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Abstract

The main objectives of this thesis, is oriented toward function
approximation using special type of spline functions, which is called the “G-
spline “including the details of the subject.

The second objective consider the 1% order ordinary differential equations

of the form:
y'(X) =F(x,y), Xe[a,b].
y(@=Yo-

Where the study concern the approximate solution of the above differential
equation using linear multistep methods based on G-spline interpolation and then
a generalization to this approach have been extended to solve Boundary value

problems of the second order ordinary differential equations.
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Introduction

Every one that has ever tried to apply simple linear interpolation
method to find a value between pairs of data points will be only too
aware such that attempts are extremely unlikely to provide reliable
results if the data being used in any think other than broadly linear. In
an attempt to deal within herent non-linearity, the next step usually
involves some sort of polynomial interpolation. This general leads to
more stable and robust interpolation and fitting, but is also potentially
so difficult area as the end points, monotonicity, convexity and
continuity of derivatives all make their influences felt in often
contradictory ways.

One of the most popular ways of dealing with these issues is to
use splines. In their most general form, splines can be considered as a
mathematical model that associate a continuous representation of a
curve or surface with a discrete set of points in a given space. Spline
fitting is an extremely popular form of piecewise approximation using
various forms of polynomials of degree n, or more general functions,
on an interval in which they are fitted to the function at specified
points, which are known as the control points or nodes or knots. The
polynomial used can change, but the derivatives of the polynomials are

required to match up to degree n-1 at each side of the knots, or to meet
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related interpolatory conditions. Boundary conditions are also imposed
on the end points of the intervals. The heart of spline construction
revolves around how the selection control points are effectively
“blended” together using the polynomial function of choice, [Stephen,
2002].

It is more than 50 years since 1.J.Schoenberg (1946) introduced
“spline functions” to the mathematical literature. Since then, splines
have proved to be enormously important in various branches of
mathematics such as approximation theory, numerical analysis,
numerical treatment of differential, integral and partial differential
equations, and statistics, [Micula, 2003].

The construction of mathematical models to approximate real
world problems has been one of the most important aspects of the
theoretical development of each of the branches of science. It is often
the case that these mathematical models involve an equation in which
a function and its derivatives play important roles. Such equations are
called differential equations. A derivative may be involved implicitly
through the presence of differentials. The aim is to find methods for
solving differential equations; that is, to find the unknown function or
functions that satisfy the differential equation, [Rainville, 1989].

There is no general agreement on how the phrase “numerical
analysis” should be interpreted. Some see “analysis” as the key word,

and wish to embed the subject entirely in rigorous modern analysis, to
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others, “numerical” is the vital word, and the algorithm the only
respectable product, [Lambert, 1973].

For purposes of interpolation, the use of spline function offers
substational advantages such as by employing polynomials of relatively
low degree, and then one can often avoid the marked undulatory behaviour
that commonly arises from fitting a single polynomial exactly to a large

number of empirical observations. [Osama, 2006].

This thesis consists of three chapters.

In chapter one, some basic concepts and definitions related to
numerical solution ordinary differential equations and spline functions
are studied. This chapter consists of four sections. In section 1.1, we
discuss the general type of linear multistep method and some methods
of derivation. In section 1.2, we discuss the spline functions, while in
section 1.3, we discuss and list some types of splines, then in section
1.4, we discuss the approximation of linear functional and we give
some theorems related to this subject.

In chapter two, an introduction to the what so called G-spline
functions is given, as well as, its basic theory, including the proof of
some fundamental results for completeness. This chapter consists of
six sections. In section 2.1, we present the HB-problem, and then in
section 2.2, we discuss what we meant by the normality of HB-
problem. Section 2.3, deals with interpolation by G-spline functions

and illustrating the uniqueness of the solution of HB-problem. Section
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2.4, is about the spline formula. In section 2.5, the construction of G-
spline was given. Finally, an illustrative example presented in section
2.6.

In chapter three, the construction of linear multistep of initial an
boundary value problems by using G-spline functions is given. This
chapter consists of four sections. In section 3.1, the constructions of
linear multistep method with some propositions are given. In section
3.2, the compare between the explicit and implicit methods of linear
multistep methods was given and the Predictor-Corrector method was
introduced, in section 3.3, we give some examples for an initial value
problem of ODE’s. Finally, in section 3.4, the solution of boundary
value problem by using G-spline function with an example is

discussed.



Chapter One

Basic Concepts

In this work, so many topics of applied mathematics are used, as well as,
the connection between these concepts are presented. Therefore in this chapter,
fundamental concepts are necessary to understand and recall these subjects are

given for completeness and making this work of self contents as possible.

1.1 LINEAR MULTISTEP METHODS, [LAMBERT, 1973]:

Linear multistep methods are used in applied mathematics for evaluating

the numerical solution of ordinary differential equations of the form:

Y =1(X,¥) Y (A) TY(0 oot (1.1)

where a<x<b, a,beR

One step methods such as Euler's method refer only to one previous value
of solution to determine the current value. Multistep methods refer to several
previous function values in an effort to achieve greater accuracy. The general

form of k-steps method is given by:

k k
Zajyn-l-j:thjf(Xn-i-j’yn-i-j) ..................................... (12)
=0 =0

Where h is the step size, o ; and B;(Vj=0,1,2,...,k) are constants. For a linear k-

step method, we require that o, #0 orf3; #0.
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Furthermore, the coefficients in eq.(1.2) are not uniquely defined, and

since multiplication throughout by a constant defines the same method, the

coefficients may be normalized such that o), =1 or Z B;=1.
]

In addition, the method is said to be explicit if B, =0 and otherwise it is

implicit.

1.1.1 The Root Condition:

The first and second characteristic polynomials of the linear multisteps

method are given by:

k
PN = D OLTT (1.3)
j=0
k
&(r) = ZBer ..................................................................... (1.4)
i=0

In addition to the first order accuracy (also called consistency condition).
A linear multistep method must satisfy the following condition:

Equation (1.2) is said to satisfy the root condition if all the roots of

p(r)=0, satisfy‘rj‘ <1, for all j=0, 1, 2... k, then the method is said to be zero

stable and if ‘rj‘ = 1 then it must be a simple root (has no multiplicity).

1.1.2 Methods for Derivation Linear Multistep Methods:

In this subsection, we turn to the problem of determining the coefficients

a;,B; appearing in eq.(1.2). Any specific lincar multistep method may be

derived in a number of different ways; we shall consider a selection of different
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approaches which cast some right on the nature of the approximation involved.

These approaches may be summarized as follows:

| Derivation through Taylor’s expansion:

Consider the Taylor’s expansion for y(x , +h) about x  :

h2
y(x, +h)=y(x,)+ hy(l)(xn) 1 Ty(z) (Xp) +-..

Where

q
y(q)(xn)=d—z forall g=1.2,...

X p—
X=Xp

If truncating this expansion after two terms and substitute for y'(x)from

the differential equation, one get:

y(X, +h) =y(X ) )+ hf (X, ¥(Xp)) e (1.5)

and the error term is given by:

h? @ h® 16

— VX)) F =Y (X)) Fe (1.6)
2! 3!

Equation (1.5) expresses an approximate relation between exact values of the
solution of eq.(1.1).We can also interpret this relation as an exact relation

between approximate values of the solution of eq.(1.1) if we replace
y(x,),y(x, +h) by y,,y,4 respectively, yielding:
Voel =¥n ThE(Xps¥n) e (1.7)

which is an explicit linear one-step method. It is, in fact, Euler's method, which
is simplest of all linear multistep methods. The error associated with Euler’s
method is the expression of eq.(1.6) (multiplied by +1 or -1 according to the

sense of the definition of error ) and is called the local truncation error.
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In addition, the local truncation error is of order h? (and termed as
O(h2)), and that it is identically zero if the solution of eq.(1.1) is a polynomial

of degree not exceeding one.

Il Derivation through numerical integration:

Consider the identity:

Xn+2

Y(Xns2) = Y(x) = [V (1.8)

Xn
Then using the differential equation (1.1) and replacing y'(x)byf(x,y) and, if

our aim is to derive ,say, a linear two-step method , then the only available data

for the approximate evaluation of the integral will be the values f,,f,,;,f,.>-

Let p(x) be the unique polynomial of degree two passing through the three points

(X1 ), (Xpy1-fhap)and (x,40,f,42). By using the Newton-Gregory forward

interpolation formula,

p(x) =p(x, +th) =f, + Af, + r(rz_' D2
where re[0,2], Af, =f,,; —f,
Now, make the approximation:
Xn+2 Xn+2 2 1
[ydx= [p(x)dx =] [fn +Af, +—1(r— A, }hdr
Xn Xn 0 2

=h(2f, + 2Af, +§A2fn).

Expanding Af and Azfn in terms of f,f, 4,f,,,and substituting in eq.(1.8)

gives:
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Viin =Yg+ ( o F AL L) e (1.9)

which is Simpson's rule, the most accurate implicit linear two-step method.

This derivation is very close to the derivation of a Newton-Cotes

b
quadrature formula for the numerical evaluation of I f(x)dx. Indeed, eq.(1.9) is

a
such a formula, and all Newton-Cotes a formulae can be regarded as a linear

multistep methods.

111 Derivation through interpolation:

This method is illustrated by deriving the implicit two-step method of
eq.(1.9). Let y(x) be the solution of eq.(1.1), and approximated locally in the

range X, <X <X,,, by a polynomial I(x), which should interpolate the points
(Xn+j>¥Yn+j)-(J=0,1,2),and moreover, that the derivative of I(x) should coincide
with the prescribed derivative f, ; for j=0,1,2. This defines I(x) as an

oscillatory or Hermit function which interpolates the conditions imposed on

I(x). Thus:

I(Xp4j)= yn+J,I(Xn+J) frejs 770,12 (1.10)

There are six conditions in all which produce six algebraic equations; let |
have five free parameters, namely a, b, ¢, d and e that is, let I be a polynomial of

degree four, namely:
I(x)= ax? +bx> +cx +dx +e.
Eliminating the five undetermined coefficients a, b, ¢, d and e between the six

equations resulting from eq.(1.10) yields the identity:

Yn+2 — = ( nt2 H4fh g +1).
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Which is the linear multistep method of eq.(1.9). Derivation of eq.(1.9) by the

method of Taylor expansions shows that that local truncation error is:

1.5 (5)
+—h + ...
90 Yy (X))

1.1.3 Family of Linear Multistep Methods:

Three families of linear multistep methods are commonly used, namely:
(I)  Adam-Bashforth methods.
(I) Adam-Moulton method.

These families are illustrated as follows:

| Adams-Bashforth Methods:
The Adam-bashforth methods are explicit methods. Where the coefficients

B; of eq.(1.2) are chosen such that the methods has an order k (this determines

the methods uniquely).
Among such Adams-Bashforth methods with k=1, 2, and 3 are:

o y,=y,1 +hf(x,_1,¥,_1)-(Euler method);
® Yn=Y¥n-1t h[%f(xn—laYn—l) - %f(xn—ZsYn—Z):l; (Adam-Bashforth 2"
order method);
23 4 5
® Yn=Y¥Yn1 Tt h|:Ef(Xn—l > Yn—l) - gf(xn—Z > Yn—2) + Ef(xn—3 »¥Yn-3 ):|a
(Adam-Bashforth third order method);

Adam-Bashforth methods or explicit linear multistep methods are used

commonly in solving non-linear ordinary differential equations numerically and
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are used to find predictable values for implicit methods (which will be discussed

later).

