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,= Abstract

The main theme of this work is to introduce the general form and
fundamental concepts in ordinary and partial delay-differential equations
with variable delays and then to find the variational formulation of
delay-differential equations with variable delays in both cases, ordinary
and partial and to provide the rules of minimizing the obtained
functional in the subject of calculus of variation. Finally, to minimize the
variational formulation using the direct-Ritz method and finding the
approximate solution of delay-differential equations with variable
delays.
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_Introduction

Delays (also called hereditary, memories, retarded arguments,
past actions, dead times, or time lags), [Niculescu, 2001] are inherent in
many physical and engineering systems. In particular, pure delays are
often used to ideally represent the effect of transmission, transportation
and initial phenomena, [Asl, 2003], such that incorporating time delays
into mathematical models can be a challenged aspect. The type of delay
incorporated into the system is also very important; therefore, various
authors have made extensive work on systems of single delays, [Mori,
1981], [Mori, 1989], [Wang, 1992], [Su, 1994] and [Su, 1995]. Another
type of delay is commensurate delay. These are delays where there exists
a delay value, 1, such that all delays t;, (i =1, 2, ..., m) are rational
multiples of <. It is noted that there are some similarities between the
commensurate and the single delay case, [Niculescu, 1998]. Multiple
delays involve more computations, but the result provides a great insight
into complicated systems. A mathematical model may incorporate
constant time delays or delays that are vary with time. The delay may be
discrete or continuous, depending upon the dynamics of the problem to
be modeled, [Whitaker, 2000], and it can also be distinguished among

monotonic, autonomous and vanishing lags, [Baker, 1994].

Time lags might for instance occur if some non negligible
transportation time involved in the system or if the system needs a

certain amount of time to sense information and react on it. The
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characteristic feature of a system with time-lags is that the dynamics of a
certain time does not only depend on the instantaneous state of the
system, but also on past values. The dependence on the past can take
various shapes; the simplest type is that of constant retardation, also
called for first instance, the reaction time of a system, [Gluesing-
Luerssen, 2002]. Modeling such a system leads to functional-differential
equations (also called differential equations with deviating arguments),
[Driver, 1977], where this system can be classified as a system of linear
equation or a system of nonlinear functional-differential equations,

depending on the differential operator that appeared, [Whitaker, 2000].

A functional equation is an equation invites unknown function
for different argument values. The difference between the argument
values of an unknown function and the argument t in the functional
equation is called argument deviations. If all arguments deviations are
constants, the functional equation is called a difference equation,
[Kolmanovskii, 1992].

The functional-differential equation is a differential equation
which is also functional. Where delay-differential equations (DDE's, for
short), sometimes called differential equations with retarded arguments,
[Driver, 1977] and [El'sgol'c, 1964], (delayed arguments or time lags,
[Shampine, 2000]); are special class of functional-differential equations
in which the unknown function and its derivatives occur with their
respective values at previous time. A completely different form of past
dependence arises if the process under consideration depends on the full

history of the system over a certain time interval. In this case, the

(4]
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mathematical formulation leads to delay-differential equations, [Hale,
1993].

Historically, DDE's occurred as long as in the work of L. Euler,
[El'sgol'’c, 1964], but these equations appeared in literatures in the
second half of the eighteenth century by Kandorse in 1771, as models
for simulating more real life phenomenon, [El’sgol’ts, 1973]. In the
eighteenth century, mathematicians encountered DDE's because they
were trying to attend their knowledge of mechanics of discrete particles
to the mechanics of the continuum particles, which later came to be
studied in terms of DDE's, [Pinney, 1959]. In the late thirties and early
forties of the eighteenth century, Minorsky, in his study of ship
stabilization and automatic steering, had many applications in the theory
of self-oscillating systems, the study of problems connected with rocket
motion, the problems of long range planning in economics, a series of
biological problems, and in many other areas of science and technology,
in which the study was expanded, [El’sgol’ts, 1973]. But the systematic
study of these equations was first undertaken in the twentieth century
(especially in the last forty years of this century by Myshkis A. in the
Soviet Union, Wright E. and Bellman R. in other countries), to meet the
demands of applied science, in particular of control theory, [El'sgol'c,
1964].

The topic of DDE's was in a rapid state of development. It was
the Russian mathematician, Krasovskii who found an accommodation
for differential equations with deviating arguments as operators in
function spaces. It is worth noting that the theory of differential

equations with deviating arguments is not just a simple extension of the

1
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theory of ordinary differential equations, but it has a more complicated
theory, [El’sgol’ts, 1973].

In recent decades, DDE’s have become a powerful tool for the
modelization of spatially distributed systems. In these systems, the
geometry is often such that one can replace a propagated effect by a time
delayed version of this effect and the study of DDE has been devoted to
describe many processes with delayed effects or time lags, [Guillouzie,
1999]. Some modelers or researchers ignore the lag effect which think
are small, Whilst Kuang comments under the heading “small delays can
have large effects”, [Baker, 1994].

Delay differential equations are integrable in closed form only
under very specialized circumstances and therefore qualitative and
approximate methods are of the almost importance in studying them,
[El'sgol'c, 1964].

Many authors and researchers studied DDE's such as; [Wright,
1946] studied the analysis of the existence of the solution and its
properties for the nonlinear DDE's, [Wright, 1948] studied the solution
properties for the linear DDE's with asymptotically constant coefficients,
[Smith, 1957] studied the uniqueness of the solution and its properties
for the linear DDE's with varying coefficients, [Pinney, 1959] described
the basic theory concerning the stability of systems of DDE's, [Halany,
1966] presents the methods of solution of DDE's including the integral
transformation method and power series method, etc., [Cook, 1967]
pointed out that the study of DDE contains equations in which the lag of
the argument is a function of the dependent variable, [Myshkis, 1972]

and [Hale, 1977] referred to the classical monographs of the theory of

1w
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ordinary and partial DDE's, [Kolmanovskii, 1986] and [Stépan, 1989]
summarized the most important theorems of DDE's, [Mastinsek, 1994]
discussed the semigroups of operators associated with DDE's, [Falbo,
1995] studied the analytic solution of linear DDE's, [Mao, 1997]
discussed the exponential stability of DDE's, [Guglielmi, 1999] used
Runge-Kutta methods to obtain a t(0)-stable numerical algorithm to
solve homogeneous linear DDE's, [Guillouzic, 1999] considered the
effect of external noise on DDE's involving one variable, thus leading to
univarianet stochastic DDE's, [Baker, 2000] considered the main issues
that DDE's be addressed when constructing robust numerical codes of
their solutions, [Al-Saady, 2000] used the cubic spline interpolation
functions to solve the DDE's, [Marie, 2001] introduced the variational
formulation of DDE’s with constant delays, and solved such type of
problems using the direct Ritz method, [Gluesing-Luerssen, 2002]
described the linear time-invarients DDE's with commensurated point
delays which is used on control-theoretic context, [Al-Daynee, 2002]
evaluated the variational formulation of delay BVP’s using two
approaches, namely the variational problems with constraint and
variational problem using Rayleigh quotient formula, [Bica, 2003]
obtained the existence and uniqueness of the positive periodic solution
of neutral delay integro-differential equations, [Verheyden, 2003]
presented the collocation method with an iterative linear system solver to
compute the periodic solutions of a system of autonomous DDE's.
[Insperger, 2004] presented an updated version of semi-discretization
method for periodic systems with a single discrete time delays, [Salih,

2005] studied and modified some numerical and approximate methods
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for solving the n™ order linear DDE’s with constant coefficients, [Al-
Kubeisy, 2004] solved the DDE’s numerically by using the linear
multistep methods and improved the accuracy of the results by using the
variable step size method, [Buite 2004] generalized the ordinary DDE’s
to partial DDE’s and formulated the variational formulation of the
special types of the partial DDE’s and their solutions using the direct
Ritz method, [Forde, 2005] used the ordinary and partial DDE's to model
the biological systems, [Al-Defae'e, 2005] modified the numerical
methods of solution to solve ordinary DDE’s with variable delay using
the direct Ritz method, [Bica, 2006] obtained the smooth dependence by
lag of the positive periodic solution of a neutral delay integro-differential
equations, [Al-Esawi, 2006] derived an estimate the magnitude of the
solutions for special types of ordinary and partial DDE’s in order to find
the solution by any suitable method, such as the Laplace transformation
method and [Lue, 2007] investigated the exponential stability of p-th

mean of solutions of stochastic DDE's.

This thesis consists of three chapters. In chapter one, the basic
concepts of delay differential equations are discussed in which the study

includes its classification and some analytical methods of solution.

In chapter two, the variational formulation of ordinary delay-
differential equations were studied in details and for different types of
functionals and the necessary and sufficient conditions for an extremum
are found for different cases of functionals. Also, the approximate
solution of the variational problems is discussed and illustrated by

examples using the direct-Ritz method.

vi
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In chapter three, the variational formulation of partial delay
differential equations is also discussed as a generalization to those
formulations given in chapter two, are the necessary and sufficient
conditions for an extremum were also given for different cases of
functionals and illustrate by examples. In addition, this chapter presents
an application of the subject in real life problems that is of solving the

simple food web problem.

Finally, the results are given either in tabulated form or illustrated
in figures in order to give a good comparison between the approximate
and exact solutions or by using the residue error depending on the

problem under consideration.

Vit



Basic Concepts of Delay-
hlmgj‘ermtézaz[ Equations

Delay-differential equations are of sufficient importance in many

applications, such as mixing of liquids, population growth and automatic
control systems, [Driver, 1977], that constitute the basic mathematical
models with time delays for real life phenomena, for instance in
mechanics, physics, engineering, economics, biology and technology,

[Asl, 2003].

Therefore, in this chapter, we give some basic concepts of delay-

differential equations, where this chapter consists of two sections.

In section one, the main aspect of differential-difference
equations are introduced, as well as, its classification and basic
properties, followed by a brief review of some analytical methods that

may be used to solve differential-difference equations.

In section two, the more general case of delay-differential
equations with variable delays are introduced for the two types, ordinary

and partial delay-differential equations.

1.1 Differential-Difference Equations

Differential-difference equations, where differential equations

without delays are a special case of it; however, in some simple cases
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differential-difference equations may be related to an infinite system of
ordinary differential equations, [Baker, 1994], are DDE's in which their
time lags are constant (sometimes called scalars, [Drager, 1997] or

point-delays, [Kolmanovskii, 1992]).

The general form of the n-th order differential-difference

equation with multiple delays is given by:

F(t; x(t), x(t — to1), X(t — T02), ..., X(t — Tom), X'(t), X'(t — T11),

X'(t=T12), «ovy X'(E = Tim), «- 0y X ), Xt = To1), Xt = Tho), ...,
X = Tam)) = (0] v (1.1)

where F is a given function and t;; (for1=0, 1, ...,nandj=1, 2, ..., m)
are constants called delays, where 1 refers to the order of the derivative

with respect to the dependent variable for each, j=1, 2, ..., m.

The first order linear differential-difference equation may be
classified into three types. The first type, which is the simplest type of
differential-difference equations is that; in which the delay terms is
through the state variable and not through the derivative of the state
variable and is called retarded differential-difference equations

(RDDE’s, for short).

These types of equations occurred in a number of applications

such as, in the physical applications, for example:
X'(t) = F(t; x(t), x(t — 1)),

where x(t) € R", F: RxR" —— R", and t > 0 is a single constant

fixed time delay, and in control problems, for example:

X'(t) = K(x(t) — x(t - 1)),
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where K 1is the feedback gain function and 7 is the time delay, and also in

the study of distribution of primes, for example:
x'(t) = —ax(t-1)[1 + x(t)].

The second type of differential-difference equations is that; in
which the delay terms is through the derivative of the state variable and
not through the state variable itself and is called neutral differential-

difference equations (NDDE's, for short), [Hale, 1993], for example:
x"'(t) = —x'(t) = x'(t = 1) — 3sinx(t) + cos(t).

Also variants of NDDE's have also been used as a model in the

history of growth of single species, for example:
0
X(t) =—aq [ x'(s=7) ds (1 +x(1);
-1

and in the describing the spread of disease taking into account age

dependence, for example:
t
X'(t) = — j a(t—u)g(x'(t—u))du.
t—1

The third type is a combination between the two obvious types
and 1is called the advanced differential-difference equations (ADDE’s,
for short), [Hale, 1993]. These types of equations occur in the theory of

epidemics and models in the biomedical science, for example:
x"'(t) =f(x(t— 1)) x'(t — 1) — ax'(t) — x(t).

The main difference between differential equations and

differential-difference equations is the kind of initial conditions that
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should be used in the differential-difference equation, which are
different from the differential equations; so that one should be specified
in differential-difference equations an initial function on some interval
of length t, say [ty — T, to] to find the solution of DDE, for all t > t,,
[Ladde, 1987].

For intention, to consider the different types of differential-
difference equations as a model of real life problems, the existence of

solutions is required.

Therefore, depending on the initial history, the value of x(t) on

some interval means the following: if for some t, € R and B > to, the

function x : [ty — 7, p] —> R", where t = Max {13}, for i=0, 1, ...,n
ij

and j=1, 2, ..., m) satisfies eq.(1.1) for t € [to, B], then we may say that
X is a solution of eq.(1.1) on [ty —7, B]. If D : [to — 1, tt] ——> R" and x
are a solution that coincides with @ on [ty —7, to] , we say that x is a

solution through (ty, ®).

Let C[ty — 1, to] be the space of all continuous functions from [t, —
1, to] onto R", then if ® eC[ty — 1, to] and x : [to—T, ] ——> R", it will
be said that x is a solution of eq.(1.1) with the initial function @, or

simply a solution through @, if x is a solution through (t,, ®), [Taylor,
2004].

Now, the existence and uniqueness theory for differential-
difference equations which may be derived from the more general theory
of DDE's and also benefits from an analogy with similar results in the

theory of ODE, are presented below:
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Theorem (1.1) (Local Existence), [Hale, 1993]:

Suppose Q < RxC[ty — 7, to] is open, and F : Q —— R" is
continuous. If (t,, @) € Q, then there is a solution of eq.(1.1) through
(to, D).

Corollary (1.2), [Taylor, 2004]:

IfF: R"xR" —— R" is continuous, then for any ® € C[t, — T,

to] there is a solution of eq.(1.1) through ®.

Theorem (1.3) (Uniqueness), [Hale, 1993]:

Suppose Q < RxC[ty — 7, to] is open, and F : Q —— R" is
continuous and F(t, @) is Lipschitzian in ® on every compact set in Q. If

(to, @) € €, then there is a unique solution for eq.(1.1) through (to, ®).

Corollary (1.4), [Taylor, 2004]:

If F: R'xR" —— R" is Lipschitizian, then for any ® <

C[to — 7, to] there is a unique solution of eq.(1.1) through ®.

Many theoretical and numerical methods are presented in
literatures for solving differential-difference equations, and among the
most common used methods are; the method of steps (or the method of

successive integration) and the Laplace transformation method.
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Method of steps; is the best well known theoretical method for
solving differential-difference equations occurred and because of the
initial condition, which is given for a time step interval with length
equals to t; one must find the solution for t > t;,, which is divided into
steps with length 1, and the solution for each next time step for t > t,
which are respectively x;(t), x,(t), ... on [to, to + ], [to + T, to + 21], ...
also furnishes a method of finding explicit solutions, [El'sgol'c, 1964].
As an illustration to this approach, consider the DDE:

x'(t) = F(t; x(t), x(t — To1), X(t — To2), ..., X(t — Tom), X'(t), X'(t —

Tll), X'(t—le), ...,X'(t—’[lm)),tzto ............................ (12)

with initial condition:
Xo(t) = @o(t), t € [to — T, to];

when restricting the eq.(1.2) to the interval [to, to + t], then eq.(1.2)

becomes;

X'(t) = F(t, X(t), (P()(t — ’501), (P()(t — ’502), . (P()(t — Tom), X'(t),
Qo (t—T11), 0y (t—T12), --oy Oy (t— Tim))

= g(t, x(1), X'(1), t € [to, to + T].

Under suitable hypotheses of g, the existence of a unique solution
of this equation (hence a solution of eq.(1.2)) on [ty, t, + ] may be
established. Denoting this solution by x; and restricting eq.(1.2) to the
interval [ty + 1, to + 2t], one obtains the ordinary-differential equation

with initial condition x(t) = @4(t), t € [to, to + T]:
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X'(t) = F(t; @i(t — To1), @1(t = To2), .-, @1(t = Pom), X'(1), P1(t — T11),
O1(t = T12), ..o @1t = Tim))
= g(t; x(t), X'(t)), t € [to T 1, to + 27].
For which one can again establish the existence of a unique solution x,.

Proceeding inductively, considering eq.(1.2) as an ordinary-differential
equation on a sequence of intervals [t, + nt, tp + (n + 1)t], it is
sometimes possible to show the existence of a unique solution of the

DDE’s on [0, ), [El’sgol’ts, 1973].

Although, Laplace transformation method is extremely useful in
obtaining the solution of linear DDE’s with constant coefficients. As it is
known, Laplace transformation method can be used to solve ODE’s and
we can also use the same approach to solve DDE’s. For this approach,
suppose that f is a function of t defined on [0, o) then the Laplace
transform of f(t) denoted by F(s) is defined by:

F(s) = j e S'f(t)dt, s > 0.
0

The Laplace transform exists if the integral depends on f(t) and

the number s converges for some values of se [0, «©), [Brauer, 1973].

Two approaches may be used in Laplace transformation method
for solving DDE’s, the first approach is to solve the DDE’s by using
Laplace transformation method directly without using the method of
steps, [Bellman, 1963], while the second approach depends on the
method of steps firstly to transform the DDE, to an equivalent ODE and
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then apply the Laplace transformation method to solve the resulting

equation, [Brauer, 1973].

Moreover, the linear multistep method for solving ordinary
DDE's, [Al-Kubeisy, 2004] and the expansion methods, [Salih, 2004]

have also been used to solve the differential-difference equations.

1.2 Delay-Differential Equations with Variable Delays

Almost all of the relevant papers of DDE's are devoted to the
investigation of delay-differential equations with constant delays; in few
papers only very special types of DDE's with variable delays (DDEV's,
for short), in other literatures called DDE's with time-lag functions
(delay functions, [Baker, 1994], continuous lags, [Whitaker, 2000] or
time-varying delays, [Michiels, 2005]) when these delays depend on
values of the unknown function and its derivatives, that is functions of
the solution itself, [Baker, 1994], are studied. The lag functions that arise
most frequently in the modeling problems are constant, [El'sgol'c, 1964].
Whereas the effects of these constants functions on the dynamical
systems have been largely treated in literatures ([Niculescu, 2001] and
[Gu, 2003]). Although DDEV's is one of the most important type of
delay-differential equations, since the argument deviations of this type of
differential equations arising from particular and concrete in geometrical
or mechanical problems, [El'sgo'lc, 1964] and also need a deeper
analysis since its presence may induce complex behaviors, for example;
the so-called quenching phenomena as suggested and discussed by

[Lauisell, 1999].
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So, in this section, a simple classification of DDEv's to ordinary
and partial delay-differential equations is introduced with some

properties for each type.

1.2.1 Ordinary Delay-Differential Equations with Variable
Delays:

It is well known that an ordinary delay-differential equation with
constant delays (ODDECc’s, for short), is a delay-differential equation in
which the unknown function occur with fixed arguments. But the
generalization of ODDECc is often called an ordinary delay-differential
equation with variable delays, 1s an equation in which the unknown
functions occur with various different arguments, [Wiener, 1993]. Over
many decades, abstract ODDEv’s have been the subject and a proving
ground for a wealth of mathematical theories, since ODDEv’s related to
some population dynamics problems that can be fitted into it by some
transformation, [Techvenche, 2006]. The general form for the n™ order

ODDE with multiple variable delays, takes the form:

F(t; X(1), x(t = @o1), X(t = Qo2), ..., X(t = Pom), X'(1), X'(t — Q11),

X'(t=@12), ..oy X'(t =Q1m)s- .., X1), Xt =@n1), X ( t —Qp2), ...,

X =) = ZE) e (1.3)
where F is a given function and ¢; = @;i(t; x(t), X'(t), ..., x™(t)), for all
1=0,1,...,nandj=1, 2, ..., m) are the delay functions, which are
also called state-dependent delays if they depend on the values of the

solution x(t) and its derivatives, or state-independent delays if they are
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constant delays or depend on the argument t only, [Hern'andez, 2008],

for example:

X'(t) = x(t = o(V),
where x 1s an unknown function of the real variable t and ¢(t) is a given

continuous function, [Techvenche, 2006].

Also, the general form of the n™ order ordinary functional-

differential equations is given by:

F(t; x(1), x(koit), x(koat), ..., X(Komt), X'(t), X'(k11t), X'(kiat), ...,

X' (Kimt), ..., X™(t), X" knit), XV (Kknot), ..., XV (komt)) = g(t).....(1.4)
where k;; = ki(t; x(t), X'(t), ..., x™(t)), foreach (i=0, 1, ...,nand j = I,
2,...,m), [El’sgol’ts, 1973].

For the egs.(1.3) and (1.4), if g(t) = 0, then they are called the

homogeneous functional-differential equations, otherwise they are

IlOIlhOIl’logCIlCOllS,

The simplest possible ODDEV's, namely linear ODDEV's, where
the general form of linear ODDE with variable delays and variable

coefficients can be stated as:
ago(t)x(t) + ag1(t)X(t—@o1) + ap(t)x(t—@g2) +...+ apm(t)x(t— Qom) +
ajp(H)x'(t) + a(H)x'(t — @11) + ap®)X'(t — @) + ... + am()x'(t —
O1m) F...F ano()X™(t) + 4 (OX™(t — Q1) + an(OX(t — Qo) +...+
anm(OX"(t ~ Pum) = £(0),

where ajj(t), forall 1=0,1,...,nandj=0, 1, ..., m) are functions with

respect to t.

10
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Although, the study of nonlinear ODDE's attracts the attention of
several researchers and there are some works in this field such as; the
work of, [Muroya, 2007] which established the necessary and sufficient
conditions of the global asymptotic stability of the zero solution of the

following non-linear ODDEv.
m
X'(t) = —a()x(0) — D_a;(Dg; (x(9;(1))), £ o,
i=0

with the initial condition:
X(t) = o(t), t < to;
and assuming that:
(1) a(t) is continuous and bounded on [ty, +0).
(2) ai(t), 0 <1< m, are piecewise continuous and bounded on [ty, o).

(3) Infa(t)>0,a(t)>0,0<1<m.

t>t()
(4) iai(t) >0, | iai(t)dt = +oo.
=0 tn 1=0

(5) @i(t) 1s piecewise continuous on [ty, +o0).

(6)  @i(t), t=>to, Sup {t—@i(t)} < T <+, 0<i<m.
t=tg

(7)  o(t)= Inf @i(t)is a monotone increasing function on [ty, +o0).
<i<m

(8) (1) is continuous and bounded on [ty — T, to].
(9) g(x) is continuous on (—oo, +o0) and for x > 0.

(10) gi(—x) <gi(0)=0<gi(x),0<i<m.

11
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The work of [Tiryaki, 2007] which established some new
sufficient conditions which ensure the solution of the third order
nonlinear ODDE that oscillates or converges to zero and the work of,
[Drager, 1997] which studied the initial value problems for nonlinear

ODDE’s with distributed infinite delays.

As 1in differential-difference equations the first order linear
ODDEv may be classified into three types retarded, neutral and
advanced ordinary delay-differential equations with variable delays.
Also according to the new universally accepted study proposed by

Kamenskii G. K. by the following ODDEv with the highest order
x™(t) = F(t; x™ (1), x™2) (1), ..., xR (1), x"™)(t - @),
e N G0}
here x(t) € R", all m; > 0, @; = ¢i(t; x™(1),x™M2)(t),...,x ™) (1)) > 0,
for(i=1, 2, ..., k), is called an ordinary delay-differential equation of
retarded type , if Max{m;, m,, ..., my} < m; an ordinary delay-

differential equation of neutral type if Max{m;, m,, ..., my} = m and of

advanced type if Max{m;, m,, ..., my} > m, [Kolmanovskii, 1992].

1.2.2 Partial Delay -Differential Equations with Variable
Delays:

The theory of partial delay-differential equations (PDDE’s, for
short) is essentially less developed since such equations are of infinite
dimensional in both time (as delay equations) and space (as PDE’s

variables), which makes the analysis more difficult, [Rezounenko,

12
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2008]. The most interesting of the existence theorems are those of Gul’ I.
M., which prove the existence of a unique solution to the Cauchy’s
problem for a system of PDDE’s, in the so-called nonspecial case, i.e.,
when the PDDE can be reduced to PDE without deviating arguments,
[El'sgol'c, 1964].

Partial delay-differential equations with variable delays play an
important role in different fields of applied mathematics, say in control
theory [Kaiser, 2000] and mathematical physics when the retardation
generally appears only as a time-lag, [El'sgol'c, 1964], and have been
studied for many years using different methods by some researchers
from Taves and Webb in (1974), Chucshov in (1992), Chueshov and
Rezounenko in (1995), Wu in (1996), Boulet de Monveletal in (1998)
and Rezounenko in (2003), [Rezounenko, 2008 ].

Partial delay-differential equation with variable delays, is a delay-
differential equation in which the unknown function is a function of two
or more independent variables where the delay terms are functions may
occur in one or more of these variables, and involving more than one

partial derivative, for example, [El’sgol’ts, 1973]:
0
a—u(x, t) +u(x, t) =1f(x, t; u(x, t — 1))
X

and

0° 0° 0°
—u(x, t) + —u(x, t) =2—u(x - 1, t).
ox> ot ot?

