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AAbbssttrraacctt  
 

The main objectives of this thesis may be oriented toward three 

directions.  

The first objective is a study, in details, the basic theory of 

stochastic calculus and study the linear multistep methods for solving 

stochastic differential equations and prove some results related to this 

topic, as well as, studying the Itô-Taylor series expansion and its 

applications.  

The second objective is a study the two steps Maruyama method 

and also the solution of stochastic ordinary differential equations using 

implicit methods which are treated by using the methods for solving 

nonlinear algebraic equations resulting from the used implicit method, 

such as Newton-Raphson method and predictor corrector method, also 

proposing a new approach for solving stochastic ordinary differential 

equations using variable step size method have been proposed. 

The third objective is to introduce the higher-order Richardson 

extrapolation method and variable order method for solving stochastic 

ordinary differential equations, which has the utility of improving the 

accuracy of the obtained results. 

 

 



Basic Notations and Abbreviations 

BBaassiicc  NNoottaattiioonnss  aanndd  AAbbbbrreevviiaattiioonnss  

 

F -Algebra 

Ft Filtration, which is an increasing family of -algebra 

fields. 

P Probability measure of F. 

Ω Sample space. 

(Ω, F, P) Probability space. 

X, X() Random variable. 

Xt, Xt() Stochastic process. 

X.() X as a function of the variables replaced by the dot 

for fixed . 

Xt(.) X as a function of the variables replaced by the dot 

for fixed t. 

X~N (µ, 
2
) X has a normal distribution with mean µ and variance 


2
.  

µ, E(X) The mean or the expected value of X. 


2
, Var(X) The variance of X.  

w.p.1, P-w.p.1 P converges with probability one. 

○ dW Stratonovich calculus integration symbol. 

C( n , ) The space of continuous functions v : n   . 

C
k
( n , n ) The space of k-times continuously differentiable 

functions v : n   n . 

k d
PC ( , )

 
The subspace of functions v  C

k
( n , ) for which 

all partial derivatives up to order k have polynomial 

growth, i.e.,  2rj
yv(y) K 1 y    where K > 0,  
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                              r  {1, 2, …} depending on v when for all y  n  

and any partial derivative j
yv(y)  of order j > k. 

C
s-1,s

 (J  n , n ) The space of (s1)-times and s-times (for time and 

stochastic process respectively) continuously 

differentiable  functions v : J  n   n . 

f Coefficient function. 

H Hierarchical set. 

 Delete the first component of a multi index . 

 Delete the last component of a multi index . 

(0, ) The interval of absolute stability. 

I(.),t, 
t,t hI   Multiple Itô integrals. 

L All expectation functions, such that  t 2
s0

E X ds < . 

where E(.) is standing for expectation operators. 

L() Length of multi index   (j1, j2, …, jL). 

L(v) Length of multi index is zero. 

L
0
, L

r
 The drift operator and the diffusion operator, 

respectively, where r  1, 2, … 

M The set of all multi indices. 

n() Number of zero components of a multi index . 

ODE Ordinary differential equation. 

P Class of measurable functions, such that  

 
t

2
s

0

P X ds
 

  
 
   1. 

n

2L ( , )  The space of all square integrable functions defined 

from Ω to n . 

AB2 The two-step Adam’s Bashforth method. 



Basic Notations and Abbreviations 

R The remainder set. 

AM2 The two-step Adam’s Moulton method. 

Rn The remainder of deterministic part     

Sn The remainder  of stochastic part 

nR
 The remainder of  deterministic part for the perturbed 

system. 

nS  The remainder  of stochastic part for the perturbed 

system. 

0
nR                     The  remainder of  deterministic part for The Methods 

with order 1/2. 

0
nS  The remainder of stochastic part for the methods with 

order 1/2. 

Ln Local error. 

Dn The local error of the perturbed system. 

SODE Stochastic Ordinary Differential Equation.  

SLMM's Stochastic Linear Multi-step Methods. 

SLMMM's Stochastic linear Multi-step Maruyama Methods. 

2L|| . ||  The norm of n

2L ( , )  space and if n
2Z L ( , )   

then 
2

2 1/ 2
L|| Z || (E | Z | ) . 
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Introduction 
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IInnttrroodduuccttiioonn  

 

Stochastic ordinary differential equations (SODE's) constitute 

an ideal mathematical model for a multitude of phenomena and 

processes encountered in areas, such as, differential equations, 

stochastic control, signal processes and mathematical finance, most 

notably in option pricing (see for example [44] and [28]). Unlike 

their deterministic counterparts, SODE's do not have explicit 

solutions, a part from in a few exceptional cases; hence the 

necessity for a theory of their numerical approximation is important, 

[21]. 

A most striking example, where SODE's provide the essential 

modeling device, is the Nobel Prize-Winning work of Merton in 

1973, [31] and Black and Scholes in 1973, [5] about pricing options. 

The whole financial industries frequently make use of stochastic 

dynamics to calculate financial quantities, such as, derivative prices 

and risk measures. The increasing application of SODE's in many 

models is a major driving force in the development of appropriate 

numerical methods for the solution of SODE's, [39]. 

Since only a few specific types of SODE's have explicitly 

known solutions, the computation of important characteristics such 

as moments or sample paths is crucial for an effective practical 

application of SODE's. Therefore, numerical methods those are 

specific, not only to the considered SODE's, but also for the desired 
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task are required. For these different tasks different types of 

convergence of a numerical scheme have been considered on recent 

literatures (see for example [36], [25], [26], [3], [33]). 

Similar to the deterministic setting, the order of convergence 

with respect to the considered criterion of convergence plays a 

crucial role in the design of numerical algorithms. 

Roughly speaking, we can distinguish between two major types 

of convergence, namely, approximations to the sample paths on the 

one hand and approximations to the corresponding distributions on 

the other hand. Usually, these approximations are called strong and 

weak approximations, respectively. 

The numerical methods are based on time discrete 

approximations. Time discrete approximations for both, the strong 

and weak convergence criterions, will be presented. Whereas, time 

discrete approximation which satisfy the strong convergence 

criterion involves the simulation of sample paths at each step of the 

discretization time, approximations of some function of the Itô 

process, such as the first and second moments at a given final time 

T, [21]. 

Kloeden et al in 1995 [27] use the extrapolation methods for the 

weak approximation with two Itô diffusion depending on Euler's 

scheme to solve certain types of linear SODE's. 
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It is well known that Euler's method and most other explicit 

schemes for solving SODE's work unreliably and sometimes 

generate large errors, see for instance Milsten et al in 1999 [32], 

implicit and predictor corrector schemes are designed to achieve 

improved numerical stability and turn out to be better suited to 

simulated tasks. Generally, implicit schemes usually cost significant 

computational time and are sometimes not reliably accomplished, 

however, this phenomenon can be avoided when using some 

approximate discrete time schemes, including predictor-corrector 

methods, [4]. 

Most numerical schemes converging in the strong sense and 

further literatures may be found in the monographs of Kloeden and 

Platen (1999), [25]. It is pointed that the latest development of 

derivative free strong linear multistep methods (LMM's) (see [9], 

[10], [11], [12], [13]). They expanded rooted tree theory, well 

known in the deterministic setting (see [14]). 

Al-Tememy N. Z. in 2011 [1] used the LMM's to derive certain 

types of two steps methods for solving SODE's, as well as, studying 

the stability and convergence of these methods. 

Subhi M. M. in 2012 [42] use Runge-Kutta methods and its 

modification using variable step size method to solve SODE's using 

two steps explicit ,implicit and semi-explicit Runge-Kutta methods. 

This thesis consist of three chapters. In chapter one, some 

general concepts, definitions, theorems and illustrative example 
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related to stochastic calculus, theory of SODE's, theory of LMM's, 

stochastic Itô Taylor series expansion are given for completeness of 

this work. 

In chapter two, some types of stochastic linear multi-step 

Maruyama methods (SLMMM's) for solving SODE's are studied 

and derived analytically. Also, in this chapter Newton-Raphson 

method have been used to solve stochastic implicit LMM's. Finally, 

in this chapter, the variable step size method for stochastic version 

has been proposed, as well as, some illustrative examples are 

considered for comparison purpose. 

In chapter three, some illustrative examples have been 

implemented to the absolute error, strong error, as well a, weak 

convergence error and introduce the Richardson extrapolation 

method and variable order method.  

Some illustrative examples are given for comparison between 

the given different schemes and that are proposed in this study. 

Finally, the computer programs used in this thesis are coded 

in MATHCAD 14 computer software. 
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CChhaapptteerr  OOnnee  
 

FFuunnddaammeennttaall  CCoonncceeppttss  

 

 

This chapter give the background material for the work carried 

out in this thesis, since there is a number of sources that provides a 

full details for the background of probability theory and stochastic 

calculus (for example, see the thesis of Rößler in 2003 [39], Burrage 

in 1999 [10], the text books of Kloeden and Platen in 1995 [28], 

Arnold in 1974 [2]). 

This chapter consists of four sections. In section (1.1), some 

basic concepts related to the probability theory are given. In section 

(1.2), theory of SDE's and their models are given. In section (1.3) 

theory of SLMM's is given for the sake of numerical solution. 

Finally, in section (1.4), theory of stochastic Itô-Taylor series 

expansion was discussed.  

 

1.1 Background of Probability Theory 

In this section, some of the most and necessary concepts which 

are related to the subject of stochastic calculus and this thesis are 

given for completeness purpose.  
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1.1.1 Basic Concepts of Random Variables, [10], [28], [2]: 

Stochastic calculus is that subject which is concerned with the 

study of stochastic processes, this involve randomness or noise. 

Intuitively, this requires knowledge of random variables and 

probability theory. Therefore, this subsection provides the 

background definitions and concepts that will be required later in 

this work, where only those definitions which are of direct 

relevance to this exposition are given. 

 

Definition (1.1), [10]: 

The -algebra F is a class of subsets of a sample space  

(which is the set of all possible outcomes of a random experiment) 

satisfies the following: 

1.   F. 

2. If A  F, then A
c
  {w   | w  A}  F. 

3. For any sequence {An}  F, then nn 1
A




 F and nn 1
A .




F  

The elements of F are called probability measurable sets and 

the pair (, F ) is called a probability measurable space. 

 

Definition (1.2), [10]: 

A probability measure P on F is a set function which satisfies: 

1. P()  1. 
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2. If A  F, then P(A)  0 

3. If A1, A2, …, An, …; are mutually exclusive events (that is Ai  

Aj   if i  j), then: 

n
n 1

P A




 
 
 

  n
n 1

P(A )




  

 

Definition (1.3), [10]: 

A probability space (Ω, F, P), comprises the sample space , a 

-algebra F of subsets of  (called events) and a probability 

measure P on F. 

 

Definition (1.4), [10]: 

If X is a random variable defined on the probability space  

(, F, P), then the expected value or mean value  of X, is: 

  E(X)  X dP


  

provided that the integral exists. That is, the average of X over the 

entire probability space. For continuous random variables over , 

the mean value of X is: 

  E(X)  xf (x) dx




  
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Definition (1.5), [10]: 

A measure of the spread about the mean  is the variance, 

which is given by: 

Var(X)  E((X  )
2
)  E(X

2
)  

2
 

the variance is denoted for simplicity by 
2
 and its positive square 

root  is called the standard deviation of X. 

 

Definition (1.6), [10]: 

A random variable X is said to be Gaussian random variable if 

it has the Gaussian or normal density function: 

2

2

(x )

2
1

f (x) e
2

 


 

,  < x <  

where μ is the mean and 
2
 is the variance of the normal distribution 

N(, 
2
). If   0 and 

2
  1, then the distribution N(0,1) is known 

as the standard Gaussian distribution. 

 

Infinite sequences may be defined in terms of random variables, 

then it is important to know how the sequence converges and there 

is a number of different modes of convergence, which are given in 

the next definitions: 
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Definition (1.7), [10]: 

       A sequence of random variables {Xn(ω)}, n  1, 2, …; is said to 

be converge with probability one to X(ω) if  

P({ω   : 
n
lim


Xn(ω)  X(ω)})  1 

This type of convergence is also called almost sure convergence. 

 

Definition (1.8), [10]: 

A sequence of random variables {Xn(ω)}, n  1, 2, …; such that 

E( 2
nX )  , for all n  ; is said to be converges in the mean 

square to X() if: 

2

n
n
lim E( X X ) 0


   

 

Definition (1.9), [10]: 

A sequence of random variables {Xn(ω)}, n  1, 2, …; is said to 

be converges in probability (or stochastically) to X(ω), if: 

n
lim


P({ω   : |Xn(ω)  X(ω)|  })  0,   > 0 

 

1.1.2 Basic Concepts of Stochastic Process, [23], [10], [28], [2]: 

In many physical applications, there are many processes in 

which the random variables depends on the space and/or time. 

Therefore, this introductory material give the main subject of such 

processes. 
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A stochastic process is a family of random variables Xt(ω) (or 

briefly Xt) on a probability space (, F, P), which assumes real 

values and is P-measurable as a function of ω   for each fixed 

0t [t ,T] [0, )   . The parameter t is interpreted as a time and Xt(.) 

represents a random variable on the above probability space , 

while X.(ω) is called a sample path or trajectory of the stochastic 

process, [10]. 

 

Definition (1.10), [10]: 

A stochastic process Wt, t  [0, ), is said to be a Brownian 

motion or Wiener process, if: 

1. P({ω  Ω | W0(ω)  0})  1. 

2. For 0 < t0 < t1 < … < tn, the increments 
1 0t tW W , 

2 1t tW W …, 

n n 1t tW W


 are independent. 

