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SSuummmmaarryy  

 

In this thesis, we present a clear procedure of solutions for the fractional 

variational problems via Haar wavelet technique. The fractional derivative is 

defined in the Riemann-Liouville sense.  

The main theme of this thesis is oriented about two objects: 

The first objective is to study the simplest fractional variational 

problem with two fixed boundary conditions and find its approximate solution 

by using the direct Haar wavelet method. 

The scond objective is about studying  the fractional variational 

problems with one movable condition (undetermined condition) and finding 

its approximate solution by using the direct Haarwavelet method. 

The approximate solution for the considered classes of  variational 

problem can be obtained directly from the functional and there is no need to 

solve the fractional Euler-Lagrange equation therefore the proposed approach 

(direct Haar wavelet method ) can give us a simplest and accurate solution for 

such kind of variational problems of fractional order. 
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IInnttrroodduuccttiioonn  

 

The subject of fractional calculus (that is, calculus of integrals and 

derivatives of any arbitrary real or complex order) has gained considerable 

popularity and importance during the past three decades or so, due mainly to 

its demonstrated applications in numerous seemingly diverse and widespread 

fields of science and engineering. It does indeed provide several potentially 

useful tools for solving differential and integral equations, and various other 

problems involving special functions of mathematical physics as well as their 

extensions and generalizations in on and more variables [Kilbas,2006]. 

 The concept of fractional calculus is popularly believed to have 

stemmed from a question raised in the year 1695 by L’Hopital to Leibniz, 

which sought the meaning of Leibniz's (currently popular) notation 
���

���
 for 

the derivative of order n∈ 0� = {0,1,2,… }	when n = 1
2
 (what if n = 1

2
 ?).in 

his replay 30 September 1695, Leibnize wrote L' Hopital as follows: "… this 

is apparentParadox from which, one day, useful consequences will be drawn 

…", [Kilbas, 2006]. Since that time fractional calculus has drawn the attention 

of many famous mathematicians, such as Euler, Laplace Fourier, Able, 

Liouville, Riemann, and Laurent. But it was not until 1884 that the theory of 

generalized operators achieved such a level in its development so as to make 

it suitable as a point of departure for the modern mathematician [Caponetto, 

2010]. 

By then the theory had been extended to include Dm operators, where m 

could be rational or irrational, positive or negative, real or complex.Thus the 

name fractional calculus become somewhat of misnomer. A better description 
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might be differentiation and integration to an arbitrary order [Caponetto, 

2010].Although, the concept of the fractional derivatives was introduced 

already in the middle of the 19th century by Riemann and Liouville, 

[Lepik,2007]. The first work, devoted exclusively to the subject of fractional 

calculus, is the book by Oldham and Spanier [Oldham,1974] published in 

1974. After that, the number of publications about the fractional calculus has 

rapidly increased and today there exist at least two international journals 

which are devoted almost entirely to the subject of fractional calculus  

(i) journal of fractional calculus and (ii)fractional calculus and applied 

analysis and for an historical overview on fractional calculus, see 

[Oldham,1974], [Miller,1993] and [Kilbas,2006]. 

Recent practical applications of fractional calculus in engineering, 

physics, and biology can be found in [Podlubny,1999], [Sabatier,2007], 

[Das,2008]and [Mainardi, 2010]. 

A fractional calculus of variations problem is a subtopic of fractional 

calculus and it is a problem in which either the objective functional or the 

constraint equation or both contain at least one fractional derivative term, 

[Agrawal,2002]. 

This occurs naturally in many problems of physics, mechanics and 

engineering in order to provide more accurate models of physical phenomena 

(see [El-Nabulsi,2007] and [Mozyrska,2011)], However, the fractional 

calculus of variations is a new field;Its starting point appear to be the 

references [Riewe,1996], [Riewe,1997] where Riewe developed the 

nonconcentrativeLagrangian, Hamiltonian, and other concepts of classical 

mechanics using fractional derivative, [Agrawal,2008]. 

Agrawal[Agrawal,2001] presented a heuristic approach to obtain 

differential equations of fractionally damped system. Later 

Agrawal[Agrawal,2002] combined the calculus of variations and the concept 
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of fractional derivatives to develop Euler-Lagrange equations for fractional 

variational problems.Klimek [Klimek,2001] presented a fractional sequential 

mechanics model with symmetric fractional derivatives. in [Klimek,2002] 

stationary conservation laws for fractional differential equations with variable 

coefficients.Dresigmeyer and Yong [Dresigmeyer,2003] presented 

nonconservativeLagrangian mechanics using generalized function approach. 

In[Dresigmeyer,2004] the author show that obtaining differential equations 

for a nonconservative system using fractional derivatives may not be possible. 

The fractional Euler-Lagrange equations was used by Baleanu and 

Coworker to model fractionalLagrangian and Hmiltonian formulations with 

linear velocities [Baleanu,2004], [Muslih,2005a] and Hamiltonian equations 

for fractional variational problems [Muslih,2005b]. References[Agrawal,2004] 

[Agrawal,2005] present formulations for deterministic and stochastic analyses 

of fractional optimal control problems. 

Tarasov and Zaslvasky [Tarasov, 2005] have used variational Euler-

Lagrange equations fractional generalization of the Ginzburg-Landou 

equation for fractal media.Fractional Euler-Lagrange equations are difficult to 

solve explicitly and consequently it is of interest to develop efficient 

numerical schemes for such dynamical systems 

In this thesis, we present the direct Haar wavelet method to solve 

fractional variational problems with transversality/ fixed boundary 

conditions.Haar wavelet theory has been innovated and applied to various 

fields in engineering ([Strang,1989]-[Hsiao,2000]), and have proved to be a 

wonderful mathematical tool.The procedure begins by assuming the 

admissible functions by Haar wavelets with coefficients to be determined, 

then establishing an operational matrix for performing integration and finding 

the necessary condition for exterimization, solving the resulting algebraic 

equation gives the Haar coefficients. This indicates that for the class of 
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problems that will be considered, the numerical solution can be obtained 

directly from the functional, and there is no need to solve the fractional Euler-

Lagrange equations. 

This thesis consist of three chapters : 

In chapter one which is entitled basic concepts we give some necessary 

and important definitions of fractional calculus in addition to the definition  of 

the Haar function and its main properties such as multiplication ,function 

approximation and operational matrix of integration and its operational matrix 

of fractional integration. 

 In chapter two we solve the classical fractional variational problems 

with natural conditions using Haar wavelet method. 

Finally In chapter three we solve the fractional variational problems with 

transversality conditions using Haar wavelet method. It is remarkable that all 

calculations are made by using computer software Mathcad14. 

 



Chapter One

Basic Concepts



Chapter One                            Basic Concepts 

 1 

 

BBaassiicc  CCoonncceeppttss    

 

1.1 Introduction 

This chapter consists of five sections, in section 1.2 the gammaand beta 

functions are given, in section 1.3 we present some definitions of fractional 

order integration while in section 1.4 some definitions of fractional order 

derivatives are presented ,finally in section 1.5Haar functions and its main 

properties are given.  

 

1.2 The Gamma and Beta Functions [Oldham,1974]: 

The complete gamma function Γ(x) plays an important role in the theory 

of fractional calculus. A comprehensive definition of Γ(x) is that provided by 

Euler limit: 

Γ(x)=
x

N

N!N
lim

x(x 1)(x 2)...(x N)→∞

 
 + + + 

, x > 0 …(1.1) 

but the integral transform definition is given by: 

Γ(x)= x 1 y

0

y e dy
∞

− −
∫ , x> 0 …(1.2) 

is often more useful, although it is restricted to positive value of x. An 

integration by parts applied to equation (1.2) leads to the recurrence 

relationship: 

Γ(x + 1) = xΓ(x) …(1.3) 

11  
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This is the most important property of gamma function. The same result 

is a simple consequence of equation(1.1), since Γ(1) = 1, this recurrence 

shows that for positive integer n: 

Γ(n + 1) =nΓ(n) 

=n! …(1.4) 

The following are the most important properties of the gamma function: 

1. 
n1 ( 4) n!

n
2 (2n)!

− π Γ − = 
 

 

2. n

1 (2n)!
n

2 4 n!

π Γ + = 
 

 

3. 
csc( x)

( x)
(x 1)

−π πΓ − =
Γ +

 

4. Γ(nx)=
n n 1

k 0

2 nx k
x

n n2

−

=

π    Γ +  π   
∏ ,n ∈ ℕ� 

A function that is closely related to the gamma function is the complete 

beta function β(p,q). For positive value of the two parameters p and q; the 

function is defined by the beta integral: 

1
p 1 q 1

0

(p,q) y (1 y) dy− −β = −∫ , p, q > 0 …(1.5) 

which is also known as the Euler’s integral of the second kind. If either p or q 

is nonpositive, the integral diverges otherwise β(p,q) is defined by the 

relationship: 

(p) (q)
(p,q)

(p q)

Γ Γβ =
Γ +

 …(1.6) 

wherep and q> 0. 
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Both beta and gamma functions have “incomplete” analogues. The 

incomplete beta function of argument x is defined by the integral: 

x
p 1 q 1

x
0

(p,q) y (1 y) dy− −β = −∫  …(1.7) 

and the incomplete gamma function of argument x is defined by: 

γ*(c,x)=
x c

x 1 y

0

c
y e dy

(x)

−
− −

Γ ∫  

=e−x
j

j 0

x

( j c 1)

∞

= Γ + +∑  …(1.8) 

γ*(c,x) is a finite single-valued analytic function of x and c. 

 

1.3 Fractional Integration 

There are many literatures introduce different definitions of fractional 

integrations, such as: 

1. Riemann-Liouville integral, [Oldham,1974]: 

Definition (1.1), (Riemann–Liouville Fractional Integrals): 

Let f ∈L1[a, b] and 0 < α <1. The left and Right Riemann–Liouville 

Fractional integrals of order α of a function f is defined respectively by: 

x
1

a x
a

1
I f (x) (x t) f (t)dt

( )
α α−= −

Γ α ∫  …(1.9) 

b
1

x b
x

1
I f (x) (t x) f (t)dt

( )
α α−= −

Γ α ∫  …(1.10) 

for all x∈[a,b]. 

