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Summary

In this thesis, we present a clear procedure aftisols for the fractional
variational problems via Haar wavelet techniquee Tilactional derivative is

defined in the Riemann-Liouville sense.

The main theme of this thesis is oriented aboutdbjects:

The first objective is to study the simplest franfl variational
problem with two fixed boundary conditions and fitglapproximate solution
by using the direct Haar wavelet method.

The scond objective is about studying the fraciomariational
problems with one movable condition (undetermineddition) and finding
its approximate solution by using the direct Haarelat method.

The approximate solution for the considered clasdesvariational
problem can be obtained directly from the functlcarad there is no need to
solve the fractional Euler-Lagrange equation thaeethe proposed approach
(direct Haar wavelet method ) can give us a sim@ed accurate solution for

such kind of variational problems of fractional erd
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Introduction

The subject of fractional calculus (that is, calsulof integrals and
derivatives of any arbitrary real or complex ordeas gained considerable
popularity and importance during the past threeades or so, due mainly to
its demonstrated applications in numerous seemidigigrse and widespread
fields of science and engineering. It does indeedige several potentially
useful tools for solving differential and integeduations, and various other
problems involving special functions of mathemdtpaysics as well as their

extensions and generalizations in on and more MagdKilbas,2006].

The concept of fractional calculus is popularlylidaeed to have

stemmed from a question raised in the year 169%'Hyppital to Leibniz,

: : I . an
which sought the meaning of Leibniz's (currentlyppiar) notatlonwc—ii for

the derivative of order[dl] = {0,1,2,...} whenn =% (what if n =% ?).in

his replay 30 September 1695, Leibnize wrote L'itdb@s follows: "... this
Is apparentParadox from which, one day, useful eqursnces will be drawn
...", [Kilbas, 2006]. Since that time fractional callgs has drawn the attention
of many famous mathematicians, such as Euler, taplourier, Able,
Liouville, Riemann, and Laurent. But it was notiut&B884 that the theory of
generalized operators achieved such a level idet®lopment so as to make
it suitable as a point of departure for the modeaathematician [Caponetto,
2010].

By then the theory had been extended to include@erators, where m
could be rational or irrational, positive or negatireal or complex.Thus the

name fractional calculus become somewhat of misnofnbetter description
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might be differentiation and integration to an @bl order [Caponetto,
2010].Although, the concept of the fractional datives was introduced
already in the middle of the T9century by Riemann and Liouville,
[Lepik,2007]. The first work, devoted exclusively the subject of fractional
calculus, is the book by Oldham and Spanier [Old&k8i] published in
1974. After that, the number of publications abihet fractional calculus has
rapidly increased and today there exist at least iwernational journals
which are devoted almost entirely to the subjectfraictional calculus
() journal of fractional calculus and (ii)fractiah calculus and applied
analysis and for an historical overview on fractibncalculus, see
[Oldham,1974], [Miller,1993] and [Kilbas,2006].

Recent practical applications of fractional calsulin engineering,
physics, and biology can be found in [Podlubny,1999abatier,2007],
[Das,2008]and [Mainardi, 2010].

A fractional calculus of variations problem is atapic of fractional
calculus and it is a problem in which either thgeotive functional or the
constraint equation or both contain at least ometional derivative term,
[Agrawal,2002].

This occurs naturally in many problems of physiosgchanics and
engineering in order to provide more accurate n®déphysical phenomena
(see [El-Nabulsi,2007] and [Mozyrska,2011)], Howeveéhe fractional
calculus of variations is a new field;lts startipgint appear to be the
references [Riewe,1996], [Riewe,1997] where Riewevetbped the
nonconcentrativeLagrangian, Hamiltonian, and otb@ncepts of classical

mechanics using fractional derivative, [Agrawal,2D0

Agrawal[Agrawal,2001] presented a heuristic apphoao obtain
differential equations of fractionally damped syste Later

Agrawal[Agrawal,2002] combined the calculus of ations and the concept
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of fractional derivatives to develop Euler-Lagrareguations for fractional
variational problems.Klimek [Klimek,2001] presentadractional sequential
mechanics model with symmetric fractional derivesivin [Klimek,2002]
stationary conservation laws for fractional diffetial equations with variable
coefficients.Dresigmeyer and Yong [Dresigmeyer,3003resented
nonconservativeLagrangian mechanics using genedalanction approach.
In[Dresigmeyer,2004] the author show that obtaindifferential equations

for a nonconservative system using fractional @ggrres may not be possible.

The fractional Euler-Lagrange equations was usedBhleanu and
Coworker to model fractionalLagrangian and Hmileaniformulations with
linear velocities [Baleanu,2004], [Muslih,2Qp%nd Hamiltonian equations
for fractional variational problems [Muslih,20)5References[Agrawal,2004]
[Agrawal,2005] present formulations for determimstnd stochastic analyses

of fractional optimal control problems.

Tarasov and Zaslvasky [Tarasov, 2005] have usethtvaral Euler-
Lagrange equations fractional generalization of t@enzburg-Landou
equation for fractal media.Fractional Euler-Lagmaeguations are difficult to
solve explicitly and consequently it is of interest develop efficient

numerical schemes for such dynamical systems

In this thesis, we present the direct Haar wavebethod to solve
fractional variational problems with transversdlityfixed boundary
conditions.Haar wavelet theory has been innovatedl applied to various
fields in engineering ([Strang,1989]-[Hsia0,200@nhd have proved to be a
wonderful mathematical tool.The procedure begins &ysuming the
admissible functions by Haar wavelets with coeéiints to be determined,
then establishing an operational matrix for periogrintegration and finding
the necessary condition for exterimization, solvihg resulting algebraic

equation gives the Haar coefficients. This indisatkat for the class of



Introduction

problems that will be considered, the numericausoh can be obtained
directly from the functional, and there is no néedolve the fractional Euler-

Lagrange equations.
This thesis consist of three chapters :

In chapter one which is entitled basic conceptggyiwve some necessary
and important definitions of fractional calculusaddition to the definition of
the Haar function and its main properties such a#tipfication ,function
approximation and operational matrix of integrateord its operational matrix

of fractional integration.

In chapter two we solve the classical fractionafiational problems

with natural conditions using Haar wavelet method.

Finally In chapter three we solve the fractionalatonal problems with
transversality conditions using Haar wavelet metib remarkable that all

calculations are made by using computer softwartnbdéal14.
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Basic Concepts




l Basic Coneepts

1.1 Introduction

This chapter consists of five sections, in secfichthe gammaand beta
functions are given, in section 1.3 we present sdefaitions of fractional
order integration while in section 1.4 some defom$ of fractional order
derivatives are presented ,finally in section 1&H&nctions and its main

properties are given.

1.2 The Gamma and Beta FunctionfOldham,1974]:

The complete gamma functidifx) plays an important role in the theory

of fractional calculus. A comprehensive definitioii (X) is that provided by

Euler limit:

r)=lim ( NIN* ),x>0 (1)
Nool X(X+1)(X+ 2)...(x+ N)

but the integral transform definition is given by:
rx)=[y*“*e”dy,x>0 ...(1.2)
0

iIs often more useful, although it is restricted positive value of x. An
integration by parts applied to equation (1.2) &ad the recurrence

relationship:

M(x + 1)=xI(x) ...(1.3)
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This is the most important property of gamma fumttiThe same result
Is a simple consequence of equation(1.1), sing® = 1, this recurrence

shows that for positive integer n:
M(n + 1)=nl"(n)
=n! ..(1.4)

The following are the most important propertieshef gamma function:

1. r(l-nj:—(“‘)n”-‘ﬁ
2 (2n)!
2. F(1+nj:(2n)!\/E
2 4"n!
3. r(_x):—ncsc(nx)
M(x+1)

_ 2] o Tt (e K) e e
4. F(nx)—\/:{\/ﬁ} k|:|OF£x+nj,neN

A function that is closely related to the gammaction is the complete
beta functionB(p,q). For positive value of the two parametersnd g; the

function is defined by the beta integral:
1
B(p,a)=[ Y@~ y)'dy,p.q>0 -(1.5)
0

which is also known as the Euler’s integral of sleeond kind. If either p or g
IS nonpositive, the integral diverges otherwi@@,q) is defined by the

relationship:

_Te)r@ e
BED="10 1 o (1)

wherep and g> 0.
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Both beta and gamma functions have “incomplete”lcues. The

incomplete beta function of argument x is defingdhe integral:
X
By (p.a)=[ Y (@~ )T dy (L.7)
0
and the incomplete gamma function of argumentdeimed by:

x-1 ydy

y*(c, X)‘I_( X1

% X!

Z ..(1.8)

il (j+c+1)

y*(c,x) is a finite single-valued analytic functiarf x and c.

