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Abstract

The main objectives of this thesis may be oriented toward three

directions.

The first objective is a study, in details, the basic theory of
stochastic calculus and study the linear multistep methods for solving
stochastic differential equations and prove some results related to this
topic, as well as, studying the It6-Taylor series expansion and its

applications.

The second objective is a study the two steps Maruyama method
and also the solution of stochastic ordinary differential equations using
implicit methods which are treated by using the methods for solving
nonlinear algebraic equations resulting from the used implicit method,
such as Newton-Raphson method and predictor corrector method, also
proposing a new approach for solving stochastic ordinary differential

equations using variable step size method have been proposed.

The third objective is to introduce the higher-order Richardson
extrapolation method and variable order method for solving stochastic
ordinary differential equations, which has the utility of improving the

accuracy of the obtained results.



Basic Notations and Abbreviations

F
Fi

(@, F.P)
X, X(w)
Xi, Xi(w)
X.(w)

Xi(.)

X~N (1, ¢°)

H, E(X)

o, Var(X)
w.p.1, P-w.p.1
o dW

C(R", R)
CH(R", R")

CK(RY R)

c-Algebra

Filtration, which is an increasing family of c-algebra
fields.

Probability measure of ‘F.

Sample space.

Probability space.

Random variable.
Stochastic process.

X as a function of the variables replaced by the dot
for fixed .

X as a function of the variables replaced by the dot
for fixed t.

X has a normal distribution with mean p and variance

2
o .

The mean or the expected value of X.
The variance of X.

P converges with probability one.
Stratonovich calculus integration symbol.

The space of continuous functionsv : R" — R .

The space of k-times continuously differentiable
functionsv: R" — R".

The subspace of functions v e C(R",R ) for which
all partial derivatives up to order k have polynomial

growth, i.e., ‘8§,v(y)‘ < K(1+|y|2r) where K > 0,
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re {1, 2, ...} depending on v when for all y € R"

and any partial derivative ai,v(y) of order j > k.

C*** (I x R", R")The space of (s—1)-times and s-times (for time and

L(o)
L(Vv)
L% L'

n(a)
ODE

L, (A R")

AB,

stochastic  process  respectively)  continuously
differentiable functionsv:Jx R" —— R".
Coefficient function.

Hierarchical set.

Delete the first component of a multi index a.

Delete the last component of a multi index o.

The interval of absolute stability.

Multiple 1t6 integrals.
All expectation functions, such that E(ISXSZ ds)< o0,

where E(.) is standing for expectation operators.
Length of multi index o = (j1, jo, ..., ju)-
Length of multi index is zero.

The drift operator and the diffusion operator,
respectively, wherer=1, 2, ...

The set of all multi indices.
Number of zero components of a multi index c.
Ordinary differential equation.

Class of measurable functions, such that
t

Pijg ds<oo) =1.
0

The space of all square integrable functions defined
from Q to R".
The two-step Adam’s Bashforth method.



Basic Notations and Abbreviations

SODE
SLMM's
SLMMM's

[

The remainder set.

The two-step Adam’s Moulton method.
The remainder of deterministic part
The remainder of stochastic part

The remainder of deterministic part for the perturbed
system.

The remainder of stochastic part for the perturbed
system.
The remainder of deterministic part for The Methods
with order 1/2.
The remainder of stochastic part for the methods with
order 1/2.
Local error.
The local error of the perturbed system.
Stochastic Ordinary Differential Equation.
Stochastic Linear Multi-step Methods.
Stochastic linear Multi-step Maruyama Methods.

The norm of L,(Q,R") space and if ZelL,(Q,R")

then || Z|l, = (E| Z")"'*.
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Introduction

Stochastic ordinary differential equations (SODE's) constitute
an ideal mathematical model for a multitude of phenomena and
processes encountered in areas, such as, differential equations,
stochastic control, signal processes and mathematical finance, most
notably in option pricing (see for example [44] and [28]). Unlike
their deterministic counterparts, SODE's do not have explicit
solutions, a part from in a few exceptional cases; hence the
necessity for a theory of their numerical approximation is important,
[21].

A most striking example, where SODE's provide the essential
modeling device, is the Nobel Prize-Winning work of Merton in
1973, [31] and Black and Scholes in 1973, [5] about pricing options.
The whole financial industries frequently make use of stochastic
dynamics to calculate financial quantities, such as, derivative prices
and risk measures. The increasing application of SODE's in many
models is a major driving force in the development of appropriate

numerical methods for the solution of SODE's, [39].

Since only a few specific types of SODE's have explicitly
known solutions, the computation of important characteristics such
as moments or sample paths is crucial for an effective practical
application of SODE's. Therefore, numerical methods those are

specific, not only to the considered SODE's, but also for the desired
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task are required. For these different tasks different types of
convergence of a numerical scheme have been considered on recent
literatures (see for example [36], [25], [26], [3], [33]).

Similar to the deterministic setting, the order of convergence
with respect to the considered criterion of convergence plays a

crucial role in the design of numerical algorithms.

Roughly speaking, we can distinguish between two major types
of convergence, namely, approximations to the sample paths on the
one hand and approximations to the corresponding distributions on
the other hand. Usually, these approximations are called strong and

weak approximations, respectively.

The numerical methods are based on time discrete
approximations. Time discrete approximations for both, the strong
and weak convergence criterions, will be presented. Whereas, time
discrete approximation which satisfy the strong convergence
criterion involves the simulation of sample paths at each step of the
discretization time, approximations of some function of the It0
process, such as the first and second moments at a given final time
T, [21].

Kloeden et al in 1995 [27] use the extrapolation methods for the
weak approximation with two 1t6 diffusion depending on Euler's

scheme to solve certain types of linear SODE's.
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It is well known that Euler's method and most other explicit
schemes for solving SODE's work unreliably and sometimes
generate large errors, see for instance Milsten et al in 1999 [32],
implicit and predictor corrector schemes are designed to achieve
improved numerical stability and turn out to be better suited to
simulated tasks. Generally, implicit schemes usually cost significant
computational time and are sometimes not reliably accomplished,
however, this phenomenon can be avoided when using some
approximate discrete time schemes, including predictor-corrector
methods, [4].

Most numerical schemes converging in the strong sense and
further literatures may be found in the monographs of Kloeden and
Platen (1999), [25]. It is pointed that the latest development of
derivative free strong linear multistep methods (LMM's) (see [9],
[10], [11], [12], [13]). They expanded rooted tree theory, well

known in the deterministic setting (see [14]).

Al-Tememy N. Z. in 2011 [1] used the LMM's to derive certain
types of two steps methods for solving SODE's, as well as, studying

the stability and convergence of these methods.

Subhi M. M. in 2012 [42] use Runge-Kutta methods and its
modification using variable step size method to solve SODE's using

two steps explicit ,implicit and semi-explicit Runge-Kutta methods.

This thesis consist of three chapters. In chapter one, some

general concepts, definitions, theorems and illustrative example
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related to stochastic calculus, theory of SODE's, theory of LMM's,
stochastic 1t6 Taylor series expansion are given for completeness of

this work.

In chapter two, some types of stochastic linear multi-step
Maruyama methods (SLMMM's) for solving SODE's are studied
and derived analytically. Also, in this chapter Newton-Raphson
method have been used to solve stochastic implicit LMM's. Finally,
in this chapter, the variable step size method for stochastic version
has been proposed, as well as, some illustrative examples are

considered for comparison purpose.

In chapter three, some illustrative examples have been
implemented to the absolute error, strong error, as well a, weak
convergence error and introduce the Richardson extrapolation

method and variable order method.

Some illustrative examples are given for comparison between

the given different schemes and that are proposed in this study.

Finally, the computer programs used in this thesis are coded
in MATHCAD 14 computer software.



Chapter One

Fundamental Concepts

This chapter give the background material for the work carried
out in this thesis, since there is a number of sources that provides a
full details for the background of probability theory and stochastic
calculus (for example, see the thesis of RORler in 2003 [39], Burrage
in 1999 [10], the text books of Kloeden and Platen in 1995 [28],
Arnold in 1974 [2]).

This chapter consists of four sections. In section (1.1), some
basic concepts related to the probability theory are given. In section
(1.2), theory of SDE's and their models are given. In section (1.3)
theory of SLMM's is given for the sake of numerical solution,
Finally, in section (1.4), theory of stochastic It6-Taylor series

expansion was discussed.

1.1 Backaround of Probability Theory

In this section, some of the most and necessary concepts which
are related to the subject of stochastic calculus and this thesis are

given for completeness purpose.
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1.1.1 Basic Concepts of Random Variables, [10], [28], [2]:

Stochastic calculus is that subject which is concerned with the
study of stochastic processes, this involve randomness or noise.
Intuitively, this requires knowledge of random variables and
probability theory. Therefore, this subsection provides the
background definitions and concepts that will be required later in
this work, where only those definitions which are of direct

relevance to this exposition are given.

Definition (1.1), [10]:

The o-algebra F is a class of subsets of a sample space Q

(which is the set of all possible outcomes of a random experiment)

satisfies the following:

1. Qe F
2. IfAec FthenA°={w e Q|we A} e T.
3. Forany sequence {A.} c F, then |J, A, € Fand A, e F.

The elements of ‘F are called probability measurable sets and

the pair (2, ‘F) is called a probability measurable space.

Definition (1.2), [10]:

A probability measure P on ‘F'is a set function which satisfies:

1. P(Q) = 1.
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2. If A € F, then P(A) >0

3. If A, Ay, ..., Ay, ...; are mutually exclusive events (that is A; N

A= D ifi=]j), then:
P(U Anj =2 P(A,)
n=1 n=1

Definition (1.3), [10]:

A probability space (Q2, ‘F, P), comprises the sample space €, a
c-algebra ‘F of subsets of Q (called events) and a probability

measure P on F.

Definition (1.4), [10]:

If X is a random variable defined on the probability space

(QQ, 'F, P), then the expected value or mean value p of X, is:
n=EX)=[ XdP
Q
provided that the integral exists. That is, the average of X over the

entire probability space. For continuous random variables over R,

the mean value of X is:

W=E(X) = [ xf(x) dx

—00
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Definition (1.5), [10]:

A measure of the spread about the mean p is the variance,

which is given by:
Var(X) = E((X — w)?) = E(X®) -

the variance is denoted for simplicity by o and its positive square

root o Is called the standard deviation of X.

Definition (1.6), [10]:

A random variable X is said to be Gaussian random variable if

it has the Gaussian or normal density function:

~(x—1)°
2
e 200  _—_wo<X<w®

1
f(x)=
) o271
where p is the mean and o is the variance of the normal distribution
N(u, °). If p =0 and o = 1, then the distribution N(0,1) is known

as the standard Gaussian distribution.

Infinite sequences may be defined in terms of random variables,
then it is important to know how the sequence converges and there
Is a number of different modes of convergence, which are given in

the next definitions:
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Definition (1.7), [10]:

A sequence of random variables {X,(®»)},n=1, 2, ...; is said to

be converge with probability one to X(w) if
P({o € Q: lim X,(0) =X(w)})=1
N—o0

This type of convergence is also called almost sure convergence.

