plane strain problems 
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 { } { }011=TI  (3.10) 
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2. Axisymmetric problems 
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 { } { }0111=TI  (3.13) 
 
3. Three dimensional problems 
 

 
[ ]

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( )
( )






























+−−

−+−

−−+

=

000000
000000
000000

0000
3
40

3
20

3
2

0000
3
20

3
40

3
2

0000
3
20

3
20

3
4

0

G
G

G

GKGKGK

GKGKGK

GKGKGK

D

 

(3.14) 
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 { } { }0001111 =T  (3.16) 

 
3.3 Reduce time  
 The shifted time ζ  in eq. (3.5) is related to the real time t, throw the 

relation [22]. 

 

 ( ) ( )( )∫
+

′
==

t

t tTA
tdt

0
ζζ  (3.17) 

where AT is the shift function  evaluated by using so called WLF equation [7] 

as  

 ( ) ( )
( ) ( )Th

TTC
TTCTa

R

R
T −=

−+
−

=
2

1log  (3.18) 

 ( )[ ]
( )Th

T tTA
101

=  (3.19) 

For the cases of transient temperature loading the shifted time at tk, kζ  can be 

calculated numerically suing trapezoidal rule from eq. (3.17) to give the 

following [23] 

 ( )( )∫
−

−
−

′
+=

k

k

t

t kkT
kk ttTA

td

1
,1

1ζζ  (3.20) 

While for the case of steady state temperature loading, it can be shown that 

[23]: 

 ( )Th
k t 10*=ζ  (3.21) 
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3.4 Finite Element Formulation  
 A detail of the Finite Element Method "displacement method" is 

presented by many workers [34-37]. The displacement and coordinate 

geometry at any point inside an isoparamertic element can be related to the 

nodal displacement and coordinates using the shape function as follow [38]: 

 { } { } { }i
T XNX =  (3.22) 

 { } { } { }i
TN δδ =  (3.23) 

The strain-displacement relation may be written as: 

 { } [ ]{ }iB δε =  (3.24) 
  

The principle of minim total potential energy is used to drive the Finite 

element equations. The minimum total potential energy principle states that 

[34]: "of all possible displacements that satisfy the given boundary conditions, 

those that satisfy the equilibrium equations, make the potential energy assume 

a stationary value. For stable equilibrium, the potential energy is minimum."  

The total potential energy X is defined as: 

 WUX −=  (3.25) 
Where 

 { } { }FW Tδ=  (3.26.a) 
 { } [ ] { }∫=

v
TT dvBU σδ

2
1  

(3.26.b) 

But 

 { } { } [ ]TTT Bδε =  (3.27) 
Therefore 

 { } [ ] { } { } { }∫ −=
v

TTT FdvBX δσδ
2
1  (3.28) 

Applying the principle of minimum total potential energy, it can be shown 

that [34]: 

 [ ] [ ] { }∫ =−=
v

T FdvB
d
dX 0σ

δ
 (3.29) 
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Or 

 [ ] [ ] { }FdvB
v

T =∫ σ  (3.30) 
By substituting eq. (3.6) into eq. (3.30), it can be proved that:  

 [ ] [ ][ ]{ } [ ] [ ] ( ){ } ( ){ } ( ){ }∫∫ =−+
v Tm

T
v

T tFtFdvtDBdvBDB εδ 10  (3.31) 
Where:  

 ( ){ } ( ) [ ] [ ]∫∆=
v

T
T dvIBtTKtF 03α  (3.32) 

( ){ }tFT  is the thermal load vector.  ( ){ }tFm  is the mechanical load vector due 

to nodal force and / or surface traction and/ or centrifugal force and / or 

gravity load.[39]  

More details of numerical schemes of mesh discretization, numerical 

integration, assembly and solution of system of equations can be found in 

references [34-37]. 

3.4.1 Time Marching Scheme:- 
In order to obtain the response at time tk, the time axis is discretized into kth 

equal time intervals, i.e. 

 ∑
=

∆=
k

n
k tnt

0
.  (3.33) 

And in order to solve eq.(3.31), one has to approximate the time variation of 

the field quantities in addition to the usual approximation of the spatial 

variation. For this purpose a linear interpolation function is used which is 

described with the resulting time stepping algorithms. 

The field variables (i.e. displacements) are assumed to vary linearly during a 

time step. Employing the trapezoidal rule for time domain, eq. (3.7) can be 

written for kth time step as: 

http://cbs.wondershare.com/go.php?pid=1140&m=db


 

 - 50 - 
  

 

( ){ } ( ) ( )( )[ ] ( ){ }

( ) ( )( )[ ] ( ){ }

( ) ( )( )[ ] ( ){ }1

2

1
1

11

1

*

0
2
1

0
2
1£

+

−

=
+

−−

−

∑ −−−

+−−

+−−=

j

k

j
jkjk

kkk

kkk

tBGG

tBGG

tBGGt

δζζζζ

δζζ

δζζε

 (3.34.a) 

And by employing eq.(3.34) and the second term of eq. (3.31) one can get the 

following relation: 
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 (3.34.b) 

