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Abstract

This thesis has three main objectives:

The first objective is to study reliability theooy multi-state systems,

as well as, some of its basic properties and thieateesults.

The second objective is to study the reliabilitydghamic multi-state
system in which the dynamic reliability indices arsed to estimate the
influence upon the multi-state system reliabil&ypractical application of the
dynamic multi-state system is given, which is tlilesapply system from an
oil source to three station through several oilepies, say four. This
application have not been modeled previously asym@amic multi-state
system.

The third objective is to introduce and study dymafazzy reliability
of fuzzy state probability and performance ratefurzy multi-state system
that can be evaluated through aggregating the fbelavior of fuzzy multi-

State system.



Nonedatures and Notations

MTTF

BSS

MSS

DRI

CDRI

DIRI

P(x)

pi,si

P (j—h)
dx;(a—b)

Nomenclatures and Notations

Mean Time to Failure

Binary -State System

Multi-State System

Dynamic Reliability Indices

Component Dynamic Reliability Indices
Dynamic Integrated Reliability Indices
Structure function; system state for.
State of component i

Component state vectd@i,, x,, ..., X,)
Number of MSS components

Number of discrete levels of MSS reliability (fro
zero tom)

Best state of the syster; € {1, 2, ...}
Importance Measures

The i-th component state probability (s =0, ..., (@h)

The direct partial logic derivative of the Structar
function ®(x) with respect to variable;



Nonedatures and Notations

P (i)

P.(i)

Po

kal

FMSS

Failure probability of MSS if the i-th component is
breakdown (CDRI of failure for i-th component)

Repair probability of the MSS if i-th failure
component is replace (CDRI of repair for i-th
component)

Failure probability of the MSS if one of system
components breakdowns (DIRI of MSS failure)

Repair probability of the MSS if one of system faié
components replaced (CDRI of MSSS repair)

Number of system states “Xb(x) = 1
Number of system states “Xp(x) = 0
Performance level of component in state i , which |

represented as a fuzzy value

Fuzzy Multi-State System
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Introduction

In conventional reliability theory, binary systeraliability models
have been widely used to study the effectivenesisralmability of real life
problems. However, for some engineering systems,bihary assumption
does not accurately represent the possible staa¢®ach of the systems may

experience, [29].

Compared with a binary system model, a multi-s@atgtem (MSS)
model provides a more flexible tool for represemtengineering systems in
real life phenomenon, as first introduced in [2d&®86]. In conventional
multi-state theory, it is assumed that the exaobability, and performance
level of each component state are given. With thegmess of modern
industrial technologies, however, product developineycles have become

shorter, while the lifetimes of products have beedomger, [18].

In many highly reliable applications, there may bely a few
available observations of the system’s failureseréfore, it may be difficult
to obtain sufficient data to estimate the precakies of the probabilities and
performance levels of these systems. Moreover,irthecuracy of system
models, caused by human errors, is difficult tongiya using conventional
reliability theory alone, [20]. In light of thesagsificant challenges, new
techniqgues are needed to solve these fundamentdlleprs related to

reliability.

In some cases, the fuzzy set theory provides aulugebl to
complement conventional reliability theories. Fuzeliability theory, which
employs the fuzzy theory introduced by Zadeh in519@9] and in 1978,

[48], is becoming a new methodology to study theprecision and
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uncertainty phenomena in reliability engineering][3and it has since that
received increasing attention. For example, Cain\Med Zhang in 1991, [7]
introduced the fuzzy success/failure state andehability model to study a
gradually degrading computing system. Huang in 1999] assessed the
reliability a system in the presence of fuzzinesperating time. Huang,
Tong and Zuo in 2004, [20] proposed to evaluagef#ilure possibility via

posbist fault tree analysis when statistical dataciarce or failure probability
Is extremely small. A novel fuzzy bayesian approaels developed by Wu in
2004, [46] to create the fuzzy bayes point estimatoeliability. Huang, Zuo

and Sun in 2006, [18] introduced a bayesian mettoodassess system
reliability when lifetime data is presented as zzfuvalue. Pandey and Tyagi
in 2007, [40] proposed a new method to assessrtfagp reliability indices.

The concept of fuzzy multi-state system (FMSS) Wa$ used by Ding and

Lisnianski in 2008, [8] in a modeling study of tlséate probabilities and
performances of a component presented as fuzzyesalOnly the basic
definition of a FMSS is provided instead of a gahe@me. Further analysis

and discussion of FMSS are still needed, [9].

The aim of this thesis is to study the principlésatiability of multi-
state systems and solving real life problem ofsoipply system and then
generalize the ideas of dynamic multi-state sydtemtroduce and study the

reliability of fuzzy dynamic multi-state system.

This thesis consists of three chapters.

In chapter one, we introduce some of basic andssacg concepts,

which are fundamental to the work of this thesis.

In chapter two, we study the approach for evalmatd dynamic

properties of the MSS reliability by the dynamigability indices (DRI). The
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DRI are calculated with respect to certain struetfunction by the direct
partial logic derivatives. These indices charazgethe change of the MSS
reliability that is caused by the change of a congmb state (component
efficiency). We analyze MSS reliability for differetypes of system structure
(parallel, series and k-out-of-n). These types g$teams are typically
employed in reliability analysis. Finally, this gitar also contain a study of
real life problem of an engineering system whicls fieen modified and

improved and therefore studied using dynamic nsuiéte criteria.

In chapter three, we give and introduce a new agbrdor studying

the reliability of fuzzy multi-state system usingnamic reliability analysis.



Chapter One

Fundamental Concepts of Reliability
Theory and Multi-State System
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|

Fundamental Goncepts of Reliability Theory and Multi-State System

1.1 Introduction

Reliability plays a very important role for manufaers and users.
Thereby, the designer of reliability optimizationoplems seek to improve
reliability at the minimum cost. The redundancy aetlability allocation
problem is a classical optimization problem in #rea of system reliability.
In general, the objective of these problems ispinnuze the system design in
terms of the number of components and its relitadmlj subject to known
constraints on resources as cost, weight, volumajadility, mean time to
failure, etc., [35].

During the last decade, much work was devoted udysthe binary
state reliability analysis and optimization, whérés assumed that a system
has only two possible states: one working state @ral failure state. Less
attention has been paid to develop methods foryaimgl and optimizing the
reliability of multi-state systems. Performance m@elgtion is closer to reality
than the two state performances of binary systdimerefore, it is important

to develop the theory multi-state system religilil].

A binary reliability system, the system and its aments are
assumed to be either working or failed may not degaate in many real-life
situations. In a MSS reliability, both the systemdats components may
assume more than two levels of performance varfyorg perfect functioning

to complete failure. With a discrete multi-statesteyn model, it is often
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assumed that both the system and its component®enayone oM possible

states,0,1,2,..,M — 1; M € N, where M — 1 is the perfectly functioning
state while O is the complete failure state. Wexjse= 1,2, ..., n, to denote
the state or performance level of the component #Hre vector x =
(x4, %5, ..., X,,) represents the states of all n components. Theraystate is
denoted byd® which is called the structures function that isegerministic
function of component state®:= ®(x):S™ - S, whereS = {0,1...,M — 1},
[21].

There are numerous examples of MSS, with more tivarordered or
unordered states at the system level, or the coemtolevel. As water
distribution, a power plant which has five statgk, 23,4 that correspond to
generating electricity of 0 %, 25 %, 50 %, 75% 0 20 of its full capacity is
an example of a MSS that has ordered multiple st3¢

This chapter consist of five sections. In sectiog, .we give a
literature survey for MSS, as well as, historicakckground related to the

subject.

In section 1.3, we discuss and study in details themretical and

practical background of system reliability andaksracteristics.

In section 1.4, an axiomatic approach to the notbrihe class of
binary coherent system have been introduced amty she properties of its

structure function.

In section 1.5, the structure function related M&S have been
studied in details and also introduces the coostm of different structure
functions for real-world systems. Also, we consideme properties of the

structure function that determine some importaapgprties of MSS.
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1.2 Literature Survey

Many standard works on reliability theory adoptstiilamework in
which systems and components can be in only onéwof models, the
mathematical and statistical theory of this case been studied extensively

by many authors, such as Birnbaum, et al. in 1pg1,

The basic concepts of MSS reliability were primanitroduced in the
mid of the 1970's by Murchland in, [36] and Ras4.979, [43]. EI-Neweihi,
et al. in 1978 [12] analyzed the theoretical relaships between MSS
reliability behavior and multi-state component peniance. Barlow and Wu
in 1978 [2] characterize component state critigahis a measure of how a
particular component state affects a specific systate. Griffithin 1980 [17]
formalized the concept of MSS performance, and istudhe impact of

component improvement on the overall system rdiigltiehavior.

The important of MSS concepts were also discusse&lbock and
Savits in 1982 [5], where a decomposition theoream MSS structure
function was proved. Since that time, MSS relis#pitiegan with an intensive
development. Essential achievements that werenattaup to the mid of
1980's were reflected by Natvig in 1985 [38], aydBb-Neveihi and Prochan
in 1984 [11], where it can be found the state @f &nt in the field of MSS

reliability at this stage.

Readers that are more interested in the historynam@ ideas related
to the theory MSS reliability for the later workncéind the corresponding
overview in [29] and [39].

Lisnianski and Levitin in 2003 [29], Lisnianski at. in 2010 [30]
presented a detailed analysis of MSS reliabilityngtion and quantification

methods in which, they considered a lot of examplesan applications of
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MSS in reliability analysis of information, manataring, production, power

generation, transportation and other systems.

Lisnianski and Levitin in 2003 [29] have considerdide basic
Importance Measures (IM) for systems with two periance level and multi-
state components and their definitions by outputfope@mance measure.
Ramirez-Marquez and Coit in 2005 [42] have geneedlithis result for MSS
and have proposed new type of IM that is labeledaasposite importance

measures and then Meng in 2009 [33] has presantadew of IM’s.

1.3 Basic Concepts of Reliability Theory

In this section, some fundamental concepts relaiaeliability theory

will be given for completeness of background idesed in this work.

1.3.1 Reliability:

Reliability is sometimes referred to as the quality the time
dimension, because it is determined by failure$ thay or may not occur
during the life of the product, [30].

Definition (1.1) (Failure), [35]:

Failure can be defined as the termination of am’geability to
perform a required function.
Failure is regarded as a random phenomenon, sincecurs at an

uncertain time.

Definition (1.2) (Reliability), [35]:

Reliability is defined as the probability that angmonent or system
will perform a required function for a given periofltime when used under

stated operating conditions. It is the probabititya non-failure over time.
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Probability theory has been used to analyze theabibty of
components, as well as, the reliability of systeomnsisting of these
components. Since the performance of a system lysdapends on the
performance of its components, the reliability cfyagtem is a function of the
reliability of its components. The intended funatiof the device is supposed
to be understood and the degree of success ofetieedperformance of the
intended function can be measured so that we caily eanclude if the
performance is satisfactory or not. Time is an ingot factor in the
definition of reliability. If a newly purchased dee can perform its intended
functions satisfactorily, what is the probabilityat it will last (continue to
perform satisfactorily) for a specified period ohé?. How long will it last?,
in other words, what will be the life of this degft The life time of the
device may be treated also as a random variableanstatistical distribution.

Furthermore, the operating conditions, such as sstreload,
temperature, pressure, and/or other environmeatdbis, under which the
device is expected to operate must be specified @ridered by the

disfigure and manufacturers.

1.3.2 Reliability Function, [28]:

In this section, a different point of view of iagility analysis will be
given by considering the life time length of a systand the life time length
of its components . In general, life time lengthaafy system (or component)
Is a random variable, and so this lead to studisdife time distribution.