3. For an arbitrary t and h > 0, Wt+h  Wt has a Gaussian 

distribution with mean 0 and variance t. 

 

Remark (1.1), [10]: 

In general, a standard Wiener process has the properties that: 

W0  0   w.p.1, E(Wt)  0, Var(Wt  Ws)  t  s 

for all 0  s  t; and so the increments are stationary. 
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Definition (1.11), [10]: 

The white noise process t is formally defined as the derivative 

of the Wiener process, i.e.,  

t dt  dWt 

It does not exist as a function of t in the usual sense, since a Wiener 

process is nowhere differentiable function. 

Sometimes, it is called Gaussian whit noise, which is an 

important example of stochastic process of a purely random process. 

 

1.2 Theory of Stochastic Differential Equations 

Theory and models of SODE's are discussed in short in this 

subsection as an introduction to this topic. Also, in this subsection 

the Itô formula will be discussed for completeness of the work. 

 

1.2.1 Stochastic Integral and their Models, [39], [24]: 

Definition (1.12), [39]: 

Let (, F, P) be a probability space with filtration (Ft)t  I, for  

I  [0, ). 

Let L denote the class of all BF-measurable, Ft-adapted 

processes Xt : I    ,where B denotes the Borel -algebra 

on I, for which: 
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2
t

s

0

E X ( ) ds
 

 
 
  < ,   t > 0 ... (1.1) 

holds and the set P is the class of all B F –measurable, Ft-

adapted processes Xt : I    , satisfying: 

2
t

s

0

P X ( ) ds 1
 

    
 
 ,   t > 0 ... (1.2) 

It is remarkable that condition (1.1) is stronger and implies 

condition (1.2). We now consider a series of partitions of the 

integration interval [t0, t] given by: 

t0  (n)
0t  < (n)

1t  < … < 
n

(n)
N

t   t 

with the property that they are refinements for increasing n and 

with: 

n0 i N 1
max
  

 (n) (n)
i 1 it t    0  as  n   

If we define (n)
i    (n)

i 1t   + (1  ) (n)
it , for a fixed  [0, 1], then the 

series of random variables is called the approximation of the 

stochastic integral: 

n

(n) (n) (n)
i i 1 i

N 1

t t
i 0

X (W W )







  …(1.3) 

converges as n   in probability if (n)
i

X


  P and in the mean-

square sense if (n)
i

X


  L,  i  0, 1, …, Nn1, n   [24], [25], 

[44]. Near by the limit does not depend on the choice of the 
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partitions. However, unlike the Riemann-Stieltjes integral, here the 

selection of  makes a difference. For   0, which is means that 

(n)
i  is the left end point (n)

it , we have the Itô calculus. The limit of 

equation (1.3), denoted by: 

0

t

s s

t

X dW  

is called the Itô stochastic integral. At Stratonovich calculus, we 

have to set   
1

2
 and (n)

i  described the mid point of [ (n)
it , (n)

i 1t  ]. 

Now, the limit of equation (1.3), denoted by: 

0

t

s

t

X  ○ dWs 

is called the Stratonovich stochastic integral. For general stochastic 

integrals with respect to martingales, we refer to [24], [38] and [22]. 

Considering Itô and Stratonovich calculus, one may get a 

simple connection between the solution of an Itô SDE and that of a 

Stratonovich SDE. Let (yt)tI be the solution of m-dimensional Itô 

SDE: 

ty   
0t

y  + 

0

t

s
t

f (s, y ) ds  + 

0

t

s s
t

g(s, y ) dW  …(1.4) 

where Wt is a m-dimensional Wiener process. Then (yt)tI is also a 

solution of the SDE: 

i tf (t, y )   fi(t,yt)  
1

2
i

d m
ik

ik t t
j 1k 1 t

g
g (t, y ) (t, y )

y 




  …(1.5) 
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with respect to Stratonovich calculus, where: 

       ty   
0t

y  + 

0

t

s
t

f (s, y ) ds  + 

0

t

s
t

g(s, y )  ○ dWt ...(1.6) 

for i  1, 2, …, d. Therefore, whichever interpretation of the SDE is 

appropriate in particular situation, we can always switch to the 

corresponding SDE in the other calculus. For instance, we can apply 

the existence and uniqueness theorem for an Itô SDE (1.4) to obtain 

analogous results for the corresponding Stratonovich SDE (1.5). 

One of the main advantages of the Itô calculus in contrast to 

Stratonovich calculus is the fact that the Itô integrals inherit some 

good properties of the Wiener process. Let f : I  , such 

that f  L holds. Then the relation between Itô integration and 

Lebesgue integration, which is called the Itô isometry, is as follows: 

0

2
t

s
t

E f (s,w) dW

  
  
    

   

0

t
2

t

E f (s,w) ds
 
 
 
 
  …(1.7) 

Also the martingale property of a Wiener process carries over 

to the Itô integral. Let Wt be a Wiener process with respect the 

filtration (Ft)tI satisfying the usual conditions. Then Wt and the 

process: 

0

t

s
t

t I

f (s,w) dW



 
 
 
 
  …(1.8) 

are martingales with respect to (Ft)tI. Furthermore: 
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0

t

s
t

E f (s,w) dW 0
 

 
 
 
  …(1.9) 

holds for all t  I. 

The advantages of Stratonovich calculus is the availability of its 

rules similar to ordinary integration. However, unlike Itô integrals, 

Stratonovich integrals are not martingales. We can easily calculate: 

t

s s
0

oW dW   2
t

1
W

2
 

whereas for Itô calculus, we have: 

t

s s
0

W dW   2
t

1
W

2
  

1

2
t 

One of the most important tools for the Stochastic calculus and 

especially for Itô calculus is the Itô formula. 

 

1.2.2 Stochastic Differential Equations and their Models, [39], 

[10], [28]: 

Among the most general models of SODE's is the following: 

dyt  f(t, yt) dt + g(t, yt) dWt,  0t
y   y0 ...(1.10) 

where f : I  , g : I    be a Borel-measurable 

functions, we call f the drift function and g the diffusion function.  

The SODE given in eq.(1.10) may be written in an equivalent 

form as: 
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yt  
0t

y  + 

0

t

s
t

f (s, y )ds  + 

0

t

s
t

g(s, y )  dWs ...(1.11) 

However, the second integral given in eq.(1.11) cannot be defined 

in a following meaning, where Ws is the Wiener process. The 

variance of the Wiener process satisfies Var(Wt)  t, and so this 

increases as time increases even thought the mean stays at 0. 

Because of this, typical sample paths of a Wiener process attain 

larger values in magnitude as time progresses, and consequently the 

sample paths of the Wiener process are not bounded; hence the 

second integral in eq.(1.11) cannot be considered as a Riemann-

Stieltjes integral. Note that, more general process which has the 

martingale property can be used in place of Ws, but in this thesis 

only Wiener process will be used in the formulation of SODE.  

 

Definition (1.13), [39]: 

A process yt, t  I with values in d  is called a strong solution 

of the SODE given in eq.(1.10) with respect to the fixed Wiener 

process Wt, t  I and the initial condition 
0t

y , if the following 

properties hold: 

(a) yt is adapted to the filtration (Ft)tI. 

(b) yt has continuous sample paths. 

(c) For multi-dimensions given in eq.(1.11), such that for all i  1, 2, 

…, d; j  1, 2, …, m; m   and t  I satisfy: 
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t
2

i s ij s
0

| f (s, y ) | g (s, y )ds  < , P-w.p.1 

(d) yt satisfy with P-w.p.1 the following stochastic integral equation: 

yt  
0t

y  + 
t

s
0

f (s, y )ds  + 
t

s s
0

g(s, y )dW ,  t  I 

 

Theorem (1.1) (The Existence and Uniqueness Theorem), [39], 

[28], [2]: 

Suppose the functions f and g in eq.(1.10) satisfies the global 

Lipschitz and linear growth conditions: 

t t t t t t|| f (t, y ) f (t,x ) || || g(t,y ) g(t,x ) || K || y x ||      …(1.12) 

2 2 2 2
t t t|| f (t, y ) || || g(t, y ) || K (1 || y || )    …(1.13) 

for each t  J, xt, yt are stochastic processes in d , where K is a 

positive constant. Let 
0t

y  be a d -valued random vector, 

independent of the Wiener process Wt and with: 

E(||
0t

y ||
2L

) < , for some L   

Then there exists a continuous, adapted process y  (yt)tJ, which is 

a unique strong solution of the SODE (1.10) relative to Wt, with 

initial condition 
0t

y  and each component of yt belongs to L. 

Moreover, yt is square-integrable and for every T > 0, there exists a 

constant C, depending only on K, T and L, such that: 

E(||yt||
2L

)  (1 + E||
0t

y ||
2L

)exp(Ct), 0  t T 
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In contrast to strong solution of SODE's, a notion of solvability 

for the eq. (1.11) may be defined, which is a weaker condition. 

 

Definition (1.14), [39]: 

A weak solution of the SODE (1.10) is a triple ((, F, P), 

(Ft)tJ, (yt, Wt)), such that: 

(a) (, F, P) is a probability space, (Ft)tJ is a right-continuous 

filtration in F and F0 contains all P-negligible events in F. 

(b) Wt is an m-dimensional Wiener process of (Ft)tJ and yt is a 

continuous, adapted d -values process. 

(c) Conditions (c) and (d) of the definition (1.13) are satisfied. 

 

Remark (1.2), [39]: 

If f(t, yt) and g(t, yt) satisfy the conditions of theorem (1.1), 

then a solution (weak or strong) of the SODE (1.10) is weakly 

unique, where weak uniqueness means that any two solutions (weak 

or strong) satisfy the identical law, i.e., have the same finite-

dimensional distributions. 

 

1.2.3 Some Well-Known Dervatives, [19]: 

Itô formula in stochastic calculus is the analog of integration by 

parts in stochastic calculus. The useful range of techniques is 

practically restricted to those that deal with integral equations,of 

these by far the most important is that known as Itô's formula, which 

may be seen as a stochastic chain rule. Let us recall some 
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elementary non-random chain rule; as usual prime may denote 

differentiation. 

1. One variable chain rule: If F  F(v(t)), then: 

F  
dF

dt
  

dF

dv

dv

dt
 

2. Two variables chain rule: If F  F(x(t), y(t)), then: 

F  
dF

dt
  

F

x





dx

dt
 + 

F

y





dy

dt
 

In particular, if x(t)  t, then we may obtain, for F  F(t, y(t)): 

dF  
F

t




dt + 

F

y




dy 

Itô formula are extremely useful in many topics, particularly in 

evaluating stochastic integrals. 

 

Theorem (1.2), (Itô Formula), [18]: 

Suppose that yt has a SODE: 

d ty  f(t, ty ) dt + g(t, ty ) dWt ...(1.14) 

for f, g  C
1,2

(J , ). Assume F : J    is continuous and 

that 
F

t




, 

t

F

y




 and 

2

2
t

F

y




 exists and are continuous. Set F  F(t, yt), 

then F has the stochastic differential: 

dF  
F

t




 dt + 

t

F

y




 dyt + 

1

2

2

2
t

F

y




g

2
 dt 



Chapter One                                                                                      Fundamental Concepts 

 16 

dF(t, yt) 
2

2

2
t t

F F 1 F
f g

t y 2 y

   
  

   
 dt + 

t

F

y




g dWt ...(1.15) 

is called the Itô's formula or Itô's chain rule. 

In fact eq.(1.14) is sufficiently general to represent an m-

dimensional, d-Wiener process system in which g(t, yt)) is an md 

matrix and 
t

W   (
t

(1)
W , 

t

(2)
W  , …, 

t

(d)
W )

T
 is a d-dimensional vector 

consisting of d independent Wiener processes. By letting the 

columns of g(t, ty ) be labeled as g1(t, ty ), g2(t, ty ), …, gd(t, ty ); 

then the m-dimensional d-Wiener process system can also be 

written as: 

d ty  f(t, ty ) dt + 
d

j 1 gj(t, ty ) d
t

( j)
W  

In this case, the component-by-component version of Itô's formula 

is for k  1, 2, …, m: 

dFk(t, y)  
2

m d mk k k
i il jli 1 l 1 i, j 1

i j

F F F1
f g g

t y 2 y y  

   
  

     
    dt + 

d m k
ill 1 i 1

i

F
g

y 




   dWl                                                     ...(1.16) 

 

1.3 Theory of Stochastic Linear Multi-Step Methods: 

The considered numerical method in this section is the 

stochastic linear multi-step methods (SLMM's), which was one of 

the most important of development numerical methods used to give 

a good numerical accuracy to the approximate solution, [28]. 

Therefore, this method will be discussed in details in this section. 
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Also, in this section, some numerical methods with one-step 

will be studied, and also studying in the mean-square sense 

numerical stability, of the SLMM's for the approximation of Itô 

stochastic SODE's, as well as, their general theory and illustrative 

examples. 

 

1.3.1 Elementary Numerical Methods [28]: 

One scheme for stochastic one-step methods which will be 

often used for evaluating the approximate solution of SODE's will 

be given, and some definitions for strong and weak approximation 

will be also given [28]. 

Let us consider the Itô process yt satisfying the SODE: 

dyt  f(t, yt)dt + G(t, yt)dWt; yt(t0)  
0

y  …(1.17)  

for t  J, where J  [t0, T], t0  [0, ), 
0t

y   . 

