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Abstract

The aim of this work is to study some types of ftaetional non-local
problems. These types are the fractional non-lauéibl value problems that
consist of the non-linear fractional Fredholm, “ott, Fredholm-Volterra
integro-differential equations together with thendmear non-local initial
conditions of the integral type.

This study includes the existence and the uniqeenéshe solution for
the non-linear fractional Fredholm-Volterra integlifferential equations
together with the non-linear non-local initial carahs.

Also, Laplace transform method is used to solveigpéypes of the linear
fractional non-local problems with some illustratiexamples.

Moreover, the generalized Taylor expansion metlsgaresented to solve
the non-local initial value problems that consilsthe linear fractional Fredholm-
Volterra integro-differential equations togetherttwthe linear non-local initial
conditions with some illustrative examples.



Introduction

The subject of fractional calculus (that isalculus of integrals and

derivatives of any arbitrary real or complex ordégs gained considerable
popularity and importance during the past threeades or so, due mainly to its
demonstrated applications in numerous seeminglgreésand widespread fields
of science and engineering. It does indeed prosederal potentially useful tools
for solving differential and integral equations,danarious other problems

involving special functions of mathematical physi@s].

Many authors and researchers concernedtiatifractional problems such as
Domenico and Luigi in 1996, [21] proved the exism@and uniqueness theorems
for some classes of nonlinear fractional differ@néiquations by using Schauder
fixed point theorem Al-shather in 2003, [8] presented some approximated
solutions for solving the fractional delay integhdferential equations, Abdul-
Razzak in 2004, [2] gave some algorithms for sa@vinactional Fredholm
integro- differential equations, Al Azawi in 200f§] gave results in fractional
calculas, Al-Rahhal D.in 2005, [7] used some nuca¢methods for solving the
fractional integro differential equations, Mohamed2007, [30] used the finite
difference methods for solving fractional differ@htequations, Abdul Sattar in
2008, [3] gave some solutions of fractional bougdealue problems, Mehdi and
Majid in 2010, [29] presented some definitions odctional derivatives and
fractional Integrals and gave more explicit fornsute fractional derivative and
integral of some special functions and present@desapplications of the theory
of fractional calculus, Azizollah, Dumetra and Rawvi2013, [10] proved the
existence and uniqueness of solutions for two emsd infinite delay nonlinear
fractional order differential equations involvingieRann-Liouville fractional
derivatives, Armand and Mohammadi in 2014, [9] dssed existence the and

I



uniqueness of solutions of nonlinear differentgli@ions of fractional order with
fuzzy initial condition by using contraction mapgiprinciple and the fixed point

theorem.

Another subject that deals with thiskvis the non-local problems that is
the problems with non-local conditions. Many reskars concerned with the
nonlocal problem such as Kerefov in1979, [27] stddihe nonlocal boundary
value problems for the parabolic differential equas, Chabrowski in 1984, [17]
studied the nonlocal initial value problem for frerabolic differential equations,
Chabrowski in 1988, [18], the existence and unigssenof solutions of the
nonlocal problem for the linear elliptic equationittw nonlocal condition,
Byszewski in 1991, [15] studied theorems aboutetkistence and uniqueness of
solutions of a semi linear evolution nonlocal Cauphoblems, Pulkina in 1999,
[37] used the Schauder fixed point theorem to pribteexistence of the linear
second order hyperbolic equation with the lineéegnal conditions, Abdelkader
in 2003 [1] discussed the existence and uniqueness forsthations of the
nonlocal initial value problems for the non-lineadinary differential equations,
Saadatmandi and Dehgan in 2006, [39] used theedhifegender technique for
solving the one-dimentional wave equation with ¢éime nonlocal linear integral
boundary condition, Svajunas in 2010, [43] usedfihiée difference method to
find the solution of the two-dimentional heat edomatwith the nonlocal linear
integral condition, Kahtan i2013, [25] used the finite difference method to

solve special types of nonlocal problems for phdifferential equations.

The fractional nonlocal Problems haverbstudied by several researchers
such as, Symotyuk in 2001, [44] investigated Coond for the existence and
uniqueness of a classical solution of a nonlocalnblary-value problem for a
differential equation with a regularized Riemanretlille fractional time
derivative with variable coefficients, Mophou in(8) [32] proved the existence

of mild solutions to the Cauchy Problem for thecfiranal differential equation



with nonlocal conditions, Xiwang in 201147] studied the existence and
uniqueness of solutions to the nonlocal problenstliie fractional differential
equation in Banach spaceshmad in 2012, [4] studied the existence of solutions
of the class of nonlinear Cupoto type fractionalitaary value problems with
nonlocal fractional integro-differential boundargnelitions Ahmad in 2013, [5]
proved the existence of solutions of a nonlocal nolawy value problem for

nonlinear fractional order integro-differential eqjons.

The purpose of this work is to study some typetheffractional non-local
initial value problems for the non-linear fractibrfecedholm-Volterra integro-
differential equations together with the non-linean-local initial conditions of

the integral type.

This thesis consists of three chapters.

In chapter one we use the Banach fixed point tmeot@ discuss the
existence and the uniqueness of the solution fer nlon-linear fractional
Fredholm-Volterra integro-differential equationsgéther with the non-linear

non-local initial conditions.

In chapter two, we use the Laplace transform metizodolve special
types of the non-local initial value problems ftwetlinear fractional Volterra

integro-differential equations of the differenceriad.

In chapter three, we devote the generalized Tagipansion method for
solving the linear non-local initial value problenfisr the linear fractional
Fredholm-Volterra integro-differential equationgyéther with the linear non-
local initial conditions. All computations that aggred in this work are obtained

by using the Mathcad software package.



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-Local Problems

Introduction:

The non-local condition is the condition which agrewhen values of the
function on the boundary or on the initial are cected to values inside the
domain. Every problem with non-local condition ésrhed as non-local problem,
[13].

The nonlocal problems play an important role in ynamal life
applications and they arise in various fields otheaatical physics (like string
oscillation telegraph equation), [24], biology dwmdtechnology (like evolution of
dominant genes and propagation nerve pluses), 488]jn other fields.

The aim of this chapter is study special typeshefton-local problems,
namely the non-local initial value problems. Thiady includes the non-local
initial value problems that consist of the non-iindéractional Fredholm-Volterra
integro-differential equations together with thendmear non-local initial
conditions of the integral type.

This chapter consists of two sections:
In section one, we give some fundamental concdgtactional calculus.

In section two, we use the Banach fixed point tBeorto prove the
existence and uniqueness of the solutions for ap&gbes of non-local initial
value problems of the non-linear fractional Fredin®olterra integro-differential
equations.



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

1.1 Some FundamentaConcepts of Fractional Calculs:

In this section, we give some basic concepts afiditiens related to the
subject of fractional calculus.

We start this section by giving the following detiions:

Definition (1.1), [35]:

The Gamma functioh of a positive real number x, is defined by:
[(x)= _[ y* e Vdy, x>C
0

Some of the most important properties of the Garfunation are listed
below, [35]:

(i) T(n+D)=n!, nON
(i r@m):—(z”)!ﬁ, nO N.

4'n!
(i) T(x+1)=xI(x), x>0

Definition (1.2), [35]:

The Beta functiof8 with positive parameters p and q is defined by:
1
B(p.a)=[ Y (1= yf'dy, p>0, g>
0

If either p or g is non-positive real number, thewze integral diverges.

One of the most important properties of the Betection is, [35]:

B(p. q)= r(p)r (a)

, p>0, g>(
F(p+a)



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

Definitions (1.3), [22]:

The Mittag-Leffler function is defined by:

— c Zi
Ea(z)—;m, a,7] C, Ref »

and the generalized Mittag-Leffler function is defd by:

—_ Y Zi
Ew(z)_;m, a,p,2] C, Re( ¥

Examples (1.4):

W E@)= B, @) Fp= D 2= | 4 ]
RSESR

2) Elo(z)—;m— > D

OE@=E.@=) Eo=) T=¢, D

oz _é-1
(4) E1,2 (2)= IZO: I'(iZ+ 2) = — z[1 C\{0}.

Remark (1.5):

Gamma, Beta, Mittag-Leffler and the generalizedtagtLeffler functions
are one of the most important notations in fra@laralculus, since they play an
important role in fractional differentiation andegration formulas.



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

Definitions (1.6), [35]:

Let u be an absolutely continuous function on [a/é left and the right
hand Riemman-Liouville fractional derivatives ofotiordera> 0, can be defined
as:

a 1 d [ u(y)
D% u(x)= dy,
« Dy U(x) M(n-a)dx"J (x- y)y y

"

and

b
(&[0 o ey
(n—-a) dx" ) (x=y)'™"

D u(x)=

respectively, where+1 <o, < n, ne N.

To illustrate the definitions of Riemman-Liouvilfeactional derivatives,
consider the following example:

Example (1.7):

Let u(x) = 2x, a =% and 0< x < 1. The left and the right hand

. ) . . o 1
Riemman-Liouville fractional derivatives of u ofder — are:

DFuC) =550 I _ﬁ
( j 0 (X~ y)2
and
D2u(x)— -1 1 2y _dy= 2(2x+1) | 8 x 1

x (X = y)2

1:

d Tamix-1 a/m
J*

N =



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

respectively.

Next, we give the left hand Riemman-Liouville fracial derivative of the
power function. This proposition is very importatd find the left hand
Riemman- Liouville fractional derivative of any dytac function.

Proposition (1.8), [39:

XD8+Xp :Mxp_a, X>0, p>_ 1
Mp-a+1)

Proof:

It is known that

1 d o
D% xP = j P(x —y)™*d
Let y =AX, then the above equation reduce:

,DoXP = 1 _d
0 M(n—-a) dx"

_[ (Ax)’ ((1—)\)x)”“xd>\]

- F(n—a) dx"

n 1
1 d *+n—aj>\p (})\ )‘Hl—l d:l
L 0
_ 1 d’

F(n-a) dx

[x"””‘“B(p +1,n—-a )]

— r(p+1)r(n_a) d' |: )E)+n—cx:|
Fn-a)f(n—-a+ p+1) dx




Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

Thus

r(p + 1)r (p+ n—-a+ 1) xPrn-a-n

CDu+Xp:
0 Fn-a+p+1¥ (p+ n—a- n+ 1)

_ (p+1)
T(p-o+])

Now, the following example gave the left hand Riesmabkiouville
fractional derivative of the exponential functio@ yproposition (1.8)

X x>0.

Example (1.9):

Let u(x)=€&*,A0 C, x>0The left hand Riemman-Liouville fractional
derivative of u of ordera is:

DE () = < “X)) SO e

i!

By using proposition (1.8), the above equation bez®

. rai+1 Lima) = ,-a < (Ax)* I
o+ () = ZI'<F(1—a’+1) )‘x ;F(i—a+1)_x Ei1-a(20).