 



Chapter One                            Basic Concepts 

 4 

2. Weyl fractional integral, [Oldham,1974]: 

The left hand fractional order integral of order α > 0 of a given function f 

is defined as: 

xI f (x)α
−∞ =

x

1

1 f (y)
dy

( ) (x y) −α
−∞Γ α −∫ , x >−∞ …(1.11) 

and the right fractional order integral of order α > 0 of a given function f is 

given by: 

xI f (x)α
∞ =

1
x

1 f (y)
dy

( ) (y x)

∞

−αΓ α −∫ , x <∞ 

3. Abel-Riemann fractional integral, [Mittal,2008]: 

The Abel-Riemann (A-R) fractional integral of any order α> 0, for a 

function f(x) with x∈ +
�  is defined as: 

Iαf(x)=
x

1

0

1
(x ) f ( )d

( )
α−− τ τ τ

Γ α ∫ , x > 0, α> 0 …(1.12) 

I0= I (identity operator) 

The A-R integral posses the semigroup property: 

IαIβ=Iα+β, for all α, β≥ 0 …(1.13) 

 

1.4 Fractional Derivatives 

Many literatures discussed and presented fractional derivatives of certain 

functions, therefore in this section, some definitions of fractional derivatives 

are presented: 
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1. Riemann-Liouville formula of fractional derivatives, [Oldham,1974], 

[Nishimoto,1983]: 

Among the most important formula used in fractional calculus is the 

Riemann-Liouville formula. For a given function f(x), ∀ x ∈ [a,b]; the left 

and right hand Riemann-Liouville fractional derivatives of order α > 0 and m 

is a natural number, are given by: 

aX f (x)Dα
+ =

m x

m m 1
a

1 d f (t)
dt

(m ) dx (x t)α− +Γ − α −∫  …(1.14) 

X bD f (x)α
− =

m m b

m m 1
x

( 1) d f (t)
dt

(m ) dx (x t)α− +
−

Γ − α −∫  …(1.15) 

Wherem− 1 < α ≤ m, m ∈� . 

 

2. The A-R fractional derivative, [Nishimoto,1983]: 

The A-R fractional derivative of order α> 0 is defined as the inverse of 

the corresponding A-R fractional integral, i.e., 

DαIα=I …(1.16) 

for positive integer m, such that m − 1 <α≤ m, 

(DmIm−α)Iα=Dm(Im−αIα) =DmIm= I 

i.e., 

Dαf(x)=

m x

m 1 m
a

m

m

1 d f ( )
d , m 1 m

(m ) dx (x )

d
f (x), m

dx

α+ −

 τ τ − < α <Γ − α − τ

 α =

∫
 …(1.17) 
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3. Caputo fractional derivative, [Caputo ,1967]: 

In the late sixties, an alternative definition of fractional derivatives was 

introduced by Caputo. Caputo and Mirandi used this definition in their work 

on the theory of viscoelasticity. According to Caputo’s definition: 

c
xDα =Im−αDm, for m− 1 <α≤ m 

which means that: 

c
xDα f(x)=

(m)x

1 m
0

m

m

1 f ( )
d , m 1 m

(m ) (x )

d
f (x), m

dx

α+ −

 τ τ − < α <Γ − α − τ

 α =

∫
 

The basic properties of the Caputo fractional derivative are: 

1. Caputo introduced an alternative definition, which has the advantage of 

defining integer order initial conditions for fractional order differential 

equations. 

2. 
xaIα c

xDα f(x) = f(x) −
km 1

(k)

k 0

x
f (0 )

k!

−
+

=
∑ . 

3. Caputo’s fractional differentiation is linear operator, similar to integer 

order differentiation: 

c
xDα [λf(x) + μg(x)] =λ c

xDα f(x) + μ c
xDα g(x) 

 

4. Grünwald fractional derivatives, [Oldham,1974]: 

The Grünwald derivatives of any integer order to any fractional 

order derivatives, can take the form: 
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Dα f(x)=
N 1

N j 0

x
( j ) xNLim f x j

( ) ( j 1) N

−α

−

→∞ =

  
   Γ − α      −   Γ −α Γ +    
  

∑  …(1.18) 

1.5 Haar Wavelets 

Haar functions have been used since 1910, when they were introduced 

by Hungarian mathematician AlferdHaar, [Haar, 1910]. 

The orthogonal set of Haar function is defined as shown in Figs.(1.1-1.8) 

that is a square waves with magnitude of ±1 in some interval and zero 

elsewhere. The first curve of Fig.(1.1) is that h0(x) = 1 during the whole 

interval 0 ≤ x ≤ 1. It is called the scaling function. The second curve h1(x) is 

the fundamental square wave, or mother wavelet which also spans the whole 

interval [0,1]. All the other subsequent curve are generated from h1(x) with 

two operation translation and dilation, h2(x) is obtained from h1(x) with 

dilation, i.e., h1(x) is compressed from the whole interval [0,1] to half interval 

[0,1/2] to generate h2(x), h3(x) is the same as h2(x) but shifted (translated) to 

the right by 1/2. Similarly, h2(x) is compressed from the half interval to a 

quarter interval to generate h4(x). The function h4(x) is translated to the right 

by 1/4, 2/4, 3/4 to generate h5(x), h6(x) and h7(x); respectively.  

In general: 

hn(x) =h1(2
jx−k/2j), n = 2j + k, j≥ 0, 0 <k≤ 2j 

 
Fig.(1.1) First Haar function. 

1−
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Fig.(1.2) Second Haar function. 

 

 
Fig.(1.3) Third Haar function. 

 

 
Fig.(1.4) Fourth Haar function. 

 
Fig.(1.5) Fifth Haar function. 

0

1

1
h1

0

1

1
h2

0

1

1
h3

|0

1

1
h4

1−

1−

1−

1−
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Fig.(1.6) Sixth Haar function. 

 
Fig.(1.7) Seventh Haar function. 

 
Fig.(1.8) Eighth Haar function. 

This orthogonal basis is a reminiscent of the Walsh basis, in which each 

Walsh function contains many wavelets to fill the interval [0,1] completely, 

and to form a global basis. While each Haar function contains just one 

wavelet during some subinterval of time, and remains zero elsewhere the Haar 

set form a local basis. 

 

 

 

|0

1

1
h5

|0

1

1
h6

0

1

1
h7

1−

1−

1−
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All the Haar wavelets are orthogonal to each other: 

1
j

i i
0

h (x)h (x) dx 2−= δ∫ l l
 

=
j j k2 , i 2

0, i

− + = =


≠

l

l
 

Therefore, they form a very good transform basis. 

1.5.1  Multiplication of HaarWavelets 

Two basic multiplication properties of Haar wavelets are as follows: 

(i) For any two Haar wavelets hn(t) and hl(t) with n < l. 

hn(t)hl(t) =ρhl(t) …(1.19) 

i
n

1
h (2 (q ))

2
−ρ = +  

i j i j

i j i j

1
1, 2 k q 2 (k ),

2
1

1, 2 (k ) q 2 (k 1),
2

0, otherwise,

− −

− −

 ≤ < +

= − + ≤ < +




 

where: 

j j

i i

n 2 k, j 0, 0 k 2

l 2 q, i 0, 0 q 2

 = + ≥ ≤ ≤


= + ≥ ≤ ≤
 …(1.20) 

(ii) The square of any Haarwavelet is a block pulse with magnitude of 1 

during both positive and negativehalf waves. 
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In the study of variational problems via Haar wavelets, it usually needs 

to evaluate the integration of H(m)(x)HT
(m)(x) where 

[ ]T
0 m 1(m)(x) h (x),...,h (x)H −�  

Let usdefined 

T
(m) (m) (m m)H (x)H (x) M (x)×�  …(1.21) 

m m m m
2 2 2 2

T T

a 0 1 b m 11 ( ) 1
H h (x),h (x),...,h (x) H ,H h (x),h (x),...,h (x)−− +

   =      
� �

 
…(1.22) 

M(x) is the Haar product matrix, which satisfies the following recursive 

formula equation (1.23) and the integration relation Equation (1.24). 

m m m m
2 2 2 2

m m m m
2 2 2 2

b( ) ( )

(m m) (1 1) 0T 1
b a( ) ( )

M (x) diag[H ]
M (x) ,M (x) h (x)

diag[H ] daig[ H ]

× ×

× ×−
× ×

Φ 
 = =
 Φ Φ
    

 …(1.23) 

where   

 [ ] i i 1
m m m 0 m 1 m m 1 im mH (x )H (x )...H (x ) , x +

× −Φ ≤ ≤�  

  

1 1
T T

(m) (m) (m m) m m m m
0 0

1
H ( )H ( )d M ( )d

m× × ×τ τ τ = τ τ = Φ Φ∫ ∫  

m m
2 2

(2 2)

2 2

4 4

( )

I 0

1
I

2
1

I
4

2
0 I

m

×

×

×

×

 
 
 
 
 

=  
 
 
 
 
  

O
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(m m),K ×� for m > 2 …(1.24) 

Equation (1.24) is very important for solving variational problems. 

 

1.5.2Haar Wavelets Operational Matrix 

In this subsection we shall begin with the more convenient way for 

representing Haar wavelets in computer and for x∈[A,B] which was given by 

[Lepik, 2007] and for this purpose we define the quantity M=2J, where J is the 

maximal level of resolution and divide the interval [A,B] into 2M subintervals 

of equal length; each subinterval has the length. 

∆x= (B – A)/2M. 

Two parameters are introduced the dilation parameter j for which  

j = 0, 1,…, J and the translation parameter k = 0,1,… ,m − 1	where		m = 2�. 
The wavelets number i is identify as i = m + k + 1 the ithHaar wavelet is 

defined as:  

h��x� = � 1, for	x ∈ �ξ��i�, ξ��i� ,−1, for	x ∈ �ξ��i�, ξ!�i� ,0, elsewhere.  …(1.25) 

where:  

ξ��i� = A + 2kμ		, 			ξ��i� = A + �2k + 1�μΔx 

ξ!�i� = A + 2�k + 1�μΔx ,			μ = M m*  

The case i = 1 corresponding to the scaling function   

h��x� = 	 +1, for	x ∈ �A, B 0, elsewhere	  …(1.26) 

The following notations are introduced: 

x

i,1 i
0

p (x) h ( )d= τ τ∫  
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x

i,v 1 i,v
0

p (x) p ( )d , v 1,2,...+ = τ τ =∫  

These integrals can be evaluated by using equation (1.25) and the first two of 

them are given by: 

[
[

1 1 2

i.1 3 2 3

x (i), x (i), (i))

p (x) (i) x, x (i), (i))

0, Otherwise.

− ξ ∈ ξ ξ


= ξ − ∈ ξ ξ



 …(1.27) 

[

[

[

2

1 1 2

2

3 2 32
i ,2

32

1
(x (i)) , x (i), (i))

2
1 1

( (i) x) , x (i), (i))
p (x) 4m 2

1
, x (i),1)

4m
0, Otherwise.