Where  

 ( ){ } ( ){ } ( ){ }( )11 2
1* ++ += jjj ttt δδδ  (3.35) 

 [ ] [ ][ ][ ]dvBDBK
v

T∫= 11  (3.36) 

The above eq. (3.34a) has been performing by finite difference numerical 

integration as shown in the appendix (B). Substituting eq. (3.34.a) the 

elemental equilibrium equation can be deduced as: 
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 (3.37) 

Where  

 [ ] [ ][ ][ ]dvBDBK
v

T∫= 00  (3.38) 
 ( ){ } [ ] ( ){ }kk tKtM Φ= 1  (3.39.a) 

And  
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3.4.2 Solution Procedure:- 
 For the first time step, which will give the elastic solution at time t=0, 

the equilibrium equation i.e. eq.(3.37) can be reduced into: 

 [ ] ( ){ } ( ){ } ( ){ }0000 Tm FFK +=δ  (5.40) 
For the second, third etc. time steps equilibrium equation will written as eq. 

(3.37), where [k0] and [k1] are constant matrices all that necessary at every 

time step is just to update ( ){ }ktm  "memory load vector", and update the 

values of the load vector ( ){ } ( ){ }tFtF Tm , for transient loading and then solve 

the algebraic eq. (3.37). 

The output results from the solution procedure will be the nodal displacement 

vector using eq.(3.40) for the elastic solution and eq.(3.37) for kth time steps. 

The strains are obtained by using eq. (3.24). Finally the stresses are computed 

from     eq. (3.5) as: 

 ( ){ } [ ] ( ){ } { } ( ){ }ItTKAtAt kkk ∆−+= 021 3αεσ  (3.41) 
Where 

 [ ] [ ] ( ) ( )( )[ ]1101 0
2
1 DGGDA kk −−−+= ζζ  (3.42) 

 { } [ ][ ] ( ){ }ktBDA Φ= 12  (3.43) 
 

3.4.3 Incompressibility Consideration  
 Most viscoelastic materials are assumed to be incompressible or nearly 

incompressible solids (i.e. Poisson's ratio approaching to one-half). 

Application of the usual finite element method (displacement method) for the 

analysis of such solids yields severally oscillating in the stress and strain 

across the elements. This aspect has been studied for elastic materials and is 
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well document in literature [18]. This oscillation may be overcome by using 

the following steps: 

1. Using selective integration procedure, which is exact (3×3) Gauss 

integration points for the shear component and approximate (2×2) 

Gauss integration for the bulk components of the elastic stiffness 

matrix[37]. 

2. Using 8-nodes serendipity isoparametric elements for plane strain and 

axisymmetric solid and 20-node for three-dimensional solid quadratic 

isoparametric element [23] as shown in Fig.3.1. 

3. The location of stress and strain output [18], i.e. the sampling position, 

within the element can be selected at the (2×2) gauss points, which are 

favored and give a best results of stresses and strains. Whiles the results 

at the geometrical nodes or (3×3) gauss points are given a poor and 

unreasonable result.  

 

According to first assumption the elastic stiffness matrix ko of eq. (3.38) may 

be split into shear and bulk components [37] as shown below 

 [ ] [ ] [ ]sv KkK 000 +=  (3.44) 
 

Where  

 [ ] [ ] [ ][ ]dvBDBK
v

vTv ∫= 00  (3.45) 

 [ ] [ ] [ ][ ]dvBDBK
v

sTs ∫= 00  (3.46) 
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Where  

1. plane strain problems 
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2. Ax symmetric problems 
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3. three dimensional problems 
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The integration of [ ]sk0  can be performed using the standard (3×3) Gauss 

Legender formula, while the [ ]vk0  can be evaluated numerically using (2×2) 

Gauss - Legender formula to overcome the singularity due to the value of 

Poisson's ratio, when it reaches to 0.5. The above (2×2) gauss point is called 

the reduced or selective integration technique and is recommended only when 

the Poisson's ratio "v" reaches to 0.5, for other values it found that (3×3) gives 

more accurate results. 

3.4.4 Local Smoothing of Stresses and Strains: 
 The geometrical nodes of the finite element mesh, which are the most 

useful out put locations for stresses and strains, appear to be the worst sample 

points for incompressible (or nearly incompressible ) materials. It has been 

shown that the integration points "(2×2) gauss points" are the best stresses and 

strains sample points but the stresses and strain will be as discontinuous 
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between the elements, to solve this problem one can use local smoothing 

technique [38] as shown in Fig. 3.2. First the smoothing may be performed 

separately over each individual element and this will be called local 

smoothing, and then taken the average of stresses and strains of the nodal of 

all elements meeting at common node. The smoothing function of 2-D 

problems "plane strain and axisymmetric problems" is shown below: 
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 (3.54) 

 

3.5 Computer Programming: 
  

The software "FEVES" is developed for linear viscoelastic analysis can 

effectively employed for all permissible value of Poisson's ratio. The software 

can be effectively used for the analysis of compressible structures throw the 

use of a control parameter, which changes the computational flow from the 

selective integration "(2×2) gauss point integration" to a third order "(3×3) 

gauss rule for the computation of both the deviatoric and volumetric 

components of the stiffness matrix. The function of each subroutine Fig. 3.3 is 

described as follows: 

1. DATA: - the main job of this subroutine is to enter geometrical and 

control data: No. of elements & nodes, boundary condition, and the 

material properties represented in term of Prony series. 
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2. LOAD: - the job of this subroutine is to determine the type of loading 

"point load, surface truncations, thermal load, gravity load, and 

centrifugal force". 