Remark (1.10):

If a=m, where m is a positive integer, then we chossa+1, so

w1 d™ T u(y)
xDa+u(X) - l—(l) de+1 (X y)m—(m+1)*1dy
m+l %
= | u(y)d
dxmﬂj (y)dy

a
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Thus

m _dm
at U(X) —dX—mU(X)

and
m =™ u(y)
Dy ()= F(m+1-m) d)(“*l,[ (x- )W*(”“)*l
_ " dm+1
= I j u(y)dy

X

Next, another definition of the fractional derivaiis given by the Italian

mathematician Caputo in1967.

Definition s(1.11), [16]:

Let u be an absolutely continuous function on [ajig left and the right

hand Caputo fractional derivatives of u of ord

u”(y) 4
un+l y’
CD;u(x): F(n- a)j(x
d"u(x) o =
dx"
and
u™(y) 4
a -n+1 y’ n-=
CDg_u(x):< I'(n a)j(x
nd"
(-ay S22,

er 0, can be defined as:

n-1xo<n, ] N, & X

nM Nsa «x b

la<n, n] N, & x

o= nMb N=2 X b
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respectively.

To illustrate the definitions of Caputo fractiondérivatives, consider the
following example:

Example (1.12):

Let u(x)=x*, 0< x< 2 andx —g The left and right hand Caputo

. o 3
fractional derivatives of u of orde2¥ are:

d2

3 X 2(y2)
D2 u(x)= ! I dy dy= 4\/E
0 1 3
r 4 _ §—2+1 TT
(ZJO(X y)
and
d®
3 > 2 72()/) —
CDS—U(X)=( D _[ d —dy=-4 X=2
I_ 1 ——2+1 TT
(ij(x—y)
respectively.

Next, we give the left hand Caputo fractional dative of the power
function. This proposition appeared in [19]. Here giwe the details of its proof.
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Proposition (1.13:

Mxp‘“, n-1<a<n, p>n 1, plOd
Mp—-a+1)
CDg+X'°:<
0, F ¥a< n g A LD Z
Proof:

n

If n-1<a<n,ps n-1, @ N then xP =0 and this imples that

n

dx
Cnyxp:O.

Ifn-1<a<n,p>n1l, peR,then

dn
T (y")
CDG Xp_ y

XP = d
o T =) -y

I S L (- I,
F(n—a).!:r(p—n+1))9 by dy

Let y =AX, then the above equation reduce:

CHY p — r(p+l) 1 p-n _ n-o-1
D?, x = (pont 1)0()\x) ((L=A)x)" " xdA

1
)E—n+n—a—l¢-1j.()\)p‘n (1_}\ )1—0(—1 a

0

_ M(p+1)
F(n—a) (p—n+1)

_ (p+1)
B F(n—o) (p—n+1)

Xp—n+n—(x—l+]B(p_ n+ 1’ n-ao ]



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

Thus

c r(p + 1) -n+n—a-1+1 \
¢ xP= xP -n+1ln-a’
o T (n-a)r (p-n+ 9 PP

_ M+ (p-n+ 1 (-a) 4
F(n-o)r(p-n+1y (p-a+1)

_ T(P+D)
F(p-a+1) '

Remark (1.14):

The left hand Caputo fractional 0per§t®§+ does not satisfy the semigroup
1

property, that is°D¢, °D° u(x)# °D%*u(x).To see this, la1(x)=x2, o =

1

B:%_ To find “DP.x2 = “D

N
N

. X2, we take n=1. Scp:% >n-1= 0. Therefore

Q

by using proposition (1.13) one can have

: L I P
‘Du(x)=°D2x2=—2_2| 2|,
o1 0 r(1) (2)

Hence
c 3 c 11 3\ 3
Dg( D§+XZJ=F(§) DZ (1)
Let p=0. To findCDg+ (1), we take n=2. S@=0<n- 1= 1.Therefore by using

3 11
proposition (1.13) one can haV®2 (CDéx 2) =0. But

10
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3 3
CDZ:-; X; :d_22 X; - _EX_E.
0 dx 4

= - 1 1
Therefore °D?, °D?, (xz) # “Dg+ (XE).

Remark (1.15:

Another types of definitions for fractional deriwegs can be considered
namely Hadamard fractional derivative, Erdelyi-Kobfeactional derivative,
Grunwald-Letnikov fractional derivative, [28], Tha® J. fractional derivative
and Nishimoto fractional derivative, [34].

Definition (1.19 , [35:

Let ube an absolutely continuous function on [a,b], the left and the right
hand Riemman-Liouville fractional integrals of af ordera > 0, can be defined
as:

o000 =L [_uW)
@ -y

dy, a< x<t

and
1 [ u(y)
a uly
I u(x) = —dy, a< x<tk
; ra)d (y-x)
respectively.

Remark (1.17):

it a=1, thend. u(x): j uy)dy, & x

11



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

To illustrate the above definitions of Riemman-lydle fractional
integrations, consider the following example:

Example (1.B):

Let u(x)=x3, 1< x< 3 andx ==  The left and the right Riemman-

W hlwW

Liouville fractional integrals of u of Ordej are:

12u(x) = 13I y Tdy
F(4j1(x—y)4

_4(x-1¢[ 495% (x- 1 315x(x B- 388k 77(x 1]

1155r(3j
4
and
I4u(x)— j y
( j (y- ><)4
_(3—x)?(512x°’+ 1152% + 3024x 831\
1155r( j(x” OX + 27x 2]

4

respectively.

Next, we give the left hand Riemman-Liouville fractal integral of the
power function.

12



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

Proposition (1.19), [3§:

IO(Xp: I—(p+1)
o M(a+p+1)

x" p>-1, x>0

Proof:

It is known that

I“u(x)—mj‘y (x-y)*'dy, x>0

Let y =AX, then the above equation reduce:

1

1 u(x) = —I(Ax) (L= M)X)* XA\ =———— ( e I(A)p (=2 F b

0

_ 1 F(P+I @) oo _ (Pt oo
F(O() X7B (p+ In )F( o) (p+a+1) X [(p+ta+1) X

. x>(

Remark (1.20, [34]:

Another types of definitions for fractional intetgacan be considered
namely Kalla and Saxena fractional integral, Kdib&ctional integral and Saxena
fractional integral.

In the rest of this section , we give some propsrtelated to the left hand
Caputo fractional derivative, left hand Riemmanthitle fractional derivative
and left hand Riemman-Liouville fractional integral

Remarks (1.21):

d"u(x)

1) CD‘{u(x)—I”“{ } n-1<a < n,[36]
a dx"

13



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

| 1 [ u(y
d
x| T(n-a)J (x=yy™

@) D u)=

= dn
dx"

[I;:“u(x)],n—ka < n, [36]

(3) °D% (1%u(x))=u(x), [20]

(4) 12 (°D%u(x)) = u(x)- Z (k)(a)(x af, - ka< n, il N,[27

(5) I3 +satisfy the semigroup property, [36].

1.2 Existence and Uniguenss of the Solutions for theNon-Linear Non-L ocal
Initial Value Problems of Linear Fractional Integro-Differential Equations:

In this section we discuss the existencehef unique solution for special
types of the non-linear non-local initial value plems for fractional integro-
differential equations. To do this, first considee linear non-local initial value
problem that consists of the linear fractional M@d-Volterra integro-
differential equation of order.

b X

“DEu() = g0 + F0OUG) + Ay [ kG )y + 2, [ LG5 y)ue)dy
a a
(1.1
together with the linear non-local initial conditio
u(a) = H1f u(y)dy + p, (1.2)

where x€ [a, b],0 < a <1, g, f, ue C[a, b] and k: [a, b] X [a,b] O &> R and

£:[a,b] x [a,b] O > R are continuous functions, “Dy+ is the left hand
Caputo fractional derivative of order a, A,, 4,, i;, U, are known constants.

14



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

To do this we need the following lemma. The proof of this lemma depends on
the facts that appeared in [11].

Lemma (1.22):
The non-local initial value problem given by equations (1.1)-(1.2) is
equivalent to the following linear integral equation:

1

X b
u(x) = M )f (x —y)“‘lg(y)dy+u1f u(y)dy + p, +

1 X b
mf x —y)* H(y)u(y)dy + Mo )f (x—y)*? Ua k(y, s)u(s)ds‘ dy +

A, (X
() J,

(x—y)*t Uy{’(y, s)u(s)ds] dy,a<x<b (1.3)

Proof:

Let u be a solution of the linear non-local initelue problem given by
equations (1.1)-(1.2). By taking the left hand Rweam-Liouville fractional
integral of orden, I+ for both sides of equation (1.1) one can have:

b
(D)) = 15860 + 15 (60u00) + 15 (4 [ Kexyuay )+

Io+ <7\2 j 2(x, y)u(y)dy> (1.4)

By using remarks (1.21),(4) and by using the linean-local initial condition
given by equation (1.2) one can have:

1% ( DSu)(x) = u(x) — u(a)

b
e j uGIdx — 1y

Therefore equation (1.4) becomes:

15



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems
1 X b
— a—1
000 = s | =)@y + s [ ulddy + s +
a a

1 X
i | G-+ 5 [ wene [ k(y,s)u(s)ds]dy+

(x — )“1[ f(y.s)u(s)ds]dy
e[|

Therefore u is a solution of the linear integral&itpn given by equation (1.3).
Conversely, let u be a solution of the integralagoun given by equation (1.3).

Then

1

b
u(a) = M )j (a—y)* 1g(y)dy+u1f u(y)dy + p, +

b ]
M« )j (a—y)* fuly)dy + — (a_y)a—l L k(y,S)u(s)ds_ dy

F()

- _
A (f@-y<t| €@y, s)u(s)ds|dy
T, j |

b
= ulf u(y)dy + p,
a

Therefore u satisfies the linear non-local inigahdition given by equation (1.2).
By taking the left hand Caputo fractional derivatiof ordera of both sides of
equation (1.3) one can have:

b
‘Diu(x) = DY (I g)(x)+u1 DY+ f u(y)dy + “D+p, +

a

1
“Dy+ ( f (x—y* 1f(.‘y)u(}y)d}')

I'(a)
AMo(F b
o (i oo mond )

16




Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

y
ena | A2 X(><—§y)°“1[ 1f’(y,S)u(S)dS] dy
o (2 | J

b
= DA (I8 g)(x) + Dot (IS f)u)(x) + A, DI+I% (f k(x, y)u(y)dy) +

A, Do s <f f(x,y)u(y)dy)

a

By using remarks (1.21), (3) one can get:

X

b
D u(x) = g(x) + FEOU) + Ay j kG, Y)u(y)dy + s j £ y)u(y)dy,

where a < x < b. Thus u is a solution of the linear fractionakgo-differential
equation (1.1).

Next, we are in the position that we can give thllowing existence and
uniqueness theorem. The proof of this theorem sargle modification of the
facts that appeared in [11].

Theorem (1.23:

Consider the linear non-local initial value problgwen by equations
(1.1)-(1.2). If
F(b—a)* (IA|K+ [2;|L)(b—a)**!

(b =)+ Fo——=5+ NCEED <1

where |[f(x)| < F, |k(x,y)| <Kand |[/(x,y)|<L VxyE€[ab]. Then

equations (1.1)-(1.2) have a unique solution.