The drift and diffusion functions are given respectively as  

 f : J n   n ; G  {g1, g2, …, gn} : J n   n  and f, gr for 

r  1, 2, …, m; are continuous functions. Using an m-dimensional 

Wiener process Wt the problem (1.17) is understood as a stochastic 

integral equation:   

yt  
0t

y +

0 0

t tm

s r s r
r 1t t

f (s, y ) ds g (s, y ) dW (s)


   , t  J …(1.18)  

In order to avoid confusions encountered in applying the 

numerical methods, yt  will be replaced for simplicity by y.  
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1.3.2 Stochastic Linear Multi-Step Methods, [40], [6], [8]: 

We start this subsection by the following notations and 

definitions: 

Let |  | to denote the Euclidean norm in n  and ||  || the 

corresponding matrix norm. The mean-square norm of a vector 

valued square integrable random variable Z  L2(, n ) will be 

defined by: 

2

2 1/ 2
L|| Z || (E | Z | ) . 

Let us denote by C
s1,s

 the class of all functions V(t, y(t)) : 

J n   n  having continuous partial derivatives up to order  

s  1 with respect to the first variable and continuous partial 

derivatives of order s with respect to the second variable. Moreover, 

let C
k
 be the class of functions V satisfying a linear growth 

condition of the form: 

2 1/ 2| V(t, y) | k(1 | y | )  ,  t  J, y  n   …(1.19)  

where k is a positive constant. 

Furthermore, we introduce the notation  

j 11

1 j1 2 j

sst h
t,t h

j j r j r 1r ,r ,...,r
t t t

I (V) V(s ,y(s ))dW (s ) dW (s )


      …(1.20)  

where rj  {0, 1, …, m} and dW0(s)  ds for general multiple 

stochastic Itô integrals (see [40]). 
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If V  1 we write 
1 2 j

t,t h
r ,r ,...,r

I  , note that the integral t,t h
1I

  is one 

wiener process the increment W  W(t + h)  W(t) of the scalar 

Wiener process W.  

The next lemma presents the order of the multiple stochastic 

integrals.  

 

Lemma (1.1), [40], [8]: 

If V  C
k
 is any function and for any t  J, h > 0, such that  

t + h  J, then:  

 1 2 j

t,t h
tr ,r ,...,r

E I (V) : 0  ; if ri  0 for some i  {1,2,…,j} …(1.21)  

 
2

1

1 2 j 1 j
22

i
i

t,t h t,t h 2
tr ,r ,...,r r ,...,r

LL

E I (V) I (V) O h


 
 

   
 
 

 …(1.22)  

where i1 is the number of zero indices 
1i

r  and i2 the number of non-

zero indices 
2i

r   

Now, we consider a stochastic linear k-step method for the 

approximation of the solution of the SODE (1.17), for n  k, k+1, 

…, N, N  ; which takes the form: 

n j n j 1
k k k t ,t

j n j j n j n j j n j n j
j 0 j 0 j 1

y h f (t , y ) G (t , y )I   
    

  

       …(1.23)  
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where we may set without loss of generality 0  1 and require 

given initial and starting values y0, y1, …, yk1  L2(, n ), such 

that yn is 
nt

-measurable for n  0, 1, …, k  1, [5].  

As in the deterministic case, usually only y0  y(t0) is given by 

the initial value problem and the values y1, y2, …, yk1 need to be 

computed numerically. This can be done by any suitable one-step 

method, where one has to be careful to achieve the desired accuracy. 

Every diffusion term Gj(t, y)I
t,t+h

 is a finite sum of terms each 

containing an appropriate function  of t and y multiplied by a 

multiple Wiener integral (1.20) over [t, t + h], i.e., it takes the 

general form: 

1 2

1 2
1 2
1 2

m m
r ,rt,t h r t,t h t,t h

j r r ,r
r 1 r ,r 0

r r 0

G (t, y)I (t, y)I (t, y)I ...  

 
 

     …(1.24)  

where the Wiener process is m-dimension. If 0  0, then the 

SLMM (1.23) is said to be explicit, otherwise it is implicit.  

Finally, consider the autonomous SODE: 

dy(t) f(y(t))dt + G(y(t))dw(t); y(t0)  y0  …(1.25)  

then the SLMM for the approximation of the solution of the SODE 

(1.17), with n  k, k+1, …, N; takes the form: 

n j n j 1
k k k t ,t

j n j j n j j n j
j 0 j 0 j 1

y h f (y ) G (y )I   
  

  

        …(1.26)  
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with 1 2

1 2
1 2
1 2

m m
r ,rr t,t h t,t h

j r r ,r
r 1 r ,r 0

r r 0

G (y) (y)I (y)I 

 
 

     

Next, an example for two-step stochastic method will be given:  

 

Example (1.1), [7], [8]:  
The implicit two-step method (Milne-Simpson method) for  

n  2, 3, …, N; takes the form: 

n 1 n n 2 n 1

n n 2 n n n 1 n 1 n 2 n 2

m m
t ,t t ,t

r n 1 n 1 r r n 2 n 2 r
r 1 r 1

1 4 1
y y h f (t , y ) f (t , y ) f (t , y )

3 3 3

g (t , y )I g (t , y )I  

    

   
 

 
     

 

 

 

for this method one has: 

0  1 1  0 2  1; 0 1 2

1 4 1
; ;

3 3 3
       

n 1 n
m

t ,tt,t h
1 r n 1 n 1 r

r 1

G (t,y)I g (t , y )I 
 



   

n 2 n 1
m

t ,tt,t h
2 r n 2 n 2 r

r 1

G (t,y)I g (t , y )I  
 



   

Definition (1.15), [8]: 

The local error of the SLMM (1.23) for the approximation of 

the solution of the SODE (1.17) for n  k, k+1, …, N; may be as: 
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n j n j 1

k k

j n j j n j n j
j 0 j 0

k t ,t

n j n j n j
j 1

n n

y(t ) h f (t , y(t ))

L G (t , y(t ))I , for n k,k 1,..., N

y(t ) y , for n 0,1,..., k 1

  

  
 

 


    




  

   



 

 …(1.27)  

and represent the local error in the following form: 

Ln: Rn + Sn : Rn + 
k

j,n j 1
j 1

S  


 , n  k, k+1, …, N  …(1.28)  

where each Sj,nj+1 is 
1n jt  
-measurable with 

n jj,n j 1 tE(S | )
   0,  

 n  k, k + 1, …, N; j  1, 2, …, k. 

Also, Rn  Ln; Sn  0, Rn  
n kn tE(L | )


; Sn  Ln  Rn  …(1.29)  

n j 1

k

j,n j 1 n n i,n i 1 t
i j 1

S E L R S |
    

 

 
   

 
   …(1.30)  

 

1.3.3 Numerical Stability in the Mean-Square Sense,[8],[17],[29]: 

With the numerical stability property one can estimate the 

influence of any perturbations of the right-hand side of the discrete 

scheme on the global solution of that discrete scheme. Sources of 

perturbations may be the local error or round-off errors or defects in 

the approximate solution of the implicit schemes.  

The stability concept is often called zero-stability, or in honor 

of Dahlquist stability, also D-stability, for further discussions we 

refer the reader to the deterministic literature [17], [29]. The mean-
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square stability estimate of the global error is based on the mean-

square norm and on the conditional mean of the perturbations Dn of 

the right-hand side of the perturbed system (1.31). Its solution is 

denoted by ny . 

In our analysis, we thus consider the following discrete system 

has the perturbed form of (1.23) for n  k, k + 1, …, N. 

n j n j 1
k k k t ,t

j n j j n j n j j n j n j n
j 0 j 0 j 1

y h f (t , y ) G (t , y )I D  
    

  

        

 …(1.31)  

with initial and starting values ny   yn + Dn, n  0, 1, …, k  1. 

It is supposed that the perturbations Dn are 
nt

-measurable and 

that Dn  L2(, n ). 

 

Remark (1.3), [8]: 

It is useful to represent the perturbations in the form: 

k
* * * *

n n n n j,n j 1
j 1

D R S R S  


    , n  k, k+1, …, N  …(1.32)  

where each *
j,n j 1S     j  1, 2, …, k is 

j,n j 1t  
-measurable with 

E( *
j,n j 1S   |

n jt )  0,  n  k, k+1, …, N; j  1, 2, …, k; where * 

refers to the perturbed system. The representation (1.32) is not 

unique and one extreme possibility is *
nR  Dn and *

nS  0, another 

more useful one, is given by: 
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n k

* * *
n n t n n nR E(D | ), S D R


    

n j 1

k
* * *
j,n j 1 n n i,n j 1 t

i j 1

S E D R S |
    

 

 
   

 
 , jk,k1,…  …(1.33)  

This construction guarantees the required measurability 

conditions in (1.32). As an example, one obtains for k  2:  

n 2

*
n n tR E(D | )


 , 

n 1

* *
2,n 1 n n tS E(D R | )

   ,  

* * *
1,n n n 2,n 1S D R S     

Here, in the hypothetical case that n 1 nt ,t
n 0 rD C I   n 2 n 1t ,t

1 rC I   C2, 

we have *
n 2R C ,  n 2 n 1t ,t*

2,n 1 1 rS C I , 
   n 1 nt ,t*

1,n 0 rS C I   

Now, the precise definition of mean square stability and some 

other notions will be given next:  

 

Definition (1.16), [ 8 ]: 

The SLMM (1.23) is said to be numerically stable in the mean 

square sense if there exist constants h0 > 0 and S > 0, such that for 

all step sizes h < h0 and for all 
nt
 measurable perturbations Dn  

L2(, n ), n  0, 1, …, N, all their representations (1.32), the 

following inequality holds: 

2 2

2 2

n L n L

n n L n L 1/ 2n 0,...,N n 0,...,k 1 n k,...,N

|| R || || S ||
max || y y || S max || D || max

h h   

   
     

   

 

 …(1.34) 
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where N
n n 1(y )   and N

n n 1(y )   are the solutions of the SLMM (1.23) 

and the perturbed discrete system (1.31), respectively.  

 

Definition (1.17), [8]: 

A function f : J n   n  is said to satisfies the uniform 

Lipschitz condition with respect to x if there exists a positive 

constant Cf, such that:  

|f(t, x)  f(t, y)|  Cf  |x  y|,  x,y  n , t  J  [t0,T] …(1.35)  

 

Definition (1.18), [8]: 

The characteristic polynomial of  (1.23) is given by: 

(r)  0r
k
 + 1r

k1
 + … + k  …(1.36)  

and the SLMM (1.23) is said to fulfill Dahlquist's root condition if: 

(i) The roots of (r) lie on or within the unit circle; 

(ii) The roots on the boundary of the unit circle are simple. 

 

The next theorem is of great importance, which is given and 

proved in the corresponding references.  

 

Theorem (1.3), [8]: 

The SLMM (1.23) is numerically stable in the mean-square 

sense for every continuous f and Gj satisfying (1.35) respectively, if 

and only if its characteristic polynomial (r) (1.36) satisfies 

Dahlquist's root condition. 
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Now, to study the mean square stability of two step methods, 

consider the methods given in example (1.1) and their stability in 

the next example:  

 

Example (1.2), [7], [8]: 

When back to Example (1.1), the method may be rewritten in 

the form:  

n n 2 n n n 1 n 1 n 2 n 2

1 4 1
y y h f (t , y ) f (t , y ) f (t , y )

3 3 3
    

 
     

 

n 1 n n 2 n 1
m m

t ,t t ,t
r n 1 n 1 r r n 2 n 2 r

r 1 r 1

g (t , y )I g (t , y )I  
   

 

   

here; k  2, 0  1, 1  0, 2  1 and by Definition (1.18) the 

characteristic polynomial is given by:  

(r)  r
2
 1  

which have the roots r1  1 and r2  1 which lies on and inside the 

unit circle. Then (r) satisfies the Dahlquist's root condition.  

Also, by using Theorem (1.3), we have this method is 

numerically stable in the mean-square sense.  
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Definition (1.19), [40], [8] 

         The SLMM (1.23) for the approximate solution of the SODE 

(1.17) is said to be mean-square consistent if the local error Ln 

satisfies:  

n k 2

1
n t Lh || E(L | ) ||



 0 for h0 and 
2

1/ 2
n Lh || L || 0 

for h0 or we call the SLMM (1.23) for the approximation of the 

solution of the SODE (1.17) mean-square consistent of order p > 0, 

if the local error Ln satisfies: 

n k 2

p 1
n t L|| E(L | ) || Ch



  and 
2

1
p

2
n L|| L || Ch



 , n  k,k+1,…,N  

with constants C, C  > 0 only depending on the SODE and its 

solution.  

 

It must be remind the reader that consistency is only concerned 

with the local error. In the case that we disregard other sources of 

errors in (1.31) we only have to deal with perturbations Dn  Ln. 

 

Lemma (1.2), [1]: 

The SLMM (1.23) is mean-square consistent of order p if and 

only if there exists constants C, C  > 0, such that 
2

p 1
n L|| R || Ch   

and 
2

1
p

2
n L|| S || Ch



 , n  k, k+1, …, N, for any representation 

(1.32) of the local error Dn  Ln; 0 < h  1.  
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Definition (1.20), [40], [8]: 

The SLMM (1.23) for the approximation of the solution of the 

SODE (1.17) is said to be mean-square convergent if the global 

error n ny(t ) y  (where the global error means the accumulation of 

the local error up to the grid point tn) satisfies:  

2n n L
n 0,1,...,N

max || y(t ) y ||


  0 as h  0 and tn is fixed  

or equivalently, the SLMM (1.23) is said to be mean-square 

convergent with order p > 0 if the global error satisfies: 

2

p
n n L

n 1,...,N
max || y(t ) y || C.h


    as  h  0  

with constant C > 0 which is independent of the step-size h.  