3. ASSEO: - this subroutine is responsible for evaluating the global elastic 

stiffness matrix [ ]0K which is written into tow (shear and bulk) 

components [34] as shown in eq. (3.45) and (3.46) respectively. 

4. ASSEI: - this subroutine is responsible for evaluating the global 

viscoelastic stiffness matrix [ ]1K . 

5. ASSET :- this subroutine is responsible for evaluating the total elastic 

and viscoelastic stiffness matrix as below 

[ ] ( ) ( )( )[ ]



 −−+ − 110 0

2
1 kGGK kk ζζ  

6. MMAT: - the memory load vector eq. (3.39.a) is evaluating in this 

subroutine. 

7. REDUCER: - the job of this subroutine is to applying the prescribed 

boundary conditions, to reduce the system of equations of the global 

stiffness matrix. 

8. SOLVER: - in this subroutine the gauss-elimination method is 

employed to solve the reduced system of equation. 

9. DISPL: - the job of this subroutine is formatted the displacement and 

printed it. 

10. STRESS: - the purpose of this subroutine is to evaluate the nodal 

stresses eq. (3.41) of compressible material and at the (2×2) gauss 

points for the incompressible and nearly incompressible material and 

then using smoothing technique to extrapolate the stresses from (2×2) 

gauss point to the corner nodal points. 
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Figure3.1: 8-nodes serendipity isoparametric elements 

Element type Intrinsic coordinate 

Plane strain element 

 

Axisymmytric Element 

 

3-d Solid Element 
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4 3 

21

Figure 3.2: Locations of 2X2 gauss points 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
      Corner nodes used in smoothing analysis 
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END 

DATA 

Program FEVES 

LOAD 

ASSEO 

ASSE1 

ASSET 

KG=ASSET 

K=1, NT 

IF K<2 THEN 
KG=ASSEO 

REDUCER 

MMAT 

SOLVER 

STRESS 

DISPL 

Figure 3.3: Block diagram of FEVES code 

YES 

NO 
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Chapter Four 

Experimental Work 
4.1 Introduction 
 In this chapter, experimental tests have been carried out with two-fold 

aim in mind. One of these tests has focused on evaluating the instantaneous 

response of a viscoelastic specimen to an applied angle of twist. On the other 

hand, the second test was designed to assess the time dependent behavior of 

such a speicemen.the measure that was used for such an assessment is the 

shear relaxation modulus that was computed as an outcome for the 

experiment. Both of the tests were conducted on three different types of 

polymeric material. The testing was made under 370C temperature. 

4.2 The apparatus 
As shown in Figs. 4.1a and 4.1 b. The apparatus consists mainly of: 

- Loading device (1) with scale and revolution counter for twisting angle 

measurement. 

- Torque measurement unit (2) with digital torque meter (6). 

- Calibration device (3). 

The specimen (4) is mounted between the loading device (1) and the 

Torque measurement unit (2) into hexagon sockets. All components are 

mounted on a track base (5). 
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Figure 4.1a: Device Elements 

Figure 4.1b: The torsion test apparatus  
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Figure 4.2: loading device elements 

4.2.1 Loading device  
 The torsional loading is transmitted to the specimen by a worm gear (1) 

and a hand wheel (4). The twisting angle at the output and the input read off 

by two 3600 scales (2,3). At the input side of the gear there is in addition a 

five digit revolution counter (5) which shows the input revolutions 1:1.the 

worm gear has a reduction ratio of 62.The specimen's hexagon ends are set 

into a axial moveable socket (6) at the worm gear output end. As shown in 

Fig. 

 

 

 

 

 

 

 

 

4.2.2 Torque measurement unit 
 In this testing apparatuses the torque will be measured by a reference 

torsion rod and strain gauges. The specimen is mounted on one side to the 

loading device and one on the other side to the torque measurement device. 

The load torque applied to the specimen produces shear stresses in the 

measurement torsion rod. These shear stresses are proportional to the load 

torque. Strain gauges are used for detecting the shear stresses. Because the 

strain gauges can only measure strain but not twisting they must be applied in 

the direction of the maximum principal stresses. This case of pure torsion the 

maximum of principal stress will occur at an angle of 450 to the axis of the 

torsion rod. 
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Figure 1 the specimen geometry 

L G 

D 

L  

r 2R 

D 

Figure 2: Side view of the holder 
Figure 4.3a: Main dimension of the specimen 

LG=70 mm 
L=80 mm 
r =5 mm 
R=6 mm 
D=15 mm 

Due to the arrangement of four strain gauges in form of a full bridge circuit 

the distortion influences of additional bending and direct stresses is 

minimized. The signal of the gauges is conditioned by a measuring amplifier 

with a digitally read out. The amplifier also delivers the supply voltage for the 

bridge circuit. 