17



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

Proof:

It is known that C[a, b] is a Banach space witlpees to the following
norm:

||U||C[a,b] = sup [u(®)|.
a<x<b

Let A be an operator that is defined by:

1 X b
M) = 1 f (x— y)“g(y)dy + g j u@)dy + p +

i )| =y + ks [y U 3 )u(s)ds|ay +

A, [ y
s f (x— y)* [ j £, s)u(s)ds] dy

Then

b
IAuG) — AV()] < [y f u(y) - v(y)ldy +

ijx(x — MW [uly) — v(y)ldy +
r'()J,

Ml(F b
ll((lxl)fa (x—y)*« Ua |k(y, s)|[u(s) — V(s)lds] dy +

Al (* y
rl'(al)ja (x—y)* U; [2(y, s)|lu(s) — V(S)lds] dy

b 1 X
<l | = lany dy + s | =% IO = Vicgady +
a a

Ml b
Il'((xl) f (x =y [ ] [k(y, $)lu = Vlgap ds] dy +

a] I Cx—y)et [ | 166y, )11 = vllerapds| dy
F((X) . . ’ C[a,b]

18



Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

1
= |uy[(b — ) [[u = vllcfap) + [I‘( )f x—y)* 1If(y)ldy]||u—v||Cab] +

I wil P
[F()f( 9 1(] |k(y,s>|ds)+

Al * y
ll(al)ja x—y)*t <fa Ii’(y.S)Ids>dy] Iu = Vll¢gap]

b=+ )f (x—y)*'dy +
ALK + |2, ]L
Pl Pall 2 [ ety | 0=l
J— F «
= [l —2) + s -+
(121K + [Az|L) (b — @) —a)*| [lu =]
o) x—a)*| [[u—vllcfap
Fb—a)* | (AlK+ [AIL) (b —a)*+!
|(b—a) + Tt 1) M(a+1) ]”u_vllqa’b]
Therefore
Au—A b— —(b_a)a
1Au = Avllcpapy < [l |(b—a) + far1) &

(121 1K + [A;|L) (b — a)**?
['(a+1)

lu = vllcpap

F(b—a)* n (A1 |K+Az|L) (b—a)**?
I(a+1) I'(a+1)
operator and by using the Banach fixed point thmp#e has unique fixed point

Since |y, |(b—a) + <1, then A is contraction

u. This fixed point is the unique solution of tieelr integral equation (1.3). By
using lemma (1.22), u is the unique solution ofriba-local initial value problem
given by equations (1.1)-(1.2).
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Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

To illustrate this theorem, we consider the follogvexamples:

Example (1.24:

Consider the linear nonlocal initial value probleéhat consists of the
linear fractional Fredholm integro-differential eqon of orderi:

1

2 1 1t
CD‘(;Jru(x) = gxu(x) + gj xyu(y)dy + 3x%, 0<x<1 (1.5)
0

together with the linear nonlocal initial conditio

1

1
u(0) = 2 [ )y (16)

0

Here a = i,a =0, b=1, f(x) = %X vx € [0,1], k(x,y) = xy,¢(x,y) =0,

A = %;7\2 =0,p, = i,uz = 0 and g(x) = 3x*. Therefordf(x)| <F =% VxE
[0,1]. Also |k(X,y)| <K=1 VX, y € [0’1]. So
F(b—a)® (|AK+ |[A,]L)(b — a)*+?

el —2) + T+ TRy ~ 0522 < 1.

By using theorem (1.23), the linear nonlocal ihit@lue problem given by
equations (1.5)-(1.6) has a unique solution.

Example (1.25:

Consider the linear nonlocal initial value problehat consists of the
linear fractional Fredholm-Volterra integro-diffeteal equation of ordeéf:

2 1 1(7 1 (X i 3
Dliu(x) = §x2u(x) + Ej (siny)u(y)dy + gj y3u(y)dy +3e7%,1 <x< -
1 1

=2
(1.7)

together with the linear nonlocal initial conditio
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Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

12
u(1) = j u@)dy + 7 (1.8)
1

Here o= %,a =1, b= %, f(x) = éxz VX € [1,%], k(x,y) = siny, £(x,y) =

%,7\2 = %,ul = %, W, =7and g(x) = 3e™*. Therefore [f(x)|<F=
1/3\% 1 27 3
-(—) =2 k@l <K=1xylsL=Zvxe [1,5] .So

F(b—a)* (MK + [A,|L)(b —a)**!
Imalb—2) + T+ TRy ~ 0.886 < 1.

By using theorem (1.23), the linear nonlocal ihit@lue problem given by
equations (1.7)-(1.8) has a unique solution.

Remark (1.26):

Foru, = 0, it is clear that theorem (1.23) can be also useehgure the

existence of the unique solution for the linearalomitial value problem that
consists of the linear fractional Fredholm-Volteméegro-differential equation

(1.1) together with the linear local non-homogenieéttal condition u(a) =,
where p, is a known constant.

Second, we generalize theorem (1.23) to be validhfie non-linear non-
local initial value problem that consists of lindaactional Fredholm-Volterra
integro-differential equation (1.1) together witietnon-linear non-local initial
condition:

b
u(a) = f w(y,u(y))dy (1.9)

wherew: [a,b] X R [ R is a continuous function.

But before that we need the following lemma. Theopiof this lemma is similar
to the proof of lemma (1.22), thus we omitted it.
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Lemma (1.27):

The non-linear non-local initial value problem @iv by equations
(1.1),(2.9) is equivalent to the following non-larantegral equation:

X b
u(X)—mf( —y)“‘lg(y)dy+f w(y,u(y))dy +
b
i | =y + s [y | [ oucs|ay +
)\2 b oa—1 Y
F(a)fa x—-y) Ua £(y, s)u(s)ds‘ dy,a<x<b (1.10)

Theorem (1.8):

Consider the non-linear non-local initial valueolglem given by
equations (1.1),(1.9). If the following conditioare satisfied:

(1) w satisfied a Lipschitz condition with respexthe second argument with a
Lipschitz constant W:

lw(x,u(x)) — w(x,v(x))| < Wlux) —v(x)|, a<x<h.

[A1] K+|A;|L

(2)W(b —a) + Tt D

(b—a)* + (b—a)*! < 1.

I'(« +1)
where |f(x)| < F, |k(xy)| <Kand |[#(x,y)| <L Vxy € [a,b].
Then equations (1.1),(1.9) have a unique solution.

Proof:

Let A be an operator that is defined by:

b
M= s [ =)y + [ )y +

1

b
i | =y + s [y | [ o] ay +
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)\2 X y
WL (x—y)* Ua £(y, S)u(S)dSI dy,a<x=<b
Then

b
IAuG) — Av()| < j Iw(, u®)) — wy, v(y))|dy +

1 j "= )G = v)ldy +
o) J,

Al (7 -1 bk ds|dy +

F(Oofa(x—w U| @ 9)lluls) - v(s)| s] y
ol [ yyen fxm )lu(s) — v(s)lds|d
F(a)a X—Yy ) y,s)||lu(s v(s)|ds|dy

Thus
|Au(x) — Av(x)|

b F X
<W j u) = vy + s f (x— y)% u(y) — v()ldy +

A, [K
I'(a)

X b
j (x — y)et [ j lu(s) — v(s)lds] dy +

AL X b
e | =yt [ J e —v(s)lds] dy

< W(b —a)|lu—vllcpap + lu—vllcapx—a)* +

['(a+1)
(1| K+ [A;|L) (b — a)

lu = Vll¢pap x — )

I'(a+1)
F(b—a)* (A K+ [A;|L)(b — a)**+?
< — —
<|W(b—a)+ Fat D Mo+ 1) lu = vllcpap
Therefore
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Chapter One The Existence and Uniqueness of the Solutions for Some Types of Fractional Non-local Problems

F(b —a)“

||Au - AV”C[a,b] < W(b - a) + m +

(Al K+ [Az[L) (b —a)*+!
I'(a+1)

lu — vllcrab

F(b-a)* | (A1l K+[Az|L) (b—a)**!
I(a+1) I(a+1)
operator and by using the Banach fixed point thep#e has a unique fixed point
u. This fixed point is the unique solution of thendinear integral equation
(1.10). By using lemma (1.27), u is the unique softuof the non-linear non-
local initial value problem given by equations (1(1.9).

Since W(b—a)+

< 1, then A is a contraction

To illustrate this theorem, consider the followexample:

Example (1.29:

Consider the nonlinear nonlocal initial value peshlthat consists of the
linear fractional Fredholm-Volterra integro-diffeteal equation of orde%:

1 1 1 (2 1
‘DSu(x) = z—u(x) + —f y2u(y)dy + Zf x+yuy)dy+6x+8 (1.11)
0 0

0 3

together with the nonlinear nonlocal initial comnaiit

u(0) = f *sinu(y)dy (1.12)
0

1 _ 1 _1 1 — 22
Herea =2,a=0,b=1, f0 == vxe01] , k(xy) =y?

1 1
2(x,y) =x+y,w(y,u(y)) = sinu(y),A; = 3 A, = 2 and g(x) = 6x+ 8
Therefore
If(x)| < F = % , k(xy)| <K = i 1#(x,y)| < L = 1.Since |sinu(x) —
sinv(x)| < [u(x) —v(x)|Vx € [0, %] , this implies that W = 1. So
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A1 K + [A;]L
I'a+1)

F
Wb —a) + ——— (b — a)® +

b—a)**! =~ 0.708 < 1
I@+1) (b=a)

By using theorem (1.28), the nonlinear nonlocatiahivalue problem given by
equations (1.11)-(1.12) has a unique solution.

Third, we extend theorem (1.28) to be valid for tie@-linear non-local
initial value problem that consists of the non-in&actional Fredholm-Volterra
integro-differentiakquation of order o

b X
‘Dy+u(x) = f(x,u(x)) +f k(x,y,u(y))dy+j 2(x,y,u(y)) dy (1.13)

together with the non-linear non-local initial cimiron

b
u(a) = f w(y, u(y))dy (1.14)

where uve C[a,b],a<x<b,0<a<1, k:[a,b] X [a,b] xR [5 R,
?:[a,b] X [a,b] x RO - R,f:[a,b] X R—>Randw: [a,b] x RL [ Rare

continuous functions. To do this we need the following lemma. The proof of
this lemma is similar to the previous, thus we omitted it.

Lemma (1.30):

The non-linear non-local initial value problem givby equation (1.13)-
(1.14) is equivalent to the non-linear integral apn:

b 1 X
u(x) = j WA@Y + o f (x — y)* 5y, u(y))dy +

1

X b
o j (x — y)e-! [ f k(y,s,u<s>>ds] dy +

1 X y
mja (x—y)*1 Ua 2(y, s,u(s))ds] dy,a<x<b
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Now, we give the following existence and uniquen#ssorem which is an
extension of theorem (1.28) to be valid for the -inaar non-local initial value
problem given by equations (1.13)-(1.14).

Theorem (1.32:

Consider the non-linear non-local initial value lgem given by equations
(1.13)-(1.14). If the following conditions are diked:

(1) f and w satisfy Lipschitz condition with respéa the second argument with
Lipschitz constants F and W respectively.

