
Republic of Iraq 
Ministry of Higher Education 
and Scientific Research 
Al-Nahrain University 
College of Science 

  
 

Cooperative Caching 
 for  

a Distributed System  
 

A Thesis 
Submitted to the College of Science, Al-Nahrain University 

In Partial Fulfillment of the Requirements for 
The Degree of Master of Science in Computer Science 

 

By 

Wurood Saad Ibraheem Al-Obaidi 

(B.Sc. 2004) 
 

Supervisors 

Dr. Lamia H. Khalid          Dr. Ban N. Al-Kallak 

December   2007            Dhulhejja  1428 
 
 



 

 
 
 



 
 
 
 

Supervisor Certification 

We certify that this thesis was prepared under our supervision at the 

Department of Computer Science/College of Science/Al-Nahrain 

University, by Wurood Saad Ibraheem Al-Obaidi as partial fulfillment of 

the requirements for the degree of Master of Science in Computer Science. 

 

Supervisors 

Signature:      Signature: 

Name: Lamia H. Khalid    Name: Ban N. Al-Kallak 

Title: Assist. Prof.             Title: Lecturer 

Date: 16 /12 / 2007    Date16 /12 / 2007 

The Head of the Department Certification 

In view of the available recommendations, I forward this thesis for 

debate by the examination committee. 

 

Signature: 

Name: Dr. Taha S. Bashaga 

Title: Head of the department of Computer Science,               

Al-Nahrain University. 

Date: 17 /12 / 2007 

 

 
 



 

 

Examining Committee Certification 

We certify that we have read this thesis and as an examining 

committee, examined the student in its content and what is related to it, and 

that in our opinion it meets the standard of a thesis for the degree of Master 

of Science in Computer Science. 

Supervisors Certification 

Signature:     Signature: 

Name: Dr. Lamia H. Khalid  Name: Dr. Ban N. Al-Kallak 

Title: Assist.  Prof.                     Title: Lecturer 

Date:16 /4 / 2008             Date16 /4 / 2008 

Examining Committee Certification 

Signature: 

Name: Dr. Loay  E. George 

Title: Assist.  Prof.  (Chairman) 
Date: 16 /4 / 2008 

Signature:                                         Signature: 

Name: Dr. Bara�a A. Attea          Name: Dr. Sawsan K. Thamer 

Title: Assist.  Prof.  (Member)           Title: Lecturer (Member) 
Date: 16 /4 / 2008                             Date: 16 /4 / 2008 

The Dean of the College Certification 

       Approved by the Council of the College of Science 

Signature: 

Name: Dr. LAITH ABDUL AZIZ AL - ANI 

Title: The Dean of College of Science, Al-Nahrain University. 

Date:      /      / 2008 



 
 

Dedication 
 

I would like to dedicate this work to the member of my beloved 
family and all those who supported me in finishing this thesis. 

Specially to my father, my sisters, my aunt Dr.Muna Fadhel, 
my aunt Eng. Khanssa abdoul Alrahman, my friends for 
continuous support and encouragement. 

To my best friend Eng. Zainab Hamid and her mother for 
taken my hand to this college and their support during the period 
of my studies. 

To the spirit of my grandfather Ibraheem Al-Obaidi who 
believed in me, to the spirit of my beloved uncle        
Muneer Fadhel the most person who I really miss, and to the 
spirit of my beloved grandmother who prayed and wished the best 
for me through out her life.  

Finally, to the candle of my life who lights the darkness for me, 
my mother, the most kind and generous person I have ever known. 

I hope you are all proud of me 
 

Wurood 
 



 
 

Acknowledgment 
 

First, I would like to thank God, for all the 
blessings that have given us.  

 Second, I would like to express my sincere 

gratitude and appreciation to my supervisors 

Dr. Lamia H. Khalid and Dr. Ban N. Al-Kallak 

for their valuable guidance, supervision and 

untiring efforts during the course of this work. 

Grateful thanks for the Head of Department 

of Computer Science Dr. Taha S. Bashaga, staff 

and employees, especial thanks to Dr. Sawsan 

Kamal, Shatha Alhassani, Haider Majeed, and 

everyone who teached me.  

Finally, my very special thanks to my 

family especially my mother, my friends M.Sc. 

classmates especially Dunia Hamid, for her 

continuous supports and encouragement during 

the period of my studies. 

 
Wurood 



 
 

 

Abstract 
 

          Caching is the technique of storing the frequently used data in a fast 

memory, either at a client or at a server, which is connected to clients via a 

network. Cooperative Caching seeks to improve network file system 

performance by coordinating the contents of client caches and allowing 

requests not satisfied by a client�s local in-memory file cache to be satisfied 

by the cache of another client.  

This thesis aims to built and implement a cooperative caching for a 

distributed system (CCDS), which manages remote and local caches in a 

Local Area Network (LAN) working under windows operating system. It is 

developed using Java programming language. The CCDS consists of three 

components: manager, client, and server. The manager is the controller of 

the CCDS, which includes locating the required blocks in the local and 

global caches and decides from which cache to get the block. The manager 

controls the whole cooperative caches. Client accesses the blocks stored on 

the servers. It is the sender of the request to the distributed caches. The 

client controls local client cache. Server serves the requested clients. It is the 

receiver of the requests from the distributed caches client. The server 

controls server cache. Every machine in the LAN contains the CCDS with 

its three entities.     

 The advantage of CCDS can effectively support the scalability of the 

cooperative caching system because the communication and the data 

distribution are based on multicast and unicast routing techniques and 

support sharing resources of distributed data. 

 



 

 

 
 
 
 

Table of Content 
 



Table of Content 
    Abstract 

   List of abbreviation 

Chapter 1: General Introduction 
1.1 Introduction��.. ��������.����.1 

1.2 Caching ���������..............................5 

1.3 Distributed Caching ����������.�..6 

1.4 Literature Survey �����������.�..7 

1.5 Aim of Thesis ������������.�..11 

1.6 Thesis Layout �����������.��..11 

Chapter 2: Cooperative Caching 
             2.1 Introduction    �������������...12 

             2.2 Caching in File System    �.��������13 

             2.3 Virtual memory vs. File system cache    ���..14 

             2.4 Cooperative Caches �����������.16 

             2.5 Cache Coherency ���������...��. 18  

             2.6 Cache Consistency�����������...20 

             2.7 Replacement Policies ��������...�...21 

                     1. Least Recently Used (LRU) ����..........22 

                     2. Segmented LRU (SLRU) ����..............23 

                     3. Least Frequently Used (LFU)  ����......23 

                     4. Least Relative Value (LRV) ������..24 

Chapter 3: Interprocess communication and Routing 
             3.1  Introduction ��������������25 

             3.2  Interprocess communication ������......25 

                      1. Remote procedure calls (RPCs)�����25 

                      2. Socket���������������.26 

                      3. Remote method invocation ������....29 



              3.3 Routing ����������������30 

                  3.3.1 Unicast������������...��31 

                  3.3.2 Broadcast �������������..32 

                  3.3.3 Multicast ���������.����..33 

                  3.3.4 Anycast�������..�������37         

Chapter 4: System Implementation and Testing 
             4.1   Introduction ��������������38 

             4.2   CCDS Architecture �..��������......40 

                     4.2.1 The CCDS manager module ����.....46 

                     4.2.2 The CCDS client module �����......49 

                     4.2.3 The CCDS server module �����.....51 

             4.3 Tests and Results ��... ��������.�53 

             4.4 Examples.���.��������.���...57 

Chapter 5: Conclusion and Future work 
                  5.1 Conclusion �������������..64 

                  5.2 Future work �������������.65 

References�������������������66 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of Abbreviations 
 

 

API    Application Program Interface 
BGP   Border Gateway Protocol 
BSD Berkeley Software Distribution 
CCDS Cooperative Caching for a Distributed System 
DEC Digital Equipment Corporation 
DRAM Dynamic Random Access Memory  
FAT     File Allocation Table 
FTP File Transfer Protocol 
HDD Hard Disk Drive 
HTTP    Hyper Text Transfer Protocol 
IGMP Internet Group Multicast Protocol 
IP Internet Protocol 
IPC    InterProcess Communication 
ISP Internet Service provider 
LAN Local Area Network 
LFU Least Frequently Used 
LRU Least Recently Used 
LRV Least Relative Value 
MAN Metropolitan Area Network 
MANET Mobile Ad-Hoc Network 
NTFS  New Technology File System  
OS   Operating System 
PGMS Prefetching and caching in a Globally-managed 

Memory System 
RAM Random Access Memory  
RMI Remote Method Invocation                   
RPC  Remote Procedure Call 
SMTP Simple Mail Transfer Protocol 
SRAM Static Random Access Memory  
TCP Transmission Control Protocol 
TTL Time To Live 
UDP User Datagram Protocol 
URL  Universe/Uniform Resource Locater  
WAN Wide Area Network 



 
 

Chapter One 
 

General Introduction 
 
 
 
 
 
 



Chapter One 

General Introduction 
1.1   Introduction 

This chapter explains distributed system, caching, distributed caching, 

some related works, aim of thesis, and thesis layout. 

A distributed system is one in which components located at networked 

computers communicate and coordinate their actions only by passing 

messages. This definition leads to the following characteristics of distributed 

systems: concurrency of components, lack of global clock and independent 

failures of components [Cou01, Gab01]. There are three examples of 

distributed system [Cou01]:  

• The internet. 

• The intranet, which is apportion of internet managed by an 

organization. 

•  Mobile and ubiquitous computing. 

The sharing of resources is the main motivation for constructing 

distributed system. Resources may be managed by servers and accessed by 

clients or they may be encapsulated as objects and accessed by other client 

objects. The web is discussed as an example of resource sharing. The 

challenges arising from the construction of distributed system are the 

heterogeneity of its components, openness which allows component to be 

added or replaced, security, scalability which is the ability to work well when 

the number of users increases, failure handling, concurrency of components, 

and transparency. The term resource is rather abstract one, but it best 

characterizes the range of things that can usefully be shared in a networked 

computer system. It extends from hardware components such as disk and 

printers to software-defined entities such as files, databases, and data objects 



of all kinds. It includes the stream of video frames that emerges from a digital 

video camera and the audio connection that a mobile phone call represents 

[And01, Tan02].  

A distributed system consists of four types of components, as depicted in 

figure (1.1) [Gab01].  These are: 

                                  Figure (1.1) Distributed system components [Gab01] 

1. Platforms�Platforms are the individual computing environments 

in which programs execute. These can be heterogeneous hardware 

components, operating systems, and device drivers that system 

architects and developers must integrate into a seamless system. 

2. Processes�Processes are independent software components that 

collaborate with one another over channels. The terms client, 

server, peer, and service are often substituted for the term process, 

and each has a more specific meaning. Process can mean different 

things depending on the granularity with which one uses it. A 

process can represent an individual software object with a remote 

interface, a client or server that implements a particular protocol, 

some proprietary business application, or many other things.  

3. Communication channels�Communication channels are pipelines 

between processes that enable them to interact. The term usually 

refers to the computer network(s) that logically connect processes 

and physically connect platforms. Communication channels have 

2



both physical and logical aspects that are accounted for in any 

distributed system design.  

4. Messages�Messages are the data sent from one process to another 

over a communication channel. How these data flow between 

processes in a reliable and secure manner is a question that requires 

much thought in the analysis and design stages of the development 

cycle. 

The four types of distributed system components identified above are 

typically arranged in one of three distinct architectures, based on the ways in 

which individual processes interact with one another. These models are 

summarized in table (1.1) [Cou01, Gab01]. 