In this subsection, we will restrict our discussion to the PDDEv in

which the unknown function depends only on two variables and the

13
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delay terms may occur in one or both of these variables. The general

form of the n™ order PDDE with multiple variable delays is:

F(x, t; u(x, t), u(x = @o1, t — Yor), U(X = Qoz, t = Yo2), ..., WX — Qom,

6 8 X X a X X
t— \VOm) U(X t), —uX — ¢r, t— yip), —uX — @, t— yyy),
OX OX

0 X 0 0
H—u(X — @y, t \lflm) U(X t), —u(x — (P{lot_ W{I)o
OX ot

2u(x— Lot— i) gu(x— Lot t)iu(x t)
ot ?125 Vi2)s --es ot P1im> Vim)» axz s L)y

52 52 2
—5 U=, Y))), —5 U=y, =Wy, oy — WXy,
ox ox> ox

& o Cogty O Cot
=Yom), 2 —u(x, t), 2 —7 UX=93, t=y3), ?U(X—(Pzzst—\lfzz)a

pY: t a2 pY: t
ey —u(xX — ) , ——u(Xx, t), ——u(X — @5y, t
o Poms £~ W) Sear N0 s o ux = day
62 t t 2 t
X X X
\Ifzn 8 ot u(x — Po1)2)s t— \|/2(1)(2))a “ees ﬁu(x ~ P21)(m)>
o" o" o"
t— WE(EI)(m))D SRR n U(X, t)a ox" U(X - (Pﬁl , t— \Ifﬁl ), ol U(X —
n n n

0 0
Pr2s b= Wiz oo o u(X = Ppms £ Wi ); ?u(xa v, o0 u(x

n n

0
- (p;[ﬂ > t—\lffn )9 ?u(x_(PLZ > t_w;[ﬁ )’ XS] 6‘[“ u(X_(Pi[lrn’ t_\VLm)’

n n n

8 xt Xt
ey u(x, t), mu(x ~ Pay1)> £ Wnymy)s P

n

(Pﬁt(l)(z)s t— \Vﬁt(l)(z)),..., u(x — (Pr)'it(l)(m)’ t— ‘Vﬁt(l)(m)),

ox" ot
o" o"

xt xt Xt
P2 U(X = Py2y1y» £~ W) PP WX = Pn(2)2)

14
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n
t— \I’ﬁt(z)(z))a e mu(x - (Pﬁt(z)(m)a t— \Ifﬁt(z)(m)), “ee

n n

xt xt
oo T VO O = U Ongnnn s £ Waian )

n n

t t
oxatn] U(X = Pp(n-1y2)> L= Wamo1y2))s - u(x —

oxot™ !
(Pr)it(n—l)(m)a t— Wr)it(n—l)(m) ) =g(x, t)
where F is a given function, (p?i’)t( i and wz‘l)t( jkoforall i=0,1,....n

j=1,2,...,i—land k=1, 2, ..., m) are known functions of x, t, u(x, t),

d 0 o° o° o° n
—u(x, t), —u(x, t), —u(x, t), —u(x, t), —u(x, t), ..., u(x, t),
5 100 0, 2 U0 0, U, 0, G ), - u(s, b _u(x, 1)
al’l n al’l al’l

u(x, t), u(x, t), ——u(x, t), ..., ———u(x, t).
ot" ox" ot ox" %ot oxot" !

Another form of partial functional-differential equations is:

0
F(x, t; u(x,t), u(koix,poit), u(ko2X,poat), .., u(KomX,pomt), a—XU(X,t),

0 0 0

—u(kx, prit u kX, piyt —u(k X, prt),
ox (kyy pll) (ki P12) * A (K{mX, Pim )
0 0

a—u(X t), u(an piit), U(klzx Pis ), - u(ki[mx’

. 82 o* o*
t), —u(x, t), u( k51X, prit), u( k3, X, t), .
Pim o’ P 21%, P o 22X, P2

52 52 52 52
—u(k3,. X, p> ) u(x t) u(k X, Poit), u(k X,

8X2 2m 2m 1 21 8t 22
t 82 2 52
P2 t), - 2 u(kzmX Pom ) (X t) u(kz(l)(l)X

t 52 82

X
P2y s —u(k2(1)(2)x P31y D - —u(kz(l)(m)X

15
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n n n

0 0 0
xt X X
pz(l)(m) t), ceey aXn U.(X, t) ax U(k 1X pnl t) X U.(k 2X pn2 t)

n n n

0 0
—U(Kpm X Pam s ——u(ky X, ppyt), ——u(kprX, ppat),
81: 1 1 81: 2 2

X
n n an
u(k>_x, prt), u(x, t), u(k X,
at nm nm axn_lat ox"™ n(1)(1)
o CA a
Payny b = u(ky1y2)% Paqy2) Ds - iy uCk(1)m) X,
n n

F
xt xt
Pu(ym) D> PR — 5 Wk % Pyt PP u(ky2)2)%

o" o"
Pﬁt(z)(z) ) .o mu(kn(z)(m)X pn(2)(m) t)..., WU(X’ t),
o" o"
———u(k} X, Pn t),
oxot™! n(n-1)(1) n(n (D) Axot!

u(ky n(n 1)(2) %>

n

— (K} (1)) %> Phn_nm) D) = &(X, 1),

pzt(n—l)(Z)t)a SRR oxot

X,t x,t < R .
where k(l)(J)k and Pk forall (1i=0,1,...,n;j=1,2,...,1—1 and

k=1, 2, ..., m), are known functions of x, t; u(x, t), aiu(x, t), %u(x, t),
X

62 82 az n al’l

e —u(x t), —u(x t), —u(x, t), . u(x, t), —u(x, t),
ox° ot oxot " oox" ot"
L umt —2 . and —0 . b

ox" ot T T ax™ e T xat™

As in ODDEVvV's, we can classify PDDEv’s to be homogeneous or
nonhomogeneous, linear or nonlinear, etc., such that the n-th order linear
PDDE with variable multiple delays and variable coefficients, takes the

form:

16
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Za (X, Hu(x — @y, t - \vlo)+ZZ{bu(X H—u(x - ¢},

i=1 j=1
ai . . n i-1 m
t—yii)+ C(X, ) —u(x —@j, t— i) +Zzzdijk(xat)
ot i=2 j=1 k=1
ai
ox o)

u(x = ok, t =y )= g(x, 1), for goo = oo = 0,

where aj, bjj, ¢;; and d; are assumed to be known functions of x and t.

So, the first order linear PDDE of single delays is:

a0(x, Du(x, ) + a1(x, Du(x — o1, t— y1) + bo(x, t)@iu(x, 0+
X

0 X X 0 0
bl(Xa t)—U(X—(Pl ) t_WI ) + CO(Xa t)—U.(X, t) + CI(XD t)—U(X— (Pi[a
Ox ot ot

£ Y1) = B, D)ot (1.5)

if a; =b; =c¢; =0, then eq.(1.5) is reduced to the general form of the first
order linear PDE. Also, eq.(1.5) may be classified into retarded, neutral
and advanced PDDEv. A RPDDEv may be characterized by the fact that
F is dependent on delayed terms without partial derivatives, such as

u(x — @o, t — o). While NPDDEv may be characterized by the fact that F

is dependent on delayed partial derivative terms, such as gu(x—(pf,
X

t— yy), u(x (pl, \|/f) and finally APDDEYv is the combination of

the two types (RPDDEv and NPDDEv).

The second order linear PDDE with variable delays and variable

coefficients takes the form:

17
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ao(x,Hu(x, t) + ay(x,phu(x — @y, t — ) + bo(x,t)a%u(x, t) + bi(x,t)

2

0 0
—uxX— o, t—yr) +Fbyx, ) —u(x — @5, t — y>) + co(x, t
™ x - @ Yi) T ba(x, 1) 2 (x - ¢ W3) + co(x, 1)

0 0 oot ! 0* ot
—u(x,t) + ci(X,)—ux—0,t—y;) + co(X,t)—u(x—@h t— +
6,[11(X ) 1(x )&U(X O,t=y1) el )8t2 (X=¢2,t=y3)

0 0 . .
do(x, t)@u(xa )+ di(x, t)@u(x—(plf, t=yi1) = g(x, 1) ...(1.6)

A special case of eq.(1.6) is the following PDDE of single delays:

2
au(x, t) + aux — 1, t —§) + bliu(x, t) + bza—zu(x, t) +
[0):9 oX
P pY: 22
ci—u(x,t)+tco,—u(x, t) +d
16tu(x ) 28t2 u(x, t) 28X8t

uX, ) =g(x, t) e (1.7)

and the following cases may be considered, [Al-Esawi, 2006]:
(1 If (d% — 4b,c,) > 0, then eq.(1.7) is said to be of hyperbolic type.
(1) If (d% — 4b,c,) = 0, then eq.(1.7) is said to be of parabolic type.

(i) If (d% — 4b,c,) <0, then eq.(1.7) is said to be of elliptic type.
Variants of nonlinear PDDEyV's are used in some models, for
example, the following NPDDEVv:

o
= Dy, =AD, TF(tu), 120

with the initial condition:

u)=® € B,

18
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where A : D(A) € E —— E i1s a linear operator on a Banach space
(E, |.]), B 1s the phase space of functions mapping (—oo, 0) into E, D is a
bounded linear operator from B to E defined by:

D, = ¢(0) = Dyo, for ¢ € B;
the operator Dy is bounded and linear from B to E and for each
u: (-0, b] —> E, b >0 and t € [0, b], u, represent, as usual the

mapping defined from (—o0, 0) to E by:
u(@) = u(t - @), for ¢ € (=0, 0]

and F a nonlinear continuous mapping onto R" xB. This model has
been suggested in the description of the heat flow models, [Bouzahir,
2006], and of the viscoelastic and thermoviscoelsatic materials

dynamics, [Desch, 1988].

One of the most important methods that can be used to solve
PDDE’s is the method of separation of variables, which is used to solve

that following types or problems by letting u(x, t) = X(x)T(t — 1):
(1) The generalized diffusion equation:

d , 07 , 0°
—ux,t)=ay—u(x,t) + ay —ux, t — 1),
LU= ag Uk O Fal —ux t=)

where a,, a; and 1 are constants and t > 0 together with the initial and

boundary conditions.
ux, t)=o(x,t), for0<x< 7,0<t<t
and

u(0, t) = 0, u(/, t) = 0.
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(i1) The generalized wave equation:

2 , & , &
—ux,t)=ayg—u(x, t) + a; —u(x, t — 1),
ot Y ox? ' ox?

where a, a; and t are constants and t > 0 together with the initial and

boundary conditions.

ux, t)=0(x,t), for0<x< ¢,0<t<t
and

u(0,t)=0,u(/,t)=0.

Also, Vandewalle S. and Gander M. in 2003 used this method to
solve the parabolic PDDE’s, [Vandewall, 2003].
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Vaniational Formulation of Ordinary
Delay-Differential Equations
with Variable Delays

gy okt

The decision on which the type of the method is best for solving
DDE’s depends on whether one is concerned with the general DDE’s or
with a special class of DDE’s, [Shampine, 2000]. In addition to that,
numerical methods for solving both ODDE’s and PDDE’s are intended
for problems with solution that have several continuous derivatives, and
the discontinuities in low-order derivatives affect the analytical methods
which are employed to solve them. In treating such issues, one can really
use optimization methods, [Baker, 1994]. Optimization is a universal
human goal, typically, our try to maximize profit, minimize cost, travel a
destination in the quickest time, all are the optimization problems which

appear in real life problems.

So, our natural propensity in optimization, has led to a long
standing effort to systematically determine the optimal realization of
variety of activities in science and engineering. This continuity effort has
created a body of mathematical method called (the mathematics of
optimization), [Wan, 1995]. In mathematics, optimization makes sense
when formulated in terms of the functional v[x]. The mathematical
theory for this type of optimization problems is called variational

problems.
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There are countless problems of this type in science and
engineering and many others which can recast into the same form,
[Lebedev, 2003]. So, in this chapter, we will focus our attention mainly
on the variational formulation of ODDEv’s by Magrie’s approach, which
can be minimized by different solution techniques of theory, such as; by

Euler-Lagrange equation or by using the direct Ritz method.

This chapter consists of five sections. In section one, some basic
concepts related to the subject of calculus of variation are surveyed. In
section two, the Magrie's approach is used to find the variational
formulation of ODDEvV’s. In section three, some related results for
evaluating the necessary condition for an extremum of different kinds of
the wvariational problems of ODDEv’s are derived. Section four
concerned with the sufficiency condition for functionals to have a
minimum points. Finally, section five presents the direct-Ritz method to
find the approximate solution of the variational problem related to

ODDEYV’s.

2.1 Basic Concepts in Calculus of Variation

The calculus of variation is the most important branch of
functional analysis since it can be applied with great power to the range
of problems in pure mathematics, and can be used to express the
fundamental principles of applied mathematics and mathematical
physics in unusually simple and elegant forms [Fox, 1987]. It deals with
problems of maxima and minima. But while in the ordinary theory of
maxima and minima, the problem, is to determine those values of the

independent variables for which a given function of these variables takes
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a maximum or minimum value, in the calculus of variations integrals
involving one or more unknown functions are considered, and it is
required so to determine these unknown functions that the definite
integrals shall take maximum or minimum values, [Boiza, 2001]. In
language of geometry, we may say that this calculus deals with the
problem of finding paths of integration for which integrals admits

maximum or minimum values, [Berechtken, 1991].

In addition, the calculus of variation may be considered as one of
the classical branches of mathematics. It was Euler who, looking at the
work of Lagrange and gave the present, not really self explanatory, to

this field of mathematics.

In fact, the subject is much older than it appears; it starts when
several more or less rigorous proofs were known since the times of
Zenodorus around 200 B.C., who proved the inequality for polygons.
There are also significant contributions by Archimedes and Poppus.
Important attempts for proving the inequality are due to Euler, Galileo,
Legender and L’Huilier, etc. The first proof that agrees with modern
standards 1s due to Weierstrass and it has been extended or proved with

different tools by Blaschke, Bonnesen and Euler, etc.

Other important problems in calculus of wvariation were
considered in the seventeenth century in Europe, such as the work of
Fermat on geometrical optics (1662), the problem of Newton (1685), for
the study of body moving in fluids or the problem of the brachistochrone
formulated by Galileo in (1638). This last problem had a very strong

influence on the development of the calculus of variation. It was
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resolved by John Bernoulli in (1696), and almost immediately after, by
James (his brother), Leibniz and Newton A.

In the nineteenth century and in parallel to the work that was
mentioned above, many important contributions were made by Drichlet,
Gauss, Thompson and Riemann among others. It was Hilbert who, at the
turn of the twentieth century, solved the problem of multiple integrals
and it was immediately after initiated by Lebsegue and then Tonelli.
Their methods for solving the problem were, essentially, what are now
known as the direct methods of the calculus of variation, should also
emphasize that the problem was very important in the development of
analysis in general, and more notably in functional analysis, measure

theory and distribution theory.

In 1900, at the International Congress of Mathematics in Paris,
Hilbert formulated 23 problems that he considered to be important for
the development of mathematics in the twentieth century. Three of them
were devoted to the subject of calculus of variation and minimizing the
functionals by using the conventions of calculus of variations. These
predictions of Hilbert have been amply justified all along the twentieth
century, and the field is at the turn of the twenty first one, as active as in

the previous century, [Dacorogna, 2004].

2.1.1 The Fundamental Problem of Calculus of Variation:

The fundamental problem in solving ODE's using the subject of

calculus of variation is to find the extremal function (curve) x = x(t),
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amongst a set (space) of admissible functions, which maximizes or

minimizes a given functional v[x(t)].

The simplest variational problem is to consider the functional:
bl

Vv[x(t)] = j FOEX(E), X (0) At e 2.1)
to

where t € [to, t1], to < t; be a given bounded subinterval of the real line
R, while the set of admissible functions x: [to,t;]] ——> R, satisfy the
specified constraints. For the functional (2.1) to have a minimum

corresponding to some particular curve x= x(t), the inequality:

t
V[x(t)] = j F(t;x,x") dt

to

t
< J. F(t;x +0x,x"+6x") dt

to

t
= j F(t; x*,x*) dt = v[x*(1)];

to

must be hold for every admissible functions x* = x(t) + €dx(t), so that
x*' =x'(t)+edx'(t), where |¢| is sufficiently small and ox(t) is an arbitrary
admissible function satisfying 6x(ty) = dx(t;) = 0, for the case of fixed
end points, [Gelfand, 1963].

Let:

Ov[x] = v[x + 0x] — V[X]
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5|
- j [F(t;x +8x, %'+ 8x") — F(t;x,x")} dt

where AF is the linear part of the increment, defined as:

AF =F(t; x + 0x, x" + 0x") — F(t; x, X)
=8F+&F+...+8F+ ...
where, from the Taylor series expansion:

OF = F,0x + F,0x’

and
8°F = % {Fo0X" + 2F 0 8x8X’ + FyyeOX'*}.
Then:
|
SvIx] = j {6F +82F+..+8F+ } dt
to
=ov+dv+... +dv+...
where

t
Sv = j SF dt  (the first variation of V[X]) ..eveerveereen...

to

t

8% = _[ 8°F dt (the second variation of v[X]) ..............

to
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According to the last equations, the first variation for the

functional (2.1) may be written as:

t
Sv = J.ESF dt

to

t

= I{FXSX-FFX/SX'} dt.

to

Integrating the second term by parts and recalling that the admissible

curve x* passes through the fixed boundary points t, and t;, then:

A necessary condition for v[x*] = v[x + 0x] to have an extremum

at x = x*, 1s that dv[x] = 0, for an admissible o0x, [Elsgolc, 1962]. Hence:

t d
ov[x] = [ {F —EFX/}SX dt,

to
implies that:

t

j{FX—iFX,}sx dt=0.
dt

to
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Since 6x is arbitrary, then by the fundamental Lemma of calculus of

variation, the fundamental Euler-Lagrange equation is;

(FX —in/j = 0.
dt

Also, other types of the fundamental ODE problems with
different types of functionals, such as functional with higher derivatives,
or with several dependent variables, etc., may occur depends on the

essential of the boundary conditions, and one may consider four cases:

i) Ox(t)) = ox(t;) = 0, when the two end points are fixed, is often

referred to as point-point problems.

i) Ox(ty) # 0, dx(t;) = 0, when t; 1s movable and t; is fixed, is often

referred to as curve-point problems.

ii1) Ox(tp) = 0, dx(t;) # 0, when t; is fixed and t; is movable, is often

referred to as point-curve problems.

iv) Ox(t)) # 0, dx(t;) # 0, when the two end points are free, is often

referred to as curve- curve problems, [Memarbashi, 2006].

Hereby some theorems, which will be needed later in this work.

Lemma (2.1), [El'sgol’c, 1964]:

Let the function 0x(t) satisfy the following conditions:

1. Ox(to — @i(to; x(to), x'(to)) = 0 and ox(t; — @i(ts; x(t1), x'(ty)) = 0, for
each (1=1,2,...,n).
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2. 0Ox(t) has continuous derivatives up to order p in the interval

to —No <t <t;, where

Mo = Max {@i(to; x(t), X'(to)}, 1=1,2, ..., n)

3. \SX(k)(t)\ <g (k=0,1,...,5), s <p, then if for arbitrary functions 0x,

the integral:

t n

j > x; (3% (t— ¢y (t,x(1), X (1)) dt =0,

to i=1
where x;(t) 1s continuous in the interval [to, t;], and @i(t, x(t), x'(t))
are non-negative continuous differentiable functions, with first

derivatives that satisfy the inequalities @i’ <d<1, (1= 1,2,...,n), then:

- xi(fi(Lx().x(0) o (f ,
El_@i (£, (L, x(1),x'(1))) 0, where 1—o; (f; (t, x(1),x'(t))) # 0

for tp — no < t < t, where fi(t), is inverse to the function of z = t —
@i(t, x(t), x'(t)). Outside the interval ty <t < t;, all the functions x(t) are

assumed to vanish.

Theorem (2.2) (Legendre Theorem), [Gelfand, 1963]:

A necessary condition for the functional:

t
v[x] = J' F(t;x,x") dt, x(ty) = Xo, X(t;) = X1 ;

to

to have a minimum for the curve x = x(t) is that the inequality
Fyx 2 0, (Legendre’s condition),

be satisfied at every point of the curve.
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2.2 The Magrie’s Approach, [Magri, 1974]

This Magrie’s approach deals with the problem of finding the
variational formulation for the linear equations associated with initial or

boundary conditions denote such equations as:

where x denotes a scalar or vector valued function and L denotes a linear
operator, with domain D(L) in a linear space X and range R(L) in a

second linear space Y and f a given real valued function.

The aim of this approach is to search for a functional v[x] defined
on the domain of the linear operator L, whose critical points are

solutions of the given equation (2.4).

This problem is called the inverse problem of calculus of
variation, while the usual problem of finding the critical points of a pre-

assigned functional may be called the direct problem.

In order to solve eq.(2.4), given two linear spaces X and Y and a
bilinear form, defined on them; a functional G[x, y] is linear in both x
and y, where x and y are elements of X and Y, respectively. The
functional is usually denoted by the symbol <x, y>, which is called non-

degenerate on X and Y if the following two conditions are satisfied:
i) If<x, y>=0,theny =0, for every x € X.
i) If<X,y>=0,then X =0, foreveryy € Y.

As it is pointed out by Magri in 1974, an operator L is said to be

symmetric with respect to the chosen bilinear form if the condition

<Lx, y> = <Ly, x> is satisfied for every pair of elements x and y of
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D(L), and if the operator is not symmetric with respect to the chosen
bilinear form, one can make the transformation <x, y> = (x, Ly), to get
<., .> i1s symmetric. Therefore, it is possible to prove that the bilinear
form with the linear operator L is symmetric whatever the chosen

bilinear form <x, y>, since:
<Lx, y> = (Lx, Ly) = (Ly, Lx) = <Ly, x>,

so, there is a variational formulation corresponding to the linear equation
(2.4) if and only if the operator L is symmetric relative to the chosen

bilinear form which is non-degenerate and the functional v[x] is given by

v[x] = %<Lx, x> —<f, x>,

2.3 The Fundamental Necessary Condition for an
Extremum of the Variational Problems of ODDEV's

The fundamental necessary conditions for an extremum are the
true work of variational problem's theory, in which variational
formulation yields to only necessary conditions of optimality, because it
1s assumed that the compared trajectories are close to each other in some

sense, while exact sufficient conditions are rare remarkable exception.

The necessary condition for x(t) established to provide a local

minimum tells us that there i1s no other curve x + 0x, which
i) Is sufficiently close to the chosen curve x.
i)  Satisfies the same boundary conditions, and

ii7) Corresponds to a smaller value v[x] < v[x+ 0x] of the objective

functional, [Cherkaev, 2003].
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In other wards, a necessary condition for an extremum x = x* of the
functional v[x] is that; its first variation vanishes for x = x*, i.e., 1s that

ov = 0 for x = x* and all admissible x, [Gelfand, 1963].

In this section, several results will be introduced for extremizing
the variational formulation of ODDEv’s, which differs from popular
problems in terms of variable delay in x which is constructed from the

natural of the boundary conditions.

Remark (2.3):

The maximization problem for the functional v[x] is equivalent to
the minimization problem for —v[x] and therefore, the variational

problem always formulated in terms of minimizing the functional,

[Elsgolc, 1962].

Remark (2.4):

For simplicity, the notation F is written as the shorthand for the
general form of F(t; x, x', x(t — @¢), X'(t — ¢1)), where ¢; = @i(t; x(t),

x'(t)), (1=0, 1), unless it is stated.

2.3.1 The Point-Point Problems of ODDEV’s:

In this subsection, the necessary condition for an extremum of
different types of functionals will be established. In case (ty, Xo) and
(t;, x1) are the fixed end points of the curve. This kind of problems
classified into two type problems with known boundary conditions and

for undetermined boundary conditions.
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2.3.1.1 Problems with Known Boundary Conditions:

The first kind of the point-point problems starts by considering
what might be called the “simplest” variational problem with known
boundary conditions, which can be formulated as the minimizing of the
functional:

t

VIX] = | F(t %, X, X(t= @or), X(t = Goa), ., X(t = @om), X'(E = @11),
to

X' (= @12, «rvy X (6= @1m)) Qb coooereeeee e (2.5)

satisfying the known boundary conditions:
X(to) = Xy, X(tl) = X1,
X(to — Mo) = Xno and x(t; — M) = Xn,

where No = MaX{(Pij(to; X(t()), X’(to)}, N = M&X{(pij(tl; X(tl), X,(tl)}, X0, X1,

Xny> Xn are given and called the boundary values of the problem

and @j are the delay functions when 1 refers to the order of the derivative
with respect to the dependent variables for each (j = 1, 2, ..., m),
[Russak, 2002]. In the next theorem the extremum of the functional
(2.5), where the class of admissible curves consist of all smooth

functions joining its two fixed end points, will be found.

Theorem (2.5):

If F is a function with continuous first and second derivatives
with respect to the argument t, and of the variables x(t), x(t — @), x'(t),

x'(t — @y), for i =0, 1 and j =1, 2, ..., m) satisfies the boundary
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conditions defined by eq.(2.6). Then the necessary condition for v[x]
defined by eq.(2.5) to have an extremum is that x(t) must satisfies the

following Euler’s equation:

d m /7 , d (= /

where F is a symbol used for the function F with time lag functions.
Proof:

The first variation of v 1s:

t
Sv = j SF dt

to

= j {F.8% + FodX' + Ey_y ) OX(t = 001) + By, 5X(t — 002)

to

- Fy(tmopp) OX(E = @om) + Fyi_g, X (E —@11) +

Fer(oop) OX(t= @12) T ... + Fy_y X/ (t— @1m)} dt.(2.8)

In this case, where the necessary condition for the functional to have an
extremum; is that its first variation should be vanished, thus eq.(2.8)

becomes:

t
j (FOx+F 0x}dt = — j {Ey(tcopy) OX(t=P01 )+ By, ) SX(t-02) +
to to

T FX(t ®om )SX(t (POm) + E X "(t— (pll)SX,(t _(pll) +

FX (t @12)8X (t (P12)+ + (t Olm )6X (t (le)} dt ..... (2.9)
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Let z;j = (t — @y), 1.€., zj = z;(t; X, x"), for 1=0,1andj=1, 2, ..., m) or
equivalently t =(z; + ¢;) with the same index of z and ¢ in each

equation.
Let f;; be the mnverse function of z;;, such that t = fj(z;;), and hence:

dt =1"(zj)z'jdz=(1 — ¢'jj) dz, for 1=0,1andj=1, 2, ..., m).
with the shifted boundary conditions (and hence shifted limits of
integration) to zo =ty — no and z; = t; — 1.

Producing a function F that satisfies all values of time, and can be

written as:

F =F(t; x, X', X(z01), X(202), ..., X(Zom), X'(z11), X'(Z12), ..,

Consequently on using (2.9.a) and by renaming the variable of

integration as t, the right hand side of eq.(2.9) can be represented as:

t
J- ( X(t (pOI)SX(t (POI) + X(t (p02) 8)((t - (P02) + cee X(t Pom )SX(t
to

(Pom)+ X(t (pll)SX (t (P11)+ X(t (plz)ax'(t_(l)lz)+ ce +

t—mp
Fyigp ) OX'(t = @1m)) dt = I (F, x(zop) (1= P1)0x(Zg1) +
to—"o

Ey (20 (1= 002)8%(20p) + ... + ix(zOm)(l—(PE)m)SX(ZOm) +
Eo(y A= 01)8% (1) + Fy(yy,) (1= 912)8%(15) + .

