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I 

 

SUMMERY 

 

      The main theme of this thesis is to study and find the numerical solution of 

fractional order delay differential equations, and may be divided into two sub 

objectives, as follows: 

      The first objective is to prove the existences, uniqueness and the stability 

of the solutions of fractional order delay differential equations.  

      The second objective is to find the numerical solutions of fractional order 

delay differential equations by using the operational matrices of the generalized 

Hat functions. 

      In this thesis, a modified technique by combining the method of steps and 

generalized Hat functions for solving fractional order delay differential 

equations will be proposed. 

      This technique converts the fractional order delay differential equations on 

a given interval to a fractional order non-delay differential equations over that 

interval, by using the function depend on previous interval.  Then apply the 

operational matrix for generalized Hat function on the obtained fractional order 

non-delay differential equations to transform linear and nonlinear the fractional 

order non-delay differential equations into a system of algebraic equations and 

find the solution.  

       Some illustrative examples are presented and the results of these examples 

are compared with the existing methods such as Chebyshev wavelet method 

and the exact solution in order to illustrate the accuracy and efficiency of the 

proposed method. 
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Introduction 
 

Delay differential equations )DDEs) play an important role in the research 

field of various applied sciences such as control theory, electrical networks, 

population dynamics, environment science, biology and life science. 

Mathematical models employing delay differential equations turn out to be 

useful especially in the situation, where the description of investigated systems 

depends not only on the position of a system in the current time, but also in the 

past. In such cases the use of ordinary differential equations turns out to be 

insufficient. The presence of a delayed time argument in the investigated 

system may frequently influence properties of solutions. The survey of the 

theory related to delay differential equations can be found e.g. in books 

[Balachandran,2009], [Bellen,2003], [Erneux,2009], [Kolmanovskii,1999].       
                                 

Delay differential equations (DDEs) are a type of differential equation in 

which the derivative of the unknown function at a certain time is given in terms 

of the values of the function at previous times. DDEs are also called time-delay 

systems, systems with aftereffect or dead-time, hereditary systems, equations 

with deviating argument, or differential-difference equations. 
 

They belong to the class of systems with the functional state, i.e. partial 

differential equations (PDEs) which are infinite dimensional, as opposed 

to ordinary differential equations (ODEs) having a finite dimensional state 

vector. 

Four points may give a possible [Richard,2003] explanation of the 

popularity of DDEs: 

(1) After effect is an applied problem: it is well known that, together with the 

increasing expectations of dynamic performances, engineers need their models 

to behave more like the real process. Many processes include aftereffect 

https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Ordinary_differential_equations
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phenomena in their inner dynamics. In addition, actuators, sensors, 

communication networks that are now involved in feedback control loops 

introduce such delays. Finally, besides actual delays, time lags are frequently 

used to simplify very high order models. Then, the interest for DDEs keeps on 

growing in all scientific areas and, especially, in control engineering. 

(2) Delay systems are still resistant to many classical controllers: one could 

think that the simplest approach would consist in replacing them by some finite-

dimensional approximations. 

Unfortunately, ignoring effects which are adequately represented by 

DDEs is not a general alternative: in the best situation (constant and known 

delays), it leads to the same degree of complexity in the control design. In worst 

cases (time-varying delays, for instance), it is potentially disastrous in terms of 

stability and oscillations. 

(3) Delay properties are also surprising since several studies have shown that 

voluntary introduction of delays can also benefit the control.  

(4) In spite of their complexity, DDEs however often appear as simple infinite-

dimensional models in the very complex area of partial differential 

equations (PDEs). 

Delay differential equations were initially introduced in the 18th century 

by Laplace and Condorect, [Ulsoy,2003]. However, the rapid development of 

the theory and applications of those equations did not come until after the 

Second World War, and continues till today. The basic theory concerning the 

stability of systems described by equations of this type was developed by 

Pontryagin in 1942. Important works have been written by Smith in 1957, 

Pinney in 1958, Bellman and Cooke in 1963, Halanay in 1966, Myshkis in 

1972, Hale 1977, Yanusherski in 1978 and Marshal in 1979. On the other hand, 

many complicated physical problems described in terms of partial differential 

https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
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equations can be approximated by much simpler problems described in terms 

of delay differential equations, [Pinney,1958]. The impetus has mainly been 

due to the developments in many fields, such as the control theory, 

mathematical biology, and mathematical economics, etc. Minorsky, [Hale, 

1977] was one of the first investigators of modern times to study the delay 

differential equation: 

            𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)),   

and its effect on simple feed-back control systems in which the communication 

time cannot be neglected.  

Fractional calculus is a mathematical branch investigating the properties 

of derivatives and integrals of non-integer orders (called fractional derivatives 

and integrals, briefly differintegrals). 

 

Fractional calculus is a generalization of ordinary differentiation and 

integration to arbitrary (non-integer) order. The subject is as old as the 

differential calculus, and goes back to times when Leibnitz and Newton 

invented differential calculus [Sabatier,2015]. 
 