Definition (1.8), [10]:

A sequence of random variables {X,(®)}, n=1, 2, ...; such that
E(Xﬁ) < oo, for all n € N; is said to be converges in the mean
square to X(m) if:

lim E(X, - X|*)=0

N—o0

Definition (1.9), [10]:

A sequence of random variables {X(®w)},n=1, 2, ...; is said to

be converges in probability (or stochastically) to X(), if:

lim P({o € Q: [ X(0) - X(w)|>2e})=0,Ve>0

N—o0

1.1.2 Basic Concepts of Stochastic Process, [23], [101, [28], [2]:

In many physical applications, there are many processes in
which the random variables depends on the space and/or time,.
Therefore, this introductory material give the main subject of such

Processes.
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A stochastic process is a family of random variables X¢(®) (or

briefly X;) on a probability space (Q, F, P), which assumes real

values and is P-measurable as a function of ® € Q for each fixed

te[ty, T1<[0, ). The parameter t is interpreted as a time and X(.)

represents a random variable on the above probability space Q,
while X.(o) is called a sample path or trajectory of the stochastic

process, [10].

Definition (1.10), [10]:

A stochastic process W, t € [0, =), is said to be a Brownian

motion or Wiener process, if:

1. P{o € Q| Wo(w) =0}) =1.

2. For0<to<t <.. <ty the increments W, —W, , W, =W, ...,
W, —W,;  are independent.

3. For an arbitrary t and h > 0, Wy, — W, has a Gaussian

distribution with mean 0 and variance t.

Remark (1.1), [10]:

In general, a standard Wiener process has the properties that:
Wy=0 w.p.1l, EIW,) =0, Var(W; - W) =t—s

for all 0 <s <t; and so the increments are stationary.
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Definition (1.11), [10]:

The white noise process &; is formally defined as the derivative

of the Wiener process, i.e.,
ﬁt dt = th

It does not exist as a function of t in the usual sense, since a Wiener

process is nowhere differentiable function.

Sometimes, it is called Gaussian whit noise, which is an

important example of stochastic process of a purely random process.

1.2 Theory of Stochastic Differential Equations

Theory and models of SODE's are discussed in short in this
subsection as an introduction to this topic. Also, in this subsection

the 1t6 formula will be discussed for completeness of the work.

1.2.1 Stochastic Integral and their Models, [39], [24]:

Definition (1.12), [39]:

Let (QQ, ‘F, P) be a probability space with filtration (‘F); < |, for
| = [0, ).
Let £ denote the class of all BxF-measurable, Fi-adapted

processes X; : | x Q —— R ,where B denotes the Borel c-algebra

on |, for which:
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EUxf () dsj <o, V>0 (L)
0

holds and the set 2 is the class of all Bx ‘F —measurable, ‘-

adapted processes X; : | x Q—— R, satisfying:
t o
P[jxs (o) ds<ooj:1, Vt>0 .. (1.2)
0

It is remarkable that condition (1.1) is stronger and implies
condition (1.2). We now consider a series of partitions of the

integration interval [to, t] given by:

=tg” <" <. <t =t

with the property that they are refinements for increasing n and

with:

max_ i)

—ti(”)} ——>0asn—w
0<i<Np -1

If we define ©" =0t") + (1 - 0)t{", for a fixed 8¢ [0, 1], then the

i+1
series of random variables is called the approximation of the

stochastic integral:

Z(:) X m (W =Wm) ...(1.3)
1= 1

i i+1

converges as N ——> oo in probability if X .y € P and in the mean-
N
square sense if X y € £,Vi=0,1,.., N1, ne N [24], [25],
T

[44]. Near by the limit does not depend on the choice of the

8
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partitions. However, unlike the Riemann-Stieltjes integral, here the

selection of 6 makes a difference. For 6 = 0, which is means that

«" is the left end point t{™, we have the Itd calculus. The limit of

equation (1.3), denoted by:
t
[ X, dw
to
is called the Itd stochastic integral. At Stratonovich calculus, we
have to set 6 = = and t™ described the mid point of [t™, t{M].
2
Now, the limit of equation (1.3), denoted by:
t
[ Xs o dW,
to
is called the Stratonovich stochastic integral. For general stochastic
integrals with respect to martingales, we refer to [24], [38] and [22].
Considering It and Stratonovich calculus, one may get a
simple connection between the solution of an 1t6 SDE and that of a
Stratonovich SDE. Let (y;)i; be the solution of m-dimensional 1t6
SDE:
t t
Ve =Yy, + [T(S,ys) ds + [g(s,y,) AW, .(1.4)
to

to

where W, is a m-dimensional Wiener process. Then (Y, is also a
solution of the SDE:

13 O0Qik
fi(tyy) =filty) — EZZgik(t,yt)—(t,yt) ..(1.5)
J
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with respect to Stratonovich calculus, where:
t t
Vi = VYi, + [E8,Y5) ds + [9(s,ys) o dW, ..(1.6)
to to
fori=1, 2, ..., d. Therefore, whichever interpretation of the SDE is
appropriate in particular situation, we can always switch to the
corresponding SDE in the other calculus. For instance, we can apply
the existence and uniqueness theorem for an 1td0 SDE (1.4) to obtain
analogous results for the corresponding Stratonovich SDE (1.5).
One of the main advantages of the It calculus in contrast to

Stratonovich calculus is the fact that the It0 integrals inherit some
good properties of the Wiener process. Let f : IxQ2 —— R, such
that f € L holds. Then the relation between It6 integration and

Lebesgue integration, which is called the 1t6 isometry, is as follows:
t 2 t

E [jf(s,w) dWSJ = E{jfz(s,w) ds} (1.7
to to

Also the martingale property of a Wiener process carries over

to the 1td integral. Let W, be a Wiener process with respect the
filtration (‘Fie, satisfying the usual conditions. Then W, and the

Process.

Uf(s,w) dWSJ .(1.8)
tel

to

are martingales with respect to (‘F¢);. Furthermore:

10
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E(}f(s,w) dWSJ:O ...(1.9)

to
holds forall t € I.
The advantages of Stratonovich calculus is the availability of its

rules similar to ordinary integration. However, unlike It0 integrals,

Stratonovich integrals are not martingales. We can easily calculate:

t
W, dw, =3Wt2—%t

One of the most important tools for the Stochastic calculus and

especially for 1t6 calculus is the 1t6 formula.

1.2.2 Stochastic Differential Equations and their Models, [39],
[10], [28]:

Among the most general models of SODE's is the following:

dy; = f(t, yo) dt + g(t, y) dWy, y, =Yo ..(1.10)

where f : IXR—— R, g : IXR ——> R be a Borel-measurable
functions, we call f the drift function and g the diffusion function.
The SODE given in eq.(1.10) may be written in an equivalent

form as:

11
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t t
Yi= Yy, + [F(SY5)ds + [g(s,ys) dWs .(1.12)
to

to

However, the second integral given in eq.(1.11) cannot be defined
in a following meaning, where W; is the Wiener process. The
variance of the Wiener process satisfies Var(W;) = t, and so this
increases as time increases even thought the mean stays at O.
Because of this, typical sample paths of a Wiener process attain
larger values in magnitude as time progresses, and consequently the
sample paths of the Wiener process are not bounded; hence the
second integral in eqg.(1.11) cannot be considered as a Riemann-
Stieltjes integral. Note that, more general process which has the
martingale property can be used in place of Ws, but in this thesis

only Wiener process will be used in the formulation of SODE.

Definition (1.13), [39]:

A process y;, t e | with values in R? is called a strong solution
of the SODE given in eq.(1.10) with respect to the fixed Wiener

process W;, t € | and the initial condition Yip if the following
properties hold:

(a) y; is adapted to the filtration (‘F)ic).

(b) y; has continuous sample paths.
(c) For multi-dimensions given in eq.(1.11), such that for all i = 1, 2,

...,d;j=1,2,....,m;m e N andt e | satisfy:

12
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t
[1f:(5,¥s) | +95 (s, y)ds < oo, P-w.p.1
0
(d) y; satisfy with P-w.p.1 the following stochastic integral equation:

t t
Ye= Yy, * [f(s,ys)ds + [g(s,ys)dW,, Vt e |
0 0

Theorem (1.1) (The Existence and Unigueness Theorem), [39],

[28], [2]:
Suppose the functions f and g in eq.(1.10) satisfies the global

Lipschitz and linear growth conditions:
1T(ty) =t x) [ +]19(t y) -9t x) IS K[y, =x¢ [ ...(1.12)
Iy 1P+ 119t y) IP< K2 @+ y, ) ..-(1.13)
for each t € J, X, V; are stochastic processes in RY, where K is a

positive constant. Let Yty be a R%-valued random vector,

independent of the Wiener process W; and with:
E(lly, ") < oo, for some L e R

Then there exists a continuous, adapted process y = (Yi)tes, Which is

a unique strong solution of the SODE (1.10) relative to W,;, with

initial condition y, and each component of y; belongs to L.

Moreover, V; is square-integrable and for every T > 0, there exists a

constant C, depending only on K, T and L, such that:

E(IVI™) < (1 + Elly, [M)exp(Ct), 0 <t <T

13
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In contrast to strong solution of SODE's, a notion of solvability

for the eq. (1.11) may be defined, which is a weaker condition.

Definition (1.14), [39]:
A weak solution of the SODE (1.10) is a triple ((2, F, P),

(ﬁ)teJ’ (yt! Wt))’ SUCh that:

(@) (€2, F, P) is a probability space, (‘Fiie; IS a right-continuous
filtration in ‘Fand ‘Fy contains all P-negligible events in F.

(b) W, is an m-dimensional Wiener process of (Fiic; and y; is a
continuous, adapted RY-values process.

(c) Conditions (c) and (d) of the definition (1.13) are satisfied.

Remark (1.2), [39]:
If f(t, y)) and g(t, y,) satisfy the conditions of theorem (1.1),

then a solution (weak or strong) of the SODE (1.10) is weakly
unique, where weak uniqueness means that any two solutions (weak
or strong) satisfy the identical law, i.e., have the same finite-

dimensional distributions.

1.2.3 Some Well-Known Dervatives, [19]:

Itd formula in stochastic calculus is the analog of integration by
parts in stochastic calculus. The useful range of techniques is
practically restricted to those that deal with integral equations,of
these by far the most important is that known as I1t6's formula, which

may be seen as a stochastic chain rule. Let us recall some

14
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elementary non-random chain rule; as usual prime may denote

differentiation.
1. One variable chain rule: If F = F(v(t)), then:

_dF _dFav
dt  dv dt

’

2. Two variables chain rule: If F = F(x(t), y(t)), then:

_dF _oFdx  oFdy
dt  ox dt oy dt

!

In particular, if x(t) =t, then we may obtain, for F = F(t, y(t)):

dF = Far+ Ly
ot oy

Itd formula are extremely useful in many topics, particularly in

evaluating stochastic integrals.

Theorem (1.2), (1t6 Formula), [18]:

Suppose that y; has a SODE:

dy,=f(t, y,) dt +g(t, y,) dW, .(1.14)

for f, g € C**(JxR, R). Assume F : JxR — R is continuous and

F ’F .
that ﬁ, o and a—i exists and are continuous. Set F = F(t, vyy),

ot oy, (

then F has the stochastic differential:

dF:%dt+—dyt+—— 2 dt
ot oY, 2 oy
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t

2
dF(t, yy) = oF aFf+3ﬁg2 o|t+fgo|wt ...(1.15)
a oy, 20y’ oy

is called the Itd's formula or 1t0's chain rule.
In fact eq.(1.14) is sufficiently general to represent an m-

dimensional, d-Wiener process system in which g(t, y;)) is an mxd
matrix and W, = (Wt(l), Wt(z) o Wt(o'))T is a d-dimensional vector
consisting of d independent Wiener processes. By letting the

columns of g(t, y,) be labeled as gi(t, y;), 92(t, v¢), ---, ga(t, V;);
then the m-dimensional d-Wiener process system can also be

written as:
dy,=f(t, y,) dt+ 3% gi(t, y,) dw?

