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I 
 

Summary 

The generalization of metric spaces from ordinary sets to fuzzy set theory 

and then to the so called cone metric spaces is a promising topics of theoretical 

mathematics.  

Therefore, this thesis has two objectives. The first objective is to study 

cone metric spaces and then constructing the so called fuzzy cone metric spaces 

using a new direction which is based on fuzzy point. The second objective is to 

study the compactness of fuzzy sets in fuzzy cone metric spaces and then give 

the relationship among different types of compactness, such as compact fuzzy 

sets, pre-compact fuzzy sets, sequentially compact fuzzy sets, countable 

compact fuzzy sets and locally compact fuzzy set. 
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1.1 Introduction 

In real life problems, we use many properties which cannot be dealt with 

satisfactory on the simple belong or not belong basis. These properties 

perhaps best indicated for example by shade of gray, rather than by black or 

white. Assigning to each individual in a population on a “belong” or “not 

belong” values, as is done ordinary set theory, is not adequate way of dealing 

properties of this type, [36]. 

Historically, the accepted birth date of the theory of fuzzy sets returns to 

1965, when the first article entitled “fuzzy sets” submitted by Zadeh L. 

appeared in the journal of information and control. Also, the term “fuzzy” was 

introduced and coined by Zadeh for the first time [15]. In which original 

definition of fuzzy set is to consider a class of object with continuum grade of 

membership, such a set is characterized by membership function which 

assigns to each object a grade of membership value ranging between zero and 

one. 

Zike D. in 1982 [37], studied the fuzzy point, and discussed the fuzzy 

metric spaces with the metric defined between two fuzzy points. 

Huang L., Zhang X. [14], introduced Cone metric space in 2007, as a 

generalization of metric spaces by replacing the set of real numbers is by an 

ordered Banach space. They introduced the basic definitions and discuss some 

properties. 

Hazim M. [13], study the Fuzzy Metric Spaces with respect to fuzzy 

point definition, as well as, study the many types of compactness in fuzzy 

metric spaces. 

Fuzzy cone metric spaces introduced in 2013 by Bag T. depended on                    

t-norm definition, and gave some basic results and fixed point theorems in 

such spaces [30]. 
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1.2 Literature Review 

1.2.1 Basic Concepts of Fuzzy Sets 

In this section, some fundamental definitions and elemantray concepts 

related to fuzzy set theory are given including some basic algebraic 

operations, as well as, some illustrative example for completeness purpose. 

Additional concepts may be found in any text book concerning fuzzy sets (see 

[4], [13], [17]).  

We start this section by the definition of ordinary or nonfuzzy sets in 

order to give a comparison with fuzzy sets, and to give the reason for the 

introduction of fuzzy sets. 

 

Definition (1.2.1.1), [33]: 

Let X be a classical set of objects of finite dimension, called the 

universal set, whose generic elements are denoted by x. The membership in a 

classical subset A of X is often viewed as a characteristic function  from X 

into {0, 1}, such that: 

(x)  
1 if x A

0 if x A





 

{0, 1} is called a valuation set.  

 

Definition (1.2.1.2), [33]: 

Let X be the universal set and A  be any subset of X, then A  is called 

fuzzy subset of X, which is characterized by a membership function                            

*
A

  : X  [a, b], where a, b  and in a special case  

A
  : X  [0, 1], i.e., 
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A   {(x, 
A

(x) ) | x  X, 0  
A

(x)   1}. 

 

Remark (1.2.1.3), [34]: 

For simplicity, the collection of all fuzzy subsets of X will be denoted by 

X* or IX, where I  [0, 1], i.e.,  

IX  {A  : A  is a fuzzy subsets of X}. 

The basic concepts with logical and algebraic operations defined on 

fuzzy sets may be summarized in the next remark: 

 

Remarks (1.2.1.4), [4], [26], [33]: 

Let X be the universal set, and A , B IX with membership function 
A

  

and 
B

 , respectively; then: 

1. X may be considered as a fuzzy set with membership function  

(x)
x

   1, for all x  X, which is denoted by 1X; while the empty fuzzy 

set   is a fuzzy set with membership function (x) 0


  ,  

 x  X, which is denoted by 0X. 

2. The height of A  is the greatest membership value, i.e.,  

hgt(A )  
A

x X

sup (x)


  

3. The elements of X, such that 
A

(x)   
1

2
 are called the crossover points of 

A . 
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4. A  is said to be normal if there exists x0  X, such that 0A
(x )   1, 

otherwise A  is subnormal. Also, if a fuzzy set A  is subnormal, then it may 

be normalized by dividing 
A

  on hgt(A )  0. 

5. The ordinary or nonfuzzy set of all x  X such that 
A

(x)  > 0 is called the 

support of A  and is denoted by Supp(A ). 

6. 
cA  is the complement of A  which is also a fuzzy set with membership 

function: 

c AA
(x) 1 (x)   ,  x  X. 

7. A B  if 
A

(x)   
B

(x) ,  x  X. 

8. A B  if 
A

(x)   
B

(x) ,  x  X. 

9. The intersection of two fuzzy sets A  and B  is also a fuzzy set D  and may 

be defined with the following membership function: 

 D BA
(x) Min (x), (x) , x X       

10. The union of two fuzzy sets A  and B  is also a fuzzy set C  and may be 

associated with the following membership function: 

 BC A
(x) Max (x), (x) , x X       

11. The addition of A  and B  is also a fuzzy set C  with membership function: 

C
(x)   Min{

BA
(x) (x)  , 1},  x  X 

12. The subtraction of A  and B  is also a fuzzy set C  with membership 

function: 

C
(x)   Max{0, 

BA
(x) (x)  },  x  X 
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13. The algebraic product of A  and B  is a fuzzy set C  with membership 

function: 

C
(x)   

A
(x)

B
(x) ,  x  X. 

14. The probabilistic sum of A  and B  is a fuzzy set C  with membership 

function: 

C
(x)   

A
(x)  + 

B
(x)   

BA
(x) (x)  ,  x  X. 

15. A  and B  are said to be separated if A  B    . 

16. A fuzzy subset A  of  is said to be convex fuzzy set, if: 

 1 2 1 2A A A
( x (1 )x ) Min (x ), (x )        

for all x1, x2  , and all   [0, 1], where 
A

(x)  is standing for a 

suitable membership function. 

 

Example (1.2.1.7), [6]: 

Let X  (0,150]  be the set of possible ages for a human being, then the 

fuzzy set: 

A   "About 50 years old" 

may be expressed as: 

A {(x, 
A

(x) ) | x  X} 

with membership function: 

A
(x)   

4

1

x 50
1

10

 
  
 
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Example (1.2.1.8), [31]: 

The membership function of the fuzzy set A  of real numbers “close to 

1”, is can be defined by 

A
(x) = exp(−β(x − 1)2) 

where β is a positive real number. 

 

1.2.2 -Level Sets 

In this section, an important notion in fuzzy sets will be discussed, which 

is the so called the -cut or -level sets, which corresponds to any fuzzy set 

A . -Level sets are nonfuzzy sets  and may be considered as an intermediate 

set that connect between fuzzy sets and ordinary or nonfuzzy sets, that may be 

used to prove most of the theoretical results that are satisfied in nonfuzzy sets 

are also satisfied here for fuzzy sets.  

In fuzzy set theory, if one wants to exhibit an element x  X that is 

typically belong to a fuzzy set  , then its membership value must to be 

greater than some threshold level   (0, 1]. The ordinary set of such 

elements is called the -level sets of   and is denoted by A [10], i.e., 

A  {x  X : 
A

(x)   ,   (0, 1]} 

Also, the strong -level set is defined by: 

A+  {x  X : 
A

(x)  > ,   (0, 1]} 

Remarks (1.2.2.1), [16], [13]: 

Let   and B  be two fuzzy subsets of a universal set X, then the 

following properties are satisfied for all   (0, 1]: 

1. A   B  if and only if A  B,    (0, 1] 
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2. A   B  if and only if A  B,    (0, 1]. 

