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ABSTRACT 

 

 The nuclear structure  and electromagnetic transitions of even–even neutron-

rich 
120–148

Ba isotopes was studied in the framework of the collective models 

Interacting Boson Model (IBM-1 and IBM-2) and Dynamic Deformation Model 

(DDM). The reduced transition probabilities B(E2), B(M1), monopole matrix element 

)0(E , mixing ratio )1/2( ME  and )2/0( EEX  of these isotopes was calculated. A 

set of parameters was used in the calculation to approach the values with the 

measured data. It was pointed out that Interacting Boson Model (IBM-1 and IBM-2) 

are equitably reliable for the description of spectra and other nuclear properties. It was 

found that there is a rapid transition between spherical and rotational shapes. 

 

 In this work, we depend on new methods to evaluate the effective  charges for 

proton and neutron boson  )( e  and  )( e , and new method to calculate the 

gyromagnetic ratio for proton boson )( g  and )( g . 

 

 Mixed symmetry states are also studied. It is found that some of the mixed 

symmetry states with moderate high spins change very fast with respect to the 

Majorana interaction. Under certain conditions, they become the yrast state or yrare 

state. These states are difficult to decay and become very stable. This study suggests 

that a possible new mode of isomers may exist due to the special nature in their proton 

and neutron degrees of freedom for these isotopes. 

 

 The mixed-symmetry ,23

 ,24

  

13  and ,1 states or at least a fragment of it 

have been identified in Ba isotopes. This enables us to trace the evolution of the one-

phonon and two-phonon states in the even-even barium  isotopic chain from the γ-soft 

nuclei near N = 82 to the deformed nuclei towards   mid-shell. 

 

 

 The Dynamic Deformation Model (DDM) of Kumar and Baranger is 

employed for studying variations of the nuclear structure of light 
120-140

Ba isotopes. 

The potential energy surface parameters have been calculated and the low-lyingn 

levels spectrum is predicted along with the static and transition E2 moments. 

Comparison with experiment data and with other theories supports the validity of our 

treatment. 

 

 

 The recent developments of the dynamic deformation model (DDM) make it 

readily applicable to a wide range of nuclei in periodic table. We study of the        

even-mass barium isotopes from N= 64 to the closed neutron shell at N= 84. Within 

this region there is experimental evidence for nuclei with the characteristics of 

vibrational, rotational or  soft level sequences. We show that the DDM model is 

well able to account for these features as typified by energy levels, electric quadrupole 

moments and gamma transition probabilities across this region when the only 

parameter which changes is the neutron number. For comparison the experimental 

data were also fitted to IBM-2 and the results from these fits are in general in good 

agreement with those from the DDM. 

 

iii 



Supervisor  Certification 

 
 We certify that this thesis entitled ''Structure Evolution in the 

even-even Ba nuclei with IBM
'' was prepared under our supervision at 

the University of Al-Nahrain  Collage of  Science  Department of 

Physics, in partial fulfillment of the requirements for the degree of  

Master of science  in physics. 

 

 

 

 

 

 

 

 

 

Signature:   

Name: Saad N. Abood   

Scientific Degree: Professor  

Date:      /        / 2016  

 

 

 

 

 

 
In view of available recommendation, I forward this thesis for debate 

by the examining committee. 

 

 

 

 

 

 

 

Signature:  

Name: Saad Naji Abood  

Scientific Degree: Professor 

Date:      /        / 2016 

 
 



 1 

CHAPTER ONE 

INTRODUCTION 
 

 

 The atomic nucleus is a fascinating  physical object. With a size measured in units 

of 10
-15

 m its dimensions are far beyond the abilities of human imagination. It is 

remarkable that an atomic nucleus only makes up about 0.001%  of the volume of its 

atom leaving the rest empty. Yet, atomic nuclei comprise more than 99.9% of the mass of 

all visible matter. Our contemporary idea of the properties of the atomic nucleus can be 

traced back to its groundbreaking discovery together with the development of the model 

of the atom by Rutherford in 1911 [1]. Since then, nuclear scientists have made 

tremendous progress in the description of the atomic nucleus. But even today not all 

properties of the atomic nucleus have been fully understood. 
 

 The atomic nucleus is a mesoscopic quantum system consisting of 1~300 

interacting nucleons of two different species, namely protons and neutrons. However, 

their interaction is still subject to ongoing investigations. Recent attempts to model 

realistic interactions try to deduce the interactions between the nucleons from the 

fundaments of QCD, e.g. [2], and involve different degrees of many body terms. Given 

these considerations one would expect the structure of the nucleus to be chaotic and 

complicated. However, empirical data on level schemes, in particular of even-even nuclei 

all across the nuclear chart reveal a different observation. In fact, almost all even-even 

nuclei exhibit some surprisingly simple parts of their level schemes whose patterns are 

repeating in different regions of the nuclear chart. One well-known example are the first 

two excited states of even-even nuclei that in most cases are of angular momentum 
  2J  and   4J  . The ratio of their excitation energies, )2/4( 112/4

 ER , exhibits 

a very uniform behavior as a function of the distance from the nuclear magic numbers.  

 

 

  While a unified description of nuclear structure is still not available, different 

approaches have been established to describe certain features of the nuclei. For nuclei 

near closed shells the nuclear shell model [3] is capable of a good description, provided 

that the underlying single-particle energies and interactions are known. Nuclei further 

away of closed shells exhibit characteristic features that can be described by the 

phenomenon of quadrupole collectivity, which arises from a coherent motion of the 

nucleons, a phenomenon that can be observed in numerous even-even nuclei across the 

nuclear chart. A very successful theoretical framework for the description of collectivity 

has been found in the geometrical model introduced by Bohr and Mottelson [Boh98], 

treating the nucleus as a shaped object which can be subject to excitations of vibrational 

and rotational character. A different ansatz was developed in terms of algebraic models, 

among which the Interacting Boson Model (IBM) [4] is the most widely known. Short 

introductory chapters on all of the above-mentioned theoretical models will be given in 

the subsequent chapters. 

 

 The models which describe the different phenomena of quadrupole collectivity 

allow for the deduction of simple rules for experimental signatures–experimentally 
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accessible quantities that are characteristic of the respective theoretical models and can, 

thus, help in guiding experimentalists to design and perform dedicated experiments. 

Experimental results on the quantities serving as signatures of given theoretical models 

are the most crucial testing ground for the applicability of a model. Such observables can 

be relative quantities like decay branching ratios or  -ray multipole mixing ratios. 

However, absolute quantities, for example in the form of selection rules for 

electromagnetic transitions, allow for more substantial interpretations of experimental 

data. 

 Interest in the A = 130 region of light Ba isotopes (N < 82) was renewed in 1985 

on the recognition that some of these nuclei are good examples of the O(6) dynamic 

symmetry of the Interacting Boson Model (IBM) [4]. Later, in 2000, with the 

identification of 
134

Ba as a good example of the newly proposed analytically solvable 

E(5) critical point symmetry on the U(5)-O(6) path by Iachello [5], and by Casten and 

Zamfir [6], interest in the Ba isotopes (N < 82) was renewed. Kumar and Gupta [7] 

extended the highly successful microscopic theory in the dynamic pairing plus 

quadrupole (DPPQ) model of Kumar-Baranger [8] to the A = 130 region, by using the 

appropriate Nilsson spherical single-particle energies, and applied it to the study of the 

neutron-deficient Ba isotopes.  

 

 Puddu et al., [9] used the Interacting Boson Model (IBM-2) to predict the general 

trend of variation with N of the level structures and E2 moments in Xe, Ba and Ce (N 

<82). Castanos et al., [10] derived the effective Hamiltonian in IBM-1 in terms of 

Casimir operators with seven adjustable coefficients to study the groups of nuclei 

including light Ba isotopes. In Ba they obtained 2γ below 4g for all N, contrary to 

experiment. Hamilton et al., [11] studied the γ  decay from the 

32   state at about 2-MeV 

excitation in the nuclei  
140

Ba  , 
142

Ce, and  
144

Nd , with 84 neutrons and is shown to be 

consistent with its identification as the lowest state of mixed symmetry in the U(5) limit 

of the neutron-proton version of the interacting-boson model. 

   

 Novoselsky and Talmi [12] used a larger boson energy ε on shell model 

considerations in IBM-2 application. They kept χ the coefficient of  [dd
+
] term constant 

and varied coefficients of other terms in the IBM Hamiltonian to better reproduce the 

odd–even spin staggering. Sevrin et al., [13] added the SU(3) term to O(6) to generate 

some rigid triaxiality in IBM-2 to better reproduce the odd–even spin staggering in the   

K = 2
+
γ -band. 

 

 The energy level spectrum and the interband B(E2) ratios were calculated for 
      

130–134
Ba [14]. The problem of computation of the resulting large matrix size restricted the 

analysis to a maximum of four neutron pairs (and four proton pairs). 

 

 Yu-Xin LIU et al., in 1994 [15] studied the an IBM-2 description of the 

staggering phenomenon in 
128-140

Ba isotopes. By introducing the quadrupole interactions 

among like bosons into the Hamiltonian, the staggering phenomenon in the quasi-gamma 

band is reproduced pretty well. The physical mechanism behind the improvement is 

discussed.   
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 Kumar and  Gupta (2001) [16] employed the dynamic pairing plus quadrupole 

model of Kumar and Baranger for studying variations of the nuclear structure of  light  

Ba isotopes with A = 122–134. The potential energy surface parameters have been 

calculated and the low-spin level spectrum is predicted along with the static and 

transition E2 moments. Comparison with experiment and with other theories supports the 

validity of our treatment.     

 

 Mittal and Vidya Devi [17] in 2010 studied 
126-136

Ba  isotopes within IBM-1.     

IBM-1 is used to describe the nuclear structure of  these isotopes. The structure of such 

isotopes was undertake to provide more detail on the neutron rich isotope. boson model is 

used to calculate the ground, beta and gamma band energy spectra and the B(E2) 

transition probabilities of 
126-136

Ba  nuclei. 

 

P. G. Bizzeti et al.,  in 2010 [18] investigate the possible X(5) character of 
122

Ba, 

suggested by the ground-state band energy pattern, the lifetimes of the lowest yrast states 

of 
 122

Ba have been measured, via the recoil distance Doppler-shift method. The relevant 

levels have been populated by using the 
108

Cd(
16

O,2n)
122

Ba and the 
112

Sn(
13

C,3n)
122

Ba 

reactions. The B(E2) values deduced in the present work are compared to the predictions 

of the X(5) model and to calculations performed in the framework of the IBM-1 and 

IBM-2 models. 

 

 Turkan [19] in 2010 studied the electromagnetic characteristics of  
124-136

Ba  

isotopes Performed in the Framework of IBM-1  and IBM-2. In this study It was pointed 

out that the level scheme of the transitional nuclei 
124-136

Ba also can be studied by both 

characteristics (IBM-1 and IBM-2) of the interacting boson model and an adequate point 

of the model leading to E2 transitions is therefore confirmed. Most of the  δ(E2/M1) 

mixing ratios that are still not known so far are stated and the set of parameters used in 

these calculations is the best approximation that has been carried out so far. It has turned 

out that the interacting boson approximation is fairly reliable for the calculation of 

spectra in the entire set of 
124-136

Ba isotopes. 

 

 Kumar et al., in [2010] [20] study the nuclear structure of 
122-134

Ba isotopes using 

IBM-1. In this work  calculated the level spectra of 
122-134

Ba using the phenomenological 

IBM-1 model. 

 

 Subber and AL-Khudair in 2011 [21] studied the Nuclear structure of the neutron-

rich 
140–148

Ba isotopes. The level structure of even–even neutron-rich 
140–148

Ba isotopes 

was studied in the framework of the interacting boson model. The reduced transition 

probabilities B(E2) of these nuclei was calculated. A set of parameters was used in the 

calculation to approach the values with the measured data. It was pointed out that 

interacting boson approximations are equitably reliable for the description of spectra and 

other properties. It was found that there is a rapid transition between spherical and 

rotational shapes.  

 

 Mittal and Vidya Devi in 2011 [ 22] studied  
122-132

Xe and 
122-136

Ba nuclei using 

IBM-1. In this study presented the calculation of energy levels and B(E2) values of these 
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nuclei. Using the best fitted values of the parameters in the Hamiltonian of IBM-1 model 

and has been calculated the energy levels and B(E2) values for number of some 

transitions in 
122-132

Xe and 
122-136

Ba nuclei. Results are compared with experimental data 

and other theoretical models. It has turned out that IBM-1 fairly reliable for the 

calculation of spectra to the entire set of 
122-132

Xe and 
122-136

Ba nuclei.       

 

 Subber and AL-Khudair in 2012 [23] studied the  δ(E2/M1) and X(E0/E2) mixing 

ratios in 
134

Ba by means of IBM-2. In this study showed that the  
134 

Ba isotope               

(Z = 56) lies in the transitional region closer to the vibrational range of nuclei. Energy 

levels B(E2), B(M1) and the mixing ratios δ(E2/M1) and X(E0/E2) for selected 

transitions were calculated in the framework of the proton-neutron interacting boson 

model (IBM-2). All results were compared with experimental data. Some experimental 

X(E0/E2) ratios were calculated from available experimental data. Majorana parameters 

were found to have a great effect on the calculated energy levels of the 

32  and 

42  ,which 

indicate that both of them have mixed symmetry properties.  

 

 Gupta in 2013 [24], the shape-phase transition at N  = 88–90, and the role of        

Z  =  64 subshell effect therein has been a subject of study on empirical basis and in the 

context of the np NN  scheme, but a microscopic view of the same has been lacking. The 

dynamic pairing plus quadrupole model (DPPQ) is employed to predict the occupation 

probabilities of the neutron and proton deformed, single-particle orbitals. The nuclear 

structure of Ba–Dy (N  > 82) nuclei is studied and the shape equilibrium parameters 

derived. 
 

 

 

 Thomas Möller in 2014 [25] The results on B(M1;   1,1 22 i ) values of the nuclei 
130,132

Ba complete the experimental data on the evolution of the one quadrupole-phonon 

state of mixed proton-neutron symmetry ( 

Ms,12 ) in the A= 130 mass region. The results 

support the previous observation of increased fragmentation of the 

Ms,12  state for mid-

shell nuclei, although one candidate of a 

Ms,12  state of 130Ba, if confirmed, would alter 

this interpretation. 

 

 Gupta in 2015 [26], nuclear level structures of 
122–134

Ba isotopes have been 

studied empirically in relation to the analytic symmetries of the interacting boson model 

IBM-1 and in the calculation of the IBM-1 Hamiltonian. Comparison is made with 

experiment and with the microscopic dynamic pairing plus quadrupole model predictions 

available from our previous studies. The variation of the structure of states in the 

22  

bands and of the 


3,20  bands, with neutron number N, have been studied. Relation of odd-

even spin staggering in the 

22  bands with the β-softness is illustrated. A comparison is 

made with predictions of the various analytical symmetries. 
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 Gupta in 2015 [27],  Rich experimental data is available for light Ba isotopes       

N < 82 have been studied. An attempt has been made in a dynamic deformation model 

using pairing plus quadrupole interactions and two full major shell configuration space 

  

 

1.1 The Aims  of  Presented Research Work 
 In the context of the main aim of the present study, namely to investigate the 

following nuclear properties:  

 
1- The objective of the present study is to test the capabilities of  IBM-1, IBM-2 models 

and to give an insight on the variation of the nuclear structure and electromagnetic 

transitions of 
120-148

Ba isotopes with neutron number N. We have done a detailed study of 

the energy systematics of 
120-148

Ba isotopes and the E2 , M1 transition rates in their decay, 

mixing ratios )1/2( ME and monopole transition probability B(E0) and  X(E0/E2). In 

the this work, we study the shape transition of light Ba  isotopes in comparison with the 

predictions of the various analytical symmetries for this region. 

 

2- Our work represents an attempt in the dynamic deformation model (DDM) for 

analyzing the nuclear structure of  Ba isotopes varying with neutron number N. We give a 

brief account of our method  and we present the results and compare a large amount of 

data with experiment and the results of other IBM-1 and IBM-2 calculations in all of the 

above three methods. We discuss the successes and the limitations of our method and 

give our conclusions. 

 

3- The main purpose of this work is to test the possible X(5) character of the Ba  nucleus 

by  energy level in the ground state (g.s.) band to deduce the E2 strengths of the 

transitions de-exciting its levels and, possibly, to identify the excited β band [the s = 2 

band according to X(5) terminology]. 

4- To study the mixed-symmetry states characteristics of the eigenstates through the 

study of various quantities for instance, correlation in the electromagnetic transition 

probabilities. 

 

5- In the present study we focus our attention on Ba isotopes that are usually interpreted 

as soft in γ [or close to the SO(6) limit of the IBM] and we investigate to what extent the 

observed signature splitting in the  -band signals the occurrence of more rigid 

triaxiality.  

 

6- Ivestigate the balance and the interplay between the nuclear collectivity, the shell 

structures, and the isospin degree of freedom, we will try to clarify this relation. In this 

respect, there are three physics questions that need to be addressed:  

 

* What is the impact of the underling microscopic structure on the properties of mixed 

symmetry states in low-collective vibrational nuclei from the Ba nucleus?  

* How do mixed symmetry states  evolve with increasing nuclear deformation?  
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* How does the balance between the number of valence protons and neutrons influence 

the properties of the mixed symmetry states ?  

 

 

7- Study the potential energy surface within IBM-1 and DDM .  

 

 

   

 

1.2 Talk Layout  

  
 This thesis is organized as follows. The next Chapter gives a details summary of 

the nuclear structure models used in this work: the IBM and the DDM. The discussion of 

the results are described in Chapter 3. The results of this thesis are summarized in 

Chapter four and an outlook for future applications is given. 
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Chapter Two 

THEORETICAL CONSIDERATIONS 
 

 During the past thirty years, a large number of nuclear models and methods have 

been developed. The spherical shell model has been extended so that it can be employed 

for quite heavy nuclei [28,29]. However, there are serious problems connected with 

configuration space truncation and there are indications, especially from nuclear reaction 

studies, that the "extra" configurations cannot be left out of a satisfactory theory of atomic 

nuclei. Furthermore, such spherical models cannot describe nuclear fission. This is not a 

matter of concern only for people interested in transuranic nuclei! Any nucleus can fission 

if it is given enough energy and angular momentum. The limiting angular momentum 

reaches a peak value [30] of ~95 at A~130 but drops off to zero on both sides of this mass 

number. 

 

The first two sections of this chapter will present a brief summary of some of the 

macroscopic and microscopic nuclear models of collective excitations. Section 3 will 

present a detailed discussion of the recently proposed phenomenlogical model ( Interacting 

Boson Model (IBM)). 

 

2.1. MACROSCOPIC MODELS 
The understanding of nuclear excitations in terms of the specific interactions of the 

single nucleons comprising a nucleus is the fundamental problem of nuclear physics. The 

shell model has been shown to provide this level of understanding in many nuclear 

systems. However, this success has been limited in even-even nuclei to systems with 

relatively few particles outside of closed shells or the region 50A . To date, no complete 

shell model description of a heavy even-even nucleus far from a closed shell exists. 

. 

The nuclear systems composed of many particles, however, exhibit structures that 

can be easily understood when the gross properties of these nuclei are taken into account. 

For example, there is considerable evidence that the low-lying excitations of even-even 

nuclei with 100A  are predominantly of a collective nature, that is, the correlated 

oscillations of many particles with respect to a core of spectator nucleons. In addition, the 

onset of structures that can be attributed to the excitation of only a few (2 to 4) particles 

occurs at a much higher energy. 

The understanding of the collective excitations of nuclei has long been viewed in 

terms of the macroscopic properties of the nucleus. One of the earliest attempts at this type 

of description was the classical Liquid Drop Model (LDM) [31] which tried to describe 

such bulk properties of nuclei as binding energies and the onset of fission. 

The most successful of the macroscopic descriptions of nuclear excitations is that 

of A. Bohr and B. Mottelson (BM) [32,33]. 

An excellent detailed description of the collective properties of nuclei is presented 

in their text (Ref. 33). In addition,numerous excellent review articles
 

[34,35] have 

appeared, which present the BM model in great detail; therefore, the discussion here will 

be restricted to a general presentation of the model and the characteristic features of the 

different excitations expected from a phenomenological approach. 
 

2. 1. 1. Spherical Shapes 
In the BM description, the competition between short-range and long-range 

interactions between nucleons gives rise to surface vibrations about an equilibrium shape 
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that can be spherical or deformed, whether or not axially symmetric. 

The surface of a nucleus can be expressed in terms of [36]: 

  )12....(..........,1
,









 




  YRR o       

where Ro is a constant and 
Y  are the usual spherical harmonics  (Legendre 

polynominals). The collective motions are then obtained by the time variation of the 
  

,
s. 

In the usual quadratic approximation, the kinetic energy can be written as [36]: 

)22....(..............................
2

2
1  



 BT  

Similarly, the expression for the potential energy becomes [36] 

)32.........(..........
2

2
1  



 CV  

Equations (2-2) and (2-3) correspond to the familar simple harmonic oscillator for 

each variable α , where the associated frequency for each α is given by [36]: 

)42...(.................... 
















B

C
 

The oscillations associated with  = 0 and  = 1 are not of concern here, since they 

correspond to density oscillations (which will occur at high excitation energies) and 

vibrations of the center of mass, respectively. The frequency, , rapidly increases [37] as 

a function of  .  

Therefore, the lowest order vibrations will be of order 2 , or quadrupole 

oscillations. Since we are only interested in low-lying excitations, the only other order 

which will be discussed is 3 . 

Consider first the situation for  2 . A phonon, a quantum of vibration, of type A 

carries angular momentum equal to  and parity (-)

. Therefore, for a nucleus which can 

oscillate about a spherical shape, the first excited state will have spin-parity of  2
+
. The 

next quadrapole excitation will correspond to the coupling of two 2  phonons, i.e., 

22 n , and will be a degenerate triplet of states with J  values of  0
+
, 2

+
, 4

+
  at twice 

the excitation energy of the first 2
+
 state. (Recall the energy for a simple harmonic vibrator 

is of the form  En = ħ (n + 3/2)).  In actual situations, one expects that the degeneracies 

will be broken, but the predicted occurrence of levels at approximately the appropriate 

energies should correspond to what is actually observed. 

An energy spectrum is not sufficient to identify the structure of a nucleus; 

knowledge of the wave functions of the states is crucial. The most frequent means of 

probing the wave functions is by investigating the reduced transition probability, B(E), 

for the   ray decay of one level to another, since this involves the overlap of two wave 

functions connected by the transition operator, which is a familiar multipole operator  

M(E). The  B(E) values are simply related to the multipole operator, M(E), via [36]: 

)52......(....................)(
12

1
):(

2




 if

i

fi JEMJ
J

JJEB   

One can label the collective excitations by the number of phonons, n , and the 

angular momentum J. Transitions will only occur between states connected by 1 n  . 

The  B(E) values for allowed transitions between two levels are given by [34]:
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)62.......().........01:()1:(    nnEBnJnJnEB fi
   

     

The summation on the left-hand-side of the equation is over all states to which the initial 

state can decay, given the selection rules of the B(E) operator. For example, consider the 


14  level (the subscript refers to the first occurrence of a 4
+
 state) of the two  = 2 phonon 

triplet. Here 2n = 2, and the only state to which the 

14  state can decay is the 2n = 1 

12  

state. Therefore, Eq. (2-6) reduces to : 

)72...().........012:2(2

)1224:2(

11

1212









EB

nnEB
      

 

 In addition, Eq. (2-6) implies that for any higher-lying state, for example, the  2
+
  of 

the three-phonon quintuplet, the sum of all transition probabilities will be equal to the 

phonon number of the initial level times )02:2( 11

 EB  , although the individual 

transitions to the lower 2n = 2 states will not be necessarily of equal strength. The actual 

branching ratios are determined by the respective coefficients of fractional parentage (cfp) 

for the coupling of particles with angular momentum . In particular, for  = 2, 3, 4 these 

have been tabulated by Bayman and Lande [38].  

 

 In addition to quadrupole oscillations, oscillations corresponding  to  = 3, known 

as octupole vibrations, may occur at approximately the energy of the  = 2 two-phonon 

triplet [36]. 

 

 Again, an energy spectrum given by  3E  occur, with the lowest state being a 

3
-
 level. In addition to the multiple octupole excitations, negative-parity states 

characterized by a mixture of quadrupole and octupole vibrations may occur. The lowest 

excitations of this type, namely with 2n = 1 and 3n = 1, will consist of five degenerate 

states with spin-parity  5,4,3,2.1 . However, because both the octupole vibration and 

any higher order coupling of vibrations occur relatively high in excitation energy, there is a 

greater probability that these states will mix with non-collective excitations, so that their 

simple structure may be obscured. 

 

2.1.2 Non-Spherical Shapes 
 As mentioned earlier, a particular nuclear shape emerges as a result of the 

competition between long-range and short-range interactions. The particular effective 

interactions that are important to the BM description are the short-range monopole pairing 

interaction and the long-range quadrupole-quadrupole interaction between nucleons. A 

more detailed discussion of these interactions is presented in numerous review articles, in 

particular, Ref. [34] and in the next section. The pairing interaction tends to make the 

nucleus spherical; also, the strength of this interaction is proportional to the number of 

particles, N, outside of the closed shell. The quadrupole-quadrupole interaction favors a 

non-spherical shape because of the characteristic range [34];  here the strength of the 

interaction is proportional to N
2
. Near closed shells, the pairing interaction will dominate, 

but toward the middle of the shell, where N
2
 >> N, the quadrupole interaction will 

dominate the pairing force and, hence, the nucleus will assume a permanent deformation. 
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To describe the surface of a non-spherical nucleus, it is convenient to transform   

Eq. (2-1) into the coordinate system fixed with respect to the nucleus. Therefore, for a 

quadrupole shape, Eq. (2-1) becomes [36]:
 

  )82...(..............................','1 22 







 




  YRR o  

where the  2  are related to the earlier a2 via [36]:
 

  





,,
2

2

2 Da    (2-9) 

 

where the 2

D  are the usual rotation matrices and , ,  are the Euler angles, which 

relate the body-fixed and space-fixed axes. Since [36]  12 = 012   and 2222  , there 

are only five parameters needed to describe the system, namely the Euler angles , , , 

and 20   and 22 . For convenience, the parameters 20a  and 22a  are replaced by β and   

via the following relations [36]: 

)102.......(....................sin
2

1

cos

22

20









 

The parameter β is a measure of the degree of quadrupole deformation, while  is a 

measure of the departure from axial symmetry.  The expression for the kinetic energy is 

given by [36]: 

)112..(..........

)
3

2
(sin

4

1

3sin
3sin

111

2
2

2

2

4

4

2















































k

k

k

J
B

T












 

where the kJ  are the angular momentum operators associated with the Euler angles. This 

kinetic energy, together with the appropriate potential energy, will be referred to as the 

Bohr Hamiltonian. 
 
 

 Three types of potentials will be discussed. The most familiar, which corresponds 

to the symmetric rotor, occurs for β≠ 0,  = 0. The other two correspond to asymmetric 

rotors: the triaxial rotor, where V = V(β, o) for a specific o ≠ 0, and the -unstable rotor, 

where V = V(β) (i.e., independent of ). 

The symmetric rotor is characterized by a quadrupole deformation β which may be 

positive or negative, referring to prolate or oblate shapes, respectively. Empirically, most 

deformed nuclei are prolate. Two types of collective excitations may occur: the nucleus 

may rotate about an axis perpendicular to the axis of symmetry or the nucleus may 

oscillate about its equilibrium shape. These oscillations may be along the symmetry axis, β 

vibrations, or such as to introduce asymmetries,  vibrations. In either case, rotations will 

again be built upon the intrinsic structure at excitation energy, Evib In all of these cases, the 

energy spectrum can be simply expressed as  [39]: 

   )122(....................1
2

2
2

 vibEKJJ
I

E


 

where I  is the moment of inertia and K is the projection of angular momentum onto the 

symmetry axis. For the rotations built upon the ground state and β vibrations, K = 0 and the 
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spin sequence will be  0
+
, 2

+
, 4

+
 ... For the  vibrations K = 2 and the sequence of levels 

will be 2
+
, 3

+
, 4

+
... (The derivation of these spin sequences may be found in numerous 

references such as Refs. [33,36].   

 

The transition probabilities again provide a convenient probe of the wave functions. 