1.3 Fractional Integration

There are many literatures introduce differentrdedins of fractional

integrations, such as:
1. Riemann-Liouville integral, [Oldham,1974]:

Definition (1.1), (Riemann—Liouville Fractional Ineégrals):

Let f OL'[a, b] and 0 <a <1. The left and Right Riemann—Liouville

Fractional integrals of orderof a function f is defined respectively by:

a — 1 7 4\ 0-

ale(x)—%i(x t) * 7 (t)dlt ...(1.9)
1 ® _

9F(X) :%j(t —x) 7 (t)dlt ...(1.10)

for all x([a,b].
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2. Weyl fractional integral, [Oldham,1974]:

The left hand fractional order integral of order O of a given function f

is defined as:

arrn— 1t f(y) ©
_mle(x)-r(a)_[o =y dy, x > ...(1.11)

and the right fractional order integral of ordepr O of a given function f is

given by:

dy, X <co

o 17 1)
) =@y

3. Abel-Riemann fractional integral, [Mittal,2008]:

The Abel-Riemann (A-R) fractional integral of anyder a> O, for a

function f(x) with xJ0 * is defined as:

I“f(x)=%?(x -1)*f(1)dt, x> 0,0> 0 ..(1.12)
0

1°= | (identity operator)
The A-R integral posses the semigroup property:

191P=1**# for alla, = 0 ...(1.13)

1.4 Fractional Derivatives

Many literatures discussed and presented fractide@vatives of certain
functions, therefore in this section, some defomé of fractional derivatives

are presented
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1. Riemann-Liouville formula of fractional derivaties, [Oldham,1974],
[Nishimoto,1983]:

Among the most important formula used in fractiooalculus is the
Riemann-Liouville formula. For a given function (X1 x O [a,b]; the left
and right hand Riemann-Liouville fractional derivas of order. > 0 and m

Is a natural number, are given by:

a _ d™ X (1)

«Daf(x) = r(m ) B i(x - —d ..(1.14)
a _ () odm R ()

XDb_f(X)_r(m—G)dX i(x - —d ...(1.15)

Wherem 1 <a<m, mQd[ .

2. The A-R fractional derivative, [Nishimoto,1983]:

The A-R fractional derivative of order> O is defined as the inverse of

the corresponding A-R fractional integral, i.e.,

D=l ...(1.16)
for positive integer m, such thatil <a< m,

(D™™)%=D(I™%) =D™| "= |
le.,

1 dm f(1)

(X .[)C( +1-m

dt, m-1<a<m

—
~~
3
|
Q
N
o
><
QJ'—~.><

D%(x)= (1.17)
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3. Caputo fractional derivative, [Caputo ,1967]:

In the late sixties, an alternative definition oddtional derivatives was
introduced by Caputo. Caputo and Mirandi used dleinition in their work

on the theory of viscoelasticity. According to Cagsi definition:
‘DY =1"°D™, form- 1 <a<m

which means that:

X (m)
F(ml—a)I f §3_m dr, m-1<oa<m
°DC f(x)=1 o(x-1)
ﬂf(x) a=m
dx™ 7

The basic properties of the Caputo fractional deive are:

1. Caputo introduced an alternative definition, whitds the advantage of
defining integer order initial conditions for framtal order differential

equations.

Xk
!.

dcna ot K) A+
2. alx D, f(x) =f(x) - >, (0 )k
k=0
3. Caputo’s fractional differentiation is linear optna similar to integer
order differentiation:

“Dy [M(x) + ng(x)] =A°D5 f(x) + 1D} g(x)

4. Grianwald fractional derivatives, [Oldham,1974]:

The Grunwald derivatives of any integer order ty dractional

order derivatives, can take the form:
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(:J -0, (X _,-(Lj} .(1.18)

D f(x)=Lim J \N/
O rca) & TG+ N

1.5 Haar Wavelets

Haar functions have been used since 1910, whenwieey introduced
by Hungarian mathematician AlferdHaar, [Haar, 1910]

The orthogonal set of Haar function is definedla®sas in Figs.(1.1-1.8)
that is a square waves with magnitude#df in some interval and zero
elsewhere. The first curve of Fig.(1.1) is thgfxh = 1 during the whole
interval 0< x < 1. It is called the scaling function. The secondve h(X) is
the fundamental square wave, or mother waveletiwliso spans the whole
interval [0,1]. All the other subsequent curve gemerated from 4ix) with
two operation translation and dilation;(X) is obtained from {fx) with
dilation, i.e., R(x) is compressed from the whole interval [0,1h#df interval
[0,1/2] to generatefX), hy(X) is the same as(x) but shifted (translated) to
the right by 1/2. Similarly, }ix) is compressed from the half interval to a
quarter interval to generate(k). The function l(x) is translated to the right
by 1/4, 2/4, 3/4 to generate(k), hs(x) and R(x); respectively.

In general:

ha(X) =h(2x—k/2), n=2 + k, 2 0, 0 <k 2

Fig.(1.1) First Haar function.

7
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Fig.(1.2) Second Haar function.

Fig.(1.3) Third Haar function.

Fig.(1.4) Fourth Haar function.

Fig.(1.5) Fifth Haar function.
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! T
hs ' ; |
. 1
1 L
Fig.(1.6) Sixth Haar function.
! ]
] 1
1 P
Fig.(1.7) Seventh Haar function.
! T
" IRE

Fig.(1.8) Eighth Haar function.

This orthogonal basis is a reminiscent of the Walgéis, in which each

Walsh function contains many wavelets to fill tmeerval [0,1] completely,

and to form a global basis. While each Haar fumctamntains just one

wavelet during some subinterval of time, and remaigro elsewhere the Haar

set form a local basis.
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All the Haar wavelets are orthogonal to each other:

1 :
[h ()h, (x) dx= 273,
0
_j27, == 2
0, i#/
Therefore, they form a very good transform basis.

1.5.1 Multiplication of HaarWavelets

Two basic multiplication properties of Haar wavslate as follows:
(i) For any two Haar wavelets(h) and h(t) with n <|.

hn(®hi(t) =phi(t) ..(1.19)
_ iy L

p=h,(27(a+))

( . . 1
1, 2 k< g< 2? (k+§),

=.-1, 27 (k+%)s q< 27 (k+ 1)

0, otherwise,

where:

n=2+k, j20, 0< ks 2
|=2'+q, i20, 0<g< 2 ...(1.20)

(i) The square of any Haarwavelet is a block pulgth magnitude of 1

during both positive and negativehalf waves.

10
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In the study of variational problems via Haar wat®| it usually needs

to evaluate the integration of{x)H" (X) where
T
H(m)(x) i [ho (X)5-ees Rt (Xj

Let usdefined

H(m)(X)H(m)(X) OM (remi(X) ...(1.21)

T
10001400,y , 0] = Hygy [ By 00ty 00is 0
..(1.22)

M(x) is the Haar product matrix, which satisfies tfollowing recursive
formula equation (1.23) and the integration retatmuation (1.24).

M (mxm)(X) =] o M (1) (X) =h ()
( ) d|ag[Hb ]cDT(r;er) dalg[fb 1(@)(?) Ha] (1x1) 0
..(1.23)
where

n D [Hn X OH 0 H X 3] < 3,513

1
1
jH(m)(r)H(m)(T)dT = (j) M (e my(T)OIT = CD > LI

| (2x2) 0
Y
2 2%x2
= 1|
4 4x4
2
0 m @D

11
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K (mxmy for m> 2 ...(1.24)

Equation (1.24) is very important for solving vaioaal problems.

1.5.2Haar Wavelets Operational Matrix

In this subsection we shall begin with the morevement way for
representing Haar wavelets in computer and faB] which was given by
[Lepik, 2007] and for this purpose we define thamtity M=2’, where J is the
maximal level of resolution and divide the interfa)B] into 2M subintervals

of equal length; each subinterval has the length.
Ax= (B — A)/2M.

Two parameters are introduced the dilation paramgtor which
j=0,1,..., J and the translation paramétet 0,1, ..., m — 1 wherem = 2J.