3. If   , then A  A,  ,   (0, 1]. 

4. A  A  A and A  A  A, if   ,  ,   (0, 1]. 

5. (A  B)  A  B. 

6. (A  B)  A  B. 

 

Remarks (1.2.2.2), [35]: 

Let A  be any fuzzy subset of the universal set X, then: 

1. The set of all   (0, 1] that represent distinct -levels of A  is called the 

image of A  and is denoted by Im( A ), i.e., 

Im( A )  { : 
A

(x)   , for some x  X} 

2. The support of A  is exactly the same as the strong -level of A  for  

  0, i.e., A0+  Supp(A ). 

3. The core of A  is the -level set of A  for   1, i.e., A1  cor(A ). 

4. The height of A  may also be viewed as the supremum value of 's of the 

-levels for which A  . 

 

1.2.3 The Membership Function 

An important notion of the theory of fuzzy sets is the definition and 

construction of the membership functions, which admits certain properties of 

fuzzy sets. Therefore, in this section, the construction of such functions will 

be discussed in details. The characteristic function assigns to each element x 

of X a number, A
(x) , in the closed unit interval [0, 1] that characterizes the 

degree of membership of x in A
~

. In defining the membership function, the 
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universal set X always assumed to be classical set (either discrete or 

continuous). 

Two approaches may be used to define the membership function of a 

given fuzzy set; namely numerical or tabulated approach and theoretical or 

functional approach. 

A numerical approach expresses the degree of membership function of a 

fuzzy set as a vector of numbers whose dimension depends on the level of 

discretization, i.e., the number of discrete elements in the universal set X. 

This method has some advantages and disadvantages, which are in advantage 

case its simplicity of construction and the disadvantage encountered in its 

very consuming and long definition, especially with those sets of so many 

elements. 

Functional definition defines the membership function of a fuzzy set in 

an analytic expression, which allows the membership grade for each element 

in the defined universe of discourse to be calculated. Certain standard families 

or ‘shapes’ of membership functions are commonly used for fuzzy sets based 

on the universe of real numbers and on the definition of the fuzzy set.  

Among the most common membership functions, which are often used 

in practice, include the following types: 

1. Any symmetric, triangular shaped membership function used to define 

fuzzy numbers, which is characterized by the three parameters a, b and s, 

where a, s   (s  0) and 0 < b  1, as shown in Fig.(1.1), is represented 

by the generic form: 

A
(x)   

































otherwise,0

saxsawhen,
s

ax
1b
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Fig.(1.1) The triangular membership function. 

 

2. Another important class of membership functions used to define fuzzy 

intervals is of trapezoidal shaped, which is captured by the generic 

graphical representation in Fig.(1.2). Each function in this class is fully 

characterized by the five parameters a, b, c, d and e, where a, b, c, d   

and 0 < e  1, via the general form: 

A
(x)   

(a x)e
, when a x b,a b

a b

e, when b x c

(d x)e
, when c x d,d c

d c

0, otherwise


   


 


   

 



 

(x) μ 
A 
~ 

x 
0 a 

b 

 a  s a + s 
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x
0 a b c d

e

(x)μ
A
~

                           

Fig.(1.2) The trapezoidal membership function. 

 

3. Bell-shaped membership functions are also quite common in defining fuzzy 

numbers. A generic graph is shown in Fig.(1.3). These functions are 

presented by the formula: 

A
(x)   c b

ax

e

2)( 

, b  0 

 

which involves three parameters a, b, and c, where a  , b  \{0} and 

0  c  1, whose rules are indicated in Fig.(1.4). 

 
A

(x)  

xa

c

 

Fig.(1.3) Bell-shaped fuzzy set. 
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4. The S-membership function is defined as follows: 

S(x; a, b, c)  
 

 

2

2

0 for x a

2 (x a) /(c a) for a x b

1 2 (x c) /(c a) for b x c

1 for x c




   

    




 

Functions in this family have an “S” shape whose precise appearance is 

determined by the value of the parameters of a, b, c, as illustrated in 

Fig.(1.4). Note that the S-function is flat with constant value 0 for x < a; 

and constant value 1 for x > c. In between of a and c, the S-function is a 

quadratic function of x, b  (a + c)/2. 

x



a b c

0.5

1.0

 

Fig.(1.4) The S-Function. 

 

5. The -function which may be used also to define fuzzy numbers is defined 

by: 

(x; b, c)  
S(x;c b,c b / 2,c) for x c

1 S(x;c,c b / 2,c b) for x c

  

   

 

Functions in this family are also of bell- shaped, with the sides of the bell 

being generated from the S-functions. Functions of this type may be used 

S(x; a, b, c) 
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as an alternative to the triangular-functions as they give a membership 

value, which approaches 0 in a more gradual manner, as illustrated in 

Fig.(1.5). Note that the b parameter is now the bandwidth at the crossover 

points. The -function goes to zero at the points  

x  c  b, while the crossover points are at x  c  b/2. 

 

1.0

0.5

x



c c+b/2c-b/2c-b c+b
 

Fig.(1.5) The -function. 

 

1.2.4 Admissible and Nonadmissible Membership  Functions 

The assignment of the membership function of a fuzzy set is subjective 

in nature and, in general, reflects the context in which the problem is viewed. 

Although, the assignment of the membership function of a fuzzy set A  is 

“subjective”, it can not be assigned arbitrarily, as the following example 

illustrate: 

 

Example (1.2.4.1), [7], [15]: 

In this example, we consider the universal set as the class of real 

numbers, and the fuzzy set A  of a all real numbers that are much greater than 

(x; b, c) 

b > 0 
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one. The fuzzy subset A  of the universal set  may be defined 

mathematically using the membership function, such as: 

A
(x)   

x 1
, if x 1

x

0 , if x 1





 

 

While the function: 

A
(x)   

(x 1)e , if x 1

0 , if x 1

  



 

is monotonically decreases as x increases, and: 

A
(x)   

1000(x 1)1 e , if x 1

0 , if x 1

   



 

that increases monotonically, but is approximately equal to 1 for x  1.1, 

which is not much greater than 1, hence it is not an adequate characteristic 

function. Functions like those are called nonadmissible membership functions 

related to the fuzzy set A . The function 
A

(x)  as defined in this example 

and other functions, such as: 

A
(x)   

0.1(x 1)1 e , if x 1

0 , if x 1

   



 

or: 

A
(x)   

1
1 , if x 1

cosh(x 1)

0 , if x 1


 


 
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which satisfy the condition that 
A

(x)   [0, 1],  x  X and are consistent 

with the specification of the considered fuzzy set, will be an admissible 

membership functions for A . 

 

1.2.5 Fuzzy Points 

In this section the basic definition and properties of fuzzy points are 

introduced 

 

Definition (1.2.5.1), [36]: 

A fuzzy point xp  (or fuzzy singleton) of a fuzzy set   is also a 

fuzzy subset of X, where x  X is the support of the fuzzy point, and   

(0, 1] is the grade of this fuzzy point, with membership function: 

xp
(y)   

if y x

0 if y x

 







 

and 
1
xp


 is the complement fuzzy point of xp


, which is also denoted by 

c
xp


. 

 

Definition (1.2.5.2), [36]: 

A fuzzy point 0

0x
q


 belongs to a fuzzy set A  (written as 0

0x
q


  A ) if 

and only if 0A
(x )   0, and 0

0x
q


 does not belong to a fuzzy set A  (written 

as    0

0x
q


   A ) if and only if 0A
(x )   0; where we use the symbol  in 

order to distinguish from the ordinary belong  in ordinary sets. 
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Now, for completeness, we state the following concluding proposition, 

which give another approach for characterizing the inclusion in fuzzy sets: 

 

Proposition (1.2.5.3), [36]: 

Let A  and B  be two fuzzy subsets of the universal set X, such that               

A   B  and   (0, 1]. If xq   A , then xq   B , for all xq . 