In this case, the component-by-component version of I1t6's formula

iIsfork=1,2,....m

oR, 1 0
dFy(t, y) = ( M Fk DI’ ”gjlayaﬁ;JJdt+

ZLZﬂlgn % dW, ...(1.16)

1.3 Theory of Stochastic Linear Multi-Step Methods:

The considered numerical method in this section is the
stochastic linear multi-step methods (SLMM's), which was one of
the most important of development numerical methods used to give
a good numerical accuracy to the approximate solution, [28].

Therefore, this method will be discussed in details in this section.

16
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Also, in this section, some numerical methods with one-step
will be studied, and also studying in the mean-square sense
numerical stability, of the SLMM's for the approximation of It6
stochastic SODE's, as well as, their general theory and illustrative

examples.

1.3.1 Elementary Numerical Methods [28]:

One scheme for stochastic one-step methods which will be
often used for evaluating the approximate solution of SODE's will
be given, and some definitions for strong and weak approximation

will be also given [28].

Let us consider the 1t0 process y; satisfying the SODE:

dy; = f(t, yodt + G(t, y)dWy; yi(to) = (1.17)
fort e J, where J=[to, T], t € [0, ), y;, € R.

The drift and diffusion functions are given respectively as

f:IxR"— R"; G={01, 0, ..., g} : IXR" —— R" and f, g, for
r=1, 2, ..., m; are continuous functions. Using an m-dimensional
Wiener process W, the problem (1.17) is understood as a stochastic

integral equation:

Ye=Yi, +jf(s ys)ds+2jg (s,ys) dW.(s), t € J ...(1.18)

_]_tO

In order to avoid confusions encountered in applying the

numerical methods, y; will be replaced for simplicity by .

17
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1.3.2 Stochastic Linear Multi-Step Methods, [40], [6], [8]:

We start this subsection by the following notations and

definitions:

Let |-| to denote the Euclidean norm in R" and ||- | the
corresponding matrix norm. The mean-square norm of a vector
valued square integrable random variable Z € Ly(©, R") will be
defined by:

1ZIl.,=(E|Z)"2.

Let us denote by C*° the class of all functions V(t, y(t)) :

JxR" —— R" having continuous partial derivatives up to order
s — 1 with respect to the first variable and continuous partial
derivatives of order s with respect to the second variable. Moreover,
let C* be the class of functions V satisfying a linear growth

condition of the form:

IVEY) | <k@+|yP)Y2, Vield ye R" ...(1.19)
where K is a positive constant.

Furthermore, we introduce the notation

t+h S Sj-1

o, (V) = { { { V(s;, Y(8)) AW, (5) - AW, (5y) ..(L.20)

.M,

where r; € {0, 1, ..., m} and dWy(s) = ds for general multiple

stochastic It0 integrals (see [40]).

18
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If V =1 we write Itt+h , note that the integral 1'*™" is one

wiener process the increment AW = W(t + h) — W(t) of the scalar

Wiener process W.

The next lemma presents the order of the multiple stochastic

integrals.

Lemma (1.1), [40], [8]:

If V e C¥is any function and for any t € J, h > 0, such that

t+h e, then:
E( en ) (ifr=0forsomeie {1.2,...j} ...(121)
tt+h t,t+h _ +L2
E(1 <t (v =0 h' ..(1.22)
..... Pl EN

where 14 is the number of zero indices h, and 1, the number of non-

zero indices

Now, we consider a stochastic linear k-step method for the
approximation of the solution of the SODE (1.17), for n = k, k+1,
., N, N € N; which takes the form:

K Kk k e
.Z(:)ajyn—j = h_Zé)ij (tn—jayn—j) + _ZlGj(tn_,-,yn_j)lt”‘l’t”‘“l ...(1.23)
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where we may set without loss of generality og = 1 and require
given initial and starting values Yo, Vi, ..., Yic1 € Lo(©Q,R"), such

that y, is A, -measurable forn=0, 1, ..., k-1, [5].

As in the deterministic case, usually only yq = y(to) is given by
the initial value problem and the values vy, Yo, ..., yk.1 need to be
computed numerically. This can be done by any suitable one-step
method, where one has to be careful to achieve the desired accuracy.
Every diffusion term Gy(t, y)I'™" is a finite sum of terms each
containing an appropriate function G of t and y multiplied by a
multiple Wiener integral (1.20) over [t, t + h], i.e., it takes the
general form:

G,-(t,y)lt'”“=§lgr(t,y)li’”“+ > G2 (Y +. . .(1.24)
r=

r1,r2:0
n+ro >0

where the Wiener process is m-dimension. If Bo = 0, then the

SLMM (1.23) is said to be explicit, otherwise it is implicit.

Finally, consider the autonomous SODE:

dy(t)=f(y(t))dt + G(y(t))dw(t); y(to) = Yo ...(1.25)
then the SLMM for the approximation of the solution of the SODE
(1.17), with n =k, k+1, ..., N; takes the form:

k k Kk _ _
2 oY =N 2B (V) + 2G;(¥n- Jrnti(1.06)
= = J=
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with G(y) = ZQ I+ ZO G2 (y) +
r]_ r2
n+rp>0

Next, an example for two-step stochastic method will be given:

Example (1.1), [7], [8]:

The implicit two-step method (Milne-Simpson method) for

n=2,3, ..., N; takes the form:
1 4 1
Yn—Yno2= h éf(tn’yn)+§f(tn—l’yn—1) +§f(tn—2’yn—2) +
& th1.th & th-2.th1
Zlgr(tn—l’yn—l)lr + Z:lgr(tn—Z’yn—Z)lr
r= r=
for this method one has:

4

OOII—‘

m
Gu NI = 29, (t1 Yol
r:

m
Gz(t’y)lt,Hh N Z1gr(tn—2’yn—z)ﬁ”_z’t”_l
r=

Definition (1.15), [8]:

The local error of the SLMM (1.23) for the approximation of
the solution of the SODE (1.17) for n =k, k+1, ..., N; may be as:
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[k k

%ap/(tn_,-) —h %B,—f (th-j Y(ta_j)) —

= =
k . .

Ly =126 (tyj Y(ta DI ™", for n=k,k+1,...,N....(1.27)
j=1

y(t,)-VY,, forn=0,1,..., k-1

\

and represent the local error in the following form:

Ly=R,+S,= R, + zs n=k k+l,...,N ...(1.28)

j,n—j+lo

where each Sjn .1 is 7 -measurable with E(S | A, )=0

j,n—j+1
Vn=kk+1,..,N;j=1,2, ...,k

Also, Ry = Ly; So=0,Ry= E(L, | A )i Sa=Lo—R, ...(1.29)
z Sininl 7, Hlj ...(1.30)

Sjn j+1 = E('—n_
i=j+1

1.3.3 Numerical Stability in the Mean-Square Sense,[8].[171.[29]:

With the numerical stability property one can estimate the
influence of any perturbations of the right-hand side of the discrete
scheme on the global solution of that discrete scheme. Sources of
perturbations may be the local error or round-off errors or defects in

the approximate solution of the implicit schemes.

The stability concept is often called zero-stability, or in honor
of Dahlquist stability, also D-stability, for further discussions we

refer the reader to the deterministic literature [17], [29]. The mean-
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square stability estimate of the global error is based on the mean-
square norm and on the conditional mean of the perturbations D, of
the right-hand side of the perturbed system (1.31). Its solution is
denoted by ¥,,.

In our analysis, we thus consider the following discrete system

has the perturbed form of (1.23) forn=Kk,k+1, ..., N.
K ~ k ~ K & th—jtn—j+1
_Z;;)ajyn—j =h Z;;)ij (tn—j ! yn—j) + _Z‘iGj (tn—j J Yn—j)I + Dn
= i= i=

...(1.31)
with initial and starting values §, =y, + Dp,n=0,1, ...,k -1,
It is supposed that the perturbations D, are #; -measurable and

that Dn € Lz(Q, Rn)

Remark (1.3), [8]:

It is useful to represent the perturbations in the form:

D, =R +S =R’ +ZS,n pon=kkel L N L(1.32)

where each S?,n—j+1 Vi=1,2,..,kis ]—"tj,n_jﬂ-measurable with

E(SJn J+1| ) 0,Vn=k k+1, ...,N;j=1, 2, ..., k; where *
refers to the perturbed system. The representation (1.32) is not

unique and one extreme possibility is R:: D, and S:,: 0, another

more useful one, is given by:
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R,=EMD,|% ,) S,=D,-R,

* * k * -
Sj,n—j+1 = (Dn -Ry - _ lei,n_jﬂ | ft‘n—j+1]’ J=k,k-1,... ... (1.33)
I=j+
This construction guarantees the required measurability

conditions in (1.32). As an example, one obtains for k = 2:

R: =E(D, | ‘En—z) ’ S;,n—l =E(D, - R; | ft‘n—l)’
SI,n = Dn - R: _S;,n—l

Here, in the hypothetical case that D, = Colﬁn-l’tn + Cllﬁn—z"n—l +C,,

* . * . t _2,t _1 * . t _1,t
we have R, =C,, S, =C/I,"=2"n1, § | =Cgln2n

Now, the precise definition of mean square stability and some

other notions will be given next:

Definition (1.16), [ 8 1:

The SLMM (1.23) is said to be numerically stable in the mean

square sense if there exist constants hy > 0 and S > 0, such that for

all step sizes h < hg and for all /. measurable perturbations D, e

n

Lo(©Q, R™), n =0, 1, ..., N, all their representations (1.32), the

following inequality holds:

IR, ISyl
max .y <S{ max ||D + max 2 4 2
n=0, ..N ” yn yn ”L2 {no ..... k—l” n ”L2 n=k.... N( h h1/2

..(1.34)
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where (y,)r, and (V)N are the solutions of the SLMM (1.23)
and the perturbed discrete system (1.31), respectively.

Definition (1.17), [8]:

A function f : JxR" —— R" is said to satisfies the uniform
Lipschitz condition with respect to x if there exists a positive

constant C;, such that:

If(t,x) - ft,yY)| < Cilx—y|, VXy e R", t e J=[t, T] ...(1.35)

Definition (1.18), [8]:

The characteristic polynomial of (1.23) is given by:

p(r) = oo+ o+ L+ ay ...(1.36)
and the SLMM (1.23) is said to fulfill Dahlquist’s root condition if:
(i) The roots of p(r) lie on or within the unit circle;

(if) The roots on the boundary of the unit circle are simple.

The next theorem is of great importance, which is given and

proved in the corresponding references.

Theorem (1.3), [8]:

The SLMM (1.23) is numerically stable in the mean-square
sense for every continuous f and G; satisfying (1.35) respectively, if
and only if its characteristic polynomial p(r) (1.36) satisfies

Dahlquist's root condition.
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Now, to study the mean square stability of two step methods,
consider the methods given in example (1.1) and their stability in

the next example:

Example (1.2), [7], [8]:

When back to Example (1.1), the method may be rewritten in

the form:

1 4 1
Yn—Yn2 = h(éf(tn’yn) +§f(tn—1'yn—1) +§f(tn2’yn2)j+

U th-1.ty u th-2.th-1
Zgr(tn—l’yn—l)lr +Zgr(tn—2’yn—2)|r
r=1 r=1

here; K =2, ag =1, ay =0, ap, = =1 and by Definition (1.18) the
characteristic polynomial is given by:

p(r) =r" -1
which have the roots r; = 1 and r, = =1 which lies on and inside the

unit circle. Then p(r) satisfies the Dahlquist's root condition.

Also, by using Theorem (1.3), we have this method is

numerically stable in the mean-square sense.

