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Abstract  
  

The aim of this work is to study some types of the fractional non-local 
problems. These types are the fractional non-local initial value problems that 
consist of the non-linear fractional Fredholm, Volterra, Fredholm-Volterra 
integro-differential equations together with the non-linear non-local initial 
conditions of the integral type. 

This study includes the existence and the uniqueness of the solution for 
the non-linear fractional Fredholm-Volterra integro-differential equations 
together with the non-linear non-local initial conditions.  

Also, Laplace transform method is used to solve special types of the linear 
fractional non-local problems with some illustrative examples. 

Moreover, the generalized Taylor expansion method is presented to solve 
the non-local initial value problems that consist of the linear fractional Fredholm-
Volterra integro-differential equations together with the linear non-local initial 
conditions with some illustrative examples. 



 

I 

 

Introduction  

 

       The subject of fractional calculus (that is, calculus of integrals and 

derivatives of any arbitrary real or complex order) has gained considerable 

popularity and  importance during the past three decades or so, due mainly to its 

demonstrated applications in numerous seemingly diverse and widespread fields 

of science and engineering. It does indeed provide several potentially useful tools 

for solving differential and integral equations, and various other problems 

involving special functions of mathematical physics, [28].          

       Many authors and researchers concerned with the fractional problems such as 

Domenico and Luigi in 1996, [21] proved the existence and uniqueness theorems 

for some classes of nonlinear fractional differential equations by using Schauder 

fixed point theorem ,.Al-shather in 2003, [8] presented some approximated 

solutions for solving the fractional delay integro-differential equations, Abdul-

Razzak in 2004, [2] gave some algorithms for solving fractional Fredholm 

integro- differential equations, Al Azawi in 2004, [6] gave results in fractional 

calculas, Al-Rahhal D.in 2005, [7] used some  numerical methods for solving the 

fractional integro differential equations, Mohamed in 2007, [30] used the finite 

difference methods for solving fractional differential equations, Abdul Sattar in 

2008, [3] gave some solutions of fractional boundary value problems, Mehdi and 

Majid in 2010, [29] presented some definitions of fractional derivatives and 

fractional Integrals and gave more explicit formulas of fractional derivative and 

integral of some special functions and presented some applications of the theory 

of fractional calculus, Azizollah, Dumetra and Ravi in 2013, [10] proved the 

existence and uniqueness of solutions for two classes of infinite delay nonlinear 

fractional order differential equations involving Riemann-Liouville fractional 

derivatives, Armand and Mohammadi in 2014, [9] discussed existence the and 



 

II 

 

uniqueness of solutions of nonlinear differential equations of fractional order with 

fuzzy initial condition by using contraction mapping principle and the fixed point 

theorem. 

            Another subject that deals with this work is the non-local problems that is 

the problems with non-local conditions. Many researchers concerned with the 

nonlocal problem such as Kerefov in1979, [27] studied the nonlocal boundary 

value problems for the parabolic differential equations, Chabrowski  in 1984, [17] 

studied the nonlocal initial value problem for the parabolic differential equations, 

Chabrowski in 1988, [18], the existence and uniqueness of solutions of the 

nonlocal problem for the linear elliptic equation with nonlocal condition, 

Byszewski  in 1991, [15] studied theorems about the existence and uniqueness of 

solutions of a semi linear evolution nonlocal Cauchy problems, Pulkina in 1999, 

[37] used the Schauder fixed point theorem to prove the existence of the linear 

second order hyperbolic equation with the linear integral conditions, Abdelkader 

in 2003, [1] discussed the existence and uniqueness for the solutions of the 

nonlocal initial value problems for the non-linear ordinary differential equations, 

Saadatmandi and Dehgan in 2006, [39] used the shifted Legender technique for 

solving the one-dimentional wave equation with the one nonlocal linear integral 

boundary condition, Svajunas in 2010, [43] used the finite difference method to 

find the solution of the two-dimentional heat equation with the nonlocal linear 

integral condition,  Kahtan in 2013, [25] used the finite difference method to 

solve special types of nonlocal problems for partial differential equations. 

           The fractional nonlocal Problems have been studied by several researchers 

such as, Symotyuk in 2001, [44] investigated Conditions for the existence and 

uniqueness of a classical solution of a nonlocal boundary-value problem for a 

differential equation with a regularized Riemann–Liouville fractional time 

derivative with variable coefficients, Mophou in 2009, [32] proved the existence 

of mild solutions to the Cauchy Problem for the fractional differential equation 



 

III 

 

with nonlocal conditions, Xiwang in 2011, [47]  studied the existence and 

uniqueness of solutions to the nonlocal problems for the fractional differential 

equation in Banach spaces,  Ahmad in 2012, [4] studied the existence of solutions 

of the class of nonlinear Cupoto type fractional boundary value problems with 

nonlocal fractional integro-differential boundary conditions, Ahmad in 2013, [5] 

proved the existence of solutions of a nonlocal boundary value problem for 

nonlinear fractional order integro-differential equations. 

The purpose of this work is to study some types of the fractional non-local 

initial value problems for the non-linear fractional Fredholm-Volterra integro-

differential equations together with the non-linear non-local initial conditions of 

the integral type. 

This thesis consists of three chapters. 

In chapter one we use the Banach fixed point theorem to discuss the 

existence and the uniqueness of the solution for the non-linear fractional 

Fredholm-Volterra integro-differential equations together with the non-linear 

non-local initial conditions.  

In chapter two, we use the Laplace transform method to solve special 

types of the non-local initial value problems for the linear fractional Volterra 

integro-differential equations of the difference kernel. 

In chapter three, we devote the generalized Taylor expansion method for 

solving the linear non-local initial value problems for the linear fractional 

Fredholm-Volterra integro-differential equations together with the linear non-

local initial conditions. All computations that appeared in this work are obtained 

by using the Mathcad software package.     
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Introduction: 

The non-local condition is the condition which appears when values of the 
function on the boundary or on the initial are connected to values inside the  
domain. Every problem with non-local condition is termed as non-local problem, 
[13]. 

The nonlocal problems play an important role in many real life 
applications and they arise in various fields of mathematical physics (like string 
oscillation telegraph equation), [24], biology and biotechnology (like evolution of 
dominant genes and propagation nerve pluses), [33], and in other fields. 

The aim of this chapter is study special types of the non-local problems, 
namely the non-local initial value problems. This study includes the non-local 
initial value problems that consist of the non-linear fractional Fredholm-Volterra 
integro-differential equations together with the non-linear non-local initial 
conditions of the integral type. 

This chapter consists of two sections: 

In section one, we give some fundamental concepts of fractional calculus. 

In section two, we use the Banach fixed point theorem to prove the 
existence and uniqueness of the solutions for special types of  non-local initial 
value problems of the non-linear fractional Fredholm-Volterra integro-differential 
equations.  
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s:Concepts of  Fractional Calculu 1.1 Some Fundamental  

In this section, we give some basic concepts and definitions related to the 
subject of fractional calculus. 

We start this section by giving the following definitions: 

 

]:, [35Definition (1.1) 

The Gamma function Γ of a positive  real number x, is defined by:  

x 1 y

0

(x) y e dy,   x>0
∞

− −Γ = ∫  

 Some of the most important properties of the Gamma function are listed 
below, [35]: 

(i) (n 1) n!,  n N.Γ + = ∈  

(ii)  n

1 (2n)!
n ,  n N.

2 4 n!

π Γ + = ∈ 
 

 

(iii)  (x 1) x (x),   x>0.Γ + = Γ  

 

]:, [35Definition (1.2) 

The Beta function β with positive parameters p and q is defined by: 

1
p 1 q 1

0

(p,q) y (1 y) dy,   p>0, q>0− −β = −∫  

If either p or q is non-positive real number, the above integral diverges. 

 

One of the most important properties of the Beta function is, [35]: 

(p) (q)
(p,q) ,  p>0,  q>0.

(p q)

Γ Γβ =
Γ +
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Definitions (1.3), [22]: 

The Mittag-Leffler function is defined by: 

i

i 0

z
E (z) ,   , z C,  Re( ) 0

( i 1)

∞

α
=

= α ∈ α ≥
Γ α +∑  

and the generalized Mittag-Leffler function is defined by: 

i

,

i 0

z
E (z) ,   , , z C,  Re( ) 0

( i )

∞

α β
=

= α β ∈ α ≥
Γ α + β∑  

 

Examples (1.4): 

(1)  
i

i
0 0,1

i 0 i 0

z 1
E (z) E (z) z ,   z 1.

(1) 1 z

∞ ∞

= =

= = = = <
Γ −∑ ∑  

(2)  
i i

z
1,0

i 0 i 0

z z
E (z) ze ,  z C.

(i) (i 1)!

∞ ∞

= =

= = = ∈
Γ −∑ ∑  

(3) 
i i

z
1 1,1

i 0 i 0

z z
E (z) E (z) e ,   z C.

(i 1) i!

∞ ∞

= =

= = = = ∈
Γ +∑ ∑  

(4) 
i z

1,2

i 0

z e 1
E (z) ,  z C\{0}.

(i 2) z

∞

=

−= = ∈
Γ +∑  

 

Remark (1.5): 

Gamma, Beta, Mittag-Leffler and the generalized Mittag-Leffler functions 
are one of the most important notations in fractional calculus, since they play an 
important role in fractional differentiation and integration formulas. 
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Definitions (1.6), [35]: 

Let u be an absolutely continuous function on [a,b], the left and the right 
hand Riemman-Liouville fractional derivatives of  u of order α> 0, can be defined 
as: 

xn

x n n 1a

a

1 d u(y)
D u(x) dy,    a x b

(n ) dx (x y)
+

α
α− += ≤ ≤

Γ − α −∫  

and 

bn n

x n n 1b

x

( 1) d u(y)
D u(x) dy,    a x b

(n ) dx (x y)
−

α
α− +

−= ≤ ≤
Γ − α −∫  

respectively, where n−1 <α ≤ n, n∈ N.  

 

To illustrate the definitions of Riemman-Liouville fractional derivatives, 
consider the following example: 

 

Example (1.7): 

 Let u(x) = 2x, 
1
2

α =  and  0 ≤ x ≤ 1. The left and the right hand 

Riemman-Liouville fractional derivatives of  u of order  
1
2

  are: 

x1
2

x 10
20

1 d 2y x
D u(x) dy 4

1 dx
(x y)

2

+ = =
π Γ − 

 

∫  

and 

11
2

x 11
2x

1 d 2y 2(2x 1) 8 x 1
D u(x) dy

1 dx 3 x 1 3
(x y)

2

−

− + −= = +
  π − πΓ − 
 

∫  
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respectively. 

 

Next, we give the left hand Riemman-Liouville fractional derivative of the 
power function. This proposition is very important to find the left hand 
Riemman- Liouville fractional derivative of any analytic function.  

 

:]36, [)8(1. positionoPr 

p p
x 0

(p 1)
D x x ,   x>0, p> 1.

(p 1)
+

α −αΓ += −
Γ − α +

 

 

Proof: 

It is known that  

xn
p p n 1

x n0

0

1 d
D x y (x y) dy

(n ) dx
+

α −α−= −
Γ − α ∫

 

Let y x,  then the above equation reduces to:= λ  

( )
1n

pp n 1
x n0

0

1n
p n p n 1

n

0

1 d
D x x ((1 )x) xd

(n ) dx

1 d
           x (1 ) d

(n ) dx

+
α −α−

+ −α −α−

 
 = λ − λ λ

Γ − α   

 
 = λ − λ λ

Γ − α   

∫

∫
 

n
p n

n

n
p n

n

1 d
x (p 1,n )

(n ) dx

(p 1) (n ) d
           x

(n ) (n p 1) dx

+ −α

+ −α

 = β + − α Γ − α

Γ + Γ − α
 =  Γ − α Γ − α + +
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Thus  

pα p

p

0

n n(p 1) (p n 1)
x

(n p 1) (p n n 1)

(p 1)
             x ,  x>0.

(p 1

D x

)

c
+

+ −α−

−α

Γ + Γ + − α +=
Γ − α + + Γ + − α − +

Γ +=
Γ − α +

 

Now, the following example gave the left hand Riemman-Liouville 
fractional derivative of the exponential function via proposition (1.8)  

 

Example (1.9): 

 Let xu(x) e ,  C,  x>0.λ= λ ∈ The left hand Riemman-Liouville fractional 

derivative of  u of order  α   is: 

D� ��� �e	�
 = D� ��� ��λx��i!
�
��� � = �λ��i!

�
��� D� ��� x�. 

 

By using proposition (1.8), the above equation becomes 

D� ��� �e	�
 = λ�i!
�
��� � ��� + 1���� − � + 1�  !"#$ =  "#  �% �!��� − � + 1�

�
!�� =  "#&','"#�% �. 

 

 

Remark (1.10): 

If α=m, where m  is a positive integer, then we choose n=m+1, so 

xm 1
m

x m 1 m (m 1) 1a

a

xm 1

m 1

a

1 d u(y)
D u(x) dy

(1) dx (x y)

d
               = u(y)dy

dx

+

+

+ − + +

+

+

=
Γ −∫

∫
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Thus  

D� )�* u(x) =	 ,-,�- u�x� 
and 

bm 1 m 1
m

x m 1 m (m 1) 1b

x

bm 1
m 1

m 1

x

m
m

m

( 1) d u(y)
D u(x) dy

(m 1 m) dx (x y)

d
               =( 1) u(y)dy

dx

d
               =( 1) u(x).

dx

−

+ +

+ − + +

+
+

+

−=
Γ + − −

−

−

∫

∫  

 
Next, another definition of the fractional derivative is given by the Italian 

mathematician Caputo in1967. 
 

 
]:, [16 )11(1. sDefinition 

Let u be an absolutely continuous function on [a,b], the left and the right 
hand Caputo fractional derivatives of  u  of order α > 0, can be defined as: 

x (n)

n 1
C

a
a

n

n

1 u (y)
dy, n 1< <n, n N,  a x b

(n ) (x y)
D u(x)

d u(x)
,                        n,  n N, a x b

dx

+

α− +
α


 − α ∈ ≤ ≤

Γ − α −= 


α = ∈ ≤ ≤


∫

  

and 

( )

( )

bn (n)

n 1
C

x
b

n
n

n

1 u (y)
dy, n 1< <n,  n N, a x b

(n ) (x y)
D u(x)

d u(x)
1 ,                        n, n N, a x b

dx

−

α− +
α

 −
 − α ∈ ≤ ≤

Γ − α −= 


− α = ∈ ≤ ≤


∫
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respectively. 

 

To illustrate the definitions of Caputo fractional derivatives, consider the 
following example: 

 

Example (1.12): 

 Let 2 3
u(x) x ,  0 x 2  and = .

2
= ≤ ≤ α  The left and right hand Caputo 

fractional derivatives of  u  of order 
3
2

  are: 

2
2

x3 2
C 2

30 2 1
20

d
(y )

1 xdy
D u(x) dy 4

1
(x y)

2

+
− +

= =
π Γ − 

 

∫  

and 

2
2

23 2 2
C 2

32 2 1
2x

d
(y )

( 1) x 2dy
D u(x) dy 4

1
(x y)

2

−
− +

− −= = −
π Γ − 

 

∫  

respectively. 