      Fractional calculus is a topic being more than 300 years old. The idea of 

fractional calculus has been known since the regular calculus, with the first 

reference probably being associated with Leibniz and L’Hospital in 1695 where 

half-order derivative was mentioned. In a correspondence between Johann 

Bernoulli and Leibniz in 1695, Leibniz mentioned the derivative of general 

order. 

 

In 1730 the subject of fractional calculus did not escape Euler’s attention. 

J. L. Lagrange in 1772 contributed to fractional calculus indirectly, when he 

developed the law of exponents for differential operators. In 1812, P. S. Laplace 

defined the fractional derivative by means of integral and in 1819 S. F. Lacroix 
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mentioned a derivative of arbitrary order in his 700-page long text, followed by 

J. B. J. Fourier in 1822, who mentioned the derivative of arbitrary order. 
 

The first use of fractional operations was made by N. H. Abel in 1823 in 

the solution of tautochrome problem. J. Liouville made the first major study of 

fractional calculus in 1832, where he applied his definitions to problems in 

theory. 
 

In 1867, A. K. Grünwald worked on the fractional operations. G. F. 

Riemann developed the theory of fractional integration during his school days 

and published his paper in 1892. A. V. Letnikov wrote several papers on this 

topic from 1868 to 1872. Oliver Heaviside published a collection of papers in 

1892, where he showed the so-called Heaviside operational calculus concerned 

with linear generalized operators. In the period of 1900 to 1970 the principal 

contributors to the subject of fractional calculus were, for example, H. H. 

Hardy, S. Samko, H. Weyl, M. Riesz, S. Blair, etc. The first work, devoted 

exclusively to the subject of fractional calculus, is the book by Oldham and 

Spanier [Oldham,1974] published in1974. After that, a number of publications 

about the fractional calculus has rapidly increased and today there exist at least 

two international journals (i) journal of fractional calculus and (ii) fractional 

calculus and applied analysis and for a historical overview on fractional 

calculus, see [Oldham,1974], [Miller,1993] and [Kilbas,2006]. 
 

Fractional differential equations are applied to model wide range of 

physical problems including nonlinear oscillation of earth quakes [He,1998], 

fluid-dynamic traffic [He,1999], frequency dependent damping behavior of 

many viscoelastic materials, signal processing [Panda,2006] and control theory 

[Bohannan,2008]. Moreover, in several areas of applied mathematics 

[Asl,2003] fractional differential equations are often used. These are also used 

in the study of epidemics, age-structured population growth [Kuang,1993], 

automation, traffic flow and in many engineering problems. 
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The fractional order delay differential equation is a generalization of the 

delay differential equation to arbitrary noninteger order. For most of fractional 

order delay differential equations, exact solutions are not known. Therefore, 

different numerical methods [Wang,2013], [Moghaddam,2013], 

[Morgado,2013] have been developed and applied for providing approximate 

solutions. 
 

As we mention above that the exact solution of delay differential equations 

of fractional order is not known therefore in this thesis a generalized Hat basis 

functions [Tripathi, 2013] together with the method of steps will be used in 

order to find the numerical solution of delay differential equations of fractional 

order. 
 

This thesis consists of three chapters, as well as, this introduction. 

In chapter one, fundamental concepts of delay differential equations and 

fractional calculus are given, while in chapter two, the existence and stability 

of the solutions of fractional order delay differential equations are presented. 

Finally, in chapter three a modified approach for solving fractional order delay 

differential equation using generalized Hat functions operational matrices 

together with the method of steps, with illustrative examples have been given. 

It is remarkable that all the calculations have been done using Mathcad 14. 



1 

CHAPTER ONE 

Fundamental Concepts 
 

1.1 Introduction 

In this chapter we shall introduce the basic concepts of delay differential 

equations and fractional calculus which are necessary for the construction of 

this thesis. 

This chapter consists of three sections. In section (1.2) the basic concepts 

of delay differential equations were given. In section (1.3) we shall give a brief 

introduction to the subject of fractional calculus including the beta and gamma 

functions, the fractional integration and fractional derivatives.  

1.2 Delay Differential Equations [Bellman, 1963] 

Delay differential equation “DDE” is defined as an unknown function 

𝑦(𝑡) and some of its derivatives, evaluated at arguments that differ by any of 

fixed number of values 𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑘. The general form of the 𝑛-th order 

DDE is given by  

       𝐹(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏1), … , 𝑦(𝑡 − 𝜏𝑘), 𝑦
′(𝑡), 𝑦′(𝑡 − 𝜏1),… , 𝑦

′(𝑡 − 𝜏𝑘), 

      𝑦(𝑛)(𝑡), 𝑦(𝑛)(𝑡 − 𝜏1), … , 𝑦
(𝑛)(𝑡 − 𝜏𝑘)) = 0,                                            (1.1) 

where 𝐹 is a given functional and 𝜏𝑖 , ∀ 𝑖 =  1, 2, … , 𝑘; are given fixed positive 

number called the “time delay”. 