For transitions between states belonging to the same rotational band labelled by K one 

obtains
 
[37] 

2
22 |02):2( KJKJQeKJKJEB fiofi    (2-13) 

 

where Qo is the intrinsic quadrupole moment (see Chap. 4 of Ref. 36) and the right-hand-

side contains the usual Clebsch-Gordon coefficient. For deformed nuclei Qo is large ; thus, 

enhanced transitions occur within a band. In general, for transitions between bands Ki and 

Kf , the branching ratios are given by [40]: 

),(

),(

'2

2

)':2(

):2(
2

2

fi

fi

fffii

fffii

ffii

ffii

KKM

KKM

KJKKKJ

KJKKKJ

KJKJEB

KJKJEB









  (2-14) 

where the matrix element M(Ki, Kf) only depends on the intrinsic structure of the bands and 

not on the particular states in question. This means that the branching ratio, commonly 

referred to as the Alaga ratio, from an initial state to two levels of the same rotational band 

only depends on the J and K of the various states and not on the intrinsic structure, since 

the same matrix element M appears in both numerator and denominator of Eq. (2-14). 

(Note: this description only holds for  fi KK 2  . The cases when 2 fi KK , or 

where multipolarities other than electric quadrupole are involved, are discussed in Ref. 40).  

 

Davydov and coworkers [41, 42] have performed extensive investigations of the 

properties of nuclei with rigid asymmetric deformations. In their model, which consists of 

the Bohr Hamiltonian with a -dependent potential, the nucleus is described by  and β, 

where  may be determined by the energy of the  

22  state. Unlike the case for a symmetric 

rotor, the 

22  level and associated states are rotational excitations rather than members of a 

-vibration.  

 

Vibrations can be added to this triaxial structure by introducing , the "non-

adiabaticity" parameter [43]. The parameter  is a measure of the importance of the 

rotation-vibration interaction. For  < 1/3 the distinction between rotations and vibrations 

is clear, while for  > 1/3, the nucleus is considered "soft" and the distinction is not as 

obvious. The definition of    and the values for many nuclei are presented in Ref. [43]. It 

should be noted that only by introducing the non-adiabaticity parameter can excited 0
+
 

states be incorporated into the triaxial description. 

 

  A discussion of the Bohr Hamiltonian with a potential that is defined to be 

independent of  y was presented by Wilets and Jean [44]. A particular example of a           

 -unstable potential is the displaced harmonic oscillator where [44]: 

)152..(..............................)(
2

1
)( 2  oV    
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One result of a -independent potential is that the Bohr Hamiltonian can be expressed by 

two equations, one that depends only on β and one that depends only on , with the 

separation parameter Λ given by [44]: 

)162.........(..........).........3(    

In conclusion, the model of Bohr and Mottelson can be used to describe a variety of 

nuclear shapes: spherical, non-spherical, symmetric and asymmetric. To these shapes odd 

nucleons may be coupled, as described in Ref. [45,46]. However, as presented here, the 

Bohr and Mottelson prescription is strictly phenomenological. The next section will 

present several attempts at a microscopic description of some of the ideas presented here. 

 

 

2.2. MICROSCOPIC MODELS 
As mentioned in the previous section, the actual shape of a nucleus in the 

macroscopic description arises from the competition between the effective short-range 

pairing interaction and long-range quadrupole interaction between nucleons. After a 

presentation of the formalism necessary in order to understand the pairing interaction 

which occurs in many models, several different attempts at generating the 

phenomenological properties of nuclei from a more fundamental basis will be discussed. 

 

2.2.1. Pair-Coupling Scheme 
The pairing interaction is strongest for a state in which the particles occupy the 

orbitals in pairs coupled to angular momentum zero, so that the entire state has angular 

momentum zero. All states for which a pair of particles are not coupled to angular 

momentum zero will occur much higher in energy. A convenient quantum number is the 

seniority, v, which counts the number of particles not pair-wise coupled to spin zero. The 

pairing interaction, therefore, produces a large energy gap between the 0   0
+
 state and 

all states with  0 . To simplify the discussion of the pairing force, the language of 

second quantization  will be used, in which a shell model state will be written as 0

va  , 

where 

va  defines a creation operator operating on the vacuum 0 . The single particle 

annihilation operator a has the property 00 

va  . This formalism is very common and 

the properties, such as commutation rules for the operators, will not be discussed here, but 

may be found in numerous references, such as Refs. [34, 47], and [48]. 

In this formalism, the pairing interaction in a single j shell with strength G is 

written as [34]: 

)172.....(..........  





 



 aaaaGVpair  

which destroys a pair of particles in the to, orbit and creates a pair in the  orbit, with the 

sum being performed over all  and  orbitals. However, in most nuclear systems, the 

single j shell approximation is not valid. With the method of Bardeen, Cooper, and 

Schrieffer (BCS) [49], the ground state wave function for a nucleus in the case of non-

degenerate orbitals can be written in the form [34, 50]: 

)182.(....................0|)(0  








 aaVUBCS  

where the U and V are subject to [34]: 

)192.(....................122   VU  

)202..(....................2 2  NV


  



 13 

and N is the total number of particles. 

 To discuss the properties of excited states, it is simplest to transform from the 

single-particle to quasi-particle description of the individual nucleons, as first performed 

by Bogoliubov and Valatin [51, 52]. Here the correlated ground state of Eq. (2-18) is 

defined as the quasi-particle vacuum ~0  and the quasi-particle operators 

  and 

  are 

related to the earlier single-particle operators  

a  ,   via [34]: 

)212.......(.................... 

















 aVaU

aVaUa
 

with similar relations for the destruction operators. The quasi- particle vacuum is defined 

such that 00~ 

va . 

The quasi-particle formalism does not guarantee the conservation of particles at all 

times. The probability, 2

VV , that a state v will be occupied by a pair of quasi-particles is 

given by [34]:  

 

 

where 

)232....(....................)( 22  E  

)242........(..............................  


VUG  

 

Several quantities appear in these expressions:  is the single-particle energy, which is 

related to the quasi-particle energy E  via Eq. (2-23);  is the energy of the Fermi surface; 

Δ, the gap parameter, determines the diffuseness of the Fermi surface. 

 

 Several consequences of Eq. (2-22) should be noted. The Fermi surface is no longer 

sharp, but states above the level determined by  have a finite probability of being full and 

levels below  have a finite probability of being empty. Therefore, the total number of 

particles in the ground state wave function given by Eq. (2-18) will only on the average 

correspond to a certain number of particles N. 

 

 Typically, the root-mean-square fluctuation in particle number is two or three [34]. 

Also, in even-even nuclei, where the simplest intrinsic excitation corresponds to the 

breaking of a pair, or the creation of two quasi-particles, the minimum energy, 2Λ, for such 

an excitation will occur when  = . Therefore, the energy spectra of even-even nuclei will 

have a characteristic gap, the pairing gap, between the ground state and the first intrinsic 

excitation. 

The gap parameter   can be determined in a number of ways. Since the ground 

state of an odd nucleus consists of one quasi-particle, while, obviously, the even-even 

ground state has none, the odd-even mass difference is one measure of Δ. One reasonable 

empirical definition of the odd-even mass difference for neutrons, Pn(Z,N), is given by 

[48]: 

  )252..(..............................)1,(2)1,(),(
4
1  NZSSNZSNZP nnnn  

where Z and N here are the proton and neutron numbers, respectively, and Sn(Z,N) is the 

neutron separation energy, which is related to the total binding, E(Z,N), by the formula 

)262...(....................).........1,(),(),(  NZENZENZSn  

  )222..(........../)(1
2

12    EV
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Analogous relations can be obtained for Pp, the proton odd-even mass difference. 

Two quasi-particle excitations frequently occur at energies less than the 

value of 2Δ, as determined from odd-even mass differences. (The systematics of two 

quasi-particle excitations in the region  A = 150-190 is shown in Figure 35 of  Ref. 

[34]; frequently the lowest states occur at energies 10-15 percent below the energy 

predicted by 2Pn or 2Pp). This effect is known as "blocking", because the quasi-

particle excitation prevents the states involved in the excitation from participating in 

the correlated state. Several attempts at generating the empirical values of Δ have 

been made. The simplest understanding of how blocking effects contribute comes 

from examining the relevant form of  Eq. (2-18) for a two quasi-particle excitation 

[48]: 












 


 )272.........(....................0|)( aaVUaa  

Although the product in Eq. (2-27) does not include the  and  orbitals involved in the 

new state, the U and V are still the values obtained when no state is blocked. If one defines 

an effective number, Γ, of single particle orbits that contribute to the pairing energy as 

[34]: 

)282....(..............................2
2




 


 VU
G

 

one finds that a reduction of T due to a two quasi-particle excitation is equivalent to a 

reduced value of Δ , or alternate values of U and V. The calculations of  Refs. [48] and [53] 

are able to reproduce the empirical reduction of the pairing gap, as observed for the lowest 

two quasi-particle states. 

 

2.2.2. Pairing-Plus-Quadrupole Model (PPQ) 
About 46 years ago Kumar and Baranger (KB) developed a Pairing-Plus 

Quadrupole Model (PPQ) [54-57] in which they calculated the low-lying collective 

excitations in transitional nuclei. Until recently this model had been found very successful 

in reproducing many empirical quantities such as energy levels, B(E2) values and 

quadrupole moments in the W-Os-Pt  nuclei  

The uniqueness of the Kumar and Baranger description is the coupling of 

microscopic techniques to a macroscopic problem. Kumar and Baranger begin with a 

generalized Bohr Hamiltonian [58]: 

)292...(..............................),(  vibrot TTVH   

where ),( V  is the potential energy of deformation; Trot the rotational kinetic 

energy is, 

  )302(....................),(),(),( 2

33

2

22

2

112
1   IIITrot  

and the vibrational kinetic energy, Tvib is written 

)312.........(..........),(),(),( 2

2
12

2
1  


 BBBTvib  

The three principal moments of inertia I1, I2, I3 and the vibrational inertia parameters Bββ, 

Bβ, B and B are chosen to bearbitrary functions of  β and ; 1, 2, 3 are the 

components of the angular velocity on the intrinsic axes. This form of the Hamiltonian is 

the most general that can be obtained, given the condition that the velocities can only 

occur to no higher order than quadratic [58]. 

 Seven functions of β and  appear in the Hamiltonian; ),( V , the three 

moments of inertia I, and the three parameters B. Kumar and Baranger calculate the 

inertia parameters from a microscopic pairing-plus-quadrupole model based on the fully 

self-consistent time-dependent Hartree-Fock picture. The potential energy ),( V  is 
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calculated using the Nilsson Model [45] single-particle energies and wave functions and a 

pairing force, incorporating the BCS techniques. The seven functions of the KB 

Hamiltonian are calculated numerically at every point in a large    mesh. 

 

2.2.3. Dynamic Deformation Model (DDM) 

 
             The dynamic deformation model has been developed over many years starting 

from the Paring Plus Quadrupole model (PPQ) of Kumar and Baranger  [57]. The DDM is 

an ambitious attempt to the collective spherical-transitional-deformed transitions and to 

span from the s-d shell to heavy nuclei using a microscopic theory of collective motion. No 

fitting parameters are required to obtain the data for a particular nucleus.  

 

 A full description of the DDM is given in reference [59] and references therein. 

Here we present only the results of our application of the new version [60] of the  DDM  to 

the tellurium isotopes. 

   

 The detailed formalism and early   results may be found in Kumar et al.,  [59] and 

Kumar [61]. Here we give briefly the main aspects of the model. The theory can be divided 

into two main parts: a microscopic derivation of a collective Hamiltonian, and a numerical 

solution of the Hamiltonian. The microscopic Hamiltonian is composed of a demoralized 

Nilsson-type single particle plus pairing and has the form:   

 

                                  )322......(..............................  resav VHH                                                        

 

Where 
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Combining all the various contributions together, the potential energy is written as:   

 

                               )342.......(....................  pairprojDMcoll EVUVV                                   

were projV  is a nine-dimensional projection correction introduced by Kumar [61]. The 

generalized cranking method is employed to derive the general  expression for mass 

parameters   ,B  as used in the collective kinetic energy which can be written as: 

 

   

                                                          

    

 

This kinetic energy function is quantized by Pauli method. 

 

The DDM code used for our calculation is a modified version of the latest DDM 

code which was developed for super-heavy nuclei. The single particle levels and the 

configuration space (n = 0 to 8) employed in the present calculation, as well as the 

deformation definition, are identical to those of Kumar et al., [59 ].  The main virtues of 

the above approach (restoration of symmetries, unified treatment of spherical-transitional-

deformed nuclei) have recently been combined with the main virtues of the Nilsson-

)352.....(..............................
2

1 *..   



 BTcoll
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Strutinsky approach (large configuration space, no effective charges, applicability to 

fission isomers and barriers) in the Dynamic Deformation Model (DDM). 

 

The GCM (general coordinate motion) wave function is written as [62]: 

 

 

)362..(....................)(),()( ,,   dfqq II    

 
where I is total nuclear angular momentum,   distinguishes states with the same I, q 

represents all the nucleonic variables, and   represents all the collective variables. The 

expectation value of the nuclear Hamiltonian H is then given by 

 
)372..(....................)(),()( ,

'''     dfhfdIHI II  

where h ( ', ) is the expectation value of  H with respect to the nucleonic variables. The 

"double" integral of  Eq. (2-37) is replaced in the DDM by a "single" integral. The function 

h ( ', )  is expanded in the non-locality with respect to deformation, 

 

        )382........(..........)()()(, '''

2

''

1

'

0

'   hhhh  

 The formal derivation has been given by Giraud and Grammaticos [63].  Although 

a complete derivation of the formalism used in the PPQ model or the DDM (or the 

cranking method combined with the Bohr Hamiltonian method) is not claimed, the 

conceptual connection is quite clear and precise, and is briefly the following: The h0  term 

of Eq. (2-38) leads to the potential energy V of the collective Hamiltonian. The h1 term 

vanishes because of the symmetry requirements. The h2 term leads to the kinetic energy, 

 ..)2/1( BT   of the collective Hamiltonian, where B is the mass-parameter-matrix. 

This matrix is given by: 

 

    )392.......(..............................// 22

,  

  HTB  

 

The collective velocities .   may represent  -vibrations,  -vibrations, pair fluctuations, 

or rotational frequencies. The original cranking method of  Inglis dealt with only one of 

these, the frequency of rotation around an axis perpendicular to the assumed symmetry axis 

or the nuclear spheroid. Then, the connection between the time-dependent Schrodinger 

equations in the laboratory system and in the intrinsic system gives the  -dependence of 

the Hamiltonian, H' =H-  Jx. We generalize this to obtain [64]: 

 

)402..(........................................' 



  







i

HH


 

 

 

 Then, the second-order time-dependent perturbation theory gives the 'cranking' type 

of formulae for the mass-parameter-matrix B . Note that the following constraint 

conditions are satisfied automatically up to second order in 


  [62]: 
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)412..(........................................' 



  










B
i


 

These conditions include the traditional 'cranking' constraint,  xJ ,  as a special 

case. 

 In the current version of the DDM, the adiabatic approximation is made that the 

collective velocities/frequencies are small compared to those of the single-particle motion, 

that is [62] 

 

)422......(..........41 3/1   MeVAsprot    

)432.......(..........41 3/1   MeVAspvib    

 

However, this adiabatic approximation is far superior to that of the rotational model where 

some additional approximations are made ( vibrot   , harmonic vibrations with 

amplitudes much smaller than the equilibrium deformation value). The rotation-vibration 

coupling is treated exactly in the DDM by avoiding any expansions around the equilibrium 

shapes, by calculating the potential and inertial functions microscopically for each point of 

a    mesh, and by solving the collective Schrodinger equation by numerical method 

[65,66,67]. 

 
2.2.4. Other Microscopic Models 

In addition to the approaches discussed here, there have been many other 

attempts at understanding the microscopic structure of nuclear excitations away from 

closed shells. This section will briefly summarize some of these. 

Bes and coworkers [68,69] have described the macroscopic β-and -vibrations in 

terms of the Nilsson excitations that generate them. Their method employs the BCS  

theory as described earlier, as well as the standard technique of the Random Phase 

Approximation (RPA) [70], to generate the energy spectrum and wave functions. An 

alternate description, in which a Woods-Saxon potential was employed, of these same 

excitations, as well as of the ground state wave functions, has been performed by Soloviev 

and collaborators [71]. 

Large scale numerical calculations have recently been performed by Kishimoto 

and Tamura [72,73]. They investigate the collective excitations that result from a boson 

expansion. 

Calculations of energy spectra and transition probabilities for several nuclei, including    
 

194
Pt, are presented in Ref. [46]. 

Obviously, not all microscopic models can be presented here. The summary has 

been restricted to those models which have had the most relevance to the Hf-W 

deformed nuclei. The end of the next section, which presents a new approach to under-

standing collective structures in nuclei, will describe an alternate means of 

understanding the microscopic foundations of collective excitations. 

 

2.3. PHENOMENOLOGICAL MODEL 
2.3.1. GROUP THEROTICAL MODEL -THE INTERACTING   

          BOSON MODEL  (IBM) 
F. Iachello and A. Arima [74-79] have proposed a model which attempts to 

describe the collective structure of all nuclei with  100A , except those near closed shells. 

The particles outside of closed shells are treated as bosons, or pairs of particles, which can 
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occupy one of two levels: a ground state with angular momentum equal to zero           

(called s-bosons) and an excited state with two units of angular momentum                 

(called d-bosons) The d-bosons have energy d , the s-bosons s ; one can define a boson 

energy sd   . Unlike the more familiar bosons, these  bosons may interact with each 

other. Thus, the model has been called the Interacting Boson Model (IBM) . The total 

number of bosons, equal to the number of d-bosons plus the number of  s-bosons, 

sd nnN  , is a constant in the IBM prescription as for a given nucleus. N is the number 

of pairs of neutrons plus the number of pairs of protons, outside their respective nearest 

closed shells, without distinguishing between the particle or hole character of the pairs. For 

example, 74

130

56 Ba is characterized by N = 7, due to the 6 protons (3 proton pairs) + 8 

neutrons    (4 neutron pairs) away from the closed shell 126

208

82 Pb . Alternatively, Er164 would 

correspond to 14N , because of the 14 neutron particles away from the 82 neutron closed 

shell and 14 proton holes away from the 82 proton closed shell. 

As stated earlier, interactions between the s-and d-bosons, and among the s- or d-

bosons themselves, may occur. Therefore, in the simplest terms, the Hamiltonian of the 

system can be written as [80]:
 
 

  

m

mmds VddssH  ………………………(2-44) 

where s and d , are the s-and d-boson energies, )(ss is the creation (annihilation) 

operator for s-bosons, )(dd  is the creation (annihilation) operator for d-bosons, the sum is 

taken over the 5 (2(L =2) + 1) components of the d-boson state, and V is the interaction(s) 

between the bosons. 

 

In this description three natural limits occur. The first [74,78] occurs when 

Vsd   , so that the energy spectrum is simply given by dnE  , the ground state 

being a CL zero d-boson state. This first limit is similar to the harmonic oscillator of the 

geometrical picture described in section (2.1.1) of this chapter. The IBM interpretation will 

be discussed later . The other two limits occur when V , and correspond to specific 

interboson interactions. If  V is a quadrupole-quadrupole interaction [75,79] between 

bosons, the system obtained is very similar to a certain kind of deformed rotor. The IBM 

version will be presented in section (2.1.2). The third limit arises when a repulsive pairing 

interaction [76] exists between the bosons. As will be seen in the discussion of  section 

(2.1.3), this limit is very-similar to the geometrical description of the  -unstable oscillator 

of  Wilets and Jean [44]. 

The most general form of the IBM Hamiltonian, in which all possible boson-boson 

interactions up to second order are explicitly included, is given by [78]: 

 

     




 
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2 )(12
1
2

J
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J

m

mmds ddddcJddssH   

…...................(2-45) 
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where d
+
, d, s

+
, s, are as described for Eq.(2-44) and the parentheses denote angular 

momentum couplings. The parameters CJ, VJ, uJ  are related to the two-body matrix 

elements by [78]: 

 

 

JdVJdCJ

22  

...................................................(2-46) 

  2
1

2
52

2 22 dVdsv   

  2
1

2
122

0 00 sVdv   

2
1

5222 dsVdsu   

00 22

0 sVsu   

 

 

The IBM-1 Hamiltonian (Eq. (2-45) can be written in general form as [79] : 

 

  )472........(..... ^

4

^

44

^

3

^

33

^^

2

^^

1

^^

0

^^^  TTaTTaQQaLLaPPannH ds  

 

where   is the boson energy, and the operators are: 

  

~^^^ .ssns

    ,       ~^^^ .ddnd

   ,         ^^~^~^^ .
2

1
.

2

1
ssddP   

     )1(~^^^ 10 ddL        ,       ~^^)2(~^^~^^^ 5 dddssdQ     

 

            )3(~^^^

3 ddT     ,           )4(~^^^

4 ddT   ................(2-48) 

 

  

 The phenomenological parameters 43210 ,),,(,, aaaaa   , represents  the strengths of 

the paiuring angular momentum, quadrupole, octupole and hexadecopoule interaction 

between bosons, respectively.  

 

 

Eq.(2-45) appears formidable, especially given the explicit form of the parameters, 

as introduced in Eq. (2-46). However, the terms correspond to one of four types: 

 

1)    mmds ddss  - simply counts the number of s-and d-bosons, respectively, and 

multiplies this number by the appropriate energy;  

2) the terms with coefficients CJ, u2 and u0 represent interactions in which the total 

number of d-bosons and s-bosons, separately, are conserved, i.e., nd, is not changed; 

3) a term (with coefficient v2) in which nd, is changed by unity;  

4) a term (with coefficient v0) in which nd is changed by two units. 

 

 

Returning to the three limits alluded to earlier, the vibrational limit will 

correspond to a Hamiltonian with only nd - conserving terms, the rotational limit to a 

situation with one and two d-boson number changing terms, and the " -unstable" limit 
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will represent the situation with two d-boson number changing terms included. 

An alternate form, in which the general Hamiltonian may be frequently written, is 

in terms of the specific interactions between the bosons. In these cases [78,80]: 

 




 
ji

ij

ji

ij

ij

ji

m

mm PLQQddH '''  ……………(2-49) 

where iQ is the quadrupole moment of the thi  boson, jiijL   2 with i , j .  being the 

angular momenta of the 
thi  and 

thj  boson, respectively, ijP  is the pairing operator, 

between bosons, and , '','   are the respective strengths of the different interactions. For 

simplicity,  was set equal to zero, so that only dsd    appears in Eq.(2-49). 

Associated with the collective states calculated with the IBM are transition 

operators. In the most general form, the E0, Ml, E2, M3, E4 transition operators are, to 

leading order, given [78,79,81]: 

 
          )0(

0000

2

2 ssdddssdT mllmmm

  



  …...................(2-50) 

 

where l  denotes the multipolarity with projection m, and  ,,  are the coefficients of the 

different terms of the operator. In particular, for E2 transitions [78,79,81]:
 

       2

2

2

22 mmm dddssdET    ……………………(2-51) 

This operator has two parts: which satisfies the selection rule, and which satisfies the 

selection rule. The coefficients and depend on the limit involved or the appropriate 

intermediate structure. The form of the operator that corresponds to the various limiting 

symmetries will be discussed later. 

Exact forms of the E0, M3, and E4 operators exist. It should be noted that no M1 

transitions can occur in first order [78,79,81]. The reasons lie in the form of the Ml 

operator [78,79,81]: 

  )522.........(....................)1(
)1(

1  

mm ddMT   

As discussed in references [51,52,54], the operator   1
dd  proportional to the boson 

angular momentum operator; therefore, Eq.(2-52) may be rewritten as 

   11 mBm IgMT  ……………………..(2-53) 

where gB is the effective boson g-factor. This form of the operator has no off-diagonal 

matrix elements, implying that in this approximation Ml transitions are forbidden 

[78,79,81]. Some of the transition probabilities obtained from perturbation theory are 

further discussed in Refs. [78] and [79]. 

 

The solution of the Hamiltonian, in either the Eq.(2-45) or the Eq.(2-53) form, 

may be attempted either analytically or numerically. Arima and Iachello [74,75,76] have 

been able to solve the Hamiltonian analytically in the three -limiting situations described 

earlier by utilizing the underlying group theoretic aspects of this system. As discussed in 

Ref. [78], the five components of the L = 2 d-boson state and the single component of the 

L = 0 s-boson state span a linear vector space which provides a basis for the totally 

symmetric representations of the group SU(6), the special unitary group in six dimensions. 

The group SU(6) is partitioned, with each totally symmetric representation labeled by [N]. 

For a situation where all boson states are degenerate and no boson-boson interaction exists, 

all states belonging to a particular partition [N] are degenerate. However, given the energy 
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difference sd   and an interaction between the bosons, a definite energy level 

spectrum will exist. The group SU(6) is characterized by nine parameters which will 

correspond to the parameters of Eq.(2-45), i.e., N,  , and the 

coefficients   0202 ,,,,4,2,0 uuJCJ  . 

 

The E0 operator can be written directly as: 

 

    )542...(....................)0( ~

0

~

0

^   ssddET   

where 0  and 0  are free parameters  and the superscript notation indicates spherical 

tensor coupling. Eq. (2-54) can be expressed in terms of the boson number operators ^

sn ; 

^

dn  and   ^^^

ds nnN   as [78]: 
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 The IBM-1 possesses simple limiting dynamical symmetries which lead to closed 

form expressions for the matrix elements of T
^
(E0) and, consequently, to selection rules 

[78]. We deal with the three limiting cases, U(5), SU(3), and O(6), separately. 

 

 The isomer shift,  2r  is measure in r
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The isotope (isotone) shifts  2r , are measure of difference in radii between nuclei one 

neutron (or proton) pair (one boson) away from each other, 
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If one can find a subgroup  6SUG   under which the Hamiltonian is invariant, 

then the diagonalization problem is simplified. In particular, Arima and Iachello have 

observed that there are three such groups, namely SU(5) [74,78], SU(3) [75,79], and O(6) 

[76], the special unitary groups in five and three dimensions, and the orthogonal group in 

six dimensions. The solutions obtained correspond to the same three limits mentioned 

earlier, the vibrational, rotational, and " -unstable" limits, respectively. 

 

Frequently, when the subgroup G under which the Hamiltonian is invariant has 

been identified, the problem may be written in terms of the forces as given in Eq. (2-45). 

Then the eigenvalue  problem is reduced to finding the expectation value of the forces. 

This method of solution in the different limits will be discussed in their separate 

subsections. 

An alternative approach to the eigenvalue problem presented in Eq. (3-45) or     

Eq. (2-49) is to solve the Hamiltonian numerically. This has advantages in that the entire 

Hamiltonian may be solved, not only in the limits for which analytic solutions are readily 
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obtainable, but also in the intermediate cases. To this end, O. Scholten has written a 

computer code PHINT [82] which solves the entire IBM Hamiltonian in the Eq.  (2-45)  or  

Eq. (2-47) parameterization, or a convenient mixture of the two forms.  

The computer code presents the wave functions in the basis nnnJ d 
  where 

J  is spin-parity, dn  is the number of d-bosons. n  is the number of pairs of d-bosons 

coupled to angular momentum zero, and n  is the number of triplets of bosons coupled to 

angular momentum zero. For example, the 2 d-boson 0
+
 state would be denoted 2100 ; 

the 3 d-boson 0  state would be 3100 ; the 3 d-boson 2 state would be 3102 , 

because the parentage of this state is the 2102 . 

Calculations have been performed with this code to reproduce a number of different 

situations: 

1) calculations of the three limiting symmetries which reproduce the analytic 

solutions; 

2) calculations of systematic deviations from these limiting cases;  

3) calculations of, not necessarily physical, situations to understand the 

operation and interplay of the different parameters contained in the IBM.  

The first case will be discussed in subsections (2.3.2.1), (2.3.2.2) and (2.3.2.3). However, 

since an understanding of the effect of the parameters is essential to the later discussions, 

the third aspect will be discussed here. 

It is more convenient to discuss the forces of the IBM in terms of the 

parameterization of Eq.(2-49), where the variables are  , the boson energy, and the 

strengths of the quadrupole- quadrupole, fi   , and pairing interactions between the 

bosons.  

To summarize this section, the IBM  model developed by Iachello and Arima 

aims to predict the structure of collective states of heavy even-even nuclei. This model can 

be analytically solved for the case of three limiting symmetries; these will be discussed in 

the next three sections. The model can also be solved numerically with the computer code 

PHINT [82]. A discussion of the transition between the limits will be presented in next 

section. 

 

2.3.1.1- The Vibrational SU(5) Symmetry 
The first limiting symmetry of the IBM to be discussed was the vibrational limit 

[74,78].  As described in the last section, a very simple spectrum of collective states, 

presented in Figure (2. 1), arises from a system characterized by a boson energy  . This 

limit corresponds to the O(5), orthogonal group in 5 dimensions, symmetry. However, the 

IBM  Hamiltonian can also be solved analytically for the SU(5) representation [74,78]. 