The wavelets number i is identify &as= m + k+ 1 the {"Haar wavelet is

defined as:
1, forx € [§ (1), 5],
hi(x) =4—1, forx € [§,(i),& ()], ...(1.25)
0, elsewhere.
where:

) =A+2ku, &>3()=A+ (2k+ 1)pAx

g0 = A+2(k+ Dpax, p=M/,

The case = 1 corresponding to the scaling function

1, for x € [A, B]

0, elsewhere ...(1.26)

hy () = |

The following notations are introduced:
P (X)= J. h; (T)dr
0

12
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pi,v+1(X) = ](. pi,v (T)dl- , V= 11 21--
0

These integrals can be evaluated by using equéti@d) and the first two of

them are given by:

x=&,(0), x0O[&,(0), &)

P, (X)=1&, () —x, xO[&,(i),&,() ..(1.27)
0, Otherwise.
(1 . o
E(X =&, ()7, x O[&,(0), €, (1))
1 1. .. L
| 1 |
o x O[&,(i),2)
0, Otherwise.
In general:
0, x <&, (i)
= (x5, X OLE,(), (0]
P ()= nl![(x &))" —2(x ~&,(i)"] x O[E, (i), &,(i)]
X8, ()" ~2x = E,())" +2(x =)' x > £.00)

...(1.29)
For example, if & 2, then:

Po1 =75 1 0 0

8 —4 -2 -2
1[40 —22]

1

1 -1 0 0

13
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and if J= 3, then:
(32 -16 -8 -8 -4 -4 -4-4 ]
16 0 -8 8 -4 -44 4
4 4 0 0 -4 40 O
— 4 -4 0 0 0 04 4
®1 64 1 1 2 0 0 0 00
1 1 -2 0 0 00 O
1 -1 0 2 0O 00 O
1 -1 0 -2 0 00 O]

Following Figs. (1.9-1.16) represents the firsegral ofh;(x), for all
i=0,2,..,7.

Y

0

Fig.(1.9) Integration of the first Haar wavelet.

A

0

Fig.(1.10) Integration of the second Haar wavelet.

14
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0 1
Fig.(1.11) Integration of the third Haar wavelet.

A

Fig.(1.12) Integration of the forthHaar wavelet.

A

| | >
0 111 1

Fig.(1.13) Integration of the fifth Haar wavelet.

15
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VAN —

|
O 114 112 1

Fig.(1.14) Integration of the sixth Haar wavelet.

A

Fig.(1.15) Integration of the seventh Haar wavelet.

A

0

Fig.(1.16) Integration of the eighth Haar wavelet.

16
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1.5.3 Function Approximation and operational Matrix

Any function f(x) OL?([0,1]) can be expanded in term of Haar series as:
f(x) = X2, ¢ihj(x) ...(1.30)

where the coefficients; are determined by:

c; =2 jlf(x)hi(x)
0

The series in equation (1.30) contains an infintkenber of terms. If(x) is
piecewise constant or may be approximated as piseesonstant, then the
sum in equation(1.30) may be terminated after msethat is:

(0 = T ey = ChHm(0) = f) .(1.31)

fdenotes the truncated sum, the Haar coefficient®ow€,, and Haar vector
H,,(x) are defined as:
Cm = [C0,C1p ey Cmq]”

Hpn (%) = [ho(x), hy (%), ., hpy— 1 ()" ...(1.32)
Taking the collocation points as following

xi=A+({—05)Axi=12..2M ...(1.33)

By letting A =0, B =1 and henakx = ﬁ in equation(1.33). We define the

m-square Haar matri®,, 5, as:

e = [ () o (35) - o (252 a3
Correspondingly, we have:
o= [F(2)F(S) o F()] = Chb (1.35)
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Because the m-square Haar wavelets mdtx,, is an invertible matrix, the

Haar coefficients vectdatl can be given by:

cf =t ,o7%, ...(1.36)

1.5.3.1 Block Pulse Function (BPF)

Defines a m — Set of Block Pulse Function (BFF) a

i i+1)
bi(x) = L/ = x < /m ...(1.37)

0, Otherwise
wherei=0,1,2...,m — 1.
The functions;(x)are disjoint and orthogonal, that is:

b (x)by (x) = {gi - 1 ” ﬁ ..(1.38)

Kilicman and Zhour [Kilicman, 2007] have given thieck pulse operational

matrix of fractional order integratiorf s following:

alxBm (%) = F*Bm (x) .(1.39)
where:
(1 & &2 EoM—1]
0 1 & &m-
_ 1 1 0 0 1 B

"= @M)T(a+2)| i § i EZI\;I 3 ...(1.40)
0.0 00 :
0 0 00 1

where:

Ek — (k + 1)(x+1 _ 2ka+1 + (k _ 1)(x+1

18



Chapter One Basic Conisep

1.5.3.2 Operational matrix of the fractional ord@ntegration of Haar
Wavelet Functions

The integration of H,(x) defined in equation (1.32) can be
approximated by Haar series with Haar coefficieatrmP as:

fOX Hp, (1)d T = Py Hiy (X) ...(1.41)
where a m-square matrix P is called the Haar wévelperational matrix of
integration [Chen, 1997].

Zhao, [Zhao, 2010] derive the Haar wavelets opamati matrix of the

fractional order integration.

He introduced the Riemann-Liouville fractional ardetegration, as

given in chapter one as:

(JH)x) = %ff(x —D)* Hf(t)dr = %x“‘l * f(x) ...(1.42)

Wherex € R is the order of integratior;(a) is the Gamma function and

x*~1 % f(x) is the convolution product a®~1 andf(x).

Now if f(x) is expanded in Haar function, the Riemann- lidavil
fractional order integration is solved via the Haarction, because the Haar
functions are piecewise constant, it may be expénd® m- term Block
Pulse Function (BPF) as:

Hp, (%) = @y B ()7 ...(1.43)
WhereB,,(x) 2 [by(x)b;(X) ... bij(X) ... b1 (X)]

Next, we shall derive the Haar wavelets operatiomaltrix of the

fractional order integration by letting

(aIgHm)(X) = P?nmem(X) ---(1-44)

where the m-square matP¥,,, is called the Haar wavelets operational

matrix of the fractional integration.
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Using equations(1.39) and (1.43) we have

(afHm) ) = (alfPmxmBm) %) = Prxm ( alfBm) (%)
~ OyxmFBm () ...(1.45)

From equations(1.44) and (1.45), we get:

noqcxm m(X)_Pnoqcxm mxm m(X)

= Prxm F*Bm(x) ...(1.46)
Then the Haar wavelet operational matrix of thetfoaal order of integration
Pa.m IS given by:
mxm = Pmxm F* Cmem ...(1.47)

For example, leta = 0.5, J= 2 hence m = 8, the operational matgk,,, is

computed below as:

[0.7523 —0.2203 -0.1558 -—0.0820 —-0.1102 —-0.0580 -0.0447 —0.0377]
0.2203 0.3116 —0.1558 0.2296 —-0.1102 -0.0580 0.1756 0.0782
0.0410 0.1148  0.2203 —0.0350 -0.1102 0.1623 —0.0389 —0.0063
pos —10.0779  —0.0779 0 0.2203 0 0 —0.1102 0.1623
8x8 7 10.0094 0.0196 0.0812 —0.0032 0.1558 —0.0247 —0.0026 —0.0009
0.0112 0.0439 -0.0551 -0.0194 0 0.1558 —0.0247 -0.0026
0.0145 -—-0.0145 0 0.0812 0 0 0.1558 —0.0247
10.0275 —0.0275 0 —0.0551 0 0 0 0.1558
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Haar Wavelet Method for
Solving Simplest Fractional
Variational Problems

2.1 Introduction

This chapter consists of seven sections , in se@id classical calculus
of variational is presented , in section 2.3 thapdest fractional variational
problem was given, while in section 2.4. The cdse,@® 0 0 * and Several
Functions are discussed and we present in sectionTBe problem of

Lagrange and the multiplier rule.

In section 2.6 the Haar wavelet direct method wsesd to solve the
simplest fractional variational problems. Finalyot numerical examples are

given in section 2.7 .
2.2 Classical Calculus of Variation Problem

Let us examine for extreama, by considering a fanat of the simplest

form:
Jly(x)] = Il F(X,y(x),Y (x))dx ..(2.1)

where the end points of the admissible curves iaezlfi.e., y(%) = yo and
Y(X1) = Y1
We can define the first variation of functional JJ&g the part with linear

increment which is linear dby is defined by:

0(J)=J(y +dy) — J(y)||inear part ind y
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which equals zero at the optimum solution y(x).

Now, suppose an extremum occurs at the curweyfx) along with all
admissible solutions ¥ y*(x) and hence we can define the variation in the
solution y to b&dy = y(x) — y*(x) and since the first variation is a functioh

X, then it can be differentiated with the propehtst:
(By)" = (y(x) — y*(x))’
=y'(x) —y*'(x)
= 6y'
Therefore, if:
X1
Iyl = [ F(x,y,y)dx
X0
Then:
X1
Jy +8y] = [ F(x,y+dy,y +8Y)dx
X0
Hence:

Jly +oy] =J[y +dy] - J[y]

_ Xfp(x,y+ay,y+ay)dx - leF(x,y,y)dx

X0 X0

= [[FOcy+8y.y +8Y)- F(x.y.y ] dx

X0
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and upon using Taylor series expansion to thedegtree or linear part of the

increment function, we have:

and upon using the method of integrations to tleerse part of the integral

therefore we have:

oJ h 0 —d oy |d
= || Roy—-——F, X
I(yy dxyyj

X0

Xf( d jes d
= ||KR——FK |0ydx=0
%o y dx y
Now, sincedy is an arbitrary function, hence by using the famental

lemma of calculus of variation, we have:

which is the required necessary condition to bésfsad on the optimum
solution y(x). This condition is called the Euleagrange equation (for

simplicity Euler equation).