A lever and a threaded spindle at the fixed side of the torsion rod can 

compensate the deformation. A dial gauge at the side of the specimen holder 

can control the compensating. 

4.3 The specimen  
As is illustrated in Fig. 4.3a and 4.3b, the set of dimensions defining any 

specimen under test are five numbers. These are the gauge length of the 

specimen LG and the tentative length of the specimen L, radius of the 

specimen R, the radius of fillet r and the diameter of the holder D. for each 

studied material ,two specimens were tested with two different radii.  
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Figure 4.3b: Actual specimens picture 

 

 

 

 

 

 

 

 

 

 

  

 

4.4 Testing procedure 
 These tests consist mainly of two experimental tests as follows:  

Test one: the first test is conducted by fitting the 6-mm radius specimen in the 

device and reading torque against angle of twist beginning with θ=0 to θ=800. 

Test two: the experimental procedure follows the following pattern. After 

making the necessary calibration, the specimen is subjected to the test by 

adjusting the twist angle to 300.then torque value is read of every five minutes 

for the specimen having a 12-mm radius. Linear time –dependent theory is 

used to find the shear modulus at each time station. Thus the following 

equation is utilized. 

 
RL

G
J
T τθ

==  4.1 

Where J is the second polar moment of area. J= (π/2) R4. 

 Time dependent parameters "shear relaxation coefficient" is obtained 

by fitting the resulting data to a Prony series representation of G(t) as follow: 
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It was elected to evaluate the above representation up to 5 relaxation 

parameters Gi (i=0, 1, 2) and λj (j=1, 2). This is done by substituting 5 

experimental readings in equation (4.2) and solving the resulting algebraic 

equation set of equations simultaneously. 

4.5 Experimental results 
 Materials to be tested are outlined below.  

1-Material type .One 

The above procedure is conducted for material type one in order to get 

the shear relaxation modulus. The experimental results are listed in Tables 

(4.1), (4.2) while Figs. 4.4 and 4.8 show the behavior of the material 

properties. 

By a considering a five readings from Table (4.1)  and applying eq (4.1) for 

each one to get the shear relaxation modulus at five different time steps as 

follow. 
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Applying the above results in equation 4.2, as follow: 
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Table 4.1: the results of the sample of torsion test  
θ=30°, T=37°C and R=12mm 

 

Table 4.2: the results of the sample of torsion test 
R=6mm and T=37oc 

 

 

 

 

No Time  
(sec) 

Torque   
(N.m) 

Shear Relaxation 
(N/m2) 

1 0 3.45 14429971 
2 300 2.15 8992590 
3 600 1.85 7737810.707 
4 900 1.70 7110420.650 
5 1200 1.60 6692160.612 
6 1500 1.50 6273900.574 
7 1800 1.40 5855640.535 
8 2100 1.35 5646510.516 
9 2400 1.35 5646510.516 
10 2700 1.30 5437380.497 
11 3000 1.25 5228250.478 
12 3300 1.25 5228250.478 
13 3600 1.20 5019120.459 

 

 

 

No 
angle of 

twist 
(Deg) 

Torque 
(N.m) 

1 0 0 
2 5 0.3 
3 10 0.5 
4 15 0.65 
5 20 0.90 
6 25 1.05 
7 30 1.10 
8 35 1.15 
9 40 1.18 
10 45 1.20 
12 50 1.25 
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The shear relaxation parameters obtained are as listed in Table (4.7). 

Equations (4.1) and (4.2) and table (4.7) are used to express the behavior of 

theoretical torque with (time, angle of twist) and shear relaxation G (t) in 

terms of prony series and make a comparison between experimental and 

Prony series results as shown in the Figs. 4.7 and 4.8.   

2-Material type .two:  

The same procedure applied to materials types two by taking five 

experimental results and using equations (4.1) and (4.2) to get on the results 

as follows: 
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Applying the above results in equation (4.2), as follows: 
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Table 4.3: the results of the sample of torsion test  
θ=30°, T=37°C and R=12mm 

 

Table 4.4: the results of the sample of torsion test 
R=6mm and T=37oc 

 

The experimental results are listed in Tables (4.3) and (4.4) while Figs. 4.9 

and 4.13 show the behavior of the material properties. 

