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Summary

The generalization of metric spaces from ordinary sets to fuzzy set theory
and then to the so called cone metric spaces is a promising topics of theoretical
mathematics.

Therefore, this thesis has two objectives. The first objective is to study
cone metric spaces and then constructing the so called fuzzy cone metric spaces
using a new direction which is based on fuzzy point. The second objective is to
study the compactness of fuzzy sets in fuzzy cone metric spaces and then give
the relationship among different types of compactness, such as compact fuzzy
sets, pre-compact fuzzy sets, sequentially compact fuzzy sets, countable

compact fuzzy sets and locally compact fuzzy set.
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Chapter One Introduction and Literature Review

1.1 Introduction

In real life problems, we use many properties which cannot be dealt with
satisfactory on the simple belong or not belong basis. These properties
perhaps best indicated for example by shade of gray, rather than by black or
white. Assigning to each individual in a population on a “belong” or “not
belong” values, as is done ordinary set theory, is not adequate way of dealing

properties of this type, [36].

Historically, the accepted birth date of the theory of fuzzy sets returns to
1965, when the first article entitled “fuzzy sets” submitted by Zadeh L.
appeared in the journal of information and control. Also, the term “fuzzy” was
introduced and coined by Zadeh for the first time [15]. In which original
definition of fuzzy set is to consider a class of object with continuum grade of
membership, such a set is characterized by membership function which
assigns to each object a grade of membership value ranging between zero and

one.

Zike D. in 1982 [37], studied the fuzzy point, and discussed the fuzzy

metric spaces with the metric defined between two fuzzy points.

Huang L., Zhang X. [14], introduced Cone metric space in 2007, as a
generalization of metric spaces by replacing the set of real numbers is by an
ordered Banach space. They introduced the basic definitions and discuss some

properties.

Hazim M. [13], study the Fuzzy Metric Spaces with respect to fuzzy
point definition, as well as, study the many types of compactness in fuzzy

metric spaces.

Fuzzy cone metric spaces introduced in 2013 by Bag T. depended on
t-norm definition, and gave some basic results and fixed point theorems in

such spaces [30].
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1.2 Literature Review

1.2.1 Basic Concepts of Fuzzy Sets

In this section, some fundamental definitions and elemantray concepts
related to fuzzy set theory are given including some basic algebraic
operations, as well as, some illustrative example for completeness purpose.

Additional concepts may be found in any text book concerning fuzzy sets (see
[4], [13], [17]).

We start this section by the definition of ordinary or nonfuzzy sets in
order to give a comparison with fuzzy sets, and to give the reason for the

introduction of fuzzy sets.

Definition (1.2.1.1), [33]:

Let X be a classical set of objects of finite dimension, called the
universal set, whose generic elements are denoted by x. The membership in a
classical subset A of X is often viewed as a characteristic function y from X
into {0, 1}, such that:

- 1 if xeA
X) =
X 0 if xeA

{0, 1} is called a valuation set.

Definition (1.2.1.2), [33]:

Let X be the universal set and A be any subset of X, then A s called

fuzzy subset of X, which is characterized by a membership function

ug X —— [a, b], where a, b € Rand in a special case

ui - X—[0,1],ie,
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A ={(x, pz (X)) x e X,0< pz(x) <1}.

Remark (1.2.1.3), [34]:

For simplicity, the collection of all fuzzy subsets of X will be denoted by

X*or IX, where 1 = [0, 1], i.e.,
1X={A : A is a fuzzy subsets of X}.

The basic concepts with logical and algebraic operations defined on

fuzzy sets may be summarized in the next remark:

Remarks (1.2.1.4), [4], [26], [33]:

Let X be the universal set, and A, B e IX with membership function Ha
and ng, respectively; then:

1. X may be considered as a fuzzy set with membership function

Hg (x) =1, for all x € X, which is denoted by 1x; while the empty fuzzy

set & is a fuzzy set with membership function ps(x)=0,

Vv X € X, which is denoted by Ox.

2. The height of A is the greatest membership value, i.e.,

hgt(A) = sup 4 (x)
xeX

1 :
3. The elements of X, such that p (x) = > are called the crossover points of

~

A.
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4. A is said to be normal if there exists xo e X, such that Hx(Xo) =1,

otherwise A is subnormal. Also, if a fuzzy set A is subnormal, then it may

be normalized by dividing pz on hgt(A) # 0.
5. The ordinary or nonfuzzy set of all x € X such that pz (X) > 0 is called the
support of A and is denoted by Supp(A).

6. A° is the complement of A which is also a fuzzy set with membership

function:

MAC(X)zl—pA(X), vV XeX

7. A=Bif pz (x) = ps(x), Vx e X.
8. AcB if ug(x) < pg(x), VxeX

9. The intersection of two fuzzy sets A and B is also a fuzzy set D and may

be defined with the following membership function:
g (X) = Min{pz (X),ug ()}, V x e X

10. The union of two fuzzy sets A and B is also a fuzzy set C and may be

associated with the following membership function:
e (X) = MaX{HA(X),Mg(X)}, VxeX
11. The addition of A and B is also a fuzzy set C with membership function:
ue (X) =Min{uz (X) +pg(x), 1}, v x e X

12. The subtraction of A and B is also a fuzzy set C with membership

function:
e (X) =Max{0, pz (X) —pg(X)} vx e X

4
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13. The algebraic product of A and B is a fuzzy set C with membership

function:
e (X) = pa (X) pg(X), vVxe X

14. The probabilistic sum of A and B is a fuzzy set C with membership

function:
He(X) = pxz (X) + pg(X) — pz (Xug(x), vx e X,
15. A and B are said to be separated if A "B =& .
16. A fuzzy subset A of R is said to be convex fuzzy set, if:

Hiz (AXg +(1=21)X,) = Min {HA (X1), “A(XZ)}

for all x;, X, € R, and all & e [0, 1], where pj; (X) is standing for a

suitable membership function.

Example (1.2.1.7), [6]:

Let X = (0,150] be the set of possible ages for a human being, then the

fuzzy set:

A ="About 50 years old"
may be expressed as:

A={(x pa(¥)) | x e X}
with membership function:

1

4
1+(X_50j
10

ni(x) =
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Example (1.2.1.8), [31]:

The membership function of the fuzzy set A of real numbers “close to

17, is can be defined by
k4 (X) = exp(—B(x — 1)?)

where f is a positive real number.

1.2.2 a-Level Sets

In this section, an important notion in fuzzy sets will be discussed, which

iIs the so called the a-cut or a-level sets, which corresponds to any fuzzy set

A a-Level sets are nonfuzzy sets and may be considered as an intermediate
set that connect between fuzzy sets and ordinary or nonfuzzy sets, that may be
used to prove most of the theoretical results that are satisfied in nonfuzzy sets

are also satisfied here for fuzzy sets.