2.3 The Simplest Fractional Variational Problem

Several definitions of a fractional derivative halbeen proposed in
chapter one. These definitions include Riemann-liitey Grunwald-
Letnikov, Weyl and Caputo, fractional derivativé¢ere, we formulate the
variational problem in terms of the left and thghti Riemann-Liouville

fractional derivatives, which are defined as:
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| d\"%  n-a-
aDXf(x)—r(n_u)(&j £(x D" (D) dt

and

qen 1 (=d)"® o
DY f(x) = r(n—a)(&j {(X—T) Y(v)dt

wherea is the order of the derivative, such thatrl <a < n. If a is an

integer, these derivatives are defined in the useiase, i.e.,

_DYf(x) = (%ja, D (x) = (;—j)a a=1,2, ... .(2.2)

Note that, in the literature of Riemann-Liouvilleaétional derivative
generally means the LRLFD. From physical point iefw if X is considered
as a time scale, the RRLFD represent, an operaggoformed on the future
state of the process f(x). This derivative has gahebeen neglected with the
assumption that the present state of a processraisgepend on the results

of its future development, [Agrawal,2002].

However, the derivation to follow will show that thoderivatives

naturally occur in a problem of fractional calcubfssariations.

The first simplest fractional calculus of variatiproblem can be defined
as follows; let F(x,y,u,v) be a function with canibus first and second
(partial) derivatives with respect to all of itsgaments. Then, among all
functions y(x), which have continuous LRLFD of orde and RRLFD of

orderf for a< x < b and satisfy the boundary conditions:

Y(@) = Ya Y(D) = ¥ ...(2.3)

Find the function for which the functional:

b
Jyl = [F(X,y,a D%y, D y)dx (2.4

24



Haar Wavelet method for solving simplest

Chapter Two fractional variational problems

is an extremum, where 05 B < 1. The continuity requirement on F can be

given more precisely. However, these assumptiomsnade for simplicity.
Note that:

(1) We have included the LRLFD and RRLFD generality.

(2) We first consider 0 <, B < 1. The case of, O * will be considered

shortly in the next section.

(3) Whena = (3 = 1, the above problem reduces to the simplest tiamiz

problem.

To develop the necessary conditions for the extrepassume that y*(x)

is the desired function, letd [ *, and define a family of curve:

y(x) = y*(x) + en(x) ...(2.5)
which satisfy the boundary conditions, i.e., wguiee that:
n@=n(b)=0 ...(2.6)

since DS andXDE are linear operators, it follows that:
aD3Y(X) = 2DSY*(X) + £,D5N(X) .(2.7)
«Dhy() = ,Dfy*() + &, Dfn(x) ..(2.8)

Substituting Equations (2.5), (2.7) and (2.8) iEguation (2.4) we find
that for eachm(x)

b
J=Jfe] = [F(x,y*+en, ;DSy* +¢ D%n, ,DPy* +& D frdx ...(2.9)
a

is a function ok only. Note that 3] is extremum a¢ = 0.
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Differentiating equation (2.9) with respectgtove obtain:

dJ _ bl oF oF oF
T n+——— DIn+——— DPn|dx ...(2.10
de ayn 9,D%° KN d,Dby * o'l (2.10)

Equation(2.10) is also called the variations gf af y(x) alongn(x).
A necessary condition forg][to have an extremum is th%{g must be
3

zero and this should be true for all admissii€). This leads to the condition

that for J[y] to have an extremum fory*(X) is that:

b
j% +a—FaaD‘§‘<r]+a—FBXDﬁn} dx=0 ...(2.12)
a ay aany axDby

for all admissiblen(x). Using the formula for fractional integratioy parts,

the second integral in equation (2.11) can be ewits[Riewe,1996]

,[Samko,1993]:

b b
oF oF
a~”’a X a a— X

provided thati orn is zero at x a and x= b. Using equation (2.6) this
XY
X

condition is satisfied and it follows that equati@l?) is valid.

Similarly, the third integral in equation (2.11) is

b oF 8 b
a

X a

substitute equations (2.12) and (2.13) into equat?ll), we get:

JaF so OF , o OF

dx=0 ...(2.14
ay X baan‘(y a xax by:|n ( )
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sincen(x) is arbitrary, it follows from a well establisth@esult in calculus of

variations that:

L .
ay aany axDby

=0 .31

Equation(2.15) is the Euler-Lagrange equation fer fractional calculus of

variations problem. Thus, we have:

Theorem (1.1),[Agrawal,2002]:

Let J[y] be a functional of the form:

b
[F(x,y,4 D%y, DEy)dx
a

Defined on the set of functions y(x), which havettouous LRLFD of order
a and RRLFD of ordef in [a,b] and satisfy the boundary conditions ¥3a),
and y(b)=y,. Then a necessary condition for J[y] to have aneexum for a
given function y(x) is that y(x) satisfy followinguler-Lagrange equation:

OF, pu OF , s 0F

— =0
ay X baaD‘iy a

“0,DBy

Note that for fractional calculus of variation pkeims, the resulting
Euler-Lagrange equation contains both the LRLFD #nmedRRLFD. This is

expected since the optimum function must satisfth derminal conditions.

Further, fora = = 1, we have,D, =% andXDE =;—g and equation (2.15)

reduces to the standard Euler-Lagrange equation:

oF _doF _, ...(2.16)
oy dxoay
where y = ﬂ
dx
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2.4 The Case ofr, 00 ™ and Several Functions

We now consider further generalization of the abgweblem.
Specifically, we consider two different cases filstwhicha;, 3; 00" (j = 1,
2, ...), l.e., one can have multiple positiveand[3, and second, in which one

more than one function. In both cases, we consideend points fixed.

Case 1: Fixed end points amg 8 70" (=1, 2, ...):

Assume that; (j=1, 2, ..., n) ang (k =1, 2, ..., m) are two sets of

real numbers all greater than zero.

O max = Max{ay, Ay, ..., 0n, B, Ba,.., Bm} ..(2.17)

Is the maximum of all these numbers, and M is &egier such that M 1 <
Omax < M. Assume that F(X,y1Z ..., Zn+n) IS @ function with continuous first
and second partial derivatives with respect toilarguments, and consider

a functional of the form:
b
IV = [F(X, Y0 DYoo O Yoy O Y BT Y) O ..(2.18)
a

The problem can now be defined as follows: Amotigfunctions y(x)

satisfying the conditions:
V(@)= Yao: Y (@)= Yarr - ¥ @)= Yaun ...(2.19a)

y(0) = Ypo, Y(0O) = Ypg, -, yM () = Ybm-1) ...(2.19b)

Find the function for which equation (2.18) has ettremum. Here it is

implicitly assumed that y(x) meets all the diffetiability requirements.

The necessary condition for this problem can bexdotollowing the

approach presented above. This leads to:
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Theorem (2.2),[Agrawal,2002]:

Let J[y] be a functional of the form given by eqoat(2.18) defined on
the set of functions satisfying the boundary coadg given by equation
(2.19). Then a necessary condition for J[y] to hameextremum for a given
function y(x) is that y(x) satisfy the Euler-Laggenequation:

n ] m

Oy D 2+ 3 D0 =0 .-(2.20)

oy = 0,D,)y k=21 d,Diky

As a special case, consider thatj (j =1, 2, ..., n) and that F does not
contain the, DEky (k=1, 2, ..., m) terms. In this case,using equatio)(2.
we have :

n/_d\
%+z(_dj IF o .(2.21)
ay = dx ay(l)

Thus, for integral order derivatives, the necessamnditions obtained using
fractional calculus of variations approach redutesthat obtained using

standard calculus of variations approach.