Il Adam-Moulton Methods:

Adams-Moulton methods are implicit methods. Again the B;of eq.(1.2)

coefficients are chosen to obtain the highest possible order. However, the
Adams-Moulton methods are implicit methods, since by removing the restriction
thatP, =0, the k-step Adams-Moulton method can reach an order k+1, while a
k-steps Adams-Bashforth method has only order k.
Among Adams-Moulton methods with k=0, 1, 2, 3are:
e y,=Yy,-1+hf(x,,y,), (The backward Euler method);

Yy, =Y, 1+ %h[f(xn,yn) + f(xn_l,yn_l)], (The Trapezoidal rule);

Yn =Yn- 1+h|: f(XnaYn)+ f(xn 1>Yn— 1)_ f(xn 2-¥Yn- 2):|

(Two-steps Adam-Moulton method),

19
i YnZYn—1+h|: f(XnaYn)‘i‘ f(Xn 1>Yn- l)_ 4f(Xn 2-Yn- 2)+

1
ﬁf(xn 3>¥Yn- 3):|

(Three steps Adam's-Moulton method).

1.1.4 LMM for Solving a Special Case of Second Order ODE's:

It is remarkable that the linear multistep methods can be used to solve

second order ordinary differential equation i.e., let us consider an initial value
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problem involving an ordinary differential equation of the second order, which

can be written in the form:

V' =1(X,5,Y), Y@=Y0, Y(@) =Y  coerereereriiiinniiee (1.11)

In the form of a first order system u'=v,v' =f(x,u,v) where

u=y,v=y'.If, however, eq.(1.11) has the special form:

Y S (X, ¥) e (1.12)

Then it is natural to ask whether there exist a direct method which does
not require us to introduce the first derivative explicitly into an equation in which

it does not already appear. We might ask the some sort of equation about special

higher order equation of the form y(m) =f(x,y).We shall consider however,

only special equation of the form of eq.(1.12), since these arise in a number of
important applications, especially in mechanics [Lambert, 1973]. We take the

standard initial value problem:

V' =f(X,¥), y@)=yy , Y(@)=Y) oo (1.13)

We shall consider only linear k-step method of the form:
k k
Zajyn+j:hZijn+j ............................................. (114)
=0 =0

where o =1, anda,B, does not both vanish. Since we can not approximate
y" with less than three discrete value of y, we intuitively expect that k must be
at least two, and indeed this turns out to be the case.

The direct application of method of class of eq.(1.14) to problem (1.13),

rather than the application of conventional linear multistep method to an

equivalent first order system, is usually recommended.
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1.2 SPLINE INTERPOLATION FUNCTIONS [GREVILLE, 1967]:

The name spline function was introduced by Schoenberg in 1946. The real
explosion in the theory, and in practical applications, began in the early of 1960.
Spline functions are used in many applications such partial differential equations.

When approximating functions for interpolation or for fitting measured
data, it is necessary to have classes of functions which have enough flexibility to
adapt to the given data, and which, at the same time, can be easily evaluated
using computer. Traditionally polynomials have been used for this purpose, since
these have some flexibility and can be computed easily.

However, for rapidly changing value of the function to be approximated
the degree of the polynomial has to be increased, and the result is often a
function exhibiting wild oscillations. The situation change as dramatically when
the basic interval is divided into subintervals, and the approximating or fitting
function is taken to be a piecewise polynomial over each subinterval. The
polynomials are joined together at the interval endpoints (knots) in such away
that certain degree of smoothness (differentiability) of the resulting function is
guaranteed. If the degree of the polynomials is k, and the number of subintervals
is (n+1), the resulting function is called a polynomial spline function of degree k
(order k+1) with n-knots.

For practical problems, spline functions have the following useful
properties:

e Smooth and flexible.
e Easy to store and manipulate on a computer.
e Easy to evaluate along with their derivatives and integrals.

o Easy to generalize to higher dimensions.
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Now, suppose one want to interpolate n given data points(x;,y(x;)), for

all (i=1,2,...,n) by means of a function g(x)e Ck[a,b],l <k <nand moreover, is

the "smoothest" such function in the sense that :

o= ﬂg(k) (x)]zdx ....................................................... (1.15)

is made as small as possible, where:

a<x;<Xj;<..<x,<b.

Fork >n, the problem does not have a unique solution, as there are an
infinite number of polynomials of degree k-1 that fit the data points exactly, and
for any of thesep=0.

For k <nthere is a unique solution which is a piecewise function given in
any interval[x;,x;,;],Vi=12,...,n by a polynomial in each such interval.
The function g has a further property that in each of the intervals (—o0,x;)

and (x,,0)it reduces to a polynomial of degree k-1. The function g just

described above belongs to a class of functions known as "spline functions",
[Greville, 1967].
Now, we are in a place to set the following definition of a general spline

function:

Definition (1.2.1), [Greville, 1967]:

A spline function S(x) of degree m with knote points x; <X, <...<X, 1S
characterized by the two properties:
(a) S(x)1sgivenin [Xx;,X;,1] ,1=0,1,2,...,n, Xxg =—00, X, =, by some
polynomial of degree at most m.

(b) S(x)e C™! in(—o0,).

10
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Definition (1.2.2), [Greville, 1967]:

A spline function of odd degree 2m-1 is said to be (natural spline function)

if it satisfies the following conditions:
(@) S(x) €[1am-1 in (xi,X;41),1=0, 1, 2,.., n-1.
(b) S(x)e C*™72 . (- 00,00).
(¢) SX) €[Im-1 In (=o0,xg)and (x;,0).
where the symbol [],,,_; 1s used to denote the set of all polynomials of degree
< 2m-1.
A function of general importance in defining and simplifying spline

functions is given in the next definition:

Remark (1.2.3), (Truncated Power function):

A typical spline of order k is the truncated power function which is

denoted by:

k-1
(x— a)li_1 _Jx-a)T o x>a where a eR.
0 if x<a

An important result that will be used in G-spline interpolation is the

Peano’s theorem, which has the following statement:

Theorem (1.2.4), (Peano's Theorem), [Greville, 1967]:

Let £ be a linear operator of the class defined by:

k-1b

L= D [FD)d (X)) co (1.16)

I'=Oa

11
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where p,(x)are functions of bounded variation, f € Ck_l[a,b] and having the

additional property that £(p)=0 for every polynomial pof degree<k —1, then

forall f e Ck_l[a,b]:
b
L) =[KOFOMd (1.17)
a

where

1
(k=1

K(t) L= (1.18)

and the notation £, means that the operator L is applied to the function within

brackets considered as a function of x.

1.3 TYPES OF SPLINE FUNCTIONS:

Several types of spline functions may be used in applications and among

such types of spline functions are:

1.3.1 Linear Spline function, [deBoor, 1978]:

Linear spline interpolation function is the simplest form of spline
interpolation. The data points are graphically connected by straight lines and then

the resultant spline is just a polygon. Algebraically, each pice S; is a linear
function constructed as:

(Yit1 —Yi)

(Xit1 —X;) S

Si(x)=y; +

The spline function must be continous at each data point, that is:

S:(x;)=Si,((x;), i=1,2,...,n-1

12
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1.3.2 Quadratic Spline function, [deBoor, 1978]:

In these splines, a quadratic polynomial approximates the data between

two consecutive data points; the analysis of interpolation is as follows:

Given(Xg,Yq),(X1,¥1)s-s(Xp,Yn), and to find quadratic splines

f1,f5,...,f, through the data, the splines are given by:
fl(x)zalxz +b1X+C1 s X0 <x< X1

fz(X):azxz +b2X+C2 » X1 SXSXz

fn(x)=anx2 +byx+c, L Xy SX<X,

Therefore, there are 3n coefficients, a;,b; and c;,Vi=12,...,n; and to find
the 3n unknowns, one needs to setup 3n equation and then simultaneously solve
the resulting system of algebraic equations.

These 3n equations are found by the following approach:

1. Each quadratic spline goes through two consecutive data points and we can
construct the following equations:

alxg +byxg +¢; =11(xq)

ajxi +byx; +e; =fi(x)

a'an21—1 +bpxy_ e, =1 (x,-1)
anxlzl +bpx, +op =1, (X,)
These conditions gives 2n equations as there are n quadratic splines going
through two consecutive data points.
2. The first derivatives of the quadratic splines are continuous at the interior
points. For example, the derivative of the first spline alx2 +bix+cy is:

2alx + bl

13
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and the derivative of the second spline a2x2 +byx+c, is:

2a,x+by
where the two derivatives are equal at x = x, gives:
2a;xy +b; =2a,x; + b,
Which implies that:
2a;x; + by —2a,x; b, =0
Similarly at the other interior points,

232)(2 +b2 —233X2 —b3 =0

2aixi + bi - 2ai+1xi - bi+1 =0
and in general,

2an_1xn_1 + bn—l — Zaan_l — bn =0

Since there are (n-1) interior points, we have the (n-1) of such equations and so

far the total number of equations is (2n) + (n —1) = (3n — 1) equations.

Finally, we still then need one more equation; it can be assume that the

first spline is linear, that isa; =0.

This gives us 3n equations of 3n unknowns; these can be solved by a

number of techniques used to solve simulations linear equations.

1.3.3 Cubic Spline function, [deBoor, 1978]:

Suppose that (X, Y )k—o are n +1 points, where a=xy <x; <..<x, =b

, the function S(x) is called a cubic spline interpolation function if there exist n

cubic polynomials S, (x)that satisfy the properties:
(DS(xy )=y, fork=0, 1, 2,..., n.
(II)Sk (Xk+l) ZSk+1 (Xk+1) ) for k:(), 1, 2,. cey n-2.

14
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(D) SY (X 11) =Sk 41Xk 41) » for k=0, 1, 2,.., n-2.
(IV)SE (Xg41) =Sk 41 (X 41) » for k=0, 1, 2,..., n-2.
The general form for each cubic function joining x; and x;, is:
Si(x)=a; +b;(x —x;) +¢;(x —=x;)? +d;(x — x;)°, =0, 1, 2,...., n-1
and hence to find eacha;,b;,c; and d;, Vi, one must apply the conditions (I)-(IV)

which will give (4n-2) equations with (4n-4) unknowns, and hence in order to
find a unique solution, additional boundary conditions are used to find additional

two equations.

1.3.4 B-Spline functions [ deBoor, 1978 1:

Given m+1 knot points x;with xy <x; <...<x,,. The B-spline of degree

n is a parametric curve S:[Xg,X,]|— R? composes of basis B-spline of degree
n, as:
m
S(x)= D pibin(x),  x€lxg,Xp].
=0
Where p; are called control points or de boor points.

A polygon may be constructed by connecting the knote points with lines.

Starting with p, and finishing withp,,, this polygon is called de Boor polygon.

The m-n basis B-spline of degree n can be evaluated by using the (Cox-deBoor

recursion formula):

I if x;<x<Xjy
bjo(x)= .
0 , otherwise.
and
X —X; (x; —X)
] j+n+l
bj,n (x)= bj,n—l (x) + bj+1,n—1 (x).
Xj+n X Xjtn+l ~ Xj+1

15
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When the knots are equidistant then the B-spline is called uniform

otherwise it is called non-uniform.

1.4 APPROXIMATION PROBLEM, [GREVILLE, 1967]:

Interest in the interpolating natural spline function stems primalty from its

"best approximating" properties; let £ denote a linear operator, defined

forf e Ck_l[a,b] , of the form:
k-1b
LE)= Y [FOEOdUAX) oo (1.19)
r:Oa
In particular, £(f ) might be:
(a) The value of f for a particular argument&.

(b) The value of the r™ derivative of f where (r<k) for the argument&,.

(c) The integral of f over (a,b) or over some subinterval .
Let s denote the natural spline function interpolation between the

points(x;,f(x;)), V(i=12,...,n). Schoenberg has shown in (Schoenberg 1964)
that for an arbitrary L of the class defined by eq.(1.19), L(s) is a "best
approximation" to £(f) in the sense of Sard [Sard, 1963].