In fuzzy set theory, if one wants to exhibit an element x € X that is

typically belong to a fuzzy set A, then its membership value must to be

greater than some threshold level o € (0, 1]. The ordinary set of such

elements is called the a-level sets of A and is denoted by A, [10], i.e.,
Ac={xe X:pi(X) 2a,a e (0, 1]}

Also, the strong a-level set is defined by:
Ao ={x e X:pz(x) >a,ae (0 1]}

Remarks (1.2.2.1), [16], [13]:

Let A and B be two fuzzy subsets of a universal set X, then the

following properties are satisfied for all a. € (0, 1]:

1. A =B ifandonly if Au =B, ¥V o € (0, 1]
6
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2. A c Bifandonlyif A, c Be, ¥ o € (0, 1].
3. Ifa<B,then Au 2 Ap, Vo, B e (0, 1]
4. Aun Ap=Agand Ay U A=Ay, ifa <P, Va, B e (0,1].

5. (AU B)(x:A(xU B(x.
6. (Aﬂ B)(x:A(xm B(x.

Remarks (1.2.2.2), [35]:

Let A be any fuzzy subset of the universal set X, then:

1. The set of all a € (0, 1] that represent distinct o-levels of A is called the
image of A and is denoted by Im(A), le.,
Im(A) ={o: 1 (X) = a, for some x e X}
2. The support of A is exactly the same as the strong a-level of A for
a=0,i.e., Ap= Supp(A).
3. The core of A is the a-level set of A for o =1, i.e., A; = cor(A).

4. The height of A may also be viewed as the supremum value of a's of the

a-levels for which A, = &.

1.2.3 The Membership Function

An important notion of the theory of fuzzy sets is the definition and
construction of the membership functions, which admits certain properties of
fuzzy sets. Therefore, in this section, the construction of such functions will
be discussed in details. The characteristic function assigns to each element x

of X a number, nx(X), in the closed unit interval [0, 1] that characterizes the

degree of membership of x in A.ln defining the membership function, the
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universal set X always assumed to be classical set (either discrete or

continuous).

Two approaches may be used to define the membership function of a
given fuzzy set; namely numerical or tabulated approach and theoretical or

functional approach.

A numerical approach expresses the degree of membership function of a
fuzzy set as a vector of numbers whose dimension depends on the level of
discretization, i.e., the number of discrete elements in the universal set X.
This method has some advantages and disadvantages, which are in advantage
case its simplicity of construction and the disadvantage encountered in its
very consuming and long definition, especially with those sets of so many

elements.

Functional definition defines the membership function of a fuzzy set in
an analytic expression, which allows the membership grade for each element
in the defined universe of discourse to be calculated. Certain standard families
or ‘shapes’ of membership functions are commonly used for fuzzy sets based

on the universe of real numbers and on the definition of the fuzzy set.

Among the most common membership functions, which are often used

in practice, include the following types:

1. Any symmetric, triangular shaped membership function used to define
fuzzy numbers, which is characterized by the three parameters a, b and s,
where a,s € R (s=0)and 0 <b <1, as shown in Fig.(1.1), is represented

by the generic form:

bl 1- , whena—-s<x<a+s
Hz(X) = S

0, otherwise
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>

nz(X)

1
1
1
1
1
1
1
1
1
1
1
1
1

Fig.(1.1) The triangular membership function.

>
ats x

2. Another important class of membership functions used to define fuzzy
intervals is of trapezoidal shaped, which is captured by the generic
graphical representation in Fig.(1.2). Each function in this class is fully

characterized by the five parameters a, b, ¢, d and e, where a, b, c,d € R

and 0 <e <1, via the general form:

(a—x)e’ when a<x<b,a=b
a_
) 4e, when b<x<c
KA = B
(d x)e’ when c<x<d,d=c
d-c
0, otherwise
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'

nz(X)

0 a b c d ;

Fig.(1.2) The trapezoidal membership function.

3. Bell-shaped membership functions are also quite common in defining fuzzy
numbers. A generic graph is shown in Fig.(1.3). These functions are

presented by the formula:

—(x-a)?

uz(x) =ce ° ,b=0

which involves three parameters a, b, and ¢, wherea € R, b € R\{0} and

0 <c <1, whose rules are indicated in Fig.(1.4).

nx ()4

xY

Fig.(1.3) Bell-shaped fuzzy set.

10
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4. The S-membership function is defined as follows:

0 for x<a
2[(x—a)/(c—a)] for a<x<b

S(x;a, b, c)=+
1—2[(x—c)/(c—a)]2 for b<x<c

1 for x>¢

N

Functions in this family have an “S” shape whose precise appearance is
determined by the value of the parameters of a, b, c, as illustrated in
Fig.(1.4). Note that the S-function is flat with constant value 0 for x < a;

and constant value 1 for x > c. In between of a and c, the S-function is a

quadratic function of x, b = (a + ¢)/2.

ul s ab,c)

Fig.(1.4) The S-Function.

5. The =-function which may be used also to define fuzzy numbers is defined
by:

S(x;c—b,c—b/2,c) for x<c
1-S(x;c,c+b/2,c+b) for x>c

n(X; b, ¢) = {

Functions in this family are also of bell- shaped, with the sides of the bell

being generated from the S-functions. Functions of this type may be used
11
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as an alternative to the triangular-functions as they give a membership
value, which approaches 0 in a more gradual manner, as illustrated in
Fig.(1.5). Note that the b parameter is now the bandwidth at the crossover

points. The  =-function goes to zero at the points

X = ¢+ b, while the crossover points are at x = ¢ + b/2.
n(X;b,c) A

1.0

0.5

Fig.(1.5) The #~function.

1.2.4 Admissible and Nonadmissible Membership Functions

The assignment of the membership function of a fuzzy set is subjective

in nature and, in general, reflects the context in which the problem is viewed.

Although, the assignment of the membership function of a fuzzy set A is
“subjective”, it can not be assigned arbitrarily, as the following example

illustrate:

Example (1.2.4.1), [7], [15]:

In this example, we consider the universal set as the class of real

numbers, and the fuzzy set A of a all real numbers that are much greater than

12
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one. The fuzzy subset A of the universal set R may be defined

mathematically using the membership function, such as:

X1 4y
MA(X)= X

0 , if x<1

While the function:

() = e if x>1
A 0, if x<1
Is monotonically decreases as x increases, and:
) 1-710000-D) e x5
g (X) = -
A 0 , If x<1

that increases monotonically, but is approximately equal to 1 for x = 1.1,
which is not much greater than 1, hence it is not an adequate characteristic

function. Functions like those are called nonadmissible membership functions
related to the fuzzy set A. The function 1z (X) as defined in this example

and other functions, such as:

() = 1-e 10D if x>1
HA 0 ,if x<1
or:
1—— 1 i xs1
Hi(X) = cosh(x —1)
0 , If x<1

13
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which satisfy the condition that uz (x) € [0, 1], V x € X and are consistent

with the specification of the considered fuzzy set, will be an admissible

membership functions for A.