Additional properties related to fuzzy points are given in the next 

propositions: 

 

Proposition (1.2.5.4), [36], [37]: 

Let A
~

i, for all i  I, where I is any index set; be fuzzy subsets of the 

universal set X and ,   (0, 1], then: 

1. If xq
  i

i I

A


 then there exists i0  I, such that xq
  

0i
A .  

2. If xq
  i

i I

A


, then xq
  iA , for all i  I. 

Proof: 

1. Since i
i I

A


 is a fuzzy set with membership function 
x X
Max
 iA

(x) since 

xq
  i

i I

A


, then 
i

i I

A
(x)



  . Hence, there exist at least one i0  I, 

such that 
i0

A
(x)   . Therefore, from definition (1.2.5.1), xq

  
0i

A  

2. Since i
i I

A


 is a fuzzy set with membership function 
x X
Min
 iA

(x) , and 

since xq
  i

i I

A


, then: 
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i
i I

A
(x)



    

Hence for all i  I, 
iA
(x)    

Therefore, from definition (1.2.5.2), xq
  iA , for all i  I. 

 

Proposition (1.2.5.5), [36], [37]: 

Let A  be fuzzy subsets of the universal set X and , 0, 1, 2  (0, 1], 

then: 

1. 1

1x
q


  2

2x
q


 if and only if 1 < 2 and x1  x2. 

2. 0

0x
q


  A c if and only if 0

0

c
x

q


   A . 

3. If xq   A , then xq

  A  if there exists  < , where   (0, 1]. 

Proof: 

1. If 1

1x
q


  2

2x
q


. Hence: 
2

x2
q
 (x) > 

1
x1

q
 (x), for the same x  X, i.e., 2 > 1. 

Since 
2

x2
q
 (x)  2 if x  x2 and 

1
x1

q
 (x)  1 if x  x1, which is true for 

the same value of x, i.e., if x1  x2. 

Conversely, if x1  x2, 1
x1

q
 (x)  1, 2

x2
q
 (x)  2, where 2 > 1, 

which implies that: 1

1x
q


  2

2x
q


 

2. If 0

0x
q


  A c, then c 0A
(x )   0. Which is equivalent to 1  0A

(x )   

0, 

  i.e., 0A
(x )   1  0. Therefore, 0

0

1

x
q


   A , i.e., 0

0

c
x

q


   A . 
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Conversely, if 0

0

c
x

q


   A , implies to: c 0
x0

q
(x)   

A
(x) ,  x  X.  

Hence, 1  0  
A

(x) , i.e., 1  
A

(x)   0. Therefore, cA
(x)   0, i.e., 

0

0x
q


  A c. 

3. From part (1) above, suppose that there exists  <  and for x1  x2, then      

xq

  xq . Since xq   A , then 

A
(x)  > . Hence, 

A
(x)  >  > ,                    

  (0, 1]. Therefore, 
A

(x)  > , for some , i.e., xq

  A .     

 

Proposition (1.2.5.6), [36], [37]: 

Let A  be a fuzzy subsets of the universal set X, then A      

if and only if there exists at least one fuzzy point xq , where x  X,  

  (0, 1], such that xq   A . 

Proof: 

 Since   is a fuzzy set with membership function (y)


   0,   y  X 

and since A    . Hence, there exists at least one y  x, such that 
A

(x)   

0. Let 
A

(x)    > 0, therefore xq   A  

 If there exists at least one fuzzy point xq , such that xq   A then            

A
(x)    > 0, i.e., 

A
(x)   0, for some x  X 

Hence, A    .  



 

 

Chapter Two 
Fuzzy Cone Metric Spaces 
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The Fuzzy metric spaces and cone metric spaces represents a 

generalizing for the ordinary metric spaces, and in addition fuzzy cone metric 

spaces are the generalized for the fuzzy metric spaces and cone metric spaces. 

 

2.1 Fuzzy Metric Spaces, [37] 

In this section, we shall study the fuzzy metric spaces with respect to the 

fuzzy point, which is defined by Zike [37], in which in own reference he gave 

some basic properties with an illustrate example. 

 

Definition (2.1.1): 

A function d*: IX  IX  [0, ) is called fuzzy distance function if d* 

satisfies the following conditions: 

1- d*( 1qx1


, 2qx2


)  0 if and only if 1  2 and x1  x2. 

2- d*( 1

1x
q


, 2

2x
q


)  d*(c 2qx2


, c 1qx1


). 

3- d*( 1qx1


, 3qx3

 )  d*( 1qx1


, 2qx2


) + d*( 2

2
qx
 , 3

3
qx


). 

4- If d*( 1

1x
q


, 2

2x
q


) < r, where r > 0, then there exist  > 1 > 2, such that                   

d*(
1

qx
 , 

2

2qx
 ) < r. 

Also, (IX, d*) is called fuzzy metric space. 

 

The next example is an application of definition (2.1.1), which is very 

important  

 

Example (2.1.2): 

Let (X, d) be the universal metric space, and let 1

1x
q


, 2

2x
q


  IX; and 

suppose that d* be defined as follows: 
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d*( 1

1x
q


, 2

2x
q


)  max{1  2, 0} + d(x1, x2)       …(2.1) 

where x1, x2  X, 1, 2  (0, 1], then (IX, d*) is a fuzzy metric space. 

 

Remarks (2.1.3): 

1. In particular, if X   and d(x1, x2)  |x1  x2|, then we get the fuzzy 

distance function given by [37], as: 

d*( 1

1x
q


, 2

2x
q


)  max{1  2, 0} + |x1  x2| 

2. If X  2  and d(x1, x2)  1 1 2 2 2 2
1 2 1 2(x x ) (x x )   , then the fuzzy 

distance function takes the form: 

d*( 1

1x
q


, 2

2x
q


)  max{1  2, 0} + 1 1 2 2 2 2
1 2 1 2(x x ) (x x )    

where x1  ( 1
1x , 2

1x ), x2  ( 1
2x , 2

2x ). 

3. If X  C[a, b] and d(f, g)  

1/2
b

2

a

| f g | dx
 
 
 

,  f, g  C[a, b], and hence 

the fuzzy distance function takes the form: 

d*( 1
fq


, 2
gq
 )  max{1  2, 0} + 

1/ 2
b

2
| f g | dx

a


 
 
 

 

 

Definition (2.1.4):  

Let (IX, d*) be fuzzy metric space, Ã be s subset of IX, and { n

nx
q


} be a 

sequence of fuzzy points in  Ã. Then: 

1. { n

nx
q


} is said to be converge to xq  if for all 𝛼 > 0, there exist N ℕ , such 

that: 

d*( n

nx
q


, xq ) < 𝛼. For all n > N. 

2. { n

nx
q


} is said to be Cauchy sequence if for all 𝛼 > 0, there exist N ℕ , 

such that: 
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d*( n

nx
q


, m

mx
q


) < 𝛼. For all n,m > N. 

3. Ã is said to be complete if every Cauchy sequence is convergent. 

 

Some further results concerning the fuzzy distance function (2.1) are given 

as an additional property without proof. 

 

Theorem (2.1.5): 

Let (IX, d*) be a fuzzy metric space and 1

1x
q


, 2

2x
q


 be two fuzzy points in 

IX, then: 

d*(
1xq , 2

2x
q


)  d*( 1

1x
q


, 2

2x
q


), if  < 1. 

 

Theorem (2.2.5): 

Let (IX, d*) be a fuzzy metric space and 1

1x
q


, 2

2x
q


be two fuzzy points in 

IX, and if d*( 1

1x
q


, 2

2x
q


) < r, then there exists   (0, 1], such that  < 2, and 

d*( 1

1x
q


, 
2xq


) < r. 

 

Theorem (2.1.7): 

Let (IX, d*) be a fuzzy metric space and 1

1x
q


, 2

2x
q


 be two fuzzy points in 

IX, then: 

d*( 1

1x
q


, 
2xq )  d*( 1

1x
q


, 2

2x
q


), whenever  > 2 

 

2.2 Cone Metric Spaces 

Huan Long - Guang and Zhang Xian introduced Cone metric space [14], 

as a generalization of metric spaces by replacing the set of real numbers by an 

ordered Banach space. They introduced the basic definitions and discuss some 

properties. 
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In this section we shall define cone metric spaces and prove some 

properties. 