 

 

No Time  
(sec) 

Torque   
(N.m) 

Shear Relaxation 
(N/m2) 

1 0 5.85 25403225 
2 300 2.45 10638957 
3 600 2.05 8901985 
4 900 1.90 8250620 
5 1200 1.75 7599255 
6 1500 1.70 7382134 
7 1800 1.65 7165012 
8 2100 1.60 6947890 
9 2400 1.55 6730769 
10 2700 1.50 6513647 
11 3000 1.50 6513647 
12 3300 1.45 6296526 
13 3600 1.40 6079404 

 

 

 

No 
angle of 

twist 
(Deg) 

Torque 
(N.m) 

1 0 0 
2 5 0.45 
3 10 0.65 
4 15 0.95 
5 20 1.20 
6 25 1.30 
7 30 1.40 
8 35 1.60 
9 40 1.65 
10 45 1.70 
12 50 1.75  
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2-Material type .Three:  

 The same procedure applied to materials types three by taking 

five experimental results and using equations (4.1) and (4.2) to get on the 

results as follow: 
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Applying the above results in equation (4.2), as follow: 

 

5210918)3600exp()3600exp()3600(

5428039)3300exp()3300exp()3300(

6296526)1500exp()1500exp()1500(

8250620)300exp()300exp()300(

19714640)0exp()0exp()0(

2
2

1
10

2
2

1
10

2
2

1
10

2
2

1
10

2
2

1
10

=−+−+=

=−+−+=

=−+−+=

=−+−+=

=−+−+=

t
G

t
GGG

t
G

t
GGG

t
G

t
GGG

t
G

t
GGG

t
G

t
GGG

 

 

The experimental results are listed in Tables (4.5) and (4.6) while Figs. 

4.14 and 4.18 show the behavior of the material properties. 
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Table 4.5: the results of the sample of torsion test  
θ=30°, T=37°C and R=12mm 

 

Table 4.6: the results of the sample of torsion test 
R=6mm and T=37oc 

 

 

 

 

No Time  
(sec) 

Torque   
(N.m) 

Shear Relaxation 
(N/m2) 

1 0 4.54  19714640 
2 300 1.90 8250620 
3 600 1.70 7382133 
4 900 1.55 6730769 
5 1200 1.50 6513647 
6 1500 1.45 6296526 
7 1800 1.40 6079404 
8 2100 1.35 5862282 
9 2400 1.35 5862282 
10 2700 1.30 5645161 
11 3000 1.30 5645161 
12 3300 1.25 5428039 
13 3600 1.20 5210918 

 

 

 

No 
angle of 

twist 
(Deg) 

Torque 
(N.m) 

1 0 0 
2 5 0.25 
3 10 0.50 
4 15 0.65 
5 20 0.80 
6 25 0.95 
7 30 1.10 
8 35 1.15 
9 40 1.25 
10 45 1.30 
12 50 1.35  
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Table 4.7: Shear relaxation parameters  

Figure 4.4: Experimental results of torque vs. time 
 

 

 

Material 
type  G0 G1 G2 t1 t2 

one 4786751 4563498 5080506 22.113  2.273 
two 6273722 5950405 13179072 14.057 0.003 

three 5961238 13704571 747375 3.104 22.431 
The theoretical curves plotted in Figs. 4.7, 4.11 and 4.14 have been derived in 

appendix A in equations (A.21). 
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Figure 4.6: Experimental results of torque vs. angle of twist 

Figure 4.5: Experimental Shear Relaxation modulus vs. time 
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Figure 4.7: Experimental and theoretical shear relaxation vs. time 

Figure 4.8: Experimental and theoretical torque vs. time 
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Figure 4.9: Experimental results of torque vs. time 

Figure 4.10: Experimental Shear Relaxation modulus vs. time 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://cbs.wondershare.com/go.php?pid=1140&m=db


 - 76 - 
 

Figure 4.11: Experimental results of torque vs. angle of twist 
 

Figure 4.12: Shear relaxations vs. time 
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Figure 4.13: Experimental and theoretical torque vs. time 
 

Figure 4.14: Experimental results of torque vs. time 
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Figure 4.15: Experimental Shear Relaxation modulus vs. time 
 

Figure 4.16: Experimental results of torque vs. angle of twist 
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Figure 4.17: Experimental and theoretical shear relaxation vs. time 
 

Figure 4.18: Experimental and theoretical torque vs. time 
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Table: 5.1 

Chapter Five 

Results 
5.1 Introduction 
 This chapter deal with the verification of study cases that has been 

carried out by comparing the results obtained from the present packages with 

those obtained from analytical solution or with those obtained from other 

finite element packages. 

5.2 Cases of study  

 Several numerical examples are investigated to verify the analytical 

solution and software. 

5.2.1 Hollow cylinder 
 The geometry of this case is shown in Fig.5.1. Where b=2a. The 

material properties of this material are as follow. 

1-The rheological model are the Zener model of first type (standard linear 

solid) in deviatoric component and elastic in volumetric component as shown 

in Fig.5.2. 

2-The constant parameters of this model are shown in the following table 

(5.1). 

 

Parameters G0(Mpa) G1 (Mpa) λ k (Mpa) 

Values 480 160 1600 1280 

 

3-The problem solved as a plane strain problem and according to symmetry 

around the X and Y-axis,due to symmetry only one quarter of the cylinder 

will considered in the finite element analysis as shown in Fig.5.3. 
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According to the calculated parameters of this model, soG0=G0G1/G0+G1 

G1=G0
2/G0+G1 and λ1= G0+G1/ λ then: G(t) =120+360exp (-0.4 t), the shear 

relaxation function verses time is shown in Fig.5.4. 

 

Two runs are investigated for this case .first one, when the hollow cylinder 

subjected to mechanical load only whilst in the second run the hollow 

cylinder subjected to thermal gradient load only. 