Table (1.1) Distributed system types [Gab01] 

 

Distributed systems offer a number of advantages [Cou01, Kos95]: 

• Users can be geographically separate: This is important for large 

corporations, where business decisions must be made by people in 

different locations, but those decisions must be based on company-

wide data.  

System architecture Description  

 Client/Server  A distributed interaction model in which 

processes do things for one another  

 Peer processing  A distributed interaction model in which 

processes do things together  

 Hybrid  A combination of client/server and peer 

processing models  

3



• Multiple machines can improve performance and scalability: 

Because a client-server system is distributed over several machines, 

the user can improve the performance and scalability in several 

ways. There might be multiple replicas of a server running on 

separate machines, so each handles only a fraction of the total 

number of clients. Redundant servers on separate machines can 

provide fail-over capability, to ensure service in the event of a 

problem on one machine.  

• Heterogeneous systems can use the best tools for each task: 

Different components of an application can run on hardware that is 

optimized for a specific task. For example, an application might 

need to retrieve large amounts of statistical or experimental data 

from a database, perform complex computations on that data (such 

as computing a weather model), and display the results of that 

computation in the form of maps. By running the database, the 

computational engine, and the graphics rendering engine on 

hardware that is optimized for each task, performance can improve 

dramatically.  

• Distributed systems can reduce maintenance costs: For example, by 

upgrading an application image on a single server, it is possible to 

upgrade thousands of clients. 

• Resource sharing ability to use any hardware, software or data 

anywhere in the system. Resource manager controls access provides 

naming scheme and controls concurrency, and   resource sharing 

model (e.g. client/server or object-based). 

 

 

4



1.2   Caching 

Pronounced cache, a special high-speed storage mechanism. It can be 

either a reserved section of main memory or an independent high-speed 

storage device. Caching is the technique of storing of frequently used data in 

a fast memory, either at a client or at a server, which is connected to clients 

via a network. Huge increases in performance can be obtained by storing 

frequently used data in a local file of memory data which would normally be 

accessed over a slow network connection or from some slow file device. 

Caching is an excellent way of speeding up a system for data which is not 

subject to much change such as simple web pages which do not contain 

dynamic data [Boy06].  

A buffer is a temporary storage location where a large block of data is 

assembled or disassembled. This may be necessary for interacting with a 

storage device that requires large blocks of data, or when data must be 

delivered in a different order than that in which it is produced. The benefit is 

present even if the buffered data are written to the buffer once and read from 

the buffer once. A cache is a kind of buffer. However, it operates on the 

premise that the same datum will be read from it multiple times, that written 

data will soon be read, or that there is a good chance of multiple reads or 

writes to combine to form a single larger block. Its purpose is to reduce 

accesses to the underlying slower storage. Cache is also usually an 

abstraction layer that is designed to be invisible [Wik07d]. 

Caches, which deal with dynamically updated data, are known as write-

back caches or write-through caches. For such caches when a transaction 

updates some stored data which appears in a cache at a client computer the 

following must occur [Are95, Has04]:  

5



• The data that is stored at the client's cache must be updated to 

reflect the change.  

• The stored data corresponding to the cached data must also be 

updated at its server. 

•  All other caches at other clients must be changed to reflect the 

changed data.  

1.3   Distributed Caching 

Distributed caching is the technique of keeping frequently accessed 

information in a location close to the requester. By reducing the amount of 

traffic on a network, caching provides significant benefits to Internet Service 

Providers (ISPs), enterprise networks, and end users. There are four key 

benefits [Wan03, Lan02, Lag02]:   

�   Cost savings due to Wide Area Network (WAN) bandwidth reduction 

ISPs can place cache engines at strategic points on their networks to 

improve response times and lower the bandwidth demand on their 

backbones. ISPs can station cache engines at strategic WAN access 

points to serve requests from a local disk rather than from distant or 

overrun servers. In enterprise networks, the dramatic reduction in 

bandwidth usage due to caching allows a lower-bandwidth (lower-

cost) WAN link to serve the same user base. Alternatively, the 

organization can add users or add more services that use the freed 

bandwidth on the existing WAN link. 

�     Improved productivity for end users the response of a local cache is 

often three times faster than the download time for the same content 

over the WAN. End users see dramatic improvements in response 

times, and the implementation is completely transparent to them. 

6



�    Secure access control and monitoring the cache engine provides 

network administrators with a simple, secure method to enforce a site-

wide access policy through Universe Resource Locater (URL) 

filtering.  

�    Operational logging Network administrators can learn which URLs 

receive hits, how many requests per second the cache is serving, what 

percentage of URLs are served from the cache, and other related 

operational statistics. 

1.4   Literature survey   

Many studies and researches have been introduced in the field of 

utilizing the network storage, especially the cooperative caching, the 

following are some of these researches:- 

1.  Cooperative Caching: Using Remote Client Memory to Improve File 

System Performance [Dah95].     

In this research, five cooperative caching algorithms were used as 

trace-driven simulation. These algorithms are: Direct Client Cooperation 

allows an active client to use an idle client�s memory as backing store. 

Greedy Forwarding treats the cache memories of all clients in the system as 

a global resource that may be accessed to satisfy any client�s request. 

Centrally Coordinated Caching adds coordination to the Greedy Forwarding 

algorithm by statically partitioning each client�s cache into a locally 

managed section, managed greedily by that client, and a globally managed 

section, coordinated by the server as an extension of its central cache. N-

Chance Forwarding, dynamically adjusts the fraction of each client�s cache 

managed cooperatively, depending on client activity. Hash-Distributed 

Caching differs from Centrally Coordinated Caching in that Hash-

Distributed Caching partitions the centrally managed cache based on block 

7



identifiers, with each client managing one partition of the cache.  . These 

simulations indicate that for the systems studied cooperative caching can 

halve the number of disk accesses and improve file system read response 

time. Based on these simulations, the researchers conclude that cooperative 

caching can significantly improve file system read response time and that 

relatively simple cooperative caching algorithms are sufficient to realize 

most of the potential performance gain.  

2. Implementing Cooperative Prefetching and Caching in a Globally-

Managed Memory System [Voe98]. 

This research presents cooperative prefetching and caching�the use of 

network-wide global resources (memories, CPUs, and disks) to support 

prefetching and caching in the presence of hints of future demands. 

Cooperative prefetching and caching effectively unites disk-latency 

reduction techniques from three lines of research: prefetching algorithms, 

cluster-wide memory management, and parallel I/O. When used together, 

these techniques greatly increase the power of prefetching relative to a 

conventional (nonglobal- memory) system. The authors have designed and 

implemented prefetching and caching in a globally-managed memory 

system (PGMS), a cooperative prefetching and caching system, under the 

Unix operating system running on a 1.28 Gb/sec Myrinet connected cluster 

of Digital Equipment Corp.(DEC) Alpha workstations. Their measurements 

and analysis show that by using available global resources, cooperative 

prefetching can obtain significant speedups for I/O-bound programs.  

 

 

 

 

8



3. Cooperative caching and prefetching in parallel/distributed file systems 

[Cor97]. 

In this thesis, the author proposed a solution to improve the file system 

performance by decoupling the performance of the file-system from the 

performance of the disk. He achieved it by designing a new cooperative 

cache and some aggressive-prefetching algorithms. Both mechanisms 

decrease the number of times the file system has to access the slow disk in 

the critical path of the user request. Furthermore, the resources used in this 

solution are large memories and high-speed interconnection networks which 

at a similar pace as the rest of the components in a parallel machine.  

4. Exploiting Idle Memories in LAN Using Cooperative Caching   

Technique [Has04]. 

In this thesis, the author proposes a distributed system sharing proxy 

cooperative caching using N-chancing forwarding algorithm but this 

algorithm is modified by allowing the client to request more than one block 

at each session. The proposed system is a centralized control using one 

server with a database contains knowledge about all files, blocks, and 

clients. The system works in user mode using LAN working under any 

network operating system, and it implemented using Java programming 

language. The results showed a high speed up ratio in accessing remote 

memory and it reached on average 17 times faster than accessing server 

disk. 

5.   Shark: Scaling File Servers via Cooperative Caching [Ann04] 

The authors present Shark, a novel system that retains the best of both 

worlds-the scalability of distributed systems with the simplicity of central 

servers. Shark is a distributed file system designed for large scale, wide-area 

deployment, while also providing a drop-in replacement for local-area file 

9 



systems. Shark introduces a novel cooperative-caching mechanism, in which 

mutually-distrustful clients can exploit each others' file caches to reduce 

load on an origin file server. Using a distributed index, Shark clients find 

nearby copies of data, even when files originate from different servers.  

Performance results show that Shark can greatly reduce server load and 

improve client latency for read-heavy workloads both in the wide and local 

areas, while still remaining competitive for single clients in the local area. 

Thus, Shark enables modestly -provisioned file servers to scale to hundreds 

of read-mostly clients while retaining traditional usability, consistency, 

security, and accountability. 

6.   A Stateless Neighbor-Aware Cooperative Caching Protocol for Ad-Hoc 

Networks [Mir05] 

Replication of data items among different nodes of a Mobile Ad-Hoc 

NETwork (MANET) is an efficient technique to increase data availability 

and improve access latency. This work proposes a novel algorithm to 

distribute cached data items among nodes in a MANET. The algorithm 

combines a probabilistic approach with latency constraints such as the 

distance from both the source and the clients of the data item. In most 

scenarios, the proposed approach allows any node to retrieve a data item 

from a nearby neighbor (often, just one hop away). The work describes the 

algorithm and provides its performance evaluation for several different 

network configurations. 

7.  Online Hierarchical Cooperative Caching [Lix06] 

The authors address a hierarchical generalization of the well-known 

disk-paging problem. In the hierarchical cooperative caching problem, a set 

of n machines residing in an ultra metric space cooperate with one another 

to satisfy a sequence of read requests to a collection of read-only files. A 

seminal result in the area of competitive analysis states that the �least 

10



recently used� (LRU) paging algorithm is constant-competitive if it is given 

a constant-factor blowup in capacity over the offline algorithm. So such a 

constant-competitive deterministic algorithm, with a constant-factor blowup 

in the machine capacities, exist for the hierarchical cooperative caching 

problem.  

1.5   Aim of Thesis  

The aim of this research is to apply distributed cooperative caching 

using multicast and unicast routing techniques to coordinate the file caches 

of up to 10 machines distributed on a LAN to form an effective overall file 

cache. The cooperative caching is a group caching sharing their contents and 

workloads via network. By using cooperative caching, the implemented 

system expected to gain an ease of ever-growing bandwidth need and to 

speed the information delivery. The use of multicast and unicast routing 

techniques can improve the quality of caching system. In addition, 

cooperative caching provides resource-sharing ability to use any data 

anywhere in the system. 

1.6   Thesis layout  

The thesis layout is as follows: 

• Chapter Two: explains the theoretical basis of file system, 

cooperative caching and caching replacement techniques. 

• Chapter Three: explains the theoretical basis of Interprocess 

communication and routing techniques. 

• Chapter Four: explains the design and implementation of the 

proposed system with the experiments and results. 

• Chapter Five: concludes this thesis and gives points for future work. 

11



 
 

Chapter Two 
 

Cooperative Caching 



Chapter Two 

Cooperative Caching 
2.1   Introduction  

In computing, a file system is a method for storing and organizing 

computer files and the data, they contain to make it easy to find and access 

them. File systems may use a data storage device such as a hard disk or CD-

ROM and involve maintaining the physical location of the files, they might 

provide access to data on a file server by acting as clients for a network 

protocol, or they may be virtual and exist only as an access method for 

virtual data. A file system is a set of abstract data types that are implemented 

for the storage, hierarchical organization, manipulation, access, and retrieval 

of data. The most familiar file systems make use of an underlying data 

storage device that offers access to an array of fixed-size blocks, sometimes 

called sectors, generally 512 bytes each. The file system software is 

responsible for organizing these sectors into files and directories, and 

keeping track of which sectors belong to which file and which are not being 

used  . However, file systems need not make use of a storage device at all. A 

file system can be used to organize and represent access to any data, 

whether it is stored or dynamically generated (e.g., from a network 

connection). Traditional file systems offer facilities to create, move and 

delete both files and directories [Wik07a]. This chapter explains the caching 

in file system, virtual memory vs. file system cache, cooperative caches, 

cache coherency, cache consistency and replacement policies. 

