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ABSTRACT

The nuclear structure and electromagnetic transitions of even—even neutron-
rich °'*®Ba isotopes was studied in the framework of the collective models
Interacting Boson Model (IBM-1 and IBM-2) and Dynamic Deformation Model
(DDM). The reduced transition probabilities B(E2), B(M1), monopole matrix element
p(EOQ), mixing ratio 6(E2/M1) and X(EO/E2) of these isotopes was calculated. A
set of parameters was used in the calculation to approach the values with the
measured data. It was pointed out that Interacting Boson Model (IBM-1 and IBM-2)
are equitably reliable for the description of spectra and other nuclear properties. It was
found that there is a rapid transition between spherical and rotational shapes.

In this work, we depend on new methods to evaluate the effective charges for
proton and neutron boson (e,) and (e ), and new method to calculate the

gyromagnetic ratio for proton boson (g,) and (g,).

Mixed symmetry states are also studied. It is found that some of the mixed
symmetry states with moderate high spins change very fast with respect to the
Majorana interaction. Under certain conditions, they become the yrast state or yrare
state. These states are difficult to decay and become very stable. This study suggests
that a possible new mode of isomers may exist due to the special nature in their proton
and neutron degrees of freedom for these isotopes.

The mixed-symmetry 2;,2,, 3; and 1',states or at least a fragment of it

have been identified in Ba isotopes. This enables us to trace the evolution of the one-
phonon and two-phonon states in the even-even barium isotopic chain from the y-soft
nuclei near N = 82 to the deformed nuclei towards mid-shell.

The Dynamic Deformation Model (DDM) of Kumar and Baranger is
employed for studying variations of the nuclear structure of light **'“°Ba isotopes.
The potential energy surface parameters have been calculated and the low-lyingn
levels spectrum is predicted along with the static and transition E2 moments.
Comparison with experiment data and with other theories supports the validity of our
treatment.

The recent developments of the dynamic deformation model (DDM) make it
readily applicable to a wide range of nuclei in periodic table. We study of the
even-mass barium isotopes from N= 64 to the closed neutron shell at N= 84. Within
this region there is experimental evidence for nuclei with the characteristics of
vibrational, rotational or y —soft level sequences. We show that the DDM model is
well able to account for these features as typified by energy levels, electric quadrupole
moments and gamma transition probabilities across this region when the only
parameter which changes is the neutron number. For comparison the experimental
data were also fitted to IBM-2 and the results from these fits are in general in good
agreement with those from the DDM.
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CHAPTER ONE
INTRODUCTION

The atomic nucleus is a fascinating physical object. With a size measured in units
of 10™ m its dimensions are far beyond the abilities of human imagination. It is
remarkable that an atomic nucleus only makes up about 0.001% of the volume of its
atom leaving the rest empty. Yet, atomic nuclei comprise more than 99.9% of the mass of
all visible matter. Our contemporary idea of the properties of the atomic nucleus can be
traced back to its groundbreaking discovery together with the development of the model
of the atom by Rutherford in 1911 [1]. Since then, nuclear scientists have made
tremendous progress in the description of the atomic nucleus. But even today not all
properties of the atomic nucleus have been fully understood.

The atomic nucleus is a mesoscopic quantum system consisting of 1~300
interacting nucleons of two different species, namely protons and neutrons. However,
their interaction is still subject to ongoing investigations. Recent attempts to model
realistic interactions try to deduce the interactions between the nucleons from the
fundaments of QCD, e.g. [2], and involve different degrees of many body terms. Given
these considerations one would expect the structure of the nucleus to be chaotic and
complicated. However, empirical data on level schemes, in particular of even-even nuclei
all across the nuclear chart reveal a different observation. In fact, almost all even-even
nuclei exhibit some surprisingly simple parts of their level schemes whose patterns are
repeating in different regions of the nuclear chart. One well-known example are the first
two excited states of even-even nuclei that in most cases are of angular momentum

J"=2"and J" =47 . The ratio of their excitation energies, R,,, = E(4; /2;), exhibits
a very uniform behavior as a function of the distance from the nuclear magic numbers.

While a unified description of nuclear structure is still not available, different
approaches have been established to describe certain features of the nuclei. For nuclei
near closed shells the nuclear shell model [3] is capable of a good description, provided
that the underlying single-particle energies and interactions are known. Nuclei further
away of closed shells exhibit characteristic features that can be described by the
phenomenon of quadrupole collectivity, which arises from a coherent motion of the
nucleons, a phenomenon that can be observed in numerous even-even nuclei across the
nuclear chart. A very successful theoretical framework for the description of collectivity
has been found in the geometrical model introduced by Bohr and Mottelson [Boh98],
treating the nucleus as a shaped object which can be subject to excitations of vibrational
and rotational character. A different ansatz was developed in terms of algebraic models,
among which the Interacting Boson Model (IBM) [4] is the most widely known. Short
introductory chapters on all of the above-mentioned theoretical models will be given in
the subsequent chapters.

The models which describe the different phenomena of quadrupole collectivity
allow for the deduction of simple rules for experimental signatures—experimentally



accessible quantities that are characteristic of the respective theoretical models and can,
thus, help in guiding experimentalists to design and perform dedicated experiments.
Experimental results on the quantities serving as signatures of given theoretical models
are the most crucial testing ground for the applicability of a model. Such observables can
be relative quantities like decay branching ratios or y-ray multipole mixing ratios.

However, absolute quantities, for example in the form of selection rules for
electromagnetic transitions, allow for more substantial interpretations of experimental
data.

Interest in the A = 130 region of light Ba isotopes (N < 82) was renewed in 1985
on the recognition that some of these nuclei are good examples of the O(6) dynamic
symmetry of the Interacting Boson Model (IBM) [4]. Later, in 2000, with the
identification of ***Ba as a good example of the newly proposed analytically solvable
E(5) critical point symmetry on the U(5)-O(6) path by lachello [5], and by Casten and
Zamfir [6], interest in the Ba isotopes (N < 82) was renewed. Kumar and Gupta [7]
extended the highly successful microscopic theory in the dynamic pairing plus
quadrupole (DPPQ) model of Kumar-Baranger [8] to the A = 130 region, by using the
appropriate Nilsson spherical single-particle energies, and applied it to the study of the
neutron-deficient Ba isotopes.

Puddu et al., [9] used the Interacting Boson Model (IBM-2) to predict the general
trend of variation with N of the level structures and E2 moments in Xe, Ba and Ce (N
<82). Castanos et al., [10] derived the effective Hamiltonian in IBM-1 in terms of
Casimir operators with seven adjustable coefficients to study the groups of nuclei
including light Ba isotopes. In Ba they obtained 2, below 44 for all N, contrary to

experiment. Hamilton et al., [11] studied the y decay from the 2; state at about 2-MeV

excitation in the nuclei “°Ba , ***Ce, and ***Nd, with 84 neutrons and is shown to be
consistent with its identification as the lowest state of mixed symmetry in the U(5) limit
of the neutron-proton version of the interacting-boson model.

Novoselsky and Talmi [12] used a larger boson energy & on shell model
considerations in IBM-2 application. They kept y the coefficient of [dd™] term constant
and varied coefficients of other terms in the IBM Hamiltonian to better reproduce the
odd-even spin staggering. Sevrin et al., [13] added the SU(3) term to O(6) to generate
some rigid triaxiality in IBM-2 to better reproduce the odd-even spin staggering in the
K = 2"y -band.

The energy level spectrum and the interband B(E2) ratios were calculated for
130-134B4 [14]. The problem of computation of the resulting large matrix size restricted the
analysis to a maximum of four neutron pairs (and four proton pairs).

Yu-Xin LIU et al., in 1994 [15] studied the an IBM-2 description of the
staggering phenomenon in *?14°Ba isotopes. By introducing the quadrupole interactions
among like bosons into the Hamiltonian, the staggering phenomenon in the quasi-gamma
band is reproduced pretty well. The physical mechanism behind the improvement is
discussed.



Kumar and Gupta (2001) [16] employed the dynamic pairing plus quadrupole
model of Kumar and Baranger for studying variations of the nuclear structure of light
Ba isotopes with A = 122-134. The potential energy surface parameters have been
calculated and the low-spin level spectrum is predicted along with the static and
transition E2 moments. Comparison with experiment and with other theories supports the
validity of our treatment.

Mittal and Vidya Devi [17] in 2010 studied ****Ba isotopes within 1BM-1.
IBM-1 is used to describe the nuclear structure of these isotopes. The structure of such
isotopes was undertake to provide more detail on the neutron rich isotope. boson model is
used to calculate the ground, beta and gamma band energy spectra and the B(E2)
transition probabilities of **¥*Ba nuclei.

P. G. Bizzeti et al., in 2010 [18] investigate the possible X(5) character of **Ba,
suggested by the ground-state band energy pattern, the lifetimes of the lowest yrast states
of '#’Ba have been measured, via the recoil distance Doppler-shift method. The relevant
levels have been populated by using the *®Cd(*°0,2n)**Ba and the ***Sn(**C,3n)'*’Ba
reactions. The B(E2) values deduced in the present work are compared to the predictions
of the X(5) model and to calculations performed in the framework of the IBM-1 and
IBM-2 models.

Turkan [19] in 2010 studied the electromagnetic characteristics of 2*'¥Ba
isotopes Performed in the Framework of IBM-1 and IBM-2. In this study It was pointed
out that the level scheme of the transitional nuclei ******Ba also can be studied by both
characteristics (IBM-1 and IBM-2) of the interacting boson model and an adequate point
of the model leading to E2 transitions is therefore confirmed. Most of the o(E2/M1)
mixing ratios that are still not known so far are stated and the set of parameters used in
these calculations is the best approximation that has been carried out so far. It has turned
out that the interacting boson approximation is fairly reliable for the calculation of
spectra in the entire set of ****Ba isotopes.

Kumar et al., in [2010] [20] study the nuclear structure of *?>***Ba isotopes using
IBM-1. In this work calculated the level spectra of *****Ba using the phenomenological
IBM-1 model.

Subber and AL-Khudair in 2011 [21] studied the Nuclear structure of the neutron-
rich *4°1%®Ba isotopes. The level structure of even—even neutron-rich **°**®Ba isotopes
was studied in the framework of the interacting boson model. The reduced transition
probabilities B(E2) of these nuclei was calculated. A set of parameters was used in the
calculation to approach the values with the measured data. It was pointed out that
interacting boson approximations are equitably reliable for the description of spectra and
other properties. It was found that there is a rapid transition between spherical and
rotational shapes.

Mittal and Vidya Devi in 2011 [ 22] studied *?*3*Xe and *?****Ba nuclei using
IBM-1. In this study presented the calculation of energy levels and B(E2) values of these



nuclei. Using the best fitted values of the parameters in the Hamiltonian of IBM-1 model
and has been calculated the energy levels and B(E2) values for number of some
transitions in *%**?Xe and *#***Ba nuclei. Results are compared with experimental data
and other theoretical models. It has turned out that IBM-1 fairly reliable for the
calculation of spectra to the entire set of ***%2Xe and *#**%Ba nuclei.

Subber and AL-Khudair in 2012 [23] studied the J6(E2/M1) and X(EO/E2) mixing
ratios in ***Ba by means of IBM-2. In this study showed that the *3* Ba isotope
(Z = 56) lies in the transitional region closer to the vibrational range of nuclei. Energy
levels B(E2), B(M1) and the mixing ratios 6(E2/M1) and X(EO/E2) for selected
transitions were calculated in the framework of the proton-neutron interacting boson
model (IBM-2). All results were compared with experimental data. Some experimental
X(EO/E2) ratios were calculated from available experimental data. Majorana parameters

were found to have a great effect on the calculated energy levels of the 2; and 2, ,which
indicate that both of them have mixed symmetry properties.

Gupta in 2013 [24], the shape-phase transition at N =88-90, and the role of
Z = 64 subshell effect therein has been a subject of study on empirical basis and in the
context of the N N scheme, but a microscopic view of the same has been lacking. The
dynamic pairing plus quadrupole model (DPPQ) is employed to predict the occupation
probabilities of the neutron and proton deformed, single-particle orbitals. The nuclear
structure of Ba-Dy (N > 82) nuclei is studied and the shape equilibrium parameters
derived.

Thomas Modller in 2014 [25] The results on B(M1; 2;; — 27) values of the nuclei

13013285 complete the experimental data on the evolution of the one quadrupole-phonon
state of mixed proton-neutron symmetry (2;,,) in the A= 130 mass region. The results

+

support the previous observation of increased fragmentation of the 2, state for mid-

+

shell nuclei, although one candidate of a2;,, state of 130Ba, if confirmed, would alter
this interpretation.

Gupta in 2015 [26], nuclear level structures of ****Ba isotopes have been
studied empirically in relation to the analytic symmetries of the interacting boson model
IBM-1 and in the calculation of the IBM-1 Hamiltonian. Comparison is made with
experiment and with the microscopic dynamic pairing plus quadrupole model predictions

available from our previous studies. The variation of the structure of states in the 2;
bands and of the 07, bands, with neutron number N, have been studied. Relation of odd-

even spin staggering in the 2, bands with the p-softness is illustrated. A comparison is
made with predictions of the various analytical symmetries.



Gupta in 2015 [27], Rich experimental data is available for light Ba isotopes
N < 82 have been studied. An attempt has been made in a dynamic deformation model
using pairing plus quadrupole interactions and two full major shell configuration space

1.1 The Aims of Presented Research Work
In the context of the main aim of the present study, namely to investigate the
following nuclear properties:

1- The objective of the present study is to test the capabilities of IBM-1, IBM-2 models
and to give an insight on the variation of the nuclear structure and electromagnetic
transitions of ***®Ba isotopes with neutron number N. We have done a detailed study of
the energy systematics of **°**®Ba isotopes and the E2 , M1 transition rates in their decay,
mixing ratios 6(E2/M1)and monopole transition probability B(EO) and X(EO/E2). In
the this work, we study the shape transition of light Ba isotopes in comparison with the
predictions of the various analytical symmetries for this region.

2- Our work represents an attempt in the dynamic deformation model (DDM) for
analyzing the nuclear structure of Ba isotopes varying with neutron number N. We give a
brief account of our method and we present the results and compare a large amount of
data with experiment and the results of other IBM-1 and IBM-2 calculations in all of the
above three methods. We discuss the successes and the limitations of our method and
give our conclusions.

3- The main purpose of this work is to test the possible X(5) character of the Ba nucleus
by energy level in the ground state (g.s.) band to deduce the E2 strengths of the
transitions de-exciting its levels and, possibly, to identify the excited £ band [the s = 2
band according to X(5) terminology].

4- To study the mixed-symmetry states characteristics of the eigenstates through the
study of various quantities for instance, correlation in the electromagnetic transition
probabilities.

5- In the present study we focus our attention on Ba isotopes that are usually interpreted
as soft iny [or close to the SO(6) limit of the IBM] and we investigate to what extent the

observed signature splitting in the y—band signals the occurrence of more rigid
triaxiality.

6- Ivestigate the balance and the interplay between the nuclear collectivity, the shell
structures, and the isospin degree of freedom, we will try to clarify this relation. In this
respect, there are three physics questions that need to be addressed:

* What is the impact of the underling microscopic structure on the properties of mixed
symmetry states in low-collective vibrational nuclei from the Ba nucleus?

* How do mixed symmetry states evolve with increasing nuclear deformation?



* How does the balance between the number of valence protons and neutrons influence
the properties of the mixed symmetry states ?

7- Study the potential energy surface within IBM-1 and DDM .

1.2 Talk Layout

This thesis is organized as follows. The next Chapter gives a details summary of
the nuclear structure models used in this work: the IBM and the DDM. The discussion of
the results are described in Chapter 3. The results of this thesis are summarized in
Chapter four and an outlook for future applications is given.



Chapter Two
THEORETICAL CONSIDERATIONS

During the past thirty years, a large number of nuclear models and methods have
been developed. The spherical shell model has been extended so that it can be employed
for quite heavy nuclei [28,29]. However, there are serious problems connected with
configuration space truncation and there are indications, especially from nuclear reaction
studies, that the "extra" configurations cannot be left out of a satisfactory theory of atomic
nuclei. Furthermore, such spherical models cannot describe nuclear fission. This is not a
matter of concern only for people interested in transuranic nuclei! Any nucleus can fission
if it is given enough energy and angular momentum. The limiting angular momentum
reaches a peak value [30] of ~95 at A~130 but drops off to zero on both sides of this mass
number.

The first two sections of this chapter will present a brief summary of some of the
macroscopic and microscopic nuclear models of collective excitations. Section 3 will
present a detailed discussion of the recently proposed phenomenlogical model ( Interacting
Boson Model (IBM)).

2.1. MACROSCOPIC MODELS

The understanding of nuclear excitations in terms of the specific interactions of the
single nucleons comprising a nucleus is the fundamental problem of nuclear physics. The
shell model has been shown to provide this level of understanding in many nuclear
systems. However, this success has been limited in even-even nuclei to systems with
relatively few particles outside of closed shells or the region A<50. To date, no complete
shell model description of a heavy even-even nucleus far from a closed shell exists.

The nuclear systems composed of many particles, however, exhibit structures that
can be easily understood when the gross properties of these nuclei are taken into account.
For example, there is considerable evidence that the low-lying excitations of even-even
nuclei with  A>100 are predominantly of a collective nature, that is, the correlated
oscillations of many particles with respect to a core of spectator nucleons. In addition, the
onset of structures that can be attributed to the excitation of only a few (2 to 4) particles
occurs at a much higher energy.

The understanding of the collective excitations of nuclei has long been viewed in
terms of the macroscopic properties of the nucleus. One of the earliest attempts at this type
of description was the classical Liquid Drop Model (LDM) [31] which tried to describe
such bulk properties of nuclei as binding energies and the onset of fission.

The most successful of the macroscopic descriptions of nuclear excitations is that
of A. Bohr and B. Mottelson (BM) [32,33].

An excellent detailed description of the collective properties of nuclei is presented
in their text (Ref. 33). In addition,numerous excellent review articles [34,35] have
appeared, which present the BM model in great detail; therefore, the discussion here will
be restricted to a general presentation of the model and the characteristic features of the
different excitations expected from a phenomenological approach.

2. 1. 1. Spherical Shapes
In the BM description, the competition between short-range and long-range
interactions between nucleons gives rise to surface vibrations about an equilibrium shape



that can be spherical or deformed, whether or not axially symmetric.
The surface of a nucleus can be expressed in terms of [36]:

R= R{1+ZaMYf(9,¢)} .............. (2-1)

where R, is a constant and Y/ are the usual spherical harmonics (Legendre

polynominals). The collective motions are then obtained by the time variation of the «/ 's.

In the usual quadratic approximation, the kinetic energy can be written as [36]:
2

LT D= 175 S —— (2-2)
u
Similarly, the expression for the potential energy becomes [36]
2
V=43Chlay| i (2-3)
Au

Equations (2-2) and (2-3) correspond to the familar simple harmonic oscillator for
each variable oy, , where the associated frequency for each o, is given by [36]:

The oscillations associated with A = 0 and A = 1 are not of concern here, since they
correspond to density oscillations (which will occur at high excitation energies) and
vibrations of the center of mass, respectively. The frequency, w;, rapidly increases [37] as
a function of A.

Therefore, the lowest order vibrations will be of order A=2, or quadrupole
oscillations. Since we are only interested in low-lying excitations, the only other order
which will be discussed is 4 =3.

Consider first the situation for A =2. A phonon, a quantum of vibration, of type A
carries angular momentum equal to A and parity (-)*. Therefore, for a nucleus which can
oscillate about a spherical shape, the first excited state will have spin-parity of 2. The
next quadrapole excitation will correspond to the coupling of two A =2 phonons, i.e.,
n,_, =2, and will be a degenerate triplet of states with J~ values of 07, 2*, 4" at twice

the excitation energy of the first 2" state. (Recall the energy for a simple harmonic vibrator
is of the form E, =hw (n + 3/2)). In actual situations, one expects that the degeneracies
will be broken, but the predicted occurrence of levels at approximately the appropriate
energies should correspond to what is actually observed.

An energy spectrum is not sufficient to identify the structure of a nucleus;
knowledge of the wave functions of the states is crucial. The most frequent means of
probing the wave functions is by investigating the reduced transition probability, B(EL),
for the y —ray decay of one level to another, since this involves the overlap of two wave
functions connected by the transition operator, which is a familiar multipole operator
M(EA). The B(EA) values are simply related to the multipole operator, M(EL), via [36]:

1 2
B(EA:J, =5 J;)=——KI{IM(EA)[I)]| v 2-5
(B3> 3) =55 (0 MED) (2-5)
One can label the collective excitations by the number of phonons, n,, and the

angular momentum J. Transitions will only occur between states connected by An, =+1 .
The B(EAX) values for allowed transitions between two levels are given by [34]:



D> B(EA:n,J; —>n,-13;)=n,B(EA:n, =1->n, =0).ccooooocerr.e. (2-6)

The summation on the left-hand-side of the equation is over all states to which the initial
state can decay, given the selection rules of the B(E)) operator. For example, consider the
4; level (the subscript refers to the first occurrence of a 4” state) of the two A = 2 phonon

triplet. Here n,= 2, and the only state to which the 4; state can decay is the n,=1 2/
state. Therefore, Eq. (2-6) reduces to :

B(E2:n, =24 —»n, =12])

=2B(E2:2; =150 ).cccecunne. (2-7)

In addition, Eq. (2-6) implies that for any higher-lying state, for example, the 2* of
the three-phonon quintuplet, the sum of all transition probabilities will be equal to the
phonon number of the initial level times B(E2:2; —0;) , although the individual
transitions to the lower n,= 2 states will not be necessarily of equal strength. The actual
branching ratios are determined by the respective coefficients of fractional parentage (cfp)

for the coupling of particles with angular momentum A. In particular, for A = 2, 3, 4 these
have been tabulated by Bayman and Lande [38].

In addition to quadrupole oscillations, oscillations corresponding to A = 3, known
as octupole vibrations, may occur at approximately the energy of the A = 2 two-phonon
triplet [36].

Again, an energy spectrum given by E oc 7iw, occur, with the lowest state being a

3" level. In addition to the multiple octupole excitations, negative-parity states
characterized by a mixture of quadrupole and octupole vibrations may occur. The lowest
excitations of this type, namely with n,= 1 and n,= 1, will consist of five degenerate

states with spin-parity 1°.27,37,4",5 . However, because both the octupole vibration and

any higher order coupling of vibrations occur relatively high in excitation energy, there is a
greater probability that these states will mix with non-collective excitations, so that their
simple structure may be obscured.

2.1.2 Non-Spherical Shapes

As mentioned earlier, a particular nuclear shape emerges as a result of the
competition between long-range and short-range interactions. The particular effective
interactions that are important to the BM description are the short-range monopole pairing
interaction and the long-range quadrupole-quadrupole interaction between nucleons. A
more detailed discussion of these interactions is presented in numerous review articles, in
particular, Ref. [34] and in the next section. The pairing interaction tends to make the
nucleus spherical; also, the strength of this interaction is proportional to the number of
particles, N, outside of the closed shell. The quadrupole-quadrupole interaction favors a
non-spherical shape because of the characteristic range [34]; here the strength of the
interaction is proportional to N°. Near closed shells, the pairing interaction will dominate,
but toward the middle of the shell, where N* >> N, the quadrupole interaction will
dominate the pairing force and, hence, the nucleus will assume a permanent deformation.



To describe the surface of a non-spherical nucleus, it is convenient to transform
Eqg. (2-1) into the coordinate system fixed with respect to the nucleus. Therefore, for a
quadrupole shape, Eq. (2-1) becomes [36]:

R=R, {1+ >a, Y (9',¢')} ................................. (2-8)
)i
where the «,, are related to the earlier a,, via [36]:
a,, = 2,D;,(0,0,¥) (2-9)
)7

where the wa are the usual rotation matrices and 6, @, ¥ are the Euler angles, which

relate the body-fixed and space-fixed axes. Since [36] ¢;,= «,, =0 and «,, =«, ,, there

are only five parameters needed to describe the system, namely the Euler angles 6, @, ¥,
and «,, and a,,. For convenience, the parameters a,, and a,, are replaced by B and y

via the following relations [36]:

0y = SCOS Y
@, =% BSIN Yoo (2-10)

The parameter B is a measure of the degree of quadrupole deformation, while y is a
measure of the departure from axial symmetry. The expression for the kinetic energy is
given by [36]:

106 ,0 1 1 o . o |
— B =t —sin3y —
52 B o op p°sin3ydy oy
Tz_ﬁ 1 T St (2-11)
4% sinz(y—gﬂk)

where the J, are the angular momentum operators associated with the Euler angles. This

kinetic energy, together with the appropriate potential energy, will be referred to as the
Bohr Hamiltonian.

Three types of potentials will be discussed. The most familiar, which corresponds
to the symmetric rotor, occurs for f# 0, y = 0. The other two correspond to asymmetric
rotors: the triaxial rotor, where V = V(J, v,) for a specific y, # 0, and the y-unstable rotor,
where V = V(p) (i.e., independent of y).

The symmetric rotor is characterized by a quadrupole deformation f which may be
positive or negative, referring to prolate or oblate shapes, respectively. Empirically, most
deformed nuclei are prolate. Two types of collective excitations may occur: the nucleus
may rotate about an axis perpendicular to the axis of symmetry or the nucleus may
oscillate about its equilibrium shape. These oscillations may be along the symmetry axis, 3
vibrations, or such as to introduce asymmetries, y vibrations. In either case, rotations will
again be built upon the intrinsic structure at excitation energy, E,i, In all of these cases, the
energy spectrum can be simply expressed as [39]:

E:%[J(J +1)= K2 |+ By (2-12)

where | is the moment of inertia and K is the projection of angular momentum onto the
symmetry axis. For the rotations built upon the ground state and § vibrations, K = 0 and the
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spin sequence will be 0%, 2%, 4" ... For the vy vibrations K = 2 and the sequence of levels
will be 2%, 3%, 4*... (The derivation of these spin sequences may be found in numerous
references such as Refs. [33,36].

The transition probabilities again provide a convenient probe of the wave functions.
For transitions between states belonging to the same rotational band labelled by K one
obtains [37]

B(E2:J,K - J,K)=eQ? <Ji2KO|JfK>‘2 (2-13)

where Q, is the intrinsic quadrupole moment (see Chap. 4 of Ref. 36) and the right-hand-
side contains the usual Clebsch-Gordon coefficient. For deformed nuclei Q, is large ; thus,
enhanced transitions occur within a band. In general, for transitions between bands K; and
Kt , the branching ratios are given by [40]:

2
B(E2:J,K, > J,K;) <JiK2Ki—Kf\Jfo> M(K;,K;)
B(EZ:\]iKi—)\JIf Kf) <‘]iK2Ki_Kf‘JIf Kf>2M(Ki,Kf)

where the matrix element M(K;, Ks) only depends on the intrinsic structure of the bands and
not on the particular states in question. This means that the branching ratio, commonly
referred to as the Alaga ratio, from an initial state to two levels of the same rotational band
only depends on the J and K of the various states and not on the intrinsic structure, since
the same matrix element M appears in both numerator and denominator of Eq. (2-14).

(Note: this description only holds for 2<K,+K, . The cases when K, +K, <2, or

where multipolarities other than electric quadrupole are involved, are discussed in Ref. 40).