 

Next, we give the left hand Caputo fractional derivative of the power 
function. This proposition appeared in [19]. Here we give the details of its proof. 
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):(1.13 positionoPr 

p

C p

0

(p 1)
x ,  n 1 n,  p>n 1,   p

(p 1)

D x

0,                n 1 n,  p n 1,   p Z     
+

−α

α

Γ + − < α < − ∈ℜΓ − α +
= 
 − < α < ≤ − ∈



 

Proof: 

If n 1 n,  p n 1,   p N− < α < ≤ − ∈ , then 
n

p
n

d
x 0

dx
=  and this imples that 

C p

0
D x 0.+

α =  

If n−1 < α < n, p > n−1, p ∈ R, then 

n
p

x
n

C p
n 10

0

x

p n n 1

0

d
(y )

1 dy
D x dy

(n ) (x y)

1 (p 1)
            = y (x y) dy.

(n ) (p n 1)

+
α

α− +

− −α−

=
Γ − α −

Γ + −
Γ − α Γ − +

∫

∫
 

Let y x,  then the above equation reduces to:= λ  

( )

( )

1
p nC p n 1

0

0

1
p np n n 1 1 n 1

0

(p 1)
D x x ((1 )x) xd

(n ) (p n 1)

(p 1)
            = x (1 ) d

(n ) (p n 1)

+

−α −α−

−− + −α− + −α−

Γ += λ − λ λ
Γ − α Γ − +

Γ + λ − λ λ
Γ − α Γ − +

∫

∫

 

p n n 1 1(p 1)
= x (p n 1,n )

(n ) (p n 1)
− + −α− +Γ + β − + − α

Γ − α Γ − +
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Thus 

p n nα

0

1p 1(p 1)
= x (p n 1,n )

(n ) (p n 1
D x

)
c

+
− + −α− +Γ + β − + − α

Γ − α Γ − +
 

 

p

p

(p 1) (p n 1) (n )
           = x

(n ) (p n 1) (p 1)

(p 1)
           = x .

(p 1)

−α

−α

Γ + Γ − + Γ − α
Γ − α Γ − + Γ − α +

Γ +
Γ − α +

 

  

):Remark (1.14 

       The left hand Caputo fractional operator 
C

a
D +

α  does not satisfy the semigroup 

property, that is C C C

a a a
D D u(x) D u(x).+ + +

α β α+β≠ To see this, let
1

2 3
u(x) x ,  = ,

2
= α

1
= . 

2
β To find 

1 1 1
C C2 2 2

0 0
D x D x+ +

β = , we take n=1. So 
1

p= n 1 0. 
2

> − = Therefore 

by using proposition (1.13) one can have  

( )
1 1 1

C C2 2 2
0 0

1
1

32
D u(x) D x = . 

1 2
+ +

 Γ + 
  = = Γ Γ    

Hence 

 

3 1 1 3
C C C2 2 2 2

0 0 0

3
D D x D (1). 

2
+ + +

   = Γ   
  

 

Let p=0.  To find 
3

C 2
0

D (1)+ , we take n=2. So p=0<n 1 1. − = Therefore by using 

proposition (1.13) one can have 
 

3 1 1
C C2 2 2

0 0
D D x 0. But+ +

 
= 
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3 1 1 1 32
C 2 2 2 2 2

20

d 1
D x x x .

dx 4
+

+ −   
= = −   

   
 

Therefore D/ ��
01 D/ ��

21 �x21� ≠ D/ ��4 5x216.    

 

):Remark (1.15  

Another types of definitions for fractional derivatives can be considered 
namely Hadamard fractional derivative, Erdelyi-Kober fractional derivative, 
Grunwald-Letnikov fractional derivative, [28], Thomas J. fractional derivative 
and Nishimoto fractional derivative, [34]. 

 

]:) , [35on (1.16Definiti 

Let u be an absolutely continuous  function on [a,b], the left and the right 
hand Riemman-Liouville fractional integrals of  u  of order α > 0, can be defined 
as: 

x

1a

a

1 u(y)
I u(x) dy,    a x b

( ) (x y)
+

α
−α= ≤ ≤

Γ α −∫  

and 

b

1b

x

1 u(y)
I u(x) dy,    a x b

( ) (y x)
−

α
−α= ≤ ≤

Γ α −∫ 

respectively. 

 

:)7Remark (1.1  

 If 

x

1

a

a

1,   then I u(x) u(y)dy,    a x b.+α = = ≤ ≤∫  
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To illustrate the above definitions of Riemman-Liouville fractional 
integrations, consider the following example: 

 

):8Example (1.1 

 Let 3 3
u(x) x ,   1 x 3  and . 

4
= ≤ ≤ α =  The left and the right Riemman-

Liouville fractional integrals of  u  of order 
3
4

  are: 

x3 3
4

11
41

3
2 2 3 34

1 y
I u(x) dy

3
(x y)

4

4(x 1) 495x (x 1) 315x(x 1) 385x 77(x 1)
          

3
1155 

4

+ =
 Γ − 
 

 − − − − − + − =
 Γ 
 

∫
 

and 

( )
( )

33 3
4

13
4x

15
3 24

3 2

1 y
I u(x) dy

3
(y x)

4

(3 x) 512x 1152x 3024x 8316
          

3
1155 x 9x 27x 27

4

− =
 Γ − 
 

− + + +
=

 Γ − + − 
 

∫
  

respectively. 

 

Next, we give the left hand Riemman-Liouville fractional integral of the 
power function.  
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:]36, [)9(1.1 positionoPr 

p p

0

(p 1)
I x x ,  p> 1,  x>0.

( p 1)
+

α +αΓ += −
Γ α + +

 

 

Proof: 

It is known that  

x

p 1

0

0

1
I u(x) y (x y) dy,    x 0.

( )
+

α α−= − >
Γ α ∫  

Let y x,  then the above equation reduces to:= λ  

( )
1 1

pp 1 p 1

0

0 0

p p p

1 1
I u(x) ( x) ((1 )x) xd = x (1 ) d

( ) ( )

1 (p 1) ( ) (p 1)
           = x (p 1, )= x = x ,   x>0.

( ) ( ) (p 1) (p 1)

+
α α− +α α−

+α +α +α

= λ − λ λ λ − λ λ
Γ α Γ α

Γ + Γ α Γ +β + α
Γ α Γ α Γ + α + Γ + α +

∫ ∫
 

]:, [34)Remark (1.20  

Another types of definitions for fractional integrals can be considered 
namely Kalla and Saxena fractional integral, Kober fractional integral and Saxena 
fractional integral. 

 

In the rest of this section , we give some properties related to the left hand 
Caputo fractional derivative, left hand Riemman-Liouville fractional derivative 
and left hand Riemman-Liouville fractional integral. 

 

Remarks (1.21): 

n
C n

na a

d u(x)
(1) D u(x) I ,  n 1 n,[36].

dx
+ +

α −α  
= − < α < 
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xn

x n 1 (n )a

a

d 1 u(y)
(2)   D u(x) dy

dx (n ) (x y)
+

α
− −α

 
 =
Γ − α −  

∫  

   

n
n

n a

d
I u(x) ,n 1 n, [36].

dx
+
−α = − < α <   

( )C

a a
(3) D I u(x) u(x),   [20].+ +

α α =  

( )
n 1 (k)

C k

a a
k 0

u (a)
(4) I D u(x) u(x) (x a) ,  n 1 n,  n N, [27].

k!
+ +

−
α α

=

= − − − < α < ∈∑  

(5)     I)�� satisfy the semigroup property, [36]. 

                     

 

 

ocal L-NonLinear -Nonof the Solutions for the  ss1.2 Existence and Uniquene
Differential Equations:-Fractional Integro Linear Initial Value Problems of  

       In this section we discuss the existence of the unique solution for special 
types of the non-linear non-local initial value problems for fractional integro-
differential equations. To do this, first consider the linear non-local initial value 
problem that consists of the linear fractional Fredholm-Volterra integro- 
differential equation of order α: 

DA )�� u�x� = g�x� + f�x�u�x� + λ'Dk�x, y�u�y�dy + λ4Dℓ�x, y�u�y�dy�
)

H
)

 

)11.(    

together with the linear non-local initial condition: 

u�a� = μ' J u�y�dy + μ4H)                                                                                  (1.2)  

where x ∈ [a, b], 0 < � ≤ 1, g, f, u ∈ COa, bP and  k: Oa, bP × Oa, bP →  R and 

ℓ: Oa, bP  × Oa, bP →  R are continuous functions, DA
)�
�  is the left hand 

Caputo fractional derivative of order �,  %', %4, X', X4 are known constants. 
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To do this we need the following lemma. The proof of this lemma depends on 
the facts that appeared in O11]. 
 

):Lemma �1.22 
 The non-local initial value problem given by equations �1.1)-�1.2) is 
equivalent to the following linear integral equation: 
u�x) = 1

Γ�α) D �x − y)�"'g�y)dy +�
)

μ' D u�y)dy + μ4
H

)
+  

1
Γ�α) D �x − y)�"'f�y)u�y)dy +�

)
λ'Γ�α) D �x − y)�"' bD k�y, s)u�s)dsH

)
c dy +�

)
 

λ4Γ�α) D �x − y)�"' bD ℓ�y, s)u�s)dsd
)

c dy, a ≤ x ≤ b           �1.3)�
)

 

Proof:  

Let u be a solution of the linear non-local initial value problem given by 
equations (1.1)-(1.2). By taking the left hand Riemman-Liouville fractional 
integral of order α, fg�#  for both sides of equation (1.1) one can have: 

I)�� � D)��A u
�x) = I)�� g�x) + I)�� �f�x)u�x)
 + I)�� hλ' D k�x, y)u�y)dyH
)

i + 

I)�� hλ4 D ℓ�x, y)u�y)dy�
)

i �1.4) 
By using remarks (1.21),(4) and by using the linear non-local initial condition 
given by equation (1.2) one can have: 

I)�� � D)��A u
�x) = u�x) − u�a) 

                             = u�x) − μ' D u�x)dx − μ4
H

)
 

 

Therefore equation (1.4) becomes: 
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u�x� = 1Γ�α�D �x − y��"'g�y�dy	�
) + μ'D u�y�dy + μ4H

) +	 
1Γ�α�D �x − y��"'f�y�u�y�dy�

) +	 λ'Γ�α�D �x − y��"' bD k�y, s�u�s�dsH
) c dy�

) + 

λ4Γ�α�D �x − y��"' bD ℓ�y, s�u�s�dsd
) c dy�

)  

Therefore u is a solution of the linear integral equation given by equation (1.3). 

Conversely, let u be a solution of the integral equation given by equation (1.3). 

Then 	
u�a� = 1Γ�α�D �a − y��"'g�y�dy +)

) μ'D u�y�dy + μ4 +H
)  

1Γ�α�D �a − y��"'f�y�u�y�dy)
) +	 λ'Γ�α�D �a − y��"' bD k�y, s�u�s�dsH

) c dy)
)  

											+ λ4Γ�α�D �a − y��"' bD ℓ�y, s�u�s�dsd
) c dy)

)  

										= μ'D u�y�dy + μ4H
)  

Therefore u satisfies the linear non-local initial condition given by equation (1.2). 
By taking the left hand Caputo fractional derivative of order α of both sides of 
equation (1.3) one can have: 

D)��A u�x� = D)�� �I)�� g
�x�A + μ' D)��A D u�y�dy + D)��A μ4H
) + 

D)��A h 1Γ�α�D �x − y��"'f�y�u�y�dy	�
) i + 

D)�� h λ'Γ�α�D �x − y��"' bD k�y, s�u�s�dsH
) c dy�

) iA + 
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D)��A k λ4Γ�α�D �x − y��"' bD ℓ�y, s�u�s�dsd
) c dy�

) l 

					= D)�� �I)�� g
�x�A + D)�� �I)�� f�x�u
�x� + λ' D)��A I)��A hD k�x, y�u�y�dyH
) i + 

λ4D)�� I)�� hD ℓ�x, y�u�y�dy�
) i 

By using remarks (1.21), (3) one can get: 

D)��A u�x� = g�x� + f�x�u�x� + λ'D k�x, y�u�y�dyH
) + λ4D ℓ�x, y�u�y�dy�

) ,	 
where	a ≤ x ≤ b. Thus u is a solution of the linear fractional integro-differential 
equation (1.1). 

  

Next, we are in the position that we can give the following existence and 
uniqueness theorem. The proof of this theorem is a simple modification of the 
facts that appeared in [11]. 

 

):Theorem (1.23  

Consider the linear non-local initial value problem given by equations 
(1.1)-(1.2). If  

|μ'|�b − a� + F�b − a��Γ�α + 1� + �|λ'|K + |λ4|L��b − a��p'Γ�α + 1� < 1 

	
where  |f�x�| ≤ F,			|k�x, y�| ≤ K	and		|ℓ�x, y�| ≤ L					∀	x, y ∈ Oa, bP. Then 
  
equations (1.1)-(1.2) have a unique solution. 
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Proof:  

It is known that C[a, b] is a Banach space with respect to the following 
norm: 

‖u‖sO),HP = sup)t�tH|u�x�|. 
Let A be an operator that is defined by: 

Au�x� = 1Γ�α�D �x − y��"'g�y�dy�
) + μ'D u�y�dy + μ4H

) +	 
1Γ�α�D �x − y��"'f�y�u�y�dy +�

)
λ'Γ�α�D �x − y��"' bD k�y, s�u�s�dsH

) c dy�
) + 

λ4Γ�α�D �x − y��"' bD ℓ�y, s�u�s�dsd
) c dy�

)  

Then  

|Au�x� − Av�x�| ≤ |μ'|D |u�y� − v�y�|dy +H
)  

1Γ�α�D �x − y��"'|f�y�||u�y� − v�y�|dy +�
)  

|λ'|Γ�α�D �x − y��"' bD |k�y, s�||u�s� − v�s�|dsH
) c dy +�

)  

|λ4|Γ�α�D �x − y��"' bD |ℓ�y, s�||u�s� − v�s�|dsd
) c dy�

)  

≤ |μ'|D ‖u − v‖sO),HPH
) dy + 1Γ�α�D �x − y��"'|f�y�|‖u − v‖sO),HPdy +�

)  

|λ'|Γ�α�D �x − y��"' bD |k�y, s�|‖u − v‖sO),HP	dsH
) c�

) dy + 

|λ4|Γ�α�D �x − y��"' bD |ℓ�y, s�|‖u − v‖sO),HPdsd
) c dy�

)  
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= |μ'|�b − a�‖u − v‖sO),HP + b 1Γ�α�D �x − y��"'|f�y�|dy	�
) c ‖u − v‖sO),HP + 

b |λ'|Γ�α�D �x − y��"' hD |k�y, s�|dsH
) i +�

)  

|λ4|Γ�α�D �x − y��"' hD |ℓ�y, s�|dsd
) i�

) dyc ‖u − v‖sO),HP 
≤ b|μ'|�b − a� + FΓ�α�D �x − y��"'dy +																			�

)  

|λ'|K + |λ4|LΓ�α� �b − a�D �x − y��"'dy	�
) c ‖u − v‖sO),HP 

   

= v|μ'|�b − a� + FαΓ�α� �x − a�� + 

�|λ'|K + |λ4|L��b − a�αΓ�α� �x − a��c ‖u − v‖sO),HP 
≤ b|μ'|�b − a� + F�b − a��Γ�α + 1� + �|λ'|K + |λ4|L��b − a��p'Γ�α + 1� c ‖u − v‖sO),HP 
    

Therefore  

‖Au − Av‖sO),HP ≤ b|μ'|�b − a� + F�b − a��Γ�α + 1� + 

�|λ'|K + |λ4|L��b − a��p'Γ�α + 1� c ‖u − v‖sO),HP 
Since |μ'|�b − a� + w�H")�xy��p'� + �|	2|zp|	1|{��H")�x�2y��p'� < 1, then A is contraction 

operator and by using the Banach fixed point theorem, A has unique fixed point  

u. This fixed point is the unique solution of the linear integral equation (1.3). By 
using lemma (1.22), u is the unique solution of the non-local initial value problem 
given by equations (1.1)-(1.2). 
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To illustrate this theorem, we consider the following examples: 

 

):Example (1.24 

Consider the linear nonlocal initial value problem that consists of the 

linear fractional Fredholm integro-differential equation of order  
'|: 

D��
2}A u�x� = 18 xu�x� + 16D xyu�y�dy + 3x4,			0 ≤ x ≤ 1'

� 																																�1.5� 
together with the  linear nonlocal initial condition: 

u�0� = 15D u�y�dy																																																																																																						�1.6�'
�  

Here  α = '| , a = 0, b = 1, f�x� = 	 '� x					∀x ∈ O0,1P, k�x, y� = xy, ℓ�x, y� = 0,	  

λ' = '� , λ4 = 0, µ' = '� , µ4 = 0	and	g�x� = 3x4.  Therefore |f�x�| ≤ F = '� 			∀	x ∈O0,1P. Also  |k�x, y�| ≤ K = 1				∀x, y ∈ O0,1P. So   

|μ'|�b − a� + F�b − a��Γ�α + 1� + �|λ'|K + |λ4|L��b − a��p'Γ�α + 1� ≃ 0.522 < 1. 
By using theorem (1.23), the linear nonlocal initial value problem given by 
equations (1.5)-(1.6) has a unique solution. 