Let F be an arbitrary operator of the class defined by eq.(1.19) and

consider the approximation of F by an operator of the form:
n
L(f):Zij(xj) ......................................................... (1.20)
j=1

where the coefficients f; are determined subject to the requirement that

L(p)=Fp) for every polynomial p of degree k-1 or less.

In general, this requirement does not completely determine thef3;’s.

16
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Clearly one such approximation to F'is obtained by taking:

LO=TS) oo, (1.21)

Where s is the interpolating natural spline function for f of degree 2k-1 with the

knots x;.

The operator R=F-L satisfies the conditions of Peano's theorem and

therefore:
F(f)= L)+ TK(t)f“‘) (AL oo, (1.22)
where a
K(t) = i« i 1)!RX[(X S T (1.23)

where R, 1is an operator applied to the function within brackets considerd as a

function of x.

It appears from eq.(1.22) that £ is a good approximation to  for all
function f if ‘K(t)‘ is small for all te[a,b]. Therefore Sard in (1963) calls £ a
best approximation to ¢ if the coefficients B; in eq.(1.20) are determined
(subject to the requirement of exactness for polynomials of degree<k —1), so

that the quantity:

b
J= [IKOPAE o (1.24)
a

is small enough as possible.

Schoenberg has shown in (Schoenberg 1964) that an arbitrary operator F

of the class defined by eq.(1.19) the best approximation in this sense is given by
eq.(1.21). This useful property is expressed by the following theorem:

17
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Theorem (1.4.1), (Schoenberqg's Theorem), [Greville, 1967]:

let & be an arbitrary operator of the class defined by eq.(1.19) and
a<X;<X,<..<X, <b.Let L denote any approximation to ¥ in the form of

eq.(1.20), exact for polynomials of degree<k—1 and let L denote the
approximation given by eq.(1.21); let J"and J be the corresponding values of the
quantity defined by eq.(1.24),then J <J', with equality only if £ = L.

Proof:

Let Bjand B;be the coefficients in eq.(1.20) corresponding to L'and L

b b
respectively and if J = [[K(t)]*dt and J' = [[K; ()] dt where K(t) and K (t)be

a a
the corresponding peano kernels. Hence, one can write J'in terms of J, since:

b
V= [[K (0] dt.

a

or in another form:

b b b b
I'=T+ [[K () dt = 2[ K (K (D)dt + [[K(D)]dt + 2[ K (K (H)dt -

a a a

b
2[[K ()] dt

b b
=1+ [[K () - K(t)]>dt +2 [ROK; () - K@Mt oo (1.25)

18
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To prove that J<J'it will suffice to show that the last integral in eq.(1.25)
vanishes, and from the definition of R, R is linear operator and apply this

operator in eq.(1.20), to get:
n
R ()= Y Bif(x;).
j=1
and hence for K, K from their definition given by(1.23), this implies:
k-1]_ % k-1
R, [ -0 |- 3By (x; - vk
j=1

Hence

K0 -KO = R 0f | R ot

e 1),ZB( ;-5 e 1),ZB( - 05

n
=3 ei(x;— 05T (1.26)
j=1
where

The right member of eq.(1.26), as a function of t, is a spline function of

degree k-1.
Since £ and L, as approximations to ¥, are both exact for polynomials of
degree<k —1, it follows from eq.(1.23) that K;(t)and K(t) are vanish, and
therefore K, (t) — K(t) vanishes, for t outside of (x;,x,).
Let G (t) is any function satisfying:

GO =K () =K() e (1.27)
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then G (t) 1s a natural spline function of order 2k-1 with the knots x;.
By eq.(1.22) and (1.27), the last integral in eq.(1.25) is the remainder when L is
used to approximate F, operating on the function G, but by virtue of the

uniqueness of spline interpolating, the interpolating natural spline function for G

with the knots x;is G itself, this remainder therefore vanishes, J'=1J only if the
first integral in eq.(1.25) also vanishes, this implies that K;(t)=K(t), and it
follow from eq.(1.24) that L'= L.
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Chapter Two
Interpolation By G-spline Functions

In previous literatures, G-spline interpolation functions had prove its
efficiency in approximating functions, since it may by applied in general for
any function f depending only on the interpolatory conditions rather than the

function.
This chapter presents the basic theory of G-spline interpolation

functions, as well as, with some illustrating examples.

2.1 THE HERMITE-BIRKHOFF PROBLEM
[SCHOENBERG, 1968]:

In this section, it is convenient to discuss the Hermit-Birkhoff problem,
consider the knots points:

X1<X2 <...<Xk

to be distinct and real and let e={(i, j)} be the set of all distinct order pairs (i, j)
such that 1 assume takes each of the values 1,2,...,k once or several times, and

1€1{0,1,2,...,a} where a is the maximum value of derivative to be specified at
the knots. The value j=a being assumed for some pair (i, j).
Now, let us consider the problem of finding the function

f(x) e C*[a,b], which satisfy the interpolatory conditions:

FOx)=yW for (LI €e ovioiriiiiieiiiii e, 2.1)
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Chapter Two Interpolation by G-spline Functions

where yi(j) are prescribed reals for each (i,j) e, and define an "incidence
matrix" E by:
E= [au],l = 1,2,,1(,_] = 0,1,2,...,(1 .
Where a;;take the value zero or one and defined by:
1 if (i) ee
aj = : ..
0 if (i,))ee
and a;; being in the ith row and jth column and it is required that each row of

E, also its last column, should contain at least elements equals to 1. The

matrix E will likewise describe the set of equations (2.1) if we define the set e
by:
e= {(i)lag=1}.

Of importance is the integer n :Zaij which is the number of interpolatory
L]

conditions required to constitute the system (2.1).

Remark (2.1.1), [Schoenberg, 1968]:
The interpolation problem (2.1) was first studied by G.D.Birkhoff in

1906 and a special case is obtained if it is assumed that E has the additional

property:
If0<j<j and ajj=1 then ay =1.

Then it can be seen that each knot x;of the system (2.1) prescribe the value
f(x;)and also a certain number of consecutive derivatives f () (x;) for
(1=1,2,...,k) and (j=1,2,...,0;_;) then eq.(2.1) may be called as an Hermite
interpolation problem [Schoenberg 1965] .

Therefore it is appropriate to refer to eq.(2.1) as a Hermite-Birkhoff
interpolation problem which shall be abbreviated as HB-problem.
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Definition (2.1.2), [Schoenberg, 1968]:
The HB-problem (2.1) is said to be normal provided that eq.(2.1) has a

unique solution f(x)e[],_; -

A necessary condition for eq.(2.1) to be normal is satisfaction of the
inequality:

11 I o AP (2.2)
While if n<a then n—1<a, which implies that:

F ) -y

Which is a contradiction, since f(a)(x)e]_[n_land satisfy eq.(2.1) that

involves f (a)(x). For this result it can be concluded that every Hermite

system is normal.

Assuming eq.(2.1) to be normal and let for each (i,j) €e there exist

L;;(x) which is the unique element of [],,_; which is called (the fundamental

functions) such that:

(s) B 1 if (r,s)=(,))
Lij (X;) _{O ey e (2.3)

By this term of the fundamental function it can be expresse the unique

solution of eq.(2.1) in [[,,_; by:

fx)= YyPLix) (2.4)
(i.j)ee

Moreover, if f(x) e C*then by the interpolatory condition:

fx)= DEPVEDLEE) +RE i, (2.5)
(i,j)ee

Where Rf is the remainder that is equal to zero if f(x)e]],_;which means

that eq.(2.5) is exact. Equation (2.5) is said to be HB-interpolation formula.
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2.2 ON NORMAL SYSTEM OF HB-PROBLEM AND

RELATED CONSEPTS:
The condition that the HB-problem (2.1) to be normal may be

equivalently expressed by the following:

If

P(x)ell,

PO(x)=0 if (i,j)ee
Then

P(x) =0

Definition (2.2.1), [Schoenberqg, 1968]:

Let m be a natural number, then the HB-problem is said to be m-poised

provided that:
p(x)e |1 il e (2.6)
PIX)=0 i (L) EC  weeeeeeeeeeeeeee e 2.7)
Then
P(X) =0 (2.8)

The next lemma gives some important properties of HB-problem which
is given in [Schoenberg 1968] without proof and for details of the proof see
[Osama, 2006].

Lemma (2.2.2):

(i)  The HB-problem (2.1) is normal if and only if it is n-poised.
(i1)  If(2.1) is m-poised then the inequality m < n must be hold.

(i) If(2.1) is m-poised and 1< m’ < m then it is also m’-poised.
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Proof (i):
If the HB-problem is normal, then to prove that it is n-poised. By the

definition of normal (2.1.2), HB-problem has a unique solution such that
f(x)elln-1-
Hence f(x)is a solution of the HB-problem then it is satisfying the
interpolatary conditions:
fOx)=yY for (,j)ee.
If £ (j)(xi) =0, then from the uniqueness of the solution of the HB-problem
(2.1), it implies that f(x) =0, which means that the HB-problem is n-poised.
Conversely, if the HB-problem is n-poised, then f(x)e[],_
andf()(x;) =0, and hence f(x) =0.
To prove that the HB-problem (2.1) is normal, we must prove that the
solution is unique.

Suppose that there exist two solutions for the HB-problem which is

f(x)e[[,-jandg(x) €[] ,_1, that satisfy the interpolatary conditions.
Define a function H(x) =f(x)-g(x) then:

H(x)ell,; and HY(x,)=0
Since the HB-problem is n-poised, then H(x) =0. Therefore, f(x) =g(x).
Therefore, the HB-problem (2.1) is normal.

Proof (ii):
Suppose that the HB-problem (2.1) is m-poised and for contrary let
m>n.

Since the problem is m-poised, hence:
If f(x) €] and £9(x;)=0,(i,j) e e then f(x) =0.
Since f(x)e]],,_;then f(x) depends on m parameters but we have only n

equations, since m>n.
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Then the number of unknown parameters is grater than the number of
equations. Therefore, we have an infinite number of solutions, which is a
contradiction.

Therefore, m <n must hold.

Proof (iii):
Letf(x)€[]-;, and since 1<m’'<m, then from the fact that

[Tm-1€Tm-1-Hencef(x) €[]y

Since the problem (2.1) is m- poised, then:
f(x)ell,_;and f(j)(xi) =0and hence f(x) =0; 1e., f(x)e[]-; and
£0)(x;)=0 then f(x) =0.

Therefore, the HB-problem is m’-poised.

Remark (2.2.3):

A non-normal system (2.1) may be m-poised for some value m<n.

As an example, consider the HB-problem:

: , 1
f(x))=yf'(x2) =y5.f(x3)=y3 ’X2:E(X1+X3) ............ (2.9)
with
e={(1, 0), (2, 1), (3, 0)}.
1 0
E=|0 1].
1 0

eq.(2.9) is not 3-poised, consider:
p(x)=(x —x)(x=x3)#0
L. px)ell<lls

2. pW(x;,)=0,V(,j) e, then
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PO (x))=(x; = x;)(x] = x5) =0
Also:
pP(x)=(x- X3)+ (X —Xp)

=2X —X| — X3

Therefore:

plxy) =287 o
and

p®(x3)=0

Hence, from the definition of m-poised problems (2.2.1) the HB-problem
(2.9) is 2-poised.

Consequently, the system is not n-poised, i.e., not normal.

Remark (2.2.4):

The condition (2.1) may be m-poised can be expressed as follows:

Let

v

m-—1 X
p(X) = Z ay o
v=0 V!

