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Abstract 
 

This thesis has three main objectives: 

The first objective is to study reliability theory of multi-state systems, 

as well as, some of its basic properties and theoretical results.  

The second objective is to study the reliability of dynamic multi-state 

system in which the dynamic reliability indices are used to estimate the 

influence upon the multi-state system reliability. A practical application of the 

dynamic multi-state system is given, which is the oil supply system from an 

oil source to three station through several oil pipelines, say four. This 

application have not been modeled previously as a dynamic multi-state 

system. 

The third objective is to introduce and study dynamic fuzzy reliability 

of fuzzy state probability and performance rate of fuzzy multi-state system 

that can be evaluated through aggregating the fuzzy behavior of fuzzy multi-

state system. 
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Nomenclatures and Notations 

MTTF Mean Time to Failure 

BSS Binary -State System 

MSS Multi-State System 

DRI Dynamic Reliability Indices 

CDRI Component Dynamic Reliability Indices 

DIRI Dynamic Integrated Reliability Indices 

����  Structure function; system state for �. 

��  State of component i 

�  Component state vector ���, ��, … , �
� 

n Number of MSS components 

m Number of discrete levels of MSS reliability (from 
zero to m) 

��  Best state of the system;	�� ∈ {�, �,… } 
 

IM  Importance Measures 

��,��  The i-th component state probability (s = 0, …, (m-1)) 

����→��

�����→��
  The direct partial logic derivative of the Structure 

function ����  with respect to variable �� 



                                                                                                 Nomenclatures and Notations 

 
�����  Failure probability of MSS if the i-th component is 

breakdown (CDRI of failure for i-th component) 

�����  Repair probability of the MSS if i-th failure 
component is replace (CDRI of repair for i-th 
component) 

��  Failure probability of the MSS if one of system 
components breakdowns (DIRI of MSS failure) 

��  Repair probability of the MSS if one of system failure 
components replaced (CDRI of MSSS repair) 

��  Number of system states “1”	���� = � 

��  Number of system states “1”	���� = � 

���  Performance level of component in state i , which is 
represented as a fuzzy value 

FMSS Fuzzy Multi-State System 
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Introduction 
 

 I 

Introduction 

 

In conventional reliability theory, binary system reliability models 

have been widely used to study the effectiveness and reliability of real life 

problems. However, for some engineering systems, the binary assumption 

does not accurately represent the possible states that each of the systems may 

experience, [29]. 

Compared with a binary system model, a multi-state system (MSS) 

model provides a more flexible tool for representing engineering systems in 

real life phenomenon, as first introduced in [2] and [36]. In conventional 

multi-state theory, it is assumed that the exact probability, and performance 

level of each component state are given. With the progress of modern 

industrial technologies, however, product development cycles have become 

shorter, while the lifetimes of products have become longer, [18]. 

In many highly reliable applications, there may be only a few 

available observations of the system’s failures. Therefore, it may be difficult 

to obtain sufficient data to estimate the precise values of the probabilities and 

performance levels of these systems. Moreover, the inaccuracy of system 

models, caused by human errors, is difficult to quantify using conventional 

reliability theory alone, [20]. In light of these significant challenges, new 

techniques are needed to solve these fundamental problems related to 

reliability. 

In some cases, the fuzzy set theory provides a useful tool to 

complement conventional reliability theories. Fuzzy reliability theory, which 

employs the fuzzy theory introduced by Zadeh in 1965, [49] and in 1978, 

[48], is becoming a new methodology to study the imprecision and 
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uncertainty phenomena in reliability engineering [31], and it has since that 

received increasing attention. For example, Cai, Wen and Zhang in 1991, [7] 

introduced the fuzzy success/failure state and the reliability model to study a 

gradually degrading computing system. Huang in 1995, [19] assessed the 

reliability a system in the presence of fuzziness in operating time. Huang, 

Tong and Zuo  in 2004, [20] proposed to evaluate the failure possibility via 

posbist fault tree analysis when statistical data is scarce or failure probability 

is extremely small. A novel fuzzy bayesian approach was developed by Wu in 

2004, [46] to create the fuzzy bayes point estimator of reliability. Huang, Zuo 

and Sun in 2006, [18] introduced a bayesian method to assess system 

reliability when lifetime data is presented as a fuzzy value. Pandey and Tyagi 

in 2007, [40] proposed a new method to assess the profust reliability indices. 

The concept of fuzzy multi-state system (FMSS) was first used by Ding and 

Lisnianski in 2008, [8] in a modeling study of the state probabilities and 

performances of a component presented as fuzzy values. Only the basic 

definition of a FMSS is provided instead of a general one. Further analysis 

and discussion of FMSS are still needed, [9]. 

The aim of this thesis is to study the principles of reliability of multi-

state systems and solving real life problem of oil supply system and then 

generalize the ideas of dynamic multi-state system to introduce and study the 

reliability of fuzzy dynamic multi-state system. 

This thesis consists of three chapters. 

In chapter one, we introduce some of basic and necessary concepts, 

which are fundamental to the work of this thesis.  

  

In chapter two, we study the approach for evaluation of dynamic 

properties of the MSS reliability by the dynamic reliability indices (DRI). The  
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DRI are calculated with respect to certain structure function by the  direct 

partial logic derivatives. These indices characterize the change of the MSS 

reliability that is caused by the change of a component state (component 

efficiency). We analyze MSS reliability for different types of system structure 

(parallel, series and k-out-of-n). These types of systems are typically 

employed in reliability analysis. Finally, this chapter  also contain a study of 

real life problem of an engineering system which has been modified and 

improved and therefore studied using dynamic multi-state criteria. 

In chapter three, we give and introduce a new approach for studying 

the reliability of fuzzy multi-state system using dynamic reliability analysis. 
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CHAPTER 

 

Fundamental Concepts of Reliability Theory and Multi-State System 

 

1.1 Introduction  

Reliability plays a very important role for manufacturers and users. 

Thereby, the designer of reliability optimization problems seek to improve 

reliability at the minimum cost. The redundancy and reliability allocation 

problem is a classical optimization problem in the area of system reliability. 

In general, the objective of these problems is to optimize the system design in 

terms of the number of components and its reliabilities, subject to known 

constraints on resources as cost, weight, volume, availability, mean time to 

failure, etc., [35]. 

During the last decade, much work was devoted to study the binary 

state reliability analysis and optimization, where it is assumed that a system 

has only two possible states: one working state and one failure state. Less 

attention has been paid to develop methods for analyzing and optimizing the 

reliability of multi-state systems. Performance degradation is closer to reality 

than the two state performances of binary systems. Therefore, it is important 

to develop the theory multi-state system  reliability, [1]. 

A binary reliability system, the system and its components are 

assumed to be either working or failed may not be adequate in many real-life 

situations. In a MSS reliability, both the system and its components may 

assume more than two levels of performance varying from perfect functioning 

to complete failure. With a discrete multi-state system model, it is often 

1 
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assumed that both the system and its components may be in one of � possible 

states, 0, 1,2, … , � − 1;� ∈ ℕ , where � − 1 is the perfectly functioning 

state while 0 is the complete failure state. We use 
� , � = 1,2,… , �, to denote 

the state or performance level of the component, and the vector 	x =
�
�, 
�, … , 
�� represents the states of all n components. The system state is 

denoted by Φ which is called the structures function that is a deterministic 

function of component states:	Φ = Φ�x�: S� → S, where � = {0,1… , � − 1}, 
[21]. 

There are numerous examples of MSS, with more than two ordered or 

unordered states at the system level, or the component level. As water 

distribution, a power plant which has five states 0,1,2,3,4 that correspond to 

generating electricity of 0 %, 25 %, 50 %, 75% , 100 % of its full capacity is 

an example of a MSS that has ordered multiple states, [3]. 

This chapter consist of five sections. In section 1.2, we give a 

literature survey for MSS, as well as, historical background related to the 

subject.  

In section 1.3, we discuss and study in details the theoretical and 

practical background of system reliability and its characteristics.  

In section 1.4, an axiomatic approach to the notion of the class of 

binary coherent system have been introduced and study the properties of its 

structure function. 

 In section 1.5, the structure function related to MSS have been 

studied in details and also introduces  the construction of different structure 

functions for real-world systems. Also, we consider some properties of the 

structure function that determine some important properties of MSS. 
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1.2  Literature Survey 

Many standard works on reliability theory adopt this framework in 

which systems and components can be in only one of two models, the 

mathematical and statistical theory of this case has been studied extensively 

by many authors, such as Birnbaum, et al. in 1961, [4]. 

The basic concepts of MSS reliability were primarily introduced in the 

mid of the 1970's by Murchland  in, [36] and Ross in 1979, [43]. El-Neweihi, 

et al. in 1978 [12] analyzed the theoretical relationships between MSS  

reliability behavior and multi-state component performance. Barlow and Wu 

in 1978 [2] characterize component state criticality as a measure of how a 

particular component state affects a specific system state. Griffithin 1980 [17] 

formalized the concept of MSS performance, and studied the impact of 

component improvement on the overall system reliability behavior. 

The important of MSS concepts were also discussed by Block and 

Savits in 1982 [5], where a decomposition theorem for MSS structure 

function was proved. Since that time, MSS reliability began with an intensive 

development. Essential achievements that were attained up to the mid of 

1980's were reflected by Natvig in 1985 [38], and by El-Neveihi and Prochan 

in 1984 [11], where it can be found the state of the art in the field of MSS 

reliability at this stage. 

Readers that are more interested in the history and more ideas related 

to the theory MSS reliability for the later work can find the corresponding 

overview in [29] and [39]. 

Lisnianski and Levitin in 2003 [29], Lisnianski et al. in 2010 [30] 

presented a detailed analysis of MSS reliability estimation and quantification 

methods in which, they considered a lot of examples as an applications of 
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MSS in reliability analysis of  information, manufacturing, production, power 

generation, transportation and other systems. 

Lisnianski and Levitin in 2003 [29] have considered the basic 

Importance Measures (IM) for systems with two performance level and multi-

state components and their definitions by output performance measure. 

Ramirez-Marquez and Coit in 2005 [42] have generalized this result for MSS 

and have proposed new type of IM that is labeled as composite importance 

measures and  then Meng in 2009 [33] has presented a review of IM’s. 

 

1.3 Basic Concepts of  Reliability Theory 

 In this section, some fundamental concepts related to reliability theory 

will be given for completeness of background ideas used in this work. 

 

1.3.1 Reliability: 

Reliability is sometimes referred to as the quality in the time 

dimension, because it is determined by failures that may or may not occur 

during the life of the product, [30]. 

 

Definition (1.1) (Failure), [35]: 

Failure can be defined as the termination of an item’s ability to 

perform a required function. 

Failure is regarded as a random phenomenon, since it occurs at an 

uncertain time.  

 

Definition (1.2) (Reliability), [35]: 

Reliability is defined as the probability that a component or system 

will perform a required function for a given period of time when used under 

stated operating conditions. It is the probability of a non-failure over time. 
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Probability theory has been used to analyze the reliability of 

components, as well as, the reliability of systems consisting of these 

components. Since the performance of a system usually depends on the 

performance of its components, the reliability of a system is a function of the 

reliability of its components. The intended function of the device is supposed 

to be understood and the degree of success of the device performance of the 

intended function can be measured so that we can easily conclude if the 

performance is satisfactory or not. Time is an important factor in the 

definition of reliability. If a newly purchased device can perform its intended 

functions satisfactorily, what is the probability that it will last (continue to 

perform satisfactorily) for a specified period of time?. How long will it last?, 

in other words, what will be the life of this device?. The life time of the 

device may be treated also as a random variable with a statistical distribution. 

Furthermore, the operating conditions, such as stress, load, 

temperature, pressure, and/or other environmental factors, under which the 

device is expected to operate must be specified and considered by the 

disfigure and manufacturers. 
 
 

1.3.2 Reliability Function, [28]: 

 In this section, a different point of view of reliability analysis will be 

given by considering the life time length of a system and the life time length 

of its components . In general, life time length of any system (or component) 

is a random variable, and so this lead to study of its life time distribution. 

 Let T  be the random variable representing the life time of a device. 

The units of measurement for the life time may be a time unit, such as 

seconds, hours, days and years or any usage unit, such as miles driven and 

cycles of operation. The random variable T is continuous and can take only 

nonnegative values.  
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Its statistical distribution can be described by its probability density 

function f	�t�, its cumulative distribution function F�t�, i.e.,  

 F�t� = Pr	�system	fail	at	time	 ≤ t� 
= Pr�T	 ≤ 	t� 	= , f�x�dx.

/ ; t > 0																																													�1.1� 
 

Definition (1.3) (Reliability Function), [28]: 

  The reliability function of a system at time t if is the probability that 

the system will adequately perform its intended function for a specified 

interval of time �0, 2], mathematically: 

R�t� = Pr	�system	function	successefully	throughtout	the	interval	�0, t]�	
= 	Pr�T	 > 	t�	
= 	1	 − 	F�t�	
= , f�x�dx.

/ ; t > 0																																																																																		�1.2� 
Where f�x� is the probability density function. 

 

1.3.3 Mean Time to Failure: 

 Usually, we are interested in the expected time to next failure, and this 

is termed as the mean time to failure. 

 

Definition (1.4) (The Mean Time to Failure), [34]: 

 The mean time to failure (MTTF) is defined as the expected value of 

the life time before a failure occurs. 
 

 Suppose that the reliability function for a system is given by R(t), the 

MTTF can be computed as: 

MTTF = , tf�t�dt.
= = , R�t�dt.

= 																																																									�1.3� 
Where f�t� is the probability density function. 
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1.3.4 Failure Rate Function: 

 The failure rate function, or hazard function, is very important in 

reliability analysis, because it specifies the rate of the system aging. The 

definition of failure rate function is given in the next definition: 

 

Definition (1.5) (Hazard Function), [28]: 

 The failure rate function, or the hazard function, denoted by h(t), is 

defined to be the probability that a device will fail in the next time unit given 

that it has been working properly up to time t, that is: 

h�t� = 	 f�t�R�t� ; t > 0																																																																																			�1.4� 
 

 The cumulative failure rate function, or the cumulative hazard 

function, denoted by H(t), is defined to be: 

H�t� = , h�w�dw	/
= 																																																																																	�1.5� 

 The failure rate function is often used to indicate the health condition 

of a working device. A high failure rate indicates a bad health condition or 

status, because the probability for the device to fail in the next instant of time 

is high. 
 
 

1.3.5 Maintainability and Availability:  

 When a system fails to perform satisfactorily, repair is normally 

carried out to locate and correct the fault. The system is restored to 

operational effectiveness by making an adjustment or by replacing a 

component, [34]. 
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Definition (1.6) (Maintainability), [34]: 

  Maintainability  V	�t� is defined as the probability that a failed system 

will be restored to a functioning state within a given period of time when 

maintenance is performed according to prescribed procedures and resources. 

 

 Generally, maintainability is the probability of isolating and repairing 

a fault in a system within a given time. Maintenance personnel have to work 

with system designers to ensure that the system product can be maintained 

cost effectively. 

 Let T denote the time to repair or the total downtime. If the repair time 

T has a density function g�t�, then the maintainability, V	�t�, is defined as the 

probability that the failed system will be back in service by time t, i.e.,  

V�t� = Pr�T ≤ t� = , g�x�dx/
= 																																																														�1.6� 

 An important measure often used in maintenance studies is the mean 

time to repair (MTTR) or the mean downtime. The  MTTR is the expected 

value of the repair time. 

 Another important related reliability concept is the system availability. 

This is a measure that takes both reliability and maintainability into account. 

 

Definition (1.7) (Availability), [34]: 

 The availability function of a system, denoted by A(t), is the 

probability that the system is available at time t. 
 

 Different from the reliability that focuses on a period of time when the 

system is free of failures, availability concerns a time point at which the 

system does not stay at the failed state. Mathematically: 

 A�t� 	= 	Pr�System	is	up	or	available	at	time	instant	t� 
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 The availability function, which is a complicated function of time, has 

a simple steady-state or asymptotic expression. In fact, usually we are mainly 

concerned with systems running for a long time. The steady-state or 

asymptotic availability is given by: 

A = lim/→. A�t� = System	up	timeSystem	up	time + 	System	down	time 

= MTTFMTTF + MTTR 

 The mean time between failures (MTBF) is another important 

measure in repairable systems. This implies that the system has failed and has 

been repaired. Like MTTF and MTTR the MTBF is an expected value of the 

random variable time between failures. Mathematically,  

 MTBF=MTTR+ MTTF. 
 