 

Definition (2.2.1), [14]:   

Let E be a Banach space and P a subset of E, then P is called a cone if: 

1. P is nonempty closed and P ≠ {0}; 

2. If a, b ∈ R , a, b ≥ 0 , x, y ∈ P implies that ax + by ∈ P ; 

3.  If x ∈ P and −x ∈ P ⇒ x = 0.  

Given a cone P ⊆ E, they defined the partial ordering according to P by          

x ≤ y if and only if  y − x ∈ P . We shall write x < y  to indicate that x ≤ y that 

but x ≠ y , while x ≪ y will represent y − x ∈ int(P), where int(P) denotes the 

interior of  P, [14]. 

The cone P is called normal if there is a real number k > 0, such that for 

any x, y ∈ P, in which  0 ≤ x ≤ y implies that 

‖x‖ ≤ k‖y‖                    …(2.2) 

and the least positive number k satisfying (2.2) is called the normal constant of 

 P. 

Cone P is called regular if every increasing sequence is convergent. That 

is, if  {xn} is a sequence, such that: 

x1 ≤ x2 ≤ x3 ≤ ⋯ ≤ xn ≤ ⋯ ≤ y 

for some y ∈ E , then there is x ∈ E, such that ‖xn − x‖→ 0 as n → ∞. 

Equivalently, the cone P is regular if and only if every below bounded 

decreasing sequence is convergent, [14]. 

The next lemma gives the relationship between regular and normal cones. 
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Lemma (2.2.2), [14]:  

Every regular cone is normal. 

 

In the following suppose that E is Banach space, P is a cone in E with 

 int(P) ≠ ∅  and ≤ is partial ordering with respect to P. 

 

Definition (2.2.3), [14]:   

Let  X be a set and suppose that the mapping d: X × X → E satisfies: 

1. d(x, y) ≥ 0 for all  x, y ∈ X and d(x, y) = 0 if and only if  x = y, 

2. d(x, y) = d(y, x), for all  x, y ∈ X, 

3. d(x, z) ≤ d(x, y) + d(y, z), for all  x, y, z ∈ X. 

Then d is called a cone metric on X, and (X, d) is called a cone metric space. 

 

Example (2.2.4), [31]:   

Let E = ℝ2, P = {(x. y) ∈ E: x, y ≥ 0}, X = ℝ and d:X×X→E defined by  

d(x, y) = (|x − y|, α|x − y|) 

where α ≥ 0 is a constant. Then (X, d) is a cone metric space. 

 

Definition (2.2.5), [26]:  

Let (X, d) be a cone metric space,  x ∈ X and {xn}, n ∈ ℕ a sequence in X. 

Then: 

1. {xn}, n ∈ ℕ converges to x ∈ X if for every c ∈ E with c ≫ 0, there exist 

N ∈ ℕ, such that d(xn, x) ≪ c, for all n ≥ N. We denoted this by 

lim
n→∞

xn = x  or  xn → x. 

2. {xn}, n ∈ ℕ is Cauchy sequence if for every c ∈ E with c≫0, there exist 

N ∈ ℕ, such that d(xn, xm) ≪ c, for all n, m ≥ N. 
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3. The cone metric space (X, d) is said to be complete cone metric space if 

every Cauchy sequence is convergent. 

 

2.3 Fuzzy Cone Metric Spaces with Respect to Fuzzy Points 

In this section, will be introduced for the first time based on fuzzy point 

approach fuzzy cone metric with illustrate example, as well as, give the basic 

properties. 

 

Definition (2.3.1): 

Let (X, d) be the universal metric space and let E be a Banach space and 

P ⊆ E is a cone. Then a function d*: IX  IX  E is called fuzzy cone distance 

function if d* satisfies the following conditions: 

1. d*( 1

1x
q


, 2

2x
q


)  0 if and only if 1  2 and x1  x2. 

2. d*( 1

1x
q


, 2

2x
q


)  d*( 2

2

c
x

q


, 1

1

c
x

q


). 

3. d*( 1

1x
q


, 3

3x
q


)  d*( 1

1x
q


, 2

2x
q


) + d*( 2

2x
q


, 3

3x
q


). 

4. If r − d*( 1

1x
q


, 2

2x
q


) ∈ int(P), where r ∈ int(P), then there exist  > 1 > 2, 

such that r − d*(
1xq

, 2

2x
q


) ∈ int(P). 

The pair (IX, d*) is called fuzzy cone metric space. 

The next theorem is of great importance for this chapter, since in this 

example we give the definition and the proof of the fuzzy cone distance function 

in terms of definition (2.3.1): 
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Theorem (2.3.2): 

Let (X, d) be the universal metric space, let 1

1x
q


, 2

2x
q


  IX , E = ℝ2,           

P = {(x, y) ∈ E: x, y ≥ 0}; and suppose d* be defined as follows: 

d*( 1

1x
q


, 2

2x
q


)  (max {1  2, 0}, d (x1, x2))               … (2.3) 

where x1, x2  X, 1, 2  (0, 1], then (IX, d*) is a fuzzy cone metric space. 

As one can see the satisfaction of the conditions of the definition (2.3.1) 

for the fuzzy function (2.3) may be assumed as follows: 

1. Since by taking 1  2, i.e., 1  2  0, then max {1  2, 0}  0 and          

x1  x2, which implies to d (x1, x2)  0. Hence:         

d*( 1

0x
q


, 2

0x
q


)  (max{1  2, 0} , d(x0, x0)) = (0 , 0) =0 

Therefore, d*( 1

0x
q


, 2

0x
q


)  0. 

If d*( 1

1x
q


, 2

2x
q


)  0, then from eq. (2.3)  

(max{1  2, 0} , d(x1, x2)) (0 , 0)  

  and hence max{1  2, 0}  0 and  d(x1, x2)  0, which is satisfied only if   

1  2  0 and x1  x2. 

2. Since d*( 1

1x
q


, 2

2x
q


)  (max{1  2, 0} + d(x1, x2)). Hence: 

d*( 2

2

c
x

q


, 1

1

c
x

q


)  d*( 2

2

1

x
q


, 1

1

1

x
q


)  

  (max{1  2  1 + 1, 0} , d(x2, x1))  

 (max{1  2, 0} , d(x1, x2))  

 d*( 1

1x
q


, 2

2x
q


) 
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Therefore d*( 1

1x
q


, 2

2x
q


)  d*( 2

2

c
x

q


, 1

1

c
x

q


). 

3. Now, for all 1

1x
q


, 2

2x
q


 and 3

3x
q


  IX; to prove the satisfaction of the triangle 

inequality d*( 1

1x
q


, 3

3x
q


)  d*( 1

1x
q


, 2

2x
q


) + d*( 2

2x
q


, 3

3x
q


), which is asserted 

as follows: 

d*( 1

1x
q


, 3

3x
q


)  (max{1  3, 0} , d(x1, x3)), where 2  (0, 1]. 

 (max{1  2+ 2 3,0} , d(x1, x3)) 

≤ (max{1  2,0}+max{2  3,0} , d(x1, x2) + d(x1, x3)) 

= d*( 1

1x
q


, 2

2x
q


) + d*( 2

2x
q


, 3

3x
q


). 

4. If  r − d*( , 2

2x
q


) ∈ int(P), where r =( r1 , r2) ∈ int(P). 

Since 1 > 2, i.e., 1  2 > 0, and hence max{12, 0}  1  2, which 

implies to: 

d*( 1

1x
q


, 2

2x
q


) ≪ ( r1 , r2)  

which means that: 

( r1 , r2)  d*( , 2

2x
q


) ∈ int(P) 

( r1 , r2)  (max{1  2, 0}, d(x1, x2)) ∈ int(P) 

( r1 , r2)  (1  2, d(x1, x2)) ∈ int(P) 

( r1  (1  2), r2  d(x1, x2)) ∈ int(P) 

therefore, 

 r1  (1  2) > 0 

 r1 > (1  2) 

1

1x
q


1

1x
q

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Hence, 1  2 < r1, i.e., 1 < r1 + 2. 