 

The form of the Hamiltonian in this limit is given by [74,78]: 

 

    
    

   
m J

JJ

Jmm ddddCJddH
0

2
1 .12 2

1

 ………………..(2-59) 

where the JC 's are given in Eq. (2-46). An analytic solution to this Hamiltonian is 

presented in detail in Ref. [78]. For the reader's information, the  arguments of Arima and 

Iachello will be repeated here. 
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Figure (2.2) Typical spectrum of a nucleus exhibiting the SU(5) symmetry. The states are labeled by 

the quantum numbers ),,( nvnJ d


. The spectrum is broken up into a number of bands [78] 

 

The eigenvalue equation may be expressed as 

JMvnnEJMvnnH dd   …………(2-60) 

where H is given by Eq.(2-59) and the states are labelled by the quantum numbers 

MJnvnd ,,,,  . The number of d-bosons, nd, the angular momentum J and its projection 

M  are already familiar; dn , as discussed earlier, is the number of d-boson triplets coupled 

to angular momentum zero, and v  is the seniority, which counts the number of d-bosons 

not coupled to angular momentum zero. An alternate representation involves the quantum 

number n , which counts the number of d-boson pairs coupled to angular momentum 

zero; v  and Bn  are related by nnv d 2 . The total number of bosons is partitioned as 

[78]: 
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  nnnd 32 ………………….(2-61) 

where   is the excess bosons and determines the angular momentum range [78]: 

 ,1,...,32,22,2 J ………….(2-62) 

The angular momentum 12  J  is absent because of the requirement that bosons may 

only be coupled to form symmetric states [37]. 

 

An alternate method of solving the Hamiltonian in Eq. (2-59) is to rewrite it 

in terms of the forces presented earlier in Eq. (2-49). Only three parameters are 

necessary to describe the interaction between two d-bosons because only three angular 

momentum couplings can occur [37]: 4,2,0J . Therefore, the coefficients 

 4,2,0JCJ in Eq. (2-59), or three alternate parameters  ,, , are necessary. 

Iachello and Arima have expressed the interaction as [78]: 

 

  )632........(....................  
 ji

ijijij

ji

ij LPlVV   

where ijl  is the unit operator, and ijP  and ijL  are the pairing and  L interactions discussed 

earlier in section 1. The expectation values of these operators, as given in Ref. [78], are: 

 

 1
2

1
1  dd nn  

)642.......(..........   

dnJJL 6)1(   

  3 vnvnP dd  

 

Therefore, the eigenvalue of interacting d-boson Hamiltonian are [74,78]: 

 

    1,,,,, 2
1  dddd nnnMJnvnNE   

)652.......(..........      3 vnvn dd  

   dnJJ 61   

 

A typical spectrum in the vibrational limit is presented in Figure (2.1). The spectrum may 

be divided into several "bands"; this terminology is valid since large E2 matrix elements 

exist between adjacent members of the same band. The states in Figure (2.1) are labelled 

by the quantum numbers nvnd ,, . The "bands" are very reminiscent of those occurring in 

rotational nuclei. The Y-band corresponds to the ground band, X  and Z  to a  -vibrational 

band,   to a  -vibrational band and   to a 2-phonon  -vibrational band. The energies of 

states in some of these bands are given by [78]: 

 

Y band    1,2,0,, 42
1  ddddddY nnCnMnJnnE   

 

X band      281,22,0,,
2
4  ddd

C

ddddX nnnnMnJnnE   

Z band      6121,32,0,,
2
4  ddd

C

ddddZ nnnnMnJnnE   

 band        1416121,42,0,2,
2
4  ddddd

C

dddd nnnnnnMnJnnE   

  band      5461,62,1,,
2
4  ddd

C

dddd nnnnMnJnnE  ........(2-66) 
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The general form of the electric quadrupole transition operator T(E2) was given 

in Eq. (2-51). In the limits for which analytic solutions are obtainable, Arima and Iachello 

require the transition operator to be a generator of the underlying group. For the limit 

characterized by SU(5), T(E2) is given by [78]: 

 

    2
2 mm dssdET   ………………..(2-67) 

for   2

5
1sQd


  , where Q


 is the quadrupole operator. This form of the operator 

leads to the selection rule 1 dn . 

 

2.3.1.2- The Rotational SU(3) Symmetry 

 
 The second limit of the IBM model is based on the SU(3) group and gives rise to 

nuclear structures similar to a certain form of the symmetric rotor. This symmetry occurs 

when there is a dominant quadrupole-quadrupole interaction between bosons, as described 

in subsection (2.1.1). The most general form of the  interboson interaction will also include 

a term of the form  ji llL . . 

 In Eq. (2-44), the entire IBM Hamiltonian was presented. Many years ago Elliott 

[83] showed that if a Hamiltonian could be expressed in terms of the generators of a group, 

in particular SU(3), the special unitary group in three dimension, the eigenvalue problem 

[79, 82]: 

 

)682.(............................... 
 ji QQH   

where iQ


 is the quadrupole operator of particle i  and   is the strength of the 

quauadrupole-quadrupole interaction.  

  

 The solution of  Eq. (2-68) is presented in Ref. [79]. Some of the results will be 

repeated here. The eigenvalue equation
 
becomes

 
[79]: 

 

    )692..(..............................,][,][  KJMNEKJMNH   

 

 

where [N] labels the totally symmetric representations of SU(6);  ,  are two quantum 

numbers which label the representations 

of SU(3); and J, M are the angular momentum and its projection 

along the z-axis, respectively. The additional quantum number 

K  labels states having the same J,, . In this basis, the eigenvalues can be written [79]: 

 

         )702.....(..........,1,   CJJKKJMNE  

where  ,C  is quadratic Casimir operator of SU(3) [79]:  

    )712..(....................3, 22  C  

 

As mentioned earlier, the addition of the L interaction does not change the 

diagonalization problem. Therefore, in its most general form, the Hamiltonian becomes 

[79]: 
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)722........(...........'.
,,

 
ji

ji

ji

ji QQH 





  

with t he eigenvalues [79]: 

 

       









,'

)732.......(....................,1,

4
3

CJJKJMNE  

Due to their importance in predicting the level spacings of deformed nuclei, the 

parameters  ,  will be discussed here in terms of the Young Tableaux [37] they 

represent. Each particle can be represented by a box; boxes may be coupled to form 

symmetric or antisymmetric states. Examples of the different symmetries are in Refs. 

[84,85]: For bosons, the antisymmetric couplings are not permitted. An N  boson state will 

be of  the form 

 

 

The spectrum is divided into a number of bands according to the  ,  value. The 

angular momenta J which may occur in each  ,  group are given by [78]:  

 

     )742..(..............................,max,....,1,  KKKJ  

where K = integer = min  , , min  , -2,...., 1 or 0 unless K = 0. For K = 0, 

the allowed angular momentum values are [78]: 

 

    1,....,2,max,,max  J  or 0 ......................(2-75) 

 

The quantum number K  is analogous to the K quantum number of  a symmetric 

rotor, namely the projection of the angular momentum J along the nuclear symmetry axis. 

Therefore, the K = 0 and K = 2 bands of the )2,4( N  representation would correspond to 

the   and   bands, respectively, in the geometrical rotor description of section A. 

However, in this limit of the IBM, states with the same angular momentum and  ,  

representation are required to be degenerate; eg., the 

2  and 

2  states. Also, the transition 

probabilities between bands are considerably altered, as will be   discussed below.  

 

The most general form of the E2 transition operator T(E2) was presented in          

Eq. (2-51). As for the earlier SU(5) symmetry, Arima and Iachello require this operator to 

be a generator of the underlying group symmetry. For the case of the SU(3) symmetry, 

since the operators of  Eq. (2-51), namely d
+
s and d

+
d  are already generators of the group 

[78], the requirement reduces to fixing the values, of the coefficients 2  and 2 in           

Eq. (2- 51). The resulting E2 operator in the SU(3) symmetry is
 
[78]: 

 

         )762.......(..........72
2

2
1

2

2  

mmm dddssdET   

 

where 2  is the effective E2 charge; 2  of Eq. (2-51) became 22
1 7 . 

 

 Due to the form of the E2 operator T(E2) in Eq.(2-76) does not connect states with 

different  ,  representations
 
 [79]. Thus, transitions between the  -band or  -band and 

the ground band are forbidden. Conversely, transitions between states of the same 
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representation are allowed. Therefore, unlike the predictions of the geometrical rotational 

model, the 

2  state will preferentially decay to the 

0  state rather than to the 

g0  state.  

 

A number of regions of the periodic table have shown evidence of exhibiting a 

rotational structure characterized by a J(J+1) level sequence. However, the requirement of 

degenerate β-and  -vibrations tends to limit the regions of SU(3) symmetry to those where 

the onset of  prolate  deformation is occurring, such as the Gd isotopes.  

 

)772.......().........32)(2(
)52)(32(

)1)(2(

4

3
)22;2( 2

2 



 JNJN

JJ

JJ
JEB   

 

Eq. (2-77) shows that all transition probabilities depend explicitly upon the number 

of valence nucleons.  Now that two limiting symmetries have been presented, the SU(5) 

and SU(3) limits, it would be interesting to investigate the transition between these two 

regions. Such work has recently been conducted by F. Iachello, O. Scholten, and A. Arima. 

In this investigation, they considered a simpler form of the. IBM Hamiltonian in Eq. (2-

45), namely [86]: 

 

 )782.........(....................'.
,

 
 ji

ij

ji

jid LQQnH 


  

where  , the boson energy, and the quadrupole-quadrupole and L interactions are as 

previously described. To study a transitional region, they fixed   and  ', allowing to 

linearly decrease as a function of the number of bosons [86]: 

 

)792........(....................   Nc  

where c  is a constant and vN  is the number of neutron bosons. This will  simulate the 

transition, since, near SU(5),   is much greater than any interboson interaction, while, near 

SU(3), the quadrupole-quadrupole interaction dominates the boson energy.  

 

2.3.1.3- The Gamma Unstable O(6) Symmetry 
 A third limiting symmetry of the IBM model will occur when the interboson 

interaction is dominated by a pairing force [76]. 

 

  Analogous to the SU(5) and SU(3) symmetries, Iachello and Arima have 

diagonalized the IBM Hamiltonian, generated by SU(6) (Eq. (2-45), by identifying a 

subgroup of SU(6) under which the Hamiltonian is invariant. In this case, the subgroup is 

O(6) which also contains the subgroups O(5) and O(3). By using the group chain, 

)3()5()6()6( OOOSU  , the IBM Hamiltonian in the O(6) limit can be written as: 

 

)802........(....................356  CCBCAPH  

 

where P6 is the pairing operator in O(6) and C5 and C3 are the Casimir operators of O(5) 

and O(3), respectively. A, B, and C are the strengths of the various components. In terms of 

the IBM Hamiltonian of  Eq. (2-45), corresponds to the  term: 

 

         )812........(....................
)0(

)0()0()0()0(

0   ddssssddv  
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h                     while  C5 and C3 and correspond to the terms 

    
    

)822.........(....................12
4,2,0

0

2
1 2

1

 




J

JJ

J

m

mm ddddCJdd  

The symmetric irreducible representations of O(6) are labelled by a quantum 

number   where
 
[76]: 

 

0,...,4,2,  NNN  or 1 for N= even or odd.................(2-83) 

The                    expectation value of the O(6) pairing operator, P6, can be written in terms of   as [76]: 

  4
4
1

6   NNP …………………………..(2-84) 

As stated in Ref. [76], the quantum number   is chosen to characterize the 

representations of O(5) where  

)852.....(..............................0,...,1,    

 

 The expectation value of C5 in the   representation of O(5) is given by [76]: 

  )862..(....................3
6
1

5  C  

 

Therefore, the eigenvalues of states corresponding to the Hamiltonian in Eq. (2-80) are 

[76]: 

 

        )872.....(....................).........1(34
4

 JCJBNN
A

JMNE 

 

where the 1/6 in Eq. (2-86) has been incorporated into the constant B. The quantum 

number   is useful in labelling the states: it is related to n , which counts the number of 

boson triplets coupled to angular momentum zero. The quantum  numbers   and v are 

related by   v3  for v = 0, 1, .... The value of  determines the angular momentum 

of states via [76]: 

J= 2 , 2 -2, 2 -3, …,  +1,   ………………………(2-88) 

Ari                           Arima and Iachello have also succeeded in obtaining analytic expressions for 

transition probabilities [76]. As in the SU(5) and SU(3) symmetries, they require the E2 

transition operator, T(E2), to be a generator of the underlying group structure, in this case 
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O(6). The form of  T(E2) satisfying this requirement  is [76]:  

    )892.......(..........2
)2(

  dssdET   

                             Since T(E2) is a generator of O(6), it cannot connect states from different 

representations; therefore, one selection rule is 0 . Also, due to the O(5) 

structure contained in O(6), the O(5) selection rule  1  still holds. Several 

closed form expressions for B(E2) values for transitions within the  N max  

group are presented in Table 5. Some useful max branching ratios are given in 

Table3. In particular, it should be noted that, as in all IBM  B(E2) values, the finite 

dimensionality of the system is automatically included. Due to the form of the 

transition operator, branching ratios occurring in the O(6) limit are independent of 

the parameters A, B, and C.  

Within each   grouping itself, the level spacing somewhat resembles that of a 

vibrational model, as described in section A, but with an energy spacing proportional to 

 3  rather than simply to . This will give rise to the energy ratio      5.22/4 11  EE  

rather than 2, as expected in the vibrational picture; also, as   increases even larger energy 

differences will occur between states of different  . Further, the degeneracies of the 

geometrical vibrational phonon model are explicitly eliminated by the J(J + 1) term and 

certain states, e.g., the 0
+
 state of the two- phonon triplet, do not occur. As described earlier 

in subsection l, the state which would correspond to this 0
+
 state is "repelled" by the 

ground state and is raised in energy due to the repulsive pairing force which characterizes 

this limit. Branching ratios and absolute B(E2) values also differ significantly from the 

geometrical prescription.  

The O(6) limit (especially for large N) seems to resemble most closely the          

 -unstable model described by Wilets and Jean [44]. 

In such a geometrical description, as shown in Figure Id, the levels follow a 

)3(   energy dependence. Also, the same levels and level spacings that occur in the     

 -unstable 0n  group are repeated for the higher-lying 0n  groups. In this sense, 

the role of  n  is analogous to that of the different values. 

However, in the O(6) scheme, the level degeneracies are no longer maintained, 

and there are spin cutoffs, and a specific number of different   groupings. It is reasonable 

that the O(6)description may correspond to the  -unstable geometrical model, in analogy 

to the SU(5)-vibrator and SU(3)-symmetric rotor correspondences. As described in section 

A, the Hamiltonian of a  -unstable oscillator is characterized by a potential energy which 

is independent of  , although  -dependent terms are included in the kinetic energy. A 

correspondence exists between the coordinates of the Bohr-Mottelson picture and the 
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operators of the IBM. Arima has suggested the result that the  -unstable potential 

corresponding to the O(6)  limit of the IBM would be of the form: 

 

 

where   is the deformation parameter and c and d are arbitrary constants. This form of 

potential arises from the zero d-boson and two d-boson number changing terms of the O(6) 

Hamiltonian. A  -dependent term in the potential would be of the form  3cos3 ,which 

corresponds to one d-boson number changing terms that are not included in this symmetry 

[86]. Currently, attempts to understand more explicitly the analogy between the 

O(6)symmetry and relevant geometrical models are being pursued. A convenient basis in 

which to describe the O(6)level wave functions is that of the vibrational limit, given by 

nnnJ d 
 , where nnnd  . are, as usual, the number of d-bosons, number of d-boson 

pairs coupled to angular momentum zero, and the number of d-boson triplets coupled to 

angular momentum zero, respectively. Although the wave functions are not pure in this 

basis, they can be described in a simple manner as a linear combination of basis states 

differing in the nd and n quantum numbers. For example, in the vibrational limit, the 

ground state is a pure 0
+
|000> state; in O(6), the ground state, with max   would be 

characterized by the 0
+
 wave function A convenient basis in which to describe the 

O(6)level wave functions is that of the vibrational limit, given by nnnJ d 
 , where 

nnnd  . are, as usual, the number of d-bosons, number of d-boson pairs coupled to angular 

momentum zero, and the number of d-boson triplets coupled to angular momentum zero, 

respectively. Although the wave functions are not pure in this basis, they can be described 

in a simple manner as a linear combination of basis states differing in the nd and n 

quantum numbers. For example, in the vibrational limit, the ground state is a pure 0
+
|000> 

state; in O(6), the ground state, with max   would be characterized by the 0
+
 wave 

function 20/...........420210000 NN  .  

Two types of perturbations may be added to the exact results of the O(6) limit: 

one which does not change the forces of the symmetry, and one which introduces a force 

from outside the limit. The former type can be accomplished, for example, by changing the 

boson energy from the value determined by B. This will alter the amplitudes of the non-

zero components of all wave- functions, but will not add new components. The result will 

be to break the selection rule 0 , but to preserve the 1  E2 selection rule. The 

second type of perturbation can be accomplished, for example, by the introduction of a 

quadrupole-quadrupole interboson force. Since such an interaction contains one d-boson 

changing terms, all wave function components would be non-zero, though perhaps small, 

and the effect would be to break both O(6) E2 selection rules, as well as to alter all E2 

branching ratios. 

 The interferences between these three dynamical symmetries give three transitional 

regions. These  regions are as follows SU(3)SU(5) : This transitional region can be 

treated by breaking SU(3) symmetry  in the direction of SU(5) by adding 

  ^

4

^

44

^

3

^

33

^^^ . TTaTTannH ds    terms. The Hamiltonian of this region can be written 

as:  

 

)902........(..............................42   dcV
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  )912........(.... ^

4

^

44

^

3

^

33

^^

2

^^

1

^^^  TTaTTaQQaLLannH ds  

 

SU(3) O(6) : The nuclei in this transitional region can be treated by breaking SU(3) 

symmetry in the direction of O(6) by adding ^

3

^

33

^^ .,. TTaPP  terms. The Hamiltonian of 

this region can be written as:  

 

)922.......(.............. ^

3

^

33

^^

2

^^

1

^^

0

^  TTaQQaLLaPPaH  

 

O(6) SU(5): The nuclei in this transitional region can be treated by a Hamiltonian 

containing   ^^

ds nn   and ^^

0 .PPa  terms as : 

 

  )932........(.... ^

4

^

44

^

3

^

33

^^

1

^^

0

^^^   TTaTTaLLaPPannH ds  

 

The O(6) limit of the IBM-1 possesses N as a good quantum number together with the 

conventional O(6) quantum numbers  ;  but nd  is not a good quantum number [52]. The 

E0 transition operator possesses the selection rules   = 0;+2;   = 0. Thus, the E0 

matrix elements that connect to the 0
+
 ground-state level   0,0,,  LNN   originate 

in the   N − 2 multiplet, i.e..   0,0,2,  LNN   

 

 

2.3.1.4- The Potential Energy Surface (PES)   
 

 All deformed nuclei have quadrupole moments in their states. The changing in the 

shape which depends on the direction of motion with the symmetric axis is classified  into 

oblate or prolate type. The potential energy surface function V(N, β, γ) depends on the 

shape variables β and γ, where β is the magnitude of nuclear deformation and γ gives the 

turn way from axis symmetry (a symmetry angle), and they are different for different states 

of nucleus. The V(N,β,γ) and their contour lines are very important because the geometrical 

collective properties can make more sensitive test than the phenomenological. 

 

 The potential energy surface can be leads to the knowledge of nuclear deformation 

shape. This deformation shape depends on two parameters (β,γ) for a given total number of 

boson (N) as the following.When the value of deformation parameter (β = 0-2.4) is 

approach to zero, the shape of nuclei will be spherical, and when these values are grater 

than zero the deformation of nuclei is dominant. 

 

 When the value of γ parameter equal to 0
o
 this lead to triplet symmetric from 

prolate type, and when the value of γ equal to 60
o
 the distortion will be triplet symmetric 

from oblate type. The Hamiltonian matrix diagonalized in order to determine the Eigen 

values and eigenvectors. The Hamiltonian (potential) of the numerical values of potential 

at each point of (β,γ) mesh, is unknown (or variation parameter),and used directly and no 

assumptions are made about these function. The most commonly general equation for 

potential energy surface as a function of geometrical variables β and γ  is given by [87]: 
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The variables f1, f2, f3, f4 are related to the parameter cL, NL and uL in Hamiltonian equation 

which can be written in Eq. (2-45). The relationship between the variables  f   parameters 

and these parameters has been expressed [88]: 
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One must take into account that the asymmetry angle accurse only in the term (cos3γ).Thus 

the energy surface has minima only at γ = 0
o
 and γ = 60

o
, the energy in their limits, can 

display the essential dependence β  and γ. 

 

 

 

2.3.2 Interacting Boson Model-2 (IBM-2) 

 
 In the IBM-2 model the neutrons and protons degrees of freedom are taken 

intoaccount explicitly. Thus the Hamiltonian [89,90] can be written as, 

 

 

)962........(........................................   VHHH  

vvvvvv MQQVVddddH     .~   ……………(2-97) 

 

Here   is the d-boson energy,   is the strength of the quadrupole interaction between 

neutron and proton bosons. 

 

 In the IBM-2 model, the quadrupole moment operator is given by: 

       
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where     or  , Q  is the quadrupole deformation parameter for neutrons )(    

and protons )(   . Where the terms V  and V  are the   neutron-neutron and    proton-

proton d-boson interactions only and given by: 
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 The last term M  is the Majorana interaction, which accounts for the symmetry energy and  

shits the states with mixed   proton-neutron symmetry with respect to the totally symmetric 

ones, which affects only the relative location of the states with mixed symmetry with 

respect to the fully symmetric states. Since little experimental information is known about 

such states with mixed symmetry, which has the form: 
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Electromagnetic Transitions and Quadrupole Moments in IBM-2 

 

 The general one-body E2 transition operator in the IBM-2 is 

 

)()()( lTlTlT v  …………………………..………….(2-101) 
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where Q  is in the form of Eq.(2-98). For simplicity, the   has the same value as in the 

Hamiltonian. This is also suggested by the single j-shell microscopy. In general, the E2 

transition results are not sensitive to the choice of e   and e , whether e = e  or not. 

Thus, the reduced electric quadrupole transition rates between fi JJ   states are given 

by: 
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The electric quadrupole moment in IBM-2 is given: 

  
















 JETJ

JJ

JJ
QI 2

0

2

5

16 2
1


 …….(2-104) 

   

 

 In the IBM-2, the M1 transition operator up to the one-body term (l =1) is 
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where  
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~
1 ddL   and 

     111
vLLL   . The g  and g  are the boson                             

g-factors (gyromagnatic factors( in unit n  that depends on the nuclear configuration. 

They should be different for different nuclei. 
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The magnetic dipole moment operator is given by: 
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the reduced magnetic dipole  transition rates between fi JJ   states are given by: 
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The reduced E2 and M1 matrix elements were combined in the calculation of the mixing 

ratio δ(E2/M1) using the relation [91]: 
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 The E0 reduced transition probability is written [92] 

 

)0();0( 24

0

2 EReJEB fi     )1102....(..........  fi JJ  

where  e  is the electron effective charge, R0 = 1.25A
1/3

 fm  is the nuclear radius and ρ(E0) 

is the monopole transition matrix elements. There are only limited cases of  ρ(E0)  that can 

be measured directly. The electric monopole transition operator is 
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The monopole matrix element is given by: 
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The two parameters  β0π ,  β0ν in equation (2-114) must be estimated. In most cases we have 

to determine the intensity ratio of E0 to the competing E2 transition,  X(E0/E2) [92] 
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where Jf =Jf

'
  for Ji = Jf

'
  =0, and Jf

'
 = 2  for  Ji = Jf = 0. The two parameters 0  and 0  in 

Eq. (2-112) may be estimated by fitting the isotope  shift, which is different in the mean 

square radius between neighboring isotopes in their ground state. They are given by Bijker 

et al., [93]: 
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 The isomer shift, which is the difference between the mean square radius  2r  of an 

excited state and the ground state in a given nucleus  [93]:  
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The IBM-2 Basis States 

 

 The calculation of IBM-2 energy eigenvalues and eigenfunctions is usually done 

numerically using the computer code NPBOS [94]. The resulting eigenvectors can then be 

used to calculate transition rates and related properties using the computer code NPBTRN 

[94]. The relationship between the parameters of  Eq. (2-97). 

 

 

 The basis states used in the calculations are products of neutron and proton basis 

states. The latter are U(5) basis states for neutron bosons and proton bosons, as given in 

expression (2.20). 

 

 The complete IBM-2 basis state can be as . 
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 The basis states can be found by choosing states that transform as the 

representations of the chain of algebras that can be derived from the U(6) algebra formed 

by the bilinear pair of boson creation and annihilation operators. In the  IBM-2, the bilinear 

pairs of proton and neutron creation and annihilation operators respectively form the 

algebras )6(U  and )6(U . There are several ways decompose and combine the two 

algebras into a chain of subalgebras and each way will determine the basis. As in the IBM-

1, the requirement for the chain is the inclusion of the )3(SO  algebra as it is related to a 

good total angular momentum quantum number. The algebra )3(SO  is created from the 

sum of generators of the algebras )3(SO  and )3(SO . 

 

As an example, one may take the two chains of algebras for protons and neutron, 

)2()3()5()5()6(  SOSOSOUU   

)2()3()5()5()6(  SOSOSOUU   

These two chains can be combined at any point up except at )2( SO  since the combined 

algebra )3(SO  is needed. One of the possibilities is: 

)3()5()5()6(  SOSOUU    

N  
dn  

 nv ,  L   )3(SO )2(SO  

)3()5()5()6(  SOSOUU   L M 
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N  
dn  

 nv ,     L   

where the quantum numbers are labelled beneath the corresponding algebra. This is the 

basis that is used in the IBM-2 program NPBOS. 

 

 

 Another set of bases can be obtained if one combines the algebras at a different 

point such as: 

 

 

)6(U   

 )2()3()5()5()6(    SOSOSOUU  

)6(U   

  

In general there are three chains that can be combined at )6(U  to give three different 

bases. In these chains, the proton and neutron bosons exhibit a symmetry and this is the 

subject of the following section. 

 

 

 

2.3.2.1 Mixed-Symmetry States 

 

 The low-energy spectrum of even-even nuclei is dominated by simple collective 

excitation modes [95]. These correlations in the nucleon motion are induced by the long-

range quadrupole component of the nuclear force. In spherical nuclei with few valence 

nucleons, surface vibrations evolve which can be described as bosons, so-called phonons. 

In an ideal case the excitation spectrum of a vibrator nucleus is a harmonic oscillator with 

equidistant level spacings  , where phonons can couple to multiphonon states with 

different angular momenta and parities. For large numbers of the valence nucleons an 

elliptically deformed equilibrium state becomes energetically more favorable. Its 

vibrational modes can be divided into vibrations of the deformation parameter              

(  -vibrations) and the form parameter   ( -vibrations).  

 

 

 Multiphonon excitations of atomic nuclei are interesting collective structures of the 

nuclear many-body system. Their existence enables us to judge the capability of the 

corresponding phonon modes to act as building blocks of nuclear structure. Possible 

deviations from harmonic phonon coupling occur due to the microscopic structure of the 

underlying phonon modes and serve as a sensitive source of  information on the formation 

of collectivity in the nuclear many-body system. The proton-neutron interaction in the 

nuclear valence shell has been known for a long time as the driving force for the evolution 

of the low-energy nuclear structure. This has been discussed in many ways, e.g. in terms of 

the evolution of collectivity in heavy nuclei as a function of the product of valence proton 

and neutron numbers  NN  [96]. More recently Otsuka et al. have identified the proton-

neutron interaction as being responsible for the evolution of shell structure [97]. Therefore, 

it is interesting to study those nuclear excitations that are most sensitive to the proton-

neutron interaction in the valence shell. One class of states are collective isovector valence 
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shell excitations that are frequently called mixed-symmetry states (MSSs) in the 

terminology of the interacting boson model. 

 

 The first observation of a nuclear MSS was made in electron scattering experiments 

[98] on the deformed nucleus 
156

Gd. A strong M1 excitation to a 1
+
  state close to 3 MeV 

excitation energy, the scissors mode, was observed. The scissors mode has subsequently 

been studied mainly in electron and photon scattering experiments on deformed nuclei. 

Data are available for many nuclei in the rareearth mass region and interpretations of the 

systematic of the centroid and the total strength as a function of deformation have been put 

forward [99]. 