Run 1: A pressurized viscoelastic hollow cylinder 
 The thick viscoelastic hollow cylinder subjected to a steady state and 

transient internal pressure loadings as shown in Fig.5.5.The exact solution of 

steady and transient loading for the displacement and the radial stress 

distribution for inner and outer surfaces at different time steps are given in 

equations (A.5), (A.6), (A.11) and (A.12) and represented in Figs. (5.6), (5.7), 

(5.8) and (5.9) respectively. 

Run 2: A thermoviscoelastic hollow cylinder  
A thick walled viscoelastic hollow cylinder subjected to a steady and transient 

thermal loading, as shown in Fig.5.10 is studied. Assuming that body is 

permanently maintained at a uniform temperature (temperature difference 

loading), therefore two types of solution according to the loading input is 

derived and illustrated in appendix A in equations (A.16) and (A.17). The 

results of this case are shown in Figs 5.11 and 5.12. 

The above example shows how the analytical solution of the viscoelastic 

materials can be derived.  
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Table: 5.2 

5.2.2 Density effect in viscoelastic materials 
       The gravity effect on the viscoelastic media is a serious problem in solid 

propellant engineering.therefor the following typical cases will be 

investigated. 

Case one: Solid mass slump problem  
       The problem is studied for a simple example of rectangular prism 

structure in [37] .This problem is solved as a plane strain problem, and the 

main dimension, loading, boundery conditions and finite element mesh are 

shown in Fig.5.13a the materials properties and the shear relaxation 

parameters are given in table (5.2). 

 

 

 

G0  

(Mpa) 

 

G1 

(Mpa) 

 

G2 
(Mpa) 

λ1 λ2 

ρ 

(Density) 
(kg/mm2) 

ν k (Mpa) 

0.022 0.03 0.048 0.0025 0.007 1.8e-6 0.499 1.078e-3 

The example is nearly incompressible and the plot of the shear relaxation with 

respect to time is shown in Fig.5.14. The results of this case for displacement 

in horizontal and vertical direction for upper edge are shown in Figs 5.15 and 

5.16. Figure 5.13b show that, the maximum deflection occurs at upper and 

lower edges, therefore the displacement of these edges will study for a 

different ratio of (a/b) to recognize the effect of this supporting on the 

important deformation as shown in Figs 5.17a to 5.17g. These results are 

approximately similar to the finite element results given in Ref [37]. 

Case two: Gravity effect on viscoelastic hollow cylinder  

         The geometry, the finite element mesh and load details are given in Fig. 

5.18 and the material properties are taken as in previous example [37]. This 

problem is solved as a plane strain problem; the cylinder will undergo a 
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dW 

τ1 τ2 

σ1 

Point A or B 

dW 

τ1 

σ1 

σ2 

Element of Point C 

dimensional deviation at inner and outer surface due to its own weight. Fig 

5.19 illustrates that, the maximum deviation from the unreformed form occurs 

at point C, and the vertical displacement of a three selected points with 

respect to time is shown in Fig.5.20 .it can be concluded that element force 

analysis at point C has two direct stress in negative Y direction whilst at point 

A and B has one direct stress in negative Y direction, as indicated below. 

 

 

 

 

 

 

 

 

 

 

Case three: Gravity effect in solid propellant grains  
       The material properties are shown in table (5.3) solid propellant grains 

subjected to gravity force is a serious problem in solid propellant engineering. 

The material being in nature viscoelastic. The propellant grains stored for 

long time undergoes dimensional deviation due to their own weight.Normelly 

the grains supported by a casing. It is expected that the slumping can be 

minimized by supporting the grain at the inner surface .In general it shown 

that the displacement due to the material own weight is very small, but it's 

accumulation for long time may give a significant amount, which, in turn may 

cause a danger deformation in design. [37]. 
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Table: 5.3 
 

 

G0 G1 

 

G2 λ1 λ2 

ρ 

(Density) 

(kg/mm2) 

ν k (Mpa) 

0.022 0.03 0.048 0.0025 0.016 2.3e-6 0.499 1.078e-3 

 

 

Usually this grain stored horizontally and the outer surface is assumed rigidity 

fixed (plane strain condition) as shown in Fig.5.21. Due to symmetry of the 

geometry and gravity load about the Y axis, only one half of the grain need to 

solve by the finite element analysis as shown in Fig.5.22. The vector of the 

deformation shape for 10 Minute storage times is shown in Fig.5.23, and the 

displacement deviation is shown in Fig.5.24. 

From Figs. 5.23 and 5.24, it is clear that the upper half is subjected to tension 

load while the lower half subjected to compression load. The deformation at 

points A B C D E for ten minutes are shown in Figs.25a ,5.25b and 5.25c 

respectively .these Figures show that point C is a critical point and have the 

maximum deflection. Points B and D have the same value of strain in Y axis, 

but reversed in X axis, and point A and E have the same value of strain in X 

and Y axes.  