Fo ) (1= 0l )X (Zy) ) Qv (2.9.b)

Substituting eq.(2.9.b) in eq.(2.9), yields to:
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t ti—-m
[ Fox+Fadx)di== [ (F,)1-0)dx(z)) +
to to—"o

Fx(zoz)(l_(P62 )OX(Zg) + ...+ ﬁx(zom)(l_(PE)m)SX(ZOm) T
Fx'(zn)(l_q)il)sx,(zll) T ix’(zlz)(l—(Piz)SX'(le) Tt
Fxr(zm)(l — 010X '(z;,,,) ) dt.

Integrating by parts the terms of the arbitrary functions 6x’, and taking

the boundary conditions into account, one can get:

t t d
| Foox dt= Fxf6x|2) - {aFX,ésx}dt

to to

and

1=
Fx'(zlj)(l_(Pij)SX,(le) dt = Fx'(zlj)(l _(Pi_])SX(Zl_])
to—mo

-1

to—Mo

t1—m
d (g '
E{FX'(ZU)(I_(PIJ‘)} 5X(zlj) dt
to—Mo
t1—m
d (g '
=] _{FX'(Zlﬂ(l_(Plj)}&((zu)dt;

dt
to—"Mo

forall(G=1,2,...,m).

Therefore, the increment of the first variation dv, becomes:
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ty d U m
Sy = J.{Fx —EFX'}SX(t)dH I Z{FX(ZOj)(l—(pbj)SX(Zoj)_
tg to—"Mo =1

d © '
E{FX(ZU) (1- (plj)} 8X(le)} dt.
By lemma (2.1), the fundamental necessary condition for v[x*] = v[x +

0x] to have an extremum at x = x*, is:
d <[ © ’ d © ’
FX_EFX' +Z Fx(zoj)(l_(POj)_E{Fx'(zlj)(l_q)lj)} =0,
j=1

where z; = (t— @), fori=0,1andj=1,2,..,m). N

2.3.1.2 Problems with Undetermined Boundary Conditions:

The second kind of the point-point problems are called problems
with undetermined boundary conditions, where one or more values of
the boundary conditions at the points t, and/or t; and/or t, — 1y and/or
t; — m; which are called the boundary values of the extremals, are not

specified, 1.e., one or more of the ends of extremals:

X(to) = Xo, X(t1) = X1, X(to — Mo) = X, and x(t; — M) = X

0 mn°

are not specified, [Russak, 2002]. In this case the Euler's equation for
this problem remains the same, but additional conditions must be

supplemented by the terms of the function F at the undetermined end
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points. For example, the problem with undetermined boundary values x;
and x, , which can be formed as min v[x], where:
il x(t):x(tg)=xq,
x(tp—mo)=Xn,
x(t)=x],_,
x(ty —m)=X‘\t:t1_m

b
VIx] = [ F(t %, %, X(t= @or), X(t = Goa), ., X(t = Qom), X'(t = @11),
to

X'(t—= 1), ..., X'(t — Q1)) dt.

The necessary condition of the above functional is given in the

next theorem:

Theorem (2.6):

If F is a function with continuous first and second derivatives
with respect to the argument t, and of the variables x(t), x(t — @), x'(t),
X'(t = i), for 1 =0,1and j =1, 2, ..., m) satisfies the boundary

conditions:
X(to) = Xo and X(t — Mo) = X, 0"

Then the necessary condition for v[x] defined by eq.(2.5) to have an

extremum is that x(t) must satisfies the following Euler’s equation:
Fo-YE |+ F =gy - F 1-¢ii); [=0
X_a x' +Zl X(t_(POj)( _(POj)_a{ X'(t—(plj)( _(PIJ)} =Y,
J:

as well as:

FX'|t=t1 =0 and FX'(t—@lj)(l_(plj)t:tl_m

forallj=1,2,..., m).
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Proof:
The first variation of the functional (2.5) 1s given by:

t
Sv = j SF dt

to

b
- I {Fx0X + FyOx' + F (g, OX(t=Q01) + Fy (g, OX(t = @02) +

to
co T Eotmgpm) OX(t = @om) + Fyrgy ) OX'(t =011) +
FX»(t_(Plz)SX'(t—(plz) + ...+ Fxr(t_(plm)SX'(t—(plm)} dt...(2.11)

Since for the extremal solution, one must have ov[x] = 0, then eq.(2.11)

may be rewritten as:

9] t
J {Fxox + Fyox'} dt = _I Bty OX(t=001) F Fyi_gy) OX(t
to to

= Qo2) T oo+ Fy_gp) OX(t = Qom) + Fyri_g, ) OX'(t —@11) +

Fe(tmpp) OX' (t=012) + ... + Foi_g, ) OX (t=Qim)} dt...(2.12)

Using the same functions defined in eq.(2.9.a) and substitute in

eq.(2.12), one can get:

t) t1—my
[ Fox+Feoxhdt=— [ {Fy)10-00))0x(z0)) +
to top—"o

Fx(zoz)(l—(sz)SX(Zoz) Tt Fx(zom)(l_(PE)m)SX(ZOm) T
FX'(le)(l_(pil)SX'(le) + FX,(le)(l_(PiZ)SX,(ZIZ) + +

FX'(zlm) (1 - (Pim )SX,(ZIm) } dt.
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Similarly, integrating by parts and taking the boundary conditions into
account, gives:

9] 9] d
| Feox' dt= Eedx|_, - | {EFX,}&; dt
to

to
and

tj-m

1_:x'(zlj)(l—(Pij)ESX'(Zu) dt = Fx'(zlj)(l —(Pij)SX(Zu)

t=t1—my

to—no
ti—m d (—
R =00 x(z) dt;
to—"mo
forall(G=1,2,...,m).

Therefore, the increment of the functional dv, becomes:

5]

d
ov[x] = FX'8X|t=tl + I{FX —EFX}SX dt +

to
m J—

N O '-SXZ-‘ +
JZI{ ( 1J)( (Pl_]) ( lj)tztl—nl
b-m

[ {Futaop - 00)3x(20)) -
to—mo

%{Fx'(zlj)(l — (Pij)} SX(le)}} dt.

Thus, using lemma (2.1), the stationary condition associated with Euler's
equation (2.7) is:
F 2

x |t=t1 =0and Fyg, . (1-9i)) =0; forallj=1,2,...,m),

t=t1—my

where z;; = (t — ¢y), forallG=1,2,...,m). H
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Remark (2.7):

Similar conditions to (2.10) may be derived for the point t = t,
and t =ty — 1y, 1f the value of the dependent variables at these points are

not prescribed.

2.3.1.3 Generalization to Functionals of More Complicated

Forms:

In this subsection, additional fundamental necessary conditions
for functionals with more complicated integrands containing time-lag

functions are derived.

In order to deal with such type of functionals, for simplicity the
functional v[x] will be reduced in problems of ODDEv’s with single

delay variables.

Theorem (2.8):

Consider the functional:

v[x] = J F(t; x, X/, ..., x™, X(t — @), X'(t — @y), ..., X(n)(t — @) dt

where x € C'[to, t;], and satisfy the boundary conditions:

x(to) = Xo, X'(to) = X'o, ..., X" (to) = Xgn_l) ,
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x(t1) = x;, X'(t) =X, ..., x" () = x"7V,
X(to —Mo) = Xng * X'(ty — No) = X;lo o X"t =) = X(n H
and

X(t=11) = Xy s X (61 = X5 o X0 = X0V (2.14)

Then the necessary condition for v[x] to have an extremum is that x(t)

satisfies the following Euler's equation:

[F +Z( 1) (1)} ( Fy (- gp) (1= Pp) +
Z( )—{ O (P)(l—(p{)}jzo ................... (2.15)

Proof:

The first variation of the functional v[x] is:

Sv = j (F3% + Fydx + ..+ F ) 8% + Fy (g 8X(t = @o) +

to

Fx'(t—<P1) ESX'(t_(Pl) Tt Fx(n)(t—(pn) 6X(n)(t_(l)n)) dt,

and since ov = 0, then:

1 t
j (FdX + Fdx' + ...+ F ) 8x™) dt = j (B (1) OX(t = @0) +

to to

Fo (o OX (t = @1) +...4 F ) ) Sx™(t — y)) dt.
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Letting z; = (t — ¢y), for (1=0, 1, ..., n) or equivalently t = (z; + ¢;) =

fi(z;), where f(z)) is the inverse function of z; with the same index of z

and ¢ in each equation. Hence dt = f,'(z)zdz= (1 — ¢'})dz, for (i=0, 1,

..., D).
Letting

F =F{t;x, %X, ..., x™, x(20), X'(Z1), «+ s X"(Z0)} wevreeeererrnn.. (2.16)
Therefore:

t b=m

j (FdX + Fdx' + ...+ F () 8x™) dt = - j (Fegzgy (1 - )

to to—"o

0x(20) + Fx'(zl) (1 -0¢")ox'(z) + ... + Fx(n)(zn)(l — ')
SX™UZ1)) G ettt (2.17)
Integrating each term in eq.(2.17), containing ox’, 6x'', ..., &x™, by parts

n times where n refers to the n number of derivation in that term , give:

5] 5] d

j F.0x' dt = Fxr8X|tl — j {—Fxr}éix dt,
to dt

to to

tl y, d t y d?
| Foax dt:FXnSX’ti)—aFXnSX|t;+ | 7P poxdt,
t
t

1 1 d t
J' F o 5x"W dt=F (H)SX(H_D‘ g (n)Sx(n_z)‘ Lt
o X X to dt X to

tl dn
D" | s—F ,, ¢Ox dt.
(=D I{dt“ X()}
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Doing similarly, for the right hand side of eq.(2.17), yields to:

t—mp
(E x(z) (1 = 0"1) 8% (z1) = E (- (PI)SX(ZI)‘l -
to—"Mo

ti—ny
d o '
j {aFX,(Zl)(l—cpl)}sx(zl)dt,

to—mo

-
{Egrr(zy) (1 = 023X (25) = Eyry, ) (1 - 05)8x (Zz)
to—"Mo

t—m

-

d
dt

t1—np d2

+
to—mo

e -on]xz,) dt,

~{Fer(,,) (1= 05)} 8x(25)

dt 2
to—"Mo

- .
F ' (n) _ = . 0 1=
{ Fx(n) (z2) (1—([) )OX (z,) = Fx(n) ) (1-¢o, )SX( 1) (z,) —

t —
to—no 0710

tj—mp

d
dt

{ RN (pn)}ax<n Nz At

to—Mo
t1—mp qn

-1)" gy (1= 00 8x(2,) dt.
o)

Taking the boundary conditions into account, then the first variation ov

may be rewritten as:
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4 2 n
ov = IJFX _4 X'+d—2FX”+...+(—1)n d F () pOxdt +
dt dt dt" X

to

t1—my
[ T ’ d T '
| {FX(ZO)(I—([)O)SX(ZO) —E{Fxr(zﬂ(l—(pl)}Sx(zl) +

to—mo
d? (=
7 B (1= 00} 8x(2) =+
n dn o [
(1) o {Fxm) (Zn)(l —cpn)}Sx(zn)} dt = 0.

Since 0x is arbitrary; therefore, according to lemma (2.1), dv = 0 which

give the fundamental necessary condition:
n ; dl _
FX+Z(_1) EFX(i) + FX(ZO)(I_(PO)+
i=1
n ql
-1 1—.{F b (-0 } =0,
;( ) a0 X(l)(Zi)( ?;) ]
where z; = (t — ¢;), foreach (i=0,1,...,n). N

Theorem (2.9):

Consider the functional:

t

. n
V[X1, X2, ooey Xin] = J. F(t; X1, X205 vvy Xy X1, X 2 ooy X'y vees X§ )

9

to
x(zn) e xgll) s e X1(t = @10), Xa(t — @20), -+, Xm(t — Pmo),
X'1(t = @11), X'o(t — @21), ooy X't = Qi) -, Xin) (t—@m),

XV (= @2n)s +ees X (= @) At oo (2.18)
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where ¢;; (1=1,2,...,mandj=0, 1, ..., n) are delay functions where j
refers to derivative of the i-th dependent variable, defined on the set of
functions x;(t), where x; € C"[ty, t;] for (i =1, 2, ..., m), and satisfy the

boundary conditions:
!’ ! —l —1
Xi(tO) = on » X i(t()) = Xio 9 seey Xi(n )(tO) = Xf(r)l )9
2 ! —1 —1
xi(t) = Xj,» Xi(6) = Xj 5 o X" (0) = XM7Y,

(n-1)

-1
Xi(to — N, )=X X'i(to— Tho) ano . Xi(n )(to_ MNi )zxmo

and

x(" Dt - m )=x7,

1

Xi(ti — ):Xml , Xt =y, )ZX;HI ;

forall i=1, 2, ..., m). Then the necessary condition for v[xy, Xy, ..., Xu]

to have an extremum is that x;(t) must satisfies the following system:

j=1

g
(F +Z( 1)J 9)}{ xi(t-g10) 1~ ‘P10)+Z( 1y dtl{ xD(t-g )¢ _(Pij)}]zo

(F +Z< 1)J—F<J>]+(sz(t o 1= 030) + 1) dtj{ TP —<p’2j)H:0

j=1

n . dJ d ’
(Fxm - Z(_DJ dt! B <) J * [Fxm(t ~Pmo) (1=@mo) + Z( 1) { (J)(t—(ij)(l ~ Py )H =0
= j=1
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Proof:

In order to find the necessary condition for a functional
depending on several functions of one independent variable and
involving derivatives of higher order, only one of the functions x;(t) for
some (1 =1, 2, ..., m) will be varied, at a time, keeping all the other

functions fixed.

By so doing, the functional v[x;, X5, ..., X,] turns into a functional
depending only on one function, that is being varied, for instance on

Xk(t), for some k, then:
VX1, X2, ovvs Xm] = VX ]eeeeoeenieeieeiceeeceececcecec e (2.20)
for some k.

Consequently, from theorem (2.8), the function x; = x: that makes the

functional (2.20) has an extremum must satisfy the necessary condition:

(F +Z( 1y’ EF(J)}{ka(t o)L= (pk0)+le( 1y! { <O (g )(1 @i{j)}}()

j=1

for some k.

Since, the argument applies to each function x;, for (i=1, 2, ..., m), then
a system of m delay-differential equations (2.21) is obtained, which is

the fundamental necessary condition of the functional (2.18). ™
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2.3.2 The Point-Curve Problems of ODDEV's:

The second kind of variational problems with time-lag functions
are called the point-curve problems with moving boundaries, which are
variational problems in which the upper point of the admissible
functions 1s moving along certain boundary curve. Which means that the
end point (t;; X;) is variable and can move turning to (t; + ot;; x; + 0x;)
and the other point (ty; X¢) is fixed, [Elsgolc, 1962]. For this type of

problems two cases may occur:
Case (1):

In this case; problems for which the movable end point t; can
move freely along certain line parallel to the y-axis, in fact at this point
the admissible function x is not specified. In this case admissible
functions must fulfill the natural boundary conditions which will be

discussed later.
Case (1i):

In this case; problems with movable end point move freely along
a given curve X = G(t). In this case, the admissible function x(t) and the

end point must satisfy the necessary conditions, called the transversility

conditions, [Memarbashi, 2006].

Since, in the above two cases the class of admissible functions is
more rich than the case of point-point problems, the function x that
realizes the extremum in the above cases must satisfy the fundamental

necessary conditions for the case of the point-point problems
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(Euler's equations), in addition to the several conditions for movable

boundary points which will be arise.

Hereinafter some theorems will be introduced, which establish

the natural and transversility conditions for some type of functionals.

Theorem (2.10):

If F is a function with continuous first and second derivatives
with respect to the argument t, and of the variables x(t), x(t — o), X'(t),
X'(t — @1) satisfies the boundary conditions x(t)) = Xo, X(to — Mo) = X, 0"

Then the fundamental necessary condition for an extremum of the

functional:
4
v[x] = J. F(t; x, X', x(t — @g), X'(t = @1)) dt e (2.22)
to
is given by:

t=t;-m

t=t1 -1y

(F —x'Fy |t=t1 —-x'(t) - T]l)l_:x’(t—(pl) (1-o¢p)

FX'|t=t1 =0 and (FX'(t—(Pl)(1 —¢1)

or by the transversility condition:

(Fh:tl +(G'=x)Fy |t=t1 +(H' - X')Fx'(t—qn) (1-¢p) t=t;—my ) =0

both with Euler's equation:

d _ de |
(FX Ta j ' (F"““PO)(I =00~ {Feon (1~ cpl)}j -0.
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Proof:

The linear part of the increment ov of the functional v[x] may be

expressed as:

t]+0t;
ov = I F(t; x + 0x, X" + 0X’, X(t —@p) + Ox(t — @), X'(t — 1) +
to

t
5x'(t —¢1)) dt—j F dt

to

t +5t1

= I F(t; x + ox, X" + 0x/, X(t —g) + Ox(t — o), X'(t — 1) +
t

ox'(t —@y)) dt,
or equivalently:

t +8t1
OV = I F(t; x + 8%, x" + 8x', X(t —@o) + x(t — @), X'(t — @1) +

t
5x'(t —¢y)) dt + j LN Sl (T (2.23)

to

where AF refers to the linear part of F. Since ty and t; are fixed, then this

implies that:

{
Sv = j AF dt— 0

to

and with the aid of the Mean Value theorem, the first integral of
eq.(2.23) will be transformed to:
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t1+6t1
j F(t; x + 8x, X' + 8x', X(t — o) + 8x(t — o), X'(t — @) +
t

OX'(t = 1) dt = F(t:%,X',x(t = 9p) X'(t = 01))],_, 8ty
= F\

t=t

The second integral of eq.(2.23) can be transformed by using the Taylor

series as:
t t
j AF dt = j SE At + Ry ceoeveeeeeeeeeeeeeeeeseeeeeeeeeseeeeseesesenns (2.23.b)
to to

where R, represents the higher variation in F.

From (2.23.a) and (2.23.b), the following result is obtained:

Bl
dv=F|_ o+ | 8Fdt.

to

Justification for 6v = 0, as the solution of the necessary condition, then:

p! t—m
F‘t:tl 6tl + J {FXSX + FX'SX,} dt = — j {Fx(t—(pO)SX(t _ (P()) +
‘o to—"o

Fy(t—o)dX (t— @)} dt.

Using the same functions defined in eq.(2.16), for (i=0, 1), gives:

t -
Fl, ot + | (Fdx+Fudx}di=— [ {Fyqy)(1-00)0x(z0)+
to to—"o

ey, (1= 08X (2} dt.
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Then after integrating by parts, one may have:

t
t) d = , tj—m
F‘t:tl 6t1+FX'6X‘tO T I {Fx - EFX’}SX dt=— FX’(ZI)(I - @I)SX(ZI)LO 1o -
to

ti—m
© i d T ' ’

Fx(zo)(1 - (Po)SX(Z()) - E{Fx'(zl)(l - (Pl)} OX (Zl)} dt ,
to—Mo

where,
t

j{FX —in}axdt +
o dt

t1—m
© i d T i ’

Fx(zo)(1 - (P())SX(Z()) - E{Fx'(zl)(l - (Pl)} OX (Zl)} dt ,
to—"o

will leads to the fundamental necessary condition with nonmovable

boundary points for the general Euler's equation:

d - -9 (F ’
(FX _an'j+(FX(ZQ)(1_QO)_E{FX!(ZI)(I_(M)}}:O'

Since the lower end points are fixed, it follows that SX‘t:to =0, and
t=tp—mo

the values of the functional are taken only along extremals. Therefore:

8v = Fl_, 8 + Fdx|_ + FX,(Zl)(l—(pi)SX(Zl)‘t:tl_m ......... (2.24)

Since, [El'sgol'c, 1964]:

6X| = 6X1 — X’(t1)6t1

tztl
and

8X(zl)| = Xy — X (t = M)OL e (2.24.a)

t=tj—m;
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Substituting the result (2.24.a) in eq.(2.24), one can get:

Flo, 8t + el (%1 = X(0)86) + B (-9D|_,

(San — X’(tl - 1’]1)8'[1)
= {F‘t:tl - X' Fxl‘t:tl — X'(tl nl) (Z )(1 t=t; }61:1 +
2 |t=t1 0 + Feg (- t=t; -y Xy -

Then the fundamental necessary condition for an extremum will takes

the form:
{Fly, — X' Folo, =Xt =) Fy,) - N L5t +
Feley, 8%1 + By (1= 8y = Ouerrerrnrrerrnersenrne (2.25)

t=t-my
If the arbitrary functions ot;, 0x; and 0y, | are independent, then the

fundamental necessary condition which is called the natural condition is:

F‘t:tl - X,FX"tztl - X,(tl l) (Zl)(l (Pl)‘t t-n = O: FX"t:tl = O

and F '(Z )(1 (pl)‘t -y = O

While, if 0x,; is dependent on dt;, and the end point (t;; x;) can move
along a certain curve x; = G(t;), implies that; dx; = G'(t;)0t;, and hence

eq.(2.25) becomes:
{F\t:tl _X'Fx"t=t1 = X'(t1 = M) Fy (1 (pl)‘ }6t1 +

Eolizy, (G/(0)34) + By (=g)| _ 8x, =0.

t=ty-mp

Then the necessary condition in this case is:
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Fl, + (G =X)Fl =Xt = M) Fgp (- (pi)‘t:tl_m -0

and

=0.

t=t1—m;

Fx'(zl)(l - (Pi)

Alternatively, if 8x,, is dependent on ot;, such that x, = H(t; — ny),

implies that 8x, = H'(ti — m1)dt;, then the necessary condition will

Jo
t=t;—my

takes the form:

and

E,/ 0.

X ‘t:tl -

If both (6x; and SXm ) are dependent on 6t;, then the necessary condition

becomes:

( F‘t t +(G"-x) FX"t=t1 +H - X')l_:x’(zl)(1 -
=t

t=t1—-mp

where z; = (t — @), and the last condition is called the transversility

condition.

All the above cases of necessary conditions are associated with Euler's

equation (2.7). ®

Theorem (2.11):

Let F be a function with continuous first and second partial

derivatives with respect to the argument t and to the variables x;(t),
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Xi(t — @;), 1 =1, 2, ..., mand j =0, 1, ..., n); and their derivatives with
respect to the movable boundary at the point (t;; X115, X21, ..., Xm1), and

satisfies the boundary conditions:
Xi(to) = Xig > X'i(to) = X{» oo x{" D (tg)= X1
and
Xi(to — mj, ) = Xpy o X'i(to —Mo) = X;Wio yeees Xi(n_l)(to ;) = X1(11i10—1).

Then the fundamental necessary condition for an extremum for the

functional (2.18), is given by:

J

i=l j=1 k=]

m n )
DR CES

dkl
dek Fx.(k)}
t i i-1 j=1

=t

n ke dk—_] _
l; D55 {Fxm(t o 11700 =0,
- t=t-m
n . k=]
_pk-id
Z{( R in(k)} -0
k=j t=t|
and
n - k=]
_pk-id F — o —
kZJ{( DA {in(m(t_@ik)(l cplk)}} 0,

t=tj—my

foreach i=1,2, ..., m and j =1, 2, ..., n); and the transversility

condition is:
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+

‘ m n G . dk j
Fl_y, + D> (G- J)Z (- = 7F ()
k=] t=t;

i=1 j=1
>3 (- x @)Z{( i {F O )a—(p;k)}}

i=1 j=1

t=t-m
all with general Euler's equation (2.19).
Proof:

The first variation of the functional v 1s:

t1+5‘[1
ov = J F(t; x; + 0xy, X + 0Xy, ..., Xy + OXpp, X'y + 00Xy, X5 +
4

X5y veey X+ 0K - x{n) + 8x§n), X(zn) + Sx(zn), e
(n) + SX(n), Xl(t — ([)1()) + 6X1(t — ([)1()), Xz(t — ([)2()) + 6X2(t —

020), - -+ Xm(t = Pmo) + OXm(t — Pmo), X'1(t — @11) + Ox'1(t -
Q11), X'2(t = @21) + Ox'2(t — @21), +., X't — @m1) + X' m(t —
Om1)se - X\ (€ = Q1) + 3x™ (t = 1), x50 (t — @an) + Sx IV (¢

f
— P2, ooy X (t = Q) + 8 (t = Qpun)) dt+jAF dt ...(2.26)
0

Applying multivariable Mean Value theorem on the 1* integral of

eq.(2.26), and Taylor series on the remaining terms, gives:

f
Sv=F|_ 8+ [ 3Fdt,

to
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where 8F = ZZ{ o oxV +F O ) (1- (P1])5X(J)(Zu)} j = (t — @y) and
i=1 j=0 1

F is a symbol used for F with time lags.

Taking the increment dv = 0, it follows that:

1 m n .
F‘tztl 6t1+J. ZZ{FX_(J')SXi(J)}dt =

to i=1 j=0 !

t1—m
T (83t

to-ng Li=1J=0

Integrating by parts terms of the arbitrary functions with the higher

derivatives and taking into consideration that o0x; = 0Ox'; =

8x§“‘1)‘ =0, forall i=1,2, ..., m), one obtains:

m n i
&v =F|_, ot + J. ZZ{(_I)Jd_jF (J)}SXI i@t +

to i=1 j=0 dt’ X
m n n i gk -
121:;1; e dtk Foao 0xi7 7
1M m n . d_]
to—"Mo 1=1 j=0 dt J ( )
m n n ke dk—j _ (J )
lez;kz D ¢kl {in(k)(z )(1—%)} (ziy) --(2.27)
1=] j=1k=)

where:
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1 m n dJ q
jzz (—1)JdTF G (9% +(=1) —{ O, )(1 (pu)}SX (z;j) (dt

1s the fundamental necessary condition for nonmovable boundary points,

and making use of:

Sxi‘tztl = 8X11 — X'i(tl)gtl
and
8x;(zi)| =X, — X'i(ti —M1)dt;

t=t;—m;; MNi1

to obtain the same result for 6x’;, ..., 8xi(“_1), forall (1=1,2, ..., m), as:

sxW =8x) — xI D¢t
t=t
and
5x(z;) =5x — x (1 - myp)d;

t=t;—m
forallG=1,2,...,n—-1).