(2-14)

Davydov and coworkers [41, 42] have performed extensive investigations of the
properties of nuclei with rigid asymmetric deformations. In their model, which consists of
the Bohr Hamiltonian with a y-dependent potential, the nucleus is described by y and B,

where y may be determined by the energy of the 2 state. Unlike the case for a symmetric

rotor, the 2, level and associated states are rotational excitations rather than members of a
y-vibration.

Vibrations can be added to this triaxial structure by introducing g, the "non-
adiabaticity” parameter [43]. The parameter & is a measure of the importance of the
rotation-vibration interaction. For pu < 1/3 the distinction between rotations and vibrations
is clear, while for p > 1/3, the nucleus is considered "soft" and the distinction is not as
obvious. The definition of x and the values for many nuclei are presented in Ref. [43]. It
should be noted that only by introducing the non-adiabaticity parameter can excited 0*
states be incorporated into the triaxial description.

A discussion of the Bohr Hamiltonian with a potential that is defined to be
independent of yy was presented by Wilets and Jean [44]. A particular example of a

y -unstable potential is the displaced harmonic oscillator where [44]:

V(5) :%(ﬂ—ﬂo)z ................................ (2-15)
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One result of a y-independent potential is that the Bohr Hamiltonian can be expressed by
two equations, one that depends only on B and one that depends only on y, with the
separation parameter A given by [44]:

A=7(T+3) e (2-16)

In conclusion, the model of Bohr and Mottelson can be used to describe a variety of
nuclear shapes: spherical, non-spherical, symmetric and asymmetric. To these shapes odd
nucleons may be coupled, as described in Ref. [45,46]. However, as presented here, the
Bohr and Mottelson prescription is strictly phenomenological. The next section will
present several attempts at a microscopic description of some of the ideas presented here.

2.2. MICROSCOPIC MODELS

As mentioned in the previous section, the actual shape of a nucleus in the
macroscopic description arises from the competition between the effective short-range
pairing interaction and long-range quadrupole interaction between nucleons. After a
presentation of the formalism necessary in order to understand the pairing interaction
which occurs in many models, several different attempts at generating the
phenomenological properties of nuclei from a more fundamental basis will be discussed.

2.2.1. Pair-Coupling Scheme

The pairing interaction is strongest for a state in which the particles occupy the
orbitals in pairs coupled to angular momentum zero, so that the entire state has angular
momentum zero. All states for which a pair of particles are not coupled to angular
momentum zero will occur much higher in energy. A convenient quantum number is the
seniority, v, which counts the number of particles not pair-wise coupled to spin zero. The
pairing interaction, therefore, produces a large energy gap between the v =0 0" state and
all states with v =0. To simplify the discussion of the pairing force, the language of

second quantization will be used, in which a shell model state will be written as av*|0> ,
where a, defines a creation operator operating on the vacuum |0> The single particle

annihilation operator a, has the property av*|0> =0 . This formalism is very common and

the properties, such as commutation rules for the operators, will not be discussed here, but
may be found in numerous references, such as Refs. [34, 47], and [48].

In this formalism, the pairing interaction in a single j shell with strength G is
written as [34]:

Vs = _GZaV+ a8 ,8 e, (2-17)

which destroys a pair of particles in the to, orbit and creates a pair in the v orbit, with the
sum being performed over all v and ® orbitals. However, in most nuclear systems, the
single j shell approximation is not valid. With the method of Bardeen, Cooper, and
Schrieffer (BCS) [49], the ground state wave function for a nucleus in the case of non-
degenerate orbitals can be written in the form [34, 50]:

O, =[JUv+V,aa’,)|0)..cccerrrrrirraece (2-18)
where the U, and V, are subject to [34]:
UZ4+V2 =1, (2-19)
2> V7 =N, (2—-20)
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and N is the total number of particles.

To discuss the properties of excited states, it is simplest to transform from the
single-particle to quasi-particle description of the individual nucleons, as first performed
by Bogoliubov and Valatin [51, 52]. Here the correlated ground state of Eq. (2-18) is

defined as the quasi-particle vacuum ‘0~> and the quasi-particle operators «; and S are

related to the earlier single-particle operators a; , «, via[34]:

a =Ua -Va,

Br=Ua’ =V a, i (2-21)
with similar relations for the destruction operators. The quasi- particle vacuum is defined
such that a;[0”) =0.

The quasi-particle formalism does not guarantee the conservation of particles at all
times. The probability, V,?, that a state v will be occupied by a pair of quasi-particles is
given by [34]:

1

V2 =§[1—(gv ) VA= S— (2-22)
where
E, =y(g, =)+ A e, (2-23)
A=GDY UV, s, (2-24)

Several quantities appear in these expressions: e, is the single-particle energy, which is
related to the quasi-particle energy E, via Eq. (2-23); A is the energy of the Fermi surface;
A, the gap parameter, determines the diffuseness of the Fermi surface.

Several consequences of Eq. (2-22) should be noted. The Fermi surface is no longer
sharp, but states above the level determined by A have a finite probability of being full and
levels below A have a finite probability of being empty. Therefore, the total number of
particles in the ground state wave function given by Eq. (2-18) will only on the average
correspond to a certain number of particles N.

Typically, the root-mean-square fluctuation in particle number is two or three [34].
Also, in even-even nuclei, where the simplest intrinsic excitation corresponds to the
breaking of a pair, or the creation of two quasi-particles, the minimum energy, 2A, for such
an excitation will occur when ¢ = A. Therefore, the energy spectra of even-even nuclei will
have a characteristic gap, the pairing gap, between the ground state and the first intrinsic
excitation.

The gap parameter A can be determined in a number of ways. Since the ground
state of an odd nucleus consists of one quasi-particle, while, obviously, the even-even
ground state has none, the odd-even mass difference is one measure of A. One reasonable
empirical definition of the odd-even mass difference for neutrons, P,(Z,N), is given by
[48]:

P(Z,N)=2[-S,(Z,N+21)+2S, =S (Z,N=D].cceererrrrrrrrrrrrrrrrrree. (2—25)
where Z and N here are the proton and neutron numbers, respectively, and Sn(Z,N) is the
neutron separation energy, which is related to the total binding, E(Z,N), by the formula

S,(Z,N)=E(Z,N)—E(Z,N=D).ccccecvrrrrrrrrrrrrrrnen. (2—-26)
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Analogous relations can be obtained for Py, the proton odd-even mass difference.

Two quasi-particle excitations frequently occur at energies less than the
value of 2A, as determined from odd-even mass differences. (The systematics of two
quasi-particle excitations in the region A = 150-190 is shown in Figure 35 of Ref.
[34]; frequently the lowest states occur at energies 10-15 percent below the energy
predicted by 2P, or 2P,). This effect is known as "blocking"”, because the quasi-
particle excitation prevents the states involved in the excitation from participating in
the correlated state. Several attempts at generating the empirical values of A have
been made. The simplest understanding of how blocking effects contribute comes
from examining the relevant form of Eqg. (2-18) for a two quasi-particle excitation
[48]:

@, =aa’, [JU,+V,a,a,)[0> i, (2-27)
HEVO
Although the product in Eq. (2-27) does not include the v and o orbitals involved in the
new state, the U and V are still the values obtained when no state is blocked. If one defines
an effective number, T, of single particle orbits that contribute to the pairing energy as
[34]:

one finds that a reduction of T due to a two quasi-particle excitation is equivalent to a
reduced value of A, or alternate values of U and V. The calculations of Refs. [48] and [53]
are able to reproduce the empirical reduction of the pairing gap, as observed for the lowest
two quasi-particle states.

2.2.2. Pairing-Plus-Quadrupole Model (PPQ)

About 46 years ago Kumar and Baranger (KB) developed a Pairing-Plus
Quadrupole Model (PPQ) [54-57] in which they calculated the low-lying collective
excitations in transitional nuclei. Until recently this model had been found very successful
in reproducing many empirical quantities such as energy levels, B(E2) values and
quadrupole moments in the W-Os-Pt nuclei

The uniqueness of the Kumar and Baranger description is the coupling of
microscopic techniques to a macroscopic problem. Kumar and Baranger begin with a
generalized Bohr Hamiltonian [58]:

H =V (B, 7)T ot + Toipereeererereremrerererenennnnenens (2-29)

where V (4, y) is the potential energy of deformation; T, the rotational kinetic
energy is,

Tooe = 3L (B )08 +1,(B.7)02 +15(B.7)02 |t (2-30)
and the vibrational kinetic energy, T, IS written
Tio =3B (BB +By (B7)Py +5B (By)7 e (2-31)

The three principal moments of inertia 11, I, I3 and the vibrational inertia parameters Bgg,
Bs, B,, and B are chosen to bearbitrary functions of f and y; o, o2, w3 are the
components of the angular velocity on the intrinsic axes. This form of the Hamiltonian is
the most general that can be obtained, given the condition that the velocities can only
occur to no higher order than quadratic [58].

Seven functions of B and y appear in the Hamiltonian; V(3,7), the three
moments of inertia I, and the three parameters B. Kumar and Baranger calculate the
inertia parameters from a microscopic pairing-plus-quadrupole model based on the fully
self-consistent time-dependent Hartree-Fock picture. The potential energy V(f,y) is
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calculated using the Nilsson Model [45] single-particle energies and wave functions and a
pairing force, incorporating the BCS techniques. The seven functions of the KB
Hamiltonian are calculated numerically at every point in a large S —y mesh.

2.2.3. Dynamic Deformation Model (DDM)

The dynamic deformation model has been developed over many years starting
from the Paring Plus Quadrupole model (PPQ) of Kumar and Baranger [57]. The DDM is
an ambitious attempt to the collective spherical-transitional-deformed transitions and to
span from the s-d shell to heavy nuclei using a microscopic theory of collective motion. No
fitting parameters are required to obtain the data for a particular nucleus.

A full description of the DDM is given in reference [59] and references therein.
Here we present only the results of our application of the new version [60] of the DDM to
the tellurium isotopes.

The detailed formalism and early results may be found in Kumar et al., [59] and
Kumar [61]. Here we give briefly the main aspects of the model. The theory can be divided
into two main parts: a microscopic derivation of a collective Hamiltonian, and a numerical
solution of the Hamiltonian. The microscopic Hamiltonian is composed of a demoralized
Nilsson-type single particle plus pairing and has the form:

Where

2 3
av:;_M+%M @72 +hapogd s+ 0, (17 <12 5 o (2-33)
k=1

Combining all the various contributions together, the potential energy is written as:

\Y/

coll :VDM +&J +évproj +d£
were &V, is a nine-dimensional projection correction introduced by Kumar [61]. The

generalized cranking method is employed to derive the general expression for mass
parameters Bﬂv(ﬂ, 7/) as used in the collective kinetic energy which can be written as:

pairtereree e

1 .
Toon = EZBW%% ................................... (2-35)

uv

This kinetic energy function is quantized by Pauli method.

The DDM code used for our calculation is a modified version of the latest DDM
code which was developed for super-heavy nuclei. The single particle levels and the
configuration space (n = 0 to 8) employed in the present calculation, as well as the
deformation definition, are identical to those of Kumar et al., [59 ]. The main virtues of
the above approach (restoration of symmetries, unified treatment of spherical-transitional-
deformed nuclei) have recently been combined with the main virtues of the Nilsson-
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Strutinsky approach (large configuration space, no effective charges, applicability to
fission isomers and barriers) in the Dynamic Deformation Model (DDM).

The GCM (general coordinate motion) wave function is written as [62]:

¥, (q) = _[(I)a(q,ﬂ) f (B (2-36)

where | is total nuclear angular momentum, « distinguishes states with the same I, g
represents all the nucleonic variables, and g represents all the collective variables. The

expectation value of the nuclear Hamiltonian H is then given by

<al[Hlad >=[[dB't, (BB BT, (BB (2-37)

where h (3, 8') is the expectation value of H with respect to the nucleonic variables. The
"double" integral of Eq. (2-37) is replaced in the DDM by a "single" integral. The function
h (B, ) isexpanded in the non-locality with respect to deformation,

h(B', B)=h,(B)5(B - B)+h(B)S (B - B)+h,(B)S (B =)+ oo (2-38)

The formal derivation has been given by Giraud and Grammaticos [63]. Although
a complete derivation of the formalism used in the PPQ model or the DDM (or the
cranking method combined with the Bohr Hamiltonian method) is not claimed, the
conceptual connection is quite clear and precise, and is briefly the following: The hy term
of Eq. (2-38) leads to the potential energy V of the collective Hamiltonian. The h; term
vanishes because of the symmetry requirements. The h, term leads to the kinetic energy,
T=(1/2)p°.B.s of the collective Hamiltonian, where B is the mass-parameter-matrix.

This matrix is given by:
B, =0T (0808, )= 02H I(0B08; )--vevevvevevressvessvrsin (2-39)

The collective velocities 5. may represent £ -vibrations, y -vibrations, pair fluctuations,

or rotational frequencies. The original cranking method of Inglis dealt with only one of
these, the frequency of rotation around an axis perpendicular to the assumed symmetry axis
or the nuclear spheroid. Then, the connection between the time-dependent Schrodinger
equations in the laboratory system and in the intrinsic system gives the @ -dependence of
the Hamiltonian, H' =H-» J«. We generalize this to obtain [64]:

Then, the second-order time-dependent perturbation theory gives the ‘cranking' type
of formulae for the mass-parameter-matrix B,,. Note that the following constraint

conditions are satisfied automatically up to second order in g [62]:
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These conditions include the traditional ‘cranking' constraint, <J, >=®w®, as a special

case.

In the current version of the DDM, the adiabatic approximation is made that the
collective velocities/frequencies are small compared to those of the single-particle motion,
that is [62]

hoy <<hogy =41A°MeV................ (2-42)
hog, <<hoy, =41A"°MeV................. (2-43)

However, this adiabatic approximation is far superior to that of the rotational model where
some additional approximations are made (o, <<,,, harmonic vibrations with

amplitudes much smaller than the equilibrium deformation value). The rotation-vibration
coupling is treated exactly in the DDM by avoiding any expansions around the equilibrium
shapes, by calculating the potential and inertial functions microscopically for each point of
a f—y mesh, and by solving the collective Schrodinger equation by numerical method

[65,66,67].

2.2.4. Other Microscopic Models

In addition to the approaches discussed here, there have been many other
attempts at understanding the microscopic structure of nuclear excitations away from
closed shells. This section will briefly summarize some of these.

Bes and coworkers [68,69] have described the macroscopic -and y-vibrations in
terms of the Nilsson excitations that generate them. Their method employs the BCS
theory as described earlier, as well as the standard technique of the Random Phase
Approximation (RPA) [70], to generate the energy spectrum and wave functions. An
alternate description, in which a Woods-Saxon potential was employed, of these same
excitations, as well as of the ground state wave functions, has been performed by Soloviev
and collaborators [71].

Large scale numerical calculations have recently been performed by Kishimoto
and Tamura [72,73]. They investigate the collective excitations that result from a boson
expansion.

Calculations of energy spectra and transition probabilities for several nuclei, including
19%pt are presented in Ref. [46].

Obviously, not all microscopic models can be presented here. The summary has
been restricted to those models which have had the most relevance to the Hf-W
deformed nuclei. The end of the next section, which presents a new approach to under-
standing collective structures in nuclei, will describe an alternate means of
understanding the microscopic foundations of collective excitations.

2.3. PHENOMENOLOGICAL MODEL
2.3.1. GROUP THEROTICAL MODEL -THE INTERACTING

BOSON MODEL (IBM)

F. lachello and A. Arima [74-79] have proposed a model which attempts to
describe the collective structure of all nuclei with  A>100, except those near closed shells.
The particles outside of closed shells are treated as bosons, or pairs of particles, which can
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occupy one of two levels: a ground state with angular momentum equal to zero
(called s-bosons) and an excited state with two units of angular momentum

(called d-bosons) The d-bosons have energy ¢, , the s-bosons &, ; one can define a boson
energy ¢ = g, — &, . Unlike the more familiar bosons, these bosons may interact with each
other. Thus, the model has been called the Interacting Boson Model (IBM) . The total
number of bosons, equal to the number of d-bosons plus the number of s-bosons,
N =n, +ng, is a constant in the IBM prescription as for a given nucleus. N is the number
of pairs of neutrons plus the number of pairs of protons, outside their respective nearest
closed shells, without distinguishing between the particle or hole character of the pairs. For
example, ‘>3Ba.,is characterized by N = 7, due to the 6 protons (3 proton pairs) + 8

neutrons (4 neutron pairs) away from the closed shell %>Pb,,.. Alternatively, ***Er would

correspond to N =14, because of the 14 neutron particles away from the 82 neutron closed
shell and 14 proton holes away from the 82 proton closed shell.

As stated earlier, interactions between the s-and d-bosons, and among the s- or d-
bosons themselves, may occur. Therefore, in the simplest terms, the Hamiltonian of the
system can be written as [80]:

H=gs"s+g > did, +V ... (2-44)

where g,and g, , are the s-and d-boson energies, s*(s)is the creation (annihilation)

operator for s-bosons, d*(d)is the creation (annihilation) operator for d-bosons, the sum is

taken over the 5 (2(L =2) + 1) components of the d-boson state, and V is the interaction(s)
between the bosons.

In this description three natural limits occur. The first [74,78] occurs when
e=¢g4—& >>V, so0 that the energy spectrum is simply given by E = e&n,, the ground state

being a C. zero d-boson state. This first limit is similar to the harmonic oscillator of the
geometrical picture described in section (2.1.1) of this chapter. The IBM interpretation will
be discussed later . The other two limits occur when V >> ¢, and correspond to specific
interboson interactions. If V is a quadrupole-quadrupole interaction [75,79] between
bosons, the system obtained is very similar to a certain kind of deformed rotor. The IBM
version will be presented in section (2.1.2). The third limit arises when a repulsive pairing
interaction [76] exists between the bosons. As will be seen in the discussion of section
(2.1.3), this limit is very-similar to the geometrical description of the y -unstable oscillator
of Wilets and Jean [44].

The most general form of the IBM Hamiltonian, in which all possible boson-boson
interactions up to second order are explicitly included, is given by [78]:

H=es's+e, Y did, + Y 4(23+1)c[dd)dd® ]
m J=0,2,4
0

+%%V2[(d+ ><d+)(2) (d XS)(Z) +(S+ Xd+)(2) (d Xd)(z)}
+%VO [(d+ Xd+)(0) '(st)(o) +(S+ XS+)(O) (d Xd)(o)}o) ......................

+ %uz [(d txs* )(2) -(d x s)(z)](o) +%U0 [(s+ xs* )(0) (sx s)(o)](
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where d*, d, s*, s, are as described for Eq.(2-44) and the parentheses denote angular
momentum couplings. The parameters C;, V;, u; are related to the two-body matrix
elements by [78]:

The IBM-1 Hamiltonian (Eq. (2-45) can be written in general form as [79] :
H* =&(n’ +n))+a,P P +a,l".L"+2,Q" Q" +a,T, T, +a,T, T, .......(2—47)
where ¢ is the boson energy, and the operators are:

n, =s"".s" n,=d“d~ , P =%(d“.d“)—%(s“.sA)

L' =v10[d"™ xd™ [, Q" =B[d"™ xs™ )+ (s xd™ )P + #ld" xd "]

T =l xd™ [P T = xd ™ T (2-48)

The phenomenological parameters a,,a,,(a,, ¥),a,,8, , represents the strengths of

the paiuring angular momentum, quadrupole, octupole and hexadecopoule interaction
between bosons, respectively.

Eq.(2-45) appears formidable, especially given the explicit form of the parameters,
as introduced in Eq. (2-46). However, the terms correspond to one of four types:

1) gss+s+ed2d;dm - simply counts the number of s-and d-bosons, respectively, and

multiplies this number by the appropriate energy;
2) the terms with coefficients C;, u; and uo represent interactions in which the total
number of d-bosons and s-bosons, separately, are conserved, i.e., ng, is not changed,;
3) aterm (with coefficient v) in which ng, is changed by unity;
4) aterm (with coefficient vo) in which nq is changed by two units.

Returning to the three limits alluded to earlier, the vibrational limit will
correspond to a Hamiltonian with only ng - conserving terms, the rotational limit to a
situation with one and two d-boson number changing terms, and the "y -unstable™ limit
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will represent the situation with two d-boson number changing terms included.
An alternate form, in which the general Hamiltonian may be frequently written, is
in terms of the specific interactions between the bosons. In these cases [78,80]:

H=e>drd, —c>Q-Q —& Y Ly —&"> Py v (2-49)

i<j i<j

where Q, is the quadrupole moment of the i" boson, L =2/,-¢, with ¢;, /.. being the

. =th
angular momenta of the i" and | boson, respectively, P, is the pairing operator,

between bosons, and «, x',«x"" are the respective strengths of the different interactions. For
simplicity, was set equal to zero, so that only ¢ =¢, — ¢, = g, appears in Eq.(2-49).
Associated with the collective states calculated with the IBM are transition

operators. In the most general form, the EO, MI, E2, M3, E4 transition operators are, to
leading order, given [78,79,81]:

Tn(1/) — (l€5€2 (d+s+s+d)(r:) +ﬁ/ (d*d)(nf) +7I05I05m0(5+s)(()0) et (2'50)

where | denotes the multipolarity with projection m, and «, 3,y are the coefficients of the
different terms of the operator. In particular, for E2 transitions [78,79,81]:
T.(E2)=a,(d*s+s'd) + g (d d ) oo (2-51)

This operator has two parts: which satisfies the selection rule, and which satisfies the
selection rule. The coefficients and depend on the limit involved or the appropriate
intermediate structure. The form of the operator that corresponds to the various limiting
symmetries will be discussed later.

Exact forms of the EO, M3, and E4 operators exist. It should be noted that no M1
transitions can occur in first order [78,79,81]. The reasons lie in the form of the Ml
operator [78,79,81]:

T, (M) =B(d"d)Y e (2-52)

As discussed in references [51,52,54], the operator (d*d)(l)proportional to the boson
angular momentum operator; therefore, Eq.(2-52) may be rewritten as
T.MD)=ggl® ... (2-53)

where gg is the effective boson g-factor. This form of the operator has no off-diagonal
matrix elements, implying that in this approximation MI transitions are forbidden
[78,79,81]. Some of the transition probabilities obtained from perturbation theory are
further discussed in Refs. [78] and [79].

The solution of the Hamiltonian, in either the Eq.(2-45) or the Eq.(2-53) form,
may be attempted either analytically or numerically. Arima and lachello [74,75,76] have
been able to solve the Hamiltonian analytically in the three -limiting situations described
earlier by utilizing the underlying group theoretic aspects of this system. As discussed in
Ref. [78], the five components of the L = 2 d-boson state and the single component of the
L = 0 s-boson state span a linear vector space which provides a basis for the totally
symmetric representations of the group SU(6), the special unitary group in six dimensions.
The group SU(6) is partitioned, with each totally symmetric representation labeled by [N].
For a situation where all boson states are degenerate and no boson-boson interaction exists,
all states belonging to a particular partition [N] are degenerate. However, given the energy
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difference £=¢, —g,and an interaction between the bosons, a definite energy level

spectrum will exist. The group SU(6) is characterized by nine parameters which will
correspond to the parameters of Eq.(2-45), ie, N, ¢, and the
coefficientsC, (J =0,2,4),v,,v,,U,,U, .

The EO operator can be written directly as:

T"(E0) = B,(d"d™ )+ 7o(5"S™ Jrrrrvrmmrrsrirnn (2—54)
where S, and y, are free parameters and the superscript notation indicates spherical

tensor coupling. Eq. (2-54) can be expressed in terms of the boson number operators n; ;
n;and N” :(ns“ +n§) as [78]:

TA(EO)zﬂo"ng+y0n:=7/0N“+ﬂ0"ng=ﬂ5N“+7/(')ns“ ............ (2-55)
where

. B S ~ .
ﬂO:T; v B =800y Vo =Vo—Poreerreerereirenenienenns (2—-56)

The IBM-1 possesses simple limiting dynamical symmetries which lead to closed
form expressions for the matrix elements of T (EO) and, consequently, to selection rules
[78]. We deal with the three limiting cases, U(5), SU(3), and O(6), separately.

The isomer shift, & <r?> is measure in r> between the first 2* state and the
ground state,

s<r?>=pl<n; >0 —<ng SO e (2-57)

The isotope (isotone) shifts A <r? >, are measure of difference in radii between nuclei one
neutron (or proton) pair (one boson) away from each other,

A<r? >M=cr? >0 —<r2 50

A<r?>M=yey polcr? > —<r? >é§"] ............. (2-58)

If one can find a subgroup G — SU(6) under which the Hamiltonian is invariant,
then the diagonalization problem is simplified. In particular, Arima and lachello have
observed that there are three such groups, namely SU(5) [74,78], SU(3) [75,79], and O(6)
[76], the special unitary groups in five and three dimensions, and the orthogonal group in
six dimensions. The solutions obtained correspond to the same three limits mentioned
earlier, the vibrational, rotational, and " y -unstable™ limits, respectively.

Frequently, when the subgroup G under which the Hamiltonian is invariant has
been identified, the problem may be written in terms of the forces as given in Eq. (2-45).
Then the eigenvalue problem is reduced to finding the expectation value of the forces.
This method of solution in the different limits will be discussed in their separate
subsections.

An alternative approach to the eigenvalue problem presented in Eq. (3-45) or
Eq. (2-49) is to solve the Hamiltonian numerically. This has advantages in that the entire
Hamiltonian may be solved, not only in the limits for which analytic solutions are readily
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obtainable, but also in the intermediate cases. To this end, O. Scholten has written a
computer code PHINT [82] which solves the entire IBM Hamiltonian in the Eq. (2-45) or
Eq. (2-47) parameterization, or a convenient mixture of the two forms.

The computer code presents the wave functions in the basis J”

ndnﬁnA> where

J” is spin-parity, n, is the number of d-bosons. n, is the number of pairs of d-bosons

B
coupled to angular momentum zero, and n, is the number of triplets of bosons coupled to

angular momentum zero. For example, the 2 d-boson 0" state would be denoted 0°|210);
the 3 d-boson 0° state would be 0*|310>; the 3 d-boson 2" state would be 2*|310>,

because the parentage of this state is the 2*(210).

Calculations have been performed with this code to reproduce a number of different
situations:
1) calculations of the three limiting symmetries which reproduce the analytic
solutions;
2) calculations of systematic deviations from these limiting cases;
3) calculations of, not necessarily physical, situations to understand the
operation and interplay of the different parameters contained in the IBM.
The first case will be discussed in subsections (2.3.2.1), (2.3.2.2) and (2.3.2.3). However,
since an understanding of the effect of the parameters is essential to the later discussions,
the third aspect will be discussed here.
It is more convenient to discuss the forces of the IBM in terms of the
parameterization of EQ.(2-49), where the variables are ¢, the boson energy, and the

strengths of the quadrupole- quadrupole, Zf—f and pairing interactions between the

bosons.

To summarize this section, the IBM model developed by lachello and Arima
aims to predict the structure of collective states of heavy even-even nuclei. This model can
be analytically solved for the case of three limiting symmetries; these will be discussed in
the next three sections. The model can also be solved numerically with the computer code
PHINT [82]. A discussion of the transition between the limits will be presented in next
section.

2.3.1.1- The Vibrational SU(5) Symmetry

The first limiting symmetry of the IBM to be discussed was the vibrational limit
[74,78].  As described in the last section, a very simple spectrum of collective states,
presented in Figure (2. 1), arises from a system characterized by a boson energy ¢. This
limit corresponds to the O(5), orthogonal group in 5 dimensions, symmetry. However, the
IBM Hamiltonian can also be solved analytically for the SU(5) representation [74,78].