Case 2: Fixed end points and several functions:

The simplest fractional variational problem dis@gss section (2.3) can
be generalized in a straight forward manner to llgprab containing several

unknown functions.
This problem can be defined as follows:

Let F(X.\,Y2,-.-,YnZ1,2,...,22n) b€ a function with continuous first ad
second (partial) derivatives with respect to allatguments. For O, B < 1,
consider the problem of finding necessary cond#ifor an extremum of a

functional of the form:

b
IY1se o Yl = [ FOG YL e Yo v Do Vaoevora By Yoo B Yook B 1) ..(2.22)
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which depends on n continuously differentiable fiones w(x), y=(x), ...,

Yn(X) satisfying the boundary conditions:

Yi(@) = Vi Yi(0) =Y, j= 1,2, ..., N ...(2.23)

Note that, no relationship exists among the fumstig(x) (j = 1, 2, ...,
n). Therefore, the necessary condition for the tional in equation (2.22) to
have an extremum can be found by considering thatians of each function

one at a time. Thus, we have:

Theorem (2.3), [Agrawal,2002]:

A necessary condition for the curve

Yi=yix) (=12, ..,n) ...(2.24)

which satisfies the boundary conditions given Quagion (2.23) to be
an extreamal of the functional given by equatia@2#?.is that the functions

y;(x) satisfy the following Euler-Lagrange equation:

oF
+

oF oF N DE( oF
c’)yj

DY a
axDEyj

b ————
aaDiyj

=0,j=1,2,...,n ...(2.25)

X

In vector notation, the above condition can betemias:

by O
ay aany axDby

=0 ..(2.26)

where yO [ .

The above problem considers several functionsphlyt one LRLFD of
ordera £ 1 and one RRLFD of ord@r< 1. The problem of finding extremum
of a functional consisting of multiple functionsdamultiple LRLFD and
RRLFD of order greater than zero can be develomdguthe discussion

presented in cases 1 and 2 above.
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2.5 The Problem of Lagrange and the Multiplier Rule

In this section we consider the following probléfmd the extremum of

the functional:

b
Iyl = [F(x,y,, D%y, Dpy)dx ..(2.27)
a
such that:
P(x,y) =0 ...(2.28)
and
ysl(j)(a) = Ysi()a ysz(j)(b) = Ys2(j)b (j=1,2,...,n—=m) ...(2.29)

where yO 0", @ 00™, m< n, and s1 and s2 are two sets of n numbers
obtained by reordering the numbers 1 to n. It uased that the constrained
functions@(x,y) =0 (j =1, 2, ..., m) are all independent. This problem is
essentially the same as that of Lagrange excepirthhis case the functional
contains the LRLFD and the RRLFD. For this reases, will call this
problem as the problem of Lagrange containing ivaei derivatives or
simply a fractional Lagrange problem. This is acsplecase, and in a general
fractional Lagrange problentp may also contain the left and the right

fractional derivatives.

To develop the necessary conditions for the propleote that y at the
two ends are completely known. This follows frome tifiact that the
constraintsp(x,y) =0 (j=1, 2, ..., m) are all independent and the values of
n—m functions ¥x) (j =1, 2, ..., n) are specified at both ends. Therefine,
values of the rest of the functions at the two etals be determined using a

technique such as Newton-Raphson.
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Suppose y*(x) is the solution to the above probland define:
y(X) = y*(x) + en(x) ...(2.30)

wheree is a sufficiently small number, angx) O 0 " is a variation of y(x)
consistent with the constraints, i.e., y(x) sadisfequation (2.28). from the

above discussion, it follows that:
n@)=n{)=0 ...(2.31)

Substituting equation (2.31) into equation (2.28panding the resulting
vector into Taylor series, and neglecting secordl lagher order terms ig,

we get:

ai)r](x)=0 ...(2.32)
oy
Equation (2.32) clearly indicates that not all fumes n;(x) ( = 1, 2, ..., n)
can be independent. Substituting equation (2.30) equation (2.27), we get
a function that is only dependent arExtremum of this function requires that

its derivative with respect ®must be zero. This leads to:
*f{aF oOF o . OF

Thn+—2  D%+—"" DPfnldx=0 ...(2.33
oy 0,D% % X 3 Dly”* br'} (23

a

The left-hand side of equation (2.33) is the dicewl derivative of J at y(x)
in the directiom(x). Using the formula for fractional integratiog parts and

equation (2.31), it follows that:

b
j{%ﬂoga—iuoﬁ; a':B }n dx=0 ...(2.34)
ay aany axDby

a

Here the elements ofj(x) are not all independent, and therefore its

coefficients cannot be set to zero. Equation (2mé&fivates the following:
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Definition(2.1),[Agrawal,2002]:

An admissible arc y*(x) is said to satisfy the nplier rule if there

exists a vector of multipliers I() 0 ™ continuous on [a,b], and a function:

F(X,Y,a D%y  BBY. D= FOG Y, a DLy By T (X0 (x,y)  ...(2.35)

such that:

O DE 2+ D8 T
ay aany axDby

Is satisfied along y*(x).

Theorem (2.4),[ Agrawal,2002]:

Every minimizing arc y*(x) must satisfy the muliigd rule.
Proof:

To prove this, multiply equation (2.32) with() and add the results to
equation (2.34), to get:

b
|+ op s Db 24170 2% |nax =0 .(2.37)
a ay aany axDby ay

It can now be shown that:
9, pi—%F . ot aFB 17009 =0 ..(2.38)
oy d,D%y 0,Dby oy

This follows from the fact that [(x) may be seletteuch that m of the n
equations in equation (2.38) are zero. This is sineed®/dy has a full rank.
Rest of then’s can be selected as independent and thereforetliee n— m
equations in (2.38) follows by using equation (2.8@d applying a theorem

in calculus of variations. Note that equation (2.88n now be obtained using
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equation (2.35) and (2.38). Equation (2.38) willdadled the Euler-Lagrange

equation for constrained fractional variationallgens. H

Follows we obtain the Euler-Lagrange equationsdorunconstrained

and a constrained fractional variational problems.

Example (2.1)[Agrawal,2002]:

As the first example, consider the following undosmised fractional

variational problem:

1
Minimize J[y] = %j(on‘(y)z dx ..(2.39)
0
such that:
y(0)=0 and y(I)=| ...(2.40)

This example witha = 1, for which the solution is y(xF x, is often
considered in textbooks on variational calculugalh be shown that for this

problem, the Euler-Lagrange equation is:
(D1 (D%y)=0 ..(2.41)
It can be shown that far > 1/2, the solution is given as:

X dt
= (20 -1
Y00 = @ = D g

..(2.42)
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Example (2.2) [Agrawal,2002]:

As the second example, consider the following cairs¢d fractional

variational problem:

Minimize J[y] = %i[yf + yg] dx ..(2.43)
such that:

oDXY1 =Y1+ ¥e ...(2.44)

y(0)=1 ..(2.45)

This example with integral order derivative is afteonsidered in
textbooks on optimal control. It can be shown fobathis problem, the Euler-

Lagrange equation is:
y;+1+ Dl =0 ...(2.46)

y2=1=0 ..(2.47)

2.6 Direct Haar Wavelet Method for Solving SimplesFractional

Variational Problems:

In this section we shall consider the problem aegmization of the

functional J of the form:
b o 8
Jy(t)] :IF(x,y,any,XDby)dx ...(2.48)
a

Satisfying the boundary conditions :

y(@=w and y(b) =py ...(2.49)
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where aDi‘y and xDEy are considered to be the LRLFD and RRLFD of

orderedo andp respectively.

The regular method for solving problem (2.48)-(2.49 given in section
(2.3) through the Euler-Lagrange equation

OF, pa OF , pp OF

-0
oy * "9,D%y * *o,Dly

In this section we shall use Haar wavelet functimnaestablish the direct

method for fractional variational problems.

Unlike other direct methods, beginning with the uamsgtion of the
variable itself, the method we have started hestate by assumingDSy as

Haar wavelet whose coefficients are to be deterthine
a _ o)
any - Zcihi (X)
i=0
Taking finite terms as approximation, we have

m-1
DSy Y ¢h (%)= g, Hy, (%) ...(2.50)
i=0
Applying the Riemann-Liouville fractional integrati of ordera to the both
sides of equation (2.50) yields [killbas, 2006]:

—nm — ) i \
y(x) jglr(o(_jﬂ)(y a)'” I Gy, R Hy (X

Thus y(x) can be expressed as:

n (n=1J)
T y _ A
YOO U ConPonen Hy OO0+ 2 0 =57 0= 8 +(2:51)
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The other terms in the functional (2.48) are expeandlso in terms of Haar

wavelets and therefore through substitution we have
J=J(G .6, fg ...(2.52)

The original extremization of fractional problenosgim in (2.48) becomes the

extremization of functional of finite set of varlabn equation (2.52)

Taking partial derivatives of J with respect t@aied setting them equal to

zero, we obtain

ﬂ:O,i:O,l,...,m— :

ac;

Solving for ¢ and hence we have the desired solution. Aftertgubsg these

values into equation(2.51).
2.7 Numerical Examples

In order to illustrate the efficiency and appliddbpi of the numerical
procedure which was given in the above sectiorofallg two numerical

examples are considered in this section.