Let T be the random variable representing the life toha device.
The units of measurement for the life time may béna unit, such as
seconds, hours, days and years or any usage udit,as miles driven and
cycles of operation. The random varialiles continuous and can take only

nonnegative values.
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Its statistical distribution can be described sy probability density
functionf (t), its cumulative distribution functioR(t), i.e.,

F(t) = Pr(system fail at time < t)

=Pr(T < t) =j f(x)dx;t> 0 (1.1)

t

Definition (1.3) (Reliability Function), [28]:

The reliability function of a system at tinnef is the probability that
the system will adequately perform its intendedcfion for a specified
interval of time(0, t], mathematically:

R(t) = Pr(system function successefully throughtout the interval (0, t])
= Pr(T > t)
=1 — F(t)

=j f(x)dx;t> 0 (1.2)
t
Wheref(x) is the probability density function.

1.3.3 Mean Time to Failure:

Usually, we are interested in the expected timeetd failure, and this

is termed as the mean time to failure.

Definition (1.4) (The Mean Time to Failure), [34]:

The mean time to failure (MTTF) is defined as #&xpected value of

the life time before a failure occurs.

Suppose that the reliability function for a systiengiven by R(t), the
MTTF can be computed as:

(00] co

tf(t)dt = j R(t)dt (1.3)

0

MTTF = f

0

Wheref(t) is the probability density function.
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1.3.4 Failure Rate Function:

The failure rate function, or hazard function,visry important in
reliability analysis, because it specifies the ratethe system aging. The

definition of failure rate function is given in tmext definition:

Definition (1.5) (Hazard Function), [28]:

The failure rate function, or the hazard functidenoted by h(t), is
defined to be the probability that a device wiil fa the next time unit given
that it has been working properly up to time ttika

f(t) _

h(t) = m,t

>0 (1.4)

The cumulative failure rate function, or the cuativle hazard

function, denoted by H(t), is defined to be:

t
H(t) = j h(w)dw (1.5)
0
The failure rate function is often used to indecte health condition
of a working device. A high failure rate indicatead health condition or
status, because the probability for the deviceatiar the next instant of time

is high.

1.3.5 Maintainability and Availability:

When a system fails to perform satisfactorily, aiepis normally
carried out to locate and correct the fault. Theteay is restored to
operational effectiveness by making an adjustmentby replacing a

component, [34].
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Definition (1.6) (Maintainability), [34]:

Maintainability V (t) is defined as the probability that a failed system
will be restored to a functioning state within aven period of time when

maintenance is performed according to prescribedguiures and resources.

Generally, maintainability is the probability aolating and repairing
a fault in a system within a given time. Mainterampersonnel have to work
with system designers to ensure that the systemuptacan be maintained
cost effectively.

Let T denote the time to repair or the total domet If the repair time
T has a density functiog(t), then the maintainabilityy (t), is defined as the
probability that the failed system will be backservice by time t, i.e.,

t

V) =Pr(T<t) = j g(x)dx (1.6)

0

An important measure often used in maintenanaiegus the mean
time to repair (MTTR) or the mean downtime. The TNRTis the expected
value of the repair time.

Another important related reliability concepthe tsystem availability.

This is a measure that takes both reliability amdhtainability into account.

Definition (1.7) (Availability), [34]:

The availability function of a system, denoted Byt), is the

probability that the system is available at titne

Different from the reliability that focuses on arjd of time when the
system is free of failures, availability concerngirae point at which the

system does not stay at the failed state. Matheaibti

A(t) = Pr(System is up or available at time instant t)
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The availability function, which is a complicatkaction of time, has
a simple steady-state or asymptotic expressiofadt) usually we are mainly
concerned with systems running for a long time. Tteady-state or
asymptotic availability is given by:

System up time

A=1imA(t) =
toe0 © System up time + System down time

B MTTF
~ MTTF + MTTR

The mean time between failures (MTBF) is anothewpartant

measure in repairable systems. This implies trasyistem has failed and has
been repaired. Like MTTF and MTTR the MTBF is apested value of the

random variable time between failures. Mathemdytical

MTBF=MTTR+ MTTF.

1.4 Binary Systems

This section presents a review of the structaral properties of the

binary model that are most commonly used previoumstgliability theory.

1.4.1 Binary Items, [35]:

An item is an entity that is not further subdivddd his imply that an
item, in a given reliability study, is regardedaaself-contained unit and is not
analyzed in terms of the performance of its comsfits.

A binary item possesses two states: perfect fonictg and complete
failure. Any item is considered in perfect functiogp at the starting time
t = 0. When the item changes from functioning stateatlufe state, we say
that it failed. The item state at time t is expegsby a binary variabl&(t),
where:

_ (1, functioning
X® = {g g
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An important concept emerges here, which refetbedime elapsing
form, when the item is given into operation uittilails for first time, called
time to failure. It is not necessarily measuredlnime units. It can be measured
by indirect time concepts, such as cycles, disnm@unting, etc. The time to
failure is modeled as a random varialilebecause it is subject to chance
variations. Figure (1.1) shows the relation betwinenstate variabl&(t) and
the time to failure T.

A

X(t) / Failure

i t
T |

Figure (1.1) Time to failure in binary items.

1.4.2Mathematical Formulation of Binary System, [6]:

Consider a system of components, le€ = {1,2,...,n} denote the
set of component indices. To indicate the statehefi —th component
i = 1,2,...,,n, assign a binary indicator variableto component; x; = 1 if

component is functioning andk; = 0 if component is failed .
Similarly, the binary variablé indicates the state of systedn += 1 if

the system is functioningp = 0 if the system is failed. Le¥ = {0,1}, and
assume that the state of the system is determiovbletely by the states of

the components, so we may wribeS™ =S XS X ...X S - §S.

10



Chapter One Fundamental Concepts of Rbllity Theory and Multi-State System

The functiond is called the "structure function” of the systemd athe

vector x = (x4, x5, ..., X,) IS called "the state vector" of the components.

Structural properties characterizes the determigniselationship
between the state of the system and the statdseofdmponents at a fixed
moment in time.

The order of a system n, is the number of distocponents that make
up the system. Considering for example a systerh witomponents, to
indicate the state of the-th component, we assign a binary indicator
variablex; to componentfori = 1,2,...,n.

if component i is failed

¥ = {(1): if comionent i is functioning 1.7
The binary component states are summarized with \betor x =
(x4, x5, ..., X,). The structure functio®(x) determines the binary state of the
system from the component state vector so that:

d(x) = {

0, if the system has failed

1, if the system is in operating state (1.8)

1.4.3 Special Structures of Binary System, [4]:

Birnbaum, et al. in 1961 defined three basiccttmes for the binary
case which are the series, parallel and k-out-&-series system is defined
so that the system is functioning if and only i€e@omponent is functioning.
the structure function is defined mathematically as

n

d(x) = 1_[ X;

i=1

= Min{xl;xZJ "'an} (19)

11
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A parallel system is defined so that the systeits féiand only if all

the components fail, and the structure functiotheiBned mathematically as:

O(x) =1— 1_[(1 —x)
i=1

= Max{x{, X5, ..., Xy} (1.10)
A k-out-of-n system is defined so that the systefunctioning if and
only if at least k-out-of-n components are funcingn The structure function

IS:

n

1, ifoizk
i=1
n

0, ifoi<k
i=1

Series and parallel systems are special casedeofkiout-of- n

(%) = (1.11)

\

structure. A series system is an n-out-of-n stmegtwhile a parallel system is

a 1-out-of-n structure.

1.4.4 Coherent Systems of the Binary System, [1]:

A binary system of components is said to be @it system if its
structure function®: {0,1}" — {0,1} satisfies the fallowing conditions:

1- &(x) is monotonically non-decreasing in each vectguearent,x;;
i= 1,2, ..,n,.

2- Each component is relevantdgx).

3-d(x) =j,forj=0,1.

Overall, the first condition implies that a compaoh performance
improvement never causes a system failure. It esstinat the structure
function® is a monotonically non-decreasing function of eafument. The
second condition implies that each component isvegit. A component is
irrelevant if it dose not matter whether or nasitworking.

12
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Finally, the last condition mentions that the ensystem works when
all the components work and the entire system fafilen all the components
fail. This condition is always satisfied with cobet systems. As a result, in
the binary system context coherency means that:
1-The entire system elements are relevant.
2-The fault of all the elements causes the faultntife system.
3-The operation of all the elements results in theesystem operation.
4-Once the system has failed, no additional failur@ cake the system

function again.
5-When the system is working, no repair or additiosfagélement can cause

system failure.

1.5 Multi-State System, [29]

A multi-state item can perform their tasks wittrigas distinguished
levels of performance or states. The item statesveay as a result of their
deterioration, or because of changing ambient d¢mmd, from perfect
functioning to complete failure.

It is assumed that at the beginning (at time t)th@ item is in its
highest performance (perfect functioning). Failutlest lead to decrease the
item performance are called partial failures. Thami state at time t is
expressed by a discrete random variaift¢ which takes its values from the
state set:

x() = {x0(t), %1 (2), ..., X ()} (1.12)
Generallyx,(t) represents the complete failure of the item. When¢he
item changes its performance rate, we say thag tisex state transition in the

item.

13
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The probabilities associated with the differemte$ of the item may

be represented by the set:

p(t) = {po (), p1(0), ..., Pn ()} (1.13)
wherep; (t) for alli = 0,1, ..., n; is the probability that the variable stat@)
Is in the item state; (t) at a specified time t.

p;(t) =P[x(t) =x;(t),Vi=0,1,..,n (1.14)

An item can only be in one and only in one of the 1 states which
means that the item states compose the complet gfomutually exclusive

events, and then:

Y =1 (1.15)
i=0

1.5.1 The Multi-State System Structure Function, [3], [6]:

Real-world systems consist of n-components orysibss (items)
and their performance rates are unambiguously meted by the
performance rates of these items. System religbditalyze the relation
between the items performance of the system anduhetioning of the
system as a whole. The state of the entire sysdeshetermined by the states

of its items.

For this model, each component and the systemllargea to have a
different number of discrete states, which are mssuto be ordered, which

means that the stats of each components statg/satis
0 < Statel < State2 < --- < State M — 1.

For a multi-state system with n components, théeest thei — th

component is given by the discrete variahlewhere:

14
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( 0 ,if component i is in the worst state
1

X; = { : } , intermediate states of degradation (1.16)
m; — 2
m; — 1 ,if componenti is in the best state
fori =1,2,...,nandm; < oo.
The state of the system is given by the varidhlevhere:

( 0, ,ifthe system isin the worst state
1

=

\

where M is the best state of component.

: } ,intermediate states of degradation (1.17)
M; -2
M; — 1 ,if the system is in the best state

The function® is called the system structure function, whiclrespnts
the relation between the item state vector andstts¢em state variable. the
relationship is described by the structure functdgx) which can be
concisely written a®:{0,1,...,m; — 1} - {0,1,...,M; — 1}

The reliabilities of the system items compose tamireliability vector

{p1, 02, .., pn}- Usually this vector is known, or can be estimated

1.5.2 Special Structure Functions for Multi-State $stem [35]:
It is possible to invent an infinite number of énfént structure
functions for real-world systems. This section pres the structures that are

most commonly used in multi-state system reliabdialysis.

1- Series Structure:

The series connection of system elements represeoése where a
total failure of any individual item causes an @lesystem failure. A series

structure of order n is illustrated in Figure (1.2)

—( 1 {2 })—--—{n}o

Figure (1.2) Series structure.
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and when a MSS is considered, then one can dissimgpetween two types of
series structures, namely:

* Transmission: a system that uses the capacity or productivitysatems as
the performance measure. The operation of thesemgss associated with
flow continuously passing through the items. Themitwith the minimal
transmission capacity becomes the bottleneck ofyiseem as it is shown in
Figure (1.3).

The bottleneck item determines the system perfocetan
P(x) = Min{x; (t) , x2(0), ..., x, ()} (1.18)

In real-world, this kind of systems can be observadinly in

production lines.

Figure (1.3) Transmission series structure.