 

):Example (1.25 

Consider the linear nonlocal initial value problem that consists of the 

linear fractional Fredholm-Volterra integro-differential equation of order 
'�: 

D'�
2�A u�x� = 19 x4u�x� + 16D �siny�u�y�dy + 15D y��

' u�y�dy + 3e"�, 1 ≤ x ≤ 32
01
'  

(1.7)  

together with the  linear nonlocal initial condition:  



local Problems-Existence and Uniqueness of the Solutions for Some Types of Fractional NonThe  Chapter One 

21 

 

u�1� = 12D u�y�dy + 7																																																																																															�1.8�01
'  

Here  α = '� , a = 1, b = �4 , f�x� = 	 '� x4					∀x ∈ �1, �4� , k�x, y� = siny, ℓ�x, y� =
y�, λ' = '� , λ4 = '� , μ' = '4 , μ4 = 7	and	g�x� = 3e"�. Therefore |f�x�| ≤ F =
'� 5�464 = '| 	 , |k�x, y�| ≤ K = 1, |ℓ�x, y�| ≤ L = 4�� ∀	x ∈ �1, �4� . So 

|μ'|�b − a� + F�b − a��Γ�α + 1� + �|λ'|K + |λ4|L��b − a��p'Γ�α + 1� ≃ 0.886 < 1. 
By using theorem (1.23), the linear nonlocal initial value problem given by 
equations (1.7)-(1.8) has a unique solution. 

 

):Remark (1.26 

            For µ' = 0,	it is clear that theorem (1.23) can be also used to ensure the 

existence of the unique solution for the linear local initial value problem that 
consists of the linear fractional Fredholm-Volterra integro-differential equation 

(1.1) together with the linear local non-homogeneas initial condition u(a) = µ4, 
where  µ4 is a known constant.  

 

Second, we generalize theorem (1.23) to be valid for the non-linear non-
local initial value problem that consists of linear fractional Fredholm-Volterra 
integro-differential equation (1.1) together with the non-linear non-local initial 
condition: 

u�a� = D w�y, u�y�
dy																																																																																										�1.9�H
)  

where w: Oa, bP × R →R is a continuous function.  

But before that we need the following lemma. The proof of this lemma is similar 
to the proof of lemma (1.22), thus we omitted it. 
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):7Lemma (1.2 

The non-linear  non-local initial value problem given by equations 
(1.1),(1.9) is equivalent to the following non-linear integral equation: 

u�x� = 1Γ�α�D �x − y��"'g��
) y�dy + D w�y, u�y�
dy +H

)  

1Γ�α�D �x − y��"'f�y�u�y�dy + λ'Γ�α�D �x − y��"' bD k�y, s�u�s�dsH
) c dy +�

)
�
)  

λ4Γ�α�D �x − y��"' bD ℓ�y, s�u�s�dsd
) c dy,�

) a ≤ x ≤ b																																					�1.10� 
  

  

):8Theorem (1.2  

Consider the non-linear  non-local initial value problem given by 
equations (1.1),(1.9). If the following conditions are satisfied: 

 (1) w satisfied a Lipschitz condition with respect to the second argument with a 
Lipschitz constant W: 

|w�x, u�x�� − w�x, v�x��| ≤ W|u�x� − v�x�|,			a ≤ x ≤ b. 
(2) W�b − a� + wy��p'� �b − a�� + |	2|	zp|	1|{y��p'� �b − a��p' < 1. 

where   |f�x�| ≤ F, |k�x, y�| ≤ K	and	|ℓ�x, y�| ≤ L					∀	x, y ∈ Oa, bP. 

Then equations (1.1),(1.9) have a unique solution. 

Proof: 

Let A be an operator that is defined by: 

Au�x�= 1Γ�α�D �x − y��"'g��
) y�dy + D w�y, u�y�
dy +H

)  

1Γ�α�D �x − y��"'f�y�u�y�dy + λ'Γ�α�D �x − y��"' bD k�y, s�u�s�dsH
) c dy +�

)
�
)  
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λ4Γ�α�D �x − y��"' bD ℓ�y, s�u�s�dsd
) c dy,�

) a ≤ x ≤ b 

Then 

|Au�x� − Av�x�| ≤ D �w�y, u�y�
 − w�y, v�y���dy +H
)  

1Γ�α�D �x − y��"'|f�y�||u�y� − v�y�|dy +�
)  

 
|λ'|
Γ(α) D (x − y)�"' bD |k(y, s)||u(s) − v(s)|dsH

)
c dy�

)
+ 

|λ4|
Γ(α) D (x − y)�"' bD |ℓ(y, s)||u(s) − v(s)|ds�

)
c dy�

)
 

Thus  

|Au(x) − Av(x)|
≤ W D |u(y) − v(y)|dyH

)
+ F

Γ(α) D (x − y)�"'|u(y) − v(y)|dy +�
)

 

|λ'|K
Γ(α) D (x − y)�"' bD |u(s) − v(s)|dsH

)
c dy + �

)
 

|λ4|L
Γ(α) D (x − y)�"' bD |u(s) − v(s)|dsH

)
c dy�

)
 

  

 ≤ W(b − a)‖u − v‖s[),H] + F
Γ(α + 1) ‖u − v‖s[),H](x − a)� + 

(|λ'| K + |λ4|L) (b − a)
Γ(α + 1) ‖u − v‖s[),H](x − a)� 

≤ bW(b − a) + F(b − a)�
Γ(α + 1) +  (|λ'| K + |λ4|L)(b − a)�p'

Γ(α + 1) c ‖u − v‖s[),H] 

Therefore  
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‖Au − Av‖sO),HP ≤ bW�b − a� + F�b − a��Γ�α + 1� + 

�|λ'|	K + |λ4|L�	�b − a��p'Γ�α + 1� c ‖u − v‖sO),HP 
Since  ��b − a� + w�H")�xy��p'� + �|	2|	zp|	1|{�	�H")�x�2y��p'� < 1, then A is a contraction 

operator and by using the Banach fixed point theorem, A has a unique fixed point 
u. This fixed point is the unique solution of the non-linear integral equation 
(1.10). By using lemma (1.27), u is the unique solution of the non-linear non-
local initial value problem given by equations (1.1),(1.9). 

To illustrate this theorem, consider the following example: 

 

 

):Example (1.29 

Consider the nonlinear nonlocal initial value problem that consists of the 

linear fractional Fredholm-Volterra integro-differential equation of order  
'�: 

D'�
2�A u�x� = 120u�x� + 13D y4u�y�dy + 14D �x + y�u�y�dy +�

� 6x + 8							�1.11�21
�  

together with the nonlinear nonlocal initial condition: 

u�0� = D sinu�y�dy																																																																																																�1.12�21
�  

Here  � = '� , � = 0, � = '4 , f�x� = '4� 		∀	 ∈ �0, '4� 			 , �� , �� = �4,	 

ℓ�x, y� = x + y,w�y, u�y�� = sinu�y�, λ' = 13 , 	λ4 = 14 	and	g�x� = 6x + 8 

Therefore  

|f�x�| ≤ F = '4� 	 , |k�x, y�| ≤ K = '| , |ℓ�x, y�| ≤ L = 1. Since	|sinu�x� −
sinv�x�| ≤ |u�x� − v�x�|	∀	x ∈ �0, '4� , this	implies	that	W = 1. So 
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��� − �� + ���� + 1� �� − ��# + |%'|	� + |%4|���� + 1� �� − ��#p' ≃ 0.708 < 1 

By using theorem (1.28), the nonlinear nonlocal initial value problem given by 
equations (1.11)-(1.12) has a unique solution. 

  

Third, we extend theorem (1.28) to be valid for the non-linear non-local 
initial value problem that consists of the non-linear fractional Fredholm-Volterra 
integro-differential	equation	of	order	α:	
DA )�� u�x� = f�x, u�x�� + D k�x, y, u�y�
dy + D ℓ�x, y, u�y���

) dy																�1.13�H
)  

together with the non-linear  non-local initial condition 

u�a� = D w�y, u�y��dy																																																																																											�1.14�H
)  

where  u	∈	COa,	bP,	a	≤	x ≤	b,	0	<α≤	1,		k:	Oa,	bP	×	Oa,	bP	×	R→R	,		
ℓ:Oa,	bP	×	Oa,	bP	×	R→ 	R,	f:	Oa,	bP	×	R	→	R	and	w:	Oa,	bP	×	R→R	are		
continuous	functions.	To	do	this	we	need	the	following	lemma.	The	proof	of	
this	lemma	is	similar	to	the	previous,	thus	we	omitted	it.	
	

):Lemma	(1.30  

The non-linear non-local initial value problem given by equation (1.13)-
(1.14) is equivalent to the non-linear integral equation: 

u(x) = D w(y, u(y))dyH
)

+	 1
Γ(α)D (x − y)�"'f(y, u(y))dy�

)
+ 

1
Γ(α)D (x − y)�"' bD k(y, s, u(s))dsH

)
c dy�

)
+ 

1
Γ(α)D (x − y)�"' bD ℓ(y, s, u(s))dsd

)
c dy, a ≤ x ≤ b�

)
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Now, we give the following existence and uniqueness theorem which is an 
extension of theorem (1.28) to be valid for the non-linear non-local initial value 
problem given by equations (1.13)-(1.14). 

 

):Theorem (1.31  

Consider the non-linear non-local initial value problem given by equations 
(1.13)-(1.14). If the following conditions are satisfied: 

(1) f and w satisfy Lipschitz condition with respect to the second argument with 
Lipschitz constants F and W respectively. 

(2) k and ℓ satisfyLipschitz condition with respect to the third argument with 
Lipschitz constants K and L respectively. 

(3) ��� − �� + ���"g����#p'� + �	�p��	��"g���2��#p'� < 1.	 

Then the non-linear non-local initial value problem given by equations (1.13)-
(1.14) has a unique solution. 

Proof: 

Let A be an operator that is defined by  

Au�x� = D w�y, u�y�
dy + 1Γ�α�D �x − y��"'f�y, u�y�
dy�
)

H
) + 

1Γ�α�D �x − y��"' bD k�y, s, u�s��dsH
) c dy +�

)  

1Γ�α�D �x − y��"' bD ℓ�y, s, u�s��dsd
) c dy�

) , a ≤ x ≤ b 

Then  

|Au�x� − Av�x�| ≤ D �w�y, u�y�
 − w�y, v�y���dy +H
)  

1Γ�α�D �x − y��"'|f�y, u�y�� − f�y, v�y��|dy +�
)  
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1

Γ(α) D (x − y)�"' bD |k(y, s, u(s)) − k(y, s, v(s))|dsH
)

c dy + �
)

 

1
Γ(α) D (x − y)�"' bD |ℓ(y, s, u(s)) − ℓ(y, s, v(s))|ds�

)
c dy�

)
 

    

≤ W D |u(y) − v(y)|dyH
)

+ F
Γ(α) D (x − y)�"'|u(y) − v(y)|dy +�

)
 

K
Γ(α) D (x − y)�"' bD |u(s) − v(s)|dsH

)
c dy + �

)
 

L
Γ(α) D (x − y)�"' bD |u(s) − v(s)|dsd

)
c dy �

)
 

≤ W(b − a)‖u − v‖s[),H] + F
Γ(α) D (x − y)�"'dy�

)
‖u − v‖s[),H] + 

(K + L)(b − a)
Γ(α) D (x − y)�"'‖u − v‖s[),H]

�
)

dy 

= bW(b − a) + F(x − a)�
Γ(α + 1) +  (K + L) (b − a)(x − a)�

Γ(α + 1) c ‖u − v‖s[),H] 

≤ bW(b − a) + F(b − a)�
Γ(α + 1) +  (K + L) (b − a)�p'

Γ(α + 1) c ‖u − v‖s[),H] 

Therefore  

‖Au − Av‖A[),H] ≤ bW(b − a) + F(b − a)�
Γ(α + 1) +  (K + L) (b − a)�p'

Γ(α + 1) c ‖u − v‖s[),H] 

Since W(b − a) + w(H"))x
y(�p') +  (zp{) (H"))x�2

y(�p') < 1, then A is a contraction operator. 

Therefore by using the Banach fixed point theorem and lemma (1.30), there exists 
a unique solution to the non-linear non-local initial value problem given by 
equations (1.13)-(1.14). 
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Introduction: 

The Laplace transform is a powerful tool in applied mathematics and 
engineering. It allows us to transform differential equations into algebraic 
equations and then by solving these algebraic equations, we can obtain the 
unknown function can be obtained by using the Inverse Laplace transform, [20]. 

It is known that the Laplace transform method is one of the most 
important methods that can be used to solve the local initial value problems that 
consist of the linear ordinary differential equations with constant coefficients 
together with linear local initial conditions, [20]. This method can be also used to 
solve special types of the linear fractional differential equations with constant 
coefficients without any initial conditions, [41].  Moreover, [40] and [48] used 
this method to solve special types of the linear local initial value problems for the 
linear fractional differential equations with constant coefficients and non-constant 
coefficients respectively. 

The aim of this chapter is to use this method to solve special two types of 
local and non-local problems. The first type is the non-local initial value 
problems that consist of the n-th order linear Volterra integro-differential 
equations of difference kernel together with (n-1) linear local initial conditions 
and one linear non-local initial condition. The second  type is the local  initial 
value problems that consist of the linear fractional Volterra integro-differential 
equations of difference kernel together with local initial conditions. 

This chapter consists of three sections: 

In section one, we give some basic concepts of  Laplace transform. 

In section two, we use the Laplace transform method to find the solutions 
of special types of linear Volterra integro-differential equations of difference 
kernel together with local and nonlocal linear initial conditions.. 

In section three, we use the same method to find the solutions of special 
types of linear fractional Volterra integro-differential equations of difference 
kernel together with local linear initial conditions. 