In some literature equation (1.1) is called a difference differential equation 

or functional differential equation, [Bellman,1963], or an equation with time 

lag [Halanay,1966], or a differential equation with deviating arguments, 

[Driver,1977]. 
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The emphasis will be, in general, on the linear equations with constant 

coefficients of the first order and with one delay  

      𝑎0𝑦
′(𝑡) + 𝑎1𝑦

′(𝑡 − 𝜏 ) + 𝑏0𝑦(𝑡) + 𝑏1𝑦(𝑡 − 𝜏 ) = 𝑓(𝑡),                        (1.2) 

where 𝑓(𝑡) is a given continuous function and 𝜏 is a positive constant and 𝑎0, 

𝑎1, 𝑏0, and 𝑏1 are constants (if 𝑓(𝑡) = 0, then equation (1.2) is said to be 

homogenous; otherwise it is nonhomogeneous). 

The kind of initial conditions that should be used in DDE’s differ from 

ODE’s so that one should specify in DDE’s an initial function on some interval 

of length τ, say [𝑡0 − 𝜏, 𝑡0] and then try to find the solution of equation (1.2) 

for all 𝑡 ≥ 𝑡0. Thus, we set 𝑦(𝑡) = 𝑝𝑜(𝑡), for 𝑡0 − τ ≤ 𝑡 ≤ 𝑡0 where 𝑝0(𝑡) is 

some given continuous function. Therefore, the solution of DDE consists of 

finding a continuous extension of  𝑝0(𝑡) into a function 𝑦(𝑡) which satisfies 

(1.2) for all 𝑡 ≥ 𝑡0,  [Halanay, 1966]. 

Delay differential equation given by equation (1.2) can be classified into 

three types which are retarded, neutral and mixed. The first type means an 

equation where the rate of change of state variable y is determined by the 

present and past states of the equation (1.2) where the coefficient of  𝑦′(𝑡 − 𝜏) 

is zero, i.e., (a0 ≠ 0, a1 = 0). If the rate of change of state depends on its own 

past values as well on its derivatives, the equation is then of neutral type, 

equation (1.2) where the coefficient of 𝑦(𝑡 − 𝜏) is zero, i.e., ( a0 ≠ 0, a1 ≠

0 and b1 = 0), while the third type is a combination of the previous two types, 

i.e., (a0 ≠ 0, a1 ≠ 0, b0 = 0 and b1 ≠ 0). 

1.2.1 Solution of the First Order Delay Differential Equations [Driver, 

1977]: 

In this section, we shall introduce two analytical methods used to solve 

the delay differential equations. 
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1. Method of steps (method of successive integrations), [Smith, 2011]: 

The method of steps or the method of successive integrations is an 

elementary method that can be used to solve some DDEs analytically. It is 

much more intuitive and can be used to solve DDEs with variable coefficients 

This method converts the DDE on a given interval to an ODE over that 

interval, by using the known history function for that interval. The resulting 

equation is solved, and the process is repeated in the next interval with the 

newly found solution serving as the history function for the next interval. we 

shall consider some illustrative examples for all types of DDE. 

       The best well known method for solving DDE’s is the method of steps or 

the method of successive integrations which is used to solve a DDE of the form: 

        𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏), 𝑦′(𝑡 − 𝜏)),   𝑡 ≥ 𝑡0                                   (1.3) 

with initial condition 𝑦(𝑡) = 𝑝𝑜(𝑡), for 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0. For such equations the 

solution is constructed step by step as follows: 

Step 1: On the interval [𝑡0 − 𝜏, 𝑡0], the function 𝑦(𝑡) is the given function 

𝑝𝑜(𝑡), so one can obtain the solution in the next step interval [𝑡0, 𝑡0 + 𝜏] by 

solving the following equation: 

       𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑝𝑜(𝑡 − 𝜏), 𝑝𝑜
′(𝑡 − 𝜏)),   𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜏,                   

with initial condition 𝑦(𝑡0) = 𝑝𝑜(𝑡0). If we consider that 𝑝1(𝑡) is the desired 

first step solution, which exists by virtue of continuity hypotheses. 

Step 2: On the interval [𝑡0, 𝑡0 + 𝜏], the function 𝑦(𝑡) is the given function 

𝑝1(𝑡), therefore one can find the solution 𝑝2(𝑡)  to the equation: 

       𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑝1(𝑡 − 𝜏), 𝑝1
′(𝑡 − 𝜏)),   𝑡0 + 𝜏 ≤ 𝑡 ≤ 𝑡0 + 2𝜏       

with initial condition 𝑦(𝑡0 + 𝜏) = 𝑝1(𝑡0 + 𝜏). 