(2) k and? satisfyLipschitz condition with respect to therthargument with
Lipschitz constants K and L respectively.

F(b-a)* (K+L) (b—a)®*!
r(a+1) r'(a+1)

@)Wk —-a)+ <1

Then the non-linear non-local initial value problgimen by equations (1.13)-
(1.14) has a unique solution.

Proof:

Let A be an operator that is defined by

b 1 X
Au(x) = fa w(y, u(y))dy + o) L (x —y)* f(y,uly))dy +
1 X b
o j (x — y)o! [ f k(y.s, u(s))ds] dy +

1 X y
mL (x—y)«1 Ua £(y, s,u(s))ds] dy,a<x<b

Then

b
IAuG) — Av()| < f Iw(, u®)) — w(y, v(y))|dy +

1 X
G j (x— y)* Uy, u(y)) — £y, v(y)ldy +
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1 (X b
WL (X _ y)a—l [L |k(y‘ S, u(s)) — k(y, S,V(S))ldS] dy +

1[(—)“1Ue< )~ £(y,5,v(s)ld
M@ X |€(y, s, u(s) y,s,v(s))|ds|d

< [ a0ty + 1 [ 6= o)~ vlay +

I'(a )f( - 1“ |u(5)—V(S)|dS]dy+

w9 [ = veotas| ay

X
< Wb — a)llu = vllpap + f (x = y)*dy flu = Vilegan +

T'(a)
K+ L)(b— X
( +F2§) ) j (x = 9)“lu = Vllgjap dy
[ F(x—a)* (K+L)(Mb—-a)(x—a)“
— _W(b —a) + CTEY + SCEE) ] lu = vllcpap

F(b—a)* (K+L)(b—a)*t!
et D | T+ D)

< |W(b-a)+ ] lu— vll¢pap

Therefore

F(b—a)®* (K+L)(b—a)*t!

|Au — AV|l¢fap < [W(b —a) + NCTE) + Fat D ]”u_V”C[a,b]

. F(b a)®  (K+L) (b—a)**?
SinceW(b a)+ D F@rD

Therefore by usmg the Banach fixed point theorechlamma (1.30), there exists
a unique solution to the non-linear non-local alitvalue problem given by
equations (1.13)-(1.14).

< 1, then A is a contraction operator.
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Chapter Two Laplace Transform Method for Solving Special Types of Linear Fractional Problems

Introduction:

The Laplace transform is a powerful tool in appliedthematics and
engineering. It allows us to transform differentiedjuations into algebraic
equations and then by solving these algebraic smsatwe can obtain the
unknown function can be obtained by using the Is@édraplace transform, [20].

It is known that the Laplace transform method ie af the most
important methods that can be used to solve tha latial value problems that
consist of the linear ordinary differential equasowith constant coefficients
together with linear local initial conditions, [20[his method can be also used to
solve special types of the linear fractional diéigial equations with constant
coefficients without any initial conditions, [41]Moreover, [40] and [48] used
this method to solve special types of the lineaalanitial value problems for the
linear fractional differential equations with cosust coefficients and non-constant
coefficients respectively.

The aim of this chapter is to use this method teesspecial two types of
local and non-local problems. The first type is then-local initial value
problems that consist of the n-th order linear ®ol integro-differential
equations of difference kernel together with (nktgar local initial conditions
and one linear non-local initial condition. The @ed type is the local initial
value problems that consist of the linear fractiovialterra integro-differential
equations of difference kernel together with ldodlal conditions.

This chapter consists of three sections:
In section one, we give some basic concepts oflacagransform.

In section two, we use the Laplace transform metbdthd the solutions
of special types of linear Volterra integro-diffet@l equations of difference
kernel together with local and nonlocal linearialitonditions..

In section three, we use the same method to fiadsttutions of special
types of linear fractional Volterra integro-diffateal equations of difference
kernel together with local linear initial condit®n
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Chapter Two The Laplace Transform Method for Solving Special Types of Linear Fractional Problems

2.1 Some Basic Concepts of the Laplace Transform:

Recall that, the Laplace transform of a continubusction defined on
[0,0) which is of exponential order, denotedUfy(x)} or U(s) is defined by:

L{u(x)} = Te “u(x)dx

where s is a complex number for which the abovegiratl converges, [20].

In this case, u(x) is called the inverse Laplacngform of U(s), that is
u(x)=L™{U(s)} where L™ is called the inverse Laplace transformation
operator.

In this section we give some of the useful prapsrof the Laplace
transform

We start this section by giving the following knownoperties for the
Laplace transform and its inverse, [20]:

(1) L andL™are linear operators.

(2) Let U(s)= L{u(x)} then
L{u ™(x)} =s "U(s) —st‘u(m“‘l) (0), mO N (2.1

(3) Let U(s)= L{u(x)} andW(s)= L{w(x)} then
L{ Jw(x —y)u(y)dy} = U(s)W(s) (2:

(4) Let U(s)= L{u(x)} then

L{Iu(y)dy}:@ (2.
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(5) L{x"} = '_(5811), B>-1 (2.2

Next, we give some another important properties tloe Laplace
transform. We start by the following lemma.

Lemma (2.1), [40]:

Let U(s) = {u(x)} then

{I u(x)} s() > 0.

Proof:

It is known that

L{1u(x)} =L {%E(X -y)“u (y)dy} Tt { Jox=y)* (y)dy}.

Let w(x—Yy) =(x-Vy)*", then w(x)=X"" By using equations (2.2),(2.4) one
can get:

L{15u) —%U(S)W(s)

whereW(s)= L{x** :%0(). Therefore
S

{I u(x)} (S)

Remark (2.2):

If a =1,then by using lemma (2.1) one can have:

L{Iéu(x)} = L{I 0+u(x)} {ju(y)dy} (S)

Thus lemma (2.1) is a generalization of equatio8)(2
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To illustrate lemma (2.1), consider the followingeple:

Example (2.3):

Let u(x)=x?, B>—1then

rB+1)
L{l g+u(x)} _ USE(S) _ SZ: _ ré(E;ll).

On the other hand

rB+1) o
a — 10 B — a+3
LU(X) =1 X7 = ———=—X"",

Ma+pB+1)
Thus
o Lol - TB+Y) o
Higueop =t lix = gt
_ FB+1) MNo+p+1_r@E+1
_F(a+B+1) Sa+[3+1 - §+B+1

Now, the following lemma gives the Laplace tramsfdor the left hand
Caputo fractional derivative. This lemma appeaned4i0], here we give the
details of its proof.

Lemma (2.4), [40]:

Let U(s)= L{u(x)} then

n-1
SU(s)- Z $ ¢ (0)
120 . n-1<a<n, nJ N

L{ CD;u(x)} = i

S

provided “D¢, u(x) exists for eachx = 0.
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Proof:

By using remarks (1.21), (1), one can get:
L{°Deu)} =L{ITu(x)}, n-1<a<n, O N
So, by using lemma (2.1) one can obtain:

L{ CDg+u(x)} = L{I U (”’(x)}
L{u”00}

n—a

S

By using equation (2.1), the above equation becomes

n-1
5 U(s)—z $ ¢ (0)
=0 , n—1<a<n, mJ N, (2.

L{ CDg+u(x)} = s

S

Remark (2.5):

If o« =n, ne N, then by using lemma (2.4) one can have:

L{ ‘D&Hu(x)} = Liu®™ %)}

n-1
= s"U(s) — Z stu-1=1 (@)
i=0

Thus lemma (2.4) is a generalization of equatioh)(2
To illustrate lemma (2.4), consider the followingeple:

Example (2.6):

Let u(x) = x> anda =§3 . Therefore n=1 a
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L{CDzu(x)} = SU(S): U(O):—wz.

s s’
On the other hand, by using proposition (1.13) care have:
e =_T@E
r (2 —3 + 1) r (178j

Then by using equation (2.4) one can get:

1
X X7,

3 3
CH7 —CH7 v2—
Dl u(x)= "D} x" =

(%)

L{CD7+U(X)}:L{CD7+X2}: r(3) L{X7}: r(3) 187 — rg?): 128.
0 0 18 18) 18 1
AT e s

7
Now, the following lemma gives the Laplace transfdor the left hand

Riemann-Liouville fractional derivative. This lemrappeared in [40] without

proof. Here we give its proof.

Lemma (2.7):

Let U(s)= L{u(x)} then
L{,D%u(x)} :s“U(S)—i 5(°9" (0, + xas< n, B I

i=0

Provided, D, u(x)exists for eactx = 0.

Proof:

By using remarks (1.21), (2), one can get:
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n

L{,Deu(x)} = L{ddxn 1 gf‘u(x))}
:{_ W) (>}),ﬁ ga< n,@O |

wherew(x) =17“u(x).Then by using equation (2.1) one can obtain:

L{XDglu(x)} :s”W(s)—iéV\?”"'” 0), = ¥a< n, @ !

By using lemma (2.1) one can have:

W(s)= L{w(x)} = L{1"u(x)}

U(s)
Sn—(x
Therefore
n-1 n—i-
L{,Dou} =5 U $( 1" (0), - ¥as< n, B 1
i=0

Remark (2.8):

If o« =n, ne N, then by using lemma (2.7) one can have:

L{ xDg+u(x)} = L{ xDg+u(x)}
= "U(s) — nj si%uw) " (0
"
= s"U(s) — ; u®-1-1(0)

Thus lemma (2.7) is a generalization of equatioh)(2

To illustrate lemma (2.7), consider the followingeple:
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Example (2.9):

Letu(x)=\/§ anda % . Therefore n=1 a

1

1 1 1 \@D
L{XD;u(x)}:L{ 32}—s2U(s) Zs(ifzu] ©

3
z 1 TG)
I(Z)+u(x) =0,xz = F(;)X

3

5)

1 1

and this implies thaélgm) (0) = 0. ThusL{ +u(x)}

On the other hand, by using proposition (1.8) careget:

1 11 g
XD§+u(x):XD§+x2:F(§).

Hence

L{XD§+U(X)}:L{XD§+X;}=L{F(2J} - F(EJ

Next, the following lemma gives some propertiestled inverse Laplace
transform. This lemma appeared in [40]. Here we dine details of its proof.
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Chapter Two The Laplace Transform Method for Solving Special Types of Linear Fractional Problems

Lemma (2.10):

Leta>0,3>0,y>0 andajd R.Thi

(1) Ll{ il }zx“Ea,B(—ax“), for‘§‘>|¢

s +a
1 °° (-a) [niﬂj
2) L* — y O (n+1)y1 i(a-p)
@ (s“ + aﬁ)n+1 " ; M(i(a-P) +a(n +1)0()X

wherex =8 and‘ §‘B‘>| h

. . (—b)i(—a}('f‘j
-1 — y a-y-1 i(a-B)+ja
© t {s‘*+a§+b} D I)Y oy vy e

i=0 i=0

wherar 2B, || >|d and $+ 45> ||

Proof:

(1)  Itis known that for|s®

>|d,

s? (1 1 |_ 13 —_ai=°°6ai)
s°‘+a_[§j 1+ §§‘( %j ,Z:o: S

S

Therefore
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Ll{—sw }:Ll{ > (_—a)}
S(x +a = §|+B

-yt Ll{r(on+rs—1+1)}
- I— (O(I + B) S0(i+[3—1+1

i=0

(0]

— (_a)i &i+[3—1

— [ (ai +[)

&t c (—a_x“ )i
— [ (a1l +)

= KB £ ak ).