Let   (0, 1] be chosen so that 2 < 1 <  < min{1, r1 + 2}, which implies 

to   r1 +2, and so 0 <   2 < r1 , i.e., r1− ( 2) > 0. 

Then: 

(r1− ( 2) , r2  d(x1, x2)) ∈ int(P) 

( r1 , r2)  (max{ 2, 0}, d(x1, x2)) ∈ int(P) 

r − d*(
1xq

, 2

2x
q


) ∈ int(P). 

Therefore, (IX, d*) is a fuzzy cone metric space. 

 

2.4 Fundamentals of Fuzzy Cone Metric Spaces 

Now, we are in a position to give the basic properties of fuzzy cone 

metric spaces. These definitions are given also in terms of the fuzzy points in 

order to make a compatibility between the definition of the fuzzy distance 

function (see definition (2.3.1) and eq. (2.3)) and those definitions. 

 

Definition (2.4.1): 

Let (IX, d*) be a fuzzy cone metric space and let xq  be a fuzzy point in IX, 

then the fuzzy neighborhood of a point xq  is the fuzzy set U( xq ) consisting 

all points xq

 IX, such that  − d*( xq


 , xq ) ∈ int(P), where the number  is 

called the radius of U( xq ) and xq  is the center of the neighborhood, i.e.,  

U( xq )  { xq

   IX |  − d*( xq


 , xq ) ∈ int(P), where  ∈ int(P)} 
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Definition (2.4.2): 

Let A  be a fuzzy subset of the fuzzy cone metric space (IX, d*). A fuzzy 

point xq  is called a fuzzy limit point of the set A  if every neighborhood of xq  

contains a point xq

   xq , such that xq


   A . 

 

Definition (2.4.3): 

Let (IX, d*) be a fuzzy cone metric space. A fuzzy point xq  is called an 

interior fuzzy point of G   IX  if and only if there exists a fuzzy neighborhood  

xq   
xq

U    G . 

 

Definition (2.4.4): 

A fuzzy set A  in a fuzzy cone metric space (IX, d*) is called open fuzzy 

set if for all xq   A , there exists    ∈ int(P), such that U( xq )   A . 

 

Definition (2.4.5): 

A fuzzy set A  in the fuzzy cone metric space (IX, d*) is said to be fuzzy 

closed set if 
cA  is a open fuzzy set in IX, or every point of A  is a fuzzy limit 

point of A . 

 

Definition (2.4.6): 

A fuzzy set A  in the fuzzy cone metric space (IX, d*) is bounded if there 

exists h ∈ int(P), and 0

0x
q


, such that h − d*( 0

0x
q


, xq ) ∈ int(P), for all                  

xq   A . 
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Definition (2.4.7): 

Let (X, d) be the universal metric space and (IX, d*) be fuzzy cone metric 

space. A sequence { n

nx
q


}, n  ℕ of fuzzy points in A  is said to be converge to 

xq  (termed as n

nx
q


  xq ) if for all  ∈ int(P), there exist N ℕ , such that:              

 − d*( n

nx
q


, xq ) ∈ int(P) , for all n  N, where x, xn  X, , n  (0, 1],                

 n  ℕ. 

 

Definition (2.4.8): 

A fuzzy point qx
  is an accumulation fuzzy point of A  if for all  

 ∈ int(P), there exists { n

nx
q


}  A , such that   − d*( xq , n

nx
q


) ∈ int(P), for 

infinitely many n. 

 

Remark (2.4.9): 

Let (IX, d*) be a fuzzy cone metric space and { i

ix
q


}, i  1, 2, …;                         

be a sequence of fuzzy points, which is converge to xq   IX, then every fuzzy 

neighborhood U ( xq ),  ∈ int(P) contains all but (or except) infinitely many 

terms of { i

ix
q


}.  

 

Definition (2.4.10): 

Let (X, d) be the universal metric space and (IX, d*) be fuzzy cone metric 

space. A sequence of fuzzy points { n

nx
q


} in A  is said to be a Cauchy sequence 

if for all  ∈ int(P), there exists N ℕ , such that: 
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 − d*( n

nx
q


, m

mx
q


) ∈ int(P), for all n, m  N.  

where xn, xm  X, n, m  (0, 1],   n, m  ℕ. 

 

An important characterization result which may be considered as the main 

result of this chapter is the next theorem, which relates between the convergence 

of a sequence of fuzzy points with the convergence of two sequences in ordinary 

sense. This theorem is of great importance, which will be used later. 

 

Theorem (2.5.11): 

Let (X, d) be the universal metric space and (IX, d*) be fuzzy cone metric 

space. A sequence of fuzzy points { n

nx
q


}, n  ℕ is converge to xq  if and only 

if there exists two non-fuzzy sequences, namely sequence of supports {xn}  X 

and monotonic sequence of images {n}  (0, 1],  n  N, such that xn  x 

and  n  , x  X,   (0, 1]. 

Proof:  

To prove the first condition. If { n

nx
q


} is converge to xq , so for all                        

 ∈ int(P), where  = (1, 2)  there exists N  ℕ , such that                                                  

 − d*( , ) ∈ int(P), for all n  N. Hence:  

d*( n

nx
q


, xq )  (max{n  , 0} , d(xn, x)) 

≪ (1, 2) , for all n  N  

Implies to 

(1, 2) − (max{n  , 0} , d(xn, x)) ∈ int(P), for all n  N 

Therefore 

n

nx
q


xq
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(1 − max{n  , 0} , 2 − d(xn, x)) ∈ int(P), for all n  N 

i.e., 

1 − max{n  , 0} > 0,  and  2 − d(xn, x) > 0.  

Which implies to: 

max{n  , 0} < 1, for all n  N  

Therefore 

d(xn, x) < 2,  for all n  N, i.e., xn  x, and n  . 

Conversely.  If xn  x and n   

Hence, for all  > 0, there exist N1, N2  ℕ, such that: 

d(xn, x) < 1, max{n  , 0} < 2, n  N  max{N1, N2} 

i.e., 

1 − d(xn, x) > 0, and  2 − max{n  , 0} > 0 , for all  n  N. 

or equivalently 

(2 − max{n  , 0} , 1 − d(xn, x)) ∈ int(P)  

which implies to 

(2, 1) – (max{n  , 0} , d(xn, x)) ∈ int(P)  

Therefore 

(max{n  , 0} , d(xn, x)) ≪ (2, 1) 

Hence: 

d*( n

nx
q


, xq )  max{n  , 0} + d(xn, x) ≪ (2, 1) 

i.e.,  

 (2, 1) − d*( , ) ∈ int(P), for all n  N. 

Hence, { n

nx
q


} is converge sequence of fuzzy points.     

 

 

n

nx
q


xq
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Proposition (2.4.12): 

Let (X, d) be the universal metric space and (IX, d*) be fuzzy cone metric 

space.  A sequence of fuzzy points { n

nx
q


}, n  ℕ is Cauchy sequence if and 

only if there exists two nonfuzzy Cauchy sequences, namely the Cauchy 

sequence of supports {xn}  X and monotonic Cauchy sequence of images             

{n}  (0, 1], n  N. 

Proof:  

Suppose that { } is Cauchy sequence, so for all  ∈ int(P), where                                   

 = (1, 2)there exists N  ℕ , such that  − d*( , m

mx
q


) ∈ int(P), for all n, 

m  N. Hence:  

d*( , m

mx
q


)  (max{n  m, 0} , d(xn, xm)) 

 ≪ (1, 2) , for all n, m  N  

Implies to 

(1, 2) − (max{n  m, 0} , d(xn, xm)) ∈ int(P), for all n, m  N 

Therefore 

(1 − max{n  m, 0} , 2 − d(xn, xm)) ∈ int(P), for all n, m  N 

i.e., 

1 − max{n  m, 0} > 0,  and  2 − d(xn, xm) > 0, for all n, m  N 

Which implies to: 

max{n  m, 0} < 1, for all n, m  N  

Also 

d(xn, xm) < 2,  for all n, m  N, i.e., {xn} and {n} are Cauchy sequence. 

n

nx
q


n

nx
q


n

nx
q

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 If {xn} and {n} are Cauchy sequence. 