1.2.5 Fuzzy Points

In this section the basic definition and properties of fuzzy points are

introduced

Definition (1.2.5.1), [36]:

A fuzzy point |6§ (or fuzzy singleton) of a fuzzy set A is also a

fuzzy subset of X, where x € X is the support of the fuzzy point, and A €

(0, 1] is the grade of this fuzzy point, with membership function:

) = Aif y=x
" Y S0 i yex
and py, " is the complement fuzzy point of %, which is also denoted by
Cr)z(\,

Definition (1.2.5.2), [36]:

A fuzzy point q’;g belongs to a fuzzy set A (written as q’;g e A)if
and only if uz (Xg) > Ao, and qig does not belong to a fuzzy set A (written

as NQS Z A)if and only if 1i (Xg) < Ao; where we use the symbol & in

order to distinguish from the ordinary belong € in ordinary sets.

14
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Now, for completeness, we state the following concluding proposition,

which give another approach for characterizing the inclusion in fuzzy sets:

Proposition (1.2.5.3), [36]:

Let A and B be two fuzzy subsets of the universal set X, such that

AcBandie (0 1].1f§; & A, then G- & B, forall §7.

Additional properties related to fuzzy points are given in the next

propositions:

Proposition (1.2.5.4), [36], [37]:

Let A;, for all i e I, where | is any index set; be fuzzy subsets of the
universal set X and a, € (0, 1], then:

1. If Gy &€ [JA; then there exists io € I, such that Gy & A, .

iel

2. 1f 4% & (A then Gy & A, foralliel.
iel

Proof:

1. Since UAi is a fuzzy set with membership function Max pz (x)since
|

icl XeX

Gy & A, then MU A (X)> a. Hence, there exist at least one ig € |,
icl

icl

such that A, (X) > a. Therefore, from definition (1.2.5.1), §% & Aio
0

2. Since ﬂAi is a fuzzy set with membership function |>\</LI>? MA, (x), and

icl

since Gy & (A, then:

icl

15
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},lm Ai (X) o
iel

Hence foralliel, uz (X) 2a
|

Therefore, from definition (1.2.5.2), 5 & Ai,for all'i e 1.

Proposition (1.2.5.5), [36], [37]:

Let A be fuzzy subsets of the universal set X and A, Ao, A1, A2 € (0, 1],
then:

= qﬁ; if and only if A1 < A2 and X3 = Xo.
2.0 & Acifand onlyif“ig Z A,

3. If q§ & A, then q’;' & A if there exists A’ < A, where 1’ e (0, 1].

1. If qii = qﬁg Hence: Moo (X) > 1y, (x), for the same x € X, i.e.,, ko > A1,
X2 X1

Since quz (X) =12 if x =x2 and qul (X) = Aq if X = X1, which is true for
X2 X1

the same value of x, i.e., iIf X1 = Xo.

Conversely, if X; = Xp, “qM (X) = A, pqw (X) = A2, Where A, > Aq,
X1 X2

which implies that: C]% = q’;;
2. If q’x“g & Ac then Mzc (Xg) = ho. Which is equivalent to 1 — 3 (Xq) =
Lo,

i.e., iz (Xg) <1 -2 Therefore, qlx‘(fo g A ie, C~§8 ¢ A.

16



Chapter One Introduction and Literature Review

Conversely, if qug & A, implies to: ucho (X) = pz(x), VxeX
X0

Hence, 1 — ko > pz (X), i.e., 1 — pz (X) = ho. Therefore, Mse (X) > Ao, i€,
0,0 & Ac.

3. From part (1) above, suppose that there exists A’ < A and for x; = Xy, then
qﬁ' S qﬁ. Since (ﬁ & A, then Bz (X) > A Hence, pz(x) >4 >,

A" € (0, 1]. Therefore, pz (X) > A, for some A', i.e., 6&' e A,

Proposition (1.2.5.6), [36], [37]:

Let A be a fuzzy subsets of the universal set X, then A = &

if and only if there exists at least one fuzzy point qﬁ, where X € X,
A e (0, 1], such that §% & A.
Proof:

= Since & is a fuzzy set with membership function ns(y) =0, Vye X
and since A = & . Hence, there exists at least one y = x, such that Hz(x) =
0. Let piz (X) =4 >0, therefore G & A

< If there exists at least one fuzzy point ﬁﬁ, such that q§ & Athen

Hi(X) 22 >0, ie, pi(x) =0, for some x e X

Hence, A = J.

17
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Chapter Two Fuzzy Cone Metric Spaces

The Fuzzy metric spaces and cone metric spaces represents a
generalizing for the ordinary metric spaces, and in addition fuzzy cone metric

spaces are the generalized for the fuzzy metric spaces and cone metric spaces.

2.1 Fuzzy Metric Spaces, [37]

In this section, we shall study the fuzzy metric spaces with respect to the
fuzzy point, which is defined by Zike [37], in which in own reference he gave

some basic properties with an illustrate example.

Definition (2.1.1):

A function d*: I* x IX—— [0, «) is called fuzzy distance function if d*

satisfies the following conditions:
1- d*(qi&, qg) =0 ifand only if A1 <, and X¢ = Xo.
2- (@2, 32) = (a2, Cajd).
3 (ad 63) <d (gL a52) + 4 (@2, 43).
4-If d*(qii, qﬁg) < r, where r > 0, then there exist A’ > A; > A, such that
d*(le qx 2)<r.

Also, (1%, d*) is called fuzzy metric space.

The next example is an application of definition (2.1.1), which is very

important

Example (2.1.2):

Let (X, d) be the universal metric space, and let C]% q;‘; e IX; and

suppose that d* be defined as follows:

18
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d*(q;ﬁ , G’;j ) = max{i1 — Az, 0} + d(x1, X2) ..(2.1)

where X1, X2 € X, A1, A2 € (0, 1], then (1%, d*) is a fuzzy metric space.

Remarks (2.1.3):

1. In particular, if X = R and d(x1, X2) = [X1 — X2|, then we get the fuzzy

distance function given by [37], as:

A*(G5L, G52) = max{hs — dz, 0} + x — x4

2. 1F X = R? and d(x1, X2) = y/(xt - xb)? + (x2 —x3)2 , then the fuzzy

distance function takes the form:

M aA
A*(8,L, §52) = max{hs = Dz, 0} + |Jd - xd)? + (< - x)?

where X1 = (x}, x2), X2 = (x}, x3).
b 1/2
3. If X=C[a, b] and d(f, g) = (Hf -g |2 dxj , V f, g € C[a, b], and hence
a

the fuzzy distance function takes the form:

) b 1/2
d*(a5t, §42) = max{hs - Az, 0} + (Hf_g 2 dxj
a

Definition (2.1.4):

Let (1%, d*) be fuzzy metric space, A be s subset of I, and {C]i: } be a

sequence of fuzzy points in A. Then:

1. {di‘; } is said to be converge to qﬁ if for all « > 0, there exist N eN, such

that:

d*(qﬁg ,§%) <a.Foralln>N.

2. {C{iz } is said to be Cauchy sequence if for all « > 0, there exist N eN ,

such that:
19
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d*(q’x‘g , qﬁm) < a.Forall nm> N.

3. A is said to be complete if every Cauchy sequence is convergent.

Some further results concerning the fuzzy distance function (2.1) are given

as an additional property without proof.