Substituting the values of the arbitrary functions at the end points t; and
— 1, back in eq.(2.27), yields to:

Sv=F|_ 5t1+222{( e Jd . —F (0

i=1 j=1k=j

(8x§™ = x Pty | +
=1

k—j
335 oL, 0o

i=1 j=1k=j

(-1 _
(SXﬂil
t=t

ij) (t — Tli1)5t1) :
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Consequently:

k_
ov=|F_, ZZX(J)Z{( D' Jd F(k)}

i=1 j=1 =

t=t

5t +

k—j
ZZX(J)(U nll)Z{( l)k id {F (k)(z )(1 (Plk)}}

i=1 j=1

t=t;—my

NN ki 87 (-1

ZZZ A= LTI C

i=l j=lk=] b=ty

m n n o ak—] _
_pk-id _ (-1)

DD AD " {Fx<k)(z a cplk)} 5x,

Then the following two cases arises:

(1) If all arbitrary functions are independent, then the fundamental

necessary condition for an extremum is:

k—j
d F k
t=t;

k-]
ZZX(J)(tl 1111)2{( l)k jd {F (k)(z )(1 (P1k)}}

i=1 j=1

t . ZZX(J)Z{( l)k J

i=1 j=1 =

=0,

t=tj-m

> (DX —F =0
-] x
k=] dt b=y
and
n . dk-I
_nk-J d — o -0
kz ) dtk_J{ 0 g 7 O v
=j
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where zy =(t—oj ), for (i=1,2,...,m and k=1,2,...,n).
(11) If there is a relation between the arbitrary functions, such as:
x = Gy(t;) and xg?l = Hy(t; — i)
Implies that,
5x) = G'(t))dt, and sxgﬁ = H';i(t; — 1)t

Then the transversility condition, takes the form:

+

m n k—j
Fl,, + 2.2 (Gij- (J))Z{( i € F(k)}

k—j
i=1 j=1 dt

t=t

=0

Cqk-i (L
33 a0 v 4

i=1 j=1 k=j

t=t;—mp

where z = (t — @y), for 1=1,2, ..., mand k=1, 2, ..., n), all classes
with the general Euler's equation (2.19). W

2.3.3 The Curve-Point Problems of ODDEV's:

In this subsection, the extrema for a functional will be described
subjected to the restriction that (to; x¢o) moving along certain curve x =
G(t), that is the end point (t; X¢) 1s movable, and can move turning to

(to + Sto; X0 + 0X) and the other point (t; x;) 1s fixed.

The next theorem illustrates this case of variational problems:
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Theorem (2.12):

Let F be a function with continuous first and second partial
derivatives with respect to the argument t, and of the variable x(t), x(t —
¢, x'(t) and x'(t — @;), for (1 = 0, 1). Consider the functional (2.22),

which satisfies the boundary conditions:

x(t) =x;and x(t —ni)=x,,

with movable boundary at (ty; Xo). Then the fundamental necessary
condition for an extremum will satisfy Euler's equation (2.7) and the

natural boundary condition:

F|t=t0 = O

Proof:
In order to find the necessary condition for the (curve-point)

problem, the linear part of the increment may of the functional is

considered:

to tO +5t0
to +8t0
- j F dt,
to
which implies that:
tO +8t0
ov = j F(t; g, g', g(t — o), g'(t — 1)) dt,

to
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for x = g, on the interval [to, ty + oto].

Applying the Mean Value theorem and using the continuity of the
function F, yields to:

ov=F(t; g, g, g(t — @o), g'(t— 1)) . Oto.
=40

Since oty is arbitrary, the necessary condition for an extremum will

satisfy Euler's equation (2.7) and the natural condition:

F|t=t0 =0. m

2.3.4 The Curve-Curve Problems of ODDEV's:

Such problems are called mixed variational problems of
ODDEV's, which has to examine the extrema for functionals that has two
movable end points. Different kinds of such problems exist, and in the
next theorems, we will discuss the fundamental necessary condition for

two kinds of such problems.

Theorem (2.13):

Let F be a function with continuous first and second partial
derivatives with respect to t and x(t), x(t — @j), x'(t), X'(t — @3), (1=0, 1),

which satisfies the boundary conditions:
X(to) = X0, X(t1) =Xy,

X(to —Mo) = X, and x(t; —M1) = Xy,
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with the additional condition that the admissible curve can pass through
a certain domain D, bounded by a certain curve ¢(t; x) = 0, then the
fundamental necessary condition for an extremum of the functional

(2.22), 1s given by:

[F‘t—t* - F(t;ga g’a g(t - (P()), g,(t - (pl)‘tzt* + (G, - X')Fx' ‘t=t* T

)-o
t=t*-m

with Euler's equations (2.7) to be satisfied.

(H' - X’)Fx’(t—(pl)(1 - (Pll)

Proof:

Consider the first variation dv for the functional v[x]:

t* 5]
=j th+j F dt;

to t*

t*
and assumed that dv is determined by dv = dv,+0v,, where dv; = J F dt,

to
is due to the variation of the functional has a movable upper point
(t*; x*), which can move freely along the boundary curve o(t;x)=0, and

consequently, by theorem (2.10), the transversility condition for dv; is:

ov; = (F +(G' - x')Fx"tzt* +(H - X')l_:x'(t—tm)(1 —01) t=t*—n) -
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S|
and v, = I F dt, is due to the variation of the functional has also a
t*

movable end point (t*; x*), thus, by theorem (2.12), the necessary

condition for dv,, 1s:

6V2 = F‘t:t* .

Whereas for ov the necessary condition is:

ov = (F

(H' - X')Fx'(t—(pl)(l - @)

t=t* + F(taga g,o g(t - (PO)D g,(t B (pl)‘tzt* + (G, o X')Fxl‘tzt* +

-
t=t*—n

with Euler’s equation (2.7) is satisfied. B

Theorem (2.14):

Let F be a function with continuous first and second partial
derivatives with respect to t and x(t), x(t — ¢y), xX'(t), X'(t — ¢;), 1=10, 1),

and their derivatives. Consider the functional:

f
vIx]= [ F(t x, X', x(t = o), X'(t = 1) dt+D(to, 115 Xo, X1)....(2.28)

to
where @ is a constant, which has no influence on the extremal properties
of the functional, with movable end points. Then the fundamental
necessary condition for an extremum for the functional (2.28) satisfies

Euler's equation (2.7), as well as the transverality necessary condition:
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(F‘t_tl (G =Rl + = X0Rgg (0] + Py
and
(F\t-to £ (T =Xy (U =g (=0D|_, @y,
+ O, OT’Jz 0.
Proof:

To find the first variation ov, assume that:
OV = ov; + 0D,

where Ov; is due to the variation of F with the two end points are

movable, such that:

t1+6t1
Svi=| [ (ko x+8x, x(t- go) + 3x(t— o). X'(t— 1) +

to
t 5] 5|
ax'(t—cpl))dt—det + j th—det
tO t0+8t0 tO

t1+8t1 t0+6t0
= [ Fdi- [ Fat

5] to

or equivalently
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t]+3ty to +5t0 t
v = j Fdt— j th+‘[Ath ................................. (2.29)
t to to

Applying the Mean Value theorem for the first two integrals of the right
hand side of €q.(2.29), and integrating by parts the third integral, yields
to:

t
_ t d
Sv, = F\t:tl Sty — F\t:to Sty + FXrSX‘tO + j {FX —anr}Sxdt +

to
= , -
{FX'(Zl)(l - (Pl)SX(Zl)}LO N +
-
_ ’ d (- ’
FX(ZO)(I - (P0)8X(Z0) — E{FX,(ZI)(I — (Pl)} 6X(Z1)}dt (230)
to—mo

where z; = (t — ¢;), (1=0, 1), and

5]

j{FX —in,}sde
dt

to
b= d —
J. {FX(Z()) (1- (PE) )SX(ZO) - a {Fx'(zl ) (1- (Pi )} SX(ZI )} dt,
to—mo
are the Euler’s equations for the functional v,[x].

Now, since:

SX‘ 0 = 6X() — X'(t())ét(),

t=t

8X‘t=t1 = 8X1 - X'(tl)Stl,

SX‘ = SXT]O — X,(t() — 1’]0)6t0

t=tg—mo

SX‘t:tl_m = SXm — X'(tl — 1’]1)61',1 J
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Substituting (2.30.a) in eq.(2.30), one can get:

8vi =Fl,_, 8t — F|,_, 8t + Fol_, (5% —x'(0)3t) ~ Ee|,_, (xo

= X(t0)8t0) + {Fo A-0D|  (8xg =X (tr = m)dty) -

t=t1—my

Fxr(zl)(l — (pi) (SXWO — X'(t() — 1]0)8'[())

t=tg—mo

Implies that,

oV = {(F‘t:tl _X’Fx"t:tl - x'(t —Th)Fx'(zl)(l—(Pi)‘t:tl_mj&l +

OX o, } -
t=t;-mp

{(F‘t:to — X’Fxr‘t:to — X'(to — nO)FX'(Zl)(l - (pi)‘t:to o jsto +

ox =0.
t=t0 -No "o }

From Taylor series expansion, 0@ may be written as:

Fx"t:tl 8Xl + {Fx’(zl)(l - (Pi)}

FX,‘tZtO SXO + {FX/(Zl)(l — (Pi)}

0D = D(ty + Oty, t; + Oty Xo + OXg, X + 0x;) — D(to, t1; Xo, X1)
= @y Oty + Dy Sty + Dy 0X( + Dy, OXy .
Since the boundary points (to; Xo), (ti; X1), (to — No; Xno) and (t; — ny;
xm) can move freely along prescribed curves x¢ = T(t), Xny = U(to —
MNo), X1 = G(t;) and Xp, = H(t; — n1), implies that [El'sgol'c, 1964]:
Oxo = T'(tp)dty, Ox; = G'(t;)dty,

8Xn0 = U,(t() — 1’]0)6t0 and SXm = H’(tl —1’]1)8t1.
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Then the transversility condition for ov = ov; + 0@ takes the form:
(F|t=t1 + (G’ _ X,)FX' |t=t1 + (H' _ X')FX’(ZI)(I - (Pi)‘t:tl g + CDtl + q)XIG'jBtl_
{F|t:t0 +(T' - X')Fx'|t=t0 +(U' - X’)Fx'(zl)(l - (Pi)‘tzto . + Dy + Dy T'}Sto =0

when oty and dt; are independent, as may be easily shown, the necessary

condition for dv to have an extremum is:

(F\tztl (G = XBe|,_, + (H = x)Fyq (1 (pl)‘tztl IR N j -0
and

{F|t:t0 +(T' - x’)FX'|t:t0 +(U' = x)Fy(p ) (- (Pi)‘t=to—no + @y + Dy OT’}StO -0

where z; = (t — ¢;), with Euler's equation (2.7) is satisfied. ®

2.4 The Sufficient Condition for an Extremum of the
Variational Problems of ODDEV's

In the previous section, we established the most useful necessary
conditions for a relative local minimum of the basic problems in calculus
of variations and its variants. Among these conditions, the Euler-
Lagrange equation which enable us to search for a minimum point of a
small group of piecewise smooth functions called extremal. However,
the fact that x*(t) satisfies the Euler equation does not necessarily make
it the solution of the problem, [Wan, 1995], i.e., the condition that

Ov[x*] = 0 does not necessarily imply that x* is a local minimum for

v[x]. Therefore, one must examine 8°v[x*] to decide whether x* is a
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minimum point, a maximum point or inflection point of the variational

problem v[x].

In this section, the attention will be focused on the minimization
problem unless the context of the specific problem requires to do

otherwise. The basic problem is stated as:

Miélv[x | X(to) = Xo, X(t1) = X1, X(to — Mo) = X1 > X(t;—m) = X, ],
Xe

t

v[x] = JL {F(t; x, X', X(t = @g), X'(t = @1)} dtueerrrreieiiieeennee, (2.31)

to

where @;, for (1 = 0, 1) are the delay functions, 1o = Max{i(to; X(to),
x'(t))}, n1 = Max {@i(t;; x(t1), x'(t1))}, (1=0, 1) and S is the collection
of all admissible functions to be specified for the basic problem; the
necessary condition for v[x] to have a minimum at x* = x and to satisfy
the inequality v[x] < v[x*], for all admissible x*, is that, the stationary
condition ov[x*] = 0 holds for all admissible 6x*. Also we need to
determine the second variation 8*v[x*], which is an integral that may be
represented as a functional and called the accessory variational problem
of the functional (2.31), [Leitmann, 1981], to decide whether x* is a

minimum point.

The accessory variational problem obtained by:

Then according to theorem (2.2), it is necessary for the functional

v[x] to have a minimum at x = x*, is that the set of inequalities:
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Fuu> 0 Feyr Fx'x'(t—(pl)(l_(l)i)
Eeieppx (1=01) Eeegx(t—g (1= @1)

be satisfied at every point in the curve, and (2.32) is called the Legendre
condition for the functional (2.31). But, Legendre attempted
unsuccessfully to show that a sufficient condition for v[x] to have a
minimum; therefore, Jacobi test plays an important role in the basic
problem depending on whether that there is no points in [ty — Mo, ti]
conjugate relative to x*, it suffices for x* to be minimum point for v[x];

therefore the following definition is necessary;

Definition (2.15), [Gelfand, 1963]:

The point a # a is said to be conjugate to the point a if

|
J(PSX'Z +Q8X2 )dt has a solution which vanishes for x =aand x = a
to

but is not identically zero.

After these considerations, the sufficiency conditions can be

stated as:
i) x*(t) is an (admissible) extremal (from Euler-Lagrange equation).
i) Forevery t € [to — Mo, ti], the Legendre condition (2.32) is satisfied.

ii1) x*(t) has no conjugate points to to — 1o in [ty — Mo, t1] (Jacobi’s test),

[Wan, 1995].

The expression:
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t t1-m
j (P18x” + P,8x'% + Q8x) dt + % j (P, 8x(z0) + P, 8x'*(zy) +

to to—Mo
Q)’ dt,
where:

d

P, = Fxx: P, = Fx’x’a = -
1 ’ Q=4

{FXX’SX} > F1 = (Fx(zo)x(zo)(1 - (pb):

F2 = Fx'(zl)x’(zl ) (1- (pi) and

Q:(FXX(ZO) (1 - (PE))SX + FX'X(ZO) (1 — (pb )SX’) SX(ZO) _

d T ' T ' '
E(FXX,(ZI)a—(pl)ax+FX,X,(ZI)(1 —l)ox’ +

Fx(zo)x'(zl) (1 o (PE) )(1 - (Pi )SX(ZO )) E\)X(Zl)
where z; = (t — ¢;), (1= 0, 1), for the second variation of the functional, is

called the Jacobi's condition.

Hereinafter, the expression of the second variation for the
different types of functionals with the Legendre condition and Jacobi's
equation of each type will be established, as it is shown in the next

theorems.

Theorem (2.16):

If F is a function with continuous partial derivatives up to order
three with respect to t, x(t), x(t — ¢;), xX'(t), X'(t — ¢y), (1 =0, 1). Consider
the functional of the form (2.31), defined for curves x = x(t) and satisfies

the given boundary conditions x(t) = X, X(t;) = X1, X(to — No) = Xno and
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X(ty — M) = X, - Then the Legendre condition related to the functional

(2.31) is the following set of inequalities:

Fx’x' Fx'x'(t—(pl) (1 o (Pi)

Fx’x’ 2 0> — , — , =
Fet—opx (I-¢1) Fet—opx'i-op) (I-¢p)

9

must be hold for all t € [ty — Mo, t1].
Proof:

The accessory problem of the functional (2.31) for the second

variation can be expressed as:

where:
1 '
oF :E {Fxx8X2 + Frxdx'? + Fx(t—cpo)><(t—<P0)8X2(t ~®o) *

E

X

12 '
'(t_(pl)xl(t_(Pl)SX (t_(Pl) + ZFXX’SXSX +

2F, )OXOX(t—@p) + 2K )OxOX'(t— @) +

x(t—@q X'(t-

2FX/X(t_(PO)8X’6X(t —@y) + 2FX/Xf(t_(pl)6x'8x’(t —@p) +
2Fx’(t—(p0)x'(t—(p1)8X(t — Qo )SX('[ - (Pl) }

Thus, the second variation for eq.(2.31) can be rewritten as:
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t
§v = l' j {F®X” + FyyedX'* + 2FOx8x'} dt +
2! o
ti—my
{F x(z0)x(z0) (1 = (Po)fSX (z9) +
to—"mo

Fy (o) (1= 018X (2)) +2Fy ) (1= 9)8x8x(29 ) +
XX (Zl)(l (pl )SXSX (Zl)+2 X(Zo)(l (PO )SX'SX(ZO)‘f’
2F, W (z) (1= 91)8x'6x'(z) +

2F, x(20)X’ () (1= o)1 —0])0x(2()0x'(z;) }dt........ (2.33)

where z; = (t — @;), (i=0, 1), and F is a symbol for F with variable delay

functions.

Hence, by Legendre theorem (2.2), the necessary condition for the
functional (2.31) to have a minimum at x = x*, is that the following set

of inequalities must be hold:

Fyr E X' '(zl)(l_(Pi)

Fx’x’ 2 0: — ,
oo =0 Fogwie1-9D)|

for every t € [ty — Mo, t1], where z; = (t — @), for (1=0, 1).

Now, in order to find Jacobi's equation for the functional (2.31),
integrate by parts and taking into account of the boundary conditions,

one obtains:

j Fre8x8X' dt = {FyedX}8x | d

to

F SX}S

73



Chapter Two Variational Formulation of Ordinary Delay-Differential Equations

with Variable Delays

and

t-m
1 m
xx (Zl)(l (PI)SXSX (Zl)dt { XX (Zl)(l (PI)SX SX(ZI)‘

to—"Mo
to—"Mo

t md

" { x (Zl)(l (pl)Sx} 0x(z,),
to—mo
- B -
Fegr(z) (1= 07 )0x'0x (2, )dt ={Fx/x'<zl)(1 - <pi)6><’} BX'(ZI)‘

to—Mo
to—mo

t1-m d_
— e, (1= @1)0
J. dt Xx(zl)( (Pl) X(Zl)
to—o

-
Fx(zo)x'(zl) (1 o (PE) )(1 - (Pi )SX(ZO )SX,(ZI )dt =
to—mo
1=

(Eutconan (- 00)1 - 0)Bx(z0) oz, ™ -

t1—m
d
dt {Fx(zo)x(zl)(l @)1 - (P1)5X(Zo)}5X(Zl)-

to—Mo

.. 2
Therefore, the second variation 6“v becomes:

1
21

t
5v = {FXXESX + F X" —%{FXXVSX} 5x} dt +

to

1 t—mp . 5
2 | B (10003 (20) +
to=mo

Fx'(zl)x'(zl ) (1 - (Pi )6X'2 (Zl ) +
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(xx(zo)(l ¢)3x +F x(zg) (L= (PO)SX)SX(ZO)_

d

dt( xx(z)(1 (Pl)SX + xx'(z] )(1 (PI)SX +

Fx(zo)x'(zl y (L= g )(1—01)dx(z )) 0x(z )} dt.

Then Jacobi’s equation takes the form:

t) -
velfeaverscrosa L [ (Rare
to to—"mo

P,8x"(z1) + Q) dt,
where:

Pl = Fxx, P2 = Fx’x'a Q = _%{FXX’SX} ’

Pl_( (Zo)X(Zo)(1 ®p) P2 (Z1)X(Zl)(1 ¢) and

Q = (Fa(zg) (1= 90)3% + Fy 5y (1= 93X ) 3x(29) -

d T ’
(Bt (1= 0D + Fy (1= 07)8x +

By g/ (L= 001 = 0)3x(29) ) 3x(29)

where z;=(t— @), (1=0,1). W

Theorem (2.17):

If F is a function with continuous partial derivatives with respect
to t, x(t), x(t — ¢;) and their derivatives for (1 = 0, 1, ..., n), then the

necessary condition for the functional (2.13) defined for the curves
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X = X(t), and satisfies the boundary conditions (2.14), to have a minimum
at x = x* 1s:
F ) m) Fmm o, 1=9h) »

>
Fm 20| = 20,

X(n) (t—op )X(n) (1 ~ Pn ) Fx(n) (t-oq )x(n) (t—=¢p) (1 P )

must be hold for every t € [ty — Mo, t1].
Proof:

The second variation of v 1s:

where &°F is obtained by using Taylor series expansion, and may be
written in the form:

Ox
ox'

8°F = (8x8x'...0xM8x(20)0x'(2)...8x™(z,)).A.| & |,
dx(z)
Ox'(z)

5x™ (z,)

where:
Al A2
A= ;
{A?) AJ

and
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I Fxx Fxx' Fxx(n) |
Al _ F)%'X FX.’X, . . FX,).((n) ,
Fa, Fany Fmym |
Fex(z)1=90)  Foez (=90 F o gy (1= 0h)
AD = FX’X(ZO)(1 ~®) Fx'x'(zl)(1 - ) <'x (M) (2y) (1-9y,) ,
F (n)x(zo)(l ®0) Fx(n)x,(zl)(1 - ¢1) FX(n)X(n)(Zn)(l - (Pn)_
FX(ZO)X (1- (Pb) Fx(zo)x'(1 - (Pb) FX(ZO)X(n) (1- (Pb)
A3 = FX'(Zl)x (1-91) Fx'(zl)x'(l —-0p) X(2)x™ (1-0p) ,
_FX(n) (2 )x (I-oy) F () (2 ) (I-oy) F () (2 )x(™ (1- (Pn)_
and
F(29)x(z) (1~ ®0) Fe(ag () (1= 00)(1 = 01) F o ® oy =000 =00 |
Ad— }_:x'(zl)x(zo) (1._ (Pi 1= (Pb) E{'(zl)x'(z‘l)(l - (pi) fx’(zl)x(n) (Zn)(‘l - (pi 1= (P;)
_ix(“)(zn )x(zo)(1 ~@n)(1=p) l_:x(“) (zn)x'(z1)(1 —on)(d=0p) - l_:x(“)(zn)x(“)(zn)(1 %) J
where z; = (t— ¢y), (1=0, 1, ..., n).
Hence, the Legendre condition for the second variation to be

nonnegative is that the following set of inequalities must be hold for

every t € [to — Mo, t1]:

Fmm Emym, ,d=0n)

> >
Fmm 20, 20

FX(n) (2 )%™ (1-¢y) Fx(n) (2 )x™ (2,) (I-¢y)
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Integrating by parts, yields to:
| ()] 55 @) ()55 (-D[ 1
1 _ 1 —

I{FX(I)X(J)SX }SX J dt = Fx(i)x(j)fix OxX ] ‘t -
to 0

d 2 -

dt {F (i) ( )SX( )}SX(J ) ‘0 +. +( 1)'] j {F (I)X(J)SX(I)}SX dt ’

foreach (1=0,1,...,n—-1),j=1+1,1+2,...,n

=

'[ {FX(I)X(J)(ZJ)O—(PH)SX(I)}SX(J)(ZJ) dt =

to—mo

= WG|
o P 1 U :

FX(I)X(‘])(Zj)(l (pJ)SX 6X (Z])

to—Mo

5 t-m
{F (05021~ ‘PJ)SX(I)}ESX(J @)

d
dt

+ ...+
to—Mo

t1—mp
. dJ
S

{F i) (J)(Z )(1 (PJ)SX(I)}SX(Z )dt )
to—"Mo

foreach (1=0,1,...,n—-1), j=1+1,1+2,...,n and

-
J {Fxﬁ)(zi)x(j)(zj)(l_‘Pi)(l“P'J')SX(I)(Zi)}SX(D(ZJ) dt =

to—"o
— 0 (i-1) 15t
! [} 1 —
F ) (D) T @A =@ (@) (z) - -
1 ! to—"o
d t1—ny
F iy g, (=00 = 0)dx" (7)) 13x (z) +ot
dt ()" (z)) J -

-

J
= j d{ (00 ) (= 0= )80z )}fm(z)dt

foreach(izo,l,...,n—l), j=1+1,1+2,...,n

78



Chapter Two Variational Formulation of Ordinary Delay-Differential Equations
with Variable Delays

Taking the boundary conditions into account, Jacobi’s equation can be

written as:

-
§v = J[ZPSX(I) +Q8x] dt + j {ZPSXO) (Z)+Qj

1=0 tOnOIO

where:

Q= ZZ( D’ 0 {F (), X }

i=0 j=i+1
- in(zi)xi(zi) (1-¢;) and
n .
Q= X F o, 1~ 00)x8x(z) +
i=0
n-1 n )
> (D= { NG (J)(Z)(l_(Pﬁ)SX(I)J’
i=0 j=i+1

Fx(i) (Zi)X(j) (ZJ) (1 — (P; )(1 — (P3 )SX(I) (Zi )} SX(ZJ) )

where z;=(t—¢;), (1=0,1,...,n). WA

Theorem (2.18):

Let F be a function with continuous partial derivatives up to order

three with respect to t, xi(t), Xi(t — ¢;) and their derivatives for (1= 1, 2,

.,mand j =0, 1). Then the necessary condition for the functional:

VX1, X2, -0y Xm] = f F(t; X1, X2, +v vy Xmo X'15, X'25 + o0y X'my X1(t — @10),

to
Xao(t = ©20), - » Xm(t = Omo), X'1(t — @11), X"2(t -
D21,y -y X'm(t — (Pml)) At (234)
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defined for the curves x; = xi(t), for all (1 =1, 2, ..., m) and satisfies the

given boundary conditions:

Xi(to) = Xig » Xi(t) = X, Xilto — My ) = Xy, and xi(t —m; ) = Xy,

to have a minimum at Xx; = x , 1s that; the following 4mx4m Hessian

matrix is positive definite.