Hence, for all  > 0, there exist N1, N2  ℕ, such that: 

d(xn, xm) < 1, max{n  m, 0} < 2, n, m  N  max{N1, N2} 

i.e.,  

1 − d(xn, xm) > 0, and   2 − max{n  m, 0} > 0 , for all  n, m  N. 

or equivalently 

(2 − max{n  m, 0} , 1 − d(xn, xm)) ∈ int(P), for all  n, m  N. 

which implies to 

(2 , 1) – (max{n  m, 0} , d(xn, xm)) ∈ int(P), for all  n, m  N.  

Therefore 

(max{n  m, 0} , d(xn, xm)) ≪ (2 , 1), for all  n, m  N. 

Hence: 

d*( , m

mx
q
 )  max{n  m, 0} + d(xn, xm) ≪ (2 , 1), for all                   

n, m  N, i.e.,  

(2 , 1) − d*( n

nx
q
 , m

mx
q
 ) ∈ int(P), for all n, m  N. 

Hence, { } is Cauchy sequence.     

 

Proposition (2.4.13): 

Let (X, d) be the universal metric space and (IX, d*) be fuzzy cone metric 

space. If a sequence of fuzzy points { n

nx
q


}, n  ℕ is converge to xq , then 

n

n

c
x

{ q }


 is convergent to 
c

xq
. 

 

 

 

 

n

nx
q


n

nx
q

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Proof: 

If a sequence of fuzzy points { n

nx
q


}, n  ℕ is converging to xq . Then 

using theorem (2.4.11), there exist sequence of supports {xn}  X and 

monotonic sequence of images {n}  (0, 1], n  ℕ, such that: 

xn  x and n  , x  X,   (0, 1]. 

Therefoere:  

xn  x, and 1− n  1 −  

Which implies to 

  n

n

c
x

{ q }


 
c

xq
. 

 

Theorem (2.4.14): 

Every convergent sequence of fuzzy points { n

nx
q


}, n  ℕ in a fuzzy cone 

metric space (IX, d*) is a Cauchy sequence. 

Proof:  

Let { n

nx
q


}, n  ℕ be a convergent sequence in (IX, d*). Then using 

theorem (2.4.11), there exist sequence of supports {xn}  X and monotonic 

sequence of images {n}  (0, 1], n  ℕ, such that xn  x and n  ,               

x  X,   (0, 1]. Since {xn} is convergent nonfuzzy sequence, hence it is a 

Cauchy sequence in X. Also, since {n} is convergent sequence of images in 

(0, 1]  ℝ.  

Therefore, using proposition (2.4.12), the sequence of fuzzy points { n

nx
q


},         

n  ℕ is a Cauchy sequence.     
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Definition (2.4.15): 

Let (X, d) be the universal metric space and (IX, d*) be a fuzzy metric 

space, then (IX, d*) is said to be complete fuzzy metric space if every Cauchy 

sequence of fuzzy points { n

nx
q


} in IX is converge to a fuzzy point xq  in IX. 

 

Theorem (2.4.15): 

Let (X, d) be a complete universal metric space, then (IX, d*) is a complete 

fuzzy cone metric space. 

Proof: 

Let { n

nx
q


}, n  N be a Cauchy sequence in (IX, d*). Hence, from definition 

(2.4.10), for all  ∈ int(P), there exists N  ℕ, such that: 

 − d*( n

nx
q


, m

mx
q


) ∈ int(P), for all n, m > N 

using proposition (2.4.12), implies to: 

d(xn, xm) < 1   and   max{n  m, 0} < 1, for all n, m > N. 

Since {xn} is a Cauchy sequence in (X, d) which is a complete metric space, 

hence there exist x  X, such that  xn  x  X. 

Also, {n} is a Cauchy sequence of real numbers which is complete, hence there 

exist   (0, 1], such that {n} is converge to   (0, 1].  

Hence, from theorem (2.4.11), implies that: n

nx
q


  xq .  

Then (IX, d*) is a complete fuzzy cone metric space. 



 

 

Chapter Three 
Compactness of Fuzzy 

Cone Metric Spaces 
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In this chapter we will study some different types of compactness fuzzy 

sets such as pre-compact, sequentially compact, countably compact and locally 

compact, then study the relationship between them, and their properties. 

 

3.1 Compact Fuzzy Cone Metric Spaces 

Compactness comes to be one of the most important and useful notions 

in theoretical mathematics. 

 

Definition (3.1.1): 

Let (IX, d*) be a fuzzy cone metric space, a fuzzy set A  in IX is said to be 

compact fuzzy set if every open cover for A  has a finite subcover. i.e., if iU  is 

an open cover for A , then A 
n

i
i 1

U


. 

 

Theorem (3.1.2): 

Let (IX, d*) be a fuzzy cone metric space, and let A  be a compact fuzzy 

set in IX, then A  is bounded. 

Proof 

To prove A  is bounded, let iU  be an open cover for A  with center i

ix
q


 

and radius i ∈ int(P). Let i

ix
q

 0

0x
q


, and i ≤ ,  for all i. Since A  is compact, 

then iU  has finite subcover which covering A , i.e., for each xq IX implies 

xq
n

i
i 1

U


, i.e., for each xqX*, we have  − d*( xq , 0

0x
q


) ∈ int(P), for each 

xq   IX. Hence A  is bounded.     
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Remarks (3.1.3): 

A class {Ai } of fuzzy subsets of a fuzzy cone metric space (IX, d*) is said 

to have the finite intersection property if every finite subclass                                                  

{Ai1
, Ai2

, …, Ain
} has a nonempty intersection, i.e.,  

Ai1
  Ai2

  …  Ain
    

 

Theorem (3.1.4): 

The fuzzy cone metric space (IX, d*) is compact if and only if every family 

of closed subsets of (IX, d*) satisfies the finite intersection property. 

Proof: 

Suppose that (IX, d*) is compact and { Fn }, n  1, 2, …; is a family of 

closed fuzzy sets which is satisfy finite intersection property. Now suppose that 

Fn
n

   , i.e., has a zero membership function. By using De-Morgan’s law of 

fuzzy sets (see [37]), we obtain: 

IX 
c

    

c

Fn
n

 
 
 

   
c

Fn
n

, and each 
c

Fn  is open fuzzy set 

Which implies that {
c

Fn } is an open cover of fuzzy compact space IX. 

Hence, there exists a finite subcover of the space IX, which belongs to {
c

Fn }, if  

IX   
N c

Fi
i 1

, and therefore: 

   (IX)c   

c
N c

Fi
i 1

 
  

   
N

Fi
i 1

, N  ℕ 
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Thus, { nF } does not satisfy the property of finite intersection which is a 

contradiction. 

Conversely, suppose that (IX, d*) is not compact. 

Let {Gn }, n  1, 2, …;   fuzzy open cover of the space IX which has no finite 

fuzzy subcover, i.e., X*  Gn
n

, which implies X*  j
j

G , for all j of n. 

Then, j
j

c
G  ≠  , which implies 

c
Gn

n
 ≠  . 

Since {
c

Gn } satisfies the property of finite intersection, we have IX   n
n

G , 

for all n. Which is Contradiction to assumption.      

 

3.2 Pre-Compact Fuzzy Cone Metric Spaces 

Definition (3.2.1): 

Let A  be a fuzzy subset of a fuzzy cone metric space (IX, d*) and let             

 ∈ int(P). A finite fuzzy set W  of fuzzy points: 

W   { 1

1x
q


, 2

2x
q


,…, n

nx
q


}, x1, x2, …, xn  X and 1, 2, …, n  (0, 1] 

is called an -fuzzy net for A  if for every fuzzy point xp   A , there exists 

i

ix
q


  W , for some i  {1, 2, …, n}; such that  − d*( xp , i

ix
q


) ∈ int(P). 