(2)It is known that for x| <1,

i=0
Therefore
1 _ 1
(s +as §™ . ad n+l
S o
1 1
T/ 0+l n+l
(s") (1+ a j
st P
1 &+ -—a)
_(Sq)n+1iZ:0:( | j(s}ﬁj
Thus
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errolE
(s* +ag ™ @&

2

aui(”rﬂ(%sj}
) Y]

. (

-3 (_a)( i] L-l{r<i(a—rs)+a(n+1)—1+1)
- & r(i(a-B)+a(n+1)

(n+i |
' (@B +a(n+1)-1

E M (i(a

| (—a)i(”“]
— %n+1)—1i I Xi(q_p,) .

i=0

-B) +a(n+1))

F(i(a-p) +a(n+1)

é( a—-fB)+a(n+l)-1+1

(3) Itis known that fora =3, ‘s"‘ﬁ‘>|4 and‘ S+ ﬁ#>| L

g :[ 4 ] 1
S“+ad+b | &+ ds 1+ b

s + aé

_(s iyagJ Z( glba@sjj

=i s' (b}
— (SO( + a§ )+1
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Thus

N i (1] 1
= ZZ(_a) (=b) ( i )(Si(a—g)ﬂjﬂ)q_yj
ii (-a) (- )( I j (F(l(a B)+(j+l)a_y_1+l)j

M(i(a-P)+(j+D)a-y) (@B () -y

Therefore

_ s’
[ . —
{S“+a§+b}

ii e by( j {F(l(a B +(j +L)a -y~ 1+1)}

r(l(a ) +(J +1)a y) Sl((x —B)+(j+1) a—y-1+1

o o (A b)( ]
ZZ Ko-BHid)a-y-1

Fi(a=B) +(j+Da-y)

o o (A b)( j
= -vlzz joBria

—i [ (i(a—P) +(j +Ha -y)
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Chapter Two The Laplace Transform Method for Solving Special Types of Linear Fractional Problems

2.2 Laplace Transform Method for Solving Ordinary Non-Local
Problems:

In this section we use the Laplace transform metb@dlve the non-local
initial value problems that consist of the lineanrfhomogenous Volterra integro-
differential equations together with non-local i@t conditions. To do this,
consider the n-th order linear non-homogeneous evfalt integro-differential
equation of the difference kernel:

n-1

U )+ ad? (x)=A j k(x= Y)u(y)dy+ g(x), 2 0 (2.6
i=0 0

together with the linear local initial conditions:

u?(x)=c, i=1,2,...n- 1 (2.7

and the linear non-local initial condition:
b

u(O, [ ueodxrp, (2.8)
0
where{ci}:,ul, K, , A, {q ?:‘01 are known constants, b is a known constant

such that b > 0 and k, g are continuous functaefsed on [Gp) which are of
exponential order. The Laplace transform methodnsepy taking the Laplace
transform to both sides of equation (2.6) and byguthe linearity property of the
Laplace transform operator one can obtain:

L{u®™(x)} +ia1 L{ u® (x) :AL{J' k(x—y)u(y)dy}+ {g(x}, x=0

By using equations (2.1)-(2.2), the above equdieromes:

SUE-Y $6 0 3 U@ Y a{ isU(s)i 41 %@7

(HU(s)+ G(s) (2.
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Chapter Two The Laplace Transform Method for Solving Special Types of Linear Fractional Problems

Where U(s)= L{u(x}, K(s)=  k(x} and G(s¥ { g(}) Assume that
u(0)=¢,, where c, is unknown constant. By substituting(0)=¢, and
equation (2.7) into equation (2.9) one can have:

{ iaé AK@% U(srz S fiat Z az ST (@) G

i=0 i=1

Therefore
D Gt Z Zéu"“ O G(s)
u(x)=L*{U(s) = L= =B 9
+Zaé—)\ K(s)

J

The obtained solution u depends on x and on theawk constant,. Then this
solution must satisfy the non-local initial conditi given by equation (2.8). So,
the value of the unknown constatyt can be determined by solving the algebraic

equation:

b

Co=H, I u(x)dx+p,.

0

To illustrate this method, consider the followiegamples:

Example (2.11):

Consider the nonlocal initial value problem thahsists of the second
order linear non-homogeneous Volterra integro-diffdial equation of the
difference kernel:

u"(x)+2u (x)+ u(x):j (X— y)u(y)dylrf—;—;+ 6X+ 6x, 2 0 (2.10)

together with the linear local initial conditions:
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Chapter Two The Laplace Transform Method for Solving Special Types of Linear Fractional Problems

u'(0)=0 (2.1:
and the linear nonlocal initial condition:
( 1
u(O):J. u()dx- (2.12
0

We use the Laplace transform method to solve tlslatal initial value
problem. To do this, we take the Laplace transfoonboth sides of equation
(2.10) and by using the linearity property of theplace transform operator one
can obtain:

L{u"(x)} +2L{u' (x)} + L{u(x)} =

{L! x ny)dy} + L{ x3} -L {;—;} +L {6x 2} +L{6x}
(2.13)

Let u(0) = e. Therefore

L{u"(x)} =s’U(s)- su(0y U (0F 5 U(s) s¢
L{u'(x)} =sU(s)- u(0} sU(s» sc .

Since k(x-y) = x-y, thus k(x) = x and this implig=at k(s) =§

5
moreover,since f(x¥ %(—X—+ 6%+ 6x, then F(S%_E+1_2+_6
20 g g S
So, equation (2.13) takes the form:
1 6 6 12 6
F+2st ] UGy (F 2)c== U= -——+—+—
( JUGr (5 =5 UG g5+
Thus
6 —
U(s):s (s+ 2)g+ 65— 6 175+ 6s

s'(s'+ 28+ $- 1)
_S(s+2)g+ 68— 6 175+ 6s
SE+s DE+ 1)
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Chapter Two The Laplace Transform Method for Solving Special Types of Linear Fractional Problems

After simple computations, the above equation Garelwritten as:

1
S+
6 C 2
U(s)=—4+-—> +
()s“ 2[§+3—J} © &+ s
1
6 ¢ 1 S*5
2 2 (f5Y e 2 ( 3V
ERGINESE
2 2 2 2
V5 !
:E4+\7°, 22 > +('6 ; 2 > |-
S 5
s+ 1) (5 s+ 1) L[ V3
2 2 2 2
Hence
6, C ﬁ S+*1
u(x)=L"<—+—2 2 +C, [

S EIEINETE

L L - )

:x°’+% é%x sin?E% %+ gé c{\/é }< X 0 (2.14)

By substituting this solution into equation (2.132)e can get the linear algebraic
equation:

—fferse e o ol ) o

After simple computations, the above algebraic #égndecomes:
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5+ J5- Je J
4 4 20 20

g% é% co%%} cp%)’ é s{n\/;]:

which has the solution, = 0. By substitutingc, = 0 into equation (2.14) one can
get:

u(x)=x% x=0

which is the exact solution of the nonlocal initihlue problem given by
equations (2.10)-(2.12).

2.3 Laplace Transform Method for Solving the Locallnitial Value
Problems for Fractional Volterra Integro-Differenti al Equations:

It is known that the Laplace transform method carubed to some types of
fractional local initial value problems involvinga@uto differential operator,
[40], [41].

In this section we use the Laplace transform methmdsolve the
fractional local initial value problems that consi$ the linear non-homogenous
Volterra integro-differential equations togethetthwiocal initial conditions. To
do this, consider the linear fractional Volterréegro-differential equation of the
difference kernel of order of the second kind:

CDg+u(x)+au(x): )\I. K(x— y)u(y)dyt g(x), - le< (2.15)

together with the linear local initial conditions:

u®(x)=c¢, i=0,1,...,.n- 1 (2.16
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-1 . .
where{ci}"ﬂ KU, 1, & A are known constants, k, g are continuous functions

defined on [Gp) which are of exponential order. The Laplace tiams method
begins by taking the Laplace transform to both siokequation (2.15) and by
using the linearity property of the Laplace tramsf@perator one can obtain:

L{ °D&u(x)} +al{u(x} = L{ LCS y)u(y)dy}+ {g(x}, Ous<:
0
By using equations (2.2), (2.5), the above equdigmzomes:

s“U(s)—i O @ (OF aU(SEA K(s)U(s) G(s) (2.17

where U(s)= L{u(x)} , K(s)= { k(x} and G(s¥ { g(3}) By substituting
equation (2.16) into equation (2.17) one can have:

[s" +a-\ K(s)] U(s):i g ¢+ G(s

Therefore
( n-1
D $7G, .+ G(s)
=LHU = {0 2.18
H(x) {ues) s” +a—-A K(s) > (

To illustrate this method, consider the followiegamples:

Example (2.12):

Consider the local initial value problem that csisiof the fractional
linear Volterra integro-differential equation oktdifference kernel of order:

CDg+u(x)+au(x)=AI (x- yf u(y)dy, - ka< 3>- 1 (2.1
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together with the linear local initial conditions:

u?(©)=¢, i=0,1,....

We use the Laplace transform method to solve diwal linitial value problem. By
using equation (2.18), the solution of the abowallanitial value problem takes

the form:

iﬁ Groina

u(x)=L*{U(s) = L{—= FETT)

a
s +a-A N

+a n+[3+1
DX

Scx+[3+1 + a§+1_)\r B+ 1)

If O<a <1, then n=1. In this case, equati@?20) become

_ P,
u(x)=L" .
( ) {SG+B+1+ a§+1 )\r KS"‘ 1}

By using lemma (2.10), (3), the solution of thisdbproblem is

(T (@+1)) (-a) (i TJ]
ux)= COZZ Fo+(+D(a +B+D-a—p)

j=0 =0

ia+j(a+p+1)

where[s®| > |a| and|sP+1(s* + a)| > |AT'(B + s)I.

In this case, iA=0, then equations (2.19) become

46
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“Di.u(x)+au(x)= 0, Gas

together with the linear local initial condition:

u(0)=g
By using lemma (2.10), (1), this local initial valproblem has the solution
a-1

; }:%Eu(—awéhw

s +a

u(x)=c, L‘l{

This solution is a generalization to the solutibattappeared in [25].