C[HL H2
~|H3 H4/

where
Fixi Fxixg Feixin
1| Bext Bax Fexiy
Pt Py Fixin
= ' T ' -
inxi(zll)(l — P11 inx'2 (z21) (1-¢y - By 1Xm (Zm1) (1- (Pml)
H2 = E,. 2x1(z11)( —¢1p) E. sz(zm)( —¢y) E. 2xm(zm1)( — Q1)
© ’ © ’ © i
_Fxhlxi(zll)(l_q)ll) Fx;nx'z(zzl)(l—(le) Fx;nx;n(zml)(l—(Pml)_
Xi(le)Xi(l_(Pil) Xi(le)X/z(l_(Pil) Xi(le)Xin(l_(Pil)
H3 = Feo(oxg (L= 921) <y (zyxy L= 021) o Fonhx, (1= 057)
_Fx}n(zml)xi (l_q);nl) Fx;n(zml)x’z (l_q);nl) F m(Zm1)Xm (I- (pml)
and
B xi o (=010 B o A=0DA=62) -+ e oy (=01 )= @y)
H4 = Fx'z(zzl)xi(zl1)(1_(p’21)(1_(P11) Fx'z(zzl)x’z(zm)(l_(Pal) Fx'z(zzl)x'm(zml)(l_(P,Zl)(l_(p;nl)
Fxm(zml)xl(zn)(1 (pml)(l (Pll) m(Zml)XZ(ZZI)(l (pml)(l (P21) Fx}n(zml)xﬁl(zml)(l_(p;nl)
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Proof:

The expression of the second variation for the functional (2.34)

can be stated as follows:

where:

&°F = % (0x10X;...0Xy 0'X10'Xs...0"Xm 0X1(Z10)0X2(Z20). . . OXm(Zmo)

0X
0X,
OX
0'x,
0'X,

! !/ ! 8’Xm
0X1(211)0X3(221)--- Xy (Zin )A
0X1(219)
0X5(25)

OX 1 (Zimo)
SXi (Zml)

8X'2 (ZrnZ)

X i (Zimm)

where:
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and
Xxp X XXy
g =| X2x1 Txaxp T Fooxm
11 . >
_Fxmxl Fxmx2 o Fxmxm |
Fxlxj FX1X'2 Fxlx;n
B szxi XoXhH FXZX;n
app = . >
_Fxmxi XmX2 o Fxmx'rn A
FXIXI(ZIO) (I=910) ?X1X2(220)(1 ~ ) FXle (zmo) (1~ Pmo)
A, = Fooxi @ (= P1o) Fexy (2000 (1~ P29) Fy pxm (zmo) (1~ Pmo)
13 = : : : . ’
_FXmX1(210) (1-910) FXsz(Zzo) (1-93) - FXme(Zmo)(1 B (p;nO)_
FFX]X](le)(l_(PiI) FX]XZ(ZZI)(I_(Pél) FXIXm(Zml)(l_(P;nl)
q . = szxl(zn)(l_(Pil) szxz(ZZI)(l_(Pél) szxm(zml)(l_q);nl)
14 — . . . . ’
_Fxmxl(zl 1) (1- (Pi 1) Fxmx2 (z21) (1- (P'21) o Fxmxm(zml) (1- (P;nl )_
inxl inx2 o inxm
FX'2x1 FX’2x2 o Fx'zxm
= S S
Fa By K
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Feixi Fxixg Fxixin
Foxi Fax Feoxin
A = : )
Pt Fxy 7 Bty |
= ' - ' - ' ]
Feixi () A= 910) By 0 (179200 Fai (200 (1= Pmo)
T i © i © '
- Fx’le(zlo)(l_(plo) Fx'zxz(zzo)(l_(p20) Fx’zxm(zmo)(l_(PmO) ,
23 — . . . .
© i © i - '
 Fxuxi o) (1=910)  Faxy200) (179200 Faxn(zng) (17 @mo )_
T ’ © ' v ’ 7
xixi(zll)(l_(pll) inx’z(ZZI)(l_(pZI) xix'm(zml)(l_(Pml)
T ' © i © '
| Bexian =01 Foxep =020 Fox @ (= 0m) |
24 — . . . .
@ ' © ' @ '
 Fxxi@n =01 B @p@=020 - B 0= Om) |
I FXl(Zlo)xl (1_([){0) FXl(Zlo)Xz(l_(P{O) Fxl(zlo)xm (1_(p{0) ]
a sz(zzo)xl (1_([),20) FXz(Zzo)Xz(l_(P,ZO) sz(zzo)xm (1_([),20)
31 — . . . .
_Fxm(zmo)xl(l_(p;nO) Fxm(zmo)xz (1_([);n0) Fxm(zmo)xm (I_CP;no)_
FXI(Zlo)Xi (1—(Pio) FX](Zlo)Xé (l_q)io) FXI(ZIO)Xhl (l_q)iO)
332 — FX2(Z20)Xi (1_(P’20) FXz(Zzo)X'z (1_([),20) FX2(220)X;n (1_(p’20)
B zmoxi 1= 0mo) - F 2oy 1= 0mo) B znoixiy (1= Pmo) |
[ By (1011 (210) (L= @10) B 10020 1= @10)A=0%) = g (101, (20) (1= @10) 1= Pino)
333 _ FXz(Zzo)Xl(Zlo)(l-_(P’zo)(l_(pio) FXz(Zzo)Xz(leo)(l_(p'ZO) Xz(Zzo)Xm(Zmo)(.l_(pIZO)(l_(PI’HO)
_1_:xm )% (210 1= @m0 A=010) B 2 1xa(20) 1= @mo)1=020) = E_ 2 e 2m0) (= @m0 )1 = @no)
I ﬁxl(zlo)xi(zll)(l_(PiO) Fxl(zlo)x'z(ZZI)(l_(PiO)(l_(p,ZI) _xl(zlo)x}n(zml)(l_(PiO)(l_(P;nl)
Ay, = sz(zzo)x'z(zll)q_(p’20)(1_q)il) sz(zzo)x’z(z.ZI)(l_(PIZO) xz(zzo)x;n(zml)(.l_(PIZO)(l_(p;nl)
_ﬁxm(zmo)xi(z“)(l_(P;HO)(I_(pil) Fxm(zm())>('2(221)(1_(p;nO)(l_(P’Zl) Fxm(Zmo)x}n(zml)(1_(P;'rlo)(l_(p;'nl)
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= ’ T ' = ' 7
F' le)xl(l_(pll) in(le)xz(l_(Pll) FXi(le)Xm(l_(pll)
© i T ' T ’
A Fy: > (221051 1-031)  Foop, T=021) - Fog,)x, 1-90321)
41 — . . .
© i © i © i
_Fx;n(zml)xl (l_q)ml) Fx;n(zml)xz (l_q)ml) Fx;n(zml)xm (l_q)ml)_
- , , = ’ ]
Fi (2 )xi (1= @11) Fyi ()% (1= 011) Feizpxy, A=911)
© ' T i T '
- Fepx T=021)  Foo iy yxs (1= 937) Fy: 5 (221)%0n (I-931)
42 — . .
© ' T ' T '
B em = 0m1) - B nxy =0m) 0 By (1“Pm1)_
Eet ) T O1DA=010) B0 o0 A= @10 =030) = Ft 1y, (200 (1= @111 = Ol
I Fe 2(221))(2(210)(1 o)(1-9j)  E 2(221)x2(220)(1 e)A-93) - Eo 2(221)xm(zm0)(1 ©51)(1=Png)
5= .
Fx'm (zm1 )xl(zlo)(1 - (p;nl )(1 - (piO) Fx'm (zm1)%x2(229) (1 - (p;nl )(1 - (Plz()) o l_:x;n(zml)xm (zmo)(l - (p;nl )(1 - (p;nO)
and
1_:xi(z“)xi(zll)(l_(pil) E(i(z“)x’z(zzl)(l_(pil)(l_(p'Zl) in(z“)x;n(zml)(l_(pil)(l_(p;nl)
- Ey (2o () (L= 0200 =911) Fx'2(221)x'2(zzl)(1_q)’21) B x (2 1= 90200 = 01)
4= ) . :
l?x'm(zml)xi(zll)(l_q)il)(1_(P;n1) E, m(ZmI)XZ(ZZI)(l (Pml)(l (PZI) l?x'm(zml)x{n(zml)(1_(P;nl)

Hence, according to Legendre theorem (2.2), the Legendre condition of
the functional (2.34) is the 4mx4m Hessian matrix H which is positive

definite. W

2.5 The Direct-Ritz Method

Problems with time lag, especially in differential equations, are of
great importance; therefore, their solutions are also of great importance,
[Marie, 2001].

Since the analytic solution of DDE’s is so difficult to be
evaluated, thus approximate solutions that minimize the functional are

necessary, and therefore there exists two alternative approaches:
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i) Solving the DDE by approximate methods (e.g., the finite difference

method, the collocation method, etc.).
i) Direct-Ritz method.

The direct-Ritz method is used to find the approximate solution
of boundary and initial value problems, which were first presented by
Lord Rayleigh in 1870 where the approximating subspace was of
dimension one. In 1909, Ritz generalized the method to an arbitrary

dimension.

Ritz method was popular before the invention of the computer,
and remains so today, because it can yield accurate results for complex
problems that are difficult to solve analytically. The idea of Ritz method
1s to reduce the variational problem on the set of all admissible functions

S to the problem of minimizing the same functional on a finite (N-

dimensional) subspace R" of continuous functions that can approximate
the solution, such as the set of polynomials of degree less than or equal

to n. Then:

v[X] = minv[x] £ min v[x*],
xeS x*eRD

so that the approximate solution x* is a polynomial expression:
* * u *
Xy (D)= Xo () + D apx (1).
k=1

where XB (t) satisfies the nonhomogeneous initial and boundary

conditions while x: (t) satisfies the homogeneous conditions. Giving
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upper bound and satisfying the given boundary conditions, ay,

(k=1, 2, ..., n); which are referred to as the generalized coordinates.

Substitute this approximation in the functional, then integrate and
minimize with respect to the unknown parameters ay, for all (k = 1, 2,

..., n), [Lensnic, 1999].

2.6 Illustrative Examples

For the sake of illustration and explanation of the inverse
problem of ODDEv’s, we will consider here some illustrative examples

in both cases; constant and variable delays.

Although, some examples with known exact solutions will be

taken for accuracy and comparison purpose.

Example (2.19):

Consider the retarded initial-boundary ODDE with constant
delay:

X"(t)—x(t-1)=0,0<t<1,

with the boundary conditions,

x(0)=0,x(1) = %;

and the delay initial condition, x(t) =t;t € [—1, 0], [Marie, 2001].

Applying Magrie’s approach with the shift operator for the delay

terms:

Dx(t) =x(t— 1),
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which then implies:
") —-x(t—-1)=0

42
dt_2 x(t) — Dx(t) =0

2
{:11? — D} x(t) =0.
Letting:
2
L= d—2 -D|.
dt

Now, to ensure the symmetry, let <x, y> = (X, Ly), then the

functional takes the form:

v[x] = %<LX, x> — <f, x>

1
=—(Lx,Lx)-0
2( )

1
_ %J- (X"(1) = X(t = 1Yt e (2.35)
0

Hence, using the direct-Ritz method with the following

approximate solution:

x(t) = %t Ft(t— 1){a0 T 1t + Aot} eeeeeeeeeeeeeeeeeeee e, (2.36)

where ag, a;, and a, € R.

87



Chapter Two Variational Formulation of Ordinary Delay-Differential Equations
with Variable Delays

Substituting eq.(2.36) in functional (2.35) and carrying out the
minimization using the computer program (ODDE 1) written in

MathCad software, one can get the following results for ay, a; and a,:
ap=-0.333,a,=0.167, a,=-2.71x10"".

Hence, the approximate solution is given by:
x(t) = %t +t(t — 1){—0.333 + 0.167t + 2.71x107°t*}.

Figure (2.1) presents a comparison between the approximate and

the exact solutions, where the exact solution is given by:

£t
x(t)=— - — +t,t [0, 1]
() P [0, 1]

‘ —— Approximat solution —=— Exact solution ‘

0.8
0.7 -
0.6 - /
0.5

0.4 -
0.3 -

0.2
0 T T T T T

0 0.2 0.4 0.6 0.8 1 1.2

x(t)

Fig.(2.1) Comparison between the approximate and exact solutions

of example (2.19).
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Example (2.20):

Consider the mixed initial-boundary ODDE with constant delay:
") =x(t—-1)+2x'(t—-1),0<t< 1,

with the boundary conditions:
5
x(0) =0, x(1) = 3’

and delay initial condition x(t) =t, t € [- 1, 0], [Marie, 2001].

Hence:
") —x(t—-1)-2x'(t-1)=0
d° d
—x(t) — Dx(t) —2—Dx(t) =0
17 X0 = Dx() =2 Dx(v)
2
Cl——D—2iD x(t) =0.
dt? dt
Then:
2
L= d——D—2iD .
dt? dt
Also, the symmetry is ensured by considering <x, y> = (x, Ly);
therefore:

v[x] = %<LX, x> — <f, x>

= %(LX, Lx) — (f, x)
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1
= E(LX, Lx)
1L
=— j (Lx)? dt
22
1 1
= EJ 0 T R § R ) S S S (2.37)
0

Now, using the direct-Ritz method with the following

approximate solution:

X(t) = %t‘}‘t(t— 1){ao+ a1t+a2t2} ........................................ (238)

where a; € R, forall (1=0, 1, 2).

Substituting eq.(2.38) back into the functional (2.37) and carrying
out the minimization using the computer program (ODDE 2) written in

MathCad, one can get the following results for ay, a; and a,:
ao=0.667,a; = 0.167, a, = 1.478x107"°.

Hence, the approximate solution is given by:
x(t) = %t +t(t — 1){0.667 + 0.167t + 1.478x107"°t*}.

Figure (2.2) presents a comparison between the approximate and

the exact solutions, where the exact solution is:

x()= =+ +t,te0,1]
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—— Approximat solution —=— Exact solution

1.8

1.6 /

1.4

1.2
1 -

0.8

0.6 1
0.4 1

0.2
0 / : : : ; .

0 0.2 0.4 0.6 0.8 1 1.2

x(t)

Fig.(2.2) Comparison between the approximate and exact solutions

of example (2.20).

Example (2.21):

Consider the retarded initial-boundary functional-differential

equation with variable delay:

) 1

X'(t)=1- x[e _tj,t € 0.1, 0.2 oo (2.39)

with the boundary conditions
x(0.1) =-2.302, x(0.2) = —-1.609;

and the delay initial condition x(t) = In(t), 0 <t < 0.1, [Al-Daface'e,
2005].

The DDE (2.39) may be rewritten as:
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=

X(t)=1-x t—(t—e tJ ,0.1<t<0.2,

Y 1t follows that:

with delay function @(t) =t —e
X'(t) =1 =x(t - o(t))

X'(t) + x(t — o(t)) = 1

{%-I—D}X(t) = 1.

Hence:
d
L=|—+D|,f(x)=1.
(dt joo

Now by considering <x, y> = (X, Ly), then:
v[x] = %<LX, x> — <f, x>

= %(LX, Lx) — (f, Lx)

_ %tjl (Lx)* dt - tjl £ (Lx) dt

to to
0.2

= % f {{X'(O)+In(t-0(t)} — 2{x'(t) + In(t—(t))} } dt...(2.40)
0.1

Using the direct-Ritz method with the following approximate

solution:
x(t) =(6.941)t — (2.997) + (t — 0.1)(t — 0.2){ap + ait} ........... (2.41)

where a; € R,1=0, 1.
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Substituting eq.(2.41) back into the functional (2.40) and carrying
out the minimization using the computer program (ODDE 3) written in

MathCad, one can get the following results for a; and a;:
ap =—40.202, a; = 109.133.
Hence, the approximate solution is given by:
X(t) = (6.941)t — (2.997) + (t — 0.1)(t — 0.2){—40.202 + 109.133t}.

Figure (2.3) presents a comparison between the approximate and

the exact solutions, where the exact solution is:

x(t) = In(t), t € [0.1, 0.2].

—— Approximat solution —=— Exact solution

- /
2.1 /

-2.2
-2.3
-2.4 T T T T T

0.1 0.12 0.14 0.16 0.18 0.2 0.22

x(t)

Fig.(2.3) Comparison between the approximate and exact solutions

of example (2.21).
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Example (2.22):

Consider the retarded initial-boundary ODDE with variable

delay:
x'(t) =t + x(t) + x(t — 0.5tx(t)), t € [0, 1],

with the boundary conditions:
x(0) =0, x(1) = 0.892526,

and the delay initial condition x(t) =t, t <0, [Al-Dafae'e, 2005].
Applying Magrie’s approach, gives:

X'(t) — x(t) —x(t— o(t)) =t, t € [0, 1], @(t) = 0.5tx(t)

ix(t) —x(t) - Dx(t) =t

d
{a—l—D}X(t) =t.
Hence:
d
L= (E—I—Dj, f(X) =t.

By considering <x, y> = (X, Ly), then:

v[x] = l<Lx, x> — <f, x>

= %(LX, Lx) — (f, Lx)

1
= - J {0 = %0 = (= 9(0)} - 20X (0 - x(0) ~ x(t -
0

O} } b oo, (2.42)
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Using the direct-Ritz method with the following approximate

solution:
X(t) = (0.892526) t +t(t — 1){ap + art}.coeveeeeereeeeieeceieee, (2.43)
wherea; € R,1=0, 1.

Substituting eq.(2.43) back into the functional (2.41) and carrying
out the minimization using the computer program (ODDE 4) written in

MathCad, one can get the following results for ay and a;:
ap=1.267,a; = 0.148.

Hence, the approximate solution is given by:
x(t) = (0.892526) t +t(t — 1){1.267 + 0.148t}.

Table (2.1) presents the approximate results and the residue error.

Table (2.1)
Approximate results and the residue error of example (2.22).

Approximate solution Residue error

0

—-0.02611

—0.02895

~7.64x107°

0.038722

0.111013

0.210124

0.336942

0.492357

0.677255

0.892526
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Many problems in science and technology may be formulated as

the variational problems of partial delay-differential equations, where
certain functional whose domains consists of certain vector spaces of
functions of several independent variables that the delay terms may
occur in one or more of these variables, is required to be minimized,
[Catillo, 2005].

In this chapter, the discussion will be restricted for PDDEV's in
which the unknown function depends only on two variables, say x and t

and the delay terms occur in X.

This chapter consists of five sections; In section one, the general
form of the variational problem of PDDEvV's is presented, the
corresponding increment of the functional is also stated and the first and
second variation are given for certain functionals. In section two, the
necessary condition for the existence of an extremum is given. In section
three; additional necessary conditions are discussed such as, Legendre
and Jacobi's conditions. Some illustrative examples of constant and
variable PDDE's are given in section four and solved by minimizing the
related functional. Finally, in section five, real life problem is solved
using variational formulation as an application for this subject in
PDDE's.
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3.1 The Variational Problem

The variational problem of PDDEV's are concerned with the

functionals of the form:
v[u(x, y)] = HF(X t;u(x, t) u(x t), u(x t),u(X — g, 1),

5 X 8 t ]
—u(x—-o;7,t),—u(Xx—oq,t) | dxdt................ 3.1
ox (X =@y )8t (X—of, 1) 3.1)

Here D is some given fixed region in the xt-plane, u = u(x, t) is a

function defined for all points (x, t) € D, which is assumed to be of class
C"(D), and ¢ = @ (x t;u(x,t), —u(x t),— u(x t)j for (i = 0, 1);
are the delay functions where i refers to the order of partial derivatives

with respect to the independent variable x or t, [Lebedev, 2003].

Assume that u* = u*(x, t) to be the solution for the function (3.1)
and that du(x, t) is an dismissible function from C%,(D); and satisfies

E5u|aD =0, where oD refers to the boundary of the region D.

Now, create the set of dismissible functions:
u*(x, t) = u(x, t) + edu(x, t), for sufficiently small ||

Evaluate v[u(x, t)] at u = u*, to obtain the problem of minimizing

the functional as [Russak, 2002]:
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v[u]:ﬂ F dxdt
D
0 0 0 0
< F(x,t; u+du, —u+o—u, —u +0—uU, u(X — oo, t
g( OX oxX ot ot =0 1

0 0
+ 8U(x 90, ), <-U (X~ 0f 1) + 5 u(x— of 1)

0 t 0 t
—UuX— o, t)+0d—u(x— o, t)) dxdt
ot ( 0 ) ot ( 01 )

0 0 0
= || F(x, t;u*, =—u*, —u*, u*(X—q@p, t), —u*(X— @,
ij ( —u* (x = 00, ), —U*(x — o]

0 t
t), —u*(x — o7, t)) dxdt
) P (X— ¢, 1))

and when requires to maximize the functional (3.1), then just reverse the

inequality (3.2).

Hence, the following generalization of the fundamental lemma of

calculus of variation may be given:

Lemma (3.1) [Russak, 2002]:
If a(X, t) is continuous over the region D in the xt-plane, and if:

j j a(X, 1) Su(x, t) dxdt = 0;
D

for every continuous function du(x, t) defined over D, and satisfying

ou = 0, on the boundary of D, then a(x, t) =0, for all (x, t) € D.
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Remark (3.2):

For easiness, the following will be symbolized as:

1. pand g denotes the partial derivatives aiu and %u, respectively.
X

2. The notion F, as shorthand for the general form of the integrand

function F(x, t; u, p, g, U(X — o, t), p(X — @, 1), q(X — o1, t)).

3. 0D means the boundary of D, i.e., the boundary of the variational

problem at the points; Xo, X1, to, t1, Xo — o and X; — n1, Where 1 =
Max {0 (X, tu(X,8).P(x0, . G(o, )}, M1 = Max | (xy.
u(xq,t), p(xl,t),q(xl,t))}, for each (i = 0, 1); and the boundary
values being prescribed as:

U(Xo, to) = Uo, P(Xo, to) = Po, (X0, to) = o,

(X1, t2) = U, p(Xy, 1) = Pa, G(Xe, t2) =0y,

U(Xo = Mo, to) = Uy, P(Xo = Mo, To) = Py » A(Xo — Mor o) =
and

U(Xe =M, t) = Uy, P(Xa =M1, ) = Py, A% — M1, ) = Gy

In order to find the first and second variation of the functional
(3.1) about an admissible curve u*, suppose that F(x, t; u*, p*, g*,
U*(X — @o, t), p*(X — ¢, 1), g*(X — o1, 1)), is a function whose n-th
partial derivatives with respect to u*, p*, g* exist, and continuous in

some domain D. Let AF refers to the linear part of the increment, i.e.,
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AF =F(x, t; u+0du, p+0p, g+ 34, u(x — o, t) + du(X, — @o, 1),
p(x — @7, 1) + 8p(x @7, 1), q(x @1, t) + 3q(x — 1, 1)) -
Fiinear part-

Then if (u + du, p + op, g + 84, u(X — @o, t) + du(X, — o, 1),

pP(X — of, 1) + 3p(X — @1, 1), a(X — @1, t) + 3q(X — ¢y, 1)) lies in D, then

the Taylor series expansion of F is given by:

F(X, t; U, p*, g%, U*(X — @o, ), p*(X — 0], 1), *(X — o1, ) =F +

1 0 0 0
— | OU—+0p—+ 80—+ dU(X — g, t
1!( 0 pap q@q (X=09,1)

0
+
ou(X — g, t)

d . d
3p(x — @1 ,t) +3q(X — @y, t) ]F+
ap(x — o1, 1) 6q(x — @1, 1)

1 8ui+8pi+8qi+8u(x—(po,t) 0 +
2! ou op aq ou(X — g, 1)

2
0 ¢ 0
Sp(x—(pf,t) +8q(x—(p1,t) ] F+ ...,
op(x - ¢f, ) 6q(x — @1, t)

where the notation:

0
+
aU(X—(Po,t)

0 0 0
OU—+0p—+ 00— +dou(X —o,, t
[ oy p@p qaq (X =g, 1)

r
8 t 8
Sp(x — o7, t) +0g(X — @y, 1) j F,
op(x — 1, t) oq(X — o1, 1)

refers to the r-th variation of F and denoted by &'F.
Therefore:

AF=8F+8F + ... +8F+...
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where:

0
+
ou(X — g, 1)

0 0 0
OF = | OU— +Op—+ 80—+ du(X — @, t
( Y pap q@q (X=@q,1)

8
+8q(x—cp{,t)
p(X -7, 1) 6q(x — o1, t)

Sp(X— Xft)
01 5

= Fusu + Fp8p + Fqsq + FU(X—(PO,t)Su(X _(po,t) +

Sp(x—oft) +F SAX =@ 1) e 3.3

which refers to the first variation in F, and:

0
+
ou(X — g, t)

SF = L 6u3+6pﬁ+8q3+8u(x—(po,t)
2! ou op oq

0 t
Sp(x — @1 ,t) +8q(X — @y, t)
op(x — o, t) oq(x — o1, t)

1 2 2 2
= o {Fuu6“ + FopOP” +Fgq00” + Fu(x—gg yu(x—00.1)

8u2(x—<po,t)+FIO 8p% (X — of ) +

(x= Dp(x=0] 1)

2 t
Fq(x_(p{ a(x—o! ,t)5q (X =@y, t)+ 2F,0udp + 2F40udq
2R u(x—p,1yUSU(X — g, 1) + 2Fup(x—<pf ,t)6u8p(x —7 )+

t
Fuq (x_@;,t)SUSQ(X — @b 1)+ 2F,e0pdQ +

2Fpu(x—(p0,t)8p8U (X —Po t) + 2Fpp ,t)6p8p(x - (Pi( ) t) +

(x—g1

t
FDQ(X—@{,t)Squ (X =1, 1) + 2Fqy (g0, 30BU(X — g, 1) +
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X PN !
)6q8p(x (pl,'[)—l—Zqu (p{’t)Squ(x o, )+

F
ap(x—g; t (x-

X
Focoo.0p0co,p U (X ~ 90 DIP(X =1 ) +

t
FU(X—(po ,t)q(X—(P{’t)Su (X o (PO ! t)sq(x - (P]_ y t) +

X t
Fp(x—(pi‘ ,t)q(x_(p{,t)ésp(x — 01, 1)3q(X =1, 1)} v, (3.4)

which refers to the second variation in F and so on for 8°F, &°F, ..., that
are going to be more difficult to compute.

According to the last discussion, the first variation of the
functional (3.1) about u*(x, t) corresponding to the first derivative of F

about its argument along D, is:

D

Sp(x—of,t) + F ¢ 8q(x—j,t)} dxdt
q _(Plvt)

F
p(x=07 ) (x

- j j SF dxdt,
D

where 6F as given in eq.(3.3).

The second variation of v about u*(x, t):

8%V = J J' 8°F dxdt,
D

where 8°F as is given in eq.(3.4).
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3.2 The Fundamental Necessary Condition for an
Extremum of the Variational Problems of PDDEV's

In this section, the fundamental necessary conditions for an
extremum of PDDEV's are given in details. The general approach is
based on similar steps that are followed to find the necessary conditions

for the variational problem of ODDEV's, specifically:

i) Introduces a class of functions which will be needed to consider the

problem of minimization.

i) Depends on the fundamental lemma (3.1) of two independent

variables.

i) Recalls how to integrate by parts for two variables, [Berechtken-
Mandrcheid, 1991].

The next theorems establish the necessary condition for an

extremum of functionals of more than one independent variable.