 − ξ ∈ ξ ξ

 − ξ − ∈ ξ ξ= 


∈ ξ



 

…(1.28) 

In general: 

1

n

1 1 2

i ,n n n

1 2 2 3

n n n

1 2 3 3

0, x (i)

1
(x (i)) , x [ (i), (i)]

n !
p (x) 1

(x (i)) 2(x (i)) , x [ (i), (i)]
n !
1

(x (i)) 2(x (i)) 2(x (i)) , x (i)
n !

< ξ

 − ξ ∈ ξ ξ
=  − ξ − − ξ ∈ ξ ξ  

 − ξ − − ξ + − ξ > ξ  

 …(1.29) 

For example, if J = 2, then: 

P.,� = 116 08 −4 −2 −24 0 −2 211 1−1 00 			0		0 3 
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and if J = 3, then: 

8,1

32   -16    -8    -8    -4    -4    -4    -4

    16     0    -8     8    -4    -4     4     4

     4     4     0     0    -4     4     0     0

     4    -4     0     0     0     0    -4     41
P

    64
=

 1     1     2     0     0     0     0     0

     1     1    -2     0     0     0     0     0

     1    -1     0     2     0     0     0     0

     1    -1     0    -2     0     0     0     0


























 

 

Following Figs. (1.9-1.16) represents the first integral of h��x�, for all  

i= 0, 2, …, 7. 

 
Fig.(1.9) Integration of the first Haar wavelet. 

 
Fig.(1.10) Integration of the second Haar wavelet. 

|

1

|
10

0
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Fig.(1.11) Integration of the third Haar wavelet. 

 
Fig.(1.12) Integration of the forthHaar wavelet. 

 
Fig.(1.13) Integration of the fifth Haar wavelet. 

||
1

1
||

1
||

1/4

0

0

0

1/ 2
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Fig.(1.14) Integration of the sixth Haar wavelet. 

 
Fig.(1.15) Integration of the seventh Haar wavelet. 

 
Fig.(1.16) Integration of the eighth Haar wavelet. 

 

 

 

 

 

1
||
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1.5.3 Function Approximation and operational Matrix  

Any function f(x) ∈L2([0,1]) can be expanded in term of Haar series as: 

f�x� = ∑ c�h��x�6�7�  …(1.30) 

where the coefficients c� are determined by: 

c� = 2� 8 f�x�h��x��
9  

The series in equation (1.30) contains an infinite number of terms. If f�x� is 

piecewise constant or may be approximated as piecewise constant, then the 

sum in equation(1.30) may be terminated after m terms, that is:  

f�x� = ∑ c�h��x� = 	C;< H;�x� = 	 f>�x�;?��79  ...(1.31) 

f>denotes the truncated sum, the Haar coefficients vector C; and Haar vector H;�x� are defined as:  

C; = �c9, c�, … , c;?� < 

H;�x� = �h9�x�, h��x�, … , h;?��x� < …(1.32) 

Taking the collocation points as following  

x� = A + �i − 0.5�∆x, i = 1,2,…2M …(1.33) 

By letting A = 0, B = 1 and hence ∆x = ��B in equation(1.33). We define the  

m-square Haar matrix Φ;×; as:  

Φ;×; =	 EH; F �.BGH; F !.BG…H; F.B?�.B GH …(1.34) 

Correspondingly, we have:  

f>; =	 Ef> F �.BG f> F !.BG…	f> F.B?�.B GH = C;< Φ;×; …(1.35) 
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Because the m-square Haar wavelets matrix Φ;×; is an invertible matrix, the 

Haar coefficients vector C;<  can be given by:  

C;< =	 f>;Φ;×;?�  …(1.36) 

 

1.5.3.1 Block Pulse Function (BPF) 

Defines a m – Set of   Block Pulse Function (BPF) as:  

b��x� = 	�1, i m* ≤ x < �i + 1� m*
0,							Otherwise	  …(1.37) 

where i = 0,1,2… ,m	 − 1	. 
The functions b��x�are disjoint and orthogonal, that is:  

b��x�bN�x� = +	0										, i ≠ P																						b��x�			, i = P																					  …(1.38) 

Kilicman and Zhour [Kilicman, 2007] have given the block pulse operational 

matrix of fractional order integration Fα as following:  

IR STB;�x� = FTB;�x� …(1.39) 

where: 

FT = ���B�V �W�T���
XY
YY
YZ100⋮00

ξ�10⋮00

ξ�ξ�1⋮00

⋯… ξ�B?�ξ�B?�… ξ�B?!⋱00
⋮⋮1 _̂_

__̀ …(1.40) 

where: 

ξa = �k + 1�T�� − 2kT�� + �k − 1�T�� 
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1.5.3.2 Operational matrix of the fractional order integration of Haar 
Wavelet Functions 

The integration of H;�x� defined in equation (1.32) can be 

approximated by Haar series with Haar coefficient matrix P as:  

b H;�τ�d	τ ≈S9 P;×;H;�x� …(1.41) 

where a m-square matrix P is called the Haar wavelets operational matrix of 

integration [Chen, 1997].  

Zhao, [Zhao, 2010] derive the Haar wavelets operational matrix of the 

fractional order integration.  

He introduced the Riemann-Liouville fractional order integration, as 

given in chapter one as:  

f IR STfg�x� = 	 �
Γ�T� b �x − τ�T?�f�τ�dτ = �

Γ�T� xT?�Sh ∗ f�x�	 …(1.42) 

Whereα ∈ ℝ is the order of integration, Γ�α� is the Gamma function and xT?� ∗ f�x� is the convolution product of xT?� and f�x�. 
Now if f�x� is expanded in Haar function, the Riemann- liouville 

fractional order integration is solved via the Haar function, because the Haar 

functions are piecewise constant, it may be expanded into m- term Block 

Pulse Function (BPF) as: 

H;�x� = Φ;×;B;�x�l …(1.43) 

WhereB;�x� ≜ �b9�x�b��x�… b��x�…b;?��x�  
Next, we shall derive the Haar wavelets operational matrix of the 

fractional order integration by letting  

� IR STH;��x� = P	;×;α H;�x� …(1.44) 

where the m-square matrixP;×;α  is called the Haar wavelets operational 

matrix of the fractional integration. 
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Using equations(1.39) and (1.43) we have  

� IR S
TH;��x� ≈ f IR S

TΦ;×;B;g�x� = Φ;×;� IR STB;��x� 
≈ Φ;×;FTB;�x� …(1.45) 

From equations(1.44) and (1.45), we get: 

P;×;T H;�x� = P;×;T Φ;×;		B;�x� 
= Φ;×;		FT	B	;�x� …(1.46) 

Then the Haar wavelet operational matrix of the fractional order of integration P;S;T  is given by: 

P;×;T =	Φ;×;			FT		Φ;×;?�  …(1.47) 

For example, let 	α = 0.5, J = 2 hence m = 8, the operational matrix P;×;T  is 

computed below as: 

n	o×o9.p =
XY
YY
YY
YZ0.7523 −0.2203 −0.1558 −0.0820 −0.1102 −0.0580 −0.0447 −0.03770.2203 0.3116 −0.1558 0.2296 −0.1102 −0.0580 0.1756 0.07820.04100.07790.00940.01120.01450.0275

0.1148−0.07790.01960.0439−0.0145−0.0275

0.2203					0				0.0812−0.055100

−0.03500.2203−0.0032−0.01940.0812−0.0551

−0.110200.1558000

0.16230−0.02470.155800

−0.0389−0.1102−0.0026−0.02470.15580

−0.00630.1623−0.0009−0.0026−0.02470.1558 _̂_
__
__̀
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HHaaaarr  WWaavveelleett  MMeetthhoodd  ffoorr  
SSoollvviinngg  SSiimmpplleesstt  FFrraaccttiioonnaall  
VVaarriiaattiioonnaall  PPrroobblleemmss  

 

2.1 Introduction  

This chapter consists of seven sections , in section 2.2 classical calculus 

of variational is presented , in section 2.3 the simplest fractional variational 

problem was given, while in section 2.4. The case of α, β ∈ +
�  and Several 

Functions are discussed and we present in section 2.5 The problem of 

Lagrange and the multiplier rule. 

 In section 2.6 the Haar wavelet direct method was used to solve the 

simplest fractional variational problems. Finally two numerical examples are 

given in section 2.7 .             

2.2 Classical Calculus of Variation Problem 

Let us examine for extreama, by considering a funetional of the simplest 

form: 

J[y(x)] = 
1

0

x

x

F(x,y(x), y (x))dx′∫  …(2.1) 

where the end points of the admissible curves are fixed, i.e., y(x0) = y0 and 

y(x1) = y1. 

We can define the first variation of functional J(y) as the part with linear 

increment which is linear if δy is defined by: 

δ(J) = J(y + δy) − J(y)
linear part in yδ  

22  
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which equals zero at the optimum solution y(x). 

Now, suppose an extremum occurs at the curve y = y(x) along with all 

admissible solutions y = y*(x) and hence we can define the variation in the 

solution y to be δy = y(x) − y*(x) and since the first variation is a function of 

x, then it can be differentiated with the property that: 

(δy)′ = (y(x) − y*(x)) ′ 

= y′(x) − y* ′(x) 

= δy′ 

Therefore, if: 

J[y] = 
1

0

x

x

F(x,y,y )dx′∫  

Then: 

J[y + δy] = 
1

0

x

x

F(x,y y,y y )dx′ ′+ δ + δ∫  

Hence: 

J[y + δy] = J[y + δy] − J[y] 

 = 
1

0

x

x

F(x,y y,y y )dx′ ′+ δ + δ∫  − 
1

0

x

x

F(x,y,y )dx′∫  

 = [ ]
1

0

x

x

F(x, y y,y y ) F(x,y,y ) dx′ ′ ′+ δ + δ −∫  
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and upon using Taylor series expansion to the first degree or linear part of the 

increment function, we have: 

δJ = ( )
1

0

x

y y
x

F y F y dx′ ′δ + δ∫  

and upon using the method of integrations to the second part of the integral 

therefore we have: 

δJ = 
1

0

x

y y
x

d
F y F y dx

dx ′
 δ − δ 
 
∫  

 = 
1

0

x

y y
x

d
F F ydx

dx ′
 − δ 
 
∫  = 0 

Now, since δy is an arbitrary function, hence by using the fundamental 

lemma of calculus of variation, we have: 

y y
d

F F
dx ′−  = 0 

which is the required necessary condition to be satisfied on the optimum 

solution y(x). This condition is called the Euler-Lagrange equation (for 

simplicity Euler equation). 