* Processing: the system performance measure is characterizedarby
operation time or processing speed. The operafitimeosystems is associated
with consecutive tasks performed by the ordered Wi items. The total
system operation time is equal to the sum of theraipn times of all of its

items

N

B(x) = Z %, (6) (1.19)

i=1

The complete failure state of a system item cpoeds to its
processing speed equal to zero, which is equivdterin infinite operation

time. In this case, the operation time of the ergiystem is also infinite.

16
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Real-world systems with processing series straectwan be
appreciated in service companies (fast food, carnwaasckage shipping, etc.).
Figure (1.4) presents an example of a processmgss&ructure of order n.

— I+ G+ + -+ T

Figure (1.4) Processing series structure.

2-Parallel Structure:

The parallel connection of system elements reptesegase where a
system fails if and only if all of its items compaéy fail. A parallel structure

of order n-components is shown in Figure (1.5).

2

I

—

Figure (1.5) Parallel structure.

Multi-state system items connected in parallel nseiat some tasks
can be performed by any one of the items. Thus,t&sc models of parallel

structures are distinguished:

» Work sharing: a system that shares the work among its items.€ehtiee
system performance rate is equal to the sum opémrmance rates of the

parallel items, given be equation (1.19)
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Common work sharing systems are the queues in panksie
theaters, supermarkets, etc. Figure (1.6) illussratn example of a parallel

structure with work sharing of order n.

Figure (1.6) Parallel structure with work sharing.

*Without work sharing: represents a situation where only one item is
operating at a time. The system performance raegigl to the maximal

performance rate of the available parallel items
Dd(x) = Max{x,(t),x,(t), ..., x,(t)} (1.20)

For instance, a taxicab radio service sends, foset of free taxis,
the taxi which is nearest to the call. Figure (lili)strates a parallel structure

without work sharing of order n.

18
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Figure(1.7) Parallel structure without work sharing

3- k-out-of-n Structure:

The k-out-of-n system reliability is defined as th@bability that at
least k elements out of n are in operable condithmit is known, an n-out-
of-n system corresponds to the series structure aridout-of-n system
corresponds to the parallel structure. In a muéttes generalization of the
binary k-out-of-n model, the MSS is in state | ifl@astk; items are in state
x;(t), or abovewheri = 1,2, ...,n. For instance, a car with a V8 engine can
walk if at least four cylinders are firing. For tasce Figure (1.8) illustrates a

logical representation of a 2-out-of-3 system.

4[.\'2]_[.\'3:'7

GO

Figure (1.8) 2-out-of-3 structure.
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1.5.3 The Main Properties of Multi-state Systems:

Now, some properties of the structure function wélconsidered that

determine the important of multi-state systems ertgs:

1-Relevancy of system elements, [6]:

When the MSS is considered, the element is relefaoime changes
in its state without changes in the states of #@aining elements cause
changes in the entire system state. In terms oM®&8 structure function, the
relevancy of element j means that there exist ugkt) , x,(t), ..., x, (1)),
such that; # k; for all i = 1,2, ...,n there are distinct statgs= M; — 1 and
keM;—1.

q)(xl(t) y e ;xj—l ;ji;xj+1;xn(t)) + cb(xl(t) )y xj—l ’ ki;xj+1; xn(t))
2-Coherency, [30]:

For MSS’s these requirements are met in systemis mibnotonic

structure functions:
P(x,(8), %, (8), e, 2, () = Lif x; () =1 for1<i<n
D (x1(£), x5 (£), e, %, () = 0if x;(t) =0 for 1 <i<n
D (2, (), %2(1), v, X2 (£)) < @ (y1(), Y2 (8), oo, Y (D))

if there is nd for whichx; () < y;(¢).

So, in a multi-state case, the system, is cohafeand only if its
structure function is non-decreasing in each arguimaed all of the system
elements are relevant. Note that from this strectiunction property it
follows that the greatest system performance isiesed when the
performance rates of all of the elements are ingieatest and the lowest
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system performance is achieved when the performasies of all of the

elements are the lowest.

3-Homogeneity, [30]:

The MSS is homogenous if all of its elements ared éhtire system
itself have the same number of distinguished sta¢esthe state spaces of
componenti and the system arf,1,2,...,m; — 1} and {0,1,2, ..., M; — 1},
respectively. Ifm; —1=M; —1for1 < i < n, the system is considered to

be homogeneous.

4-Equivalent, [21]:

Two component state vectors x and y are said teqogvalent if and

only if there exists avalue such thab(x) = ®(y) =j,j € {0,1,...,M — 1}.

5-Thex; are mutually independent, [6]:

The random variables representing thecomponent states are
assumed to be mutually independent unless spdbifistated otherwise.
Where the discrete random variabk¥sX,, ..., X,, are mutually independent

if and only if:

priX; =x4,X; =Xy, ..., Xy = Xy] = p1P2 - Pn-

where p; = priX; =x;], i = 1,2,...,n. Continuous random variables are

mutually independent if and only if:
(X1, Xz, ..., Xp) = £(X1) f(X3) ... f(Xp)

for every (X4, X, ..., X,) € R®* andf(X;) is the marginal probability density

function ofX;, Vi = 1,2, ..., n.

The independence assumption implies that the statae component

will have no effect on the states of the other congmts in the system.
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CHAPTER

2

Reliability of Dynamic Multi-State Systems

2.1 Introduction

Multi-state system is a mathematical model thatsed in reliability
analysis to present a system with some level ofkingr efficiency. A
structure function allows to describe the behawodr system reliability
depending on the efficiency of its components urnigadusly. There are a lot
of estimates of a MSS on the basic of structuretfan. Dynamic reliability
indices belong to these estimates and characté¢hieechanges of MSS
reliability caused by changes in components eflicye These indices are

computed based on structure function and logid&dréintial calculus, [53].

Many practical components and systems have moretiina different
performance levels. For example, a power generatar power station can
work at full capacity, which is its nominal capgcisay 10 MW, when there
Is no failures at all, [29]. Certain types of fagds can cause the generator to
be completely failed, while other failures will ttfo the generator working at
a reduced capacity, say at 4 MW. On the systeni, latais consider a power
generating system consisting of several power gémex. The abilities of the
system to meet high power load demand, normal pdesd demand and
lower power load demand can be regarded as ditfegestem states. Another
example of multi-state components is an oil trassmn pipeline [44]. The

pipeline is used to transmit oil from the sourcespots A, B and C aligned in
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order along the pipeline. We say that the pipelni| state O when it cannot
transmit oil to any of the spots; it is in state 1 if the oil can reach spot A; it is
in state 2 if the oil can reach up to spot B, i.e., spot A and B; it is in state 3 if

the oil can reach up to spot C.

This chapter consists of seven sections. In secB®, problem
formulation and description of the system modelenagen introduced.

In section 2.3, the direct partial logic derivats are applied for the
evaluation of dynamic characteristics of the ingedion function and to
reflect the changing in the value of the invest@atunction when the values

of its variables are changed.

In section 2.4, the mathematical descriptionfafure and repair
states for the MSS is considered because, it isrkb& important change in

system functioning.

In section 2.5, the dynamic reliability indices iah define the
boundary states of MSS are given and the conditbbging and changing of
these states depending on the change of the sysigmponent states have

been considered.

In section 2.6 presents the general model of tmawhyc MSS which
Is considered in this chapter, it is k -out-of-rsteyn. The k -out-of-n MSS
with n components works if at least k componentskwo

In section 2.7 we present real life problem ofemgineering system
which is the problem of standing the reliability @f supply system which
has been modified and improved and therefore sdudalseng dynamic multi-

state criteria.
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2.2 Problem Formulation and Description of System Mdel, [51]

The MSS is frequently required for applied probldmgcause such
systems simulate the real system reliability irad€Figure 2.1).

Perfect functioning

Functioning

Partly functioning

Completely failure

Real-World System

Multi-State System

Figure (2.1) Interpretation system reliability by athematical model of

multi-state system.

The MSS and each of itscomponents can be in one maf possible
states; from the complete failure (it is 0) to the perfect functioning (it is m).
Every system component, Vi = 1,2, ..., n; is characterized by probability of
the performance rate:

Pis; = Prix; = S} (2.1)

wherei = 1,2,...,nandS; = 0,1, ...,m; — 1.

The system reliability (system state) depends smraoimponents state
and is defined by the structure function:

D(x) = DP(xq, x5, 0., %): {0, ..., m; —1}* - {0, ..., m; — 1} (2.2)

The structure functions of parallel, series &out-of-n MSS terms
are declared by ORv) andAND (A):

Pp(x) = Vity x; (2.3)
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Ds(x) = NiZy X (2.4)
P(x) = V(AL x:) (2.5)
whereViL, x; = Max{xy, x5, ..., X, }; N'o1 X; = Min{xq, x5, ..., X}

The mathematical model ¢&fout-of-n MSS (2.5) can be simplified

as:

xilxiz xik inlxl-z ...xikxikﬂ = xilxiz xik

and the structure functions defined as:

D(x) = V(AL %) (2.6)
For example, the structure functions 2-out-of-3 M§&SBresented by:

D(x) = 212,V x3Vx5x3V 1 X5 X5

The 2-out-of-3 MSS structure function in this casgiven by:
CD(X) = xleVx1X3Vx2x3

A parallel system is 1-out-ofsystem:
P(x) = V(Aiz1 i) = Vi1 X, (2.7)
And a series system msout-ofn MSS:

() = VAL x) = Ny X (2.8)
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Example (2.1), [44]:

Considern=3 channels in the emergency shutdown system of a
nuclear power plant, detecting whether or not therating parameters are in
the safe ranges. k=2 channels warn that operating parameters are abeof

safe ranges, the power plant will be shut downhannel has three states:

1. State 0: unavailable, i.e., does not warn whehatkl.
2. State 1: warning properly.
3. State 2: warns when everything is in fact operatiognally.

The 2-out-of-3 emergency shutdown system also has three states/yna

1. System state 0: unavailable, i.e., does not wamnvithshould.
2. System state 1: warning properly.
3. System state 2: spurious operation, i.e., warnswine system is operating
normally.
The structure function of the 2-out-of-3 MSS emeye

shutdown system is:
D(x) = VIA(x1, x2)A(x2, x3)A(x1, X3)}

with m; = 3,i = 1,2,3 the structure functions results are indicated in
table (2.1).

Table (2.1) The 2-out-of-3 MSS emergency shutdowstem

X1,X2, X3 d(x) X1, X2, X3 P (x) X1, X2, X3 P (x)
O 0 O 0 1 0 O 0 2 0 0 0
0O 0 1 0 1 0 1 1 2 0 1 1
0O 0 2 0 1 0 2 1 2 0 2 2
0O 1 0 0 1 1 0 1 2 1 0 1
0O 1 1 1 1 1 1 1 2 1 1 1
0O 1 2 1 1 1 2 1 2 1 2 2
0 2 0 0 1 2 O 1 2 2 0 2
0 2 1 1 1 2 1 1 2 2 1 2
0o 2 2 2 1 2 2 2 2 2 2 2

N
(o))
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2.3 Direct Partial Logic Derivative for MSS Model

The direct partial logic derivative of the stru@dunction®(x) with
respect to the component Vi = 1,2, ..., n; reflects the fact of changing of

the structure functiod from statej to stateh, when the value of component

x; changing froma to b which is termed a%% [56]:

0d(j - h)
dx;(a - b)

where

= ®(a;,x) » P(b;, x) (2.9)

D(a;,x) = P(xq, ooy Xim1, o) @, Xjgq -, Xp) 5 AN

D (by, x) = P(Xy, o) Xj—g, e, by Xjyq e, X))
j,h €{0,1,...M—1}anda,b € {0, 1,...,m; — 1}; and “” is the symbol
of a comparison operation defined by:

0®(j - h) _ {M —1L,if ®(a;,x) =jand ®(b;,x) =h
dx; (a > b) 0, otherwise

The analysis of the change in system reliabilitgt tts caused by a

change of component states may be illustratedgargi(2.2).