Example (2.3):

Consider the functional:

1
1= [(oDSy)2x (253)
0
y(0)=0,y(1)=1 ...(2.54)
Let:
oDxY(X) = CH () ...(2.55)
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a
IX

Taking yl to the both sides of equation (2.55), we get:

Y(X) = Cp, P Hin (X) ...(2.56)
Also the other boundary condition that we have is :

y(1)=1

which implies that

Cl P H_(1)=1 ...(2.57)

m- mxm

Substituting equation (2.55) into (2.53), we have:

JOZ[C H, (X)H C. dx

N~
o —r

J0 % Cﬂ H. (x)H (x)dxC,
0

Hence

JD%C,I]K C ...(2.58)

mxm =m

Case 1:if a =1, in this case the exact solution was given [Agz2002] as

y(x)=x then equation (2.55) becomes:
y' =C' H_ (X) ...(2.59)

and hence integrating equation (2.59) from O tihxs we get:
X
y(x) = [ChH, () dx+ 0= C P, Hy, (X, ...(2.60)
0
For the final boundary condition y(¥)1 equation (2.60), yields:

y(1) = c}j H,, (x)dx=1 ...(2.61)
0
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Note that the definite integral of(x) from zero to one is equal to one,

while the definite integrals of;hhy, ..., h; are all equal to zero for m8, or:
1 1
[he@dt=1[h ¢)d=C i=1,2,...,7 ...(2.62)
0 0

Substituting (2.62) into (2.61), we have

Ci[t o 00o000O0P==xg

This information should be substituted into equa{i®.58), we then have:

JD&Z+C_§+C_§+32+C_§+L§+§+1
2 4 4 8 8 8 8 ¢
where:
1 0 000 0O
01 0 0 O0ODO
00 % O 00 0O
Ko = 0O 0O % O 00O
®*8°lo 0 0 01 000
O 00O 0% 00
O 00O OO 0% 0
O 00O O0OOTP O O%

For extermization, we take the partial derivatioés) with respect to;c

i=1,2,...,7, and set it equal to zero

ﬂzo,ﬂz 0, ’ﬂ:
oc, dc, ac,

Therefore, we get;ec,=...=c;=0 and hence we have

C

yO[1 0 0000 0 §H (x
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and y(x) is obtained from equation (2.60) as

yx)=[L 0 0 0 0 0 O (QRg H (x

where
8 -4 -2 -2 -1 -1 -1 -1
4 0 -2 2 -1-1-1-1
11 0 0-11 0 0
111 -1 0 0 0 0 -1 1
Be=1612 1 1 0 0 0 0 0
4 4 2
11 2109 0 0 0 0
1210 1 0 0 0 0
7 7 0 3 0 0 0 O
Hence

y(x) =0.5h, (x)- 0.25h (x} 0.125h (& 0.125h (%
0.063h, (x)- 0.063h (x} 0.063h (3) 0.063h |

Case 2if a = 0.6 then
y @O =CIH_(x) ...(2.63)
And hence taking |2° to the both sides of (2.63) thus we get

y(x) =Cp P H,, () ..(2.64)

m" mxm

Also, for the final boundary condition y(¥) 1, and for m=8 equation (2.64)

yields:
1
c, =——[0.022¢, + 0.031¢+ 0.004128¢ 0.1
1= 50900226 : ge  0.13fc
1.075¢ + 0.008891c+ 0.287¢ ...(2.65)
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substituted equation (2.65) into (2.58) thus andrahaking extermization to
J by taking partial derivative with respect to=q, i = 0,1,...,6 and set them

equal to zero

EzO, i=0,1,...,.6
oc.

Therefore:

y(®®(x)[1[0.841- 0.225 0.049 0.24 0.031 0.02
0.069- 0.091]H (x
and y(x) is obtained from equation (2.60) as:
y(x) =[0.841- 0.225 0.049 0.24 0.031 0.02
0.069- 0.091]€> H (x

where
[0.699 -0.238 - 0.157 - 0.094 - 0.104 0.062 - 0.051 - 0.04
0.238 0.224 - 0.157 0.22 - 0.104 0.062 0.156 0.081
0.047 0.11 0.147 - 0.027 - 0.104 0.145 - 0.029 - 52848°]
09) - 0.079 -0.076 0 0.147 0 0 - 0.104 0.145
0.011 0.02 0.072 - 2.662 IO 0.097 -0.018 - 2.109 16 - 2.21 10
0.013 0.039 - 0.052 - 0.015 0 0.097 - 0.018 2.409°1
0.016 -0.016 O 0.072 0 0 0.097 - 0.018
10.026 -0.026 0 - 0.052 0 0 0 0.097 |
Hence:

y(x) =0.513h (x)- 0.239h (x3 0.103h (> 0.162h (x
0.06h, (x)- 0.0488 (x> 0.061h (> 0.086h (
Following table (2.1) gives the approximate solutod example (2.3) for

different values otx and compares the result far= 1 with exact solution,

which was given in [Agrawal,2002].
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Table (2.1)The approximate solution of example 2.3 for differat values

of a with comparison with the exact solution wheru=1

a
1 0.5 0.6 0.8 Exact fora =1
X
0 0.062 -0.108 0.111 -0.148 0.000
0.125 0.188 -0.208 0.231 -0.182 0.125
0.250 0.375 -0.335 0.389 -0.381 0.250
0.375 0.438 -0.363 0.425 -0.481 0.375
0.5 0.75 -0.573 0.68 —-0.802 0.5
0.625 0.688 -0.563 0.651 -0.741 0.625
0.750 0.875 -0.762 0.889 1.12 0.750
0.875 0.938 -1.06 1 0.011 0.875
More accurate results can be obtained for largesegaof m.
Example (2.4):
Find the extremal of the following functional:
1 04,2 a
J=[[(oDEy)* + x(o DS y)ldx ...(2.66)
0
1
y(0)=0, y(1)= 2 ...(2.67)

For solving this problem by the Haar direct metheote assume that

oDy Y(X) can be expanded in terms of Haar wavelet as:

m-1
oDY(X) [ _;) Cihy (X)
or:

oDLY(X) [ ClH , (x) ..(2.68)
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Here also we let m 8.

There is a variable x involved in equation (2.6&plitly it can be
expanded into Haar series in the time interval)[0,1

XOdlH (x) ...(2.69)

Substituting (2.68) and (2.69) into (2.66), we have
1
3= [| G Hoy OOHG, (00Co + G Hyy 0Oy, ()0
0
Hence
J=C K .C.+C K. d ...(2.70)
Case 1:if a = 1,in this case the exact solution was given ingbl2006] as

_X[(,_X
=315

then equation (2.68) becomes:
Y' =ChHp (x)

and hence integrating the above equation fromx) tlous we get:

Y(x) = [ Ch Hp ()dx+ 0= CL R, Hy (X
0 ..(2.70)

For the final boundary condition y(i)% equation (2.71) yields
Tt 1
y(l) = ij I_Im (X)dX: Z
0

Which implies that @:—-% and this information should be substituted into

equation (2.70), we then have:
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[ (_.12 C2 C3 C4 C5 Cs (\’22 é+ A4 5 (2‘5 (% 67_,_0 187¢E
16 16 64 64 64 64 4 2 4 4

For extermization, we take the partial derivatiedés) with respect to;ci =

1,2,...,7, and set them equal to zero

) :01 — = C
ac, ac, dc,

Therefore , we get;gc,=...=¢;=0 and hence
o1 |
yD{ZOOOOOO%I@(x
and y(x) is obtained from equation (2.71) as:
1
y(x):{z O 00OO0OOO O %@8%@

y(x) =0.166h (x)- 0.063h (x} 0.047h (x) 0.016h (x
0.027h, (x)- 0.02h (x¥ 0.012h (© 3.8% T0,h |
Case 2if a = 0.6
y @O =CIH_(x) .(2.72)

and hence upon taking % to the both sides of (2.72), thus we get:

y(x)=ClL POOH (x) ..(2.73)

m’ mxm

Also, for the final boundary condition y(1)% equation (2.74) yields:

c, = W[O 022G+ 0.031g+ 0.004128¢ 0.134¢

1.075¢ + 0.008891c+ 0.287
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After making extermization to J by taking partigrarative with respect

to, i=0,1,...,7 and set them equal to zero.