 



Problems cial Types of Linear FractionalLaplace Transform Method for Solving SpeThe  Chapter Two 

29 

 

2.1 Some Basic Concepts of the Laplace Transform: 

Recall that, the Laplace transform of a continuous function defined on 
[0,∞) which is of exponential order, denoted byL{u(x)} or U(s) is defined by: 

sx

0

L{u(x)} e u(x)dx
∞

−= ∫  

where s is a complex number for which the above integral converges, [20]. 

In this case, u(x) is called the inverse Laplace transform of U(s), that is 
1u(x) L {U(s)}−=  where 1L−  is called the inverse Laplace transformation 

operator.  

 In this section we give some of the useful properties of the Laplace 
transform  

We start this section by giving the following known properties for the 
Laplace transform and its inverse, [20]: 

(1) L and 1L− are linear operators. 

(2) Let U(s) L{u(x)}= then  

m 1
(m) m i (m i 1)

i 0

L{u (x)} s U(s) s u (0),   m N                               (2.1)
−

− −

=

= − ∈∑  

(3) Let U(s) L{u(x)}=  and W(s) L{w(x)}=  then 

                            
x

0

L w(x y)u(y)dy U(s)W(s)                                                (2.2)
 

− = 
 
∫

 

(4) Let U(s) L{u(x)}= then  

x

0

U(s)
L u(y)dy                                                                  (2.3) 

s

 
= 

 
∫
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(5) { } 1

( 1)
L x ,    1                                                       (2.4)

s
β

β+

Γ β += β > −  

Next, we give some another important properties for the Laplace 
transform. We start by the following lemma. 

 

Lemma (2.1), [40]: 

 Let U(s) L{u(x)}=  then   

{ }0

U(s)
L I u(x) ,

s
+

α
α= α > 0. 

Proof: 

  It is known that 

{ }
x x

1 1

0
0 0

1 1
L I u(x) L (x y) u(y)dy L (x y) u(y)dy .

( ) ( )
+

α α− α−   
= − = −   Γ α Γ α   

∫ ∫  

Let 1 1w(x y) (x y) ,  then w(x)=x .α− α−− = −  By using equations (2.2),(2.4) one 

can get: 

{ }0

1
L I u(x) U(s)W(s)

( )
+

α =
Γ α

 

where 1 ( )
W(s) L{x } .

s
α−

α

Γ α= =  Therefore  

{ }0

U(s)
L I u(x) .

s
+

α
α=  α > 0. 

Remark (2.2): 

 If 1,α = then by using lemma (2.1) one can have: 

{ } { }
x

1

0 0
0

U(s)
L I u(x) L I u(x) L u(y)dy .

s
+ +

 
= = = 

 
∫  

Thus lemma (2.1) is a generalization of equation (2.3). 



Problems cial Types of Linear FractionalLaplace Transform Method for Solving SpeThe  Chapter Two 

31 

 

To illustrate lemma (2.1), consider the following example: 

 

Example (2.3): 

Let u(x) x ,  > 1β= β −  then  

{ } 1

10

( 1)
U(s) ( 1)sL I u(x) .
s s s

+

β+
α

α α α+β+

Γ β +
Γ β += = =

 

On the other hand 

0 0

( 1)
I u(x) I x x .

( 1)
+ +

α α β α+βΓ β += =
Γ α + β +  

Thus 

{ } { } { }0 0

1 1

( 1)
L I u(x) L I x L x

( 1)

( 1) ( 1) ( 1)
                .

( 1) s s

+ +
α α β α+β

α+β+ α+β+

Γ β += =
Γ α + β +

Γ β + Γ α + β + Γ β += =
Γ α + β +

 

 

 Now, the following lemma gives the Laplace transform for the left hand 
Caputo fractional derivative. This lemma appeared in [40], here we give the 
details of its proof. 

 

Lemma (2.4), [40]: 

 Let U(s) L{u(x)}=  then   

{ }

n 1
n i (n i 1)

C i 0
n0

s U(s) s u (0)

L D u(x) ,  n 1 n,  n N.
s

+

−
− −

α =
−α

−
= − < α ≤ ∈

∑
                    

provided  C

0
D u(x)+

α
 exists for each x 0.≥  
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Proof: 

By using remarks (1.21), (1), one can get: 

{ } { }C n (n)

0 0
L D u(x) L I u (x) ,  n 1 n,  n N,+ +

α −α= − < α ≤ ∈  

So, by using lemma (2.1) one can obtain: 

{ } { }
{ }

C n (n)

0 0

(n)

n

L D u(x) L I u (x)

L u (x)
                      = .

s

+ +
α −α

−α

=
 

By using equation (2.1), the above equation becomes: 

{ }

n 1
n i (n i 1)

C i 0
n0

s U(s) s u (0)

L D u(x) ,  n 1 n,  n N,                 (2.5)
s

+

−
− −

α =
−α

−
= − < α ≤ ∈

∑

 

 

Remark (2.5): 

If α = n, n ∈ N, then by using lemma (2.4) one can have: 

L� D� ��� u(x) = L�u(�)(x) 

																										= ��U(s) − � ��u(�����)(0)
���

���
 

Thus lemma (2.4) is a generalization of equation (2.1). 

 

To illustrate lemma (2.4), consider the following example: 

 

Example (2.6): 

Let 2 3
u(x) x  and = . Therefore n=1 and

7
= α
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18

7

3
C 7

40
7

sU(s) u(0) 2
L D u(x) .

ss
+

  −= = 
 

 

On the other hand, by using proposition (1.13) one can have: 

3 3 3 11
2C C 27 7 7 7

0 0

(3) (3)
D u(x) D x x x .

3 18
2 1

7 7

+ +

−Γ Γ= = =
   Γ − + Γ   
   

 

Then by using equation (2.4) one can get: 

3 3 11
C C 27 7 7

18 18 180 0
7 7 7

18
(3) (3) (3) 27

L D u(x) L D x L x .
18 18

s s s
7 7

+ +

 Γ      Γ Γ Γ = = = = =     
        Γ Γ   
     

Now, the following lemma gives the Laplace transform for the left hand 

Riemann-Liouville fractional derivative. This lemma appeared in [40] without 

proof. Here we give its proof. 

 
 

Lemma (2.7): 

 Let U(s) L{u(x)}= then   

{ } ( )
n 1

(n i 1)i n
x 0 0

i 0

L D u(x) s U(s) s I u (0),  n 1 n,  n N.+ +

−
− −α α −α

=

= − − < α ≤ ∈∑  

Provided x 0
D u(x)+

α exists for each x 0.≥  

 

Proof: 

By using remarks (1.21), (2), one can get: 
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{ } ( )
{ }

n
n

x n0 0

(n)

d
L D u(x) L I u(x)

dx

                      =L w (x) ,  n 1 n,  n N,

+ +
α −α 

=  
 

− < α ≤ ∈
 

where n

0
w(x) I u(x).+

−α= Then by using equation (2.1) one can obtain: 

{ }
n 1

n i (n i 1)
x 0

i 0

L D u(x) s W(s) s w (0),  n 1 n,  n N.+

−
α − −

=

= − − < α ≤ ∈∑
 

By using lemma (2.1) one can have: 

{ } { }n

0

n

W(s) L w(x) L I u(x)

U(s)
                           = .

s

+
−α

−α

= =
 

Therefore  

{ } ( )
n 1 (n i 1)i n

x 0 0
i 0

L D u(x) s U(s) s I u (0),  n 1 n,  n N.+ +

− − −α α −α

=

= − − < α ≤ ∈∑  

 

Remark (2.8): 

If α = n, n ∈ N, then by using lemma (2.7) one can have: 

L� D� ��� u(x) = L� D� ��� u(x) 

																										= ��U(s) − � ���I��� u (�����)(0)
���

���
 

																										= ��U(s) − � u(�����)(0)
���

���
 

Thus lemma (2.7) is a generalization of equation (2.1). 
 

To illustrate lemma (2.7), consider the following example: 
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Example (2.9): 

Let 
1

u(x) x  and = . Therefore n=1 and
2

= α
 

(1 1)01 1 1 1 1
1i2 2 2 2 2

x x0 0 0
i 0

(0)1 1
02 2

3 0
2

L D u(x) L D x s U(s) s I u (0)

3
2

                       =s s I u (0).

s

+ + +

+

−
−

=

     
= = −     

     

 Γ     −  
 

∑

 

 

By using proposition (1.19) one can have: 

I��
!
" u(x) = I��

!
" x!

" = Γ($
%)

Γ(2) x 

and this implies that 'I��
!
" u( (0) = 0. Thus L * D� ��

!
" u(x)+ = ,(-

")
. .

 

On the other hand, by using proposition (1.8) one can get: 

1 1 1
2 2 2

x x0 0

3
D u(x)= D x = .

2
+ +

 Γ 
   

Hence 

 

1 1 1
2 2 2

x x0 0

3
3 2

L D u(x) =L D x =L .
2 s

+ +

 Γ         Γ =      
     

 

 

 

 Next, the following lemma gives some properties of the inverse Laplace 
transform. This lemma appeared in [40]. Here we give the details of its proof. 
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Lemma (2.10): 

  Let 0,  0,  0  and a,b R. Thenα > β > γ > ∈  

(1) 1 1
,

s
L x E ( ax ),  for s a .

s a

α−β
− β− α α

α βα

 
= − > + 

 

(2) 
( )

i

1 (n 1) 1 i( )
n 1

i 0

n i
( a)

i1
L x x

(i( ) (n 1) )s as

∞
− α + − α−β

+α β
=

 + 
−   

    = 
 Γ α − β + α + α+    
 

∑  

          where   and s a .α−βα ≥ β >  

(3) 

j i

1 1 i( ) j

j 0 i 0

i j
( b) ( a)

is
L x x

s as b (i( ) ( j 1) )

∞ ∞γ
− α−γ− α−β + α

α β
= =

 + 
− −      = 

 + + Γ α − β + + α − γ 
 
 

∑∑  

          where ,  s a  and s as b .α−β α βα ≥ β > + >  

 

Proof: 
 

(1) It is known that for  s aα > , 

i i

i
i 0 i 0

s 1 1 1 a ( a)
.

as a s s s s1
s

α−β ∞ ∞

α β β α α +β
= =

α

 
  − −   = = =    +     +
 

∑ ∑  

Therefore  
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i
1 1

i

i 0

i 1
i

i 0

i
1

i 1 1

i 0

i
i 1

i 0

s ( a)
L L

s a s

1
                   ( a) L

s

( a) ( i 1 1)
                  L

( i ) s

( a)
                  x

( i )

 

∞α−β
− −

α α +β
=

∞
−

α +β
=

∞
−

α +β− +
=

∞
α +β−

=

   − =   +     

 = −  
 

− Γ α + β − + =  Γ α + β  

−=
Γ α + β

∑

∑

∑

∑
i

1

i 0

1
,

( ax )
                 x

( i )

                  x E ( ax ).

∞ α
β−

=

β− α
α β

−=
Γ α + β

= −

∑
 

(2) It is known that for  x 1,<  

( )
( )

i

n 1

i 0

n i1
x .

i1 x

∞

+
=

+ 
= − +  
∑  

Therefore  

n 1n 1

n 1n 1

1 1

(s as ) as
s

s

1 1
                    

(s ) a
1

s

+α β + α
α

α−β

+α +

α−β

=
+  

+ 
 

=
 + 
 

 

i

n 1

i 0

n i1 a
                  .

i(s ) s

∞

α + α−β
=

+  − =   
  

∑  

Thus 
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i

1 1
n 1 n 1

i 0

i 1
i( ) (n 1)

i 0

i

n i1 1 a
L L

i(s as ) (s ) s

n i 1
                            ( a) L

i s

n i
( a)

i
                           

(i(

∞
− −

α β + α + α−β
=

∞
−

α−β +α +
=

 +   −  =     +       

 +   = −    
   

+ 
−  

 =
Γ α − β

∑

∑

1
i( ) (n 1) 1 1

i 0

i

i( ) (n 1) 1

i 0

(n 1)

(i( ) (n 1) 1 1)
L

) (n 1)) s

n i
( a)

i
                           = x

(i( ) (n 1))

                          x

∞
−

α−β +α + − +
=

∞
α−β +α + −

=

α + −

 
 Γ α − β + α + − +   
 + α +  
 
 

 + −  
  

 Γ α − β + α +
 
 

=

∑

∑

i

1 i( )

i 0

n i
( a)

i
x .

(i( ) (n 1))

∞
α−β

=

 + −  
  

 Γ α − β + α +
 
 

∑

 

(3) It is known that for ,  s a  and s as b ,α−β α βα ≥ β > + >  

j

j 1

j

j 1

j 1

s s 1
.

bs as b s as 1
s as

s b
                  .

s as s as

s ( b)

(s as )

γ γ

α β α β

α β

∞γ

α β α β
=

∞ γ

α β +
=

 
  

=   + + +   +
+ 

  − =    + +  

−=
+

∑

∑
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Thus   

j
j 1

j 0

i
j

j 1

j 0 i 0

i j
i( ) ( j 1)

j 0 i 0

i j

s 1
s ( b) .

s as b (s as )

i j1 a
s ( b) .

i(s ) s

i j 1
( a) ( b)

i s

i j
( a) ( b)

i (i( ) ( j 1) 1 1

(i( ) ( j 1) )

∞γ
γ

α β α β +
=

∞ ∞
γ

α + α−β
= =

∞ ∞

α−β + + α−γ
= =

= −
+ + +

+  − = −   
  

+  = − −   
  

+ 
− −   Γ α − β + + α − γ − + =

Γ α − β + + α − γ

∑

∑ ∑

∑∑

i( ) ( j 1) 1 1

j 0 i 0

)

s

∞ ∞

α−β + + α−γ− +
= =

 
 
 ∑∑

  

Therefore  

1

i j

1
i( ) ( j 1) 1 1

j 0 i 0

i j

i( ) ( j 1)

s
L

s as b

i j
( a) ( b)

i (i( ) ( j 1) 1 1)
              L

(i( ) ( j 1) ) s

i j
( a) ( b)

i
              x

(i( ) ( j 1) )

γ
−

α β

∞ ∞
−

α−β + + α−γ− +
= =

α−β + + α

 
 + + 

+ 
− −   Γ α − β + + α − γ − +  =  Γ α − β + + α − γ  

+ − −  
 =

Γ α − β + + α − γ

∑∑

1

j 0 i 0

i j

1 i( ) j

j 0 i 0

i j
( a) ( b)

i
              x x .