26



Chapter One Fundamental Concepts

Definition (1.19), [40], [8]

The SLMM (1.23) for the approximate solution of the SODE
(1.17) is said to be mean-square consistent if the local error L,

satisfies:
h[E(L, | A ) IlL,—0 for h——0and h*?||L, || ,,—>0

for ——0 or we call the SLMM (1.23) for the approximation of the
solution of the SODE (1.17) mean-square consistent of order p > 0,

if the local error L, satisfies:

1
IE(L, | A ), <Ch"and [[L, [l <Ch" 2,n=kk+l,...N

with constants C, C > 0 only depending on the SODE and its

solution.

It must be remind the reader that consistency is only concerned
with the local error. In the case that we disregard other sources of

errors in (1.31) we only have to deal with perturbations D,, = L,.

Lemma (1.2), [1]:

The SLMM (1.23) is mean-square consistent of order p if and

only if there exists constants C, C > 0, such that | R, ||L2§C_IhIO+1

p+ :
and ||'S, |||_2£Ch 2. n =k, k+1, ..., N, for any representation

(1.32) of the local error D, =L,; 0 <h < 1.
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Definition (1.20), [40], [8]:

The SLMM (1.23) for the approximation of the solution of the
SODE (1.17) is said to be mean-square convergent if the global

error y(t,) -y, (where the global error means the accumulation of

the local error up to the grid point t,) satisfies:

mflxN 1Y(t;) —¥n I, —>0 ash—— 0 and t, is fixed
n=0,1,...,

or equivalently, the SLMM (1.23) is said to be mean-square

convergent with order p > 0 if the global error satisfies:

max [|y(t,) =Y, ll.,<C.h" as h——0
n=1,...,N

with constant C > 0 which is independent of the step-size h.

Theorem (1.4), [8]:

A mean-square consistent SLMM (1.23) for the approximation
of the solution of SODE (1.17) is mean-square convergent for all
continuous f and G; satisfying (1.35), respectively if and only if it is
numerically stable in the mean-square sense and if, in addition, it is
mean-square consistent with order p > 0, then the SLMM (1.23) is

mean-square convergent with order p.

1.4 Stochastic 1t6- Taylor Series Expansion, [39], [10], [28]

Taylor series expansion is well-known for deterministic
functions where they turn out to be useful tool, especially in

numerical analysis. This idea can be carried over the stochastic
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setting by applying the 1t6 formula. Thus, following Platen and
Wagner [37], stochastic Taylor formula will be gotten, which

represents a generalization of the deterministic Taylor formula.

With deterministic differential equation methods, a numerical
method may be derived by comparing the expansion of the method
and the solution of the ordinary differential equation in a Taylor
series; and exactly the same procedure can take place in the
stochastic setting, using a stochastic version of Taylor series. The
Itd -Taylor expansion was first established by Platen and Wanger in
1982 [37], and full details are given by Kloeden and Platen in 1995

[28]. It allows y, (or any function of y, to be expanded about the

point Yy, UP tO the required degree of accuracy) in terms of multiple
stochastic integrals along with function evaluations at Yi, - I order

to derive the expansion, the Itd formula is applied successively to
the SODE (1.14) as it is represented in the autonomous integral

form:

=Yy, + I f(ys) ds + I g(ys) dW, ...(1.37)

to

From the stochastic chain rule of eq. (1.15) in autonomous form:

dF 1d2F ¢
F(y,)-F = [ | =f+ — g dw,

= } L°F(y,) ds + } L' F(y,) dW, ...(1.38)

to to
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where the operators L° and L* for scalar problems are given by:

ld ng

L°F ——f
(v) ay' 20y

and L'F(y) = S—F g
y

Applying the It formula given by (1.38) for f and g in (1.37), then

one application give:

i = Vg + o (FO) +Jo L) du+ ] LRy, aw Jos +

It (000)+]; LC@Wa)du+ [} Lty )aw, Jaw, ...(139)

Consequently, by applying the 1t6 formula and using L°f, L'f, L%

and L'g, the Itd-Taylor expansion will be derived next.

Remark (1.4), [39]:

The above discussion is given for one-dimensional autonomous

SODE's, and we shall consider next the non-autonomous SODE's
will be considered, and deriving its related stochastic Taylor series

expansion. Let X; be the solution of the 1td SODE in general form:

t t
Xi =X, + [ as, Xs) ds+ [ b(s, X,) dWs ...(1.40)

to to

and letf:Jx R —> R withf e C**(J x R , R). By applying the
Ité formula, getting for Y, = f(t, X,), the following equation:
¢ (of
Yi=VYi, t j( (SX)+a(SX) (sX)+ b(s X)
to
o
a—(sX) ds+jb(s X) (s X,) dWq

to
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For simplicity of notations, the operators L°. = Q+a§+
X

2
lbzi and L' = bi are introduced and rewriting the above
2 ox? OX

mentioned equations as:
t t
yi =Yy, + | LOf(s, X) ds + [ LY(s, X) dW;
to to
and by applying the I1t6 formula (1.15) to the functions f =a and f =
b in (1.39), getting:

. t S0
Xy =Xy, + LO (a(to,xt0)+_[t0L a(u,X,)du+
S t S
N Lla(u,Xu)qu)ds # [} (Bt X,g)+ 7 Lob(u,X, )du +
I} Ub(u,x,)aw, )dWS ..(L41)
which may be also written as:
t t
X = Xy, +allo, Xyy) [ ds+Db(to, Xy,) | dWs+R
to to
where R denotes the remainder. Continuing in this way by applying
the 1td formula to the functions f = L'aand f=L'b, fori =0, 1 in
(1.41) to get the Ito-Taylor series expansion.
In order to describe the stochastic Taylor series expansion, a
multi-dimensional and for multi Wiener process setting, the

following terminology will be used:

A multiple It0 integral is given by:
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_ (tSe o (S2 gyl j
Wit = JoJo -l dWEL..dwWg- .(142)

whereas J; € {0, 1, ..., m} for m-Wiener processes, and where

dWSOi = ds; . For more explanation to this context, we start with the

definition of multi-indices and hierarchical sets which provide an

efficient notation in the following. Let:

M={a=(uja....j.) € {0,1,...m}": L e N}U{v} ...(1.43)

be set of all multi-indices. The length L(c) of a multi-index o = (j,
Jo, ...nju), wherejj € {0,1,..,m},ie{0,1,.,L}andm=1,2, ...
be defined as:

Ll@)=Le{l 2 ..} ..(1.44)

Where v is the multi-index of length 0, such that:
L(v)=0 ...(1.45)

Thus, for example L((1, 0)) =2 and L((1, 0, 1)) = 3.
In addition let n(a) denote the number of components of a

multi-index o, which are equal to 0, such that:
n(a) =n ...(1.46)

where n is the number of zero components of o, for example
n((1,0,1))=1,n((0, 1,0)) = 2,n((0, 0)) = 2.
Now, for o = (Ju, J2, ..., jr) € Mwith L =L(a) > 1, define:

—Oo = (jZ; j3a ---ajL) and o—= (jl! j29 ---ajL—l) (147)
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by deleting the first and the last components of o, respectively. For
example:
_(1! O) = (O), (11 0)_ = (1)1 _(O’ 1’ 1) = (1’ 1)1 (0’ 1; 1)_ = (01 1)

A subset H <= ‘M is called a hierarchical set if H = & and if:

sup L(a) <o and —a € H, foreach o € H\{v} ...(1.48)

aeH

For example, the sets {v}, {v, (0), (1)}, {v, (0), (1), (1, 1)} are

hierarchical sets.

The corresponding remainder set R(JH) for the hierarchical set
H'is defined as:

R(H)={a. e M\ H: ~a € H} ...(1.49)

For example:
RV} ={0), M} R{v, 0), 1)} = {0, 0), (0, 1), (1, 0),
(1, D}, and R({v, (0), (1), (1, D}) ={(0, 0), (0, 1), (1, 0),
0,1,1), (1,1, 1)}

and consists of all the next following multi-indices with respect to

the given hierarchical set .

We are now able to define multiple stochastic integrals. Let us
introduce three classes of adapted right continuous stochastic
processes (fy)ic; with left hand limits. We say:

f e H, if [f(t, ®)| <o, P-w.p.1 foreacht>0 ...(1.50)

and we say for each t > 0, f € Hy if f satisfies condition given by:
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P(f f(s, )| ds <o) = 1, w.p.1 ...(1.51)
0

Furthermore, define f € Hy foreach j € {1, 2, ..., m} if f € P
holds, (back to definition (1.12) in (1.2)).

t
[ [f(s, )" ds < oo, w.p.L and t> 0 ...(1.52)
0

In addition, we write Hj; = Hy foreach j € {2, 3, ..., m} if m > 2.

Now, let p and t be two stopping times with:

0<p(®) <t(w) <T, P-w.p.l ...(1.53)
For a multi-index a = (j, Jo, ..., ju) € M and a process f € H,, we
define the multiple 1t integral 157 f(.) |with respect to the m-

dimensional Wiener process W = (W*, W?, ..., W™) recursively by:

f(0), if L=0
o IFO1 = JLf'ii’f[f(-)]ols, if L>1and j, =0 ...(L54)
ngg’f[f(-)]dWSjL, if L>1and j, >1

Here, we note the H, with o = (jy, o, ..., ju) and L > 2 describes

the totality of adapted right continuous process f with left hand

limits, such that the integral process (I”* [f(.)])te j considered as a
function of t satisfies 1°" [ f(.)|eHy;,. If the integrand is constant,

i.e., f{t, ») = 1, we abbreviate 15°[f(.)]as I, if the limits p and t are
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obvious from the context. In the following, we denote W{ = t,

dw; = dt and
o= 10 [f(.)] whenp=0and T =t.

As an illustration of this terminology, consider the following

examples:

D[ () =), 15 [FO)] = [H(s) ds,

1G5 [F ()= [} F9) awe, 1y [£()]= g J;* F(S0) dSudwg

Theorem (1.5) (The 1td -Taylor Expansion), [391, [28]:

Let { < M be a hierarchical set, let p and t be two stopping
times with t, < p(0) < (@) < T< oo P-w.p.land letf:Jx R —
R, then for the solution (X, ) ; of the Itd SODE (1.40). The It -

Taylor expansion:

fr. X)) = 2 lafulps X)oe+ 2 laffa(s X)]pe -..(1.55)
acH acR(H)

holds, provided that all of the derivatives of f, a and b and all of the
multiple I1t0 integrals appearing in (1.55) exist. Similarly, to get

theorem of the Stratonovich-Taylor expansion (for more details see
[10], [28]).
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Chapter Two

Linear Multi-Step Methods for Solving
Stochastic Ordinary Differential Equations

From the variety of SLMM's, those methods which only
include information on the increments of the driving Wiener process
will be considered. Analogously to the Euler-Maruyama scheme,
such methods will be called the stochastic linear multi-step
Maruyama methods (SLMMM's), [40].

As an example for the SLMMM's is the two-step Maruyama
methods which have conditions for their mean-square consistency.
These conditions allow determination of the parameters for the
stochastic part from the parameters of the deterministic part and
reduce to those of the underlying deterministic schemes when there

IS no noise, [8].

This chapter consists of five section, in section (2.1), the
derivation of SLMMM's is given according to the style of Buckwar
and Winkler [6], [8]. In section (2.2) summary of some well known
methods have been introduced. In section (2.3), the variable step
size method will be introduced which was given for solving
SLMM's in order to improve the accuracy of the numerical results.

In Section (2.4) was prepared to study the solution of SODE's using
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implicit methods. In section (2.5), numerical examples illustrating

the discussed numerical methods given in this chapter are given,

with its comparison with the exact solution.