‘ dx) g
\ \ dH0—1)/0x(0—-2)
\ d0(1—0)/9dx(1-0)

Figure (2.2) Direct partial logic derivatives and 85 states changes.
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2.4 Multi-State System Failure and Repair of MSS,94]

Direct partial logic derivative of the structuranttion allows to
examine the influence of the- th component state change into the system
reliability. In other words this derivative discasehe system states that are

transformed as a result of the change of the cormisiate.

Consequences of the direct partial logic derivatigee of interest for
reliability analysis of the MSS. For this purposensider the following two

partial derivatives:

09(j— 0)

9x.(a > b) for ja € {1,2,..,m; —1}and b € {0,1, ..., m; — 1}

whereb < a.

0d(0 - h)

m}‘or he{l2,..,m;—1}andcd €{0,1,..,m; — 1}

wherec < d.

The first partial logic derivative is a mathematiogpresentation for
the model of the system failure if the— th component state changes from a

to b. Because the structure functdix) is non-decreasing, this derivative is

0P (j—0)
dx j(a—a-1)

wherej,a € {1,2, ..., m; — 1}.

The second partial logic derivative permits the heatatical
description of the system renewal. There are tw@mts of investigation for
the system repairing. First it is the system repgiby the replacement of the

failure component. This situation is determined thg direct partial logic

0P (0—-h)

derivative m

Second, it is the increase of component stateisha

0d(0—-h)

described am.
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However, the first variant is more important fophapations. Because

the structure function of the MSS is non-decregsthig derivative can be

assigned agiaq)(%h)
g xi(0-m;=1) ’
It is remarkable that direct partial logic derivats allow to analyze

dynamic properties of the MSS, which is submitte@ atructural function .

2.5 Dynamic Reliability Indices

Dynamic reliability indices characterize the changf the MSS
reliability that is caused by the change of a congmb state and include three
groups of probabilistic indices, which a@DRI’s), (CDRI's) and (DIRI’S).

Therefore, we will explain next each of these cptee details.

2.5.1 Dynamic Deterministic Reliability Indices:

Dynamic deterministic reliability indices evaluate the influence of a
change of the component state upon system retiabilhey are defined as
sets of boundary states of the system. Here thedaoy state of the system is
the system states,...,s;, ...,S, when the modification of the —th

component state fros) into s, causes the system to fail or repair, [58].

Definition (2.1) (Dynamic Deterministic Reliabilityndices), [54], [55]:

Dynamic deterministic reliability indices are sets of the boundary state

of the systeniG,} (for system failure) anfiz, } (for system repairing).

The states system failuf€,} and the states system repairfity } are

defined by:

{Gr} = {Gs|x1 U {Gs|x2} U .. U {Gy| %} (2.10)

{Gr} = {Gr|x13 U {Gr|x2} U .. U {Gy |2} (2.11)
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where the subsef&,|x;} and{G, |x;} are defined by:

od(j - 0)
{Gf|xi} = {Gf m %+ 0} (212)
00> h
{Grlx;} = {Gr 9. (0 (_> — _) D7 0} (2.13)

where{Gy|x, } and{G,|x,} are subsets of the boundary state of the system fo

every system component Vi = 12,..,n.

Therefore, it iIs necessary to analyze every compuiosiates; and to
check the fact of MSS failure or repairing aftez thodification of this states.

The direct partial logic derivatives (2.9) allowftomalize this procedure.
2.5.2 Component Dynamic Reliability Indices:

Component dynamic reliability indices represents pinobability for
evaluating the influence of the- th system component on the possibility of
failure or repairing of the system. From the pahview of system reliability,

unstable components are determined, [57].

Definition (2.2) (Component Dynamic Reliability Indes), [55], [50]:

Component dynamic reliability indices are probdied of MSS

failure and repairing at a modification of a statk the i —th system

Component
Pr = p(D)}20-1Pa(D) (2.14)
B = P(i)ngniﬂpo(i) (2.15)

where p(i)j*0 Is the probability of thei—th component state

a—a—1

modification fromato (a — 1) where the system faiti, (i) is the probability
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of statea of thei —th component;p(i)8:,’£‘ni_1 is the probability of — th

component replacement for system repairing(i) is the probability of
i — th component failure.
.\ j—0
.N1-0 p(")a—)g—l
= ~za»a-l 2.1
p()130 mymy, .m, (2.16)
~ p(DY i

—_— 2.17
mm,..m, ( )

where p(l) , Is the number of system states when a chainge

a—->a—
th component state frona to (a—1) forces the system failure; and
p(i)gjfni_l Is the number of system states when system ragairnng about

by to replacing thé — th component.

Noting that, the number,¢.<s(i){l_;((’1_1 andp(i)gj,’?n._1 are obtained as

number of values of direct partial logic derivatwe((]—o) nd%

with respect the — th variable, which are not equal 0. In other words

numberSp(z) and p(i)gjﬁni_1 are the cardinality of the s¢G,|x;} in

a—>0

equation (2.12) and the 4&, |x;} in equation (2.13) accordingly.
2.5.3 Dynamic Integrated Reliability Indices:

Dynamic integrated reliability indices are generatiion of DDRI and
are probability evaluation of a modification of thESS reliability at a change
of the system components state. In particularptiobability of the boundary

of system states is estimated by these indices [32]
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Definition (2.3) (Dynamic Integrated Reliability Idices), [55], [52]:

Dynamic integrated reliability indices is probatyiliof the system
failure or repairing if one of the system composefdils or restores, the

failure and repair probabilities are defined by:

P, = Z P (i) 1_[ (1 - Pf(i)) (2.18)

q=1,q+i

n

Pr=ipr(i) [ a-rw) (2.19)

q=1,q+i
where P¢(i) and B.(i) is determined in equations (2.14) and (2.15),

respectively.

Algorithm (2.1) (Calculation of the Dynamic Relialsy Indices), [58]:
The DRI’s are calculated using the following aldjom:

Step 1.0:Calculate{G,} (for system failure) anfiG, } (for system repairing)
for the MSS using the following steps:

Step 1.1 The derivative%%,w =1,..,nand

j,a €{1,2,..,m; — 1} reflects the fact of changing of the
system fromj to O when the value of component

changing froma to Oare calculated by equation (2.9).

Step 1.2: The subsets failure systefG(|x;} are obtained in

accordance with equation (2.12).

Step 1.3:The states system failufé,} in accordance with equation

(2.10) is the union of subse(tS,|x;} is formed.
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dd(0~h)

Step 1.4: The derivative m,

v(ii=1,2,..,n)and h €

{1,2, ..., m; — 1} reflects the fact of changing of the system
from O to h when the value of component; changing

from Oto m; — 1are calculated by equation (2.9).

Step 1.5: The subsets repair systeft,|x;} are obtained in
accordance with equation (2.13).

Step 1.6:The states system rep&é,.} in accordance with equation
(2.11) is the union of subs€ts, |x;} is formed.

Step 2.0:Calculate the CDRP, (i) andP.(i) of the MSS failure and repairing

at a modification of a state using the followingps:

Step 2.1:when numbersp(i)i39 and p(i)§Sm,—1 are obtained.

They are conformed to numbers nonzero elementiseof t

9P(j—-0)

direct partial logic derivative§- "=~ and idCind

0x;(0-m;—1)

that are calculated in step 1.2 and step 1.4 aantyd

Step 2.2:The structural probability?(i)125 of i — th component
state modification from j to O where the systenhdaid the
structural probabilityp(i)8:,’£‘ni_1 of i —th component

replace for system repairing are calculated acogrdo
equations (2.16) and (2.17).

Step 2.3The CDRI (probabilities of MSS failure or repairiag a
modification of a state of — th system component) are
obtained by equations (2.14) and (2.15).

Step 3The DIRI for MSS estimation the probability of the syt failure
and the system repairing by equations (2.18) ari®)2
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2.6 Mathematical Simulation for the Model of Dynamc
Behavior of MMS Emergency Shutdown System Model
We will consider in this section the 2-out-of-3 MS®&here the
structure functionb(x) depends on three variables, which are the number o
system components(n = 3) and has the best level of the components
m; = 3,i=1,2,3.

The used probabilities of the component state suppoby expert

which are given in Table (2.2).

Table (2.2) Component state probability.

State
Component
0 1 2
X1 0.1 0.6 0.3
Xy 0.4 0.5 0.1
X3 0.2 0.2 0.6

System simulation will depends on algorithm (2ak) follows:

Step 1.0:Calculate the DDR{G} of the system states, for which the failure

of one component causes system failure &g of the system
failure states, which are eliminated by the replaeet of a failure

component for the MSS.
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Step 1.1 According to equation (2.9), Compute the directtiph logic

09 (1-0)

derivatives Px.(150)

(i = 1,2,3) of this function®(x), reflects the

fact of changing of system from 1 to O when thdueaof

componenty; is changing from 1 to O:

do(1 - 0)
9, (1>0) ®(1,x,,x3) ¢ D0, x,x3)
dd(1 - 0)
a0y Tl hr) e @00
dd(1 - 0)
Gxa(1o0) LR D Pl 0)

Therefore, there elements of the direct partialicogerivative

09 (1-0)
0x;(1-0)’

Vi=1,2,3, are equal if botlb(x) = 0 andd(x) = 1 for specified

variables only (see Table 2.3).
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Table (2.3) Direct partial logic derivatives of 2i0of-3 failures system.

0P(1-0) 0P(1-0) 0P(1-0)

b 9x;(1 > 0) 9x,(1 - 0) 9x3(1 > 0)

NNNMNNNMNNNMNNNRFPRPRPRPRPRPRPRPRPOOO0OOCOO0OOO0OOO
NNNRPRPPOOOINNMNNREPERPPEPOOOMNNMNNERPERPEPLPOOO
NFPOMNMNPFPONRFPOINMNFPONRPFPONPFPONRPFPONPEFPODNMPEO
OO OO O0OO0OO0OOO0O0OCONOONNNOIOCOOOOOOOO
OCOO0OOONOOO0OCOOOONOOOOCOONNOOOO
OO OO O0OOONOODOOOOOONOONOONOOOO

Step 1.2The subsets failure systefidi|x;} are:

a) {Gr|x,} = {101,102,110,120}, which is if the first component
IS breakdown;

b) {Gflx,} ={011,012,110,210}, which is if the second
component is a failure;

C) {Gslxsz} = {011,021,101,201}, which is if the third component
Is not functioning.
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Step 1.3:Therefore, the set of the boundary states of yseem failure {7}
Is found to be:

{Gf} = {101,102,110,120,011,012,210,021,201}

Stepl.4:Similarly, the direct partial logic derivativg% Is calculated

(for all i = 1,2,3) and the analysis of this derivative permits to

obtain states of the,, x,, x5 system failure (see Table 2.4):

Table (2.4) The direct partial logic derivative2-baf-3 MSS repairing system.

0P(0—-1) aP(0-1) aP(0-1)

AR 9x,(0 > 2) 9x,(0 > 2) 9x3(0 > 2)

NNNNNNNNNPRPRPRRPRPRPRPRPRPOO0OO0O0O0O0O0O0O0O
NNNRPRPRPOOOINNNRPRERPRPOOOINNNRERREROOO
NFRPONRFPRONROINFRONRFRONRPRONRFRONRERONERO
cNoNoloNoNoNoNolo] lcNoRoNoNoNoNoNoNollcNoNoNoRoll SNoll M Ne)
cNoRolololoNoNoNollocNoNoNoNoNoNoNeoll VM lcNoNoNoNoNoRoll Ne)
cNoNoloNoNoNoNolol lcNoRoNoNoNoNoNol VM lcNoNoNoRoll SNoNoNe)
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Step 1.5:The states for repairing the system are calculéeda similar

method for failure system. The subsgis|x;}, Vi = 1,2,3; are:

a) {G,|x,} = {001,010}, which is if the first component is
replaced;
b) {G,|x,} = {001,100}, which is if the second component is
replaced;
c) {G,|x3} = {010,100}, which is if the third component is
replaced.
Step 1.6: The set{G,}, of the boundary states of the system repairing is

formed.
{G,} = {001,010,100}.