 

 

 



2.2   Caching in File System  

Caching file system data is an important performance optimization that 

virtually every modern operating system performs. The premise behind 

caching is that most applications access data that is primarily localized 

within a few files. Bringing those files into memory and keeping them there 

for the duration of the application's accesses minimizes the number of disk 

reads and writes the system must perform. Without caching, applications 

require relatively expensive disk operations every time they access a file's 

data [Rus98]. 

Operating Systems (OSs) uses two types of file-system data caching: 

logical block caching and virtual block caching. The two types store data at 

different levels of abstraction. A logical drive resides on a disk partition 

that's composed of physical storage units called sectors. When an 

application accesses data in a particular file, the file system responsible for 

the drive (e.g., File Allocation Table (FAT), New Technology File System 

(NTFS)) determines which sectors of the disk hold the data in the file. The 

file system then issues disk I/O requests to read from or write to those 

sectors [Rus98, Sun94]. 

In logical block caching, the OS caches sector data in memory so that 

the memory associated with the target sectors, rather requires disk 

operations, can satisfy disk I/O requests. Older variants of the Unix OS, 

including Berkeley Software Distribution (BSD) 4.3 OS, every Microsoft 

OS (Windows 98, Win95, Windows 3.x, and DOS) except Windows NT, 

and Novell NetWare, cache file system data at the logical block level 

[Rus98, Sun94].  

 

 

13 



Virtual block caching caches data at the file system level rather than 

the disk level. When an application accesses data in a file, the file system 

checks to see whether the data resides in the cache. If the data is in the 

cache, the file system doesn't need to determine which sectors of the disk 

store the data and issue disk I/O requests. The file system simply operates 

on the data in the cache. Windows NT relies on virtual block caching, as do 

newer versions of Unix OS, including Linux, Solaris, and BSD 4.4 [Rus98, 

Sun94]. 

Virtual block caching has a couple of advantages over logical block 

caching. First, when file data the application is reading is in a virtual block 

cache, the file system performs no file-to-sector translations. In fact, in 

some cases, the I/O system can bypass the file system altogether and retrieve 

requested data directly from the cache. Second, the cache subsystem knows 

which files and which offsets within the files an application is asking for. 

The cache subsystem can monitor the access patterns of each file and make 

intelligent guesses about which data an application is going to ask for next. 

Using its guesses as guidelines, the cache subsystem reads the data from 

disk in anticipation of future requests. This process is known as read-ahead, 

and when the cache subsystem's predictions are accurate, read-ahead boosts 

system performance. Although read-ahead is possible with logical block 

caching, virtual block caching makes read-ahead simple to implement 

[Rus98, Sun94]. 

2.3   Virtual memory vs. File system cache 

It is a good idea to have big file system caches in order to be very 

effective. On the other hand, if the cache is too big, the physical memory 

available for the virtual-memory systems may not be enough. When this 

happens, the system starts trashing and all the applications slowdown their 

execution. In order to solve this problem, some operating systems propose a  

14 



 

variable-size cache. This mechanism decides dynamically the portion of 

physical memory given to the cache and to the virtual-memory system. With 

this mechanism memory-bound applications are not affected by file-system 

cache. Furthermore, when memory is available, the I/O bound applications 

may get the advantage of a big cache [Cor97].   

In particular, if there is insufficient memory to run application 

programs, then the programs may slowdown by factors of 10 to 100 because 

of excessive paging activity. Thus, if a cache is allowed to become too large, 

the improvement in file system performance may be more than offset by 

degradation in virtual memory performance. In order to provide both good 

file system performance and good virtual memory performance, several 

operating systems have implemented variable-size cache mechanisms. In 

these operating systems the portion of memory used for file data and virtual 

memory varies in response to the file and virtual-memory needs of the 

application programs being executed. These mechanisms will obviously 

work well when there is little or no contention for memory between file and 

virtual-memory pages. The approach that has been commonly used to 

provide variable-size file data caches is to combine the virtual memory and 

file systems together, this is generally called the mapped-file approach. To 

access a file, it is first mapped into a process�s virtual address space and 

then read and written just like virtual memory.  

This approach eliminates the file cache entirely; the standard page 

replacements mechanisms automatically balance physical memory usage 

between file and program information [Nel90].  

 

 

15 



The approach to providing variable-size caches is quite different from 

the mapped file approach. In this approach the file system and virtual 

memory system are separate. Users invoke system calls such as read and 

write to access file data. These system calls copy data between the file cache 

and the virtual address spaces of user processes. Variable-size caches are 

provided by having the virtual memory system and file system modules 

negotiate over physical memory usage [Cor97, Nel90]. 

2.4   Cooperative Caches 

Cooperative caching seeks to improve network file system performance 

by coordinating the contents of client caches and allowing requests not 

satisfied by a client�s local in-memory file cache to be satisfied by the cache 

of another client. Two technology trends push computer scientist to consider 

cooperative caching. First, processor performance is increasing much more 

rapidly than disk performance. This divergence makes it increasingly 

important to reduce the number of disk accesses by the file system. Second, 

emerging high-speed low-latency switched networks can supply file system 

blocks across the network much faster than standard [Dah95]. 

This coordination allows a request from a given node to be served by 

the local cache of a different node. Until cooperative come into sight, all 

client caches were isolated and uncoordinated [Cor97]. 

The cooperative cache differs from the other levels of the storage 

hierarchy in that it is distributed across the clients and it therefore shares the 

same physical memory as the local caches of the clients. A local client cache 

is controlled by the client, and a server cache is controlled by the server, but 

it is not clear who should control the cooperative cache. For the cooperative 

cache to be effective, the clients must somehow coordinate their actions. 

Although it is enticing to think of cooperative caching as simply another 

layer in the storage hierarchy, management of the cooperative cache can 

16 



potentially involve every machine in the system since the cache is 

distributed across all the clients [Sar96].  

The implementations of cooperative caches are designed with either 

distributed or centralized control. The cooperative caches with distributed 

control are designed to avoid bottlenecks. This distributed control is 

necessary if many nodes take part in the cooperation. On the other hand, it 

may not be always necessary when a small number of machines are used in 

the cooperative cache. Scalability is the first problem, which solved in the 

distributed control. Important objectives of this distributed control consist of 

proving that avoiding replication to avoid coherence problems (to be 

discussed later) still works when the control is distributed. The cooperative 

caches with centralized control are much easier to implement than a 

distributed one, see figure (2.1). It avoids all the communication and 

synchronization problems. Moreover, centralized algorithm has better 

knowledge of the whole system as they keep all the information of the 

system. The main disadvantage of centralized control resides in its lack of 

scalability [Cor97, Voe98]. 

A centralized system becomes a bottleneck and has to be redesigned in 

a distributed fashion.  

17 



 

Figure (2.1)  File system architecture of the centralized control [Cor97] 

2.5   Cache Coherency 

A typical shared memory multiprocessor contains multiple levels of 

caches in the memory hierarchy. Each processor may read data and store it 

in its cache. This results in copies of the same data being present in different 

caches at the same time. The problem occurs when a processor performs a 

write to data. If only the value in the writing processor's cache is modified, 

no other processor will see the change. If some action is not taken, other 

processors will read a stale copy of the data. Intuitively, a read by another 

processor should return the last value written. To avoid the problem of 

reading stale data, all processors with copies of the data must be notified of 

the changes. Two properties must be ensured. First, changes to a data 

location must be made visible to all processors, which is called write 

propagation. Second, the changes to a location must be made visible in the 

same order to all processors, which is called write serialization. Using file-

system caches in different node may rise coherence problem. Two nodes 

may be caching the same file block and this one should be kept coherent 

when one of the nodes modifies it [Cor97, Grb03].  

18 



 

Coherence defines the behavior of reads and writes to the same 

memory location. Cache coherence refers to the average staleness of the 

documents present in the cache, (i.e., the time elapsed between the current 

time and the time of the last update of the document in the back-end). A 

cache is said to be strong coherent if its average staleness is zero, (i.e., a 

client would get the same response whether a request is answered from 

cache or from the back-end) [Wik07b, Nar05].  

 

To solve the cache coherence problemThere are three main 

mechanisms of cache coherence [Wik07b]:  

• Directory-based cache coherence mechanisms maintain a central 

directory of cached blocks.  

• Snooping is the process where the individual caches monitor address 

lines for accesses to memory locations that they have cached. When a 

write operation is observed to a location that a cache has a copy of, the 

cache controller invalidates its own copy of the snooped memory 

location.  

• Snarfing is where a cache controller watches both address and data in 

an attempt to update its own copy of a memory location when a second 

master modifies a location in main memory.  

 

 

 

 

 

 

19 



2.6   Cache Consistency  

The cache consistency refers to a property of the responses produced by 

a single logical cache, such that no response served from the cache will 

reflect older state of the server than that reflected by previously served 

responses, (i.e., a consistent cache provides its clients with non-decreasing 

views of the server�s state). So, either every client sees an update or no 

client sees that particular update. The value of caching is greatly reduced, 

however, if cached copies are not updated when the original data change. 

Traditionally, frequently accessed static content was cached at the front tiers 

to allow users a quicker access to these documents. In the past few years, 

researchers have come up with approaches of caching certain dynamic 

content at the front tiers as well. In the current web, many cache eviction 

events and uncachable resources are driven by two server application goals: 

First, providing clients with a recent or coherent view of the state of the 

application (i.e., information that is not too old); Secondly, providing clients 

with a self-consistent view of the application�s state as it changes (i.e., once 

the client has been told that something has happened, that client should 

never be told anything to the contrary). Depending on the type of data being 

considered, it is necessary to provide certain guarantees with respect to the 

view of the data that each node in the data-center and the users get. These 

constraints on the view of data vary based on the application requiring the 

data [Wik07b, Nar05]. 

Cache consistency mechanisms ensure that cached copies of data are 

eventually updated to reflect changes to the original data. There are three 

main cache consistency mechanisms currently in use on the Internet 

[Gwe97, Nar05]: 

20 



• Time-To-Live fields (TTL) are pointing as a prior estimate of an 

object's lifetime that is used to determine how long cached data remain 

valid [Gwe97].  

• Client polling is a technique where clients periodically check back 

with the server to determine if cached objects are still valid. The 

specific variant of client polling is based on the assumptions that young 

files are modified more frequently than old files and that the older a file 

is the less likely it is to be modified [Gwe97]. 

• Invalidation protocols are required when weak consistency is not 

sufficient; many distributed file systems rely on invalidation protocols 

to ensure that cached copies never become stale. [Gwe97]. 

2.7   Replacement Policies  

The role of the cooperative cache replacement policy is to determine 

the order in which blocks are replaced. The cooperative cache replacement 

policy is activated when a client decides to replace a block from its local 

cache. A replacement policy can use two factors in deciding whether or not 

to forward a block. First, a block is discarded if the replacement algorithm 

decides that the block is less valuable than any block in the cooperative 

cache. Otherwise, the block is forwarded to a target client, which then 

replaces a block in its cache. The second factor in deciding whether or not a 

block should be forwarded to the cooperative cache is duplicate avoidance. 