Then eq.(2.7) becomes:

. m X
p(J)(xi): > a,———=0 for (ij)ee

such that
xV7I 1 if v-j=0
(v—)! [0 if v—j<0

Therefore, (2.1) is m-poised if and only if the matrix with entries:
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X-V_j

L hasrank m ... (2.10)

(v-J)

where v-j=0, 1, 2... m-1 is the column of the matrix and (i, j) € ¢ corresponds

a row of the matrix.

2.3 THE G-SPLINE INTERPOLATION:

In this section, we shall assume that the natural number m satisfies the
condition that; the HB-problem (2.1) is m-poised in definition (2.2.1).

Now, by the definition of the matrix E, where:
E=[a;],(i,)) ee
Let us add (m — o —1) columns of zero elements to the matrix E where

o 1s the highest derivative that appears in the interpolatory problem, and let a

new incidence matrix be:
Let E* =[aj] , (i=12,...k)and(j=0,l,..,m-1)
where

% aij lf jSOL
a:: =
Yolo if j=a+lo+2,.,m-—1

If m=a+1, then E* =E.

Definition (2.3.1), [Schoenberqg, 1968]:

A function S(x) is called a natural G-spline for the knots x;,X,,..., X

and the matrix E*with order m provided that S(x) satisfy the following

conditions:
(HSx)ellrpy-; in (x,Xi41),(1=12,...,k=1).
(IDS(x)ell,—; in (—0,xq)and in(xy ,+0).

(1) S(x) € C™ ! (—00,00) .
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(IV) If a}; =0 then S®™ 7V (x) is continuous atx = x;, i.e,

SCm=ID(x. —0)=8Cm7ID(x. 4 0).
Now, the set of all natural G-spline interpolation functions is denoted by:

Cin =BT X1, X 0o Xk) et (2.11)
where {,,1s a non empty set shown by the inclusion relation:

1_[m—l - Cm'
and if S(x) e[l then S(x) satisfies all conditions from (I) to (IV).

m-—1>

2.3.1 Special Case examples [Schoenberqg, 1968]:

1. The Lagrange problem:

Assume that o=0 and n=k and e={(1,0), 1=0,1,2,....k}, the
corresponding problem (2.1) being:

fx)=y.f(x2)=y2,...f(Xp) =y
Let us inspect the corresponding class £, of G-spline by:

oo<m<n suchthat 0 <m<n.

By definition of the matrix E and the matrix E* it can be seen that

aikj =0 for each (j=1, 2,..., m-1) and (i=1,2,...,n=k) and by condition (IV) we
can conclude that S(zm_j_l)(x) 1s continuous at x =x; for (=1, 2, ..., m-1) or

equivalently that s(v) (x)1s continuous at x =x; for v=m, m+1, ...,2m-2.
This conclusion and condition (III) shows that:

S(x) € C2™2 (—o0,0).
2. The Hermite problem:

Assume that (2.1) is a HB- problem:

i / i~ i—l b
F(x;) = Yo £'(x1) = Y (oo E 4D (x) = y 147D (=1, 2,0, )
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Here o = max{o; —1} and choose any m such thatmaxo; <m<n, since
1 1

a;§=0 if j=a;,0;,,...m—1.
From condition (IV)it is clear that g(2m=j-1) (x) is continuous at x =x; if

(=a4,....m—=1) or equivalently, that. s (x)is continuous at
x=x;fv=m,.2m-oa; 1.
Combining this with condition (III), we conclude that:

S(x)eCHM™ % pear x = x; (121, 25 K)  veeeveeeeeee e (2.12)
Recognize in condition (I),(II) of definition (2.3.1) and (2.12) the

characteristic properties of the natural spline functions of degree 2m-1(m is

identical with the natural spline function of degree 2m-1) having x;
(1=1,2,..,k) as a multiple knot of multiplicity o; (or; <m).
In the next theorem, we establish the uniqueness of the natural spline

function.

Theorem (2.3.2), [Schoenberg, 1968]:
Let the HB-problem (2.1) be m-poised, m satisfies the inequality

o <m<n. Then (2.1) with the prescribed yi(j) has a unique solution:

S(X) € Cn (B 5 X1, X000 X ) eeeeeeiiiiee e (2.13)
Proof:

Problem (2.1) is equivalently a linear problem. Setting up all
polynomial components of S(x) with indeterminate coefficient. From the
condition (I) of definition (2.3.1) one can be obtain 2m(k-1) of unknowns, and
from the condition (II) of definition (2.3.1) when x €(—%,x;) we have m

unknowns also when x e(xy,0)we have m unknowns then the total of

m+2m(k-1) +m=2mk unknowns are obtained.
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Now, to count the number of equations:
From condition (III) of definition (2.3.1) one can obtain mk equations.

The number of equations resulting from condition (IV) is equal to the number
of vanishing elements of E”, since their total number is mk, while n = Zaij

is the number of non vanishing elements then (mk-n) equations can be
obtained.
Finally, (2.1) furnishes n-equations and obtain a total of equations is:
mk+ (mk-n) +n=2mk.
The numbers of equations are equal to the number of unknowns; it

suffices to establish the following:

If

S(x)eCy, and SY(x)=0for(L,j)€e  .evevvorreeviieaen, (2.14)

Then
S(x)=0forallreal X ... ..o (2.15)

Select a finite interval I= [ x(, X 4] such that xy <X, Xy <Xy
To show that eq.(2.14) implies that:
T=[S™ ()2 dx =0 oo (2.16)
I

First, suppose that:

X1 X2 Xk+1
I= [ ™ n*de+ [ ™) dx+..+ [($"™(x)*dx
X0 X1 Xk

and integrating by parts repeatedly for each of these integrals yields:

Xi+1
[ 8™ 0)s™ (x)dx =8 (x)s™ (x)

Xj

L gmeD) ()g(m=2) ()T
Xi Xi

! Xi+1 5 0
F [sC™ xS (x)dx

Xj

Xi+
Xj
Now, observe the following:
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1. Each of the very last integrals on the right hand side vanishes, because
S(x) € [1,,,_1 in each interval by conditions (I) and (II).
2. From the "finite parts" obtain that at each x;(i=1,2,...,k) the following

sum of terms:

m-—1 .
T
i=0

AY = jumpof SE™ D (x)sW(x), (=0, 1, 2,..., m-1),

at x=x;
Since S(x)e cm-l by condition (III), hence:
ALY =@M D (1 0)SD (x; +0) ~ ST D (x; —0)SY (% - 0)
=SV xSV (x; +0) =S (x; )
This expression is vanishes for the following reasons:
(i) Ifaj=1then SY(x;)=0 by (2.14) because(i, j) .
(1) If a;} =0 then by condition (IV) of definition (2.3.1)
§(2m=i-1) (x) is continous at x =x; then the limit in right is
equal to the limit in left, this implies to A(ij) =0.

3. The finite parts at x and X, ,; also vanish in view of condition (II).

Thus eq.(2.16) is established.
Hence, eq.(2.16) shows that:

SM(x)=0 for all real x.

Therefore,
S(X) €T o] e (2.17)

However, by assumption, problem (2.1) is m-poised. Now eq.(2.16) and

the set of equations (2.14) directly imply the desired conclusion (2.15). The
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existence and uniqueness of G-spline solution S(x) e, of m-poised HB-

problem (2.1) is established.

Corollary (2.3.3), [Schoenberg, 1968]:

If the HB-problem (2.1) is normal or n-poised we may choose m=n,

when

%k
Cm(E ;X17X29--'3Xk) :Hn_l.

where n, m are integer.

2.3.2 The G-Spline Interpolation Formula [Schoenberg, 1968]:

It is convenient to summarize our results as follows:

Under the assumptions of theorem (2.3.2) define now within €, the G-
spline L;;(x) satisfying the relation:
0 if (r,8) # (1, ])
L(1]S) (Xr) = . . .
I if (r,8)=(1,))

where (i,j) e.

If f(x) e C%, then f(x) may be written as:
f(x)= D ED L) +RE o (2.18)
(i,j)ee
Where the right hand sum represents the G-spline interpolating of f(x) at the
data of HB-problem (2.1) and Rf is the remainder. Equation (2.1) refers to the
G-spline interpolation formula and this formula is exact for all elements of

C, and in particular for the elements of [],,_;.

The following theorem illustrate the optimal property of G-spline

interpolation functions which may be called the minimum norm property:
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Chapter Two Interpolation by G-spline Functions

Theorem (2.3.4), [Schoenberg, 1968]:

Let I=[x(,xy,] such that x;<x; <..<xy,; and let f(x)eC™(I)

with ™ D(x) is absolutely continuous and f™(x)eL?(I). If the HB-

problem (2.1) is m-poised, and o <m <n, and let S(x) is the unique G-spline

function satisfying the equations:
SV =tV (x;) LG.jee
Then

JE™ )% dx > [(8™ (x)*dx
1 1

Proof:
Since f(x)eC™(I) with f™D(x) is absolutely continuous and
£f(™ e L2(1) then:

JE™ ) =™ (x))*dx = [(£™™ (x))?dx - 2[ £ ™ ()™ (x)dx +
T I I

J8™ ()% dx
I

= [(£™ (x))? dx = 2[ (£ (x) = S™ (x))S™ (x)dx -
1 1

JE™ )2 dx o (2.19)
|
To prove that:
=™ () -S™ES™(x)dx =0 (2.20)
I
First, let:
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X1 X2
I= [ (™ (x) = S™x)S™ (x)dx + (£ (x) - S™ (x)8"™ (x)dx

X0 X]
Xk+1
ot JE™ ) =S (x)8M™ (x)dx.
Xk

and integrate by parts repeatedly each of these integrals according to the
following scheme for each (i=0, 1,..., k):

Xi+1

[ S G)E™ (x) - 8™ (x))dx =™ ()£ (x) ™D -
SEHD () (P2 (x) S D) 4L 2SI D () -S|
Xi+l1

[8C™ (x)(F(x) - S(x))dx.

The last integrals on the right hand side of the last formula are vanishes

since S(x)ell,,_; in each interval by conditions (I) and (II) of definition

2.3.1).

From the "finite parts" obtain at eachx;, (i=1, 2,..., k), a sum of terms:
m-—1 .
S A,
i=0
By the same prove of (2) in theorem (2.3.2) implies that:
A =0
1

Hence, the equation (2.20) is established and therefore eq.(2.19)

becomes:

[ ) =8™ (x))*dx = [ (£™ (x))*dx - [(S"™ (x))* dx..
1 I 1

Then
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JE™ )7 dx = [(S™ (x))*dx + [(£™™ (x) - 8™ (x))” dx..
I 1 I

and since j (™ (x) - ™ (x))2dx > 0, therefore:
I

™ ) dx > (8™ (x))* dx.
| I

2.4 THE BEST APPROXIMATION PROBLEM OF LINEAR
FUNCTIONALS WITH THE SENSE OF G-SPLINE
INTERPOLATION FORMULA, [SCHOENBERG, 1968]:

Let I=[a,b] be a finite interval containing the real knot points
X| <X, <...<xy and let us consider the linear functional, £f:C%[a,b] >R of
the form:
ST by £
L= [a;f PV (x)dx+ 3> bif V(x;) e (2221)
i=0a j=0i=1
Where a;(x) Vj are piecewise continuous functions in I, x;; €I and bj;are

constants.

We can approximate the functional (2.21) using the formula :

Lf= YBf V) +RE i, (2.22)
(i,))ee

Therefore, in order to find the approximation £f which is best in some sense,
we propose to determine the reals f3;;.
Now, two procedures may be used to find B;; which are associated with

the name of Newton and Cotes procedure and Sard procedure, which are:
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1. Newton-cotes:

There are n= Za (i.e., there is n parametersf;;), therefore require
that the formula (2.22) should be exact (i.e. Rf=0) if f e[],_;. If Bj; are the

constants determined by this condition, then eq.(2.22) represents the best
approximation of Lf.