1.4 Binary Systems 

 This section  presents a review of the structural and properties of the 

binary model that are most commonly used previously in reliability theory. 
 

1.4.1 Binary Items, [35]: 

 An item is an entity that is not further subdivided. This imply that an 

item, in a given reliability study, is regarded as a self-contained unit and is not 

analyzed in terms of the performance of its constituents. 

 A binary item possesses two states: perfect functioning and complete 

failure. Any item is considered in perfect functioning at the starting time 

t	 = 	0. When the item changes from functioning state to failure state, we say 

that it failed. The item state at time t is expressed by a binary variable X�t�, 
where: 

X�t� = J1,0, functioningfaild														 
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An important concept emerges here, which refers to the time elapsing 

form, when the item is given  into operation until it fails for first time, called 

time to failure. It is not necessarily measured in time units. It can be measured 

by indirect time concepts, such as cycles, distances, counting, etc. The time to 

failure is modeled as a random variable T, because it is subject to chance 

variations. Figure (1.1) shows the relation between the state variable X�t� and 

the time to failure T. 

 

Figure (1.1) Time to failure in binary items. 
 

1.4.2 Mathematical Formulation of Binary System, [6]: 

Consider a system of � components, let K	 
 	 �1,2,… , ��	denote the 

set of component indices. To indicate the state of the � � 2L component 

�	 
 	1,2, … , �, assign a binary indicator variable 
�  to component �; 	
� 
 1 if 

component � is functioning and 
� 
 0 if component � is failed . 

Similarly, the binary variable Φ indicates the state of system ;Φ 
 1 if 

the system is functioning, Φ 
 0 if the system is failed. Let �	 
 	 �0,1�, and 

assume that the state of the system is determined completely by the states of 

the components, so we may write Φ: �� 
 � M � M …M � → �. 
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The function Φ is called the "structure function" of the system and  the 

vector 	x = �
�, 
�, … , 
�� is called "the state vector" of the components.	
 Structural properties characterizes the deterministic relationship 

between the state of the system and the states of the components at a fixed 

moment in time. 

 The order of a system  n, is the number of distinct components that make 

up the system. Considering for example a system with n components, to 

indicate the state of the	� − 2ℎ component, we assign a binary indicator 

variable 
� to component �	for � = 	1, 2, . . . , �. 

 
� = J0,1, 	if	component	i	is	failed	if	component	i	is	functioning																																														�1.7� 
The binary component states are summarized with the vector x =
�
�, 
�, … , 
��. The structure function Φ�x� determines the binary state of the 

system from the component state vector so that: 

 Φ�x� = J0,1,	 if	the	system	has	failedif	the	system	is	in	operating	state																													�1.8� 
 

1.4.3 Special Structures of Binary System, [4]: 

 Birnbaum, et al. in 1961 defined three  basic structures for the binary 

case which are the series, parallel and k-out-of-n. A series system is defined 

so that the system is functioning if and only if each component is functioning. 

the structure function is defined mathematically as: 

Φ�x� = P
�
�

�Q�
 

= ���{
�, 
�, … , 
�}																																																																			�1.9� 
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A parallel system is defined so that the system fails if and only if all 

the components fail, and the structure function is defined mathematically as: 

Φ�x� = 1 − P�1 − 
��
�

�Q�
 

= �S
{
�, 
�, … , 
�}																																																																	�1.10�          
 A k-out-of-n system is defined so that the system is functioning if and 

only if at least k-out-of-n components are functioning. The structure function 

is: 

Φ�x� =
TU
V
UW1, �X	 Y
�

�

�Q�
≥ [

0, �X Y
�
�

�Q�
< [

																																																									�1.11�		 

 Series and parallel systems are special cases of the k-out-of- n 

structure. A series system is an n-out-of-n structure, while a parallel system is 

a 1-out-of-n structure. 

 
 

1.4.4 Coherent Systems of the Binary System, [1]: 

 A binary system of  components is said to be a coherent system  if its 

structure functions Φ: {0,1}� ⟶ {0,1} satisfies the fallowing conditions: 

1-  Φ�x�  is monotonically non-decreasing in each vector argument, 
�; 
� = 	1,2, … , �,. 

2-  Each component is relevant to Φ�x�. 
3-  Φ�x� = j , for j = 0,1. 

 Overall, the first condition implies that a component performance 

improvement never causes a system failure. It ensures that the structure 

function Φ is a monotonically non-decreasing function of each argument. The 

second condition implies that each component is relevant. A component is 

irrelevant if it dose not matter whether or not it is working.  
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Finally, the last condition mentions that the entire system works when 

all the components work and the entire system fails when all the components 

fail. This condition is always satisfied with coherent systems. As a result, in 

the binary system context coherency means that: 

1- The entire system elements are relevant. 

2- The fault of all the elements causes the fault of entire system. 

3- The operation of all the elements results in the entire system operation. 

4- Once the system has failed, no additional failure can make the system 

function again. 

5- When the system is working, no repair or additional of element can cause 

system failure. 
 

1.5 Multi-State System, [29] 

 A multi-state item can perform their tasks with various distinguished 

levels of performance or states. The item states can vary as a result of their 

deterioration, or because of changing ambient conditions, from perfect 

functioning to complete failure. 

 It is assumed that at the beginning (at time t = 0) the item is in its 

highest performance (perfect functioning). Failures that lead to decrease the 

item performance are called partial failures. The item state at time t is 

expressed by a discrete random variable x�t� which takes its values from the 

state set: 

x�t� = {
=�2�, 
��2�,… , 
��2�}																																																											�1.12�  
Generally,	
=�2� represents the complete failure of the item. Whenever the 

item changes its performance rate, we say that there is a state transition in the 

item. 
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 The probabilities associated with the different states of the item may 

be represented by the set: 

_�2� 
 �_=�2�, _��2�, … , _��2�}																																																											�1.13� 
where _��2� for all � = 0,1,… , �; is the probability that the variable state 
�2� 
is in the item state 
��2� at a specified time t. 

_��2� = `a
�2� = 
��2�], ∀	� = 0,1,… , �																																										�1.14� 
 An item can only be in one and only in one of  the  n + 1 states which 

means that the item states compose the complete group of mutually exclusive 

events, and then: 

Y_��2� = 1�

�Q=
																																																																																											�1.15� 

 

1.5.1 The Multi-State System Structure Function, [35], [6]: 

Real-world systems consist of  n-components or subsystems (items) 

and their performance rates are unambiguously determined by the 

performance rates of these items. System reliability analyze the relation 

between the items performance of the system and the functioning of the 

system as a whole. The state of the entire system is determined by the states 

of its items. 

For this model, each component and the system are allowed to have a 

different number of discrete states, which are assumed to be  ordered, which 

means that the stats of each components state satisfy: 

0 < �2S2c1 < �2S2c2 < ⋯ < �2S2c	� − 1. 

For a multi-state system with n components, the state of the � − 2ℎ 

component is given by the discrete variable 
�, where:  
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� 

TUV
UW 0		1⋮f� � 2g

f� � 1
	
, if	component	i	is	in	the	worst	state
, intermediate	states	of	degradation
, if	component	i	�h	��	the	best	state

																	�1.16� 
for � 
 1,2, . . . , � and f� 	\ ∞. 

The state of the system is given by the variable Φ, where: 

Φ 

TUV
UW 0,1⋮�� � 2g

�� � 1
	
, if	the	system	is	in	the	worst	state
, intermediate	states	of	degradation
, if	the	system	�h	��	the	best	state

																	�1.17� 
where M is the best state of component. 

The function Φ is called the system structure function, which represents 

the relation between the item state vector and the system state variable. the 

relationship is described by the structure function Φ�x� which can be 

concisely written as Φ: �0,1, . . . , f� � 1�� → �0,1, . . . , �� � 1� 
The reliabilities of the system items compose the item reliability vector 

�_�, _�, … , _j�. Usually this vector is known, or can be estimated.  

 

1.5.2 Special Structure Functions for Multi-State System [35]: 

It is possible to invent an infinite number of different structure 

functions for real-world systems. This section presents the structures that are 

most commonly used in multi-state system reliability analysis. 

1- Series Structure: 

The series connection of system elements represents a case where a 

total failure of any individual item causes an overall system failure. A series 

structure of order n is illustrated in Figure (1.2). 

 

Figure (1.2) Series structure. 



Chapter One           Fundamental Concepts of  Reliability Theory and Multi-State System 
 

 16 

and when a MSS is considered, then one can distinguish between two types of 

series structures, namely: 

• Transmission: a system that uses the capacity or productivity of its items as 

the performance measure. The operation of these systems is associated with 

flow continuously passing through the items. The item with the minimal 

transmission capacity becomes the bottleneck of the system as it is shown in 

Figure (1.3). 

The bottleneck item determines the system performance: 

	Φ�x� 
 ����
��2�	, 
��2�, … , 
��2��																																															�1.18�  

In real-world, this kind of systems can be observed mainly in 

production lines. 

 

Figure (1.3) Transmission series structure. 

• Processing: the system performance measure is characterized by an 

operation time or processing speed. The operation of the systems is associated 

with consecutive tasks performed by the ordered line of items. The total 

system operation time is equal to the sum of the operation times of all of its 

items 

Φ�x� 
 Y
��2�
j

�Q�
																																																																																						�1.19� 

 The complete failure state of a system item corresponds to its 

processing speed equal to zero, which is equivalent to an infinite operation 

time. In this case, the operation time of the entire system is also infinite. 
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 Real-world systems with processing series structure can be 

appreciated in service companies (fast food, carwash, package shipping, etc.). 

Figure (1.4) presents an example of a processing series structure of order n. 

 

Figure (1.4) Processing series structure. 
 

2-Parallel Structure: 

The parallel connection of system elements represents a case where a 

system fails if and only if all of its items completely fail. A parallel structure 

of order n-components is shown in Figure (1.5). 

 

Figure (1.5) Parallel structure. 

Multi-state system items connected in parallel means that some tasks 

can be performed by any one of the items. Thus, two basic models of parallel 

structures are distinguished: 

• Work sharing:  a system that shares the work among its items. The entire 

system performance rate is equal to the sum of the performance rates of the 

parallel items, given be equation (1.19) 
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Common work sharing systems are the queues in banks, movie 

theaters, supermarkets, etc. Figure (1.6) illustrates an example of a parallel 

structure with work sharing of order n. 

 

Figure (1.6) Parallel structure with work sharing. 

•Without work sharing:  represents a situation where only one item is 

operating at a time. The system performance rate is equal to the maximal 

performance rate of the available parallel items  

Φ�x� 
 �S
�
��2�	, 
��2�,… , 
��2��																																															�1.20� 

 For instance, a taxicab radio service sends, from a set of free taxis, 

the taxi which is nearest to the call. Figure (1.7), illustrates a parallel structure 

without work sharing of order n. 
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Figure(1.7) Parallel structure without work sharing. 
 

3- k-out-of-n Structure: 

The k-out-of-n system reliability is defined as the probability that at 

least k elements out of n are in operable condition. As it is  known, an n-out-

of-n system corresponds to the series structure and a 1-out-of-n system 

corresponds to the parallel structure. In a multi-state generalization of the 

binary k-out-of-n model, the MSS is in state j if at least [k items are in state 


��2�, or above wher	� 
 1,2,… , �. For instance, a car with a V8 engine can 

walk if at least four cylinders are firing. For instance Figure (1.8) illustrates a 

logical representation of a 2-out-of-3 system. 

 

Figure (1.8) 2-out-of-3 structure. 
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1.5.3 The Main Properties of Multi-state Systems: 

Now, some properties of the structure function will be considered that 

determine the important of multi-state systems properties: 

1-Relevancy of system elements, [6]: 

When the MSS is considered, the element is relevant if some changes 

in its state without changes in the states of the remaining elements cause 

changes in the entire system state. In terms of the MSS structure function, the 

relevancy of element j means that there exist such �
��t�	, 
��t�,… , 
��t��, 
such that l� ≠ [� for all � = 1,2,… , � there are distinct states l ∈ �� − 1 and 

[ ∈ �� − 1: 

Φ�
��t�	, … , 
no�	, l� , 
np�, 
��t�� ≠ Φ�
��2�	, … , 
ko�	, [� , 
kp�, 
��2�� 
2-Coherency, [30]: 

For MSS’s these requirements are met in systems with monotonic 

structure functions: 

Φq
��2�	, 
��2�,… , 
��2�r = 1	�X	
��2� = 1	Xst	1 ≤ � ≤ � 

Φq
��2�, 
��2�,… , 
��2�r = 0	�X	
��2� = 0	Xst	1 ≤ � ≤ � 

Φq
��2�, 
��2�,… , 
��2�r ≤ Φqu��2�, u��2�, … , u��2�r 

if there is no i for which 
��2� ≤ u��2�. 
So, in a multi-state case, the system, is coherent if and only if its 

structure function is non-decreasing in each argument and all of the system 

elements are relevant. Note that from this structure function property it 

follows that the greatest system performance is achieved when the 

performance rates of all of the elements are in the greatest and the lowest 
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system performance is achieved when the performance rates of all of the 

elements are the lowest. 

3-Homogeneity, [30]: 

The MSS is homogenous if all of its elements and the entire system 

itself have the same number of distinguished states i.e., the state spaces of  

component i and the system are �0,1,2,… ,f� − 1} and {0,1,2,… ,�� − 1}, 
respectively. If f� − 1 = �� − 1 for 1	 ≤ 	�	 ≤ 	�, the system is considered to 

be homogeneous. 

4-Equivalent, [21]: 

Two component state vectors x and y are said to be equivalent if and 

only if there exists a l value such that Φ�x� = Φ�y� = l, l ∈ {0,1, … ,� − 1}. 
5-The vw are mutually independent, [6]: 

The random variables representing the �-component states are 

assumed to be mutually independent unless specifically stated otherwise. 

Where the discrete random variables X�, X�, … , X� are mutually independent 

if and only if: 

praX� = x�, X� = x�, … , X� = x�] = p�p� …	p�. 

where px = pr[X� = x�], � = 1,2, . . . , �. Continuous random variables are 

mutually independent if and only if: 

f�X�, X�, … , X�� = f�X��	f�X��		… f�X�� 
for every �X�, X�, … , X�� ∈ R� and f�Xx�	 is the marginal probability density 

function of Xx, ∀� = 1,2,… , �. 

The independence assumption implies that the state of one component 

will have no effect on the states of the other components in the system.  



Chapter Two
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CHAPTER 

 

Reliability of Dynamic Multi-State Systems  

 

2.1 Introduction 

 Multi-state system is a mathematical model that is used in reliability 

analysis to present a system with some level of working efficiency. A 

structure function allows to describe the behavior of system reliability 

depending on the efficiency of its components unambiguously. There are a lot 

of estimates of a MSS on the basic of structure function. Dynamic reliability 

indices belong to these estimates and characterize the changes of MSS 

reliability caused by changes in components efficiency. These indices are 

computed based on structure function and logical differential calculus, [53]. 

 Many practical components and systems have more than two different 

performance levels. For example, a power generator in a power station can 

work at full capacity, which is its nominal capacity, say 10 MW, when there 

is no failures at all, [29]. Certain types of failures can cause the generator to 

be completely failed, while other failures will lead to the generator working at 

a reduced capacity, say at 4 MW. On the system level, let us consider a power 

generating system consisting of several power generators. The abilities of the 

system to meet high power load demand, normal power load demand and 

lower power load demand can be regarded as different system states. Another 

example of multi-state components is an oil transmission pipeline [44]. The 

pipeline is used to transmit oil from the source to spots A, B and C aligned in 

 

2 
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order along the pipeline. We say that the pipeline is in state 0 when it cannot 

transmit oil to any of the spots; it is in state 1 if the oil can reach spot A; it is 

in state 2 if the oil can reach up to spot B, i.e., spot A and B; it is in state 3 if 

the oil can reach up to spot C. 

 This chapter consists of seven sections. In section 2.2, problem 

formulation and description of the system model have been introduced. 

 In section 2.3, the  direct partial logic derivatives are applied for the 

evaluation of dynamic characteristics of the investigation function and to 

reflect the changing in the value of the investigation function when the values 

of its variables are changed. 

  In section 2.4, the  mathematical description of failure and repair 

states for the MSS is considered because, it is the most important change in 

system functioning. 

 In section 2.5, the dynamic reliability indices which define the 

boundary states of MSS are given and the conditions of being and changing of 

these states depending on the change of the system component states have 

been considered. 