 

Definition (3.2.2): 

A fuzzy set A  of a fuzzy cone metric space (IX, d*) is said to be fuzzy pre-

compact set (or fuzzy totally bounded) if A  possess an -fuzzy net, for every     

 ∈ int(P). 



Chapter Three                                                                   Compactness of Fuzzy Cone Metric Spaces 

 

38 

 

Now, we are in a position to give the relationship between fuzzy compact 

and fuzzy pre-compact sets. 

 

Theorem (3.2.3): 

If (IX, d*) is compact fuzzy cone metric space, then (IX, d*) is pre-compact 

fuzzy cone metric space. 

Proof: 

Let (IX, d*) be a compact fuzzy cone metric space (IX, d*). Assume to 

contrary (IX, d*) is not pre-compact.  

 Now let iU  be an open cover with center i

ix
q


 and radius  ∈ int(P). Since 

IX is compact, then there exist a finite subcover of IX, i.e., for each xq   IX 

implies xq  
n

i
i 1

U


, i.e., for each xq   IX  there exist i0  {1, 2, …, n}; such 

that    − d*( xp , i0

i0x
q


) ∈ int(P). Then the set { 1

1x
q


, 2

2x
q


, …, n

nx
q


} form an        

-fuzzy net for IX, which is contradiction. i.e., (IX, d*) is pre-compact fuzzy 

cone metric space.     

 

3.3 Sequentially Compact Fuzzy Cone Metric Spaces 

In the next definition, a new type of fuzzy compactness will be introduced, 

which is the fuzzy sequentially compact sets. 

 

Definition (3.3.1): 

A fuzzy subset A  of a fuzzy cone metric space (IX, d*) is said to be 

sequentially compact fuzzy set if every sequence of fuzzy points { n

nx
q


}A  
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has a convergent subsequence in A , i.e., if { n

nx
q


} is a sequence of fuzzy points 

in A , then there exist a subsequence {
ni

ni
x

q


} of { n

nx
q


} such that for every  ∈ 

int(P)  there exist N ∈ ℕ, and xqA  such that  − d*(
ni

ni
x

q


, xq ) ∈ int(P), for 

each ni ≥ N. 

 

The next theorem gives the relationship between fuzzy sequentially 

compact and fuzzy pre-compact sets. 

 

Theorem (3.3.2): 

Let (X*, d*) be a fuzzy cone metric space, then (IX, d*) is a sequentially 

compact fuzzy cone metric space if and only if (IX, d*) is a complete and pre-

compact fuzzy cone metric space. 

Proof: 

If (IX, d*) is a sequentially compact fuzzy cone metric space. Assume to 

contrary that IX is not fuzzy pre-compact. Then, there exists  ∈ int(P), such 

that IX possess no finite -fuzzy net. 

Take xp   IX, hence there exists i

i

1

x1
q


  IX, such that                                                         

d*( xp , i

i

1

x1
q


) −  ∈ int(P), otherwise { i

i

1

x1
q


} is an -fuzzy net. 

Also, there exists i

i

2

x2
q


  IX, such that: d*( xp , i

i

2

x2
q


) −  ∈ int(P) and                                  

d*( i

i

1

x1
q


, i

i

2

x2
q


) −  ∈ int(P), otherwise { i

i

1

x1
q


, i

i

2

x2
q


} is an -fuzzy net. 

 and so on, we get a sequence of fuzzy points { i

i

1

x1
q


, i

i

2

x2
q


, …}, such that                      

d*( i

i

k

xk
q


, i

i

m

xm
q


) −  ∈ int(P), for every k ≠ m      … (3.1) 
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Now suppose the sequence { i

i

n

xn
q


} has convergent subsequence {
j

j

n

xn
q


}. Hence 

{
j

j

n

xn
q


} is Cauchy sequence which is contradict eq (3.1), i.e., if (IX, d*) is fuzzy 

sequentially cone compact metric space, which implies that (IX, d*) is pre-

compact fuzzy cone metric space. 

Now to prove IX is complete. Let 
n

xn{q }
 be a Cauchy sequence in X*, i.e. 

for all 1∈ int(P), there exists N1 ℕ , such that: 

1 − d*( n

nx
q


, m

mx
q


) ∈ int(P), for all n, m  N1, where x, xn  X, , n  

(0, 1],  n  ℕ. 

Since IX is sequentially compact, then 
n

xn{q }
 has convergent subsequence 

i

i

n

xn
{q }


, i.e., for all 2 ∈ int(P), there exist N2 ℕ , such that:    

2 − d*( i

i

n

xn
q


, xq ) ∈ int(P), for all ni  N2, where x, xn  X, , n  (0, 1],                

 n  ℕ. 

Then xq  is also limit point for 
n

xn{q }
, since  

d*( n

nx
q


, xq ) ≤ d*( n

nx
q


, i

i

n

xn
q


) + d*( i

i

n

xn
q


, xq ) 

≪ 1 + 2, for each n, ni  N= Max{ N1, N2}. 

i.e., 
n

xn{q }
 is convergent, then IX is complete.  

Conversely, if (IX, d*) is pre-compact and complete fuzzy cone metric 

space to prove that X* is sequentially compact fuzzy cone metric spaces. 

Since (IX, d*) is pre-compact fuzzy cone metric space, then IX possess an              

-fuzzy net, for every  ∈ int(P). Let W = { 1

1x
q


, 2

2x
q


, …, k

kx
q


} be an -fuzzy 

net for IX.  
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Let i

i

n

xn
{q }


 be a subsequence of 

n
xn{q }

, then there exist i

ix
q


  W , such that            

 − d*(
n

xnq
, 

j

xjq


)  ∈ int(P), for infinitely many n, j = 1,2, … . , k. 

d*( i

i

n

xn
q


, i

i

m

xm
q


) ≤ d*( i

i

n

xn
q


, 
j

xjq


) + d*(
j

xjq


, i

i

m

xm
q


) 

                          ≪ 1 + 2, for infinitely many ni, mi, j = 1,2, … . , k. 

Hence i

i

n

xn
{q }


 is form a Cauchy sequence, and since X* is complete, then 

i

i

n

xn
{q }


 is convergent. 

Therefore, the sequence 
n

xn{q }
 has a convergent subsequence. Hence (IX, d*) 

is sequentially compact fuzzy cone metric space.     

 

Corollary (3.3.3): 

Let A  be a compact fuzzy set of fuzzy cone metric space (IX, d*), then A  

is sequentially compact fuzzy set. 

Proof 

Since A  is compact and by theorem (3.2.3) and theorem (3.3.2), then A  

is sequentially compact. 

 

Lemma (3.3.4): 

If (IX, d*) is sequentially compact fuzzy cone metric space, and  G  for 

some A  is infinitely open cover for IX. Then every ball of radius  ∈ int(P) 

is contained in one of the open sets G . 
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Proof: 

Assume for contrary that for any n  there is an open ball nB  with 

center  xq  and radius  ∈ int(P) which is not contained in G , A  . Since 

IX is sequentially compact, then every sequence in IX has a convergent 

subsequence. 

Therefore, the subsequence i

i

n

xn
{q }


 of 

n
xn{q }

 in nB  is convergent to xq   IX. 

Since G  is an open cover for IX there exist an index 0 A  , and an open set 

0
G , such that xq  

0
G . 

Since 
0

G  is open and xq  
0

G , then xU (q ) 
0

G , and since xq  is a 

limit point for a subsequence of the sequence 
n

xn{q }
, then 

n
xn{q }

 xU (q )  for 

finitely many n. Which implies that 
n

xn{q }


0
G , which is a contradiction and 

hence every ball is contained in one of the open sets G , foe some  .     

 

Theorem (3.3.5): 

 Let (IX, d*) be a sequentially compact fuzzy cone metric space, then                  

(IX, d*) is a compact fuzzy cone metric space. 