Theorem (2.1.5):

Let (1%, d*) be a fuzzy metric space and C]% : qﬁ; be two fuzzy points in
IX, then:

A*(T5,, G,2) SA=(aL, Gy2), if < ha,

Theorem (2.2.5):

) 0 =\ ) )
Let (1%, d*) be a fuzzy metric space and qxi : qxg be two fuzzy points in
- ~A ~\ H [ !
1%, and if d*(qxi, qxg) <r, then there exists ' e (0, 1], such that .’ < X, and

~ ~ A\
d*(a52, Gx,) <.

Theorem (2.1.7):

Let (1%, d*) be a fuzzy metric space and C]ii : qﬁ; be two fuzzy points in
IX, then:

d*(qii : q&z) < d*(q% , q;‘; ), whenever A > A;

2.2 Cone Metric Spaces

Huan Long - Guang and Zhang Xian introduced Cone metric space [14],
as a generalization of metric spaces by replacing the set of real numbers by an
ordered Banach space. They introduced the basic definitions and discuss some

properties.
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In this section we shall define cone metric spaces and prove some

properties.

Definition (2.2.1), [14]:

Let E be a Banach space and P a subset of E, then P is called a cone if:

1. P is nonempty closed and P # {0};
2.1fa,beR,a,b>0,x,y € Pimpliesthatax + by € P;
3. IfxePand —x€eP=x=0.

Given a cone P € E, they defined the partial ordering according to P by
x <yifandonlyif y — x € P. We shall write x < y to indicate that x < y that
butx # y, while x < y will represent y — x € int(P), where int(P) denotes the
interior of P, [14].

The cone P is called normal if there is a real number k > 0, such that for

any x,y € P,in which 0 < x <y implies that
Il < kllyll ..(2.2)

and the least positive number k satisfying (2.2) is called the normal constant of
P.

Cone P is called regular if every increasing sequence is convergent. That

is, if {x,} is asequence, such that:

X1§XZSX3<SXHS<Y

for some y € E, then there is x € E, such that ||x, —x||[— 0 as n — oo.
Equivalently, the cone P is regular if and only if every below bounded

decreasing sequence is convergent, [14].

The next lemma gives the relationship between regular and normal cones.
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Lemma (2.2.2), [14]:

Every regular cone is normal.

In the following suppose that E is Banach space, P is a cone in E with

int(P) = @ and < is partial ordering with respect to P.

Definition (2.2.3), [14]:

Let X be a set and suppose that the mapping d: X X X — E satisfies:

1.d(x,y) = 0forall x,y € Xandd(x,y) = 0ifandonly if x =y,
2.d(x,y) = d(y,x), forall x,y € X,
3.d(x,z) <d(x,y) + d(y,z), forall x,y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example (2.2.4), [31]:

LetE = R?, P = {(x.y) € E:x,y = 0}, X = R and d:XxX—E defined by

dx,y) = (Ix =yl alx =yl

where o > 0 is a constant. Then (X, d) is a cone metric space.

Definition (2.2.5), [26]:

Let (X,d) be a cone metric space, x € Xand {x,}, n € N a sequence in X.
Then:

1. {x,}, n € N converges to x € X if for every c € E with ¢ > 0, there exist
N € N, such that d(x,,x) < c, for all n = N. We denoted this by

lim x, =x or x, = X.
n—-»>oo

2. {x,}, n € N is Cauchy sequence if for every c € E with ¢>>0, there exist
N € N, such that d(x,, x,) < c, forall n,m > N.
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3. The cone metric space (X,d) is said to be complete cone metric space if

every Cauchy sequence is convergent.

2.3 Fuzzy Cone Metric Spaces with Respect to Fuzzy Points

In this section, will be introduced for the first time based on fuzzy point
approach fuzzy cone metric with illustrate example, as well as, give the basic

properties.

Definition (2.3.1):

Let (X,d) be the universal metric space and let E be a Banach space and
P € Eisacone. Then a function d*: I* x IX—— E is called fuzzy cone distance

function if d* satisfies the following conditions:

M
X1

1. d*(G™1, qﬁg) _0ifand only if A1 <%, and X, = Xo.

2.d*(Gy2, 8,2) = d*(°8;2, °qd).
3. %Gy, 8,2) <d*(@}, §2) +dx(@,%, §;2).
4. 1fr— d*(qi”i, qig) € int(P), where r € int(P), then there exist A’ > A3 > Ao,
such that r — d*(qf(“;, qﬁg) € int(P).
The pair (1%, d*) is called fuzzy cone metric space.

The next theorem is of great importance for this chapter, since in this
example we give the definition and the proof of the fuzzy cone distance function

in terms of definition (2.3.1):
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Theorem (2.3.2):

<o

Let (X, d) be the universal metric space, let qii xy € IX, E = R?,

P = {(x,y) € E:x,y = 0}; and suppose d* be defined as follows:
d*(G32, 8,2) = (max {11 = Az, O}, d (1, X2)) . (23)

where X1, X2 € X, A1, A2 € (0, 1], then (1%, d*) is a fuzzy cone metric space.

As one can see the satisfaction of the conditions of the definition (2.3.1)

for the fuzzy function (2.3) may be assumed as follows:

1. Since by taking A; < Ay, 1.e., Ax — A, < 0, then max {A; — A, 0} = 0 and

X1 = Xz, Which implies to d (xi, X2) = 0. Hence:

d*(G3L . 6,2) = (max{hs — A2, 0}, d(Xo, Xo)) = (0, 0) =0
*(GM g2y _
Therefore, d (qXO, qXO) 0.

If d*(§’, q’x“g) — 0, then from eq. (2.3)

X1
(max{A1 — Az, 0}, d(x1, X2))= (0, 0)

and hence max{A; — A, 0} =0 and d(xi, X2) =0, which is satisfied only if

M=o <0and x; = Xo.

2. Since d*(qii, qﬁg) = (max{A1 — A2, 0} + d(X1, X2)). Hence:

*(Car2 CHA ~l-hp 1)
d (qugl qui):d*(qxz 2’ qxl 1)

= (max{l— A, —1+ A4, 0}, d(X2, X1))

= (max{i1 — A2, 0}, d(X1, X2))
wrsh AA
= d (qxi ] qx; )
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Therefore d*(qz&, ﬁi;) = d*(cqig L),

X1
3. Now, for all C]ii C]ig and q’x‘g e 1X; to prove the satisfaction of the triangle

inequality d*(q;‘i, qﬁg) < d*(qii, q’ﬁg) + d*(qg , qﬁg ), which is asserted

as follows:
d*(G5, 8,2) = (max{da - ks, O}, d(xs, Xs)), where &, < (0, 1].

= (max{A1 — Ao+ Ao— A3,0}, d(X1, X3))

< (max{\1 — A2,0}+max{i,— A3,0} , d(X1, X2) + d(X1, X3))
~M <A ~A ~ A
=d*(G,. G,2) +d*(G,2, 6,3).
4.1F 1 — d*(q’x“i, qﬁg) € int(P), where r =( 11, 1,) € int(P).