 

2.3 The Simplest Fractional Variational Problem 

Several definitions of a fractional derivative have been proposed in 

chapter one. These definitions include Riemann-Liouville, Grunwald-

Letnikov, Weyl and Caputo, fractional derivatives. Here, we formulate the 

variational problem in terms of the left and the right Riemann-Liouville 

fractional derivatives, which are defined as: 
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a xDα f(x) = 
n x

n 1

a

1 d
(x ) f ( )d

(n ) dx
−α−  − τ τ τ Γ − α  

∫  

and  

x bDα f(x) = 
n b

n 1

x

1 d
(x ) f ( )d

(n ) dx
−α−−  − τ τ τ Γ − α  

∫  

where α is the order of the derivative, such that n − 1 < α ≤ n. If α is an 

integer, these derivatives are defined in the usual sense, i.e., 

a xDα f(x) = 
d

dx

α
 
 
 

, x bDα f(x) = 
d

dx

α− 
 
 

, α = 1, 2, … …(2.2) 

Note that, in the literature of Riemann-Liouville fractional derivative 

generally means the LRLFD. From physical point of view, if x is considered 

as a time scale, the RRLFD represent, an operation performed on the future 

state of the process f(x). This derivative has generally been neglected with the 

assumption that the present state of a process dose not depend on the results 

of its future development, [Agrawal,2002]. 

However, the derivation to follow will show that both derivatives 

naturally occur in a problem of fractional calculus of variations.  

The first simplest fractional calculus of variation problem can be defined 

as follows; let F(x,y,u,v) be a function with continuous first and second 

(partial) derivatives with respect to all of its arguments. Then, among all 

functions y(x), which have continuous LRLFD of order α and RRLFD of 

order β for a ≤ x ≤ b and satisfy the boundary conditions: 

y(a) = ya, y(b) = yb …(2.3) 

Find the function for which the functional: 

J[y] = 
b

a x x b
a

F(x,y, D y, D y)dxα β
∫  …(2.4) 
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is an extremum, where 0 < α, β ≤ 1. The continuity requirement on F can be 

given more precisely. However, these assumptions are made for simplicity.  

Note that: 

(1) We have included the LRLFD and RRLFD generality. 

(2) We first consider 0 < α, β ≤ 1. The case of α, β ∈ +
�  will be considered 

shortly in the next section. 

(3) When α = β = 1, the above problem reduces to the simplest variational 

problem. 

To develop the necessary conditions for the extremum, assume that y*(x) 

is the desired function, let ε ∈ +
� , and define a family of curve: 

y(x) = y*(x) + εη(x) …(2.5) 

which  satisfy the boundary conditions, i.e., we require that: 

η(a) = η(b) = 0 …(2.6) 

since a xDα  and x bDβ  are linear operators, it follows that: 

a xDα y(x) = a xDα y*(x) + ε a xDα η(x) …(2.7) 

x bDβ y(x) = x bDβ y*(x) + ε x bDβ η(x) …(2.8) 

Substituting Equations (2.5), (2.7) and (2.8) into Equation (2.4) we find 

that for each η(x) 

J = J[ε] = 
b

a x a x x xb b
a

F(x,y * , D y* D , D y* D )dxα α β β+εη +ε η +ε η∫  …(2.9) 

is a function of ε only. Note that J[ε] is extremum at ε = 0. 
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Differentiating  equation (2.9) with respect to ε, we obtain: 

dJ

dε
 = 

b

a x x b
a a x x b

F F F
D D dx

y D y D y
α β

α β

 ∂ ∂ ∂η + η + η ∂ ∂ ∂  
∫  …(2.10) 

 Equation(2.10) is also called the variations of J[y] at y(x) along η(x). 

A necessary condition for J[ε] to have an extremum is that 
dJ

dε
 must be 

zero and this should be true for all admissible η(x). This leads to the condition 

that for J[y] to have an extremum for y = y*(x) is that: 

b

a x x b
a a x x b

F F F
D D dx 0

y D y D y
α β

α β

 ∂ ∂ ∂η + η + η = ∂ ∂ ∂  
∫  …(2.11) 

for all admissible η(x). Using the formula for fractional integration by parts, 

the second integral in equation (2.11) can be written as[Riewe,1996] 

,[Samko,1993]: 

b

a x
a a x

F
D dx

D y
α

α
∂ η

∂∫
 = 

b

x b
a a x

F
D dx

D y
α

α

 ∂ η  ∂ 
∫  …(2.12) 

provided that 
a x

F

D yα
∂

∂
 or η is zero at x = a and x = b. Using equation (2.6) this 

condition is satisfied and it follows that equation (2.12) is valid.  

Similarly, the third integral in equation (2.11) is: 

b

x b
a x b

F
D dx

D y
β

β
∂ η

∂∫
 = 

b

a x
a x b

F
D dx

D y
β

β

 ∂ η  ∂ 
∫  …(2.13) 

substitute equations (2.12) and (2.13) into equation (2.11), we get: 

b

x b a x
a a x x b

F F F
D D dx 0

y D y D y
α β

α β

 ∂ ∂ ∂+ + η = ∂ ∂ ∂  
∫  …(2.14) 
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since η(x) is arbitrary, it follows from a well established result in calculus of 

variations that: 

x b a x
a x x b

F F F
D D

y D y D y
α β

α β
∂ ∂ ∂+ +
∂ ∂ ∂

 = 0                                            …(2.15) 

Equation(2.15) is the Euler-Lagrange equation for the fractional calculus of 

variations problem. Thus, we have: 

Theorem (1.1),[Agrawal,2002]: 

Let J[y] be a functional of the form: 

b

a x x b
a

F(x,y, D y, D y)dxα β
∫  

Defined on the set of functions y(x), which have continuous LRLFD of order 

α and RRLFD of order β in [a,b] and satisfy the boundary conditions y(a) = ya 

and y(b) = yb. Then a necessary condition for J[y] to have an extremum for a 

given function y(x) is that y(x) satisfy  following Euler-Lagrange equation: 

x b a x
a x x b

F F F
D D 0

y D y D y
α β

α β
∂ ∂ ∂+ + =
∂ ∂ ∂

 

Note that for fractional calculus of variation problems, the resulting 

Euler-Lagrange equation contains both the LRLFD and the RRLFD. This is 

expected since the optimum function must satisfy both terminal conditions. 

Further, for α = β = 1, we have a x
d

D
dx

α =  and x b
d

D
dx

β −=  and equation (2.15) 

reduces to the standard Euler-Lagrange equation: 

F d F

y dx y

∂ ∂−
′∂ ∂
 = 0 …(2.16) 

where y′ = 
dy

dx
. 
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2.4 The Case of α, β ∈ +
�  and Several Functions 

We now consider further generalization of the above problem. 

Specifically, we consider two different cases first, in which αj, βj ∈ +
�  (j = 1, 

2, …), i.e., one can have multiple positive α and β, and second, in which one 

more than one function. In both cases, we consider the end points fixed. 

Case 1: Fixed end points and αj, βj ∈ +
�  (j = 1, 2, …): 

Assume that αj ( j = 1, 2, …, n) and βk (k = 1, 2, …, m) are two sets of 

real numbers all greater than zero. 

αmax = max{α1, α2, …, αn, β1, β2,.., βm} …(2.17) 

is the maximum of all these numbers, and M is an integer such that M − 1 ≤ 

αmax < M. Assume that F(x,y,z1, …, zm+n) is a function with continuous first 

and second partial derivatives with respect to all  its arguments, and consider 

a functional of the form: 

J[y] = 1 m1 n
b

a x a x x xb b
a

F(x,y, D y,..., D y, D y,..., D y)dxβ βα α
∫  …(2.18) 

The problem can  now be defined as follows: Among all functions y(x) 

satisfying the conditions: 

y(a) = a0y , y′(a) = a1y , …, y(M−1)(a) = a(M 1)y −  …(2.19a) 

y(b) = b0y , y′(b) = b1y , …, y(M−1)(b) = b(M 1)y −  …(2.19b) 

Find the function for which equation (2.18) has an extremum. Here it is 

implicitly assumed that y(x) meets all the differentiability requirements. 

The necessary condition for this problem can be found following the 

approach presented above. This leads to: 
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Theorem (2.2),[Agrawal,2002]: 

Let J[y] be a functional of the form given by equation (2.18) defined on 

the set of functions satisfying the boundary conditions given by equation 

(2.19). Then a necessary condition for J[y] to have an extremum for a given 

function y(x) is that y(x) satisfy the Euler-Lagrange equation: 

j k
j k

n m

x a xb
j 1 k 1 x ba x

F F F
D D 0

y D yD y

α β
α β

= =

∂ ∂ ∂+ + =
∂ ∂∂

∑ ∑  …(2.20) 

As a special case, consider that αj = j (j = 1, 2, …, n) and that F does not 

contain the k
x bD yβ  (k = 1, 2, …, m) terms. In this case,using equation (2.2) 

we have : 

jn

( j)
j 1

F d F
0

y dx y=

∂ − ∂ + = ∂ ∂ 
∑   …(2.21) 

Thus, for integral order derivatives, the necessary conditions obtained using 

fractional calculus of variations approach reduces to that obtained using 

standard calculus of variations approach. 

Case 2: Fixed end points and several functions: 

The simplest fractional variational problem discussed in section (2.3) can 

be generalized in a straight forward manner to problems containing several 

unknown functions. 

This problem can be defined as follows: 

Let F(x,y1,y2,…,yn,z1,z2,…,z2n) be a function with continuous first ad 

second (partial) derivatives with respect to all its arguments. For 0 < α, β ≤ 1, 

consider the problem of finding necessary conditions for an extremum of a 

functional of the form: 

J[y1,…,yn]=
b

1 n a x 1 a x n x 1 x nb b
a

F(x,y ,...,y , D y ,..., D y , D y ,..., D y )dxα α β β
∫  …(2.22) 
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which depends on n continuously differentiable functions y1(x), y2(x), …, 

yn(x) satisfying the boundary conditions: 

yj(a) = yja, yj(b) = yjb, j = 1, 2, …, n …(2.23) 

Note that, no relationship exists among the functions yj(x) (j = 1, 2, …, 

n). Therefore, the necessary condition for the functional in equation (2.22) to 

have an extremum can be found by considering the variations of each function 

one at a time. Thus, we have: 

 

Theorem (2.3), [Agrawal,2002]: 

A necessary condition for the curve 

 yj = yj(x) (j = 1, 2, …, n) …(2.24) 

 which satisfies the boundary conditions given by equation (2.23) to be 

an extreamal of the functional given by equation(2.22) is that the functions 

yj(x) satisfy the following Euler-Lagrange equation: 

x b a x
j a x j x jb

F F F
D D 0

y D y D y
α β

α β
∂ ∂ ∂+ + =
∂ ∂ ∂

, j = 1, 2, …, n …(2.25) 

In vector notation, the above condition can be written as: 

x b a x
a x x b

F F F
D D 0

y D y D y
α β

α β
∂ ∂ ∂+ + =
∂ ∂ ∂

 …(2.26) 

where y ∈ n
� . 