The form of the Hamiltonian in this limit is given by [74,78]:

H=e>dd, + > %(23 +1)C, [(d “d* )" (dd )(”}0) .................... (2-59)

where the C,'s are given in Eq. (2-46). An analytic solution to this Hamiltonian is

presented in detail in Ref. [78]. For the reader's information, the arguments of Arima and
lachello will be repeated here.
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Figure (2.2) Typical spectrum of a nucleus exhibiting the SU(5) symmetry. The states are labeled by
the quantum numbers J*(Nn,,V,Nn, ) . The spectrum is broken up into a number of bands [78]

The eigenvalue equation may be expressed as
H|n,vn, M) = E[nyvn,dM) ... (2-60)

where H is given by EQ.(2-59) and the states are labelled by the quantum numbers
ng,Vv,n,,J,M . The number of d-bosons, nq, the angular momentum J and its projection

M are already familiar; n,, as discussed earlier, is the number of d-boson triplets coupled

to angular momentum zero, and v is the seniority, which counts the number of d-bosons
not coupled to angular momentum zero. An alternate representation involves the quantum
number n,, which counts the number of d-boson pairs coupled to angular momentum

zero; v and ng are related by v=n, —2n,. The total number of bosons is partitioned as
[78]:
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Ny =2n,+3nN, + A .o, (2-61)

where A is the excess bosons and determines the angular momentum range [78]:
J=2421-224A-3,..,A+L A............. (2-62)

The angular momentum J =24 -1 is absent because of the requirement that bosons may
only be coupled to form symmetric states [37].

An alternate method of solving the Hamiltonian in Eq. (2-59) is to rewrite it
in terms of the forces presented earlier in Eq. (2-49). Only three parameters are
necessary to describe the interaction between two d-bosons because only three angular
momentum couplings can occur [37]: J=0,2,4. Therefore, the coefficients

C, (J :0,2,4)in Eq. (2-59), or three alternate parameters «,f,y, are necessary.
lachello and Arima have expressed the interaction as [78]:

V=3V, =S (ady + P+ 1y Jereerrensinne (2-63)

i<j i<j
where 1; is the unit operator, and P; and L; are the pairing and L interactions discussed
earlier in section 1. The expectation values of these operators, as given in Ref. [78], are:

<1>=%nd(nd -1)

<L>=J(@J +1)-6n,
<P>=(n, —v)n, +v+3)

Therefore, the eigenvalue of interacting d-boson Hamiltonian are [74,78]:

E(N]ng,v,n,,d,M)=en, +an,(n, -1)
+ﬁ(nd_v)(nd +v+3) ................. (2—65)
+7[3(3 +1)-6n, ]

A typical spectrum in the vibrational limit is presented in Figure (2.1). The spectrum may
be divided into several "bands"; this terminology is valid since large E2 matrix elements
exist between adjacent members of the same band. The states in Figure (2.1) are labelled

by the quantum numbers n,,v,n,. The "bands" are very reminiscent of those occurring in
rotational nuclei. The Y-band corresponds to the ground band, X and Z to a y -vibrational
band, f toa p-vibrational band and A to a 2-phonon y -vibrational band. The energies of
states in some of these bands are given by [78]:

Y band

E,(n,,n,,0,J =2n,,M)=e¢n, +1C,n,(n, -1)
Xband  E (n,,n,,0,d =2n, —2,M)=en, +%n,(n, ~1)-(8n, —2)
Zband  E (n,,n,,0,d =2n, -3 M)=en, +%n,(n, —1)— y(12n, —6)
pband  E (n,,n, -2,0,J =2n, —-4,M)=en, +%n,(n, —1)+ y(12n, —16n, )+ B(4n, +1)
Aband  E (n,,n, 1,3 =2n,-6,M)=en, +%n,(n, —1)—6y(4n, —5)........(2-66)
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The general form of the electric quadrupole transition operator T(E2) was given
in Eqg. (2-51). In the limits for which analytic solutions are obtainable, Arima and lachello
require the transition operator to be a generator of the underlying group. For the limit
characterized by SU(5), T(E2) is given by [78]:

T.(E2)=cld*s+sd)” oo (2-67)
for a=<d”(§”s>(}/5)(2) , where Q is the quadrupole operator. This form of the operator

leads to the selection rule An, ==1.

2.3.1.2- The Rotational SU(3) Symmetry

The second limit of the IBM model is based on the SU(3) group and gives rise to
nuclear structures similar to a certain form of the symmetric rotor. This symmetry occurs
when there is a dominant quadrupole-quadrupole interaction between bosons, as described
in subsection (2.1.1). The most general form of the interboson interaction will also include

aterm of the form L=171;".

In Eq. (2-44), the entire IBM Hamiltonian was presented. Many years ago Elliott
[83] showed that if a Hamiltonian could be expressed in terms of the generators of a group,
in particular SU(3), the special unitary group in three dimension, the eigenvalue problem
[79, 82]:

where Qi is the quadrupole operator of particle i and x is the strength of the
quauadrupole-quadrupole interaction.

The solution of Eq. (2-68) is presented in Ref. [79]. Some of the results will be
repeated here. The eigenvalue equation becomes [79]:

H|[N](A, 2)KIM ) = E|[NJ(A, £)KIM )..ooooocceen (2-69)

where [N] labels the totally symmetric representations of SU(6); (ﬂ,,u) are two quantum

numbers which label the representations
of SU3); and J, M are the angular momentum and its projection
along the z-axis, respectively. The additional quantum number

K labels states having the same A, x, J . In this basis, the eigenvalues can be written [79]:

E(NJA, £)KIM)=K(I(I +1)=C(A, 2))errvvoreeee (2-70)
where C(A, i) is quadratic Casimir operator of SU(3) [79]:
C(A 1) =2 + 18 + 2t +3( A+ L)oo, (2-71)

As mentioned earlier, the addition of the L interaction does not change the
diagonalization problem. Therefore, in its most general form, the Hamiltonian becomes
[79]:
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with t he eigenvalues [79]:

E(NJA 2)KIM ) = 03 (3 +2) = LC(A, o) oo (2-73)
a=3k-K,f=K
Due to their importance in predicting the level spacings of deformed nuclei, the
parameters (/1, ,u) will be discussed here in terms of the Young Tableaux [37] they

represent. Each particle can be represented by a box; boxes may be coupled to form
symmetric or antisymmetric states. Examples of the different symmetries are in Refs.
[84,85]: For bosons, the antisymmetric couplings are not permitted. An N boson state will
be of the form

The spectrum is divided into a number of bands according to the (ﬂ,,,u) value. The
angular momenta J which may occur in each (4, 1) group are given by [78]:

where K = integer = min {4, z}, min {4, u}-2,...., 1 or 0 unless K = 0. For K =0,
the allowed angular momentum values are [78]:

J =max{A, u},max{A, g} = 2,... 0 O 0 wooovvrvrrrens (2-75)

The quantum number K is analogous to the K quantum number of a symmetric
rotor, namely the projection of the angular momentum J along the nuclear symmetry axis.
Therefore, the K = 0 and K = 2 bands of the (N —4,2) representation would correspond to

the g and y bands, respectively, in the geometrical rotor description of section A.
However, in this limit of the IBM, states with the same angular momentum and (4, )
representation are required to be degenerate; eg., the 2, and 27 states. Also, the transition
probabilities between bands are considerably altered, as will be discussed below.

The most general form of the E2 transition operator T(E2) was presented in
Eq. (2-51). As for the earlier SU(5) symmetry, Arima and lachello require this operator to
be a generator of the underlying group symmetry. For the case of the SU(3) symmetry,
since the operators of Eq. (2-51), namely d's and d*d are already generators of the group
[78], the requirement reduces to fixing the values, of the coefficients «, and f,in

Eq. (2- 51). The resulting E2 operator in the SU(3) symmetry is[78]:
To(E2)=a|(d*s+5d)? ~237 (@ d)? | (2-76)
where «, is the effective E2 charge; S, of Eq. (2-51) became —}/2\/70:2.

Due to the form of the E2 operator T(E2) in Eq.(2-76) does not connect states with
different (/”t,u) representations [79]. Thus, transitions between the y-band or £ -band and
the ground band are forbidden. Conversely, transitions between states of the same
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representation are allowed. Therefore, unlike the predictions of the geometrical rotational
model, the 27 state will preferentially decay to the 0, state rather than to the 0; state.

A number of regions of the periodic table have shown evidence of exhibiting a
rotational structure characterized by a J(J+1) level sequence. However, the requirement of
degenerate 3-and y -vibrations tends to limit the regions of SU(3) symmetry to those where

the onset of prolate deformation is occurring, such as the Gd isotopes.

_ 28 (J+2)(J +1) B
B(E2)+2>2)=a; 21132115 (N =J)2N +J +3)errrrrrcens (2-77)

Eq. (2-77) shows that all transition probabilities depend explicitly upon the number
of valence nucleons. Now that two limiting symmetries have been presented, the SU(5)
and SU(3) limits, it would be interesting to investigate the transition between these two
regions. Such work has recently been conducted by F. lachello, O. Scholten, and A. Arima.
In this investigation, they considered a simpler form of the. IBM Hamiltonian in Eq. (2-
45), namely [86]:

H=en —K‘ZQQ ') PTR— (2-78)

where ¢, the boson energy, and the quadrupole-quadrupole and L interactions are as
previously described. To study a transitional region, they fixed x« and «', allowing to
linearly decrease as a function of the number of bosons [86]:

where &, is a constant and N, is the number of neutron bosons. This will simulate the

transition, since, near SU(5), ¢ is much greater than any interboson interaction, while, near
SU(3), the quadrupole-quadrupole interaction dominates the boson energy.

2.3.1.3- The Gamma Unstable O(6) Symmetry
A third limiting symmetry of the IBM model will occur when the interboson
interaction is dominated by a pairing force [76].

Analogous to the SU(5) and SU(3) symmetries, lachello and Arima have
diagonalized the IBM Hamiltonian, generated by SU(6) (Eq. (2-45), by identifying a
subgroup of SU(6) under which the Hamiltonian is invariant. In this case, the subgroup is
O(6) which also contains the subgroups O(5) and O(3). By using the group chain,
SU (6) > O(6) > 0O(5) > O(3), the IBM Hamiltonian in the O(6) limit can be written as:

H=AP, +BC, +CCyueerrrrerrrrrrrrrrrrn.. (2-80)

where Pg is the pairing operator in O(6) and Cs and C3 are the Casimir operators of O(5)
and O(3), respectively. A, B, and C are the strengths of the various components. In terms of
the IBM Hamiltonian of Eg. (2-45), corresponds to the term:

vo[(d+d)(°’(ss)‘°> (s* +)(°)(dd)<°’]‘ ............................ (2-81)
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while Csand C;3 and correspond to the terms

e>did, + 123 +1)%C, [(d+d+)(”(dd)(”}° ............................. (2-82)

J=0,2,4

The symmetric irreducible representations of O©) are labelled by a quantum
number o where [76]:

o=N,N-2,N—-4,...,0 or 1 for N=even or odd................. (2-83)

expectation value of the O) pairing operator, Pg, can be written in terms of o as [76]:

(P)=3(N=C)YN+0+4) it (2-84)

As stated in Ref. [76], the quantum number z is chosen to characterize the
representations of O(5) where

(Co)=27(r+3) i (2—-86)
Therefore, the eigenvalues of states corresponding to the Hamiltonian in Eq. (2-80) are
[76]:
E([N]Jorv,IM )= ZA(N —6) N +0+4)+Br(z4+3)+CI(J + D, (2-87)

where the 1/6 in Eqg. (2-86) has been incorporated into the constant B. The quantum
number v, is useful in labelling the states: it is related to n,, which counts the number of

boson triplets coupled to angular momentum zero. The quantum numbers 7 and v, are
related by 7=3v, + A4 for v, =0, 1, .... The value of A determines the angular momentum
of states via [76]:

J=24,24-2,243, ey A+, A oo, (2-88)

Arima and lachello have also succeeded in obtaining analytic expressions for
transition probabilities [76]. As in the SU(5) and SU(3) symmetries, they require the E2
transition operator, T(E2), to be a generator of the underlying group structure, in this case
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O(6). The form of T(E2) satisfying this requirement is [76]:
T(E2)=a(d*s+57d)” . (2-89)

Since T(E2) is a generator of O(6), it cannot connect states from different
representations; therefore, one selection rule is Ao =0. Also, due to the O(5)
structure contained in O(6), the O(5) selection rule Az =+1 still holds. Several
closed form expressions for B(E2) values for transitions within the oc=o0,, =N

group are presented in Table 5. Some useful max branching ratios are given in
Table3. In particular, it should be noted that, as in all IBM B(E2) values, the finite
dimensionality of the system is automatically included. Due to the form of the
transition operator, branching ratios occurring in the O@) limit are independent of
the parameters A, B, and C.

Within each o grouping itself, the level spacing somewhat resembles that of a
vibrational model, as described in section A, but with an energy spacing proportional to
7(z +3) rather than simply toz . This will give rise to the energy ratio E(4; )/E(2; )=2.5
rather than 2, as expected in the vibrational picture; also, as 7 increases even larger energy
differences will occur between states of different 7. Further, the degeneracies of the
geometrical vibrational phonon model are explicitly eliminated by the J(J + 1) term and
certain states, e.g., the 0" state of the two- phonon triplet, do not occur. As described earlier
in subsection |, the state which would correspond to this 0" state is "repelled” by the
ground state and is raised in energy due to the repulsive pairing force which characterizes
this limit. Branching ratios and absolute B(E2) values also differ significantly from the
geometrical prescription.

The O(6) limit (especially for large N) seems to resemble most closely the
y -unstable model described by Wilets and Jean [44].

In such a geometrical description, as shown in Figure Id, the levels follow a
7(r +3) energy dependence. Also, the same levels and level spacings that occur in the

y -unstable n, =0 group are repeated for the higher-lying n, =0 groups. In this sense,
the role of n is analogous to that of the different values.

However, in the O(6) scheme, the level degeneracies are no longer maintained,
and there are spin cutoffs, and a specific number of different o groupings. It is reasonable
that the O(6)description may correspond to the y -unstable geometrical model, in analogy

to the SU(5)-vibrator and SU(3)-symmetric rotor correspondences. As described in section
A, the Hamiltonian of a y -unstable oscillator is characterized by a potential energy which

is independent of y, although y-dependent terms are included in the kinetic energy. A
correspondence exists between the coordinates of the Bohr-Mottelson picture and the
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operators of the IBM. Arima has suggested the result that the y -unstable potential
corresponding to the O@) limit of the IBM would be of the form:

where S is the deformation parameter and ¢ and d are arbitrary constants. This form of
potential arises from the zero d-boson and two d-boson number changing terms of the O(6)
Hamiltonian. A » -dependent term in the potential would be of the form °cos3y ,which
corresponds to one d-boson number changing terms that are not included in this symmetry
[86]. Currently, attempts to understand more explicitly the analogy between the
O(6)symmetry and relevant geometrical models are being pursued. A convenient basis in
which to describe the O(6)level wave functions is that of the vibrational limit, given by

J”‘ndnﬂnA>, where nyn,n, . are, as usual, the number of d-bosons, number of d-boson

pairs coupled to angular momentum zero, and the number of d-boson triplets coupled to
angular momentum zero, respectively. Although the wave functions are not pure in this
basis, they can be described in a simple manner as a linear combination of basis states
differing in the ng and ng quantum numbers. For example, in the vibrational limit, the
ground state is a pure 0°|000> state; in O(6), the ground state, with ¢ =o,,, would be

characterized by the 0" wave function A convenient basis in which to describe the
O(6)level wave functions is that of the vibrational limit, given by J”‘ndnﬂnA>, where

nyn,n, . are, as usual, the number of d-bosons, number of d-boson pairs coupled to angular

momentum zero, and the number of d-boson triplets coupled to angular momentum zero,
respectively. Although the wave functions are not pure in this basis, they can be described
in a simple manner as a linear combination of basis states differing in the nyg and ng
quantum numbers. For example, in the vibrational limit, the ground state is a pure 0*|000>
state; in O(6), the ground state, with o =0, would be characterized by the 0" wave

function |000) + 210) + 7|420) +........... £[NN/20).

Two types of perturbations may be added to the exact results of the O(6) limit:
one which does not change the forces of the symmetry, and one which introduces a force
from outside the limit. The former type can be accomplished, for example, by changing the
boson energy from the value determined by B. This will alter the amplitudes of the non-
zero components of all wave- functions, but will not add new components. The result will
be to break the selection rule Ac =0, but to preserve the Az =+1 E2 selection rule. The
second type of perturbation can be accomplished, for example, by the introduction of a
quadrupole-quadrupole interboson force. Since such an interaction contains one d-boson
changing terms, all wave function components would be non-zero, though perhaps small,
and the effect would be to break both O(6) E2 selection rules, as well as to alter all E2
branching ratios.

The interferences between these three dynamical symmetries give three transitional
regions. These regions are as follows SU(3) —SU(5) : This transitional region can be
treated by breaking SU(3) symmetry in the direction of SU(5) by adding

H" :g(n: +n, )+a,T, T, +a,T, T, terms. The Hamiltonian of this region can be written
as:
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H* =& +n) J+a, L L" +a,Q" Q" +a,T, T, +a,T, T, ......(2—91)

SU(3) —O(6) : The nuclei in this transitional region can be treated by breaking SU(3)
symmetry in the direction of O(6) by adding P".P",a,T, T, terms. The Hamiltonian of
this region can be written as:

H"=a,P" P +a,Ll" " +2,Q" Q" +a,T, Ts e (2-92)

O(6) —SU(5): The nuclei in this transitional region can be treated by a Hamiltonian
containing g(n: +n$) and a,P".P" termsas:

H* =&(n’ +n))+a,P" P +a,l"L" +a,;T, T, +a,T, T, ......(2—93)

The O(6) limit of the IBM-1 possesses N as a good quantum number together with the
conventional O(6) quantum numbers o;z but ng is not a good quantum number [52]. The

EO transition operator possesses the selection rules Ao = 0;+2; Az = 0. Thus, the EO
matrix elements that connect to the 0" ground-state level |[N],a =N,z=0,L=0) originate

inthe o= N — 2 multiplet, i.e.. [NJo=N-2,r=0,L=0)

2.3.1.4- The Potential Energy Surface (PES)

All deformed nuclei have quadrupole moments in their states. The changing in the
shape which depends on the direction of motion with the symmetric axis is classified into
oblate or prolate type. The potential energy surface function V(N, g, y) depends on the
shape variables B and y, where B is the magnitude of nuclear deformation and y gives the
turn way from axis symmetry (a symmetry angle), and they are different for different states
of nucleus. The V(N,p,y) and their contour lines are very important because the geometrical
collective properties can make more sensitive test than the phenomenological.

The potential energy surface can be leads to the knowledge of nuclear deformation
shape. This deformation shape depends on two parameters (f3,y) for a given total number of
boson (N) as the following.When the value of deformation parameter (B = 0-2.4) is
approach to zero, the shape of nuclei will be spherical, and when these values are grater
than zero the deformation of nuclei is dominant.

When the value of y parameter equal to 0° this lead to triplet symmetric from
prolate type, and when the value of y equal to 60° the distortion will be triplet symmetric
from oblate type. The Hamiltonian matrix diagonalized in order to determine the Eigen
values and eigenvectors. The Hamiltonian (potential) of the numerical values of potential
at each point of (B,y) mesh, is unknown (or variation parameter),and used directly and no
assumptions are made about these function. The most commonly general equation for
potential energy surface as a function of geometrical variables  and y is given by [87]:

N(&, +£°) , N(N-1)

f.8%+f,8%cos3y+ f.8%+ f%) e, 2-94
1+,32 1+,Bz (1:3 B v+ .0 ) ( )

V(N,B.7)=
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The variables fy, f,, f3, f; are related to the parameter ¢, N and u_ in Hamiltonian equation
which can be written in Eq. (2-45). The relationship between the variables f parameters
and these parameters has been expressed [88]:

c, C, 9c 8 vV, +V
f="0 244 f =]—v,, f,=—2" f,=Ujurrrrrrrrrrrn.. 2-95
"0 7 35 2 \3m 2 T v (&-99)

One must take into account that the asymmetry angle accurse only in the term (cos3y).Thus
the energy surface has minima only at y = 0° and y = 60° the energy in their limits, can
display the essential dependence B and y.

2.3.2 Interacting Boson Model-2 (IBM-2)

In the IBM-2 model the neutrons and protons degrees of freedom are taken
intoaccount explicitly. Thus the Hamiltonian [89,90] can be written as,

I L (2-96)
H=¢d'd +¢d,d +V_+V, +xQ Q,+M_, ....c.c.e..... (2-97)

Here & is the d-boson energy, x is the strength of the quadrupole interaction between
neutron and proton bosons.

In the IBM-2 model, the quadrupole moment operator is given by:

Q, =(s7d +d s |7 +x, [@7d™ ) (2-98)

where p=7z or v, Q_, is the quadrupole deformation parameter for neutrons (p =v)

and protons (o = ). Where the terms V, and V__ are the neutron-neutron and proton-
proton d-boson interactions only and given by:

- @7
v, =Y %CLP(ZJ +1)%[(d+d*)f)(d dj } ..................... (2-99)

J=0.2.4 )

The last term M _ is the Majorana interaction, which accounts for the symmetry energy and

shits the states with mixed proton-neutron symmetry with respect to the totally symmetric
ones, which affects only the relative location of the states with mixed symmetry with
respect to the fully symmetric states. Since little experimental information is known about
such states with mixed symmetry, which has the form:

M, == 25, (dzd: ) (dzd; )Y +5,(dzs; - s2d; ) (ds; —57d;)@.......(2-100)

k=13

32



Electromagnetic Transitions and Quadrupole Moments in IBM-2

The general one-body E2 transition operator in the IBM-2 is

TAY =T, ()T (0) oo (2-101)
TED=e[sd +ds |4 (0d ) 2] ve [sa a5 e 4 ara 2]
T(E2)=€,Q, +€,Q, cceererrrrrrrerrrerrerreerrenn. (2-102)

where Q, is in the form of Eq.(2-98). For simplicity, the ¥, has the same value as in the

Hamiltonian. This is also suggested by the single j-shell microscopy. In general, the E2
transition results are not sensitive to the choice of e, and e_, whether e_= e, or not.

Thus, the reduced electric quadrupole transition rates between J, — J, states are given
by:

B(E2J/ >3 =577 \<J [T(E2)3; > ......(2-103)

The electric quadrupole moment in IBM 2 is given:

%
167 J21J
Q, {?} {_J 0 J<J||T(E2]|J > (2-104)

In the IBM-2, the M1 transition operator up to the one-body term (I =1) is

T(M1)= [/ ]y O g LY) (2-105)

where L¥=110(d*d), and L@=1W+1l. The g  and g, are the boson

g-factors (gyromagnatic factors) in unit x, that depends on the nuclear configuration.
They should be different for different nuclei.

The magnetic dipole moment operator is given by:
T(M1)=0.77[(d*d"), —(d*d"), ]’ (9, = 9u) cvvvveo. (2-107)

the reduced magnetic dipole transition rates between J, — J, states are given by:

B(M1,J; —>J7)= 1+1|<Ji+

S (2-108)

The reduced E2 and M1 matrix elements were combined in the calculation of the mixing
ratio 6(E2/M1) using the relation [91]:
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<J{[T(E2)|I; >

0(E2/MLJ; > J;)=0.835E (MeV) —————— i 2-109
( ) 2 )<J;||T(|\/|1)||J;> (2-109)

The EO reduced transition probability is written [92]
B(EO;J;, =) =€°Ryp*(E0) J,=J( v, (2-110)

where e is the electron effective charge, Ry = 1.25A2 fm is the nuclear radius and p(EO)
is the monopole transition matrix elements. There are only limited cases of p(EO) that can
be measured directly. The electric monopole transition operator is

T(EQ) =, (d" xd ) +y (s"xs)P.....ccc..... (2-111)
N, =\/§(d*xd~)f)+(s*xs~)f) ............................. (2-112)
T(EQ) =, (d" xd™) D +7 N o (2-113)

ﬂ(l)p :ﬁOpl\/g_j/Op

The monopole matrix element is given by:

7 :
Py (EQ) :R_jzﬂop < f

d;xdfi>...... (2-114)

The two parameters fo., So, in equation (2-114) must be estimated. In most cases we have
to determine the intensity ratio of EO to the competing E2 transition, X(EO/E2) [92]

X(EO/E2J" — 1) =e’Rép%(E0; I = I IB(E2IS — I Yoo (2-115)

where J;=J; forJ;=J; =0, and J; =2 for J;=J;=0. The two parameters 4, and f,, in

Eq. (2-112) may be estimated by fitting the isotope shift, which is different in the mean
square radius between neighboring isotopes in their ground state. They are given by Bijker
etal., [93]:

2 2 2
A<r >_<01‘r ‘01 > —<01‘r ‘01 > a1

A<r?>=p [<0,d d |0, >, —<0,d d]|0, > ]
+ B, [<0,|d;d, |0, >y, — <0, d,/d, 0, >NV]_70‘/
................................... (2-116)

The isomer shift, which is the difference between the mean square radius & < r” > of an
excited state and the ground state in a given nucleus [93]:
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2 2 2
O<I">=<r">, —<r">_,

5<r?>=< 21‘r2‘21 >—< Ol‘rz‘O1 >

S<ri>=p [<2

d;d ]2, >-<0,

d.d,

0, >+ f, [< 2,

d;d,

2,>—-<0,

d;d,

0, >].v.(2-117)

The IBM-2 Basis States

The calculation of IBM-2 energy eigenvalues and eigenfunctions is usually done
numerically using the computer code NPBOS [94]. The resulting eigenvectors can then be
used to calculate transition rates and related properties using the computer code NPBTRN
[94]. The relationship between the parameters of Eq. (2-97).

The basis states used in the calculations are products of neutron and proton basis
states. The latter are U(5) basis states for neutron bosons and proton bosons, as given in
expression (2.20).

The complete IBM-2 basis state can be as .

[PIM)=[[N =N, +N_In,,.v,.n,, . L, M ;ng,v,,n,,L,M_;IM)

=[INJgvon LMY [NTng v, LMY T o (118)

The basis states can be found by choosing states that transform as the
representations of the chain of algebras that can be derived from the U(6) algebra formed
by the bilinear pair of boson creation and annihilation operators. In the 1BM-2, the bilinear
pairs of proton and neutron creation and annihilation operators respectively form the
algebras U_(6) and U, (6). There are several ways decompose and combine the two
algebras into a chain of subalgebras and each way will determine the basis. As in the IBM-

1, the requirement for the chain is the inclusion of the SO_. (3) algebra as it is related to a
good total angular momentum quantum number. The algebra SO__ (3) is created from the

sum of generators of the algebras SO_(3) and SO, (3) .

n+v

As an example, one may take the two chains of algebras for protons and neutron,
U_(6)oU_(5) oS0, (5) >S0,(3) »S0O,(2)
U,(6)>U, (5)>S0,(5) 2S0,(3) =S0,(2)

These two chains can be combined at any point up except at SO__ (2) since the combined

T+v

algebra SO_,, (3) is needed. One of the possibilities is:
U_(6)oU_(5)>S0,(5)>S0,(3)
NN van. L $0,.,(3) > $O,,,(2)
U, (6) oU, (5) = SO, (5) > SO, (3) L M
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where the quantum numbers are labelled beneath the corresponding algebra. This is the
basis that is used in the IBM-2 program NPBOS.