Theorem (3.3):

Let u = u(x, t) € C*(D), be an extremum for the functional:

v[u] = [[ Fx t U, P, g, u(x=po, 1), -0, 1), d(x o, 1)) dxdt
D

on the subset D of R?, consisting of those functions satisfying the

boundary condition 8u|aD =0. Then the necessary condition for an

extremum Is:
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o_ 8 o (-
(Fu _@_XFp _@_XF j (Fu(x 00, t)(l (PO)__{ p(x—¢ 1)
A- )}—if -o') | =0, forall (x, t) € D
(Pl a p(X (pl t) (pl - W '

where F is a symbol used for the function F with time-lag functions.
Proof:
The first variation for the simplest case of the functional v[u] is:

Sv[u] = j SF dxdt
D

=.j {FuOU + Fodp + Fgd0 + Fy(yop.1)UX =g, 1) +

Sp(x—@f,t) + F 8q(x — i, 1)} dxdt.

F
p(x—¢f 1) a(x-o},t)

The necessary condition for a functional v to have an extremum, is that
its first variation should be vanished, i.e., dv = 0, this condition is

therefore yields to:

” {Fu8U + Fydp + Fgd + Fyx_gp .0 SUX— @0, 1) +

Sp(x—@f 1) + Sa(x — ¢y, 1)} dxdt =0;

F
p(X—cp q(X cp t)

it follows that:

” {F.0U + F,8p + Fdq} dxdt = — H{ L x0p.1) SUX =g, 1) +

Pt 2P~ or,t) +F o 004K ¢y, 1)} dxdt .......... (3.6)
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Assuming that z*' = (x — ¢'), i.e., Z°" = 2°U(x, t; u(x, 1), p(x, t),
q(x, 1)), (i=0, 1) or equivalently x = (2" + ¢}*"), for (i =0, 1), with the
same index of z and ¢ in each equation, and let f; be the inverse function
of ', such that x = fi(z}"), and hence:

dx =iz 2 dz = (1 - @' )dz,

finally, producing a function F that satisfies all values of time, and can

be written as:

F =F{t, X; U, p, g, U(Zo,t), P(Z 1), A(ZLDF e, (3.6.a)

Using the result (3.6.a) for the right hand side of eq.(3.6), yields to:

X
Jl;[ {Fu(x—(po,t)Su(X_(PO’t) + Fp(x_@f’t)sp(x_q)l 1)+

t — ' '
F X' X E t t
Fp(Zi(,t) (1_(Pl )Sp(zl )+ Fq(z{,t) (1—(p1)5q(21,t)} dxdt

Substituting eq.(3.6.b) back in eq.(3.6), gives:

| {Fudu+Fodp + Feda} dxdt =— [[ {Fy (5.0 (- 0p) 3u(Zo,t) +
D D

E
p(z{ 1)

and since:

0 0
—{F,ou} = —{F,}ou + F,8
8X{p } GX{ o} pOP
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and
Q{F ou} = Q{F 3u + F.8q;
ot ot A
also similarly for the delay terms:

AR ey @008 D= AR - 00 JouE

(Zl 1) (Zl 1)

p(zl t)( = )8p(21 1)

and

SAF iy @-oSuE D = S {F @ }oucty +

a(z! ) a(z! )

= t' t
Fq(z{,t) (1-o;)0q(zy,t).

Then in eq.(3.7), the terms of partial derivatives may be rewritten as:

j j {F,8p + Fodq Jdxdt = {[ {Q{Fp8u}+9{Fq8u}}dxdt—
5 sl oX ot

D

e | 0 0
{a—X{Fp} + a{Fq}} ou dxdt;

D
Also,

JI R o A= d)8p(E ) + o @-o0f)3a(21 ) } dxat=
D
J.J.{ F p(zf t)(1 01 )SU(Zl’t)}JF_{F At (1 (P1)5U(21’t)}}d><dt_
D

t' t
aztt) (1@ )}du(zs, t)}dxdt :

o — N
I TR e -0 U 0+ S
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By using the Green’s formula, one can have:

” { {Fyou} + {Fq6u}} dxdt = 'f {F,dt—F,dx}du=0

C

and

.U{ai{ p(, (1 or )3u(Zy )} +— {F (1—(p{’)SU(Z{,t)}}dxdt
D

'[ {p(zl t)(1 o1 Jdu(zy' ydt - F (1 (P1)5U(Z1’t)dx}:
C

Consequently:
H {Fyu + Fyda} dxdt = - H { Fpou+ S, }SU} dxl

and

i { o0 91 )op(zl, t)+F N (Pl)SQ(Zl,t)}dxdt_

_”{ Foz o ‘PlX')}f’“(Zl’t“ = (—@i’)}SU(Zi,t)}dxdt-

4(zL.1)

So, €q.(3.6) may be rewritten as:

H{ }SUdth— ”{ (zot)(l Pp)dU(Zg, t) -

0

OX { p(z}.t) ¢! —@{’)}SU(Z{,t)} dxdt.

-] >}6u(z1 - {

q(zl t)

Then the necessary condition for an extremum is:
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H{ }6udxdt + ”{ u(zo, t)(1 Pp)SU(zg, t) -

o (=

9F  a-
ax{ p(Zf,t)( a(zL )

)}Su(z1 0-2F (—wi')}su(z;,t)}dxdtzo.

Using the fundamental lemma (3.1), one have:

0 0 0 X'
(Fu _a_pr_ﬁx Fq} ( u(zo, t)(l ®g) — { Pz 1) 1-o )} -

0 i)
8’[{FQ(21 o (Pl)}j =0

where 2" = (x — ¢'), for (i=0,1). m

Theorem (3.4):

Let u; = ui(x, t) € C*(D), for (i =1, 2, ..., m); be an extremum of

the functional:

V[ul’ u21 ey um] = J.J- F(Xl t, ul’ u21 ey um; pllr p121 ey plm p21l
D

p221 ey pZn; ey pml, mel ey pmn, qll, Q12; ey qln; q211 q221 ey
d2ns s Om1:0m2s -« -5 Qmny Wi21, W131, W132, -..; Winn-1), W221,

Wo31, W32, «ovy Wonn-1); -y Wm21, Wm3a1, Wm32, -« s Wmn(n-1),

Us(X — @10, 1), U2(X — @20, 1), ..., Un(X — Pmo, 1), Pra(X — @17, 1),
P2(X — @1, 1), .oy Pra(X — @1y, 1), Par(X — @3y, 1),

P22(X — 922, 1), ..oy P2n(X = @2, 1), ooy Pma(X = Qs 1),

Pm2(X = P2, vy Pran(X = O 1), Ara(X — @13,1), Gra(X —
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P12 D)y ooy Qin(X = @1, 1), Q21 (X— @by, 1), Uoa(X — @, 1), -,
Qon(X = Phpys 1), voey Oma(X = @Lg 1), Gm2(X = @1, 1), o,
Amn(X = Pran» By Wiz1(X = 0151, 1), Wiz (X= 13 1),

Wiz(X — (Pi%z s ooy Winnogy(X — (Pfrtm(n—l) 1), Wazg (X — (P)2(t211 t),
Waar(X — @331, 1), Waza(X — 0330, )y -y Wann-2)(X — 3 n-1y

t), ceny szl(X — (P)rg[zj_, t), WmSl(X - (P)r§1t31' t)’ Wm32(x - (P)rgSZ’

0 oy W)X = @rmnn1ys D) OXAt i, (3.8)
0! 0! L .
where Pij = yui, dij = Eui and Wijk = Wui, for (I =1,2,...,m
j=1,2,...,nandk=1,2,...,n-1) and cp”k are the delay functions,

where j refers to the order of the partial derivative with respect to x or t

of the i-th dependent variable, on the subset D of R?, consisting of those

functions satisfying the boundary conditions:
OUi |op=00i |pp="0%i |.p= Wik |5 =0,

forall(i=1,2,....mj=12,...,nand k=1, 2, ..., n—1). Then u;

satisfy Euler's equations:

J Bl n j-1 j o)
F, +Z( 1) aJ pu+$Fqij +Z (-1) poE Faige |+

j=1

_ n | al (=
[Fui(X—(Pioyt) (1_(Pi0)+z(_1)1 {@{Fpij(x% t) (1- ®ij )}
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forall (i=1, 2, ..., m).
Proof:

In order to find the necessary conditions for the functional (3.8),
whose domain of m-dependent variables with the higher order
derivatives, vary only one of the dependent variables, and keeping the
other fixed, so the first variation of u; for some (i=1, 2, ..., m), may be

expressed as:
v[u] = j SF dxdt
j—1

n n
= Fuiéui +21{Fp”8p” + Fqusq”} +Z;‘k 1FWijk6Wijk +
= J=2K=

Fi (x=gi0,t) A = 9i0)BU; (X — 9jg, ) +

n

X' X
Z{Fpij(x(pi)} B (- @i )op;; (X — @5, 1) +

=1

qIJ(X_ ol t (1 (plj)squ(x (P”,t)}

-1

j=2 k 1{ Wijk (X— (pIJk t)(l_(Pi)}L)SWijk(X_(Pi)lgk’t)}} dxdt.
j=
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Applying év =0, yields to:

n j-1

_g {FuiSUi +jZil:{Fpij8pij + Fqijéiqij} +>

=2

—

FWijk 6Wijk } dth =

X
Il

1

] {Fae oty

n
X' X

=1

(L— o} )30 (x — of; t)} +

F t
Qij(x_(Pijat)

Now suppose that zIJk =(x- (p”k Yforall(j=1,2,....,nandk=1,2, ...,

j— 1) or equivalently x = (zIJk + (p”k) with the same index of z and ¢ in
each equation, and let fix be the inverse function of z”k, such that x =
fix(Zjji ).hence dx = f.Jk(z”k)zl’jkt dz = (1 - o )dz.

Thus, the right hand side of eq.(3.9) can be rewritten as:

.U {Fui (x—gi0,t) 1= @i0)OU; (X — @i, 1) +
D

n

X' X

1

(1- o )39;;(x — @4, t)} +

F
Qij(X—(Pitjat)

_oXt (1—@;}{;)5Wijk(x—¢fﬁ<,t)}} dxdt =
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n
] {Fui(zio,t) (L-9}0)8U; (Zig. 1) +Z{Fp_j o L0 )30 @0+
1 Lo

D

(1-0};)30;; (Zitj,t)}+

E
Qij(Zitj,t)

{'_:Wijk (Zfﬁ( 1) (- (P'Jk )SWIJK (ZIJk )}} dxdt;

-1

where:

— +1 '

L

JGXT{FDU}SU;,X +...+ Fp|J8p|J’ fOf a” 0:1,2,,n),

0’ j+#1 O o} ol ,
5 Z{Ry 8ui} = D) " —{R,, 8u it (R, o, +

i
811]

{q”}Su”+ +Fy 6q,l,foraII(J 1,2,...,n)

and
o

61 F 6 j+1 8 "
- { U} (_) 5Jkatk{wljk} Ui

aXJ—katk Wijk

k {FWijk}Su{x ¥ FW|k6W|Jk’
foreach(j=2,3,...,n),k=1,2,...,]-1;

for the delay terms:
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Bl - L oxos (o ]
ox) Pij(zi’},t)( —@jj )ou; (zjj, 1) p =
2 IE e by +
5XJ plj(zIJ 1) (pll ij
ol
JaXJ_l le(Z” t)(l (P'J) SU (le;t) +
aj 2 /4
J&x’ p.,(z t)(1 (Pu) Ui (zjj,t)+...+
ij
le(ZU '[)( (PU )Splj (Zu 1t) for all (J 1,2, . )
o) (= . t
E{ij(z}j t) (1_(Pij)6ui(zij1t)} =

+1a
(1) atl{%(zut)( @.,)}au @0 +

L s
j——-< F 1— 1) +
otit qij(zitj,t)( (P'J) Ui (Zu )

5’[J {qu(z t)(l (P”)}SU (le,t)+___+
q'J(ZU t) (1 (pll)gqu(zljit) for all (J 1,2, . )
and

5]

0

i+l

- oxI Kotk {FWIJk(Zuk t)(l_(p'lk)}8u (Zj. 1) +
.ot ; el N
JW Wijk(ZﬁL,t)( ~®ijk)  OU, (Zij. 1)
+m+FWijk(Zi)ﬁ(,t)(1_(p'Jk)6W'Jk(ZIJk 0,

foreach(j=2,3,...,n),k=1,2,...,j-1.



Chapter Three Variational Formulation of Partial Delay-Differential Equations

with Variable Delays

Hence, from the divergence theorem, the terms of the arbitrary functions

6u{,8u{’,...,6uij_1 will be vanished, one obtains:

and:

n n j-1
.” 1 Fy. 8u; +Z{Fpij8pij +Fq”.6qij}+z Fwijkswijk} dxtdt =
b =1 j=2 k=1
j o’
J;S[ “: +Z( 1) OX Al le E Gij +
n 11 :
j:zz 1( oxJ katk {Fwijk} OU; XAt (3.9.a)

Fui (zi.t) L= 00)3U; (Zjg, 1) +

Z{ pu(z.,t)( (P'J)Sp'J(Z'J’t)JrF j,t)(l_(Pitj)SQij(Zitj’t)}+

{I_:Wijk (ZEL 1) (L- (p'Jk)SWIJk (ZIJk )}} dxdt =

D
n | o)
Z(—l)J{—-{ Py (2 t)(l ®jj )}SU (zij. )+

ol (= t
@{Fqn(zij,t)(l ‘P'J)}Sui(zij’t)} +

n Jj-1 L _
Z (_1)1—{F ( (Pljk)}Su (Z”k t) ¢ dxdt
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Substituting the results (3.9.a) and (3.9.b) in (3.9), one can have:

5!
] {F +Z( )] {al o0 EF%}+

D
n j-1 i
Zkz( 1)1a = katk{ }}SUi dxdt =

j=2

=1
__[_[ {ﬁui (zig,t) (1_ (PEO)Sui (ZiO J t) +
D

[ Al
Z(_l)J{:—{ Py (2 t)(l ®jj )}SU (zij, )+

Applying eq.(3.10) for each dependent variable u;, (i =1, 2, ..., m), then
the resulting system of m PDDE's given by eq.(3.10), forall (i=1, 2
m) can be obtained, therefore Euler's equation for the functional (3.8),

takes the form:

J aj n j-1 j aj
F, +Z( 1) al pHEFq” +Z (-1) PO Faige |+
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where z3; = (x - o), forall (i=1,2, ..., m,j=1,2, ..., nand k=1, 2,

nj=1). =

Theorem (3.5):

Let u = U(Xs, Xz, ..., Xm) € C*D), be an extremum for the

functional:

v[u] = ”I F(X1, X2, vy Xm; U, P1, P2y -+-s Pmy UX1 — @, X2, ...,
D

Xm), P1(X1 — @1, X2, -+, Xm), P2(X1 — @2, X2, ++y Xm), +--,

Pm(X1 — @my X2,y Xm)) OX10X2. .. OXmeeeeievieiiieiiiieiienn (3.11)

where p; = %u(xl, Xz, ..., Xm) ON the subset of C'(D) consisting of
i

those functions satisfying the boundary condition ESu|aD =0. Then the

Euler's equation for the functional (3.11) is:

Proof:

The functional v[u] given by eq.(3.11) consisting of function

dependent on m independent variables, takes its minimum at:

ov[u] = ”j OF dx;dX,...dXn
D
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_ ”’J’{ F.ou + illeiSPi +

Implies that:

J.J.J‘{ Fuou + iniSpi} dx,0x;...dXm =
i=1

D

Let zi = (X1 —@j), or Xy = (z; + ;) at the same index of z and ¢ in each
equation, where z;j = zj(X1, X2, ..., Xm; U, P1, P2, --., Pm), fOori=1,2, ..., m

and fi(z;) be the inverse function of z;.
Hence dx = f{ (zj)z'idz = (1 — ¢'j)dz.

Since the corresponding right hand side of eq.(3.12) is given by:
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i=1
and since:
2 (r,5u} =-Z{F, lu + F, 8p

OX; ox; UPi

and

0

6_)(i{Fpi (Zi X2, ..., xm)(l—(Pi)SU(Zi,X2,...,xm)} —

0

a_Xi{Fpi(Zi,Xz ..... xm)(l_(P;)}SU(Zi,X2,...,Xm) +

This implies that:
m m a
Hj Z{FpiSpi} dxldxz...dxm:”---j ZGT{F‘"SU}
D i=1 D i=1 Y

dx,dX,...dXm — ”I ia%{Fpi}Su dx.dX,...dXn
D i=1 YN
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and

By using the Divergence theorem, it follows that:

” IZ{F 8p; | dxadx.. dxmz—” IZ@X{ Lau ds

and

Xmt) dxldxz...dxm

Hence, eq.(3.12) may be rewritten as:

”I{ F“_ia%{ﬁ’i }}au dx; 0. .. dXm =



Chapter Three Variational Formulation of Partial Delay-Differential Equations
with Variable Delays

Thus, dv = 0 implies that the m-integrals vanish for any du. According to

the lemma (3.1), the Euler's equation takes the form:

where zi=(t— @), for(i=1,2,...,m). ®H

3.3 The Sufficient Conditions for an Extremum of the
Variational Problems of PDDEV's

In this section, the additional necessary conditions for a function
u*(x, t) to render a local minimum of an integral v[u*(x, t)] on D are
obtained by employing the condition 8°v[u*(x, t)] > 0. These conditions
are the Legendre and Jacobie's conditions, which are also satisfied if
u*(x, t) provides a relative maximum, an inflection point or generally a
stationary point for v, where D is the class of piecewise smooth
functions called extremums that are functions satisfying the Legendre
and Jacobie's condition, [Lebedev, 2003], and the following set of three
necessary conditions are sufficient for u = u*(x, t) to be a minimizer to

the problem under consideration:
i) u satisfies Euler’s equations (which were derived earlier).
i) u satisfies Legendre condition (which will be discussed later).

ii) u satisfies Jacobie's condition, that is, [Xo — Mo, X1] and [to, t1], do not

contain points conjugate to Xo — 1o and t, with respect to v[u].
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Theorem (3.6):

If on the extremal u = u(x, t), the functional (3.5) attains a

minimum, then on that extremum, the following sets of inequalities are

satisfied:
F, F
Fp>0,| " ™|>0,
F, F
ap qq
p— Xf
Fop Fog Fpp(x—(pi(,t)(l o1 )
p— XY
- >
Fap Faq qu(x—@f,t)(l ¢r) |20
F 1-¢f) F 1-¢) 1-gf
o0 ) P g m0) P or opixgrn 701
and
_ y .
or oo Fopco @=er) Foaool.) @-¢1)
_ y ;
Fap Faq Pt 3701 Fatcoli 3701 o
F Xy E X' E X' X' "
Foocarop ™) Fang@=0) P oo @) R g pgoatn & 00 JE—01)
E 'y ty X\ ot ¢
Faeatop ™) Fopgtng @0 Fopegtopoegrn @000 Rt pggugtn @ 01)
where:
Xo — Mo < X < X and tp <t < t, ni =

Max{(pix't(xo,t; u(xg,t), p(xo,t),q(xo,t))}, for (i=0, 1).

Proof:
The accessory problem for the functional (3.5) may be expressed
as it is given in eq.(3.4):

Thus, the Legendre condition for the functional (3.5) to have a minimum

value, is that:
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F.F
Fp20, [ ™Mixo,
o Fog
Fop Fog PP(Zl « Lol )
F F - >
ap g P of) |20
1=01) Fx@=01) Fox o ox @-0)
p(z Hp p(zy ,H)q p(zy ,H)p(zy 1)
and
y
o g pp(zlX oo Foaeto @ ~oi)
Fop Fag qp(zx t)( -¢r) qq(zt t)( - ¢}) o
— _ X! g |
P e ® -o) P =) I:p(z gt ¢ -o) oz .y 1P 91)
_ t' T _ t' T
Faton@ ) Pt g @00 Byt i g @00)A01) By e 00
where 2!

=(x— "), for (i=0, 1).

In eq.(3.4), transforming the terms of the quadratic arbitrary functions
with the partial derivatives:

0
E{quSDSU} =
K=

OX up(z1 1)

g (1 )6u Su(zy,t) + F

{ uq(z1 t)

(1- o1 )SUSQ(Zpt)

0
a{queSp}ésU + Foudpsa,

(L- oy )dudu(z], t)}

(et A O JUBPE 1),

{ uq(zl t)

0

0
ot

- (P1)5U5U(21,t)} po

(L-op )3u (Su(zg, 1) +

uq(z1 t)
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Q)

{f @ —(pf,)8p8u(z{(,t)} -

ox | pp(zy.t)

0

_ ¥ ) B i )
= {F - x yd—01 )ES,D}ESU(Z1 1) + Fpp(zlx,t) 1— ) )dpdp(z5, 1),

0

at{ pa(z;.t) (! —cp{')Sp u(z;,t)+

O =
(B )6p8u(21,t)} .- {qu@l .

_ o
Pt o - #1)3P0ACL D),
0

ax{ qp(zl t) (1 (P1 )SqSU(Zl t)}

0

X { ap(zf 1) (1- ) )3a0p(zy 1),

11— )SQ}SU(zl t) + F .
0

8’[{ qa(z,b) 1= )6q6u(21’t)}

_ . t
{qu(zl t)( e )Sq}Su(zl,t)+

_ ; t
qu(z{,t) (1-¢; )895q(z;,t), and
0 (—

x' t' X t B
E{Fp(Zf,t)q(z{,t) (-1 )A-¢1)dp(z ,t)SU(Zl,t)} =

O (=

X' t' X ¢
E{Fp(zf,t)q(zi,t) (-1 )11 )0p(zg ,t)}Su(zl,t) +

= X' t' X t
Fp(zi( ,t)q(z{,t) (-1 )A—;)dp(z7,1)d0(zy,1).

It follows that:
_[ j { FoqOpSq + I_:up(zi(,t) (1— X )8udp(zy,t) +
D

_ . )
Pt ®™ o1 )3udq(zy, 1) + P (le’t) (L- o7 )3pdp(z] 1) +
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E
pq(z] 1)

E
aq(z;.b)

E
p(z D)a(z] 1)

(i 2

0

0

0

mal

9

OX
3 [z

(1-
(1-

8t{ ud(zg )
ax{ pp(z3 1)
5’[{ pa(z; 1)
{ ap(z 1)

{ qq(zl t)

p(zl t)Q(Zl t)

uq(zl t)
{ pp(z3 1)

F oot

01)3p30(21,1) + B ) (=01 )305p(21 1) +

o1 )303a(z1, ) +

(-} )(L- o1 )3p(zF ,1)5q(z1, 1) } dxdt =

6p8u 8{ o (L—oF)dudu(zy 1)} +
ox | up(z] 1)

1- (P1)8U5U(21’t)}

(RO )SPSU(Zl t)}

L-¢ )8p8u(21,t)}

(1- X Y803z}, t)}

1-g! )6q6u(z1,t)}

a —cpf)(l—cp{’)ap(zf,t)f»u(zi,t)} dxclt -

+ &{fup(zf,t) (1—@f')6u}6u(zf,t) +

-9 )SU}SU(ZLU +

(-9 )SP}SU(Z1 t) +

(1_<p;’)ap}5u(z;,t) ;
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0 [= ,
“JE X X oy
@X{ RN )f»q}éu(z1 H
g ¢ (A-o})dqidu(zi,t) +
ot | aa(zg.) ! 1
aIF 1- X )(1- oV )op(zL, t) du(z, t) pdxdt ......(3.13)
at | pEihaE Y ! 1 1 1

According to the Divergence theorem, the first integral of the right hand

side of eq.(3.13) will be vanished. Therefore, the accessory problem
(3.4), becomes:

Sv=— ” {FudU*+Fpp8p°+Fd0°+F Foz.0u(zo,t) A~ (Po)5U (2o,1)

F X' 2 /X
Fp(zi(,t)p(zi(,t) (L—o7 )op~(zy, )+

F t'\ysy2 (5t
Fq(z{,t)q(z{,t) (1—¢;)09°(z;,t) } dxdt +

” ( 2O +F, %{quSp}j6u+

J-J‘{ ( uu(zg, t)(l (P0)6U+ bu(z, t)(l ©p)op +
D

qu(zo t) (1-g)3q + (1_@6)(1_@1(')8“21("[) +

u(z t)p(z1 )

_ ’ ; t
FU(Zo,t)q(zi,t) (1-p)A—¢7)0q(z;, t))su(zo 1) —

0 y
(ax{ up(z; 1) - )&HF p(zf 1) (L=or )op+

_ y o
qu(Zf Y (0} )SQU ou(zy,t)
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0 ¢
Lét{ (2 1) (1- ¢ )du + F 2t ) (1-o1)dp+

(11 )39 + 1-¢})

qq(zl t) p(zl t)q(zl t)

(1—(p{’)8p(zlx,t))éu(z{,t)}dxdt ................................... (3.14)

Then, the Jacobie's equation of the accessory problem (3.4), takes the

form
2y = % j j (P15UZ + P,5p° + P38qP + 2Q8U) dxdt +
"D
1 S o2 S a2/ oX S w2/t
o] (Prdu(zo, )+ Po8p°(z, 1) + Pada(z1, 1) +
"D

2Q) dxdt

where:

Pl = I:uu, F)2 = I:pp, P3 = qu,

0
Q= ( Fupop + Fue0q — &{quSP} j,

51 = I_:u(zo,t)u(zo,t) (1_(96)1 =F (1_@1( ),

P HPE )

P,=F 1-¢l),
5= Rt ot n )

and
0 - (< 0= @h)3U + Pz, o (1= 03)3p +

Fau(zg.ty L~ ©0)30 + (1-0p)L— X )3p(zy 1) +

u(z t)p(z 1)



Chapter Three Variational Formulation of Partial Delay-Differential Equations
with Variable Delays

— , ) t
FU(Zo,t)q(zi,t) (1_ (PO)(]-_ (0] )SC{(Zl , t))é}u (ZO ’ t) _

5 X'
Léx{ (2 1) (1-of )5U+F p(2 't)(l_(Pl )dp +

= x' X _
qu(zf,t) (1-o; )SQ}jBU(Zl 1)

0 ¢
Lét{ (2! 1) (1- ¢ )5U+F ,t)(l_(Pl )dp +

_ ¢
FQQ(Zi’t) (1—¢1)3q +

I X' t' X t
Fp(zf et (-7 )A—o;)0p(z7, t))Su(Zl’ t),

where 2" = (t— ¢'), for (i=0,1).