Step 2.0Calculate the CDRP, (i) andP. (i) of the MSS failure and repairing

at a modification of a certain state.

Step 2.1The numbersp(i)i59 and p(i)93m,—1 are obtained. They are

conformed to numbers with nonzero elements of ihectpartial

logic derivatives:
p(DIZS = 4, p(212Y = 4, p(3)12Y = 4;
p(1)323 =2, p(2)321 = 2, p(3)321 = 2;

Step 2.2:The structural probabilitp(i)129 of thei — th component state
modification from 1 to 0, where the system failuege calculated

according to equation (2.16).

, p(DiZs 4 ;
1_)0 T e— T — 0_148, = 1,2,3
P10 mymyms 27 l
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The structural probabilityp(i)955,,—1 of the i —th component

replace for system repairing are calculated acngrdo equation

(2.17).
)91 2
p()921 = PWosz 2 _o00s =123

mym,mg 27

Step 2.3:Component dynamic reliability indices probabiltief the MSS
failure at a modification of a system component faend using

equation (2.14).

Pr(1) = p(1)129 p1(1) = 0.148 x 0.6 = 0.089
P:(2) = p(2)129 p1(2) = 0.148 X 0.5 = 0.074
P:(3) = p(3)12) p1(3) = 0.148 X 0.2 = 0.029

Also, component dynamic reliability indices prolaigs of the
MSS repairing at a modification of a state of atesyscomponent

are found using equation (2.15).

P.(1) = p(1)321 po(1) = 0.074 x 0.1 = 0.0074
P.(2) = p(2)322 po(2) = 0.074 x 0.4 = 0.0296
P.(3) = p(3)322 po(3) = 0.074 x 0.2 = 0.0148
Therefore the analysis of CDRI shows:

a) The system has the maximum probability of failwhen the first
component is in failure state because its CDRI thaslargest
valueP,(1) = 0.089.

b) The system fails with minimum probability if théhird
component has faile® (3) = 0.029.
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c) The MSS repairs with maximum probability by @@ment of
the second component since CDRI(2) = 0.0296.

Step 30: The dynamic integrated reliability indices permits obtain the
probability of the system failure if one of the ®m components is

breakdown. Hence by equation (2.18).

n

Pf=ipf(i) 1_[ (1-P)

q=1,q+i
=P (1) (1-P () (1-P(3))
+P @) (1-P D) (1-P(3))

+P3) (1- P (D) (1-P(D)
= 0.089(1 — 0.074)(1 — 0.029)
+0.074(1 — 0.089)(1 — 0.029)
+0.029(1 — 0.089)(1 — 0.074) = 0.17
and the probability of the system repairing if oofethe failure
components of the system is replaced, may be fénoma equation
(2.19)

n

a=§ﬁ@>f]@—a@)

q=1,q+i
=P((1-P@2)(1-P?3)
+P2)(1-PM)(1-~A(3))
+B3)(1- D) (1~ B (2))
= 0.0074(1 — 0.0296)(1 — 0.0148)
+0.0296(1 — 0.0074)(1 — 0.0148)
+0.0148(1 — 0.0074)(1 — 0.0296) = 0.05
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Chapter Two Reliability of Dynamic Multi-State Stems

Now, we will calculate the dynamic reliability iralis for series MSS
(3-out-of-3) and parallel system (1-out-of-3) inial the basic data (the
number of components, state levels of the compoméni) are similar as for

2-out-of-3 MSS that is investigated, previouslyhrs section.

1- For the series systemThe DDRI are calculated by virtue of the direct

9®(1-0) P (0-1)

Svn0) Ao oy as in the above for 2-out-of 3

partial logic derivative

MSS.
Therefore the structure function for the seriesesyss in Table (2.5).

Table (2.5) The structure function of the seriesssgm (3-out-of-3 MSS)

=
-
=
Ry
=
o
=
-
=
Ry
=
o
=
-
=
oy
=
(98]

S
SRCRCNCNCRCRSX-X=] =
N

S
NP ORROOOO|nR
N

S
I\)HOHH,OOOOQ
N

cNoNoNoloNoNoNoNa)
NNNRRPRPOOO
NFRPONRFRONRO
PRRPRPRRRRRR
NNNRPRRPRRPOOO
NFRPONRFRONRO
NNRNNNNNDNN
NNNRPRRPRRPROOO
NFRFONRFRONRO

Also, the direct partial logic derivativjei% for the failure of the

component are given in (Table 2.6).
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Table (2.6) Direct partial logic derivatives of tiseries failures system.

0P(1-0) oP(1-0) oP(1-0)

1, %2, %3 9x;(1 > 0) 9x;(1 > 0) 9x3(1 > 0)

NNNNNNNNNDNIPRPRPRRRPRRROO0OCOO0OCOO0OO0OO0O
NNNRPRRROOOINNNRPRREPROOOINNNRREREROOO
NFRONRFRPRONPFPONFRONMNRFRONREPROINFRONRERONERERO
OO0OO0OO0OO0OO0OO0OO0OONNONNOOOOOOODODODOOOOO
OOONNOOOOODOONNOOOOOOODODODOOOOO
ONOONOOOOONOONOOOO0OODODODODOOOOO

The subsets failure systedis|x;}, i = 1,2,3 are:

a) {Gslx,} = {111, 112, 121, 122}, which is if the first cqronent is
breakdown;

b) {Gslxp} = {111, 112, 211, 212}, which is if the secondnsponent is a
failure;

c) {Grlxz}= {111, 121, 211, 221}, which is if the third corapent is not
functioning.
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Hence, the set of the boundary states of the syterhis given by:
{Gr }=1{111, 112, 121, 122, 211, 212, 221}

0P (0-1)
dx;(0-»m;—1)

Similarly, Table (2.7) shows the direct partialibbgerivative for

repairing calculated far = 1, 2,3 and the analysis of this derivative permits
to obtain states of the, x,, x; system failure for which the replacement of

the broken component restores the system:

Table (2.7) The direct partial logic derivative tife series repairing system.

(0 > 1) (0 - 1) (0 - 1)

A1 X2, X3 dx,(0 - 2) dx,(0 > 2) dx3(0 > 2)

NNNMNNNNNNNPRPPRPPRPPRPPRPPRPRPRPRPRPRPOO0OCOO0COOOCOOOO
NNMNNPPPRPOOOMNNNRPRPPRPPOOONNNPEPPEPPLPOOO
NFPOMNPFPOMNMRPFPONPFPONEFPFOMNMPONPFPONEFONEO
OO OO0 O0O0O0O0 0000000000 ONONNOOOO
OO OO O0OOONOOCOOOOONNOOOOOOOOOOo
OO O0OOONOOO0OCONOONOOO OO0 OO0OOOOOo
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So, the states for repairing the system are cdéuilay a similar

method for failure system, The subsefs|f;}, Vi = 1,2,3 are:

a) {G,|x;} ={011, 012, 021}, which is if the first componeis replaced.
b) {G,|x,} = {101, 102, 201}, which is if the second componhes replaced.
c) {G,|x3} ={110, 120, 210}, which is if the third componteis replaced.

Thus, the setd,} of the boundary states of the system is given by:

{G,}={011, 012, 021, 101, 102, 201, 110, 120, 210}

In a similar manner, we can calculate the CDRIdaseries system

which are presented in Table (2.8).

Table (2.8) CDRI calculation for results series $gm (3-out-of-3).

x| P | p | S | p®2 | P | PG ”
Xq 4 3 0.148 0.111 0.08¢ 0.01fL
Xy 4 3 0.148 0.111 0.074 0.044
X3 4 3 0.148 0.111 0.029 0.02p

So, the breakdown if the third component causes niaimum

probability of the system failurg(3) = 0.029. The first component has an

influence on the system failure since it is thestes all P.(1) = 0.089. The

system

repairing

IS most probable by

componentP.(2) = 0.044.

replacement tloé second

Finely, the DIRI permits to obtain the probabildf/the system failure

if one of the system components is breakdown. wisi¢h = 0.17, while the

probability of the system repairing iB. = 0.073 if one of the failure

components of the system is replaced.
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2-For the parallel system:As in the series the structure function of paralle

systeml-out-of-3 is given in Table (2.9).

Table (2.9) The structure function of the parallelystem (1-out-of-3 MSS

X1,X2,X3 P (x) X1, X2, X3 P (x) X1, X2, X3 P (x)
0 0O 0 1 0O 0 2 00 2
0 01 1 1 0 1 1 2 01 2
0 0 2 2 1 0 2 2 2 0 2 2
010 1 1 10 1 210 2
011 1 111 1 211 2
01 2 2 11 2 2 2 1 2 2
0 20 2 1 2 0 2 2 20 2
0 21 2 1 21 2 2 21 2
0 2 2 2 1 2 2 2 2 2 2 2

0P (1-0)

The direct partial logic derivativ(gm are given in (Table 2.10).
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Table (2.10) Direct partial logic derivatives ofatparallel failure system.

0P(1-0) aP(1-0) 0P(1-0)

X1, %2, %3 ax,(1 - 0) 9x;(1 = 0) 9x3(1 > 0)

NPNNMNNNMNNNMNNNPEFRPRPRPPRPRPPRPPRPPRPRPOOCOO0OO0OO0OO0OOO
NMNNNRPRPPRPOOODMNMNMNMNNREPERPPOOOIMNMNNNREPERPPOOO
NFPOMNPFPOMNMRPFPODNMNPFPONPEFONRPFPONPFPONEFONE,O
eNolololololololeo]loholeololeololel Vel looleloleNolelNolNe
eNolololololololo]loholeoolololololo]ofoleNolel VelNelNe
eNolololololololo]loholeololololololo]looleloleNolNal e

Thus, the subsef&|x;},i = 1,2,3 of the failure system are:
a) {Grlx,} = {101}, which is if the first component is adakdown.
b) {G¢|x,} = {010}, which is if the second component isaldire.

C) {Gslx3}= {001}, which is if the third component is naifictioning.
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Hence, the set of the boundary stat@s f of the system is found to be:

{G; } = {101, 010, 001}

0P (0-1)
dx;(0-»m;—1)

Table (2.11) shows the direct partial logic dernieat for

repairing calculated on i =1, 2, 3 and the analgsithis derivative permits to
obtain states of the;x,x; system failure for which the replacement of the

broken component restores the system:

Table (2.11) The direct partial logic derivative tife parallel repairing system.

900 - 1) 900 - 1) 900 > 1)

D 9x,(0 > 2) 9x,(0 > 2) 9x3(0 > 2)

NPNNMNNNMNNNMNNNPEFRPRPRPPRPRPPRPRPPRPRPOOO0OOCOO0OOO0OOO
NMNNNRPRPPRPOOODMNMMNMNNREPRERPPOOOINMNNMNNREPERPPOOO
NFPOMNPFPOMNMRPFPODNMNPFPONEFOMNMPONPFPONEFONPE,O
eNolololololololo]loholeololololololo]lololeloleNolelNolNe
eNolololololoolo]loholoolololololo]lololeloleNolelNolNe
eNolololololololoe]leoleoolololololo]lololeloleNolelNolNe
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There is no states for repairing the system areutabd by similar

method for failure system.

Also, calculating the CDRI for the parallel systame presented in
Table (2.12).