 

 

F-spin 

 The F-spin formalism is analogous to the isospin formalism of nucleons. Proton 

bosons and neutron bosons have 2/1F  and the z-projection is 2/1zF  for protons 

and 2/1zF  for neutrons. For a system of  Nπ proton bosons and Nν neutron bosons, the 

maximum F-spin is F = Fmax = (Nπ + Nν )/2 and 
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In the F-spin space, one can also define the creation and annihilation operators F+  and F− 

by 
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The projection operator Fz  is given by 
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A state composed by Nπ proton bosons and Nν neutron bosons with F-spin quantum 

number F = Fmax can be transformed by the successive action of the F-spin raising operator 

F+  into a state that consists of proton bosons only. This state has still a total F-spin 

quantum number F = Fmax since the raising operator does not change the total F-spin 

quantum number. This new state has only proton bosons and obviously stays unchanged 

under a pair wise exchange of proton  and neutron labels. Therefore,   IBM-2 states with      

F = Fmax are called Full Symmetry States (FSSs). These states corresponds actually to the 

IBM-1 states which are all symmetric. All others states with F-spin quantum numbers        

F < Fmax contain pairs (at least one) of proton and neutron bosons that are anti-symmetric 

under a pairwise exchange of protons and neutrons labels. They are called                   

Mixed-Symmetry States (MSSs). 

 

 A comprehensive review of the F-spin symmetry of the IBM-2 has been given by 

Van Isacker et al. [100]. One important result of the F-spin formalism is given by the 

proton-neutron contribution to the matrix elements of any one-body operator between 

FSSs: 
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c  is independent of  ρ. This 

major result tells us that there are no M1 transition between FSSs. 

 

 Both operators E2 and M1 can be divided into F-scalar (denoted by s) and F-vector 

(denoted by v) parts 
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 From the previous discussion concerning the E2 and M1 decays of full symmetric 

states and the mixed-symmetry states (here discussed in near vibrational nuclei), we expect 

following signatures for mixed-symmetry one-phonon and two phonon excitations for 

vibrational and transitional nuclei: 

 

First: The one-quadrupole-phonon 

MS,12 , state is the lowest-lying MSS in vibrational    

           nuclei. 

Second: The 

MS,12  state decays to the 

12  state by a strong M1 transition   

                2

1,1 12)1(2 NMS MT     

Third: A weakly collective E2 transition strength of a few 22be  for the   1,1 02 MS      

             transition. 

 

 In the IBM-1, geometrical shapes can be assigned to the algebras of the three 

possible chains, which correspond directly to the description of nuclear shapes by Bohr and 

Mottelson's shape variables [32,101]. In the IBM-2, the mixed-symmetry states correspond 

to a quadrupole vibration where the protons and neutrons oscillate out of phase. For 

deformed nuclei, the protons and neutrons oscillate with respect to one another as the 

nucleus as a whole rotates. Because of this type of motion, the mixed-symmetry states for 

deformed nuclei are also known as the scissors mode. 

 

 Mixed-symmetry states can be identified by their unique signature, namely a 

collective M1 decay to a fully-symmetric state. M1 transitions are forbidden between fully-

symmetric states and between mixed-symmetry states in the F-spin basis. 
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 CHAPTER THREE 

RESULTS AND DISCUSSION 

 

3-1 IBM-1 Results 

3-1-1 Energy Spectra 
 Even-even Ba isotopes with Z = 54 and 64 ≤ N ≤ 94 have a collective 

quadrupole excitation strongly dependant on the number of nucleons outside the 

closed shells 50 and 82, and the neutron- proton interaction is known to have a great 

influence on nuclear properties. These isotopes are part of an interesting region 

including Te, Xe and Ce isotopes, which has and is likely to attract many theoretical 

works    [9, 102, 103, 104]. 

 

 The energy of the positive states of barium series of isotopes are calculated 

using computer code PHINT [82]. A comparison between the experimental spectra 

[105] and our calculations, using values of the model parameters given in Table (3-1) 

for the ground state band are illustrated in Figs. (3-1) to (3-14). The agreement 

between the calculated levels energy and their correspondence experimental values 

for all isotopes are slightly higher especially for the higher excited states. We believe 

this is due to the change of the projection of the angular momentum which is due 

mainly to band crossing. 

 

 The Table (3-1) contain the IBM-1 Hamiltonians’ parameters (in MeV units) 

used in the present study to calculate the energies of the positive parity low-lying 

levels of        
120-148

Ba isotopes. Number of bosons ( ) NNN   changes from 10 

for 
120

Ba and 11 for 
122

Ba to 4 for 
140

Ba and finally varies from 5 to 9 for 
144-148

Ba. 

The Hamiltonian parameter values of IBM-1 were estimated by fitting to the 

experimental energy levels and it was made by allowing one parameter to vary while 

keeping the others constant. This procedure was carried out iteratively until an overall 

fit was achieved. 

 

 

 
Table (3-1): Parameters used in IBM-1 Hamiltonian for  

120-148
Ba nuclei (all in MeV)  

HEX OCT CHQ QQ ELL EPS N Isotopes 
-0.0072 -0.0011 -0.2900 -0.00220 0.0280 0.531 10 120Ba 
-0.0072 -0.0011 -0.3100 -0.00260 0.0300 0.524 11 122Ba 
-0.0072 -0.0011 -0.5000 -0.00390 0.0097 0.515 10 124Ba 
-0.0072 -0.0011 -0.5420 -0.00760 0.0082 0.495 9 126Ba 
-0.0072 -0.0011 -0.5970 -0.00795 0.0083 0.493 8 128Ba 
-0.0072 -0.0011 -0.6010 -0.00530 0.0083 0.542 7 130Ba 
-0.0072 -0.0032 -0.6010 -0.05700 -0.0790 0.895 6 132Ba 
-0.0072 -0.0033 -0.6010 -0.05500 -0.0800 0.993 5 134Ba 
-0.0072 -0.0027 -0.6010 -0.05500 0.0200 0.900 4 136Ba 
-0.0072 -0.0027 -0.6010 -0.05300 0.0220 0.892 4 140Ba 
-0.0072 -0.0028 -0.6010 -0.05400 0.0210 0.823 5 142Ba 
-0.0072 -0.0028 -0.6010 -0.05400 0.0220 0.801 6 144Ba 
-0.0072 -0.0029 -0.6010 -0.05500 0.0220 0.711 7 146Ba 
-0.0072 -0.0029 -0.6010 -0.05500 0.0220 0.696 8 148Ba 
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 The comparisons between calculated and experimental values of energy levels 

for each Ba  isotopes [105] are shown in Figs. (3-1) to (3-14), respectively. In general, 

the agreement is good, especially for the ground-state band levels and gamma band 

levels. However, there exist some discrepancies. The main reason is that the mix of 

many bands is not considered. 

 

  In figures we see the increased smoothly of the  )2( 1

E  energy of 
120-140

Ba 

isotopes with neutron number, while the isotopes 
142-148

Ba decrease rapidly with 

increasing the neutron number (N = 86 to N = 92). 

 

 The behavior of the ratio of the energies of the )2(/)4( 11

 EER  states is a 

good criterion for the shape transition (see Table (3-2)). The energy ratio decreases 

smoothly with increasing the N for 
120-140

Ba isotopes. for all 
120-140

Ba isotopes and it 

means that these structure seems to be verifying gamma soft rotor to vibrator nuclei                

(O(6) to SU(5)). The energy spectrum of the 
126-136

Ba isotopes lie between vibrator 

and rotational limit. The general features of  the transition between U(5) in 
140

Ba 

isotope near the beginning of the closed shell and SU(3) in 
148

Ba isotope with 

moderate deformation are well reproduced by the IBM-1. In Table (3-2), we have 

introduced the experimental and theoretical values of the ratios )2(/)4( 11

 EE , 

)2(/)6( 11

 EE , )2(/)2( 12

 EE , )4(/)0( 12

 EE  and )2(/)0( 12

 EE   together with the 

values of IBM limits. 

 

 From Table (3-2) and Figs. (3-1) to (3-14), we see the phase transition of 

shape in light 
120-140

Ba isotopes (with )82N  with increasing neutron number N is of 

current interest. The   triplet phonon states   21 2,4iJ  and 

20  and a quintuplet of 

states (only 3 states shown). Near mid shell at  
122

Ba,  the state   14iJ  lies pretty 

low, signifying the prolate deformation in 
122-126

Ba.  Also the state   20iJ  rises high, 

which is akin to O(6) pattern. 

 

 In the quintuplet, the state   13iJ  touches   24iJ  at 
128

Ba, and then 

separates on either side. So one says that 
128

Ba is O(6) on account of the degenerate 
  13iJ  and   24iJ . Like the triplet phonon states, in the quintuplet also there is 

bunching of states near  N=72 ( 
128

Ba isotope). 

 

 At higher  neutron number ( N= 72 and N = 74) the state    22iJ   descends 

below the state   14iJ , but this property is reflected in 
136-148

Ba isotopes the state  
  14iJ descends below   22iJ . 

 

 The energy of the   12iJ  at fast rate compared to the energy of   22iJ , 

which is even increasing at 
128

Ba isotope ( N = 72)  to 
134

Ba isotope (N = 78). The 

pattern of spectrum here indicates a continuous phase transition from near SU(3) 

(rotational limit)  to       -soft rotor. Here we focus on )4()2( 12

  EE , respective 

measures of deformation,  -triaxiality and prolate oblate potential energy difference 

( )POV . All the three important indicators of level structure are reproduced in our 

calculation. 
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 The energy ratio )2(/)4( 11

 EE  is falling (see Table (3-2)) with increasing 

neutron number and )2(/)2( 12

 EE  ratio is falling from about 4.284 for 
120

Ba isotope 

to 3.835 for 
140

Ba isotope corresponding to the increase of triaxiality parameter 0  

from 20
0
 to 30

0
 [107], and this ratio increased from 3.835 for  

142
Ba isotope to 6.858 

for 
148

Ba isotope. 

 

 From the energy ratio )2(/)4( 11

 EE  shows a nuclear structure is spherical 

(near harmonic vibrator), 
122

Ba being a transitional nucleus (O(6) limit)). As it is seen 

from the calculated and experimental energy values for 
122

Ba isotope are very close to 

X(5) predictions. Around N = 66, the positions of the excited 0
+
 states are also close 

to the X(5) prediction and we note that the spacings in the excited sequence follow the 

expected behavior. It is regarded as a transitional nucleus, since it exhibits both the 

features of vibrational nuclei, like a two phonon triplet at approximately twice the 

excitation energy of  

12  as well as the features of rotational nuclei, like an intrinsic 

quadrupole moment and an enhanced B(E2) value of the 

12   state. For X(5) critical 

point symmetry these signatures are listed below [108]: 

 

1- The energy ratio )2(/)4( 11

 EE should be approximately 2.91. 

2- The position of the first excited collective 

20  state is approximately 5.67 times the  

    energy of the 

12 . 

 

 The most basic structural signature of the E(5) symmetry is a value of the ratio 

)2(/)4( 11

 EE = 2.20. This value is intermediate between the values for spherical 

nuclei (2.00) and gamma-soft rotor (2.50). However there are large number of nuclei 

in the mass region A~130 having the value for this ratio in the desired range. Thus, an 

interpretation based only on the R4/2 can be ambiguous and additional signatures need 

to be considered. Often, the decay properties of the lowest excited 0
+
 states are used 

as an additional signature of the E(5) structure. In the case of  
134

Ba isotope  the R4/2 

value is 2.316 for experimental data and 2.321 for IBM-1 results (see table (3-2)) 

therefore this isotope lies very close to the ideal value for the E(5) symmetry 

indicating that it lies more towards the SU(5) side.  

 

 It has been observed that the positioning of the 0
+
 states plays a crucial role in 

determining the behavior of the nucleus near the critical symmetry. This can be seen 

from the Fig. (3-8). This figure show the changes in positioning of the levels as the 

neutron number changes for 
134

Ba isotope respectively. It is clear from the figure that 

the variation of the levels other than the 

20  level is smooth, where as there are abrupt 

changes in the positioning of these two levels. 

 

 Our data and our analysis have emphasized the significance of the ordering of 

the excited  

30  and 

20  configurations for assigning the structure of a nucleus near the 

E(5) critical point. Therefore, it is interesting to examine the behavior of the 

observable )2(/)]0()0([ 1320

   EE . It takes the values -1 (harmonic vibrator),     

-0.880 (E(5)), 0 at the crossing point of the  


2,30  configurations and becomes positive 

towards the O(6) limit. Along the chain of  
134

Ba  isotope we consider the 
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experimental energies of the first and the second excited 0+ states with dominant 

30  or 



20 assignment. 

 

 In general, the ground bands are fitted very well, The fitting in the gamma 

bands are slightly worse but are still better than those for the beta bands. The fitting in 

beta bands are not so good as those in the ground bands and gamma bands. Also it is 

in the beta bands that IBM-1 show the most distinct improvements become smaller as 

we go to lighter isotopes. This suggest that the interactions between unlike bosons are 

relatively more important in system which are closer to the closed shells. 

 

 

 The light 
120-126

Ba isotopes are known to belong to a transitional region 

between spherical and axially deformed nuclei, as shown in Tale (3-2), where the 

ratios )2(/)4( 11

 EE  for N = 62–70 isotones are reported. 

 

 The 
122

 Ba isotope was proposed by Fransen et al. [109] as a rather good X(5) 

candidate on the basis of the agreement observed between experimental and 

theoretical level energies. In 
122

Ba  isotope the ratio 2/4R  attains the near X(5) value 

of  2.90 [110], and decreases sharply to the O(6) limit value of 2.5 up to N = 74 in 
130

Ba, indicating a shape change from the β-soft deformed to the γ-soft or O(6) with 

increasing N. 
132

Ba isotope lies near the O(6) limit towards U(5). The 
134

Ba isotope 

lies close to the E(5) symmetry (the value of the energy ration 2/4R 1.2 ). 

 

 Here we focus on the energy ratios R4/2, Rγ  )2(/2( 12

 EER  and ΔE = 

[E(22) − E(41)], the respective measures of the deformation, the γ-triaxiality and the 

energy difference ΔE related to the prolate-oblate potential energy difference VPO in 

the potential energy  surface (PES) for the intrinsic structure of the nuclei calculated 

in the microscopic theory [32]. All the three important indicators of the level structure 

formation are well reproduced in our IBM calculation. The ratio R4/2 varies with N as 

in experiment. The ratio Rγ, which determines the triaxiality or the degree of γ-

softness, is also well reproduced. The movement of 

22  below 

14  at 
130

Ba is 

reproduced. Finally, the variation of the energy difference ΔE = [E(22) − E(41)] is 

well given in our calculation, including its sign change at 
130

Ba isotope (see table      

(3-3)). This difference ΔE decreases with increasing N and changes sign at 
130

Ba 

isotope. The variation in VPO corresponds to the variation in ΔE, as suggested in ref. 

[111]. 

 The variation of their energies with neutrons number is interesting and is at 

variance with ground-band energies and with the 

22  band energies. The state 

20   

falls up to N = 72 and then rises up to N = 78. The state 

30  varies in a different way. 

The value for N = 74  
130

Ba isotope is not yet known, but is likely to be the minimum. 

In the physical view, it implies the shape transition at N = 74 and N = 74. 

 

 A characteristic feature of the γ-unstable limit of the IBM-1 is a bunching of   

γ-band states according to 2
+
, (3

+
, 4

+
), (5

+
, 6

+
),. . . , that is, 3

+
 and 4

+
 are close in 

energy, etc. This even–odd staggering is observed in certain SO(6) nuclei but not in 

all and in some it is, in fact, replaced by the opposite bunching (2+, 3+), (4+, 5+),. . .  

which is typical of a rigid triaxial rotor [112]. From these qualitative observations it is  
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clear that the even–odd γ-band staggering is governed by the γ-degree of freedom 

(i.e., triaxiality) as it changes character in the transition from a γ-soft vibrator to a 

rigid triaxial rotor. 

 

 The root mean square deviation (RMSD) [113]: 

 

  )13......(....................
1

2/1

2

.exp. 







  EE

N
RMSD cal  

 

 

(where N is the number of energy levels ) 

is used to compare the experimental and theoretical energy levels. Tale (3-4)  given 

the RMSD  between experimental and theoretical energy levels.  In  this table we see 

the ground state levels the best agreement was found in 
126

Ba  isotope  where the 

smallest value of  RMSD  is equal 0.0031 and equal 0.011 for gamma band in 
124

Ba  

isotope. However RMSD  = 0.012 for beta band in 
148

Ba isotope. 

 

 

 
Table (3-4) : The root mean square deviations (RMSD )  between experimental and   

                     calculated  energy levels for Ba  isotopes. 

 

 

Isotopes 

root mean square deviations (RMSD ) 

 ground state band  band  band 

IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM IBM-1 IBM-2 DDM 

120Ba 0.0041 0.0040 - 0.062 0.055 - 0.016 0.015 - 

122Ba 0.0046 0.0044 0.0450 0.063 0.052 0.0480 0.033 0.027 0.104 

124Ba 0.0040 0.0047 0.0114 0.058 0.0034 0.0405 0.011 0.010 0.152 

126Ba 0.0031 0.0033 0.0161 0.055 0.023 0.1234 0.014 0.013 0.019 

128Ba 0.0046 0.0042 0.0519 0.046 0.0023 0.123 0.022 0.021 0.0581 

130Ba 0.033 0.0039 0.0191 0.047 0.0033 0.125 0.013 0.012 0.0.31 

132Ba 0.036 0.0036 0.0319 0.043 0.0045 0.104 0.020 0.019 0.054 

134Ba 0.032 0.0038 0.1268 0.052 0.0047 0.1452 0.023 0.022 0.0325 

136Ba 0.031 0.0030 0.0227 0.051 0.0024 0.1287 0.026 0.021 0.191 

140Ba 0.030 0.040 - 0.048 0.0034 - 0.028 0.025 - 

142Ba 0.034 0.051 - 0.046 0.0057 - 0.034 0.029 - 

144Ba 0.035 0.0056 - 0.016 0.024 - 0.023 0.024 - 

146Ba 0.0042 0.0039 - 0.018 0.056 - 0.017 0.018 - 

148Ba 0.0048 0.0023 - 0.012 0.011 - 0.019 0.017 - 
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 Fig. (3.1): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
120

Ba . 
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 Fig. (3.2): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
122

Ba . 
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 Fig. (3.3): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
124

Ba . 
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 Fig. (3.4): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
126

Ba . 
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Fig. (3.5): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
128

Ba . 
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 Fig. (3.6): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
130

Ba . 
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 Fig. (3.7): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
132

Ba . 
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Fig. (3.8): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
134

Ba . 

 

Ba134

Exp. IBM 1 IBM 2 DDM
0

2

2

4

3

0

4
2
24
04
6
5
6

1
1

2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
n
er

g
y

M
ev



 40 

 

 

 

 

 
Fig. (3.9): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
136

Ba . 
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Fig. (3.10): Comparison between experimental data [105,114], IBM-1, IBM-2 and   

                             DDM calculated energy levels for 
140

Ba . 
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Fig. (3.11): Comparison between experimental data [105,114], IBM-1 and IBM-2                         

                   calculated energy levels for 
142

Ba . 
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Fig. (3.12): Comparison between experimental data [105,114], IBM-1 and IBM-2                         

                   calculated energy levels for 
144

Ba . 
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Fig. (3.13): Comparison between experimental data [105,114], IBM-1 and IBM-2                         

                   calculated energy levels for 
146

Ba . 
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Fig. (3.14): Comparison between experimental data [105,114], IBM-1 and IBM-2                         

                   calculated energy levels for 
148

Ba . 

 

 

3-1-2 Potential Energy Surface 
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 The potential energy surfaces, for barium isotopes as a function of the 

deformation parameters   and   have been calculated using the Eq. (2-94). The 

calculated difference between prolate and oblate  potential energy surfaces for Ba 

series of isotopes presented in Table (3-3),  show that IBM-1calculated the values of 

the PES for 
122-134

Ba isotopes and obtained the VPO (is the energy difference of the 

prolate and oblate minima in the potential energy curve ) values of  
120-140

Ba isotopes 

(see table (3-3)), which correspond to the PES. A flat PES at βmin for 
122

Ba isotope. 

The finite VPO for 
122

Ba isotope accounts for the dynamics of the nuclear structure. 

The important  requirement of the valid critical symmetries is that they represent the 

shape transition point in the shape variation with N or Z. In the physical view, it 

implies the shape transition at 
128

Ba isotope to 
130

Ba isotope  in the (β, γ) variables. 

 

 In general, we obtain deeper prolate minima and shallower secondary oblate 

minima in all cases, both decreasing in depth with increasing neutron number. At  
122

Ba, the prolate minimum is 3.14 MeV deep and the oblate minimum is 0.7 MeV 

deep and lies at lesser β value (< βmin). The same feature continues with increasing N. 

At 
132

Ba isotope ( N = 76) we get a very shallow prolate minimum and at N = 78  
134

Ba isotope a very shallow oblate minimum. 

 

 The difference in the depth of prolate and oblate minima, VPO, is decreasing 

with increasing  neutron number  in our calculation. We obtain the prolate shape for 

the light Ba isotopes as in experimental data. At in 
134-140

Ba isotopes N = 78, 80 and 

84 VPO  is negative but we obtain almost vanishing prolate and oblate minima, or the 

predicted shape is not a permanently deformed one. In fact the predicted potential 

well at  N = 76, 78 corresponds to the spherical shape anharmonic oscillator with flat 

bottom. The VPO values obtained in Table (3-3)  are rather small and its sign varies 

irregularly.  

  
 

 

 

3-1-3 Electric Transition Probability B(E2) 
 

 The E2 transitions provide more stringent test of the IBM-1. The general E2 

transition operator is given by the Eq. (2-6). The coefficient 2  called the boson 

effective charge is an over all scaling factor for all B(E2) values which is determined 

from the fit to the )02;2( 11

 EB  value. The coefficient 2  may be determined 

from the quadrupole moment Q( )21

 . The ratio 22 /  = χ = -1.32 in the SU(3) limit 

and is reduced to zero in the O(6) limit. In the “FBEM” program [82] the 

corresponding parameters are  )2(2 SDE  and )2()5/1(2 DDE . The used 

parameters in T(E2) matrix element of  
120-148

Ba  isotopes are given in Table (3-5).  

 

 

 

 
 

 

Table (3-5): The effective boson charges used in IBM-1 for the calculation of B(E2) 

transition probabilities for  
120-148

Ba isotopes. 
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E2DD (e.b) E2SD (e.b) Isotopes 
-0.861 0.112 120Ba 
-0.878 0.104 122Ba 
-0.890 0.105 124Ba 
-0.661 0.110 126Ba 
-0.560 0.110 128Ba 
-0.890 0.125 130Ba 
-0.890 0.143 132Ba 
-0.890 0.145 134Ba 
-0.890 0.130 136Ba 
-0.890 0.132 140Ba 
-0.890 0.133 142Ba 
-0.890 0.135 144Ba 
-0.890 0.137 146Ba 
-0.890 0.138 148Ba 

 

 The reduced transition probability )02;2( 11

 EB  decreases gradually with 

increasing neutron number (N), which is well reproduced in IBM-1 (see Table (3-6)). 

The   coefficient of the   )2(
dd   term in reduced matrix element T(E2) is kept at 

−1.215. 

 

 In Table (3-6) the  experimental absolute reduced transition probability  B(E2) 

values for the transitions from gamma band to ground state band )( g  are few 

available. So we compare the IBM-1 values with the experimental data in Table (3-6). 

)02;2( 12

 EB decreases with increasing neutron number (N) as expected for 

decreasing β (and increasing γ).  

 

 In Table (3-6) which shows that the electric transition probability for  

g and  g  are smaller than the electric transition probabilities between 

gg  band, and in this table shows also that, in general, there is a  good  agreement 

between the experimental and theoretical  B(E2)  values in ground state band in        
120-148

Ba isotopes. The )46;2( 11

 EB  in 
120-148

Ba isotopes, where the experimental 

and  IBM-1  results of this transitions are weak in agreement. The experimental and 

IBM-1  B(E2) calculations between beta and ground band and between gamma band 

in general are weakly in agreement except the transition   12 02  in some Ba  

isotopes and   13 02  also in some Ba isotopes which gave a good agreement. 

 

 For the transitions )23;2( 11

 EB  and )23;2( 12

 EB  seem to get weaker 

with increasing neutron number, because this transitions between different bands. The 

values of  the transition  )20;2( 12

 EB is very small but the maximum value at 
142

Ba isotope. The B(E2) values of  Ba isotopes as well as those in ref. [121] decrease 

smoothly as neutron number  approaches N = 80 
136

Ba isotope, as can be seen in the 

Table (3-6). 
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Continued to Table (3-6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Continued to Table (3-6)   

Isotopes )22;2( 12

 EB  )23;2( 21

 EB  
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 Exp. IBM-1 IBM-2 DDM Exp. IBM-1 IBM-2 DDM 

Ba120 - 0.067 0.072 - - 0.065 0.0700 0.0267 

Ba122 - 0.057 0.063 0.086 - 0.044 0.0540 0.0347 

Ba124 - 0.158 0.166 0.117 - 0.0121 0.1270 0.0321 

Ba126 0.13 (5) 0.141 0.136 0.146 - 0.073 0.0681 0.0265 

Ba128 0.28(4) 0.310 0.264 0.248 - 0.028 0.025 0.017 

Ba130 0.195 0.184 0.200 0.331 - 0.021 0.023 0.0059 

Ba132 0.141(41) 0.158 0.158 0.251 - 0.026 0.029 0.0023 

Ba134 0.015 0.020 0.023 0.187 0.018(5) 0.022 0.0021 0.0017 

Ba136 0022.0 0.0031 0.042 0.164 - 0.019 0.021 0.00134 

Ba140 0.13 (5) 0.015 0.161 0.181 - 0.017 0.0188 0.0012 

Ba142 - 0.110 0.143 - - 0.015 0.0169 - 

Ba144 - 0.091 0.095 - - 0.012 0.0145 - 

Ba146 - 0.088 0.075 - - 0.098 0.085 - 

Ba148 - 0.0751 0.064 - - 0.087 0.073 - 

Experimental data are taken from refs. [105, 115, 116, 117, 118, 119, 120] 

 

 

 In the initial two-body Hamiltonian the E2 transition rates depend strongly on 

the value of χ parameter in the quadrupole operator. It is expected that this is still the 

case when cubic terms are added to the Hamiltonian as long as these do not 

substantially alter its eigen-states. In several of the Ba isotopes many B(E2) values 

between the low-lying states are known and these allow a test of the wave function in 

the calculation. The results are shown in Table (3-6). Generally a good agreement 

between experimental and calculated B(E2) values is obtained. One notable 

discrepancy is the )02;2( 12

 EB transition in 
132

Ba isotope with a calculated B(E2) 

value which is an order of magnitude too small. This value is equally small in the 

IBM-1 calculation without cubic interaction and is due to an accidental cancellation of 

terms with the Hamiltonian.  

 

 

 Calculation of the electromagnetic transition matrix elements, the high 

sensitivity of the results on the signs of the matrix elements of the transitions had to 

be addressed. The B(E2) branching ratios for Ba  isotopes,  we use the Alaga rule was 

utilized to evaluate the branching ratio. Using it in its square rooted version [25]: 
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it can be used to deduce the relative signs of inter-band transitions from a state Ji,Ki 

into different states  

fKfJ ,  and  
'' ,Kf

J  of the same band with 'ff KK   . In Eq. (3-2), 

the coefficients in angle brackets on the right-hand side denote Clebsch-Gordan 

coefficients. The ground state transition matrix elements of each state have been 
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chosen to be positive, the relative signs of the other decay matrix elements have been 

deduced from (3-2). 

 

 Table (3-7)  given the B(E2) branching ratios for 
120-148

Ba isotopes In the 

IBM-1 calculation, this variation is reproduced fairly well. The branching ratios  

)22;2(/)02,2( 1212

  EBEB ,  )23;2(/)23,2( 2111

  EBEB and 

)43;2(/)23,2( 1111

  EBEB  falling with increasing neutron number are also 

reproduced in IBM-1. The )24;2(/)24,2( 2212

  EBEB  increased ratio  

increases with increasing neutron number in experimental data  as in our calculation 

in IBM-1. While  )24;2(/)44,2( 2212

  EBEB ,  values decrease with increasing 

N, also )20;2(/)20,2( 2212

  EBEB  and  )22;2(/)22,2( 1323

  EBEB  

decreased with increasing neutron number, because the transitions  between different 

bands.  