Since A; > Ay 1.e., A1 — A2 > 0, and hence max{A;—A,, 0} = A1 — A2, which
implies to:

(G, G32) < (1, 12)

which means that:
~\ ~ R
(r1,1)—d*(@,, 2) € int(P)

(ry, r2) — (max{A1 — A2, 0}, d(X1, X2)) € int(P)

(r1, r2) — (M — Az, d(X1, X2)) € int(P)

(ri— (A1 —2A2), r2 —d(xa, X2)) € int(P)
therefore,

rn—(MA1—22) >0

r> -2
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Hence, A1 — Ap <rq, 1.e., A1 <1 + Ao

Let A" € (0, 1] be chosen so that A, <A; <A’ <min{1, ry + A,}, which implies

toA <r +handso0 <A —A,<rp, e, rn—(A'—i >0.
Then:
(r1— (7\,'— 7\,2) , Mo — d(Xl, Xz)) € Int(P)

( r, I'z) — (max{?»'— A2, 0}, d(Xl, Xz)) (S Int(P)
r— d*(d, qg) € int(P).

Therefore, (1%, d*) is a fuzzy cone metric space.

2.4 Fundamentals of Fuzzy Cone Metric Spaces

Now, we are in a position to give the basic properties of fuzzy cone
metric spaces. These definitions are given also in terms of the fuzzy points in
order to make a compatibility between the definition of the fuzzy distance

function (see definition (2.3.1) and eq. (2.3)) and those definitions.

Definition (2.4.1):

Let (1%, d*) be a fuzzy cone metric space and let q& be a fuzzy point in 1%,
then the fuzzy neighborhood of a point q’; is the fuzzy set ug(qi) consisting
all points q’;ﬁ € 1%, such that ¢ — d*(ﬁ]ﬁi, qﬁ) € int(P), where the number ¢ is

called the radius of U.(§) and G is the center of the neighborhood, i.e.,

U(G%) = {§% & 1X]e = d*(d%, §%) € int(P), where & € int(P)}
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Definition (2.4.2):

Let A bea fuzzy subset of the fuzzy cone metric space (1%, d*). A fuzzy

point q’; is called a fuzzy limit point of the set A if every neighborhood of qﬁ

contains a point qﬁi # 7, such that q’;ﬁ e A.

Definition (2.4.3):

Let (1%, d*) be a fuzzy cone metric space. A fuzzy point q’; Is called an

interior fuzzy point of G & I¥ ifand only if there exists a fuzzy neighborhood

Definition (2.4.4):

A fuzzy set A ina fuzzy cone metric space (1%, d*) is called open fuzzy

set if for all C]ﬁ & A, there exists ¢ € int(P), such that ug(qi) c A

Definition (2.4.5):

A fuzzy set A in the fuzzy cone metric space (1%, d*) is said to be fuzzy

closed set if A® isa open fuzzy set in 1%, or every point of A isa fuzzy limit

point of A.

Definition (2.4.6):

A fuzzy set A in the fuzzy cone metric space (1%, d*) is bounded if there

Ao

exists h € int(P), and q’x‘g, such that h — d¥(d,°, @) € int(P), for all

§. e A.
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Definition (2.4.7):

Let (X, d) be the universal metric space and (1%, d*) be fuzzy cone metric

space. A sequence {di: }, n € N of fuzzy points in A is said to be converge to
d§ (termed as qi: —> c”]ﬁ) if for all € € int(P), there exist N eN, such that:

g — d*(qi‘:, q’;) € int(P) , for all n > N, where X, X, € X, A, Ay € (0, 1],

¥ neN.

Definition (2.4.8):

A fuzzy point q§ is an accumulation fuzzy point of A if for all
¢ € int(P), there exists {qQQ } & A, suchthat & — d*(gZ, ~§2 ) € int(P), for

infinitely many n.

Remark (2.4.9):

Let (1%, d*) be a fuzzy cone metric space and {QQ: Lhi=1,2, ..

be a sequence of fuzzy points, which is converge to C]Q € 1%, then every fuzzy

neighborhood Dg(q’;), ¢ € int(P) contains all but (or except) infinitely many

terms of {qf(”: 1.

Definition (2.4.10):

Let (X, d) be the universal metric space and (1%, d*) be fuzzy cone metric

space. A sequence of fuzzy points {6&2 }in A is said to be a Cauchy sequence

if for all € € int(P), there exists N eN , such that:
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g — d*(cﬁ; , qﬁm) € int(P), for all n, m > N.

where X, Xm € X, An, Am € (0,1], V n,m € N.

An important characterization result which may be considered as the main
result of this chapter is the next theorem, which relates between the convergence
of a sequence of fuzzy points with the convergence of two sequences in ordinary

sense. This theorem is of great importance, which will be used later.

Theorem (2.5.11):

Let (X, d) be the universal metric space and (1%, d*) be fuzzy cone metric

space. A sequence of fuzzy points {q’x‘; }, n e N is converge to q§ if and only

if there exists two non-fuzzy sequences, namely sequence of supports {X,} = X
and monotonic sequence of images {A,} < (0, 1], n € N, such that x, — X
and A,—— A, x e X, A € (0, 1].

Proof:
To prove the first condition. If {qﬁg} is converge to 6]3(“, so for all

e € Int(P), where &= (gq,€,) there exists N e N , such that

g — d*(q’;g , §%) € int(P), for all n > N. Hence:

d*(E5" G5) = (Max{ha — 2, 0} , d(xn, X))

L (g1,8,),foralln>N
Implies to
(€1,82) — (max{in — A, 0} , d(Xn, X)) € Int(P), for alin > N

Therefore

29



Chapter Two Fuzzy Cone Metric Spaces

(e, — max{i,— A, 0}, &, — d(Xn, X)) € int(P), foralln>N
i.e.,

g, — max{i,—A,0} >0, and &, — d(Xn, X) > 0.
Which implies to:

max{\,— A, 0} < g, foralln>N
Therefore

d(Xn, X) < &,, foralln>N, i.e., x,—— X, and Ap,——> A.

Conversely. If x,—— xand Ap—— A

Hence, for all € > 0, there exist N1, N2 € N, such that:

d(Xn, X) < &, max{i, — A, 0} <&,, n > N =max{Ni, N2}
e,

g1 — d(Xn, X) >0, and &, — max{Ain—A,0} >0, forall n>N.
or equivalently

(e, — max{in— A, 0}, & — d(Xn, X)) € int(P)
which implies to

(4, €1) = (Max{in — A, 0}, d(Xn, X)) € int(P)
Therefore

(max{in — A, 0}, d(Xn, X)) < (g5, &1)
Hence:

d*(G5", G) = maxgha = &, 0} + d(xn, X) < (g2, &1)

ie.,

(62, 81) — d*(8y", @) € int(P), foralln > N.

Hence, {6&2 } is converge sequence of fuzzy points.
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Proposition (2.4.12):

Let (X, d) be the universal metric space and (1%, d*) be fuzzy cone metric

space. A sequence of fuzzy points {C]i: }, n € N is Cauchy sequence if and

only if there exists two nonfuzzy Cauchy sequences, namely the Cauchy
sequence of supports {x,} < X and monotonic Cauchy sequence of images
{™} < (0,1],n e N.