In section 2.6 presents the general model of the dynamic MSS which 

is considered in this chapter, it is k -out-of-n system. The k -out-of-n MSS 

with n components works if at least k components work.  

 In section 2.7 we present real life problem of an engineering system 

which is the problem of standing the reliability of oil supply system which  

has been modified and improved and therefore studied using dynamic multi-

state criteria. 
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2.2 Problem Formulation and Description of System Model, [51] 

The MSS is frequently required for applied problem, because such 

systems simulate the real system reliability in detail (Figure 2.1). 

 

Figure (2.1) Interpretation system reliability by mathematical model of 

multi-state system. 

 The MSS and each of its �-components can be in one of � possible 

states; from the complete failure (it is 0) to the perfect functioning (it is m). 

Every system component �� , ∀	� 	 1,2,… , �; is characterized by probability of 

the performance rate: 

 
�,�� 	 Pr��� 	 ���																																																																																					�2.1� 
where � 	 1,2,… , � and �� 	 0,1,… ,�� � 1. 

The system reliability (system state) depends on its components state 

and is defined by the structure function: 

Φ��� 	 Φ���, ��, … , ���: �0, … ,�� � 1�� → �0,… ,�� � 1�												�2.2�                

The structure functions of parallel, series and k-out-of-n MSS terms 

are declared by OR �∨�	and	AND	�∧�: 

Φ%��� 	 ⋁ ���
�'� 																																																																																						�2.3�  
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Φ)��� = ⋀ ����'� 																																																																																							�2.4�  
Φ��� = ⋁�⋀ ����'� �																																																																																		�2.5�  

where ⋁ ����'� = -.�{��, ��, … , ��} ; ⋀ ����'� = -��{��, ��, … , ��} 
The mathematical model of k-out-of-n MSS �2.5� can be simplified 

as: 

��0��1	 …	��2 ∨ ��0��1 …��2��230 = ��0��1	 …	��2 

and the structure functions defined as: 

Φ�x� = ⋁�⋀ ��5�'� �																																																																																		�2.6�  
For example, the structure functions 2-out-of-3 MSS is presented by: 

Φ�x� = ����⋁���7⋁���7⋁�����7 

The 2-out-of-3 MSS structure function in this case is given by: 

 Φ�x� = ����⋁���7⋁���7 

A parallel system is 1-out-of-n system:   

Φ��� = ⋁�⋀ ����'� � = ⋁ ����'� 																																																															�2.7�  
And a series system is n-out-of-n MSS: 

Φ��� = ⋁�⋀ ����'� � = ⋀ ����'� 																																																															�2.8�  
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Example (2.1), [44]: 

Consider n=3 channels in the emergency shutdown system of a 

nuclear power plant, detecting whether or not the operating parameters are in 

the safe ranges. If k=2  channels warn that operating parameters are out of the 

safe ranges, the power plant will be shut down. A channel has three states: 

1. State 0: unavailable, i.e., does not warn when it should. 

2. State 1: warning properly. 

3. State 2: warns when everything is in fact operating normally. 

The 2-out-of-3 emergency shutdown system also has three states, namely: 

1. System state 0: unavailable, i.e., does not warn when it should. 

2. System state 1: warning properly. 

3. System state 2: spurious operation, i.e., warns when the system is operating 

normally. 

The structure function of the 2-out-of-3 MSS emergency 

shutdown system is: 

Φ�x� = ⋁{⋀���, ���⋀���, �7�⋀���, �7�}  
with �� = 3, � = 1,2,3  the structure functions results are indicated in 

table (2.1). 

Table (2.1) The 2-out-of-3 MSS emergency shutdown system 

:;, :<, := >�?� :;, :<, := >�?� :;, :<, := >�?� 

0    0    0 
0    0    1 
0    0    2 
0    1    0 
0    1    1 
0    1    2 
0    2    0 
0    2    1 
0    2    2 

0 
0 
0 
0 
1 
1 
0 
1 
2 

1    0    0 
1    0    1 
1    0    2 
1    1    0 
1    1    1 
1    1    2 
1    2    0 
1    2    1 
1    2    2 

0 
1 
1 
1 
1 
1 
1 
1 
2 

2    0    0 
2    0    1 
2    0    2 
2    1    0 
2    1    1 
2    1    2 
2    2    0 
2    2    1 
2   2    2 

0 
1 
2 
1 
1 
2 
2 
2 
2 
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2.3 Direct Partial Logic Derivative for MSS Model  

The direct partial logic derivative of the structure function Φ��� with 

respect to the component �� , ∀	� 	 1,2,… , �; reflects the fact of changing of 

the structure function Φ from state @ to state A, when the value of component 

�� changing from a to b which is termed as 
BC�D→E�
BF��G→H�

   [56]: 

IΦ�@ → A�
I���. → J� 	 Φ�.�, �� • Φ�J� , ��																																																								�2.9� 

where 

Φ�.� , �� 	 Φ���, … , ��M�, … , ., ��N�… , ���	; and 

Φ�J� , �� 	 Φ���, … , ��M�, … , J, ��N�… , ���; 
@, 	A	 ∈ 	�0, 	1,… ,- � 1�	and	., J	 ∈ 	�0, 	1, … ,�� � 1�; 	and “•” is the symbol 

of a comparison operation defined by:  

IΦ�@ → A�
I�� 	�. → J� 	 S- � 1,

0,
�T	Φ�.� , �� 	 @	.�U		Φ�J� , �� 	 A
VWAXYZ�[X  

The analysis of the change in system reliability that is caused by a 

change of component states may be illustrated in Figure (2.2). 

 

Figure (2.2) Direct partial logic derivatives and MSS states changes. 
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2.4 Multi-State System Failure and Repair of MSS, [54] 

 Direct partial logic derivative of the structure function allows to 

examine the influence of the � − Wℎ component state change into the system 

reliability. In other words this derivative discovers the system states that are 

transformed as a result of the change of the component state. 

Consequences of the direct partial logic derivatives are of interest for 

reliability analysis of the MSS. For this purpose, consider the following two 

partial derivatives:  

∂Φ�j → 0�
∂x^�a → b� for		j, . ∈ {1,2,… ,�� − 1}	and	J ∈ {0,1, … ,�� − 1} 

where J < ..	
IΦ�0 → ℎ�
I���c → U� TVY	ℎ ∈ {1,2, … ,�� − 1}	and	c, U ∈ {0,1, … ,�� − 1} 

where	c < U. 

The first partial logic derivative is a mathematical representation for 

the model of the system failure if the �	 − Wℎ component state changes from a 

to b. Because the structure function Φ��� is non-decreasing, this derivative is 

BC�D→d�
BF	��G→GM�� where @, . ∈ {1,2, … ,�� − 1}. 

The second partial logic derivative permits the mathematical 

description of the system renewal. There are two variants of investigation for 

the system repairing. First it is the system repairing by the replacement of the 

failure component. This situation is determined by the direct partial logic 

derivative 
BC�d→E�

BF��d→e�M��. Second, it is the increase of component state that is 

described as 
BC�d→E�

BF��f→fN��. 
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However, the first variant is more important for applications. Because 

the structure function of the MSS is non-decreasing, this derivative can be 

assigned as 
BC�d→E�

BF��d→e�M�� . 

It is remarkable that direct partial logic derivatives allow to analyze 

dynamic properties of the MSS, which is submitted as a structural function . 

2.5 Dynamic Reliability Indices 

Dynamic reliability indices  characterize the change of the MSS 

reliability that is caused by the change of a component state and include three 

groups of probabilistic indices, which are (DDRI’s), (CDRI’s) and (DIRI’s). 

Therefore, we will explain next each of these concepts in details. 

2.5.1 Dynamic Deterministic Reliability Indices: 

Dynamic deterministic reliability indices evaluate the influence of a 

change of the component state upon system reliability. They are defined as 

sets of boundary states of the system. Here the boundary state of the system is 

the system state [�, … , [� , … , [� when the modification of the �	 − Wℎ 

component state from [� into [g̀ causes the system to fail or repair, [58]. 

Definition (2.1) (Dynamic Deterministic Reliability Indices), [54], [55]: 

Dynamic deterministic reliability indices are sets of the boundary state 

of the system {ij} (for system failure) and {ik} (for system repairing). 

The states system failure {ij} and the states system repairing {ik} are 

defined by: 

lijm = 	 lijn��m ∪ lijn��m ∪ …∪ lijn��m																																										�2.10�  
{ik} = 	 {ik|��} ∪ {ik|��} ∪ …∪ {ik|��}																																										�2.11�  
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where the subsets lijn��m and {ik|��} are defined by: 

lijn��m = qijr IΦ�@ → 0�
I���. → 0� ≠ 0t																																																								�2.12� 

{ik|��} = uikv IΦ�0 → ℎ�
I���0 → �� − 1� ≠ 0w																																															�2.13� 

where {ij|��} and {ik|��} are subsets of the boundary state of the system for 

every system component �� , ∀	� = 1,2,… , �	.  
Therefore, it is necessary to analyze every component state [� and to 

check the fact of MSS failure or repairing after the modification of this states. 

The direct partial logic derivatives (2.9) allow to formalize this procedure. 

2.5.2 Component Dynamic Reliability Indices: 

Component dynamic reliability indices represents the probability for 

evaluating  the influence of the � − Wℎ	system component on the possibility of 

failure or repairing of the system. From the point of view of system reliability, 

unstable components are determined, [57]. 

Definition (2.2) (Component Dynamic Reliability Indices), [55], [50]: 

Component dynamic reliability indices are probabilities of MSS 

failure and repairing at a modification of a state of the � − Wℎ system 

component 

xj = 
���G→GM�D→d 
G���																																																																												�2.14�  
xk = 
���d→e�M�d→E 
d���																																																																											�2.15� 

where 
���G→GM�D→d  is the probability of the � − Wℎ component state 

modification from a to �. − 1� where the system fail; 
G��� is the probability 
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of state	. of the � − Wℎ component; 
���d→e�M�d→E  is the probability of	� − Wℎ 

component replacement for system repairing; 	
d��� is the probability of 

� − Wℎ component failure. 


����→d�→d = y���G→GM�D→d
����…�� 																																																																								�2.16� 


���d→e�z0
d→E = y���d→e�M�d→E

����…�� 																																																																		�2.17� 

where y���G→GM�D→d  is the number of system states when a change � −
Wℎ	component state from a to �. − 1� forces the system failure; and 

y���d→e�M�d→E  is the number of system states when system repairing bring about 

by to replacing the � − Wℎ component. 

Noting that, the numbers y���G→GM�D→d  and y���d→e�M�d→E  are obtained as 

number of values of direct partial logic derivative 
BC�D→d�

BF��G→GM�� and 
BC�d→E�

BF��d→e�M�� 
with  respect the � − Wℎ	variable, which are not equal 0. In other words 

numbers y���G→dD→d  and y���d→e�M�d→E  are the cardinality of the set {ij|��� in 

equation (2.12) and the set �ik|��� in equation (2.13) accordingly. 

2.5.3 Dynamic Integrated Reliability Indices: 

Dynamic integrated reliability indices are generalization of DDRI and 

are probability evaluation of a modification of the MSS reliability at a change 

of the system components state. In particular, the probability of the boundary 

of system states is estimated by these indices [32]. 

 

 

 



Chapter Two                                                      Reliability of Dynamic Multi-State Systems 
 

 32 

Definition (2.3) (Dynamic Integrated Reliability Indices), [55], [52]:  

Dynamic integrated reliability indices is probability of the system 

failure or repairing if one of the system components fails or restores, the 

failure and repair probabilities are defined by:   

xj ={xj��� | }1 − xj���~
�

�'�,���

�

�
																																																				�2.18� 

xk ={xk��� | �1 − xk����
�

�'�,���

�

�
																																																							�2.19� 

where xj��� and xk��� is determined in equations (2.14) and (2.15), 

respectively. 
 

Algorithm (2.1) (Calculation of the Dynamic Reliability Indices), [58]:  

The DRI’s are calculated using the following algorithm:  

Step 1.0: Calculate {ij} (for system failure) and {ik} (for system repairing) 

for the MSS using the following steps: 

Step 1.1: The derivatives 
BC�D→d�
BF��G→d� , ∀� = 1,… , �	and 

	@, . ∈ {1,2,… ,�� − 1}	reflects the fact of changing of the 

system from j to 0 when the value of component �� 
changing from a to 0 are calculated by equation (2.9). 

Step 1.2: The subsets failure system {ij|��� are obtained in 

accordance with equation (2.12). 

 Step 1.3: The states system failure �ij� in accordance with equation 

(2.10) is the union of subsets �ij|��� is formed.  
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Step 1.4: The derivative 
BC�d→E�

BF��d→e�M�� , ∀�� = 1,2,… , ��	and	ℎ ∈
{1,2, … ,�� − 1} reflects the fact of changing of the system 

from 0 to h when the value of component  �� changing 

from 0 to �� − 1are calculated by equation (2.9). 

Step 1.5: The subsets repair system {ik|��} are obtained in 

accordance with equation (2.13). 

Step 1.6: The states system repair {ik} in accordance with equation 

(2.11) is the union of subsets {ik|��� is formed. 

Step 2.0: Calculate the CDRI xj��� and xk��� of the MSS failure and repairing 

at a modification of a state using the following steps: 

Step 2.1: when numbers y����→d�→d and y���d→e�M�d→�  are obtained. 

They are conformed to numbers nonzero elements of the 

direct partial logic derivatives 
BC�D→d�
BF��G→d� and 

BC�d→E�
BF��d→e�M�� 

that are calculated in step 1.2 and step 1.4 accordantly. 

Step 2.2: The structural probability x����→d�→d of � − Wℎ component 

state modification from j to 0 where the system fail and the 

structural probability 
���d→e�M�d→E  of � − Wℎ component 

replace for system repairing are calculated according to 

equations (2.16) and (2.17). 

Step 2.3:The CDRI (probabilities of MSS failure or repairing at a 

modification of a state of � − Wℎ system component) are 

obtained by equations (2.14) and (2.15). 

Step 3:The DIRI for MSS estimation the probability of the system failure 

and the system repairing by equations (2.18) and (2.19). 
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2.6 Mathematical Simulation for the Model of Dynamic   
Behavior of MMS Emergency Shutdown System Model 

We will consider in this section the 2-out-of-3 MSS, where the 

structure function Φ�x� depends on three variables, which are the number of 

system components  ��	 = 	3� and has the best level of the components 

�� 	= 	3, � = 1,2,3.  

The used probabilities of the component state supported by expert 

which are given in Table (2.2). 

Table (2.2) Component state probability. 

Component 
State 

0 1 2 

�� 0.1 0.6 0.3 

�� 0.4 0.5 0.1 

�7 0.2 0.2 0.6 

 

System simulation will depends on algorithm (2.1), as follows:  

Step 1.0: Calculate the DDRI {ij} of the system states, for which the failure 

of one component causes system failure and {ik} of the system 

failure states, which are eliminated by the replacement of a failure 

component for the MSS. 
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Step 1.1 According to equation (2.9), Compute the direct partial logic 

derivatives 
BC��→d�
BF���→d�,�� = 1,2,3� of this function Φ���, reflects the 

fact of changing of system  from 1 to 0 when the value of 

component  �� is changing from 1 to 0: 

IΦ�1 → 0�
I���1 → 0� = Φ�1, ��, �7� • Φ�0, ��, �7� 
IΦ�1 → 0�
I���1 → 0� = Φ���, 1, �7� • Φ���, 0, �7� 
IΦ�1 → 0�
I�7�1 → 0� = Φ���, ��, 1� • Φ���, ��, 0� 

Therefore, there elements of the direct partial logic derivative 

BC��→d�
BF���→d� , ∀	� = 1,2,3, are equal if both Φ��� = 0 and Φ��� = 1 for specified 

variables only (see Table 2.3).  
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Table (2.3) Direct partial logic derivatives of 2-out-of-3 failures system. 