 

 The interband B(E2) branching ratios provide valuable information on band 

mixings and the nature of the bands. In light Ba isotopes, even at mid shell 
122

Ba the 

experimental B(E2) ratio is = 0.2, way off the experimental value of 

)43;2(/)23,2( 1111

  EBEB . At 
128

Ba ( N = 72) it falls to 0.1 and at 
130

Ba 

isotope  (N = 74) to 0.05 (Table (3-7).  In general up to  N = 70, the IBM-1 values 

agree with experiment, but for N >70, IBM-1 values decrease much more than 

experiment. 

 

 

 

 The IBM-1 values for 
130–138

Ba  isotopes are better but the slight variation with 

neutron number is opposite to the experimental trend. 

 

 The calculated absolute magnitude of quadrupole moment )2( 1

Q decreases 

smoothly with increasing neutron number N (see Table (3-4)). The same trend was 

predicted in experimental data. The negative sign signifies prolate shape in 
120–140

Ba 

isotopes. 
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continued to Table (3-7) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-1-4 Magnetic Transition Probability B(M1) and Mixing Ratio )1/2( ME  
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 To evaluate  the magnetic transition probability B(M1), we depend on         

Eq. (2-53), where the effective boson g-factor is estimated using the fact g = Z/A is. 

The form (2-53) of the operator has no off-diagonal matrix elements, implying that in 

this approximation Ml transitions are forbidden [78, 79, 81]. Some of the transition 

probabilities obtained from perturbation theory are further discussed in refs. [78, 79]. 

 

 

 The results shows that the transitions between  low-lying collective states are 

weak. This is because of the increase of antisymmetric component in the wave 

functions. The magnitude of M1 values increase with increasing spin for g   and 

    transitions, see Table (3-8). 

 

 The E2/M1 multiple mixing ratios for 
120-148

Ba isotopes, δ(E2/M1), were 

calculated for some selected transitions between states of ΔJ = 0. The sign of the 

mixing ratio must be chosen according to the sign of the reduced matrix elements. 

The equations used are (2-7) for M1 transitions and (2-109) for the mixing ratios. The 

results are listed in Table (3-9). The agreement with available experimental data     

[105, 124, 126, 127] is more than good especially in the sign of the mixing ratio. 

However, there is a large disagreement in the mixing ratios of 3
+
→ 2

+
 , due to the 

small value of M1 matrix elements. 

 

 

 The IBM-1 formalism predicts essentially the same spin dependence for M1 

transitions in 
120-148

Ba isotopes as does a geometrical approach, and is thus capable of 

giving at least an equally good description of the data. In addition, the IBM-1 model 

yields the simple prediction that )1/2( ME  values of     and g  transitions 

should be equal for the same initial and final spins, and this prediction seems to be 

borne out empirically. It has been shown that different signs for g   and g  

)1/2( ME  values can be reproduced by the IBM-1 model.   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table (3-8) 



 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

 

 

 

 

Table (3-9) 
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3-2 IBM-2 Results 

3-2-1 Energy Spectra 

 
 In the phenomenological calculations the parameters appearing in the 

Hamiltonian ((Eq.(2-97)) may in general depend both on proton ( N )  and neutron 

( N ) boson number. Guided by the microscopic theory as "discussed in the Chapter 

Two  we have assumed that only    and ,  depend on N  and N  i.e.,  ),(  NN , 

),(  NN while  depends only on N  and   on N , i.e., )(  N , )(  N . 

Thus a set of isotopes, (constant N ) have the same value of  , while a set of 

isotones, ( constant N ), have the same value of   . This parametrization allows 

one to correlate a large number of experimental data. Similarly, when a proton-proton 

V  and neutron-neutron V ,  interaction is added, the coefficients LC  are taken as 

)(  NCL  and )(  NCL , i.e. the proton boson interaction will only depend on N , 

and the neutron boson on N . Since there is no information on the location of the 

states with mixed neutron-proton symmetry we kept the coefficients appearing in the 

Majorana force M  (see table (3-10)). 

 

 The isotopes chosen in this work are A =120 to 148 due to the presents of 

experimental data for the energy levels. We have 3N  (6 protons outside the 

closed shell 50), and N  varies from 11 for 
122

Ba to 4 for  
140

Ba and increased from,   

5 for 
142

Ba to 8 for 
148

Ba measured from the closed shell at 82. While the parameters 

 , ,   , LC  , 2C  and 4C as well as the Majorana parameters ,k with k =1,2,3, 

were treated as free parameters and their values were estimated by fitting with the 

available experimental values. The procedure was made by selecting the traditional 

value of the parameters and allowing one parameter to vary while keeping the others 

constant until the best fit with the experimental obtained. The parameters in the work 

of  Subber [21,23] and the parameters of  Turkan [19] have been used as starting 

parameters, with slight modification to fit the experimental data. This was carried out 

until one overall fit was obtained. The best  values for the Hamiltonian parameters are 

given in Table  (3-10). 

 

 The calculated energy levels are obtained by diagonalizing the Hamiltonian in 

Eq. (2-97) using the NPBOS code [94] that contains many free parameters; one has to 

estimate them to obtain better agreement with the experimental data. The parameter 

  always has negative sign, and it represents the quadrupole interaction strengths  

and also depends on the d-boson numbers. The parameter   has positive values for 
120-136

Ba isotopes and negative sign for 
140-148

Ba isotopes  and the parameter   has a 

negative values for all Ba isotopes, the both parameters    have an influence on the 

excitation energy and an important one on electromagnetic properties, so they are 

adjusted to reproduce the experimental data for transition probability. 
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Table (3-10): Parameters used in IBM-2 Hamiltonian for  
120-148

Ba nuclei (all in MeV 

except  and   are dimensionless )  

4C 2C 0C 4C 2C 31  

 

2     Isotopes 

0.0 0.0 0.0 0.0 0.0 1.22 0.121 -1.20 0.80 -0.181 0.631 120Ba 
0.0 0.0 0.0 0.0 0.0 1.27 0.127 -1.20 0.80 -0.193 0.622 122Ba 
0.0 0.0 0.0 0.0 0.0 1.35 0.135 -1.20 0.81 -0.121 0.611 124Ba 
0.0 0.0 0.0 0.0 0.0 1.92 0.182 -1.20 0.78 -0.121 0.603 126Ba 
0.0 0.0 0.0 0.0 0.0 2.28 0.190 -1.20 0.62 –0.088 0.602 128Ba 
0.0 0.0 0.0 0.0 0.0 2.46 0.210 -1.20 0.55 –0.088 0.618 130Ba 
0.0 0.0 0.0 0.0 -0.01 2.78 0.236 -1.20 0.54 –0.092 0.688 132Ba 
0.0 0.0 0.0 -0.03 -0.03 2.88 0.241 -1.20 0.53 –0.092 0.810 134Ba 
0.0 0.0 0.0 -0035 -0035 3.11 0.252 -1.20 0.52 -0.088 0.828 136Ba 

−0.40 0.20 0.20 −0.04 −0.06 0.321 0.260 -0.11 -0.18 -0.311 0.770 140Ba 
−0.30 0.20 −0.10 −0.04 −0.11 0.510 −0.041 -0.29 -0.40 -0.300 0.650 142Ba 
−0.50 0.20 −0.10 −0.04 −0.11 0.510 −0.061 -0.32 -0.40 -0.300 0.341 144Ba 
−0.55 0.20 −0.10 −0.03 −0.16 0.222 −0.191 -0.34 -0.58 -0.280 0.205 146Ba 
−0.10 0.20 −0.10 −0.01 −0.26 0.222 −0.042 -0.39 -0.68 -0.220 0.252 148Ba 

MeVC 0.00  

 

 The parameters LC  are varying from isotope to another smoothly, this 

parameters is very important to reproduce the sequences of the ground state  levels 

and the 

3,20  states .  

 

 The Majorana parameters 3,2,1  is very important to study the mixed symmetry 

states, in the Table (3-10),  the values  31     and 3  changed gradually and 

smoothly from isotopes to another. 

 

 The energy level results of IBM-2 and experimental data are given in           

Figs. (3-1) to (3-14). The agreement between the theoretical and the experimental 

energy levels is, in general, good except for some cases of the high spin states, such as   


20 , 

30 , 


4,32  states; this indicates that these states is outside the IBM-2 space, which 

is the ‘intruder state’.  

 

 The energy ratios are given in Table (3-2), from this table we see the ratio 

)2(/)4( 11

 EE  is decreased smoothly from 
120

Ba isotope to 
140

Ba isotope at N =  84 

because approach to the major shell ( N = 82). This ratio equal 1.877 in 
140

Ba isotope 

(N = 84) and increased again for 
142

Ba isotope to 
148

Ba isotope equal 3. In general the 

energy ratio decreases smoothly with increasing the N for 
120-140

Ba isotopes, for all   
120-140

Ba isotopes and it means that these structure seems to be verifying gamma soft 

rotor to vibrator nuclei  (O(6) to SU(5)). The energy spectrum of the 
126-136

Ba isotopes 

lie between vibrator (U(5) limit)  and rotational (SU(3)) limit. The general features of  

the transition between U(5) in 
140

Ba isotope near the beginning of the closed shell and 

SU(3) in 
148

Ba isotope with moderate deformation are well reproduced by the IBM-1. 

In Table (3-2), we have introduced the experimental and IBM-2 values of the ratios, 
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)2(/)6( 11

 EE , )2(/)2( 12

 EE , )4(/)0( 12

 EE  and )2(/)0( 12

 EE   together with the 

values of IBM limits. 

 

 From Figs. (3-1) to (3-14), the energy states 

20  (two phonon states) for 

example,  
124

Ba isotope, the energy of 

20  is equal to 0.898 MeV and 0.885 MeV in 

IBM-2 and is in good agreement with the experimental ones at 0.983 MeV and 0.872 

MeV, in 
126

Ba isotope, in the other hand  in 
134

Ba isotope the IBM-2 value 1.693 MeV 

and 1.760 MeV in experimental data which means that the experimental 0
+
 at 1.760 

MeV is the intruder state. It is interesting to note that our calculation reproduces the  

available experimental data well for all the low-lying levels in 
140,148

Ba isotopes, 

except for the  

20  state. The calculations show that the energy of the 

20  state is 

predicted  in a good agreement with the experimental data. The pedagogical 

calculations [128] with the         Z = 64 shell assumption yield the correct energy 

ratios, and suggest that this sub-shell is still effective concerning the structure of these 

isotopes, especially for N > 88 [21]. 

 

 The root mean square deviation (RMSD) [113], is used to compare the 

experimental and theoretical energy levels. Tale (3-4)  given the RMSD  between 

experimental and IBM-2 energy levels.  In  this table we see the ground state levels 

the best agreement was found in 
148

Ba  isotope  where the smallest value of  RMSD  is 

equal 0.0023 and equal 0.010 for gamma band in 
124

Ba  isotope. However           

RMSD  = 0.0023 for beta band in 
128

Ba isotope. 

 

 In general the IBM-2 calculations agree with the experimental data very well. 

The  IBM-2 energy level values and experimental values do show some of degrees of 

staggering in the calculations a very small. In 
126-140

Ba isotopes, the staggering is 

almost completely removed. The values of   20iJ , 

30  states are too higher 

compared with experimental data in some Ba isotopes. These higher states in bands, 

most of them with angular momentum  0J  may be the mixing states of bosons 

configurations and intruder configuration.  

 

 In order to investigate the effect of Majorana interaction parameters which is 

given in Table (3-10)  on the energies of 

22 , 

13  and 

32  states, the calculated energy 

is plotted  in the as a function of  Majorana parameters 2  and 31    all the other 

parameters were kept at their best-fit values,. One can see from Figs. (3-1) to (3-14) 

that the energies of 

22 , 

13  

32  and 

42  states exhibit rapid response to the changes in 

the parameters compared to the others. This means that these states are good 

candidates for mixed symmetry states [129]. However, there are effects on the 

energies of these states as can be seen from the Table (3-11). This is a good search 

method to clarify the mixed symmetry states. As hinted in Table (3-11), we were 

unable to find one value of this parameter that fitted all the experimental values 

[21,23]. In rotational nuclei we see the 

11  is a mixed symmetry states. 
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Table (3-11): Variation of the  


22  , 


13  , 


32 ,  


24  and 


34  energies as a function of  Majorana  

                      parameters ξ2 .  
Isotopes 

2  

22  

13  

32  

24  

42  

120Ba 0.121 0.825 - 1.627 1.123 - 

122Ba 0.127 1.160 0.625 0.927 1.273 - 

124Ba 0.135 0.867 1.006 1.314 1.298 - 

126Ba 0.182 0.754 1.257 1.321 1.407 1.626 

128Ba 0.190 0.879 1.221 0.977 1.311 1.822 

130Ba 0.210 0.910 1.298 1.581 1.721 1.903 

132Ba 0.236 1.084 1.621 1.711 1.782 2.172 

134Ba 0.241 1.167 1.622 2.131 1.400 2.253 

136Ba 0.252 2.117 2.250 2.193 1.987 2.191 

140Ba 0.260 1.481 1.887 2.931 2.401 2.827 

142Ba −0.041 1.430 - 1.730 - 2.825 

144Ba −0.061 1.837 - 2.021 - 2.372 

146Ba −0.191 1.227 - 1.287 2.422 1.424 

148Ba −0.042 1.131 2.321 1.893 1.852 1.893 

 

 

3-2-1 Electric Transition Probability B(E2) 

 
 Calculations of electromagnetic properties give us a good test of the nuclear 

models prediction. The electromagnetic matrix elements between eigenstates were 

calculated using the program NPBTRN for IBM-2 model. 

 

 From Eq.(2-102) we note that an E2 transition mainly depends on identifying 

proton and neutron bosons effective charges e  and e .These isotopes lying in region 

between U(5) limit (vibrational nuclei) and SU(3) limit (rotational nuclei), therefore,   

the relationship between ( e , e ) and the reduced transition probability B(E2) for 

vibrational limit U(5) and rotational limit SU(3) is given in the form [11, 130, 131]: 

 

 
)33.......(....................)02;2( 11 


 

N

NeNe
EB   

 

For SU(5) limit 

 

 

  
)43......(..........

5

32
)02;2( 11 


 

N

NeNeN
EB   

 

For SU(3) limit 

 

where )02;2( 11

 EB is the experimental reduced transition probability from the 

first excited states )2( 1

  to the ground state )0( 1

 , N   is the total number of bosons. 

 

The relations (3-3) and (3-4), was used to estimate the effective boson charges  for 

proton and neutron bosons ( e , e ). In this calculations, we use the following criteria 

to determine the effective charges. e = 2032.0  e.b  is a constant throughout the 

whole isotopic chain and the e  changes with neutron number. This is true if the 

neutron (proton) interaction does not depend on the proton (neutron) configurations. 
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The values of e and e are determined by fitting to the five )02;2( 11

 EB  and 

)22;2( 12

 EB  in 
124

Ba and 
140

Ba isotopes. They are given in Table (3-12). 

 

Table (3-12): Effective charge used in E2 transition calculations ( e = 2032.0  e.b). 

Isotopes 120
Ba 

122
Ba 

126
Ba 

128
Ba 

130
Ba 

132
Ba 

134
Ba 

136
Ba 

140
Ba 

142
Ba 

144
Ba 

146
Ba 

148
Ba 

e  (eb) 0.521 0.501 0.362 0.363 0.330 0.341 0.342 0.301 0.298 0.295 0.275 0.252 0.201 

 

 It is well known that absolute gamma ray transition probabilities offer the 

possibility of a very sensitive test of nuclear models and the majority of the 

information on the nature of the ground state has come from studies of the energy 

level spacing. The transition probability values of the excited state in the ground state 

band constitute another source of nuclear information. Yrast levels of even-even 

nuclei (  iJ  2 ,4,6,.....) usually decay by E2 transition to the lower lying yrast level 

with .2 if JJ   

 

 In Table (3-6) we show the )02;2( 11

 EB , )24;2( 11

 EB  and 

)46;2( 11

 EB  values, which are of the same order of magnitude and display a 

typical decrease towards the middle of the shell.  

 

 As a consequence of possible M1 admixture the )23;2( 11

 EB quantity is 

rather difficult to measure. There is no experimental data to compare the values of 

IBM-2. For 
134

Ba isotope, we give the agreement with experimental value,  from these 

values seems to decrease for 
120-134

Ba isotopes   and increased  for 
136-148

Ba isotopes. 
 

 In the Table (3-6), we show )02;2( 12

 EB values. Experimentally the results 

are radically different for the Ba isotopes. In the some Ba isotopes the value seems to 

increased towards the middle of the shell, whereas in another Ba isotopes is 

decreased. Our calculations could not reproduce these contradictory features 

simultaneously. The results for )02;2( 12

 EB values are shown in Table (3-6) . This 

quantity is rather small since this transition is forbidden in all three limits of the    

IBM-1 [78, 79] as discussed in Chapter Two. 

 

 

 The quantity )20;2( 12

 EB , which is shown in Table (3-6), provides a 

second  clue for identifying intrude 

20 states. If the experimental  )20;2( 12

 EB  

value small largely deviates from the results of our calculation, it is very likely the 

observed 

20  states does not correspond to the collective state, but it is rather an 

intruder state. 

 

  In  
146

Ba isotope, there is a good agreement between experimental and 

calculated )20;2( 12

 EB   value. This confirm our earlier statement about the nature 

of the lowest 

20  state in this isotope. Other transitions )22;2( 13

 EB  and 

)02;2( 13

 EB   are small values because these transitions between different bands 

(cross over transitions) and the selection rules which determine these transition.  
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 As a consequence of possible M1 admixture the )22;2( 12

 EB quantity is 

rather difficult to measure. For 
120-126

Ba isotopes, we give the different, conflicting 

experimental results and we see that no general feature be derived from them, from 

these values seems to decrease for 
120-126

Ba   isotopes and decreased  for 
130-136

Ba 

isotopes. 
 

 The results for )20;2( 12

 EB and )22;2( 13

 EB  values is rather small 

since this transition is forbidden in all three limits of IBM  [78]. Our agreement with 

the available data is generally quite good. It should be noted that no attempt was made 

to fit any of the B(E2) values while determining the parameters in the Hamiltonian.    

  

 

 In general the electric transition probabilities from the mixed-symmetry state 
 31 2,3J   to the symmetric states ( 

21 2,2 ) is weak collective E2 transition. The E2 

transition between the  31 2,3J  and the 2   ground state is small, whereas E2 

transitions are large between fully-symmetric states and between mixed-symmetry 

states. 

 

 One of the important property which can be calculated is the branching ratios,  

through which one can identify the position for the nuclei studied in Casten triangle, 

and hence to identify the dynamic symmetry  for the nuclei by using the Alaga rule 

(Eq.(3-2)).  Table (3-7) show the branching ratios for  
120-148

Ba isotopes. These are 

compared with experimental data. Our agreement with available data is generally 

quite good, but it must be noted that in the some  branching ratio the denominator is 

small and hence the ratio is very sensitive to experimental errors and/or precision in 

the numerical calculation.    

 
 

3-2-3 Magnetic Transition Probability B(M1) and Mixing Ratio  (E2/M1) 

 

 The M1 transition operator is given in Eq.(2-107), where the gyromagnetic 

factors for bosons g  and g   are estimated. The reduced E2 and M1 matrix elements 

were combined in a calculation of mixing ratio )1/2( ME  ) using the relation which 

is given by Eq. (2-109). 

  Sambatora et al., [132] suggested a total g-factor which is given in following 

equation: 

)43...(.................... 
















NN

N
g

NN

N
gg  

 

is used to compute the 

12  state g-factor. The value of the measured magnetic moment 

for 
134

Ba isotope, Ng  )10(86.02   [130], and the experimental mixing ratio 

NebME  /)9(4.7)22;1/2( 12    [6, 130] for 
134

Ba  isotope were used to 

produce suitable estimation for the boson gyromagnetic factors. The values are 

Ng  473.0  and Ng  378.0  . The results of the calculations are listed in Table 

(3-8). They are different from those of the rare–earth nuclei, )65.0( Ngg   , 

suggested by  Van Isacker et al., [133] also used Ng  1  and Ng  0   to reduce 
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the number of the model parameters in their calculation of M1 properties in deformed 

nuclei. The results of our calculation are listed in Table (3-8). As can be seen from the 

table yields to a simple prediction that M1 matrix elements values for gamma to 

ground band and transitions should be equal for the same initial and final spin. Also 

the size of gamma to ground band matrix elements seems to decrease as the mass 

number increases.  

 

 The results shows that the transitions between low-lying collective states are 

relatively weak. This is because of the increase of the anti-symmetric component in 

the wave functions introduced by F-spin breaking in the Hamiltonian. The magnitude 

of M1 values increases with increasing spin for  g and     transitions and we 

see: 

 

1- By fitting B(M1) from 

22  to 

12  we always get small value for    gg  compared    

    with the value basis on the microscopic calculations .1 Ngg    

2- There are evidences that M1 small mode exists in all spectra. 

3- The IBM-2 predicts small M1 component which is due to symmetry and   

    forbiddances of band crossing gamma transitions. 

 

4- The      M1 matrix elements are larger than the  g  M1 matrix elements by  

     a factor of  2 to 3. Again, this agree qualitatively with the perturbation expressions  

     derived in ref. [134] . 

5- The size of the g M1 matrix elements seems to decrease with increasing mass.  

     Specially, a change in  g  M1 strengths occurs when the gamma band crosses  

      the beta band. 

 

 These five aspects of M1 data shown in Table (3-8) are reproduced by the 

calculation through a smooth variation of the parameters   and  , and with a few 

exceptions (e.g., some  g transitions in 
136

Ba isotope and   11 23  transition  in 
140

Ba) good agreement between the theory and the experimental data is achieved. 

 

 The calculated values for  B(M1) are acceptable to some extent, where some 

of B(M1) values are small compared to the values of the quadrupole transition 

probabilities because the wavelength of the gamma ray transitions is greater than it is 

in the magnetic transitions according to the following the relationship: 

)(3.0)( 3/2 ELAML   . This relation shows that the B(M1) transition probability is 

less than B(E2) transition probability and our results confirm this.  

 

 Table (3-13) given the  g-factor in N  units for 
120-148

Ba isotopes for first 

excited state )2( 1

  and second excited state )2( 2

  which compared with the 

experimental data. The g-factor of a state k  is given by [135]: 
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Table (3-13): Experimental and IBM-2 calculations for g-factors for 
120-148

Ba N units. 

 
Isotopes 120

Ba 
122

Ba 
126

Ba 
128

Ba 
130

Ba 
132

Ba 
134

Ba 
136

Ba 
140

Ba 
142

Ba 
144

Ba 
146

Ba 
148

Ba 

)2( 1

g  0.542 0.511 0.488 0.471 0.442 0.439 0.414 0.395 0.385 

 

0.355 

(0.424) 

0.312 

(0.34) 

0.290 

(0.28) 

0.240 

)2( 2

g  1.682 1.632 1.621 1.601 1.571 1.532 1.522 1.497 1.481 

 

1.322 

 

1.148 

 

1.411 

 

1.047 

 

Experimental data are taken from ref. [136]. 

 

 
 

       We evaluate the mixing ratio  (E2 /M1) for 
120-148

Ba isotopes, depends on the 

Eq.(2-109). The resulting of IBM-2 calculation for (E2 /M1) together with 

experimental values are shown in Table (3-9). For this calculation we used the 

standard boson g- factors  Ng  473.0  and Ng  378.0 . 

 

 We were able to reproduce the 

12  g-factors as well as most of the  (E2/M1) 

mixing ratios. In particular, all the signs are reproduced correctly. It should be noted 

that a sign change appears in both the )22( 12

   and )22( 13

   transition mixing 

ratios, when going from isotope to another. Moreover, in some isotopes there is an 

opposite sign between the )22( 12

   mixing ratio and the )23( 11

   mixing 

ratio. We were able to reproduce all of these features in the calculation. Mainly, the 

sign change of   and   for 
120-130

Ba isotopes in comparison to 
132-136

Ba is 

responsible for this effect. We also calculated the admixtures of lower F-spin states in 

the ground state. They are 1.6%, 2.2%, 1.3% for 
144-146-148

Ba  isotopes respectively. 

 

 These results exhibit disagreement in some cases, with one case showing 

disagreement in sign. However, it is a ratio between very small quantities and any 

change in the dominator that will have a great influence on the ratio. The large 

calculated value for )22( 12

   is not due to a dominant E2 transition, but may be 

under the effect of very small M1 component in the transition. Moreover, the large 

predicted value for transition )22( 12

   in 
120

Ba isotope and 
142-146

Ba  isotopes 

compared with experimental value may be related to high predicted energy level value 

of the IBM-2; )2( 2


E =0.825 MeV in 

120
Ba isotope and E = 1.430 MeV, 1.752 MeV 

and 1.227 MeV respectively, while the experimental values is 1.424 MeV, 1.848 MeV 

and 1.115 MeV. We are unable to bring the energy value of this state close to 

experimental value simply by changing the Majorana parameters. 

 

 The sign of the mixing ratio must be chosen according to the sign of the 

reduced matrix elements. The equations used are (2-107) for M1 transitions and         

(2-109) for the mixing ratios. The results are listed in Table (3-9). The agreement with 

available experimental data [105, 125, 126, 127] is more than good especially in the 

sign of the mixing ratio. However, there is a large disagreement in the mixing ratios of 

some transitions, is not due to a dominate E2 transition, but may be under the effect of 
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very small value of M1 matrix element. However, it is a ratio between very small 

quantities and may change in the dominator that will have a great influence on the 

ratio. 

 

3-2-4 Electric Monopole Transition Matrix element )0(E  

 

 Electric monopole (E0) transitions between nuclear levels proceed mainly by 

internal conversion with no transfer of angular momentum to the ejected electron. For 

transition energies greater than 2

02 cm , electron-positron pair creation is also possible; 

two-photon emission is possible at all energies but extremely improbable. The E0 

transition also occurs in cases where the levels have the same spin and parity. This 

means that the E0 transition competes with E2 and M1 components in these 

transitions. 

 

 The reduced matrix monopole transition is given in Eq.(2-114), the necessary 

parameters of the monopole matrix element )0(E are derived from fitting the isotope 

and isomer shifts ( 2

0 053.0 fm  , 2

0 020.0 fm  ). The IBM-2 results of  

)0(E  values are available upon request, see Table (3-14). 

 

 

 

 

Table (3-14 ): Monopole Matrix Element  0E  in e.b for 
120-148

Ba isotopes in IBM-2 . 

  fi JJ
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a
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8
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
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B

a
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a 

B
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
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 In 
120-148

Ba isotopes )0(E  values increased in some isotopes with increasing 

neutron numbers and decrease for some isotopes and  they go up to the highest value 

at some isotopes. This means that all the isotopes are deformed  because they possess 

the amount of excess energy and that they are trying to get rid of this by lessen the E0 

transitions to the state of stability. This is an additional evidence of the deformation of 

these isotopes.        

   

 We notice that the theoretical values for the X (E0/E2) ratio are small, for 

some transitions (see Table (3-15)) which means that there is a small contribution of 

E0 transition on the life time of the 0
+
 states. There are two high values of                   

X (E0/E2) in transitions from   12 00  in 
120-148

Ba isotopes means that this state decay 

mostly by the E0 and according to this one could say that the study of this state give 

information about the shape of the nucleus, because the E0 transitions matrix elements 

connected strongly with the penetration of the atomic electron to the nucleus. So 

combination of the wave-function of atomic electron, which is well known, and the 

nuclear surface give good information of the nuclear shape. 

 

 

 From the table, one can overall see a reasonable agreement with the 

experimental data for 
134

Ba isotope.  The )2/0( EEX  ratio are important for nuclear 

structure and the model predictions due to their sensitivity for the nuclear shape. We 

conclude that more experimental work is needed to clarify the band structure and 

investigate an acceptable degree of agreement between the predictions of the models 

and the experimental data. The B(E2) between the ground band states, the quasi-γ and 

quasi-β band states are also described which is used to evaluate this ratio.  
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Table (3-15 ): )2/0( EEX  
120-148

Ba isotopes in IBM-2 . 

  fi JJ  120
Ba

 122
Ba 

124
Ba 

126
Ba 

128
Ba 

128
Ba 

130
Ba Ba

132 134
Ba 

136
Ba 

22 21 
2.11 1.33 2.317 1.38 2.471 2.414 

0.197 0.146 

0.73 

(0.69) 15.32 

02  01 
0.0037 0.0023 0.0047 0.0054 0.057 0.006 

0.143 0.187 

2.251 

(2,8(2)) 23.2 

03  01 
0.022 0.015 0.0281 0.018 0.0221 0.022 

12.22 10.2 0.0073 0.0089 

03  02 
0.0031 0.0027 0.0038 0.0028 0.0034 0.004 

0.211 0.642 9.65 12.26 

  fi JJ  140
Ba

 142
Ba 

144
Ba 

146
Ba 

148
Ba   

 
  

22 21 5.447 6.872 0.101 0.21 7.221      

02  01 1.227 0.873 0.197 0.182 2.621      

03  01 0.0032 0.0086 0.19 0.231 5.210
-2

      

03  02 3.729 5.327 1.671 2.61 1.778      

The Experimental data are taken from ref. [23,105] 

 

3-2-5 Mixed Symmetry States in 
120-148 

Ba Isotopes 
 

 One of the great advantages of the IBM-2 is the ability of reproducing the 

mixed symmetry states (MSS
,
s). These states are created by a mixture of the wave 

function of protons and neutrons that are observed in most even–even nuclei. This 

mixed symmetry (MSS
,
s ) state has been observed in many deformed nuclei. In more 

vibrational (near spherical nuclei) and gamma-soft nuclei, we expect the lowest 

mixed-symmetry states (MSS
,
s) with the  2J  state, while in rotation nuclei 

observed as the 1J  state. Hamilton et al., [11] studied the mixed-symmetry 

states (MSS
,
s ) state in 

140
Ba isotopes, to be  

32  state at about 2 MeV. 