(i( ) ( j 1) )

∞ ∞
−γ−

= =

∞ ∞
α−γ− α−β + α

= =

+ 
− −  

 =
Γ α − β + + α − γ

∑∑

∑∑
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2.2 Laplace Transform Method for Solving Ordinary Non-Local 
Problems: 

In this section we use the Laplace transform method to solve the non-local 
initial value problems that consist of the linear non-homogenous Volterra integro-
differential equations together with non-local initial conditions. To do this, 
consider the n-th order linear non-homogeneous Volterra integro-differential 
equation of the difference kernel: 

xn 1
(n) (i)

i

i 0 0

u (x) a u (x) k(x y)u(y)dy g(x),   x 0                           (2.6) 
−

=

+ = λ − + ≥∑ ∫
together with the linear local initial conditions: 

(i)
i

1 2

u (x) c ,  i=1,2,...,n 1                                                                         (2.7)

and the linear non-local initial condition:

u(0)= u(x)dx                                      

= −

µ + µ
b

0

                                          (2.8)∫
where { }n 1

i 1 2i 1
c , ,   

−

=
µ µ , λ, /0�1������	are known constants, b is a known constant 

such that b > 0  and k, g are continuous functions defined on [0,∞) which are of 
exponential order. The Laplace transform method begins by taking the Laplace 
transform to both sides of equation (2.6) and by using the linearity property of the 
Laplace transform operator one can obtain: 

{ } { } { }
xn 1

(n) (i)
i

i 0 0

L u (x) a L u (x) L k(x y)u(y)dy L g(x) ,   x 0 
−

=

  + = λ − + ≥ 
  

∑ ∫  

By using equations (2.1)-(2.2), the above equation becomes: 

n 1 n 1 i 1
n i (n i 1) i j (i j 1)

0 i

i 0 i 1 j 0

s U(s) s u (0) a U(s) a s U(s) s u (0)

                                                  K(s)U(s) G(s)                                   (2.9)

− − −
− − − −

= = =

  − + + − = 
  

+

∑ ∑ ∑
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Where { } { } { }U(s) L u(x) ,  K(s) L k(x)  and G(s) L g(x) .= = =  Assume that 

0u(0) c= , where 0c  is unknown constant. By substituting 0u(0) c=  and 

equation (2.7) into equation (2.9) one can have: 

n 1 n 1 n 1 i 1
n i k j (i j 1)

i n k 1 i

i 0 k 0 i 1 j 0

s a s K(s) U(s) s c a s u (0) G(s).
− − − −

− −
− −

= = = =

 
+ − λ = + + 

  
∑ ∑ ∑ ∑  

Therefore 

{ }

n 1 n 1 i 1
k j (i j 1)

n k 1 i

k 0 i 1 j 01 1
n 1

n i
i

i 0

s c a s u (0) G(s)

u(x) L U(s) L .

s a s K(s)

− − −
− −

− −
= = =− −

−

=

 
+ + 

 = =  
 + − λ
 
 

∑ ∑ ∑

∑  

The obtained solution u depends on x and on the unknown constant 0c . Then this 

solution must satisfy the non-local initial condition given by equation (2.8). So, 

the value of the unknown constant 0c  can be determined by solving the algebraic 

equation: 

b

0 1 2

0

c = u(x)dx .µ + µ∫  

 To illustrate this method, consider the following examples: 

 

Example (2.11): 

Consider the nonlocal initial value problem that consists of the second 
order linear non-homogeneous Volterra integro-differential equation of the 
difference kernel: 

x 5
3 2

0

x
u (x) 2u (x) u(x) (x y)u(y)dy x 6x 6x,   x 0       (2.10) 

20
′′ ′+ + = − + − + + ≥∫

together with the linear local initial conditions: 
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u (0) 0                                                                                                   (2.11)

and the linear nonlocal initial condition:

1
u(0)= u(x)dx                                 

4

′ =

−
1

0

                                                   (2.12)∫
We use the Laplace transform method to solve this nonlocal initial value 
problem. To do this, we take the Laplace transform to both sides of equation 
(2.10) and by using the linearity property of the Laplace transform operator one 
can obtain: 

{ } { } { }

{ } { } { }
x 5

3 2

0

L u (x) 2L u (x) L u(x)

x
                                  L (x y)u(y)dy L x L L 6x L 6x  

20

′′ ′+ + =

    − + − + +   
   

∫
            (2.13) 

Let u(0) = c0. Therefore 

{ }
{ }

2 2
0

0

L u (x) s U(s) su(0) u (0) s U(s) sc ,

L u (x) sU(s) u(0) sU(s) sc .

′′ ′= − − = −
′ = − = −  

Since k(x-y) = x-y, thus k(x) = x and this implies that k(s) = 
�
.. 

5
3 2

4 6 3 2

x 6 6 12 6
moreover,sin ce f (x) x 6x 6x,  then F(s)= .

20 s s s s
= − + + − + +

 

So, equation (2.13) takes the form: 

( )2
0 2 4 6 3 2

1 6 6 12 6
s 2s 1 U(s) (s 2)c U(s) .

s s s s s
+ + − + = + − + +

 
Thus  

6 2 3 4
0

4 4 3 2

6 2 3 4
0

4 2 2

s (s 2)c 6s 6 12s 6s
U(s)

s (s 2s s 1)

s (s 2)c 6s 6 12s 6s
        = .

s (s s 1)((s s 1)

+ + − + +=
+ + −

+ + − + +
+ − + +
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After simple computations, the above equation can be rewritten as: 

o
04 2 2

o
02 24 2 2

o
024 2

1
sc6 1 2U(s) c

s 2 s s 1 s s 1

1
sc6 1 2        = c

s 2 1 5 1 3
s s

2 2 2 2

5
sc6 2        = c

s 5 1 5
s

2 2

 +  = + +   + − + +   
 

   
   +   + +   

         + − + +                  

 
  + + + 

   + −        

22

1
2 .

1 3
s

2 2

 
 
 
 

   + +        

 

Hence  

1 o
02 24 2 2

1 1
x x3 0 2 2

0

5 1
sc6 2 2u(x) L c

s 5 1 5 1 3
s s

2 2 2 2

c 5 3
        =x e sinh x c e cos x ,  x 0                (2.14)      

2 25

−

− −

    
    +    = + +    

          + − + +                    

   
+ + ≥   

   
 

By substituting this solution into equation (2.12) one can get the linear algebraic 
equation: 

1 1 1
x x3 0 2 2

0 0

0

c 5 3 1
c x e sinh x c e cos x dx=

2 2 45

− −     − + + −    
     
∫  

After simple computations, the above algebraic equation becomes: 
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5 1 5 1 5 1 5 1
0 02 2 2 2

0 0 0

1 1

2 2
0 0

c c 5 5
e c e c e c e

4 4 20 20

1 3 3 3
                                                  c e cos c e sin 0.

2 2 2 2

+ − + −− −

− −

− + − + −

   
+ =   

   

 

which has the solution 0c 0.=  By substituting 0c 0=  into equation (2.14) one can 

get: 

3u(x) x ,  x 0= ≥  

which is the exact solution of the nonlocal initial value problem given by 
equations (2.10)-(2.12). 

 

 

 

2.3 Laplace Transform Method for Solving the Local Initial Value 
Problems for Fractional Volterra Integro-Differenti al Equations: 

It is known that the Laplace transform method can be used to some types of 
fractional local initial value problems involving Caputo differential operator, 
[40], [41]. 

In this section we use the Laplace transform method to solve the 
fractional local initial value problems that consist of the linear non-homogenous 
Volterra integro-differential equations together with local initial conditions. To 
do this, consider the linear fractional Volterra integro-differential equation of the 
difference kernel of order α of the second kind: 

x
C

0
0

D u(x) au(x) k(x y)u(y)dy g(x),   n 1< n+
α + = λ − + − α ≤∫   								
2.15) 

together with the linear local initial conditions:   

(i)
iu (x) c ,  i=0,1,...,n 1                                                                        (2.16)= −  
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where { }n 1

i 1 2i 1
c , ,   

−

=
µ µ a, λ  are known constants, k, g are continuous functions 

defined on [0,∞) which are of exponential order. The Laplace transform method 
begins by taking the Laplace transform to both sides of equation (2.15) and by 
using the linearity property of the Laplace transform operator one can obtain: 

{ } { } { }
x

C

0
0

L D u(x) aL u(x) L k(x y)u(y)dy L g(x) ,   0< 1+
α  

+ = λ − + α ≤ 
 
∫  

By using equations (2.2), (2.5), the above equation becomes: 

n 1
i n (n i 1)

i 0

s U(s) s u (0) aU(s) K(s)U(s) G(s)                         (2.17)
−

α +α− − −

=

− + = λ +∑
where { } { } { }U(s) L u(x) ,  K(s) L k(x)  and G(s) L g(x) .= = =  By substituting 

equation (2.16) into equation (2.17) one can have: 

n 1
i n

n i 1

i 0

s a K(s) U(s) s c G(s).
−

α +α−
− −

=

 + − λ = +  ∑  

Therefore 

{ }

n 1
i n

n i 1

1 1 i 0

s c G(s)

u(x) L U(s) L                                        (2.18)
s a K(s)

−
+α−

− −
− − =

α

 
+ 

 = =  + − λ 
 
 

∑

 

 To illustrate this method, consider the following examples: 

 

Example (2.12): 

Consider the local initial value problem that consists of the fractional 
linear Volterra integro-differential equation of the difference kernel of order α : 

x
C

0
0

D u(x) au(x) (x y) u(y)dy,   n 1 n, 1 (2.19)+
α β+ = λ − − < α ≤ β > −∫
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together with the linear local initial conditions: 

(i)
iu (0) c ,  i=0,1,...,n 1.= −  

We use the Laplace transform method to solve this local initial value problem. By 
using equation (2.18), the solution of the above local initial value problem takes 
the form: 

{ }

n 1
i n

n i 1

1 1 i 0

1

s c

u(x) L U(s) L
( 1)

s a
s

−
+α−

− −
− − =

α
β+

 
 
 = =  Γ β + + − λ
 
 

∑
 

 

n 1
i n 1

n i 1

1 i 0
1 1

s c

 =L                                (2.20)              
s as ( 1)

−
+α− +β+

− −
− =

α+β+ β+

 
 
 
 + − λΓ β + 
 
 

∑

  

If  0< 1, then n=1. In this case, equation (2.20) becomesα ≤
 

1 0
1 1

s c
u(x)=L . 

s as ( 1)

α+β
−

α+β+ β+

 
 + − λΓ β + 

 

By using lemma (2.10), (3), the solution of this local problem is  

j i

i j( 1)
0

j 0 i 0

i j
( ( 1)) ( a)

i
u(x) c x  

(i ( j 1)( 1) )

∞ ∞
α+ α+β+

= =

 + 
λΓ β + −  

  =
 Γ α + + α + β + − α − β
 
 

∑∑  

where |�5| > |0| and 7�89�(�5 + 0)7 > |;<(= + �)|. 
 

In this case, if λ=0, then equations (2.19) become 



Problems cial Types of Linear FractionalLaplace Transform Method for Solving SpeThe  Chapter Two 

47 

 

C

0
D u(x) au(x) 0,    0 1+

α + = < α ≤
 

together with the linear local initial condition: 

0u(0) c=  

By using lemma (2.10), (1), this local initial value problem has the solution  

1
1

0 0

s
u(x)=c L c E ( ax ), s a.

s a

α−
− α α

αα

 
= − > + 

 

This solution is a generalization to the solution that appeared in [25].

 

If  1< 2, then n=2. In this case, equation (2.20) becomesα ≤
 

1
1 1 0

1 1

s c s c
u(x)=L . 

s as ( 1)

α+β− α+β
−

α+β+ β+

 +
 + − λΓ β + 

 

By using lemma (2.10), (3), the solution of this local problem is  

j i

i j( 1)
0

j 0 i 0

j i

2 i j( 1)
1

j 0 i 0

i j
( ( 1)) ( a)

i
u(x) c x x

(i ( j 1)( 1) 1)

i j
( ( 1)) ( a)

i
c x x

(i ( j 1)( 1) 1)

∞ ∞
+ α+β+

= =

∞ ∞
α+ α+β+

= =

 + 
λΓ β + −  

  = +
 Γ + + α + β + − α −β +
 
 

 + 
λΓ β + −  

  
 Γ α + + α + β + − α − β +
 
 

∑∑

∑∑  

In this case, if λ=0, then equation (2.19) become 

C

0
D u(x) au(x) 0,    1 2+

α + = < α ≤
 

together with the local linear initial conditions: 

0 1u(0) c ,  u (0)=c′=  
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By using lemma (2.10), (1) this local initial value problem has the solution  

2 1
1 1

1 0 1 ,2 0

s s
u(x)=c L +c L c xE ( ax ) c E ( ax ). 

s a s a

α− α−
− − α α

α αα α

   
= − + −   + +   
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Introduction:  

It is known that, when a Taylor series is truncated to a finite number of 
terms the result is a Taylor polynomial. This Taylor polynomial is used to 
approximate functions numerically, [45]. 

Taylor expansion method is an approach which based on approximating 
the unknown function in terms of  Taylor’s polynomial and can be used to solve 
the linear Fredholm integral equations of the second kind, [26] and the local 
initial value problems for the first order Fredholm-Volterra integro-differential 
equations of the second kind, [31]. 

The aim of this chapter is to present a method named as the generalized 
Taylor expansion method. This method depends on approximating the unknown 
function in terms of the generalized Taylor’s formula and can be used to solve the 
non-local initial value problems for the linear fractional Fredholm-Volterra 
integro-differential equations of order ,  where 0< 1.α α ≤  

This chapter consists of three sections: 

In section one, we give some basic concepts of generalized Taylor 
formula. 

In section two, we use Taylor expansion method for solving the local 
initial value problems that consist of the first order linear Fredholm-Volterra 
integro-differential equations together with the linear non-local initial conditions. 

In section three, we use the generalized Taylor expansion method for 
solving the non-local initial value problems that consist of the linear fractional 
Fredholm-Volterra integro-differential equations together with the linear non-
local initial conditions. 
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3.1 Some Basic Concepts of Generalized Taylor Formula:  

In this section we give some basic concepts of the generalized Taylor 
formula with some illustrative examples. This generalized Taylor formula for a 
function u defined on x > a  is obtained in terms of its left hand Caputo fractional 
derivatives evaluated only at the initial point a of the independent variable x, 

( )( )iC

a
D u (a),  i=0,1,....+

α  

We start this section by giving the generalized mean value theorem. But 
before that we need the following lemma. 

 

]:12ntegrals), [Value Theorem for I eanM GeneralizedLemma (3.1), (  

Let u be a continuous function on [a,x], v is an integrable function on [a,x] 
and v ≥ 0, then there exists a number	�∈ [a,x] such that  

� u�x�v�x�dx = u�	ξ�� v�x�dx


�



�
 

  

]:46), (Generalized Mean Value Theorem), [.2(3Theorem   

Suppose that u ∈ C [a, b] and C
a

D u C[a,b]+
α ∈  for  0< α ≤ 1, then 

( ) ( )( )C

a

1
u(x) u(a) D u ( )(x a)

1
+

α α= + ξ −
Γ α +

 

where  a ≤ � ≤ x. 

 

roof:P  

It is known that  

( ) ( ) ( )( )
x

C 1 C

a a a
a

1
I D u (x) (x y) D u (y)dy.+ + +

α α α− α= −
Γ α ∫

 

By using lemma (3.1) one can have:  
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( ) ( ) ( )( )

( ) ( )( )

x
C C 1

a a a
a

C

a

1
I D u (x) D u ( ) (x y) dy

1
                   D u ( )(x a)     x [a,b]

1

+ + +

+

α α α α−

α α

= ξ −
Γ α

= ξ − ∀ ∈
Γ α +

∫
 

where a b≤ ξ ≤ . 

By using remarks (1.21), (4) one can get: 

( )

( ) ( )( )

C

a a

C

a

I D u(x) u(x) u(a)

1
                   D u ( )(x a)     x [a,b].

1

+ +

+

α α

α α

= −

= ξ − ∀ ∈
Γ α +

 

Therefore  

( ) ( )( )C

a

1
u(x) u(a) D u ( )(x a) .

1
+

α α= + ξ −
Γ α +

 

 

Remark (3.3): 

 If α=1, then the generalized mean value theorem reduces to the classical 
mean value theorem. 

 

Next, before we give the generalized Taylor theorem, we need the 
following generalized lemma. 

  

]:48, [)4Lemma (3.  