Another set of bases can be obtained if one combines the algebras at a different
point such as:

U, (6)
U...0)>U,.,()>50,,0>30,,3) >50,,(2)
U, (6)

In general there are three chains that can be combined at U_, (6) to give three different

bases. In these chains, the proton and neutron bosons exhibit a symmetry and this is the
subject of the following section.

2.3.2.1 Mixed-Symmetry States

The low-energy spectrum of even-even nuclei is dominated by simple collective
excitation modes [95]. These correlations in the nucleon motion are induced by the long-
range quadrupole component of the nuclear force. In spherical nuclei with few valence
nucleons, surface vibrations evolve which can be described as bosons, so-called phonons.
In an ideal case the excitation spectrum of a vibrator nucleus is a harmonic oscillator with
equidistant level spacings 7w, where phonons can couple to multiphonon states with
different angular momenta and parities. For large numbers of the valence nucleons an
elliptically deformed equilibrium state becomes energetically more favorable. Its
vibrational modes can be divided into vibrations of the deformation parameter S

(S -vibrations) and the form parameter y (y -vibrations).

Multiphonon excitations of atomic nuclei are interesting collective structures of the
nuclear many-body system. Their existence enables us to judge the capability of the
corresponding phonon modes to act as building blocks of nuclear structure. Possible
deviations from harmonic phonon coupling occur due to the microscopic structure of the
underlying phonon modes and serve as a sensitive source of information on the formation
of collectivity in the nuclear many-body system. The proton-neutron interaction in the
nuclear valence shell has been known for a long time as the driving force for the evolution
of the low-energy nuclear structure. This has been discussed in many ways, e.g. in terms of
the evolution of collectivity in heavy nuclei as a function of the product of valence proton
and neutron numbers N_N, [96]. More recently Otsuka et al. have identified the proton-

neutron interaction as being responsible for the evolution of shell structure [97]. Therefore,
it is interesting to study those nuclear excitations that are most sensitive to the proton-
neutron interaction in the valence shell. One class of states are collective isovector valence
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shell excitations that are frequently called mixed-symmetry states (MSSs) in the
terminology of the interacting boson model.

The first observation of a nuclear MSS was made in electron scattering experiments
[98] on the deformed nucleus *°Gd. A strong M1 excitation to a 1 state close to 3 MeV
excitation energy, the scissors mode, was observed. The scissors mode has subsequently
been studied mainly in electron and photon scattering experiments on deformed nuclei.
Data are available for many nuclei in the rareearth mass region and interpretations of the
systematic of the centroid and the total strength as a function of deformation have been put
forward [99].

F-spin

P The F-spin formalism is analogous to the isospin formalism of nucleons. Proton
bosons and neutron bosons have F =1/2 and the z-projection is F, =+1/2 for protons
and F, =—1/2 for neutrons. For a system of N, proton bosons and N, neutron bosons, the
maximum F-spin is F = Fnax = (N + N, )/2 and

IN, =N,
= <F, <——" (2-119)

7 - _ max 2 .........

F

In the F-spin space, one can also define the creation and annihilation operators F. and F-
by

Fo=srs, +.d7,d, . (2-120)
H

Fo=s/s,+>.d d s (2-121)
o

The projection operator F, is given by
F, = %[ sis,+>.dr dsis 4> dd L L, (2-122)
yz yz

A state composed by N, proton bosons and N, neutron bosons with F-spin quantum
number F = Fna can be transformed by the successive action of the F-spin raising operator
F. into a state that consists of proton bosons only. This state has still a total F-spin
quantum number F = Fnpax Since the raising operator does not change the total F-spin
quantum number. This new state has only proton bosons and obviously stays unchanged
under a pair wise exchange of proton and neutron labels. Therefore, IBM-2 states with
F = Fmax are called Full Symmetry States (FSSs). These states corresponds actually to the
IBM-1 states which are all symmetric. All others states with F-spin quantum numbers
F < Fnax CONtain pairs (at least one) of proton and neutron bosons that are anti-symmetric
under a pairwise exchange of protons and neutrons labels. They are called
Mixed-Symmetry States (MSSs).

A comprehensive review of the F-spin symmetry of the IBM-2 has been given by
Van lIsacker et al. [100]. One important result of the F-spin formalism is given by the
proton-neutron contribution to the matrix elements of any one-body operator between
FSSs:
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<F.a

050, [P >=N,€, ;o (2-123)

where a, a , 8, 8 are additional quantum numbers and ¢_ . 4, isindependent of p. This
major result tells us that there are no M1 transition between FSSs.

Both operators E2 and M1 can be divided into F-scalar (denoted by s) and F-vector
(denoted by v) parts

T(M1), = g”;gv (L 4L ) (2—124)
T(M1), =g”—;gv(Lﬂ—Lv) ........... (2-125)

T(E2), =%(st +Q7 ... (2-126)

T(E2), == ;ev Q7 -QF )ooonnn(2-127)
with
P 2k (2-128)
e _+e,
P £ i A (2-129)
e —e

From the previous discussion concerning the E2 and M1 decays of full symmetric
states and the mixed-symmetry states (here discussed in near vibrational nuclei), we expect
following signatures for mixed-symmetry one-phonon and two phonon excitations for
vibrational and transitional nuclei:

First: The one-quadrupole-phonon 27, state is the lowest-lying MSS in vibrational
nuclei.
Second: The 2, state decays to the 2; state by a strong M1 transition

(< 25T (MD|27 >)~ 1022
Third: A weakly collective E2 transition strength of a few e’b” for the 2;,,; — 0;
transition.

In the IBM-1, geometrical shapes can be assigned to the algebras of the three
possible chains, which correspond directly to the description of nuclear shapes by Bohr and
Mottelson's shape variables [32,101]. In the IBM-2, the mixed-symmetry states correspond
to a quadrupole vibration where the protons and neutrons oscillate out of phase. For
deformed nuclei, the protons and neutrons oscillate with respect to one another as the
nucleus as a whole rotates. Because of this type of motion, the mixed-symmetry states for
deformed nuclei are also known as the scissors mode.

Mixed-symmetry states can be identified by their unique signature, namely a

collective M1 decay to a fully-symmetric state. M1 transitions are forbidden between fully-
symmetric states and between mixed-symmetry states in the F-spin basis.
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CHAPTER THREE
RESULTS AND DISCUSSION

3-1 IBM-1 Results

3-1-1 Energy Spectra

Even-even Ba isotopes with Z = 54 and 64 < N < 94 have a collective
quadrupole excitation strongly dependant on the number of nucleons outside the
closed shells 50 and 82, and the neutron- proton interaction is known to have a great
influence on nuclear properties. These isotopes are part of an interesting region
including Te, Xe and Ce isotopes, which has and is likely to attract many theoretical
works [9, 102, 103, 104].

The energy of the positive states of barium series of isotopes are calculated
using computer code PHINT [82]. A comparison between the experimental spectra
[105] and our calculations, using values of the model parameters given in Table (3-1)
for the ground state band are illustrated in Figs. (3-1) to (3-14). The agreement
between the calculated levels energy and their correspondence experimental values
for all isotopes are slightly higher especially for the higher excited states. We believe
this is due to the change of the projection of the angular momentum which is due
mainly to band crossing.

The Table (3-1) contain the IBM-1 Hamiltonians’ parameters (in MeV units)
used in the present study to calculate the energies of the positive parity low-lying
levels of 12014883 isotopes. Number of bosons (N =N_+ N, ) changes from 10

for 12°Ba and 11 for **?Ba to 4 for **°Ba and finally varies from 5 to 9 for **4*%Ba,
The Hamiltonian parameter values of IBM-1 were estimated by fitting to the
experimental energy levels and it was made by allowing one parameter to vary while
keeping the others constant. This procedure was carried out iteratively until an overall
fit was achieved.

Table (3-1): Parameters used in IBM-1 Hamiltonian for **'**Ba nuclei (all in MeV)

Isotopes N EPS ELL QQ CHQ OoCT HEX

Ba—-120 10 0.531 0.0280 | -0.00220 | -0.2900 | -0.0011 | -0.0072
Ba —122 11 0.524 0.0300 | -0.00260 | -0.3100 | -0.0011 | -0.0072
Ba 124 10 0.515 0.0097 | -0.00390 | -0.5000 | -0.0011 | -0.0072
Ba—-126 9 0.495 0.0082 | -0.00760 | -0.5420 | -0.0011 | -0.0072
Ba—-128 8 0.493 0.0083 | -0.00795 | -0.5970 | -0.0011 | -0.0072
Ba —-130 7 0.542 0.0083 | -0.00530 | -0.6010 | -0.0011 | -0.0072
Ba -132 6 0.895 -0.0790 | -0.05700 | -0.6010 | -0.0032 | -0.0072
Ba—-134 5 0.993 -0.0800 | -0.05500 | -0.6010 | -0.0033 | -0.0072
Ba—136 4 0.900 0.0200 | -0.05500 | -0.6010 | -0.0027 | -0.0072
Ba —140 4 0.892 0.0220 | -0.05300 | -0.6010 | -0.0027 | -0.0072
Ba-142 5 0.823 0.0210 | -0.05400 | -0.6010 | -0.0028 | -0.0072
Ba-144 6 0.801 0.0220 | -0.05400 | -0.6010 | -0.0028 | -0.0072
Ba —146 7 0.711 0.0220 | -0.05500 | -0.6010 | -0.0029 | -0.0072
Ba —148 8 0.696 0.0220 | -0.05500 | -0.6010 | -0.0029 | -0.0072
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The comparisons between calculated and experimental values of energy levels
for each Ba isotopes [105] are shown in Figs. (3-1) to (3-14), respectively. In general,
the agreement is good, especially for the ground-state band levels and gamma band
levels. However, there exist some discrepancies. The main reason is that the mix of
many bands is not considered.

In figures we see the increased smoothly of the E(2;) energy of ****Ba

isotopes with neutron number, while the isotopes *****Ba decrease rapidly with
increasing the neutron number (N = 86 to N = 92).

The behavior of the ratio of the energies of the R=E(4,)/E(2]) states is a

good criterion for the shape transition (see Table (3-2)). The energy ratio decreases
smoothly with increasing the N for *2°*°Ba isotopes. for all 2>*°Ba isotopes and it
means that these structure seems to be verifying gamma soft rotor to vibrator nuclei
(O(6) to SU(5)). The energy spectrum of the *****Ba isotopes lie between vibrator
and rotational limit. The general features of the transition between U(5) in “°Ba
isotope near the beginning of the closed shell and SU(3) in *®Ba isotope with
moderate deformation are well reproduced by the IBM-1. In Table (3-2), we have

introduced the experimental and theoretical values of the ratiosE(4,)/E(2;),
E6,)/E(2;), E(2,)/E(2]), E(0;)/E(4;) and E(0,)/E(2;) together with the
values of IBM limits.

From Table (3-2) and Figs. (3-1) to (3-14), we see the phase transition of
shape in light *%°Ba isotopes (with N < 82) with increasing neutron number N is of

current interest. The triplet phonon states J;” =4,,2, and 0, and a quintuplet of
states (only 3 states shown). Near mid shell at '?’Ba, the state J;” =4, lies pretty

low, signifying the prolate deformation in ****%Ba. Also the state J;" =0} rises high,
which is akin to O(6) pattern.

In the quintuplet, the state J' =3; touches J =4. at **Ba, and then
separates on either side. So one says that *®Ba is O(6) on account of the degenerate
J;" =3/ andJ; =4,. Like the triplet phonon states, in the quintuplet also there is
bunching of states near N=72 ( *?*Ba isotope).

At higher neutron number ( N= 72 and N = 74) the state J;" =2, descends

below the state J;* =4, but this property is reflected in ***'**Ba

J." =4, descends below J;" =27.

isotopes the state

The energy of the J;” =2 at fast rate compared to the energy of J " =2,,
which is even increasing at **®Ba isotope ( N = 72) to **Ba isotope (N = 78). The
pattern of spectrum here indicates a continuous phase transition from near SU(3)
(rotational limit) to y -soft rotor. Here we focus on E(2;)—E(4,), respective
measures of deformation, y -triaxiality and prolate oblate potential energy difference
(Vpo) . All the three important indicators of level structure are reproduced in our
calculation.



Table (3-2)
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The energy ratio E(4,)/E(2;) is falling (see Table (3-2)) with increasing
neutron number and E(2;)/E(2;) ratio is falling from about 4.284 for **°Ba isotope

to 3.835 for °Ba isotope corresponding to the increase of triaxiality parameter »°

from 20° to 30° [107], and this ratio increased from 3.835 for *’Ba isotope to 6.858
for 1*°Ba isotope.

From the energy ratio E(4;)/E(2;) shows a nuclear structure is spherical

(near harmonic vibrator), *?Ba being a transitional nucleus (O(6) limit)). As it is seen
from the calculated and experimental energy values for **’Ba isotope are very close to
X(5) predictions. Around N = 66, the positions of the excited 0" states are also close
to the X(5) prediction and we note that the spacings in the excited sequence follow the
expected behavior. It is regarded as a transitional nucleus, since it exhibits both the
features of vibrational nuclei, like a two phonon triplet at approximately twice the

excitation energy of 2; as well as the features of rotational nuclei, like an intrinsic

quadrupole moment and an enhanced B(E2) value of the 2, state. For X(5) critical
point symmetry these signatures are listed below [108]:

1- The energy ratio E(4;)/E(2;) should be approximately 2.91.
2- The position of the first excited collective 0 state is approximately 5.67 times the
energy of the 2; .

The most basic structural signature of the E(5) symmetry is a value of the ratio
E(4;)/E(2;)= 2.20. This value is intermediate between the values for spherical

nuclei (2.00) and gamma-soft rotor (2.50). However there are large number of nuclei
in the mass region A~130 having the value for this ratio in the desired range. Thus, an
interpretation based only on the R4/, can be ambiguous and additional signatures need
to be considered. Often, the decay properties of the lowest excited 0" states are used
as an additional signature of the E(5) structure. In the case of **Ba isotope the Rax
value is 2.316 for experimental data and 2.321 for IBM-1 results (see table (3-2))
therefore this isotope lies very close to the ideal value for the E(5) symmetry
indicating that it lies more towards the SU(5) side.

It has been observed that the positioning of the 0 states plays a crucial role in
determining the behavior of the nucleus near the critical symmetry. This can be seen
from the Fig. (3-8). This figure show the changes in positioning of the levels as the
neutron number changes for ***Ba isotope respectively. It is clear from the figure that

the variation of the levels other than the 0, level is smooth, where as there are abrupt
changes in the positioning of these two levels.

Our data and our analysis have emphasized the significance of the ordering of
the excited 0; and 0, configurations for assigning the structure of a nucleus near the
E(5) critical point. Therefore, it is interesting to examine the behavior of the
observable A . =[E(037)~-(03)]/E(2;). It takes the values -1 (harmonic vibrator),
-0.880 (E(5)), 0 at the crossing point of the 0,, configurations and becomes positive
towards the O(6) limit. Along the chain of ***Ba isotope we consider the
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experimental energies of the first and the second excited O states with dominant 0, or
0, assignment.

In general, the ground bands are fitted very well, The fitting in the gamma
bands are slightly worse but are still better than those for the beta bands. The fitting in
beta bands are not so good as those in the ground bands and gamma bands. Also it is
in the beta bands that IBM-1 show the most distinct improvements become smaller as
we go to lighter isotopes. This suggest that the interactions between unlike bosons are
relatively more important in system which are closer to the closed shells.

The light **1?°Ba isotopes are known to belong to a transitional region
between spherical and axially deformed nuclei, as shown in Tale (3-2), where the

ratios E(4,)/E(2;) for N = 62-70 isotones are reported.

The %% Ba isotope was proposed by Fransen et al. [109] as a rather good X(5)
candidate on the basis of the agreement observed between experimental and
theoretical level energies. In '*’Ba isotope the ratio R,,, attains the near X(5) value
of 2.90 [110], and decreases sharply to the O(6) limit value of 25 up to N = 74 in
13983, indicating a shape change from the g-soft deformed to the y-soft or O(6) with
increasing N. **Ba isotope lies near the O(6) limit towards U(5). The **Ba isotope
lies close to the E(5) symmetry (the value of the energy ration R,,, = 2.1).

Here we focus on the energy ratios Rap, R, (Ry = E(2§/E(21*)) and 4E =

[E(22) — E(41)], the respective measures of the deformation, the y-triaxiality and the
energy difference AF related to the prolate-oblate potential energy difference Vpo in
the potential energy surface (PES) for the intrinsic structure of the nuclei calculated
in the microscopic theory [32]. All the three important indicators of the level structure
formation are well reproduced in our IBM calculation. The ratio R4/, varies with N as
in experiment. The ratio R,, which determines the triaxiality or the degree of y-
softness, is also well reproduced. The movement of 2; below 4 at “*°Ba is

reproduced. Finally, the variation of the energy difference AF = [E(2,) — E(41)] is
well given in our calculation, including its sign change at **Ba isotope (see table
(3-3)). This difference 4E decreases with increasing N and changes sign at “*°Ba
isotope. The variation in Vpo corresponds to the variation in AE, as suggested in ref.
[111].

The variation of their energies with neutrons number is interesting and is at
variance with ground-band energies and with the 2, band energies. The state 0,

falls up to N = 72 and then rises up to N = 78. The state 0, varies in a different way.

The value for N = 74 **Ba isotope is not yet known, but is likely to be the minimum.
In the physical view, it implies the shape transition at N = 74 and N = 74.

A characteristic feature of the y-unstable limit of the IBM-1 is a bunching of
y-band states according to 2%, (3%, 4%), (57, 6%),. . ., that is, 3" and 4" are close in
energy, etc. This even—odd staggering is observed in certain SO(6) nuclei but not in
all and in some it is, in fact, replaced by the opposite bunching (2:, 3°), (4, 5),...
which is typical of a rigid triaxial rotor [112]. From these qualitative observations it is
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clear that the even—odd y-band staggering is governed by the y-degree of freedom
(i.e., triaxiality) as it changes character in the transition from a y-soft vibrator to a
rigid triaxial rotor.

The root mean square deviation (RMSD) [113]:

RMSD = {%Z(Em ~E,, )2} .......................... (3-1)

(where N is the number of energy levels)

is used to compare the experimental and theoretical energy levels. Tale (3-4) given
the RMSD between experimental and theoretical energy levels. In this table we see
the ground state levels the best agreement was found in *?°Ba isotope where the
smallest value of RMSD is equal 0.0031 and equal 0.011 for gamma band in ***Ba
isotope. However RMSD = 0.012 for beta band in **®Ba isotope.

Table (3-4) : The root mean square deviations (RMSD ) between experimental and

calculated energy levels for Ba isotopes.

root mean square deviations (RMSD )
ground state band B —band y —band
Isotopes ™ gn-1 | IBM-2 | DDM IBM-1 | IBM-2 | DDM | IBM-1 | IBM-2 | DDM
Ba—120 | 0.0041 | 0.0040 - 0062 | 0.055 - 0.016 | 0.015 -
Ba—122 | 0.0046 | 00044 | 00450 | 0.063 | 0.052 | 0.0480 | 0.033 | 0.027 | 0.104
Ba—124 | 0.0040 | 00047 | 00114 | 0.058 | 0.0034 | 0.0405 | 0.011 | 0.010 | 0.152
Ba—126 | 0.0031 | 0.0033 | 0.0161 | 0055 | 0023 | 0.1234 | 0.014 | 0.013 | 0.019
Ba—_128 | 0.0046 | 0.0042 | 0.0519 | 0046 | 0.0023 | 0.123 | 0.022 | 0.021 | 0.0581
Ba—130 | 0033 | 00039 | 00191 | 0047 | 0.0033 | 0.125 | 0.013 | 0.012 | 0.0.31
Ba—132 | 0036 | 00036 | 00319 | 0043 | 0.0045 | 0.104 | 0.020 | 0.019 | 0.054
Ba—134 | 0032 | 00038 | 0.1268 | 0.052 | 0.0047 | 0.1452 | 0.023 | 0.022 | 0.0325
Ba—136 | 0031 | 00030 | 0.0227 | 0051 | 0.0024 | 0.1287 | 0.026 | 0.021 | 0.191
Ba—140 | 0.030 0.040 - 0.048 | 0.0034 - 0.028 | 0.025 -
Ba—_142 | 0.034 0.051 - 0.046 | 0.0057 - 0.034 | 0.029 -
Ba—144 | 0.035 | 0.0056 - 0.016 | 0.024 - 0.023 | 0.024 -
Ba—146 | 0.0042 | 0.0039 - 0.018 | 0.056 - 0.017 | 0.018 -
Ba—148 | 0.0048 | 0.0023 - 0012 | 0.011 - 0.019 | 0.017 -
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3-1-2 Potential Energy Surface
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The potential energy surfaces, for barium isotopes as a function of the
deformation parameters S and y have been calculated using the Eq. (2-94). The
calculated difference between prolate and oblate potential energy surfaces for Ba
series of isotopes presented in Table (3-3), show that IBM-1calculated the values of
the PES for “*'**Ba isotopes and obtained the Vpo (is the energy difference of the
prolate and oblate minima in the potential energy curve ) values of *2°*°Ba isotopes
(see table (3-3)), which correspond to the PES. A flat PES at fmin for *#’Ba isotope.
The finite Vpo for **’Ba isotope accounts for the dynamics of the nuclear structure.
The important requirement of the valid critical symmetries is that they represent the
shape transition point in the shape variation with N or Z. In the physical view, it
implies the shape transition at **’Ba isotope to *°Ba isotope in the (8, y) variables.

In general, we obtain deeper prolate minima and shallower secondary oblate
minima in all cases, both decreasing in depth with increasing neutron number. At
122Ba, the prolate minimum is 3.14 MeV deep and the oblate minimum is 0.7 MeV
deep and lies at lesser £ value (< Bmin). The same feature continues with increasing N.
At *?Ba isotope ( N = 76) we get a very shallow prolate minimum and at N = 78
13Ba isotope a very shallow oblate minimum.

The difference in the depth of prolate and oblate minima, Vpo, is decreasing
with increasing neutron number in our calculation. We obtain the prolate shape for
the light Ba isotopes as in experimental data. At in ****%°Ba isotopes N = 78, 80 and
84 Vpo is negative but we obtain almost vanishing prolate and oblate minima, or the
predicted shape is not a permanently deformed one. In fact the predicted potential
well at N =76, 78 corresponds to the spherical shape anharmonic oscillator with flat
bottom. The Vpo values obtained in Table (3-3) are rather small and its sign varies
irregularly.

3-1-3 Electric Transition Probability B(E2)

The E2 transitions provide more stringent test of the IBM-1. The general E2
transition operator is given by the Eq. (2-6). The coefficient «, called the boson
effective charge is an over all scaling factor for all B(E2) values which is determined
from the fit to the B(E2;2; — 0;) value. The coefficient £, may be determined
from the quadrupole moment Q(2;). The ratio S, /a, =y =-1.32 in the SU(3) limit
and is reduced to zero in the O(6) limit. In the “FBEM” program [82] the
corresponding parameters are «, =(E2SD) and g, =(1/ \/5_)(E2DD). The used
parameters in T(E2) matrix element of '2>**®Ba isotopes are given in Table (3-5).

Table (3-5): The effective boson charges used in IBM-1 for the calculation of B(E2)
transition probabilities for ****®Ba isotopes.



Isotopes E2SD (e.b) E2DD (e.b)
Ba—-120 0.112 -0.861
Ba—-122 0.104 -0.878
Ba—-124 0.105 -0.890
Ba —126 0.110 -0.661
Ba—-128 0.110 -0.560
Ba —130 0.125 -0.890
Ba —132 0.143 -0.890
Ba—-134 0.145 -0.890
Ba —136 0.130 -0.890
Ba—-140 0.132 -0.890
Ba—-142 0.133 -0.890
Ba—144 0.135 -0.890
Ba —146 0.137 -0.890
Ba —148 0.138 -0.890

The reduced transition probability B(E2;2; — 0;) decreases gradually with
increasing neutron number (N), which is well reproduced in IBM-1 (see Table (3-6)).

The y coefficient of the (d+d)(2) term in reduced matrix element T(E2) is kept at
—1.215.

In Table (3-6) the experimental absolute reduced transition probability B(E2)
values for the transitions from gamma band to ground state band (y — g) are few

available. So we compare the IBM-1 values with the experimental data in Table (3-6).
B(E2;2, — 0,) decreases with increasing neutron number (N) as expected for
decreasing S (and increasing y).

In Table (3-6) which shows that the electric transition probability for
p—gand y —g are smaller than the electric transition probabilities between

g — g band, and in this table shows also that, in general, there is a good agreement
between the experimental and theoretical B(E2) values in ground state band in
1201484 jsotopes. The B(E2;6; — 4;) in ****Ba isotopes, where the experimental

and IBM-1 results of this transitions are weak in agreement. The experimental and
IBM-1 B(E2) calculations between beta and ground band and between gamma band

in general are weakly in agreement except the transition 2, — 0, in some Ba
isotopes and 2, — 0; also in some Ba isotopes which gave a good agreement.

For the transitions B(E2;3] — 2;) and B(E2;3; — 2,;) seem to get weaker
with increasing neutron number, because this transitions between different bands. The
values of the transition B(E2;,0; — 2;)is very small but the maximum value at

1%2B3 isotope. The B(E2) values of Ba isotopes as well as those in ref. [121] decrease
smoothly as neutron number approaches N = 80 ***Ba isotope, as can be seen in the
Table (3-6).
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Continued to Table (3-6)

Continued to Table (3-6)

Isotopes B(E2;2; —2)) B(E2;3] — 2;)
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Exp. IBM-1 IBM-2 DDM Exp. IBM-1 IBM-2 DDM
1205, - 0.067 0.072 - - 0.065 0.0700 0.0267
122y - 0.057 0.063 0.086 - 0.044 0.0540 0.0347
1245, - 0.158 0.166 0.117 - 0.0121 0.1270 0.0321
1265, 013(5) | 0.141 0.136 0.146 - 0.073 0.0681 0.0265
1285, 0.28(4) 0.310 0.264 0.248 - 0.028 0.025 0.017
130, 0.195 0.184 0.200 0.331 - 0.021 0.023 0.0059
1325, | 0.141(41) | 0.158 0.158 0.251 - 0.026 0.029 0.0023
134gy 0.015 0.020 0.023 0.187 | 0.018(5) | 0.022 0.0021 0.0017
1355, | >0.0022 | 0.0031 0.042 0.164 - 0.019 0.021 0.00134
1405, 0.13(5) | 0015 0.161 0.181 - 0.017 0.0188 0.0012
142, - 0.110 0.143 - - 0.015 0.0169 -
Ladgy - 0.091 0.095 - - 0.012 0.0145 -
L6 g, - 0.088 0.075 - - 0.098 0.085 -
185, - 0.0751 0.064 - - 0.087 0.073 -

Experimental data are taken from refs. [105, 115, 116, 117, 118, 119, 120]

In the initial two-body Hamiltonian the E2 transition rates depend strongly on
the value of y parameter in the quadrupole operator. It is expected that this is still the
case when cubic terms are added to the Hamiltonian as long as these do not
substantially alter its eigen-states. In several of the Ba isotopes many B(E2) values
between the low-lying states are known and these allow a test of the wave function in
the calculation. The results are shown in Table (3-6). Generally a good agreement
between experimental and calculated B(E2) values is obtained. One notable

discrepancy is the B(E2;2, — 0;) transition in 132Ba isotope with a calculated B(E2)
value which is an order of magnitude too small. This value is equally small in the

IBM-1 calculation without cubic interaction and is due to an accidental cancellation of
terms with the Hamiltonian.