 From the results of energy  levels we can see that the energies of  43 2,2
iJ   

states exhibit rapid response to the changes in the Majorana parameters compared to 

the others (see Table (3-10)). This means that these states are good candidates for 

mixed symmetry states [137]. However, there are effects on the energies of  band  
 12 3,2

iJ  and  24
iJ , as can be seen from the Figs.(3-1) to (3-14). This is a good 

search method to clarify the mixed symmetry states (MSS,s). Fazekas et al., [138] 

have suggested that the two states at 2.029 and 2.088 MeV should share the properties 

of the mixed symmetry state in 
134

Ba isotope. 

 

 In this work, we proposed that the  32
iJ  state in 

142
Ba isotope decays to the 

first excited state with an energy (IBM-2) of 1.730 MeV with a mixing ratio      

)22( 13

  = -0.88, which means it is dominated by the M1 transition, with 

2

13 091.0)22;1( NMB    . In 
142

Ba isotope, for the  32
iJ  state at energy 1.730 

MeV excitation is close to the experimental value for 1.693MeV. The energy is well 

reproduced by the calculation, where the choice of the Majorana parameters 31(    

and )2 plays a important (crucial) role. This state is quite pure , ,1max F  with : 
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 In 
146

Ba isotope, the IBM-2 calculation predicted the  32
iJ  state at 1.287 

MeV with R = 84%  and the  42
iJ   state at 1.424 MeV with R = 75%. We obtained 

a large M1 strength for 2

13 142.0)22;1( NMB     in comparison with 
2

14 074.0)22;1( NMB   . These values indicated that the  42
iJ  state is the 

lowest mixed symmetry state in 
146

Ba isotope. 

 

 In 
148

Ba isotope, the IBM-2 calculation predicted the  32
iJ  state at 1.527 

MeV with R = 85%  and the  42
iJ   state at 1.893 MeV with R = 74%. We obtained 

a large M1 strength for 2

13 0110.0)22;1( NMB     in comparison with 

2

14 103.0)22;1( NMB   . These values indicated that the  42
iJ  state is the 

lowest mixed symmetry state in 
148

Ba isotope. 

 

 

 

 

 

 

 

 

 

 

Table (3-16): B(M1) calculated to first excited states in 
2

N  units for 
120-148

Ba isotopes 

Isotopes )22;1( 12

 MB

 

)22;1( 13

 MB  )22;1( 14

 MB  

120Ba 0.022 0.00210 0.0045 

122Ba 0.0201 0.00293 0.0041 

124Ba 0.0188 0.0030 0.0039 

126Ba 0.0046 0.0031 0.00321 

128Ba 0.0362 0.00341 0.00296 

130Ba 0.045 1.414
310  

Exp. )102.1( 3  

0.0027 

132Ba 0.016 0.0455 0.113 

134Ba 0.046 0.0463 0.142 

136Ba 0.009 0.05414 0.187 

140Ba 0.246 0.0692 0.0106 

142Ba 0.035 0.0910 0.0081 

144Ba 0.0046 0.130 0.0021 

146Ba  0.0021 0.142 0.0711 

148Ba  0.0002 0.011 0.1044 
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 In 
148

Ba isotope, the IBM-2 calculation predicted the  32
iJ  state at 1.527 

MeV with R = 85% and the  42
iJ   state at 1.893 MeV with R = 74%. We obtained 

a large M1 strength for 2

13 0110.0)22;1( NMB     in comparison with 

2

14 103.0)22;1( NMB   . These values indicated that the  42
iJ  state is the 

lowest mixed symmetry state in 
148

Ba isotope. 

 

 The experimental and theoretical  campaign for the investigation of the Ba 

isotopes had been motivated by the search for one quadrupole-phonon states of mixed 

proton-neutron symmetry 

M12  in these nuclei. In 
130

Ba isotope there is no absolute 

value for a )22;1( 1

 iMB  could be deduced, because, except for the  32
iJ  state, 

no multipole mixing ratio has been known from experiments, due to the lack of 

sufficient statistics in the respective transitions. All of the results on )22;1( 1

 iMB  

values in this nucleus are, thus, based on assumptions of pure transitions, and, for 

most of the assumed 2
+
 states, also on estimates of their ground-state transition 

intensities. For the decay of the  32
iJ  state at 1.581 MeV to the  12

iJ  state two 

possible values for the mixing ratio )9(23)22( 13   experimentally and -20.44 

IBM-2 results, corresponding to a nearly pure E2 transition 

and )2(31.0)22( 13   ,  corresponding to a >90% M1 contribution to this 

transition. The transition strengths have been calculated for both values. The results 

on the )22;1( 13

 MB  show that even for the nearly pure M1 transition the strength 

of experimental data [25] 23

13 102.1)22;1( NMB    while the IBM-2 value for 

this transition equal 1.414 2310 N
   is only quite small. The ground state transition 

strength of electric transition probability 22

13 0021.0)02;2( beEB     is very small, 

too. These values are considerably smaller than what would be expected for a 
 MiJ ,12  state and indicate that the  32

iJ  state does not contain a considerable 

fraction of the  MiJ ,12  wave function. 

 

 In 
136

Ba isotope an isolated mixed-symmetry state  32
iJ  at 2.193 MeV had 

been identified. In the even-even neighbor 
134

Ba isotope the mixed-symmetry state 

has been observed to fragment over two close-lying 2
+
 states  32

iJ  at 2.131 MeV 

and 2.171 MeV. This decrease in energy continues for the present results on 
132

Ba 

isotope. Here, a small fragment of the mixed symmetry states (MSS
,
s) has been 

identified at an energy of 1.711 MeV. Further candidates for 
 MsiJ ,12

 -fragments in 

this nucleus are the states at 1.977 MeV, and, based on different assumptions, at 2.414 

MeV, 2.482 MeV, and 2.962 MeV. None of the possible  32
iJ -fragments in 

132
Ba 

isotope exhibits a )22;1( 1

 MB  of similar strength as it has been observed in the 
134,136

Ba isotopes. A state with the expected properties of an isolated mixed-symmetry 

states (MSS
,
s) state can be excluded in 

132
Ba isotope below 2.8 MeV based on the 

experimental data. 
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 We obtained a large M1 strength for )22( 14

   transition,                        

B(M1) = 0.1044 2

N   in comparison with )22;1( 13

 MB  = 0.011 2

N . These values 

indicated that the  42
iJ  state is the lowest mixed symmetry state in 

148
Ba isotope. 

Table (3-15)  presents the calculated B(M1) to the  12
iJ  state. For the g-factor 

value of  12
iJ  states, our calculations agree well with the available experiment. All 

 12
iJ  states have positive g-factor as shown in Table (3-8). 

 

 The IBM-2 calculation of B(M1;( 

18192  12 ) = 4.1 2310 N
  while the 

experimental value equal to 231050.3 N
 [ 25] is also quite small in 

130
Ba isotope. 

Also the result of B(E2;( 

819.12  12 ) = 0.00043e
2
b

2
 is small. Again, these values do 

not allow for the identification of a significant fragment of the  MsiJ ,12  state. 

 

 The theoretical value of B(M1;( 

269.22  12 ) = 5.1 2310 N
  and 

experimentally equal 231067.4 N
  these values are very small when compared to 

the expectation of an isolated  MsiJ ,12  state. The value of  quadrupole electric 

transition probability for this transition B(E2;( 

22692  12 ) = 0.00056 e
2
b

2
 is stronger 

(greater ) than for the 1.819 MeV state. 

 

 The estimate of the decay rates of the (2
+
) 2.371 MeV state has been made 

under the same assumptions of  2J   and of a pure M1 transition to the  12
iJ  

state. The result of B(M1;( 

371.22  12 ) = 2134.0 N  [25] and the IBM-2 value is 

0.166 2

N  represents the strongest M1 transition strength for this isotope. Its 

magnitude nearly fulfills the expectations on an isolated  MsiJ ,12  state. Also the 

result of B(E2;( 

371.22  10 ) = 0.00035 e
2
b

2
 meets the expectation for the order of 

magnitude of this transition strength. However, these numbers are based on numerous 

assumptions, beginning with the unknown 
iJ   assignment. In this energy range the 

excitation of states can be ruled out that are not fed from above and have angular 

momentum quantum numbers  3J  or 2 [25]. 

 

 Consequently, based on the given data the state at 2.371 MeV can be assigned 

a candidate of an isolated 
 MsiJ ,12

 state in 
130

Ba provided the underlying 

assumptions of 
 MsiJ ,12

 and of a predominant M1 transition to the  2J  state 

are valid. The other  2J  states at 1.557 MeV, 1,819 MeV, and 2,269 MeV 

exhibit nearly vanishing B(M1;   122iiJ  ) values and can, thus, be identified at 

most as weak fragments of the 
 MsiJ ,12

 state. In 
132

Ba isotope, for three           

higher-lying states the spin and parity assignment  2J  has been assumed. Under 

the additional assumption of pure M1 decays into the  12
iJ  state, estimates on 

lower limits on their possible M1 decay rates have been made. 
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 The values of B(M1; 

400,22  12 ) = 2026.0 N , B(M1;( 

439.22  12 ) = 

2012.0 N  and B(M1; 

686,22  12 ) = 2012.0 N  [25], but the values of IBM-2 for 

these transitions are given 2031.0 N , 20161.0 N  and 20182.0 N  respectively, the 

experimental and theoretical values do not exhibit a pronounced M1 strength. The 

corresponding ground-state transition strengths are of the order of 0.024 2

N  to 0.035 

2

N . Based on these data, the three states at 2.400 MeV, 2.439 MeV and 2.686 MeV 

can at most be interpreted as candidates for fragments of the  MsiJ ,12   state, 

provided that the assumptions made in the calculations could be confirmed.  

 

 On the basis of the present results it can be concluded that no prominent, 

isolated  MsiJ ,12  state has been observed in the nucleus 
132

Ba isotope below an 

energy of  2.7 MeV. From the B(M1) strength distributions only weak fragments of 

the mixed symmetry state could possibly be identified in this isotope. 

 

 The experimental data on the )22;1( 1

 iMB  strengths of the Ba isotopes 

completed the experimental data on the one quadrupole-phonon state of mixed proton-

neutron symmetry  MsiJ ,12  in the A = 130 mass region. The new data enabled a 

discussion of the evolution of the  MsiJ ,12  state as well as for the Ba isotopic chain. 

The results seem to support the previous observation of an increased fragmentation of 

the  MsiJ ,12  state for mid-shell nuclei of that mass region. However, the results 

showed an enhanced candidate of a  MsiJ ,12  state in 
130-134-136

Ba that hampers a 

unified view of the results and their interpretation, but whose results are based on 

several assumptions during the calculations, beginning with the  2J  assignment. 

Any further discussion on the evolution of the mixed symmetry states in this mass 

region will, therefore, depend on an independent verification or falsification of the 

assumptions made for the calculations on the 2.371 MeV state of 
130

Ba isotope. 

 

 The scissor state 1J  which is the state with mixed symmetry state depend 

on the Majorana parameter, so that the 1J states in Ba isotopes  determined by 

the 3  parameter. The calculated energies of the  all 1J  states are listed in Table 

(3- 17). The values of  all 1J  states are greater than 2.00 MeV, which are closed 

to the values of 1J  states of the neighboring nuclei, and agree with the 

experimental data.  

   

Table (3-17): Experimental  and calculated for 1
+
 level for 

126-142
Ba isotopes in  

                      MeV units. 

Isotope 
126

Ba 
128

Ba 
130

Ba 
132

Ba 
134

Ba 
136

Ba 
140

Ba 
142

Ba 

E(1
+
) Exp. 2.622 2.431 2.827 2.962 2.618 2.687 2.671 3.261 

E(1
+
) Theo. - 2.347 2.733 2.846 2.570 2.693 2.692 3.144 

  

 

  From the above consideration the following signature for one-phonon MSSs in 

vibrational and transitional nuclei with, at least, approximate O(5) symmetry, can be 

expected: 
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1- The one-phonon 

M,12  state should be the lowest-lying mixed symmetry state.  

2- This 

M,12  state should decay to the 

12  by a strong M1 transition with an absolute   

     matrix element of about 1 2

N  .  

3- Since the 

M,12  state is a one-phonon excitation it should have collective E2 matrix 

elements to the ground state for both, proton and neutron bosons, however, with 

opposite signs, which might lead to partial cancellation in the total‚  

1,1 022 EM   

matrix element. Thus, a small-to-weakly-collective E2 transition strength (≤ a few 

e.b.) from the 

M,12  state to the ground state can be expected.  

4- All mixed symmetry states have to be very short lived, typically a few hundred 

femto-seconds or less, because of the strong M1 matrix elements and typical transition 

energies  greater than  1 MeV in vibrational nuclei. 

 
 Even though the mixed symmetry states  are defined in the framework of a 

collective algebraic model, their properties are strongly influenced by the underlying shell 

structure. However, the relation between the properties of the mixed symmetry states  and 

the specific microscopic structure is not completely understood. 
 

 From the above fingerprints it is obvious that the mixed symmetry states  can 

be identified experimentally by their unique decay to the low-lying fully symmetry 

states [139]. This however, comprises a major experimental challenge because it 

requires full spectroscopic information, i.e. the spin and parity quantum numbers of 

these highly excited non-yrast states, their lifetimes, the branching ratios and 

multipole mixing ratios of their  -decays have to be determined. For more detailed 

insight in the structure of these states information on their magnetic moments is also 

necessary. Until recently obtaining all this information was possible for a hand-full of 

stable nuclei only. No mixed symmetry states  have ever been solidly identified in 

unstable nuclei on the basis of large absolute M1 transition rates. 
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3-3 Dynamic Deformation Model (DDM) Results 

3-3-1 Energy Spectra 
 

 The even-mass barium isotopes (Z= 56) are part of an interesting region 

beyond the closed proton shell at Z=50 where the level structure has resisted detailed 

theoretical understanding. The present investigation of the Barium isotopes,                

N = 64-80, mainly by the dynamic deformation model (DDM) is a part of a wider 

study which includes tellurium, xenon and selenium isotopes. 

 

 The calculated collective energy levels of the barium isotopes were obtained 

by changing the value of  N over the range N = 64-80 without adjusting any 

parameters in the model. The Dynamic Deformation Model (DDM) calculated level 

energies are presented in Figs. (3-1) to (3-9). The basic features of the variation of 

level structure with neutron number N are well reproduced. In the ground state band 

the variation of the energy ratio )2(/)4( 11

 EE from a value of 2.927 in 
120

Ba isotope 

at neutron number  N = 64 to 2.098 in 
136

Ba isotope at neutron number N = 80 is 

reproduced. 

 

 The variation of )2( 1

E  and )4( 1

E  increased gradually with increasing 

neutron number,  i.e., the variation of the moment of inertia with  N  is reproduced. 

The crossing of the state 

22   below 

14  in 
132-134

Ba isotopes at N = 76-78 is obtained, 

as one goes from N = 64 to N = 80. Similarly the 

20  state is below 

14  in 
136

Ba 

isotope at  N = 76 and the  

20  state is below 

13  state in 
124-136

Ba isotopes and lies at 

high energy in  
130-136

Ba isotopes. 

 

 The gamma band ( 

22 , 

20 , 

24 ) lies high 
122-136

Ba isotopes . Also the states 

32  

and 

13  states lies high. The levels  

32 , 

42 , 

30 , 

34 , 

44  comparison with experimental  

has to be done carefully. 

 

 The root mean square deviation (RMSD) [113], is used to compare the 

experimental and DDM energy levels. Table (3-4)  given the RMSD  between 

experimental and DDM energy levels.  In  this table we see the ground state levels the 

best agreement was found in 
136

Ba  isotope  where the smallest value of  RMSD  is 

equal 0.0227 and equal 0.0310 for gamma band in 
130

Ba  isotope. However           

RMSD  = 0.0405  for beta band in 
124

Ba isotope. 

 

 Figs. (3-1) to (3-9)  show the energy levels of the barium isotopes from which 

we may draw the following conclusions. 

 

 (i) The )2(/)4( 11

 EE  ratio of the level energies decrease from the maximum of 

2.927 for N= 64 to 2.098 for N= 80. This indicates a non-collective quasi-particle 

excitation becoming increasingly important as the neutron number approaches N= 82. 

 

(ii) Both the experimental and calculated )4(/)0( 12

 EE ratios indicate that the 

20  and 


14  levels should occur close together throughout the range of isotopes from                

N = 64-80. The large values of the ratios )2(/)0( 12

 EE , imply stiffness in the 
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collective potential in the   degree of freedom which is consistent with the values in 

for the deformation energy dE  (see Table (3-3)). 

 

 In Table (3-18) DDM calculation for the root-mean-square (rms) values of the 

deformations parameters  β and γ for the ground state 

10 , and first excited state 

12  

and second excited stated 

22 .  These are a nice measure of the shape of the calculated 

potential energy surface (PES) and its variation with increasing spin  or vibrational 

phonon number [16]. 

 

 The root mean square of   (  rms) value falls with increase in neutron number 

smoothly or gradually. In a few cases  rms is about 15% lower than  min. This is on 

account of the sharper rise of potential on the right-hand side (increasing β) than on 

the β = 0 side [16]. 

 

 From the Table (3-18), the values of  rms  for the ground band vary from 16.4
0
 

to 30.6
0
  and  the root mean square of  the for 

22  state as a member of  -band lie 

between 25.6
0
 and 31.9

0
. The values of rms  show little variation with increasing mass 

number  A. signifying that the values of  PES in DDM here is more symmetrical about 

the γ = 30◦. 

 
Table (3-18) : The root-mean-square (rms) values of β and γ deformation parameters of 

ground state and excited states in 
120-140

Ba isotopes. 

 

 

Isotopes 
  -Root mean square rms    -Root mean square rms  



10 

12 

22 

10 

12 

22 

Ba120 0.265 0.270 26.3
0 

20.8
0 

16.4
0 

26.3
0 

Ba122 0.258 0.266 25.6
0 

16.8
0 

15.7
0 

25.6
0 

Ba124 0.243 0.254 27.3
0 

18.8
0

 17.2
0 

27.3
0 

Ba126 0.224 0.238 29.2
0 

20.1
0

 18.8
0 

29.2
0 

Ba128 0.208 0.223 30.8
0 

24.9
0

 22.5
0 

30.8
0 

Ba130 0.188 0.205 31.3
0 

27.8
0

 26.2
0 

31.3
0 

Ba132 0.157 0.176 30.9
0 

29.2
0

 27.7
0 

30.9
0 

Ba134 0.128 0.152 30.0
0 

29.4
0

 30.4
0 

30.0
0 

Ba136 0.124 0.111 30.3
0 

28.6
0 

29.6
0 

30.3
0 

Ba140 0.098 0.089 31.9
0 

29.9
0 

30.6
0 

31.9
0 

 

 

 

3-3-2 Potential Energy Surface 

 
 We shall begin our discussion with the  N = 82 nucleus and continue to the 

lighter isotopes. The potential-energy function ),( V gives circular contours, 
2),(  V  which are exactly what we expect from the model for a nucleus close to 

a doubly closed shell. The potential shape of this nucleus is that of a harmonic 



 89 

oscillator with a minimum in the potential at 0 .  In the case of the N = 80 isotope 

a shallow minimum of ),( V = 0.360 MeV appears at 05.0  and   = 0, but 

unexpectedly a deep minimum of  ),( V = 7.92 MeV occurs on the oblate axis at 

092.0 . This deep minimum is surprising since only two neutrons have been 

removed and we might not expect such a dramatic change in the potential from that of 

the N =82 nucleus. 

 

 In Table (3-3) the characteristic of potential energy surface (PES), the 

minimum quadrupole deformation .min corresponding to the position of the deepest 

potential minimum are compared with the  experimental data and IBM-1 results, the 

values of  .min decrease with increasing neutron number (toward the magic number    

N = 82). In general, we obtain for the values of  .min  from the Table (3-3) the deeper 

prolate minima and shallower secondary oblate minima in all cases, both decreasing 

in depth with increasing N. The negative values of .min for 
134-140

Ba  isotopes at          

N = 78, 80 and 84. At 
120

Ba isotope  N = 64, the prolate minimum is 3.250 MeV deep 

and the oblate minimum is 0.711 MeV deep and lies at lesser β value (< βmin). The 

same feature continues with increasing neutron number N. At 
134

Ba isotope N = 78 we 

get a very shallow prolate minimum and at 
136-140

Ba isotopes N = 80 and 84 a very 

shallow oblate minimum. 

 

 The values of POV  (Table (3-3)) the difference in the depth of prolate and 

oblate minima, is decreasing with increasing neutron number N in DDM calculations. 

From these values we obtain the prolate shape for the light Ba isotopes as in IBM-1. 

At 
134-140

Ba isotopes N = 78, 80 and 84 the values of  VPO is negative but we obtain 

almost vanishing prolate and oblate minima [16]. The predicted shape is not a 

permanently deformed one. In fact the predicted potential well at N = 76, 78, 80 and 

84 corresponds to the spherical shape (vibrational shape) anharmonic oscillator with 

flat bottom.  

 

Several trends with increasing mass number (A) can be seen in this isotopic chain: 

 

(i) The magnitude  of the deformation and the binding energy of deformation  

     corresponding to the lowest potential minimum decrease. 

 

(ii) The magnitude of the prolate-oblate difference POV  decrease in the first half of   

      this region.  

 

(iii) The deformation at the minimum (the static intrinsic quadrupole moment)  

       changes sign from positive (prolate) to negative  (oblate) around A = 130.  

   

 The energy deformation dE   ))0(( POd VVE  , decreased with increasing 

neutron number N  (toward the magic neutron number N = 82).' 

 

 The quadrupole moment of the first excited states )2( 1

Q  decrease gradually 

with increasing neutron number. The negative sign signifies prolate shape in 
120–140

Ba 

isotopes.    
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3-3-3 Electric Transition Probability B(E2)  

 
 The reduced electric transition probabilities  for 

120-140
Ba isotopes are given in 

Table (3-6). Similarly, the reduced transition probabilities )02;2( 11

 EB , 

)24;2( 11

 EB and )46;2( 11

 EB   decreases with increasing neutron number N. 

The DDM model values vary similarly with     IBM-1 , IBM-2 and experimental data. 

We see that these criteria provide B(E2) values for other transitions which agree well 

with the DDM values and with experimental  data and IBM-1 and IBM-2 values  

except some values  for )02;2( 12

 EB  transitions in lower neutron number isotopes, 

where the theoretical values in IBM-1 and IBM-2 are about a factor of ten too small. 

These values  decreases with increasing N as expected for decreasing deformation 

parameter β and increasing the parameter   . 

 

 The transitions )23;2( 11

 EB seem to get weaker with increasing neutron 

number N, because the cross over transition (selection rules) indicating the weakening 

band relationship. The transitions )22;2( 13

 EB  and )20;2( 12

 EB in general the 

values fall with increasing neutron number N. The experimental value and DDM 

values  in 
120-122

Ba isotopes at N = 64, 66 is off  the linear rise and needs a recheck, 

since there is no sudden change of structure in 
132-134-136

Ba isotopes at neutron number 

N = 66, 68 and 70. IBM-1 and IBM-2 yields a linear rise of B(E2) with increasing 

boson number, and reproduces the saturation at mid shell. [140].  

 

 A maximum deformation (and associated properties such as deformation 

energy dE , POV  and quadrupole moment for first excited state )2( 1

Q  ) at mid shell is 

achieved, since the up-sloping orbitals are emptied, while the down-sloping and 

horizontal orbitals remain filled up with the valence nucleons [16]. Here one must 

distinguish between the region of nuclei along the β-stability valley and the one across 

(far from) it as for  Ba isotopes (A = 130 nuclei). 

 

 The discrepancy of experimental values and theoretical values can be 

attributed to: 

(i)  The  round-off  errors which are particularly large for those values whose  

     computation involves cancellation of many terms such as forbidden or weak   

     transition rates. 

(ii) Deviations of the calculations from assumed Z and N dependence. 

 

(iii) Deviations from the adiabatic approximation.  

 

 Branching ratios are given in Table (3-7). from this table we see the value 

)22;2(/)02,2( 1212

  EBEB , )23;2(/)23,2( 2111

  EBEB and 

)23;2(/)43,2( 2111

  EBEB  for 
120-140

Ba  isotopes decrease with increasing 

neutron number N.   

 

 The value of branching ratio )43;2(/)23,2( 1111

  EBEB  falls from the 

maximum value in 
120

Ba isotope at N = 64 to the small values in 
140

Ba isotope at        

N = 84, the experimental data exhibit the same trend of DDM values. The branching 
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value  )24;2(/)24,2( 2212

  EBEB  increased  with increasing neutron number 

toward closed shell as well as in experimental values.  The value 

)24;2(/)44,2( 2212

  EBEB  varying randomly as well as experimental data. 

The DDM values exhibit saturation in agreement with data. These values are small 

and fall for 
120-130

Ba isotopes, and larger for 
132

Ba isotope, and decrease again for 
134-

140
Ba isotopes toward the major shell. 

 

 The ratio )20;2(/)20,2( 2212

  EBEB   is small value for all the isotopes 

this ratio varies slowly up to 
132-136

Ba isotopes and falls sharply thereafter, with 

increasing N and with increasing γ-softness in (N> 82) 
140

Ba isotope. 

 

 The ratio  )22;2(/)22,2( 1323

  EBEB  is falling with increasing N are 

also reproduced in experimental values. In general the values of DDM  values come 

closer to experimental values. 

 

 Table (3-19) given the quadrupole moments for ground, gamma and beta 

bands. In general the  value of the quadrupole moment decreases monotonically for 

each of the states in the three bands. 

   

 The sign of )6,4,2( 111

Q  remains negative for g-band except in 
134-136-140

Ba 

isotopes at neutron number  N = 78, 80 and 84, where the very shallow oblate 

minimum is slightly lower than the prolate minimum. The sign of  quadrupole values 

for second excited states )2( 2

Q  positive in 
120-122-124-128-130

Ba isotopes and negative 

sign in 
130140

Ba isotopes for the same reasons. 

 

 The sign of  )7,5,4,2( 1133

Q   is consistently negative, but that of  )4( 3

Q  varies 

with neutron number. This may be due to the change of nature of  

13  and 

34  states  in 

certain cases 

 
Table (3-19) : Quadrupole moment for ground band, beta  and gamma bands in  e.b units for       
120-140

Ba isotopes 

Isotopes 

12  


14  


16  


22  


24  


13  


32  


34  


15  


17  

Ba120 -1.8 −1.629 −1.821 1.074 −0.521 -0.172 −1.126 −1.265 −1.20 −1.03 

Ba122 -1.49 −1.560 −1.782 0.986 −0.398 −0.162 −0.947 −1.190 −0.97 − 0.95 

Ba124 -1.33 −1.388 −1.565 0.887 −0.152 0.010 −0.568 −1.150 −0.75 - 0.78 

Ba126 -1.26 −1.035 −1.149 0.709 −0.0093 0.197 −0.324 0.788 −0.47 − 0.51 

Ba128 -1.20 − 0.65 −0.660 0.453 -0.262 0.113 −0.223 0.517 −0.28 − 0.28 

Ba130 -1.11 -0.470 −0.472 0.246 −0.065 0.265 -0.226 0.408 −0.23 − 0.27 

Ba132 -0.99 - 0.013 −0.007 −0.0150 0.043 0.273 −0.114 −0.030 − 0.007 − 0.007 

Ba134 -0.22 0.010 −0.008 −0.0130 0.048 0.284 −0.104 0.030 -0.008 − 0.008 

Ba136 -0.20 0.0131 -0.0092 -0.01220 0.050 0.310 -0.113 0.031 -0.0083 -0.0091 

Ba140 -0.152 0.0121 -0.0099 -0.0118 0.062 0.322 -0.090 0.037 -0.0091 -0.0098 
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3-3-4 Magnetic Transition Probability B(M1) and Mixing Ratio 
 

 The resulting DDM calculations for B(M1) values are shown in Table (3-8). 