Suppose that ( )a

i
CD u C[a,b]+

α ∈  and ( )a

i 1
CD u C[a,b]+

+
α ∈  for 0 < α ≤ 1, 

and i=0,1,…, then for each x∈ [a, b]: 

( )( ) ( )( ) ( ) ( )( )i (i 1) ii C (i 1) C C i

a a a a a

1
I D u (x) I D u (x) D u (a)(x a)

i 1
+ + + + +

+α α + α α α α− = −
Γ α +
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Proof:  

Consider  

( )( ) ( )( )
( )( ) ( )( )( )
( )( ) ( ) ( )( )( )

i (i 1)i C (i 1) C

a a a a

i (i 1)i C C

a a a a

i ii C C C

a a a a a

I D u (x) I D u (x)

                                        I D u (x) I D u (x)

                                        I D u (x) I D D u (x)

+ + + +

+ + + +

+ + + + +

+α α + α α

+α α α α

α α α α α

−

= −

= −

 

Since 0 < α ≤ 1, then n=1. So by using remarks (1.21), (4) one can get: 

( )( ) ( )( )
( )( ) ( )( ) ( )( )( )
( )( )( )

i (i 1)i C (i 1) C

a a a a

i i ii C C C

a a a a

ii C

a a

     I D u (x) I D u (x)

                                        I D u (x) D u (x) D u (a)

                                        I D u (a)

                      

+ + + +

+ + + +

+ +

+α α + α α

α α α α

α α

−

= − +

=

( )( )( )
( )( )( )

( )( )( )

x
ii 1 C

a
a

x
iC i 1

a
a

iC i

a

1
                  (x y) D u (a) dy

(i )

1
                                        D u (a) (x y) dy

(i )

1
                                        D u (a) (x a) ,   i=0,1,....

(i 1)

+

+

+

α− α

α α−

α α

= −
Γ α

= −
Γ α

= −
Γ α +

∫

∫

  

Remark (3.5): 

 If α=1, then lemma (3.4) reduces to the classical equation: 

i (i) (i 1) (i 1) (i) i

a a

1
I u (x) I u (x) u (a)(x a) ,   i=0,1,...,

i!
+ +

+ +− = −  
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]:Generalized Taylor Formula), [46(), 6Theorem (3. 

Suppose that ( )a

i
CD u C[a,b]+

α ∈  for  0 < α ≤ 1, and i=0,1,…,N+1 then 

for each x∈ [a, b]: 

( )( )
( )

( )( )
( )

i N 1C C
N

a ai (N 1)

i 0

D u (a) D u ( )
u(x) (x a) (x a)          (3.1)

i 1 (N 1) 1

+ +

+α α

α + α

=

ξ
= − + −

Γ α + Γ + α +∑  

where   a ≤ ξ ≤ b. 

 

roof:P 

By using lemma (3.4), one can have: 

( ) ( ) ( )C iN N
ai C i (i 1) C i 1 i

a a a a
i 0 i 0

( D ) u (a)
I ( D ) u (x) I ( D ) u (x) (x a)

(i 1)

+

+ + + +

α
α α + α α + α

= =

 − = −  Γ α +∑ ∑  

Therefore  

( ) ( )C iN
a(N 1) C N 1 i

a a
i 0

( D ) u (a)
u(x) I ( D ) u (x) (x a)                       (3.2)

(i 1)

+

+ +

α
+ α α + α

=

− = −
Γ α +∑ 

By using lemma (3.1), one can obtain: 

( )( ) ( )( )( )
( )( )

x
(N 1) N 1(N 1) C (N 1) 1 C

a a a
a

x
N 1C (N 1) 1

a
a

1
       I D u (x) (x y) D u (y) dy

((N 1) )

1
                                                     D u ( ) (x y) dy

((N 1) )

                                   

+ + +

+

+ ++ α α + α− α

+α + α−

= −
Γ + α

= ξ −
Γ + α

∫

∫

( )( )N 1C (N 1)

a

1
                  D u ( )(x a) ,            (3.3)

((N 1) 1)
+

+α + α= ξ −
Γ + α +

  

By substituting equation (3.3) into equation (3.2), one can get: 
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( )( )
( )

( )( )
( )

i N 1C C
N

a ai (N 1)

i 0

D u (a) D u ( )
u(x) (x a) (x a)          

i 1 (N 1) 1

+ +

+α α

α + α

=

ξ
= − + −

Γ α + Γ + α +∑
 

]:), [46(3.7 sRemark 

(1) For α = 1, theorem (3.6) reduces to the classical Taylor formula of u about a:  
N (i) (N 1)

i (N 1)

i 0

u (a) u ( )
u(x) (x a) (x a) ,   a b 

i! (N 1)!

+
+

=

ξ= − + − ≤ ξ ≤
+∑  

(2) suppose that ( )a

i
CD u C[a,b]+

α ∈  for 0 < α ≤ 1, and i=0,1,…, then the                                

generalized Taylor series for u takes the form: 

( )( )
( )

iC

a i

i 0

D u (a)
(x a)

i 1

+
α∞

α

=

−
Γ α +∑  

(3) Suppose that ( )a

i
CD u C[a,b]+

α ∈  for 0 < α ≤ 1, and i=0,1,…,N+1, then 

( )( )
( )

iC
N

a i
N

i 0

D u (a)
u(x) u (x) (x a)          

i 1

+
α

α

=

≅ = −
Γ α +∑  

Furthermore, the error term R��x� has the form: 

( )( )
( )

N 1C

a (N 1)
N

D u ( )
R (x) (x a) ,   a b

(N 1) 1

+

+α

+ α
ξ

= − ≤ ξ ≤
Γ + α +

  

 

:)8Example (3.  

Let u(x) = k,  x∈ [a, b],  where k is a known constant, then 

( )a

i
CD u C[a,b]+

α ∈ for 0 < α ≤ 1, and i=0,1,…. Thus 
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( )( )
( )

iC
N

a i
N

i 0

D u (a)
u(x) u (x) (x a) ,   a x b,  0< 1         

i 1

+
α

α

=

≅ = − ≤ ≤ α ≤
Γ α +∑

 

But ( )( )iC

a
D u (a) 0,   i=1,2,...,+

α =  then 0u(x) u (x) u(a) k.≅ = =  In this case 

0R (x) 0,   x [a,b].= ∀ ∈  

 

):9Example (3. 

Let u(x) = k�x + k�, x ∈ [a, b], where k�, k� are known constants, then 

( )a

i
CD u C[a,b]+

α ∈ for 0 < α ≤ 1, and i=0,1,…. Thus 

( )( )
( )

iC
N

a i
N

i 0

D u (a)
u(x) u (x) (x a) ,   a x b,  0< 1         

i 1

+
α

α

=

≅ = − ≤ ≤ α ≤
Γ α +∑  

Therefore, if 
1

a 0,  
2

= α =  then by using proposition (1.13) one can have: 

1
C 1 12

0

21
C 2

10

k x 2k x
D u (x)

3
2

and

D u (x) k .

+

+

  
= =      π   Γ 

 

  
  =    

 

So  

i1
C 2

0
D u (x) 0,  i=3,4,.... Hence+

  
  =    
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( )

211
C 2C 2

00

2

2 1

D u (0)D u (0)

u(x) u (x) u(0) x x
3 2
2

                     =k +k x,  0 x b.

         

++

                 ≅ = + +
Γ Γ 

 

≤ ≤ 

In this case 2R (x) 0.=  On the other hand, if 
1

a 1, , 
2

= α =  then 

21 1
C C12 2

11 1

2k x 1
D u (x) ,  D u (x) k   and+ +

     −
 = =       π      

 

i1
C 2

1
D u (x) 0,i 3,4,....+

  
  = =    

Hence 

( )

211
C 2C 2

11

2

2 1 1

2 1

D u (1)D u (1)

u(x) u (x) u(1) x 1 (x 1)
3 2
2

                     =k +k +k (x 1)

                     =k +k x,  1 x b.

++

                 ≅ = + − + −
Γ Γ 

 

−
≤ ≤

 

In this case 2R (x) 0.=  Moreover, if 
1

,
3

α =  then 

2 2
1 13 3

C C1 13 3
0 1

3k x 3k (x 1)
D u (x) ,   D u (x)

2 2
2 2 

3 3

+ +

       −= =                  Γ Γ   
   

, 
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1 1

3 32 21 11 1
C C3 3

0 1

2 2
3 3 k x 3 3 k (x 1)

3 3
D u (x) ,  D u (x) ,

2 2 
+ +

   Γ Γ −               = =      π π      
 

3 31 1
C C3 3

1 10 1
D u (x) k ,  D u (x) k .+ +

      
   = =              

Hence  

i i1 1
C C3 3

0 1
D u (x)  D u (x) 0,  i=4,5,....+ +

      
   = =            

 

Thus  

( )
2

3

3

2 31 11
C C3 3C 3

0 00 1
3

2 1

u(x) u (x)

D u (0) D u (0)D u (0)

      u(0) x x x
4 5 2
3 3

       =k +k x,  0 x b

+ ++

≅

                               = + + +
Γ   Γ Γ   

   

≤ ≤

 

and  

2

3

3

211
C 3C 3

11 1
3

1
C 3

1

u(x) u (x)

D u (1)D u (1)

      u(1) (x 1) (x 1)
4 5
3 3

D

                                                                                      

++

+

≅

                 = + − + − +
   Γ Γ   
   





( )

3

u (1)

(x 1)
2

 
    −

Γ
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2 1 1

2 1

       =k +k +k (x 1)

       =k +k x,  1 x b.

−
≤ ≤

 

In the above two cases 3R (x) 0.=  

 

):10Example (3. 

Let 3 1
u(x) x ,  a=0  and = , then 

2
= α  

i1
C 2

0N i
2

N

i 0

D u (0)

u(x) u (x) x ,   0 x b         
i

1
2

+

=

  
     ≅ = ≤ ≤

 Γ + 
 

∑  

By using proposition (1.13) one can have: 

5
1 12

C C2 2
0 0

16x
D u (x)  and this implies that D u (0) 0,  

5 2
+ +

      
= =         

        

2 21 1
C 2 C2 2

0 0
D u (x) 3x  and this implies that D u (0) 0,  + +

      
   = =              

3
3 31 12

C C2 2
0 0

8x
D u (x)  and this implies that D u (0) 0,  + +

      
   = =      π        

4 41 1
C C2 2

0 0
D u (x) 6x and this implies that D u (0) 0,  + +

      
   = =              

5 51 1
C C2 2

0 0

12 x
D u (x)  and this implies that D u (0) 0,  + +

      
   = =      π        
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6 61 1
C C2 2

0 0
D u (x) 6 and this implies that D u (0) 6 + +

      
   = =            

 

and 

i1
C 2

0
D u (x) 0,  i=7,8,....+

  
  =    

Hence  

i1
C 2

06 i
2

6

i 0

3

D u (0)

u(x) u (x) x
i

1
2

                     =x ,   0 x b.

+

=

  
     ≅ =

 Γ + 
 

≤ ≤

∑ 

In the this case 6R (x) 0.=  

 

 

3.2 The Classical Taylor Expansion Method for Solving Linear Integro-
Differential Equations with Non-Local Conditions: 

Recall that the classical Taylor expansion method is used to solve the 
local initial value problem for the linear integro-differential equations, [31]. 

In this section we use the same method to solve the non-local initial value 
problem that consists of the linear first order Fredholm-Volterra integro-
differential equation of the second kind: 

b x

1 2

a a

u (x) g(x) k(x, y)u(y)dy (x, y)u(y)dy,   a x b               (3.4)′ = + λ + λ ≤ ≤∫ ∫l

  

together with the linear non-local initial  condition: 

 
u�a� = μ� � u�y�dy + μ��

�                                                                                  (3.5) 
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where g, u ∈ C[a, b],	k: [a, b] × [a, b] →R, ℓ: [a, b] × [a, b] →R are 
continuous functions,  μ�, 	μ�, λ�, λ� are known constants. To do this, we assume 
that the solution u of the non-local initial value problem given by equations (3.4)-
(3.5) can be approximated by the classical Taylor᾽s polynomial of degree N about 
c: 

N
(i ) i

N

i 0

1
u(x) u (x) u (c)(x c) ,     a c b                               (3.6) 

i!
=

≅ = − ≤ ≤∑
 

By substituting equation (3.6) into equations (3.4)-(3.5), one can have: 

b xN
(i) i i

1 2

i 0 a a

1
u (x) g(x) u (c) k(x, y)(y c) dy (x, y)(y c) dy

i!
=

 
′  = + λ − + λ −

  
∑ ∫ ∫ l 

and 

bN N
(i) i (i) i

1 2

i 0 i 0 a

N i 1 i 1
(i)

1 2

i 0

1 1
u (c)(a c) u (c) (y c) dy

i! i!

1 (b c) (a c)
                             = u (c)

i! i 1

= =

+ +

=

− = µ − + µ

 − − −µ + µ + 

∑ ∑ ∫

∑
  

So  

b cN
(i) i i

1 2

i 0 a a

1
u (c) g(c) u (c) k(c, y)(y c) dy (c, y)(y c) dy

i!
=

 
′  = + λ − + λ −

  
∑ ∫ ∫ l  

(3.7) 

and 

{ }
N

i i 1 i 1 (i)1
2

i 0

1
(a c) (b c) (a c) u (c)                            (3.8)

i! i 1
+ +

=

µ − − − − − = µ + 
∑
 

Let 
b c

i i1 2
i,0

a a

a k(c, y)(y c) dy (c, y)(y c) dy,  i=0,1,...,N
i! i!

λ λ= − − − −∫ ∫l  
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and 

{ }i i 1 i 11
i

1
f (a c) (b c) (a c) ,   i=0,1,...,N.

i! i 1
+ +µ = − − − − − + 

 

Then equations (3.7)-(3.8) become:  

N
(i)

i,0 1,0

i 0
i 1

a u (c) (1 a )u (c) g(c)                                                           (3.9)
=
≠

′+ + =∑  

and 

N
(i)

i 2

i 0

f u (c)                                                                                       (3.10)
=

= µ∑
 

Moreover 

{ }

{ }

bN j
( j 1) ( j) (i) i

1 j

i 0 a

xN j
(i) i

2 j

i 0 a

1
u (x) g (x) u (c) k(x, y) (y c) dy

i! x

1 d
                              u (c) (x, y) (y c) dy ,  j=1,2,...,N 1

i! dx

+

=

=

∂= + λ − +
∂

  λ − − 
  

∑ ∫

∑ ∫ l

  

So 

{ }
bN j

( j 1) ( j) (i) i
1 j

i 0 x ca

xN j
(i) i

2 j

i 0 a x c

1
u (c) g (c) u (c) k(x, y) (y c) dy

i! x

1 d
                        u (c) (x, y)(y c) dy , j=1,2,...,N 1

i! dx

+

= =

=
=

 ∂= + λ − + ∂ 

    λ − − 
    

∑ ∫

∑ ∫ l
  

(3.11)  

Let 
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{ }
b xj j

i i
i, j 1 2j j

a ax c x c

1 d
a k(x, y) (y c) dy (x, y)(y c) dy

i! x dx
= =

    ∂
= −λ − −λ −      ∂      

∫ ∫ l

where i=0,1,...,N,   j=1,2,...,N 1.−  

Then equation (3.11) becomes: 

N
( j 1) (i) ( j)

i, j

i 0

u (c) a u (c) g (c),  j=1,2,...,N 1                                       (3.12)+

=

+ = −∑
 

Thus, by evaluating equation (3.12) at each j = 1, 2,…, N−1 and by using 
equations (3.9)-(3.10), one can have the following linear system of  N + 1 

equations with (N + 1) unknown #u�$��c�&$'(
� : 

AU=B                                                                                                               (3.13) 

where 

0 1 2 3 N 1 N

0,0 1,0 2,0 3,0 N 1,0 N,0

0,1 1,1 2,1 3,1 N 1,1 N,1

0,2 1,2 2,2 3,2 N 1,2 N,2

0,N 2 1,N 2 2,N 2 3,N 2 N 1,N 2 N,N 2

0,N 1 1,N 1 2,N 1 3,N 1 N 1,N 1 N,N 1

f f f f f f

a 1 a a a a a

a a 1 a a a a

a a a 1 a a aA

a a a a 1 a a

a a a a a 1 a

−

−

−

−

− − − − − − −

− − − − − − −


 +
 +
 += 

+
+

L

L

L

L

M M M M M M M

L

L

,  








 
 
 
 



  

 

(N 1)

(N)

u(c)

u (c)

u (c)

U= u (c)

u (c)

u (c)

−

 
 ′
 

′′ 
 ′′′ 
 
 
 
  

M

 and 

2

(N 2)

(N 1)

g(c)

g (c)

B g (c)

g (c)

g (c)

−

−

µ 
 
 

′ 
 ′′=  
 
 
 
  

M

.  
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By solving the above linear system of equations, one can get the values of 

#u�$��c�&$'(�
. These values are substituted into equation (3.6) to get the 

approximated solution of the non-local initial value problem given by equations 
(3.4)-(3.5). 