Since the cooperative cache is a resource used by all of the clients, the 

potential exists for uncoordinated client actions to result in several copies of 

the same block in the cooperative cache. These duplicate copies pollute the 

cooperative cache and reduce its hit rate. Thus a block should not be 

forwarded to the cooperative cache if it is going to become a duplicate copy. 

In particular, if several clients have a copy of a block in their local caches, 

only one of the copies should be forwarded to the cooperative cache, and 

only if the cooperative cache does not already contain a copy.  

21 



 

        If the client decides to forward the block, the choice of the target client 

becomes important in determining the effectiveness of the replacement 

policy. Thus, the target client should be chosen such that the forwarded 

block replaces a block less valuable than itself. The replaced block in the 

target client may be in the client's local cache or in the cooperative cache 

[Sar96].  

The main four replacement algorithms that have obtained the best result 

are [Cor97, Arl99, Bit02, And03]: 

• Least-Recently Used (LRU): 

              This algorithm always replaces the least recently used block in the 

cache. This algorithm tries to take advantage of the temporal locality. If 

a block has been recently used it will probably be used again in a short 

period of time. On the other hand, if a block has not been used recently, 

it will probably not be used shortly. This is the replacement algorithm 

most widely used in commercial file-system caches. Its popularity is 

due to its high effectiveness and simplicity of its implementation. The 

policy is based on the same principle as page replacement policies in 

operating systems. Every cached item is associated with a time stamp 

that stores the last time the item was accessed, since the data server 

started execution. The item with the minimum time stamp is replaced 

when a new item must be stored in a full cache [And03, Cor97]. 

 

 

 

22 



• Segmented LRU :  

             The idea behind this algorithm is that blocks which have been 

requested more than once will probably be used again. In order to take 

advantage of this heuristic, the replacement algorithm will try to avoid 

replacing blocks that have been accessed more than once [Cor97]. 

                Segmented LRU is a frequency-based variation of LRU designed 

for fixed-size page caching in file-systems. Observing that objects with 

two accesses are much more popular than those with only one access, 

the cache space is partitioned into two LRU segments: probationary 

segment and protected segment. Objects brought to the cache are 

initially put in the probationary segment, and will only be moved to the 

protected segment if they get at least one more access. When an object 

has to be evicted, it will be taken from the probationary segment first. 

The protected segment has a fixed size, and when it gets full the objects 

that don�t have space in it will be kept in the probationary segment. 

Segmented LRU is not suitable for Web caching as it ignores the size 

of cached objects and assumes fixed-size objects. Furthermore, it has 

the problem of needing parameterization of the number and sizes of 

segments [Arl99]. 

• Least Frequently Used (LFU):  

             This strategy the intermediate aggregate which is accessed least   

frequently. It is based on the assumption that collaborative environment 

are likely to request the same or closely related regions of interest, with 

the same or similar processing requirements. A reference count is 

associated with each cached blocks. The count is incremented when the 

block is reused. The objective of this algorithm is to find the most 

popular blocks and keep them in the cache. In order to do it, the system 

keeps counter with the number of times each block has been referenced. 

23 



Whenever a block has to be discarded, the one with the smaller number 

of references is replaced with a new block when the cache is full. This 

policy keeps track of the number of requests that are made for each 

document in the cache, evicting the document of documents that have 

been less frequently requested first if space is needed. As it ignores the 

document sizes, it can lead to an inefficient use of the space on the 

cache. Where LRU is equivalent to sorting by last access time, LFU is 

equivalent to sorting by number of accesses [And03, Bit02].  

  Least Relative Value (LRV):  

             This policy replaces the intermediate result that has the least value. 

The value metric can be computed in several different ways. Ideally, it 

should be a relative measure of how expensive it is to generate a given 

intermediate result. LRV is based on the relative value (V), a function 

of the probability that a document is accessed again (Pr). The LRV 

algorithm simply selects the document with the Lowest Relative Value 

as the candidate for eviction. As V is proportional to Pr, the issue is to 

find this probability. The parameters used for computing Pr are the 

following [Bit02, And03]: 

• Time from the last access. 

• Number of previous accesses. 

• Document size. 

 
 

24 



 
Chapter Three 

 

Interprocess 
Communication and 

Routing 
 

 
 
 
 
 



Chapter Three 

Interprocess communication and Routing 

3.1   Introduction 

The connection between the client and server portions must allow data 

to flow in both directions. There are number of ways to establish this 

connection. OSs support several mechanisms of Interprocess 

communication (IPC). Many of these mechanisms are similar in its function 

but different in name from one OS to another. Windows OS is taken as an 

example, since this project is implemented under windows [Cou01, Saf06]. 

This chapter explains the IPC and routing techniques. 

3.2 Interprocess communication (IPC)  

 Windows provides several different IPC mechanisms. The most 

common windows IPCs are [Cou01, Saf06 and Dei01]:  

1. Remote Procedure Calls (RPCs): The RPC was designed as a 

way to abstract the procedure-call mechanism for use between 

systems with network connections. In RPC, the client program calls a 

procedure in another program running in server process. Servers may 

be clients to other servers to allow chains in RPCs. RPC allows a 

procedural program to call a function residing on another computer as 

conveniently as if that function where part of the same program 

running on the same computer. A disadvantage of RPC is that it 

supports a limited set of simple data types. [Cou01, Saf06]. 

 

 



2.  Sockets:  The computer can offer different kinds of services, one of 

these is the opportunity to send and receive data by using Hyper Text 

Transfer Protocol (HTTP), another to give the exact time and date for 

the computer. To keep track of different kind of services, a port  

number is used which is a connection point on a computer. Each 

service is assigned a particular port, identified by the whole number 

such as port number 80 is used for HTTP communication on internet, 

port number 21 for File Transfer Protocol (FTP) communication, port 

number 13 gives the exact time and date and port number 25 for 

Simple Mail Transfer Protocol (SMTP) . All upper-layer applications 

that use Transmission Control Protocol (TCP) have a port number 

those identifies the application. In theory, port numbers can be 

assigned on individual machines however the administrator desires, 

but some conventions have been adopted to enable better 

communications between TCP implementations, which enables the 

port number to identify the type of service that one TCP system is 

requesting from another. Port numbers can be changed, although this 

can cause difficulties. Most systems maintain a file of port numbers 

and their corresponding service. When the programmer wants to get 

on the LAN to communicate with other computers through a program, 

he has to connect a "virtual line" through the port. This "virtual line" 

is called a socket. Therefore, a socket is a kind of channel for data. 

Only one socket is usually drown through a particular port but it is 

possible to have a several sockets running through a port.  A program 

can also make use of several ports and sockets. Figure (3.1) gives 

dramatic view of ports and sockets [Ska00, Cou01, Saf06]. 

 

26 



 
 

                    Figure (3.1) ports and sockets [Ska00] 

       The socket is a mechanism between network applications running on 

the same computer, or on different computers connected using a LAN or 

WAN. It defines a set of standard Application Program Interface (API) 

that an application uses to communicate with one or more other 

applications, usually across a network. The socket supports [Cou01, 

Saf06]: 

1. Initiating an outbound connection for a client application. 

2. Accepting an inbound connection for server application. 

3. Sending and receiving data on a client/server connection. 

4. Terminating a client/server connection. 

The specification includes a standard set of APIs supported by all 

Windows-based Transmission Control Protocol/Internet Protocol (TCP/IP) 

stack, and to be used by network applications. In sockets, application 

communications channels are represented by data structures called sockets. 

Two items are used to identify a socket [Cou01]: 

• An Internet Protocol address. 

• A port number. 

 

 
 
 
 

Network

program

program

Sockets
Ports 

PC n 

27 



 

Both the sending and receiving machines have sockets. Because the IP 

address is unique across the internetwork, and the port numbers are unique 

to the individual machine, the socket numbers are also unique across the 

entire internetwork. This enables a process to talk to another process across 

the network, based entirely on the socket number.Sockets are highly useful 

in at least three communications contexts [Cou01]: 

• Client/Server models. 

• Peer-to-Peer scenarios, such as chat applications. 

• Making RPC by having the receiving application interpret a 

message as a function call. 

There are two main principles according to which communication can 

proceed between two computers: one way is by sending datagrams, which 

are an independence packets of data send over network that contain the 

address of both the sender (source) and receiver (destination). These 

addresses are indicated as the computer address and port number. Another 

way is by setting up a connection (socket) between two computers and send 

data through this connection. In the first case, the option of using multicast 

is available, which means sending data packets at the same time to several 

connected members of particular group Communicating by means of 

datagrams has the advantage of being quit simple, its disadvantage is the 

lack of security. When sending a datagram, it is not certain that it will really 

reach the receiver; neither it will be certain that the datagrams will arrive in 

the same order as they were sent. In some applications, this will be not a 

problem but in other applications, this will be a problem of losing data. If 

this is the case, the datagrams is not used. When the socket (client-server) 

technique is used, there is a computer, or server, which provides a service. 

Other computers, or clients, can be associated with the server to gain access 

to this service[Ska00]. 

28 



 

 A server can often handle several clients at the same time It is also 

important for communication between a server and its clients to be reliable. 

A client who wants to connect to a server will create a new socket, where 

the server's IP address and port number are indicated. When this connection 

is ready, the input and output streams for both directions will be transferred 

[Ska00].  

3. Remote Method Invocation (RMI): RMI is a Java's 

implementation of RPC for java-object-to-java-object distributed 

communication. Sockets are built around sending bytes while RMI 

provides a way to call methods on objects on other systems. It operates 

at a higher level of abstraction than socket-based programming, even 

though RMI does use sockets under the covers. RMI enables the 

programmer to create distributed Java-to-Java applications, in which 

the methods of remote Java objects can be invoked from other Java 

virtual machines, possibly on different hosts. A Java program can make 

a call on a remote object once it obtains a reference to the remote 

object, either by looking up the remote object in the bootstrap naming 

service provided by RMI or by receiving the reference as an argument 

or a return value. A client can call a remote object in a server, and that 

server can also be a client of other remote objects. RMI uses object 

serialization to marshal and unmarshall parameters and does not 

truncate types, supporting true object-oriented polymorphism [Saf06]. 

 

 

 

29 



3.3   Routing 
Routing (or routeing) is the process of selecting paths in a network 

along which to send data or physical traffic. Routing is performed for many 

kinds of networks, including the telephone network, the Internet, and 

transport networks. Routing directs forwarding, the passing of logically 

addressed packets from their source toward their ultimate destination 

through intermediary nodes; typically, hardware devices called routers, 

bridges, gateways, firewalls, or switches. Ordinary computers with multiple 

network cards can also forward packets and perform routing, though with 

more limited functionality and performance. The routing process usually 

directs forwarding based on routing tables, which maintain a record of the 

routes to various network destinations. Thus constructing routing tables, 

which are held in the router's memory, becomes very important for efficient 

routing [Wik07c].  

Figure (3.2) shows the routing schemes, there are four different 

schemes, which differ in their delivery semantics [Cou01, Kha00, Gri02, 

Sno01, Pau02, and Wik07c]: 

• Unicast delivers a message to a single specified node. 

• Broadcast delivers a message to all nodes in the network. 

• Multicast delivers a message to a group of nodes that have 

expressed interest in receiving the message. 

• Anycast delivers a message to any one out of a group of nodes, 

typically the one nearest to the source. 