Therefore

y®®=[0214 -0.029 - 0.049- 0.12- 0043 0012 7.346710 1{H)(x)

and y(x) is obtained from (2.73) as :

y<°-6>:[o.214 -0.029 - 0.049- 0.12- 0.043 0.012 7.%46710 1}
Hence

y(x) =0.214h, (x)- 0.029h (xy 0.04%h (%) 0.12h (

~0.043h, (x)- 0.012h (x) 7.546 IO ch (%) 0.01h

following table (2.2) represent the approximataisoh of example (2.4) for

different values of. with comparison with the exact solutioruatl.

Table (2.2)The approximate solution of example 2.4 for differat values
of a with comparison with the exact solution wheru=1

. a 1 0.5 0.6 0.8 Exact fora =1
0 0.029 0.155 0.093 0.053 0.000
0.125 0.083 0.241 0.179 0.125 0.059
0.250 0.157 0.322 0.265 0.21 0.109
0.375 0.17 0.293 0.246 0.208 0.152
0.5 0.223 0.345 0.317 0.3 0.188
0.625 0.18 0.283 0.254 0.245 0.215
0.750 0.298 0.257 0.24 0.255 0.234
0.875 0.294 0.234 0.221 0.243 0.246
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Fractional Variational Problems
with Trasversality Conditions

3 Haar Wavelet Method for Solving

3.1 Introduction

This chapter consist of four sections. In sectioR. 3he generalized
Euler-Lagrange equations and the transversilityditmmns was illustrated, in
section 3.3 The direct Haar wavelet method forisglfractional variational
problems with transversility conditions in presehténally two illustrative

examples are given in section 3.4.

3.2 The Generalized Euler-Lagrange Equations and #n

Transversality Conditions

In this section, we present the generalized Eusgrange equation and
the transversality conditions for fractional vaoatl problems defined in

terms of the Riemann-Liouville and the Caputo cerues.

We now consider the following fractional variatibpaoblem containing
the left Riemann-Liouville fractional derivative lgn Among all possible
functions y(x), find the function y*(x) which miniize the functional:

1
‘J[y]zj-F(X’y’O (Ixy) dX (31)
0

and satisfies the condition

y(0) = Yo ...(3.2)

This problem is the same as that considered ing#gt, 2002] with two

exceptions. First, it does not include the rightmRann-Liouville fractional
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derivative. This choice made for simplicity. Secpmal this problem, the
boundary condition is specified only at=x0, so that we can develop the
natural boundary condition. For simplicity, we aéssume that O & < 1 and
that all differentiability conditions are met. Werther assume that the end

points are specified.

Here, the function value is given at one end (say® but free at the
other end (say x 1). Using the approach presented in [Agrawal,2002Zhn
be demonstrated that for J[y] to have an extrentamfollowing conditions

must be satisfied:

1

=0 ...(3.3)

1
j{%+)‘ija—Fa}6ydx+( oF jéoD‘j‘("ly(x)
0 ay aOny aOny 0

whered(.) is the variation operator arbde‘("ly(x) must be interpreted as the

fractional integral of order * a. Since the value the functional of the first
term taken only along extermals, consequentlyg &Jds arbitrary, it follows

from a well- established result in calculus of gadions that:

oF 4 °pg oF

— =0 ...(3.4)
gy * 1aoD‘j‘(y
and
(a D“yJBODX Y(x)=0,x=0, 1 ...(3.5)
0~'x

Equations (3.4) and (3.5) are the generalized Hidgrange equation and the
transversality conditions for the fractional vaoa@l problem defined in
terms of the left Riemann-Liouville fractional deative Equation (3.5)

suggests that either:
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F _ _5.x=01 .(3.6)
oD%y

or
5,D%y(x)=0,x=0,1 ..(3.7)

le., oD‘j‘("ly(x) at the end points should be specified. These hbaynd

conditions are fractional and they are similar hose required when the

Laplace transform technique is used. Since y at X is not specified. it

follows that:

oF
0,DYY

Equation (3.8) is called the natural boundary ctods, and to obtain

=0 ...(3.8)

x=1

the optimum solution, this condition must be s#bf

Note that equation (3.4) is somewhat different frimat presented in
[Agrawal, 2002]. It contains a Caputo fractionakidative even when the
functional in equation. (3.1) contains no such tefims is because some of
the boundary conditions are not specified. Equa(®d) can be written
purely in terms of the Riemann-Liouville fractiongérivative. However, in

that case, the resulting equations will contain s@xtra terms.

Now, we consider the following fractional variatadn problem
containing the left Caputo fractional derivativeméng all possible curve

y(x), find the curve y*(x), which minimizes the fatmonal:
1
Iyl =[F(x,y,;D'y) dx ...(3.9)
0

and satisfies the initial condition given by (3.2).
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Once again, we assume that Ou<< 1 and that all differentiability
conditions are met. We also assume that the endtyaire fixed. The
approach presented in [Agrawal, 2002], can be usd#dsome minor changes
for Caputo derivative to obtain the optimality cdrahs for this case also.

This leads to:

1
oF oF 4 OF
——+ DY dydx +| DI Sy(X
g{ay ' 108D§y} ’ (X 1 08Diy] )

1

=0 ...(3.10)

0

sincedy is arbitrary, it follows from a well-establishedsult in calculus of

variations that

OF, po OF

oy

=0 ..(3.11)
1
0Dy

and

1

(ng{ oF j&d@ =0, x=0,1 ...(3.12)

doDYY

0

Equations (3.11) and (3.12) are the generalizedrHidgrange equation
and the transversality conditions for the fractioraiational problem defined

in terms of the left Caputo fractional derivative.

Note that (3.11) contains a right Riemann-Liouviliactional derivative
even when the functional dose not contain any Rmmiaouville fractional

derivative term.
Equation (3.12) suggests that either:

a-1 OF

oDx =0,x=0,1 ...(3.13)

0oDYY
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or
dy(x)|; =0, x=0, 1 ...(3.14)

l.e., y(x) at the end points should be specifiede Tboundary conditions
resulting from (3.14) are the kinematics boundargditions. They have no
fractional derivative terms, and thus they are =taest with those required by
the Laplace transform technique. Since y at X is not specified, it follows
that:

L OF
D&t j
[X a5DYy

Equation (3.15) is called the natural boundary domts and the optimum

=0 ..(3.15)

x=1

solution must satisfy this condition. Note thatstlgondition, in general,
contains fractional derivative terms. Thus fracébwariational problems
defined in terms of Caputo fractional derivativeaynmequire imposition of

fractional boundary conditions.

Follows we shall consider two examples in order sttow some

applications of the transversality conditions.

Example (3.1):

Consider the following functional:
1 t (o 2
Iyl = [[ay* + (o Dy + y)* | dx ..(3.16)
0

And the following boundary condition
y(0)=1 ...(3.17)

We assume 0 & < 1, we will consider two cases:
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Case 1:Let a be 0, in this case, the minimum value of Wyl be O, if a

function could be found that satisfies (3.17) ahd tifferential equation
oDxy+y=0.

For this poblem the Euler-Lagrange equation and ttasversality

condition are:
D1 (oD%y +Y)+(oD%y+Yy) =0 ...(3.18)
and

(,DYYy+y)=0 at x=1 ...(3.19)

Applying the operator I on both sides of (3.18) and using (3.19) , it

can be demonstrated thgD5y +y =0 for 0 < x < 1, as expected. Note that

the trasversality condition contains a fraction&ridative term. Thus, a

fractional boundary condition has been used toestite problem.
Case 2:This time, let a be 1. For this case, the Eulegrhage equation is:
DT (DY +y) +y +((DSy +y) =0 .-(3.20)

and the transversality condition is given by (3.18plving (3.20) is not
straightforward, and perhaps its closed form sotutdoes not exist. This
problem is equivalent to the following fractiongbtonal control problem
[Agrawal, 2004].

Find the optimal control u that minimizes the periance index:
J[]—11 2 +u? |dx (3.21)
y] = Eg[y ] ...(3.

and satisfies the dynamic constraint:

oDYy=-y+u ...(3.22)
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and the initial condition given by (3.17). This plem is solved in [Agrawal,
2004] using a numerical technique. It is demonstrahat u(l)= 0. Using
(3.19) and (3.22), it follows that this conditios ronsistent with the

transversality condition.