These steps may be continued for subsequent intervals. 
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In general, by assuming that 𝑝𝑘(𝑡), ∀(𝑘 = 1,2 , . . . ) is defined on the 

interval [𝑡0 + (𝑘 − 2)𝜏, 𝑡0 + (𝑘 − 1)𝜏], then, one can find the solution 𝑝𝑘(𝑡) 

to the equation: 

        𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑝𝑘−1(𝑡 − 𝜏), 𝑝𝑘−1
′(𝑡 − 𝜏)), 𝑡0 + (𝑘 − 1)𝜏 ≤ 𝑡 ≤ 𝑡0 + 𝑘𝜏 

with the initial condition: 

       𝑦(𝑡0 + (𝑘 − 1)𝜏) = 𝑝𝑘−1(𝑡0 + (𝑘 − 1)𝜏).  

We illustrate the method in the following example. 

 

Example (1.1): 

       Consider the neutral first order DDE: 

       𝑦 ′(𝑡) = 𝑦 ′(𝑡 − 1) + 𝑡 , 𝑡 ≥  0 

with initial condition 

       𝑝0(𝑡) = 𝑡 +  1, for −1 ≤ 𝑡 ≤ 0. 

Solution: 

      To find the solution in the first interval [0, 1]. We solve the following: 

       𝑦 ′(𝑡) = 𝑝0
′ (𝑡 − 1) + 𝑡 

                 = 𝑡 +  1, for 0 ≤ 𝑡 ≤ 1.                                                          (1.4) 

Integrating both sides of eq.(1.4) from 0 to t where 0 ≤ 𝑡 ≤ 1, we have: 

       ∫ y′(s)𝑑𝑠 = ∫ (𝑠 + 1)𝑑𝑠
𝑡

0

𝑡

0

 

and hence: 

       𝑦1(𝑡) =
𝑡2

2
+ 𝑡 +  1, for 0 ≤ 𝑡 ≤ 1 

In order to find the solution in the second step interval suppose that: 

       𝑝1(𝑡) = 𝑦1(𝑡) =
𝑡2

2
+ 𝑡 +  1 

is the initial condition. Since 𝑝1(𝑡)is defined on the whole segment [0, 1].  
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Hence by forming the new equation: 

       𝑦 ′(𝑡) = 𝑝1′(𝑡 − 1) + 𝑡 , for 1 ≤ 𝑡 ≤ 2,                                                (1.5) 

where 

        𝑝1(𝑡) =
𝑡2

2
+ 𝑡 +  1, for 0 ≤ 𝑡 ≤ 1 . 

One can find the solution in the next step interval [1, 2], and solving eq. (1.5) 

for 𝑦 (𝑡), we have: 

       𝑦 ′(𝑡) = 𝑝1′(𝑡 − 1) + 𝑡  

                 = 2𝑡  , for 1 ≤ 𝑡 ≤ 2 .                                                                (1.6) 

Integrating both sides of eq. (1.6) from 1 to 𝑡 where 1 ≤ 𝑡 ≤ 2, we get: 

       𝑦(𝑡) = 𝑡2 +
3

2
 , for 1 ≤  𝑡 ≤ 2. 

Therefore, 𝑦(𝑡) is the desired second step solution which is denoted by: 

       𝑦(𝑡) = 𝑝2(𝑡) = 𝑡2 +
3

2
 , for 1 ≤  𝑡 ≤ 2 

Similarly, we proceed to the next intervals. 

 

Example (1.2): 

Consider the retarded first order DDE: 

       𝑦′(𝑡) = 𝑦(𝑡 − 1) ,   𝑡 ≥ 0 

with the initial condition: 

       𝑦(𝑡) = 𝑝𝑜(𝑡) = 𝑡, for −1 ≤ 𝑡 ≤ 0. 

Solution: 

To find the solution in the first step interval [0, 1] we have to solve the 

following equation: 

       𝑦′(𝑡) = 𝑝𝑜(𝑡 − 1) 
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                = 𝑡 − 1, for 0 ≤ 𝑡 ≤ 1.                                                                 (1.7) 

Integrating both sides of eq.(1.7) from 0 to 𝑡 where 0 ≤ 𝑡 ≤ 1, we have: 

       ∫ 𝑦′(s)𝑑𝑠 = ∫ (𝑠 − 1)𝑑𝑠
𝑡

0

𝑡

0

 

and hence after carrying some calculations we get the first time step solution: 

       𝑦1(𝑡) =
𝑡2

2
− 𝑡, for 0 ≤ 𝑡 ≤ 1. 

In order to find the solution in the second step interval, suppose that: 

       𝑝1(𝑡) = 𝑦1(𝑡) =
𝑡2

2
− 𝑡, 0 ≤ 𝑡 ≤ 1 

Since 𝑝1(𝑡) is defined on the whole segment [0, 1]. 