In order to derive this approximation, substitute:

V

F(X) =, (v=0, 1oy 0=1) e, (2.23)

into eq.(2.22) (with Rf=0) and obtain for the determination of the [3;'s, the

following system of n-equations in n unknowns:
V=i
Z BU ,(v=0,1,...,n-1) (2.24)
i (ijee -

The linear system related to equation (2.24) is non-singular if and only
if the HB-problem (2.1) is normal or n-poised.
Recall that the HB-interpolation formula is given by:

fx)= Y f9x)Li(x) iffell, .

(i,j)ee

and take L to the both sides of the last equation, yields:

rf= Y P (x) LL;(x) iffell, ;.

(i,j)ee

Then comparing it with eq.(2.22), one have:

Biy =LLi(X), V(L)) €€ wovvniiiiiiiiii (2.25)

2. Sard's procedure:
Whether the HB-problem (2.1) is n-poised or not, assume that m
satisfying:
Q<M KT i e e (2.26)
such that:
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The HB-problem (2.1) is m-poised  ........ccovvviiiiiiiiiininnnn, (2.27)
Now, require the approximation (2.22) to be exact if f(x)el[l,_;, this
requirement is equivalent to the system of equations:
V=]
Z BU ,(v=0,1,2,....m-1) ... (2.28)

(iee ( )
and eq.(2.10) shows that the matrix related to this system has rank m.

Assuming eq.(2.28) to hold, we still have n-m free parameters among

the BU .

However, Rf defined by eq.(2.22) is also a linear functional of the form
(2.21) with the property that:
Rf=0if fell,_;-

assuming that f(x) e C™[a,b] then by Peano's theorem, write

Rf = [K()f ™ (x)dx .

where K(x) is a kernel which depends on n-m free parameters among the f;;

but not on f(x). These n-m parameters are now determined by the requirement

that:

min [(KO)) dx (2.29)

The B, thereby completely determined, are substituted into eq.(2.22)

thereby producing the best approximation to Lf of order m in the sense of

Sard (1963).

The main result of part (2) is in the following theorem:

Theorem (2.4.1), [Schoenberg, 1968]:
If the assumptions (2.26) and (2.27) hold, then Sard's best

approximation (2.22) to Lf of order m is obtained by operating with £ on

38



Chapter Two Interpolation by G-spline Functions

both sides of the G-spline interpolation formula (2.18) of order m. In other

words, the coefficients [3;;obtained as solution of the minimum problem

(2.29) with m side conditions in eq.(2.28) are:
Bij = LLIJ (X) ....................................................... (230)

where the L;;(x) are the fundamental function of eq.(2.13).

Proof:

We wish to compare the functional:

REELE-D Bt W (x) (2.31)
€

where B;; are defined by eq. (2.30) with the functional:

RE=Lf - Bif W (x)) o (2.32)
€

whose coefficients Eij are required only to satisfy the m equations (2.28).

Evidently:
Rf=0 and Rf=0 iffelly | ooorvvviooereeeneieiinn, (2.33)
By Peano's theorem, we have the representations:
Rf = [K)f™(x)dx , Rf = [KEF™(x)dx ..o (2.34)
I I
where the formulas:
_ m-1 N N _ ym-1
K =R, "0 Roo=R, TN (239
(m—-1)! (m—-1)!

Define these kernels for all real x.

Let us consider their deference:
9(x) =K(x) - K(x).
Using eqs.(2.35), (2.31) and (2.32) then 9(X) may be written as :

39



Chapter Two Interpolation by G-spline Functions

o o
Yoo (m-1! |

~ (t— T‘l
B00=(R Ry =Y

e (2.36)

t=xi
where

Cij = Bl_] - Elj ....................................................... (237)
Now, by eq.(2.35), and in view of (2.33) K(x) and K(x) are vanish

outside of I=[a,b], for x>b because there (t—x)T_1 =0, (tel). By the
definition of the truncated power functions, and for x<a because then
(t—X)T_lis in a<t<b a polynomial in t of degree m-1, K(x) and K(x)
need not to be vanish in [a,x;] orin [ x,b].

However, their difference S(x) vanishe also in these two intervals.
Evidently, if x €[x;,b] from eq.(2.36) for 9(x)and becomes equally clear
for x €[a,xq].

Instead of eq.(2.35) if the equivalent expressions are used:

Copmp 0P oL my (= OFT
KOO =(CD"R= 2 R0 =(D"RE
Thus
9(x) =0 every where out side [X[,X; ]  oooiiiiiiiiiiiii (2.38)

Now, consider a function S(x) satisfying:
SM(X) = K(X) = K(X)  +eeeeeeeeeeee e (2.39)
It is clear from eq.(2.36) and (2.38) that S(x) satisfies the conditions (I) and
(II) in definition (2.3.1) of the class £, of G-spline.
Evidently, condition (III), that is S(x) € Cm_l(—oo, ), is also satisfied.
Finally, let us verify condition (IV) and thus conclude that:
S(x)el,y,-
For this purpose, look at those terms of the sum of eq.(2.36) which

correspond to the same node x; (1 fixed), they are:
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It is only discontinous derivatives are Dm_j_l, where j 1s such that (i,j) €e.
However,

g(2m=j-1) (x) = g(m=j=1) (x).

and therefore it is continuous atx; if (i,]) € e or afj =0.

This is precisely condition (IV) and eq.(2.39) is established.
On the other hand, we know that the G-spline interpolation formula

(2.18) 1s exact for allf(x) € {,, , but also the approximation formula:

Lf=YBif V(x;) +Rf.
(§

obtained from eq.(2.18) by operating on both sides with £, must also be exact
if f(x)el,,.
Therefore, if substituting our G-spline f(x) =S(x) into the identity:

f)= Y BtV (xp)+ [KEF™ (x)dx.
(i.j)ee 1

The remainder term must vanish because f™(x)=S™(x)and by

eq.(2.39) therefore we conclude that:
[KE)K (x) - K(x))dx =0.
I

and a direct consequence of this equation is the following equation:

JR)?dx = [(K(x))? dx + [(K(x) = K(x)*dX oo, (2.41)
I | |

and from this it can be obtain the desired inequality:

JRE)?dx > [(KE) dx o (2.42)
1 I
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Unless, by eq.(2.41), 3(x)vanishes identically, when c;; =0 and by

eq.(2.37) that the two approximations having the coefficients Eij and B

respectively, are identical.

The method of the proof just given was first used by Greville in
establishing theorem (2.4.1) for the simplest case of Lagrange data [Greville
1967].

As in the case of Lagrange data [Schoenberg 1964] we obtain now for

the interpolation functional Lf =f(x) the following corollary where the

details of the proof is given in [Osama 2006]:

Corollary (2.4.2), [Schoenberg, 1968]:
The g-spline interpolation formula (2.18) is also the best interpolation

of order m in the sense of Sard of the HB-problem (2.1).

2.5 THE CONSTRUCTION OF THE G-SPLINE
INTERPOLATION FUNCTIONS, [SCHOENBERG, 1968]:

The most difficulty in the study of G-spline function is the constructing
of G-spline itself, because the literatures give the results directly, therefore in
this section, we will illustrate in details the method of construction:

The construction in more efficient way leading to a system of only m+n
equations (instead of 2mk) is as follows:

From conditions (I), (I) and (III) of definition (2.3.1) it is clear that a

G-spline function S(x) must take the form:

k m-1 2m—j-1
_ 3 (x —xj)%
S(x) =Py, (x)+ E J;) Ci Gmojopr T (2.43)
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where Py,_; €[l,_jand cjjare constants.

Conversely, any function in eq.(2.43) satisfies these conditions with the
exception of the requirement that:

S(x)ell] X <X e e (2.44)

From eq.(2.43) it can see that §(2m=J=D) (x) 1s continuous at x = x;1f and only

if ¢;; =0, while condition IV in definition (2.3.1) requires that this is the case

if and only if a}‘} =0. Leaving out all such terms and obtains:

S(x) =Py 1 (x)+ . ¢ e, (2.45)
(i ee 2m-j-1)!

as the appropriate expression. To insure also eq.(2.44) expand all binomials

m _m+l 2m-1

and equating to zero the coefficients of x ,x  ,...,X , we obtain the
equations:
Cij 2m—j-1 -
> é( J j(—xi)V‘J =0, (v=0,1,2,...,m-1)
(i,j)ee(zm_J_l)! 2m-v-1
j<v
(2.46)

If we consider also the n equations of the m-poised HB-problem:

SUx)=yW (L)) ee o (2.47)

Therefore, from eqgs.(2.46) and (2.47) we get m+n equations which if
solved will produce the unique interpolating G-spline function S(x). Writing

the solution so as to exhibit the yi(j) , to get:

Sx)= Y yPLi(x), G ee
(i.j)ee
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2.6 ILLUSTRATIVE EXAMPLE:

As an illustration to the discussion above, consider the following HB-

problem:
£(0)=0,,f'(0)=06;,f(1)=0;,f'(1)=067,f(2)=0,,f'(2)=05 ..(2.48)
and to find the G-spline function which interpolate the problem (2.48). In this

problem we have o =1,n =6and it is clear that it is 4-poised.

The incidence matrix is given by:

1 1
E=[1 1
1 1

oS O O

And the HB-set e will take the form:
e=1(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.

The G-spline interpolation function will be:

o \2m—j-1
S;(x)=Py(x)+ 2 cj ();2n)1(1—)1+'—1)!

(i,j)ee

1 1 1
=a +aX + 32X2 + a3x3 + %Cooxz + aCOlXi + %CIO(X — I)Z_

1 6 |1 7 1 6
+a¢11(x -1y Jrﬁczo(X -2), +a¢21(s -2);.

Now, to find the fundamental G-spline functions L (x) ,L¢;(X),
Lip(x),L;;(x),Lyp(x)andL,(x), we must solve the following linear system
of algebraic equations obtained from eqs.(2.46) and (2.47):

C C C
00 , C10 20 _
7 7 7

C C C 2 C
or _%10  ‘u_=. . C2i

66 6 6 620 6

Co_CSnn, 2. 2. _
s 5 520 g ca=0
_C10+C11— 8 C20+CA:O.
431 4101 4D 31

44



Chapter Two Interpolation by G-spline Functions

a0=60.
31:92).
€00 _ Co1
a0+a1+a2+a3+7+?!:e
a1+2a2+3a3+c6l'0+ci'1:ei_
128 64 C1o0 C11
ao+231+432+833+TCOO+EC01+7+E262-
6 25 1 1 ,
ao +4a2 +1233 +ECOO +§COI +aclo +§C11 :92_
Hence, we get:
a0=90.
a1=9{).
3. 011, 7. 5. 7. 1
a,=—"0p——0p+-0; —=0] +-0, ——05.

8 4 2 2 8 4

aj I% 0 +§6'0 —3—561 +99’1 —g% +11—5 ’2

12 13 6 104 312

20180, + 126005 - 2220 (1);‘0 0, +25200; - 2220, —6?30 0.

Coo =

7350 2520 6930 2100
Col =——— 0y —4200p + ——0; —8400] + ——06, ————05.
01 13 0 0 13 1 1 13 2 13 2

7560 . 10080 . 5040 . 2520
Crg = ——222 0, + 0, — 0, + 2270,
10 13 %0 13 b 13 273 2

ci1 =—16800, — 16800, —33600] + 25200, — 8400';.