 

Figure (3.2)    Routing Schemes [Wik07c] 

Sender 
Recievers 

30 



3.3.1   Unicast  

It is a one-to-one relationship where source will send one signal to one 

destination as shows in figure (3.3). In situations where many users need the 

same data, unicast can quickly consume the bandwidth of a network, as 

many copies of the data be sent through the same routers to reach individual 

users. The most widely used protocols today are the traditional unicast 

protocols such as User Datagram Protocol (UDP) and Transmission Control 

Protocol (TCP), which provide point-to-point delivery. The UDP provides 

an unreliable datagram service and TCP provides a reliable stream. With a 

UDP connection, messages are sent with best effort delivery. There is no 

congestion control in the protocol to allow adaptation to the current network 

congestion level. A TCP connection provides for reliable ordered delivery of 

bits from sender to receiver. TCP makes the assumption that the connection 

is simply a stream and that there are no explicit message boundaries. The 

semantics of TCP completely rule out prioritizing messages within a stream 

and delivering messages out of order. TCP and UDP are only intended for 

use in connecting two processes. These protocols are inefficient when used 

to send messages to multiple destinations. With TCP and UDP, a message 

intended for multiple destinations must be copied and a separate copy of the 

message sent to each individual receiver [Gri02, Sno01]. 

 
Figure (3.3)    Unicast [Wik07c] 

 
 
 

sender 

Receiver

31 



3.3.2   Broadcast  

A broadcast allows a sender to communicate with every user that can 

listen to the channel using a single broadcast message. A satellite link, 

allowing a news source to broadcast to all users in the shadow of the 

satellite, is one example. Other examples include cable TV, microwave, and 

the Ethernet. With n users, broadcast can be n times cheaper than sending n 

separate unicast messages [Sno01].  

A broadcast means that the network delivers one copy of a packet to 

each destination. On bus technologies like Ethernet, broadcast delivery can 

be accomplished with a single packet transmission. On networks composed 

of switches with point-to-point connections, software must implement 

broadcasting by forwarding copies of the packet across individual 

connections until all switches have received a copy [Kha00, Wik07c]. 

Figure (3.4) illustrates the broadcast routing. 

 

Figure (3.4)    Broadcast [Wik07c] 

 

 

 

 

Sender 
reciever 

reciever 

reciever  

reciever

32 



3.3.3   Multicast  

It is the idea of sending data from a single source to multiple 

destinations with a minimum use of network resources as shown in figure 

(3.5). There are wide varieties of applications that use multicast technology. 

Video conferencing, Internet stock market tickers, whiteboards, data 

warehousing, distributing product updates, and company wide updates all 

find great value in transmitting the same data to groups of users. 

 

Figure (3.5)    Multicast [Wik07c] 

When the number of sender and receiver involved in a data 

communication is one-to-many or many-to-many or many-to-one, multicast 

is used as the means of data communication. The sender(s) and receivers are 

assumed to be part of a group. The features of a multicast group are 

described below [Cou01, Pau02]: 

• A host can be a member of any number of multicast groups. 

• The membership to a multicast group is dynamic, the sender(s) and 

receivers can join or leave the group at any time. For scalability, the 

join and leave operation has to be simple without any side effects. 

• To be a sender of a group, it is not necessary that the host is a 

member of the group. 

• Each group is identified by a given IP (from 224.0.0.0 to 

239.255.255.255 address in networks. 

Sender 

reciever 

reciever 

reciever 

33 



• Data communication is done using UDP. This is to avoid the 

overhead of reliability and flow control that is associated with TCP. 

Multicast, for the most part, is UDP based. As such, it is a best-effort 

delivery of services. This is fine for most multimedia applications, since 

there is no need to retrieve lost frames of live video, etc. Some great 

research is being done in the field of reliable multicast to make it more 

reliable as well as practical for more diverse usage [Gri02]. 

The multicast groups can be classified either as permanent or transient 

groups. The transient groups remain in existence as long as there are 

members in the group. However, permanent groups remain in existence 

even when the number of members in the group is zero. A part from this, the 

multicast groups can be classified either as dense or sparse groups based on 

the distribution of the group members in the network. With the advent of 

multicasting, many applications have emerged that can derive maximum 

benefit from multicasting of data. The multicast applications can be divided 

into the following categories [Cou01, Pau02]:  

• Single-point to multi-point (e.g., Audio-Video broadcasts, Database 

updates, Push applications). 

• Multi-point to multi-point (e.g., Video-conferencing, Distance 

Learning, Multiplayer Games). 

• Multi-point to single-point (e.g., Resource Discovery, Data 

Collection, Auctions). 

 

 

 

34 



Multicast massages provide a useful infrastructure for constructing 

distributed systems with the following characteristics [Cou01]: 

1. Fault tolerance based on replicated services: A replicated service 

consists of a group of servers. Client requests are multicast to all the 

members of the group, each of which performs an identical operation. 

Even when some of the members fail, clients can still be served. 

2. Finding the discovery servers: in spontaneous networking: multicast 

massages can be used by servers and clients to locate available 

discovery services in order to register their interfaces or to look up the 

interfaces of other services in the distributed system. 

3. Better performance through replicated data: data are replicated to 

increase the performance of services in some cases replicas of the data 

are placed in user's computers. Each time the data change, the new 

value is multicast to the processes managing the replicas. 

4. Propagation of event notifications: multicast to a group may be used 

to notify processes when something happens. For example, a news 

system may notify interested users when a news massage has been 

posted on a particular newsgroup. 

The use of a single multicast operation instead of multiple send 

operations amounts to much more than a convenience for the programmer. It 

is enables the implementation to be efficient and allows it to provide 

stronger delivery guarantees than would otherwise be possible [Cou01]. 

• Efficiency: the information that the same massage is to be delivered 

to all processes in a group allows the implementation to be efficient in 

its utilization of bandwidth. it can take steps to send the massage no 

more than once over any communication link, by sending the massage 

over a distribution tree; and it can use network hardware support for 

multicast where this is available. The implementation can also 

35 



minimize the total time taken to deliver the massage over to all 

destinations, instead of transmitting it separately and serially.   

• Delivery guarantee: if a process issues multiple independent send 

operations to individual processes, then there is no way for the 

implementation to provide delivery guarantees that affect the group of 

processes as a whole. If the sender fails half-way through sending, 

then some members of the group may receive the massage while 

others do not, and the relative ordering of two massages delivered to 

any two group members is undefined.  

       An ideal multicast routing algorithm has the following features 

[Pau02]: 

• The load on network should be minimal. This essentially involves 

avoiding loops and avoiding traffic concentration on a link or a 

subnetwork. 

• It should support reliable transmission. 

• The routing algorithm should be able to select optimal routes, taking 

into consideration different cost functions, including available 

resource, bandwidth, number of links, node connectivity, price to be 

paid and end-to-end delay. It should further maintain optimality of the 

routes after any changes occur in the group or the network. 

• It should minimize the amount of state that is stored in the routers, so 

that more groups can be supported in a network without any 

scalability issues. 

• The data transmitted should reach only the members of the group. 

 

 

36 



 3.3.4   Anycast 

Anycast is a network addressing and routing scheme whereby data is 

routed to the "nearest" or "best" destination as viewed by the routing 

topology. The term is intended to echo the terms unicast, broadcast and 

multicast. In unicast, there is a one-to-one association between network 

address and network endpoint: each destination address uniquely identifies a 

single receiver endpoint. In broadcast and multicast, there is a one-to-many 

association between network addresses and network endpoints: each 

destination address identifies a set of receiver endpoints, to which all 

information is replicated. In anycast, there is also a one-to-many association 

between network addresses and network endpoints: each destination address 

identifies a set of receiver endpoints, but only one of them is chosen at any 

given time to receive information from any given sender. See figure (3.6). 

On the Internet, anycast is usually implemented by using Border 

Gateway Protocol (BGP) to simultaneously announce the same destination 

IP address range from many different places on the Internet. These results in 

packets addressed to destination addresses in this range being routed to the 

"nearest" point on the net announcing the given destination IP address. 

Anycast is best suited to connectionless protocols (generally built on UDP 

[Wik07c]. 

 

Figure (3.6)    Aِnycast [Wik07c] 

Sender 
Receive

r

37 



 
 

Chapter Four 
 

System 
Implementation and 

Testing 
 
 
 
 

 



Chapter Four 

System Implementation and Testing 

4.1 Introduction 

Emerging high-speed networks allow machines to access remote data 

nearly as quickly as they can access local data. This trend motivates the use 

of cooperative caching which coordinate the file caches of many machines 

distributed on a LAN to form a more effective overall file cache. 

This chapter demonstrates the proposed a Cooperative Caching for a 

Distributed System (CCDS). The CCDS system depends on the concept of 

multicast and unicast routing technique architecture and memory allocation 

mechanism. It stores the frequently used data in a fast memory either at a 

client or at a server which is connected to clients via a network to improve 

the performance of the distributed file system by reducing the number of 

disk accesses. 

CCDS involves three logical entities: clients, servers and managers. 

Clients access the blocks stored on the remote servers, and the managers 

control the CCDS. The control provided by the managers includes locating 

the required blocks in the local and global caches and decide from which 

cache to get the block. Every machine in the LAN contains the CCDS with 

its three entities. Although it is enticing to think of cooperative caching as 

simply another layer in the storage hierarchy, the CCDS differs from the 

other levels of the storage hierarchy, because the cooperative cache can 

potentially involve every machine in the system since the cache is 

distributed across all the clients and it therefore shares the same physical 

memory as the local caches of the clients.  

 



 

Figure (4.1) depicts the cooperative caching system communication. 

 

Figure 4.1 CCDS system communication group 

The CCDS must be implemented using a language, which support the 

networking operations, in addition to the operating system API. The CCDS 

system was implemented using Java programming language (JBuilder 

Editor), which is a network operation support language. The system is 

running on a wired LAN at which all computers are connected to a network 

switch, and all computers are running under windows XP operating system. 

The java facilities that play a key role in the implementation of the CCDS 

system are  

• Java networking: 

• Java multithreading: 

• Java Platform Independent   

 

39 



4.2    CCDS Architecture  

In CCDS system, the datagram method is used to send messages to 

several receivers at a time. Instead of sending a message to a specific 

receiver, it will be send to a group of receivers and this group known as a 

multicast group. The sender of a multicast message is normally included in 

the multicast group. To send or receive messages in java, a socket is created 

as a MulticastSocket in which the used port is specified. 

A multicast message is sent in the form of datagram where one of the 

things a datagram contains is the receiver's network address. When sending 

a multicast message, a network address for some particular receiver is not 

indicated. Instead, an imaginary multicast address is used that all the 

receivers in the group know and listen to. This multicast address is an IP 

address in the interval (224.0.0.1 to 239.255.255.255) in this work the used 

IP address were (230.0.0.1).  Every receiver joins a particular group must 

report this by calling the method joinGroup in class MulticastSocket. Java 

provides many methods which are used in the CCDS to implement the 

communication of multicasting. They are:  

 

getLocalHost() Gives the IntAddress to one's own computer 

isMulticastAddress()     indicates whether this IntAddress can be 
used to send multicast messages 

DatagramSocket(port) creates a socket through the port 

setSoTimeout(ms) indicates that receiver will wait at most ms 
millisecond 

DatagramPacket(data, 

len, iaddr, port)  
creates a datagram with the content data of 
length len will be sent to the port at iaddr 

 

 

Gives the data that has been sent or will 
sent     

40 



getData() 
getLength()              Gives the length of data that has been sent 

or will be sent 
getAddres() gives the sender's IntAddress 

getPort() gives the sender's port number  

MulticastSocket(port) creates a multicast socket through the port 

Send(pack) sends the datagram pack 

receive(pack) receives the datagram pack 

joinGroup(iaddr)  Join the multicast group with the multicast 
address iaddr 

leaveGroup(iaddr)    leaves the multicast group with the 
multicast address iaddr 

The CCDS system uses the multicast and unicast routing techniques 

with multithreading technique. This approach offers architecture of two 

processes, one of them (client) which sends a request to all servers in the 

group, and the second process (server) serves the requested client, by 

establishing a connection between these two processes. The CCDS system 

read a block from a file (file name, block no.) using socket IPC. The 

operation allowed to be performed on the files is read operation only. 