Hence by forming the new equation: 

       𝑦′(𝑡) = 𝑝1(𝑡 − 1), for  1 ≤  𝑡 ≤ 2                                                       (1.8) 

with the initial condition 

       𝑝1(𝑡) =
𝑡2

2
− 𝑡, for   0 ≤ 𝑡 ≤ 1 

On the next step interval [1, 2], One can find the solution of eq. (1.8) 

       𝑦′(𝑡) = 𝑝1(𝑡 − 1), 1 ≤ 𝑡 ≤ 2 

                 =
(𝑡 − 1)2

2
− (𝑡 − 1) 

                 =
𝑡2

2
− 𝑡 +

1

2
− 𝑡 + 1 

                 =
𝑡2

2
− 2𝑡 +

3

2
  , 1 ≤  𝑡 ≤ 2.                                                         (1.9) 

Integrating both sides of eq. (1.9) from 1 to 𝑡, where 𝑡 ∈  [1, 2], we get: 

       𝑦(𝑡) =
𝑡3

6
− 𝑡2 +

3

2
𝑡 −

7

6
 , for 1 ≤ 𝑡 ≤ 2 
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Similarly, let: 

       𝑦2(𝑡) =
𝑡3

6
− 𝑡2 +

3

2
𝑡 −

7

6
 

and suppose 𝑝2(𝑡) is the desired second step solution, i.e., 

       𝑝2(𝑡) = 𝑦2(𝑡) =
𝑡3

6
− 𝑡2 +

3

2
𝑡 −

7

6
 

Since 𝑝2(𝑡) is defined on the whole segment [1, 2] hence by forming the new 

equation: 

       𝑦′(𝑡) = 𝑝2(t − 1), for  2 ≤  𝑡 ≤ 3                                                     (1.10) 

with the initial condition: 

       𝑝2(𝑡) =
𝑡3

6
− 𝑡2 +

3

2
𝑡 −

7

6
 . 

Similarly, one can find 𝑦3(𝑡), 𝑦4(𝑡) and so on. 

 

Example (1.3): 

Consider the mixed DDE: 

       𝑦′(𝑡) = 𝑦(𝑡 − 1) + 2𝑦′(𝑡 − 1) ,   𝑡 ≥ 0 

with initial condition: 

       𝑝0(𝑡) = 1, for 0 ≤ 𝑡 ≤ 1 . 

Solution: 

        To find the solution in the first step interval [1,2], we will solve the 

following equation: 

       𝑦′(𝑡) = 𝑝0(𝑡 − 1) + 2𝑝0
′(𝑡 − 1) , for 1 ≤ 𝑡 ≤ 2 

Hence 

       𝑦′(𝑡) = 1, for 1 ≤ 𝑡 ≤ 2 .                                                                 (1.11) 

By integrating both sides of eq. (1.11) from 1 to 𝑡, where 1 ≤ 𝑡 ≤ 2, we have: 
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       ∫ 𝑦′(s)𝑑𝑠 = ∫ 𝑑𝑠
𝑡

1

𝑡

1

 

and hence: 

       𝑦(𝑡) = 𝑡, for 1 ≤ 𝑡 ≤ 2 

and suppose that 𝑝1(𝑡) is the desired first step solution 
 

       𝑦1(𝑡) = 𝑝1(𝑡) = 𝑡, for 1 ≤ 𝑡 ≤ 2 
 

Since 𝑝1(𝑡) is defined on the whole segment [1,2], hence by forming the new 

equation: 
 

       𝑦′(t) = 𝑝1(t − 1) + 2𝑝1
′(t − 1) , for 2 ≤ 𝑡 ≤ 3 

 

with initial condition: 
 

       𝑦1(𝑡) = 𝑝1(𝑡) = 𝑡, for 1 ≤ 𝑡 ≤ 2 
 

and so on, we proceed to the next intervals. 
 

The next example considers the solution of DDE with variable delay which 

can be solved by successive integration method. 

 

Example (1.4): 

       Consider the retarded first order DDE: 

       𝑦′(𝑡) = −𝑦(𝑡 − 𝑒𝑡) ,   0 ≤ 𝑡 ≤ 1 

with initial condition: 

       𝑝0(𝑡) = 1, for −1 ≤ 𝑡 ≤ 0. 

Solution: 

        To find the solution in the first step interval [0,1] we have to solve the 

following equation: 

       𝑦′(𝑡) = −𝑝0(𝑡 − 𝑒
𝑡) ,   0 ≤ 𝑡 ≤ 1 

                 = −1 ,   0 ≤ 𝑡 ≤ 1                                                                      (1.12) 



 

CHAPTER ONE                                                                                                                                Fundamental Concepts 

 

 

9 
 

Integrating both sides of eq. (1.12) from 0 to 𝑡 where 0 ≤ 𝑡 ≤ 1, we have: 

       ∫ 𝑦′(s)𝑑𝑠 = −∫ 𝑑𝑠
𝑡

0

𝑡

0

 

and hence after carrying some calculations we get the first time step solution: 

       𝑦(𝑡) = 1 − 𝑡, for 0 ≤ 𝑡 ≤ 1 

In order to find the solution in the second step interval suppose that: 

       𝑦1(𝑡) = 𝑝1(𝑡) = 1 − 𝑡, for 0 ≤ 𝑡 ≤ 1 

Therefore: 

       𝑦1(𝑡) = 1 − 𝑡, for 0 ≤ 𝑡 ≤ 1 

Since 𝑝1(𝑡) is defined on the whole segment [0, 1]. 