3570 2520 9450 3360
Con = =220 — 4200, — 22220, — 8400 + 29, — 22t
20 13 0 0~ 3 1 "3 720 13 72
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Therefore, upon substituting cgg,c01,€105C11,€20-C21,2¢,31,aoand a3
into S,4(x) and writing S(x)in terms of 0,0;,0,,01,6,, 65 gives:

S(x) =0¢Lgo(x) + 0L (x) +6;L10(x) + O1L11(x) + 0,L5¢(x) + 05L,;(x)

where
33 , 281 20160 7350 7560
Lop()=1-""x+ 2% + e SX§ - (x—D)] -
T 6.552%10 9.36x10 6.552x10
1680 12600 3570
o & x-1)§ -————(x -] —————=(x-2)¢
6.552x10 9.36x10 :
(115 25 5 1260 7 420 6_1680 B _1260 B
Loi(x)=x 4X 12X + ) Xy~ 6! (x )+ (x 2)+
420
—— (& 2)9.

7 35 5040 2520 10080
Llo(x):—x2 — 223 ——4XZL +—3xi t——— —1)1 -
2 13 6.552x10 9.36x10 6.552x10
5040 2520
— x-2)] ——3(X—2)$
6.552x10 9.36x10 .
5 2, 19 3 2520 7 840 5 3360 2520
Lij(x)= 2X 6 — X+ 7 X4 6! Xy _( )+
840
—( —2)+
7 133 22050 6930 5040
LZO(X)I—XZ— x> — 4er+ 3X_?_——4 X—I)Z_+
8 104 6.552x10 9.36x10 6.552x10
2520 27090 9450
S =Dl (x - 2)L
6.552x10 9.36x10
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LZI(X):_1X2+£X3+ 6930 7 2100 s 2520

X, — X (x-1)7 -
47 3120 6552%10% T 936x10° " 6.552x10% "

840
6!

9450 3360
2)] -2 (x-2)°.

x-D§ " (x~2)] ;
6.552x10 9.36x10

The approximate G-spline function for the function f(x) =e* +3x2,

with knot points x, =0, x; =1, X, =2; is presented in figure (2.1).

—e— Approximate G-spline function —=— Approximate Exact function

25

20

15

S(x)

10

Figure (2.1) Approximate G-spline function to the f(x) =e* + 3x2.
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Chapter Three

Solution of Ordinary Differential
Equation Using Linear Multistep
Method Based on G-Spline
Interpolation

An ordinary differential equation of order n relates an unknown

function y(x) to its derivatives y¢y@...,y(”). The importance of differential

eguations in sciences stems from the fact that it is often relatively easy to
reason a bout how an unknown function charges relative to its current value,
therefore the central difference of this chapter is to approximate the solution

of ordinary differential equations based on G-spline interpolation functions.

3.1 CONSTRUCTION OF LINEAR MULTISTEP METHOD
USING G-SPLINE FUNCTION [BYRNE, 1972]:

Consider the construction of an mth order linear multistep formula of

the general type:

Vi =Yg+ abh™ 006 y) (3.2)
@i,ple

Where y; isan approximationto y(x;) ,0£q<k and [X,,Xp+]1 [ b].
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To this objective, we pick k and p along with the m-poised HB-problem
corresponding to the n values that is described in chapter two.
The next result is given in [Byren, 1972] without proof, here the details

of the proof is given for completeness.

Proposition (3.1.1):

Consider the initial value problem:

y=f(x,y), xI[ab]

y(Xo) =Yo-
Then the m-th order linear multistep formula of eq.(3.2) is given by eq.(3.1).
Proof:

The technique that will be used involves of writing y(Xy ), which is the
exact solution of eq.(3.2) evaluated at x,, =a+kh, as:

XK
y(Xi) - Y(Xg) = g (x.y(x))dx ,0E£q<k (3.3
Xq
and then replacing f by its G-spline interpolation:

Xk

y(x) - y(xq) = O & Lij(0f P (x;,y;) dx.
xq(i,j)T e

Xk _
= A& ier 0,y dx .
(i.D1 exq
and then make change of variables, yields:
k .
Yi-Yq= & OlyOf Wi,y )ds e (3.4)
(i)l eq
Where x=x,, +sh, 0£s£k, histhe step size, n=0,1,...
Now, from theorem (2.4.1) one can write eg.(3.4) by:

Vi ¥q= ahbf Dixiy) (3.5)
(i,j)i e

49



Chapter Three Solution of Ordinary Differential Equation using
Linear Multistep Method based on G-spline

k
where b” = d_” (S)dS .
q

and after differentiating j-times the function f by the chain rule, then:

Yk- Yq= a hj+lbijf(j)(xi Yi) -
(i) e

Now, let L . ; denote the class of linear functionals F of the form:

mb
Fi=a 00y dm(x) s (3.6)

i=0a

where ;is of bounded variation on I=[a,b].

If:
@(n+k . " . l:J
Rf:g C\) f(x,y(x))dx - aAhJ lbijf (J)(Xn+i,Y(Xn+i))H i (3.7)
&Xn+q @i,ple 5

then Rl L,_;. By Peao's kernel theorem construction, Rf=0 for f1 []y.1,

and one can get:

Xn+k
Rf= M y0)KX)dx e, (3.8)
Xn
with
@(n+k ) m-1 L m j-ll:J
K(x) = g O (z X)+| dz é hj+1bIJ (Xn+i X)+ ' H
éer_q = 1) (|,J)T e (m' J' 1) 0
making change of variables, then K will be:
X, qm-1 . i gm-j-1u
K(X)th(:?‘(z S+| dZ_ a b|J(IS)—+1|,
& (m- 1! Q.0 e (m-j- )H

and
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KOOZhTKS) oo, (3.9)
where sl [0,k], x=a+(n+s)h and K is the Peano kernel and,

k m-1 - m- j-1
\(Z_S+ o (I_S)+ :
k(9 =0y —+—dz- b~
® g (m- 1) ‘ (i%e Y m-j- !

The next proposition gives the error bounds of the LMM with G-spline

functions, which appears in [Byrne, 1972] without proof.

Proposition (3.1.2):

The local truncation error by using the LMM in eq.(3.1) is bounded

and:

™ 2]

Proof:
From eq.(3.8):

™ (Y DK (X)x

Xn

|Rf[[=

Xn+1
£ 0

Xn

£ (m) (x,y(x))K(x)HdX .

Xn+1
£ 0

Xn

£(M)(x, y(x))H KOOAX. oo e (3.10)

Now, putting eg.(3.9) in eq.(3.10),yields:
(m) Xn+1

— m N\
Re|=f™] &

Xn

hmk(s)de .

= Hf (m)H Hhmuxnc‘]lk(s)”dx .

Xn
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Xn+1
=h"f ™) k()] gsix.

Xn

=n"jf ] Ik

— hm+1

(] k().

£ hm+;Hf O] K@ e (3.11)

Since if 0O<h<1 then h" <h™ if n>m, and hence:

1
[Rijeh" 2[r ™ k().

Remark (3.1.3):
For simplicity and computational purpose, eg.(3.1) may be shifted n

times to give the following more general formula:

Yn+k = ¥Yn+q = é, hj+lbijf () (Xn+isYn+i) - e (3213)
il e
or in more reliable form as;

p k . :
Yn+k -~ Ynig=ad a hJ-'-lbijf (J)(Xn+i ' Yn+i) -
i=01=0

3.2 EXPLICIT AND IMPLICIT FORMULAS,
[LAMBERT, 1973]:

In this section, it was common in practice to write the right-hand side of
a certain linear multistep method in terms of a power series in a difference

operator. A typical exampleis:

52



Chapter Three Solution of Ordinary Differential Equation using
Linear Multistep Method based on G-spline

1 1 1

Yrs1- Yn =h(l- EN - ENZ - a|§|3 S T (3.14)

where Nf ., =f,,1 - f, and truncating the series after two terms, gives:

1
Yn+1- Yn =Eh(fn+l +f,).

which is the Trapezoidal rule.

While, truncated after three terms, gives:

1
Yn+1- Yn =Eh(5fn+l +8f, - f.1).

which is amethod that is equivalent to Adams-M oulton method.

One reason for expressing a numerical method in a form such as
eg.(3.14) lay in the techniqgue, common in desk computation, of including
higher difference of f if they became significantly large at some stage of the
calculation. This is equivalent to exchanging the linear multistep method for
one step with higher step number.

The existence of formula like eg.(3.14) has resulted in "family”" names
being given to class of linear multistep methods, of different step number,

which share a common form for the first characteristic polynomial r (z) .

Thus methods for which r (z) =z- 2% are called Adams method.
They have the property that al the spurious roots of r are located at the
origin; such methods are thus zero-stable.

Adams methods which are explicit are called Adams-Bashforth
methods, while these which are implicit are called Adam-Moulton methods.
Explicit method for which r (z) =z - zX*? are called Nystrom methods, and
implicit methods with the same form for r are called the generalized Miline-
Simpson methods; both of these families are clearly zero-stable, since they
have one spurious root at -1 and the rest at the origin.

Clearly there exist many linear multistep methods which do not belong

to any of the families named above. We now specify a selection of linear
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multistep methods by quoting coefficients a;,bjwhere j=0,1,2,..., k for

k=1,2,3,4 giving explicit and implicit methods for each step number.
In each case, we retain just enough parameters ab,c,... (an arbitrary
real number) to enable us to have complete control over the values taken by

the spurious roots of r(z), these parameters must be chosen so that the
spurious roots all lie in zero-stable configuration, and it is remarkable that all
of the methods quoted are consistent, so that the principal root of r(z)is

aways 1.
The methods have the highest order that can be attained whilst retaining

the given number of free parameters;, the order pand the error constant
Cp+1are quoted in each case, and next we will consider examples for each
case:

Explicit methods:

for k=1, we have:

b0=11 al=1' ao:-l'

1
p::L Cp+l=5'

for k=2, we have:

1 1
by ==(3-a), byg=-=(1+a),
1 2( ), bg 2( )
a»=1 a;=-1-a ap=a

1
p=2; Cp+l=§(5+a)-
and there exist no value for a which will causes the order to exceed 2 and the

method to be zero-stable.
k=3, then:
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1 1 1
b, =—(23- 5a- b), b;==(-4- 2a+2b), bg=—(B+a+5b
2 12( ), by 3( ), bo 12( )
az=1l ap,=-1-a a;=a+h, apg=-b

1
=3 Crii=—(9+a+b
p p+1 24( )

and there is no value for a and b which cause the order to exceed and the
method is zero-stable.
for k=4, then:

1 1
b3=—(55-9- b-c), b,=—(-59- 19a+13b + 5c),
3704 ), b= )
1 1
b, =—(37+5a+13b- 19c), bg=—(-9- a- b- 90c),
1 24( ), bo 24( )
ag=laz=(-1- a),a,=a+b,a;=-b- c,ag=c,
1
=4, Cp41=——(251+19a+11b +19c).
Y p+1 720( )

and there is no value for a, b and ¢ which cases the order to exceed and the
method to be zero-stable.

I mplicit methods:

for k=1, then:
1 1
bl =_, bO =§’

for k=2, then:
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1 2 1
b,=—(5+a), b;=—=@1-a), bg=—(-1- 5a
2 12( ), by 3( ), bg 12( )
a,=1 a;=-1-a ag=a
if at -1Lthenp=3; Cp+1=—2—14(1+a).