Therefore, no needs to consider the consistency and coherency of the data, 

which are usually needed with the write operation. The CCDS system 

consists of three main classes. These are Manager, Client, and Server. 

Figure (4.2) illustrates the model of the CCDS system on one computer. 

 

 

 

 

 

41 



 

 

Figure 4.2 CCDS Model on one PC  

At the beginning, the CCDS system starts the manager and the server 

classes on each computer in the distributed system. Then each computer 

waits for a request which is a data consists of a (file name and block 

number). When a request arrives, the CCDS manager searches the required 

block in its local cache or (when the block not available) sends a multicast 

request to all servers in the multicast group searching for the required block 

in their caches and wait for reply ( maximum wait 1 second). If any server 

finds the requested block in its cache then it will open a unicast connection 

with the requested client and sends the required block. The client receives 

the block and gives it to the manager for use. If none of the servers fined the 

requested block, then no reply will be received by the client (time out of 

wait). In this case the manager will read requested block from the hard disk. 

 

 

42 



 Figure (4.3) shows the CCDS mechanism in a LAN with 7 PC five of 

them contains the CCDS Model and one of them (PC4) is the sender of a 

multicast request to the other four computer in the multicast group while 

PC2 and PC7 out of the multicast group     

 

Figure (4.3) shows the CCDS sending a multicast request. 

While figure (4.4) shows the CCDS mechanism in a LAN with 7 PC 

five of them contains the CCDS Model and one of them (PC1) is the sender 

of a unicast response to the sender of the request (PC4) in the multicast 

group. 

 

43 



 

Figure (4.4) shows the CCDS receiving a unicast response. 

If no one of the five PCs in the multicast group in the LAN contain the 

required block in its local cache the sender PC4 will wait for 1 second and 

assume that the block is not available in any cache of these PCs, therefore 

PC4 will read it from its local hard disk. When the required block founded 

on multiple PCs, the first PC that finds the block on its local cache and 

sends response, this response will the only unicast response is taken and the 

other are ignored. Figure (4.5) shows the CCDS architecture. 

 

44 



 

Search local cache

Find an empty 
space in cache

Replace one of 
the used blocks 

(LFU)  

Start Client Module

Read from Hard 
Disk 

Start Manager

Create 
Multicast socket 

(Join group) 

Listen 

Enter Data (file 
name + Block no.)

Available

No

Use Data 

Yes

Cache 
is full

Yes
No

 Server 

Create Multicast 
socket (Join 

group) 

Listen 

Accept 

Create thread

Receive request 

Search cache 

Found 

Yes

No 

Send Data 

Start Server

Start CCDS
 

Figure (4.5) The CCDS architecture 

On PC1On PC2

Create Multicast 
socket (Join group)

Connect 

Send Multicast 
request 

Create server 
socket 

Received data

Send to Manager

Start Client

Yes

No

Close

Available in 
global caches

Leave group

Listen and wait

 

Yes 

Time over and 
no response 

No

45 



 

4.2.1   The CCDS Manager Module    
This module is the controller or the manager of the distributed system. 

It is responsible for managing the remote caches as well as the local cache. 

The cooperative cache manager has two major functions:  

First, it performs cache replacement of its local cache. The replacement 

policy used in the CCDS system is LFU, this strategy chooses the block that 

is accessed least frequently. A reference count is associated with every 

cached block. The count is incremented when the block is reused. The 

objective of this algorithm is to find the most popular blocks and keep them 

in the cache. In order to do it, the system keeps counter with the number of 

times each block has been referenced. Whenever a block has to be 

discarded, the one with the smaller number of references is replaced with a 

new block when the cache is full. 

The second function of is searching for the required blocks on the local 

and remote caches. The cooperative cache manager uses a static block size 

which is equal to 4KB, and has static data structure array of records where 

each record consists of the following fields: 

String   FileName; 

int   BlockNumber; 

boolean Master; 

int Counter; 

 

 

 

 

 

 

 

46 



 

 

 

 The main functions of the manager module are: 

• Read the file name and block number. 

• Search for the specific block in the local cache. If the block is not 

available locally, it starts client module which multicasts the request 

to the other clients in the distributed system to check if it is available 

on a global cache. If the block is not found locally (local cache) and 

globally (distributed caches) then, the block will be read from the 

hard disk. 

• Search for an empty space in the local cache to put the new block in 

it. 

• If the local cache is full and the manager wants to put the requested 

block in the local cache, the manager must replace it with the least 

frequently used block in the local cache. 

Algorithms (4.1), (4.2), (4.3), (4.4) and (4.5) are the distributed 

cache manager algorithms. 

Algorithm (4.1) Manager 

Step1: Read data (FileName, BlockNumber). 

Step2: Search local cache (algorithm 4.2) 

Step3: Check available, if (yes) go to Step9 

Step4: Find an empty space in cache (algorithm 4.3) 

Step5: Check full cache, if (no) go to Step7  

Step6: Replace one of the used blocks (using LFU) (algorithm 4.4)  

Step7: Start Client class to search global caches (algorithm 4.6)  

Step8: Read from Hard Disk (algorithm 4.5) 

Step9: Use Data 

 

47 



 

 

 

  Algorithm (4.2) Search local cache 
 
Input: file name, block number 

Output:  i or -1 (return the index of the block in local cache) 

Step1: i=-1; x=false; 

Step2: Search the local cache for a specific block of the  

            specified file 

Step3: if the block is found  

             i = get place of record; and break; 

Step3: return (i);   

 
 

Algorithm (4.3) Find empty space in cache 
 

          Output: index of the empty place in local cache or (-1) when  

                  cache is full 

Step1:  index=-1; 

Step2:  if cache is not full then set index=address of empty place  

Step3: return (index) 

 
 
 

Algorithm (4.4) LFU  
 

             Output: the place of item that have the minimum value  
                         of counter 
                   in local cache  

Step1:  i=1; min= 0; minv= localcache[min].counter; 

Step2: search in a local cache if localcache[i].counter<minv then 

Step3:  min= i; minv= localcach[i].counter; i++; go to Step2; 

Step4: return min; 

 

48 



 

 

 
   Algorithm (4.5) read from HD 

 

  Input: File name, block number 

  Output: 0 or -1 
 

Step1: Read a specific block (data) from the file name 

Step2: Store the information about this block in a record  

          in the manager table, and read the block content in the  

          local cache. 

 

4.2.2 The CCDS Client Module 

This module is for the sender of the request to the distributed 

caches. The main functions of the client module are: 

• Join multicast group and open a connection. 

• Send multicast request to all servers in the group of machines, 

which are connected by a LAN, asking for a specific block in a 

specific file. 

• Create a server socket and Listen to receive the reply from the 

server which have the required block and sends the received 

information to its manager to use it. 

• Wait the response from servers maximum 1 second if there is no 

responses assume the block is not found and terminate connection   

• Store the received block and information (file name, block number) 

in its local cache. 

 

49 



 

 

• Leave multicast group and close the connection (only the client). 

The client must use an IP address and port number of the computer 

which the server will listen to it. Then the clients connected to the network 

will be able to send and receive data by using get output stream and get 

input stream as data. The client module uses the following Java methods: 

 

Created by a client 
(create client) 
new Socket(addr, port) : this create new socket which connect to 

the   port in the server addr. 
(send/receive data) 
getOutputStream()    : gives a stream to send data to  other 

computer. 
getInputStream()   : gives a stream to read data from the other 

computer. 
(close connection) 
Close()                     :breaks the connection. 

 

In multicast client must identify an IP address (230.0.0.1) of a multicast 

group, then use a port number for sending datagram that differ from the port 

used in client-server. By using join method the client will be connected to 

multicast group and sending data to them. Algorithm (4.6) the distributed 

cache client algorithm. 

 

 

50 



 

 

 

   Algorithm (4.6) Client 

   Step1: Create Multicast Socket (Join group). 
   Step2: Connect to LAN 
   Step3: Send Multicast request to all servers in LAN  
   Step4: Create server socket  
   Step5: Listen and wait (max 1 s) 
   Step6: If wait time over and no response if (yes) then go to Step10 
   Step7: Receive data from remote server that reply the request 
   Step8: If there is received data from LAN servers if (no) then go to 
         Manager-Step8 (Read from Hard Disk)  
  Step9: Send data to Manager-Step9 (Use Data) 
  Step10: Leave group. 
  Step11: Close connection. 

   

4.2.3 The CCDS Server Module 

This module is for the receiver of the requests from the distributed 

cache clients. The main functions of the server are: 

• Join multicast group, and listen to a specific port waiting for a 

request from a client. 

• If the received request comes from the same machine, (i.e., Client 

and Server have the same IP), then stop serving. 

• Create a threaded server to serve the request. 

• Search the local cache, if the required block is found locally, then 

the server open a socket connection with the sender client and send 

the required block.  

• Wait for another request.  

51 



The server must use a port for listening to discover whether there is a 

client wishing to make a connection. If there is a client, then it gives the port  

number to the client. The server waits for the client using accept() method 

and returns from this method when a client has been connected. The servers 

just like the client can receive/send data by using get input and output 

stream as data to be read and written. Algorithm (4.7) is the distributed 

cache server algorithm. The methods used by the server are: 

Created by a server 
(Create server) 
new ServerSocket( port) : create new server socket which gives a socket 

that will listen in the port. 
(accept request) 
  accept()             : wait until a client has been connected; return the socket 

created by the client. 
(receive/send data) 
getInputStream()   : gives a stream to read data from the other computer. 
getOutputStream()  : gives a stream to send data to other computer. 
(close connection) 
close()                    :breaks the connection. 

Algorithm (4.7) the distributed cache server algorithm. 

     Algorithm (4.7) Server (remote) 

     Step1: Create Multicast Socket (Join group). 

     Step2: Listen to LAN 

     Step3: Accept  

     Step4: Create thread  

     Step5: Receive request from any client (client-Step3) 

     Step6: Search cache 

     Step7: Check if the requested block is found if no go to Step2 

     Step8: Send data to (client-Step7) and go to Step2 

52 



 

 

4.3   Tests and Results  

In a computer networking the term bandwidth also known as 

(throughput) refers to the data rate supported by a network connection or 

interface. Bandwidth is expresses in term of bit per second (bps). Where 

bandwidth represents the total distance or range between the highest and 

lowest signals on the communication channel (band). Also represents the 

capacity of the connection, the greater capacity is more likely that greater 

performance will follow. 

The term latency to any of several kinds of delays incurred in 

processing of network data. A so-called low latency network connection is 

one that generally experiences small delay times, while a high latency 

network connection is one that suffers from long delays. 

Although the theoretical peak bandwidth of a network connection is 

fixed according to the technology used, the actual bandwidth obtain varies 

over the time and is affected by high latencies. Excessive latency creates 

bottlenecks that prevent data from filling the network pipe, thus decreasing 

effective bandwidth. 

The most common way to measure latency is by determining the time it 

takes for a given network packet to travel from source to destination and 

back this called round trip time, which is not the only way to specify 

latency.    

The used LAN to implement CCDS system is wired LAN Ethernet 

(Fast Ethernet): IEEE 802.3 100Mbits/sec this transfer rate equal to 

12.5MB/s.  