The above problem considers several functions, but only one LRLFD of 

order α ≤ 1 and one RRLFD of order β ≤ 1. The problem of finding extremum 

of a functional consisting of multiple functions and multiple LRLFD and 

RRLFD of order greater than zero can be developed using the discussion 

presented in cases 1 and 2 above. 
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2.5 The Problem of Lagrange and the Multiplier Rule 

In this section we consider the following problem: Find the extremum of 

the functional: 

J[y] = 
b

a x x b
a

F(x,y, D y, D y)dxα β
∫  …(2.27) 

such that: 

Φ(x,y) = 0 …(2.28) 

and 

ys1(j)(a) = ys1(j)a, ys2(j)(b) = ys2(j)b ( j = 1, 2, …, n − m) …(2.29) 

where y ∈ n
� , Φ ∈ m

� , m < n, and s1 and s2 are two sets of n numbers 

obtained by reordering the numbers 1 to n. It is assumed that the constrained 

functions φj(x,y) = 0 (j = 1, 2, …, m) are all independent. This problem is 

essentially the same as that of Lagrange except that in this case the functional 

contains the LRLFD and the RRLFD. For this reason, we will call this 

problem as the problem of Lagrange containing fractional derivatives or 

simply a fractional Lagrange problem. This is a special case, and in a general 

fractional Lagrange problem, Φ may also contain the left and the right 

fractional derivatives. 

To develop the necessary conditions for the problem, note that y at the 

two ends are completely known. This follows from the fact that the 

constraints φj(x,y) = 0 (j = 1, 2, …, m) are all independent and the values of  

n − m functions yj(x) (j = 1, 2, …, n) are specified at both ends. Therefore, the 

values of the rest of the functions at the two ends can be determined using a 

technique such as Newton-Raphson. 
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Suppose y*(x) is the solution to the above problem, and define: 

y(x) = y*(x) + εη(x) …(2.30) 

where ε is a sufficiently small number, and η(x) ∈ n
�  is a variation of y(x) 

consistent with the constraints, i.e., y(x) satisfies equation (2.28). from the 

above discussion, it follows that: 

η(a) = η(b) = 0 …(2.31) 

Substituting equation (2.31) into equation (2.28), expanding the resulting 

vector into Taylor series, and neglecting second and higher order terms in ε, 

we get: 

(x) 0
y

∂Φ η =
∂

 …(2.32) 

Equation (2.32) clearly indicates that not all functions ηj(x) (j = 1, 2, …, n) 

can be independent. Substituting equation (2.30) into equation (2.27), we get 

a function that is only dependent on ε. Extremum of this function requires that 

its derivative with respect to ε must be zero. This leads to: 

b

a x x b
a a x x b

F F F
D D dx 0

y D y D y
α β

α β

 ∂ ∂ ∂η + η + η = ∂ ∂ ∂  
∫  …(2.33) 

The left-hand side of equation (2.33) is the directional derivative of J at y(x) 

in the direction η(x). Using the formula for fractional integration by parts and 

equation (2.31), it follows that: 

b

x b a x
a a x x b

F F F
D D dx 0

y D y D y
α β

α β

 ∂ ∂ ∂+ + η = ∂ ∂ ∂  
∫  …(2.34) 

Here the elements of η(x) are not all independent, and therefore its 

coefficients cannot be set to zero. Equation (2.15) motivates the following: 
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Definition(2.1),[Agrawal,2002]: 

An admissible arc y*(x) is said to satisfy the multiplier rule if there 

exists a vector of multipliers l(x) ∈ m
�  continuous on [a,b], and a function: 

T
a x x a x xb bF(x,y, D y, D y,l) F(x,y, D y, D y) l (x) (x,y)α β α β= + Φ  …(2.35) 

such that: 

x b a x
a x x b

F F F
D D 0

y D y D y
α β

α β
∂ ∂ ∂+ + =
∂ ∂ ∂

 …(2.36) 

is satisfied along y*(x). 

 

Theorem (2.4),[ Agrawal,2002]:  

Every minimizing arc y*(x) must satisfy the multiplier rule. 

Proof:  

To prove this, multiply equation (2.32) with lT(x) and add the results to 

equation (2.34), to get: 

b
T

x b a x
a a x x b

F F F
D D l (x) dx 0

y yD y D y
α β

α β

 ∂ ∂ ∂ ∂Φ+ + + η = ∂ ∂∂ ∂  
∫  …(2.37) 

It can now be shown that: 

T
x b a x

a x x b

F F F
D D l (x) 0

y yD y D y
α β

α β
∂ ∂ ∂ ∂Φ+ + + =
∂ ∂∂ ∂

 …(2.38) 

This follows from the fact that l(x) may be selected such that m of the n 

equations in equation (2.38) are zero. This is true since ∂Φ/∂y has a full rank. 

Rest of the η’s can be selected as independent and therefore the other n − m 

equations in (2.38) follows by using equation (2.37) and applying a theorem 

in calculus of variations. Note that equation (2.36) can now be obtained using 
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equation (2.35) and (2.38). Equation (2.38) will be called the Euler-Lagrange 

equation for constrained fractional variational problems.    � 

Follows we obtain the Euler-Lagrange equations for an unconstrained 

and a constrained fractional variational problems. 

 

Example (2.1)[Agrawal,2002]: 

As the first example, consider the following unconstrained fractional 

variational problem: 

Minimize J[y] = 
1

2
0 x

0

1
( D y) dx

2
α

∫  …(2.39) 

such that: 

y(0) = 0 and y(l) = l …(2.40) 

This example with α = 1, for which the solution is y(x) = x, is often 

considered in textbooks on variational calculus. It can be shown that for this 

problem, the Euler-Lagrange equation is: 

x 1 0 xD ( D y) 0α α =  …(2.41) 

It can be shown that for α > 1/2, the solution is given as: 

y(x) = (2α − 1)
x

1
0

dt

[(1 t)(x t)] −α− −∫  …(2.42) 
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Example (2.2) [Agrawal,2002]: 

As the second example, consider the following constrained fractional 

variational problem: 

Minimize J[y] = 
1

2 2
1 2

0

1
y y dx

2
 + ∫  …(2.43) 

such that: 

0 x 1D yα  = y1 + y2 …(2.44) 

y(0) = 1 …(2.45) 

This example with integral order derivative is often considered in 

textbooks on optimal control. It can be shown that for this problem, the Euler-

Lagrange equation is: 

y1 + l + x lD lα  = 0 …(2.46) 

y2 − l = 0 …(2.47) 

 

2.6 Direct Haar Wavelet Method for Solving Simplest Fractional 

Variational Problems:  

In this section we shall consider the problem of exterimization of the 

functional J of the form: 

b

a x bx
a

J[y(t)] F(x, y, y, y)dxD D
α β= ∫   …(2.48) 

Satisfying the boundary conditions : 

y (a) = ya      and          y(b) = yb …(2.49) 
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where 
a x

yD
α

 and 
x b
D y

β
 are considered to be the LRLFD and RRLFD of 

ordered α and β respectively. 

The regular method for solving problem (2.48)-(2.49) as given in section 

(2.3) through the Euler-Lagrange equation  

x b a x
a x x b

F F F
D D 0

y D y D y
α β

α β
∂ ∂ ∂+ + =
∂ ∂ ∂

 

In this section we shall use Haar wavelet functions to establish the direct 

method for fractional variational problems. 

Unlike other direct methods, beginning with the assumption of the 

variable itself, the method we have started here is state by assuming a xD yα  as 

Haar wavelet whose coefficients are to be determined. 

a x i i
i 0

D y c h (x)
∞

α

=
= ∑      

Taking finite terms as approximation, we have 

m 1
T

a x i i m m
i 0

D y c h (x) c H (x)
−

α

=
=∑�  …(2.50) 

Applying the Riemann-Liouville fractional integration of order α to the both 

sides of equation (2.50) yields [killbas, 2006]: 

(n j)n
j T

m m m m
j 1

y (0)
y(x) (y a) C P H (x)

( j 1)

−
α− α

×
=

− −
Γ α − +∑ �  

Thus y(x) can be expressed as: 

(n j)n
T j
m m m m

j 1

y
y(x) C P H (x) (y a)

( j 1)

−
α α−

×
=

+ −
Γ α − +∑�   …(2.51) 
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The other terms in the functional (2.48) are expanded also in terms of Haar 

wavelets and therefore through substitution we have  

0 1 m 1J J(c ,c ,...,c )−=  …(2.52) 

The original extremization of fractional problem shown in (2.48) becomes the 

extremization of functional of finite set of variable in equation (2.52) 

Taking partial derivatives of J with respect to ci and setting them equal to 

zero, we obtain 

i

J
0,i 0,1,...,m 1

c

∂ = = −
∂   

Solving for ci  and hence we have the desired solution. After substituting these 

values into equation(2.51).  

2.7 Numerical Examples 

In order to illustrate the efficiency and applicability of the numerical 

procedure which was given in the above section following two numerical 

examples are considered in this section. 