If 1<a <2, then n=2. In this case, equati@20) become

o+p-1 +B
L R
HOO=L {SO‘*B+1+ as™ -l B+ 1)}'

By using lemma (2.10), (3), the solution of thisdbproblem is

| +]
i

. (Ar(ﬁ+1»i<—a)'( j
U00=6xD ) | e T B a8

i=0 =0

Xi+i(0(+[3+1) +

|

| +]
i

. (Ar<[3+1»"<—a)‘( ]
AWM e ——yT

i=0 i=0

ia+j(o+B+)

In this case, iA=0, then equation (2.19) become
“Diu(x)+au(x)=0, kKas :

together with the local linear initial conditions:
u(0)=g. u(0)=¢
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By using lemma (2.10), (1) this local initial valpeblem has the solution

&

: }ml{j a}:cle(,,z(—av? W GE €ak )

Y +a +

u(x)=¢ Ll{
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Introduction:

It is known that, when a Taylor series is truncdaea finite number of
terms the result is a Taylor polynomial. This Tayfwlynomial is used to
approximate functions numerically, [45].

Taylor expansion method is an approach which basedpproximating
the unknown function in terms of Taylor's polyn@nand can be used to solve
the linear Fredholm integral equations of the sdckimd, [26] and the local
initial value problems for the first order Fredhelfolterra integro-differential
equations of the second kind, [31].

The aim of this chapter is to present a method daasethe generalized
Taylor expansion method. This method depends onoappating the unknown
function in terms of the generalized Taylor’s fotenand can be used to solve the
non-local initial value problems for the linear dti@nal Fredholm-Volterra
integro-differential equations of order, where 0« < 1

This chapter consists of three sections:

In section one, we give some basic concepts of rgéped Taylor
formula.

In section two, we use Taylor expansion methodsiving the local
initial value problems that consist of the firstder linear Fredholm-Volterra
integro-differential equations together with theelar non-local initial conditions.

In section three, we use the generalized Tayloraesion method for
solving the non-local initial value problems thamnsist of the linear fractional
Fredholm-Volterra integro-differential equationgyéther with the linear non-
local initial conditions.
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3.1 Some Basic Concepts of Generalized Taylor Forrau

In this section we give some basic concepts ofgbmeeralized Taylor
formula with some illustrative examples. This getieed Taylor formula for a
function u defined on x > a is obtained in terrhg®left hand Caputo fractional
derivatives evaluated only at the initial point fatlee independent variable x,

((CD;)i U)(a), i=0,1,..

We start this section by giving the generalized mealue theorem. But
before that we need the following lemma.

Lemma (3.1), GeneralizedM eanValue Theorem for Integrals), [12]:

Let u be a continuous function on [a,X], v is ategrable function on [a,X]
and v> 0, then there exists a numiger [a,x] such that

X
a

jxu(x)v(x)dx = u( E)j v(x)dx

Theorem (3.2), (Generalized Mean Value Theorem).46]:

Suppose that @ C [a, b] and” D;u [0Cla,b]for 0O<a <1, then

1 c
u(x) = u(a)+|_(q—+1)(( o) U €)(x- af

where a< & <x.

Proof:

It is known that

1% (°D%u) (x) = r(lq)j(x -y)**((°D% u) (v)ay.

By using lemma (3.1) one can have:
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5 (D)0 = )((CD;)u)(a)I(x—y)“dy
1 e
:I‘(a+1)(( B) §g)0c &) 0 & [a

wherea<¢ < b.
By using remarks (1.21), (4) one can get:

1 (°D%u(x)) = u(x) - u(a)

1 c
=F(a+l)(( D) gnz()oe ) 0K [ak

Therefore

u(x)=u(a)+

gl oo

Remark (3.3):

If a=1, then the generalized mean value theorem redioctdse classical
mean value theorem.

Next, before we give the generalized Taylor thegrewe need the
following generalized lemma.

Lemma (34), [48]:

i i+l
Suppose tha “D°, ) udC[a,b] and(CD‘; ) udC[a,b]for 0 <a<1,
and i=0,1,..., then for eaclexa, b]:

(I;‘i (CD‘;)i u)(x) _(|(;++1)a (CDué )(i+1) u)(X) :(.;)((CD;)i u)(a)(x— af

(1o +1
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Consider

(1 (0% ) u)ea (16 (<02, )™ u) 0
(SR ICE Ju
=12 ([0 ) u)oo - (a )(( ) u)oo)

Since 0 <o < 1, then n=1. So by using remarks (1.21), (4) areget:

r(m)j( (o) § @ ay

:I'(ila)(((c o ) ()4) ) dy

:I'(i0(1+1) (((C 0} )u ()a) £ 2)iz0,1,....

Remark (3.5):

If a=1, then lemma (3.4) reduces to the classical emuat

' u®(x) = 19Pu (x) :%u“’ (a)(x—a), i=0,1,..
a a I.
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Theorem (36), (Generalized Taylor Formula), [44:

Suppose thaéCD‘;) uldCla,b] for 0 <a <1, and i=0,1,...,N+1 then

for each x [a, b]:

u(x) = Z(CDG )(a)(x_aja+((cD§+)NﬂU)€)

_ N+1)a
F((N+Da 1) (x— a) (3.1

where a&<b.

Proof:

By using lemma (3.4), one can have:

\ 0 /Ca \i i+l)a i+l \ ) (a) [0
;[(Iw( D) U)(x) (I‘ ?(°D%) u)(x)}—%‘,( r(a+1)) (x—a)
Therefore

U(X)—( |;’:‘+1)a (CDc;+)N+1u) (X) = ZN: ((CDZ+)i U) (a)(X

2" iory X7 @)

By using lemma (3.1), one can obtain:
( (e (e, )(N+1) u) (x)=

L (e o)™ e o e ay

X

rwma] o () Y o) o

TT((N+1))
— 1 C N+1 +1)a
" T((N+1)a +1)(( @) Q‘E( Joe &y &

By substituting equation (3.3) into equation (3d)e can get:
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cDa @) | (CD;)NHU €) .
U0 = Z( +1) (_a)a+(r((N+1)a4)-l) (=)™

Remarks(3.7), [46]:

(1) Fora = 1, theorem (3.6) reduces to the classical Tdglonula of u about a:

N_ () _ N+1)
U(X):;u i!(a)(x_a) (N ]fl)( )N+1)’ $ES k

(2) suppose tha(CD‘;) uldCla,b] for 0 <a < 1, and i=0,1,...,then the
generalized Taylor series for u takes the form:

= (CDZ+)iu (a) |
Z( F(ia+1)) (a)y

i=0

(3) Suppose th tCD‘;) uldC[a,b]for 0 <a<1, and i=0,1,...,N+1, then

N «CD“fuya)

u(x) Juy, (x)= Z a7

Furthermore, the error terRy (x) has the form:

[(o2)" )@

_ N+1)a
F((N+1)0(+1)( ayie, esks

(x-a)"

Ry (X)=

Example (38):

Let u(x) =k, »€ [a, b], where k is a known constant, then

(CD‘;) ullCla,bjfor 0 <a <1, and i=0,1,.... Thus

54



Chapter Three The Generalized Taylor Expansion Method for Solving Fractional Non-Local Problems

N ((CD;)i u)(a) |
U(X)DUN(X):Z F(ia+l) (x-a)*, & x b, Oa< 1

But ((CD; )i u)(a): 0, i=1,2,.. then u(x)Ou, (X)=u(a)= Kk In this case
R,(x)=0, UxO[a,b]

Example (39):

Let u(x) =k;x + k,, x € [a,b], wherek,, k, are known constants, then

(CD‘;) ulJC[a,bjfor 0 <a<1, and i=0,1,.... Thus

N ((CD:L)i u)(a) |
u(x)DuN(x):Z I'(iO(+1) (x—a)', & x b, Oag< 1

1
Therefore, ifa= 0,a 25 then by using proposition (1.13) one can have:

LLCD;JUJ ()= kX _ 2k/x

GAECIE
2
and
UCD%J u}(x):kl.
So

HCDEJ u}(x): 0, i=3,4,.... Henc
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(=i (4] eJe
u(x) du, (x)= u(0)+ r(Sj J x+ F(2) X
2

=k +kx, 8 % b.

In this caseR, (x) = 0. On the other hand, &= 10 :% , then

(CDEJUJ(X)—ZKT\/? [(CDZJ ](x):k1 anc
&

[, (]
u(x) du, (x)= u@)+ X— 1+ (x-1

-

=K +k+k (x 1)
=k +kx, & % b

Ll R

J J(x) 0,i=3,4,...Hence

1
In this caseR, (x) = 0. Moreover, ifa :§’ then

(P iy (Eem

3
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2T 2T

(s om0

(ool [0 oo
Hence
[[CD(%} u](x): [(CDléj UJ (x)= 0, i=4,5,...
Thus
u(x) Cu, (X)
(<53, (5[]
= u(Oy % + X + X
QG I
3 3

=k, +kx, & x< b
and
u(x) Ou, (X)

(cipn, g [
= u(Lp+ (x= 13 +
()
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=k +k +k (x= 1)
=k, +k X, K x L

In the above two casd’,(X) = 0.

Example (310):

Letu(x)=x>, a=0 anax % , the

(4

X2, £ x< b
|( +lj
2

By using proposition (1.13) one can have:

Ca :16x2 L o 2
[( DO+)uj(x) /3 and this implies th{t[ (pj }4
( J(x) 3x* and this implies th{t(C ng }J & (

()
((CDZ] }(x) B¢ 4 tis {[ b be
LCDZJ (x) = 6x and this mphesth{ 31:)}4 }J @ (
()

(X) 13\[ and this impIiesth{t[C 1) }4(@) (
T
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&CD%J UJ(X):aand this implies théE[(C EDJ }4 ®)

1 i
and[[CDé) uJ (x)=0, i=7,8,...Hence

(4)+)o
2

=%, 8 % h

Ue) DU (=)

In the this casdr(X) = 0.

3.2 The Classical Taylor Expansion Method for Solvig Linear Inteqgro-
Differential Equations with Non-Local Conditions:

Recall that the classical Taylor expansion metleodised to solve the
local initial value problem for the linear integddferential equations, [31].