53 



 

 

To calculate the time of flight in the LAN by using the considered 

average LAN bandwidth which equal to (7.5MB/s)  and the used file size by 

the following equation: 

Time of flight= file size / LAN bandwidth 

T= (2MB) / (7.5 MB/s)  

T= 0.266 s this time is wasted in transferring the file (delay) 

Therefore, in this work the speed of transferring data from the used 

HDD and the LAN were calculated using java.util.Date().getTime() method. 

This method is typically preferred over getTime() since it is more reliable. 

If HDD speed is compared with the wired LAN Ethernet speed which is 

the comparison of average 37.5MB/s the speed of HDD and 12.5MB/s (or 

average 7.5MB/s) the speed of LAN. It is clear that HDD is faster than LAN 

speed. The differences which included with the delay network overload are 

the delays caused by the OS requirements. The  OS requirements are: using 

device drivers, loading files time, time of using LAN card, and converting 

the sends message to signals, received signals to massage, and the time 

needed for the language used (Java) in implementing CCDS system. 

In addition to that the using of datagram to send a multicast massage 

has the disadvantage is the lack of security. When sending a datagram, it is 

not certain that it will really reach the receiver; neither it will be certain that 

the datagram will arrive in the same order as they were sent. The average of 

lost datagram was: 1%. 

 

54 



 

 

 

Figure (4.6) shows the transfer rate to transfer (20) different files of the 

same size from HDD to the RAM of the same computer with disk 

fragmentation and without disk fragmentation, and through the LAN from 

the RAM of one computer to the RAM of another computer.  

Transfer rate = Data size / total time. 

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51

7.8

file size

tra
ns

fe
re

 ra
te

HDD not frag LAN HDD frag

Comparison of HDD with fragmentation, HDD without 
fragmentation and LAN Transfer rate for the equal file size

 
Figure (4.6) shows the transfer rate of transferring (20) different files of 

the same size 
 

 

Comparison of HDD with fragmentation, HDD without Fragmentation and
LAN transfer rate for different files of equal sizes 

55 



 

 

Figure (4.7) shows the calculated time to transfer (20) different files of 

different sizes from HDD to the RAM of the same computer with disk 

fragmentation and without disk fragmentation, and through the LAN from 

the RAM of one computer to the RAM of another computer. 

 

Comparison of HDD with fragmentation, HDD without 
fragmentation and LAN Transfer rate for the different file size

0

5

10

15

20

25

30

35

40

1.164
1.945

2.726
2.96

3.507
3.898

4.289
4.679

5.07
5.46

5.851
6.242

6.632
7.023

7.414
7.804

8.1 95
8.585

8.976
9.21

file size

tr
an

sf
ar

e 
ra

te

HDD not frag LAN HDD frag
 

Figure (4.7) shows the transfer rate to transfer (20) different files of 
different sizes 

 

 

 

56 



 

4.4   Examples 

There are many measures of software performance, split between size, 

speed, and resource use. In the CCDS system, the time- related performance 

is the main measurement. 

In order to evaluate the performance and verify the basic functionality 

of the developed CCDS, a number of tests were conducted. The 

measurements are performed using different files with equal block size 

(4KB), all with and without load on the system. The LAN consists of (8) 

computers.   

EX1:    When PC1 requests block number (45) from file name (hhh.bin)  

1- The CCDS system runs the manager and server modules, which 

joins the multicast group. 

2-  The manager searches for the block 45 in its local cache and the 

block was not available. 

3- The client module joins a multicast group and sends a multicast 

request to all servers in the LAN (All PCs). 

4- Each server (except the server of the sender PC1) then searches for 

the block in its local cache (LAN caches) then, there were no 

response from the servers. 

5- The manager reads this block from the hard disk and save it in its 

local cache.  

The time required to access local cache was 0 ms (less than 0.5 ms) 

The time required to send a request on LAN was nearly 62 ms. 

The time required to read block from HDD was nearly 16 ms. 

The total time = 78 ms. 

 

57 



 

 

 

EX2: 

When PC2 requests block number (45) from file name (hhh.bin)  

1- The CCDS system runs the manager and server modules, which 

joins the multicast group. 

2-  The manager searches for block 45 in its local cache and the block 

was not available. 

3- The client module joins a multicast group and sends a multicast 

request to all servers in the LAN (All PCs). 

4- Each server (except the server of the sender PC2) then searches for 

the block in its local cache (LAN caches). 

5- PC1 server finds this block in its local cache, opens socket 

connection with the requested client and sends reply to PC2 with the 

data block. 

6- PC2 client receives this data block and stores it in local cache then it 

uses this data.  

The time required to access local cache was 0 ms (less than 0.5 ms) 

The time required to send a request on LAN was nearly 46 ms. 

The total time = 46 ms. 

 

 

 

 

 

 

 

58 



 

 

 

EX3: 

When PC1 requests block number (45) from file name (hhh.bin) again 

1- The CCDS system runs the manager and server module, which 

joined the multicast group. 

2-  The manager searches for the block in its local cache and the block 

is available. 

3- The manager will read this block and use it. 

The needed time of local cache was 0 ms (less than 0.5 ms) 

The total time = 0 ms. 

After a lot of read process, either through LAN or through HDD many 

of the requested blocks are saved in the local cashes of the LAN and this had 

minimized the required time of disk accesses. Table (4.3) shows sequence of 

requests from different computers to different files and blocks over the LAN 

and the needed time for each one. 

 

 
 
 

59 



 
 
 

Table (4.3) several CCDS request and time 
 

 
 
 
 
 
 
 
 
 
 
 

PC 

request 

File 

name 

Block 

no. 

PC 

response 

(LAN) 

Time 
HDD  

Time 
Copy type Count  

PC7 Aaa.bin 999 PC3 46 ms  Non-master 2 

PC1 Kkk.bin 34 PC8 62 ms  Non-master 9 

PC3 a.bin 88   15 ms Master 1 

PC6 dddd.bin 28   16 ms Master 1 

PC2 Wvv.bin 14 PC2 0 ms  Non-master 3 

PC5 nn.bin 90 PC1 93 ms  Non-master 2 

PC8 l.bin 156   31 ms Master 1 

PC4 Ooo.bin  287   15 ms Master 1 

PC9 cc . b i n 542 PC4 78 ms  Non-master 5 

PC1 
jjjj . b i 

n 
159 PC5 94 ms  Non-master 8 

PC5 b . b i n 478   16 ms Master 1 

PC9 O . b i n 435   32 ms Master 1 

PC2 
a a a . b 

i n 
99 PC7 78 ms  Non-master 3 

PC1 a . b i n 123 PC3 62 ms  Non-master 2 

PC6 
Dd . b i 

n 
45 PC2 46 ms  Non-master 6 

PC4 w . b i n 12 PC8 78 ms  Non-master 3 

60 



 
 
 

EX4: 

When there are 10 PCs each one requests 10 blocks of different files 

and all of these files are available in one PC cache. There is a load on this 

PC server, but because of the multithreading, it is able to reply to all of these 

requests. The server creates a thread to each request and serves it at a time 

as shown in table (4.4). 

The average time needed to each request to be served = 67.28 ms 
 
 
Table (4.4) Average of 100 different block of different files request from 10 

PC on LAN to one PC (load on one pc cache) 
 

PC request PC response Average Time Copy type 

PC0 PC4 49.2 ms Non-master 

PC1 PC4 78.0 ms Non-master 

PC2 PC4 58.8 ms Non-master 

PC3 PC4 78.0 ms Non-master 

PC5 PC4 70.0 ms Non-master 

PC6 PC4 78.0 ms Non-master 

PC7 PC4 62.5 ms  Non-master 

PC8 PC4 50.3 ms Non-master 

PC9 PC4 70.0 ms Non-master 

PC10 PC4 78.0 ms Non-master 

Average of all 

time 67.28 

 
 
 
 

61 



 
 
 
 
 
 

EX5: 

When PC8 requests 100 different blocks of different files and all of 

these files available in PC3 cache there is a load on reading from the cache 

and load on network transmitting blocks. 

The average time needed to each request to be served = 114.03 ms. 

This is illustrated in table (4.5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

62 



 
 
 
 

 
 

                         
Table 
(4.5) 
Load 
from 
PC8 to 
PC3 
throug
h LAN    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

PC 

request 

File 

name 

Block 

no. 

PC 

response 

(LAN) 

Time Copy type Count  

PC8 a . b i n 10 PC3 188 ms Non-master 4 

PC8 b . b i n 20 PC3 110 ms Non-master 2 

PC8 c. b i n 30 PC3 172 ms Non-master 7 

PC8 d . b i n 40 PC3 157 ms Non-master 3 

PC8 e . b i n 50 PC3 156 ms Non-master 3 

PC8 f . b i n 60 PC3 94 ms Non-master 2 

PC8 g . b i n 70 PC3 78 ms Non-master 8 

PC8 h . b i n 80 PC3 109 ms Non-master 5 

PC8 i . b i n 90 PC3 125 ms Non-master 5 

PC8 j . b i n 100 PC3 141 ms Non-master 8 

PC8 k . b i n 200 PC3 93 ms Non-master 6 

PC8 l . b i n 300 PC3 62 ms Non-master 9 

PC8 
m . b i 

n 
400 PC3 140 ms Non-master 4 

PC8 n . b i n 500 PC3 78 ms Non-master 3 

PC8 o . b i n 600 PC3 156 ms Non-master 7 

PC8 p . b i n 700 PC3 140 ms Non-master 5 

average on 100 request =114.03 ms 



 
 
 
 
 
 
 
 
 
 
 

 
 

Chapter Five 
 

Conclusion and 
Future Work 

 



Chapter Five 

Conclusion and Future Work 
 
5.1   Conclusion 

From this research, many things were noticed and concluded. The 

following are the most important ones: 

1. The disadvantage of using multicast is the possibility of losing the 

datagram by the average 1% (UDP not reliable) and lake of security. 

2. There is a big difference in the transfer rate of fragmented hard disk 

and non-fragmented hard disk. The fragmented HD transfer rate 

reduced approximately to the half when equal file sizes are transferred. 

The fragmented HD transfer rate reduced than LAN transfer rate when 

small file sizes are transferred (see figure (4.6) and figure (4.7)).  

3. When different clients requests different blocks available on one 

server, the serve time becomes high because of the load on the network 

and on the server. 

4. When one client requests different blocks available on one server, the 

serve time becomes high because of the load on the client and on the 

server. 

5. Each machine (node) in the multicast group has both the client and 

server processes. It could ask for a request or serves a request.  When a 

client sends a request the server on this machine (node) not is allowed 

to perform the serving process. 

6. By comparing the calculated HDD transfer rate and LAN transfer rate, 

we notice that: the used LAN is slower than the HDD speed which 

makes getting the data from the hard disk is better than cooperative 

caches. To solve this problem a fast LAN must be used.  



 

5.2   Suggestion for future work 

After building CCDS, several ideas come to mind that may improve the 

overall performance. These ideas have been left as recommendation for future 

work. These recommendations are: 

1. Build Cooperative Caching inside file system layer and use it with the 

web.   

2. Using another search technique in local cache.  
3. When the required block is available on different machines a serving 

machine must be chosen in a way that balance the load on the 

machines. 

4. Enhancement to the algorithm used (LFU) by adding to it specific 

timer to solve the problem of the blocks that entered for the first time, 

or just use another replacement algorithm. 

5. Preftching is the next logical step after caching. It uses the same data 

structure and mechanisms but instead of remembering blocks requested 

in the past, its tries to predict the blocks that will be requested in the 

near future. So far, a cache only keeps the blocks already used by the 

applications. 

6. It possible to increase the performance of cooperative caching system 

by implementing the write operation through the cache with coherency 

and consistency mechanisms to avoid writing problems. 

7. Running the proposed system on a Metropolitan Area Network (MAN) 

and Wide Area Network (WAN). 