Table (2.12) CDRI calculation for parallel systeri-put-of-3 MSS).

xi | pi20 | pM323 | P30 | pGWgz; | Py | P.(D)
X, 1 - 0.083 - 0.022 -
X, 1 - 0.250 - 0.018 -
X3 1 - 0.125 - 0.007 -

So, the breakdown of the first component causes ndagimum
probability of the system failurB(1) = 0.022. The third component has an

influence on the system failure since it is thested allP:(3) = 0.007.

Hence, the DIRI permits to obtain the probabilifytlee system failure

if one of the system components is breakdown. Rris= 0.045, while the

probability of the system repairing % = 0 if one of the failure components

of the system is replaced.

Remark(2.1):

The above general examples for series, paralleRamat-of-3 systems
reveal the main point of dynamic indices CDRI an&DThe CDRI’s reflect
the influence of the change of the specifically the th component state
upon the system reliability. In particular the gyst failure and system
repairing depending on thie— th component state modification, which are
examined. Since the component state probabilitiesqual to the change of
the system components, they have a similar infle@mcthe system reliability
in these examples. So the second component hasartfest probability of

system failure if this component breaks down, [31].
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Also, the DIRI describe the dynamic characterisfithe MSS which
are different for series, parallel and 2-out-ofy&tems (Table 2.13). The
probability of failure of the series system andu?-of-3 have the maximum

value areP; = 0.17 if one of the system components breaks down. The

probability of the MSS failur@; is minimum for the parallel system.

Table (2.13) Reliability indices for 2-out-of-3, 8es, and parallel systems.

P The system 2-out-of-J The series systen| The parallel system

Pr 0.17 0.17 0.045

P, 0.05 0.073 0

2.7 Applications of Dynamic Multi-State System Modk

Many engineering systems can fit into the proposadti-state
system model. In this section, we will present pplig@ations that have been
identified by Tian, Z., Li, W. and Zuo, M. J., [44hd modified here to be
dynamic MSS. Similar applications can be found awer supply systems
and telecommunication systems.

Consider for example an oil supply system, as shavigure (2.3).

1 |
0 q (Station1

L
{ Station 2

oS
A
Ve

|
Station 3

EL

?
Esleslesles
Oil Source ]

Figure (2.3) An oil supply system.
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The oil is delivered from the oil source to threatisns through four
oil pipelines. A pipeline is considered to be atirstlate component (thus=
4). A failure might occur at any part of a pipelinBake pipeline 1 for
example, if there is a failure in secti§p, the section of pipeline 1 between
the oil source and station 1, the oil will not H#eato reach any station via
pipeline 1. If there is no failure in sectigp,, but there is a failure in section
Si,, the section of pipeline 1 between station 1 aatlom 2, the oil will be
able to reach station 1 but will not be able tocheatation 2 or beyond.
Similarly, if there is no failure in sectiafy; or sectionS;,, but there is a
failure in sectiorS;;, the oil will be able to reach station 1 and stat2, but
will not be able to reach station 3. Based on thesiple failures in different

sections of a pipeline, four states of a pipeliae be defined as follows:

1. State O: oil cannot reach any stations.
2. State 1: oil can reach only station 1.
3. State 2: oil can reach station 1 and 2.
4. State 3: oil can reach station 1, 2 and 3.
Each station has different demands on the oil.
1. Station 1: requires at least one pipelines workmmeet its demand.
2. Station 2: requires at least two pipelines workmgneet its demand.
3. Station 3: requires at least four pipelines workmgneet its demand.
At the system level, we are interested in whetherdemands of up to
a certain station can be met. Thus, four stateébeobil supply system can be

defined as follows:

1. System state O: it cannot meet the oil demandatiost 1.
2. System state 1: it can meet the oil demand of ugtdton 1. That is, the
system can meet the demand of station 1, but caneet the demand of

station 2.
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3. System state 2: it can meet the oil demands obugidtion 2. That is, the
system can meet the demands of station 1 andrs@tiout cannot meet the
demand of station 3.

4. System state 3: it can meet the oil demands obuwgiation 3. That is, the
demands of station 1, 2 and 3 can all be met.

In practice, we may be interested in the probabdit the oil supply
system in states 0, 1, 2 or 3xdfi = 1,2,3,4 are used for the pipeline, then,

the component state probability are given in Tbl&4)

Table (2.14) Component state probability of the sdlurce system.

component State
0 1 2 3
X1 0.0500 00950 00684 07866
Xy 0.0500 00950 00684 07866
X3 0.0300 00776 00446 08478
Xy 0.0300 00776 00446 08478

Note, the structure function of the MSS in thisrapée has dimension
equals to:

m" = 4* = 256.

The structure function released to this system theddirect partial
dD(1-0)
axi

logic derivativeT:g) are presented in Appendix A.

The subsets failure syste(i,|x;} are formed to be:

a) {Grlx,} = {1000}, if the sections}, is a failure, the oil will not be able to

reach any station via pipeline 1.

b) {Gslx,} = {0100}, if the sectionSZ, is a failure, the oil will not be able to

reach any station via pipeline 2.
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c) {Grlxs}= {0010}, if the sectionS3; is a failure, the oil will not be able to

reach any station via pipeline 3.

d) {Grlx,}= {0001}, if the sectionSy; is a failure, the oil will not be able to

reach any station via pipeline 4.

. . . . . . 0DP(1-2)
Appendix B shows the direct partial logic deI‘IV&tIVm

which are calculated fof = 1,2,3,4 and the analysis of this derivative
permits to obtain states of theg,x,, x5, x, system failure for which the

replacement of the broken component restores gtersy

The states for repairing the system are calculayed similar method

For the failure system, The subsets of the regasystem{s,|x;} are:

a) {G,|x;} ={0002, 0003, 0012,0013, 0020, 0021, 0030, 0031,201W103,

0112, 0113, 0120, 0121, 0131, 0200, 0201, 02101,0200, 0301, 0310,

0311}, if there is no failure in sectiosg,, Si,, andsSi,.

b) {G,|x,}={0002, 0003, 0012, 0013, 0020, 0021, 0030, 003121A003,

1012, 1013, 1020, 1021, 1030, 1031, 2000, 20010,20011, 3000, 3001,
3010, 3011}, if there is no failure in sectiasys, S, and SZ;.

c) {G,|x;}={0002, 0003, 0102, 0103, 0200, 0201, 0300, 0301210003,

1102, 1103, 1200, 1300, 1301, 2000, 2001, 2101¥nefe is no failure in

sectionSg,, S32,, andS3;.

d) {G,|x,}={0020, 0030, 0120, 0130, 0200, 0210, 0300, 031011130,

1200, 1210, 1300, 1310, 2000, 2010, 2100, 2110,38@0, 3100, 3110}, if
there is no failure in sectiosg,, Si,, and S5;.

The results of the CDRI's for the oil supply systare presented in
Table (2.15).
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Table (2.15) CDRI calculation for oil supply system

x| pDIY | pIZ | pO | p@d2: | P | P.() |

Xq 1 23 0.003 0.089 0.00028 0.004H5
X, 1 24 0.003 0.093 0.00028 0.004“7
X3 1 18 0.003 0.07 0.00023  0.002L
X4 1 22 0.003 0.085 0.00028 0.00ZHS

So, the breakdown of the sectisp, and sectionSi; causes the
maximum probability of system failuré:(1) = 0.00028 and P:(2) =
0.00028. SectionSs; and Sg; have an influence on the system failure least of
all P(3) =P:«(4) =0.00023 . The system repairing has its most value
probable if there is no failures in sectiafig, SZ, and inS%,i.e.P.(2) =
0.0047.

Also, the DIRI's are probabilities of the change thfe system
reliability if the state of one of the system comeots is changed. The
probability of the system failure, if one of thengmonents breaks down, is
P = 0.335 in accordance to equation (2.18). The probabitifysystem
repairing obtained by equation (2.19) and’is= 0.013 if one of the failed

component of the system is replaced.
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CHAPTER

Reliability of Dynamic Fuzzy Multi-State Systems

3.1 Introduction

In conventional multi-state theory, it is assumdthttthe exact
probability, and performance level of each composéate are given. With the
progress of modern industrial technologies, howepeoduct development
cycles have become shorter, while the lifetimespadducts have become
longer, [18]. In many highly reliable applicatiorthere may be only a few
available observations of the system’s failuresréfore, it may be difficult to
obtain sufficient data to estimate the precise eslaf the probabilities, and
performance levels of these systems. Moreover,itlhecuracy of system
models, caused by human errors, is difficult to g using conventional
reliability theory alone [20]. In light of thesegsificant challenges, new
technigues are needed to solve these fundamentdlleprs related to

reliability.

This chapter consists of four sections. In sect®?, fundamental
concepts including the definition of fuzzy setsgeddraic properties, fuzzy
numbers and its operators, membership functions addvel sets are

presented.

In section 3.3, the fundamental and key definifimnfuzzy multi-state

system and comparison between fuzzy number ar@ give

Finally, in section 3.4, the introduction of re dynic fuzzy multi-state

system reliability is given as a generalization fuxzy topic.
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3.2 Basic Concepts of Fuzzy Sets

A classical(crisp or ordinary) sefX is normally defined as a collection
of elements or objects x, which may be finite, dabke, or uncountable. Each
single element can either belong to or not belang set A,A € X. In the
former case, the statement "x belongs to A" is,tmigereas in the latter case
this statement is false. Such a classical set eaglebcribed in different ways;
either one can enumerate the elements that betotigetset, one can describe
the set analytically by defining a member for eatdment by using certain
characteristic function ranging between 0 and 1,which 1 indicates
membership and 0 non-membership. For a fuzzylsetharacteristic function
allows various degrees of membership for the elésnefia given set, [41],
[59].

Next, we will set some basic definitions and consaplated to

fuzzy set theory.

Definition (3.1), [59], [24]:

Let X be any non-empty set of elementduzy set in X is the set of
all x € X, which are characterized by membership functionuz(x): X —
[0,1]. The grades 0 and 1 represent respectively nonbmesmip and full

membership in a fuzzy set. A fuzzy setd may be written mathematically as:
A= {(x,pz(0)|x € X,0 < pz(x) <1}
The following concepts may be defined in fuzzy sets

Definition (3.2), [15], [25]:

The support of a fuzzy setd is the crisp set of alt € X, such that

uz(x) > 0 and is denoted by supf i.e.,

supp(4) = {x € X: pz(x) > 0}
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Definition (3.3), [10], [16]:

Theheight of a fuzzy se# (denoted by hgtd)) is the supremum value
of uz(x) over allx eX. If hgt (4) = 1, thenA is normal, otherwise it is
subnormal and a fuzzy set may be alwaysrmalizedby defining the scaled

membership function:
pit(x) =

Definitions (3.4), [10], [45]:

Let A andB be two fuzzy subsets of the universal set X with

membership functiong;(x) anduz (x), respectively, then:
1. Ac Bifand onlyif uz(x) < uz(x),vx €X.
2. A=RBifand only if uz(x) = pz(x),vx €X.

3.A°¢ is the complement of, which is also a fuzzy set with membership

function,pzc(x) =1 — puz(x), vx € X.

4.The empty fuzzy se and the universal set X, has the membership

ui(x) = 0 and uz(x),= 1 respectively for alk € X.
5.C = An B is a fuzzy set with membership function:
ue(x) = Min{uz(x), up(x)}, vx € X.
6.D = AU B is a fuzzy set with membership function:

up(x) = Max{pz(x), up(x)},Vx € X.

7.1f uzns(x) =0,V x € X, thend andB are said to bdisjoint.
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3.2.1a-Level Sets, [13]:

Because of its importance in fuzzy set theory asirdarmediate
concept between non fuzzy set theory and fuzzyheery, therefore the scope
of this section is to cover and discuss some hagortant properties of the so
calleda-level sets (on-cuts) which correspond to any fuzzy set.evel set is
a set collect between fuzzy sets and ordinary sdti€h could be used to prove
most of the results that are satisfied in ordirsets are also satisfied to fuzzy

sets and vice versa.