. 1
if a=-1thenp=4;, C,.1=-—.
11 P p+1 90

if k=3, then we have:
ba=~ (9+a+bh), b,=—(19- 13a- 5b)
3724 ' 27 g !
1 1
b, =—(-5-13a+19b), by=—1A+a+9b
1 24( ), bo 24( )
az=1 a,=-1-a a;=a+b, apg=-b
1
=4; C,.1=-—((19+11a+19b).
p p+1 720( )

and there is no value for a and b which case the order to exceed 3 and the
method to be zero-stable.
for k=4, then:

by == (251+19a+11b+19¢), by=-— (323- 173a- 37b- 53¢),
720 360

by == (- 11- 19a+19b+11¢), by == (53+37a+173b- 323¢),
30 360

bg =~ (-19- 11a- 19b- 251c).
720

a,=1 az=-1-a aj,=at+b, a;=-b-c ag=c
if 27 +11a+11b+27c?* Othen,

1
=5 C =- — (27 +11a+11b + 270¢).
Y p+1 1440( )

if 27+11a+11b+ 27c=0then,

1
=6, C =- ——(74+10a- 10b - 74c).
p p+1 15120( )
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and there exist no values for a, b and ¢ which case the order to exceed 6 and
the method to be zero=stable.

Definition (3.2.1), [Lambert, 1973]:

The linear multistep method given by eq.(1.1) is said to be absolutely
stable if all the roots of:

n(r,h)=r (r)-hd(r)=0

Where =n(r,h) is the stability polynomial of the method defined by r and d,
h=ha,
satisfy |rg| <1, s=1,2,...k.

3.2.1 Comparison Between Explicit and |mplicit LMM's:

It is clear for the methods quoted that, for a given step number k, the
highest attainable order for zero-stable method is less in the case of an explicit
method than in the case of implicit one; but we have seen that there is no
serious difficultly in obtaining additional starting values and thus there is no
apparent reason why we should not prefer an explicit method of higher step
number. Implicit method, however, possess advantages over explicit methods
other than the higher order for a given step number.

As an illustration, compare between explicit Adams-Bashforth methods
and implicit Adams-Moulton methods for step number k=1, 2, 3, 4; in each
case, the method considerd has the highest attainable order, the coefficients
can be obtained from the general methods quoted by setting each of the
parameters a, b and ¢ to zero, the result of this comparison are shown in the

next table, where p is the order, C,,1 isthe error constant.
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Table (3.1)
Adams-Bash forth(explicit)
1 2 3
P 1 2 3
Con | L | 5] 3 [
2 2 8 720
6 3
a -2 -1 - 1| 10
Table (3.2)
Adams-Moulton (implicit)
1 2 3 4

P | 2| 3 | 4
1] 1] 19| 3

C I R I I
PR S | T o4l 720 | 160
90

a - -6 -3 - —
¥ 49

Where (a,0) is the interval of absolutely stability. If we compare explicit and
implicit methods of the same order, it is clear that the latter, besides having
error constant of smaller absolute value, possess a considerable advantage in
the size of the interval of absolute stability. Thus, for example, if we wish to
use a fourth-order Adams method, we have the choice between the explicit
four-step method and the implicit three-step; the latter has an interval of
absolute stability which is ten times greater than that of the former and,

: : : 1
moreover, its error constant is smaller by afactor of approximately 3

These considerations, which are typical of more general comparisons

between explicit and implicit methods, so for our implicit methods that
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explicit LMM are seldom used on their own; they do, however, play an

important ancillary role in predictor-corrector pairs.

3.2.2 Predictor-Corrector M ethods:

Suppose that we intend to use an implicit linear k-step method to solve
certain initial value problem. At each step one must solve for y. . the

difference equation:

k-1 k-1
Ynsk + @ 2 Yn+j = bif Xpak.Ynek) *hADB{fs]  wooveenns (3.15)
j=0 j=0

where yn+j,frej, 120, 1, 2, ..., k-1 are known. In generd, this equation is
non-linear and a unique solution y . exists and can be approached arbitrary

closely by the iteration:

k-1 k-1
YIS+ 8 A yne =hbif e V) +hA by e (3.16)
j=0 j=0

where s=0,1,2,... and y[r?lk is arbitrary.

Each step of the iteration (3.16) clearly involves an evauation of
f(xn+k,y[nslk), and we are concerned to keep to a minimum the number of

times the iteration (3.16) is applied particularly so when the evaluation of f at

given values of its arguments is time consuming, (such an evaluation may call

several subroutines). We would therefore like to make the initial guess y[nolk

as accurate as possible and this is done by using a separate explicit method to

estimate y .+, and taking this predicted value to be the initial guess y[o]

n+k -

The explicit method is called the predictor, and the implicit method in
eg.(3.15) is the corrector.

Now, proceeding in one of the two different ways, the first consists of

continuing the iteration (3.16) until the iterates have converges (in practice,

until some criterion is satisfied such as:
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ylord -y I<e,

where ¢ is a pre-assigned tolerance of order of the local round-off error, say, is

[s+]]
n+k

satisfied). Then regarding the value y so obtained as an acceptable

approximation to the exact solution y. ., of €q.(3.15). Since each iteration

corresponds to one application of the corrector, this mode of operation of the
predictor-corrector method is called correcting to convergence.
In this mode, one can not tell in advance how many iterations will be

necessary, that is, how many function evaluations will be required at each

[s+]]
n+k

step. On the other hand, the accepted value y being independent of the

initial  guess y[o] the local truncation error and the weak stability

n+k’
characteristics of the over all method are precisely those of corrector alone,
the properties of the predictor are of no importance.

In particular, h must be chosen so that h lies within the interval of
absolute or relative stability of the corrector; no harm will be done if this
value of h does not lie within a stability interval of the predictor (or even if
the predictor is not zero-stable).

Let P indicate an application of the predictor, C a single application of
the corrector, and E an evauation of f in terms of known value of its

arguments.

Suppose that one can compute y[r?lk from the predictor, and evaluate

£10] =f(xn+k,y[nolk), then apply the corrector once to get y[l] ; the

n+k n+k?

calculation so far is denoted by PEC.

A further evaluation of fMH =f(x,,,y8, ) followed by a second

n+k

application of the corrector yields y[an]rk, and the calculation is now denoted

by PECEC, or P(EC)?2.
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Applying the corrector m-times is similarly denoted by P(EC)™. Since

mis fixed, y[n"l]k IS accepted as the numerical solution at X4 - At this stage,

flm-1] _

) = (e Vi), and a

the last computed value we have for f, . is

further discussion is made to make, namely, whether or not to evaluate

fr[wT%( 1:(Xr\+k yn+k)
If this final evaluation is made then one can denote the mode by

P(EC)™E, and if not by P(EC)™. This choice clearly affects the next step of

the calculation, since both predicted and corrected values for y,4i+1 Will

depend on whether f,,, istakentobe fIT1 or fLT 1

n+k

Note that, for a given m, both P(EC)™E and P(EC) ™ modes apply the
corrector the same number of times; but the former calls for one more
function evaluation per-step than the latter.

Now, define the above mode precisely. It will turn out to be
advantageous if the predictor and the corrector are separately of the same
order, and this requirement may well make it necessary for the step number of
the predictor to be grater than that of the corrector (see, for example, table
(3.1) and table (3.2)).

Let the linear multistep method used as predictor by the characteristic

polynomials:

r (x) aax ak—l
j=0

. ks1, .
d ()= & bjx!
j=0

and that the used corrector by:
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K
r)=aapx ,ag=1

’EO ...................................... (3.18)
d(x) = 4 bjx!

=0

Then the modes P(EC) ™ E and P(EC) ™ described above are formally defined

asfollows for m=1,2,... :

P(EC)™E:

k-1
0+ Byl =n& bifln]

j=0 j=0
fﬁk =f(Xn+k: yn+k)
................ (3.19)
k-1
V5l s R a, Vi =hbyfid +h g b,f,&T} ,
j=0 j=0
Fink = (et Vi) -
where s=0,1,2,...,m-1.
P(EC)™
k-1
y[nOJ]rk ta ajy[nnl]J _ha b]fLTJ 1,
j=0 j=0
.. (3.20)
k-1
i + 8 2l =, £, +h by Y
j=0 j=0

where s=0,1,2,...,m-1.

62



Chapter Three Solution of Ordinary Differential Equation using
Linear Multistep Method based on G-spline

Remark (3.2.3), [Lambert, 1973]:

Note that as m® ¥ , the results of computing with either of the above

modes will tend to those given by the mode of correcting to convergence. In

practice, it is usual to use a mode for which mis grater than 2.

3.3 ILLUSTRATIVE EXAMPLES:

In this section, some illustrative examples are considerd to show the
applicability of the discussed numerical methods and to compare between
these methods.

Example (3.3.1):

Consider the linear ordinary differential equation:
y(x)=xy,y(0)=1,xl [0,2]

where the exact solution is given by:

X2
y(x)=e?2 .
Suppose that a two-step method must be constructed in such away that
itisexact foryl O,.
To construct such a method via G-spline, we shall use the example in
chapter two section (2.6) such that:
A={0,1, 2}.
be the knot points and let:
e={(0,0), (0,1), (1,0), (1,1, (2,0), (2,1)}.
to seek for S,(s)T S4(E ", A) with:
¢ 1 00
E=gl 1 0.
g 1 0g
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Now, using eg.(3.13) over [1,2], yields:

Yn+2 = Yn+1 + N{boof (Xn,Yn) +b1of (Xn+1,Yn+1) +P2of (Xn+2,Yn+2)}

+ h2{b01f €Xp,Yn) +b1af €X i1, Yne1) HDorf €X o, Yia2)}

where

2

boo = d_oo (S)dSz 0.098.
1
2

bOl = 6—01(S)d3= - 0.052.
1
2

blo = d_lo (S)dS =0.522.
1
2

bll = d_ll(S)dS =0.146.
1
2

b20 = d_ 20 (S)dS =0.442.
1
2

b21 = d.m_(S)dS =-0.062.
1

and since f(x,y)=xy , then f &x,y) = y(x2 +1).
If Ljj(s) where (i,))T e are given asin example of section (2.6).
Table (3.3) illustrate the numerical results obtained by applying

eg.(3.21) and its comparison with the exact solution, we have:
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Table (3.3)

The numerical results of example (3.3.1)

Absolute error
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Example (3.3.2):
Consider the linear ordinary differential equation:
y(=y+x,y(0)=1 xI [03].

where the exact solution is given by:

y(x)=2e* - x- 1.
Consider it is required that a three step method must be constructed in

such away that it is exact for yl O,.

To construct such a method via G-spline functions, an HB-problem
must be first chosen. The choice is for the knot points are:

A={0, 1, 2, 3}.
and let

e={(0,0),(1,0),(1,1),(2,0).(3,0)}.

To seek for S4(s)T S4(E , A) with:

é. 0 0 Ou
0
Ou.
0

1
a o
0 0 0§

o O O

and for which:

i) =i V0 LG0T e
and to find the G-spline function which interpolate the following HB-
problems:

fO)=] 0. T =] 1.fM=] 1. T =] 2.3 =] 3.

In this problem the maximum order of derivatives is a =1and n=5 and
itisclear that it is 4-poised.

The G-spline interpolation function will be of the form:

(s- s)¥m Y
(2m- j- !

Sy(s) = P3(s) + é. Cij
(i) e
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1 1 1
=ag +ays+ays” +ags’ +ﬁCooSZ +ﬁC10(S' i +5011(S' )3 +

1 1
—Cao(s- 2)! +2 Cao(s- c) AU TRUUURRRRRRT (3.22)

and to find the fundamental G-spline functions L gy(s), L1g(S),L11(S), L 5g(9),
and L3p(s), one must solve the following linear system of algebraic equations
which is obtained from egs.(2.46) and (2.47):

a9 =] o

1 )
ao+a1+a2+a3+ﬁcoo=1 1-

a +2ay +36‘3+écoo =j £

27 1 1
ao+231+4az+833+7coo+ﬁ 1o+aC11—J 2-

3’ 27 26 1
ao+3a1+9a2+27a3+7c00+7 1o+5011+ﬁczo—1 3-

1

= C00 +ﬁClO +ﬁczo + —C0 =0.