 

Theorem (1.4), [8]: 

A mean-square consistent SLMM (1.23) for the approximation 

of the solution of SODE (1.17) is mean-square convergent for all 

continuous f and Gj satisfying (1.35), respectively if and only if it is 

numerically stable in the mean-square sense and if, in addition, it is 

mean-square consistent with order p > 0, then the SLMM (1.23) is 

mean-square convergent with order p. 

 

1.4 Stochastic Itô- Taylor Series Expansion, [39], [10], [28] 

Taylor series expansion is well-known for deterministic 

functions where they turn out to be useful tool, especially in 

numerical analysis. This idea can be carried over the stochastic 
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setting by applying the Itô formula. Thus, following Platen and 

Wagner [37], stochastic Taylor formula will be gotten, which 

represents a generalization of the deterministic Taylor formula.  

With deterministic differential equation methods, a numerical 

method may be derived by comparing the expansion of the method 

and the solution of the ordinary differential equation in a Taylor 

series; and exactly the same procedure can take place in the 

stochastic setting, using a stochastic version of Taylor series. The 

Itô -Taylor expansion was first established by Platen and Wanger in 

1982 [37], and full details are given by Kloeden and Platen in 1995 

[28]. It allows ty  (or any function of ty  to be expanded about the 

point 
0t

y  up to the required degree of accuracy) in terms of multiple 

stochastic integrals along with function evaluations at 
0t

y . In order 

to derive the expansion, the Itô formula is applied successively to 

the SODE (1.14) as it is represented in the autonomous integral 

form: 

ty   
0t

y  + 

0

t

t

 f(ys) ds + 

0

t

t

 g(ys) dWs …(1.37) 

From the stochastic chain rule of eq. (1.15) in autonomous form: 

F( ty )  F(
0t

y )  

0

t

t


2

2

2

dF 1 d F
f g

dy 2 dy

 
  

 

 ds + 

0

t

t


dF

dy
g dWs 

 

0

t

t

 L
0 
F( sy ) ds + 

0

t

t

 L
1 
F( sy ) dWs …(1.38) 
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where the operators L
0
 and L

1
 for scalar problems are given by: 

L
0
F(y)  

dF

dy
f + 

2
2

2

1 d F
g

2 dy
      and      L

1
F(y) = 

dF

dy
  g   

Applying the Itô formula given by (1.38) for f and g in (1.37), then 

one application give: 

ty   
0t

y +  00 0 0

t s s0 1
t u u ut t t

f (y ) L (f (y )du L (f (y ) dW ds     + 

 00 0 0

t s s0 1
t u u u st t t

g(y ) L (g(y )du L (g(y )dW dW     …(1.39) 

Consequently, by applying the Itô formula and using L
0
f, L

1
f, L

0
g 

and L
1
g, the Itô-Taylor expansion will be derived next. 

 

Remark (1.4), [39]: 

The above discussion is given for one-dimensional autonomous 

SODE's, and we shall consider next the non-autonomous SODE's 

will be considered, and deriving its related stochastic Taylor series 

expansion. Let Xt be the solution of the Itô SODE in general form: 

tX   
0t

X  + 

0

t

t

 a(s, sX ) ds + 

0

t

t

 b(s, sX ) dWs …(1.40) 

and let f : J     with f  C
1,2 

(J  , ). By applying the 

Itô formula, getting for tY   f(t, tX ), the following equation: 

ty   
0t

y  + 

0

t

t

 s s s

f f 1
(s,X ) a(s,X ) (s,X )

t x 2

 
 

 
b

2
(s, sX ) 

2

s2

f
(s,X ) ds

x


 

 + 

0

t

t

 b(s, sX )
f

x




(s, sX ) dWs 
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For simplicity of notations, the operators L
0
.  a

t x

. . 
 

 
 

2
2

2

1
b

2 x

.


 and L

1
.  b

x

.


 are introduced and rewriting the above 

mentioned equations as: 

ty   
0t

y  + 

0

t

t

 L
0 
f(s, sX ) ds + 

0

t

t

 L
1 
f(s, sX ) dWs  

and by applying the Itô formula (1.15) to the functions f  a and f  

b in (1.39), getting: 

tX   
0t

X  + 
0

t

t  0 0

s 0
0 t ut

a(t ,X ) L a(u,X )du   


0

s 1
u ut

L a(u,X )dW ds  + 
0

t

t  00 tb(t ,X ) 
0

s 0
ut

L b(u,X )du   


0

s 1
u u st

L b(u,X )dW dW  …(1.41) 

which may be also written as: 

tX   
0t

X  + a(t0, 0t
X )

0

t

t

 ds + b(t0, 0t
X )

0

t

t

 dWs + R 

where R denotes the remainder. Continuing in this way by applying 

the Itô formula to the functions f  L
i 
a and f  L

i 
b, for i  0, 1 in 

(1.41) to get the Itô-Taylor series expansion. 

In order to describe the stochastic Taylor series expansion, a 

multi-dimensional and for multi Wiener process setting, the 

following terminology will be used: 

A multiple Itô integral is given by:  
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1 2 L( j , j ,..., j ),tI   L 2 1 L

1 L

t S S j j

S S0 0 0
... dW ...dW    …(1.42) 

whereas ji  {0, 1, …, m} for m-Wiener processes, and where  

i

0
SdW   dsi . For more explanation to this context, we start with the 

definition of multi-indices and hierarchical sets which provide an 

efficient notation in the following. Let: 

M  {  (j1,j2,…,jL)  {0,1,…,m}
L
 : L  }  {v} …(1.43) 

be set of all multi-indices. The length L() of a multi-index   (j1, 

j2, …, jL), where ji  {0, 1, .., m}, i  {0, 1, .., L} and m  1, 2, … 

be defined as: 

L()  L  {1, 2, ...} …(1.44) 

Where v is the multi-index of length 0, such that: 

L(v)  0 …(1.45) 

Thus, for example L((1, 0))  2 and L((1, 0, 1))  3. 

In addition let n() denote the number of components of a 

multi-index , which are equal to 0, such that: 

n()  n …(1.46) 

where n is the number of zero components of , for example  

n((1, 0, 1))  1, n((0, 1, 0))  2, n((0, 0))  2. 

Now, for   (j1, j2, …, jL)  M with L  L()  1, define: 

  (j2, j3, …, jL) and   (j1, j2, …, jL1) …(1.47) 
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by deleting the first and the last components of , respectively. For 

example: 

(1, 0)  (0), (1, 0)  (1), (0, 1, 1)  (1, 1), (0, 1, 1)  (0, 1) 

A subset H   M is called a hierarchical set if H   and if: 

sup
H

L() <   and    H, for each   H \ {v} …(1.48) 

For example, the sets {v}, {v, (0), (1)}, {v, (0), (1), (1, 1)} are 

hierarchical sets.  

The corresponding remainder set R(H) for the hierarchical set 

H is defined as: 

R(H)  {  M \ H :   H} …(1.49) 

For example: 

R({v})  {(0), (1)}, R({v, (0), (1)})  {(0, 0), (0, 1), (1, 0),  

(1, 1)}, and R({v, (0), (1), (1, 1)})  {(0, 0), (0, 1), (1, 0),  

(0, 1, 1), (1, 1, 1)} 

and consists of all the next following multi-indices with respect to 

the given hierarchical set H. 

We are now able to define multiple stochastic integrals. Let us 

introduce three classes of adapted right continuous stochastic 

processes (ft)tJ with left hand limits. We say: 

f  Hv  if |f(t, ω)| < ,  P-w.p.1  for each t  0 …(1.50) 

and we say for each t  0, f  H(0) if f satisfies condition given by: 
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P(
t

0

 |f(s, ω)| ds < ) = 1, w.p.1 …(1.51) 

Furthermore, define f  H(j) for each j  {1, 2, …, m} if f  P 

holds, (back to definition (1.12) in (1.2)). 

t

0

 |f(s, ω)|
2
 ds < , w.p.1 and t  0 …(1.52) 

In addition, we write H(j)  H(1) for each j  {2, 3, …, m} if m  2. 

Now, let  and  be two stopping times with: 

0  (ω)  (ω)  T, P-w.p.1 …(1.53) 

For a multi-index   (j1, j2, …, jL)  M and a process f  H, we 

define the multiple Itô integral  ,I f . 
   with respect to the m-

dimensional Wiener process W  (W
1
, W

2
, …, W

m
) recursively by: 

,I 
 [f(.)]  

jL

,s
L

,s
s L

f ( ), if L 0

I [f (.)]ds, if L 1 and j 0

I [f (.)]dW , if L 1 and j 1

 


 



 


 


  






 …(1.54) 

Here, we note the H with   (j1, j2, …, jL) and L  2 describes 

the totality of adapted right continuous process f with left hand 

limits, such that the integral process (  ,I f .


     )t J considered as a 

function of t satisfies  ,.
( jL)I f . H



    . If the integrand is constant, 

i.e., f(t, ω)  1, we abbreviate  ,I f . 
   as I if the limits  and  are 
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obvious from the context. In the following, we denote 0
tW   t,  

d 0
tW   dt and  

I,t   0,tI f .     when   0 and   t. 

As an illustration of this terminology, consider the following 

examples: 

 0,t
vI f .   f(t),   i i 1,

(0)I f (.) 
  i 1

i



 f(s) ds,  

 ,
(1)I f .     



 f(s) d 1
sW ,  0,t

(0,1)I f .    
t

0
2S

0 f(S1) dS1 d 1

1
SW  

 

Theorem (1.5) (The Itô -Taylor Expansion), [39], [28]: 

Let H  M be a hierarchical set, let  and  be two stopping 

times with t0  (ω)  (ω)  T <  P-w.p.1 and let f : J  d   

, then for the solution ( tX )t J of the Itô SODE (1.40). The Itô -

Taylor expansion: 

f(,X )  



H

I[f(, X )], + 
( )


R H

I[f(., .X )], …(1.55) 

holds, provided that all of the derivatives of f, a and b and all of the 

multiple Itô integrals appearing in (1.55) exist. Similarly, to get 

theorem of the Stratonovich-Taylor expansion (for more details see 

[10], [28]). 
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CChhaapptteerr  TTwwoo  
 

LLiinneeaarr  MMuullttii--SStteepp  MMeetthhooddss  ffoorr  SSoollvviinngg  

SSttoocchhaassttiicc  OOrrddiinnaarryy  DDiiffffeerreennttiiaall  EEqquuaattiioonnss  
 

 

From the variety of SLMM's, those methods which only 

include information on the increments of the driving Wiener process 

will be considered. Analogously to the Euler-Maruyama scheme, 

such methods will be called the stochastic linear multi-step 

Maruyama methods (SLMMM's), [40].  

As an example for the SLMMM's is the two-step Maruyama 

methods which have conditions for their mean-square consistency. 

These conditions allow determination of the parameters for the 

stochastic part from the parameters of the deterministic part and 

reduce to those of the underlying deterministic schemes when there 

is no noise, [8]. 

This chapter consists of five section, in section (2.1), the 

derivation of SLMMM's is given according to the style of Buckwar 

and Winkler [6], [8]. In section (2.2) summary of some well known 

methods have been introduced. In section (2.3), the variable step 

size method will be introduced which was given for solving 

SLMM's in order to improve the accuracy of the numerical results. 

In Section (2.4) was prepared to study the solution of SODE's using 
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implicit methods. In section (2.5), numerical examples illustrating 

the discussed numerical methods given in this chapter are given, 

with its comparison with the exact solution. 

 

2.1 Stochastic Linear Multi-Step Maruyama Methods, [40],[6],[8]  

As it is known a LMMM's with one Wiener process takes the 

form for all n  k, k+1, …, N:                   

n j n j 1
k k k

t ,t

j n j j n j n j j n j n j 1
j 0 j 0 j 1

y h f (t , y ) g(t , y )I   

    

  

        …(2.1) 

For drift and diffusion coefficients f and g which are continuous 

and satisfy (1.35), theorem (1.3) may be applied and the SLMMM's 

(2.1) is mean-square stable if the coefficients 0, 1, …, k satisfy 

the Dahlquist's root condition. If, in addition, eq. (2.1) is mean-

square consistent of order p, which is in general requires more 

smoothness of the coefficients functions then eq. (2.1) is mean-

square converge of the same order. Thus, we will be concerned with 

mean-square consistency of eq.(2.1) and derive order conditions in 

terms of the coefficients 0, 1, …, k; β0, 1, 2, …, k and 1, 2, 

…, k.  

The local error of eq. (2.1) is given by:  
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n j n j 1

k k

j n j j n j n j
j 0 j 0

k t ,t

n j n j n j
j 1

n n

y(t ) h f (t , y(t ))

L : g(t , y(t ))I , for n k,k 1,..., N

y(t ) y , for n 0,1,..., k 1

  

  
 

 


    




   

   



 

 …(2.2) 

In general, the mean-square order of convergence will be only 

½, since the only information about the driving noise process that 

the Maruyama-type schemes include are the Wiener increments. We 

note that the simple Euler-Maruyama method would suffice to 

obtain the same order of convergence. However, convergence is an 

asymptotic property, i.e., it holds for h  0 and a result 

concerning the order of convergence may not provide sufficient 

information about the size of the actual error that arise for 

reasonable choices of the step-size, [8].  