Hence by forming the new equation: 

       𝑦′(𝑡) = −𝑝1(𝑡 − 𝑒
𝑡) ,   0 ≤ 𝑡 ≤ 1 

                  = −1 + (𝑡 − 𝑒𝑡),   0 ≤ 𝑡 ≤ 1.                                                          (1.13) 

By integrating both sides of eq. (1.13) from 1 to 𝑡, where 1 ≤ 𝑡 ≤ 2, we have: 

       𝑦(𝑡) =
𝑡2

2
− 𝑡 − 𝑒𝑡 + 3.2, for 1 ≤ 𝑡 ≤ 2 

Similarly, let: 

       𝑦2(𝑡) =
𝑡2

2
− 𝑡 − 𝑒𝑡 + 3.2, for 1 ≤ 𝑡 ≤ 2 , 

and suppose 𝑝2(𝑡) is the desired second step solution, i.e., 

       𝑝2(𝑡) = 𝑦2(𝑡) 

                  =
𝑡2

2
− 𝑡 − 𝑒𝑡 + 3.2, , for 1 ≤ 𝑡 ≤ 2 . 

Since 𝑝2(𝑡) is defined on the whole segment [1, 2], hence by forming the new 

equation: 

       𝑦′(𝑡) = −𝑝2(t − e
t) ,   2 ≤ 𝑡 ≤ 3 
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with initial condition 

       𝑝2(𝑡) =
𝑡2

2
− 𝑡 − et + 3.2, , for 1 ≤ 𝑡 ≤ 2 

similarly, one can find 𝑦3(𝑡), 𝑦4(𝑡)and so on. 

 

2. Laplace transform method, [Ross, 1984], [Gupta, 2014]: 

     Laplace transformation method is also, one of the most widely used methods 

for solving DDE’s  

     Suppose that 𝑦 is a real-valued function of the real variable defined for      

𝑡 > 0 . Let 𝑠 be a parameter that we shall assume to be real, and consider the 

function 𝑌 defined by   

       𝐿[𝑦(𝑡)] = 𝑌(𝑠) = ∫ 𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡
∞

0
,                                                       (1.14) 

     for all values of s for which this integral exists. The function 𝐿[𝑦] defined 

by the integral (1.14) is called the Laplace transformation of the function 𝑦 and 

we shall denote the Laplace transform 𝐿[𝑦]  of 𝑦 by 𝑌(𝑠).  

We say that 𝑦(𝑡) = 𝐿−1[𝑌(𝑠)]  is the (unique) inverse Laplace transform of 

𝑌(𝑠). 

We also recall that the Laplace transform is a linear operator. In particular, if 

 𝐿[𝑦(𝑡)]  and  𝐿{𝑥(𝑡)}  exist, then 

𝐿[𝑦(𝑡) + 𝑥(𝑡)] = 𝐿[𝑦(𝑡)] + 𝐿[𝑥(𝑡)] 

and  

𝐿[𝑐𝑦(𝑡)] = 𝑐𝐿[𝑦(𝑡)] , 𝑐 is constant. 

This method can be used in two different approaches for solving delay 

differential equations. 
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The first approach is by mixing between the method of steps and the Laplace 

transform method and the other approach is by applying the Laplace transform 

method directly to the original DDE. 

 

The First Approach, [Brauer, 1973]:  

This approach depends mainly on applying first the method of steps to 

transform the DDE into ODE and then applying Laplace transformation method 

to solve the resulting equation. To this end consider the following example: 

Example (1.5): 

       Consider the neutral DDE: 

       𝑦′(𝑡) = 𝑦′(𝑡 − 1) + 𝑡 ,   0 ≤ 𝑡 ≤ 1  

with initial condition: 

       𝑝0(𝑡) = 1 + 𝑡, for −1 ≤ 𝑡 ≤ 0. 

Solution: 

      To find the solution in the first step interval [0, 1], we apply the method of 

steps, to get: 

       𝑦′(𝑡) = 𝑝0
′(𝑡 − 1) + 𝑡 ,   0 ≤ 𝑡 ≤ 1 

Therefore 

       𝑦′(𝑡) = 1 + 𝑡 , for 0 ≤ 𝑡 ≤ 1                                                              (1.15) 

 

Now, taking the Laplace transform to the both sides of eq. (1.15), we have: 

       𝐿{𝑦′(𝑡)} = 𝐿{1} + 𝐿{𝑡} 

       𝑠𝑌(𝑠) − 𝑦(0) =
1

𝑠
+
1

𝑠2
 

and so the Laplace transform of the solution 𝑦(𝑡) into 𝑌(𝑠) is given by: 

 

       𝑌(𝑠) =
1

𝑠
+

1

𝑠2
+

1

𝑠3
                                                                                         (1.16) 
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Taking inverse Laplace transform to both sides of eq. (1.16), we have: 

       𝐿−1[𝑌(𝑠)] = 𝐿−1 [
1

𝑠
] + 𝐿−1 [

1

𝑠2
] +

1

2!
𝐿−1 [

2!