Calculation of the electromagnetic transition matrix elements, the high
sensitivity of the results on the signs of the matrix elements of the transitions had to
be addressed. The B(E2) branching ratios for Ba isotopes, we use the Alaga rule was
utilized to evaluate the branching ratio. Using it in its square rooted version [25]:

3T E)3, J,K, 2AK[3 K
g <3TE, > =sgn = ‘ AL (3-2)
<J[T(E2); <3,K22K[J K

it can be used to deduce the relative signs of inter-band transitions from a state Jj,x;
into different states J{, and J7 . of the same band with K, =K. . In Eq. (3-2),

the coefficients in angle brackets on the right-hand side denote Clebsch-Gordan
coefficients. The ground state transition matrix elements of each state have been

¢




chosen to be positive, the relative signs of the other decay matrix elements have been
deduced from (3-2).

Table (3-7) given the B(E2) branching ratios for ****Ba isotopes In the
IBM-1 calculation, this variation is reproduced fairly well. The branching ratios

B(E2,2, —»0,)/B(E2;2; —»2]), B(E2,3] —»2;)/B(E2;3] —» 2,)and
B(E2,3] —»2;)/B(E2;3] —4,) falling with increasing neutron number are also
reproduced in IBM-1. The B(E2,4, —2)/B(E2;4, —2,) increased ratio
increases with increasing neutron number in experimental data as in our calculation
in IBM-1. While B(E2,4, —4,)/B(E2;4, — 2;), values decrease with increasing
N, also B(E2,0, —»2;)/B(E2,0; »>2;) and B(E2,2; —>2,)/B(E22, »>2))
decreased with increasing neutron number, because the transitions between different
bands.

The interband B(E2) branching ratios provide valuable information on band
mixings and the nature of the bands. In light Ba isotopes, even at mid shell **?Ba the
experimental B(E2) ratio is = 0.2, way off the experimental value of
B(E2,3; —2!)/B(E23; —4;). At ®Ba ( N = 72) it falls to 0.1 and at "*°Ba
isotope (N = 74) to 0.05 (Table (3-7). In general up to N = 70, the IBM-1 values
agree with experiment, but for N >70, IBM-1 values decrease much more than
experiment.

The IBM-1 values for *****®Ba isotopes are better but the slight variation with
neutron number is opposite to the experimental trend.

The calculated absolute magnitude of quadrupole moment Q(2,)decreases

smoothly with increasing neutron number N (see Table (3-4)). The same trend was
predicted in experimental data. The negative sign signifies prolate shape in ****Ba
isotopes.
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continued to Table (3-7)

3-1-4 Magnetic Transition Probability B(M1) and Mixing Ratio 6(E2/M1)
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To evaluate the magnetic transition probability B(M1), we depend on
Eq. (2-53), where the effective boson g-factor is estimated using the fact g = Z/A is.
The form (2-53) of the operator has no off-diagonal matrix elements, implying that in
this approximation MI transitions are forbidden [78, 79, 81]. Some of the transition
probabilities obtained from perturbation theory are further discussed in refs. [78, 79].

The results shows that the transitions between low-lying collective states are
weak. This is because of the increase of antisymmetric component in the wave
functions. The magnitude of M1 values increase with increasing spin for y — g and

y — y transitions, see Table (3-8).

The E2/M1 multiple mixing ratios for '?>*®Ba isotopes, 5(E2/M1), were
calculated for some selected transitions between states of AJ = 0. The sign of the
mixing ratio must be chosen according to the sign of the reduced matrix elements.
The equations used are (2-7) for M1 transitions and (2-109) for the mixing ratios. The
results are listed in Table (3-9). The agreement with available experimental data
[105, 124, 126, 127] is more than good especially in the sign of the mixing ratio.
However, there is a large disagreement in the mixing ratios of 3*— 2" | due to the
small value of M1 matrix elements.

The IBM-1 formalism predicts essentially the same spin dependence for M1
transitions in **°**®Ba isotopes as does a geometrical approach, and is thus capable of
giving at least an equally good description of the data. In addition, the IBM-1 model
yields the simple prediction that A(E2/M1) values of y — » and y — g transitions
should be equal for the same initial and final spins, and this prediction seems to be
borne out empirically. It has been shown that different signs for f—>g and y —> ¢

A(E2/M1) values can be reproduced by the IBM-1 model.

Table (3-8)
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3-2 IBM-2 Results
3-2-1 Energy Spectra

In the phenomenological calculations the parameters appearing in the
Hamiltonian ((Eq.(2-97)) may in general depend both on proton (N_) and neutron
(N, ) boson number. Guided by the microscopic theory as "discussed in the Chapter
Two we have assumed that only ¢ and «, dependon N_and N ie., &(N_,N,),
xK(N_,N )while y depends onlyon N, and »,  on N_,ie, » (N,)), x,(N,).
Thus a set of isotopes, (constant N ) have the same value of y, , while a set of
isotones, ( constant N _), have the same value of y_. This parametrization allows
one to correlate a large number of experimental data. Similarly, when a proton-proton
V__ and neutron-neutron V,_ , interaction is added, the coefficients C, are taken as
C.,(N_.) and C_,(N,), i.e. the proton boson interaction will only depend on N _,
and the neutron boson on N . Since there is no information on the location of the

states with mixed neutron-proton symmetry we kept the coefficients appearing in the
Majorana force M, (see table (3-10)).

The isotopes chosen in this work are A =120 to 148 due to the presents of
experimental data for the energy levels. We have N_=3 (6 protons outside the

closed shell 50), and N, varies from 11 for '*Ba to 4 for **°Ba and increased from,

5 for *°Ba to 8 for 1*®Ba measured from the closed shell at 82. While the parameters
€, %, X, C,C, and C,, aswellasthe Majorana parameters &, , with k =1,2,3,

were treated as free parameters and their values were estimated by fitting with the
available experimental values. The procedure was made by selecting the traditional
value of the parameters and allowing one parameter to vary while keeping the others
constant until the best fit with the experimental obtained. The parameters in the work
of Subber [21,23] and the parameters of Turkan [19] have been used as starting
parameters, with slight modification to fit the experimental data. This was carried out
until one overall fit was obtained. The best values for the Hamiltonian parameters are
given in Table (3-10).

The calculated energy levels are obtained by diagonalizing the Hamiltonian in
Eg. (2-97) using the NPBOS code [94] that contains many free parameters; one has to
estimate them to obtain better agreement with the experimental data. The parameter
x always has negative sign, and it represents the quadrupole interaction strengths
and also depends on the d-boson numbers. The parameter y, has positive values for

12013683 isotopes and negative sign for **°***Ba isotopes and the parameter y_ has a
negative values for all Ba isotopes, the both parameters » , have an influence on the

excitation energy and an important one on electromagnetic properties, so they are
adjusted to reproduce the experimental data for transition probability.
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Table (3-10): Parameters used in IBM-2 Hamiltonian for '*****Ba nuclei (all in MeV
except y, and y_ are dimensionless)

Isotopes ¢ K Xy X & &G=6&| C, C., Cor C,. C..
Ba—-120 | 0.631 | -0.181 0.80 -1.20 0.121 1.22 0.0 0.0 0.0 0.0 0.0
Ba_122 | 0622 | -0193 | 080 | -120 | 0127 127 0.0 0.0 0.0 0.0 0.0
Ba_124 | 0611 | -0121 | 081 | -120 | 0135 1.35 0.0 0.0 0.0 0.0 0.0
Ba_126 | 0603 | -0121 | 078 | -120 | 0182 1.92 0.0 0.0 0.0 0.0 0.0
Ba_128 | 0602 | 0088 | 062 | -120 | 0.190 2.28 0.0 0.0 0.0 0.0 0.0
Ba—-130 | 0.618 | -0.088 0.55 -1.20 0.210 2.46 0.0 0.0 0.0 0.0 0.0
Ba—-132 | 0.688 | —-0.092 0.54 -1.20 0.236 2.78 -0.01 0.0 0.0 0.0 0.0
Ba —-134 | 0.810 | -0.092 0.53 -1.20 0.241 2.88 -0.03 -0.03 0.0 0.0 0.0
Ba —136 | 0.828 | -0.088 0.52 -1.20 0.252 3.11 -0035 -0035 0.0 0.0 0.0
Ba_140 | 0.770 | -0311 | -018 | -011 | 0260 | 0321 | —006 | 004 | 020 | 020 | —0.40
Ba_142 | 0650 | -0300 | -040 | -029 | 0041 | 0510 | —0.11 | —0.04 | —0.10 | 020 | —030
Ba —144 | 0341 | -0300 | -040 | -032 | 0061 | 0510 | —0.11 | —0.04 | —0.10 | 020 | —0.50
Ba _146 | 0.205 | -0.280 | -058 | -034 | 0191 | 0222 | —0.16 | —003 | —0.10 | 020 | —055
Ba_148 | 0252 | 0220 | -068 | -039 | 0042 | 0222 | 026 | 001 | —010 | 020 | —0.10

C,, =0.0MeV

The parameters C,_ are varying from isotope to another smoothly, this
parameters is very important to reproduce the sequences of the ground state levels
and the 03, states .

The Majorana parameters &, , , is very important to study the mixed symmetry

states, in the Table (3-10), the values & =&, and &, changed gradually and
smoothly from isotopes to another.

The energy level results of IBM-2 and experimental data are given in
Figs. (3-1) to (3-14). The agreement between the theoretical and the experimental
energy levels is, in general, good except for some cases of the high spin states, such as
03, 0;, 2;, states; this indicates that these states is outside the IBM-2 space, which

is the ‘intruder state’.

The energy ratios are given in Table (3-2), from this table we see the ratio
E(47)/E(2}) is decreased smoothly from *?°Ba isotope to **°Ba isotope at N = 84

because approach to the major shell ( N = 82). This ratio equal 1.877 in **°Ba isotope
(N = 84) and increased again for **’Ba isotope to **Ba isotope equal 3. In general the
energy ratio decreases smoothly with increasing the N for ****“°Ba isotopes, for all
120-140B3 jsotopes and it means that these structure seems to be verifying gamma soft
rotor to vibrator nuclei (O(6) to SU(5)). The energy spectrum of the *2***Ba isotopes
lie between vibrator (U(5) limit) and rotational (SU(3)) limit. The general features of
the transition between U(5) in 1*°Ba isotope near the beginning of the closed shell and
SU(3) in *®Ba isotope with moderate deformation are well reproduced by the IBM-1.
In Table (3-2), we have introduced the experimental and IBM-2 values of the ratios,
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E(6,)/E(2;), E(2,)/E(2]), E(0;)/E(4;) and E(0;)/E(2;) together with the
values of IBM limits.

From Figs. (3-1) to (3-14), the energy states 0, (two phonon states) for

example, '**Ba isotope, the energy of 0; is equal to 0.898 MeV and 0.885 MeV in
IBM-2 and is in good agreement with the exgerimental ones at 0.983 MeV and 0.872
MeV, in 1?°Ba isotope, in the other hand in **Ba isotope the IBM-2 value 1.693 MeV
and 1.760 MeV in experimental data which means that the experimental 0" at 1.760
MeV is the intruder state. It is interesting to note that our calculation reproduces the
available experimental data well for all the low-lying levels in ***'*®Ba isotopes,
except for the 0, state. The calculations show that the energy of the 0, state is
predicted in a good agreement with the experimental data. The pedagogical
calculations [128] with the Z = 64 shell assumption yield the correct energy
ratios, and suggest that this sub-shell is still effective concerning the structure of these
isotopes, especially for N > 88 [21].

The root mean square deviation (RMSD) [113], is used to compare the
experimental and theoretical energy levels. Tale (3-4) given the RMSD between
experimental and IBM-2 energy levels. In this table we see the ground state levels
the best agreement was found in *Ba isotope where the smallest value of RMSD is
equal 0.0023 and equal 0.010 for gamma band in '?**Ba isotope. However
RMSD = 0.0023 for beta band in ***Ba isotope.

In general the IBM-2 calculations agree with the experimental data very well.
The IBM-2 energy level values and experimental values do show some of degrees of
staggering in the calculations a very small. In ***4°Ba isotopes, the staggering is

almost completely removed. The values of J® =0,, 0, states are too higher
compared with experimental data in some Ba isotopes. These higher states in bands,

most of them with angular momentum J” =0" may be the mixing states of bosons
configurations and intruder configuration.

In order to investigate the effect of Majorana interaction parameters which is
given in Table (3-10) on the energies of 2;, 3, and 2 states, the calculated energy
is plotted in the as a function of Majorana parameters &, and &, = ¢, all the other
parameters were kept at their best-fit values,. One can see from Figs. (3-1) to (3-14)
that the energies of 2, 3] 2, and 2, states exhibit rapid response to the changes in

the parameters compared to the others. This means that these states are good
candidates for mixed symmetry states [129]. However, there are effects on the
energies of these states as can be seen from the Table (3-11). This is a good search
method to clarify the mixed symmetry states. As hinted in Table (3-11), we were
unable to find one value of this parameter that fitted all the experimental values

[21,23]. In rotational nuclei we see the 1 is a mixed symmetry states.
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Table (3-11): Variation of the 2, , 3] , 2,, 4, and 4; energies as a function of Majorana
arameters &, .

Isotopes 52 2; 31+ 2; 4; ZX
Ba—-120 0.121 0.825 - 1.627 1.123 -
Ba—-122 0.127 1.160 0.625 0.927 1.273 -
Ba—-124 0.135 0.867 1.006 1.314 1.298 -
Ba—126 0.182 0.754 1.257 1.321 1.407 1.626
Ba—128 0.190 0.879 1.221 0.977 1.311 1.822
Ba—130 0.210 0.910 1.298 1.581 1.721 1.903
Ba—-132 0.236 1.084 1.621 1.711 1.782 2.172
Ba—-134 0.241 1.167 1.622 2.131 1.400 2.253
Ba —136 0.252 2.117 2.250 2.193 1.987 2.191
Ba —140 0.260 1.481 1.887 2.931 2.401 2.827
Ba —142 -0.041 1.430 - 1.730 - 2.825
Ba—144 -0.061 1.837 - 2.021 - 2.372
Ba —146 -0.191 1.227 - 1.287 2.422 1.424
Ba —148 —0.042 1.131 2.321 1.893 1.852 1.893

3-2-1 Electric Transition Probability B(E2)

Calculations of electromagnetic properties give us a good test of the nuclear
models prediction. The electromagnetic matrix elements between eigenstates were
calculated using the program NPBTRN for IBM-2 model.

From Eg.(2-102) we note that an E2 transition mainly depends on identifying
proton and neutron bosons effective charges e_ and e, .These isotopes lying in region
between U(5) limit (vibrational nuclei) and SU(3) limit (rotational nuclei), therefore,
the relationship between (e_,e, ) and the reduced transition probability B(E2) for
vibrational limit U(5) and rotational limit SU(3) is given in the form [11, 130, 131]:

A+ + (eﬂNir +eVNV)
B(E2;2; »0;)= N B-3)  For SU(5) limit

R . 2N +3)e, N, +e N,
B(E2;21 —)01) = ( )( 5N ) ................ (3-4) For SU(B) limit

where B(E2;2, — 0,)is the experimental reduced transition probability from the
first excited states (2;) to the ground state (0,), N is the total number of bosons.

The relations (3-3) and (3-4), was used to estimate the effective boson charges for
proton and neutron bosons (e_,e, ). In this calculations, we use the following criteria

to determine the effective charges. e = 0.2032 e.b is a constant throughout the
whole isotopic chain and the e, changes with neutron number. This is true if the
neutron (proton) interaction does not depend on the proton (neutron) configurations.
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The values of e_and e are determined by fitting to the five B(E2;2] —0;) and

B(E2;2, —2;) in **Baand '*°Ba isotopes. They are given in Table (3-12).

Table (3-12): Effective charge used in E2 transition calculations (e, = 0.2032 e.b).

Isotopes

1ZOBa

1228a

126Ba

1288a

13OBa

ISZBa

134Ba

lSSBa

l4OBa

14ZBa

144Ba

1468a

1488a

e, (eb)

0.521

0.501

0.362

0.363

0.330

0.341

0.342

0.301

0.298

0.295

0.275

0.252

0.201

It is well known that absolute gamma ray transition probabilities offer the
possibility of a very sensitive test of nuclear models and the majority of the
information on the nature of the ground state has come from studies of the energy
level spacing. The transition probability values of the excited state in the ground state
band constitute another source of nuclear information. Yrast levels of even-even

nuclei ( J, = 2 ,4,6,.....) usually decay by E2 transition to the lower lying yrast level
with J; =J, - 2.

In Table (3-6) we show the B(E22; -»0;), B(E24, —2;) and
B(E2;6; — 4;) values, which are of the same order of magnitude and display a
typical decrease towards the middle of the shell.

As a consequence of possible M1 admixture the B(E2;3] — 2,) quantity is

rather difficult to measure. There is no experimental data to compare the values of
IBM-2. For **Ba isotope, we give the agreement with experimental value, from these
values seems to decrease for ******Ba isotopes and increased for ****8Ba isotopes.

In the Table (3-6), we show B(E2;2, — 0,) values. Experimentally the results

are radically different for the Ba isotopes. In the some Ba isotopes the value seems to
increased towards the middle of the shell, whereas in another Ba isotopes is
decreased. Our calculations could not reproduce these contradictory features

simultaneously. The results for B(E2;2, — 0,) values are shown in Table (3-6) . This

quantity is rather small since this transition is forbidden in all three limits of the
IBM-1 [78, 79] as discussed in Chapter Two.

The quantity B(E2;0, — 2,), which is shown in Table (3-6), provides a
second clue for identifying intrude O states. If the experimental B(E2;,0, — 2,)
value small largely deviates from the results of our calculation, it is very likely the
observed 0, states does not correspond to the collective state, but it is rather an
intruder state.

In *Ba isotope, there is a good agreement between experimental and
calculated B(E2;0, — 2;) value. This confirm our earlier statement about the nature

of the lowest 0, state in this isotope. Other transitions B(E2;2; —2;) and

B(E2;2; — 0,) are small values because these transitions between different bands
(cross over transitions) and the selection rules which determine these transition.
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As a consequence of possible M1 admixture the B(E2;2, — 2,) quantity is
rather difficult to measure. For '2°*%Ba isotopes, we give the different, conflicting
experimental results and we see that no general feature be derived from them, from
these values seems to decrease for ****?°Ba isotopes and decreased for *****°Ba
isotopes.

The results for B(E2;,0;, —2;)and B(E2;2; — 2;) values is rather small

since this transition is forbidden in all three limits of IBM [78]. Our agreement with
the available data is generally quite good. It should be noted that no attempt was made
to fit any of the B(E2) values while determining the parameters in the Hamiltonian.

In general the electric transition probabilities from the mixed-symmetry state
J7 =3[,2; to the symmetric states (2,,2,) is weak collective E2 transition. The E2

transition between the J” =3;,2, and the 2° ground state is small, whereas E2

transitions are large between fully-symmetric states and between mixed-symmetry
states.

One of the important property which can be calculated is the branching ratios,
through which one can identify the position for the nuclei studied in Casten triangle,
and hence to identify the dynamic symmetry for the nuclei by using the Alaga rule
(Eq.(3-2)). Table (3-7) show the branching ratios for '*'*Ba isotopes. These are
compared with experimental data. Our agreement with available data is generally
quite good, but it must be noted that in the some branching ratio the denominator is
small and hence the ratio is very sensitive to experimental errors and/or precision in
the numerical calculation.

3-2-3 Magnetic Transition Probability B(M1) and Mixing Ratio ¢ (E2/M1)

The M1 transition operator is given in Eq.(2-107), where the gyromagnetic
factors for bosonsg_ and g, are estimated. The reduced E2 and M1 matrix elements

were combined in a calculation of mixing ratio 5(E2/M1) ) using the relation which
is given by Eq. (2-109).

Sambatora et al., [132] suggested a total g-factor which is given in following
equation:

N N

= T4 TPV TTTPPTRTTRTP 3-4
g g”N”+NV gVN +N ( )

is used to compute the 2; state g-factor. The value of the measured magnetic moment
for 3*Ba isotope, u =29 =0.86(10) 1, [130], and the experimental mixing ratio
S(E2/M1;2; —27)=-7.4(9)eb/ u,, [6, 130] for **Ba isotope were used to

produce suitable estimation for the boson gyromagnetic factors. The values are
g, =0.473u, and g, =0.378y, . The results of the calculations are listed in Table

(3-8). They are different from those of the rare—earth nuclei, (g, —g, =0.654,),
suggested by Van Isacker et al., [133] also used g, =1z, and g, =0x, to reduce

78



the number of the model parameters in their calculation of M1 properties in deformed
nuclei. The results of our calculation are listed in Table (3-8). As can be seen from the
table yields to a simple prediction that M1 matrix elements values for gamma to
ground band and transitions should be equal for the same initial and final spin. Also
the size of gamma to ground band matrix elements seems to decrease as the mass
number increases.

The results shows that the transitions between low-lying collective states are
relatively weak. This is because of the increase of the anti-symmetric component in
the wave functions introduced by F-spin breaking in the Hamiltonian. The magnitude

of M1 values increases with increasing spin for y —» g and y — y transitions and we
see:

1- By fitting B(M1) from 2, to 2; we always get small value for g, —g,_ compared
with the value basis on the microscopic calculations g, — g, =1z, .

2- There are evidences that M1 small mode exists in all spectra.
3- The IBM-2 predicts small M1 component which is due to symmetry and
forbiddances of band crossing gamma transitions.

4- The y —y M1 matrix elements are larger than the y — g M1 matrix elements by

a factor of 2 to 3. Again, this agree qualitatively with the perturbation expressions
derived in ref. [134] .

5- The size of the y — g M1 matrix elements seems to decrease with increasing mass.

Specially, a change in y — g M1 strengths occurs when the gamma band crosses
the beta band.

These five aspects of M1 data shown in Table (3-8) are reproduced by the
calculation through a smooth variation of the parameters ¢ and Ay, and with a few

exceptions (e.g., some » —> g transitions in ***Ba isotope and 3/ — 2] transition in
1%9B3) good agreement between the theory and the experimental data is achieved.

The calculated values for B(M1) are acceptable to some extent, where some
of B(M1) values are small compared to the values of the quadrupole transition
probabilities because the wavelength of the gamma ray transitions is greater than it is
in the magnetic transitions according to the following the relationship:

A(ML) =0.3A?"®*J(EL). This relation shows that the B(M1) transition probability is
less than B(E2) transition probability and our results confirm this.

Table (3-13) given the g-factor in s, units for *****Ba isotopes for first
excited state (2;) and second excited state (2,) which compared with the
experimental data. The g-factor of a state |k) is given by [135]:
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Table (3-13): Experimental and IBM-2 calculations for g-factors for *****Ba g, units.

Isotopes lZOBa lZZBa lZGBa lZSBa 13OBa 13ZBa 134Ba 13GBa 14OBa 14ZBa 144Ba 14GBa 14858.
g(27) | 0542 | 0511 | 0488 | 0.471 [ 0.442 | 0.439 | 0.414 | 0.395 | 0.385 | 0.355 | 0.312 [ 0.290 | 0.240
! (0.424) | (0.34) | (0.28)

1.411 | 1.047

9(22) 1.682 | 1.632 | 1.621 | 1.601 | 1.571 | 1.532 | 1.522 | 1.497 | 1.481 | 1.322 | 1.148

Experimental data are taken from ref. [136].

We evaluate the mixing ratio & (E2 /M1) for *2°***Ba isotopes, depends on the
Eq.(2-109). The resulting of IBM-2 calculation fors (E2 /M1) together with
experimental values are shown in Table (3-9). For this calculation we used the

standard boson g- factors g, =0.473x, and g, =0.378y,, .

We were able to reproduce the 2; g-factors as well as most of the & (E2/M1)
mixing ratios. In particular, all the signs are reproduced correctly. It should be noted
that a sign change appears in both the (2, —2;) and 5(2; — 2;) transition mixing
ratios, when going from isotope to another. Moreover, in some isotopes there is an
opposite sign between the &(2, —2;) mixing ratio and the &(3] —2;) mixing
ratio. We were able to reproduce all of these features in the calculation. Mainly, the
sign change of A¢ and Ay for *****Ba isotopes in comparison to *****Ba is

responsible for this effect. We also calculated the admixtures of lower F-spin states in
the ground state. They are 1.6%, 2.2%, 1.3% for 1*44¢1®B3 isotopes respectively.

These results exhibit disagreement in some cases, with one case showing
disagreement in sign. However, it is a ratio between very small quantities and any
change in the dominator that will have a great influence on the ratio. The large
calculated value for 5(2, — 2;) is not due to a dominant E2 transition, but may be
under the effect of very small M1 component in the transition. Moreover, the large
predicted value for transition 5(2; —2;) in '*Ba isotope and **'*°Ba isotopes
compared with experimental value may be related to high predicted energy level value
of the IBM-2; (2}) E =0.825 MeV in **°Ba isotope and E = 1.430 MeV, 1.752 MeV
and 1.227 MeV respectively, while the experimental values is 1.424 MeV, 1.848 MeV

and 1.115 MeV. We are unable to bring the energy value of this state close to
experimental value simply by changing the Majorana parameters.

The sign of the mixing ratio must be chosen according to the sign of the
reduced matrix elements. The equations used are (2-107) for M1 transitions and
(2-109) for the mixing ratios. The results are listed in Table (3-9). The agreement with
available experimental data [105, 125, 126, 127] is more than good especially in the
sign of the mixing ratio. However, there is a large disagreement in the mixing ratios of
some transitions, is not due to a dominate E2 transition, but may be under the effect of
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very small value of M1 matrix element. However, it is a ratio between very small
quantities and may change in the dominator that will have a great influence on the
ratio.

3-2-4 Electric Monopole Transition Matrix element p(EOQ)

Electric monopole (EO) transitions between nuclear levels proceed mainly by
internal conversion with no transfer of angular momentum to the ejected electron. For

transition energies greater than 2m,c?, electron-positron pair creation is also possible;

two-photon emission is possible at all energies but extremely improbable. The EO
transition also occurs in cases where the levels have the same spin and parity. This
means that the EO transition competes with E2 and M1 components in these
transitions.

The reduced matrix monopole transition is given in Eq.(2-114), the necessary
parameters of the monopole matrix element o(EO) are derived from fitting the isotope

and isomer shifts (3,, =0.053fm* , B, =-0.020fm* ). The IBM-2 results of
p(EQ) values are available upon request, see Table (3-14).

Table (3-14 ): Monopole Matrix Element p(E0) in e.b for 1****Ba isotopes in IBM-2 .
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In 114883 jsotopes p(E0) values increased in some isotopes with increasing
neutron numbers and decrease for some isotopes and they go up to the highest value
at some isotopes. This means that all the isotopes are deformed because they possess
the amount of excess energy and that they are trying to get rid of this by lessen the EO
transitions to the state of stability. This is an additional evidence of the deformation of
these isotopes.