2.1 Stochastic Linear Multi-Step Maruyama Methods, [40],[6].[8]

As it is known a LMMM's with one Wiener process takes the

form for all n=k, k+1, ..., N:
: k k thoj tn—ji1
Zajyn—j :hZij(tn—j’yn—j)+Zng(tn—j’yn—j)ll o (21)
j=0 j=0 =1

For drift and diffusion coefficients f and g which are continuous
and satisfy (1.35), theorem (1.3) may be applied and the SLMMM's
(2.1) is mean-square stable if the coefficients oy, o, ..., oy satisfy
the Dahlquist's root condition. If, in addition, eq. (2.1) is mean-
square consistent of order p, which is in general requires more
smoothness of the coefficients functions then eq. (2.1) is mean-
square converge of the same order. Thus, we will be concerned with
mean-square consistency of eq.(2.1) and derive order conditions in

terms of the coefficients oy, o, ..., ok Bo, B1, B2, ..., Bk and vy, 2,
eees Yk

The local error of eq. (2.1) is given by:
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3oyt ) 3Bt Yt ) -
=0 =0

k : .
Ly =1 270t Yt NI for n =k k+1,...,N ...(2.2)
j=1

y(t,)-V,, for n=0,1,..., k-1

In general, the mean-square order of convergence will be only
Y, since the only information about the driving noise process that
the Maruyama-type schemes include are the Wiener increments. We
note that the simple Euler-Maruyama method would suffice to
obtain the same order of convergence. However, convergence is an
asymptotic property, i.e., it holds for h —— 0 and a result
concerning the order of convergence may not provide sufficient
information about the size of the actual error that arise for

reasonable choices of the step-size, [8].

From the deterministic theory, it is known that for a linear multi-

step method:

Kk Kk
D.aYo ;=hY Bt ¥a ), forn=k k+l, ..., N ...(2.3)
=0 j=0

when applied to y'(t) = f(t, y(t)), the local error is of order p + 1 for

sufficiently smooth function f, if:

a;=0 and Zk:aj(k—j)q :qzk:Bj(k—j)q‘l,for 9=1,2,....p ...(2.4)
j=0 j=0

k
=0
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Let the coefficients of the scheme (2.1) be normalized in such a
way that oy = 1 for all n. Again, we emphasize that if By = 0, then

the scheme (2.1) is explicit, otherwise it is implicit.

Finally, consider the autonomous SODE of the form:

dy; = f(y,)dt + g(y)dW;
then the SLMMM's for the above autonomous SODE, will be:

K K K
thjotn—jr
Do ya ;=D Bif (Yo i)+ 2 790y )" ", for n=kk+1,....N
j=0 j=0 -1

..(2.5)

In the next subsection, the two-step Maruyama scheme will be
considered and derive the consistency conditions for this scheme.
We establish a representation of the local error L,, in term of certain
multiple stochastic integrals obtained by the It6-Taylor expansion. It
turns out that the consistency condition is guaranteed under the

above conditions for deterministic order 1 and additional conditions

that determine the method parameters y; and v,.

2.1.1 Two-Step Maruyama Methods, [40], [8]:

Consider the 1td process y; satisfying the SODE with one

Wiener process:
dy, = f(t, ypdt + g(t, y)dWe, yi, = VYo ...(2.6)

fort € J, where J=[ty, T], tp € [0, ©), Yo € R
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where f and g are the drift and diffusion functions respectively,

then, a linear two-steps Maruyama methods, with one Wiener

process, forn=2, 3, ..., N, will take the form:
2 2 2
Zajyn—j = hZij (tn—j ! yn—j) + Zng(tn—j y yn—j)AWn—j cee (27)
j=0 j=0 j=1

and when ag =1 and I;"7"" 5 = W(t, i) —W(t, ;) =AW, _;, and

1- If Bo = 0 then the explicit two-step Maruyama methods is given
by:
Ynt c1Yn1t 0¥ = N[B1f(th-1, Yn-1) + Bof(tn—2, Yn2)] +
[v19(th-1,Yn-D)AW 1+ v20(th2,Yn2) AW, 5], forn =2, 3, ..., N
...(2.8)

where Yy, is given by the initial condition and the starting value
y1 need to be computed numerically, which may be calculated by
any suitable one-step method, such as the simple Euler-

Maruyama method:
Yn1=Yn2+ hf(th 2, Yn2) + 9(th2, Yn2)AW, 5, n=2,3, ..., N
...(2.9)
where y,_; will be called the supporting value.

2- If Bg # 0 then the implicit two-step Maruyama methods is given

by:
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Ynt Q1Yn1 + QoYn 2= h[BOf(tn,yn) + Blf(tn—l,yn—l) + Bzf(tn—Z’Yn—Z)]
+ ['Ylg(tn—l,yn—l)AWn—l'l'YZg(tn—Z,yn—Z)AWn—Z]1 for n= 21 3! ey N

...(2.10)

where also yq is given by the initial condition and the starting
values yi, y,, need to be computed numerically, the value y; may
be evaluated by any suitable one-step method. In addition the
value y, may be evaluated by the explicit two-step Maruyama
method. It is remarkable that, the combination of an explicit and
implicit technique is called a predictor-corrector method and we
will call y,.; and y, for n = 2, 3,..., N in eq. (2.10) the

supporting values.

2.1.1 (A) Analysis of Local Error for Stochastic Linear Two-step
Maruyama Methods, [40], [8]:

The local error of the two-step Maruyama method (2.7) for the
SODE (2.6) which is given by:

S ay(ty )~ 5 Bty Yty ) -
=0 =0

2
L, =+ _Z‘ing(tn_j,y(tn_j))AWn_j, forn=2,...,N
J=

y(th) = Yn, for n=0,1 ...(2.12)

and we remind the reader for the representation (1.28) of the local
error. In the context of two-step schemes the local error

representation (1.28) reduces to:
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Lan=Rn+S,=Ry+S;,+S,,1,forn=2,...,N ...(2.12)
One useful choice is provided by:
Rn :E(Ln |‘Tt'n72)’82,n—1:E(Ln_Rn |'¢t'n72)’ Sl,n =L, -R _Sz,n—l

n n

see also the discussion in Remark (1.3). In the hypothetical case
that:

L, = CoAW,_1 + C1AW,,, + C,
holds, we have:
Ry =Cy; Son1 = C1AW, 55 Sq = CoAW 4

Applying the Ito-formula on the corresponding intervals to the
drift coefficient f, as well as, to the diffusion coefficient g yields for

S e [tn—j, tn—j+1]; j=1,2

f(5,Y(8)) = F(to_;, Y(ta_;)) + 17" (LOF) + 1" (LF) ...(2.13)

9(5,Y(8)) = 9(tn_;, Y(ta_i)) + 1g7° (L) + 17" 1° (Lig) ..(2.14)

and tracing back the values of the drift coefficient to the point s =

t,_; and j = 2, to obtain:
ft, 1 Yty 1)) =Tt 5, Y(t, o))+ 121 (LOF) + 121 (L) ... (2.15)
or

f(tn, Y(t)) = F(tny, Y(tag)) + 1G4 (LF) + 172 (LF)

or
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F(t, Y(tn)) = F (ta 2, Y(tn_p)) + 152 "2 (LOF) + 172 0L (LF)

....(2.16)
+ 1 (LOF) + 1t (L)

by analyzing the local error L, given by eq. (2.11) of the scheme
(2.7) for the SODE (2.6), one can derive the consistency conditions
for scheme (2.7). The following lemma has this result, which is

given here with its proof for completeness.

Lemma (2.1), [40], [8]:

Assume that the coefficients f, g of the SODE (2.6) belong to
the class C*% with L%, L%, L, L'g € C*. Then the local error
(2.11) of the stochastic two-step Maruyama scheme (2.7) allows the

representation:

L,=Ry+S), +S5,4, forn=2,3, ...,N ...(2.17)

where R?.S}., j = 1, 2 are ; -measurable with E (Sj‘{n | 7 ):O

In?

and

2 2
R} = |:Zaj:|y(tn—2) 4{20‘0 + 0y _ZBj:|hf (to_z. Y(t, o)+ Ry

j=0 j=0
Sg,n = [‘10 _Y1] g(tn—I’ y(tn—l))AWn—l +§f,n

Sg,n—l =[(og +0y) =71 9ty 2, Y(tn 2 )AW, , + ég,n—l
with:

IRY ll,,=0(h?) 5 1S5, ll, = O(h) ; 1S54 I, = OCh) ...(2.18)
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Proof:

To derive a representation of the local error of the form (2.17),
the deterministic parts are evaluated and resumed at the point (t,»,
y(t._»)) and separate the stochastic terms carefully over the different
subintervals [t,_,, t,_1] and [t,_1, t,]. This ensures the independence
of the random variables. It does make the calculations more

complicated. Since:

2 2
Z%‘Y(tn—j) = 0o (Y(tn) = Y(ty1)) + (o +ag)(Y(ty_1) —Y(th_2)) + (Zaj JY(tnz)

=0 =0

then the local error for the two-step Maruyama methods (2.11) may

be expressed as:
Ln = ao(y(tn) — Y(tn-1)) + (0o + ) (Y(th-1) — Y(th2)) +

2 2 2
Z%‘Y(tn_z) _hZij (tnjr Y(to_j)) - Zng(tn—j Y(thoj) AW,
j=0 j=0 j=1

The SODE (2.6) implies the identity:

Y(tad) - Y(to) = | Fs.YENds+ | 96 y(S)AWGE)

I.e.,
Y(th-1) — Y(ta2) = 192" (F) + 172" (g)

Applying the I1td formula eq. (2.13) and (2.14) for 1p-2"(f) and

|21 (g), respectively, to obtain:
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Y(to1) = Y(ta_o) = N (ty_p, Y(ty_)) + 1552 " (LOF) + 1532 02 (L)
+ 9ty V(M2 + 15201 (L0g) + 1522 (Lg)

...(2.19)
Also:
t, t,
Y(ta)=Y(tha) = | @ y(E)ds+ [ g(sy(s))dw(s)
th tha

=gt () + 12" (g)
Applying the I1td formula (2.13) and (2.14) for I1y+(f) and

I+ (g), respectively, to obtain:

y(t,) = y(t, 1) =hf(t, 5, y(t, 1))+ gt (LOF) + 12t (L)
+9(ty 1, Y(t D) + 1t (Lg) + 13 (Lg)

and, additionally using (2.15), yields to:
V(ty) =Yty 1) =N {F (t g, YD) 12 (LF) + 12 (L) 15 (L)

+g3 et (L) +g(t, oy, Y(t, )t

o ot ...(2.20)
+Hgtr(Lg)+ 151 (Lg)

Inserting egs.(2.19) and (2.20) and the expansions (2.15); (2.16)
into the local error formula (2.11) and reordering the terms, and

letting:
I = W) = W(t) = AWy g 5 17727 = Wt ) = Wity ) = AW,

and from this, yields to:
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2 2
L, = [Z%}Y(tnz) +[20c0 Ty _ZBj]hf(th’y(th)) + ﬁg

=0 j=0
Hog —1119(th_1, Y(th_1)) AW, 1+S1n
H(og +0u) —v219(th 2, (T, 2))AW, +Sz n-1 ...(2.21)

where:

RE =t 0+ 15 (D) (0 -l (L)
—hB, { n- 2t_1(|_0f)_|_ |t -t (Lof)} hBllgn—2't"—l(Lof) ...(2.22)

Y, =g 1y (L'g) — hBo It (L) + g™ (LOg) + ot 1 (L'F)
...(2.23)

SP 11 = (0 +ay) 12t (Lg) + (g + ot ) L2t (LF)
+ (o )l (Lg) +hlag =By BP9 04

Finally, the estimates (2.18) are derived by means of Lemma (1.1),
where the first terms in (2.23) and (2.24) determine the orderh. =