8. It also seems interesting to study a way to increase the system security. 

 

65 



 
 
 
 

References 
 
 
 

 

 



 

References 

 
1. [And01]          Anderson R., "Security Engineering", 2001, on site  
                           http://www.cl.cam.ac.uk/~rja14/book.html. 

 

2. [And03]              Andrade H., Kurc T., Sussman A., Borovikov E. and 

                             Saltz J., " On Cache Replacement Policies for  

                                 Servicing Mixed Data Intensive Query Workloads" 

                             ,2003. 

 

3.  [Ann04]             Annapureddy S., Freedman M.J., Mazieres D., "  Shark: 

                             Scaling File Servers via Cooperative Caching" 

                            , University of New York, 2004. 

 

4. [Are95]              Arens Y. and Knoblock C. "Intelligent Caching: Selecting, 

                             Representing and Reusing Data in an Information 

                             Server", University of Southern California 1995. 

 

5. [Arl99]               Arlitt M., Friedrich R. and Jin T, "Performance Evaluation 

                              of Web Proxy Cache Replacement Policies" 1999. 

 

6. [Bit02]                Bitorika A., "Scalability Issues in Cluster Web Servers",  

                               M.SC. Thesis, University of Dublin, 2002. 

 

 

 

 



 

 

7. [Boy06]                Boydens J., Steegmans E., "Confrontation of an aspect 

                                  -oriented solution with an object-oriented solution,  

                                a case study on caching", 2006. 

 

8. [Cor97]             Cortes T., "Cooperative Caching and prefetching in  

                                  parallel/distributed file systems", PHD thesis, Dept. 

                              of computer architecture, Barcelona, 1997. 

 

9. [Cou01]                Coulouris G., Dollimore J., Kindberg T., "Distributed 

                              System", Addison-Wesly, Third edition, 2001. 

 

10. [Dah95]             Dahlin M. D., Wang R. Y., Anderson T. E. and Patterson 

                                D. A., "Cooperative Caching: Using Remote Client  

                              Memory to Improve File System Performance",  

                              University of California at Berkeley, 1995. 

 

11. [Dei01]             Deitel H. M. and Deitel P. J., "Java How to Program", 

                             Fourth edition, published by Prentice Hall, 2001. 

 

12. [Gab01]             Gabrick K., Weiss D.," J2EE and XML Development" 

                            , Bookpool.com, 2001.  

                               http://www.amazon.com/J2EE-XML-Development- 

                              David-Weiss/dp/1930110308. 

 

 

 

 

 

67 



 

 

13. [Grb03]           Grbic A., "Assessment of Cache Coherence Protocols 

                           in Shared memory � Multiprocessors", PHD Thesis,  

                              Department of Electrical and Computer Engineering,  

                           University of Toronto, 2003. 

 

14. [Gri02]          Gridley D., Clow B. and Wilson D., "multicast (Protocols, 

                          Routing, Architectures, and Applications) ", 2002. 

 

15. [Gwe97]        Gwertzman J., Seltzer M., "World-Wide Web Cache  

                             Consistency", Harvard University, 1997. 

 

16. [Has04]             Hassoon I., "Exploiting Idle Memories in LAN Using  

                                Cooperative Caching Technique", MSC Thesis, Dept.  

                             Computer Science, Baghdad University, 2004. 

 

17. [Kha00]            Khattab T. M. S., "Performance Analysis of Wireless 

                             Local Area Networks (WLANs)", M.SC. thesis,  

                             Electronics and Communication Dept. Faculty of  

                             Engineering Cairo University Egypt, 2000. 

 

18. [Kos95]            Kostkova P., "Process allocation in tightly coupled 

                                multiprocessor", M.SC. thesis ,Dept. of Software  

                                Engineering, Mathematics and Physics Faculty,  

                                Charles University,  Prague,1995. 

 

 

 

 

68 



 

 

19. [Lag02]                Langston H., DeCoro C. and Weinberger J. " Cash:  

                                   Distributed Cooperative Buffer Caching", Courant  

                                Institute of Mathematical Sciences, New York  

                                University, 2002. 

 

20. [Lan02]                  Lancelotti R., Ciciani B. and Colajanni M.,"Distributed 

                                  cooperation schemes for document  lock up in  

                                 multiple Cache Server", Dept. of Computer  

                                 Engineering, University of Roma "Tor Vergata",  

                                    2002. 

 

21. [Lix06]               Li X., Plaxton C.G., Tiwari M., and Venkataramani A., 

                               " Online Hierarchical Cooperative Caching",  

                                University  of Texas, 2006. 

 

22. [Mir05]               Miranda H., Leggio S., Rodrigues L., and Raatikainen K. 

                                 " A Stateless Neighbour-Aware Cooperative Caching  

                                Protocol for Ad-Hoc Networks ", University of  

                                Lisboa, Portugal, 2005. 

 

23. [Nar05]               Narravula S., Balaji P., Vaidyanathan K., Jin H. W. and 

                                   Panda D. K., "Architecture for Caching Responses  

                                   with Multiple Dynamic Dependencies in Multi-Tier  

                                   Data-Centers over InfiniBand", Dept. of Computer  

                                  Science and Engineering, The Ohio State University,  

                               2005. 

 

69 



 

 

24. [Nel90]     Nelson M. N., "Virtual Memory vs. The File System",  

                          Western Research Laboratory, California, USA, 1990. 

 

25. [Pau02]         Paul P. and Raghavan S. V., "Survey of Multicast Routing  

                          Algorithms and Protocols", paper, Dept. of Computer  

                            Science and Engineering, Indian Institute of Technology  

                         Madras, 2002. 

 

26. [Rus98]         Russinovich M., "Inside the cache manager"  from  

                           windows IT Pro book 1998.  

http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=3864. 

 

27. [Saf06]       Al-Saffar R. B. J., "Fault and Accounting Components  

                         Monitor System Design and Implementation", MSC thesis,  

                         Dept. Computer Science, Al-Nahrain University, Baghdad,  

                      2006. 

 

28. [Sar96]          Sarkar P. and Hartman J., "Efficient Cooperative Caching  

                            using Hints", Dept. of Computer Science, University of  

                        Arizona, 1996.  

                        http://www.cs.arizona.edu/swarm/papers/ccache. 

 

29. [Ska00]       Skansholm J., " Java From the Beginning", Addison- 

                         Wesly, , 2000. 

 

 

 

70 



 

 

30. [Sno01]         Snoeyink J., Suri S. and Varghese G., "A Lower Bound 

                         for Multicast Key Distribution", paper IEEE 2001. 

 

31. [Sun94]          Sun microsystem, "Cache File System (CacheFS) White 

                          Paper ", Inc., California, U.S.A., 1994. 

 

32. [Tan02]          Tanenbaum A. S. and Steen M., "Distributed system  

                             principle and paradigms", 2002 on site. 

http://www.prenhall.com/divisions/esm/app/$author_tanenbaum/custom/d

ist_sys_1e. 

 

33. [Voe98]           Voelker G. M., Anderson E. J., Kimbrel T., Feeley M. J.y,  

                             Chase J. S., Karlin A. R., and Levy H. M.,  

                               "Implementing Cooperative Prefetching and Caching  

                             in a Globally-Managed Memory System", Dept of  

                              Computer Science and Engineering University of  

                             Washington, 1998. 

 

34. [Wan03]          Wang C., Xiao L., Liu Y., Zheng P. "Distributed Caching  

                            and Adaptive Search in Multilayer P2P Networks",  

                            Michigan State University, 2003. 

 

35. [Web06]         Webopedia site, "Cache ", 2006. 

                             http://www.webopedia.com/TERM/c/cache.html. 

 

 

 

 

70 



 

 

 

36. [Wik07a]         Wikipedia site, the free Encyclopedia, "File System", 2007. 

                                 http://en.wikipedia.org/wiki/File_system#searchInput. 

 

37. 37[Wik07b]       Wikipedia site, the free Encyclopedia, "Cache coherency" 

                                , 2007. http://en.wikipedia.org/wiki/Cache_coherency. 

 

38. [Wik07c]          Wikipedia site, the free Encyclopedia, "Routing ", 2007. 

                             http://en.wikipedia.org/wiki/Routing. 

 

39. [Wik07d]           Wikipedia site, the free Encyclopedia, "Cache ",2007. 

                              http://en.wikipedia.org/wiki/Cache. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

71 



 
 
 

 
Caching     اما عند الزبون او عند ,  هي تقنية خزن البيانات المستخدمة بكثرة في ذاآرة سريعة

  Cooperative Cachingالذاآرة المتعاونة . الHذي يكHون مHربوط للHزبائن بواسHطة الشHبكة      , الخHادم 

يHبحث عHن تحسHين آفHاءة أنظمHة ملفHات الشHبكة عHن طHريق تحHديث محتويات ذاآرة الزبائن والسماح                   

 .  ان تلبى من قبل ملف الذاآرة المحلية للزبون  وانما أن تلبى بواسطة ذاآرة زبون اخرللطلبات لا

 Cooperative) (الذاآHرة المHتعاونة للHنظام المHوزع    (هHذه الأطHروحة تطمHح إلHى بHناء وإنجHاز      

Caching for a Distributed System (CCDS)( ,       يHية فHيدة والمحلHرات البعHر الذاآHي تديHالت

تم تطويره باستخدام لغة البرمجة ). Windows(التي تعمل تحت نظام التشغيل    ) LAN(شHبكة محلية  

) Java.(       تكون من ثلاث أجزاءHوزع تHنظام المHتعاونة للHرة المHالإدارة : الذاآ)Manager ( , الزبون

)Client( , ادمHHو الخ)Server.(  ىHHيطر علHHو المسHHالأدارة ه CCDS   ياناتHHاد البHHتظمن ايجHHذي يHHوال 

الأدارة يسيطر على . ي الذاآرت المحلية والبعيدة ويقررمن أي ذاآرة يحصل على البيانات      المطلوبة ف 

هHHو المرسHHل للطلHHب الHHى    . الHHزبون يصHHل للبHHيانات المخHHزونة عHHند الخHHادم     . آHHل الذاآHHرات المHHتعاونة  

هو . الخHادم يخHدم الHزبائن الطالHبة    . الHزبون يسHيطر علHى ذاآHرة  الHزبون المحلHية        . الذاآHرات المHوزعة   

آل حاسوب في . الخHادم يسHيطر علHى ذاآHرة الخHادم     . سHتقبل الطلHبات مHن ذاآHرات الHزبائن المHوزعة           م

 . مع مكوناته الثلاثةCCDS يحتوي على LANشبكة محلية 

الاتصال  بسHبب  مHتعاونة  الذاآHرة لHنظام ال  ) Scalability( ل  فعHالاً  ا دعمH  قHدمت  CCDS فائHدة    

و بالإضHHافة إلHHى دعHHHم   ) Unicast( و)Multicast(مسHHHلك   اتعHHتمد علHHHى تقنHHي  وتوزيHHع البHHيانات ي  

 .مشارآة المصادر للبيانات الموزعة
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 جمهورية العراق
 البحث العلمي  و وزارة التعليم العالي

 جامعة النهرين
 آلية العلوم

 
 

 
 
 رسالة

 جامعة النهرين,  آلية العلومإلى مقدمة 
  آجزء من متطلبات نيل شهادة الماجستير في علوم الحاسوب

 
 
 من قبل

 ورود سعد إبراهيم ألعبيدي 
 

 بكالوريوس
 ٢٠٠٤ 

 
 المشرفون

     قلاخبان نديم ال.  دظ خالد                           لمـــياء حاف. د
 

 ١٤٢٨                                  ذو الحجة   ٢٠٠٧آانون الأول  
 