:;, :<, := 
�>�; → ��
�:;�; → �� 

�>�; → ��
�:<�; → �� 

�>�; → ��
�:=�; → �� 

0    0    0 
0    0    1 
0    0    2 
0    1    0 
0    1    1 
0    1    2 
0    2    0 
0    2    1 
0    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
2 
2 
0 
0 
0 

0 
0 
0 
0 
2 
0 
0 
2 
0 

1    0    0 
1    0    1 
1    0    2 
1    1    0 
1    1    1 
1    1    2 
1    2    0 
1    2    1 
1    2    2 

0 
2 
2 
2 
0 
0 
2 
0 
0 

0 
0 
0 
2 
0 
0 
0 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 
0 

2    0    0 
2    0    1 
2    0    2 
2    1    0 
2    1    1 
2    1    2 
2    2    0 
2    2    1 
2    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
2 
0 
0 
0 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 
0 

 

Step 1.2:The subsets failure system {ij|��� are: 

a) �ij|��� 		 	 �101, 102, 110, 120}, which is if the first component 
is breakdown; 

b) {ij|��� 		 �011, 012, 110, 210}, which is if the second 
component is a failure; 

c) {ij|�7� 	 	 �011, 021, 101, 201}, which is if the third component 
is not functioning. 



Chapter Two                                                      Reliability of Dynamic Multi-State Systems 
 

 37 

Step 1.3: Therefore, the set of the boundary states of the system failure {ij} 
is found to be: 

{ij} 	= 	 {101, 102, 110, 120, 011, 012, 210, 021, 201} 
Step1.4: Similarly, the direct partial logic derivative  

BC�d→��
BF��d→e�M�� is calculated 

(for all �	 = 	1, 2, 3) and the analysis of this derivative permits to 

obtain states of the ��, ��, �7 system failure (see Table 2.4): 

Table (2.4) The direct partial logic derivative2-out-of-3 MSS repairing system. 

:;, :<, := 
�>�� → ;�
�:;�� → <� 

�>�� → ;�
�:<�� → <� 

�>�� → ;�
�:=�� → <� 

0    0    0 
0    0    1 
0    0    2 
0    1    0 
0    1    1 
0    1    2 
0    2    0 
0    2    1 
0    2    2 

0 
2 
0 
2 
0 
0 
0 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
2 
0 
0 
0 
0 
0 

1    0    0 
1    0    1 
1    0    2 
1    1    0 
1    1    1 
1    1    2 
1    2   0 
1    2    1 
1    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
0 
0 
0 
0 
0 
0 
0 
0 

2 
0 
0 
0 
0 
0 
0 
0 
0 

2    0    0 
2    0    1 
2    0    2 
2    1    0 
2    1    1 
2    1    2 
2    2    0 
2    2    1 
2    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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Step 1.5: The states for repairing the system are calculated by a similar 

method for failure system. The subsets {ik|���, ∀	� = 1,2,3; are: 

a) {ik|��� 		 	 �001, 010}, which is if the first component is 

replaced; 

b) {ik|��� 		 	 �001, 100}, which is if the second component is 

replaced; 

c) {ik|�7� 		 	 �010, 100}, which is if the third component is 

replaced. 

Step 1.6: The set {ik}, of the boundary states of the system repairing is 

formed.  

{ik} 	= 	 {001, 010, 100}. 
Step 2.0: Calculate the CDRI xj��� and xk��� of the MSS failure and repairing 

at a modification of a certain state. 

Step 2.1 The numbers 
����→d�→d and 
���d→e�M�d→�  are obtained. They are 

conformed to numbers with nonzero elements of the direct partial 

logic derivatives: 

y�1��→d�→d = 4,	y�2��→d�→d = 4,	y�3��→d�→d = 4; 

y�1�d→�d→� = 2,	y�2�d→�d→� = 2,	y�3�d→�d→� = 2; 

Step 2.2: The structural probability 
����→d�→d of the � − Wℎ component state 

modification from 1 to 0, where the system failure  are calculated 

according to equation (2.16). 


����→d�→d = y����→d�→d
�����7 =

4
27 = 0.148, � = 1,2,3 



Chapter Two                                                      Reliability of Dynamic Multi-State Systems 
 

 39 

The structural probability 
���d→e�M�d→�  of the � − Wℎ component 

replace for system repairing are calculated according to equation 

(2.17). 


���d→�d→� = y���d→�d→�
��	��	�7 =

2
27 = 0.074, � = 1,2,3 

Step 2.3: Component dynamic reliability indices probabilities of the MSS 

failure at a modification of a system component are found using 

equation (2.14). 

xj�1� = 
�1��→d	�→d 
��1� = 0.148 × 0.6 = 0.089 

xj�2� = 
�2��→d�→d	
��2� = 0.148 × 0.5 = 0.074 

xj�3� = 
�3��→d�→d	
��3� = 0.148 × 0.2 = 0.029 

Also, component dynamic reliability indices probabilities of the 

MSS repairing at a modification of a state of a system component 

are found using equation (2.15). 

xk�1� = 
�1�d→�d→�	
d�1� = 0.074 × 0.1 = 0.0074 

xk�2� = 
�2�d→�d→�	
d�2� = 0.074 × 0.4 = 0.0296 

xk�3� = 
�3�d→�d→�	
d�3� = 0.074 × 0.2 = 0.0148 

Therefore the analysis of CDRI shows: 

a) The system has the maximum probability of failure when the first         

component is in failure state because its CDRI has the largest 

value xj�1� = 0.089. 

b) The system fails with minimum probability if the third 

component has failed xj�3� = 0.029. 
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c) The MSS repairs with maximum probability by replacement of 

the second component since CDRI ,	xk�2� = 0.0296. 

Step 3.0: The dynamic integrated reliability indices permits to obtain the 

probability of the system failure if one of the system components is 

breakdown. Hence by equation (2.18). 

xj ={xj��� | }1 − xj���~
�

�'�,���

�

�
					

= xj�1� }1 − xj�2�~ }1 − xj�3�~
+ xj�2� }1 − xj�1�~ }1 − xj�3�~
+ xj�3� }1 − xj�1�~ }1 − xj�2�~	

= 0.089�1 − 0.074��1 − 0.029�
+ 0.074�1 − 0.089��1 − 0.029�
+ 0.029�1 − 0.089��1 − 0.074� = 0.17 

and the probability of the system repairing if one of the failure 

components of the system is replaced, may be found from equation 

(2.19) 

xk ={xk��� | �1 − xk����
�

�'�,���

�

�
	

= xk�1��1 − xk�2���1 − xk�3��
+ xk�2��1 − xk�1���1 − xk�3��
+ xk�3��1 − xk�1���1 − xk�2��	

= 0.0074�1 − 0.0296��1 − 0.0148�
+ 0.0296�1 − 0.0074��1 − 0.0148�
+ 0.0148�1 − 0.0074��1 − 0.0296� = 0.05 
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Now, we will calculate the dynamic reliability indices for series MSS 

(3-out-of-3) and parallel system (1-out-of-3) in which the  basic data (the 

number of components, state levels of the component, etc.) are similar as for 

2-out-of-3 MSS that is investigated, previously in this section.  

1- For the series system: The DDRI are calculated by virtue of the direct 

partial logic derivatives 
BC��→d�
BF���→d� and 

BC�d→��
BF��d→e�M�� as in the above for 2-out-of 3 

MSS.  
 

Therefore the structure function for the series system is in Table (2.5). 
 

Table (2.5) The structure function of the series system (3-out-of-3 MSS) 

:;, :<, := >�?� :;, :<, := >�?� :;, :<, := >�?� 

0   0   0 
0   0   1 
0   0   2 
0   1   0 
0   1   1 
0   1   2 
0   2   0  
0   2   1 
0   2   2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1   0   0 
1   0   1 
1   0   2 
1   1   0 
1   1   1 
1   1   2 
1   2   0  
1   2   1 
1   2   2 

0 
0 
0 
0 
1 
1 
0 
1 
2 

2   0   0 
2   0   1 
2   0   2 
2   1   0 
2   1   1 
2   1   2 
2   2   0  
2   2   1 
2   2   2 

0 
0 
0 
0 
1` 
1 
0 
1 
2 

 

Also, the direct partial logic derivative 
BC��→d�
BF���→d� for the failure of the 

component are given in (Table 2.6). 
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Table (2.6) Direct partial logic derivatives of the series failures system. 

 

The subsets failure system {ij|���, � 	 1,2,3 are: 

a) {ij|��} = {111, 112, 121, 122}, which is if the first component is 
breakdown; 

b) {ij|��} = {111, 112, 211, 212}, which is if the second component is a 
failure; 

c) {ij|�7}= {111, 121, 211, 221}, which is if the third component is not 
functioning. 

:;, :<, := 
�>�; → ��
�:;�; → �� 

�>�; → ��
�:<�; → �� 

�>�; → ��
�:=�; → �� 

0    0    0 
0    0    1 
0    0    2 
0    1    0 
0    1    1 
0    1    2 
0    2    0 
0    2    1 
0    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1    0    0 
1    0    1 
1    0    2  
1    1    0 
1    1    1 
1    1    2 
1    2    0 
1    2    1 
1    2    2 

0 
0 
0 
0 
2 
2 
0 
2 
2 

0 
0 
0 
0 
2 
2 
0 
0 
0 

0 
0 
0 
0 
2 
0 
0 
2 
0 

2    0   0 
2    0   1 
2    0   2 
2    1    0 
2    1    1 
2    1    2  
2    2    0 
2    2    1 
2    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
2 
2 
0 
0 
0 

0 
0 
0 
0 
2 
0 
0 
2 
0 
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Hence, the set of the boundary states of the system {ij } is given by: 

          {ij } = {111, 112, 121, 122, 211, 212, 221} 

Similarly, Table (2.7) shows the direct partial logic derivative  
BC�d→��

BF��d→e�M�� for 

repairing calculated for �	 = 	1, 2, 3 and the analysis of this derivative permits 

to obtain states of the ��, ��, �7 system failure for which the replacement of 

the broken component restores the system: 

Table (2.7) The direct partial logic derivative of the series repairing system. 

:;, :<, := 
�>�� → ;�
�:;�� → <� 

�>�� → ;�
�:<�� → <� 

�>�� → ;�
�:=�� → <� 

0    0    0 
0    0    1 
0    0    2 
0    1    0 
0    1    1 
0    1    2 
0    2    0 
0    2    1 
0    2    2 

0 
0 
0 
0 
2 
2 
0 
2 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1    0    0 
1    0    1 
1    0    2 
1    1    0 
1    1    1 
1    1    2 
1    2    0 
1    2    1 
1    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
2 
2 
0 
0 
0 
0 
0 
0 

0 
0 
0 
2 
0 
0 
2 
0 
0 

2    0    0 
2    0    1 
2    0    2 
2    1    0 
2    1    1 
2    1    2 
2    2    0 
2    2    1 
2    2    2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
2 
0 
0 
0 
0 
0 
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So, the states for repairing the system are calculated by a similar 

method for failure system, The subsets {ik|��}, ∀� = 1,2,3 are: 

a) {ik|��} = {011, 012,  021}, which is if the first component is replaced. 

b) {ik|��} = {101, 102, 201}, which is if the second component is replaced. 

c) {ik|�7} = {110, 120, 210}, which is if the third component is replaced. 

Thus, the set {ik} of the boundary states of the system is given by:  

{ik} = {011, 012, 021, 101, 102, 201, 110, 120, 210} 

In a similar manner, we can calculate the CDRI for a series system 

which are presented in Table (2.8). 

Table (2.8) CDRI calculation for results series system (3-out-of-3). 

:� ����;→�;→� �����→<�→; ����;→�;→� �����→<�→; ����� ����� 
�� 4 3 0.148 0.111 0.089 0.011 

�� 4 3 0.148 0.111 0.074 0.044 

�7 4 3 0.148 0.111 0.029 0.022 

 

So, the breakdown if the third component causes the maximum 

probability of the system failure xj�3� = 0.029. The first component has an 

influence on the system failure since it is the least of all xj�1� = 0.089. The 

system repairing is most probable by replacement of the second 

component,	xk�2� = 0.044. 

Finely, the DIRI permits to obtain the probability of the system failure 

if one of the system components is breakdown. which is xj = 0.17, while the 

probability of the system repairing is xk = 0.073 if one of the failure 

components of the system is replaced. 
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2-For the parallel system: As in the series the structure function of parallel 

system1-out-of-3 is given in Table (2.9). 
 

Table (2.9) The structure function of the parallel system (1-out-of-3 MSS) 

:;, :<, := >�?� :;, :<, := >�?� :;, :<, := >�?� 

0   0   0 
0   0   1 
0   0   2 
0   1   0 
0   1   1 
0   1   2 
0   2   0  
0   2   1 
0   2   2 

0 
1 
2 
1 
1 
2 
2 
2 
2 

1   0   0 
1   0   1 
1   0   2 
1   1   0 
1   1   1 
1   1   2 
1   2   0 
1   2   1 
1   2   2 

0 
1 
2 
1 
1 
2 
2 
2 
2 

2   0   0 
2   0   1 
2   0   2 
2   1   0 
2   1   1 
2   1   2 
2   2   0 
2   2   1 
2   2   2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

 

The direct partial logic derivative 
BC��→d�
BF���→d�  are given in (Table 2.10). 
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Table (2.10) Direct partial logic derivatives of the parallel failure system. 

 

Thus, the subsets lijn��m, � = 1,2,3 of the failure system are: 

a) {ij|��} = {101}, which is  if the first component is a breakdown. 

b) {ij|��} = {010}, which is  if the second component is a failure. 

c) {ij|�7}= {001}, which is  if the third component is not functioning. 

 

:;, :<, := 
�>�; → ��
�:;�; → �� 

�>�; → ��
�:<�; → �� 

�>�; → ��
�:=�; → �� 

0  0  0 
0  0  1 
0  0  2 
0  1  0 
0  1  1 
0  1  2 
0  2  0 
0  2  1 
0  2  2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
2 
0 
0 
0 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 
0 

1  0  0 
1  0  1 
1  0  2 
1  1  0 
1  1  1 
1  1  2 
1  2  0 
1  2  1 
1  2  2 

0 
2 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

2  0  0 
2  0  1 
2  0  2 
2  1  0 
2  1  1 
2  1  2 
2  2  0 
2  2  1 
2  2  2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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Hence, the set of the boundary states {ij } of the system is found to be: 

          {ij } = {101, 010, 001} 

Table (2.11) shows the direct partial logic derivative  
BC�d→��

BF��d→e�M�� for 

repairing calculated on i = 1, 2, 3 and the analysis of this derivative permits to 

obtain states of the �����7 system failure for which the replacement of the 

broken component restores the system: 

Table (2.11) The direct partial logic derivative of the parallel repairing system. 

:;, :<, := 
�>�� → ;�
�:;�� → <� 

�>�� → ;�
�:<�� → <� 

�>�� → ;�
�:=�� → <� 

0  0  0 
0  0  1 
0  0  2 
0  1  0 
0  1  1 
0  1  2 
0  2  0 
0  2  1 
0  2  2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1  0  0 
1  0  1 
1  0  2 
1  1  0 
1  1  1 
1  1  2 
1  2  0 
1  2  1 
1  2  2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

2  0  0 
2  0  1 
2  0  2 
2  1  0 
2  1  1 
2  1  2 
2  2  0 
2  2  1 
2  2  2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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There is no states for repairing the system are calculated by similar 

method for failure system. 

Also, calculating the CDRI for the parallel system are presented in 

Table (2.12). 

Table (2.12) CDRI calculation for parallel system (1-out-of-3 MSS). 

:� ����;→�;→� �����→<�→; ����;→�;→� �����→<�→; ����� ����� �� 1 - 0.083 - 0.022 - 
�� 1 - 0.250 - 0.018 - 
�7 1 - 0.125 - 0.007 - 

 

So, the breakdown of the first component causes the maximum 

probability of the system failure P��1� = 0.022. The third component has an 

influence on the system failure since it is the least of all P��3� = 0.007.  

Hence, the DIRI permits to obtain the probability of the system failure 

if one of the system components is breakdown. It is xj = 0.045, while the 

probability of the system repairing is xk = 0 if one of the failure components 

of the system is replaced. 

Remark(2.1): 

The above general examples for series, parallel and 2-out-of-3 systems 

reveal the main point of dynamic indices CDRI and DIRI. The CDRI’s reflect 

the influence of the change of the specifically the �	 − Wℎ component state 

upon the system reliability. In particular the system failure and system 

repairing depending on the � − Wℎ	component state modification, which are 

examined. Since the component state probabilities are equal to the change of 

the system components, they have a similar influence on the system reliability 

in these examples. So the second component has the largest probability of 

system failure if this component breaks down, [31].  
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Also, the DIRI describe the dynamic characteristic of the MSS which 

are different for series, parallel and 2-out-of-3 systems (Table 2.13). The 

probability of failure of the series system and 2-out-of-3 have the maximum 

value  are xj = 0.17 if one of the system components breaks down. The 

probability of the MSS failure xj is minimum for the parallel system. 