Proof:

Suppose that {qﬁg} Is Cauchy sequence, so for all € € int(P), where

& = (&1, &;)there exists N € N, such that ¢ — d*(q’x“; : C]im) € int(P), for all n,

m > N. Hence:
d*(G, ) 6™ ) = (Maxghn = Am, 0}, d(n, X))

K (g1,€,), foralln,m>N

Implies to

(€1, &2) — (Max{in — Am, 0}, d(Xn, Xm)) € int(P), foralln, m >N
Therefore

(e, — max{in — Am, 0}, &, — d(Xn, Xm)) € int(P), foralln, m>N
e,

g1 — max{An— Am, 0} >0, and &, — d(Xn, Xm) > 0, foralln,m>N
Which implies to:

max{in — Am, 0} < g, foralln,m>N
Also

d(Xn, Xm) < &,, foralln,m>N, i.e., {x,} and {\,} are Cauchy sequence.

31



Chapter Two Fuzzy Cone Metric Spaces

< If {x,} and {A,} are Cauchy sequence.

Hence, for all € > 0, there exist N1, N2 € N, such that:

d(Xn, Xm) < &1, max{in — Am, 0} < &5, N, m>N = max{Ni, N2}
e,

€1 — d(Xn, Xm) >0, and &, — max{A, — Am, 0} > 0, forall n, m>N.
or equivalently

(e — max{in — Am, 0} , & — d(Xn, Xm)) € int(P), for all n, m > N.
which implies to

(€5, €1) = (Max{rn — Am, 0}, d(Xn, Xm)) € int(P), for all n, m> N.
Therefore

(max{Ain — Am, 0} , d(Xn, Xm)) < (€, , €;1), forall n,m>N.
Hence:

d*(@,", §in) = max{hn — hm, 0} + d(n, Xn) < (g5 . &), for all

n,m>N,i.e.,

(g5, €) — d*(qﬁ; ,qm) € int(P), for all n, m > N.

Hence, {qﬁg } is Cauchy sequence.

Proposition (2.4.13):

Let (X, d) be the universal metric space and (1%, d*) be fuzzy cone metric

space. If a sequence of fuzzy points {qﬁg }, n € N is converge to q&, then

{06&:} is convergent to ° g%
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Proof:

If a sequence of fuzzy points {C]iz }, n e N is converging to qﬁ. Then

using theorem (2.4.11), there exist sequence of supports {x,} < X and
monotonic sequence of images {An} < (0, 1], n € N, such that:

Xp——> Xand Ap—— A, X € X, A € (0, 1].
Therefoere:

Xp—> X, and 1—Ap,—— 1 —A

Which implies to

{3, ‘.

Theorem (2.4.14):

Every convergent sequence of fuzzy points {qﬁg }, n € N in a fuzzy cone

metric space (1%, d*) is a Cauchy sequence.

Proof:

Let {C]i: }, n e N be a convergent sequence in (1%, d*). Then using

theorem (2.4.11), there exist sequence of supports {x,} < X and monotonic
sequence of images {An} < (0, 1], n € N, such that x, — x and A, —> A,
x € X, A € (0, 1]. Since {x,} is convergent nonfuzzy sequence, hence it is a
Cauchy sequence in X. Also, since {An} is convergent sequence of images in
0, 1] < R.

Therefore, using proposition (2.4.12), the sequence of fuzzy points {di‘; 1

n € N is a Cauchy sequence.
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Definition (2.4.15):

Let (X,d) be the universal metric space and (IX, d*) be a fuzzy metric

space, then (1%, d*) is said to be complete fuzzy metric space if every Cauchy

sequence of fuzzy points {qﬁg }in IX is converge to a fuzzy point qﬁ in 1%,

Theorem (2.4.15):

Let (X, d) be a complete universal metric space, then (IX, d*) is a complete
fuzzy cone metric space.

Proof:

Let {Qi: 1, n e N be a Cauchy sequence in (1%, d*). Hence, from definition
(2.4.10), for all € € int(P), there exists N € N, such that:
~\ ~\ .
€ — d*(qX: : qu) € int(P), forall n, m >N
using proposition (2.4.12), implies to:

d(Xn, Xm) <e1 and max{in, — Am, 0} <g1, foralln, m> N.
Since {x,} is a Cauchy sequence in (X, d) which is a complete metric space,

hence there exist x € X, such that x,—— x € X.

Also, {An} is a Cauchy sequence of real numbers which is complete, hence there

exist A € (0, 1], such that {A.} is converge to A < (0, 1].
Hence, from theorem (2.4.11), implies that: C{z(“z —> C&.

Then (1%, d*) is a complete fuzzy cone metric space.
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In this chapter we will study some different types of compactness fuzzy
sets such as pre-compact, sequentially compact, countably compact and locally

compact, then study the relationship between them, and their properties.

3.1 Compact Fuzzy Cone Metric Spaces

Compactness comes to be one of the most important and useful notions

in theoretical mathematics.

Definition (3.1.1):

Let (1%, d*) be a fuzzy cone metric space, a fuzzy set A in I* is said to be

compact fuzzy set if every open cover for A has a finite subcover. i.e., if Di IS

an open cover for A then A LnJ U,
i=1

Theorem (3.1.2):

Let (1%, d*) be a fuzzy cone metric space, and let A be a compact fuzzy

setin IX, then A is bounded.

Proof

To prove A is bounded, let U, be an open cover for A with center qﬁ:
and radius ¢; € int(P). Let qﬁ: € q;*g ,and & < &, foralli. Since A is compact,
then L~Ji has finite subcover which covering A, i.e., for each q§ € IXimplies

C& €| )0,, ie., foreach C& €X*, we have ¢ — d*(qi, q’x“g) € int(P), for each

=

I
[

C]ﬁ & IX. Hence A isbounded. m
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Remarks (3.1.3):

A class {Ai } of fuzzy subsets of a fuzzy cone metric space (1%, d*) is said
to have the finite intersection property if every finite subclass

{Ail, X

).>z

) e Ain } has a nonempty intersection, i.e.,

A: NA:. N...NA. )
|1 |2 In

Theorem (3.1.4):

The fuzzy cone metric space (1%, d*) is compact if and only if every family

of closed subsets of (1%, d*) satisfies the finite intersection property.
Proof:

Suppose that (1%, d*) is compact and {F,}, n =1, 2, ...; is a family of
closed fuzzy sets which is satisfy finite intersection property. Now suppose that

NF, = &, i.e., has a zero membership function. By using De-Morgan’s law of
n

fuzzy sets (see [37]), we obtain:
~ C ~ ~
*= 3¢ < (ﬂ 'N:nj — UFS, and each Ry is open fuzzy set
n n

Which implies that {Ifr(,:} is an open cover of fuzzy compact space I*.
Hence, there exists a finite subcover of the space 1%, which belongs to {Ifﬁ Hif

N .c
X< U R, and therefore:
=1

~

I,NeN

. N ..T¢
@=(IX)Cg[_u1ﬁ.C} c
1=

LoZ
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Thus, {Ifn} does not satisfy the property of finite intersection which is a

contradiction.

Conversely, suppose that (1%, d*) is not compact.