5.3 Minimizing the density load effect 
 To minimize the density load effect (slumping effect), rotate the 

grained propellant by 1800 to reflect the gravitational load and reflect the 

grain geometry to it's original shape as shown in Fig.5.26.from Fig 5.26,it is 

clear that some important region ,that the viscoelastic material will behave in 

this procedure. As follow. 
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Elastic region (e): this region indicates the elastic behavior of the viscoelastic 

material. 

Viscous region (V): this region indicates the viscous behavior of the 

viscoelastic material. 

Starting point of reflecting (P): point represent the point at which reflecting of 

the geometry begins. 

First recovery time: the time required to return the geometry to it's original 

position after the first reflection. 

Second recovery time: the time required to return the geometry to it's original 

position after the second reflection. 

5.4 Appling the experimental results to the solid propellant grain 

 After making a preview for some results of analytical solution for many 

cases and making a studying for slumping effect in grain geometry 

propellants illustrated in previous examples. 

1-Material type. One: when applying the experimental results for this 

material to grain propellant case. The following results for vertical 

displacement of point A B C D E is display in Fig.5.27. It is clear that the 

effective maximum vertical displacement is at point C, therefore it is a 

significant point .Reflecting the load will apply to this case as shown in 

Fig.5.28. The vertical displacement value of point C at t=100 Min is equal to 

0.123e-6 mm and the time required to restore this vertical displacement to it’s 

original value is equal to t=11.5 min as shown in Fig.5.29. 

2-Material type .Two: 

 When applying the experimental results for this material to point A B 

C D E, the following results for vertical displacement is display below in 

Figs.5.30, 5.31 and 5.32. Point C required 18 min to restore to it’s original 

position for 100 min through storage. At t=100 min Uy=0.962e-7mm. the 

deformation shape of this case is shown in Fig 5.34. 
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Table: 5.4 

3-Material type .Three: 

When applying the experimental results for this material to grain case. 

Point A B C D E, the following results for vertical displacement is display 

below in Figs. 5.33, 5.34 and 5.35. Point C required 15 min to restore to it’s 

original position for 10 min through storage. At t=100 min Uy=1.21e-7.  

 

Table (5.4) will give the details about the three investigated materials. it 

is clear that the time required to return the geometry to the original shape 

(minimum distortion) is the same for different time storage. 

 

 

Material type 
Storage time 

(min) 

First recovery 

time (min) 

Second 

recovery time 

(min) 

One 
50 

100 

150 

11.5 

11.5 

11.5 

10 

10 

10 

Two 
50 

100 

150 

18.3 

18.3 

18.3 

15.5 

15.5 

15.5 

Three 
50 

100 

150 

15.5 

15.5 

15.5 

13.2 

13.2 

13.2 
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k 
G0 

G1 

λ1 

Figure 5.2: Rheological model  

a 

2a 

Figure 5.1: Hollow cylinder geometry 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Finite element and load details 
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Figure 5.5: input pressure vs. time 

Figure 5.4: Shear relaxation vs. time 
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Figure 5.6: Displacement vs. time 

Figure 5.7:  Displacement vs. time 
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Figure 5.8:  Radial stress vs. time 

Figure 5.9: Radial stress vs. time 
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Figure 5.10: input temperature vs. time 
 

Figure 5.11:  strain vs. time 
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Figure 5.12: strain vs. time  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13a: The geometry and finite element meshing 
Figure 5.13 b:  Deformation shape for a/b=0.50 

 

a b 

b 

a 
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Figure 5.14: Shear relaxation vs. time  

Figure 5.15: Vertical displacement for upper edge 
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Figure 5.16: Horizontal displacement for upper edge 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 5.17a: Vertical displacement for lower edge at a/b=0.25  
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 Figure 5.17 c:  Vertical displacement for lower edge at a/b=0.50 

Figure 5.17b: Vertical displacement for upper edge at a/b=0.25  
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Figure 5.17 d :Vertical displacement for upper edge at a/b=0.50 
 

Figure 5.17 e: Vertical displacement for lower edge at a/b=0.75 
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Figure 5.17 f:  Vertical displacement for upper edge at a/b=0.75 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.17 g: Vertical displacement for upper edge at a/b=1.00 
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Figure 5.18: Geometry and finite element meshing 
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Figure 5.19: Deformation shape and vertical displacement values 
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Figure 5.21 Main dimension and geometry of the solid propellant grain  

Fixed edge 

2r θ 

2R 

R=450 mm 
r=236 mm 
θ=18.50 

 

Figure 5.20: Vertical displacement vs. time 
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Figure 5.23: Deformation shape vector in Y direction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22: Finite element for one half section of grained geometry 
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Figure 5.24: Deformation shape for the vertical displacement 

Figure 5.25a: Vertical displacement of Point A  
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Figure 5.25 b:Vertical displacement of Point B 
  

Figure 5.25 c: Vertical displacement of Point C 
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Uy 

t 
e 

2e 

Starting point of reflecting 
(P) 

 

Second recovery time 

First recovery time 

Figure 5.26: Reflecting load process  

V 

Figure 5.27: Vertical displacement of point A B C D E 
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Figure 5.29: Reflecting load for three reflecting steps of point C 
 

Figure 5.28: Reflecting load by 1800 
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Figure 5.31: Reflecting load by 1800 

 

Figure 5.30: Vertical displacement of point A B C D E (mm) 
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Figure 5.33: Vertical displacement of point A B C D E (mm) 
 

Figure 5.32: Reflecting load for three reflecting steps of point C 
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Figure 5.34: Reflecting load by 1800 

 

Figure 5.35: Reflecting load for three reflecting steps of point C 
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Chapter Six 

Conclusions and Suggestion for Future work 
6.1 Conclusion 
1-Analytical solution for linear viscoelastic axisymmytric bodies has been 

derived using the elastic viscoelastic corresponding principle, which gives a 

good solution for this material. 