From the deterministic theory, it is known that for a linear multi-

step method:  
k k

j n j j n j n j

j 0 j 0

y h f (t , y )  

 

    , for n  k, k+1, …, N …(2.3)  

when applied to y(t)  f(t, y(t)), the local error is of order p + 1 for 

sufficiently smooth function f, if: 

0
k

0j
j 



 and  
 


k

0j

k

0j

1q
j

q
j )jk(q)jk( , for q1,2,…,p …(2.4)  
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Let the coefficients of the scheme (2.1) be normalized in such a 

way that 0  1 for all n. Again, we emphasize that if 0  0, then 

the scheme (2.1) is explicit, otherwise it is implicit. 

Finally, consider the autonomous SODE of the form:  

dyt  f(yt)dt + g(yt)dWt  

then the SLMMM's for the above autonomous SODE, will be: 

n j n j 1
k k k

t ,t

j n j j n j j n j 1
j 0 j 0 j 1

y h f (y ) g(y )I   

  

  

       , for n  k,k+1,…,N 

 …(2.5)  

In the next subsection, the two-step Maruyama scheme will be 

considered and derive the consistency conditions for this scheme. 

We establish a representation of the local error Ln in term of certain 

multiple stochastic integrals obtained by the Itô-Taylor expansion. It 

turns out that the consistency condition is guaranteed under the 

above conditions for deterministic order 1 and additional conditions 

that determine the method parameters 1 and 2. 

 

2.1.1 Two-Step Maruyama Methods, [40], [8]:  

Consider the Itô process yt satisfying the SODE with one 

Wiener process: 

dyt  f(t, yt)dt + g(t, yt)dWt; 
0t

y  y0  …(2.6) 

for t  J, where J  [t0, T], t0  [0, ∞), y0   
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where f and g are the drift and diffusion functions respectively, 

then, a linear two-steps Maruyama methods, with one Wiener 

process, for n  2, 3, …, N , will take the form:  

2 2 2

j n j j n j n j j n j n j n j

j 0 j 0 j 1

y h f (t , y ) g(t , y ) W     

  

          …(2.7)  

and when 0  1 and n j n j 1t ,t

n j 1 n j n j1I W(t ) W(t ) W  

       , and  

1- If 0  0 then the explicit two-step Maruyama methods is given 

by:  

yn+ 1yn1+ 2yn2  h[1f(tn1, yn1) + 2f(tn2, yn2)] + 

[1g(tn1,yn1)Wn1+ 2g(tn2,yn2)Wn2], for n  2, 3, …, N 

  …(2.8) 

where y0 is given by the initial condition and the starting value 

y1 need to be computed numerically, which may be calculated by 

any suitable one-step method, such as the simple Euler-

Maruyama method:  

yn1  yn2 + hf(tn2, yn2) + g(tn2, yn2)Wn2, n  2, 3, …, N 

 …(2.9) 

where yn1 will be called the supporting value. 

2- If 0  0 then the implicit two-step Maruyama methods is given 

by:  

 

 



Chapter Two                                         Linear Multi-Step Methods For Solving Stochastic  

                                                                            Ordinary Differential Equations 

 41 

yn + 1yn1 + 2yn2  h[0f(tn,yn) + 1f(tn1,yn1) + 2f(tn2,yn2)] 

+ [1g(tn1,yn1)Wn1+2g(tn2,yn2)Wn2], for n  2, 3, …, N 

 …(2.10) 

where also y0 is given by the initial condition and the starting 

values y1, y2, need to be computed numerically, the value y1 may 

be evaluated by any suitable one-step method. In addition the 

value y2 may be evaluated by the explicit two-step Maruyama 

method. It is remarkable that, the combination of an explicit and 

implicit technique is called a predictor-corrector method and we 

will call yn1 and yn for n  2, 3,…, N in eq. (2.10) the 

supporting values. 

 

2.1.1 (A) Analysis of Local Error for Stochastic Linear Two-step 

Maruyama Methods, [40], [8]: 

The local error of the two-step Maruyama method (2.7) for the 

SODE (2.6) which is given by:  

2 2

j n j j n j n j
j 0 j 0

2

n j n j n j n j
j 1

n n

y(t ) h f (t , y(t ))

L : g(t , y(t )) W , for n 2,..., N

y(t ) y , for n 0,1

  
 

  


    




   

  



 



 …(2.11)

 

and we remind the reader for the representation (1.28) of the local 

error. In the context of two-step schemes the local error 

representation (1.28) reduces to:  
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Ln  Rn + Sn  Rn + S1,n + S2,n1, for n  2, …, N …(2.12)  

One useful choice is provided by:  

   
2 22, 1 1, 2, 1| , | ,

n nn n t n n n t n n n nR E L S E L R S L R S
         

see also the discussion in Remark (1.3). In the hypothetical case 

that: 

Ln  C0Wn1 + C1Wn2 + C2  

holds, we have:  

Rn  C2; S2,n1  C1Wn2; S1, n  C0Wn1  

Applying the Itô-formula on the corresponding intervals to the 

drift coefficient f, as well as, to the diffusion coefficient g yields for 

s  [tnj, tnj+1]; j  1, 2  

n j n jt ,s t ,s0 1
n j n j 0 1f (s, y(s)) f (t , y(t )) I (L f ) I (L f ) 

      …(2.13)  

n j n jt ,s t ,s0 1
n j n j 0 1g(s, y(s)) g(t , y(t )) I (L g) I (L g) 

     …(2.14)  

and tracing back the values of the drift coefficient to the point s  

tn1 and j  2, to obtain:  

n 2 n 1 n 2 n 1t ,t t ,t0 1
n 1 n 1 n 2 n 2 0 1f (t , y(t )) f (t , y(t )) I (L f ) I (L f )   
        …(2.15)  

or  

n 1 n n 1 nt ,t t ,t0 1
n n n 1 n 1 0 1f (t , y(t )) f (t , y(t )) I (L f ) I (L f ) 

     

or  
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n 2 n 1 n 2 n 1

n 1 n n 1 n

t ,t t ,t0 1
n n n 2 n 2 0 1

t ,t t ,t0 1
0 1

f (t , y(t )) f (t , y(t )) I (L f ) I (L f )

I (L f ) I (L f )

   

 

   

 
 ….(2.16)  

by analyzing the local error Ln given by eq. (2.11) of the scheme 

(2.7) for the SODE (2.6), one can derive the consistency conditions 

for scheme (2.7). The following lemma has this result, which is 

given here with its proof for completeness. 

 

Lemma (2.1), [40], [8]: 

Assume that the coefficients f, g of the SODE (2.6) belong to 

the class C
1,2

 with L
0
f, L

0
g, L

1
f, L

1
g  C

k
. Then the local error 

(2.11) of the stochastic two-step Maruyama scheme (2.7) allows the 

representation:  

0
1n,2

0
n,1

0
nn SSRL  , for n  2, 3, …, N …(2.17)  

where 0
n,j

0
n S,R , j  1, 2 are 

nt
-measurable with  0

, | 0
n jj n tE S


  

and  

2 2
0 0
n j n 2 0 1 j n 2 n 2 n

j 0 j 0

R y(t ) 2 hf (t , y(t )) R  

 

   
          
      
   

0 0
1,n 0 1 n 1 n 1 n 1 1,nS [ ] g(t , y(t )) W S         

0 0
2,n 1 0 1 2 n 2 n 2 n 2 2,n 1S [( ) ] g(t , y(t )) W S            

with:  

)h(O||S
~

||;)h(O||S
~

||;)h(O||R
~

||
222 L

0
1n,2L

0
n,1

2
L

0
n     …(2.18) 
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Proof:  

To derive a representation of the local error of the form (2.17), 

the deterministic parts are evaluated and resumed at the point (tn2, 

y(tn2)) and separate the stochastic terms carefully over the different 

subintervals [tn2, tn1] and [tn1, tn]. This ensures the independence 

of the random variables. It does make the calculations more 

complicated. Since:  

2 2

j n j 0 n n 1 0 1 n 1 n 2 j n 2

j 0 j 0

y(t ) (y(t ) y(t )) ( )(y(t ) y(t )) y(t )    

 

 
          

 
 

   

then the local error for the two-step Maruyama methods (2.11) may 

be expressed as:  

Ln  0(y(tn)  y(tn1)) + (0 + 1)(y(tn1)  y(tn2)) + 

2

j n 2

j 0

y(t )



  
2 2

j n j n j j n j n j n j

j 0 j 1

h f (t , y(t )) g(t , y(t )) W    

 

       

The SODE (2.6) implies the identity:  

n 1 n 1

n 2 n 2

t t

n 1 n 2

t t

y(t ) y(t ) f (s, y(s))ds g(s, y(s))dW(s)
 

 

      

i.e.,  

y(tn1)  y(tn2)  )g(I)f(I 1n2n1n2n t,t
1

t,t
0

   

Applying the Itô formula eq. (2.13) and (2.14) for )f(I 1n2n t,t
0

  and 

)g(I 1n2n t,t
1

 , respectively, to obtain:  
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n 2 n 1 n 2 n 1

n 2 n 1 n 2 n 1 n 2 n 1

t ,t t ,t0 1
n 1 n 2 n 2 n 2 00 10

t ,t t ,t t ,t0 1
n 2 n 2 1 01 11

y(t ) y(t ) hf (t , y(t )) I (L f ) I (L f )

g(t , y(t ))I I (L g) I (L g)

   

     

   

 

   

  

 

 …(2.19)  

Also:  

n n

n 1 n 1

t t

n n 1

t t

y(t ) y(t ) f (s, y(s))ds g(s, y(s))dw(s)

 

   
 

)g(I)f(I n1nn1n t,t
1

t,t
0

   

Applying the Itô formula (2.13) and (2.14) for )f(I n1n t,t
0
  and 

1 ,

1 ( )n nt t
I g , respectively, to obtain:  

n 1 n n 1 n

n 1 n n 1 n n 1 n

t ,t t ,t0 1
n n 1 n 1 n 1 00 10

t ,t t ,t t ,t0 1
n 1 n 1 1 01 11

y(t ) y(t ) hf (t , y(t )) I (L f ) I (L f )

g(t , y(t ))I I (L g) I (L g)

 

  

  

 

   

  
 

and, additionally using (2.15), yields to:  

 n 2 n 1 n 2 n 1 n 1 nt ,t t ,t t ,t0 1 0
n n 1 n 2 n 2 0 1 00y(t ) y(t ) h f (t , y(t )) I (L f ) I (L f ) I (L f )    

        

n 1 n n 1 n

n 1 n n 1 n

t ,t t ,t1
n 1 n 110 1

t ,t t ,t0 1
01 11

I (L f ) g(t , y(t ))I

I (L g) I (L g)

 

 

  

   

…(2.20) 

 Inserting eqs.(2.19) and (2.20) and the expansions (2.15); (2.16) 

into the local error formula (2.11) and reordering the terms, and 

letting:  

n 1 n n 2 n 1t ,t t ,t
n n 1 n 1 n 1 n 2 n 21 1I W(t ) W(t ) W ; I W(t ) W(t ) W  

             

and from this, yields to:  
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2 2
0

n j n 2 0 1 j n 2 n 2 n

j 0 j 0

L y(t ) 2 hf (t , y(t )) R  

 

   
          
      
   

0
0 1 n 1 n 1 n 1 1,n[ ]g(t , y(t )) W S         

0
0 1 2 n 2 n 2 n 2 2,n 1[( ) ]g(t , y(t )) W S           …(2.21) 

where:  

  )fL(I)()fL(I)fL(IhR
~ 0t,t

0010
0t,t

00
0t,t

00
0
n

1n2nn1n1n2n  

  )fL(Ih)fL(I)fL(Ih 0t,t
01

0t,t
0

0t,t
00

1n2nn1n1n2n    …(2.22)  

)fL(I)gL(I)fL(Ih)gL(IS
~ 1t,t

100
0t,t

010
1t,t

10
1t,t

110
0
n,1

n1nn1nn1nn1n  
 

 …(2.23) 

)fL(I)()gL(I)(S
~ 1t,t

1010
1t,t

1110
0

1n,2
1n2n1n2n    

)fL(I)(h)gL(I)( 1t,t
1100

0t,t
0110

1n2n1n2n    …(2.24) 

Finally, the estimates (2.18) are derived by means of Lemma (1.1), 

where the first terms in (2.23) and (2.24) determine the order h.     

 

2.1.1 (B) Order of Consistency Conditions for Two-Step 

Maruyama Scheme, [6], [41]: 

The following corollary give the order of consistency 

conditions for the scheme (2.7) have been proved to be of order ½, 

which is given in literatures without details of the proof. 
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Corollary (2.1), [40], [8]: 

Let the coefficients f and g of the SODE (2.6) satisfy the 

assumptions of Lemma (2.1) and suppose that they are Lipschitz 

with respect to their first variable. Let the coefficients of the 

stochastic linear two-step Maruyama scheme (2.7) satisfy the 

Dahlquist's root condition and the consistency conditions:  

21010

2

0j
j10

2

0j
j ;;2,0  



  …(2.25)  

Then the global error of the scheme (2.7) applied to (2.6) allows the 

expansion  

2 2

1

2
n n L n n L

n 0,...,N n 0,1
max || y(t ) y || O h O max || y(t ) y ||
 

   
         

  

Proof: 

By Lemma (2.1), we have the representation (2.17) for the local 

error (2.11). Applying the consistency conditions (2.25), yields to:  

0
1n,2

0
1n,2

0
n,1

0
n,1

0
n

0
n S

~
S,S

~
S,R

~
R   , for  n  2, 3, …, N  

As the scheme (2.7) satisfies the Dahlquist's root condition, then by 

Theorem (1.3) it is numerically stable in the mean-square sense. 