𝑠3
] 

       𝑦(𝑡) = 1 + 𝑡 +
𝑡2

2
, for 0 ≤ 𝑡 ≤ 1 . 

Hence, the solution in the first step interval is given by: 

       𝑝1(𝑡) = 𝑦(𝑡) = 1 + 𝑡 +
𝑡2

2
, for 0 ≤ 𝑡 ≤ 1 

In order to find the solution in the second step interval [1,2], we proceed 

similarly as in the first step with initial condition: 

       𝑝1(𝑡) = 1 + 𝑡 +
𝑡2

2
, for 0 ≤ 𝑡 ≤ 1 

and hence: 

       𝑦′(𝑡) = 𝑝1
′(t − 1) + 𝑡 , for 0 ≤ 𝑡 ≤ 1 

with the equivalent ODE  

       𝑦′(𝑡) = 2𝑡 , for 1 ≤ 𝑡 ≤ 2 

with initial condition: 𝑦(1) =
5

2
 . 

By  making  changing  for  the  independent  variable, we  set 𝑣 = 𝑡 − 1 then   

𝑣 ∈ [0,1], so that 

       𝑦′(𝑣 + 1) = 2(𝑣 + 1) , with  𝑦(0) =
5

2
 , 

and by considering: 

       𝑧(𝑣) = 𝑦(𝑣 + 1), 

which implies that: 

       𝑧′(𝑣) = 2(𝑣 + 1) , 𝑧(0) =
5

2
 , 𝑣 ∈ [0,1]                                                   (1.17) 
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Taking the Laplace transform to the both sides of eq. (1.17), we have: 

       𝑠𝑍(𝑠) − 𝑧(0) =
2

𝑠
+
2

𝑠2
  , 

where 𝑍(𝑠) is the Laplace transform of 𝑧(𝑣) hence: 

       𝑍(𝑠) =
5

2𝑠
+

2

𝑠2
+

2

𝑠3
 .                                                                                      (1.18) 

Taking the inverse Laplace transform to the both sides of eq. (1.18), we have: 

       𝑧(𝑣) = 𝑣2 + 2𝑣 +
5

2
 . 

Hence the solution in the second step interval [1, 2] is given by: 

       𝑧(𝑣) = 𝑦(𝑡) = (𝑡 − 1)2 + 2(𝑡 − 1) +
5

2
 

Similarly, we proceed to the next intervals. 

 

Second Approach, [Brauer, 1973]:  

This approach is to solve DDE’s by using Laplace transform method 

directly without using the method of steps. Laplace transformation method is 

extremely useful in obtaining the solution of the linear DDE’s with constant 

coefficients. Let us illustrate this method by considering the following 

example: 

 

Example (1.6): 

Consider the retarded first order DDE: 

       𝑦′(𝑡) = 𝑦(𝑡 − 1),   𝑡 ≥ 0 .                                                                        (1.19) 

with the initial condition: 

       𝑦(𝑡) = 𝑝𝑜(𝑡) = 𝑡, for −1 ≤ 𝑡 ≤ 0 , 

such that 𝑦(0) = 0, 𝑦′(0) = 1. 
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Solution: 

Applying the Laplace transform method to both sides of the equation 

(1.19), we get: 

       𝑠𝑌(𝑠) = ∫ 𝑦(𝑡 − 1)𝑒−𝑠𝑡𝑑𝑡

∞

0

 

Using the transform 𝑣 = 𝑡 − 1, yields: 

       ∫ 𝑦(𝑡 − 1)𝑒−𝑠𝑡𝑑𝑡

∞

0

= ∫ 𝑦(𝑣)𝑒−𝑠(𝑣+1)𝑑𝑣

∞

−1

 

                                         = 𝑒−𝑠 ∫𝑦(𝑣)𝑒−𝑠𝑣𝑑𝑣

0

−1

+ 𝑒−𝑠∫ 𝑦(𝑣)𝑒−𝑠𝑣𝑑𝑣

∞

0

 

                                         = 𝑒−𝑠 ∫𝑣𝑒−𝑠𝑣𝑑𝑣

0

−1

+ 𝑒−𝑠∫ 𝑦(𝑣)𝑒−𝑠𝑣𝑑𝑣

∞

0

 

Since 𝑦(𝑣) = 𝑣, for −1 ≤ 𝑧 ≤ 0. 

Finally: 

       𝑌(𝑠) = [
−1

𝑠
−
𝑒−𝑠

𝑠2
+

1

𝑠2
] [

1

𝑠−𝑒−𝑠
]                                                    (1.20) 

From equation (1.20), it follows that: 

       𝑌(𝑠) = [
−1

𝑠
−
𝑒−𝑠

𝑠2
+

1

𝑠2
] [

1

𝑠−𝑒−𝑠
]                                                    (1.21) 

and upon taking the inverse Laplace transform one can find the solution 𝑦(𝑡), 

where it is so difficult to obtain, which in force us to prefer using the numerical 

methods. 
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1.3 Fractional Calculus 

In this section we shall give some fundamental concepts about fractional 

calculus, which are needed in this thesis and in order to make this thesis self-

contained as soon as possible. 