Example (2.3): 

Consider the functional: 

1
2

0 x
0

1
J[y] ( D y) dx

2
α= ∫    …(2.53) 

y(0) = 0 , y(1) = 1 …(2.54)   

Let: 

T
0 x m mD y(x) C H (x)α =  …(2.55) 
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Taking 0 xIα  to the both sides of equation (2.55), we get:  

T
m m m my(x) C P H (x)α

×=  …(2.56) 

Also the other boundary condition that we have is : 

y(1) = 1 

which implies that 

T
m m m mC P H (1) 1α

× =        …(2.57) 

Substituting equation (2.55) into (2.53), we have: 

1
T T
m m m m

0

1
J C H (x)H C dx

2 ∫
�  

1
T T
m m m m

0

1
J C H (x)H (x)dxC

2 ∫�  

Hence 

T
m m m m

1
J C K C

2 ×�    …(2.58) 

Case 1: if α = 1, in this case the exact solution was given [Agrawal,2002] as 

y(x)=x then equation (2.55) becomes: 

T
m my C H (x)′ =                   …(2.59) 

and hence integrating  equation (2.59) from 0 to x, thus we get: 

x
T T
m m m m m m

0

y(x) C H (x)dx 0 C P H (x)×= + =∫  …(2.60) 

For the final boundary condition y(1) = 1 equation (2.60), yields: 

1
T
m m

0

y(1) C H (x)dx 1= =∫  …(2.61) 
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Note that the definite integral of h0(x) from zero to one is equal to one, 

while the definite integrals of h1, h2, …, h7 are all equal to zero for m = 8, or: 

1 1

0 i
0 0

h ( )d 1, h ( )d 0τ τ = τ τ =∫ ∫         ,i=1,2,…,7   …(2.62) 

Substituting (2.62) into (2.61), we have  

[ ]TT
8 0C 1 0 0 0 0 0 0 0 1 c= =  

This information should be substituted into equation (2.58), we then have: 

2 2 2 22 2 2
3 5 6 71 2 4c c c cc c c 1

J
2 4 4 8 8 8 8 2

+ + + + + + +�  

where: 

1
2

1
2

8 8 1
4

1
4

1
4

1
4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
K

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

×

 
 
 
 
 
 =
 
 
 
 
 
  

 

For extermization, we take the partial derivatives of J with respect to ci,  

i = 1,2,…,7, and set it equal to zero  

1 2 7

J J J
0, 0, , 0

c c c
∂ ∂ ∂= = =
∂ ∂ ∂

L  

Therefore, we get c1=c2=…=c7=0 and hence we have  

[ ] 8y 1 0 0 0 0 0 0 0 H (x)′ �  
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and y(x) is obtained from equation (2.60) as  

[ ] 8 8 8y(x) 1 0 0 0 0 0 0 0 P H (x)×=
 

where 

8 8 1 1 1
4 4 2
1 1 1
4 4 2
1 1 1
4 4 2
1 1 1
4 4 2

8 4 2 2 1 1 1 1

4 0 2 2 1 1 1 1

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 11
P .

0 0 0 0 016

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

×

−

−

− −

− − − − − − − 
 − − − − − 
 −
 − − =
 
 
 
 
 
  

 

Hence 

0 1 2 3y(x) 0.5h (x) 0.25h (x) 0.125h (x) 0.125h (x)= − − − −  

4 5 6 70.063h (x) 0.063h (x) 0.063h (x) 0.063h (x)− − −  

Case 2: if α = 0.6 then 

(0.6) T
m my C H (x)=  …(2.63) 

And hence taking 0.6
0 xI  to the both sides of (2.63) thus we get  

T (0.6)
m m m my(x) C P H (x)×=   …(2.64) 

Also, for the final boundary condition y(1) = 1, and for m=8 equation (2.64) 

yields: 

7 6 2 4 3
1

c [0.022c 0.031c 0.004128c 0.134c
0.007

= + + + −  

0 5 11.075c 0.008891c 0.287c 1]+ + +  …(2.65)   
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substituted equation (2.65) into (2.58) thus and after making extermization to 

J by taking partial derivative with respect to ci = i, i = 0,1,…,6 and set them 

equal to zero 

i

J
0

c
∂ =
∂

,  i = 0,1,…,6 

Therefore: 

(0.6)y (x) [0.841 0.225 0.049 0.21 0.031 0.028− − − − − −�  

80.069 0.091]H (x)−  

and y(x) is obtained from equation (2.60) as: 

y(x) [0.841 0.225 0.049 0.21 0.031 0.028= − − − − − −  

(0.6)
8 8 m0.069 0.091]P H (x)×−  

where  

3

(0.6)
8 8

0.699 0.238 0.157 0.094 0.104 0.062 0.051 0.044

0.238 0.224 0.157 0.22 0.104 0.062 0.156 0.081

0.047 0.11 0.147 0.027 0.104 0.145 0.029 5.323 10

0.079 0.076 0 0.147 0 0 0.104 0.145
P

0.011 0.02 0.072 2.662 10

−

×

− − − − − − −
− − −

− − − − ×
− −

=
− × 3 3 3

3

0.097 0.018 2.109 10 2.21 10

0.013 0.039 0.052 0.015 0 0.097 0.018 2.109 10

0.016 0.016 0 0.072 0 0 0.097 0.018

0.026 0.026 0 0.052 0 0 0 0.097

− − −

−

 
 
 
 
 
 
 − − × − × 
 − − − ×
 

− − 
 − − 

 

Hence: 

0 1 2 3y(x) 0.513h (x) 0.239h (x) 0.103h (x) 0.162h (x)= − − − −  

4 5 6 70.06h (x) 0.048h (x) 0.061h (x) 0.086h (x)− − −  

Following table (2.1) gives the approximate solution of example (2.3) for 

different values of α and compares the result for α = 1 with exact solution, 

which was given in [Agrawal,2002]. 
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Table (2.1) The approximate solution of example 2.3 for different values 

of α with comparison with the exact solution when α=1 

          α 

      x 
1 0.5 0.6 0.8 Exact for α = 1 

0 0.062 −0.108 0.111 −0.148 0.000 

0.125 0.188 −0.208 0.231 −0.182 0.125 

0.250 0.375 −0.335 0.389 −0.381 0.250 

0.375 0.438 −0.363 0.425 −0.481 0.375 

0.5 0.75 −0.573 0.68 −0.802 0.5 

0.625 0.688 −0.563 0.651 −0.741 0.625 

0.750 0.875 −0.762 0.889 1.12 0.750 

0.875 0.938 −1.06 1 0.011 0.875 
 

More accurate results can be obtained for larger values of m. 

Example (2.4): 

Find the extremal of the following functional: 

1
2

0 x 0 x
0

J [( D y) x( D y)]dxα α= +∫   …(2.66) 

y(0) = 0, y(1) = 
1

4
 …(2.67) 

For solving this problem by the Haar direct method, we assume that 

0 xD y(x)α can be expanded in terms of Haar wavelet as: 

m 1

0 x i i
i 0

D y(x) c h (x)
−

α

=
∑�  

or: 

T
0 x m mD y(x) C H (x)α

�  …(2.68) 
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Here also we let m = 8. 

There is a variable x involved in equation (2.66) explicitly it can be 

expanded into Haar series in the time interval [0,1). 

T
m mX d H (x)�   …(2.69) 

Substituting (2.68) and (2.69) into (2.66), we have: 

1
T T T T
m m m m m m m m

0

J C H (x)H (x)C C H (x)H (x)d dx ≈ + ∫     

Hence  

T T
m m m m m m m mJ C K C C K d× ×≈ +    …(2.70) 

Case 1: if α = 1,in this case the exact solution was given in [Hsiao,2006] as 

x x
y(x) 1

2 2
 = − 
 

  

 then equation (2.68) becomes: 

T
m my C H (x)′ =  

and hence integrating the above equation from 0 to x, thus we get: 

x
T T
m m m m m m

0

y(x) C H (x)dx 0 C P H (x)×= + =∫
                               …(2.71)

 

For the final boundary condition y(1) = 
1

4
 equation (2.71) yields  

1
T
m m

0

1
y(1) C H (x)dx

4
= =∫  

Which implies that c0=
1

4
 and this information should be substituted into 

equation (2.70), we then have: 
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2 2 2 22 2
2 3 5 6 7 3 5 6 72 4 1 2 4
1

c c c c c c c cc c c c c
J c 0.1875

16 16 64 64 64 64 4 2 2 4 4 4 4
− − − − − − − + + + + + + +�

 

For extermization, we take the partial derivatives of J with respect to ci, i = 

1,2,…,7, and set them equal to zero  

1 2 7

J J J
0, 0, , 0

c c c
∂ ∂ ∂= = =
∂ ∂ ∂

L  

Therefore , we get c1=c2=…=c7=0 and hence   

8
1

y 0 0 0 0 0 0 0 H (x)
4
 ′   

�  

and y(x) is obtained from equation (2.71) as: 

8 8 m
1

y(x) 0 0 0 0 0 0 0 P H (x)
4 ×
 =   

 

0 1 2 3y(x) 0.166h (x) 0.063h (x) 0.047h (x) 0.016h (x)= − − − −  
3

4 5 6 70.027h (x) 0.02h (x) 0.012h (x) 3.875 10 h (x)−− − − ×  

Case 2: if α = 0.6 

(0.6) T
m my C H (x)=                                                                       …(2.72) 

and hence upon taking 0.6
0 xI  to the both sides of (2.72), thus we get: 

                                                              …(2.73) 

Also, for the final boundary condition y(1) = 
1

4
 equation (2.74) yields: 

7 6 2 4 3
1

c [0.022c 0.031c 0.004128c 0.134c
0.007

= + + + −  

0 5 11.075c 0.008891c 0.287c ]+ +  

T (0.6)
m m m my(x) C P H (x)×=
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After making extermization to J by taking partial derivative with respect 

to, i = 0,1,…,7 and set them equal to zero. 

Therefore  

(0.6) 4
8y 0.214 0.029 0.049 0.12 0.043 0.012 7.546 10 0.01 H (x)− ≈ − − − − − × 

 

and y(x) is obtained from (2.73) as : 

 
(0.6) 4

0.6
8 8 8

y 0.214 0.029 0.049 0.12 0.043 0.012 7.546 10 0.01

P H (x)

−

×

 ≈ − − − − − × 

 

Hence 

0 1 2 3

4
4 5 6 7

y(x) 0.214h (x) 0.029h (x) 0.049h (x) 0.12h (x)

0.043h (x) 0.012h (x) 7.546 10 h (x) 0.01h (x)−

≈ − − −

− − + × −
 

following table (2.2) represent the approximate solution of example (2.4) for 

different values of α  with comparison with  the exact solution at α=1. 

Table (2.2) The approximate solution of example 2.4 for different values 
of α with comparison with the exact solution when α=1 

         α 

    x 
1 0.5 0.6 0.8 Exact for α = 1 

0 0.029 0.155 0.093 0.053 0.000 

0.125 0.083 0.241 0.179 0.125 0.059 

0.250 0.157 0.322 0.265 0.21 0.109 

0.375 0.17 0.293 0.246 0.208 0.152 

0.5 0.223 0.345 0.317 0.3 0.188 

0.625 0.18 0.283 0.254 0.245 0.215 

0.750 0.298 0.257 0.24 0.255 0.234 

0.875 0.294 0.234 0.221 0.243 0.246 
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HHaaaarr  WWaavveelleett  MMeetthhoodd  ffoorr  SSoollvviinngg  
FFrraaccttiioonnaall  VVaarriiaattiioonnaall  PPrroobblleemmss  
wwiitthh  TTrraassvveerrssaalliittyy  CCoonnddiittiioonnss      

 

3.1 Introduction 

This chapter consist of four sections. In section 3.2. the generalized 

Euler-Lagrange equations and the transversility conditions was illustrated, in 

section 3.3 The direct Haar wavelet method for solving fractional variational 

problems with transversility conditions in presented, finally two illustrative 

examples are given  in section 3.4.   