Example (3.2 ):

As second example, consider the functional:
1

NE j[%(oogy)z —y}dx ...(3.23)
0

and the boundary condition:

y(0)=Yo ...(3.24)

Consider that 0 «« < 1. In this case, the Euler-Lagrange equation thed

natural boundary condition are:
DI (oD%y) =1 ...(3.25)
and

(oDxY)], _, =0 ..(3.26)

respectively. This problem withh= 1 and y = O represents the problem of a
uniformly loaded bar fixed at one end and freeéhatdther, and in which case
the transversality condition suggests that tharstttithe free end should be
zero. For linear materials, the stress and thenstee linearly related.
Therefore, fora = 1, (3.26) also suggests that stress or load afréeeend

should be zero. If y is the displacement, then xlyddknown as strain. We
may call it first-order strain. Following thig,D%y can be calledr-order

strain. Fora = 1, it will represent ordinary strain, and for = 0, the

displacement.
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Note that if a fractional variational problem idided in terms of Caputo
derivatives, then the natural boundary conditionsy nmclude Riemann-
Liouville derivatives also. Solving such problemsaltically may be
difficult, so a numerical technique may be necegssar
3.3 The Direct Approach for Solving Fractional Variational

Problems with Transversality conditions Using Haar

Wavelet Method.

In this section, we shall consider the problem xiegmization of a

functional J of the form:
Iy(x) 1= [FIx, y(x), o D5 y(x)]dx ...(3.27)

satisfying the condition y(OF yo,and y(1) is considered to be undetermined
where ;D%y(x) is the Riemann-Liouville fractional derivative. @hegular

method for solving problem (3.27) is through theeEdLagrange equation
[Agrawal, 2006]:

& eps 2T =0
oy d0,Dyy

oF
aODxay

where,; D7 is the Caputo fractional derivative.

and

=0

x=1

This section mainly uses Haar wavelets to estaltisidirect method for

fractional variational problems.
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We start by assumingD$y(x) as Haar wavelets whose coefficients are

to be determined:
oDXY(X) = Z.ch (x) ...(3.28)
1=
Taking finite terms as an approximation, we have:
a m-1 T
oDyy(x) = ZO cihy (x) = CyHm(X) ...(3.29)
1=

Applying ol," to the both sides of equation (3.29), thus y(x) ba expressed
as:
y(x)0 CI P H, (X)+ im (x— Of ...(3.30)
al(a-j+1)
The other terms in the functional of equation (3.27 known functions
of the independent variable x and can be expandedaar wavelets through

substitution, and finally we have:

J=J(, Cy, ...y Gne1) ...(3.31)

The original extremiation of a fractional problemos/n in equation
(3.27) becomes the extremiation of functional dfnée set of variables in

equation (3.31).

Taking partial derivatives of J with respect tpand setting them equal

to zero, we obtain:

ﬂzO,i=0, 1, ....,m1 ...(3.32)
oc,

solving for ¢, and substituting into equation (3.30), we have tiesired

result.
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3.4 Numerical Examples

In this section, we shall introduce some exampiesxder to confirm the
applicability and reliability of the proposed methehich was given in the

previous section.

Example (3.3):

Consider the functional:

!
Iy)] = | {E(oDiy(X))z-y(X)}dx ...(3.33)
0
and the boundary condition:
y(0) =y, and y(1) is unspecified ...(3.34)
Consider that 0 « < 1, and for solving this problem by the directaHa

wavelet method, we assume th@y(x) can be expanded in terms of Haar

wavelet, as follows:
a m-1 T
Ony(X) ~ Z Cih (X) = Cm Hm(x) ...(3.35)
=

where:
Cm=[Co Ci ... Gna]"
Hin(X) = [ho(X) hy(X) ... hm—l(x)]T

Here, we shall considerys0 and m= 8 and more accurate results may be

obtained using larger m.

Now, upon taking the fractional Riemann-Liouvilletegration to the

both sides of equation (3.35), thus we get:

y(x) = Cg FgHe(X) ...(3.36)
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The other condition according to [Agrawal, 2006httwe have is:

apes)
aODxO(y(X)

and according to our example, we get:

x=1

ng)’(X)‘X:l =0

which implies thaiC§ Hg(1) = 0.
Therefore:
Cho—C—-CG—-¢,=0
and this gives
C;=C—C —Cs ...(3.37)
substituting equations (3.35), (3.36) and (3.3% aguation (3.33) yields:

- _
YOO [| 2(CEHa (M (0Cq) - ChFf Mo (0] o

o

) _
>(CEHa(0HE (x)Ce) ~ CoF M5 ()| b

]
QO+

Therefore:

Jy(x)] =

N[~

1 1
Cg [Hg(x)H§ (x) dxCq — C§ Fiig [Hg(x)dx ...(3.38)
0 0

And as we mention in chapter two that the defimtegral of j(t) from 0 to 1
is equal to 1, while the definite integral of hy, ..., hy are equal to zero for m

=8, or:

}ho(x)dle,}hi(x)dx:O,i=1, 2, ..., 71 ...(3.39)
0 0
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Hence, upon using equations (3.37) and (3.39) abdtiuting into equation
(3.38), we get:

JU 5S¢ KegCs — Cg Fhg ...(3.40)

O O O O O o O Bk

Following table (3.1) give the approximate solutafrexample (3.3) for
different values ofo and compares the results far= 1 with the exact

solution which was given in[Agrawal,2002] as:
X
X)=X|1-—
y(x) ( zj

Table (3.1)Comparison of the numerical solution of example 83 .for

different values ofa with comparison with the exact solution when=1

y a 1 0.5 0.6 0.8 Exact fora =1
0 0.059 0.291 0.216 0.115 0.000
0.125 0.169 0.511 0.420 0.273 0.117
0.250 0.318 0.740 0.645 0.466 0.219
0.375 0.341 0.704 0.625 0.473 0.305
0.5 0.536 0.917 0.851 0.695 0.375
0.625 0.449 0.761 0.701 0.574 0.430
0.750 0.503 0.754 0.708 0.593 0.462
0.875 0.492 0.617 0.618 0.591 0.492
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Example (3.4):

Consider the functional:

1
3ye01 = [ oD%y | +] x( oD%y |l .(3.41)
0
and the boundary conditions:
y(0)=0 and y(1) is unspecified ...(3.42)

and for solving this example also we let:

oD%Y(X) = CpHm(X) ...(3.43)
Hence
Y() = CyPrmsanHin(X) ..(3.44)

There is a variable x involved in equation (3.4kpleitly and it can be

expanded into Haar series over the interval [0,1]
x U dr Hn(X) ...(3.45)
Also, the other condition that we have is:

a + -
2Dy y(x) +x - 0

which implies that:

1
CrHn(1) = - ...(3.46)
Here we shall take also m=8 and according to egu#8.46) thus we have:
c7=co—c1—c3+% ...(3.47)
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and substituting equations (3.43), (3.45) and (3idid equation (3.41), we

have:

1
IYCAI0 [ C§ H()HE (x)Cg+ CHg(x)H5 (X)d5 | dx
0

Jy(X)] L Cg KgxgCs + C§ Kenals ...(3.48)

Following table (3.2) gives the approximate solntod example (3.4) for
different values ofo and compares the results far= 1 with the exact

solution, which was given in [Hsiao, 2004], as:

y(t) = 2

Table (3.2) Comparison of the approximate solutiohexample (3.4) for

different values ofa with comparison with the exact solution whan=1

< a 1 0.5 0.6 0.8 Exact fora =1
0 0.001062| -0.008 |-0.006441 -0.073 0

0.125 | -0.008938 -0.032 -0.026 -0.085 —-0.003906
0.250 -0.029 -0.079 -0.065 -0.114 -0.016
0.375 -0.049 -0.109 -0.093 -0.138 -0.035

0.5 -0.108 -0.215 -0.189 -0.214 -0.063
0.625 -0.120 -0.216 -0.193 -0.223 -0.098
0.750 -0.186 -0.437 -0.378 -0.356 -0.141
0.875 -0.222 -0.327 -0.326 -0.367 -0.191

59




g . N
Conclusions and
. Future Works )




Conclusions and Future Works

From the present study one can conclude the fallgwi

1- The numerical solution of the fractional variatibpeoblems can be
obtained directly from the functional and the thisreo need to solve
the fractional Euler-Lagrang equation .

2- The procedure considered in this thesis can beidemnesl as a
generalization to the results given in [Hsiao,2004]

3- From the lllustrative examples it can be seen thet operational
matrix approach can obtain accurate and satisfgaglts.

4- It in remarkable that by using our approach we dd meed to
approximate the LRLFD and the RRLFD simulteanoussy Haar
series in the variational problems which was caergd in chapter
two and just we approximate the LRLFD as Haar seneorder to
get the desired (sapproximate) solution and thjgr@ach gave us

reasonable results if it is compared with the egatition.
Also , we recommend the following problems as feitwork :

1- The numerical solution of the fractional variatibpaoblems using
direct Chebyshev wavelets , direct Legender wasetsthods.

2- The numerical solution of the fractional variatibpaoblems using
Bernestein operational matrix .

3- The numerical solution of the fractional variatibmpaoblems with
delay using direct Haar wavelet method.

4- The numerical solution of the fuzzy fractional aional problems

using direct Haar wavelet method.
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