Then n ny y(t )  and Dn  Ln in the stability inequality (1.34), and 

the assertion follows from the stability inequality (1.34) 

2 2

2 2

0 0
n L n L

n n L n L1 2n 0,1,...,N n 2,...,N n 0,1

|| R || || S ||
max || y(t ) y || S max max || L ||

h h  

   
     
 

   
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from eq. (2.11) and for n  0, 1, the local error Ln  y(tn)  yn and 

also using (2.18) in the stability inequality, with S  1 

  

2 2

2 2

2

n n L n n L1 2
n 0,1,...,N n 2,...,N n 0,1

1 2

n n L n n L
n 0,1,...,N n 2,...,N n 0,1

O(h ) O(h)
max || y(t ) y || max max || y(t ) y ||

h h

max || y(t ) y || max O(h) O h max || y(t ) y ||

  

  

  
      

 

    

 

 2 2

1 2
n n L n n L

n 0,1,...,N n 0,1
max || y(t ) y || O h O max || y(t ) y ||
 

 
    

 
     

 

2.2 Summary of Some Well Known Methods, [1] 

Using the analysis of the local truncation error for the 

deterministic case, one may obtain a number of equations less than 

the number of coefficients and hence will give infinite number of 

solutions. To drive certain methods, the coefficients which satisfy 

the consistency and zero-stability will be considered. While in the 

stochastic case, the analysis of local error for each step have been 

used which will give certain consistency conditions for each step 

which are also less than the number of coefficients and we get an 

infinite number of solutions. 

In deriving certain method, select the coefficients which satisfy 

consistency conditions also select these coefficients 0, 1, …, k 

which satisfy the Dahlquist root condition, hence the method is 

mean-square consistency of order p and then by Theorem (1.3), the 

method is numerically stable in the mean-square sense. By Theorem 

(1.4), we get the method is mean-square convergent with order p.  
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Certain classification of linear multi-step methods may be 

considered, namely:  

a- If the characteristic polynomial (1.36) of the methods takes the 

roots r  1, r  0 then the methods are called of Adams-methods 

and if they are explicit then they are called of Adam's -Bashforth 

type while if they are implicit then they are called of Adam's-

Moulton type. 

b- If the characteristic polynomial (1.36) of the methods takes the 

roots r  1; r  1; r  0 then the methods are called of Nystrom 

type if they are explicit and of Milne-Simpson if they are 

implicit, as in example (1.1). 

Some models for an explicit linear multi-step methods which 

are found in literatures, are:  

The two-step Adam's-Bashforth method (AB2) for n  2,3, …, 

N, N  ; with one Wiener process, has the form:  

n n 1 n 1 n 1 n 2 n 2 n 1 n 1 n 1

3 1
y y h f (t , y ) f (t , y ) g(t , y ) W

2 2
       

 
     

 
 …(2.26) 

where: 

0
0 n 1 n n 1

T t
t J [t ,T];h ; W W(t ) W(t )

N
 


       

Also, some models for an implicit linear multi-step methods 

which are found in literatures, are:  
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The two-step Adam's-Moulton method  (AM2), for n  2, 3, …, 

N; N  with one Wiener process, has the form:  

n n 1 n n n 1 n 1 n 2 n 2

n 1 n 1 n 1

5 8 1
y y h f (t , y ) f (t , y ) f (t , y )

12 12 12

g(t , y ) W

    

  

 
    

 

 

 …(2.27)  

where 0
n 1 n n 1

T t
t J; h ; W W(t ) W(t )

N
 


     . 

 

2.3 Variable Step Size Method for Solving SODE's, [42] 

The numerical solution of SODE's will be found using variable 

step size method, which may be considered as a new approach in 

this topic, where the considered SODE's has the form: 

dyt  f(t, yt) dt + g(t, yt) dWt; yt(t0)  
0t

y  …(2.28) 

In all fixed step-size methods, the local truncation error will 

depends on the step size h and on the used numerical method. But, 

in variable step-size method, we shall find the numerical solution yt 

for the SODE given in eq.(2.28), that is accurate to within a 

specified tolerance . 

Therefore, it turns out for reasonable effective estimates of the 

step-size, it is required to attain a specified local truncation error 

(tolerance) . The variable step-size method, which will be 

considered here is based upon the comparison between the estimates 

of the one and two steps of the numerical value of yt at some time 

obtained by the numerical method with local truncation error term 
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that is of the form Ch
p
, where C is unknown constant and p is the 

order of the method. Suppose that we started with the initial 

condition 
0t

y  with step-size h using certain SLMM and to find the 

solutions 
0

(1)
t h

y


 and 
0

(2)
t h

y


 using the step-size h and 
h

2
, respectively. 

Let: 

Eest.  ||
0

(1)
t h

y


  
0

(2)
t h

y


|| …(2.29) 

and here if Eest.  , then there is no problem and one may consider 

0

(2)
t h

y


 as the solution at t0 + h. Otherwise, if Eest. > , then one can to 

find another estimation of the step-size say hnew. If this 

approximation was accepted then this value of hnew will be used as 

the new value of h in the next step; if not, then it will be used as an 

old h and repeat similarly as above.  

Now, a common question may arise, which is how to find  

hnew ?. In this work, a new criterion has been developed for 

estimating the local truncation error, which control the step-size. 

The problem of error estimation is the most important problem that 

impact the user while using variable step-size method. 
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Theorem (2.1): 

Suppose the 
0

(1)
t h

y


 and 
0

(2)
t h

y


 are the numerical solution the 

SODE given in eq.(2.28) using certain SLMM with step sizes h and 

h

2
, respectively. If  is the tolerance and Eest.  ||

0

(1)
t h

y


  
0

(2)
t h

y


||, 

then (the new value of the step size) hnew is given by: 

old
new

est.

h ( 2 1)
h

2 E

 
  …(2.30) 

where hold refers to the old value of the step size h. 

Proof: 

Suppose yt is the actual solution at t0 + h, by taking expectation 

to the both sides of eq.(2.29) yields: 

0 0

(1) (2)
est. t h t h

E(E ) E(|| y y ||)
 

   

0 0

(1) (2)
t tt h t h

E(|| y y y y ||)
 

     

0 0

(1) (2)
t tt h t h

E(|| y y || || y y ||)
 

     

0 0

(1) (2)
t tt h t h

E(|| y y ||) E(|| y y ||)
 

     

1/ 2
1/ 2 h

Ch C
2

 
   

 
 

Hence: 

E(Eest.)  
h( 2 1)

C
2


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also yields to: 

est.2 E
C

h( 2 1)



 …(2.31) 

since, est.
new new

old

2 E
Ch h

h ( 2 1)
  


 

and so: 

old
new

est.

h ( 2 1)
h

2 E

 
      …(2.32) 

 

2.4 Solution of SODE's Using Implicit Methods, [1] 

When we back to subsection (2.1.1), one can see the difficulty 

in solving the nonlinear SODE's (2.6) using implicit methods, 

therefore the predictor-corrector approach may be used to get an 

improved the results as much as it is required. 

Therefore, when using an implicit method, the following two 

cases may be arised:  

(a) If the functions f and g are linear functions, then using an 

implicit scheme will give no difficulty since the resulting finite 

difference equation may be simplified to an explicit formula. As 

an example consider the SODE:  

dyt  dt + dWt, 0t
y   0, …(2.33) 
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where the functions f and g are f(yt)  1 and g(yt)  1, which are 

linear and using the AM2 method for n  2, 3,…, N, we get:  

n n 1 n n 1 n 2 n 1 n 1

5 8 1
y y h f (y ) f (y ) f (y ) g(y ) W

12 12 12
    

 
      

 
 

Now, apply the functions f and g  

n n 1 n 1

5 8 1
y y h W

12 12 12
 

 
      

 
 

and if h  0.1, then upon carrying some simplifications will get: 

n n 1 n 1y y 0.1 W     

Hence, the evaluation of yn may be achieved without any 

difficulty.  

(b) If the functions f and g are nonlinear functions, then using 

implicit methods may give a difficulty in solving the resulting 

nonlinear finite difference equation in terms of yn. 

Therefore, two approaches may be used to solve such 

equations, which are by using either Newton-Raphson method or 

predictor-corrector method. 

 

2.4.1 Newton-Raphson Method: 

The Newton-Raphson method will be used to solve the 

resulting nonlinear equation in terms of yn at each step of the 

discretization points of the time interval and it is known that the 

Newton-Raphson method require an initial value for each step of the 
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scheme, which may be found approximately using any explicit one-

step method. As an example, consider the solution of the SODE: 

dyt  (1 + 0.01 2
ty )(1  2

ty ) dt + 0.1(1  2
ty ) dWt, 0t

y   0 

The functions f and g are: 

f(yt)  (1 + 0.01 2
ty )(1  2

ty )   and   g(yt)  0.1(1  2
ty ) 

which are nonlinear, and upon using AM2 for n  2, 3,…, N; which 

has the form: 

n n 1 n n 1 n 2 n 1 n 1

5 8 1
y y h f (y ) f (y ) f (y ) g(y ) W

12 12 12
    

 
      

 
 

Now, apply the functions f and g to get:  

2 2 2 2
n n 1 n n n 1 n 1

5 8
y y h (y 1)(1 0.01y ) (y 1)(1 0.01y )

12 12
  


       


 

2 2 2
n 2 n 2 n 1 n 1

1
(y 1)(1 0.01y ) 0.1(1 y ) W

12
   


    


 

for n  2,3, …, N, and if h  0.1, we get: 

2 2 2 2
n n 1 n n n 1 n 1

5 8
y y (y 1)(1 0.01y ) (y 1)(1 0.01y )

120 120
         

2 2 2
n 2 n 2 n 1 n 1

1
(y 1)(1 0.01y ) 0.1(1 y ) W

120
         

for n  2,3, …, N; where yn1 and yn2 are given in prior, but yn is 

unknown and hence a nonlinear equation for yn is obtained, which is 

simplified and equated to zero, which will yields to: 
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F(yn)  yn  yn1  2 2
n n

5
(y 1)(1 0.01y )

120
   2

n 1

8
(y 1)

120
   

2
n 1(1 0.01y )  2 2

n 2 n 2

1
(y 1)(1 0.01y )

120
     

2
n 1 n 10.1(1 y ) W    

Hence, F(yn)  0 and yn1; yn2 are given. Also, in order to use 

Newton-Raphson method, we need: 

F(yn)  1  3
n n

5
(1.98y 0.04y )

120
  

Therefore, one can get the solution at each point of the mesh by 

solving a nonlinear algebraic equation resulting from the finite 

difference equation by using Newton-Raphson method given by: 

       

m+1 m

n n '

( )
y y

( )

m

n

m

n

F y

F y
 

 

m =0,1,2,… 

 

2.4.2 Predictor-Corrector Methods for Solving SODE's, [20]: 

The Adam's-Bashforth and Adam's -Moulton methods having 

been derived in the nineteenth century [4], their fixed weighting was 

customarily used to reduce the computational overhead of each step. 

The Adam's -Bashforth family of predictor-corrector methods 

[4] are explicit, linear, multistep techniques. Each successive 

member of the family has a higher order of convergence, and the 

family can be extended indefinitely. The Adam's -Moulton family of 

predictor-corrector methods [35] are, similarly, implicit, linear, 
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multistep techniques, and can be similarly extended to an arbitrarily 

high order of convergence. This predictor-corrector combined 

method will be termed as Adam's -Bashforth-Moulton. For clarity, 

we will refer to the order of convergence of both the Adam's-

Bashforth predictor phase “Adam's -Bashforth-Moulton” fixed-grid 

method of order 3-4. 

Now, the Adam's-Bashforth-Moulton predictor-corrector 

method can be constructed from the Adam's -Bashforth method (an 

explicit method) and the Moulton rule (an implicit method). 

First, the predictor step; starting from the correct value yn1, 

calculate an initial value ny  via the Adam's-Bashforth (AB2) 

method: 

ny yn1+h n 1 n 1 n 2 n 2 n 1 n 1 n 1

3 1
f (t , y ) f (t , y ) g(t , y ) W

2 2
      

 
   

 
 

 …(2.34) 

Next, the corrector step; improve the initial guess through 

iteration of Moulton rule: 

yn  yn1 + h n n n 1 n 1 n 2 n 2

5 8 1
f (t , y ) f (t , y ) f (t , y )

12 12 12
   

 
   

 
  

g(tn1, yn1)Wn1 ..…(2.35) 

This iteration is repeated for some fixed n-times or until the guesses 

converge to within some error tolerance : 

| ny   n 1y  |   …(2.36) 
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2.5 Numerical Results  

In this section, some illustrative examples will be considered, 

which have for comparison purpose an exact solution. These 

examples will be solved using the considered approaches given and 

discussed previously in this chapter. 

 

Remarks (2.1): 

1. The argument of the considered examples is t  [0, 1] and the 

step size used for discretizing this interval is with h  0.1. 

2. The obtained results for these examples are represented at 

average of 10000 simulted solution by using N(0, h) random 

number generations for the Wiener process Wt. 