Let {Gp},n=1,2,...; fuzzy open cover of the space I* which has no finite

fuzzy subcover, i.e., X*C Uén , Which implies X* & Uéj , forall j of n.
n i
Then, ﬂéf + &, which implies QG% + .
]

Since {Gﬁ 1 satisfies the property of finite intersection, we have I* ¢ Uén :
n

for all n. Which is Contradiction to assumption. ®

3.2 Pre-Compact Fuzzy Cone Metric Spaces

Definition (3.2.1):

Let A be a fuzzy subset of a fuzzy cone metric space (1%, d*) and let

¢ € int(P). A finite fuzzy set W of fuzzy points:

W :{qii,qg,...,q’x‘: Y, X1, Xz, ., Xn € Xand A, A, .., An € (0, 1]

~

is called an e-fuzzy net for A if for every fuzzy point f)ﬁ € A, there exists

4, & W, forsomei e {1,2, ..., n}; such that & — d*(p, d}1) € int(P).

Definition (3.2.2):

A fuzzy set A ofa fuzzy cone metric space (1%, d*) is said to be fuzzy pre-

compact set (or fuzzy totally bounded) if A possess an e-fuzzy net, for every

¢ € int(P).
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Now, we are in a position to give the relationship between fuzzy compact

and fuzzy pre-compact sets.

Theorem (3.2.3):

If (1%, d*) is compact fuzzy cone metric space, then (IX, d*) is pre-compact

fuzzy cone metric space.
Proof:

Let (1%, d*) be a compact fuzzy cone metric space (IX, d*). Assume to

contrary (1%, d*) is not pre-compact.
Now let lNJi be an open cover with center qﬁ: and radius ¢ € int(P). Since

I* is compact, then there exist a finite subcover of 1%, i.e., for each qﬁ e IX
o= A
implies Gy &(JU;, i.e, foreach Gy & IX thereexistio € {1,2, ..., n}; such
i=1

<o

that & — d*(p’, q’;:g) € int(P). Then the set {qﬁi, 4,2, . qﬁ; } form an

e-fuzzy net for IX, which is contradiction. i.e., (IX, d*) is pre-compact fuzzy

cone metric Space. N

3.3 Sequentially Compact Fuzzy Cone Metric Spaces

In the next definition, a new type of fuzzy compactness will be introduced,

which is the fuzzy sequentially compact sets.

Definition (3.3.1):

A fuzzy subset A of a fuzzy cone metric space (IX, d*) is said to be

sequentially compact fuzzy set if every sequence of fuzzy points {qQQ }e A

38



Chapter Three Compactness of Fuzzy Cone Metric Spaces

has a convergent subsequence in A, i.e., if {qﬁg } is a sequence of fuzzy points

- ~ M ~
in A, then there exist a subsequence {qx:f } of {C&: } such that for every € €
|

~ Ans )
int(P) there exist N € N, and gy € A such that ¢ — d*(qx:f : qﬁ) € int(P), for
|

each n; > N.

The next theorem gives the relationship between fuzzy sequentially

compact and fuzzy pre-compact sets.

Theorem (3.3.2):

Let (X*, d*) be a fuzzy cone metric space, then (1%, d*) is a sequentially
compact fuzzy cone metric space if and only if (1%, d*) is a complete and pre-

compact fuzzy cone metric space.
Proof:

If (1%, d*) is a sequentially compact fuzzy cone metric space. Assume to
contrary that I*X is not fuzzy pre-compact. Then, there exists ¢ € int(P), such

that I* possess no finite e-fuzzy net.

m,

Take Pr & 1% hence there exists 0, € 1% such that

d*(p2, qﬁ: ) — € € int(P), otherwise {C]ﬁ: }is an e-fuzzy net.

Also, there exists C]ig: € 1%, such that: d*(f)z(“, 7“2') —¢ € int(P) and

A

xz
i 0 : } is an e-fuzzy net.

d*(~ﬁ: M') ¢ € int(P), otherwise {({

and so on, we get a sequence of fuzzy points {qﬁ' : q’xﬁ: ...}, such that

d*(qu , q"m')—ge int(P), foreveryk #m ... (3.1)
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<N T
Now suppose the sequence {qizi' } has convergent subsequence {qxrr: ; }. Hence

{q’x‘,’]; } is Cauchy sequence which is contradict eq (3.1), i.e., if (IX, d*) is fuzzy

sequentially cone compact metric space, which implies that (1%, d*) is pre-

compact fuzzy cone metric space.

Now to prove I* is complete. Let {qﬁ{}} be a Cauchy sequence in X*, i.e.
for all ;€ int(P), there exists N1 eN , such that:
&1 — d*(qig , qﬁm) € int(P), for all n, m > Ny, where X, X, € X, A, An €

0,1], VneN.

Since I* is sequentially compact, then {dﬁﬂ} has convergent subsequence

{qx”'} i.e., for all &; € int(P), there exist N, eN , such that:

€ — d*(q;‘;" : q’;) € int(P), for all n; > N, where X, X, € X, A, A, € (0, 1],

vV neN,
Then G2 is also limit point for {G2"}, since
A Ak ") TR
A5, G%) < %@, Gyt) + d*(Gy, %)
K g1 + g, for each n, nj > N= Max{ Ny, N2}.

i.e., {q '} is convergent, then X is complete.

Conversely, if (1%, d*) is pre-compact and complete fuzzy cone metric

space to prove that X* is sequentially compact fuzzy cone metric spaces.

Since (1%, d*) is pre-compact fuzzy cone metric space, then IX possess an

7»2

g-fuzzy net, for every ¢ € int(P). Let W = {q C]i'; } be an e-fuzzy

net for IX.
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Let {q;ﬂ:} be a subsequence of {6]3(“2}, then there exist qﬁ: & W, such that

e — =i, G,)) € int(P), for infinitely many n, j = 1,2, .., k.

(U, T ) < (@, ) + (@), )
K g1 + &, for infinitely many ni, m;,j = 1,2, ..., k.

Hence {qﬁ’g;} iIs form a Cauchy sequence, and since X* is complete, then

{qﬁ{];} is convergent.

Therefore, the sequence {qﬁ,ﬁ‘} has a convergent subsequence. Hence (1%, d*)

is sequentially compact fuzzy cone metric space. ®

Corollary (3.3.3):

Let A bea compact fuzzy set of fuzzy cone metric space (1%, d*), then A

Is sequentially compact fuzzy set.

Proof

Since A is compact and by theorem (3.2.3) and theorem (3.3.2), then A

is sequentially compact.

Lemma (3.3.4):

If (1%, d*) is sequentially compact fuzzy cone metric space, and Ga for
some o € A is infinitely open cover for IX. Then every ball of radius ¢ € int(P)

is contained in one of the open sets G, .
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Proof:
Assume for contrary that for any n e N there is an open ball I§n with

center C& and radius € € int(P) which is not contained in GQ,Va e A. Since

I* is sequentially compact, then every sequence in I* has a convergent

subsequence.

Therefore, the subsequence {qﬁgg} of {di(“ﬂ} in I§n is convergent to Gﬁ e IX
Since éa is an open cover for I* there exist an index o,y € A, and an open set
G, suchthat Gy €G,, .