In fuzzy set theory, if we want to exhibit an elemer € X that
typically belongs to a fuzzy sét, we may demand its membership value to be
greater than to some threshaeldl [0, 1]. The ordinary set of such element is
called thex-level sets ofl and is denoted by, i.e.,

A, ={xpu;(x) = o,x € X}

It is easily to check that the following propertere satisfied for alk
[0, 1].
1.(AuB),=4A,UA,.
2.(AnB),=4,nA,.
3.AC BgivesA, € Ay if a > B.

4.A = B equivalent tdd, = By, V a € (0,1].
5. A, NAp=AgandA,UAz = A,, if a <.

3.2.2 Convex Fuzzy Set:

Convex fuzzy sets are of great importance in definfuzzy
numbers. This property is viewed as a generalimatb the classical
concept of convexity in crisp sets. The definitminconvexity for fuzzy
set does not necessarily mean that the membenshgbidn of a convex

fuzzy set is also convex function, [26].
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Definition (3.5), [14]:

Let X be a vector space (universal set), then ayfsetd is convex if:
pa(Axy + (1 = Dxz) = Min{uz (1), na(x2)}, Vg, x; € X, 4 € [0,1].
Alternatively, a fuzzy set is convex if all of islevel sets are convex.

3.2.3 The Extension Principle:

The extension principle of fuzzy set theory mayused to generalize
crisp mathematical concepts to fuzzy mathematiocalcepts, which may be

also used to define fuzzy functions, [23].

Definition (3.6), [23]:

Let X be the Cartesian product of universegx,,...,x, and
Ay A, ..., A, be r-fuzzy sets ix,, x,, ..., X., respectively, f is a mapping from
X to a univers&’' (y = f(X1,Xz, ..., X.)). Then the fuzzy sek in Y is defined
by:

B = f(/I) ={usW)Iy = f X1, X2, s Xp), (X1, X2, -, Xp) € X}
Where:

R T B
g 0 , Otherwise

wheref 1 is the inverse image of f.
For r=1, the extension principle, of course, reduces to:

B=f(4)={0usO)ly = f(x),x € X}

where:

Sup . e =1

_ T Ma) I ) F 0
~ =X 1

Hs(¥) { Efo (y), Otherwise

which is the definition of a fuzzy function.
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3.2.4 Fuzzy Number, [47], [37]:

A fuzzy numberM is a convex normalized fuzzy skt of the real line
R, such that:

1. There exists exactly ong Xl R, with L5 (Xg) =1 (x is called the mean value of
M).
2. U (X) is piecewise continuous.
Two types of fuzzy numbers may be used, which heettiangular

and trapezoidal. The general form of membershigtfan of this function is
defined by, [61]:

0 Jforx < ay
(x —ai)/(az —ay), fora; <x < ay
(a3 —x/az—a;) ,fora;<x<a;z
0 ,forx > as

pa(x) =

Also, the triangular fuzzy number may be termedtbyaluea, as a fuzzy sei,

(see figure 3.1).

My (x) A

1.0

0 a; a, aj

Figure (3.3) The triangular membership function.
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It is a fuzzy number represented with three pararset, a, and a; as
follows A = (ay,a,,a3). This representation is interpreted as membership

functions and hold the following conditions:

I- The membership functions from to a, is an increasing function
ii- The membership functions from to a; is decreasing function
- ay <a, <as.
Now, letd = (a4, a,, a3) andB = (b, b,, b3), then the basic algebraic
operation that can be defined and performed ongukar fuzzy number are:

F =X and =

~ o~ o~

Addition: A+B = (a; + by,a, + by, a3 + b3)

Subtraction: A=B = (a, — b3, a, — b,,a; — b;)

Multiplication :

AX B = (Min(ayby, a,bs, ashy,azbs),a,b,, Max(a, by, a;bs, asby, asbs))

Division:

A* B = (Min(ay/by, a,/bs, az/by, az/bs), az/by, Max(a, /by, as/bs, as
/b1, a3/b3)), by, by, by # 0

Example (3.1), [37]:

LetA =(2, 4, 6) and® =(1, 2, 3) be two fuzzy numbers. Then:

A*E—(Z * 6)—(06626)
. - 3;2:1 - . ) &~ .
A=A = (—4,0,4).

AT A= (3 4 9) = (0.33,1,3).

6’4’2
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Remark (3.1), [37]:

As it is mentioned earlier from example (3.1) thatd = 0,A T A # 1,
where 0 and 1 are singletons whose fuzzy represamtis (0, 0, 0) and (1,
1,1). It follows that the solutiofi of the fuzzy linear equaticA¥B = C is not

as we would expecB = C=A
For exampled¥B = (2,4,6) + (1,2,3) = (3,6,9) = C
ButC=4 = (3,69)- (2,46) = (-3,27) # B

The same annoyance appears when solving the fugmtiend X B =

C whose solution is not given /= C = A.

For exampled X B = (2,8,18) = C

But (2,8,18) = (2,4,6) = (3 8 5) = (0.33,2,9) # B

6’4’ 2

Therefore, the addition and subtraction (respelstiveultiplication
and division) of fuzzy numbers are not reciprocpémtions. According to
this statement, it is not possible to solve invgrsablems exactly using the
standard fuzzy arithmetic operators. To overconi® ith function principle
operation of triangular fuzzy number a new operatsoproposed that allows

exact solution or inversion.
3.3 The Fuzzy Multi-State System

In this section and based on the basic concepiszay sets and fuzzy
numbers and its algebraic operations given in @ec8.2, we will give the
basic concepts of fuzzy multi-state system religbénd introduce for the first
time in the next section the so called reliabilifydynamic fuzzy multi-state

system.
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The natural extension of the crisp definition fangentional MSS to
the fuzzy set definition for FMSS is that the stgt®babilities and state
performances of a component can be consideredzay ftalues. The general

assumptions of non-dynamic FMSS are presented b&jpw

1-The state probabilities and state performance sewEl component can be
treated as fuzzy values.

2-The state index is a crisp value taking integeueslonly. The state spaces
of componeni and the system af®,1, ..., m; — 1} and{0,1, ..., M; — 1},
respectively. Ifm; — 1 =M; —1for1 < i < n, the system is considered a
homogeneous FMSS.

3-The state of a system is completely determined ly s$tate of its
components.

4-The state set of components and the system areedrde that a lower state

level represents a worse fuzzy performance level.
3.3.1 Criteria for Ordering Fuzzy Variables, [30]:

In the above fourth assumption, the methods apptiede MSS model
cannot be directly used to order states in a FM88&etn In the MSS model, for

a component i if;; —y; > 0, theni > j, in which the arithmetic calculation
of x; — y; is simple and clear. However, in the FMSS modw, gerformance

level of statei being greater and less than that of the ststboth possible.
As an illustration consider the following example

Example(3.3), [30]:

Suppose that the fuzzy performance levels of statel statg can be
represented by triangular fuzzy numbe(d,2,2.5) and (1.8,2,2.2),

respectively. In this case,
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(1,2,2.5)=(1.8,2,2.2) = (1,2,2.5)F(-2.2,— 2,—1.8) = (-1.2,0,0.7)  the
performance level of states not definitely higher or lower than that of stat

Therefore, three criterions may be used to orderftyezy numbers. If
the first criterion does not give a unique ordéen the second and third
criteria will be used in sequence. In this sectibiangular fuzzy numbers are
used to represent fuzzy variables. However the queg definitions and
characteristics are not only developed for triaaguilizzy numbers but also
generally suitable for various fuzzy variables withfferent kinds of

membership functions.
1. The first criterion for ordering (the removal];30]:

Consider a fuzzy number and a crisp valuk. The left side removal of
A with respect tk, (denoted byR,(4, k) ) is defined as the area boundedkby
and the left side of the fuzzy numb&r and the right side removal df with
respecto k, (denoted byR,.(4, k) ) is defined as the area boundedkiand the
right side of the fuzzy numbet. The removal of fuzzy numbér with respect

tokis defined as

R(AK) = =[R, (A, K) + Ri(4K)]

N| —

The first criterion, therefore, is set as a congmari of the removals of two
different fuzzy numbers with respect ko Relative tok = 0, the removal
number R(4, k) is equivalent to an “ordinary representative” bé tfuzzy
number. If a fuzzy numbed is triangular and represented by a triplet
(a4,a,, asz), then the ordinary representative is given by:

a, + 2a, + az

A=
4
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2. The second criterion for ordering (the mode) 03

Different fuzzy numbers may have the same ordimapyesentatives.
The first criterion may not be sufficient to obtdhe linear ordering of these
fuzzy numbers. In these cases, the second critevitimch is based on a
comparison of the modes of different fuzzy numbe&sjysed to order these
numbers. The mode of a fuzzy variable is that vallch has the highest

membership function. In the case of a triangulazyunumber, it is simply,.
3. The third criterion for ordering (the divergengg[30]:

If the first and second criterions are not enoughbhitain the ordering of
fuzzy numbers, the divergences around the modaspy numbers are used to
order these numbers. The divergence around a medsures the magnitude
of expansion at the given mode point. In the cdsetoangular fuzzy variable,

it is the value oti; — a;.
The following example illustrates the above methods

Example(3.4), [8]:

Consider a component that may be in one of fousiptes states. The

performance levels of these states are the trianfuezy numbers.

A =(467),4;, =(459),4; =(3510),4, =(0,0,0).

Firstly, we use the first criterion of ordering:

- - 4+12+7

A= (467) > & = ———— =575

- - 4+10+9

Az = (4’,5,9 ) = A2 = = 5.75

- - 3+10+10

A3 = (3,5,10) - A3 = 4 = 5.75
- ~ 0+0+0

Ay = (00,0) > A, =————=0
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ThereforeA, < Ay, 4,, A5 .

Secondly, the second criterion is used to oAleA,, andA;:

A, = (4,6,7) - mode 6
A, =(4,59) > mode 5
A; = (3,5,10) - mode 5

Therefore A; > A,, A,

Finally, the third criterion is used to orded, and A;

A, =(4,59) > divergence= 9—4 =75
A; = (3,5,10) - divergence= 10 —3 =7
Therefore, 4, < A

We obtain the linear orded, < 4, < 4; < A,

3.4 Reliability of Dynamic Fuzzy Multi-State Systers

Consider a component that may be in one of fousiptes states. The

performance levels of these states are the follpwiangular fuzzy numbers

0 =(0,0,0.5),1 =(0.3,1,1.8),2 = (1.6,2,2).

So we have three states for the linguistic valddmsic events, which are:
State 1 (Failed):which is corresponding to the fuzzy numBer
State 2 (Degraded)which is corresponding to the fuzzy numfer

State 3 (Operational):which is corresponding to the fuzzy numBer
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In order to solve the problem we use the firgecon of ordering:

0

1

2

(0,0,0.5) > A4, =

(0.3,1,1.8) - 4,

(1.6,2,2) > A; =

0+0+0.5
— = 0.125,
4
03+2+1.8
= = 1.025,
4
16+4+2
B E—— 1.9,

Therefore,0 < 1 < 2.

The structure function of the 2-out-of-3 FMSS ewsts: obtained with
m; = 3,i = 1,2,3 which are given in Table (3.1).

Table (3.1) The FMSS 2-out-o0f-3 system

~

8
a
=
=
o
S
=
M
N/

d(X)

I
tall

R
!

(o8}

I
tall

R
!