2.1.1 (B) Order of Consistency Conditions for Two-Step
Maruyama Scheme, [6], [41]:

The following corollary give the order of consistency
conditions for the scheme (2.7) have been proved to be of order %,

which is given in literatures without details of the proof.
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Corollary (2.1), [40], [8]:

Let the coefficients f and g of the SODE (2.6) satisfy the
assumptions of Lemma (2.1) and suppose that they are Lipschitz
with respect to their first variable. Let the coefficients of the
stochastic linear two-step Maruyama scheme (2.7) satisfy the
Dahlquist's root condition and the consistency conditions:

2

2
%aj=0,2a0+a1=§[3j Qg =Yy 5 O +0y =Y, ...(2.25)
[= [=

Then the global error of the scheme (2.7) applied to (2.6) allows the
expansion
1

max_[|y(t,) -, ||L2=o(h2j+0(gﬂ%§ll y(t,) -, ”sz

Proof:

By Lemma (2.1), we have the representation (2.17) for the local

error (2.11). Applying the consistency conditions (2.25), yields to:
RO=R%,8% =S° ,85,,=S0, ,,for n=2,3,...,N

As the scheme (2.7) satisfies the Dahlquist's root condition, then by

Theorem (1.3) it is numerically stable in the mean-square sense.
Then y, =y(t,) and D, = L, in the stability inequality (1.34), and

the assertion follows from the stability inequality (1.34)

rex (Iyit)=ye [h 28] max ||R2||L2+||82||L2 x| |
N Y A R P S Y h hY?2 n=01 k2
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from eq. (2.11) and for n = 0, 1, the local error L, = y(t,) — y, and
also using (2.18) in the stability inequality, with S=1

O(h*) | O(h)
m?xN||y(tn)—yn||L2§{nrr;ax[ R +max |l y(t,) -ya Il

n=01..N" " " 72 In=2., N

max [[y(t,) =Y, I, <{ max (O(h) +O(h* )+ max [l y(t,) ~¥, I

n=0,1,..,N {n:Z ..... N

n=0,1,...,

2.2 Summary of Some Well Known Methods, [1]

Using the analysis of the local truncation error for the
deterministic case, one may obtain a number of equations less than
the number of coefficients and hence will give infinite number of
solutions. To drive certain methods, the coefficients which satisfy
the consistency and zero-stability will be considered. While in the
stochastic case, the analysis of local error for each step have been
used which will give certain consistency conditions for each step
which are also less than the number of coefficients and we get an

infinite number of solutions.

In deriving certain method, select the coefficients which satisfy
consistency conditions also select these coefficients o, oy, ..., ok
which satisfy the Dahlquist root condition, hence the method is
mean-square consistency of order p and then by Theorem (1.3), the
method is numerically stable in the mean-square sense. By Theorem

(1.4), we get the method is mean-square convergent with order p.
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Certain classification of linear multi-step methods may be

considered, namely:

a- If the characteristic polynomial (1.36) of the methods takes the
roots r = 1, r = 0 then the methods are called of Adams-methods
and if they are explicit then they are called of Adam's -Bashforth
type while if they are implicit then they are called of Adam's-
Moulton type.

b- If the characteristic polynomial (1.36) of the methods takes the
roots r = 1; r = —1; r = 0 then the methods are called of Nystrom
type if they are explicit and of Milne-Simpson if they are

implicit, as in example (1.1).

Some models for an explicit linear multi-step methods which

are found in literatures, are:

The two-step Adam's-Bashforth method (AB,) for n =23, ...,

N, N € N; with one Wiener process, has the form:
3 1
yn - yn—l = h |:Ef (tn—17 yn—l) - Ef (tn—Z ! yn—2)j| + g(tn—l’ yn—l)AWn—l e (226)

where:

T-t

tel=[t,, T];h= AW, =W(t,)-W(t, )

Also, some models for an implicit linear multi-step methods

which are found in literatures, are:
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The two-step Adam's-Moulton method (AM,), forn=2, 3, ...,

N; N € Nwith one Wiener process, has the form:

5 8 1
y. —y.,=h {Ef(t” Yn) +Ef(tn—l’ Yn1) _Ef(tn—Z’ yn—2):| ..(2.27)
+ g(tn—l’ yn—l)AWn—l

where t e J; ho Tt

; Aanl = W(tn) - W(tnfl) '

2.3 Variable Step Size Method for Solving SODE's, [42]

The numerical solution of SODE's will be found using variable
step size method, which may be considered as a new approach in

this topic, where the considered SODE's has the form:
dye = f(t, yy) dt + g(t, yr) dWy; yi(to) = vy, .(2.28)

In all fixed step-size methods, the local truncation error will
depends on the step size h and on the used numerical method. But,
in variable step-size method, we shall find the numerical solution vy,
for the SODE given in eq.(2.28), that is accurate to within a

specified tolerance .

Therefore, it turns out for reasonable effective estimates of the
step-size, it is required to attain a specified local truncation error
(tolerance) €. The variable step-size method, which will be
considered here is based upon the comparison between the estimates
of the one and two steps of the numerical value of y; at some time

obtained by the numerical method with local truncation error term
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that is of the form Ch®, where C is unknown constant and p is the
order of the method. Suppose that we started with the initial

condition Vi, with step-size h using certain SLMM and to find the

: : : h :
solutions y,, and y{?), using the step-size h and > Tespectively.

Let:

Eest. = 1Y,y — Y2, ..(2.29)

t0+h t0+h

and here if E;; < g, then there is no problem and one may consider

y§§)+h as the solution at ty + h. Otherwise, if E. > €, then one can to

find another estimation of the step-size say hpen. If this
approximation was accepted then this value of h,., will be used as
the new value of h in the next step; if not, then it will be used as an

old h and repeat similarly as above.

Now, a common question may arise, which is how to find
hrew ?. In this work, a new criterion has been developed for
estimating the local truncation error, which control the step-size.
The problem of error estimation is the most important problem that

impact the user while using variable step-size method.
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Theorem (2.1):

Suppose the y{?,, and y{”, are the numerical solution the

SODE given in eq.(2.28) using certain SLMM with step sizes h and

h : .
> respectively. If ¢ is the tolerance and E.y = ||y%)+h - y§§)+h||,

then (the new value of the step size) h,e, IS given by:

_ o (V2 +2)s ..(2.30)

h =
- \/E Eest.

where hyq refers to the old value of the step size h.

Proof:

Suppose V; is the actual solution at ty + h, by taking expectation
to the both sides of eq.(2.29) yields:

E(Ee) =E(IY,n ~ Vi )
=E(lYen = Yin + Ve = Ye D
<EQYD,, —yell+1y2, -y )

—EQ YO~y D+ ENYZ, ~ v 1)

h 1/2
<Chl/2 +c(—j
2
Hence:
h(v/2 +1
E(Ew) < cYNO24D)
J2
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also yields to:
< */_Eest ...(2.31)
2 +)
. J2E
since, € = Ch ., = et___h
new M(ﬁ_'_l) new
and so:
Jh 2+1
Moo =2 (2:+De ..(2:32)
\/EEGS'[.

2.4 Solution of SODE's Using Implicit Methods, [1]

When we back to subsection (2.1.1), one can see the difficulty
in solving the nonlinear SODE's (2.6) using implicit methods,
therefore the predictor-corrector approach may be used to get an

improved the results as much as it is required.

Therefore, when using an implicit method, the following two

cases may be arised:

(a) If the functions f and g are linear functions, then using an
implicit scheme will give no difficulty since the resulting finite
difference equation may be simplified to an explicit formula. As

an example consider the SODE:

dy, = dt + dW,, Yi, =0, ...(2.33)
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where the functions f and g are f(y;) = 1 and g(y;) = 1, which are

linear and using the AM, method for n=2, 3,..., N, we get:

5 8 1
yn - yn—l =h I:Ef(yn) + Ef (yn—l) - Ef (ynz)i| + g(yn—l)AWn—l

Now, apply the functions f and g

5 8 1
12 12 12 n-1

Yn _yn—1:h|:_+___ +AW,

and if h = 0.1, then upon carrying some simplifications will get:
yn == yn—l + 01+AWn_1

Hence, the evaluation of y, may be achieved without any

difficulty.

(b)If the functions f and g are nonlinear functions, then using
implicit methods may give a difficulty in solving the resulting

nonlinear finite difference equation in terms of y,,.

Therefore, two approaches may be used to solve such
equations, which are by using either Newton-Raphson method or

predictor-corrector method.

2.4.1 Newton-Raphson Method:

The Newton-Raphson method will be used to solve the
resulting nonlinear equation in terms of y, at each step of the
discretization points of the time interval and it is known that the

Newton-Raphson method require an initial value for each step of the
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scheme, which may be found approximately using any explicit one-

step method. As an example, consider the solution of the SODE:
dyr=—(1+0.01yf)(1 - y7) dt+0.1(1 - y7) dW,, y, =0
The functions f and g are:

fy) =—(1 +0.01y{)(1 - yf) and g(y)=0.1(1- y{)

which are nonlinear, and upon using AM, for n =2, 3,..., N; which

has the form:
5
Yn—Yna= h|:ﬁf(yn) f(yn—l) f(yn 2):|+g(yn 1)AW
Now, apply the functions f and g to get:

5 8
Yo~ Y1 = h[ﬁ(yﬁ ~1)(L+0.01y2) + E(yﬁ_l ~1)(1+0.01y2 ;) -

1
1 (Y§—2 -+ 0-01Yﬁ—2)} +0.1(1- yﬁ—l)AWn—l
forn=2,3,...,N, and if h = 0.1, we get:

yn - yn—l (yn _1)(1"' 0. Olyn) + (yn—l 1)(1+ 0. Olyn 1) -

@(Yn , —1)(1+0. 01Yn 2)+0 1(1- Yn AW,

for n =2,3, ..., N; where y,_; and y,_, are given in prior, but y, is
unknown and hence a nonlinear equation for y,, is obtained, which is

simplified and equated to zero, which will yields to:
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5 8
F(Yn) = Yo — Vo1 — @wﬁ ~1)(1+0.01y3) - @wﬁ_l -1)

1
(1+o.01y§_1>+@(y§_2 ~1)(1+0.01y% ,) -
0.1(1- Yp 1) AW, 4

Hence, F(y,) = 0 and y,_1; Yn» are given. Also, in order to use

Newton-Raphson method, we need:
' S 3
F'(y,)=1- E(l.%yn +0.04yy)

Therefore, one can get the solution at each point of the mesh by
solving a nonlinear algebraic equation resulting from the finite

difference equation by using Newton-Raphson method given by:

ym+1 — ym L I:m(yn)
i T F™(Y,)

m=0,1,2,...

2.4.2 Predictor-Corrector Methods for Solving SODE's, [20]:

The Adam's-Bashforth and Adam's -Moulton methods having
been derived in the nineteenth century [4], their fixed weighting was

customarily used to reduce the computational overhead of each step.

The Adam's -Bashforth family of predictor-corrector methods
[4] are explicit, linear, multistep techniques. Each successive
member of the family has a higher order of convergence, and the
family can be extended indefinitely. The Adam's -Moulton family of

predictor-corrector methods [35] are, similarly, implicit, linear,
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multistep techniques, and can be similarly extended to an arbitrarily
high order of convergence. This predictor-corrector combined
method will be termed as Adam's -Bashforth-Moulton. For clarity,
we will refer to the order of convergence of both the Adam's-
Bashforth predictor phase “Adam's -Bashforth-Moulton” fixed-grid
method of order 3-4.