Since éao is open and G} & éao ,then U_(G}) & éao, and since §J is a
limit point for a subsequence of the sequence {qﬁﬂ}, then {q’;ﬂ} = Ug (q’;) for

finitely many n. Which implies that {qig} € éao , Which is a contradiction and

hence every ball is contained in one of the open sets éa, foesome .. ®

Theorem (3.3.5):

Let (1%, d*) be a sequentially compact fuzzy cone metric space, then

(1%, d*) is a compact fuzzy cone metric space.

Proof
Let éa be an infinitely open cover for I*.

By using above lemma (3.3.4), every open ball is contained in one of the open

sets G,

Since I is sequentially compact then 1* is a pre compact by using theorem

(3.2.3). Hence I* has an e-fuzzy net, for each ¢ € int(P).
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Let W = {q%, q’x“g qi‘: } be an e-fuzzy net for X*, then each 617; g IX

belong to the union of ball 08(~§:), i=1,2,....n. Now each Og(qﬁg) is
contained in one of éa, say éai ,1=1,2,....n.

Therefore the collection of éai ,1=1,2,....n is a finite subcover for 1. Then I*

iIscompact fuzzy. m

Corollary (3.3.6):

Let (1%, d*) be a pre-compact fuzzy cone metric space and complete, then
P P

(1%, d*) is a compact fuzzy cone metric space.
Proof

If (1%, d*) be a pre-compact fuzzy cone metric space and complete, then
(1%, d*) is a sequentially compact fuzzy cone metric space by using theorem
(3.3.2) and theorem (3.3.5). which implies (1%, d*) is a compact fuzzy cone

metric space. H

3.4 Countably Compact Fuzzy Cone Metric Spaces

In this section will study a new concept which is countably compact
fuzzy cone metric spaces and its relationship with other types of compactness

of fuzzy one metric spaces.

Definition (3.4.1):

A fuzzy cone metric space (1%, d*) is said to be countably compact fuzzy

set if every open countably cover has finite subcover.

The relationship between fuzzy compact cone metric spaces and
countably compact fuzzy cone metric spaces is given in the next theorem:
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Theorem (3.4.2):

Let (I*, d*) be a compact fuzzy cone metric space, then (1%, d*) is

countably compact fuzzy cone metric space.
Proof:
Let G,,VoeA be countably open cover for IX, and since I%, is

compact fuzzy, then GQ,Va e A has finite subcover which is covering I*.

Hence (1%, d*) is also countably compact fuzzy cone metric space. ®

Theorem (3.4.3):

Let (1%, d*) be a countably compact fuzzy cone metric space, then

(1%, d*) is also pre-compact fuzzy cone metric space.
Proof:

Let U; be a countable open cover for IX, and center qi: with radius
¢ € int(P). Since I* is countably compact fuzzy cone metric space, then there

exist a finite subcover of IX,

n
Hence, for each C& & Ximplies 4y &(JU;, i.e., foreach C& € X there exist
i=1

~h =M i
ip € {1,2,...,n}; such that € — d*(q;‘, qx:o ) € int(P).
0

Therefore, the set {C]ii, qﬁ; qﬁ;} is form an e-fuzzy net for 1%, i.e.,

(1%, d*) is pre-compact fuzzy cone metric space. ®
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Corollary (3.4.4):

If (1%, d*) is complete and pre-compact fuzzy countably compact fuzzy
cone metric space, then (1%, d*) is also countably compact fuzzy cone metric

space.
Proof

If (1%, d*) is complete and pre-compact fuzzy countably compact fuzzy
cone metric space, then by theorem (3.3.6) and theorem (3.4.2), implies (1%, d*)

IS countably compact fuzzy cone metric space. ®

Corollary (3.4.5):

Let (IX, d*) be a sequentially compact fuzzy cone metric space, then

(1%, d*) is a countably compact fuzzy cone metric space.
Proof

Since (1%, d*) is sequentially compact fuzzy cone metric space, then by
theorem (3.3.5) and theorem (3.4.2), (1%, d*) is a countably compact fuzzy cone

metric space. W

3.5 Locally Compact Fuzzy Cone Metric Spaces

Now, we are in a position to introduce the definition of fuzzy locally

compactness and its relationship with the other types of fuzzy compactness.

Definition (3.5.1):

A fuzzy set A of IXis said to be fuzzy locally cone compact if for all

q’; & A, xeX, e (0,1] there exists a fuzzy neighborhood Ug(dﬁ) of dﬁ,

such that 08 (dﬁ) is fuzzy compact set.
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Theorem (3.5.2):

Every fuzzy compact cone metric space (1%, d*) is fuzzy locally compact

cone metric Space.

Proof:

Since (IX, d*) is compact fuzzy cone metric space, every cover Di has

n
finite subcover, i.e., X* &( J U;.
i=1

n ~
Now for each % & I implies thatUS(qﬁ) &JU;, e, foreach G~ & 1Xhas
i=1

compact Ug (qﬁ). (1%, d*) is locally compact fuzzy cone metric space. |

Corollary (3.5.3):

If (1%, d*) is a pre-compact fuzzy cone metric space and complete, then

(1%, d*) is locally compact fuzzy cone metric space
Proof

If (1%, d*) is pre-compact fuzzy cone metric space, then by using theorem
(3.3.6) and theorem (3.5.2), we have (1%, d*) is locally compact fuzzy cone

metric space. W

Corollary (3.5.4):

If (1%, d*) is sequentially compact fuzzy cone metric space, then (IX, d*) is

locally compact fuzzy cone metric space.
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Proof

If (1%, d*) is sequentially compact fuzzy cone metric space, then by using
theorem (3.3.5) and theorem (3.5.2), we have (1%, d*) is locally compact fuzzy
cone metric space ®

Finally, we end this chapter with diagram (3.1) which illustrates the
relationship among the different types of fuzzy compactness:
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Corollary (3.4.5)

e
Sequentially compact fuzzy cone metric space Countably compact fuzzy cone metric space
A
A
< —
Lo =
) 8
g @
S 3
S W
S > o | o
~ 2 3
> D
< 3
_ ® | @
Compact fuzzy cone metric space IN 3
B &L
Q)
=
=
)
<
w
w
Y
J Corollary (3.5.3) v v
Locally compact fuzzy cone metric space Pre-compact fuzzy cone metric space

Diagram (3.1) The relationship among different types of fuzzy

compactness.
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Conclusion and
Recommendations



CONCLUSIOS AND FUTURE WORK

From the present study of this thesis we can conclude the compactness of
fuzzy cone metric spaces may be considered as a generalized of fuzzy metric
spaces and cone metric spaces, in which some relationships with the usual

metric spaces had been proved.

Also, the following problems may be recommended as an open problem

for future work:

1. Study other types of compactness, such as para-compact, meta compact,
pseudo compact, meso compact, ultra compact and then study the relation
between them in fuzzy cone metric spaces.

2. Study the fixed point theorem in fuzzy cone metric spaces.

3. Study other types of fuzzy cone metric spaces depending on other
approaches for constructing the fuzzy metric spaces, such as a-level sets or

the membership functions.
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