 

Example (2.1),[30]: 

Consider the SODE: 

dyt  (1 + 0.01 2
ty )(1  2

ty ) dt + 0.1(1  2
ty ) dWt 

with the initial condition 
0t

y   0, and the exact solution is given by  

yt  
t

0 0

t

0 0

2t 0.2W
t t

2t 0.2W
t t

(1 y )e y 1

(1 y )e y 1

 

 

  

  
 

The results of this example and its comparison with the exact 

solution are given in tables (2.1)-(2.3) using explicit variable step 

size method, implicit method using Newton-Raphson and predictor-

corrector methods, respectively: 



Chapter Two                                         Linear Multi-Step Methods For Solving Stochastic  

                                                                            Ordinary Differential Equations 

 59 

 

Table (2.1) 

The exact and numerical results of example (2.1) using explicit 

variable step size method. 

ti Exact solution Numerical solution Absolute error 

0.1 0.09966 0.09894 0.00072 

0.2 0.1973 0.19592 0.00138 

0.3 0.29105 0.28796 0.00309 

0.4 0.3820 0.37554 0.00646 

0.5 0.46166 0.45595 0.00571 

0.6 0.53484 0.52992 0.00484 

0.7 0.60242 0.59251 0.00991 

0.8 0.66290 0.65152 0.0011 

0.9 0.72625 0.70381 0.022 

1 0.76158 0.74899 0.013 
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Table (2.2) 

The exact and numerical results of example (2.1) using explicit 

and implicit (Newton-Raphson) methods. 

ti 
Exact 

solution 

Explicit 

method 

Absolute 

error 

Implicit 

method 

Absolute 

error 

0.1 0.09966 0.09871 0.00095 0.09771 0.00019 

0.2 0.1973 0.19667 0.00063 0.19271 0.00459 

0.3 0.29105 0.29118     0.00013 0.28626 0.00479 

0.4 0.3820 0.3808     0.0012 0.37614 0.00586 

0.5 0.46166 0.46023     0.00143 0.45489 0.00677 

0.6 0.53484 0.53217 0.00267 0.52739 0.00745 

0.7 0.60242 0.60021 0.00221 0.61006 0.00764 

0.8 0.66290 0.65901 0.00389 0.65560 0.0073 

0.9 0.72625 0.72223 0.00402 0.73573 0.00948 

1 0.76158 0.75643 0.0515 0.7520 0.00958 
 

Table (2.3) 

The exact and numerical results of example (2.1) using implicit 

(predictor-corrector) method. 

ti Exact solution Numerical solution Absolute error 

0.2 0.1973 0.1971 0.0002 

0.3 0.29105 0.29109 0.0004 

0.4 0.3820 0.3825 0.0005 

0.5 0.46166 0.46766 0.0006 

0.6 0.53484 0.534  0.0008 

0.7 0.60242 0.60241 0.0009 

0.8 0.66290 0.66290 0.0000 

0.9 0.72625 0.72625 0.0000 

1 0.76158 0.76158 0.0000 
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Example (2.2),[30]: 

Consider the linear SODE: 

dyt  yt dt + 0.5 yt dWt 

with the initial condition 
0t

y   1, and the exact solution is given by 

yt  
0t

y exp(0.875t + 0.5Wt) 

The results of this example and its comparison with the exact 

solution are given in table (2.4) using explicit variable step size 

method: 

 

Table (2.4) 

The exact and numerical results of example (2.2) using explicit 

variable step size method. 

ti Exact solution Numerical solution Absolute error 

0.2 1.024 1.023 0.001 

0.3 1.085 1.065 0.02 

0.4 1.135 1.098 0.037 

0.5 1.210 1.165 0.045 

0.6 1.323              1.274 0.049 

0.7 1.298 1.24 0.058 

0.8 1.576 1.513 0.063 

0.9 1.565              1.499 0.066 

1 1.851 1.764 0.087 
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CChhaapptteerr  TThhrreeee  
 

RRiicchhaarrddssoonn  aanndd  VVaarriiaabbllee  OOrrddeerr  MMeetthhooddss  

ffoorr  SSoollvviinngg  SSttoocchhaassttiicc  OOrrddiinnaarryy  DDiiffffeerreennttiiaall  

EEqquuaattiioonnss  
 

 

Numerical methods for solving ODE's constructed by 

translating a deterministic numerical method (like the Euler's 

method or LMM's or Runge-Kutta methods, etc.), and modifying 

such methods to solve SODE's. However, merely translating and 

applying certain deterministic numerical methods to SODE's will 

generally not provide accurate results, [13].Suitably appropriate 

numerical methods for SODE's should take into account a detailed 

analysis of the order of convergence, as well as, stability of the 

numerical scheme and the behavior of the error . In contrast to 

strong approximations which require that the simulated paths are 

close to the solution y of the SDE, weak approximations need not 

necessarily approximate these paths. If one aim is to compute, for 

instance, a moment of the solution, the expectation of a terminal 

pay-off or a general functional of the form E(g(y(T))), where E 

stands for the expectation and g is a certain polynomial; then the 

weak approximations are the method of choice. Instead of 

approximating the path, it is sufficient to approximate adequately 
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the probability distribution that corresponds to the exact solution y, 

[39]. 

This chapter consists of four sections. In section (3.1) an 

illustration to the strong and weak convergence criteria are given. In 

sections (3.2) and (3.3), we study and introduce the higher-order 

Richardson extrapolation method and variable order method for 

approximating the solution of functionals diffusion of Itô kind. 

Under appropriate regularity conditions, it is shown that those 

methods allow considerable increase in the weak order of 

convergence of a discrete time one step approximation methods. 

Numerical method experiments indicate the efficiency of 

Richardson extrapolation method and variable order method based 

on higher-order weak schemes for solving SODE's with additive 

noise. 

Finally, in section (3.4), some examples are solved using those 

methods discussed in sections (3.2) and (3.3) and then comparing 

the results with the exact solution, which are given here for 

comparison propose. 

 

3.1 Convergence Criteria 

Since many SODE's cannot be solved explicitly, numerical 

schemes are employed. There are various numerical schemes (for 

instance see [28]) and in order to access their usefulness and 

practicality, certain criteria are required in which to access the 

various schemes. The convergence criterion is just one of many 
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other criterions, like mean square stability and asymptotic stability 

in which the cost of computation that can be used when assessing 

the usefulness of different numerical schemes. 

Convergence of random sequences may be classified into two 

classes, namely, strong and weak convergence. Convergence with 

probability one, mean square convergence and convergence in 

probability are the most commonly used convergence criterion in 

the strong class while convergence in distribution and weak 

convergence are used with the weak class. For the weak class, only 

the distribution function is required and not the actual random 

variables of the underlying probability space. 

 

3.1.1 Strong Convergence Criterion: 

In many practical areas, like direct simulations, filtering or 

testing statistical estimators, a good path wise approximation is 

usually required and for these instances, the absolute error criterion 

is appropriate. The criterion gives a measure of path wise closeness 

at the end of the time interval [0, T], [28]. 

Consider a practical sample path of the Wiener process, i.e., WT 

is given (and hence known) therefore there is no randomness in the 

SODE and hence no randomness in XT [15]. The increments in the 

given Wiener process are then used to obtain the numerical 

approximation Y(T). The absolute error criterion is defined as: 

  E(|XT  Y(T)|) 
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Here, the Euclidean norm is used, XT is the Itô  process at time 

T while Y(T) is the approximation obtained by approximately 

integrating the SODE in a sequence of time steps, i.e., from the 

numerical scheme. Therefore, the error is the expectation of the 

absolute value of the difference between the approximation Y(T) 

and the Itô  process XT at time T. 

The numerical scheme is consistent if the approximation Y(T) 

converges to XT as h tends to zero. Therefore, a discrete time 

approximation Y(T) with maximum step size  converges strongly 

to X at time T if [28]: 

0
lim


E(|XT  Y(T)|)  0 …(3.1) 

A discrete time approximation Y
h
 converges strongly with 

order p > 0 at time T if there exists a positive constant C, which 

does not depend on the step size h, and  > 0, such that:  

 h p
T TE X Y Ch   

holds for each h  0T t

N


  (0, ); where N is the number of 

subintervals of the interval J  [t0,T],[15]. 

 

3.1.2 Weak Convergence Criterion: 

In some cases, approximating some functional of the Itô  

process is of interest, such as the mean and variance of the 

probability distribution. Thus, the weak convergence criterion is 
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used since the requirements for their simulation are not as 

demanding as for path wise approximations, [28]. Here the sample 

path WT is not known but is drawn from the distribution of Wiener 

processes. 

Since WT and XT are a random variables. The numerical 

approximation Y(T) is also a random variable, because Y(T) is 

obtained using samples increments of Wiener-process. 

A general time discrete approximation Y with maximum time 

step size  converges weakly to X at time T as   0 with respect 

to a class C of test functions g: d   , if we have: 

0
lim


|E(g(XT))  E(g(y(T)))|  0, for g  C 

A discrete time approximation h
TY  with step size h is said to be 

converges weakly with order p > 0 to X at time T as h  0, if for 

each g  2(p 1)
pC  ( d , ) there exists a positive constant C, which 

does not depend on h and a finite number  > 0, such that:  

|E(g(XT))  E(g( h
TY ))|  Ch

p
 

holds for each h  (0, ),[16]. 

Remark (3.1): 

      We shall discuss first the Richardson extrapolation method 

which is considered as a special case a general scheme of variable 

order method. 
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3.2 Richardson Extrapolation Method for Solving SODE's 

Consider the Itô process yt satisfying the SODE with one 

Wiener process: 

dyt  f(t, yt) dt + g(t, yt) dWt; 
0t

y   y0 …(3.2) 

for t  J, where J  [t0, T], t0  [0, ∞),  
0t

y   and where f and g 

are the drift and diffusion functions respectively. 

We shall suppose that f and g are at least Lipschitz functions 

and satisfy the linear growth bound and that all of the following 

initial moments are exists: 

E(|y|
r
) < , r  1, 2, … …(3.3) 

so that we have a unique solution of (3.2) for which all moments 

exist. 

To define an appropriate measure for the rate of convergence, 

we shall say that a discrete - time approximation yt converges 

weakly with order p  {1, 2, …} if for each g  d
pC ( , )  there 

exist a constant Cg, which does not depend on h, such that: 

Mh  |E(g(y(h)))  E(g(y(T)))| < Cgh
p
 …(3.4) 

for all h  (0, 1); [43], [34]. 

A first-order weak approximation (see [43] and [34]) is 

provided by Euler's scheme: 

n n 1 n 1 n 1 n 1 n 1 n 1y y hf (t ,y ) g(t ,y ) W          …(3.5) 
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Here, Wn-1 represent an independent N(0,1) distributed Gaussian 

random variables. 

We turn now to Richardson extrapolation methods for the 

simulation of functionals of Itô diffusion based on discrete-time 

weak approximation, assuming in what follows that the function for 

g  d
pC ( , )  is given. 

The series weak error expansion for some 1N    has the form: 

N
2 j 2N 1

2 j

j 1

E(g(y(T)) g(y(h))) a h O(h )



    ….(3.6) 

where a2, a4, … are constants independent of h, then the process of 

Richardson extrapolation method consists of successively 

eliminating terms in the error expansion to produce approximations 

of higher order. 

Form (3.6), we have for the step size h  and  
h

2
, respectively: 

N
2 j 2N 1

2 j

j 1

2 jN
2N 1

2 j

j 1

E(g(y(T))) E(g(y(h))) a h O(h )

h h
E(g(y(T))) E g y a O(h )

2 2










   




      
        

      





 …(3.7) 

Multiplying the second equation in (3.7) by 4 and subtracting 

the first equation, yields to: 
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N
2 j 2N 1

2 j2 j 2
j 2

h 1
3E(g(y(T))) 4E g y E(g(y(h))) ( 1)a h O(h )

2 2






   
       

   


 …(3.8) 

The multiplicative factor 4 was chosen to cancel the h
2
 terms. 

Therefore, eq. (3.8), shows that: 

1

h
4E g y E(g(y(h)))

2
E (g(y(h)))

3

   
    

   
                       ...(3.9) 

which is an O(h
4
) approximation to E(g(y(T))). 

Observe that we did not actually need to know the value of the 

coefficient a2 but only that, the error expansion had the form (3.6). 

The process can be continued from (3.8) in this direction, when: 

E(g(y(T)))  E1(g(y(h)))  
3

4
a4h

4
 + … 

and 

4
1 4

4

1 4

3
E(g(y(T))) E (g(y(h))) a h ...

4

h 3 h
E(g(y(T))) E g y a ...

2 4 2


   




                    

 …(3.10) 

Similarly, multiplying the second equation in (3.10) by 16 and 

subtracting the first equation and eliminating the h
4 
term, yields to: 

15E(g(y(T)))  16 1

h
E g y

2

   
   

   
  1E (g(y(h)))  …(3.11) 

and obtaining the order-six approximation: 
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E2(g(y(h)))  

1 1

h
16E g y E (g(y(h)))

2

15

   
    

   
                …(3.12) 

In general, using the mathematical induction, one obtain recursively 

the O(h
2n+2

) approximation, of the general form as:  

E0(g(y(h)))  E(g(y(h))) …(3.13)  

n
n 1 n 1

n n

h
4 E g y E (g(y(h)))

2
E (g(y(h)))

4 1

 

   
    

   


  …(3.14) 

for all n  1, 2, …;  

Note that, to find E2(g(y(h))),one must calculate 

1E (g(y(h)))which in turn requires the computation of 

1E (g(y(h / 4))) . For simplicity, the following diagram illustrates 

such decencies. 