(o8}

d(X)

OO OOl Ol Ot Ot O | R

UV JEEV RV JUUEY JIUEV NN UV UV UV b

(NI NI NS T NS T NC TR NS T NS T NG T NS TY R

DNt DN DN = = = O O Ot
DN = O N = O N = O
DN =l O =l = O OV OO
DN DN DN =L = =2 O O O
DNt =t O DN = O N = O
DOV =0 = = =) Y ) e O©
DNl DN DN 2L = =2 O O Ot
DNt = O DN = O N = O
DO DN DN DN =0 =0 DN = O

Hence, the direct partial logic derivati$&=2 for the failure of

the component are given in Table (3.2)
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Table (3.2) Direct partial logic derivatives of fare the FMSS.

a®(1 - 0) ap(1 - 0) a®(1 - 0)
ax1(1-0) x2(1-0) x3(1-0)

=1
=

al
v

&=
w

~ ~

DO DN DN DN DN DN DN DN DN =l = = = =l =) = ) R DO DN O OO DA
DO DN DN = = =2 O O O DN DN DN = = = OO O NN DN Y = = O O D
DN OIN = OUN = O NN = O = O DN = O = O DN = O
(o]l N el o] Nel o) Nl o) Nel el ] Hel ol (S o] Halll (Sl 5 (S (Sl Nl ] Nol Na) N el o) o] Ja) o] ol N aw)]
QA ANNN A AN NN AT OO O
QIO A A AN AN AN AN AN OL OO

Similarly, Table (3.3) shows the direct partial imgderivative
2(0-1)

m for system.
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Table (3.3) Direct partial logic derivatives of rap the FMSS.

do(0 - 1)

do(0 - 1)

do(0 - 1)

0x,(0 - 2)

0x3(0 - 2)

DN DN DN DN DN DN DN DU DN = =) = =) b= =) = ) O O DN N O OO D
DNUIDNIDN R R OO DN DN DN == = OO O DN DN DN OOt D
DN = O DN = O N = YN = O DN = O N = O DN = OV = O DN B O
QIO OO QIO A O QYOI QN O Ot Ot O Ot Ot QY Ot Ot O O O N O NIt O

(o] Henl i ev] Henl N en) Nenl ) Nel ] ol o] Nl o] Nl o] Nl o] (S]] fo] Nl o] ol ol Nl ol 3 (O] N a)]

QAN A AN QA A DA AN A A AN A DD AN OO D

1-0

Hence, the numberg(1); 5
follows:

p(DI5 = 4. p(D15 =

p(1D527 =2, p(2)§23 =

and p(i)g"T

0-m;—1

=4,p(3)120 =

=2,p(3)93 =
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Thus, the structural probabilin(i)%jg of thei — th component failure

state modification from to 0 are:

p()328 = p(1)I28 = (i, X i, X i3),i = 1,2,3
= (4,44) T ((2.6,3,3) X (2.6,3,3) X (2.6,3,3))
= (4,4,4) T (17.576,27,27)
= (0.148,0.148,0.22)

1-0
0-m;—1

Thus, the structural probability(i) of i —th component

replace for system repairing are:

p()323 = p(DIZT T (g X iy X 11ig),i = 1,2,3
=(2,2,2) £((2.6,3,3) X (2.6,3,3) X (2.6,3,3))
=(2,2,2) £ (17.576,27,27)
= (0.074,0.074,0.113)

Hence, the probabilities of the component dynamliability indices of

the FMSS failure are given by:

Pr(1) = p(D1Z5 X pa (D)
= (0.148,0.148,0.22) X 0.6
= (0.0888,0.0888,0.132)
Pr(2) = p(2)125 % p1(2)
= (0.148,0.148,0.22) X 0.5
= (0.074,0.074,0.11)
P:(3) = p(315 % p,(3)
= (0.148,0.148,0.22) X 0.2
= (0.0296,0.0296,0.044)
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Also, the probabilities of the component dynamicat®lity indices of

FMSS repairing at a modification of a state of stegn component.

B.(1) = p(1)523 X po(1)
= (0.074,0.074,0.113) X 0.1
= (0.0074,0.0074,0.0113)

B(2) = p(DF5 X po(2)
= (0.074,0.074,0.113) X 0.4
= (0.0296,0.0296,0.0452)
B.(3) = p()ZL X po(3)
= (0.074,0.074,0.113) X 0.2
= (0.0148,0.0148,0.0226)

Also, the probability of the system failure if or@d the system
components is breakdown is given by fuzzy probihili

n

P’f=zr_l’15f(i>% [ (=rw)

q=1,9%i
= B(D) % (17B(@)) % (15(3)) TR % (157D % (15B:(3))

FR3) % (1=F(D) % (1=F(2))
=(0.0888,0.0888,0.13% (1=(0.074,0.074,0.11)% (1~(0.0296,0.0296,0.044))
7(0.074,0.074,0.11% (1~=(0.0888,0.0888,0.132§ (1=(0.0296,0.0296,0.044))
F(0.0296,0.0296,0.0443 (1~(0.0888,0.0888,0.132§ (1=(0.074,0.074,0.11))
=(0.17,0.17.23)
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and the probability of the system repairing if afi¢he failure components of the

system is replaced is given by fuzzy probability:

n

ﬁr=iﬁr<i>% [ (-20)

q=1,q+*i
=AW X (1=A@) % (1=53)) FA@) X (1=A.1) % (1=5(3))

¥B.(3) X (1:11(1)) % (1:11(2))

= (0.0074,0.0074,0.011%) (1=(0.0296,0.0296,0.0452))

% (1=(0.0148,0.0148,0.0226Y (0.0296,0.0296,0.0452)

% (1=(0.0074,0.0074,0.0113Y) (1=(0.0148,0.0148,0.0226))
¥ (0.0148,0.0148,0.0226) (1=(0.0074,0.0074,0.0113))
%(1=(0.0296,0.0296,0.0452))

= (0.05,0.0%).0756 )
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Conclusions and Recommendations

From the present study, we can conclude the foligwi

The reliability of dynamic multi-state system is effiective approach to
evaluate the probability for the system failureghé efficiency of some
component decreases and system repair if some dailnre components
restore. Component dynamic reliability indices atyhamic integrated
reliability indices can be applied to broad proldenm engineering
systems, supply chain and logistics, general néssvéor transportation
and distribution, computer and communication system

The dynamic reliability approach has been usedesstally to evaluate
the probability of the failure and repairing of thi supply system as an
application of dynamic multi-statk-out-of-n system model where the
components and the system have multiple performievets.

The dynamic reliability fuzzy multi-state systemyriae considered as a
generalization to non-fuzzy or crisp multi-statgstem of previous
investigations that have been presented when wsidemthea-level to
be ata = 1. In this thesis, we consider new equations fabpbility of
fuzzy system failure if the efficiency of some campnt decreases or
these components are break down for k-out-of-nyfumalti-state system
and fuzzy system repair if some of failure compuseestore for k-out-

of-n fuzzy multi-state system.
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Also, from the present study the following recomufegions may be

observed:

1-

Modifying the reliability of dynamic fuzzy multi-ate systems represent
how change if one of system components impactseaystem reliability
to solve analytically of a FMSS reliability chandepending on fixed
components efficiencies changes.

The application of dynamic fuzzy multi-state systersliability In the
area of multi-state system reliability, most of teported research studies
are focused on theoretical study. The contributminthis thesis work are
also mainly on the theoretical side. More applamatstudy should be
carried on.In the area of multi-state system reliability, masdt the
reported research studies are focused on thedrestaly. The
contributions of this thesis work are also mainty the theoretical side

and more application study should be carried on.
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The Direct Partial Logic Derivative of the Oil SuppFailure System
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The Direct Partial Logic Derivative of the Oil Supprepairing System
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120

| 1] 3/ 2)0] 2 | o | o | 0

122

l23) 1] 3] 2/ 2| 2 | o | o | 0

12 |

4.
25| 13/ 3/ 0] 2 | o | o | 0 | 0 |

126 |

27| 1] 3] 3] 2| 2 | o | o | 0 | 0 |

128 ‘

29 2j0j0J O} 1 | o | 3 | 3 | 3 |

130 |

3f 2jo0jo0j2) 2 | o | o | 0 | 0 |

132 ‘

3 2j0j1jo) 1 | o | 3 | 0 | 3 |

134 |

5/ 2/ 0 1] 2| 2 | o | o | 0 | 0 |

136 ‘

7j 2jo0j2j0] 2 | o | o | 0 | 0 |

138 |

19 202y 2| 2 | o | o | 0 | 0 |

140 |

M 2jo0j3/oj 2 | o | o | 0 | 0 |

142 ‘

3| 2/ 0| 32| 2 | o | o | 0 | 0 |

14 |

4.
ws| 2/ 1] 0jo0] 1 | o | o | 0 | 3 |

146 ‘

wrj 2j 1) 0j2) 2 | o | o | 0 | 0 |

148 |

Mo| 2/ 1] 1] 0] 1 | o | o | 0 | 3 |

150 |

1) 2] 1) 1] 2| 2 | o | o | 0 | 0 |

152 ‘

13 2/ 1) 2/ 0] 2 | o | o | 0 | 0 |

154 |

55 2| 1) 2| 2| 2 | o | o | 0 | 0 |

156 ‘

57/ 2] 1/ 3] 0] 2 | o | o | 0 | 0 |

158 |

59| 2] 1) 3] 2| 2 | o | o | 0 | 0 |

160 ‘

61 2 2j0j 0] 2 | o | o | 0 | 0 |

162
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0P(1 - 2)
dx4(0 - 3

0P(1 - 2)
0x,(0 - 3

0P(1-2) | (1 -2)
0x3(0 - 3) | dx4(0 - 3

NO. | x1 | X2 | X3 | Xq | P(xq, X2, X3,X4)

163

64/ 2/ 2/ 0| 3] 2 | o | o | 0

165

66/ 2| 2| 1| 1] 2 | o | o | 0

167 ‘

68/ 2| 2 1|3] 2 | o | o | 0 | 0 |

169 |

ioj 2j 2 2|1} 2 | o | o | 0 | 0 |

171 |

72| 2] 2/ 2|3] 2 | o | o | 0 | 0 |

173 |

7aj 2] 23] 1] 2 | o | o | 0 | 0 |

175 ‘

76/ 2] 2/ 3|3] 2 | o | o | 0 | 0 |

177 |

78) 2| 3/ 0| 1] 2 | o | o | 0 | 0 |

179 ‘

80| 2/ 3/ 0| 3] 2 | o | o | 0 | 0 |

181 |

g2/ 2| 3/ 1| 1] 2 | o | o | 0 | 0 |

183 ‘

84/ 2/ 3/ 1|3] 2 | o | o | 0 | 0 |

185 |

86/ 2| 3 2| 1| 2 | o | o | 0 | 0 |

187 ‘

88/ 2| 3| 2| 3] 2 | o | o | 0 | 0 |

189 |

t0f 2/ 3/ 3] 1] 2 | o | o | 0 | 0 |

191 ‘

o2/ 2/ 3/ 3|3] 2 | o | o | 0 | 0 |

193 |

o4 3J 0j0J 1] 1 | o | 3 | 0 | 0 |

195 ‘

o6/ 3/ 0/ 0|3] 2 | o | o | 0 | 0 |

197 |

g 3/ 0 1] 1] 1 | o | 3 | 0 | 0 |

199 ‘

2000 3/ 0) 1] 3] 2 | o | 0o | o | 0o |

201 |

202/ 3) 0| 2| 1] 2 | o | o0 | o | 0o |

203 ‘

204/ 3/ 0] 2/ 3] 2 | o | 0 | 0o | 0 |

205 |
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0P(1-2) | (1 -2)
dx;(0—-3) | dx,(0 - 3

0P(1-2) | d0(1 - 2)
0x3(0 - 3) | dx4(0 - 3

No. X1 | X2 | X3 | X4 <I>(x1, X2,X3, x4)

223
ﬂﬂ---_ ‘
II-.-_-.-.
ii
ig
ﬂ-_-_-_-
ig
ﬂ-_-_-_-
;Z
ﬂﬂ--_--
II-.-_-.-.
ﬂ-_-_-_-
222
ﬂ-_-_-_-
;22
ﬂ-_-_-_-
222
ﬂﬂ--_--
II-.-_-.-.
ﬂ-_-_-_-
;33

248
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