Table (2.13) Reliability indices for 2-out-of-3, series, and parallel systems. 

� The system 2-out-of-3 The series system The parallel system 
xj 0.17 0.17 0.045 
x� 0.05 0.073 0 

 

2.7 Applications of Dynamic Multi-State System Model 

Many engineering systems can fit into the proposed multi-state 
system model. In this section, we will present on applications that have been 
identified by Tian, Z., Li, W. and Zuo, M. J., [44] and modified here to be 
dynamic MSS. Similar applications can be found in power supply systems 
and telecommunication systems. 

Consider for example an oil supply system, as shown in Figure (2.3).  

 

Figure (2.3) An oil supply system. 
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The oil is delivered from the oil source to three stations through four 

oil pipelines. A pipeline is considered to be a multi-state component (thus n = 

4). A failure might occur at any part of a pipeline. Take pipeline 1 for 

example, if there is a failure in section �d�� , the section of pipeline 1 between 

the oil source and station 1, the oil will not be able to reach any station via 

pipeline 1. If there is no failure in section �d�� , but there is a failure in section 

���� , the section of pipeline 1 between station 1 and station 2, the oil will be 

able to reach station 1 but will not be able to reach station 2 or beyond. 

Similarly, if there is no failure in section �d��  or section ���� , but there is a 

failure in section ��7� , the oil will be able to reach station 1 and station 2, but 

will not be able to reach station 3. Based on the possible failures in different 

sections of a pipeline, four states of a pipeline can be defined as follows: 

1. State 0: oil cannot reach any stations. 

2. State 1: oil can reach only station 1. 

3. State 2: oil can reach station 1 and 2. 

4. State 3: oil can reach station 1, 2 and 3. 

Each station has different demands on the oil. 

1. Station 1: requires at least one pipelines working to meet its demand. 

2. Station 2: requires at least two pipelines working to meet its demand. 

3. Station 3: requires at least four pipelines working to meet its demand. 

At the system level, we are interested in whether the demands of up to 

a certain station can be met. Thus, four states of the oil supply system can be 

defined as follows: 

1. System state 0: it cannot meet the oil demand of station 1. 

2. System state 1: it can meet the oil demand of up to station 1. That is, the 

system can meet the demand of station 1, but cannot meet the demand of 

station 2. 
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3. System state 2: it can meet the oil demands of up to station 2. That is, the 

system can meet the demands of station 1 and station 2, but cannot meet the 

demand of station 3. 

4. System state 3: it can meet the oil demands of up to station 3. That is, the 

demands of station 1, 2 and 3 can all be met.  

In practice, we may be interested in the probability of the oil supply 

system in states 0, 1, 2 or 3. If �� , � = 1,2,3,4 are used for the pipeline, then, 

the component state probability are given in Table (2.14) 

Table (2.14) Component state probability of the oil source system. 

component 
state 

0 1 2 3 
�� 0.0500 0.0950 0.0684 0.7866 
�� 0.0500 0.0950 0.0684 0.7866 
�7 0.0300 0.0776 0.0446 0.8478 
�� 0.0300 0.0776 0.0446 0.8478 

 

Note, the structure function of the MSS in this example has dimension 
equals to: 

m� = 4� = 256. 

The structure function released to this system  and the direct partial 

logic derivative 
BC��→d�
BF���→d�  are presented in Appendix A. 

The subsets failure system {ij|��� are formed to be: 

a) {ij|��} = {1000}, if the section �d��  is a failure,  the oil will not be able to 

reach any station via pipeline 1. 

b) {ij|��} = {0100}, if the section �d��  is a failure,  the oil will not be able to 

reach any station via pipeline 2. 
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c) {ij|�7}= {0010}, if the section �d�7  is a failure,  the oil will not be able to 

reach any station via pipeline 3. 

d) {ij|��}= {0001}, if the section �d��  is a failure,  the oil will not be able to 

reach any station via pipeline 4. 

Appendix B shows the direct partial logic derivative  
BC��→��

BF��d→e�M�� 
which are calculated for �	 = 	1, 2, 3,4 and the analysis of this derivative 

permits to obtain states of the ��, ��, �7, �� system failure for which the 

replacement of the broken component restores the system. 

The states for repairing the system are calculated by a similar method 

For the failure system, The subsets of the repairing system{ik|��} are: 

a) {ik|��� 	{0002, 0003, 0012,0013, 0020, 0021, 0030, 0031, 0102, 0103, 

0112, 0113, 0120, 0121, 0131, 0200, 0201, 0210, 0211,0300, 0301, 0310, 

0311}, if there is no failure in sections �d�� , ���� , and ��7� . 

b) {ik|��}	{0002, 0003, 0012, 0013, 0020, 0021, 0030, 0031, 1002, 1003, 

1012, 1013, 1020, 1021, 1030, 1031, 2000, 2001, 2010, 2011, 3000, 3001, 

3010, 3011}, if there is no failure in sections �d�� , ���� , and  ��7� . 

c) {ik|�7}	{0002, 0003, 0102, 0103, 0200, 0201, 0300, 0301, 1002, 1003, 

1102, 1103, 1200, 1300, 1301, 2000, 2001, 2101}, if there is no failure in 

section �d�7 , ���7 , and ��77 . 

d) {ik|��}	{0020, 0030, 0120, 0130, 0200, 0210, 0300, 0310, 1120, 1130, 

1200, 1210, 1300, 1310, 2000, 2010, 2100, 2110, 3000, 3010, 3100, 3110}, if 

there is no failure in sections �d�� , ���� , and  ��7� . 

The results of  the CDRI’s for the oil supply system are presented in 

Table (2.15). 

 

 



Chapter Two                                                      Reliability of Dynamic Multi-State Systems 
 

 53 

Table (2.15) CDRI calculation for oil supply system. 

:� ����;→�;→� �����→=;→< ����;→�;→� �����→=;→< ����� ����� �� 1 23 0.003 0.089 0.00028 0.0045 
�� 1 24 0.003 0.093 0.00028 0.0047 
�7 1 18 0.003 0.07 0.00023 0.0021 
�� 1 22 0.003 0.085 0.00023 0.0026 

So, the breakdown of the section �d��  and  section �d��  causes the 

maximum probability of system failure P��1� = 0.00028 and P��2� =
0.00028. Section �d�7  and  �d��  have an influence on the system failure least of 

all P��3� = P��4� = 0.00023 . The system repairing has its most value 

probable if there is no failures in sections �d�� , ���� , and in ��7� ,	i. e. P��2� =
0.0047. 

Also, the DIRI’s are probabilities of the change of the system 

reliability if the state of one of the system components is changed. The 

probability of the system failure, if one of the components breaks down, is 

xj = 0.335 in accordance to equation (2.18). The probability of system 

repairing obtained by equation (2.19) and is xk = 0.013 if one of the failed 

component of the system is replaced. 
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CHAPTER 

 

Reliability of Dynamic Fuzzy Multi-State Systems  

 

3.1 Introduction 

In conventional multi-state theory, it is assumed that the exact 

probability, and performance level of each component state are given. With the 

progress of modern industrial technologies, however, product development 

cycles have become shorter, while the lifetimes of products have become 

longer, [18]. In many highly reliable applications, there may be only a few 

available observations of the system’s failures. Therefore, it may be difficult to 

obtain sufficient data to estimate the precise values of the probabilities, and 

performance levels of these systems. Moreover, the inaccuracy of system 

models, caused by human errors, is difficult to quantify using conventional 

reliability theory alone [20]. In light of these significant challenges, new 

techniques are needed to solve these fundamental problems related to 

reliability. 

This chapter consists of four sections. In section 3.2, fundamental 

concepts including the definition of fuzzy sets, algebraic properties, fuzzy 

numbers and its operators, membership functions and α-level sets are 

presented. 

In section 3.3, the fundamental and key definition for fuzzy multi-state 

system and comparison between fuzzy number are given. 

Finally, in section 3.4, the introduction of re dynamic fuzzy multi-state 

system reliability is given as a generalization non fuzzy topic. 

3 
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3.2 Basic Concepts of Fuzzy Sets 

A classical (crisp or ordinary) set X is normally defined as a collection 

of elements or objects x, which may be finite, countable, or uncountable. Each 

single element can either belong to or not belong to a set A, �	 ⊆ 	�. In the 

former case, the statement "x belongs to A" is true, whereas in the latter case 

this statement is false. Such a classical set can be described in different ways; 

either one can enumerate the elements that belong to the set, one can describe 

the set analytically by defining a member for each element by using certain 

characteristic function ranging between 0 and 1, in which 1 indicates 

membership and 0 non-membership. For a fuzzy set, the characteristic function 

allows various degrees of membership for the elements of a given set, [41], 

[59]. 

Next, we will set some basic definitions and concepts related to 

fuzzy set theory. 

Definition (3.1), [59], [24]: 

Let X be any non-empty set of elements. A fuzzy set �� in X is the set of 

all �	∈	�, which are characterized by a membership function ��	
��: � →[0, 1]. The grades 0 and 1 represent respectively non-membership and full 

membership in a fuzzy set  ��. A fuzzy set �� may be written mathematically as: 

�� = {��, ��	
���|� ∈ �, 0 ≤ ��	
�� ≤ 1}  
The following concepts may be defined in fuzzy sets: 

Definition (3.2), [15], [25]: 

The support of a fuzzy set �� is the crisp set of all �	∈	�, such that ��	
�� > 0	 and is denoted by supp(��), i.e., 

supp���� = {� ∈ �: ��	
�� > 0} 
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Definition (3.3), [10], [16]: 

The height of a fuzzy set �� (denoted by hgt (��)) is the supremum value 

of ��	
��				 over all �	∈	�. If hgt (��) = 1, then �� is normal, otherwise it is 

subnormal, and a fuzzy set may be always normalized by defining the scaled 

membership function: 

��	∗
�� 		= ��	
��Sup!∈" ��	
�� ,∀	x	∈	� 

Definitions (3.4), [10], [45]: 

Let ��  and $	   be two fuzzy subsets of the universal set X with 

membership functions ��	
�� and �%	
��, respectively, then: 

1. �� ⊆ $	  if and only if   ��	
�� ≤ �%	
��, ∀	�	∈	�. 

2. �� = $	  if and only if   ��	
�� = �%	
��, ∀�	∈	�. 
3. ��( is the complement of ��, which is also a fuzzy set with membership 

function, ��	)
�� = 1 − ��	
��, ∀�	∈	�. 
4. The empty fuzzy set ∅, and the universal set X, has the membership ��	
�� = 0 and  ��	
��,= 1 respectively for all �	 ∈ �. 

5. -� = �� ∩ $	  is a fuzzy set with membership function: 

  �/�
�� = 012{��	
��, �%
��}, ∀� ∈ �. 

6. 3, = �� ∪ $	  is a fuzzy set with membership function: 

�5,
�� = 06�{��	
��, �%
��}, ∀� ∈ �. 

7. If ��	∩%	
�� = 0, ∀	� ∈ �, then �� and $	   are said to be disjoint. 
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3.2.1 α-Level Sets, [13]: 

Because of its importance in fuzzy set theory as an intermediate 

concept between non fuzzy set theory and fuzzy set theory, therefore the scope 

of this section is to cover and discuss some basic important properties of the so 

called α-level sets (or α-cuts) which correspond to any fuzzy set. α-Level set is 

a set collect between fuzzy sets and ordinary sets, which could be used to prove 

most of the results that are satisfied in ordinary sets are also satisfied to fuzzy 

sets and vice versa. 

In fuzzy set theory, if we want to exhibit an element � ∈ � that 

typically belongs to a fuzzy set Aɶ , we may demand its membership value to be 

greater than to some threshold α ∈ [0, 1]. The ordinary set of such element is 

called the α-level sets of �� and is denoted by �α, i.e.,  

�α = {x: ��	
x� ≥ α, x ∈ X} 
It is easily to check that the following properties are satisfied for all α 

∈ [0, 1]. 

1. 
�� ∪ $	�α = ��α ∪ ��9. 

2. 
�� ∩ $	�α = ��α ∩ ��9. 

3. �� ⊆ $	  gives ��α ⊆ ��β, if : > ;. 

4. �� = $	  equivalent to ��α = $	β, ∀	α	∈	
0, 1]. 
5. �α ∩ �β = �β and �α⋃�β = �α, if α ≤ β. 

 

3.2.2 Convex Fuzzy Set: 

Convex fuzzy sets are of great importance in defining fuzzy 

numbers. This property is viewed as a generalization of the classical 

concept of convexity in crisp sets. The definition of convexity for fuzzy 

set does not necessarily mean that the membership function of a convex 

fuzzy set is also convex function, [26]. 
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Definition (3.5), [14]: 

Let X be a vector space (universal set), then a fuzzy set �� is convex if: 

��	
=�> + 
1 − =��@� ≥ 012{��	
�>�, ��	
�@�}, ∀�>, �@ ∈ �, = ∈ [0,1]. 
Alternatively, a fuzzy set is convex if all of its α-level sets are convex. 

3.2.3 The Extension Principle: 

The extension principle of fuzzy set theory may be used to generalize 

crisp mathematical concepts to fuzzy mathematical concepts, which may be 

also used to define fuzzy functions, [23]. 

Definition (3.6), [23]: 

Let X be the Cartesian product of universes x>, x@, … , xB and ��>, ��@, … , ��C be r-fuzzy sets in x>, x@, … , xB, respectively, f is a mapping from 

X to a universe D
E = F
x>, x@, … , xB��. Then the fuzzy set $	  in D is defined 

by: 

$	 = F���� = {
E, �%	
E��|E = F
x>, x@, … , xB�, 
x>, x@, … , xB� ∈ �} 
Where: 

�%	
E� = G Sup
HI,HJ,…,HK�∈LMI
N�0 012O��IP 
x>�, ��JP 
x@�, … , ��QP 
xC�R, 1F	FS>
E� ≠ ∅,UVℎXYZ1[X  

where FS> is the inverse image of f. 

For r = 1, the extension principle, of course, reduces to: 

$	 = F���� = {
E, �%	
E��|E = F
��, x ∈ �} 
where: 

�%	
E� = G Sup"∈LMI
N�0 ��	
x�, 1F	FS>
E� ≠ ∅,UVℎXYZ1[X  

which is the definition of a fuzzy function. 
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3.2.4 Fuzzy Number, [47], [37]: 

A fuzzy number M
~

 is a convex normalized fuzzy set M
~

 of the real line 

R, such that: 

1. There exists exactly one x0 ∈ R, with )x( 0M
~µ  = 1 (x0 is called the mean value of 

M
~

). 

2. )x(M
~µ  is piecewise continuous. 

Two types of fuzzy numbers may be used, which are the triangular 

and trapezoidal. The general form of membership function of this function is 

defined by, [61]: 

��	
�� = \0																																	
� − 6>� 
6@ − 6>�⁄
6^ − � 6^ − 6>�⁄0																														
, F_Y	� < 6>										, F_Y	6> ≤ � ≤ 6@, F_Y	6@ ≤ � ≤ 6^, F_Y	� > 6^											 

Also, the triangular fuzzy number may be termed by its value 6@ as a fuzzy set 6a@ 

(see figure 3.1). 

 

Figure (3.3) The triangular membership function. 

 

(x)μ
A
~

x
0 6@ 

1.0

 6> 6^ 
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It is a fuzzy number represented with three parameters 6>, 6@	and	6^	  as 

follows �� = 
6>, 6@, 6^�. This representation is interpreted as membership 

functions and hold the following conditions: 

i- The membership functions from 6> to 6@ is an increasing function  

ii-  The membership functions from 6@ to 6^ is decreasing function  

iii-  6> ≤ 6@ ≤ 6^. 

Now,  let �� = 
6>, 6@, 6^� and $	 = 
e>, e@, e^�, then the basic algebraic 

operation that can be defined and performed on triangular fuzzy number are: 

+f,−f,×f 	and ÷f  

Addition : ��+f$	 = 
6> + e>, 6@ + e@, 6^ + e^� 
Subtraction: ��−f$	 = 
6> − e^, 6@ − e@, 6^ − e>� 
Multiplication : �� ×f $	 = 
012
6>e>, 6>e^, 6^e>, 6^e^�, 6@e@, 06�
6>e>, 6>e^, 6^e>, 6^e^�� 
Division:   �� ÷f $	 = 
012
6>/e>, 6>/e^, 6^/e>, 6^/e^�, 6@/e@, 06�
6>/e>, 6>/e^, 6^/e>, 6^/e^��, e>, e@, e^ ≠ 0 

 
Example (3.1), [37]:  
 

Let �� =(2, 4, 6) and $	 =(1, 2, 3) be two fuzzy numbers. Then: 
 ��+f$	 = 
3, 6, 9�. 