Level O( 2
h ) O( 4

h ) O( 6
h ) O( 8

h )  

0 E0(g(y(h)))     

1 E0(g(y( / 2h ))) E1(g(y(h)))    

    2   E0(g(y( / 4h ))) E1(g(y( / 2h ))) E2(g(y(h)))   

    3 E0(g(y( / 8h ))) E1(g(y( / 4h ))) E2(g(y( / 2h ))) E3(g(y(h)))  
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3.3 Variable Order Methods for Solving SODE's 

Using the SLMM's in connection with variable order methods 

used for solving ODE's to derived a new approach for solving 

SODE's with more accurate results will give more accurate result. 

This method will be referred to as the variable order method for 

solving SODE's: 

Consider the SODE: 

dyt  f(t, yt) dt + g(t, yt) dWt; 0t 0y y   …(3.15) 

In this investigation, approximation are studied for expectations 

of functions of the solution, i.e., E(g(y(T))), where g is a real-valued 

smooth function, that is, weak approximation. The weak error is 

defined as: 

E(g(y(T))  g(y(h))) …(3.16) 

The primary goal of this investigation is to prove that the 

variable order method has a weak error expansion of the form: 

E(g(y(T))  g(y(h)))  a1h + a2h
2
 + … …(3.17) 

where a1, a2, … are some constants independent of h and by using 

several approximations E(g(y(h0))), E(g(y(h1))), E(g(y(h2))), …; 

with h0 > h1 > h2 > …; where h0, h1, h2, … are the step sizes.  

Now, to successively eliminate the terms in the error expansion, 

thereby producing approximations using methods of higher and 

higher order. The sequence of step sizes used was hj  h/2
j
; j  0, 1, 

2, …; where h is some starting step size. If a1 in eq.(3.17) is not 
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zero, then the approximation scheme E(g(y(T))) is only of order h. 

To obtain approximations of order h
2
, and we proceed as follows: 

Find the weak error expansion using two different step sizes h0 

and h1, such that h1 < h0, as follows: 

2 3
0 1 0 2 0 3 0E(g(y(T)) g(y(h ))) a h a h a h ...      

 …(3.18) 
2 3

1 1 1 2 1 3 1E(g(y(T)) g(y(h ))) a h a h a h ...      

and upon subtracting h0 times the second equation from h1 times the 

first equation and solving for E(g(y(T))), one may get: 

E(g(y(T)))  1 0 0 1

1 0

h E(g(y(h ))) h E(g(y(h )))

h h




  a2h0h1  a3h0h1(h0 

+ h1)  a4(
2
0h  + h0h1 + 2

1h )  … 

 E(g(y(h1)))+ 1 0

0

1

E(g(y(h ))) E(g(y(h )))

h
1

h





  a2h0h1  

a3h0h1(h0 + h1) a4(
2
0h  + h1h2 + 2

1h )  … 

Thus, letting: 

E1(g(y(h0)))  E(g(y(h1))) + 1 0

0

1

E(g(y(h ))) E(g(y(h )))

h
1

h





 …(3.19) 

which is an O( 2
0h ) approximation to E(g(y(T))). Since h1 < h0 and 

any two pair hj and hj+1 may be used in the above elimination 

process, one may see that in general:  



Chapter Three                   Richardson and Variable Order Methods for Solving 

                                                                Stochastic Ordinary Differential Equations  

 73 











E1(g(y(hj)))  E(g(y(hj+1)))+
j 1 j

j

j 1

E(g(y(h ))) E(g(y(h )))

h
1

h









 …(3.20) 

which is also an O( 2
jh ) approximation to E(g(y(T))). Now, we have: 

E(g(y(T)))  E1(g(y(h0)))a2h0h1a3h0h1(h0+h1)   

a4h0h1(
2
0h  + h0h1 + 2

1h )  … 

and  …(3.21) 

E(g(y(T)))  E1(g(y(h1)))a2h1h2a3h1h2(h1+h2)   

a4h1h2(
2
1h  + h1h2 + 2

2h )  …  

and upon eliminating the terms involving a2, we obtain: 

E(g(y(T)))  E2(g(y(h0)))+a3h0h1h2+a4h0h1h2(h0+h1+h2)+… 

where: 

E2(g(y(h0)))  E1(g(y(h1))) + 
1 1 1 0

0

2

E (g(y(h ))) E (g(y(h )))

h
1

h





 …(3.22) 

which is an O( 3
0h ) approximation to E(g(y(T))). More generally: 

E2(g(y(hj)))E1(g(y(hj+1)))+ 
1 j 1 1 j

j

j 2

E (g(y(h ))) E (g(y(h )))

h
1

h









…(3.23) 

which is also an O( 3
jh ) approximation to E(g(y(T))). Similarly, 

continuing in this manner, the following recursively sequence may 

be defind: 
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E0(g(y(hj)))  E(g(y(hj))) …(3.24) 

En(g(y(hj)))  En1(g(y(hj+1))) + 
n 1 j 1 n 1 j

j

j n

E (g(y(h ))) E (g(y(h )))

h
1

h

  







 

 …(3.25) 

for all n  1, 2, …; j  0, 1, … 

On the basis of the results for E(g(y(hj))) and E2(g(y(hj))), it 

seems that En(g(y(hj))) provides an O( n 1
jh  ) approximation to 

E(g(y(T))). This may be verified directly by following the evolution 

of the general term an h
n 

in the error expansion, but is perhaps 

obtained more easily by the following alternative approach obtained 

from equations (3.24) and (3.25), which is given in the following 

diagram: 

 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 E0(g(y(h0)))     

1 E0(g(y(h1)))     E1(g(y(h0)))    

2 E0(g(y(h2))) E1(g(y(h1))) E2(g(y(h0)))   

3 E0(g(y(h3))) E1(g(y(h2))) E2(g(y(h1))) E3(g(y(h0)))  
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3.4 Numerical Results 

As an illustration and for comparison purpose, we consider in 

this section, some illustrative examples, which are for comparison 

between the numerical schemes used in this wotk, the same 

examples considered in chapter two. But, first consider the 

following remarks: 

 

Example (3.1): 

Resolving example (2.1) using Richardson extrapolation 

method with explicit Euler's method and variable order method with 

explicit Euler's method we get the results present in tables (3.1)-

(3.6). 
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Table (3.1) 

The approximate results for the weak solution using Richardson 

extrapolation method. 

Level O(h
2
) O(h

4
)

 
O(h

6
) O(h

8
)  

0 9.98910
9

     

1 9.98610
9

 9.98610
9

    

2 9.99210
9

 9.99410
9

 9.98610
9

   

3 9.98610
9

 9.98510
9

 9.99310
9

 9.98610
9

  

      
 

Table (3.2) 

The exact results for the weak solution using Richardson 

extrapolation method. 

Level O(h
2
) O(h

4
) O(h

6
) O(h

8
)  

0 9.98810
9

     

1 9.98610
9

 9.98510
9

    

2 9.99210
9

 9.99410
9

 9.98610
9

   

3 9.98610
9

 9.98410
9

 9.99210
9

 9.98610
9

  

      
 

Table (3.3) 

The absolute error between the approximate and exact results for 

the weak solution using Richardson extrapolation method. 

Level O(h
2
) O(h

4
)

 
O(h

6
)

 
O(h

8
)  

0 1.37210
12

     

1 0 110
12

    

2 0 0 0   

3 0 1010
13

 1010
13

 0  
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Table (3.4) 

The approximate results for the weak solution using variable 

order method. 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.00310
4

     

1 9.97510
5

 9.91510
5

    

2 9.92410
4

 9.87210
5

 9.85710
5

   

3 1.15710
4

 1.33510
4

 1.45810
4

 1.67610
4

  

      
 

Table (3.5) 

The exact results for the weak solution using variable order 

method. 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 9.89410
5

     

1 9.8910
5

 9.88710
5

    

2 9.87710
5

 9.86310
5

 9.85510
5

   

3 1.15410
4

 1.33410
4

 1.45610
4

 1.52610
4

  

      
 

Table (3.6) 

The absolute error between the approximate and exact result for 

the weak solution using variable order method. 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.36710
6

     

1 8.45510
7

 2.810
7

    

2 8.93610
7

 910
8

 210
8

   

3 3.16310
7

 1010
8

 210
7

 1.510
5
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Example (3.2): 

Resolving example (2.2) using Richardson extrapolation 

method with explicit Euler's method and variable order method with 

explicit Euler's method we get the results present in tables (3.7)-

(3.12). 

 

Table (3.7) 

The approximate results for the weak solution using Richardson 

extrapolation method. 

Level O(h
2
) O(h

4
)

 
O(h

6
) O(h

8
)  

0 3.83210
5

     

1 2.99110
5

 2.71110
5

    

2 1.16410
5

 5.55110
6

 2.93510
5

   

3 7.89110
6

 6.64110
6

 1.04210
5

 2.97810
5

  

      
 

Table (3.8) 

The exact results for the weak solution using Richardson 

extrapolation method. 

Level O(h
2
) O(h

4
)

 
O(h

6
) O(h

8
)  

0 2.83210
5

     

1 2.99110
5

 2.72110
5

    

2 1.16410
5

 5.54810
6

 2.93410
5

   

3 7.89210
6

 6.64410
6

 1.04210
5

 2.97710
5
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Table (3.9) 

The absolute error between the approximate and exact results for 

the weak solution using Richardson extrapolation method. 

Level O(h
2
) O(h

4
)

 
O(h

6
) O(h

8
)  

0 0     

1 810
7

 110
7

    

2 0    3 10
9

 1010
9

   

3 0  3 10
9

 0 110
8

  

      
 

Table (3.10) 

The approximate results for the weak solution using variable 

order method. 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.46210
4

     

1 1.47210
5

 1.48310
5

    

2 1.48110
4

 1.4910
5

 1.49210
5

   

3 1.5110
4

 1.5410
4

 1.55810
4

 1.79110
4

  

      

Table (3.11) 

The exact results for the weak solution using variable order 

method. 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.42410
5

     

1 1.41910
5

 1.41410
5

    

2 1.41910
5

 1.41910
5

 1.4210
5

   

3 1.43910
4

 1.4610
4

 1.47410
4

 1.48210
4
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Table (3.12) 

The absolute error between the approximate and exacts result for 

the weak solution using variable order method. 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.3210
4

     

1 5.310
7

 6.910
7

    

2 1.33910
4

  7.110
7

 7.210
7

   

3 7.110
4

   810
6

 8.4 10
6

 3.0910
5
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CCoonncclluussiioonnss  aanndd  RReeccoommmmeennddaattiioonnss  
 

The following conclusions may be drown from the present 

study 

1. Variable step size methods improve the accuracy of the results, 

but it requires more calculation which will increases the 

consuming time. 

2. Richardson extrapolation method and Variable order method give 

a high accurate results in comparison with SLMM's, respectively. 

 

 

Also from the present study the following conclusions may be 

drown as an open problems for the future work: 

1. Deriving higher order models of the SLMM's to solve SODE's. 

2. Applying Richardson extrapolation method and variable order 

method for solving SODE's based on explicit stochastic 

Runge-Kutta methods. 

3. Using the proposed methods given in this thesis to solve 

SODE's with multi-Wiener process. 
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  المستخلصالمستخلص

 

 أهذاف هزِ انشسانة يًكٍ أٌ يُقاد في ذلاخ إججاهات سئيسية:

انهذف الاول هوى فوي دساسوةب وتانحل،ويمب انجاَوظ انُاوشا والساسوي نًىاوى   سو اٌ 

ويوووٍ ذوووى دساسوووة اندشائووو  يح وووذد   Stochastic Calculus انحلااوووم وانحكايوووم انح،وووادفي

 الاعحياديوة لات انحلااوهية انح،وادفيةنحوم انً واد Linear Multistep Methods انخدوىات

Stochastic Ordinary Differential Equations ا زوتشهواٌ ت وا انُحوائل انًح هقوة تهو

 انح،ادفي. Itô صيغةيٍ جها وقاوجد يهسلات َشش جايهىس يحسدساسة انًىاى ب تالإاافة إنىب 

 Two Steps Maruyama رات انخدوىجيٍانهذف انراَي يحًرم تذساسة طشيقة ياسيايوا 

Method   وأيضوواد دساسووة انحهووىل ان ذديووة نهً ووادلات انحلااووهية انح،ووادفية تقسووححذاو اندشائوو

وانحي عىنجث تقسحخذاو اندشائ  انًح  ة نحم انً ادنة انج شيوة  Implicit Methodsانضًُية 

ذاو ان،يغة انضًُية ندشائو  يح وذد  انخدوىاتب  يود جًرهوث هوزِ خانغيش خدية انُاججة يٍ إسح

وطشيقووة انحُ وو   Newton-Raphson Method سافسووىٌ-تدووشيقحيٍ ألا وهًووا طشيقووة َيووىجٍ

ب ويوٍ ذوى إرحوشاس أسوهىي  ذيوذ نحوم انً وادلات Predictor Corrector Methodوانح،حيح

 Variable Step Size انخدووى  انحلااووهية انح،ووادفية الاعحياديووة تاسووحخذاو طشائوو  يحغيووش 

Method. 

  جًرووووووووووم تقسووووووووووححذاخ طشيقووووووووووة سيجاسدسووووووووووىٌ نلاسووووووووووحكًالانهووووووووووذف انرانوووووووووود 

Richardson Extrapolation Method  ويوووٍ انشج وووة ان هيوووا وطشائووو  يحغيوووش  انشج وووة

Variable Order Method  نحم انً ادلات انحلااهية انح،ادفية الاعحياديوةب وانحوي أدت إنوى

 ي درة انُحائل انًسحح،م عهيها يٍ إسحخذاو اندشائ  الاعحيادية.صياد  يهحىظة ف
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