Now, the Adam's-Bashforth-Moulton predictor-corrector
method can be constructed from the Adam's -Bashforth method (an

explicit method) and the Moulton rule (an implicit method).

First, the predictor step; starting from the correct value y,_,
calculate an initial value y, via the Adam's-Bashforth (AB))

method:
. 3 1
Yn :yn—1+h |:§f (tn—l’ yn—l) - Ef (tn—2 | ynz):| + g(tn—l’ yn—l)AWn—l

...(2.34)

Next, the corrector step; improve the initial guess through

iteration of Moulton rule:

5 - 8 1
R o (R ATR L SR B (e

9(th-1, Yn-1)AW, 4 .....(2.35)
This iteration is repeated for some fixed n-times or until the guesses

converge to within some error tolerance «:

Vo = Yol <e ...(2.36)
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2.5 Numerical Results

In this section, some illustrative examples will be considered,
which have for comparison purpose an exact solution. These
examples will be solved using the considered approaches given and

discussed previously in this chapter.

Remarks (2.1):

1. The argument of the considered examples is t € [0, 1] and the

step size used for discretizing this interval is with h = 0.1.

2. The obtained results for these examples are represented at
average of 10000 simulted solution by using N(0, h) random

number generations for the Wiener process W,.

Example (2.1),[30]:

Consider the SODE:
dy;=—(1 +0.01y5)(1 — y2) dt + 0.1(1 — y?) dW,

with the initial condition Yi, =0, and the exact solution is given by

Yi

The results of this example and its comparison with the exact
solution are given in tables (2.1)-(2.3) using explicit variable step
size method, implicit method using Newton-Raphson and predictor-

corrector methods, respectively:
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Table (2.1)

The exact and numerical results of example (2.1) using explicit

variable step size method.

Exact solution

Numerical solution

Absolute error

0.1 —0.09966 —0.09894 0.00072
0.2 —0.1973 —0.19592 0.00138
0.3 —0.29105 —0.28796 0.00309
0.4 —0.3820 —0.37554 0.00646
0.5 —0.46166 —0.45595 0.00571
0.6 —0.53484 —0.52992 0.00484
0.7 —0.60242 —0.59251 0.00991
0.8 —0.66290 —0.65152 0.0011
0.9 —0.72625 —0.70381 0.022
1 —0.76158 —0.74899 0.013
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Table (2.2)

The exact and numerical results of example (2.1) using explicit

and implicit (Newton-Raphson) methods.

¢ Exact Explicit Absolute Implicit Absolute
' solution method error method error

0.1 | -0.09966 —0.09871 0.00095 -0.09771 0.00019
0.2 —-0.1973 —0.19667 0.00063 -0.19271 0.00459
0.3 | -0.29105 —0.29118 0.00013 —0.28626 0.00479
0.4 —-0.3820 —0.3808 0.0012 -0.37614 0.00586
0.5 | -0.46166 —0.46023 0.00143 —0.45489 0.00677
0.6 | -0.53484 —-0.53217 0.00267 —-0.52739 0.00745
0.7 | -0.60242 —0.60021 0.00221 —0.61006 0.00764
0.8 | -0.66290 —0.65901 0.00389 —0.65560 0.0073
0.9 | -0.72625 —0.72223 0.00402 —0.73573 0.00948

1 —0.76158 —0.75643 0.0515 —0.7520 0.00958

Table (2.3)

The exact and numerical results of example (2.1) using implicit

(predictor-corrector) method.

t; Exact solution Numerical solution Absolute error
0.2 -0.1973 -0.1971 0.0002
0.3 —0.29105 —0.29109 0.0004
0.4 —0.3820 —0.3825 0.0005
0.5 —0.46166 —0.46766 0.0006
0.6 —0.53484 —-0.534 0.0008
0.7 —0.60242 -0.60241 0.0009
0.8 —0.66290 —0.66290 0.0000
0.9 —0.72625 —-0.72625 0.0000
1 —0.76158 —0.76158 0.0000
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Example (2.2),[30]:

Consider the linear SODE:
dyt = yt dt + 05 yt th

with the initial condition Yi, = 1, and the exact solution is given by
Yi= Yy, exp(0.875t + 0.5W,)

The results of this example and its comparison with the exact
solution are given in table (2.4) using explicit variable step size

method:

Table (2.4)
The exact and numerical results of example (2.2) using explicit

variable step size method.

t; Exact solution Numerical solution Absolute error
0.2 1.024 1.023 0.001
0.3 1.085 1.065 0.02
0.4 1.135 1.098 0.037
0.5 1.210 1.165 0.045
0.6 1.323 1.274 0.049
0.7 1.298 1.24 0.058
0.8 1.576 1.513 0.063
0.9 1.565 1.499 0.066
1 1.851 1.764 0.087
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Richardson and Variable Order Methods
for Solving Stochastic Ordinary Differential
Equations

Numerical methods for solving ODE's constructed by
translating a deterministic numerical method (like the Euler's
method or LMM's or Runge-Kutta methods, etc.), and modifying
such methods to solve SODE's. However, merely translating and
applying certain deterministic numerical methods to SODE's will
generally not provide accurate results, [13].Suitably appropriate
numerical methods for SODE's should take into account a detailed
analysis of the order of convergence, as well as, stability of the
numerical scheme and the behavior of the error . In contrast to
strong approximations which require that the simulated paths are
close to the solution y of the SDE, weak approximations need not
necessarily approximate these paths. If one aim is to compute, for
instance, a moment of the solution, the expectation of a terminal
pay-off or a general functional of the form E(g(y(T))), where E
stands for the expectation and g is a certain polynomial; then the
weak approximations are the method of choice. Instead of

approximating the path, it is sufficient to approximate adequately

62



Chapter Three Richardson and Variable Order Methods for Solving
Stochastic Ordinary Differential Equations

the probability distribution that corresponds to the exact solution vy,
[39].

This chapter consists of four sections. In section (3.1) an
Illustration to the strong and weak convergence criteria are given. In
sections (3.2) and (3.3), we study and introduce the higher-order
Richardson extrapolation method and variable order method for
approximating the solution of functionals diffusion of It6 kind.
Under appropriate regularity conditions, it is shown that those
methods allow considerable increase in the weak order of
convergence of a discrete time one step approximation methods.
Numerical method experiments indicate the efficiency of
Richardson extrapolation method and variable order method based
on higher-order weak schemes for solving SODE's with additive

noise.

Finally, in section (3.4), some examples are solved using those
methods discussed in sections (3.2) and (3.3) and then comparing
the results with the exact solution, which are given here for

comparison propose.

3.1 Convergence Criteria

Since many SODE's cannot be solved explicitly, numerical
schemes are employed. There are various numerical schemes (for
instance see [28]) and in order to access their usefulness and
practicality, certain criteria are required in which to access the

various schemes. The convergence criterion is just one of many
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other criterions, like mean square stability and asymptotic stability
in which the cost of computation that can be used when assessing

the usefulness of different numerical schemes.

Convergence of random sequences may be classified into two
classes, namely, strong and weak convergence. Convergence with
probability one, mean square convergence and convergence in
probability are the most commonly used convergence criterion in
the strong class while convergence in distribution and weak
convergence are used with the weak class. For the weak class, only
the distribution function is required and not the actual random

variables of the underlying probability space.

3.1.1 Strong Convergence Criterion:

In many practical areas, like direct simulations, filtering or
testing statistical estimators, a good path wise approximation is
usually required and for these instances, the absolute error criterion
Is appropriate. The criterion gives a measure of path wise closeness
at the end of the time interval [0, T], [28].

Consider a practical sample path of the Wiener process, i.e., W+
is given (and hence known) therefore there is no randomness in the
SODE and hence no randomness in Xt [15]. The increments in the
given Wiener process are then used to obtain the numerical

approximation Y(T). The absolute error criterion is defined as:

e =E(Xr - Y(T)))
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Here, the Euclidean norm is used, Xt is the 1té6 process at time
T while Y(T) is the approximation obtained by approximately
integrating the SODE in a sequence of time steps, i.e., from the
numerical scheme. Therefore, the error is the expectation of the
absolute value of the difference between the approximation Y(T)

and the 1t6 process X at time T.

The numerical scheme is consistent if the approximation Y(T)
converges to Xt as h tends to zero. Therefore, a discrete time
approximation Y(T) with maximum step size & converges strongly
to X at time T if [28]:

IME(X+-Y(T))) =0 ...(3.1)
0—0
A discrete time approximation Y" converges strongly with

order p > 0 at time T if there exists a positive constant C, which

does not depend on the step size h, and & > 0, such that:
c(jxe -] <cn

holds for each h = =%

e (0, 8); where N is the number of

subintervals of the interval J = [to, T],[15].

3.1.2 Weak Convergence Criterion:

In some cases, approximating some functional of the It6
process is of interest, such as the mean and variance of the

probability distribution. Thus, the weak convergence criterion is
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used since the requirements for their simulation are not as
demanding as for path wise approximations, [28]. Here the sample
path W+ is not known but is drawn from the distribution of Wiener

processes.

Since Wt and X; are a random variables. The numerical
approximation Y(T) is also a random variable, because Y(T) is

obtained using samples increments of Wiener-process.

A general time discrete approximation Y with maximum time

step size & converges weakly to X at time T as 8 —— 0 with respect

to a class C of test functions g: RY —— R, if we have:

lim [E(g(Xr)) ~ E@Q(/(T))| =0, forg e C

A discrete time approximation Y{‘ with step size h is said to be
converges weakly with order p > 0 to X at time T as h—— O, if for

each g e C3P*I(RY, R) there exists a positive constant C, which

does not depend on h and a finite number & > 0, such that:

[E(9(Xr)) - E(g(Y7)) < Ch?
holds for each h € (0, d),[16].

Remark (3.1):

We shall discuss first the Richardson extrapolation method
which is considered as a special case a general scheme of variable

order method.
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3.2 Richardson Extrapolation Method for Solving SODE's

Consider the Itd process y; satisfying the SODE with one

Wiener process:
dy: = f(t, yy) dt + g(t, y) dWy v, =Yo ..(3.2)

fort e J, where J = [ty, T], tp € [0, ), Yi, € R and where f and g
are the drift and diffusion functions respectively.

We shall suppose that f and g are at least Lipschitz functions
and satisfy the linear growth bound and that all of the following

initial moments are exists:
E(yl) <o, r=1,2, ... ...(3.3)

so that we have a unique solution of (3.2) for which all moments

exist.

To define an appropriate measure for the rate of convergence,

we shall say that a discrete - time approximation y; converges
weakly with order p € {1, 2, ...} if for each g € C‘;(Rd,R) there
exist a constant C4, which does not depend on h, such that:

Mn = [E(g(y(h))) — E((y(T)))| < C4h? ..-(3.4)
forall h € (0, 1); [43], [34].

A first-order weak approximation (see [43] and [34]) is

provided by Euler's scheme:

yn = yn—l + hf (tn—l’ yn—l) + g(tn—l’ yn—l)AWn—l .. (35)
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Here, AW,_; represent an independent N(0,1) distributed Gaussian

random variables.

We turn now to Richardson extrapolation methods for the
simulation of functionals of I1t6 diffusion based on discrete-time

weak approximation, assuming in what follows that the function for

g € C; (R, R) is given.

The series weak error expansion for some N>1 has the form:

E(9(y(T) ~g(y(h) = > a,h* +O(h*™™) ....(3.6)

1

where a,, a4, ... are constants independent of h, then the process of
Richardson extrapolation method consists of successively
eliminating terms in the error expansion to produce approximations

of higher order.