In this section we use the same method to solvadhedocal initial value
problem that consists of the linear first order dh@m-Volterra integro-
differential equation of the second kind:

b X
U'() = g0)+A, [ KOG Y)uy)dy+A, [ € (x y)u(y)dy, & x b (3.4
together with the linear non-local initial conditt

u(a) =y f, u@)dy + iy (3.5)
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where g, ue Cl[a, blk:[a,b] X [a,b] I [5 R, #:[a,b] X [a,b] 1 [} R are
continuous functionsy,, Uy, A;, A, are known constants. To do this, we assume
that the solution u of the non-local initial valpeblem given by equations (3.4)-
(3.5) can be approximated by the classical Taglpolynomial of degree N about
C:

u(x) Ou, (x):ziilum (©)(x=c), & & b (3.6)

By substituting equation (3.6) into equations (31p), one can have:

U(X) =900+ Y S (c{mj K Y)(y= ©) dye s [ £ () ©) d%

and
PITRCICERY CHC KLt
1l J{b-c)"-(a o)t
Fﬁ;l—l U (%/ - }r“z
So

U (c)= g(c)+_2% 1t (c{m [ kewno- 9 arr[r ey o d}

(3.7)

and

N

1 ' 1 N+l iyl i
Zﬁ[(a— c) —%{ (b-c)" - (& d)‘}} @ (cFu, (3.8)

A

Leta, = —I—Ilj k(c,y)(y- c) dy—%jﬁ (c,y)(y @) dy, i=0,1,...,
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and

l i 1 \+1 iyl H-
i :ﬁ[(a—c) —%{ (b-c)" - (a- CT}} , 1=0,1,...,"

Then equations (3.7)-(3.8) become:

> a U (0 @+ a, ) (cF 9(c) a.
and

Zfiu(” (C)=H, (3.10
Moreover

W0 =g (A, E U @ S kixv) (- o dy
)\ZZ;% Q (g%{j{f (x,}y)yec)‘dy},j:1,2,...,N—
So

u ()= g’ (c)+AZ_ cj [;—{ k(x, y}]

Azl—l, i ({){%{j x) ) CH

(y- C) dy+

X=C

i=1,2,...,N- 1

X=C

Let
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.

ut (c)+Zam @ (cE & (o), j=1,2,..N 1 3.1

Y

a

(y-c) dy—A{d(j—Jj{ [ ouyy- ) d»ﬂ
X a
where i=0,1,...,N, j=1,2,...,N

X=C

Then equation (3.11) becomes:

Thus, by evaluating equation (3.12) at each j 22,1,., N-1 and by using
equations (3.9)-(3.10), one can have the followlimgar system of N + 1

equations with (N + 1) unknowju® (C)}?I:O:

AU=B (3.13)
where
| fo f1 fz fs fN—l fN |
a0,0 1+ a1,0 82,0 as,o A 1,0 axl,o
Ay 1 Q& I+ &, & A 11 A1

A=l &, a , a5 iy &, X 12 A2 |

Pno  Hno N2 Ky ¥ X 1w 2 AN 2

_aO,N—l A N1 D N1 Bn1 A 1N 1 * %,N;
u(c) | M,
u'(c) g(c)
u*(c) g'(c)

U=| u"(c) |andB=| g'(c)

£ () 60
™ (c) | 9" (c).
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By solving the above linear system of equationss ean get the values of
{u(i)(c)}io. These values are substituted into equation (3c6)get the

approximated solution of the non-local initial valproblem given by equations
(3.4)-(3.5).

Example (3.11:

Consider the nonlocal initial value problem thansists of the linear first
order Fredholm-Volterra integro-differential equatiof the second kind:

11, , (20+70x) 5,

U() =2+ 2x- > inyu(y)dw j O+ y)u(y)dy

(3.14)

together with the linear nonlocal initial condition

u(0) = f; u(y)dy -3 (3.15)

Hereg(x) = 2+ ZX—i—;xz +W)x3, < x< 1, a=0, b=1

4
A=A, =, =1 ,= 3 k(x,y)=Xy and’ (X,y)=x+)

We use the classical Taylor expansion method teesthiis linear nonlocal initial
value problem.

To do this first, let N = 1 and ¢ = 1, then theusoin u can be
approximated as a Taylor polynomial of degree luabel:
uxX)Du, (X)=u@)+ U @Q)(x- 1), & x 1 (3.1¢

In this case:
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fo=o[@-of - (-0 @ 9= 0

f1=ﬂ(a—c)1—“—21{ (b= cf - (& ci}}= —

2
)\ b )\ c 1 1
—_""1 - 2 — -
800~ 0r j k(c,y)dy-2 j ¢ (c,y)dy= j ydy- j & y)dg- :
M A,
a,0= = [ k(e Y)(y- o)dy-=2 [/ (e, Y)(y- c)dy

= [ Y- Dely-[ @ - Day=>

and g(c)= g(1)=§ Therefore the system given by equation (3.13) takes

form:

_ 1] -4

0O — —
2 ||u@|_| 3

L Uflvw) | s

L 6 | | 6 |

which has the solutionl(l):gé and u’(l)=§. By substituting these values into

equation (3.16) one can have:

-23 8
u(x)Ju, (X)=——+—X
(x) Ouy (x) 36 3

Since

u'l(x)— 2— 2x+£' X2 —M)Xg’ -
12 12

(x -1)(21¢ +3;(2 + 48x- 24)¢ 00x, 0< x< 1,

[ ¥yy (dy=] O+ y)y (y)dy=
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then we must increase the value of N. So, let Nlk&efore the solution u can be

approximated as a Taylor polynomial of degree diabel.:

u(x) Ou, (x)= u@L)+ U (L)(x- 1 “"2(|1) (x- 1, & x 1 (3.17)

In this case:

f, =0, f, _71 == [(a cy - “1{(b— cf - (a- ci}}

1 1

.. .5 __ 1 1 1
80072 807 ¢+ 8o 2 y(y B dy‘a{ & )y 1) dy—

x=1 dy_[%{i (X+ y)dy}J -1
_ (9. d [
al,l——j(&{xy)}j (y- 1)dy—( X{j (x+ y)(y- 1)0%

e dy+[ {j (x+ y)(y- 1 dyﬂ

=-4,

S

-1
4
x=1

andg(c) = g(1):§ and § (¢ g (19:‘—23 Therefore the system given by

equation (3.13) takes the form:

, 11 4
23 [y 3
TR -
6 4| 6
405 3|0 a3
i 6 4 | . 6 |

which has the solution u(l) =8,1)= 4, U (1)=Z2 By substituting these
values into equation (3.17) one can have:
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u(x) Ou, (X)=x*+2x, 0< x< !

which is the exact solution of the nonlocal initiahlue problem given by
equations (3.14)-(3.15).

Second, we try to solve this example with anotteue of c. To do this,

let ¢ :%, and N=g then

u(x)Duz(x):u(1j+ U(ij(x——lj+—1 U(—lj( x——lj , E x 1
2 2 2) 2! 2 2

(3.18)

In this case

f =0 f=—t f=t g ="t g1 4o __ 1
L I ) %00 2"5'1*O 16’82’0 384’

1, oo 1)_.485 - 11
=y 8= g OCF §= 000 andg (@) B ="

y T

Therefore the system given by equation (3.13) g&ke form:

o 1 1] u(lj (47

2 12 2 3
“1 17 =7 () 2] 480
2 16 384 192

1 23 1 ~-11
—2 —_— —_— u”_ —_—
T 24 24 (2} | 24]

2
values into equation (3.18) one can have:

which has the solutlou(;j —g, d(—lj =3, l'fl(—g = . By substituting these

u(x) du, (x)= x>+ 2x, 0< x< ]

which is the exact solution of the nonlocal initiahlue problem given by
equations (3.14)-(3.15).
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3.3 The Generalized Taylor Expansion Method for Seing Linear Fractional
Integro-Differential Equations with Non-Local Conditions:

In this section we introduced a method named agémeralized Taylor
expansion method for solving the non-local initialue problem that consists of
the linear Fredholm-Volterra fractional integroffeiential equation of order of
the second kind:

°DSUC) =g+ A, [ KOG Y)u()dy+ A, [ £ (x y)u(y)dy, Oa< 1 (a9)

together with the linear non-local initial conditio
b
u(a) = py [, u(y)dy + py (3.20)

where g, u€e Cla, b], k:[a,b] X [a,b] 0 [ R, #:[a,b] X [a,b]0 - R are
continuous functions,CD;uis the left hand Caputo fractional derivative obfu

ordero and p,, U, A4, A, are known constants.

To do this, we assume that the solution u of the-lnoal initial value
problem given by equations (3.19)-(3.20) can be@pmated as a generalized
Taylor’'s formula:

) u) @)
o)

(x-a)*, & x b (3.21

u(x) Juy, (X)= Z((

By substituting equation (3.21) into equations $3-({3.20), one can have:

N

CD;u(x):g(x)+zr(%+n((cDa+“)i u) (a{)\l | Koy ay ay

Ao ¢ Gy ay d%

and
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olee oo o4

(3.22)

and
(b 0(+1 . i )
[1-1, (b 2) u(arulz a0 ) @ 3y
Letam:r(I 1) _[k(a y)(y- af dy, i=0,1,...N,f= 4y, (b
__, (b—a)™

andf, = ulr(ia+2)’ 1=1,2,...,N
Then equations (3.22)-(3.23) become:
> a0, ) v @r @ 8 {° B ) @ 9@ 324

and

N

>, ((CDaf“)i u)(a):u2 (3.7

i=0

Let
68



m, (x) = [k(x,y)(y=a)* dy, p (X} [ ¢ (x,y)(y- & dy, i=0,L..N

Then

(°0,*)" u)0=(("D,*) o) 00+

where j=1,2,...,N- 1

So,

(°0,*)" u)@=((°D,")' g (ax

irl((CDaﬁ) mi)(a)+)\2((CDa+u) p) (a)}((CDga)l u)(a)

r(io+1)

(3.26)

Al((cDga)j mi)(a)+)\2((c D ° )J‘ p) ()

== , 1=0,1,...,N, j=1,2,...,.N
A (i +1) | ’

Then equation (3.26) becomes:

((CDa+a)j+1U)(a)+iZNO: a, ((C D.%) t) (a)=((C DY g) (@), j=1.2,....N

(3.27)
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Thus, by evaluating equation (3.27) at each j=1,,2\-1 and by using equations
(3.24)-(3.25), one can have the following lineasteyn of N+1 equations with

(N+1) unknown{((CDaf’ )i u) (a)}N
i=0
AU=B (3.28)
where
| fo fy f, fs LIV fa |
8, lta, a, &0 & 10 &0
aO,l al,l l+ aZ,l a?y,l q} 11 a\l,l
A= ac'),z a?,z a'2,2 :H'. & 5 akl 1,2 f"h,z ,
a'O,N—Z a'.l.,N—2 aZ,N- 2 a3,N 2 ]i- Q& 1N 2 a\I,N 2
_aO,N—l a:l.,N—l a2,N-l a3,N- 1 aN 1N 1 a: a\l,N il
u(@) | M |
((°D,)u)@) 9(a)
(°0, ) u) @ ((°2.*)o) @
U= ((CDaf")3 u)(a) and B= ((CDa+a)2 g)(a)
(( cp @ ) u)(N—l) (@) (( CDa+a )g)(N—z) @)
(o))" @] L{(Fo)e) @

By solving the above linear system of equations can get the values of

{((CDaf")i u) (a)}i:

These values are substituted into equation (3@ggt the

approximated solution of the non-local initial valproblem given by equations
(3.19)-(3.20).
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Remark (3.12):

If uy= 0, then the initial value problem given by eqoias (3.19)-(3.20) is
local. In this case, u(a)s, wherep, is a known constant. So in the generalized

. N
Taylor formula given by equation (3.21), the vallmés{ (CDa+“) u) (ai can
i=1
be obtained by solving the NxN linear system:
AU=B (3.29)
where
1+ R A &0 A 10 A0 |
a 1+ &, & A 11 A1
A = a, 5 & I+ &, o A 1,2 A2

a:L,N—Z a2,N—2 a3,rx+2 - B a\+1,N2 %,Nz

B T Y I - VERVE T i VRV
((°0,7)u)e@ | i 9(a)- 1,3,
(D) u)@ (0. )g) @~ a,m,
U= ((CDa+“)3U)(a) - ((CDaf)Zg:)(a)— .M,
((CDa+“jN_1U) (a) ((CDa+“)N_29) (@)= 8y oM,
((CDa+“)N U) (2) _ ((CDaf)N_lG) @)= 3tz |