We notice that the theoretical values for the X (EO/E2) ratio are small, for
some transitions (see Table (3-15)) which means that there is a small contribution of
EO transition on the life time of the 0" states. There are two high values of
X (EO/E2) in transitions from 05 — 0; in **>'**Ba isotopes means that this state decay
mostly by the EQ and according to this one could say that the study of this state give
information about the shape of the nucleus, because the EO transitions matrix elements
connected strongly with the penetration of the atomic electron to the nucleus. So
combination of the wave-function of atomic electron, which is well known, and the
nuclear surface give good information of the nuclear shape.

From the table, one can overall see a reasonable agreement with the
experimental data for ***Ba isotope. The X (EO/E2) ratio are important for nuclear
structure and the model predictions due to their sensitivity for the nuclear shape. We
conclude that more experimental work is needed to clarify the band structure and
investigate an acceptable degree of agreement between the predictions of the models
and the experimental data. The B(E2) between the ground band states, the quasi-y and
quasi-f band states are also described which is used to evaluate this ratio.
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Table (3-15): X (E0/E2) *'*Ba isotopes in IBM-2 .

J i+ RN J ;r lZOBa lZZBa 124Ba IZGBa IZSBa lZSBa lSOBa BalSZ 134Ba 13GBa
) 211 | 133 | 2317 | 138 | 2471 | 2414 0.73
2741 0197 |o.146 ] (0.69) | 15.32
0,—> 0, | 00037 | 0.0023 | 0.0047 | 0.0054 | 0.057 | 0.006 2.251
2> U1 0143 |Jo0.187 | 28(2) | 232
0,0, | 0022 | 0015 [oo02s1 [ o018 [ 00221 | 0022 | o0 | 105 | 0.0073 | 0.0080
0,0, | 00031 | 00027 [ 0.0038 |0.0028 | 00034 | 0004 | | oo 065 | 1296
J i+ RN J ;r l4OBa l4ZBa 144Ba 1468a 14SBa
2,52, | 5447 | 6872 | 0101 | 021 | 7221
0;—>0: | 1227 | 0873 | 0197 | 0182 | 25621
0;—>0: ] 0.0032 | 0.0086 | 019 | 0.231 | 5.2x10?
0;—>0, | 3729 | 5327 | 1671 | 261 | 1778
The Experimental data are taken from ref. [23,105]
3-2-5 Mixed Symmetry States in **>**® Ba Isotopes

One of the great advantages of the IBM-2 is the ability of reproducing the
mixed symmetry states (MSS's). These states are created by a mixture of the wave
function of protons and neutrons that are observed in most even—even nuclei. This
mixed symmetry (MSS's ) state has been observed in many deformed nuclei. In more
vibrational (near spherical nuclei) and gamma-soft nuclei, we expect the lowest

mixed-symmetry states (MSS's) with the J” =2" state, while in rotation nuclei
observed as the J” =1" state. Hamilton et al., [11] studied the mixed-symmetry
states (MSS's ) state in **°Ba isotopes, to be 2 state at about 2 MeV.

From the results of energy levels we can see that the energies of J;" =2;,2,

states exhibit rapid response to the changes in the Majorana parameters compared to
the others (see Table (3-10)). This means that these states are good candidates for
mixed symmetry states [137]. However, there are effects on the energies of » —band

J;" =23 and J" =4,, as can be seen from the Figs.(3-1) to (3-14). This is a good
search method to clarify the mixed symmetry states (MSS,s). Fazekas et al., [138]

have suggested that the two states at 2.029 and 2.088 MeV should share the properties
of the mixed symmetry state in ***Ba isotope.

In this work, we proposed that the J* = 2 state in **“Ba isotope decays to the
first excited state with an energy (IBM-2) of 1.730 MeV with a mixing ratio
06(2; > 2;)= -0.88, which means it is dominated by the M1 transition, with
B(ML2; —2;)=0.091z>% . In ***Ba isotope, for the J* =2 state at energy 1.730

MeV excitation is close to the experimental value for 1.693MeV. The energy is well
reproduced by the calculation, where the choice of the Majorana parameters (&, =&,

and ¢&,) plays a important (crucial) role. This state is quite pure , F._, —1, with:
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In **°Ba isotope, the IBM-2 calculation predicted the J* =2 state at 1.287
MeV with R = 84% and the J;” =2, state at 1.424 MeV with R = 75%. We obtained
a large M1 strength for B(MZL2; —2;)=0.1424; in comparison with

B(ML2; — 2{)=0.074x; . These values indicated that the J =2; state is the
lowest mixed symmetry state in **°Ba isotope.

In ***Ba isotope, the IBM-2 calculation predicted the J* =2 state at 1.527
MeV with R =85% and the J” =2, state at 1.893 MeV with R = 74%. We obtained
a large M1 strength for B(MZL2; —2;)=0.0110.; in comparison with

B(ML2; —2])=0.1034 . These values indicated that the J =2; state is the
lowest mixed symmetry state in ***Ba isotope.

Table (3-16): B(M1) calculated to first excited states in £/, units for *****Ba isotopes

Isotopes | B(ML2; —2;)| B(ML2; —»2;) | BIML2, »2])
Ba—-120 0.022 0.00210 0.0045
Ba—-122 0.0201 0.00293 0.0041
Ba —-124 0.0188 0.0030 0.0039
Ba—-126 0.0046 0.0031 0.00321
Ba—-128 0.0362 0.00341 0.00296
Ba -130 0.045 1414x10°° 0.0027
Exp. (>1.2x107°)

Ba—132 0.016 0.0455 0.113
Ba—-134 0.046 0.0463 0.142
Ba—136 0.009 0.05414 0.187
Ba—-140 0.246 0.0692 0.0106
Ba-—142 0.035 0.0910 0.0081
Ba-144 0.0046 0.130 0.0021
Ba—146 0.0021 0.142 0.0711
Ba—148 0.0002 0.011 0.1044
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In **Ba isotope, the IBM-2 calculation predicted the J” =2 state at 1.527
MeV with R = 85% and the J =2, state at 1.893 MeV with R = 74%. We obtained
a large M1 strength for B(MZL2; —2;)=0.0110.; in comparison with

B(ML2; —2])=0.103x . These values indicated that the J =2 state is the
lowest mixed symmetry state in ***Ba isotope.

The experimental and theoretical campaign for the investigation of the Ba
isotopes had been motivated by the search for one quadrupole-phonon states of mixed

proton-neutron symmetry 2;,, in these nuclei. In 13983 isotope there is no absolute
value for aB(M1L2; — 2;) could be deduced, because, except for the J” =2, state,
no multipole mixing ratio has been known from experiments, due to the lack of
sufficient statistics in the respective transitions. All of the results on B(M12 — 2,)

values in this nucleus are, thus, based on assumptions of pure transitions, and, for
most of the assumed 2 states, also on estimates of their ground-state transition

intensities. For the decay of the J;” =2, state at 1.581 MeV to the J =2, state two
possible values for the mixing ratio 6(2; — 2,") = —23(9) experimentally and -20.44
IBM-2  results, corresponding to a nearly pure E2 transition
ando(2; — 2;)=0.31(2), corresponding to a >90% M1 contribution to this
transition. The transition strengths have been calculated for both values. The results
on the B(ML2; — 2,) show that even for the nearly pure M1 transition the strength
of experimental data [25] B(M12; — 2})>1.2x10"° 1% while the IBM-2 value for
this transition equal 1.414x107° 4> is only quite small. The ground state transition

strength of electric transition probability B(E2;2; — 0;) =0.0021e’b* is very small,
too. These values are considerably smaller than what would be expected for a
J =2;,, state and indicate that the J;” = 2; state does not contain a considerable

fraction of the J;* =2/, wave function.

In ***Ba isotope an isolated mixed-symmetry state J7 =2, at 2.193 MeV had
been identified. In the even-even neighbor **Ba isotope the mixed-symmetry state
has been observed to fragment over two close-lying 2" states J* =2} at 2.131 MeV

and 2.171 MeV. This decrease in energy continues for the present results on **’Ba
isotope. Here, a small fragment of the mixed symmetry states (MSS's) has been

identified at an energy of 1.711 MeV. Further candidates for J;” = 27, -fragments in
this nucleus are the states at 1.977 MeV, and, based on different assumptions, at 2.414
MeV, 2.482 MeV, and 2.962 MeV. None of the possible J” = 2;-fragments in *’Ba
isotope exhibits a B(M1,2" — 2;) of similar strength as it has been observed in the

134136B3 isotopes. A state with the expected properties of an isolated mixed-symmetry
states (MSS's) state can be excluded in *¥’Ba isotope below 2.8 MeV based on the
experimental data.
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We obtained a large M1 strength for (2, —»2]) transition,
B(M1) = 0.1044 u} in comparison with B(M12; —2;) = 0.011 1 . These values
indicated that the J;” = 2; state is the lowest mixed symmetry state in ***Ba isotope.
Table (3-15) presents the calculated B(M1) to the J” =2, state. For the g-factor
value of J =2, states, our calculations agree well with the available experiment. All
J =2, states have positive g-factor as shown in Table (3-8).

The IBM-2 calculation of B(MZ1;(2;5,,—2;) = 4.1x107°u; while the
experimental value equal to >3.50x107 22 [ 25] is also quite small in **Ba isotope.
Also the result of B(E2;( 2,4, > 2;) = 0.00043e?b? is small. Again, these values do
not allow for the identification of a significant fragment of the J” =2/, state.

The theoretical value of B(M1;(2},, — 27) =5.1x107° 12 and
experimentally equal > 4.67 x107° 17 these values are very small when compared to
the expectation of an isolated J;” = 27, state. The value of quadrupole electric

transition probability for this transition B(E2;(2;,,, — 2,) = 0.00056 e?b? is stronger
(greater ) than for the 1.819 MeV state.

The estimate of the decay rates of the (2) 2.371 MeV state has been made
under the same assumptions of J” =2" and of a pure M1 transition to the J =2/

state. The result of B(M1;(2}.,,— 2;) = >0.134,; [25] and the IBM-2 value is
0.166 1, represents the strongest M1 transition strength for this isotope. Its
magnitude nearly fulfills the expectations on an isolated J;* =2/, state. Also the
result of B(E2;(25.,,— 0;) = 0.00035 e’b”* meets the expectation for the order of
magnitude of this transition strength. However, these numbers are based on numerous
assumptions, beginning with the unknown J;” assignment. In this energy range the

excitation of states can be ruled out that are not fed from above and have angular
momentum quantum numbers J”* =3~ or 2" [25].

Consequently, based on the given data the state at 2.371 MeV can be assigned
a candidate of an isolated J7 =2/, state in '*°Ba provided the underlying

assumptions of J =2/, and of a predominant M1 transition to the J* =2 state

are valid. The other J* =2" states at 1.557 MeV, 1,819 MeV, and 2,269 MeV
exhibit nearly vanishing B(M1; J” =2 — 2;) values and can, thus, be identified at

most as weak fragments of the J” =27, state. In 32Ba isotope, for three

higher-lying states the spin and parity assignment J” =2 has been assumed. Under
the additional assumption of pure M1 decays into the J” =2, state, estimates on
lower limits on their possible M1 decay rates have been made.
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The values of B(M1;2;,,—>2/) = >0.026u5, BML;(2},,,—>2;) =
>0.01244; and B(M1;2; 5 —> 2;) = >0.012. [25], but the values of IBM-2 for
these transitions are given 0.031x7, 0.0161x. and 0.0182./ respectively, the
experimental and theoretical values do not exhibit a pronounced M1 strength. The
corresponding ground-state transition strengths are of the order of 0.024 x? to 0.035
15 . Based on these data, the three states at 2.400 MeV, 2.439 MeV and 2.686 MeV
can at most be interpreted as candidates for fragments of the J” =27, state,
provided that the assumptions made in the calculations could be confirmed.

On the basis of the present results it can be concluded that no prominent,
isolated J;” =2/, state has been observed in the nucleus **’Ba isotope below an

energy of 2.7 MeV. From the B(M1) strength distributions only weak fragments of
the mixed symmetry state could possibly be identified in this isotope.

The experimental data on the B(ML2 — 2;) strengths of the Ba isotopes
completed the experimental data on the one quadrupole-phonon state of mixed proton-
neutron symmetry J;” =2/, in the A = 130 mass region. The new data enabled a

discussion of the evolution of the J; = 2/, state as well as for the Ba isotopic chain.
The results seem to support the previous observation of an increased fragmentation of
the J7 =2;,, state for mid-shell nuclei of that mass region. However, the results
showed an enhanced candidate of a J;° =2;,,, state in ******'**Ba that hampers a

unified view of the results and their interpretation, but whose results are based on
several assumptions during the calculations, beginning with the J” =2" assignment.
Any further discussion on the evolution of the mixed symmetry states in this mass

region will, therefore, depend on an independent verification or falsification of the
assumptions made for the calculations on the 2.371 MeV state of ***Ba isotope.

The scissor state J” =1" which is the state with mixed symmetry state depend
on the Majorana parameter, so that the J” =1"states in Ba isotopes determined by
the &, parameter. The calculated energies of the all J* =1" states are listed in Table

(3- 17). The values of all J” =1" states are greater than 2.00 MeV, which are closed

to the values of J” =1" states of the neighboring nuclei, and agree with the
experimental data.

Table (3-17): Experimental and calculated for 1* level for **%’Ba isotopes in

MeV units.
|50t0pe 1268a 1288a 13OBa 13ZBa 134Ba 1368a 14OBa lAZBa
E(l*) Exp. 2.622 2.431 | 2.827 2.962 2.618 | 2.687 | 2.671 3.261
E(l*) Theo. - 2.347 | 2.733 2.846 2570 | 2.693 | 2.692 3.144

From the above consideration the following signature for one-phonon MSSs in
vibrational and transitional nuclei with, at least, approximate O(5) symmetry, can be
expected:
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1- The one-phonon 2;,, state should be the lowest-lying mixed symmetry state.
2- This 2;,, state should decay to the 2; by a strong M1 transition with an absolute
matrix element of about 1z .

3- Since the 2;,, state is a one-phonon excitation it should have collective E2 matrix

elements to the ground state for both, proton and neutron bosons, however, with
opposite signs, which might lead to partial cancellation in the total, <2/, |E2/0; >

matrix element. Thus, a small-to-weakly-collective E2 transition strength (< a few
e.b.) from the 2;,, state to the ground state can be expected.

4- All mixed symmetry states have to be very short lived, typically a few hundred
femto-seconds or less, because of the strong M1 matrix elements and typical transition
energies greater than 1 MeV in vibrational nuclei.

Even though the mixed symmetry states are defined in the framework of a
collective algebraic model, their properties are strongly influenced by the underlying shell
structure. However, the relation between the properties of the mixed symmetry states and
the specific microscopic structure is not completely understood.

From the above fingerprints it is obvious that the mixed symmetry states can
be identified experimentally by their unique decay to the low-lying fully symmetry
states [139]. This however, comprises a major experimental challenge because it
requires full spectroscopic information, i.e. the spin and parity quantum numbers of
these highly excited non-yrast states, their lifetimes, the branching ratios and
multipole mixing ratios of their y-decays have to be determined. For more detailed
insight in the structure of these states information on their magnetic moments is also
necessary. Until recently obtaining all this information was possible for a hand-full of
stable nuclei only. No mixed symmetry states have ever been solidly identified in
unstable nuclei on the basis of large absolute M1 transition rates.
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3-3 Dynamic Deformation Model (DDM) Results
3-3-1 Energy Spectra

The even-mass barium isotopes (Z= 56) are part of an interesting region
beyond the closed proton shell at Z=50 where the level structure has resisted detailed
theoretical understanding. The present investigation of the Barium isotopes,
N = 64-80, mainly by the dynamic deformation model (DDM) is a part of a wider
study which includes tellurium, xenon and selenium isotopes.

The calculated collective energy levels of the barium isotopes were obtained
by changing the value of N over the range N = 64-80 without adjusting any
parameters in the model. The Dynamic Deformation Model (DDM) calculated level
energies are presented in Figs. (3-1) to (3-9). The basic features of the variation of
level structure with neutron number N are well reproduced. In the ground state band

the variation of the energy ratio E(4;)/E(2;)from a value of 2.927 in *°Ba isotope

at neutron number N = 64 to 2.098 in *°Ba isotope at neutron number N = 80 is
reproduced.

The variation of E(2;) and E(4,) increased gradually with increasing
neutron number, i.e., the variation of the moment of inertia with N is reproduced.
The crossing of the state 2; below 4; in ***3Ba isotopes at N = 76-78 is obtained,
as one goes from N = 64 to N = 80. Similarly the 0; state is below 4; in ***Ba
isotope at N = 76 and the 0 state is below 3, state in *****Ba isotopes and lies at
high energy in *****Ba isotopes.

The gamma band (25,05 ,4%) lies high *#*'%Ba isotopes . Also the states 2;

and 3; states lies high. The levels 2;, 2,, 0;,4;, 4, comparison with experimental
has to be done carefully.

The root mean square deviation (RMSD) [113], is used to compare the
experimental and DDM energy levels. Table (3-4) given the RMSD between
experimental and DDM energy levels. In this table we see the ground state levels the
best agreement was found in ***Ba isotope where the smallest value of RMSD is
equal 0.0227 and equal 0.0310 for gamma band in *°Ba isotope. However
RMSD =0.0405 for beta band in ***Ba isotope.

Figs. (3-1) to (3-9) show the energy levels of the barium isotopes from which
we may draw the following conclusions.

(i) The E(4;)/E(2;) ratio of the level energies decrease from the maximum of

2.927 for N= 64 to 2.098 for N= 80. This indicates a non-collective quasi-particle
excitation becoming increasingly important as the neutron number approaches N= 82.

(ii) Both the experimental and calculated E(0,)/E(4,) ratios indicate that the 0, and
47 levels should occur close together throughout the range of isotopes from
N = 64-80. The large values of the ratios E(0;)/E(2,), imply stiffness in the
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collective potential in the g degree of freedom which is consistent with the values in
for the deformation energy E, (see Table (3-3)).

In Table (3-18) DDM calculation for the root-mean-square (rms) values of the
deformations parameters £ and y for the ground state 0, , and first excited state 2;
and second excited stated 2, . These are a nice measure of the shape of the calculated

potential energy surface (PES) and its variation with increasing spin or vibrational
phonon number [16].

The root mean square of B (3 ms) value falls with increase in neutron number
smoothly or gradually. In a few cases S ms is about 15% lower than £ min. This is on

account of the sharper rise of potential on the right-hand side (increasing f) than on
the =0 side [16].

From the Table (3-18), the values of y,,. for the ground band vary from 16.4°

to 30.6° and the root mean square of the for 2 state as a member of y-band lie
between 25.6° and 31.9°. The values of y, . show little variation with increasing mass

number A. signifying that the values of PES in DDM here is more symmetrical about
the y = 30e.

Table (3-18) : The root-mean-square (rms) values of g and y deformation parameters of
ground state and excited states in ****°Ba isotopes.

S -Root mean square S, y -Root mean square y,,
Isotopes
0; 2; 2, 0; 2; 2,
120g, 0.265 0.270 26.3° 20.8° 16.4° 26.3°
12294 0.258 0.266 25.6° 16.8° 15.7° 25.6°
12454 0.243 0.254 27.3° 18.8° 17.2° 27.3°
126 g5 0.224 0.238 29.2° 20.1° 18.8° 29.2°
128, 0.208 0.223 30.8° 24.9° 22.5 30.8°
130gy 0.188 0.205 31.3° 27.8° 26.2° 31.3°
B2gy 0.157 0.176 30.9° 29.2° 21.7° 30.9°
Bags 0.128 0.152 30.0° 29.4° 30.4° 30.0°
1364 0.124 0.111 30.3° 28.6° 29.6° 30.3°
1404 0.098 0.089 31.9° 29.9° 30.6° 31.9°

3-3-2 Potential Energy Surface

We shall begin our discussion with the N = 82 nucleus and continue to the
lighter isotopes. The potential-energy function V(f,y)gives circular contours,

V(B,7) = B* which are exactly what we expect from the model for a nucleus close to
a doubly closed shell. The potential shape of this nucleus is that of a harmonic
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oscillator with a minimum in the potential at £ =0. In the case of the N = 80 isotope
a shallow minimum of V(f3,y)= 0.360 MeV appears at f=0.05 and y = 0, but
unexpectedly a deep minimum of V(f3,y) = 7.92 MeV occurs on the oblate axis at
£ =0.092. This deep minimum is surprising since only two neutrons have been

removed and we might not expect such a dramatic change in the potential from that of
the N =82 nucleus.

In Table (3-3) the characteristic of potential energy surface (PES), the
minimum quadrupole deformation g .. corresponding to the position of the deepest
potential minimum are compared with the experimental data and IBM-1 results, the
values of g decrease with increasing neutron number (toward the magic number
N = 82). In general, we obtain for the values of £ .. from the Table (3-3) the deeper
prolate minima and shallower secondary oblate minima in all cases, both decreasing
in depth with increasing N. The negative values of g for **°Ba isotopes at
N = 78, 80 and 84. At *°Ba isotope N = 64, the prolate minimum is 3.250 MeV deep
and the oblate minimum is 0.711 MeV deep and lies at lesser g value (< Bmin). The
same feature continues with increasing neutron number N. At ***Ba isotope N = 78 we

get a very shallow prolate minimum and at ***'“°Ba isotopes N = 80 and 84 a very
shallow oblate minimum.

The values of V., (Table (3-3)) the difference in the depth of prolate and

oblate minima, is decreasing with increasing neutron number N in DDM calculations.
From these values we obtain the prolate shape for the light Ba isotopes as in IBM-1.
At 1341983 isotopes N = 78, 80 and 84 the values of Vpo is negative but we obtain
almost vanishing prolate and oblate minima [16]. The predicted shape is not a
permanently deformed one. In fact the predicted potential well at N = 76, 78, 80 and
84 corresponds to the spherical shape (vibrational shape) anharmonic oscillator with
flat bottom.

Several trends with increasing mass number (A) can be seen in this isotopic chain:

(1) The magnitude of the deformation and the binding energy of deformation
corresponding to the lowest potential minimum decrease.

(if) The magnitude of the prolate-oblate difference V., decrease in the first half of
this region.

(iii) The deformation at the minimum (the static intrinsic quadrupole moment)
changes sign from positive (prolate) to negative (oblate) around A = 130.

The energy deformation E; (E, =V (0)—-V,,), decreased with increasing
neutron number N (toward the magic neutron number N = 82).'

The quadrupole moment of the first excited states Q(2,) decrease gradually

with increasing neutron number. The negative sign signifies prolate shape in > **°Ba
isotopes.



3-3-3 Electric Transition Probability B(E2)

The reduced electric transition probabilities for **°**°Ba isotopes are given in

Table (3-6). Similarly, the reduced transition probabilities B(E2;2] —0;),

B(E2;4, — 2))and B(E2;6; — 4;) decreases with increasing neutron number N.
The DDM model values vary similarly with  IBM-1, IBM-2 and experimental data.
We see that these criteria provide B(E2) values for other transitions which agree well
with the DDM values and with experimental data and IBM-1 and IBM-2 values
except some values for B(E2;2, — 0;) transitions in lower neutron number isotopes,
where the theoretical values in IBM-1 and IBM-2 are about a factor of ten too small.
These values decreases with increasing N as expected for decreasing deformation
parameter £ and increasing the parameter y .

The transitions B(E2;3; — 2;)seem to get weaker with increasing neutron
number N, because the cross over transition (selection rules) indicating the weakening
band relationship. The transitions B(E2;2; — 2;) and B(E2;0, — 2,") in general the
values fall with increasing neutron number N. The experimental value and DDM
values in ?°1%’Ba isotopes at N = 64, 66 is off the linear rise and needs a recheck,
since there is no sudden change of structure in *¥3*1%B3 isotopes at neutron number
N = 66, 68 and 70. IBM-1 and IBM-2 yields a linear rise of B(E2) with increasing
boson number, and reproduces the saturation at mid shell. [140].

A maximum deformation (and associated properties such as deformation
energy E,, Vo, and quadrupole moment for first excited state Q(2;) ) at mid shell is

achieved, since the up-sloping orbitals are emptied, while the down-sloping and
horizontal orbitals remain filled up with the valence nucleons [16]. Here one must
distinguish between the region of nuclei along the g-stability valley and the one across
(far from) it as for Ba isotopes (A = 130 nuclei).

The discrepancy of experimental values and theoretical values can be
attributed to:

(i) The round-off errors which are particularly large for those values whose
computation involves cancellation of many terms such as forbidden or weak
transition rates.

(i) Deviations of the calculations from assumed Z and N dependence.

(iii) Deviations from the adiabatic approximation.

Branching ratios are given in Table (3-7). from this table we see the value
B(E2,2, —»0,)/B(E22, —>2]), B(E2,3] —»2;)/B(E2;3] — 2;)and
B(E2,3; —4;)/B(E2;3; —25) for *'Ba isotopes decrease with increasing
neutron number N.

The value of branching ratio B(E2,3] — 2,)/B(E2;3; — 4,) falls from the

maximum value in **°Ba isotope at N = 64 to the small values in **°Ba isotope at
N = 84, the experimental data exhibit the same trend of DDM values. The branching

N



value B(E2,4, —2,)/B(E2;4, — 2,) increased with increasing neutron number
toward closed shell as well as in experimental values. The value
B(E2,4, —>4)/B(E2;4, — 2,) varying randomly as well as experimental data.
The DDM values exhibit saturation in agreement with data. These values are small

and fall for *?>*¥Ba isotopes, and larger for **2Ba isotope, and decrease again for ***
14983 isotopes toward the major shell.

The ratio B(E2,0, — 2;)/B(E2;,0; — 2;) is small value for all the isotopes

this ratio varies slowly up to ****Ba isotopes and falls sharply thereafter, with
increasing N and with increasing y-softness in (N> 82) **°Ba isotope.

The ratio B(E2,2, — 2,)/B(E2;2, — 2,") is falling with increasing N are
also reproduced in experimental values. In general the values of DDM values come
closer to experimental values.

Table (3-19) given the quadrupole moments for ground, gamma and beta
bands. In general the value of the quadrupole moment decreases monotonically for
each of the states in the three bands.

The sign of Q(2;,4;,6;) remains negative for g-band except in ***3*4°Ba

isotopes at neutron number N = 78, 80 and 84, where the very shallow oblate
minimum is slightly lower than the prolate minimum. The sign of quadrupole values
for second excited states Q(2}) positive in 120122124128-13085 jsotopes and negative
sign in *°Ba isotopes for the same reasons.