Theorem (3.7):

If on the extremal u; = ui(x, t), (i =1, 2, ..., m); the functional
(3.8) attains its minimum, if the following matrix H is positive definite,

where Xo— 1o <X <X; and to <t <ty:

Hip  Hipp Him Hiz Hpz Him
H21 H22 I_|2m HzI H22 Hzm
H= Hml I_|m2 I_Imm HmI Hmi Hmm .
H,  Hp Hi, Hg Hp Him
Hz  Hy, Hyn Hz  Hzp Hom
Hm Hmo Hom Hm Hi i

where:
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Fpinpjn FIOinOIjn Fpinan(n—l)
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H-=| F 1-o%
5 QinPjn(Z}(nyt)( (Pjn)

F 1- ¢! F 1- ¥
Gindjn (ZEn’t)( (Pjn) qinwjn(n—l)(zj(;(n—l)'t)( (Pln(n—l))

1— 0% 1-ob 11—t
_Win(n—l)pjn(Z}(nvt)( ?jn) Win(n—l)an(Zﬁnvt)( ®in) Win(n—l)an(n—l)(Z}(rt,(n,l),t)( Pin(n-1)

F 1-¢X [ 1- X F 1- X
Pin (Zif, DPjn (A=6in) Pin (Zif, Djn (A=6in) Pin (Zif DWin(n-1) (A=0in)
H- = F 1- ¢! [ 1- ¢ E 1- ¢!
1j Gin (2} DPjn (L=¢in) Gin (2}, D)0jn (=) in (2 DWjn(n-1) (=)
[ 1- o [ 1- o = 1- o
Win(n-1) (Zi);}(nfl)’t)pjn ( (Pln(n—l)) Win(nfl)(z?r:(nfl)'t)an ( (pln(n—l)) Win(n-1) (Zi)ﬁ(n,l):t)wjn(n—l) ( (Pln(n—l))_
and

F ¢ A-G-g)) A~y

F
Pin (2 DPjn (2] 1) t

E
Pin (Zi);]vl)ql'n (Zjn ]

_ = v X E —o)1—ct
FiFj_ 'ilin(zitnvl)pjn(z}(nvt)(l o)L (Pjn) FClin(Zitnvt)ql'n(ZEnv‘)(l o)L (Pjn)

F 1- ) 1-@
Pin(zixnvl)an(n—l)(Zﬁ(n,l)vl)( (ﬁn)( (pjn(n—l))

0 Ay )(l_(p}?\’(n—l))

E
Qin(z}nvt)wjn(n—l) (Z}f,(n,l),

-G y)d-af) F -G 1) @)

Win(n-1) (Ziﬁ(nfl) Ddjn (Z}n

oL Phan)—0p)

E
Win(n-1) (Zixnt(n,l) BPjn (Z}(n ) Win(n-1) (Zﬁ(n,l) HDWjn(n-1) (Z}ﬁ(n,l) ]

foralli=1,2,..,mandj=1,2, ..., m), and zg't = (t—(pi)}’t).
Proof:

The accessory problem for the functional (3.8), which is
functional depending on m-dependent variables and consisting

derivatives of higher order, can be stated as follows:

5%V = j j S2F dxdt
D

where
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62F a (6u1’ 6u2’ ey 6u21 6pllv 6p121 ey 6p].l’h 6le; 6p221 ey 6p2n, ey

Spml, 8mel ey Spmn; 8q111 8q:|.21 ey Sqlmy 8q211 8q221 ey
6q2m, ey Sqml, Squ, ey Sqmn, 6W1211 6W:|.3:|.’ 6Wl321 ey
OWi1n(n-1), OW221, OWa31, OW232, ..., OWan(n-1), -+, OWmz1,

OWma1, OWma32, ..., OWmn(n-1), OU1(Z10, t), dU2(Z20, 1), ...,
SUm(Zmo, 1), p11(Z31, 1), 8p12(235, 1), ..., Op1a(2zy, 1),
8P21(231, 1), 8P22(252, 1), -+, P25+ 1), -y OPma(Ziys 1),
3Ppma(Zmzs B, e 3Pmn(Zin 1), 8012(21, 1), 8G2(255, 1), -,
801n(Z1n, ©), 8021(Z51, 1), 8022(Z52, 1), -y SVan(Z5n, 1), -,
80m1(Zma, 1), 8Am2(Zinz, 1), vy S%mm(Zinm ), SWis1(Z3%4,
), SWiza(2132, 1), .., SWiner-1)(Zin(n_ay» 1), SW2a (2551, 1),
SWaz2(Zmo s 1), ..., 8W2n(n_1)(2)2(tn(n_l), 1), ..., Wma1 (2351, 1),
SWina1(Z2%51, 1), SWisa(Z sy, 1), ..., 6Wmn(n_1)(z’r§]tn(n_1) ,
1)).A. (duy, 8uy, ..., Uy, 3P11, P12, ..., OP1n, OP21, P22,
ooy OP2ny vy OPm1, OPm2y +-+y OPmny 011, 0Q12, .., O01m, 0021,
8022, ---, O02m; ---5 OQm1, O0m2, ---, O0mn, OW121, OW131, OW132,

cv vy OWin(n-1), OW221, OW231, OWa32, ..., OWan(n-1), +.., OWma1,

OWma1, OWma32, ..., OWmn(n-1), OU1(Z10, t), dU2(Z20, 1), ...,
SUm(Zmos 1), 8p11(Z31, 1), 8Pp12(Z5, 1), -.., 3p1a(Z4y ) 1),
8p21(Z1, 1), 8P22(229, 1), -, BP2n(Z5: 1), vy SPm(Zmy s 1),
3pma(Zmzs B, -ves SPm(Zion 1), 8012(21, 1), 8G2(255, 1), -,

801n(Zin, 1), 8021(Z51, 1), 8022255, 1), .., 8Qan(Z5n s V), -,
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6qn"l:l.(z.:ir]]_’ t)1 6qu(Z::‘nz y t)’ ey SQmm(Zﬁnm y t)’ 6W131(Zi(§11
), W23, O, - SWane-1)(Zin(n-gy, O SWaaa(2331, 1),
8W232(Z)2(t32 ) t)’ ey 8W2n(n—1)(z)2($1(n_1) ) t)! ey 8Wm21(z)|"(r'|:2]_ ) t)1

T
SWma1(Za1, 1), SWmsa(Zap. .-, SWmn(n—l)(Z)rgn(n—l) )

where A is the mxm Hussian matrix consisting of m-dependent variables

with higher derivatives of order n, which is defined as:

An A o Anm AT Az o Anp

Ay Ay o Ay Azi Azi < Aom

A= Aml Am2 Amm Aml Ami Amm

Az A Atm A Ap A

Az Ay Az Az_l AZ Aﬁ
Am Amz Amim Ag A Anm |

where:

Apipj  Apiaj  Apiw;

ij aqipj aqiqj aQin

Qwip;  Awigy  Gwjw;

Here:
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FUin Fuipjl Fuipjz Fuipjn
Fpilu j Fpilp il Fpilp i2 Fpilp in
Apip; = FpiZUj Fpi2pj1 Fpizpjz Fpi2pjn ’
_Fpinu i Fpinpjl Foinp 2 Fpinpjn |
FUinl FUinz FUian
FPilel Fpilqu FPilen
Apigj = FpiZle FPiZQj2 Fpi2an
_Fpianl Fpinqu Fpiann_
UiW o1 FUin31 FUin32 FUinn(n—l)
Fpi1Wj21 Fpi1Wj31 Fpi1Wj32 Fpilen(n—l)
Apjw; = FpiZWj21 Fpi2Wj31 FpiZWj32 Fpi2an(n—1) ’
_FpinWj21 FpinWj31 FpinWj32 Fpinan(n—l)_
Fyiqu j Foiap il Foiap i Foiap in
FQiZUj FQiZle FQiZPjZ FQiZPjn
Agipj = FQi3Uj I:0|i3|0j1 I:0|i3|0j2 FQi3|0jn ’
_FQint FQinpjl FQinIsz FQinpjn ]
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Thus, the Legendere condition for the functional (3.8), is that the

matrix H is positive definite, and the Jacobi’s equation may be given as:

1
62V = 5 J.J. (6U16U2. . .6Wmn(n_1)(z)r;]tn(n_l) ,t))
"D

P
1 Quz (1)m(1+2n+7”(”2‘1))

P
Q21 22 (2)m(1+2n+7”(”2_1))

S
m(z+2n+"0 ) Qm(1+2n+”(” )2) m@2ne " Dymaon, 0D
8U1

ou
2 dxdt

SWmn(n-1) (Z)rg[n(n—l) 1)

where:
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-F
5 ) P11Wmn(n-1) (Z)r(rtn(n_l) 1)
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where 2" = (x — oY), for (i=1,2, ..., m;j=0,1,...,n). =

3.4 Illustrative Examples

The improved Magri’s approach for evaluating the variational
formulation of the linear PDDEvV’s, is completely similar to that
approach discussed in chapter two for the linear ODDEV’s, but with
some modifications in the linear operator L, which is based on partial

derivatives of arguments.

This approach may be explained easily and without loose of

generality by the following examples:
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Example (3.8):

Consider the RPDDE with constant delay:
U (X, 1) = Ue(X, 1) —U(X = 1, 1) = F(X, 1) v (3.15)

where f(x, t) = 2(1 — t) + (x — 1)* — (x — 1)%, subject to the boundary

conditions:
u©,t)=t3 u(l, t) =1+t te [0, 1],
and initial condition
u(x, 0) =x x e [0, 1],
with the delay initial condition:
u(x, t) = x°t + x4, x e [-1, 0] and t e [0, 1], [Buite, 2004].

In order to find the variational formulation of the RPDDEvV (3.15)
by using Magrie’s approach with the shift operator:

Du(x, t) =u(x — 1, t).

Let:
Un(X, 1) — (X, ) — u(x—1, t) = f(x, 1),
88—22 u(x, t) — %u(x, t) — Du(x, t) = f(x, t)
X
or:

o 0 _
LX_Z_&— D}U(X, t) =1(x, 1),

I.e., Lu =f, where:
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Thus:

v[u] = %<Lu, u>—<f, u>

= %(Lu, Lu) — (f, Lu)

= % j j {(Lu)? - 2f Lu} dxdt
D

B %J.J. {(UXX(X’ t) - Ut(X, t) _U(X - 1’ t))2 B Z{f(UXX(X, t) o
D

U(X, 1) —u(x =1, )3} dxdt.....ccccoriiiiie (3.16)

However, applying direct-Ritz method with assumption:

n

ux, t) =y(x, t) + > api(x, t),
i1

where (X, t) satisfies the non-homogeneous conditions and oi(x, t)
which are called the “coordinate functions” with constant coefficients a;,
(i=1, 2, ..., n); satisfy the homogeneous conditions. For simplicity

purpose, ed.(3.15) may be written as:

u(x, ) =wix )+ D> aoi(x)eix).

i=1 j=1
Consequently, the approximate solution for the problem, where:

(X, 1) =x*+ %
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can be represented as:
u(x,t) = (0 +19) + x(x—1)t{ao + a;x + at + azx’+amxt+ast’} ...(3.17)
wherea; € R, fori=0,1, ..., 5.

Substituting eq.(3.17) back into functional (3.16) and using the
computer program (PDDE 1) written in MathCad, one can get the

following results for a;, i=0, 1, ..., 5:

a0 =4.131x10"°, a; = —4.828x107", a, = 2.421x107",
as = 2.144x10°®, a, = —3.36x107° and as = —4.293x10°®
Hence:

u(x, t) = ¢+ t2) + x(x — D)t{(4.131x10°°) + (-4.828x107")x +
(2.421x107 ")t + (2.144x107°)x* — (3.36x10 ®)xt —
(4.293x10°)t*}.

The obtained results are presented in table (3.1) and the accuracy

of the results is given in the residue errors from 0 to 1for x and t, which

is also given in this table.
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Table (3.1)

The approximate results and residue error of example (3.8).

Approximate solution Residue error
(0,0) 0

(0.1,0.7) . 2.424x107

(0.2,1) 2.311x107 %

(0.3,0.6) 5.578x107*

(0.4,0.4) 6.004x107*

(0.5,0.3) 5.974x107*

(0.6,0.2) . 5.548x107*

(0.7,0.1) . 3.625x107%

(0.8,1) 4.161x107 1

(0.9,0.6) 1.23x107™

(1,0.5) 2.792x10° %

Example (3.9):

Consider the PDDE with the variable retarded argument in Xx:
Usx(X, £) + Ug(X, T) + 2Ue(X — X, £) =T 1) e, (3.18)

where f(x, t) = 6xt + 2 + 6(x — xt)*; with the following boundary

conditions:
u(0,t)=0,u(d,t)=t+1,fort € [0, 1]
and
u(x, 0) = x4 u(x, 1) =x° + x%, for x € [0, 1]

of the delay initial condition:
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ux, ) =x’t+x% for0<t<10<x<1-t.
Let the shift operator:

Du(x, t) = u(x — xt, t).
then:

Usx(X, t) + Ug(X, ) + 2u,(X — Xt, t) = f(X, 1),

or

0% 0 02
+ +2 D |u(x, t) = f(x, 1).
[ax2 ot oxot }( ) =Tx Y

Therefore, the operator L related to eq.(3.18) is given by:

2 2 2
L= 0 + 0 +2 0 D |.
ox>  ot> oxot

Hence, the variational formulation can be written as:

v[u] = %<Lu, u>—<f, u>

= %(Lu, Lu) — (f, Lu)

_ % [ €(Luy? - 2f Luy dxct
D

_ % [ €adx, ) + uslx, 1) + 2ua(x = xt, 1) = 2{F(x, 1
D

(Unx(X, 1) + Ug(X, t) + 2uy(Xx — Xxt, )}} dxdt.......... (3.19)

Using the direct-Ritz method with the following approximate solution:
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u(x,t) = OCtHX?) + x(x=1)t(t-1){ao + a1x + at + asgx* + auxt + ast’}

wherea; € R, for(i=0,1, ..., 5).

Substituting eq.(3.20) back into functional (3.19) and using the
computer program (PDDE 2) written in MathCad, one can get the

following results for a;, 1=0, 1, ..., 5:
a0 =4.516x10"", a; = 1.151x10°°, a, = —3.294x10",
as = 1.98x10°°% a, = 1.853x107, as = —1.861x10°°.

and the results are presented in table (3.2) in which the accuracy of the
results are obtained by evaluating the residue error function from 0 to 1,

for x and t.

Table (3.2)
The approximate results and residue error of example (3.9).

(xi, t) Approximate solution Residue error

(0,0) 0

(0.1,0.7) 1.218x107%2

(0.1,1) 1.022x107*

(0.2,0.3) 1.849x107%°

(0.4,0.5) 1.063x107%

(0.4,0.8) 1.582x107*2

(0.6,0.2) 3.555x10 %

(0.7,0.4) 6.563x10

(0.8,0.9) 3.819x107"

(0.9,1) 2.57x107%

(1,1) 0
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3.5 Real Life Problem of PDDE (‘The Simple Food Web
Problem)

Delay differential equations arise in many areas of mathematical
modeling, for example; population dynamics (taking into account the
gestation times), [Wangersky, 1957], infection diseases (accounting for
the incubation periods), [Gourley, 2008], physiological and
pharmaceutical kinetics modeling (e.g., the body's reaction to CO,, etc.,
reactants), [Mackey, 1977], [Beuter, 1993] and [Milton, 1989], the
navigational control of ships and aircrafts (with respectively large and
short lags), [Grush, 2003], the neutral network models (interactions of
the neurons are delayed), [Campbell, 1999], and more general control
problems, [Craig, 1986] and [Insperger, 2004].

Mathematical models of increasing complexity is the models of
describing the mathematical analysis of material recycling in closed
ecosystem, which are constructed by, [Nisbet, 1983], [Ulanowicz, 1972]
and the most common models in this field; the dynamic models of food

network.

So, in this section, we will discuss and simulate the application of

real life problem of simple food web problem.

3.5.1 The Model:

The model that we treat has 2n + 1 components consisting

of the n + 1 type living organisms (zooplankton, phytoplankton and
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microorganisms) and the n-type dissolved organic and inorganic

nutrients and detritus.

The nutrient recycling beginning with the microorganisms Xx;,
such that these organisms pass through the some living levels, in these
levels the microorganisms produce the nutrients y;, i = 1, 2, ..., n. The
nutrients y;, i = 2, 3, ..., n — 1, which are the metabolic product of the
microorganisms X;, are assumed to be the one primarily responsible for
limiting the X; production for i = 1, 2, ..., n. The dissolved organic
nutrient concentration y; is a result of the partial decomposition of the
dead organisms. The phytoplankton x,, which assimilated the metabolic
product vy, excretes the dissolved organic nutrient and limits
zooplankton growth (z). Zooplankton excretes dissolved organic matter
too. The n + 1 living organism's levels, detritus and the n nutrients are

modeled in terms of their nitrogen content N (see Fig.(3.1)).

_ (microorganisims)

v "
i i, 1=2, ...,n-1 \*
(metabolic product) Y, re Y (metabolic product)

) assimilates
(organisims) Xj, i=1,2,...
partial exerts N (phytooplankton)
decomposition
| y1 /
(the disolved organic exerts
nutrient and detritus) zooplankton

Fig.(3.1) The cycling of simple food web.
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The quadratic assumptions describe the asymptotic behavior of

the similar trophic chain.

From the biological viewpoint, the dynamics of a simple food
chain is governed by the following functional-differential equation:
od 8% o

E:a$+i§xiMi(zi)+zMz(xn)—Kld(t—l,p) ............. (3.21)

with the boundary condition:
od
—(0,p)=0,0<p<1],
p (0. p) p

and initial conditions:

Aoyt 1y=00<t<1,
op op

of delay initial condition ¢ = @2n+1(p) =p(p-1) =20,0<p<1,-1<t<0,
where Xxi(t, p), vit, p), 1 = 1, 2, ..., n, d(t, p) and z(t, p) are the
concentration of recycling matter in microorganisms, the available
nutrients, detritus and zooplankton, respectively. The delay term is a
scalar factor of time uptake and excretion of the nutrient, also

decomposition of detritus and K > r/2, [Kmet, 2007].

In this study, the mathematical model of the problem under
consideration for finding the concentration of the recycling material in
microorganisms, the available nutrients, detritus and zooplankton,
respectively. The considered problem is to find the recycling material in

detritus using the discussed direct-Ritz method. Consider:
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ad 8% L
——0(—2+ Kld(t—l, p) :ZXiMi(yi)+ZMz(Xn)r
ot op i=1

or equivalently:

ad  6%d
E—a$+ O IO ) Et 16 05) N (3.22)

where:

n
f(x,y) = ZXiMi(yi)+ZMz(Xn)-
i=1
Now, using Magri's approach with the shift operator Dd(t, p) =
d(t -1, p), one have:

2
(Q_Q‘;?-l- K]_D]d(t, p) :f(X,y)

ot
or
Ld="f.
o o L .
where L = | ——a——=+KD |, hence the variational formulation
ot apz

corresponding to eq.(3.22) may be written as:
v[d(t, p)] = %<Ld, d>—<f, d>

:-%(Ld,Ld)—-G,Ld)
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11 24 2
1 J'J' [ o°d od
=— ——OL— + Kd(t - lp)j —2f(x,y)(——
2 5 0{ ot
o°d
ay-l— Kd(t—1p) [ dtdp .cocovvveerrenee (3.23)

Using the direct-Ritz method with the following approximation:

d(t, p) = tp(p — 1){ao + ast + ap + ast® + astp + asp°}............ (3.24)
wherea; € R, forall i=0,1, ..., 5).

Substituting eq.(3.24) in eq.(3.23) and carrying out the
minimization, one get the following results for a;'s, 1=0, 1, ..., 5:

a=-1.544, a; = 2.637, a, = -0.376,

a3 = —1.354, a4 = —1.075x10™*°, a5 = 0.376.

These results are obtained upon carrying the computer program
(PDDE 3) which is presented in table (3.3) and the accuracy of the
results is obtained by evaluating the residue error function from 0 to 1,

for different values of t and p.
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Table (3.3)

The approximate results and residue error of dynamic of
food network problem.

Approximate solution Residue error

(0, 0) 0
(0.1, 0.1) 1.561x103
(0.1, 0.4) 0.035

(0.1,0.7)

0.02

(0.1, 1)

0.034

(0.2,0.1)

0.019

6.682x10°°
1.111x10°°
0.09
7.821x107°
0.029
0.024
2.362x107*
2.948x107*
1.877x10°
4.087x10™*
1.406x10°°
0.048
0.053

(0.2, 0.4)
(0.2, 0.8)
(0.3, 0)
(0.3,0.3)
(0.3,0.9)
(0.4,0.1)
(0.4, 0.4)
(0.4,0.7)
(0.5, 0.8)
(0.6, 0.3)
(0.6, 0.9)
(1, 0.5)
(1,1)




‘_Qmwﬁmm and @{gwmmend’a@

The following conclusions may be drown from this work:

1. Partial delay differential equations could not be solved analytically;
therefore, in most cases, numerical and approximate methods in

general, and variational methods in particular are recommended.

2. The variational formulation of ODDEvV's and PDDEV's, especially

with multidelay are so difficult to be considered.

3. In comparison of the results, the residue error in some examples has
been used, since the exact solution to the undertaken examples is not

given in advance.

4.When comparison is made between the approximate results which
were presented in this thesis with the results obtained from the exact
solution, one can see the accuracy of the results obtained from the

variational approach.

Also, from the present study, one can recommend the following

problems for future work:

1. Solving integral-delay differential equations with variable delays

using variational approach.

2. Using Magrie's approach to find the variational formulation for a

system of linear ODDE's with constant or variable delays.

3. Solving nonlinear DDEV's using the variational approach.
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. Establish the necessary and sufficient condition for stability or

instability of ODDE's or PDDE’s with constant or variable delay.

. Deriving the necessary and sufficient conditions for an extremum of

nonlinear DDE's.

. Deriving the necessary and sufficient conditions for moving and free

boundary value problems with deviating arguments in PDDEV’s.

. Deriving the necessary and sufficient conditions for the mixed

boundary-value problems in PDDEV’s.

153



[1]

2]

[3]

[4]

[5]

[6]

References

Al-Dafae'e Z. A., “Numerical Solution of Delay Differential
Equations with Small Delays Using Linear Multistep Methods”,
M.Sc. Thesis, Department of Mathematics, College of Education,
Ibn Al-Haitham, Baghdad University, 2005.

Al-Daynee S. K., “On Solution of Delay Boundary Value
Problems”, M.Sc. Thesis, Department of Mathematics, Al-Nahrain
University, Baghdad, Iraq, 2002.

Al-Esawi 1. S., "Magnitude Estimation of Solutions for Special
Types of Delay Differential Equations”, M.Sc. Thesis, Department
of Mathematics, College of Science, Al-Nahrain University, 2006.

Al-Kubeisy S., "Numerical Solution of Delay Differential
Equations Using Linear Multistep Methods", M.Sc. Thesis,
Department of Mathematics, College of Science, Al-Nahrain
University, Baghdad, Iraq, 2004.

Al-Saady A. S., “Cubic Spline Technique in Solving Delay
Differential Equations”, M.Sc. Thesis, Department of Mathematics,
College of Science, Al-Nahrain University, Baghdad, Iraq, 2000.

Asl F. M. and Ulsoy A. G., "Analysis of a System of Linear Delay
Differential  Equations", Journal of Dynamic Systems,

Measurement and Control, Vol.125, pp.215-222, 2003.

154



References

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Baker C. T. H., Paul C. A. H. and Will'e D. R., "Issues in the
Numerical Solution of Evolutionary Delay Differential Equations",

J, Adv. Comp. Math.,Vol.3, pp.171-196, 1994.

Bellman R. and Cook K., "Differential Difference Equations",
Academic Press, Inc., New York, 1963.

Berechtken-Mandrcheid V., "Introduction to the Calculus of
Variations", P. G. Engstrom, CRC Press, 1991.

Beuter A., Bélair J. and Labrie, "Multi-Scale Analysis of Noise-
Sensitivity Neur A Bifurcation", J. Bull. Math. Biol., Vol.55, pp.
525-541, 1993.

Bica A. and Mureasan S., “Periodic Solution for a Delay Integro-
Differential Equation in Biomathematices”, J.R.G.M.I.A. Research
Report Collection, Vol.6, No.4, pp.755-761, 2003.

Bica A.M. and Muresan S., “Smooth Dependence by Lag of the
Solution of a Delay Integro-Differential Equation from
Biomathematic”, J. Mathematical Analysis, Vol.1, No.1, pp.64-74,
2006.

Boiza O., "Lectures on the Calculus of Variations", American

Mathematical Society Bookstore, 2001.

Bouzahir H., "Existence and Regularity of Local Solutions to
Partial Neutral Functional Differential Equations with Infinite
Delay", Electronic Journal of Differential Equations, Vo0l.2006,
No.88, pp.1-16, 2006.

Brauer F. and Nohel J. A., "Ordinary Differential Equations", W.
A. Benjamin, Inc., 1973.

155



References

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Buite H. M., "Variational Formulation of Partial Delay Differential
Equations", M. Sc. Thesis, Department of Mathematics, College of
Education, Al-Mustansiriyah University, Baghdad, Iraq, 2004.

Campbell S. A., Ruan S. and Wei J., “Qualitative Analysis of a
Neural Network Model with Multiple Time Delays”, International
Journal of Bifurcation and Chaos, Vol.9, No.8, pp.1585-1595,
1999.

Catillo E., Luceno A. and Pedregal P., "Composition Functionals in
Calculus of Variations: Application to Products and Quotients", J.
Optimization Methods Variationals, University of Castilla-La

Mancha, Spain, Vol.11, pp.1-22, 2005.

Cherkaev A. and Cherkaev E., "Calculus of Variations and

Applications", Lectures Notes, 2003.

Cooke K. L., Hale J. L. and Lasalle J. P., "Functional-Differential
Equations: Some Models and Perturbation Problems, in Differential

Equations and Dynamical Systems", Academic Press, New York,

pp.167-183, 1967.

Craig J. J. , “Introduction to Robot Mechanics and Control”,

Addison-Wesley, 1986.

Dacorogna B. “Introduction to the Calculus of Variations”,

Imperial College Press, 2004.

Desch W., Gramer R. and Schappacsher W., "Well Posedness and
Wave Propagation for a Class of Integro-Differential Equations in
Banach Space", J. Differential Equations, Vol.74, pp.391-441,
1988.

156



References

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Drager L. D. and Layton W., "Initial Value Problems for Nonlinear
Nonresonant Delay Differential Equations with Possibly Infinite
Delay", Electronic Journal of Differential Equations, Vol.1997,
No.24, pp.1-20, 1997.