Proof 

Let G  be an infinitely open cover for IX. 

By using above lemma (3.3.4), every open ball is contained in one of the open 

sets G . 

Since IX is sequentially compact then IX is a pre compact by using theorem 

(3.2.3).  Hence IX has an -fuzzy net, for each  ∈ int(P).   



Chapter Three                                                                   Compactness of Fuzzy Cone Metric Spaces 

 

43 

 

Let W = { 1

1x
q


, 2

2x
q


, …, n

nx
q


} be an -fuzzy net for X*, then each xq   IX 

belong to the union of ball i

ix
U (q )


 , i=1,2,…,n. Now each i

ix
U (q )


  is 

contained in one of  G , say 
i

G , i=1,2,…,n.  

Therefore the collection of 
i

G , i=1,2,…,n is a finite subcover for IX. Then IX 

is compact fuzzy.      

 

Corollary (3.3.6):  

Let (IX, d*) be a pre-compact fuzzy cone metric space and complete, then 

(IX, d*) is a compact fuzzy cone metric space. 

Proof 

If (IX, d*) be a pre-compact fuzzy cone metric space and complete, then 

(IX, d*) is a sequentially compact fuzzy cone metric space by using theorem 

(3.3.2) and theorem (3.3.5). which implies (IX, d*) is a compact fuzzy cone 

metric space.      

 

3.4 Countably Compact Fuzzy Cone Metric Spaces 

In this section will study a new concept which is countably compact 

fuzzy cone metric spaces and its relationship with other types of compactness 

of fuzzy one metric spaces. 

Definition (3.4.1): 

A fuzzy cone metric space (IX, d*) is said to be countably compact fuzzy 

set if every open countably cover has finite subcover. 

 

The relationship between fuzzy compact cone metric spaces and 

countably compact fuzzy cone metric spaces is given in the next theorem: 
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Theorem (3.4.2): 

Let (IX, d*) be a compact fuzzy cone metric space, then (IX, d*) is 

countably compact fuzzy cone metric space. 

Proof: 

Let G , A   be countably open cover for IX, and since IX, is 

compact fuzzy, then G , A   has finite subcover which is covering IX. 

Hence (IX, d*) is also countably compact fuzzy cone metric space.      

 

Theorem (3.4.3): 

Let (IX, d*) be a countably compact fuzzy cone metric space, then                   

(IX, d*) is also pre-compact fuzzy cone metric space. 

Proof: 

Let iU  be a countable open cover for IX, and center i

ix
q


 with radius                     

 ∈ int(P). Since IX is countably compact fuzzy cone metric space, then there 

exist a finite subcover of IX. 

Hence, for each xq   IX implies xq  
n

i
i 1

U


, i.e., for each xq   IX there exist 

i0  {1, 2, …, n}; such that  − d*( xq , 
i0

i0
x

q


) ∈ int(P). 

Therefore, the set { 1

1x
q


, 2

2x
q


, …, n

nx
q


} is form an -fuzzy net for IX, i.e.,                   

(IX, d*) is pre-compact fuzzy cone metric space.      
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Corollary (3.4.4): 

If (IX, d*) is complete and pre-compact fuzzy countably compact fuzzy 

cone metric space, then (IX, d*) is also countably compact fuzzy cone metric 

space. 

Proof 

If (IX, d*) is complete and pre-compact fuzzy countably compact fuzzy 

cone metric space, then by theorem (3.3.6) and theorem (3.4.2), implies (IX, d*) 

is countably compact fuzzy cone metric space.      

 

Corollary (3.4.5): 

Let (IX, d*) be a sequentially compact fuzzy cone metric space, then          

(IX, d*) is a countably compact fuzzy cone metric space. 

Proof 

Since (IX, d*) is sequentially compact fuzzy cone metric space, then by 

theorem (3.3.5) and theorem (3.4.2), (IX, d*) is a countably compact fuzzy cone 

metric space.      

 

3.5 Locally Compact Fuzzy Cone Metric Spaces 

Now, we are in a position to introduce the definition of fuzzy locally 

compactness and its relationship with the other types of fuzzy compactness. 

 

Definition (3.5.1): 

A fuzzy set A  of IX is said to be fuzzy locally cone compact if for all         

xq   A , x  X,   (0, 1] there exists a fuzzy neighborhood U ( xq ) of xq , 

such that U ( xq ) is fuzzy compact set. 
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Theorem (3.5.2): 

Every fuzzy compact cone metric space (IX, d*) is fuzzy locally compact 

cone metric space. 

Proof:  

Since (IX, d*) is compact fuzzy cone metric space, every cover iU  has 

finite subcover, i.e., X* 
n

i
i 1

U


. 

Now for each xq   IX implies that xU (q ) 
n

i
i 1

U


, i.e., for each xq   IX has 

compact xU (q ) . (IX, d*) is locally compact fuzzy cone metric space.    

 

Corollary (3.5.3): 

If (IX, d*) is a pre-compact fuzzy cone metric space and complete, then 

(IX, d*) is locally compact fuzzy cone metric space 

Proof 

If (IX, d*) is pre-compact fuzzy cone metric space, then by using theorem 

(3.3.6) and theorem (3.5.2), we have (IX, d*) is locally compact fuzzy cone 

metric space.      

 

Corollary (3.5.4): 

If (IX, d*) is sequentially compact fuzzy cone metric space, then (IX, d*) is 

locally compact fuzzy cone metric space. 
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Proof 

If (IX, d*) is sequentially compact fuzzy cone metric space, then by using 

theorem (3.3.5) and theorem (3.5.2), we have (IX, d*) is locally compact fuzzy 

cone metric space      

 

Finally, we end this chapter with diagram (3.1) which illustrates the 

relationship among the different types of fuzzy compactness: 
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Diagram (3.1) The relationship among different types of fuzzy 

compactness. 
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CONCLUSIOS AND FUTURE WORK 

From the present study of this thesis we can conclude the compactness of 

fuzzy cone metric spaces may be considered as a generalized of fuzzy metric 

spaces and cone metric spaces, in which some relationships with the usual 

metric spaces had been proved. 

Also, the following problems may be recommended as an open problem 

for future work: 

1. Study other types of compactness, such as para-compact, meta compact, 

pseudo compact, meso compact, ultra compact and then study the relation 

between them in fuzzy cone metric spaces. 

2.  Study the fixed point theorem in fuzzy cone metric spaces. 

3. Study other types of fuzzy cone metric spaces depending on other 

approaches for constructing the fuzzy metric spaces, such as α-level sets or 

the membership functions. 
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خلاصةال  

 

                                                أن الفضاءات المترية الاعتيادية الى الفضاءات المترية الضبابية

الم اضاااااايع ال اعدل يا الرياضاااااايات  من يعتبر                من ثم الى الفضاااااااءات مترية المخر  ية

 .الصرية

لذلك لهذا الرسالة هدييين رئيسيين. الهدف الا ل ه  دراسة الفضاءات المترية المخر  ية   من 

 ثم بناء الفضاءات المترية الضبابية المخر  ية باستخدام اسل ب جديد بلاعتماد على النقا  الضبابية.

الفضاءات المتريية الضبابية المخر  ية   من           الهدف الثانا ه  الدراسة التراص        

 المجاميع الضااابابية المتريةتراص ثم أع اء العلاقة بين المفاهيم المختلفة للتراص, على سااابيل المثال 

المجاميع الضبابية المترية تراص ,  الاعتيادي                                                               

تراص المجاميع الضاابابية المترية ,                                                                   ليةالا 

التتابيعة                                                                                , تراص المجاميع 

تراص                                                                            المعد دل المترية الضااااابابية

 المجاميع الضبابية المترية المحلية 

(Fuzzy metric spaces) 

(cone) 

(compact) 

(compact fuzzy cone metric spaces) 

(pre-compact fuzzy cone metric spaces) 

(sequentially compact fuzzy cone metric spaces) 

(countably compact fuzzy cone metric spaces) 

(locally compact fuzzy cone metric spaces). 
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