 

):Example (3.11 

Consider the nonlocal initial value problem that consists of the linear first 
order Fredholm-Volterra integro-differential equation of the second kind: 

1 x
2 3 2

0 0

11 (20 70x)
u (x) 2 2x x x x yu(y)dy (x y)u(y)dy

12 12

+′ = + − + + + +∫ ∫  

          (3.14) 

together with the linear nonlocal initial condition: 

(3.15)  u�0� = � u�y�dy − *
+

�
(  

Here 2 311 (20 70x)
g(x) 2 2x x x ,   0 x 1, a=0, b=1, 

12 12

+= + − + ≤ ≤
 

2
1 2 1 2

4
1,  ,  k(x,y)=x y and (x,y)=x+y.

3
−λ = λ = µ = µ = l

 

We use the classical Taylor expansion method to solve this linear nonlocal initial 
value problem. 

To do this first, let N = 1 and c = 1, then the solution u can be 
approximated as a Taylor polynomial of degree 1 about c=1: 

1u(x) u (x) u(1) u (1)(x 1),   0 x 1                                    (3.16)′≅ = + − ≤ ≤
 

In this case: 
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{ }

{ }

0
0 1

1 2 21
1

1
f (a c) (b c) (a c) 0,

0!
1 1

f (a c) (b c) (a c) ,
1! 2 2

 = − − µ − − − = 

µ − = − − − − − =  

 

b c 1 1
1 2

0,0

a a 0 0

a k(c, y)dy (c, y)dy ydy (1 y)dy 2,
0! 0!

λ λ= − − = − − + = −∫ ∫ ∫ ∫l  

b c
1 2

1,0

a a

1 1

0 0

a k(c, y)(y c)dy (c, y)(y c)dy 
1! i!

5
      = y(y 1)dy (1 y)(y 1)dy  

6

λ λ= − − − −

− − − + − =

∫ ∫

∫ ∫

l

 

and 

5
g(c) g(1) .

6
= = Therefore the system given by equation (3.13) takes the 

form:  

41
0 u(1) 32  

11 u (1) 5
2

6 6

−−   
    

=     ′    −
      

 

which has the solution 
73

u(1)=
36

 and 
8

u (1)=
3

′ .  By substituting these values into 

equation (3.16) one can have: 

1

23 8
u(x) u (x) x

36 3

−≅ = +  

Since  

1 x
2 3 2

1 1 1

0 0

3 2

11 (20 70x)
u (x) 2 2x x x x yu (y)dy (x y)u (y)dy

12 12

(x 1)(21x x 48x 24)
0 x, 0 x 1,

36

+′ − − + − − − + =

− + + − ≠ ∀ ≤ ≤

∫ ∫
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then we must increase the value of N. So, let N=2, therefore the solution u can be 

approximated as a Taylor polynomial of degree 2 about c=1: 

2
2

u (1)
u(x) u (x) u(1) u (1)(x 1) (x 1) ,   0 x 1            (3.17)

2!

′′′≅ = + − + − ≤ ≤

 

In this case: 

{ }2 3 31
0 1 2

1 1 1
f 0,  f ,  f (a c) (b c) (a c) ,   

2 2! 3 3

µ−  = = = − − − − − =  
 

1 1
2 2

0,0 1,0 2,0

0 0

5 1 1 1
a 2,  a ,  a y(y 1) dy (1 y)(y 1) dy

6 2! 2! 4
= − = = − − − + − = −∫ ∫  

{ }

{ }

{ }

1 x
2

0,1

0 0x 1 x 1

1 x
2

1,1

0 0x 1 x 1

x
2 2 2

2,1

0x 1

d
a x y) dy (x y)dy 4,

x dx

d 5
a x y) (y 1)dy (x y)(y 1)dy

x dx 6

1 d
a x y) (y 1) dy (x y)(y 1) dy

2! x dx

= =

= =

=

  ∂ = − − + = −     ∂    

  ∂ = − − − + − =     ∂    

  − ∂ = − + + −     ∂    

∫ ∫

∫ ∫

∫
1

0 x 1

1

4
=

 
  = −
  
∫

 

and 

5 43
g(c) g(1)  and g (c) g (1) .

6 6
−′ ′= = = = Therefore the system given by 

equation (3.13)  takes the form: 

1 1 4
0

2 3 3(1)
11 1 5

2 (1)
6 4 6

(1)5 3 43
4

6 4 6

u

u

u

−   −   
    

−     ′− =    
′′      −   −

      

 

which has the solution  u(1) = 3,u (1) 4,  u (1)=2′ ′′= .  By substituting these 

values into equation (3.17) one can have: 
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2
2u(x) u (x) x 2x,    0 x 1≅ = + ≤ ≤  

which is the exact solution of the nonlocal initial value problem given by 
equations (3.14)-(3.15). 

Second, we try to solve this example with another value of c. To do this, 

let 
1

c ,  and N=2
2

= , then 

2

2

1 1 1 1 1 1
u(x) u (x) u u x u x ,    0 x 1 

2 2 2 2! 2 2
         ′ ′′≅ = + − + − ≤ ≤         
           

(3.18) 

In this case 

0 1 2 0,0 1,0 2,0 0,1

1 1 1 1 7
f 0,  f ,  f ,   a ,  a ,  a ,  a 2,

2 12 2 16 384
− −= = = = = = − = −  

1,1 2,1

1 1 1 485 1 11
a ,  a ,  g(c) g  and g (c) g .

24 24 2 192 2 24

− −   ′ ′= = = = = =   
   

 

Therefore the system given by equation (3.13)  takes the form:  

1 41 1 u0 2 32 12
1 17 7 1 485

u
2 16 384 2 192

1 23 1112 u24 24 242

  −    −           
 − −      ′ =            −     − ′′          

 

which has the solution 
1 5 1 1

u = ,  u = 3,  u 2
2 4 2 2

     ′ ′′ =     
     

. By substituting these 

values into equation (3.18) one can have: 

2
2u(x) u (x) x 2x,   0 x 1≅ = + ≤ ≤  

which is the exact solution of the nonlocal initial value problem given by 
equations (3.14)-(3.15). 
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3.3 The Generalized Taylor Expansion Method for Solving Linear Fractional 
Integro-Differential Equations with Non-Local Conditions: 

In this section we introduced a method named as the generalized Taylor 
expansion method for solving  the non-local initial value problem that consists of 
the linear Fredholm-Volterra fractional integro- differential equation of order α of 
the second kind: 

b x
C

1 2a
a a

D u(x) g(x) k(x,y)u(y)dy (x, y)u(y)dy,   0< 1 (3.19)+
α = + λ + λ α ≤∫ ∫l

 

together with the linear non-local initial condition:  

(3.20)  u�a� = μ� � u�y�dy + μ��
�    

where g, u ∈ C[a, b], k: [a, b] × [a, b] →R, ℓ: [a, b] × [a, b] →R are 

continuous functions, C

a
D u+

α is the left hand Caputo fractional derivative of u of 

order α  and  μ�, 	μ�, λ�, λ� are known constants. 

To do this, we assume that the solution u of the non-local initial value 
problem given by equations (3.19)-(3.20) can be approximated as a generalized 
Taylor̓ s formula: 

( )( )
( )

iC
N

a i
N

i 0

D u (a)
u(x) u (x) (x a) ,   a x b                          (3.21)

i 1

+
α

α

=

≅ = − ≤ ≤
Γ α +∑

  

By substituting equation (3.21) into equations (3.19)-(3.20), one can have: 

( ) ( )( )
bN

iC C i
1a a

i 0 a

x

i
2

a

1
D u(x) g(x) D u (a) k(x, y)(y a) dy

i 1

                                                    (x, y)(y a) dy

+ +
α α α

=

α


= + λ − +

Γ α + 


λ −


∑ ∫

∫ l 

and 
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( ) ( )( )

( ) ( )( )

bN
iC i

1 2a
i 0 a

N i 1
iC

1 2a
i 0

1
u(a) D u (a) (y a) dy

i 1

(b a)
       = D u (a)

i 2

+

+

α α

=

α+
α

=

= µ − + µ
Γ α +

−µ + µ
Γ α +

∑ ∫

∑
 

So  

( ) ( ) ( )( )
bN

iC C i
1a a

i 0 a

1
D u (a) g(a) D u (a) k(a, y)(y a) dy

i 1
+ +

α α α

=

 
 = + λ −

Γ α +  
∑ ∫  

(3.22)  

and 

[ ] ( ) ( )( )
N i 1

iC
1 1 2a

i 1

(b a)
1 (b a) u(a) D u (a)                       (3.23)

i 2
+

α+
α

=

−− µ − − µ = µ
Γ α +∑

  

Let ( )
b

i1
i,0 0 1

a

a k(a, y)(y a) dy,  i=0,1,...,N, f 1 (b a)
i 1

α−λ= − = − µ −
Γ α + ∫  

and ( )
i 1

i 1

(b a)
f ,   i=1,2,...,N.

i 2

α+−= −µ
Γ α +

 

Then equations (3.22)-(3.23) become: 

( )( ) ( )
N

iC C
i,0 1,0a a

i 0
i 1

a D u (a) (1 a ) D u (a) g(a)                         (3.24)+ +
α α

=
≠

+ + =∑
 

and 

( )( )
N

iC
i 2a

i 0

f D u (a)                                                                      (3.25)+
α

=

= µ∑
  

Let 
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b x
i i

i i

a a

m (x) k(x, y)(y a) dy, p (x) (x, y)(y a) dy,  i=0,1,...,Nα α= − = −∫ ∫ l  

Then 

( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )

j 1 jC C

a a

j jC C
N

1 i 2 i ia a C

a
i 0

D u (x) D g (x)

D m (x) D p (x)
                        D u (a) 

i 1

+ +

+ +

+

+α α

α α

α

=

= +

 λ + λ
 
 Γ α +
 
 

∑

where  j=1,2,...,N 1− .  

So, 

( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )

j 1 jC C

a a

j jC C
N

1 i 2 i ia a C

a
i 0

D u (a) D g (a)

D m (a) D p (a)
                   D u (a) 

i 1

+ +

+ +

+

+α α

α α

α

=

= +

 λ + λ
 
 Γ α +
 
 

∑

   

(3.26) 

Let  

( )( ) ( )( )
( )

j jC C
1 i 2 ia a

i, j

D m (a) D p (a)
a ,  i=0,1,...,N, j=1,2,...,N 1.

i 1

                             

+ +
α αλ + λ

= − −
Γ α +  

 Then equation (3.26) becomes: 

( )( ) ( )( ) ( )( )
N

j 1 i jC C C
i, ja a a

i 0

D u (a) a D u (a) D g (a),  j=1,2,...,N 1+ + +

+α α α

=

+ = −∑
 

                                                      (3.27)
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Thus, by evaluating equation (3.27) at each j=1, 2,…, N−1 and by using equations 
(3.24)-(3.25), one can have the following linear system of N+1 equations with 

(N+1) unknowns ( )( ){ }N
iC

a
i 0

D u (a)+
α

=
: 

AU=B                                                                                                               (3.28) 

where 

0 1 2 3 N 1 N

0,0 1,0 2,0 3,0 N 1,0 N,0

0,1 1,1 2,1 3,1 N 1,1 N,1

0,2 1,2 2,2 3,2 N 1,2 N,2

0,N 2 1,N 2 2,N 2 3,N 2 N 1,N 2 N,N 2

0,N 1 1,N 1 2,N 1 3,N 1 N 1,N 1 N,N 1

f f f f f f

a 1 a a a a a

a a 1 a a a a

a a a 1 a a aA

a a a a 1 a a

a a a a a 1 a

−

−

−

−

− − − − − − −

− − − − − − −


 +
 +
 += 

+
+

L

L

L

L

M M M M M M M

L

L

,  








 
 
 
 



  

( )( )
( )( )

( )( )
( )( )

2

C

a

2C

a

(N 2)
C

a

(N 1)
C

a

g(a)

D g (a)

D g (a)B=

D g (a)

D g (a)

+

+

+

+

α

α

−
α

−
α

µ 
 
 
 
 
 
 
 
 
 
 
 
 
 

M

 

( )( )
( )( )
( )( )

( )( )
( )( )

C

a

2C

a

3C

a

(N 1)
C

a

(N)
C

a

u(a)

D u (a)

D u (a)

D u (a)U=

D u (a)

D u (a)

+

+

+

+

+

α

α

α

−α

α

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M

and

 

  

  

By solving the above linear system of equations, one can get the values of 

( )( ){ }N
iC

a
i 0

D u (a) .+
α

=
These values are substituted into equation (3.21) to get the 

approximated solution of the non-local initial value problem given by equations 
(3.19)-(3.20). 
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Remark (3.12): 

       If μ�= 0, then the initial value problem given by equations (3.19)-(3.20) is 
local. In this case, u(a)=μ�, where μ� is a known constant. So in the generalized 

Taylor formula given by equation (3.21), the values of  ( )( ){ }N
iC

a
i 1

D u (a)+
α

=
 can 

be obtained by solving the N×N linear system: 

AU=B (3.29) 

where 

1,0 2,0 3,0 N 1,0 N,0

1,1 2,1 3,1 N 1,1 N,1

1,2 2,2 3,2 N 1,2 N,2

1,N 2 2,N 2 3,N 2 N 1,N 2 N,N 2

1,N 1 2,N 1 3,N 1 N 1,N 1 N,N 1

1 a a a a a

a 1 a a a a

a a 1 a a a
A ,

a a a 1 a a

a a a a 1 a

−

−

−

− − − − − −

− − − − − −

+ 
 + 
 +

=  
 
 +
 

+  

L

L

L

M M M M M M

L

L

 

( )( )
( )( )
( )( )

( )( )
( )( )

C

a

2C

a

3C

a

N 1C

a

NC

a

D u (a)

D u (a)

D u (a)
U=

D u (a)

D u (a)

+

+

+

+

+

α

α

α

−α

α

 
 
 
 
 
 
 
 
 
 
 
 
 
 

M

and 

( )( )
( )( )

( )( )
( )( )

2 0,0

C
0,1 2a

2C
0,2 2a

N 2C
0,N 2 2a

N 1C
0,N 1 2a

g(a) a

D g (a) a

D g (a) a

B=

D g (a) a

D g (a) a

+

+

+

+

α

α

−α
−

−α
−

− µ 
 

− µ 
 
 − µ
 
 
 
 − µ
 
 

− µ 
 

M
. 