Driver R. D. E., “Ordinary and Delay Differential Equations”,
Springier Verlag Inc., New York, 1977.

El’sgol’ts L. E. and Norkin S. B., “Introduction to the Theory and
Application of Differential Equations with Deviating Arguments”,

Academic Press, New York, 1973.

Elsgolc L. E., “Calculus of Variations”, Pergamon Press, Inc., New

York, 1962.

Elsgolc L. E., “Qualitative Methods in Mathematical Analysis”,
Trans. Math. Mono., American Mathematical Society, Vol.12,
1964.

Falbo C. E., “Analytic and Numerical Solutions to the Delay
Differential Equations”, Joint Meeting of the Norhern and southern

California Sections of the MAA, San Luis Opisco CA., 1995.

Forde J. E., “Delay Differential Equations Models in Mathematical
Biology”, ph. D. Thesis, University of Michigan, 2006.

Fox C., "An Introduction to the Calculus of Variations", Courier

Dover Publications, 1987.

Gelfand I. M. and Fomin S. V., "Calculus of Variations", Prentic-
Hall, Inc., New Jersey, 1963.

157



References

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Gluesing-Luerssen H., "Linear Delay-Differential Systems with
Commensurate Delays: An Algebraic Approach", Springer, New
York, 2002.

Gourley S. A., Kuang Y. and Nagy J. D., “Dynamics of a Delay
Differential Equation Model of Hepatitis B Virus Infection”, J.
Biological Dynamics, Vol.2, No.2, pp.140-153, 2008.

Grush R., “In Defense of Some Cartesian, Assumptions Concerning
the Brain and Its Operation”, J. Biology and Philosophy, Kluwor
Academic Publishers, Netherlands, Vol.18, pp.53-93, 2003.

Gu K., Kharitonov V. L. and Chen J., "Stability of Time-Delay
Systems", MA: Birkhauser, Boston, 2003.

Guglielmi N. and Hairer E., "Order stars and Stability for Delay
Differential Equations", J. Numbar. Math, Vol.83, No.3, pp.371-
383, 1999.

Guillouzic S., L'Heureux I. and Longtin A., "Small Delay
Approximation of Stochastic Delay Differential Equations", The
American Physical Society, Vol.59, No.4, pp.3970-3982, 1999.

Halanay A., "Differential Equations, Stability, Oscillations, Time
Lags", New York, Academic, 1966.

Hale J. K. and Lunel S. M. V., "Introduction to Functional
Differential Equations", Applied Mathematics Sciences, Springer-
Verlag, New York, Vol.99, 1993.

Hale J. K., "Theory of Functional Differential Equations", Springer,
Heidelberg, New York, 1977.

158



References

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Hern'andez E., Sakthivel R. and Aki S. T., "Existence Results for
Impulsive Evaluation Differential Equations with State-Dependent
Delay", Electronic Journal of Differential Equations, Vo0l.2008,
No.28, pp.1-11, 2008.

Insperger T. and Stépan G., “Updated Semi-Discretization Method
for Periodic Delay-Differential Equation with Discrete Delay”, Int.
J. Numer. Math. Engng., Vol.61, pp.177-241, 2004.

Insperger T. and Stépan G., “Stability Improvements of Robot
Control by Periodic Variation of the Gain Parameters”, China

Machinery Press, China, 2004.

Kaiser C., "Integrated Semigroups and Linear Partial Differential
Equations with Delay", J. Mathematics Subject Classification,
V0l1.2000, 2000.

Kalmanovskii V.B. and Nosov V.R., “Stability of Functional

Differential Equations”, Academic Press, London, 1986.

Kmet T. and Kmetova, “Dynamic Model of Food Network™, J.
Selye University, Slovakia, Vol.01, No.74, pp.945-949, 2007.

Kolmanovskii V. and Myshkis A., "Applied Theory of Functional
Differential Equations", Kluwer Academic Publishers, Springer,

New York, 1992.

Ladde G. S., Zhang B. G. and Lakshmikantham V., "Oscillation
Theory of Differential Equations with Deviating Arguments",
Marcel Dekker, Inc., New York, and Basel, 1987.

159



References

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Lauisell J., "New Examples of Quenching in Delay Differential
Equations Having Time-Varying Delay", In Proc. 5" Eur: Control
Conf., Karlshruhe, Germany, 1999.

Lebedev L. P. and Cloud M. J., "The Calculus of Variations and
Functional Analysis", World Scientific Functional Analysis, 2003.

Leitmann G., "The Calculus of Variations and Optimal Control",

Springer, New York and London, 1981.

Lensnic D. “One-Dimensional Two-Point Boundary value
problems”, Inter. J. of Math. and Math. Sciences, Vol.23, pp.22-54,
1999.

Luo J., “A Note on Exponential Stability in p-th Mean of Solutions
of Stochastic Delay Differential Equation”, J. of Comp. and App.
Math., Vol.128, pp.143-148, 2007.

Mackey M. C. and Glass L., "A Report on the Use of Delay
Differential Equations in Numerical Modeling in the Bioscience",

J. Science, Vol.197, pp.287-289, 1977.

Magri F., “Variaional Formulation for Every Linear Equation”, Int.

J. Engng. Sci., Vol.12, pp.537-549, 1974.

Mao X., "Exponential Stability of Nonlinear Differential Delay
Equations", SIAM (Soc. Ind. Appl. Math.), J. Math. Anal., Vol.28,
No.389, 1997.

Marie N., “Variational Formulation of Delay Differential
Equations”, M.Sc. Thesis, Department of Mathematics, College of
Education, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq,
2001.

160



References

[59] Mastinsek M., “Adjoints of Solutions Semigroups and Identifiably
of Delay Differential Equations in Hilbert spaces™, J. Acta, Math.
Univ. Comeniange, Vol. LXIII, No.2, pp.193-206, 1994.

[60] Memarbashi R., "Variational Problem with Moving Boundaries
Using Decomposition Method", Journal of Samnan, Samnan, Iran,

Vol.2006, pp.6-16, 2006.

[61] Michiels W., Assche V. V. and Miculescu S. 1., "Stabilization of
Time-Delay Systems with a Controlled Time Varying Delay and
Applications", IEEE Transactions on Automatic Control, Vol.50,
No.4, 2005.

[62] Milton J.G., Longtin A., Beuter A., Mackey M.C. and Glass L.,
"Complex Dynamics and Bifurcations in Neurology", J. Theor.

Bio., 1., Vol.138, pp.129-147, 1989.

[63] Mishkis A. D., “Linear Differential Equations with Retarded
Argument”, 2" Edition, Nauka, Moscow, 1972.

[64] Mori T. and Kokame H., "Stability of d/dt[x(t)] = Ax(t) + Bx(t —
t)", IEEE Transactions on Automatic Control, Vol.34, No.4,
pp.460-462, 1989.

[65] Mori T., Fukuma N. and Kuwahara M., "Simple Stability Criteria
for Single and Composite Linear Systems with Time Delays",
International Journal of Control, Vol.34, No.6, pp.1175-1184,
1981.

[66] Muroya Y., "A Global Stability Criterion in Nonautonomous Delay
Differential Equations", J. Math. Anal. Appl., Vol.326, pp.209-227,
2007.

161



References

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Nibet R. M., Mckinstry and Gurney J.W.S., “A Strategic Model of
Material Cycling in a Clased Ecosystem”, J. Mathematical
Biosciences, Vol.64, pp.99-113, 1983.

Niculescu S. 1., "Delay Effects on Stability: A Robust Control
Approach", Heiddberg, Germany: Springer-Verlag, Vol.269, 2001.

Niculescu S., Duggard L. and Verriest E. 1., "Stability and Robust
Stability of Time-Delay Systems: A Guided Tour in Stability and
Control of Time-Delay Systems", Springer, New York, pp.1-71,
1998.

Pinny E., "Ordinary Difference Differential Equations", University
of California, 1959.

Rezounenko A. V., "Differential Equations with Discrete State-
Dependent Delay, Uniqueness and Well-Posedness in the Space of
Continuous Functions", J. Mathematics Subject Classifications,

Vol.10, pp.1-14, 2008.

Russak I. B., "Calculus of Variations MA 4311 Lecture Notes",
Naval Postgraduate School, Monterey, California, 2002.

Salih S., "Approximated Solution of Linear Delay Differential
Equations", M.Sc. Thesis, School of Applied Sciences, University
of Technology, Baghdad, Iraq, 2004.

Shampine L. F. and Thompson S., "Solving Delay Differential
Equations with dde23", J. Comp. and Maths. with Appls., Vol.39,
pp.43-54, 2000.

Smith O.J., “Closer Control of Loops with Dead Time”, J. Chem.
Eng. Prog. , Vol.53, pp.217-219, 1957.

162



References

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Stzepan G., “Retarded Dynamical Systems”, Longman, Harlow,

1989.

Su J. H., "Stability Analysis of Linear Systems with Time Delay",
IEEE Transactions on Automatic Controls, Vol.39, No.6, pp.1341-
1344, 1994.

Su J. H., "The Asymptotic Stability of linear Autonomous Systems
with Commensurate Time Delays", IEEE Transactions on

Automatic Controls, Vol.40, No.6, pp.1114-1117, 1995.

Taylor S. R., "Probabilistic Properties of Delay Differential

Equations", Ph.D. Thesis, University of Waterloo, Waterloo,
Canada, 2004.

Techvenche J. M., "Asymptotic Stability of an Abstract Delay
Functional-Differential Equations", J. Nonlinear Analysis:

Modeling and Control, Vol.11, No.1, pp.79-93, 2006.

Tiryaki A. and Aktas M. F., " Oscillation Criteria of a Certain Class
of Third Order Nonlinear Delay Differential Equations with

Damping", Department of Mathematics, Faculty of Arts and
Science, J. Math. Anal. Appl., Vol.325, pp.54-68, 2007.

Ulanowicz R. E., “Mass and Energy Flow in Closed Ecosystems”,

J. theor. Biol., Vol.34, pp.239-253, 1972.

Vandewall S. and Grander M., "Optimized Over Lapping Schwarz
Methods for Parabolic PDE's with Time-Delay", Conference on

Domain Decomposition Methods, Berlin, Germany, 2003.

163



References

[84] Verheyden K. and Lust K., “A Newton-Picard Collection Method
for Periodic of Delay Differential Equations”, Department of
Computer Science, Report TW., pp.357-481, 2003.

[85] Wan F.Y.M., “Introduction to the Calculus of Variations and its
Applications”, CRC Press, 1995.

[86] Wang S. S., "Further Results on Stability of d/dt[x(t)] = Ax(t) +
Bx(t — 1)", Systems and Control Letters, Vol.19, pp.165-168, 1992.

[87] Wangersky P.J. and Cunningham W. J., J. Ecology, Vol.38, pp.136,
1957.

[88] Whitaker S. Y., "A Biologically-Based Controlled Growth and
Differentiation Model Using Delay Differential Equations:
Development, Applications and Stability Analysis", Ph.D. Thesis,
State University, North Carolina Graduate Faculty, 2000.

[89] Wiener J., "Generalized Solutions of Functional Differential

Equations", World Scientific, 1993.

[90] Wright E. M., “The Linear Difference-Differential Equation with
Asymptotically Constant Coefficients”, Am. J. Math., Vol.70,
No.2, pp.221-238, 1948.

[91] Wright E. M., “The Non-Linear Difference Differential Equation”,
Q.J. Math., Vol.17, pp.245-252, 1946.

164



Appendix A
Computer Programs

1- ODDE 1 Program:
X(t,80,a1,a2) = §~t Lt - 1)-(ao s atts a2t

2
4 (x(t,20,a1,22)) > 20 + 2Lt + 2826 + 2.(t - 1-(al + 2a21) + 2(al + 2a21) + 2t.(t - 1)-a2
dt

xtt(t,a0,al,a2) := 2-a0 + 2-al-t + 2~<':12~t2 + 2-(t —1)-(al + 2-a2-t) + 2-t-(al + 2-a2-t) + 2-t-(t — 1)-a2
Lxt,a0,al,a2) = xtt(t,a0,al,a2) — (t — 1)

1
1
j(a0,a1,82) = E'J' (LX(t,20,a1,a2))2 dt
0

. 12 1
j(a0,al,a2) — a0 + E-az2 + E + 4-a2-al + 2-a2-a0 + 2-z:112 + 2-a0-al + 2~a102

a0:=0 al:=1 a2:.=3
m := Minimizdj,a0,al,a2)
-0.333

Mo 0.167

—2.716x 10 °

2- ODDE 2 Program:

5
A(1,30,a1,2) i= -+ bt - 120+ art + 2282

2
4 (x(t,20,a1,22)) —> 20 + 2Lt + 2824 + 2(t - 1-(al + 2a21) + 2(al + 2a21) + 24:(t - 1)-a2
dt

xtt(t,a0,al,a2) := 2:a0 + 2-al-t + 2~<':12~t2 + 2-(t —1)-(al + 2-a2-t) + 2-t-(al + 2-a2-t) + 2-t-(t — 1)-a2

5
3—x(t,a0,a1,a2) - 5 + (t - 1)-(a0 +alt+ a2~t2) + t-(aO +al-t+ a2~t2) +t(t — 1)-(al + 2-a2-t)
t

5
x(t.0.aL.32) = + (t - a0 avts a2td) 1 a0 avts a2td) + .t - 1)-(a1+ 2221

A-1
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Lxt,a0,al,a2) = xtt(t,a0,al,a2) — (t — 1) — 2

1
1
j(a0,a1,a2) = E'J' (LX(t,0,aL,a2))° di
0

. 12 7
j(a0,al,a2) —» —-3-a0 — 2-al + €~a22 + E —2-a2 + 4-a2-al + 2-a2-a0 + 2~al2 + 2-a0-al + 2-a02

a0.=0 al:=1 a2:.=2
m := Minimizdj,a0,al,a2)
0.667

M= 0.167

1.478x 10 1°

3- ODDE 3 Program:

X(t,a0,al) :=6.94t — 2.997+ (t —.1)-(t — 0.2)-(a0 + al-t)

w1,

j—t(x(t,ao,al)) > 6.94+ (t —.2)-(a0 + al-t) + (t —.1)-(a0 + al-t) + (t —.1)-(t — .2)-al

x{(t,a0,al) :=6.94+ (t —.2)-(a0 + al-t) + (t —.1)-(a0 + al-t) + (t —.1)-(t —.2)-al
Lxt,a0,al) := ((xt(t,a0,al))) + In(t — u(t))

0.2
j(a0,a1) = %J (Lt a0,a1))% — 2-(Lx(t,a0,a1)) dt
0.1

a0:=0 al:=1

m := Minimizg(j,a0,al)
—-40.202

m =
109.133

4- ODDE 4 Program:

x(t,a0,a1) = 0.892526t + t-(t — 1)-(a0 + al-t)

3—(x(t,ao,a1)) — .892526+ (t — 1)-(a0 + al-t) + t-(a0 + al-t) + t-(t — 1)-al
t

Xi(t, a0, a1) ::g—(x(t,ao,al))
t

u(t,a0,al) := 0.5t-x(t,a0,al)
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LS(t,a0,a1) = [x(t,a0,al) — x(t,a0,al) — (t — u(t,a0,a1)) — 1]

Lxt,a0,al) := xt(t,a0,al) — x(t,a0,al) — (t — u(t,a0,al))

1
j(20,a1) = iJ' (LX(t,a0,a1))? — 2-(t-Lx(t,a0,al)) dt

ad:=C al:=1

Z := Minimizqj,a0,al)

1.267
7=

0.148
t:=0,0.1.1

t =

0 ]
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5- PDDE 1 Program:

0.14

0.103

0.08

0.066

0.057

0.052

0.048

0.044

0.038

0.03

0.019

LS(t, ZO’ zl) =

u(x,t,a0,al,a2,a3,a4,ab) := (x2 + t2) + [x-(x - 1)-t-(a0 +al-x+ a2t + a3-x2 + ad-xt + a5-t2)]

2

dx

d—zu(x,t,aO,al,aZ,aB,a4,a5) -2+ 2t

ad-t) + 2-xt-(al + 2-a3-x+ ad-t) + 2:x(x — 1)-t-a3

(aO + al-Xx+ a2-t + ,313~x2 + ad-xt + a5~t2) + 2:(x—1)-t-(al + 2-a3-x +

uxxx,t,a0,al,a2,a3,ad,ab) := 2 + 2-t~(a0 +al-x+ a2-t + a3-x2 + ad-xt + a5-t2) + 2-(x-1)-t-(al +

2-a3-x+ a4d-t) + 2-xt-(al + 2-a3-x+ a4-t) + 2-x(x —1)-t-a3

3—u(x,t,a0,a1,a2,a3,a4,a5) —> 2t + x(x- 1)-(a0 +al-x+ a2t + a3~x2 + ad-xt + a5-t2) + % (x—1)-t-(a2 + ad-x + 2:a5t)
t

ut(x,t,a0,al,a2,a3,a4,a5) := 2t + x(x — 1)-(a0 +al-x+ a2t+ a3-x2 + ad-xt + a5~t2) + % (x—1)-t-(a2 + ad-x+ 2-a5-t)

Du(x.t) = (x — 1)t + (x - 1)°

Fout) = 2(1 —1) = (x = 1>t = (x = 1)°
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Lu(x,t,a0,al,a2,a3,a4,a5) := uxxx,t,a0,al,a2,a3,ad,ab) — ut(x,t,a0,al,a2,a3,a4,ad) — Du(x,t)
Lu(x,t,a0,al,a2,a3,a4,a5) — 2+ 2-t-(a0 +al-x+ a2-t + a3-x2 + ad-xt + a5-t2) + (2:x - 2)-
t-(al + 2-a3-x+ a4-t) + 2-xt-(al + 2:a3-x+ a4-t) + 2.x(x — 1)-t-a3 — 2.t — x(x - 1)-(a0 + al-x+

LS(x,t,a0,al,a2,a3,a4,a5) := (Lu(x,t,a0,al,a2,a3,a4,ab) —f(x,t))2

1 r1
1
J(a0,al,a2,a3,a4,ab) := EJ J [(Lu(x,t,aO,al,aZ,a3,a4,a15))2 —2~[f(x,t)-(Lu(x,t,aO,al,aZ,a3,a4,a5))]J dxdt
0“0

a0=0 al=1 a2:=2 a3:=3 a4:=4 ad5:=5
m := MinimizgJ,a0,al,a2,a3,a4,ab)

4.131x 10 °

4.828% 10 "

2.421% 107"

2.144x 10 6

3.36x 10 °

—4.293% 10" °

6- PDDE 2 Program:

u(x,t,a0,al,a2,a3,a4,adb) = x3-t + x2 + x(x—1)t-(t - l)'(aO +al-x+ a2-t + a3-x2 + ad-xt + a5-t2)

o
dx2

L0t 20,81,82.23.2.35) — 6t + 24 20t — 1)-(a0 + aloxs a2t + 2392 + adxt 4 512 +

2-(x=1)-t-(t - 1)-(al + 2-a3-x + adt) + 2-xt-(t — 1)-(al + 2-a3-x+ a4-t) + 2:x(x — 1)-t-(t — 1)-a3

uxxx,t,a0,al,a2,a3,as,adb) = 6-xt + 2 + 2-t-(t — 1)-(a0 +al-x+ a2t + a13-x2 + ad-xt + a5-t2) +
22(x=1-t-(t - 1)-(al + 2.a3-x+ ad-t) + 2-xt-(t — 1)-(al + 2-a3-x+ a4d-t) + 2:x(x — 1)-t-(t — 1)-a3

d2 2 2
—=u(x,t,a0,al,a2,a3,a4,a5) — 2:x(x — 1)-(a0 + al-x+ a2t + a3-x + ad-xt + ab-t ) + 2x(x-1)-(t - 1)-(a2 +

dt>

ad-x+ 2-a5-t) + 2:x(x — 1)-t-(a2 + a4-x + 2:a5-t) + 2-x(x — 1)-t-(t — 1)-a5

utt(x,t,a0,al,a2,a3,a4,ab) := 2-x (X — 1)~(a0 + al-x+ a2t + a3~x2 + ad-xt + a5~t2) + 2% (x=1)-(t - 1)

(a2 + ad4-x+ 2-ab-t) + 2-x(x — 1)-t-(a2 + ad4-x + 2-a5-t) + 2-x-(x — 1)-t-(t — 1)-a5



Appendix A Computer Programs

FOOE) = Bt + 2+ 2:3[x — (et)]?

Duxt(x,t) := 3-[x — (X't)]2

LS(x,t,a0,al,a2,a3,a4,a5) := (uxxyx,t,a0,al,a2,a3,ad,a5) + utt(x,t,a0,al,a2,a3,ad,a5) + 2-Duxt(x,t) — f(x,t))2

Lu(x,t,a0,al,a2,a3,a4,ab) := uxxx,t,a0,al,a2,a3,a4,a5) + utt(x,t,a0,al,a2,a3,ad,ab) + 2-Duxt(x,t)

1,1
1
J(a0,al,a2,a3,a4,ab) = EJ J [(Lu(x,t,ao,al,a2,a3,a4,a5))2 - 2.[f (x,t)~(Lu(x,t,aO,a1,a2,a3,a4,a5))]] dxdt
0“0

a0.=0 al:=1 a2=2 a3:=3 ad=4 ab: =k
z := MinimizqJ,a0,al,a2,a3,a4,ab5)

4516x 10 !

1.151x 10~ °

—3.294% 10"

1.98x 10~ °

1.853x 10 '

6

-1.861x 10

7- PDDE 3 Program.

d(t,p,a0,al,a2,a3,a4,a5) :=t-p-(p — 1)-(a0 +alt+a2p + a3-t2 + ad-tp + a5~p2)

&
dp2

d(t,p,a0,al,a2,a3,a4,as) — 2~t~(a0 +alt+a2p + a3-t2 + ad-t-p + a5-p2) + 2t (p - 1)-(a2 +

ad-t + 2-a5-p) + 2-t-p-(a2 + a4t + 2.a5-p) + 2t-p-(p — 1)-a5

dpp(t,p,a0,al,a2,a3,a4,a5) := 2-t-(a0 +alt+a2p+ a3-t2 + ad-t-p + a5-p2) + 2t-(p —1)-(a2 +
ad-t + 2-ab-p) + 2t-p-(a2 + ad-t + 2.a5p) + 2-t-p-(p — 1)-ad

:l—d(t,p,aO,al,aZ,aS,a4,a5) —>p(p - 1)~(a0 +al-t+a2p+ a3-t2 + ad-tp + a5-p2) +tp-(p —1-(al +
t
2-a3-t + ad-p)

dt(t,p,a0,al,a2,a3,a4,a5) :=p-(p - 1)~(a0 +al-t+a2p+ a3~t2 + ad-t-p + a5~p2) +tp-(p —1)-(al + 2-a3-t + ad-p)

22
Ld(t,p,a0,al,a2,a3,a4,a5) := dt(t,p,a0,al,a2,a3,a4,a5) — dpp(t,p,a0,al,a2,a3,a4,ad) + [7-p~(p - 1)}

LS(t,p,a0,al,a2,a3,a4,a5) = (Ld(t,p,aO,al,aZ,aC’>,a4,a5))2

A-5
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1 1,1
J(a0,al,a2,a3,a4,a5) = — J' J (Ld(t,p,aO,al,a2,a3,a4,a5)2)dtdp
2 070
17 2129
—-a —~a52
20 2520
—J(aO al,a2,a3,a4,ab) —>2—2+1—7 a2 + 4—le11+—7e10+za3+4—1&14 @aE
da0 35 20 30 10 6 60 210
143 41 53 41 21 53 64
d—J(aO,al,aZ,a:S,a4,a5) —-—+—a2+—al+—a0+—ad3+—ad+—-a5
dal 315 45 30 90 105
31 11 41 17 7 8 403
9 )(a0,a1,a2,a3,a4,85) —> 2282 + == + —=.al + —-a0 + ——-a3 + —.ad + ——.a5
da2 21 20 12 7 280
—J(aO al,a2,a3,a4,ab) —>E +£3 a3 + Z~a0+£~al £7515+ l a2 + 21 -a4
da3 30 1050 6 20 210 12 40
143 298 53 41 929 8 21
—J(aO al,a2,a3,a4,ab) — +—-a4+—al+—-ald+ -ab+ —-a2 + —-a3
da4 630 315 90 60 840 7
55 2129 107 64 929 163 403
d—J(aO,al,aZ,aS,a4,a5) - — ab + a3+ —-al + -ad + -a0 + —-a2
da5 294 1260 210 105 840 210 280
o4 w7 4 163 22
10 30 20 6 60 210 35
4 53 4 21 53 64 143
30 45 60 20 90 105 315
voaos 78 a3 -
20 60 21 12 7 280 35
M = V=
7oA 7108 2 107 -1
6 20 12 1050 40 210 30
4 5 8 21 208 929 143
60 90 7 40 315 840 630
163 64 403 107 929 2129 55
210 105 280 210 840 1260 294
-1.544
2.637
1 —-0.376
Movi=l 354
_1.075x 10
0.376

A-6



I Calaay) Ll da g a1 oda

N aall Al asaliad) aay g oladl JSCEN A A pa J 5V Caagll
(Variable Delays) Lsiall shaliill <ild 4 jall  dpalie V) 4y ylaliil) 4 Lalél)

il dely all Y s a il ) Can Jl
¢cpe sl SIS g Ay shalall Alalaill wYalaWll (The Variational Formulation)
Al ol cas Jall g jreal) cilleill 55 5 dda il slag) s 40 3a 5 Aalic|
RPTLE | g ENENE eI

Lasre 4 Gl e liall g jaall cilledl) ey s Gl Cangll a7 jual
Jall Aayy dla (The direct-Ritz method) 3 -8l 355 48 yha aladi il
il lalil) cld 4y ) A dalail) Alslaall 5l



A

il (oand 4y ladl) 4e Luall

il gl i d A bty

A,
Oa ) Aasly - glall A0S ) Aatia
asle sfiuala 4 o Ji uuh-m (e 80 (RS
Glualy ) o

J O
LN ae cpal) g3 3w

(2005 «Crisgd) dnala cagle (i 9l\Sy)

1429 (fuaa, 2008 Jsb

Gl &) ggan S

ealad) &) g L“,J\.d‘ H“'ﬂ‘ 'SIBY) E/E
O —¢) Anala <

pslad) Al A

il ) and %



	Binder1
	en
	آية
	DED
	CERT
	ack
	abstract
	contents
	introduction
	ch1
	ch2
	ch3
	conclusions and recomindations
	references
	appendix
	ملخص

	ar