The results for the transitions feature for gamma band to ground band are claimed to 

have a collective origin. Several trends are apparent from the data in Table (3-8):  

 

(i) The magnitude of the M1 matrix elements increased with spin both gamma band to   

     ground band transitions, in agreement with spin dependence.  

 

(ii) The size of gamma band to ground band matrix element seems to decrease with   

     increasing mass number. 

 

(iii) The gamma-beta band M1 transitions are larger than  gamma band to beta band   

        transition by a factor of 2 to 3. 

 

 The  B(M1) values vanish  in the hydrodynamic model [58,59] since in that 

model the g-values is independent of deformation ( )gI  and off-diagonal matrix 

elements of the angular momentum operator vanish. The g-value calculated 

microscopically [57] as a function of deformation deviates from a constant by %50   

and hence the B(M1) values given in Table (3-8) are non-zero. However, the 

calculated values are quite small compared to the shell model single particle values     

[58,59].   

 

 The microscopic part of the calculation includes the spin contribution which is 

about %15  of the magnetic moment. Integration over the collective variables is 

performed by using the relation )( gI . Table (3-20) given the DDM values of       

g- factors  and magnetic dipole moment. It is seen from this table this calculation 

gives the correct order of reduction of the magnetic moment of the first excited state  

)2( 1

  from the hydrodynamic value  8.0/2  AZgI . The agreement is 

probably measurements are good, the different experimental values  often by 1.0 .   

 

Table (3-20): Magnetic dipole moment in N  units  and g-factors for 
120-146

Ba N units in DDM. 

Isotopes 120
Ba 

122
Ba 

126
Ba 

128
Ba 

130
Ba 

132
Ba 

134
Ba 

136
Ba 

140
Ba 

142
Ba 

144
Ba 

146
Ba 

)2( 1

g  0.511 0.509 0.492 0.475 0.453 0.432 0.410 0.391 0.381 

 

0.345 

(0.424) 

0.311 

(0.34) 

0.2920 

(0.28) 

)2( 1

  0.552 0.556 0.568 0.573 0.611 0.618 0.633 0.639 0.643 0.672 0.680 0.70 

 Experimental data are taken from ref. [136]. 

 

 The  (E2 /M1) multipole mixing ratios for 
120-140

Ba isotopes,  were calculated 

for some selected transitions between states. The sign of the mixing ratio must be 

chosen according to the sign of the reduced matrix elements. The equation used are 

(2-109) for the mixing ratio. The results are listed in Table (3-9). The agreement with 

available experimental data [105, 125, 126, 127] is more than good especially in the 

sign of the mixing ratio. However, there is a large disagreement in the mixing ratios of 

some transitions, is not due to a dominate E2 transition, but may be under the effect of 

very small value of M1 matrix element. However, it is a ratio between very small 

quantities and may change in the dominator that will have a great influence on the 

ratio. 
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 For    transitions the intraband B(E2) values have been estimated by 

assuming that the intrinsic E2 matrix elements in the ground and gamma bands are 

equal. Then combining these B(E2) values with the M1 values to the tabulated 

)1/( ME  transitions shown in Table (3-9). We note that in the DDM the intrinsic E2 

matrix element of the gamma band is smaller than that of the ground band due to the 

finite-dimensionality of the DDM space. 

 

3-3-4 Electric Monopole Transition Matrix element )0(E  

 

 Electric monopole (E0) transitions between nuclear levels proceed mainly by 

internal conversion with no transfer of angular momentum to the ejected electron. If 

the energy of the transition is greater than 2

02 cm  (where 0m  is the mass of the 

electron), they can occur via electron-positron pair creation. A less probable 

deexcitation mode which can proceed via an E0 transition is two-photon emission. It 

is not a priori clear why a connection exists between charge radii and E0 transitions. 

In fact, the argument is rather convoluted and we begin this section by recalling it. 

The argument can be generalized to effective operators, leading to a relation between 

charge radii and E0 transitions which forms the basis of the present study. 

 

 The electric monopole transition matrix element when using Bohr relation 

between the nuclear radius and the deformation is given by [59]: 

)63.......(....................
8

3
);0( 2 










fi JJiffi JJ
Z

JJE 


  

 

where the matrix  element <     > is evaluated numerically. This calculation predicts  

in Table (3- 21) the magnitudes as well as the signs of many matrix elements.  

 

 The E0 strength can be considered as the ratio between the reduced transition 

probability of competing E0 and electric quadrupole, E2, transitions de-populating the 

same level. The calculated values are presented in Table (3-21). It might be due to the 

small values of the transition probability of the electric quadrupole transitions. 

Unfortunately, we don’t have any more experimental data for comparison and 

justifying our calculations. 

 

 

Table (3-21 ): Monopole Matrix Element  0E  in e.b for 
120-140

Ba isotopes in DDM . 

  fi JJ  120
Ba

 122
Ba 

124
Ba 

126
Ba 

128
Ba 

128
Ba 

130
Ba Ba

132 134
Ba 

136
Ba 

140
Ba 

22 21 0.015 2.287 0.077 0.197 0.257 0.046 0.087 0.043 0.049 0.241 0.266 

02  01 0.183 0.1272 0.154 0.068 0.0023 0.0083 0.0083 0.0082 0.056 0.077 0.0910 

03  01 0.125 0.157 0.170 0.017 0.00044 0.00055 0.00097 0.0013 0.061 0.0041 0.0062 

03  02 0.093 0.118 0.176 0.0024 0.065 0.0034 0.0067 0.0023 0.0042 0.090 0.0980 

 

 

 As pointed out previously [141], a large X (E0/E2) value is not necessarily a 

signature of a  -vibrational state. For instance our calculated X (E0 / E2) value for 
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  12 22  transition. However, it be kept in mind that a large results from the 

vanishing B(E2) values, specially in the case of higher bands whose structure may be 

quite different from that of the lower bands. Because of the possibility of accidental 

cancellations in the calculation of a sum of terms with different signs, only the correct 

order of magnitude can be expected from present calculation of a large number of 

states and matrix element.  

 

 In the present X(E0/E2) branching ratios are used (Eq. (2-115)) to extract the 

)00;0( 12

 EB  and )00;0( 12

2  E values associated with 

20  states. Our results 

are shown in Table (3-22). In to complete the monopole values of 
120-140

Ba  isotopes, 

the measurements of E0 matrix elements of excited 

30  states in these isotopes are in 

progress. The ratio of the reduced transition probabilities, 

)00;2(/)00;0( 1212

  EBEBX  is in the range from 0.024 to 0.0423 which is 

close to transitional rotor value. However, the assumed two-phonon 

20  state is 

strongly pushed to high in energy, which is explained as being due to gamma-soft. 

 

 

Table (3-22 ): )2/0( EEX  
120-148

Ba isotopes in DDM 

  fi JJ  120
Ba

 122
Ba 

124
Ba 

126
Ba 

128
Ba 

128
Ba 

130
Ba Ba

132 134
Ba 

136
Ba 

140
Ba 

22 21 
0.0051 0.0029 0.0028 0.0029 0.0033 0.0061 0.0072 0.0078 

0.0079 

(0.69) 
0.0081 0.0095 

02  01 
0.024 0.017 0.0283 0.0180 0.0223 0.028 0.030 0.032 

0.035 

(2.8(2)) 
0.039 0.0423 

03  01 
0.0027 0.0025 0.0045 0.0056 0.0571 0.0086 0.0089 0.0091 0.0093 0.0095 0.0096 

03  02 
2.119 0..313 2.313 1.389 2.473 2.411 2.416 2.417 2.420 2.431 2.473 

   

  

 The 

20  state can be interpreted as a beta vibration, its probability distribution 

has roughly one node in beta. On the other hand, this state is characterized by two 

composing components: one prolate, more deformed than the 

10 band structure, and 

one more triaxial to oblate, less deformed structure. Similar observations for a      

multi-component structure can be made also for the other, higher-lying 0
+
 states. 

 

 

 The most conspicuous features of the 

30  states in 
120-140

Ba  isotopes is 

strongly enhanced E2 decay to the 

10  state. This may be connected with intriguing 

question of the possible deformation of the excited 0 state: the large B(E2) values 

could alternatively be interoperated to imply a vibrational structure associated e.g., 

with mixed bands. 

 

 From the Table (3-22), one can overall see a poor agreement with the 

experimental data. 



 96 

CHAPTER FOUR 

CONCLUSIONS AND SUGGESTIONS 

 

4-1 Concluding Remarks 

 
 In this work we have described various properties and shape evolution of the 

Ba isotopes in the framework of the interacting boson model (IBM-1 and IBM-2) and 

dynamic deformation model (DDM), we conclude the following points. 

 
 The main aim of the present study was to investigate the balance and the interplay 

between the nuclear collectivity and the shell structure in the lowest lying isovector states, 

the so called mixed mixed-symmetry states. The collected experimental data clearly 

demonstrate that the underlying microscopic structure of the nucleus can have a dramatic 

influence on the properties of mixed symmetry states and defines a new direction in the 

experimental studies of these states. In particular, the following questions have been 

addressed and resolved: 

 
1- The nuclear structure of 

120–148
Ba isotopes was studied and the phase transition 

from U(5) to SU(3), with moderate deformation, was found according to the 

increasing neutron number. The model  calculation of the F-spin values and 

electromagnetic transition probabilities as well as the mixing ratio shows that the 
 43 2,2

iJ  and 1
iJ   states are the lowest mixed symmetry states in the 

120−148
Ba 

isotopes, respectively. Therefore the Ba isotopes change is from O(6) ( 
132

Ba isotope,  

around neutron number 76) towards SU(3) ( 
132

Ba isotope, around neutron number 

66), to SU(5) ( 
110

Ba isotope around neutron number 54); 

 

2- The ratio )2(/)2( 12

 EE  decrease in some isotopes is not due to the falling 

22  state  

but is on account of rising of )2( 1

E at fast rate compared to )2( 2

E , which is even 

increasing at 
128

Ba isotope to 
134

Ba isotope. The pattern of spectrum here indicates a 

continuous phase transition from near SU(3) to gamma-soft rotor. 

 

3- The variation of the )4()2( 12

  EE  related to the potential difference between 

prolate and oblate shapes (VPO) in a given isotope, IBM-1 is well given in our 

calculation, including its sign change at 
132-140

Ba isotopes. 

 

4- The known g-factors of  12
iJ  and  22

iJ  states in these isotopes are 

reasonably described by the IBM-2. Concerning the electromagnetic properties, we 

mainly concentrated on electric quadrupole B(E2) transition probabilities. The 

investigation of electromagnetic properties provided us with an example of isotopes, 

detailed nuclear properties of which can be described in the framework of the 

collective models, interacting boson model (IBM-1 and IBM-2) and dynamic 

deformation model (DDM). However, it is still evident that there is a discrepancy 

between IBM-1 and DDM models  prediction and the experimental data. Hence, 

further experimental studies of these isotopes are needed. 
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5- New methods are used to evaluate the effective charges ),(  ee  and gyromagnetic 

factors ),(  gg for bosons which are used in electromagnetic transition probabilities.

   
6- Mixed-symmetric states are of isovector character. Their E2 decay to the 

corresponding fully-symmetric states is forbidden. Instead, strong M1 decays are 

expected to connect these states. In the case of the  MiJ ,12  state, a transition with a 

matrix element of  2
2

,11 12)1(2 NMMT    is expected. At the same time the E2 

transition to the ground-state can be expected to be weakly collective with a strength 

of the order of   1 e.b. These transition strengths result in a very short lifetime of the 
 MiJ ,12  state of the order of )2( ,1



M   100 fs.  

 

 

7- A common feature observed throughout all isotopic and isotonic chains in the 

region is the decrease in )22;1( 1

 iMB  strength on the way to mid-shell nuclei to 

almost vanishing values for the nucleus 
130

Ba isotope. However, if the large fragment 

of the mixed symmetry states in Ba isotopes could be confirmed, completely new 

questions would arise, in particular concerning the lack of comparably enhanced 

)22;1( 1

 iMB  strengths in the neighboring isotopes (nuclei). This means either, 

that these nuclei indeed have a  MiJ ,12  state but which resides at energies beyond 

the experimental detection limit, or, that this observation reflects a real physical effect 

that is unexplained at present. The discussion strongly depends on the nature of the 

2.371 MeV state in 
130

Ba isotope. For a continued discussion of the observations in 

the A= 130 mass region further investigation of this state is of utmost importance. 

Unfortunately, the experimental accessibility will presumably been hindered by the 

low natural abundance of Ba isotopes of only  0.1% [25]. 

 

8- The ratios  )1/2( ME  and )2/0( EEX  are important for nuclear structure and the 

model predictions due to their sensitivity for the nuclear shape. We conclude that 

more experimental work is needed to clarify the band structure and investigate an 

acceptable degree of agreement between the predictions of the models and the 

experimental data. 

 

9- In the IBM-2 it is possible to correlate a large amount of data in various regions of 

the periodic table. The parameters are found to be in qualitative agreement with the 

simple microscopic theory with the exception of  . Also the microscopic theory can 

be used to predict the properties of nuclei which are not known at present. 

 

10- We have analyzed the level structure of 
120-140

Ba isotopes in a microscopic theory 

in its time dependent, two major-shell version, called the Dynamic Deformation 

Model (DDM). This allows the isotope to take its own shape for given N and Z. Also 

shape variation with nuclear spin or excitation energy is allowed although, unlike 

IBM, no minimization is done for each level. The variation of the absolute B(E2) 

values is generally well reproduced in DDM as also in other approaches. However, 

variation of the   –g B(E2) ratios is much better reproduced in our DDM calculation. 
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11-The different behavior for N >82 and N <82 isotopes, regarding the sharp change 

for the former and smooth variation in the latter is well realized in terms of the 

nucleon occupation probabilities. The dynamics of the  rms and  rms obtained in 

DDM model agrees with other works. Similar agreement is obtained for the 

quadrupole moments of various states. 

 

12-The values of POV , the difference in the depth of prolate and oblate minima, is 

decreasing with increasing neutron number N in DDM calculation. From these values 

we obtain the prolate shape for the light Ba isotopes as in IBM-1. At  
134-140

Ba 

isotopes N = 78 80 and 84 the values of  VPO is negative but we obtain almost 

vanishing prolate and oblate minima. The predicted shape is not a permanently 

deformed one. In fact the predicted potential well at N = 76, 78, 80 and 84 

corresponds to the spherical shape (vibrational shape) anharmonic oscillator with flat 

bottom.  

 

13-  The  B(M1) values in DDM  vanish  in the hydrodynamic model, since in that 

model the g-values is independent of deformation ( )gI  and off-diagonal matrix 

elements of the angular momentum operator vanish. The g-value calculated 

microscopically [57] as a function of deformation deviates from a constant by %50   

and hence the B(M1) values given in Table (3-8) are non-zero. However, the 

calculated values are quite small compared to the shell model single particle values     

[58,59].    

 

4-2 Suggestions for Future Work 
 

 Several suggested projects remain for the future, which can be abbreviated by 

the following possible works:  

 

1-This work represents the preliminary attempt to apply the Dynamic Deformation   

 Model (DDM) to light nuclei (N <82) with reasonable success. More work is 

required for improving the input set of spherical single-particle energies. 

 

2- This  work can be extended to calculate the E4 (hexadecupole degree of freedom) 

in transitional nuclei, by addition of a g-boson (L = 4), to test the important  4K  

band in this  region. 

 

3- Study of the two-neutrino double-β decay  within the framework of the interacting  

 boson model (IBM-1 and IBM-2) and its extensions (IBFM-1 and IBFFM-2)      

models.  

 

4- Preferably, the entire calculation of DDM  should be  performed with better nuclear 

forces. This would, however, require a major change in theory of  collective motion 

and also an order of magnitude increase in computation time.    

 

5- Non-collective effects of deviations from the adiabatic  approximation should be 

included. They would clearly require a major overhaul or a completely new approach 

from the beautiful idea of collective quadrupole motion which has been extremely 

useful for understanding of nuclear structure.   
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6- The pairing variation become particularly important near closed shell since 

,0av  and fluctuations in   become large. However, this may require further 

increase in the computation time which already quite large (several hours per 

nucleus). 

 

7- The numerical accuracy, particularly that of the nearly forbidden transitions, can 

probably by improved using expansions of nuclear wave functions in a basis of 

spherical phonons of five dimensional oscillators. Then, this work could also be 

extended to states of higher angular momentum ( )4J . Work along this line is  

being carried out by my supervised (SN).   

 

8- Available information on mixed symmetry states in these isotopes has recently 

been summarized  and identified in some references remembered elsewhere in this 

thesis. The main reason for the small number of studied cases comes from the fact that 

the stable open-shell even-even isotopes in this mass region have relatively low 

abundance in natural material of a chemical element. This requires a development of 

new theoretical and experimental techniques which should allow mixed symmetry 

states such low-abundant nuclei to be identified and studied. These techniques should 

also be potentially applicable for investigations of  mixed symmetry states in 

radioactive nuclei. 

 
 Regardless that the results obtained in the present study shed light on some 

important properties of  evolution structure, it should not be considered as completed with 

regards to all phenomena related to the nuclear structure and mixed symmetry states. 

Rather, it provides some starting points for further investigations. The effect of shell 

stabilization, proposed in the present study, is only partially confirmed. It is still needed 

the latter to be investigated in details in other neighboring nuclei Te, Xe and Ce . This 

theoretical program has already begun with an experiment based for example, on 

projectile Coulomb excitations. In general, all further studies of nuclear structure and 

mixed symmetry states will be focused on radioactive nuclei. In particular, due to the 

sensitivity of mixed-symmetry states to the properties of the local valence shell, 

information on mixed-symmetry states would be very useful for nuclei where the shell 

structure deviates from the one at stability due to neutron excess. The main 

contribution of the present study to these future using collective models and 

experiments is methodological–we have clearly demonstrated that the collective 

models is the most appropriate one for studies of  mixed symmetry states in 

radioactive nuclei. 
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Table (3-8): Magnetic Transition Probability );1(   if JJMB  in 
2

N Units for Ba isotopes.  

)44;1( 12

 MB )43;1( 11

 MB )23;1( 11

 MB )22;1( 12

 MB  

Isotopes 

 
DDM IBM-2 IBM-1 DDM IBM-2 IBM-1 DDM IBM-2 IBM-1 DDM IBM-2 IBM-1 

0.022 0.0328 0.012 0.0055 0.0121 0.0087 0.0033 0.0005 0.0067 0.0429 0.022 0.012 Ba120 
1.204 0.103 0.0295 0.026 0.0432 0.0109 0.0043 0.621 0.0052 0.0032 0.0201 0.0185 Ba122 
0.0356 0.239 0.0362 0.0651 0.037 0.0122 0.00019 0.0034 0.00049 0.0157 0.0188 0.019 Ba124 
0.095 0.271 0.0088 0.065 0.075 0.0020 0.0820 0.0039 0.00011 0.0236 0.0046 0.0038 Ba126 
0.056 0.224 0.0488 0.0881 0.237 0.0144 0.0123 0.0085 0.00032 0.00040 0.0362 0.0232 Ba128 
0.066 0.216 0.142 0.0102 0.236 0.0509 0.0050 0.0031 0.00088 0.00040 0.045 0.0770 Ba130 
0.026 0.211 0.0433 0.0241 0.116 0.0147 0.009 0.0056 0.00012 0.00065 0.016 0.0221 Ba132 
0.0101 0.0031 0.0039 0.022 0.0029 0.0013 0.074 0.0032 0.00004 0.00101 0.046 0.00220 Ba134 
0.0241 0.876 0.0531 0.0356 0.098 0.0178 0.101 0.212 0.000042 0.00291 0.009 0.0328 Ba136 
0.076 0.0014 0.0562 0.0432 0.00043 0.0241 0.1011 0.0025 0.0034 0.00331 0.246 0.03281 Ba140 

- 0.163 0.0673 - 0.172 0.0382 - 0.1194 0.00623 - 0.035 0.0356 Ba142 
- 0.631 0.077 - 0.621 0.0452 - 0.0005 0.0054 - 0.0046 0.0431 Ba144 
- 0.38 0.0861 - 1.31 0.0563 - 0.621 0.0876 - 0.0021 0.0571 Ba146 
- 0.36 0.0964 - 0.38 0.0667 - 0.0034 0.0973 - 0.0002 0.0055 Ba148 
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Table (3-9): Mixing Ratios for  
120-148

Ba isotopes in Nbe /.  Units 

)23,2( 11

 E )22,2( 13

 E )22,2( 12

 E  

Isotopes 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

10.3 7.56 12 - 10.2 2.43 7.22 - 5.23 5.2 4.66 - Ba120 
0.227 11 17.5 - 0.32 0.89 0.871 - 5.22 4.66 3.876 - Ba122 
5.7 5.5 11.86 - -3.98 -2.1 -2.65 - 1.9 3.10 2.762 - Ba124 

14.45 13 21.6 - 2.89 3.2 1.23 - 4.2 -8 6.5 2

15

 Ba126 

1.34 2.89 8.45 - 1.223 3.61 0.912 - 0.659 0.66 0.422 - Ba128 
7 4.1 4.78 2

15

 3.98 -20.44 -4.09 -23(9) 0.541 0.251 0.311 0.296 Ba130 

3.5 3.5 9.2 10

105.2 

 12.89 14 11.6 - 11 10 7.145 40

185.8 

 Ba132 

19 1.97 1.6 5.1

158.1 

 14 2.6 1.43 - -9 -7.65 -8.410 9

94.7 

 Ba134 

-5.32 -3.87 -2.56 - 8.3 10 6.9 - 2.3 -2.33 -2.41 6

155.1 

 Ba136 

1.22 10 12 - - 0.31 0.21 6

518.0 

 0.998 0.91 1.1 18

66.0 

 Ba140 

- -0.23 -0.423 - - 2 1.1 -0.93(29) - 13 13 >10 Ba142 
- 7.43 10.3 - - -4.7 -4.67 18

62.3 

 - 8.2 9.3 19

3.7 

 Ba144 

- 1.23 21 - - 2.21 1.90 - - 6.4 1.414 - Ba146 
- 0.81 0.549 - - 0.45 0.761 - - 1.24 0.556 - Ba148 

 
Experimental data are taken from refs. [105, 125, 126, 127] 
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Continued to Table (3-9) 

)44,2( 12

 E )23,2( 21

 E )43,2( 11

 E  

Isotopes DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 
5.6 0.279 3.3 - 0.121 1.23 5.43 - 1.88 2.1 4.22 - Ba120 

2.54 1.25 2.30 - 4.87 2.0 3.87 - 4.5 3.78 3.86 - Ba122 
2.13 6.5 1.54 - 6 -4.3 4.6 - -3.4 -2.25 -1.85 - Ba124 
9.34 1.413 8.58 > 1 12 -2.56 3.34 - 10.2 5 4.76 - Ba126 
1.0 2.0 1.08 - 0.651 6.0 5.98 - 0.45 5.8 1.10 - Ba128 

7.12 1.09 0.871- - 1.0 1.209 1.08 - 0.779 0.24 0.661 - Ba130 
-4 -9.0 -2.2 2

21.1 

 2.12 8.0 6.7 1.1

2.10.4 

 1.451 0.77 1.55 - Ba132 

0.54 2.87 1.3 2

229.0 

 -2.16 -15.3 -19.7 23

617

 9.77 1.4 2.44 - Ba134 

1.9 5 4.5 6

68.0 

 3.1 10.5 11.6 - 3.21 2.12 1.11 - Ba136 

4.8 4.9 2.7 - 4.21 -9.5 -6.78 - 5.87 3.7 2.27 - Ba140 
- -9.8 -0.887 - - 3.45 1.242 - - 0.89 1.897 - Ba142 
- 2.761 1.65 - - 2.0 2.07 - - 1.65 0.302 - Ba144 
- 4.0 3.65 - - 3.09 1.891 - - 2.54 1.97 - Ba146 
- 12 7.8 - - 8.45 2.810 - - 16.3 8.8 - Ba148 

Experimental data are taken from refs. [105, 125, 126, 127] 
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Table (3- 2): Experimental and theoretical values of energy ratios in Ba isotopes. 