The sign of Q(2;,4,,5,,7,) is consistently negative, but that of Q(4;) varies

with neutron number. This may be due to the change of nature of 3; and 4; states in
certain cases

Table (3-19) : Quadrupole moment for ground band, beta and gamma bands in e.b units for
12014083 jsotopes

otopes | 27 | 4 | 6 | 2 | 4 | 3% | 2 | 4 |5 |7
120p4 -18 | -1.629 | —1.g21 | 1.074 -0.521 -0.172 | -1.126 | —1.265 | —1.20 -1.03
122p, | -149 | -1560 | -1 7gp | 0.986 | 0398 | -0.162 | —0.947 | -1.190 | -0.97 | —095
124ps | -133 | -1.388 | —1 565 | 0.887 | 0152 | 0010 | -0.568 | -1.150 | —0.75 | -0.78
126gs | -1.26 | —1.035 | _1 149 | 0.709 | -0.0093 | 0.197 | -0.324 | 0788 | -0.47 | —051
128p4 -1.20 —0.65 | —0.660 0.453 -0.262 0.113 —0.223 0517 —0.28 —0.28
130g, | -LIL | -0470 | —g 47 | 0246 | 0065 | 0265 | -0.226 | 0408 | —0.23 | —027
13255 | -0.99 | -0.013 | g go7 | 0.0150 | 0.043 | 0.273 | -0.114 [ —0.030 | —0.007 | —0.007
134gg | 022 | 0010 | g gog | 0.0130 | 0048 | 0.284 | —0.104 | 0.030 | -0.008 | - 0.008
136 Ba -0.20 0.0131 | -0.0092 | -0.01220 0.050 0.310 -0.113 0.031 -0.0083 | -0.0091
140g, | 0152 | 0.0121 | -0.0099 | -0.0118 | 0062 | 0.322 | -0.090 | 0.037 | -0.0091 | -0.0098
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3-3-4 Magnetic Transition Probability B(M1) and Mixing Ratio

The resulting DDM calculations for B(M1) values are shown in Table (3-8).
The results for the transitions feature for gamma band to ground band are claimed to
have a collective origin. Several trends are apparent from the data in Table (3-8):

(i) The magnitude of the M1 matrix elements increased with spin both gamma band to
ground band transitions, in agreement with spin dependence.

(i) The size of gamma band to ground band matrix element seems to decrease with
increasing mass number.

(iii) The gamma-beta band M1 transitions are larger than gamma band to beta band
transition by a factor of 2 to 3.

The B(M1) values vanish in the hydrodynamic model [58,59] since in that
model the g-values is independent of deformation (= gl) and off-diagonal matrix
elements of the angular momentum operator vanish. The g-value calculated
microscopically [57] as a function of deformation deviates from a constant by +50%
and hence the B(M1) values given in Table (3-8) are non-zero. However, the
calculated values are quite small compared to the shell model single particle values
[58,59].

The microscopic part of the calculation includes the spin contribution which is
about +15% of the magnetic moment. Integration over the collective variables is
performed by using the relation (= gl). Table (3-20) given the DDM values of

g- factors and magnetic dipole moment. It is seen from this table this calculation
gives the correct order of reduction of the magnetic moment of the first excited state

u#(2;) from the hydrodynamic value (u=gl =2Z/A~0.8). The agreement is
probably measurements are good, the different experimental values often by +0.1.

Table (3-20): Magnetic dipole moment in £, units and g-factors for "****Ba s, units in DDM.

ISOtOpes lZOBa lZZBa 1ZGBa 128Ba lSOBa 13ZBa 134Ba lSGBa 14OBa 1428a 144Ba 1468a
g(2;) | 051 | 0509 | 0.492 [ 0.475 | 0.453 | 0432 | 0.410 | 0391 | 0.381 | 0345 [ 0.311 | 0.2920
(0.424) | (0.34) | (0.28)

0.70

u(2)) 0.552 | 0.556 | 0.568 | 0.573 | 0.611 | 0.618 | 0.633 | 0.639 | 0.643 | 0.672 | 0.680

Experimental data are taken from ref. [136].

The & (E2 /M1) multipole mixing ratios for ***°Ba isotopes, were calculated
for some selected transitions between states. The sign of the mixing ratio must be
chosen according to the sign of the reduced matrix elements. The equation used are
(2-109) for the mixing ratio. The results are listed in Table (3-9). The agreement with
available experimental data [105, 125, 126, 127] is more than good especially in the
sign of the mixing ratio. However, there is a large disagreement in the mixing ratios of
some transitions, is not due to a dominate E2 transition, but may be under the effect of
very small value of M1 matrix element. However, it is a ratio between very small
quantities and may change in the dominator that will have a great influence on the
ratio.
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For y — y transitions the intraband B(E2) values have been estimated by
assuming that the intrinsic E2 matrix elements in the ground and gamma bands are
equal. Then combining these B(E2) values with the M1 values to the tabulated
0(E/M1) transitions shown in Table (3-9). We note that in the DDM the intrinsic E2
matrix element of the gamma band is smaller than that of the ground band due to the
finite-dimensionality of the DDM space.

3-3-4 Electric Monopole Transition Matrix element p(E0)

Electric monopole (EOQ) transitions between nuclear levels proceed mainly by
internal conversion with no transfer of angular momentum to the ejected electron. If

the energy of the transition is greater than 2m,c® (where m, is the mass of the

electron), they can occur via electron-positron pair creation. A less probable
deexcitation mode which can proceed via an EO transition is two-photon emission. It
is not a priori clear why a connection exists between charge radii and EO transitions.
In fact, the argument is rather convoluted and we begin this section by recalling it.
The argument can be generalized to effective operators, leading to a relation between
charge radii and EO transitions which forms the basis of the present study.

The electric monopole transition matrix element when using Bohr relation
between the nuclear radius and the deformation is given by [59]:

p(EO; J, —>Jf)=g(éj<Jf\ﬁz\Ji R T (3-6)
T

where the matrix element < > is evaluated numerically. This calculation predicts
in Table (3- 21) the magnitudes as well as the signs of many matrix elements.

The EO strength can be considered as the ratio between the reduced transition
probability of competing EO and electric quadrupole, E2, transitions de-populating the
same level. The calculated values are presented in Table (3-21). It might be due to the
small values of the transition probability of the electric quadrupole transitions.
Unfortunately, we don’t have any more experimental data for comparison and
justifying our calculations.

Table (3-21 ): Monopole Matrix Element p(E0) in e.b for *****°Ba isotopes in DDM .

J i+ - J ‘f" 1ZOBa 1ZZBa 124Ba lZSBa lZSBa lZSBa 1SOBa Ba132 134Ba ISGBa 14OBa

2,52, 0.015 | 2.287 | 0.077 0.197 0.257 0.046 0.087 | 0.043 | 0.049 | 0.241 | 0.266

0,— 0 0.183 ] 0.1272 | 0.154 0.068 0.0023 | 0.0083 | 0.0083 | 0.0082 | 0.056 | 0.077 ] 0.0910

0;—> 0 0.125 | 0.157 | 0.170 0.017 | 0.00044 | 0.00055 | 0.00097 | 0.0013 | 0.061 | 0.0041 | 0.0062

0;—> 0, 0.093 | 0.118 | 0.176 | 0.0024 0.065 0.0034 | 0.0067 | 0.0023 | 0.0042 | 0.090 ] 0.0980

As pointed out previously [141], a large X (EO/E2) value is not necessarily a
signature of a f -vibrational state. For instance our calculated X (EO / E2) value for
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2, — 2, transition. However, it be kept in mind that a large results from the

vanishing B(E2) values, specially in the case of higher bands whose structure may be
quite different from that of the lower bands. Because of the possibility of accidental
cancellations in the calculation of a sum of terms with different signs, only the correct
order of magnitude can be expected from present calculation of a large number of
states and matrix element.

In the present X(EO/E2) branching ratios are used (Eq. (2-115)) to extract the
B(EQ;0; —0;) and p?(E0;0; — 0;)values associated with 0; states. Our results
are shown in Table (3-22). In to complete the monopole values of ****°Ba isotopes,
the measurements of EO matrix elements of excited 0, states in these isotopes are in
progress. The ratio of  the reduced transition probabilities,
X =B(EQ;0, — 0;)/B(E2;,0;, — 0;) is in the range from 0.024 to 0.0423 which is
close to transitional rotor value. However, the assumed two-phonon 0, state is
strongly pushed to high in energy, which is explained as being due to gamma-soft.

Table (3-22): X (E0/E2) B3 isotopes in DDM

‘]i+ - J ;r lZOBa lZZBa lZABa 1268a 128Ba 1288a lSOBa BalSZ 13ABa 136Ba 14OBa
2,52, | 00051 0.0029 | 0.0028 | 0.0029 | 0.0033 | 0.0061 | 9.0072 | 0.0078 (20025)9 0.0081 | 0.0095
0,0, | 0024 | 0.017 | 0.0283 | 0.0180 | 0.0223 | 0.028 | 0030 | 0.032 (g.-géf;) 0039 | 0.0423
0;—0, | 0002700025 | 0.0045 | 0.0056 | 0.0571 | 0.0086 | 0.0089 | 0.0091 | 0.0093 | 0.0005 | 0.0096
0,50, | 2119 | 0.313 | 2313 | 1389 | 2473 | 2411 | 2416 | 2417 | 2420 | 2.431 | 2.473

The 0; state can be interpreted as a beta vibration, its probability distribution
has roughly one node in beta. On the other hand, this state is characterized by two
composing components: one prolate, more deformed than the 0; band structure, and

one more triaxial to oblate, less deformed structure. Similar observations for a
multi-component structure can be made also for the other, higher-lying 0 states.

The most conspicuous features of the 0 states in ''Ba

isotopes is
strongly enhanced E2 decay to the 0; state. This may be connected with intriguing

question of the possible deformation of the excited 0 state: the large B(E2) values
could alternatively be interoperated to imply a vibrational structure associated e.g.,
with mixed bands.

From the Table (3-22), one can overall see a poor agreement with the
experimental data.
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CHAPTER FOUR
CONCLUSIONS AND SUGGESTIONS

4-1 Concluding Remarks

In this work we have described various properties and shape evolution of the
Ba isotopes in the framework of the interacting boson model (IBM-1 and IBM-2) and
dynamic deformation model (DDM), we conclude the following points.

The main aim of the present study was to investigate the balance and the interplay
between the nuclear collectivity and the shell structure in the lowest lying isovector states,
the so called mixed mixed-symmetry states. The collected experimental data clearly
demonstrate that the underlying microscopic structure of the nucleus can have a dramatic
influence on the properties of mixed symmetry states and defines a new direction in the
experimental studies of these states. In particular, the following questions have been
addressed and resolved:

1- The nuclear structure of ***%®Ba isotopes was studied and the phase transition
from U(5) to SU(3), with moderate deformation, was found according to the
increasing neutron number. The model calculation of the F-spin values and
electromagnetic transition probabilities as well as the mixing ratio shows that the
JF=2;2; and J7 =1" states are the lowest mixed symmetry states in the '**"'**Ba

isotopes, respectively. Therefore the Ba isotopes change is from O(6) ( **’Ba isotope,
around neutron number 76) towards SU(3) ( **°Ba isotope, around neutron number
66), to SU(5) ( *'°Ba isotope around neutron number 54);

2- The ratio E(2,)/E(2;) decrease in some isotopes is not due to the falling 2, state

but is on account of rising of E(2,)at fast rate compared to E(2,), which is even

increasing at ?®Ba isotope to ***Ba isotope. The pattern of spectrum here indicates a
continuous phase transition from near SU(3) to gamma-soft rotor.

3- The variation of the E(2,)—E(4,) related to the potential difference between

prolate and oblate shapes (Vpo) in a given isotope, IBM-1 is well given in our
calculation, including its sign change at ***°Ba isotopes.

4- The known g-factors of J” =2 and J” =2, states in these isotopes are

reasonably described by the IBM-2. Concerning the electromagnetic properties, we
mainly concentrated on electric quadrupole B(E2) transition probabilities. The
investigation of electromagnetic properties provided us with an example of isotopes,
detailed nuclear properties of which can be described in the framework of the
collective models, interacting boson model (IBM-1 and IBM-2) and dynamic
deformation model (DDM). However, it is still evident that there is a discrepancy
between IBM-1 and DDM models prediction and the experimental data. Hence,
further experimental studies of these isotopes are needed.
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5- New methods are used to evaluate the effective charges (e, ,e,) and gyromagnetic
factors (g, ,qg,)for bosons which are used in electromagnetic transition probabilities.

6- Mixed-symmetric states are of isovector character. Their E2 decay to the
corresponding fully-symmetric states is forbidden. Instead, strong M1 decays are

expected to connect these states. In the case of the J” =27, state, a transition with a

matrix element of ‘< 2;|T(M1)]2;,, * ~1u2 is expected. At the same time the E2

transition to the ground-state can be expected to be weakly collective with a strength
of the order of ~ 1 e.b. These transition strengths result in a very short lifetime of the

J =2;,, state of the order of 7(2/,,) =~ 100 fs.

7- A common feature observed throughout all isotopic and isotonic chains in the
region is the decrease in B(M12; — 2;) strength on the way to mid-shell nuclei to

almost vanishing values for the nucleus **Ba isotope. However, if the large fragment
of the mixed symmetry states in Ba isotopes could be confirmed, completely new
questions would arise, in particular concerning the lack of comparably enhanced

B(MZL2  — 2) strengths in the neighboring isotopes (nuclei). This means either,
that these nuclei indeed have a J” =2;,, state but which resides at energies beyond

the experimental detection limit, or, that this observation reflects a real physical effect
that is unexplained at present. The discussion strongly depends on the nature of the
2.371 MeV state in **°Ba isotope. For a continued discussion of the observations in
the A= 130 mass region further investigation of this state is of utmost importance.
Unfortunately, the experimental accessibility will presumably been hindered by the
low natural abundance of Ba isotopes of only 0.1% [25].

8- The ratios 6(E2/M1) and X (EO/E2) are important for nuclear structure and the

model predictions due to their sensitivity for the nuclear shape. We conclude that
more experimental work is needed to clarify the band structure and investigate an
acceptable degree of agreement between the predictions of the models and the
experimental data.

9- In the IBM-2 it is possible to correlate a large amount of data in various regions of
the periodic table. The parameters are found to be in qualitative agreement with the
simple microscopic theory with the exception of ¢. Also the microscopic theory can
be used to predict the properties of nuclei which are not known at present.

10- We have analyzed the level structure of *2°*°Ba isotopes in a microscopic theory
in its time dependent, two major-shell version, called the Dynamic Deformation
Model (DDM). This allows the isotope to take its own shape for given N and Z. Also
shape variation with nuclear spin or excitation energy is allowed although, unlike
IBM, no minimization is done for each level. The variation of the absolute B(E2)
values is generally well reproduced in DDM as also in other approaches. However,
variation of the y —g B(E2) ratios is much better reproduced in our DDM calculation.
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11-The different behavior for N >82 and N <82 isotopes, regarding the sharp change
for the former and smooth variation in the latter is well realized in terms of the
nucleon occupation probabilities. The dynamics of the S msand yms obtained in

DDM model agrees with other works. Similar agreement is obtained for the
quadrupole moments of various states.

12-The values of V., the difference in the depth of prolate and oblate minima, is

decreasing with increasing neutron number N in DDM calculation. From these values
we obtain the prolate shape for the light Ba isotopes as in IBM-1. At '**14Ba
isotopes N = 78 80 and 84 the values of Vpo IS negative but we obtain almost
vanishing prolate and oblate minima. The predicted shape is not a permanently
deformed one. In fact the predicted potential well at N = 76, 78, 80 and 84
corresponds to the spherical shape (vibrational shape) anharmonic oscillator with flat
bottom.

13-  The B(M1) values in DDM vanish in the hydrodynamic model, since in that
model the g-values is independent of deformation (= gl) and off-diagonal matrix
elements of the angular momentum operator vanish. The g-value calculated
microscopically [57] as a function of deformation deviates from a constant by +50%
and hence the B(M1) values given in Table (3-8) are non-zero. However, the
calculated values are quite small compared to the shell model single particle values
[58,59].

4-2 Suggestions for Future Work

Several suggested projects remain for the future, which can be abbreviated by
the following possible works:

1-This work represents the preliminary attempt to apply the Dynamic Deformation
Model (DDM) to light nuclei (N <82) with reasonable success. More work is
required for improving the input set of spherical single-particle energies.

2- This work can be extended to calculate the E4 (hexadecupole degree of freedom)

in transitional nuclei, by addition of a g-boson (L = 4), to test the important K”* =4
band in this region.

3- Study of the two-neutrino double-g decay within the framework of the interacting
boson model (IBM-1 and IBM-2) and its extensions (IBFM-1 and IBFFM-2)
models.

4- Preferably, the entire calculation of DDM should be performed with better nuclear
forces. This would, however, require a major change in theory of collective motion
and also an order of magnitude increase in computation time.

5- Non-collective effects of deviations from the adiabatic approximation should be
included. They would clearly require a major overhaul or a completely new approach
from the beautiful idea of collective quadrupole motion which has been extremely
useful for understanding of nuclear structure.
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6- The pairing variation become particularly important near closed shell since
A,, =0, and fluctuations in A become large. However, this may require further

increase in the computation time which already quite large (several hours per
nucleus).

7- The numerical accuracy, particularly that of the nearly forbidden transitions, can
probably by improved using expansions of nuclear wave functions in a basis of
spherical phonons of five dimensional oscillators. Then, this work could also be

extended to states of higher angular momentum (J” =4"). Work along this line is
being carried out by my supervised (SN).

8- Auvailable information on mixed symmetry states in these isotopes has recently
been summarized and identified in some references remembered elsewhere in this
thesis. The main reason for the small number of studied cases comes from the fact that
the stable open-shell even-even isotopes in this mass region have relatively low
abundance in natural material of a chemical element. This requires a development of
new theoretical and experimental techniques which should allow mixed symmetry
states such low-abundant nuclei to be identified and studied. These techniques should
also be potentially applicable for investigations of mixed symmetry states in
radioactive nuclei.

Regardless that the results obtained in the present study shed light on some
important properties of evolution structure, it should not be considered as completed with
regards to all phenomena related to the nuclear structure and mixed symmetry states.
Rather, it provides some starting points for further investigations. The effect of shell
stabilization, proposed in the present study, is only partially confirmed. It is still needed
the latter to be investigated in details in other neighboring nuclei Te, Xe and Ce . This
theoretical program has already begun with an experiment based for example, on
projectile Coulomb excitations. In general, all further studies of nuclear structure and
mixed symmetry states will be focused on radioactive nuclei. In particular, due to the
sensitivity of mixed-symmetry states to the properties of the local valence shell,
information on mixed-symmetry states would be very useful for nuclei where the shell
structure deviates from the one at stability due to neutron excess. The main
contribution of the present study to these future using collective models and
experiments is methodological-we have clearly demonstrated that the collective
models is the most appropriate one for studies of mixed symmetry states in
radioactive nuclei.
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Table (3-8): Magnetic Transition Probability B(MLJ; — J;") in u{ Units for Ba isotopes.

B(M12; —2;)

B(M13! —2;)

B(ML3] —4))

B(ML4, —»>4))

Isotopes IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM
120p4 0.012 0.022 0.0429 0.0067 0.0005 0.0033 0.0087 0.0121 0.0055 0.012 0.0328 0.022
122p4 0.0185 0.0201 0.0032 0.0052 0.621 0.0043 0.0109 0.0432 0.026 0.0295 0.103 1.204
124p4 0.019 0.0188 0.0157 0.00049 0.0034 0.00019 0.0122 0.037 0.0651 0.0362 0.239 0.0356
126 g4 0.0038 0.0046 0.0236 0.00011 0.0039 0.0820 0.0020 0.075 0.065 0.0088 0.271 0.095
12834 0.0232 0.0362 0.00040 0.00032 0.0085 0.0123 0.0144 0.237 0.0881 0.0488 0.224 0.056
1304 0.0770 0.045 0.00040 0.00088 0.0031 0.0050 0.0509 0.236 0.0102 0.142 0.216 0.066
1324 0.0221 0.016 0.00065 0.00012 0.0056 0.009 0.0147 0.116 0.0241 0.0433 0.211 0.026
134B4 0.00220 0.046 0.00101 0.00004 0.0032 0.074 0.0013 0.0029 0.022 0.0039 0.0031 0.0101
136g4 0.0328 0.009 0.00291 | 0.000042 0.212 0.101 0.0178 0.098 0.0356 0.0531 0.876 0.0241
10Bg 0.03281 | 0.246 | 0.00331 0.0034 0.0025 0.1011 00241 | 0.00043 0.0432 0.0562 0.0014 0.076
142pg 0.0356 0.035 - 0.00623 0.1194 - 0.0382 0.172 - 0.0673 0.163 -

144y 0.0431 0.0046 - 0.0054 0.0005 - 0.0452 0.621 - 0.077 0.631 -

146 g4 0.0571 0.0021 - 0.0876 0.621 - 0.0563 1.31 - 0.0861 0.38 -

148pg 0.0055 0.0002 - 0.0973 0.0034 - 0.0667 0.38 - 0.0964 0.36 -




Table (3-9): Mixing Ratios for '****Ba isotopes in eb/ s, Units

Isotopes

S(E2,2 —27)

S(E2,2; —27)

S(E2,3] —27)

EXp. IBM-1 [IBM-2 | DDM Exp. IBM-1 [ IBM-2 [ DDM Exp. IBM-1 | IBM-2 [ DDM
1205, - 4.66 5.2 5.23 - 7.22 243 10.2 - 12 7.56 10.3
1225, - 3.876 4.66 5.22 - 0.871 0.89 0.32 - 175 11 0.227
124, - 2.762 3.10 1.9 - -2.65 2.1 -3.98 - 11.86 55 5.7
1265, 157 6.5 -8 42 - 1.23 3.2 2.89 - 21.6 13 14.45
1285, - 0.422 0.66 0.659 - 0.912 361 1.223 - 8.45 2.89 1.34
13054 0.296 0311 0.251 0.541 -23(9) -4.09 -20.44 3.98 157 478 41 7
WBa | 185 | 7145 10 11 - 11.6 14 1289 | 42510 | 92 35 35
WBa | —7.4°% | -8410 -7.65 -9 - 1.43 2.6 14 11875 | 16 1.97 19
BB | 157 | -241 -2.33 2.3 - 6.9 10 8.3 - 256 | 387 | -5.32
Li0gy 0.6°18 11 0.91 0998 | ;018 | 021 031 - - 12 10 1.22
1425, >10 13 13 - -0.93(29) 11 2 - - 0423 | 023 -
Ladgy 7.9 9.3 8.2 - _32 | 467 4.7 - - 10.3 7.43 -
146, - 1.414 6.4 - - 1.90 221 - - 21 1.23 -
L8Ry - 0.556 1.24 - - 0.761 0.45 - - 0549 | 0.81 -

Experimental data are taken from refs. [105, 125, 126, 127]

\A




Continued to Table (3-9)

S(E2,3" —4!)

S(E2,3] —2})

o0(E2,4, - 4))

Isotopes  "Exp. IBM-1 | IBM-2 | DDM Exp. IBM-1 [ IBM-2 | DDM Exp. IBM-1 | IBM-2 | DDM
120p4 - 4.22 2.1 1.88 - 5.43 1.23 0.121 - 3.3 0.279 5.6
1225, - 3.86 3.78 45 - 3.87 2.0 4.87 - 2.30 1.25 2.54
124pg - -1.85 -2.25 3.4 - 4.6 4.3 6 - 1.54 6.5 2.13
12655 - 4.76 5 10.2 - 3.34 -2.56 12 >1 858 | 1413 | 034
1285, - 1.10 5.8 0.45 - 5.98 6.0 0.651 - 1.08 2.0 1.0
13084 - 0.661 0.24 0.779 - 1.08 1.209 1.0 - -0.871 | 1.09 7.12
132p5 - 1.55 0.77 1.451 4.0 6.7 8.0 212 | 1172 | -22 -9.0 -4
134pg - 2.44 1.4 9.77 _17B | -197 -15.3 2.16 | 0297 13 2.87 0.54
1365 - 111 2.12 3.21 - 116 10.5 3.1 108 | 45 5 1.9
10y - 2.27 3.7 5.87 - -6.78 -9.5 421 - 2.7 4.9 4.8
142g4 - 1.897 0.89 - - 1.242 3.45 - - -0.887 | 98 -
144y - 0.302 1.65 - - 2.07 2.0 - - 165 | 2761 -
L46B, - 1.97 2.54 - - 1.801 3.09 - - 3.65 4.0 -
L8Ry - 8.8 16.3 - - 2.810 8.45 - - 7.8 12 -

Experimental data are taken from refs. [105, 125, 126, 127]
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Table (3- 2): Experimental and theoretical values of energ

ratios in Ba isotopes.

E(4,)/E(2)) E(6,)/E(2) E(2;)/E(2;) E(0;)/E(4) E(0,)/E(2))

Isotopes Exp. IBM-1 [ |BM-2 | DDM | Exp. | !IBM-1 [ 1BM-2 [ DDM | Exp. | IBM-1 [ IBM2 [ DDM | Exp. | IBM-1 | 1BM-2 [ DDM | Exp. | 'BM-1 [ |BM-2 | DDM
1204 2.924 2.924 2.924 2.927 | 5.592 | 4,983 | 5.231 | 5.218 - 4.284 | 4.435 | 6.807 - 1.601 | 1.700 | 2.485 - 4.682 4.973 6.612
122pa 2.902 2.907 2.901 2.747 | 5.543 | 4.774 | 4579 | 5.166 | 3.155 | 3.697 | 3.205 | 6.797 - 1.377 | 1.276 | 2.294 - 4.466 3.717 6.303
124pg 2.834 2.842 2.838 2.640 | 5342 | 5532 | 5.179 | 4.833 | 3.798 | 3.759 | 3.786 | 5.690 | 1.378 | 1.414 | .1.361 | 1.885 | 3.921 | 4.021 3.864 4978
126po 2.777 2,777 2,777 2516 | 5.204 | 5.113 | 5.257 | 4.462 | 3.412 | 3.050 | 2.945 | 4.132 | 1.382 | 1.236 | 1.226 | 1.660 | 3.839 | 3.433 3.406 4177
128po 2.687 2.689 2.683 2.389 | 4.953 | 5.109 | 4.975 | 4.113 | 3.114 | 3.275 | 3.440 | 2.806 | 1.234 | 1.136 | 1.171 | 1.552 | 3.316 | 3.056 3.144 3.780
1304 2.523 2,521 2,521 2.287 | 4.456 | 4.445 | 4450 | 3.844 | 2.540 | 2579 | 2.490 | 2.806 | 1.307 | 1.344 | 1.222 | 1.517 | 3.302 | 3.389 3.081 3.470
132pg 2.427 2.431 2.428 2,181 | 4.159 | 4.077 | 4.071 | 3.551 | 2.220 | 2.123 | 2.258 | 2.118 | 1.333 | 1.320 | 1.354 | 1.306 | 3.239 | 3.211 3.290 2.849
134pg 2.316 2.321 2.317 2.185 | 3.656 | 3.928 | 4.008 | 3.512 | 1.931 | 1.700 | 1.932 | 2.225 | 1.257 | 1.194 | 1.209 | 1.229 | 2911 | 2.773 2.802 2.675
136gq 2.280 2.279 2.281 2.098 | 2.696 | 2.715 | 2.702 | 3.260 | 1.894 | 2.567 | 2.588 | 2.108 | 0.845 | 0.735 | 0.842 | 1.830 | 1.929 | 1.677 1.922 3.841
140B4 1.876 1.982 1.877 2.001 | 2.756 | 2.692 | 2.719 | 3.022 | 2,507 | 2.380 | 2.460 | 2.081 | 1.613 | 1.582 | 1.592 | 2.485 | 3.027 | 2.978 2.990 | 3.311
142pg 2.321 2.314 2.383 - 4.076 | 3.199 | 4.044 - 3.960 | 3.835 | 3.938 - 1.839 | 1.789 | 1.907 - 4270 | 4.142 4431 -
144Bg 2.663 2.658 2.663 - 4.829 | 4.457 | 4.859 - 9.286 | 8.804 | 9.231 - 1924 | 1.771 | 1.886 - 5.125 | 4.889 5.025 -
146 B4 2.836 2.823 2.828 - 5.292 | 5.154 | 4.563 - 6.159 | 6.690 | 6.110 - 2.049 | 1.956 | 1.896 - 5.813 | 5.524 5.364 -
148 pg 2.983 2.985 3 - 5.697 | 5.822 | 5.751 - 7.439 | 6.858 | 8.021 - - 3.434 | 3.385 - - 10.255 | 10.156 -
SU (5) 2 3 1 2

0(6) 2.5 4.5 >2 ~1 4.5
SU(3) 3.3 7 >>1 >> 2

Experimental data are taken from refs. [105]
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Table (3-3): Experimental and theoretical values of S

min ?