   

3.2 The Generalized Euler-Lagrange Equations and the 

Transversality Conditions 

In this section, we present the generalized Euler-Lagrange equation and 

the transversality conditions for fractional variational problems defined in 

terms of the Riemann-Liouville and the Caputo derivatives. 

We now consider the following fractional variational problem containing 

the left Riemann-Liouville fractional derivative only. Among all possible 

functions y(x), find the function y*(x) which minimize the functional: 

1

0 l
0

J[y] F(x,y, D y) dxα= ∫                                                                   …(3.1) 

and satisfies the condition   

y(0) = y0    …(3.2) 

This problem is the same as that considered in [Agrawal, 2002] with two 

exceptions. First, it does not include the right Riemann-Liouville fractional 

33  
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derivative. This choice made for simplicity. Second, in this problem, the 

boundary condition is specified only at x = 0, so that we can develop the 

natural boundary condition. For simplicity, we also assume that 0 < α < 1 and 

that all differentiability conditions are met. We further assume that the end 

points are specified. 

Here, the function value is given at one end (say x = 0) but free at the 

other end (say x = 1). Using the approach presented in [Agrawal,2002], it can 

be demonstrated that for J[y] to have an extremum, the following conditions 

must be satisfied: 

1
1

c 1
x 1 0 x

0 0 x 0 x 0

F F F
D y dx D y(x) 0

y D y D y
α α−

α α

   ∂ ∂ ∂+ δ + δ =    ∂ ∂ ∂   
∫  …(3.3) 

where δ(.) is the variation operator and 1
0 xD y(x)α−  must be interpreted as the 

fractional integral of order 1 − α. Since the value the functional of the first 

term taken only along extermals, consequently , also δy is arbitrary, it follows 

from a well- established result in calculus of variations that: 

c
x 1

0 x

F F
D 0

y D y
α

α
∂ ∂+ =
∂ ∂

 …(3.4) 

and 

1
0 x

0 x

F
D y(x) 0

D y
α−

α

 ∂ δ =  ∂ 
, x = 0, 1 …(3.5) 

Equations (3.4) and (3.5) are the generalized Euler-Lagrange equation and the 

transversality conditions for the fractional variational problem defined in 

terms of the left Riemann-Liouville fractional derivative Equation (3.5) 

suggests that either: 



Chapter three Haar Wavelet method for solving fractional variational 
problems with transversality conditions 

 

 

48 
 

0 x

F
0

D yα
∂ =

∂
, x = 0, 1 …(3.6) 

or 

1
0 xD y(x) 0α−δ = , x = 0, 1 …(3.7) 

i.e., 1
0 xD y(x)α−  at the end points should be specified. These boundary 

conditions are fractional and they are similar to those required when the 

Laplace transform technique is used. Since y at x = 1 is not specified. it 

follows that: 

0 x x 1

F
0

D yα
=

 ∂ =  ∂ 
 …(3.8) 

Equation (3.8) is called the natural boundary conditions, and to obtain 

the optimum solution, this condition must be satisfied.  

Note that equation (3.4) is somewhat different from that presented in 

[Agrawal, 2002]. It contains a Caputo fractional derivative even when the 

functional in equation. (3.1) contains no such term. This is because some of 

the boundary conditions are not specified. Equation (3.1) can be written 

purely in terms of the Riemann-Liouville fractional derivative. However, in 

that case, the resulting equations will contain some extra terms.  

Now, we consider the following fractional variational problem 

containing the left Caputo fractional derivative. Among all possible curve 

y(x), find the curve y*(x), which minimizes the functional: 

1
c
0 l

0

J[y] F(x,y, D y) dxα= ∫  …(3.9) 

and satisfies the initial condition given by (3.2). 
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Once again, we assume that 0 < α < 1 and that all differentiability 

conditions are met. We also assume that the end points are fixed. The 

approach presented in [Agrawal, 2002], can be used with some minor changes 

for Caputo derivative to obtain the optimality conditions for this case also. 

This leads to: 

1
1

1
x 1 x 1c c

0 0 x 0 x 0

F F F
D ydx D y(x) 0

y D y D y
α α−

α α

   ∂ ∂ ∂+ δ + δ =    ∂ ∂ ∂   
∫  …(3.10) 

since δy is arbitrary, it follows from a well-established result in calculus of 

variations that 

x 1 c
0 x

F F
D 0

y D y
α

α
∂ ∂+ =
∂ ∂

 …(3.11) 

and  

1

1
x 1 c

0 x 0

F
D y(x) 0

D y
α−

α

 ∂ δ =  ∂ 
,  x = 0, 1 …(3.12) 

Equations (3.11) and (3.12) are the generalized Euler-Lagrange equation 

and the transversality conditions for the fractional variational problem defined 

in terms of the left Caputo fractional derivative.  

Note that (3.11) contains a right Riemann-Liouville fractional derivative 

even when the functional dose not contain any Riemann-Liouville fractional 

derivative term. 

Equation (3.12) suggests that either: 

1
0 x c

0 x

F
D 0

D y
α−

α
∂ =

∂
, x = 0, 1 …(3.13) 

 



Chapter three Haar Wavelet method for solving fractional variational 
problems with transversality conditions 

 

 

50 
 

or 

1
0

y(x) 0δ = , x = 0, 1 …(3.14) 

i.e., y(x) at the end points should be specified. The boundary conditions 

resulting from (3.14) are the kinematics boundary conditions. They have no 

fractional derivative terms, and thus they are consistent with those required by 

the Laplace transform technique. Since y at x = 1 is not specified, it follows 

that: 

1
x 1 c

0 x x 1

F
D 0

D y
α−

α
=

 ∂ =  ∂ 
 …(3.15 ) 

Equation (3.15) is called the natural boundary conditions and the optimum 

solution must satisfy this condition. Note that this condition, in general, 

contains fractional derivative terms. Thus fractional variational problems 

defined in terms of Caputo fractional derivatives may require imposition of 

fractional boundary conditions. 

Follows we shall consider two examples in order to show some 

applications of the transversality conditions.  

 

Example (3.1): 

Consider the following functional: 

J[y] = 
1

2 2
0 x

0

1
ay ( D y y) dx

2
α + + ∫   …(3.16) 

And the following boundary condition  

y(0) = 1          …(3.17) 

We assume 0 < α < 1, we will consider two cases: 
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Case 1: Let a be 0, in this case, the minimum value of J[y] will be 0, if a 

function could be found that satisfies (3.17) and the differential equation 

0 xD y y 0α + = . 

For this poblem the Euler-Lagrange equation and the trasversality 

condition are: 

c
x 1 0 x 0 xD ( D y y) ( D y y) 0α α α+ + + =  …(3.18) 

and  

0 x( D y y) 0α + =   at  x = 1 …(3.19) 

Applying the operator x 1I
α

 on both sides of (3.18) and using (3.19) , it 

can be demonstrated that 0 xD y y 0α + =  for 0 < x < 1, as expected. Note that 

the trasversality condition contains a fractional derivative term. Thus, a 

fractional boundary condition has been used to solve the problem. 

Case 2: This time, let a be 1. For this case, the Euler-Lagrange equation is: 

c
x 1 0 x 0 xD ( D y y) y ( D y y) 0α α α+ + + + =  …(3.20) 

and the transversality condition is given by (3.19). Solving (3.20) is not 

straightforward, and perhaps its closed form solution does not exist. This 

problem is equivalent to the following fractional optimal control problem 

[Agrawal, 2004].  

Find the optimal control u that minimizes the performance index: 

J[y] = 
1

2 2

0

1
y u dx

2
 + ∫  …(3.21) 

and satisfies the dynamic constraint: 

0 xD y y uα = − +  …(3.22) 
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and the initial condition given by (3.17). This problem is solved in [Agrawal, 

2004] using a numerical technique. It is demonstrated that u(l) = 0. Using 

(3.19) and (3.22), it follows that this condition is consistent with the 

transversality condition. 

Example (3.2 ): 

As second example, consider the functional: 

J[y] = 
1

2
0 x

0

1
( D y) y dx

2
α −  

∫  …(3.23) 

and the boundary condition: 

y(0) = y0 …(3.24) 

Consider that 0 < α < 1. In this case, the Euler-Lagrange equation and the 

natural boundary condition are: 

c
x 1 0 xD ( D y) 1α α =  …(3.25) 

and 

0 x x 1
( D y) 0α

=
=  …(3.26) 

respectively. This problem with α = 1 and y0 = 0 represents the problem of a 

uniformly loaded bar fixed at one end and free at the other, and in which case 

the transversality condition suggests that the strain at the free end should be 

zero. For linear materials, the stress and the strain are linearly related. 

Therefore, for α = 1, (3.26) also suggests that stress or load at the free end 

should be zero. If y is the displacement, then dy/dx is known as strain. We 

may call it first-order strain. Following this, 0 xD yα  can be called α-order 

strain. For α = 1, it will represent ordinary strain, and for α = 0, the 

displacement. 
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Note that if a fractional variational problem is defined in terms of Caputo 

derivatives, then the natural boundary conditions may include Riemann-

Liouville derivatives also. Solving such problems analytically may be 

difficult, so a numerical technique may be necessary.  

3.3 The Direct Approach for Solving Fractional Variational 

Problems with Transversality conditions Using Haar 

Wavelet Method. 

In this section, we shall consider the problem of exterimization of a 

functional J of the form: 

J[y(x) ] = 
1

0 x
0

F[x, y(x), D y(x)]dxα
∫  …(3.27) 

satisfying the condition y(0) = y0,and y(1) is considered to be undetermined 

where 0 xD y(x)α  is the Riemann-Liouville fractional derivative. The regular 

method for solving problem (3.27) is through the Euler-Lagrange equation 

[Agrawal, 2006]: 

c
x 1

0 x

F F
D 0

y D y
α

α
∂ ∂+ =
∂ ∂

 

and 

0 x x 1

F
0

D yα
=

 ∂ =  ∂ 
 

where cx 1Dα  is the Caputo fractional derivative. 