)2(/)0( 12

 EE )4(/)0( 12

 EE )2(/)2( 12

 EE )2(/)6( 11

 EE )2(/)4( 11

 EE  

Isotopes 

 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

6.612 4.973 4.682 - 2.485 1.700 1.601 - 6.807 4.435 4.284 - 5.218 5.231 4.983 5.592 2.927 2.924 2.924 2.924 Ba120 
6.303 3.717 4.466 - 2.294 1.276 1.377 - 6.797 3.205 3.697 3.155 5.166 4.579 4.774 5.543 2.747 2.901 2.907 2.902 Ba122 
4.978 3.864 4.021 3.921 1.885 .1.361 1.414 1.378 5.690 3.786 3.759 3.798 4.833 5.179 5.532 5.342 2.640 2.838 2.842 2.834 Ba124 
4.177 3.406 3.433 3.839 1.660 1.226 1.236 1.382 4.132 2.945 3.050 3.412 4.462 5.257 5.113 5.204 2.516 2.777 2.777 2.777 Ba126 
3.780 3.144 3.056 3.316 1.552 1.171 1.136 1.234 2.806 3.440 3.275 3.114 4.113 4.975 5.109 4.953 2.389 2.683 2.689 2.687 Ba128 
3.470 3.081 3.389 3.302 1.517 1.222 1.344 1.307 2.806 2.490 2.579 2.540 3.844 4.450 4.445 4.456 2.287 2.521 2.521 2.523 Ba130 
2.849 3.290 3.211 3.239 1.306 1.354 1.320 1.333 2.118 2.258 2.123 2.220 3.551 4.071 4.077 4.159 2.181 2.428 2.431 2.427 Ba132 
2.675 2.802 2.773 2.911 1.229 1.209 1.194 1.257 2.225 1.932 1.700 1.931 3.512 4.008 3.928 3.656 2.185 2.317 2.321 2.316 Ba134 
3.841 1.922 1.677 1.929 1.830 0.842 0.735 0.845 2.108 2.588 2.567 1.894 3.260 2.702 2.715 2.696 2.098 2.281 2.279 2.280 Ba136 
3.311 2.990 2.978 3.027 2.485 1.592 1.582 1.613 2.081 2.460 2.380 2.507 3.022 2.719 2.692 2.756 2.001 1.877 1.982 1.876 Ba140 

- 4.431 4.142 4.270 - 1.907 1.789 1.839 - 3.938 3.835 3.960 - 4.044 3.199 4.076 - 2.383 2.314 2.321 Ba142 
- 5.025 4.889 5.125 - 1.886 1.771 1.924 - 9.231 8.804 9.286 - 4.859 4.457 4.829 - 2.663 2.658 2.663 Ba144 
- 5.364 5.524 5.813 - 1.896 1.956 2.049 - 6.110 6.690 6.159 - 4.563 5.154 5.292 - 2.828 2.823 2.836 Ba146 
- 10.156 10.255 - - 3.385 3.434 - - 8.021 6.858 7.439 - 5.751 5.822 5.697 - 3 2.985 2.983 Ba148 

2 1 2 3 2 )5(SU 

4.5 ~1 > 2 4.5 2.5 )6(O 

>> 2 >> 1 3 7 3.3 )3(SU 

Experimental data are taken from refs. [105]  
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Table (3-3 ): Experimental and theoretical values of min ,  dE , POV  energy difference )4()2( 12

  EE and  )2( 1

Q  in Ba isotopes. 

beQ ,)2( 1


  MeV)4()2( 12

  EE )(MeVVPO )(MeVEd min Isotopes 

DDM IBM-1 Exp. DDM IBM-1 Exp. DDM IBM-1 Exp. DDM IBM-1 Exp. DDM IBM-1 Exp. 
-1.8 -1.770 - 0.649 0.253 - 2.640 - - 3.421 - - 0.264 0.241 - Ba120 
-1.49 -1.414 -1.52(7) 0.802 0.154 - 2.470 2.44 - 3.320 - - 0.266 0.260 - Ba122 
-1.33 -1.30 -1.31(4) 0.645 0.21 0.222 2.066 2.04 - 2.949 - - 0.234 0.210 - Ba124 
-1.26 -1.22 -1.20(4) 0.391 0.07 0.162 1.477 1.49 - 2.411 - - 0.237 0.211 - Ba126 
-1.20 -1.15 -1.10(4) 0.132 0.012 .1210 1.120 1.09 - 1.801 - - 0.234 0.230 - Ba128 
-1.11 -1.08 -1.02(15) -0.002 0.021 0.007 0.455 0.43 - 1.002 - - 0.231 0.227 0.23 Ba130 
-0.99 -0.92 -0.84(3) -0.032 -0.143 -0.096 0.068 0.0051 - 0.281 - - 0.230 0.221 0.19 Ba132 
-0.22 -0.32 -0.31(24) 0.033 -0.375 -0.233 -0.070 -0.065 - 0.062 - - -0.082 -0.077 - Ba134 
-0.20 -0.18 -0.19(6) 0.007 0.244 0.027 -0.087 -0.080 - 0.088 - - -0.088 -0.084 - Ba136 
-0.16 -0.16 - - 0.30 0.380 -0.009 -0.091 - 0.0097 - - -0.092 -0.095 - Ba140 

  
Experimental data are taken from refs. [ 105, 106]  
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Table (3-6): Experimental and theoretical values of Electric Transition  Probabilities  );2(   fi JJEB  in e
2
b

2
 Units for Ba isotopes.  

)02;2( 12

 EB )46;2( 11

 EB )24;2( 11

 EB )02;2( 11

 EB  

Isotopes 

 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

0.021 0.334 0.320 - 0.822 0.786 0.823 - - 0.810 0.789 - 0.524 0.600 0.621 - Ba120 
0.013 0.281 0.296 - 0.734 0.701 0.734 - 0.622 0.740 0.727 - 0.427 0.541 0.532 0.54 Ba122 
0.014 0.200 0.201 - 0.710 0.643 0.671 0.64(2) 0.571 0.622 0.633 0.626 0.381 0.400 0.413 0.401 Ba124 

0.0135 0.195 0.198 - 0.66 0.482 0.510 0.49(2) 0.500 0.439 0.438 0.440 0.311 0.399 0.375 0.380 Ba126 
0.0085 0.134 0.16 0.13(2) 0.521 0.422 0.382 0.39(3) 0.432 0.422 0.442 0.41(2) 0.298 0.266 0.280 0.276 Ba128 
0.0028 0.161 0.20 0.15(2) 0.467 0.362 0.311 0.37(2) 0.329 0.216 0.220 0.219 0.228 0.231 0.229 0.230 Ba130 
0.0011 0.111 0.11 - 0.368 0.311 0.300 - 0.301 0.196 0.197 0.210 0.101 0.148 0.201 0.158 Ba132 

0.00082 0.0018 0.0019 0.0017(5) 0.301 0.212 0.181 - 0.22 0.155 0.156 0.161(18) 0.077 0.133 0.136 0.134(2) Ba134 
0.00065 0.0021 0.001 - 0.279 0.081 0.093 - 0.181 0.095 0.088 0.080 0.0542 0.092 0.084 0.094 Ba136 

- 0.00092 0.0009 - - 0.078 0.088 0.081(4) - 0.209 0.211 0.203(18) - 0.036 0.034 0.037(34) Ba140 
- 0.00081 0.0008 - - 0.071 0.073 - - 0.421 0.422 0.419(64) - 0.142 0.0.133 0.145(5) Ba142 
- 0.00076 0.0006 - - 0.066 0.062 - - 0.514 0.613 - - 0.224 0.241 0.221(6) Ba144 
- 0.00023 0.00015 - - 0.051 0.056 - - 0.701 0.821 0.799(70) - 0.225 0301 0.280(60) Ba146 
- 0.00021 0.00033 - - 0.048 0.0341 - - 0.865 0.925 - - 0.349 0.410 - Ba148 

 
Experimental data are taken from refs. [105, 115, 116, 117, 118, 119, 120] 
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Continued to Table (3-6) 
  

)23;2( 11

 EB )20;2( 12

 EB )22;2( 13

 EB )02;2( 13

 EB  

Isotopes 

 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

0.093 0.0500 0.0520 - 0.076 0.087 0.076 - 0.023 0.0032 0.0029 - 0.0043 0.0076 0.0056 - Ba120 
0.088 0.0462 0.0460 - 0.062 0.079 0.068 - 0.015 0.0026 0.0011 - 0.0032 0.0053 0.0042 - Ba122 
0.116 0.0331 0.0341 - 0.113 0.110 0.109 - 0.011 0.00055 0.00065 - 0.0030 0.0039 0.0038 - Ba124 
0.146 0.0267 0.0262 - 0.123 0.129 0.125 - 0.00081 0.00024 0.00014 - 0.0028 0.0030 0.0029 - Ba126 
0.229 0.019 0.017 - 0.163 0.188 0.176 - 0.0013 0.0025 0.0023 - 0.00282 0.0027 0.0015 - Ba128 
0.311 0.0031 0.0032 - 0.071 0.163 0.133 - 0.0012 0.00020 0.00018 - 0.00261 0.0025 0.0032 - Ba130 
0.248 0.0123 0.0121 - 0.100 0.063 0.055 - 0.00058 0.00023 0.00026 - 0.00202 0.0021 0.0012 - Ba132 
0.193 0.0007 0.0045 0.0009(34) 0.0098 0.112 0.116 - 0.00021 0.0077 0.0067 0.0045(20) 0.0020 0.0019 0.0014 0.0018(6) Ba134 
0.176 0.0058 0.0056 - 0.0082 0.174 0.170 - 0.00020 0.0059 0.0056 - 0.00087 0.0017 0.0019 - Ba136 
0.177 0.0061 0.0067 - 0.0081 0.200 0.210 - - 0.0050 0.0054 - 0.00056 0.00089 0.0009 - Ba140 

- 0.0079 0.0072 - - 0.233 0.241 - - 0.0053 0.0051 - - 0.000851 0.00081 - Ba142 
- 0.0071 0.0074 - - 0.0270 0.0278 - - 0.0049 0.0043 - - 0.00074 0.00064 - Ba144 
- 0.0067 0.0065 - - 0.0051 0.0050 >.0046 - 0.00444 0.00341 - - 0.00065 0.0005 - Ba146 
- 0.0060 0.0068 - - 0.0035 0.0032 - - 0.0030 0.0028 - - 0.00045 0.00043 - Ba148 

 
Experimental data are taken from refs. [105, 115, 116, 117, 118, 119, 120] 
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: Branching Ratios of 
120-148

Ba isotopes(Table (3-7) 

)23;2(/)43,2( 2111

  EBEB )23;2(/)23,2( 2111

  EBEB )22;2(/)02,2( 1212

  EBEB  

Isotopes DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 
1.21 1.362 1.462 - 0.873 0.922 0.952 - 0.311 0.291 0.231 - Ba120 

1.514 1.350 1.30 1.35 0.812 0.752 0.791 0.86 0.302 0.217 0.210 - Ba122 
2.41 1.0202 1.002 - 0.800 0.075 0.070 - 0.221 0.184 0.194 0.17 (5) Ba124 

0.156 0.127 0.120 0.13 0.552 0.068 0.066 0.046 0.201 0.130 0.137 0.11 (2) Ba126 
0.133 0.133 0.129 0.14 0.0610 0.060 0.059 0.064 0.199 0.109 0.210 0.11 Ba128 
0.145 0.185 0.165 0.17 0.0430 0.038 0.036 0.038 0.096 0.068 0.098 0.054 Ba130 
0.231 0.342 0.331 0.31 0.0410 0.040 0.039 0.033 0.033 0.0270 0.0290 0.026 Ba132 
0.356 0.463 0.452 0.53 0.021 0.026 0.019 0.013 0.0056 0.009 0.008 0.006 Ba134 
0.478 0.545 0.522 - 0.0034 0.0212 0.022 - 0.0045 0.0098 0.0092 - Ba136 
0.541 0.676 0.611 - - 0.0189 0.019 - 0.0036 0.0088 0.00987 - Ba140 

- 0.756 0.656 - - 0.0123 0.011 - - 0.00031 0.00034 - Ba142 
- 0.723 0.623 - - 0.0089 0.009 - - 0.00029 0.00031 - Ba144 
- 0.700 0.691 - - 0.0072 0.007 - - 0.00031 0.00024 - Ba146 
- 0.821 0.703 - - 0.0037 0.0033 - - 0.0002 0.00018 - Ba148 

 
Experimental are taken from refs. [122, 123, 124] 
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Continued to Table (3-7) 

)24;2(/)44,2( 2212

  EBEB )24;2(/)24,2( 2212

  EBEB )43;2(/)23,2( 1111

  EBEB  

Isotopes DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 
0.167 0.201 0.171 - 0.0065 0.0021 0.0041 - 0.341 0.551 0.459 - Ba120 
0.336 0.231 0.211 - 0.0052 0.00550 0.0050 - 0.256 0.321 0.310 0.20 Ba122 
0.279 0.246 0.26 0.29(6) 0.0061 0.0058 0.0059 0.005 0.561 0.355 0.348 - Ba124 
0.267 0.298 0.29 0.28(3) 0.0087 0.0089 0.0079 0.008 0.472 0.462 0.441 0.40 Ba126 
0.261 0.320 0.30 0.26(3) 0.019 0.0189 0.019 0.015 0.481 0.486 0.456 0.41 Ba128 
0.562 0.595 0.59 0.67 0.043 0.0292 0.027 0.022 0.031 0.039 0.031 0.022 Ba130 

13 1.203 1.20 15< 0.86 0.053 0.0221 0.021 0.015 0.0493 0.066 0.062 0.05 Ba132 
0.971 0.825 0.82 0.72 0.045 0.033 0.031 0.024 0.015 0.017 0.015 0.012 Ba134 
1.223 0.942 0.92 - 0.0066 0.039 0.034 - 0.113 0.0183 0.013 - Ba136 
2.652 1.233 1.23 - 0.00742 0.0475 0.045 - 0.322 0.0021 0.001 - Ba140 

- 1.356 1.35 - - 0.0560 0.056 - - 0.00213 0.0013 - Ba142 
- 1.671 1.651 - - 0.0598 0.058 - - 0.00215 0.0025 - Ba144 
- 1.920 1.90 - - 0.0664 0.064 - - 0.00011 0.0001 - Ba146 
- 2.211 2.11 - - 0.0783 0.073 - - 0.0057 0.0053 - Ba148 

 
Experimental are taken from refs. [122, 123, 124] 

 

 

 

 

 

 

 

 



 14 

Continued to Table (3-7) 

)22;2(/)02,2( 1313

  EBEB )22;2(/)22,2( 1323

  EBEB )20;2(/)20,2( 2212

  EBEB  

Isotopes 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

3.262 3.149 2.43 - 1.623 4.89 9 - 0.663 0.0216 0.016 - Ba120 
2.762 3.619 3.610 - 23 10.156 12.56 - 0.584 0.0270 0.020 - Ba122 
5.33 5.615 4.654 - 80.6 2.981 22 - 0.550 0.0121 0.021 > 0.013 Ba124 

4.326 3.117 11 - 36 10.24 10.2 - 0.511 0.013 0.019 > 0.01 Ba126 
1.092 1.391 1.976 - 18 7.50 8.55 - 0.457 0.0024 0.0035 0.002 Ba128 
0.585 0.152 0.112 - 10.2 12.121 9.11 44 0.425 0.034 0.043 0.032 Ba130 

0.2280 0.640 0.342 - 1.70 0.425 0.23 4 2.861 0.0464 0.044 - Ba132 
0.300 1.415 1.234 0.035 4.44 2.181 2.87 0.22 12.6 0.0491 0.051 0.04 Ba134 
0.341 2.287 2.87 - 3.91 4.340 3.132 - 10.23 0.045 0.055 - Ba136 

3.2 8 10 - 2.5 4.809 4.09 - 8.83 0.086 0.073 - Ba140 
- 8.5 9.22 - - 5.177 4.76 - - 0.0873 0.073 - Ba142 
- 12.121 2.11 - - 1.322 0.32 - - 0.0848 0.084 - Ba144 
- 3.10 3.12 - - 1.853 1.651 - - 0.0832 0.082 - Ba146 
- .2104 .980 - - 13.11 11.09 - - 0.0897 0.089 - Ba148 
- 1.554 1.34 - - 0.0414 0.0098 - - 0.010 0.0098 - Ba150 

Experimental are taken from refs. [122, 123, 124] 
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Table (3-8): Magnetic Transition Probability );1(   if JJMB  in 
2

N Units for Ba isotopes.  

)44;1( 12

 MB )43;1( 11

 MB )23;1( 11

 MB )22;1( 12

 MB  

Isotopes 

 
DDM IBM-2 IBM-1 DDM IBM-2 IBM-1 DDM IBM-2 IBM-1 DDM IBM-2 IBM-1 

0.022 0.0328 0.012 0.0055 0.0121 0.0087 0.0033 0.0005 0.0067 0.0429 0.022 0.012 Ba120 
1.204 0.103 0.0295 0.026 0.0432 0.0109 0.0043 0.621 0.0052 0.0032 0.0201 0.0185 Ba122 
0.0356 0.239 0.0362 0.0651 0.037 0.0122 0.00019 0.0034 0.00049 0.0157 0.0188 0.019 Ba124 
0.095 0.271 0.0088 0.065 0.075 0.0020 0.0820 0.0039 0.00011 0.0236 0.0046 0.0038 Ba126 
0.056 0.224 0.0488 0.0881 0.237 0.0144 0.0123 0.0085 0.00032 0.00040 0.0362 0.0232 Ba128 
0.066 0.216 0.142 0.0102 0.236 0.0509 0.0050 0.0031 0.00088 0.00040 0.045 0.0770 Ba130 
0.026 0.211 0.0433 0.0241 0.116 0.0147 0.009 0.0056 0.00012 0.00065 0.016 0.0221 Ba132 
0.0101 0.0031 0.0039 0.022 0.0029 0.0013 0.074 0.0032 0.00004 0.00101 0.046 0.00220 Ba134 
0.0241 0.876 0.0531 0.0356 0.098 0.0178 0.101 0.212 0.000042 0.00291 0.009 0.0328 Ba136 
0.076 0.0014 0.0562 0.0432 0.00043 0.0241 0.1011 0.0025 0.0034 0.00331 0.246 0.03281 Ba140 

- 0.163 0.0673 - 0.172 0.0382 - 0.1194 0.00623 - 0.035 0.0356 Ba142 
- 0.631 0.077 - 0.621 0.0452 - 0.0005 0.0054 - 0.0046 0.0431 Ba144 
- 0.38 0.0861 - 1.31 0.0563 - 0.621 0.0876 - 0.0021 0.0571 Ba146 
- 0.36 0.0964 - 0.38 0.0667 - 0.0034 0.0973 - 0.0002 0.0055 Ba148 
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Table (3-9): Mixing Ratios for  
120-148

Ba isotopes in Nbe /.  Units 

)23,2( 11

 E )22,2( 13

 E )22,2( 12

 E  

Isotopes 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

10.3 7.56 12 - 10.2 2.43 7.22 - 5.23 5.2 4.66 - Ba120 
0.227 11 17.5 - 0.32 0.89 0.871 - 5.22 4.66 3.876 - Ba122 
5.7 5.5 11.86 - -3.98 -2.1 -2.65 - 1.9 3.10 2.762 - Ba124 

14.45 13 21.6 - 2.89 3.2 1.23 - 4.2 -8 6.5 2

15

 Ba126 

1.34 2.89 8.45 - 1.223 3.61 0.912 - 0.659 0.66 0.422 - Ba128 
7 4.1 4.78 2

15

 3.98 -20.44 -4.09 -23(9) 0.541 0.251 0.311 0.296 Ba130 

3.5 3.5 9.2 10

105.2 

 12.89 14 11.6 - 11 10 7.145 40

185.8 

 Ba132 

19 1.97 1.6 5.1

158.1 

 14 2.6 1.43 - -9 -7.65 -8.410 9

94.7 

 Ba134 

-5.32 -3.87 -2.56 - 8.3 10 6.9 - 2.3 -2.33 -2.41 6

155.1 

 Ba136 

1.22 10 12 - - 0.31 0.21 6

518.0 

 0.998 0.91 1.1 18

66.0 

 Ba140 

- -0.23 -0.423 - - 2 1.1 -0.93(29) - 13 13 >10 Ba142 
- 7.43 10.3 - - -4.7 -4.67 18

62.3 

 - 8.2 9.3 19

3.7 

 Ba144 

- 1.23 21 - - 2.21 1.90 - - 6.4 1.414 - Ba146 
- 0.81 0.549 - - 0.45 0.761 - - 1.24 0.556 - Ba148 

 
Experimental data are taken from refs. [105, 125, 126, 127] 
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Continued to Table (3-9) 

)44,2( 12

 E )23,2( 21

 E )43,2( 11

 E  

Isotopes DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 
5.6 0.279 3.3 - 0.121 1.23 5.43 - 1.88 2.1 4.22 - Ba120 

2.54 1.25 2.30 - 4.87 2.0 3.87 - 4.5 3.78 3.86 - Ba122 
2.13 6.5 1.54 - 6 -4.3 4.6 - -3.4 -2.25 -1.85 - Ba124 
9.34 1.413 8.58 > 1 12 -2.56 3.34 - 10.2 5 4.76 - Ba126 
1.0 2.0 1.08 - 0.651 6.0 5.98 - 0.45 5.8 1.10 - Ba128 

7.12 1.09 0.871- - 1.0 1.209 1.08 - 0.779 0.24 0.661 - Ba130 
-4 -9.0 -2.2 2

21.1 

 2.12 8.0 6.7 1.1

2.10.4 

 1.451 0.77 1.55 - Ba132 

0.54 2.87 1.3 2

229.0 

 -2.16 -15.3 -19.7 23

617

 9.77 1.4 2.44 - Ba134 

1.9 5 4.5 6

68.0 

 3.1 10.5 11.6 - 3.21 2.12 1.11 - Ba136 

4.8 4.9 2.7 - 4.21 -9.5 -6.78 - 5.87 3.7 2.27 - Ba140 
- -9.8 -0.887 - - 3.45 1.242 - - 0.89 1.897 - Ba142 
- 2.761 1.65 - - 2.0 2.07 - - 1.65 0.302 - Ba144 
- 4.0 3.65 - - 3.09 1.891 - - 2.54 1.97 - Ba146 
- 12 7.8 - - 8.45 2.810 - - 16.3 8.8 - Ba148 

Experimental data are taken from refs. [105, 125, 126, 127] 
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Table (3-7): Branching Ratios of 
120-148

Ba isotopes(Table (3-7) 

)23;2(/)43,2( 2111

  EBEB )23;2(/)23,2( 2111

  EBEB )22;2(/)02,2( 1212

  EBEB  

Isotopes DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 
1.21 1.362 1.462 - 0.873 0.922 0.952 - 0.311 0.291 0.231 - Ba120 

1.514 1.350 1.30 1.35 0.812 0.752 0.791 0.86 0.302 0.217 0.210 - Ba122 
2.41 1.0202 1.002 - 0.800 0.075 0.070 - 0.221 0.184 0.194 0.17 (5) Ba124 

0.156 0.127 0.120 0.13 0.552 0.068 0.066 0.046 0.201 0.130 0.137 0.11 (2) Ba126 
0.133 0.133 0.129 0.14 0.0610 0.060 0.059 0.064 0.199 0.109 0.210 0.11 Ba128 
0.145 0.185 0.165 0.17 0.0430 0.038 0.036 0.038 0.096 0.068 0.098 0.054 Ba130 
0.231 0.342 0.331 0.31 0.0410 0.040 0.039 0.033 0.033 0.0270 0.0290 0.026 Ba132 
0.356 0.463 0.452 0.53 0.021 0.026 0.019 0.013 0.0056 0.009 0.008 0.006 Ba134 
0.478 0.545 0.522 - 0.0034 0.0212 0.022 - 0.0045 0.0098 0.0092 - Ba136 
0.541 0.676 0.611 - - 0.0189 0.019 - 0.0036 0.0088 0.00987 - Ba140 

- 0.756 0.656 - - 0.0123 0.011 - - 0.00031 0.00034 - Ba142 
- 0.723 0.623 - - 0.0089 0.009 - - 0.00029 0.00031 - Ba144 
- 0.700 0.691 - - 0.0072 0.007 - - 0.00031 0.00024 - Ba146 
- 0.821 0.703 - - 0.0037 0.0033 - - 0.0002 0.00018 - Ba148 

 
Experimental are taken from refs. [122, 123, 124] 
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Continued to Table (3-7) 

)24;2(/)44,2( 2212

  EBEB )24;2(/)24,2( 2212

  EBEB )43;2(/)23,2( 1111

  EBEB  

Isotopes DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 
0.167 0.201 0.171 - 0.0065 0.0021 0.0041 - 0.341 0.551 0.459 - Ba120 
0.336 0.231 0.211 - 0.0052 0.00550 0.0050 - 0.256 0.321 0.310 0.20 Ba122 
0.279 0.246 0.26 0.29(6) 0.0061 0.0058 0.0059 0.005 0.561 0.355 0.348 - Ba124 
0.267 0.298 0.29 0.28(3) 0.0087 0.0089 0.0079 0.008 0.472 0.462 0.441 0.40 Ba126 
0.261 0.320 0.30 0.26(3) 0.019 0.0189 0.019 0.015 0.481 0.486 0.456 0.41 Ba128 
0.562 0.595 0.59 0.67 0.043 0.0292 0.027 0.022 0.031 0.039 0.031 0.022 Ba130 

13 1.203 1.20 15< 0.86 0.053 0.0221 0.021 0.015 0.0493 0.066 0.062 0.05 Ba132 
0.971 0.825 0.82 0.72 0.045 0.033 0.031 0.024 0.015 0.017 0.015 0.012 Ba134 
1.223 0.942 0.92 - 0.0066 0.039 0.034 - 0.113 0.0183 0.013 - Ba136 
2.652 1.233 1.23 - 0.00742 0.0475 0.045 - 0.322 0.0021 0.001 - Ba140 

- 1.356 1.35 - - 0.0560 0.056 - - 0.00213 0.0013 - Ba142 
- 1.671 1.651 - - 0.0598 0.058 - - 0.00215 0.0025 - Ba144 
- 1.920 1.90 - - 0.0664 0.064 - - 0.00011 0.0001 - Ba146 
- 2.211 2.11 - - 0.0783 0.073 - - 0.0057 0.0053 - Ba148 

 
Experimental are taken from refs. [122, 123, 124] 
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Continued to Table (3-7) 

)22;2(/)02,2( 1313

  EBEB )22;2(/)22,2( 1323

  EBEB )20;2(/)20,2( 2212

  EBEB  

Isotopes 
DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. DDM IBM-2 IBM-1 Exp. 

3.262 3.149 2.43 - 1.623 4.89 9 - 0.663 0.0216 0.016 - Ba120 
2.762 3.619 3.610 - 23 10.156 12.56 - 0.584 0.0270 0.020 - Ba122 
5.33 5.615 4.654 - 80.6 2.981 22 - 0.550 0.0121 0.021 > 0.013 Ba124 

4.326 3.117 11 - 36 10.24 10.2 - 0.511 0.013 0.019 > 0.01 Ba126 
1.092 1.391 1.976 - 18 7.50 8.55 - 0.457 0.0024 0.0035 0.002 Ba128 
0.585 0.152 0.112 - 10.2 12.121 9.11 11 0.425 0.034 0.043 0.032 Ba130 

0.2280 0.640 0.342 - 1.70 0.425 0.23 4 2.861 0.0464 0.044 - Ba132 
0.300 1.415 1.234 0.035 3.36 2.181 2.87 0.22 12.6 0.0491 0.051 0.04 Ba134 
0.341 2.287 2.87 - 3.91 4.340 3.132 - 10.23 0.045 0.055 - Ba136 

3.2 8 10 - 2.5 4.809 4.09 - 8.83 0.086 0.073 - Ba140 
- 8.5 9.22 - - 5.177 4.76 - - 0.0873 0.073 - Ba142 
- 12.121 2.11 - - 1.322 0.32 - - 0.0848 0.084 - Ba144 
- 3.10 3.12 - - 1.853 1.651 - - 0.0832 0.082 - Ba146 
- .2101 .980 - - 13.11 11.09 - - 0.0897 0.089 - Ba148 
- 1.554 1.34 - - 0.0414 0.0098 - - 0.010 0.0098 - Ba150 

Experimental are taken from refs. [122, 123, 124] 
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 الخلاصــــــــــــــــــــــــة
 

لقدددم فددددا ادددد  رددددال لليبددددو م لادددق للف لكددددغ لليددددللظ لل يفقدددد    للل  ل  ي  كاددددكق لي دددد     
  (collective models)للزلجكدددق ي ادددفلملا للي دددد اة للفج ك كدددق -للزلجكدددق 148120Baلليددد  كلا 

لي دلاة للفودلا للب لد     (Interacting Boson Model (IBM))ي لاة لليلزليد   لل فا لةدق 
Dynamic  Deformation Model (DDM))  . بكو فدا م لادق  ادفلك   لل  ودق للبف  لكدق

 MB)1(، لل يفقدد    اي  كددق للق ددغ لل  ي  كاددكق EB)2(ل يفقدد    للل  ي  كددق  ي لكددق للق ددغ 
)1/2( (mixing ratios). يادددغ لللةددد  EB)0( للددداللا ل يفقددد     ب مكدددق للق دددغ ME ،

)2/0( EEX ،      إضددد اق إلدددة م لادددق لل مكدددم  دددي لللخددد  ل لليللكدددق لرلددد    اددد  إزلبدددق للي ددد
 2r  لللإزلبدددق ل كزل ك كدددق 2rاي  كدددق   لق دددغ للل  ي  كدددق للل دددزلا، لل دددزلا  ي لكدددق ل

 للق غ لل  ي  كاكق. 
  (effective charges)فددا ل لف دد م لةددة  دد ف بمكاددق ادد  بادد غ للوددبي   للا  لددق  

),(  ee   لةيلزليدددددد   لللفدددددد  لاددددددفلم   ادددددد  بادددددد غ ل يفقدددددد    للل  ي  كددددددق، للدددددداللا لل لل دددددد
),(للجك ل  ي  كاكق  لةيلزلي      gg  .لللف  لافلم   ا  با غ ل يفق    لل  ي  كاكق 

 
للزلجكق، لللفد  فف كدز -م لل افلك   لل زملجق للفي    ا  ي     للي  كلا للزلجكقفا فبمك 

للل  ي  كددددق يددددكي ردددداا لل اددددفلك   ضدددد كاق إضدددد اق إلددددة  ي   يأي دددد  ال    وددددق ل لكددددق لل يفقدددد  
ي لل ادددفلك   لل زملجدددق للفيددد    فلدددلي ل لكدددق، ل دددي رددداا لل ادددفلك   ل يفقددد    لل  ي  كادددكق يدددك

),3,2,2( 143

    ض اه إلة لل افل 

للاظ ك    ا  للي     لل ولرق لللفد  فقدع ليدم للفبمكدم  11
)3(SU   للمل لي   ي فبمكملIBM . 

لللدداظ فددا لاددفلمل ه لم لاددق للف لكددغ لليددللظ ادد  ي دد     (DDM)فوددلا للب لدد  ي ددلاة لل 
140120Ba لالددددددددددددددلا  ددددددددددددددي لدددددددددددددد   م لاددددددددددددددق ادددددددددددددد ل    وددددددددددددددق للج ددددددددددددددم                للزلجكددددددددددددددق -للزلجكددددددددددددددق

(potential energy surface)     لفةدلا للي د    ل   ادق يدلت للفودلا للد  ي كد   دي رداا للي د
( للدداللا إكجددد م ادد ف للج دددم يدددكي  prolate or oblateة ددأ  ل  ف ددد ل   ظ يددلت للفودددلا   ا

 . POVللفولركي 
و  IBM-2و  IBM-1لف دددد   ق  يددددق لليفدددد  ت للي  كددددق للفدددد  فددددا للبخددددل  لةك دددد   ددددي  

DDM   دددع للقدددكا لل  ةكدددق لل فدددلا ة لل يددد   فاقدددق يودددل  جكدددم. ل دددي لل  بددد   ي ودددكا  ي دددلاة 
فا لةددق  ودد غ إلددة للقددكا لل  ةكددق  ددي وددكا ي ددلاة للفوددلا للب لدد  لالددلا لددلي ي ددلاة لليلزليدد   لل 

لليلزليدد   لل فا لةددق ردد  ةفلي  لل  وددق كبفددلظ لةددة لددمة يدد  ل ف ل  لليدده ي لفكدد   وددكا  ي ادديق ل دداا 
 للي  ل ف ل  افبخ  لةة يف  ت جكمة جمل. 
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