2-The vertical displacement component Uy in viscoelastic bodies under self 

weight depends on the behavior of shear relaxation modulus G(t). 

3-Results of Finite Element method illustrate that viscoelastic material have 

an effective term which gives a big difference in the material behavior which 

is the memory load term φM . 

4-Analytical and numerical solutions for simple study cases gave 

approximately the same results. 

5- the experimental work that was carried out showed that, at the starting time 

(t+) .the behavior of G(t) dropped suddenly ,because of the poor sensitivity of 

the device to the small deviation of the reading . 

6-the required time to get a minimum deformation is equal for different 

storage times of the same material because of the linearity behavior of the 

stress _strain considered in this study.  

6.2 Suggestion for Future work  

1-The non linear solution for the tested material may be considered to give 

accurate investigation. 

2-Extent the present software to 3-D modeling to get an accurate modeling, 

geometrical and boundary conditions. 

3-It is very useful to employ the boundary element method BEM which is 

suitable for infinite domain. 
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4-Body forces loading such as gravity load, centrifugal force and thermal 

loading should be solved in other numerical methods such as boundary 

Element. 
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 I

Abstract 
This work is interest with the viscoelastic bodies that has been 

deflected by the self weighting and stored for variant storage time to finding 

the time required to restore these bodies to it’s original shape. Some shape has 

been study such as rectangular, cylindrical and grain shape, therefore our 

study focused on the grained shape geometry by taking a different shear 

relaxation modulus that has been got from the experimental tests for different 

types of polymer. 

There are many techniques to minimize the deformation to minimum 

values such as fixing the inner surface or rotating the body by 180o .and the 

rotating technique is considered as efficient technique. 

Finally it is found that the time required to restore the deflected body to it’s 

original position is different from one types of polymer to another according 

to the shear relaxation modulus which is used in it, but is the same for the 

same type of polymer which are used in the experimental tests for different 

time of storage. 
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1. Matrices and Vectors 
 
 

Symbol Definition 
[A] Stress coefficient matrix 
[B] Strain displacement matrix 
[D0] Elastic matrix 
[D1] Viscoelastic matrix 
[K0] Elastic stiffness matrix 
[K1] Viscoelastic stiffness matrix 
{A2} Stress coefficient matrix 
{I} Identity vector 

{M(t)} Memory load vector 
{X} Coordinate vector 
{δ} Nodal displacement vector 
{F} Nodal force vector 
{σ} Stress vector 
{ε} Strain vector 

 
2.Simple variables 

 
Symbol Definition Units 
aT ,AT WLF shift factor ------- 

C1 WLF equation constant ------- 
C2 WLF equation constant ------- 
E Elastic modulus N/mm2 

G(t) Shear relaxation modulus N/mm2 
G(0) Initial shear modulus N/mm2 
Gi Shear relaxation coefficients N/mm2 

Gc 
Calculated shear relaxation 

coefficients N/mm2 

Ge 
Experimental shear relaxation 

coefficients N/mm2 
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J(t) Creep compliance mm2/N 
J(0) Initial creep compliance mm2/N 
Ji Creep compliance coefficients mm2/N 
k Bulk modulus N/mm2 
P Pressure N/mm2 

Q , P Material constants -------- 
S Laplace operator -------- 
T Current temperature 0C 
Tg Glassy temperature 0C 

t ,tK Current time min 
t/ Relaxation time min 
t// Retardation time min 

Ux Uy  
Uz 

Displacement in x ,y and z axis mm 
U Strain energy per unit volume N/mm3 

R Residual error  

W Work done on the body by external 
forces N.mm 

ξ η ζ Natural curvilinear coordinate -------- 
ζ Reduced time min 
λ Damping coefficient N.s/m 
χ Total potential energy N.mm 
£  Convolution integral symbol ------ 
Ν Poisson ratio ------ 
σ Normal stress N/mm2 
σ0 Initial stress N/mm2 
σe Elastic stress N/mm2 
σv Viscose stress N/mm2 

σІ , σП , 
σш  , σпп 

Stress at gauss points N/mm2 
Ρ Mass density Kg/mm2 
α Linear thermal expansion mm/mm.0C 
ε Normal strain ------ 
εe Elastic strain ------ 
εv Viscose strain ------ 
δ Displacement mm 
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τ Past time Min 
ΔT Temperature difference 0C 
Δt Time difference min 

Ψ Time – dependent relaxation 
function ------- 

Φ Time – dependent creep function  
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