 ��−f$	 = 
	−1, 2, 5�. �� ×f 	$	 = 
2, 8, 18�. 
�� ÷f $	 = p23 , 42 , 61r = 
0.66, 2, 6�. 
��−f�� = 
	−4, 0, 4�. 
�� ÷f �� = s@t , uu , t@v = 	 
0.33, 1, 3�.  
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Remark (3.1), [37]: 

As it is mentioned earlier  from example (3.1) that ��−f�� ≠ 0,	�� ÷f �� ≠ 1, 

where 0 and 1 are singletons whose fuzzy representation is (0, 0, 0) and (1, 

1,1). It follows that the solution -� of the fuzzy linear equation ��+f$	 = -� is not 

as we would expect, $	 = -�−f�� 
For example,	��+f$	 = 
2, 4, 6� + 
1, 2, 3� 	= 	 
3, 6, 9� 	= 	-� 

But -�−f�� 	= 	 
3,6,9�	–	
2,4,6� 	= 	 
– 3,2,7� ≠ $	  

The same annoyance appears when solving the fuzzy equation �� ×f $	 =-� whose solution is not given by $	 = -� ÷f ��. 
For example,	�� ×f $	 = 
2,8,18� = -� 
But 
2,8,18� ÷f 
2,4,6� = s@t , yu , >y@ v = 
0.33, 2, 9� 	≠ $	  

Therefore, the addition and subtraction (respectively multiplication 

and division) of fuzzy numbers are not reciprocal operations. According to 

this statement, it is not possible to solve inverse problems exactly using the 

standard fuzzy arithmetic operators. To overcome this in function principle 

operation of triangular fuzzy number a new operation is proposed that allows 

exact solution or inversion. 
 

3.3 The  Fuzzy Multi-State System 

In this section and based on the basic concepts of fuzzy sets and fuzzy 

numbers and its algebraic operations given in section 3.2, we will give the 

basic concepts of fuzzy multi-state system reliability and introduce for the first 

time in the next section the so called reliability of dynamic fuzzy multi-state 

system. 
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The natural extension of the crisp definition for conventional MSS to 

the fuzzy set definition for FMSS is that the state probabilities and state 

performances of a component can be considered as fuzzy values. The general 

assumptions of non-dynamic FMSS are presented below, [9]: 

1- The state probabilities and state performance levels of a component can be 

treated as fuzzy values. 

2- The state index is a crisp value taking integer values only. The state spaces 

of  component i and the system are {0,1, … ,z{ − 1} and {0,1,… ,0{ − 1}, 
respectively. If z{ − 1 = 0{ − 1 for 1	 ≤ 	1	 ≤ 	2, the system is considered a 

homogeneous FMSS. 

3- The state of a system is completely determined by the state of its 

components. 

4- The state set of components and the system are ordered so that a lower state 

level represents a worse fuzzy performance level. 
 

3.3.1 Criteria for Ordering Fuzzy Variables, [30]: 

In the above fourth assumption, the methods applied in the MSS model 

cannot be directly used to order states in a FMSS model. In the MSS model, for 

a component i if �{ − E| > 0, then 1	 > 	}, in which the arithmetic calculation 

of �{ − E| is simple and clear. However, in the FMSS model, the performance 

level of state  i being greater and less than that of the state j is both possible.  

As an illustration consider the following example 

Example(3.3), [30]: 

Suppose that the fuzzy performance levels of state i and state j can be 

represented by triangular fuzzy numbers 
1,2, 2.5� and 
1.8,2, 2.2�	, 
respectively. In this case, 
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1, 2, 2.5�−f
1.8, 2, 2.2� = 
1, 2, 2.5�+f
−2.2,−	2,−1.8� = 
−1.2, 0, 0.7� the 

performance level of state i is not definitely higher or lower than that of state j. 

Therefore, three criterions may be used to order two fuzzy numbers. If 

the first criterion does not give a unique order, then the second and third 

criteria will be used in sequence. In this section, triangular fuzzy numbers are 

used to represent fuzzy variables. However the proposed definitions and 

characteristics are not only developed for triangular fuzzy numbers but also 

generally suitable for various fuzzy variables with different kinds of 

membership functions.  

1. The first criterion for ordering (the removal), [30]: 

Consider a fuzzy number �� and a crisp value k. The left side removal of �� with respect to k, (denoted by	~�
��, ��	) is defined as the area bounded by k 

and the left side of the fuzzy number ��; and the right side removal of �� with 

respect to k, (denoted by	~C
��, ��	) is defined as the area bounded by k and the 

right side of the fuzzy number ��. The removal of fuzzy number A with respect 

to k is defined as 

~���, �� = 12 �~C���, �� +	~����, ���	 
The first criterion, therefore, is set as a comparison of the removals of two 

different fuzzy numbers with respect to k. Relative to k = 0, the removal 

number ~���, �� is equivalent to an “ordinary representative” of the fuzzy 

number. If a fuzzy number �� is triangular and represented by a triplet 
6>, 6@, 6^�, then the ordinary representative is given by: 

�� = 6> + 26@ + 6^	4  
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2. The second criterion for ordering (the mode), [30]: 

Different fuzzy numbers may have the same ordinary representatives. 

The first criterion may not be sufficient to obtain the linear ordering of these 

fuzzy numbers. In these cases, the second criterion, which is based on a 

comparison of the modes of different fuzzy numbers, is used to order these 

numbers. The mode of a fuzzy variable is that value which has the highest 

membership function. In the case of a triangular fuzzy number, it is simply 6@. 

3. The third criterion for ordering (the divergence), [30]: 

If the first and second criterions are not enough to obtain the ordering of 

fuzzy numbers, the divergences around the modes of fuzzy numbers are used to 

order these numbers. The divergence around a mode measures the magnitude 

of expansion at the given mode point. In the case of a triangular fuzzy variable, 

it is the value of 6^ − 6>.  

The following example illustrates the above methods. 

Example(3.4), [8]: 

Consider a component that may be in one of four possible states. The 

performance levels of these states are the triangular fuzzy numbers. 

��> = 
4,6,7�	, ��@ 	= 
4,5,9	�, ��^ 	= 
	3,5,10�	, ��u 	= 
0,0,0�	. 
Firstly, we use the first criterion of ordering: 

��> = 
4,6,7� → ��> = 4 + 12 + 7	4 = 5.75 

��@ 	= 
4,5,9	� → ��@ = 4 + 10 + 9	4 = 5.75 

��^ = 
	3,5,10� → ��^ = 3 + 10 + 10	4 = 5.75 

��u 	= 
0,0,0� → ��u = 0 + 0 + 0	4 = 0 
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Therefore, ��u < ��>, ��@, ��^	. 
Secondly, the second criterion is used to order ��>, ��@, and ��^: 

��> = 
4,6,7� → mode	6 

��@ 	= 
4,5,9	� → mode	5 

��^ = 
	3,5,10� → mode	5 

Therefore, ��> > ��@, ��^ 

Finally, the third criterion is used to order ��@ and ��^ 	��@ 	= 
4,5,9	� → divergence = 	9 − 4 = 5 

��^ = 
	3,5,10� → divergence = 	10 − 3 = 7 

Therefore, 	��@ < ��^ 

We obtain the linear order, ��u < ��@ < ��^ < ��> 

 

3.4 Reliability of Dynamic Fuzzy Multi-State Systems 

Consider a component that may be in one of four possible states. The 

performance levels of these states are the following triangular fuzzy numbers 

0	 = 
0,0,0.5�	, 1	 	= 
0.3,1,1.8�, 2	 	= 
1.6,2,2�. 
So we have three states for the linguistic values of basic events, which are: 

State 1 (Failed): which is corresponding to the fuzzy number 0	  

State 2 (Degraded): which is corresponding to the fuzzy number 1	  

State 3 (Operational): which is corresponding to the fuzzy number 2	  
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In order to solve the problem  we use the first criterion of ordering: 

0	 = 
0,0,0.5� → ��> = 0 + 0 + 0.54 = 0.125, 
1	 = 
0.3,1,1.8� → ��@ = 0.3 + 2 + 1.8	4 = 1.025, 
2	 = 
	1.6,2,2� → ��^ = 1.6 + 4 + 2	4 = 1.9, 

Therefore,  0	 < 1	 < 2	. 
The structure function of the 2-out-of-3 FMSS  system is: obtained with z{ = 3	, 1 = 1,2,3  which are given in Table (3.1). 

Table (3.1) The FMSS 2-out-of-3 system 

�f�, �f�, �f� �
�a� �f�, �f�, �f� �
�a� �f�, �f�, �f� �
�a� 0	     0	     0	  0	     0	     1	  0	     0	     2	  0	     1	     0	  0	     1	     1	  0	     1	     2	  0	     2	     0	  0	     2	     1	  0	     2	     2	  

0	  0	  0	  0	  1	  1	  0	  1	  2	  

1	     0	     0	  1	     0	     1	  1	     0	     2	  1	     1	     0	  1	     1	     1	  1	     1	     2	  1	     2	     0	  1	     2	     1	  1	     2	     2	  

0	  1	  1	  1	  1	  1	  1	  1	  2	  

2	     0	     0	  2	     0	     1	  2	     0	     2	  2	     1	     0	  2	     1	     1	  2	     1	     2	  2	     2	     0	  2	     2	     1	  2	     2	     2	  

0	  1	  2	  1	  1	  2	  2	  2	  2	  
 

Hence, the direct partial logic derivative	��
>,→�,���f1
>,→�,� for the failure of 

the component are given in Table (3.2) 
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Table (3.2) Direct partial logic derivatives of failure the FMSS. 

�f�, �f�, �f� 
��
�, → �,���,���, → �,� ��
�, → �,���,���, → �,� ��
�, → �,���,���, → �,� 0	     0	     0	  0	     0	     1	  0	     0	     2	  0	     1	     0	  0	     1	     1	  0	     1	     2	  0	     2	     0	  0	     2	     1	  0	     2	     2	  

0	  0	  0	  0	  0	  0	  0	  0	  0	  

0	  0	  0	  0	  2	  2	  0	  0	  0	  

0	  0	  0	  0	  2	  0	  
    0	   

2	  
0	  

1	     0	     0	  
1	     0	     1	  
1	     0	     2	  
1	     1	     0	  
1	     1	     1	  
1	     1	     2	  
1	     2	     0	  
1	     2	     1	  
1	     2	     2	  

0	  
2	  
2	  
2	  
0	  
0	  
2	  
0	  
0	  

0	  
0	  
0	  
2	  
0	  
0	  
0	  
0	  
0	  

0	  
2	  
0	  
0	  
0	  
0	  
0	  
0	  
0	  

2	     0	     0	  
2	     0	     1	  
2	     0	     2	  
2	     1	     0	  
2	     1	     1	  
2	     1	     2	  
2	     2	     0	  
2	     2	     1	  
2	     2	     2	  

0	  
0	  
0	  
0	  
0	  
0	  
0	  
0	  
0	  

0	  
0	  
0	  
2	  
0	  
0	  
0	  
0	  
0	  

0	  
2	  
0	  
0	  
0	  
0	  
0	  
0	  
0	  

 

Similarly, Table (3.3) shows the direct partial logic derivative  

�(�,→>�)
�!�(�,→�f �S>) for system.  
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Table (3.3) Direct partial logic derivatives of repair the FMSS. 

 

Hence, the numbers �(1)>,→�,
>,→�, and �(1)�,→�f �S>

�,→>,  are obtained to be as 
follows: 

�(1)>,→�,
>,→�, = 4,	�
2�>,→�,>,→�, = 4,	�
3�>,→�,>,→�, = 4; 

�
1��,→@,�,→>, = 2,		�
2��,→@,�,→>, = 2,	�
3��,→@,�,→>, = 2; 

�>, �@, �^ 
�Φ
0	 → 1	���>�0	 → 2	� �Φ
0	 → 1	���@�0	 → 2	� �Φ
0	 → 1	���^�0	 → 2	� 0	     0	     0	  0	     0	     1	  0	     0	     2	  0	     1	     0	  0	     1	     1	  0	     1	     2	  0	     2	     0	  0	     2	     1	  0	     2	     2	  

0	  2	  0	  2	  0	  0	  0	  0	  0	  

0	  2	  0	  0	  0	  0	  0	  0	  0	  

0	  0	  0	  2	  0	  0	  0	  0	  0	  1	     0	     0	  1	     0	     1	  1	     0	     2	  1	     1	     0	  1	     1	     1	  1	     1	     2	  1	     2	     0	  1	     2	     1	  1	     2	     2	  

0	  0	  0	  0	  0	  0	  0	  0	  0	  

2	  0	  0	  0	  0	  0	  0	  0	  0	  

2	  0	  0	  0	  0	  0	  0	  0	  0	  2	     0	     0	  2	     0	     1	  2	     0	     2	  2	     1	     0	  2	     1	     1	  2	     1	     2	  2	     2	     0	  2	     2	     1	  2	     2	     2	  

0	  0	  0	  0	  0	  0	  0	  0	  0	  

0	  0	  0	  0	  0	  0	  0	  0	  0	  

0	  0	  0	  0	  0	  0	  0	  0	  0	  
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Thus, the structural probability �(1)>,→�,
>,→�, of the 1 − Vℎ component failure 

state modification from 1	  to 0	  are: 

�(1)>,→�,
>,→�, = �(1)>,→�,

>,→�, ÷f (zf> ×f zf@ ×f zf^), 1 = 1,2,3 

= (4,4,4) ÷f ((2.6,3,3) ×f (2.6,3,3) ×f (2.6,3,3)) 
= (4,4,4) ÷f (17.576,27,27) 
= (0.148,0.148,0.22) 

Thus, the structural probability �(1)�→�f �S>>,→�,  of 1 − Vℎ component 

replace for system repairing are: 

�(1)�,→@,
�,→>, = �(1)>,→�,

>,→�, ÷f (zf> × zf@ × zf^), 1 = 1,2,3 

= (2,2,2) ÷f ((2.6,3,3) ×f (2.6,3,3) ×f (2.6,3,3)) 
= (2,2,2) ÷f (17.576,27,27) 
= (0.074,0.074,0.113) 

Hence, the probabilities of the component dynamic reliability indices of 

the FMSS failure are given by: 

�	L(1) = �(1)>,→�,
>,→�, ×f �>(1) 

= (0.148,0.148,0.22) ×f 0.6 

= (0.0888,0.0888,0.132) 
�	L(2) = �(2)>,→�,

>,→�, ×f �>(2) 
= (0.148,0.148,0.22) ×f 0.5 

= (0.074,0.074,0.11) 
�	L(3) = �(3)>,→�,

>,→�, ×f �>(3) 
= (0.148,0.148,0.22) ×f 0.2 

= (0.0296,0.0296,0.044) 
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Also, the probabilities of the component dynamic reliability indices of 

FMSS repairing at a modification of a state of a system component. 