- —Cjp+—=C —Ec —Ec =0
R e R U

ic - lc +EC +1C =0
521 10 5 11 5 20 521 30 .
1 1 8 27

- —Cot+—=Cq1- Cop - —=C309 =0.
43 0 a2 4370 43

Solving this system numerically yields:

a9 =] o-

_2299. 967 . 737 .
a=-—-—Jot_—

852 0" 568’ 17 284)

169
1704’ %

311.
g+ 284] 2"

107j +603j - 319j =
Y942’ Y142’ 2 T 18a' ¥

a —%J -
27142° 0 284
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g, =- 200 . 189, _ﬁjg_ﬁgj . 83,
37 284" % eg’l 284° Y 284° %2 568" ¥

. _1680j +2520j +5040j - 5040j +@j
0= 770" 171" 71°%2 1'%
. _2520j +3780j +7560j - 7560j +1260j
=50 'l n 71°2 71°%
I 5040j _ 7560j _ 15120j P+151201' _ 2520j
=70 7't 1 71°'%2 §n'¥
. 5040j _ 7560j _ 15120j %15120]. _ 2520j
07 50 Tty 712 7n'¥
. _840j +1260j +2520j - 2520j +@j
N7 0 ity 71°%2 7%

Therefore, upon substituting  Cgg, C10, C11, C2g, C3g, 8g» &, @y and

aginto Sy (s)and writing S(s) intermsof j o,] 1,] {,] 2and | 3 gives:

s) =] oL oo(s) +j 1L10(S) +] §L11(S) +] 2L 20(S) +] 3L 30(9)-
where

L1 299,38 2055, 1 g 1 o7
852~ 142~ 284 213 7 142

7 6 1 7.1 7
Ls-08- Z(s- 27+ (s- 3.
71( )+ 71( )+ 426( ) +

%7 107, 1893, 1 4

3 . 2 5
Liqn= s, + s-1., - —(s-1)3 -
07 568" 284~ 568~  142°F 284( )+ 142( )+
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3 7 1 7
——(s- 2). +—(s- 3)..
142( )+ 284( ) +

L1 =

T3 808, 4Bg 1 3 7 2L e
284" 142 284 71% 142 71

3 7 1 7
—(s- 2), +—(s- 3J)..
71( )+ 142( ) +

311, 319, 33l 5

1, 3 ., 21 5
Lon= S —sL - —(s-1D, +—(s- 15 +
07084”1427 2840 717 142( )+ 71( )+

3 7 1 7
—(s- 2)% - —=(s- J)+.
71( )+ 142( )+

169 59 , 633 1 7 1 .7 5
Lygg=- ——S+——8 - — S +——8,+—(S- D4 - —(s- 13 -
07717047 284 568~ 426 " 284( )+ 142( )+

1 7.1 7
——(s- 2). +——(s- 3)..
142( )+ 852( ) +

Now, using eq.(3.13) over [2,3] yields the closed formula:

yn+3 - yn+2 + h[boof (Xnvyn) + blOf (Xn+1syn+1) + b20f (Xn+2,yn+2) +
b30f (Xn+3vyn+3)] + hz[bllf QXn+lvyn+1)]-
Where

3

boo = d_oo (S)dSz - 0.043.
2
3

blO = d_lo (S)dS =-0.336.
2
3

bll = d_ll(S)dS =-0.255.
2
3

bzo = d_ 20 (S)dS =1.047.
2
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3
b3o = d_ 30 (S)dS =0.332.
2

And hence the following table of results is obtained with a comparison

with the exact solution.

Table (3.4)

The numerical results of example (3.3.2).

Absolute error
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Example (3.3.3):

In this example we can use the same G-spline functions for the 2-step

method as in example (3.3.1) to solve non-linear ordinary differential

eguation function, such that:
y¢=e ¥ ,y(0)=1.
where the exact solution is given by:
y(X) =In(x +c), where c=¢€.
Now, by using Euler’s method to findy,, we have:

Yn+1=Yn +hf(Xn,¥n).
y1=Yo + 0.2 (Xg,Y0)-
=1.037.

Then we have the table:

Table (3.5)

The numerical result of example (3.3.3)

Absolute error
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Example (3.3.4):

Consider the linear ordinary differential equation:

y&x) =sin®(x) +xe* - y,  y(0)=1
where the exact solution is given by:
y(X) =;—§e' X +%cos(2x) +ésin(2x) + (g i le)eX +%.
Suppose that a two-step method must be constructed in such away that
itisexact foryl O,
To construct such a method via G-spline, we shall use the example in
chapter two section (2.6) such that:
A={0, 1, 2}.
be the knot points and let:
e={(0,0), (0,1), (1,0), (1,1), (2,0),(2,1)}.
to seek for S,(s)T S4(E ", A) with:
¢ 1 00
E=gl 1 0.
g 1 0g
Now, using the eq.(3.13) over [1,2] and formulated it to predictor and

corrector equations, yields:
Yhio =Yre1 + Mboof (Xn,YR) +b1of (Xn+1, Yie1) +D2of (Xn+2,Yn40) }

+h2{borf €x,YS) +by1f €Xn41,YS41) +borf €X s, YP L))

Ya+2 =Y+ + H{boof (Xn, Y1) +b1of (Xpa1, Yie1) +02of (Xn+2,Yhi2)}

+h2{bosf €x1,YS) +b14f €X 41, Y541) +borf €Xni2,yP L)}
e, (3:29)
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where

2

boo = d_oo (S)dS =0.098.
1
2

bOl = 6_01(S)ds =-0.052.
1
2

blo = d_lo (S)dS =0.522.
1
2

bll = d_ll(S)dS =0.146.
1
2

bzo = d_ 20 (S)dS =0.442.
1
2

b21 = 6_21(S)d8 =-0.062.
1

And since f(x,y)= sin?(x) + xe* - y then:
-4 X 3 2 13
fEx,y) =—sin(2x) + (= +2)e* - Zcos(2x) + —¢e *.
€x,y) g SIN(2X) + (5 +)e" - cos(2x) +

If Ljj(s) where (i,))T e are given asin example of section (2.6).

Table (3.6) illustrate the numerical results obtained by applying
eg.(3.23) and (3.24) and its comparison with the exact solution .
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Table (3.6)

The numerical result of example (3.3.4).

3.4 BOUNDARY VALUE PROBLEMS:.

One of the most important mathematical models in mathematical
physics is the boundary value problems (in short BVP’s), in which the
governing equation is either ordinary or partial differential equation, where
boundary condition are given at |east at two points.

An important form of BV P'sis the Sturm-Liouville BV P, given by:
d R
&[P(X)YQX)] +[Q(x) +1 R(x)]y(x) =0, x1 [a,b] cieeene (3.25)

with homogenous boundary conditions:

a1Y(a) +ayoy(a) =0
an1y(b) +axnytb)=0
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where a;," 1,J=12 are prescribed constants, and P, P ,Q and R are

continuous function on the interval a£ x £ b, furthermore P(x)>0 and R(x)>0
for al xI [a,b], and A is a constant.

The BVP given by egs.(3.25) and (3.26) is the prototype of alarge class
of problems, which is called the Sturm-Liouville problems, which plays an
important rule in mathematics.

A parameter A for which eq.(3.25) has an trivial solution is called eigen
value, and the corresponding solution is an eigen function of Sturm-Liouville
problem. The problem of evaluation such values of A and y(x) is called eigen
value problem, [Sagan, 1961], [Hildebrand, 1976], [Zhidkov, 2000].

3.4.1 The Shooting Method for Solving Linear BVP's:
The shooting method for solving linear ordinary differential equation is

based on the replacement of the boundary value problem by its two related

initial value problems, as in usual case for solving boundary value problems.

Now, consider the linear second order boundary value problem:

ya=p(X)y+q(x)y +r(x),a<x<b ..o (3.27)
y@=a,y(b)=b (3.28)
Satisfying:

() p(x), g(x) and r(x) are continuous on [a,b].
(i) a(x)>0 on [a,b].
hence, the related two initial value problems are given by:
uC=p(x)ut+g(x)u,aEx£b,u@=0,u(@=1 ................ (329
and
ve=p(x)vi+g(x)v+r(x),aEx£b,v(a)=a,v(a)=0 ......... (3.30)
the solution of the BV P can be obtained to be:
YX)= V)T HUX) e e et e e e (3.31)
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where;

_b- v(b)
u(b)

If u(b)=0 then one can use the finite different method to solve the

CUMD) L O e, (3.32)

system of boundary value problem.

In order to solve the BV P using G-spline functions one can incorporate
the method of LMM using G-spline functions discussed in section (3.1) to
solve the related two initial value problems (3.29) and (3.30), and one can

show that in the next example:

Example (3.4.1):

Consider the non-homogeneous BV P:

y=2y¢ y+(x%- 4x+2),0EXE£2
y(0)=1, y(2)=2.

where the exact solution is given by:
y(x) =€e* - 0.635xe* +x?
Now, to solve the homogeneous problem:
u€=2uc- u, u(0)=0,uq0)=1.

Let u; =u, then ut=u, =f;(x,us,u,) and so u$ =2u, - u; =f,(x,uy,u,).
u,(0)=0,u,(0) =1.

Therefore in matrix form:
Qupu_g0 Lodn
&gl &1 20t
Also, for the non-homogeneous problem:

v8=2ve v+ (x? - 4x +2),v(0) =1, v&0) =0
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Let v, =V, then v(=v, =g;(X,vq,Vo)and so v§ =2v, - V1+(X2 - 4X +2)
such that v6 =g,(X,Vq,V2).

v1(0) =1,v,(0) =0.

Therefore in matrix form:
&vfu 60 1lugviu €0 u
Sel &1 28,0 6 axe2f
Now:
_2- v(2)
u(2)
=0.365.

Now, we can use eg. (3.13) of linear multistep method and formulated
it to solve the BV P's, we have:

1 —,1 j+1, ' 1 2
Un+k =Un+g + é h'* bijfl(J)(Xn+i Un+isUnai) -
(i)l e
and
2 — 2 j+1, ' 1 2
Un+k =Un+g t+ é h'* bijféj)(xnﬂ Un+isUnai) -
(i)l e
and the same work for:
1 -l j+1, ' 1 2
Viek =Vh+q t é h'* bijggj) (Xn+isVn+isVinsi) -
(i)l e
and
2 — 2 j+1, ' 1 2
Vin+k _Vn+q + é_ hj+ b”g(zj) (Xn+i ,V )

n+irVn+i

(i,j)i e

Now, by using the same information of example (3.3.1), we have the
following table:
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Table (3.7)
The results of BVP by using G-spline functions.
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Table (3.8)
The results of BVP using Euler method.
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A comparison between the obtained results using G-spline interpolation
method and using the Euler’s method are illustrated in figs.(3.1) and (3.2).

Figer (3.1)

The comparison of y,.

—— Numerical solution using G-spline function.
—=— Numerical solution using Euler method.
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Figure (3.2

The comparison of y»,.

—e— numerical solution using g-spline function.
—=— numerical solution using euler method.
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Conclusion and Recommendations

From the present study we may conclude the following:
1. The numerical results obtained using implicit 3-step methods are more
accurated than those obtained by using implicit 2-step method.
2. The predictor-corrector method “with two correctors” give more accurate

result than those obtained without corrector method “as its expected”.

Also, we may recommend the following problems for future work as open

problems:

1. Using Rung-kutta methods to solve ordinary differential equations based on

G-Spline interpolation methods.

N

Using G-spline interpolation functions to solve partial differential equations.

w

Using other spline interpolation methods to solve ordinary differential

equations numerically by using linear multistep methods.
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