To illustrate this method, consider the followin@mples:

Example (313):
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Consider the nonlocal initial value problem thabhsiets of the fractional

linear Fredholm-Volterra integro-differential egiat of order%:

2 3 25, 165 23, | p
‘Du(X)=-=-xXP+—=x2 ——=X>+ | (X*+ y)u(y)dy+| (3x+ 2y)u(y)dy
UK =5 XXt - !( y)(y)yjo( y)u(y)oh
(3.30)
together with the nonlocal linear initial condition
u(0) =2 f; u(y)dy -3 (331)

S
Hereg(X):—g—%Sx2+% xz -2,
Tt

A=A, =1 1, =2, IJ2=_77 , k(x,y)=X+ y and (X,y)=3x+2

0< x< 1, a=0, b=1,

We use the generalized Taylor expansion methabliiee this fractional linear
nonlocal initial value problem. To do this, let 1, then equation (3.21) takes
the form:

1

e
Jx o, & x 1 (3.32

2]

u(x) tu, (x) = u(0) Jﬂ

In this case:

(b-af* _ -2 _ -8

fo=1-p(b-a)=1-2=-1, f= |J-1 (G+2) F(SJ_S\/E,

2

1 -2 _ -4

o= g A —zjj ¥ dFSF@»j'sﬁ
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and g(0) =_2—3 Then the system given by equation (3.28) take$dim:

-8

R u(o _!
3Jm (1) _| 2

1 5/n-4 ((CDOFJUJ(O) 3

2  5Jm 2

which has the solution:

335/ + 12)
2(15/m+ 8)

u(0)= 13.2108’

and

1 1 2
°D .2 |u[(0)==—-——=—10.19217<
[( o”” ST

By substituting these values into equation (3.3 can have:
u(x) Ou, (x)=3.21087+0.216846 , 0 <
By substituting this approximated solution into atjon (3.30) one can have:

1 3 25 16 2 23, 7
“D2u, (X)+=+=x——=x2 +—X°— | (x*+ y)y, (y)dy-
U 00+ =X+ !( y)u, (y)dy

X

5
j (3% 2y)u (y)dfl 5.52233 BEX - 92.625% + 5.75%

0
Since the right hand side of the above equatiors au¢ equal zero for each
x€[0,1], so we must increase the value of N. Theeeftet N=2, then equation
(3.21) takes the form:

[,
u(x) Ou, (x)=u(0)+ % + X x|

r(‘;’j IO
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In this case:

-8 -1 -4 -1

1:o:_l’ fl=m, f2=_11 ao,0:71 ai,ozm ' az,ozg

mo(x)=x2+%, ml(x):%x2+—§, m, (x):—;x2 +—:1)),

) 14 2 13
Po (X) = 4X ,pl(X)=§ X, p (X):€ X .

Therefore
CDC% m, (x):%xz, CD% mlj (x):%xg,
CDé m, (x):ﬁxi, CDO% o (x):%xi,
CD% le(x):21—é/ﬁx2, CD§+ o (x):lé\c;%xi.

Soa,, = a,= a,= (Moreover

3 9

2 _50x2 14722
Cp2 =90X 15— ax1
H o+}9]‘x) s ealm

1
. |9 (0F 0

SO[

Thus the system given by equation (3.28) take$otitma:
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I 7
e u(0) 5
-1 5n-4 -1| ((cn 3 _|_3
2 s (o o -
0 0 1 N 0
[(CDOR] uj (0)

which has the solution:

3(35/m+ 12)
2(15/m+ 8)

[[CD ZJUJ(O)—Z 15JE+ D0.192174an<%£c D;j }(@9

By substituting these values into equation (3.38) can have:

u(0)= [13.2108"

u(x) Ju, (x)=3.21087+0.21684 , 0 <

Since u, (X)=u, (X), so we must increase the value of N. By continumghis
manner one can get for N=6, equation (3.21) takesdrm:

u(x) g (x)

(),
=u(0)+ »

+
7~ N\
7~ X\

N
N
N

c
N—

~

o

~
VR
VR

@]

O

=)
N =
N——
w
N

~

o

~—
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where & x |

Then after simple computations and by using thenbtd software package, the
system given by equation (3.28) takes the form:

u(0)
1
((CDof]uJ(O)
4 8 -6 -1 -3 -1 oy 7
3T 15/m 3 105m 12 (Dof u ((0) 2
4,4 -1 -8 -1 -16 -1 3
2 " 5/m 3 24/m 8 13¥m 30 1\ 2
°D.2| u|(0)
0 0O 1 0 O 0 0 o 1o
0 0O 0 1 o0 0 0 \ B
1
0 0o 0 o0 1 0 of|| Dz | ul©] | ©
o 8 ;16 -1, 32 -1 25
3/ 15/m 3 ~ 105m 12 1\ 2
O 0O 0 0 O 0 1)[|| °Dy2 | uj©)| 30
}6
C
D% | u|()

which has the solution:

u(0)=1, ((CDOEJ UJ(O): 0, i=1,2,3,4,,and(£CDo+;] uj(O):so

By substituting these values into equation (3.3¥ can have:
u(x) Jug (X)=1+5¢, & x

By substituting this approximated solution into ations (3.30)-(3.31) one can
have:
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1 3 25 16 2 23 . 7
‘D2u.(X)+—+—x>——=x2+—X°— | (X*+ y)u. (y)dy-
FUs 00+ Nty y y)Us (y)dy

[ 3x+2y)y, (y)dy= C

and

U5(0)= 2w, (Y)ly—

Thereforeu, is the exact solution of the linear nonlocal alitvalue problem
given by equations (3.30)-(3.31).

Example (3.14):

Consider the local initial value problem that cetsiof the fractional

linear Fredholm-Volterra integro-differential egiat of order%:

lw

X

1 1
CDéu(x) =Lx4 —gx+—:2Lx2 -x*=3x* +j xyu(y)dy+j (X + y)u(y)dy
0

@ o

together with the local initial condition:

(3.35)
u(0) = —1 (3.36)

H

A=A, =1 1,=-1, k(x,y)=xy and (x,y)=% +

23 1
NG —§x+5x2—x3—3x4, 0< x< 1, a=0, b=1,

Hereg(x) =

We use the generalized Taylor expansion methabliiee this fractional linear
local initial value problem. To do this, let N =then equation (3.21) takes the
form:
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(oo
u(x) du, (x)=- 1+ : X, & x| (3.37)
o
In this case:
=]

20 =— =< | K(O.y)y' dy= 0 and g0}
il
4

Then the system given by equation (3.29) take$attme:
1
C —_
([ Dofqu}(O)— 0.

ux) du, (x)=-1, & x<

Therefore

By substituting this approximated solution into atjon (3.35) one can have:

H

3

1 1 X
DU, (X) = X+ X=X 3= [y (-] 06+ Y)u (V)=
0 0

8 3
— X4 +2x+ 2XC + 3% .

i
4
Since the right hand side of the above equatios doeequal zero, so we must
increase the value of N. Therefore, let N=2, thgumagion (3.21) takes the form:
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[(CDO;‘)UJ(O) . [[CDJJ UJ(O) .
u(x) du, (x) = -1+ X+ 2, K x|
()
2

(3.38)

In this case:

1 1

3,,=0,a,=0, azyo:_—:l),J. k(0,y)y dy |
2

0

2

me( =2, M (=2 X, M, (X)=% X,

P, (X) = X3 +% < B (X)= 4x4 (ig(+ 5), 5 (X)= 22 (155)(+ 3)
Therefore
((CD;JmO](X):%Xj’ ([C DE) mlj (X):1—63 %,
3r () T (j
4 4

((CDEJmZJ(X): - i (( D) poj o= 16% @ixe 1)
15T (] 2311 ()
4 4
((CDé]plj(x) - IW2(290 +20¢) H D; j p2] (9
127 ?)

8/ ar (jj o
= TS\/EX“ (70x+39).

Soa,, = a,= a,= (Moreover
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1 1 15 11 7 3
[CDng]g(X)_lZXZ— 2048 5 128 5 16 -
Tt

HEERE A
So [[C Jg}(o;:o

Thus the system given by equation (3.29) take$ottma:

().
o @

X4, &Ex]

QlH

o

c
D,.*

which has the squtior{:(cDoj‘}u}(O): {(C Dofl‘j u] (0)=0

By substituting these values into equation (3.38) can have:

ux) du, X)=u, (X)=—1, & x 1

So we must increase the value of N. By continumthis manner one can get for
N=4, equation (3.21) takes the form:

(<4, [,

u(x) Du, (x) == 1+ X+ X2 +
2 3]
4 2
HCDofl‘j UJ (0) . ((C DO;‘j u] (0)
X4 + X, 0< x<1
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Then after simple computations and by using thenbtd software package, the
system given by equation (3.29) takes the form:

1
(EC DO+4] u} (O)
} 2
1000 ECDO+4] ul0)
0100 o
0010, 1Y 0
000 1 P HWO| g
} 4
“D,* | u|(0)

which has the solution:

[(CDoxllj u](O): 0, i:1,2,1anc{£CDo+‘l‘) u](O): 6.

By substituting these values into equation (3.3% can have:
u(x) Du, (x)=—1+6x, & x .

By substituting this approximated solution into agons (3.35)-(3.36) one can
have:

3

1 1 X
D3, (0o X+ X T+ 3= oy, ()] (04 ) ()

and
u,(0)=-1.

Thereforeu, is the exact solution of the linear local initiglue problem given
by equations (3.35)-(3.36).
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Conclusions and Recommendations

From this work, one can concludes thiewng aspects:

(1) The existence and uniqueness of the solutionferlinear non-local initial
value problem is a generalization of the existesmog@ the uniqueness for the
solution of the linear local initial value problem.

(2)The classical Taylor expansion method that depamdspproximating the
unknown function as a Taylor polynomial centeredhat left endpoint of its
domain is a special case of the generalized Ta{pansion method.

(3) The generalized Taylor expansion method like thesical Taylor expansion
method gave more accurate results as N increases.

(4) The Laplace transform method is so difficult t@ utsto solve the linear non-
local fractional integro-differential equations afder a, o LIN since we get

functions of s that can not find its Laplace ineers

(5) It is known that there is no an explicit form fine Laplace transform of the
Fredholm integral operator, so the Laplace tramsforethod fails to be used

to solve the non-local initial value problems foetlinear Fredholm-Volterra
integro-differential equations.

(6) The generalized Taylor expansion method can beused to solve systems
of linear fractional integro-differential equationsith non-local initial
conditions.

For future works, the following problemsy be recommended:

(1) Discuss the existence and the uniqueness of faéasofor the non-linear
fractional integro-differential equations with nbnear non-local boundary
conditions via fixed point theorems.

(2) Use the generalized Taylor expansion method teegble non-local problems
for some types of non-linear fractional integrofeliéntial equations.

(3) Devote the study of the non-local delay problems.
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