�	C(1) = �(1)�,→@,
�,→>, ×f ��(1) 

= (0.074,0.074,0.113) ×f 0.1 

= (0.0074,0.0074,0.0113) 

�	C(2) = �(2)�,→@,
�,→>, ×f ��(2) 

= (0.074,0.074,0.113) ×f 0.4 

= (0.0296,0.0296,0.0452) 

�	C(3) = �(3)�,→@,
�,→>, ×f ��(3) 

= (0.074,0.074,0.113) ×f 0.2 

= (0.0148,0.0148,0.0226) 

Also, the probability of the system failure if one of the system 

components is breakdown is given by fuzzy probability: 

P,� =   P,�(i) ×f ¡ s1−fP,�(i)v
¢

£¤>,£¥¦

¢

¦
					

= P,�
1� ×f s1−fP,�
2�v ×f s1−fP,�
3�v+fP,�
2� ×f s1−fP,�
1�v ×f s1−fP,�
3�v 

+fP,�
3� ×f s1−fP,�
1�v ×f s1−fP,�
2�v =(0.0888,0.0888,0.132)	×f (1−f(0.074,0.074,0.11))	×f (1−f(0.0296,0.0296,0.044))  +f(0.074,0.074,0.11)	×f (1−f(0.0888,0.0888,0.132))	×f (1−f(0.0296,0.0296,0.044)) +f( 0.0296,0.0296,0.044)	×f (1−f(0.0888,0.0888,0.132))	×f (1−f(0.074,0.074,0.11)) =	(0.17,0.17,  0.23 ) 
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and the probability of the system repairing if one of the failure components of the 

system is replaced is given by fuzzy probability: 

�	C =   �	C(1) ×f ¡ s1 − �	C(1)v
§

¨¤>,¨¥{

§

{
 

= �	C(1) ×f s1−f�	C(2)v ×f s1−f�	C(3)v +f�	C(2) ×f s1−f�	C(1)v ×f s1−f�	C(3)v 

+f�	C(3) ×f s1−f�	C(1)v ×f s1−f�	C(2)v 

 
= (0.0074,0.0074,0.0113) ×f (1−f(0.0296,0.0296,0.0452)) 

 ×f (1−f(0.0148,0.0148,0.0226)) +f  (0.0296,0.0296,0.0452) 

 ×f (1−f(0.0074,0.0074,0.0113)) ×f (1−f(0.0148,0.0148,0.0226)) 

+f (0.0148,0.0148,0.0226) ×f (1−f(0.0074,0.0074,0.0113)) 

 ×f(1−f(0.0296,0.0296,0.0452))  

= (0.05,0.05,  0.0756 ) 
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Conclusions and Recommendations 
 

From the present study, we can conclude the following: 

1- The reliability of dynamic multi-state system is an effective approach to 

evaluate the probability for the system failure if the efficiency of some 

component decreases and system repair if some of the failure components 

restore. Component dynamic reliability indices and dynamic integrated 

reliability indices can be applied to broad problems in engineering 

systems, supply chain and logistics, general networks for transportation 

and distribution, computer and communication system. 

2- The dynamic reliability approach has been used successfully to evaluate 

the probability of the failure and repairing of the oil supply system as an 

application of dynamic multi-state k-out-of-n system model where the 

components and the system have multiple performance levels. 

3- The dynamic reliability fuzzy multi-state system may be considered as a 

generalization  to non-fuzzy or crisp multi-state system of previous 

investigations that have been presented when we consider the α-level to 

be at α = 1. In this thesis, we consider  new equations for probability of 

fuzzy system failure if the efficiency of some component decreases or 

these components are break down for k-out-of-n fuzzy multi-state system 

and  fuzzy system repair if some of failure components restore for k-out-

of-n fuzzy multi-state system. 
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Also, from the present study the following recommendations may be 

observed: 

1- Modifying the reliability of dynamic fuzzy multi-state systems represent 

how change if one of system components impacts to the system reliability 

to solve analytically of a FMSS reliability change depending on fixed 

components efficiencies changes. 

2- The application of dynamic fuzzy multi-state systems reliability In the 

area of multi-state system reliability, most of the reported research studies 

are focused on theoretical study. The contributions of this thesis work are 

also mainly on the theoretical side. More application study should be 

carried on. In the area of multi-state system reliability, most of the 

reported research studies are focused on theoretical study. The 

contributions of this thesis work are also mainly on the theoretical side 

and more application study should be carried on. 
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Appendix A 

 

The Direct Partial Logic Derivative of the Oil Supply Failure System 

�Φ(1 → 0)

��	(1 → 0)
= Φ(��, … , �	��, 1, �	��, … , ��) • Φ(��, … , �	��, 0, �	��, … , ��), � = 1,2,3,4 

No. �� �� �� �� �(��, ��, ��, ��) 
��(� → �)

���(� → �)
 
��(� → �)

���(� → �)
 
��(� → �)

���(� → �)
 
��(� → �)

���(� → �)
 

1. 0 0 0 0 0 0 0 0 0 

2. 0 0 0 1 1 0 0 0 3 

3. 0 0 0 2 1 0 0 0 0 

4. 0 0 0 3 1 0 0 0 0 

5. 0 0 1 0 1 0 0 3 0 

6. 0 0 1 1 1 0 0 0 0 

7. 0 0 1 2 1 0 0 0 0 

8. 0 0 1 3 1 0 0 0 0 

9. 0 0 2 0 1 0 0 0 0 

10. 0 0 2 1 1 0 0 0 0 

11. 0 0 2 2 2 0 0 0 0 

12. 0 0 2 3 2 0 0 0 0 

13. 0 0 3 0 1 0 0 0 0 

14. 0 0 3 1 1 0 0 0 0 

15. 0 0 3 2 2 0 0 0 0 

16. 0 0 3 3 2 0 0 0 0 

17. 0 1 0 0 1 0 3 0 0 

18. 0 1 0 1 1 0 0 0 0 

19. 0 1 0 2 1 0 0 0 0 

20. 0 1 0 3 1 0 0 0 0 

21. 0 1 1 0 1 0 0 0 0 

22. 0 1 1 1 1 0 0 0 0 

23. 0 1 1 2 1 0 0 0 0 

24. 0 1 1 3 1 0 0 0 0 

25. 0 1 2 0 1 0 0 0 0 

26. 0 1 2 1 1 0 0 0 0 

27. 0 1 2 2 2 0 0 0 0 

28. 0 1 2 3 2 0 0 0 0 

29. 0 1 3 0 2 0 0 0 0 

30. 0 1 3 1 1 0 0 0 0 

31. 0 1 3 2 2 0 0 0 0 

32. 0 1 3 3 2 0 0 0 0 

33. 0 2 0 0 1 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

34. 0 2 0 1 1 0 0 0 0 

35. 0 2 0 2 2 0 0 0 0 

36. 0 2 0 3 2 0 0 0 0 

37. 0 2 1 0 1 0 0 0 0 

38. 0 2 1 1 1 0 0 0 0 

39. 0 2 1 2 2 0 0 0 0 

40. 0 2 1 3 2 0 0 0 0 

41. 0 2 2 0 2 0 0 0 0 

42. 0 2 2 1 2 0 0 0 0 

43. 0 2 2 2 2 0 0 0 0 

44. 0 2 2 3 2 0 0 0 0 

45. 0 2 3 0 2 0 0 0 0 

46. 0 2 3 1 2 0 0 0 0 

47. 0 2 3 2 2 0 0 0 0 

48. 0 2 3 3 2 0 0 0 0 

49. 0 3 0 0 1 0 0 0 0 

50. 0 3 0 1 1 0 0 0 0 

51. 0 3 0 2 2 0 0 0 0 

52. 0 3 0 3 2 0 0 0 0 

53. 0 3 1 0 1 0 0 0 0 

54. 0 3 1 1 1 0 0 0 0 

55. 0 3 1 2 2 0 0 0 0 

56. 0 3 1 3 2 0 0 0 0 

57. 0 3 2 0 2 0 0 0 0 

58. 0 3 2 1 2 0 0 0 0 

59. 0 3 2 2 2 0 0 0 0 

60. 0 3 2 3 2 0 0 0 0 

61. 0 3 3 0 2 0 0 0 0 

62. 0 3 3 1 2 0 0 0 0 

63. 0 3 3 2 2 0 0 0 0 

64. 0 3 3 3 2 0 0 0 0 

65. 1 0 0 0 1 3 0 0 0 

66. 1 0 0 1 1 0 0 0 0 

67. 1 0 0 2 1 0 0 0 0 

68. 1 0 0 3 1 0 0 0 0 

69. 1 0 1 0 1 0 0 0 0 

70. 1 0 1 1 1 0 0 0 0 

71. 1 0 1 2 1 0 0 0 0 

72. 1 0 1 3 1 0 0 0 0 

73. 1 0 2 0 1 0 0 0 0 

74. 1 0 2 1 1 0 0 0 0 

75. 1 0 2 2 2 0 0 0 0 

76. 1 0 2 3 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

77. 1 0 3 0 1 0 0 0 0 

78. 1 0 3 1 1 0 0 0 0 

79. 1 0 3 2 2 0 0 0 0 

80. 1 0 3 3 2 0 0 0 0 

81. 1 1 0 0 1 0 0 0 0 

82. 1 1 0 1 1 0 0 0 0 

83. 1 1 0 2 1 0 0 0 0 

84. 1 1 0 3 1 0 0 0 0 

85. 1 1 1 0 1 0 0 0 0 

86. 1 1 1 1 1 0 0 0 0 

87. 1 1 1 2 1 0 0 0 0 

88. 1 1 1 3 1 0 0 0 0 

89. 1 1 2 0 1 0 0 0 0 

90. 1 1 2 1 1 0 0 0 0 

91. 1 1 2 2 2 0 0 0 0 

92. 1 1 2 3 2 0 0 0 0 

93. 1 1 3 0 1 0 0 0 0 

94. 1 1 3 1 1 0 0 0 0 

95. 1 1 3 2 2 0 0 0 0 

96. 1 1 3 3 2 0 0 0 0 

97. 1 2 0 0 1 0 0 0 0 

98. 1 2 0 1 1 0 0 0 0 

99. 1 2 0 2 2 0 0 0 0 

100. 1 2 0 3 2 0 0 0 0 

101. 1 2 1 0 1 0 0 0 0 

102. 1 2 1 1 1 0 0 0 0 

103. 1 2 1 2 2 0 0 0 0 

104. 1 2 1 3 2 0 0 0 0 

105. 1 2 2 0 2 0 0 0 0 

106. 1 2 2 1 2 0 0 0 0 

107. 1 2 2 2 2 0 0 0 0 

108. 1 2 2 3 2 0 0 0 0 

109. 1 2 3 0 2 0 0 0 0 

110. 1 2 3 1 2 0 0 0 0 

111. 1 2 3 2 2 0 0 0 0 

112. 1 2 3 3 2 0 0 0 0 

113. 1 3 0 0 1 0 0 0 0 

114. 1 3 0 1 1 0 0 0 0 

115. 1 3 0 2 2 0 0 0 0 

116. 1 3 0 3 2 0 0 0 0 

117. 1 3 1 0 1 0 0 0 0 

118. 1 3 1 1 1 0 0 0 0 

119. 1 3 1 2 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

120. 1 3 1 3 2 0 0 0 0 

121. 1 3 2 0 2 0 0 0 0 

122. 1 3 2 1 2 0 0 0 0 

123. 1 3 2 2 2 0 0 0 0 

124. 1 3 2 3 2 0 0 0 0 

125. 1 3 3 0 2 0 0 0 0 

126. 1 3 3 1 2 0 0 0 0 

127. 1 3 3 2 2 0 0 0 0 

128. 1 3 3 3 2 0 0 0 0 

129. 2 0 0 0 1 0 0 0 0 

130. 2 0 0 1 1 0 0 0 0 

131. 2 0 0 2 2 0 0 0 0 

132. 2 0 0 3 2 0 0 0 0 

133. 2 0 1 0 1 0 0 0 0 

134. 2 0 1 1 1 0 0 0 0 

135. 2 0 1 2 2 0 0 0 0 

136. 2 0 1 3 2 0 0 0 0 

137. 2 0 2 0 2 0 0 0 0 

138. 2 0 2 1 2 0 0 0 0 

139. 2 0 2 2 2 0 0 0 0 

140. 2 0 2 3 2 0 0 0 0 

141. 2 0 3 0 2 0 0 0 0 

142. 2 0 3 1 2 0 0 0 0 

143. 2 0 3 2 2 0 0 0 0 

144. 2 0 3 3 2 0 0 0 0 

145. 2 1 0 0 1 0 0 0 0 

146. 2 1 0 1 1 0 0 0 0 

147. 2 1 0 2 2 0 0 0 0 

148. 2 1 0 3 2 0 0 0 0 

149. 2 1 1 0 1 0 0 0 0 

150. 2 1 1 1 1 0 0 0 0 

151. 2 1 1 2 2 0 0 0 0 

152. 2 1 1 3 2 0 0 0 0 

153. 2 1 2 0 2 0 0 0 0 

154. 2 1 2 1 2 0 0 0 0 

155. 2 1 2 2 2 0 0 0 0 

156. 2 1 2 3 2 0 0 0 0 

157. 2 1 3 0 2 0 0 0 0 

158. 2 1 3 1 2 0 0 0 0 

159. 2 1 3 2 2 0 0 0 0 

160. 2 1 3 3 2 0 0 0 0 

161. 2 2 0 0 2 0 0 0 0 

162. 2 2 0 1 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

163. 2 2 0 2 2 0 0 0 0 

164. 2 2 0 3 2 0 0 0 0 

165. 2 2 1 0 2 0 0 0 0 

166. 2 2 1 1 2 0 0 0 0 

167. 2 2 1 2 2 0 0 0 0 

168. 2 2 1 3 2 0 0 0 0 

169. 2 2 2 0 2 0 0 0 0 

170. 2 2 2 1 2 0 0 0 0 

171. 2 2 2 2 2 0 0 0 0 

172. 2 2 2 3 2 0 0 0 0 

173. 2 2 3 0 2 0 0 0 0 

174. 2 2 3 1 2 0 0 0 0 

175. 2 2 3 2 2 0 0 0 0 

176. 2 2 3 3 2 0 0 0 0 

177. 2 3 0 0 2 0 0 0 0 

178. 2 3 0 1 2 0 0 0 0 

179. 2 3 0 2 2 0 0 0 0 

180. 2 3 0 3 2 0 0 0 0 

181. 2 3 1 0 2 0 0 0 0 

182. 2 3 1 1 2 0 0 0 0 

183. 2 3 1 2 2 0 0 0 0 

184. 2 3 1 3 2 0 0 0 0 

185. 2 3 2 0 2 0 0 0 0 

186. 2 3 2 1 2 0 0 0 0 

187. 2 3 2 2 2 0 0 0 0 

188. 2 3 2 3 2 0 0 0 0 

189. 2 3 3 0 2 0 0 0 0 

190. 2 3 3 1 2 0 0 0 0 

191. 2 3 3 2 2 0 0 0 0 

192. 2 3 3 3 2 0 0 0 0 

193. 3 0 0 0 1 0 0 0 0 

194. 3 0 0 1 1 0 0 0 0 

195. 3 0 0 2 2 0 0 0 0 

196. 3 0 0 3 2 0 0 0 0 

197. 3 0 1 0 1 0 0 0 0 

198. 3 0 1 1 1 0 0 0 0 

199. 3 0 1 2 2 0 0 0 0 

200. 3 0 1 3 2 0 0 0 0 

201. 3 0 2 0 2 0 0 0 0 

202. 3 0 2 1 2 0 0 0 0 

203. 3 0 2 2 2 0 0 0 0 

204. 3 0 2 3 2 0 0 0 0 

205. 3 0 3 0 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

206. 3 0 3 1 2 0 0 0 0 

207. 3 0 3 2 2 0 0 0 0 

208. 3 0 3 3 2 0 0 0 0 

209. 3 1 0 0 1 0 0 0 0 

210. 3 1 0 1 1 0 0 0 0 

211. 3 1 0 2 2 0 0 0 0 

212. 3 1 0 3 1 0 0 0 0 

213. 3 1 1 0 1 0 0 0 0 

214. 3 1 1 1 1 0 0 0 0 

215. 3 1 1 2 2 0 0 0 0 

216. 3 1 1 3 2 0 0 0 0 

217. 3 1 2 0 2 0 0 0 0 

218. 3 1 2 1 2 0 0 0 0 

219. 3 1 2 2 2 0 0 0 0 

220. 3 1 2 3 2 0 0 0 0 

221. 3 1 3 0 2 0 0 0 0 

222. 3 1 3 1 2 0 0 0 0 

223. 3 1 3 2 2 0 0 0 0 

224. 3 1 3 3 2 0 0 0 0 

225. 3 2 0 0 2 0 0 0 0 

226. 3 2 0 1 2 0 0 0 0 

227. 3 2 0 2 2 0 0 0 0 

228. 3 2 0 3 2 0 0 0 0 

229. 3 2 1 0 2 0 0 0 0 

230. 3 2 1 1 2 0 0 0 0 

231. 3 2 1 2 2 0 0 0 0 

232. 3 2 1 3 2 0 0 0 0 

233. 3 2 2 0 2 0 0 0 0 

234. 3 2 2 1 2 0 0 0 0 

235. 3 2 2 2 2 0 0 0 0 

236. 3 2 2 3 2 0 0 0 0 

237. 3 2 3 0 2 0 0 0 0 

238. 3 2 3 1 2 0 0 0 0 

239. 3 2 3 2 2 0 0 0 0 

240. 3 2 3 3 2 0 0 0 0 

241. 3 3 0 0 2 0 0 0 0 

242. 3 3 0 1 2 0 0 0 0 

243. 3 3 0 2 2 0 0 0 0 

244. 3 3 0 3 2 0 0 0 0 

245. 3 3 1 0 2 0 0 0 0 

246. 3 3 1 1 2 0 0 0 0 

247. 3 3 1 2 2 0 0 0 0 

248. 3 3 1 3 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

249. 3 3 2 0 2 0 0 0 0 

250. 3 3 2 1 2 0 0 0 0 

251. 3 3 2 2 2 0 0 0 0 

252. 3 3 2 3 2 0 0 0 0 

253. 3 3 3 0 2 0 0 0 0 

254. 3 3 3 1 2 0 0 0 0 

255. 3 3 3 2 2 0 0 0 0 

256. 3 3 3 3 3 0 0 0 0 
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The Direct Partial Logic Derivative of the Oil Supply repairing System 