Form (3.6), we have for the step size h and g respectively:

E(9(y(T)) =E(g(y(h)) + > a,h* +O(h*™)

=1

N 2]
E(g(y(T))) = E{g(y(%)j} + ZaZj (g) +O(h?V

Multiplying the second equation in (3.7) by 4 and subtracting

L .(3.7)

the first equation, yields to:
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3E(g(y(T))) = 4E[g (y(gm —E(g(y(h))) + 2(22—:}2 ~Da,h? +0(h*")
=2
...(3.8)

The multiplicative factor 4 was chosen to cancel the h? terms.

Therefore, eq. (3.8), shows that:

4E[g[y(2)D—E(g(Y(h)))

- .(3.9)

E,(9(y(h))) =

which is an O(h*) approximation to E(g(y(T))).

Observe that we did not actually need to know the value of the
coefficient a, but only that, the error expansion had the form (3.6).

The process can be continued from (3.8) in this direction, when:

E(g(y(T))) = Ex(g(y(h))) - %am“ v

and

E(g(y(T))) = Ey(9(y(h))) —%am“ o

e
4
E(Q(y(T) = E{g(y(gm 2, (gj .

Similarly, multiplying the second equation in (3.10) by 16 and

...(3.10)

subtracting the first equation and eliminating the h* term, yields to:
h
15E(g(y(T))) =16 E{Q(VEJD — By (g(y(h))) ...(3.11)

and obtaining the order-six approximation:
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16E1(g(y(2m—El(g(y(h)»

15

In general, using the mathematical induction, one obtain recursively

E2(g(y(h))) =

...(3.12)

the O(h®™*?) approximation, of the general form as:

Eo(g(y(h))) = E(a(y(h))) ...(3.13)
4n Enl(g (y(ZJJ) - En—l(g (y(h)))
E.(9(y(h))) = 1 ...(3.14)
foralln=1, 2, ...;

Note that, to find Ey(g(y(h)),one must calculate
E.(a(y(h)))which in turn requires the computation of

E.(a(y(h/4))). For simplicity, the following diagram illustrates

such decencies.

Level O(h?) O(nh%) O(n®) O(h®)

0 Eo(a(y(h))) N
Eo(g(y(h/2))=>E1(a(y(h)))

1
\
2 Eo<g(y(hm))%a(g(y(h/z»(:Ez(g(y(h») N
3 Eo(a(y(n/8))>E1(a(y(n/4))>Eax(a(y(h/2)))>Es(a(y(h))) -
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3.3 Variable Order Methods for Solving SODE's

Using the SLMM's in connection with variable order methods
used for solving ODE's to derived a new approach for solving
SODE's with more accurate results will give more accurate result,
This method will be referred to as the variable order method for
solving SODE's:

Consider the SODE:
dy, = f(t, yy) dt + g(t, yr) dWy v, =Y, ...(3.15)

In this investigation, approximation are studied for expectations
of functions of the solution, i.e., E(g(y(T))), where g is a real-valued
smooth function, that is, weak approximation. The weak error is

defined as:

E(g(y(T)) —g(y(h))) ..-(3.16)

The primary goal of this investigation is to prove that the

variable order method has a weak error expansion of the form:

E(g(y(T)) — g(y(h))) = ash + a,h® + ... ...(3.17)
where ai, a,, ... are some constants independent of h and by using

several approximations E(g(y(ho))), E(9(y(h.))). E(g(y(h2))), ...
with hyg > hy > h, > ...; where hg, hy, hy, ... are the step sizes.

Now, to successively eliminate the terms in the error expansion,
thereby producing approximations using methods of higher and
higher order. The sequence of step sizes used was h; = hi2);j=0, 1,

2, ...; where h is some starting step size. If a; in eq.(3.17) is not
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zero, then the approximation scheme E(g(y(T))) is only of order h,

To obtain approximations of order h? and we proceed as follows:
Find the weak error expansion using two different step sizes hg
and hy, such that h; < hg, as follows:

E(9(y(T)) -9(y(h,))) =ajh, +a,h; +azh +...
..(3.18)

E(g(y(T)-g(y(hy))) =ash, +a,h] +azh] +...

and upon subtracting hy times the second equation from h, times the

first equation and solving for E(g(y(T))), one may get:

c(gty() - HEQUONDEQYOD g, gy

+hy) —as(hg +hohy + hi) — ...

-0 _
h1

ashohy (o + hy) —a4(hg + hihy + hy) — ...

Thus, letting:
EL(a(y(ho) = Egy(hy) + — OV ZEQVID) 5 1)
Mo 4
hl

which is an O(h§) approximation to E(g(y(T))). Since h; < hy and

any two pair h; and h;;; may be used in the above elimination

process, one may see that in general:
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£ O = @ty — ) EOORD 5,
|
h.

J+1

which is also an O(hJ?) approximation to E(g(y(T))). Now, we have:

E(9(y(T))) = E1(9(y(ho)))—azhohi—azhohi(ho+hy) —
a4h0h1(h§ + hOhl + hlz) — ...
and > ...(3.21)

E(9(y(T))) = E1(9(y(h1)))—azhih,—azh;h,(hy+hy) —
a4h1h2(hf + h1h2 + hg) - ...

and upon eliminating the terms involving a,, we obtain:

E(g(y(T))) = E2(9(y(ho)))+ashohiho+ashohihy(hg+hi+hy)+. ..

where:

E @) -EQ00(M) 5 55,
) ...
1

E2(9(y(ho))) = Ex(g(y(hy))) + )
hj _
which is an O(h}) approximation to E(g(y(T))). More generally:

0y M)-Exay s 2D ZEOVON 5y
)1
h

j+2
which is also an O(h?) approximation to E(g(y(T))). Similarly,

continuing in this manner, the following recursively sequence may
be defind:
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Ex00/ () = EQU/(M)) - G2d)
E. h.))-E, h.
Q) = Ena(gy(heo) + o) =B 000D
i
hj+n '
..(3.25)

foralln=1,2,...;5=0,1, ...

On the basis of the results for E(g(y(h;))) and Ex(g(y(h;))), it
seems that En(g(y(h;))) provides an O(h;‘”) approximation to
E(g(y(T))). This may be verified directly by following the evolution
of the general term a, h" in the error expansion, but is perhaps
obtained more easily by the following alternative approach obtained

from equations (3.24) and (3.25), which is given in the following

diagram:

Level  O(h) O(h?) O(hf) O(hj)

0 E(gw)
1 EO(Q(Y(hl)»\'jEl(g(Y(ho))k

2 Eo(9(y(h2) > E1(9(y(h1) h—~E2(9(y(ho)))

3 (g Ex0 ()N E M) Exa( )
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3.4 Numerical Results

As an illustration and for comparison purpose, we consider in
this section, some illustrative examples, which are for comparison
between the numerical schemes used in this wotk, the same
examples considered in chapter two. But, first consider the

following remarks:

Example (3.1):

Resolving example (2.1) using Richardson extrapolation
method with explicit Euler's method and variable order method with
explicit Euler's method we get the results present in tables (3.1)-
(3.6).
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Table (3.1)
The approximate results for the weak solution using Richardson
extrapolation method.

Level O(h?%) O(h% O(h®) O(h®)
0 19.989x10°°
1 19.986x107°|9.986x10°°
2 19.992x107°|9.994x107° | 9.986x10°
3 19.986x107°|9.985x107° | 9.993x107° | 9.986x10°
Table (3.2)

The exact results for the weak solution using Richardson

extrapolation method.

Level O(h%) o(h% o(h% o(h®)
0 19.988x107°
1 |9.986x10°|9.985x107°
2 19.992x107°|9.994x107° | 9.986x107°
3 19.986x107°|9.984x107° | 9.992x10° | 9.986x10°
Table (3.3)

The absolute error between the approximate and exact results for
the weak solution using Richardson extrapolation method.

Level O(h%) O(h% O(h® O(h®)
0 1.372x107*
1 0 1x107*
2 0 0 0
3 0 10x107% | 10x107" 0
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Table (3.4)
The approximate results for the weak solution using variable
order method.

Level O(hy) O(h?) O(h}) O(h})
0 |1.003x107
1 ]9.975x107°|9.915x10™°
2 19.924x107*|9.872x107° | 9.857x10™
3 [1.157x107* | 1.335x107* | 1.458x107*| 1.676x107*
Table (3.5)
The exact results for the weak solution using variable order
method.
Level O(h) O(h?) O(h}’) O(h)
0 0.894x10°
1 0.89x10™° | 9.887x107°
2 0.877x107° | 9.863x10™ | 9.855x10™
3 1.154x107* | 1.334x107* | 1.456x107* | 1.526x10™*
Table (3.6)

The absolute error between the approximate and exact result for
the weak solution using variable order method.

Level O(hj) O(h?) O(h?) O(n?)
0 1.367x10°°

1 8.455x107" | 2.8x107”’

2 8.936x107"| 9x10° | 2x10°®

3 3.163x10" | 10x10® | 2x107" | 1.5x107°
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Example (3.2):

Resolving example (2.2) using Richardson extrapolation
method with explicit Euler's method and variable order method with
explicit Euler's method we get the results present in tables (3.7)-
(3.12).

Table (3.7)
The approximate results for the weak solution using Richardson
extrapolation method.

Level O(h?%) O(h% O(h®) O(h®
0 13.832x107
1 |2.991x107°|2.711x107
2 |1.164x107|5.551x10° | 2.935x10™°
3 |7.891x107°|6.641x107° | 1.042x107° | 2.978x10™°
Table (3.8)

The exact results for the weak solution using Richardson

extrapolation method.

Level o(h? o(h% O(h®) o(h®
0 |2.832x107°
1 2.991x107°|2.721x107°
2 |1.164x107|5.548x107° | 2.934x10™°
3 |7.892x10°°|6.644x107° | 1.042x107° | 2.977x107°
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Table (3.9)
The absolute error between the approximate and exact results for

the weak solution using Richardson extrapolation method.

Level O(h? O(h% o(h% o(h®)
0 0
1 8x107" | 1x107”’
2 0 3x10° | 10x107°
3 0 3 x107° 0 1x107®
Table (3.10)

The approximate results for the weak solution using variable
order method.

Level o(h;) O(h?) O(h}) O(hy)
0 |1.462x10™
1 |1.472x107°|1.483x107
2 | 1.481x107*| 1.49x10™ |1.492x107
3 1.51x10* | 1.54x10* | 1.558x107*| 1.791x10™*
Table (3.11)
The exact results for the weak solution using variable order
method.
Level O(hy) O(hf) O(h}) O(hy)
0 |1.424x10°
1 |1.419x107°|1.414x107
2 11.419x107| 1.419x107° | 1.42x107
3 |1.439x107*| 1.46x107* |1.474x107*|1.482x10™"
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Table (3.12)
The absolute error between the approximate and exacts result for
the weak solution using variable order method.

Level o(h) O(h?) | O(n?) O(h})

0 1.32x107*

5.3x107" | 6.9x107’

1
2 1.339x107%| 7.1x107" | 7.2x107'
3 7.1x107* 8x107° | 8.4 x107° | 3.09x107°
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Conclusions and Recommendations

The following conclusions may be drown from the present

study

1. Variable step size methods improve the accuracy of the results,
but it requires more calculation which will increases the

consuming time.

2. Richardson extrapolation method and Variable order method give

a high accurate results in comparison with SLMM's, respectively.

Also from the present study the following conclusions may be

drown as an open problems for the future work:
1. Deriving higher order models of the SLMM's to solve SODE's.

2. Applying Richardson extrapolation method and variable order
method for solving SODE's based on explicit stochastic

Runge-Kutta methods.

3. Using the proposed methods given in this thesis to solve

SODE's with multi-Wiener process.
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