This section mainly uses Haar wavelets to establish the direct method for 

fractional variational problems.  
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We start by assuming 0 xD y(x)α  as Haar wavelets whose coefficients are 

to be determined: 

0 xD y(x)α  = i i
i 0

c h (x)
∞

=
∑  …(3.28) 

Taking finite terms as an approximation, we have: 

0 xD y(x)α  ≈ 
m 1

i i
i 0

c h (x)
−

=
∑  = T

mC Hm(x) …(3.29) 

Applying 0Ix
α to the both sides of equation (3.29), thus y(x) can be expressed 

as: 

(n j)n
T j
m m m m

j 1

y (0)
y(x) C P H (x) (x 0)

( j 1)

−
α α−

×
=

+ −
Γ α − +∑�  …(3.30)  

The other terms in the functional of equation (3.27) are known functions 

of the independent variable x and can be expanded into Haar wavelets through 

substitution, and finally we have: 

J = J(c0, c1, …, cm−1) …(3.31) 

The original extremiation of a fractional problem shown in equation 

(3.27) becomes the extremiation of functional of a finite set of variables in 

equation (3.31). 

Taking partial derivatives of J with respect to ci, and setting them equal 

to zero, we obtain: 

i

J

c

∂
∂

 = 0, i = 0, 1, …, m − 1 …(3.32) 

solving for ci, and substituting into equation (3.30), we have the desired 

result. 
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3.4 Numerical Examples  

In this section, we shall introduce some examples in order to confirm the 

applicability and reliability of the proposed method which was given in the 

previous section. 

 

Example (3.3): 

Consider the functional: 

J[y(x)] = 
1

2
0 x

0

1
( D y(x)) y(x) dx

2
α −  

∫  …(3.33) 

and the boundary condition: 

y(0) = y0  and y(1) is unspecified …(3.34) 

Consider that 0 < α < 1, and for solving this problem by the direct Haar 

wavelet method, we assume that 0 xD y(x)α  can be expanded in terms of Haar 

wavelet, as follows: 

0 xD y(x)α  ≈ 
m 1

i i
i 0

c h (x)
−

=
∑  = T

mC Hm(x) …(3.35) 

where: 

Cm = [c0  c1  … cm−1]
T 

Hm(x) = [h0(x)  h1(x) … hm−1(x)]T 

Here, we shall consider y0=0 and m = 8 and more accurate results may be 

obtained using larger m. 

Now, upon taking the fractional Riemann-Liouville integration to the 

both sides of equation (3.35), thus we get: 

y(x) = T
8C 8 8Pα

× H8(x) …(3.36) 
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The other condition according to [Agrawal, 2006], that we have is: 

0 x x 1

F
0

D y(x)α
=

 ∂ =  ∂ 
 

and according to our example, we get: 

0 x x 1
D y(x) 0α

=
=  

which implies that T
8C H8(1) = 0.  

Therefore: 

c0 − c1 − c3 − c7 = 0 

and this gives 

c7 = c0 − c1 − c3 …(3.37) 

substituting equations (3.35), (3.36) and (3.37) into equation (3.33) yields: 

( )
1

T T T
8 8 8 8 8 8 8 8

0

1
J[y(x)] C H (x)H (x)C C P H (x) dx

2
α
×

 −  
∫�  

( )
1

T T T
8 8 8 8 8 8 8 8

0

1
C H (x)H (x)C C P H (x) dx

2
α
×

 = −  
∫  

Therefore: 

J[y(x)] = T
8

1
C

2

1
T

8 8 8
0

H (x)H (x) dxC∫  − T
8C 8 8Pα

×

1

8
0

H (x)dx∫   …(3.38) 

And as we mention in chapter two that the definite integral of h0(t) from 0 to 1 

is equal to 1, while the definite integral of h1, h2, …, h7 are equal to zero for m 

= 8, or: 

1

0
0

h (x)dx∫  = 1, 
1

i
0

h (x)dx∫  = 0, i = 1, 2, …, 7 …(3.39) 
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Hence, upon using equations (3.37) and (3.39) and substituting into equation 

(3.38), we get: 

J �  T
8

1
C

2
K8×8C8 − T

8C 8 8Pα
×

1

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
  

     …(3.40) 

 

Following table (3.1) give the approximate solution of example (3.3) for 

different values of α and compares the results for α = 1 with the exact 

solution which was given in[Agrawal,2002] as: 

y(x) = x
x

1
2

 − 
 

 

Table (3.1) Comparison of the numerical solution of example (3.3) for 

different values of α with comparison with the exact solution when α = 1 

            α 

    x 
1 0.5 0.6 0.8 Exact for α = 1 

0 0.059 0.291 0.216 0.115 0.000 

0.125 0.169 0.511 0.420 0.273 0.117 

0.250 0.318 0.740 0.645 0.466 0.219 

0.375 0.341 0.704 0.625 0.473 0.305 

0.5 0.536 0.917 0.851 0.695 0.375 

0.625 0.449 0.761 0.701 0.574 0.430 

0.750 0.503 0.754 0.708 0.593 0.462 

0.875 0.492 0.617 0.618 0.591 0.492 
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Example (3.4): 

Consider the functional: 

J[y(x)] = ( )
1 2

0 x 0 x
0

D y(x) x D y(x) dxα α   +   ∫  …(3.41) 

and the boundary conditions: 

y(0) = 0  and  y(1) is unspecified …(3.42) 

and for solving this example also we let: 

0 xD y(x)α  = T
mC Hm(x) …(3.43) 

Hence 

y(x) = T
mC Pm×mHm(x)  …(3.44) 

There is a variable x involved in equation (3.41) explicitly and it can be 

expanded into Haar series over the interval [0,1] 

x �  T
md Hm(x) …(3.45) 

Also, the other condition that we have is: 

2 0 x x 1
D y(x) x 0α

=
+ =  

which implies that: 

T
mC Hm(1) = − 1

2
                                                                            …(3.46) 

Here we shall take also m=8 and according to equation (3.46) thus we have:  

c7 = c0 − c1 − c3 + 
1

2
   …(3.47) 
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and substituting equations (3.43), (3.45) and (3.47) into equation (3.41), we 

have: 

1
T T
8 8 8 8

0

J[y(x)] C H (x)H (x)C +∫�
T T
8 8 8 8C H (x)H (x)d dx

  

J[y(x)] �  T
8C K8×8C8 + T

8C K8×8d8 …(3.48) 

Following table (3.2) gives the approximate solution of example (3.4) for 

different values of α and compares the results for α = 1 with the exact 

solution, which was given in [Hsiao, 2004], as: 

y(t) = −
2x

4
 

Table (3.2) Comparison of the approximate solution of example (3.4) for 

different values of α with comparison with the exact solution when α = 1 

         α 

     x 
1 0.5 0.6 0.8 Exact  for α = 1 

0 0.001062 −0.008 −0.006441 −0.073 0 

0.125 −0.008938 −0.032 −0.026 −0.085 −0.003906 

0.250 −0.029 −0.079 −0.065 −0.114 −0.016 

0.375 −0.049 −0.109 −0.093 −0.138 −0.035 

0.5 −0.108 −0.215 −0.189 −0.214 −0.063 

0.625 −0.120 −0.216 −0.193 −0.223 −0.098 

0.750 −0.186 −0.437 −0.378 −0.356 −0.141 

0.875 −0.222 −0.327 −0.326 −0.367 −0.191 
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CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorrkkss  

 

From the present study one can conclude the following : 

1- The numerical solution of the fractional variational problems can be 

obtained directly from the functional and the there is no need to solve 

the fractional Euler-Lagrang equation . 

2- The procedure considered in this thesis can be considered as a 

generalization to the results given in [Hsiao,2004]. 

3- From the Illustrative examples it can be seen that this operational 

matrix approach can obtain accurate and satisfying results.  

4- It in remarkable that by using our approach we do not need to 

approximate the LRLFD and the RRLFD simulteanously as Haar 

series in the variational problems which was considered in chapter 

two and just we approximate the LRLFD as Haar series in order to 

get the desired (sapproximate)  solution and this approach gave us 

reasonable results if it is compared with the exact solution.  

Also , we recommend the following problems as future work : 

1- The numerical solution of the fractional variational problems using 

direct Chebyshev wavelets , direct Legender wavelets methods. 

2- The numerical solution of the fractional variational problems using 

Bernestein operational matrix . 

3- The numerical solution of the fractional variational problems with 

delay using direct Haar wavelet method. 

4- The numerical solution of the fuzzy fractional variational problems 

using direct Haar wavelet method. 
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  ا�����

 

مســـــائل التغـــــاير ذات فـــــي هـــــذه الرســـــالة ,ســـــوف نســـــتخدم اســـــلوب واضـــــح لحـــــل 

ة الكســـــرية ســـــوف تكـــــون . المشـــــتقوذلـــــك باســـــتخدام تقنيـــــة مويجـــــات هـــــار ريةالرتـــــب الكســـــ

 .ليوفيلي-من نوع ريمان

  :ي لهذه الرسالة يتمحور حول هدفينالغرض الرئيس

ذات الشـــــــروط  ةة مســـــــائل التغـــــــاير الكســـــــرية البســـــــيطالهـــــــدف الاول هـــــــو دراســـــــ

  .تخدام طريقة مويجات هار المباشرةالحدودية الثابتة وايجاد الحل التقريبي لها باس

ــــائل التغــــــــاير الكســــــــرية البســــــــيطالهـــــــدف الثــــــــاني هــــــــو دراســــــــ ذات شــــــــرط  ةة مســــ

ام طريقــــــة لهــــــا  باســــــتخد التقريبــــــيغيــــــر محــــــدد) وايجــــــاد الحــــــل شــــــرط حــــــدودي متحــــــرك (

  .مويجات هار المباشرة

ــــــي ــــــواع ذهِ لهــــــ الحــــــل التقريب ممكــــــن ايجــــــاده  قترحــــــةمســــــائل التغــــــاير الم مــــــنالان

ــــة الـــــــى حـــــــل معادلـــــــة اويلـــــــ لـــــــذلك  لاكـــــــرانج الكســـــــرية-رمباشـــــــرة مـــــــن الـــــــدالي دون الحاجـــ

) أعطتنـــــا حـــــلاً بســـــيطاً ودقيقـــــاً لهـــــذهِ المباشـــــرة الاســـــلوب المقتـــــرح (طريقـــــة مويجـــــات هـــــار

  .    الانواع من مسائل التغاير ذات الرتب الكسرية
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