E4. Voo energy difference E(2,)—E(4,)and Q(2;) in Baisotopes.

Isotopes P E, (MeV) Voo (MeV) E(2;) -~ E(4;) Mev Q(2)e.b

Exp. IBM-1 DDM Exp. IBM-1 | DDM Exp. IBM-1 | DDM Exp. IBM-1 | DDM EXp. IBM-1 | DDM
1205, - 0241 | 0.264 | - - [ 3421 | - - | 2640 | - | 0253 | 0649 - 1770 | 1.8
1225 - 0.260 | 0.266 | - - 3320 - 244 | 2470 | - | 0.154 | 0.802 | -1.52(7) | -1.414 | -1.49
1245 - 0210 | 0.234 | - - 2949 | - 204 | 2.066 | 0.222 | 0.21 | 0645 | -1.31(4) | -1.30 | -1.33
126gg ; 0211 | 0237 | - - [ 2411 | - 149 | 1.477 | 0162 | 0.07 | 0.391 | -1.20(4) | -122 | -1.26
1288 - 0230 | 0234 | - - 1801 | - 1.09 | 1.120 | +.121 | 0.012 | 0132 | -1.10(4) | -115 | -1.20
10, | 023 | 0227 | 0231 | - - 1.002 | - 0.43 | 0455 | 0.007 | 0.021 | 0002 | -102(t5) | -1.08 | -1.11
B2gy | 049 | 0221 | 0230 | - ~ [ 0281 | - |0.0051| 0068 | -0.096 | -0.143 | 0082 | -0.84@3) | -092 | -0.99
T ; -0.077 | -0.082 | - ~ [ 0062 | - | -0.065|-0.070 | -0.233 | -0.375 | 0.033 | -031(24) | -032 | -0.22
136 By ; -0.084 | -0.088 | - ~ [ 008 | - | -0.080|-0.087 | 0.027 | 0.244 | 0.007 | -0.19(6) | -0.18 | -0.20
120gg - -0.095 | -0.092 | - ~ [00097 | - | -0.091 | -0.009 | 0.380 | 0.30 016 | -0.16

Experimental data are taken from refs. [ 105, 106]
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Table (3-6): Experimental and theoretical values of Electric Transition Probabilities B(E2;J," — J;) in e’b? Units for Ba isotopes.

B(E2;2; —0))

B(E2;4] — 2))

B(E2;6, —>4,)

B(E2;2; —0))

Isotopes Exp. IBM-1 IBM-2 DDM Exp. IBM-1 IBM-2 | DDM EXp. IBM-1 | IBM-2 | DDM Exp. IBM-1 IBM-2 DDM
120p4 - 0.621 0.600 0.524 - 0.789 0.810 - - 0.823 | 0.786 | 0.822 - 0.320 0.334 0.021
122 0.54 0.532 0.541 0.427 - 0.727 0.740 0.622 - 0.734 | 0.701 | 0.734 - 0.296 0.281 0.013
124pg 0.401 0.413 0.400 0.381 0.626 0.633 0.622 | 0.571 | 0.64(2) | 0.671 | 0.643 | 0.710 - 0.201 0.200 0.014
126 pg 0.380 0.375 0.399 0.311 0.440 0.438 0.439 0.500 | 0.49(2) | 0.510 | 0.482 | 0.66 - 0.198 0.195 0.0135
128pg 0.276 0.280 0.266 0.298 0.41(2) 0.442 0.422 0.432 | 0.39(3) | 0.382 | 0.422 | 0.521 | 0.13(2) 0.16 0.134 0.0085
1304 0.230 0.229 0.231 0.228 0.219 0.220 0.216 0.329 | 0.37(2) | 0.311 | 0.362 | 0.467 | 0.15(2) 0.20 0.161 0.0028
132p4 0.158 0.201 0.148 0.101 0.210 0.197 0.196 | 0.301 - 0.300 | 0.311 | 0.368 - 0.11 0.111 0.0011
134 0.134(2) 0.136 0.133 0.077 0.161(18) 0.156 0.155 0.22 - 0.181 | 0.212 | 0.301 | 0.0017(5) | 0.0019 0.0018 | 0.00082
136 g4 0.094 0.084 0.092 0.0542 0.080 0.088 0.095 0.181 - 0.093 | 0.081 | 0.279 - 0.001 0.0021 | 0.00065
14084 0.037(34) 0.034 0.036 - 0.203(18) 0.211 0.209 - 0.081(4) | 0.088 | 0.078 - - 0.0009 | 0.00092 -
l2gy | 0.145(5) | 0.0.133 | 0.142 - 0.419(64) | 0422 | 0.421 - - 0073 | 0071 | - - 0.0008 | 0.00081 -
144pg 0.221(6) 0.241 0.224 - - 0.613 0.514 - - 0.062 | 0.066 - - 0.0006 | 0.00076 -

146 g 0.280(60) 0301 0.225 - 0.799(70) 0.821 0.701 - - 0.056 | 0.051 - - 0.00015 | 0.00023 -

148 B4 - 0.410 0.349 - - 0.925 0.865 - - 0.0341 | 0.048 - - 0.00033 | 0.00021 -

Experimental data are taken from refs. [105, 115, 116, 117, 118, 119, 120]
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Continued to Table (3-6)

Isotopes

B(E2;2; —0;)

B(E2;2; —2)

B(E2,0; —2.)

B(E2;3" —2!)

Exp_ IBM-1 IBM-2 DDM Exp. IBM-1 IBM-2 DDM Exp. IBM-1 IBM-2 DDM Exp. IBM-1 IBM-2 DDM
120 gy : 0.0056 | 0.0076 0.0043 } 00029 | 00032 | 0.023 } 0.076 | 0.087 | 0.076 ; 0.0520 | 0.0500 | 0.093
1224 : 0.0042 | 0.0053 0.0032 ; 00011 | 00026 | 0.015 ; 0.068 | 0.079 | 0.062 ; 0.0460 | 0.0462 | 0.088
12454 : 0.0038 | 0.0039 0.0030 ; 0.00065 | 0.00055 | 0.011 } 0.109 | 0.110 | 0.113 ; 0.0341 | 0.0331 | 0.116
12654 _ 0.0029 | 0.0030 0.0028 ; 0.00014 | 0.00024 | 0.00081 ; 0.125 | 0.129 | 0.123 ; 0.0262 | 0.0267 | 0.146
128, ; 00015 | 00027 | 0.00282 - 00023 | 00025 | 0.0013 - 0.176 | 0.188 | 0.163 - 0017 | 0.019 | 0.229
130g4 : 00032 | 00025 | 0.00261 - 0.00018 | 0.00020 | 0.0012 - 0.133 | 0.163 | 0.071 - 0.0032 | 0.0031 | 0.311
13254 : 00012 | 00021 | 0.00202 ; 0.00026 | 0.00023 | 0.00058 } 0.055 | 0.063 | 0.100 ; 00121 | 0.0123 | 0.248
184gg 0.0018(6) | 0.0014 | 0.0019 0.0020 | 0.0045(20) | 0.0067 | 0.0077 | 0.00021 ; 0116 | 0.112 | 00098 | 0000934 | 0.0045 | 0.0007 | 0.193
13634 3 0.0019 | 00017 | 0.00087 - 0.0056 | 0.0059 | 0.00020 - 0.170 | 0.174 | 0.0082 - 0.0056 | 0.0058 | 0.176
1904 : 0.0009 | 0.00089 | 0.00056 - 0.0054 | 0.0050 - - 0210 | 0.200 | 0.0081 - 0.0067 | 0.0061 | 0.177
124 : 0.00081 | 0.000851 ; ; 0.0051 | 0.0053 } } 0.241 | 0.233 ; ; 00072 | 0.0079 | -
144y ; 0.00064 | 0.00074 ; ; 0.0043 | 0.0049 ; ~ [ 00278 | 0.0270 ; ; 00074 | 0.0071 | -
146 gy 3 0.0005 | 0.00065 - - 0.00341 | 0.00444 - >.0046 | 0.0050 | 0.0051 - - 0.0065 | 0.0067 | -
48R, : 0.00043 | 0.00045 - - 0.0028 | 0.0030 - ~ [ 00032 | 0.0035 - - 0.0068 | 0.0060 | -

Experimental data are taken from refs. [105, 115, 116, 117, 118, 119, 120]
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Table (3-7)): Branching Ratios of ****Ba isotopes
B(E2,2; —0;)/B(E22; —2)) B(E2,3! —2;)/B(E2;3; —2}) B(E2,3! —4;)/B(E2;3; —2})
Isotopes "Exp IBM-1 [IBM-2 [ DDM Exp. IBM-1 | IBM-2 | DDM Exp. IBM-1 | IBM-2 | DDM
120 g4 - 0.231 0.291 0311 - 0.952 0.922 0.873 - 1462 | 1.362 1.21
122y - 0.210 0.217 0.302 0.86 0.791 0.752 0.812 1.35 1.30 1350 | 1514
124gy | 017 (5) | 0.194 0.184 0.221 - 0.070 0.075 0.800 - 1.002 | 1.0202 | 241
126gy | 041(2) | 0.137 0.130 0.201 0.046 0.066 0.068 0.552 013 | 0120 | 0127 | 0.156
1285, 0.11 0.210 0.109 0.199 0.064 0.059 0.060 0.0610 014 | 0129 | 0133 | 0133
130g, 0.054 0.098 0.068 0.096 0.038 0.036 0.038 0.0430 0.17 0165 | 0185 | 0.145
132y 0.026 0.0290 | 0.0270 0.033 0.033 0.039 0.040 0.0410 0.31 0331 | 0342 | 0231
134gy 0.006 0.008 0.009 0.0056 0.013 0.019 0.026 0.021 053 | 0452 | 0463 | 0.356
136 g4 - 0.0092 | 0.0098 | 0.0045 - 0.022 0.0212 | 0.0034 - 0522 | 0545 | 0478
L40pg - 0.00987 | 0.0088 | 0.0036 - 0.019 0.0189 - - 0611 | 0676 | 0541
L2y - 0.00034 | 0.00031 - - 0.011 0.0123 - - 0656 | 0.756 -
Ladgy - 0.00031 | 0.00029 - - 0.009 0.0089 - - 0623 | 0723 -
146y - 0.00024 | 0.00031 - - 0.007 0.0072 - - 0691 | 0.700 -
L8Ry - 0.00018 | 0.0002 - - 0.0033 | 0.0037 - - 0703 | 0.821 -

Experimental are taken from refs. [122, 123, 124]
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Continued to Table (3-7)

B(E2,3] —2!)/B(E23! —4))

B(E2,4; —21)/B(E2;4; —23)

B(E2,4, —> 4])/B(E2;4, — 2))

Isotopes ["Eypy. IBM-1 |IBM-2 | DDM Exp. IBM-1 |IBM-2 | DDM Exp. IBM-1 | IBM-2 | DDM
120 g4 - 0.459 0.551 0.341 - 00041 | 0.0021 | 0.0065 - 0171 | 0201 | 0.167
1224 0.20 0.310 0.321 0.256 - 0.0050 | 0.00550 | 0.0052 - 0211 | 0231 | 0.336
1244 - 0.348 0.355 0.561 0.005 0.0059 | 0.0058 | 0.0061 | 0.29(6) | 0.26 0246 | 0.279
126 g4 0.40 0.441 0.462 0.472 0.008 0.0079 | 0.0089 | 0.0087 | 0.28(3) | 0.29 0298 | 0.267
128 g4 0.41 0.456 0.486 0.481 0.015 0.019 0.0189 0019 | 0.26(3) | 0.30 0320 | 0.261
1304 0.022 0.031 0.039 0.031 0.022 0.027 0.0292 0.043 0.67 0.59 059 | 0562
1324 0.05 0.062 0.066 0.0493 0.015 0.021 0.0221 0053 | 15<0.86| 1.20 1.203 13
134y 0.012 0.015 0.017 0.015 0.024 0.031 0.033 0.045 0.72 0.82 0825 | 0971
136 g4 - 0.013 0.0183 0.113 - 0.034 0.039 0.0066 - 0.92 0942 | 1.223
L40ggy - 0.001 0.0021 0.322 - 0.045 0.0475 | 0.00742 - 1.23 1233 | 2652
1424 - 0.0013 | 0.00213 - - 0.056 0.0560 - - 1.35 1.356 -
L44gg - 0.0025 | 0.00215 - - 0.058 0.0598 - - 1651 | 1.671 -
146y - 0.0001 | 0.00011 - - 0.064 0.0664 - - 1.90 1.920 -
sy - 0.0053 | 0.0057 - - 0.073 0.0783 - - 211 2.211 -

Experimental are taken from refs. [122, 123, 124]
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Continued to Table (3-7)

B(E2,0, —» 2))/B(E2,0; — 2;)

B(E2,2; —25)/B(E2;2; —27)

B(E2,2; —0;)/B(E2;2; —2))

Isotopes  "g IBM-1 [IBM-2 |DDM Exp. IBM-1 [ 1BM-2 | DDM Exp. |IBM-1 [IBM-2 | DDM
120 gy - 0016 | 00216 | 0.663 - 9 4.89 1.623 - 243 | 3149 | 3.262
12254 - 0020 | 00270 | 0584 - 1256 | 10.156 23 - 3610 | 3619 | 2.762
1245, | >0013 | 0021 | 00121 | 0550 - 22 2.981 80.6 - 4654 | 5615 | 533
1263, >0.01 0.019 0.013 0511 - 10.2 10.24 36 - 11 3117 | 4.326
1285, 0.002 | 00035 | 00024 | 0457 - 8.55 750 18 - 1976 | 1.391 | 1.092
13084 0.032 0.043 0.034 0.425 N 9.11 12.121 10.2 - 0112 | 0152 | 0585
13254 - 0.044 | 00464 | 2.861 4 0.23 0.425 1.70 - 0342 | 0.640 | 0.2280
134 gy 0.04 0.051 | 0.0491 12.6 0.22 2.87 2.181 YIY 0035 | 1.234 | 1415 | 0.300
136 gy - 0.055 0.045 10.23 - 3.132 4.340 391 - 287 | 2287 | 0341
19084 - 0.073 0.086 8.83 - 4.09 4.809 25 - 10 8 3.2
19254 - 0.073 | 0.0873 - - 4.76 5.177 - - 9.22 8.5 -
144y - 0.084 | 0.0848 - - 0.32 1.322 - - 211 | 12121 -
146 g - 0.082 | 0.0832 - - 1.651 1.853 - - 312 3.10 -
1484 - 0.089 | 0.0897 - - 11.09 13.11 - - .98 | 1.210 -
15084 - 0.0098 | 0.010 - - 0.0098 | 0.0414 - - 134 | 1554 -

Experimental are taken from refs. [122, 123, 124]
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Table (3-8): Magnetic Transition Probability B(MLJ; — J;") in u{ Units for Ba isotopes.

B(M12; —2;)

B(M13! —2;)

B(ML3] —4))

B(ML4, —»>4))

Isotopes IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM
120p4 0.012 0.022 0.0429 0.0067 0.0005 0.0033 0.0087 0.0121 0.0055 0.012 0.0328 0.022
122p4 0.0185 0.0201 0.0032 0.0052 0.621 0.0043 0.0109 0.0432 0.026 0.0295 0.103 1.204
124p4 0.019 0.0188 0.0157 0.00049 0.0034 0.00019 0.0122 0.037 0.0651 0.0362 0.239 0.0356
126 g4 0.0038 0.0046 0.0236 0.00011 0.0039 0.0820 0.0020 0.075 0.065 0.0088 0.271 0.095
12834 0.0232 0.0362 0.00040 0.00032 0.0085 0.0123 0.0144 0.237 0.0881 0.0488 0.224 0.056
1304 0.0770 0.045 0.00040 0.00088 0.0031 0.0050 0.0509 0.236 0.0102 0.142 0.216 0.066
1324 0.0221 0.016 0.00065 0.00012 0.0056 0.009 0.0147 0.116 0.0241 0.0433 0.211 0.026
134B4 0.00220 0.046 0.00101 0.00004 0.0032 0.074 0.0013 0.0029 0.022 0.0039 0.0031 0.0101
136g4 0.0328 0.009 0.00291 | 0.000042 0.212 0.101 0.0178 0.098 0.0356 0.0531 0.876 0.0241
10Bg 0.03281 | 0.246 | 0.00331 0.0034 0.0025 0.1011 00241 | 0.00043 0.0432 0.0562 0.0014 0.076
142pg 0.0356 0.035 - 0.00623 0.1194 - 0.0382 0.172 - 0.0673 0.163 -

144y 0.0431 0.0046 - 0.0054 0.0005 - 0.0452 0.621 - 0.077 0.631 -

146 g4 0.0571 0.0021 - 0.0876 0.621 - 0.0563 1.31 - 0.0861 0.38 -

148pg 0.0055 0.0002 - 0.0973 0.0034 - 0.0667 0.38 - 0.0964 0.36 -
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Table (3-9): Mixing Ratios for '****Ba isotopes in eb/ s, Units

Isotopes

S(E2,2 —27)

S(E2,2; —27)

S(E2,3] —27)

EXp. IBM-1 [IBM-2 | DDM Exp. IBM-1 [ IBM-2 [ DDM Exp. IBM-1 | IBM-2 [ DDM
1205, - 4.66 5.2 5.23 - 7.22 243 10.2 - 12 7.56 10.3
1225, - 3.876 4.66 5.22 - 0.871 0.89 0.32 - 175 11 0.227
124, - 2.762 3.10 1.9 - -2.65 2.1 -3.98 - 11.86 55 5.7
1265, 157 6.5 -8 42 - 1.23 3.2 2.89 - 21.6 13 14.45
1285, - 0.422 0.66 0.659 - 0.912 361 1.223 - 8.45 2.89 1.34
13054 0.296 0311 0.251 0.541 -23(9) -4.09 -20.44 3.98 157 478 41 7
WBa | 185 | 7145 10 11 - 11.6 14 1289 | 42510 | 92 35 35
WBa | —7.4°% | -8410 -7.65 -9 - 1.43 2.6 14 11875 | 16 1.97 19
BB | 157 | -241 -2.33 2.3 - 6.9 10 8.3 - 256 | 387 | -5.32
Li0gy 0.6°18 11 0.91 0998 | ;018 | 021 031 - - 12 10 1.22
1425, >10 13 13 - -0.93(29) 11 2 - - 0423 | 0.23 -
Ladgy 7.9 9.3 8.2 - _32 | 467 4.7 - - 10.3 7.43 -
146, - 1.414 6.4 - - 1.90 221 - - 21 1.23 -
L8Ry - 0.556 1.24 - - 0.761 0.45 - - 0549 | 0.81 -

Experimental data are taken from refs. [105, 125, 126, 127]
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Continued to Table (3-9)

S(E2,3" —4!)

S(E2,3] —2})

o0(E2,4, - 4))

Isotopes  "Exp. IBM-1 | IBM-2 | DDM Exp. IBM-1 [ IBM-2 | DDM Exp. IBM-1 | IBM-2 | DDM
120p4 - 4.22 2.1 1.88 - 5.43 1.23 0.121 - 3.3 0.279 5.6
1225, - 3.86 3.78 45 - 3.87 2.0 4.87 - 2.30 1.25 2.54
124pg - -1.85 -2.25 3.4 - 4.6 4.3 6 - 1.54 6.5 2.13
12655 - 4.76 5 10.2 - 3.34 -2.56 12 >1 858 | 1413 | 034
1285, - 1.10 5.8 0.45 - 5.98 6.0 0.651 - 1.08 2.0 1.0
13084 - 0.661 0.24 0.779 - 1.08 1.209 1.0 - -0.871 | 1.09 7.12
132p5 - 1.55 0.77 1.451 4.0 6.7 8.0 212 | 1172 | -22 -9.0 -4
134pg - 2.44 1.4 9.77 _17B | -197 -15.3 2.16 | 0297 13 2.87 0.54
1365 - 111 2.12 3.21 - 116 10.5 3.1 108 | 45 5 1.9
10y - 2.27 3.7 5.87 - -6.78 -9.5 421 - 2.7 4.9 4.8
142g4 - 1.897 0.89 - - 1.242 3.45 - - -0.887 | 98 -
144y - 0.302 1.65 - - 2.07 2.0 - - 165 | 2761 -
L46B, - 1.97 2.54 - - 1.801 3.09 - - 3.65 4.0 -
L8Ry - 8.8 16.3 - - 2.810 8.45 - - 7.8 12 -

Experimental data are taken from refs. [105, 125, 126, 127]




Table (3-7))Table (3-7): Branching Ratios of ***'**Ba isotopes

B(E2,2; —0;)/B(E2;2; —2))

B(E2,3] —>2;)/B(E23] —2,)

B(E2,3] —4,;)/B(E23] —2,)

Isotopes "y IBM-1 |IBM-2 | DDM Exp. IBM-1 |IBM-2 | DDM Exp. IBM-1 | IBM-2 | DDM
120 g4 - 0.231 0.291 0.311 - 0.952 0.922 0.873 - 1462 | 1.362 121
1224 - 0.210 0.217 0.302 0.86 0.791 0.752 0.812 1.35 1.30 1350 | 1514
124gy | 017(5) | 0.194 0.184 0.221 - 0.070 0.075 0.800 - 1.002 | 1.0202 | 241
126gy | 041(2) | 0.137 0.130 0.201 0.046 0.066 0.068 0.552 0.13 0120 | 0127 | 0.156
128 g4 0.11 0.210 0.109 0.199 0.064 0.059 0.060 0.0610 0.14 0129 | 0133 | 0.133
1304 0.054 0.098 0.068 0.096 0.038 0.036 0.038 0.0430 0.17 0165 | 0.185 | 0.145
1324 0.026 0.0290 | 0.0270 0.033 0.033 0.039 0.040 0.0410 0.31 0331 | 0342 | 0.231
134y 0.006 0.008 0.009 0.0056 0.013 0.019 0.026 0.021 053 0452 | 0.463 | 0.356
136 g4 - 0.0092 | 0.0098 | 0.0045 - 0.022 00212 | 0.0034 - 0522 | 0545 | 0478
L40ggy - 0.00987 | 0.0088 | 0.0036 - 0.019 0.0189 - - 0611 | 0676 | 0541
42y - 0.00034 | 0.00031 - - 0.011 0.0123 - - 0656 | 0.756 -
Lidpgy - 0.00031 | 0.00029 - - 0.009 0.0089 - - 0623 | 0723 -
146y - 0.00024 | 0.00031 - - 0.007 0.0072 - - 0691 | 0.700 -
L48 Ry - 0.00018 | 0.0002 - - 0.0033 | 0.0037 - - 0703 | 0.821 -

Experimental are taken from refs. [122, 123, 124]
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Continued to Table (3-7)

B(E2,3] —2!)/B(E23! —4))

B(E2,4; —21)/B(E2;4; —23)

B(E2,4, —> 4])/B(E2;4, — 2))

Isotopes ["Eypy. IBM-1 |IBM-2 | DDM Exp. IBM-1 |IBM-2 | DDM Exp. IBM-1 | IBM-2 | DDM
120 g4 - 0.459 0.551 0.341 - 00041 | 0.0021 | 0.0065 - 0171 | 0201 | 0.167
1224 0.20 0.310 0.321 0.256 - 0.0050 | 0.00550 | 0.0052 - 0211 | 0231 | 0.336
1244 - 0.348 0.355 0.561 0.005 0.0059 | 0.0058 | 0.0061 | 0.29(6) | 0.26 0246 | 0.279
126 g4 0.40 0.441 0.462 0.472 0.008 0.0079 | 0.0089 | 0.0087 | 0.28(3) | 0.29 0298 | 0.267
128 g4 0.41 0.456 0.486 0.481 0.015 0.019 0.0189 0019 | 0.26(3) | 0.30 0320 | 0.261
1304 0.022 0.031 0.039 0.031 0.022 0.027 0.0292 0.043 0.67 0.59 059 | 0562
1324 0.05 0.062 0.066 0.0493 0.015 0.021 0.0221 0053 | 15<0.86| 1.20 1.203 13
134y 0.012 0.015 0.017 0.015 0.024 0.031 0.033 0.045 0.72 0.82 0825 | 0971
136 g4 - 0.013 0.0183 0.113 - 0.034 0.039 0.0066 - 0.92 0942 | 1.223
L40ggy - 0.001 0.0021 0.322 - 0.045 0.0475 | 0.00742 - 1.23 1233 | 2652
1424 - 0.0013 | 0.00213 - - 0.056 0.0560 - - 1.35 1.356 -
L44gg - 0.0025 | 0.00215 - - 0.058 0.0598 - - 1651 | 1.671 -
146y - 0.0001 | 0.00011 - - 0.064 0.0664 - - 1.90 1.920 -
sy - 0.0053 | 0.0057 - - 0.073 0.0783 - - 211 2.211 -

Experimental are taken from refs. [122, 123, 124]
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Continued to Table (3-7)

Isotopes

B(E2,0; —2;)/B(E2,0; —2})

B(E2,2; —2})/B(E2;2; —2))

B(E2,2; —0;)/B(E2;2; —2})

Exp. IBM-1 | IBM-2 |DDM | Exp. IBM-1 |[IBM-2 |DDM | Exp. |IBM-1 | IBM-2 | DDM
12054 - 0016 | 00216 | 0.663 - 9 489 1.623 - 243 | 3149 | 3.262
1224 - 0020 | 00270 | 0584 - 1256 | 10.156 23 - 3610 | 3619 | 2.762
124gy | >0013 | 0021 | 00121 | 0.550 - 22 2.981 80.6 - 4654 | 5615 | 533
126 gy >001 | 0019 0.013 0511 - 10.2 10.24 36 - 11 3117 | 4.326
12854 0.002 | 00035 | 00024 | 0457 - 8.55 750 18 - 1976 | 1.391 | 1.092
130 gy 0.032 0.043 0.034 0.425 M 9.11 12.121 10.2 - 0112 | 0152 | 0585
132, - 0.044 | 00464 | 2.861 4 0.23 0.425 1.70 - 0342 | 0640 | 0.2280
1354 0.04 0.051 | 0.0491 12.6 0.22 2.87 2.181 YIY 0035 | 1.234 | 1415 | 0.300
13634 - 0.055 0.045 10.23 - 3.132 4340 391 - 287 | 2287 | 0341
190, - 0.073 0.086 8.83 - 4.09 4.809 25 - 10 8 3.2
142 - 0.073 | 0.0873 - - 4.76 5.177 - - 9.22 8.5 -
144y - 0.084 | 0.0848 - - 0.32 1.322 - - 211 | 12121 -
14684 - 0.082 | 0.0832 - - 1.651 1.853 - - 312 3.10 -
148, - 0.089 | 0.0897 - - 11.09 13.11 - - .98 | 1.210 -
1503y - 0.0098 | 0.010 - - 0.0098 | 0.0414 - - 134 | 1.554 -

Experimental are taken from refs. [122, 123, 124]
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