�Φ(1 → 2�

��	�0 → 3�
= Φ(�
, … , �	�
, 0, �	�
, … , ��� •Φ(�
, … , �	�
, 3, �	�
, … , ���, � = 1,2,3,4 

No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

1. 0 0 0 0 0 0 0 0 0 

2. 0 0 0 1 1 0 0 0 0 

3. 0 0 0 2 1 3 3 3 0 

4. 0 0 0 3 1 3 3 3 0 

5. 0 0 1 0 1 0 0 0 0 

6. 0 0 1 1 1 0 0 0 0 

7. 0 0 1 2 1 3 3 0 0 

8. 0 0 1 3 1 3 3 0 0 

9. 0 0 2 0 1 3 3 0 3 

10. 0 0 2 1 1 3 3 0 0 

11. 0 0 2 2 2 0 0 0 0 

12. 0 0 2 3 2 0 0 0 0 

13. 0 0 3 0 1 3 3 0 3 

14. 0 0 3 1 1 3 3 0 0 

15. 0 0 3 2 2 0 0 0 0 

16. 0 0 3 3 2 0 0 0 0 

17. 0 1 0 0 1 0 0 0 0 

18. 0 1 0 1 1 0 0 0 0 

19. 0 1 0 2 1 3 0 3 0 

20. 0 1 0 3 1 3 0 3 0 

21. 0 1 1 0 1 0 0 0 0 

22. 0 1 1 1 1 0 0 0 0 

23. 0 1 1 2 1 3 0 0 0 

24. 0 1 1 3 1 3 0 0 0 

25. 0 1 2 0 1 3 0 0 3 

26. 0 1 2 1 1 3 0 0 0 

27. 0 1 2 2 2 0 0 0 0 

28. 0 1 2 3 2 0 0 0 0 

29. 0 1 3 0 2 0 0 0 3 

30. 0 1 3 1 1 3 0 0 0 

31. 0 1 3 2 2 0 0 0 0 

32. 0 1 3 3 2 0 0 0 0 

33. 0 2 0 0 1 3 0 3 3 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

34. 0 2 0 1 1 3 0 3 0 

35. 0 2 0 2 2 0 0 0 0 

36. 0 2 0 3 2 0 0 0 0 

37. 0 2 1 0 1 3 0 0 3 

38. 0 2 1 1 1 3 0 0 0 

39. 0 2 1 2 2 0 0 0 0 

40. 0 2 1 3 2 0 0 0 0 

41. 0 2 2 0 2 0 0 0 0 

42. 0 2 2 1 2 0 0 0 0 

43. 0 2 2 2 2 0 0 0 0 

44. 0 2 2 3 2 0 0 0 0 

45. 0 2 3 0 2 0 0 0 0 

46. 0 2 3 1 2 0 0 0 0 

47. 0 2 3 2 2 0 0 0 0 

48. 0 2 3 3 2 0 0 0 0 

49. 0 3 0 0 1 3 0 3 3 

50. 0 3 0 1 1 3 0 3 0 

51. 0 3 0 2 2 0 0 0 0 

52. 0 3 0 3 2 0 0 0 0 

53. 0 3 1 0 1 3 0 0 3 

54. 0 3 1 1 1 3 0 0 0 

55. 0 3 1 2 2 0 0 0 0 

56. 0 3 1 3 2 0 0 0 0 

57. 0 3 2 0 2 0 0 0 0 

58. 0 3 2 1 2 0 0 0 0 

59. 0 3 2 2 2 0 0 0 0 

60. 0 3 2 3 2 0 0 0 0 

61. 0 3 3 0 2 0 0 0 0 

62. 0 3 3 1 2 0 0 0 0 

63. 0 3 3 2 2 0 0 0 0 

64. 0 3 3 3 2 0 0 0 0 

65. 1 0 0 0 1 0 0 0 0 

66. 1 0 0 1 1 0 0 0 0 

67. 1 0 0 2 1 0 3 3 0 

68. 1 0 0 3 1 0 3 3 0 

69. 1 0 1 0 1 0 0 0 0 

70. 1 0 1 1 1 0 0 0 0 

71. 1 0 1 2 1 0 3 0 0 

72. 1 0 1 3 1 0 3 0 0 

73. 1 0 2 0 1 0 3 0 3 

74. 1 0 2 1 1 0 3 0 0 

75. 1 0 2 2 2 0 0 0 0 

76. 1 0 2 3 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

77. 1 0 3 0 1 0 3 0 3 

78. 1 0 3 1 1 0 3 0 0 

79. 1 0 3 2 2 0 0 0 0 

80. 1 0 3 3 2 0 0 0 0 

81. 1 1 0 0 1 0 0 0 0 

82. 1 1 0 1 1 0 0 0 0 

83. 1 1 0 2 1 0 0 3 0 

84. 1 1 0 3 1 0 0 3 0 

85. 1 1 1 0 1 0 0 0 0 

86. 1 1 1 1 1 0 0 0 0 

87. 1 1 1 2 1 0 0 0 0 

88. 1 1 1 3 1 0 0 0 0 

89. 1 1 2 0 1 0 0 0 3 

90. 1 1 2 1 1 0 0 0 0 

91. 1 1 2 2 2 0 0 0 0 

92. 1 1 2 3 2 0 0 0 0 

93. 1 1 3 0 1 0 0 0 3 

94. 1 1 3 1 1 0 0 0 0 

95. 1 1 3 2 2 0 0 0 0 

96. 1 1 3 3 2 0 0 0 0 

97. 1 2 0 0 1 0 0 3 3 

98. 1 2 0 1 1 0 0 3 0 

99. 1 2 0 2 2 0 0 0 0 

100. 1 2 0 3 2 0 0 0 0 

101. 1 2 1 0 1 0 0 0 3 

102. 1 2 1 1 1 0 0 0 0 

103. 1 2 1 2 2 0 0 0 0 

104. 1 2 1 3 2 0 0 0 0 

105. 1 2 2 0 2 0 0 0 0 

106. 1 2 2 1 2 0 0 0 0 

107. 1 2 2 2 2 0 0 0 0 

108. 1 2 2 3 2 0 0 0 0 

109. 1 2 3 0 2 0 0 0 0 

110. 1 2 3 1 2 0 0 0 0 

111. 1 2 3 2 2 0 0 0 0 

112. 1 2 3 3 2 0 0 0 0 

113. 1 3 0 0 1 0 0 3 3 

114. 1 3 0 1 1 0 0 3 0 

115. 1 3 0 2 2 0 0 0 0 

116. 1 3 0 3 2 0 0 0 0 

117. 1 3 1 0 1 0 0 0 3 

118. 1 3 1 1 1 0 0 0 0 

119. 1 3 1 2 2 0 0 0 0 
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 B - 4 

No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

120. 1 3 1 3 2 0 0 0 0 

121. 1 3 2 0 2 0 0 0 0 

122. 1 3 2 1 2 0 0 0 0 

123. 1 3 2 2 2 0 0 0 0 

124. 1 3 2 3 2 0 0 0 0 

125. 1 3 3 0 2 0 0 0 0 

126. 1 3 3 1 2 0 0 0 0 

127. 1 3 3 2 2 0 0 0 0 

128. 1 3 3 3 2 0 0 0 0 

129. 2 0 0 0 1 0 3 3 3 

130. 2 0 0 1 1 0 3 3 0 

131. 2 0 0 2 2 0 0 0 0 

132. 2 0 0 3 2 0 0 0 0 

133. 2 0 1 0 1 0 3 0 3 

134. 2 0 1 1 1 0 3 0 0 

135. 2 0 1 2 2 0 0 0 0 

136. 2 0 1 3 2 0 0 0 0 

137. 2 0 2 0 2 0 0 0 0 

138. 2 0 2 1 2 0 0 0 0 

139. 2 0 2 2 2 0 0 0 0 

140. 2 0 2 3 2 0 0 0 0 

141. 2 0 3 0 2 0 0 0 0 

142. 2 0 3 1 2 0 0 0 0 

143. 2 0 3 2 2 0 0 0 0 

144. 2 0 3 3 2 0 0 0 0 

145. 2 1 0 0 1 0 0 0 3 

146. 2 1 0 1 1 0 0 3 0 

147. 2 1 0 2 2 0 0 0 0 

148. 2 1 0 3 2 0 0 0 0 

149. 2 1 1 0 1 0 0 0 3 

150. 2 1 1 1 1 0 0 0 0 

151. 2 1 1 2 2 0 0 0 0 

152. 2 1 1 3 2 0 0 0 0 

153. 2 1 2 0 2 0 0 0 0 

154. 2 1 2 1 2 0 0 0 0 

155. 2 1 2 2 2 0 0 0 0 

156. 2 1 2 3 2 0 0 0 0 

157. 2 1 3 0 2 0 0 0 0 

158. 2 1 3 1 2 0 0 0 0 

159. 2 1 3 2 2 0 0 0 0 

160. 2 1 3 3 2 0 0 0 0 

161. 2 2 0 0 2 0 0 0 0 

162. 2 2 0 1 2 0 0 0 0 
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 B - 5 

No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

163. 2 2 0 2 2 0 0 0 0 

164. 2 2 0 3 2 0 0 0 0 

165. 2 2 1 0 2 0 0 0 0 

166. 2 2 1 1 2 0 0 0 0 

167. 2 2 1 2 2 0 0 0 0 

168. 2 2 1 3 2 0 0 0 0 

169. 2 2 2 0 2 0 0 0 0 

170. 2 2 2 1 2 0 0 0 0 

171. 2 2 2 2 2 0 0 0 0 

172. 2 2 2 3 2 0 0 0 0 

173. 2 2 3 0 2 0 0 0 0 

174. 2 2 3 1 2 0 0 0 0 

175. 2 2 3 2 2 0 0 0 0 

176. 2 2 3 3 2 0 0 0 0 

177. 2 3 0 0 2 0 0 0 0 

178. 2 3 0 1 2 0 0 0 0 

179. 2 3 0 2 2 0 0 0 0 

180. 2 3 0 3 2 0 0 0 0 

181. 2 3 1 0 2 0 0 0 0 

182. 2 3 1 1 2 0 0 0 0 

183. 2 3 1 2 2 0 0 0 0 

184. 2 3 1 3 2 0 0 0 0 

185. 2 3 2 0 2 0 0 0 0 

186. 2 3 2 1 2 0 0 0 0 

187. 2 3 2 2 2 0 0 0 0 

188. 2 3 2 3 2 0 0 0 0 

189. 2 3 3 0 2 0 0 0 0 

190. 2 3 3 1 2 0 0 0 0 

191. 2 3 3 2 2 0 0 0 0 

192. 2 3 3 3 2 0 0 0 0 

193. 3 0 0 0 1 0 3 0 3 

194. 3 0 0 1 1 0 3 0 0 

195. 3 0 0 2 2 0 0 0 0 

196. 3 0 0 3 2 0 0 0 0 

197. 3 0 1 0 1 0 3 0 3 

198. 3 0 1 1 1 0 3 0 0 

199. 3 0 1 2 2 0 0 0 0 

200. 3 0 1 3 2 0 0 0 0 

201. 3 0 2 0 2 0 0 0 0 

202. 3 0 2 1 2 0 0 0 0 

203. 3 0 2 2 2 0 0 0 0 

204. 3 0 2 3 2 0 0 0 0 

205. 3 0 3 0 2 0 0 0 0 
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 B - 6 

No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

206. 3 0 3 1 2 0 0 0 0 

207. 3 0 3 2 2 0 0 0 0 

208. 3 0 3 3 2 0 0 0 0 

209. 3 1 0 0 1 0 0 0 3 

210. 3 1 0 1 1 0 0 0 0 

211. 3 1 0 2 2 0 0 0 0 

212. 3 1 0 3 1 0 0 0 0 

213. 3 1 1 0 1 0 0 0 3 

214. 3 1 1 1 1 0 0 0 0 

215. 3 1 1 2 2 0 0 0 0 

216. 3 1 1 3 2 0 0 0 0 

217. 3 1 2 0 2 0 0 0 0 

218. 3 1 2 1 2 0 0 0 0 

219. 3 1 2 2 2 0 0 0 0 

220. 3 1 2 3 2 0 0 0 0 

221. 3 1 3 0 2 0 0 0 0 

222. 3 1 3 1 2 0 0 0 0 

223. 3 1 3 2 2 0 0 0 0 

224. 3 1 3 3 2 0 0 0 0 

225. 3 2 0 0 2 0 0 0 0 

226. 3 2 0 1 2 0 0 0 0 

227. 3 2 0 2 2 0 0 0 0 

228. 3 2 0 3 2 0 0 0 0 

229. 3 2 1 0 2 0 0 0 0 

230. 3 2 1 1 2 0 0 0 0 

231. 3 2 1 2 2 0 0 0 0 

232. 3 2 1 3 2 0 0 0 0 

233. 3 2 2 0 2 0 0 0 0 

234. 3 2 2 1 2 0 0 0 0 

235. 3 2 2 2 2 0 0 0 0 

236. 3 2 2 3 2 0 0 0 0 

237. 3 2 3 0 2 0 0 0 0 

238. 3 2 3 1 2 0 0 0 0 

239. 3 2 3 2 2 0 0 0 0 

240. 3 2 3 3 2 0 0 0 0 

241. 3 3 0 0 2 0 0 0 0 

242. 3 3 0 1 2 0 0 0 0 

243. 3 3 0 2 2 0 0 0 0 

244. 3 3 0 3 2 0 0 0 0 

245. 3 3 1 0 2 0 0 0 0 

246. 3 3 1 1 2 0 0 0 0 

247. 3 3 1 2 2 0 0 0 0 

248. 3 3 1 3 2 0 0 0 0 
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No. �� �� �� �� ����, ��, ��, ��� 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 
���� → ��

����� → ��
 

249. 3 3 2 0 2 0 0 0 0 

250. 3 3 2 1 2 0 0 0 0 

251. 3 3 2 2 2 0 0 0 0 

252. 3 3 2 3 2 0 0 0 0 

253. 3 3 3 0 2 0 0 0 0 

254. 3 3 3 1 2 0 0 0 0 

255. 3 3 3 2 2 0 0 0 0 

256. 3 3 3 3 3 0 0 0 0 

  

 

 



 ا�������

 

  :ثلاثة أهداف رئيسية الرسالةلهذه 

 للأنظمة )Reliability Theory( معوليةالالهدف الأول هو دراسة نظرية 

  بعض الخصائص الأساسية والنتائج النظرية.  ،، فضلا عنالحالاتمتعددة 

 الحالات ةمتعدد للأنظمة ديناميكيةال معوليةالالهدف الثاني هو دراسة 

)Reliability of Dynamic Multi-State System ( معوليةحيث تم استخدام 

هذه المؤشرات لتقدير تأثير (Dynamic Reliability Indices) ديناميكية الالمؤشرات 

 الديناميكيعملي للنظام تطبيق تم إعطاء  كما و .الحالات ةمتعدد للأنظمة معوليةعلى 

من مصدر الانتاج ) Oil Supply System(وهو نظام تجهيز النفط  الحالاتمتعدد 

النفط الى ثلاث محطات فرعية من خلال عدد من انابيب نقل النفط، مثلا أربعة، حيث 

  . كنظام ديناميكي متعدد الحالات لم تتم دراسته من قبل ان هذا التطبيق

 الحالات الضبابية ةمتعددللأنظمة  معولية الهدف الثالث هو تقديم ودراسة

(Fuzzy Multi-State System)  من خلال دراسة السلوك الضبابي للنظام الديناميكي

  متعدد الحالات.
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