 

To illustrate this method, consider the following examples: 

 

 

):13Example (3. 
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Consider the nonlocal initial value problem that consists of the fractional 

linear Fredholm-Volterra integro-differential equation of order 
1
2

: 

1 x1 5
C 2 5 22 2

0
0 0

3 25 16 23
D u(x) x x x (x y)u(y)dy (3x 2y)u(y)dy

2 4 4
+ = − − + − + + + +

π ∫ ∫  

(3.30) 

together with the nonlocal linear initial condition: 

u�0� = 2� u�y�dy − .
�

�
(                                                                                    (3.31)  

Here 
5

2 523 25 16 23
g(x) x x x ,  0 x 1, a=0, b=1,  

2 4 4
= − − + − ≤ ≤

π 

2
1 2 1 2

7
1,  2,  ,  k(x,y)=x y and (x,y)=3x+2y.

2
−λ = λ = µ = µ = + l  

We use the generalized  Taylor expansion method to solve this fractional linear 
nonlocal initial value problem. To do this, let  N =1, then equation (3.21) takes 
the form: 

+

1
C 2

0

1

D u (0)

u(x) u (x) = u(0) + ,  0 x 1                               (3.32)
3

Γ
2

x

  
   
  ≅ ≤ ≤

 
 
 

 

In this case: 

( )
1

0 1 1 1

(b a) 2 8
f 1 (b a) 1 2 1,  f ,   

52 3
2

α+− − −= − µ − = − = − = −µ = =
Γ α +   πΓ 

 

 

( )
1 1 3

2
0,0 1,0

0 0

1 1 1 2 4
a ydy ,  a y dy .

3 31 2 55
2 2

− − − − −= = = = =
Γ     πΓ Γ   

   

∫ ∫  



ocal ProblemsL-NonTaylor Expansion Method for Solving Fractional The Generalized  Chapter Three 

73 

 

and g(0) = 
/+
� . Then the system given by equation (3.28) takes the form: 

1
C 2

o

8 7u(0)1
3 2

D u (0) 31 5 4
22 5

+

−    − −   π      =     π −        −−         π   

which has the solution: 

3(35 12)
u(0) 3.21087

2(15 8)

π += ≅
π +

 

and 

1
C 2

0

1 2
D u (0) 0.192174.

4 15 8
+

  
= − ≅    π +  

 

By substituting these values into equation (3.32) one can have: 

1u(x) u (x)=3.21087+0.216846 ,    0 x 1≅ ≤ ≤x  

By substituting this approximated solution into equation (3.30) one can have: 

11 5
C 2 5 22 2

1 10
0

x 5
2 52

1

0

3 25 16 23
D u (x) x x x (x y)u (y)dy

2 4 4

                  (3x 2y)u (y)dy 5.52233 5.625x 92.625x 5.75x

+ + + − + − + −
π

+ ≅ − − +

∫

∫

 

Since the right hand side of the above equation does not equal zero for each 
x∈[0,1], so we must increase the value of  N. Therefore, let N=2, then equation 
(3.21) takes the form: 

( )

211
C 2C 2

00 1
2

2

D u (0)D u (0)

u(x) u (x)=u(0)+ x x,    0 x 1
3 2
2

++

                 ≅ + ≤ ≤
Γ Γ 

   

    (3.33) 
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In this case: 

0 1 2

8
f 1,  f ,  f = 1, 

3

−= − = −
π 0,0 1,0 2,0

1 4 1
a ,  a ,  a .

2 35

− − −= = =
π

 

2 2 2
0 1 2

5
2 32

0 1 2

1 2 2 1 1
m (x) x + , m (x) x + , m (x) x + , 

2 3 5 2 3

14 13
p (x) 4x , p (x) x , p (x) x .

5 6

= = =

= = =
 

Therefore 

1 3 1 3
C C2 2 2 2

0 10 0

1 3 1 3
C C2 2 2 2

2 00 0

1 1
C 2 C2 2

1 20 0

8 16
D m (x) x , D m (x) x , 

3 9

4 32
D m (x) x , D p (x) x , 

3 3

21 10
D p (x) x , D p (x)

8

+ +

+ +

+ +

      
= =         π π      

      
= =         π π      

      π= =         
      

5

24
x .

15 π

 

So 0,1 1,1 2,1a a a 0= = = . Moreover 

3 9
1

2 2
C 22

0

50x 1472x
D g (x) 15x ,     0 x 1.

3 63+

   −   = + − ≤ ≤
   π π
  

 

1
C 2

0
So   D g (0) 0.+

  
   =
  
  

 

Thus the system given by equation (3.28) takes the form: 
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1
C 2

o

21
C 2

o

8 71 1
u(0)3 2

1 5 4 1 3
D u (0)

2 3 25
00 0 1

D u (0)

+

+

 
 −   − −    − π          − π − −  = −        π                            

 

which has the solution: 

3(35 12)
u(0) 3.21087

2(15 8)

π += ≅
π +

 

21 1
C C2 2

o o

1 2
D u (0) 0.192174 and D u (0) 0.

4 15 8
+ +

     
 = − ≅ =       π +      

 

By substituting these values into equation (3.33) one can have: 

2u(x) u (x)=3.21087+0.216846 ,    0 x 1.≅ ≤ ≤x  

Since 2 1u (x)=u (x), so we must increase the value of N. By continuing in this 

manner one can get for N=6, equation (3.21) takes the form: 

( )

( )

6

2 31 11
C C2 2C 2

0 00 1 3
2 2

4 51 1
C C2 2

0 0

2

u(x) u (x)

D u (0) D u (0)D u (0)

       =u(0)+ x x x
3 52
2 2

D u (0) D u (0)

        x x
73
2

+ ++

+ +

≅

                               + + +
Γ   Γ Γ   

   

      
               +

Γ  Γ 
 

( )

61
C 2

05
32

D u (0)

x ,  
4

+

  
     +

Γ

(3.34) 
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where  0 x 1≤ ≤  

Then after simple computations and by using the Mathcad software package, the 
system given by equation (3.28) takes the form: 

1
C 2

0

21
C 2

0

C

u(0)

D u (0)

8 16 1 32 1
1 1

D u (0)3 123 15 105
1 4 1 8 1 16 1

1
2 3 8 305 21 135
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

8 16 1 32 1
10 1 1

3 123 15 105
0 0 0 0 0 0 1

+

+

  
   
  

− − − − −    − −   π π π       − − − − − − − π π π
 
 
 
 
 
 − − − − − − −
 π π π
 
 

31
2

0

41
C 2

0

51
C 2

0

61
C 2

0

7

2
3

2
D u (0) 0

0

0D u (0)
25

2
30D u (0)

D u (0)

+

+

+

+

 
 
 
 
 
   −   
   
   −                 =   
     
            −   
                 
   
        

 

which has the solution: 

u(0) 1= ,  +

i1
C 2

0
D u (0) 0,  i=1,2,3,4,5

  
  =    

and +

61
C 2

0
D u (0) = 30.

  
     

 

By substituting these values into equation (3.34) one can have: 

3
6u(x) u (x)=1+5 ,    0 x 1≅ ≤ ≤x  

By substituting this approximated solution into equations (3.30)-(3.31) one can 
have: 
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11 5
C 2 5 22 2

6 60
0

x

6

0

3 25 16 23
D u (x) x x x (x y)u (y)dy

2 4 4

(3x 2y)u (y)dy 0

+ + + − + − + −
π

+ =

∫

∫

 

and 

1

6 6

0

7
u (0) 2 u (y)dy .

2
= −∫  

Therefore 6u  is the exact solution of the linear nonlocal initial value problem 

given by equations (3.30)-(3.31). 

 

Example (3.14): 

Consider the local initial value problem that consists of the fractional 

linear Fredholm-Volterra integro-differential equation of order 
1
4

: 

1 x1 3
C 2 3 4 24 4

0
0 0

8 3 1
D u(x) x x x x 3x xyu(y)dy (x y)u(y)dy

3 2 2
4

+ = − + − − + + +
 Γ 
 

∫ ∫  

      (3.35) 

together with the local initial condition: 

u�0� = −1                                                                                                       (3.36)  

Here 
3

2 3 448 3 1
g(x) x x x x 3x ,  0 x 1, a=0, b=1,  

3 2 2
4

= − + − − ≤ ≤
 Γ 
 

 

2
1 2 21,  1,  k(x,y)=xy and (x,y)=x +y.λ = λ = µ = − l  

We use the generalized  Taylor expansion method to solve this fractional linear 
local initial value problem. To do this, let  N =1, then equation (3.21) takes the 
form: 
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1
C 4

0 1
4

1

D u (0)

u(x) u (x)= 1+ x ,    0 x 1
5
4

+

  
   
  ≅ − ≤ ≤

 Γ 
 

                  (3.37) 

In this case: 

1
1

0,0

0

a k(0, y)dy 0,
(1)

−λ= =
Γ ∫  

1 1
4

1,0

0

1
a k(0, y)y dy 0 and g(0) 0.

5
4

−= = =
 Γ 
 

∫
 

Then the system given by equation (3.29) takes the form: 

1
C 4

0
D u (0) 0.+

  
=   

  
 

Therefore 

1u(x) u (x)= 1,    0 x 1≅ − ≤ ≤  

By substituting this approximated solution into equation (3.35) one can have: 

1 x1 3
C 2 3 4 24 4

1 1 10
0 0

3
3 44

8 3 1
D u (x) x x x x 3x xyu (y)dy (x y)u (y)dy

3 2 2
4

8
                                                     x 2x 2x 3x .

3
4

+ − + − + + − − + =
 Γ 
 

− + + +
 Γ 
 

∫ ∫

 

Since the right hand side of the above equation does not equal zero, so we must 
increase the value of N. Therefore, let N=2, then equation (3.21) takes the form: 
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++

211
C 4C 4

00 1 1
4 2

2

D u (0)D u (0)

u(x) u (x) = -1+ x + x ,   0 x 1
5 3

Γ Γ
4 2

                 ≅ ≤ ≤
   
   
   

 

                                       (3.38) 

In this case: 

0,0a 0= ,
1 1

2
1,0 2,0

0

1
 a 0,  a k(0, y)y dy 0

3
2

−= = =
 Γ 
 

∫  

0 1 2

9 5
4 2

3 2
0 1 2

x 4 2
m (x) , m (x) x, m (x) x, 

2 9 5

1 4x (9x 5) 2x (5x 3)
p (x) x + x , p (x) , p (x) .

2 45 15

= = =

+ += = =
 

Therefore 

1 3 1 3
C C4 4 4 4

0 10 0

7
1 3 1 4

C C4 4 4
2 00 0

1
C 4

10

2 16
D m (x) x , D m (x) x , 

3 3
3 27

4 4

8 16x (24x 11)
D m (x) x , D p (x) , 

3 3
15 231 

4 4

D p

+ +

+ +

+

      
= =                  Γ Γ   

   

       += =                  Γ Γ   
   

 
 
 

13 2
C 4

20

9
4

2(39x +20x )
(x) , D p (x)

3
128 

4

3
8 2

4
x (70x+39).

585

+

   π=            Γ 
 

 Γ 
 =
π  

So 0,1 1,1 2,1a a a 0= = = . Moreover 
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1 1 15 11 7 3
C 4 2 4 4 4 4

0

12 2048 128 16 2
D g(x) x x x x x ,     0 x 1

3 3 3 3
385 77 12  

4 4 4 4

+

 
  = − − + − ≤ ≤
         π Γ Γ Γ Γ         

       
 

1
C 4

0
So   D g (0) 0.+

  
   =
  
  

 

Thus the system given by equation (3.29) takes the form: 

1
C 4

0

21
C 4

0

D u (0)
1 0 0

0 1 0
D u (0)

+

+

   
    
      

=           
        

 

which has the solution: 

21 1
C C4 4

0 0
D u (0)  D u (0) 0.+ +

     
 = =             

  

By substituting these values into equation (3.38) one can have: 

2 1u(x) u (x)=u (x)= 1,    0 x 1.≅ − ≤ ≤  

So we must increase the value of N. By continuing in this manner one can get for 
N=4, equation (3.21) takes the form: 

211
C 4C 4

00 1 1
4 2

4

D u (0)D u (0)

u(x) u (x) = 1+ x x
5 3
4 2

++

                 ≅ − + +
   Γ Γ   
   

 

( )

3 41 1
C C4 4

0 03
4

D u (0) D u (0)

x x,    0 x 1
7 2
4

+ +

      
               + ≤ ≤

Γ Γ 
 

                           (3.39 ) 
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Then after simple computations and by using the Mathcad software package, the 
system given by equation (3.29) takes the form: 

1
C 4

0

21
C 4

0

31
C 4

0

41
C 4

0

D u (0)

1 0 0 0 0D u (0)
0 1 0 0 0

0 0 1 0 0
D u (0)0 0 0 1 6

D u (0)

+

+

+

+

   
    
   
 
   
             

   = 
      

             
 
   
        

 

which has the solution: 

i1
C 4

0
D u (0) 0,  i=1,2,3+

  
  =    

and

41
C 4

0
D u (0) 6.+

  
  =    

 

By substituting these values into equation (3.39) one can have: 

4u(x) u (x)= 1+6 ,    0 x 1≅ − ≤ ≤x  

By substituting this approximated solution into equations (3.35)-(3.36) one can 
have: 

1 x1 3
C 2 3 4 24 4

4 4 40
0 0

8 3 1
D u (x) x x x x 3x xyu (y)dy (x y)u (y)dy 0

3 2 2
4

+ − + − + + − − + =
 Γ 
 

∫ ∫
 

and 

4u (0) 1.= −  

Therefore 4u  is the exact solution of the linear local initial value problem given 

by equations (3.35)-(3.36). 
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Conclusions and Recommendations  

 

           From this work, one can concludes the following aspects: 

(1)  The existence and uniqueness of the solution for the linear non-local initial 
value problem is a generalization of the existence and the uniqueness for the 
solution of the linear local initial value problem. 

(2) The classical Taylor expansion method that depends on approximating the 
unknown function as a Taylor polynomial centered at the left endpoint of its 
domain is a special case of the generalized Taylor expansion method. 

(3)  The generalized Taylor expansion method like the classical Taylor expansion 
method gave more accurate results as N increases. 

(4)  The Laplace transform method is so difficult to use it to solve the linear non-
local fractional integro-differential equations of order ,  α α∉Ν since we get 

functions of s that can not find its Laplace inverse. 
(5)  It is known that there is no an explicit form for the Laplace transform of the 

Fredholm integral operator, so the Laplace transform method fails to be used 
to solve the non-local initial value problems for the linear Fredholm-Volterra 
integro-differential equations. 

(6) The generalized Taylor expansion method can be also used to solve systems 
of linear fractional integro-differential equations with non-local initial 
conditions. 

           For future works, the following problems may be recommended: 

(1)  Discuss the existence and the uniqueness of the solution for the non-linear 
fractional integro-differential equations with non-linear non-local boundary 
conditions via fixed point theorems. 

(2)  Use the generalized Taylor expansion method to solve the non-local problems 
for some types of non-linear fractional integro-differential equations. 

(3)   Devote the study of the non-local delay problems.  
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