1.3.1 Some Special Functions in Fractional Calculus 

In this section, we introduce and discuss gamma and beta functions and 

their properties. Those functions plays an important role in the theory of 

fractional derivative and integral. 

One of the basic special functions in analysis is 𝑛!. For non-integer values, or 

even complex numbers, which is called Euler’s gamma function and denoted 

by 𝛤(𝑡). Gamma function is simply said to be the extension of factorial for real 

numbers. 

1. Gamma Function, [Loverro, 2004]: 

The most basic interpretation of the gamma function is simply the 

generalization of the factorial for all real numbers. The gamma function 𝛤(𝑡) 

is defined as   

       𝛤(𝑡) = ∫ 𝑠𝑡−1𝑒−𝑠𝑑𝑠
∞

0
,    𝑡 > 0                                                     (1.22) 

is often more useful, although it is restricted to positive value of 𝑡.  

The following are the most important properties of the gamma function: 

   1. 𝛤 (
1

2
− 𝑛) =

(−4)𝑛𝑛!√𝜋

(2𝑛)!
 

   2. 𝛤 (
1

2
+ 𝑛) =

(2𝑛)!√𝜋

(4)𝑛𝑛!
 

   3. 𝛤(−𝑡) =
−𝜋 csc(𝜋𝑡)

𝛤(𝑡+1)
 

   4. 𝛤(𝑛𝑡) = √
2𝜋

𝑛
[
𝑛𝑡

√2𝜋
]𝑛∏ 𝛤 (𝑡 +

𝑘

𝑛
) ,   𝑛 ∈ 𝑁𝑛−1

𝑘=0  
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   5. 𝛤 (
1

2
) = √𝜋 

2. Beta Function, [Loverro, 2004]: 

Another important special function which plays basic role in the theory of 

fractional calculus is the beta function. For positive value of the two parameters 

p and q; the function is defined by the beta integral: 

       𝛽(𝑝, 𝑞) = ∫ 𝑠𝑝(1 − 𝑠)𝑞𝑑𝑠
1

0
 ,𝑝, 𝑞 > 0                                                 (1.23) 

which is also known as the Euler’s integral of the second kind. It is well known 

that, gamma and beta functions are related to each other. If either 𝑝 or 𝑞 is non-

positive, the integral diverges otherwise 𝛽(𝑝, 𝑞) is defined by the relationship: 

       𝛽(𝑝, 𝑞) =
 𝛤(𝑝)𝛤(𝑞)

𝛤(𝑝+𝑞)
 .                                                                                 (1.24) 

Both beta and gamma functions have “incomplete” analogues. The 

incomplete beta function of argument 𝑡 is defined by the integral: 

       𝛽𝑡(𝑝, 𝑞) = ∫ 𝑠𝑝−1(1 − 𝑠)𝑞−1𝑑𝑠
𝑡

0
 ,𝑝, 𝑞 > 0                                         (1.25) 

and the incomplete gamma function of argument 𝑡 is defined by [1]: 

       𝛾∗(𝑐, 𝑡) =
 𝑐−𝑡

𝛤(𝑡)
∫ 𝑠𝑡−1𝑒−𝑠𝑑𝑠

𝑐

0

 

                     = 𝑒−𝑡 ∑
 𝑡𝑖

𝛤(𝑖+𝑐+1)
∞
𝑖=0                                                                     (1.26) 

𝛾∗(𝑐, 𝑡) is a finite single-valued analytic function of 𝑡 and 𝑐. 

1.3.2 Fractional Order Integration 

In this section we shall give some basic definitions and properties of 

fractional integrals and derivatives. 
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Definition (1.1): (Riemann-Liouville Fractional Order Integral, [Loverro, 

2004]: 

Let 𝑦: [𝑎, 𝑏] → 𝑅 be a function, α a positive real number, n the integer 

satisfying 𝑛 − 1 ≤ 𝛼 < 𝑛, and 𝛤 the Euler gamma function. Then, the left and 

right Riemann–Liouville fractional integrals of order 𝛼 are defined by:  
    

       𝐼𝑡
𝛼

𝑎 𝑦(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑦(𝑠)𝑑𝑠,      
𝑡

𝑎
                                              (1.27) 

and 

       𝐼𝑡
𝛼

𝑏 𝑦(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑦(𝑠)𝑑𝑠,      
𝑏

𝑡
                                              (1.28) 

respectively. 

 

For   𝑦(𝑡) ∈ 𝐶𝑚[𝑎, 𝑏],   𝛼, 𝛽 ≥ 0,   𝑛 − 1 < 𝛼 ≤ 𝑛,   𝛼 + 𝛽 ≤ 𝑚, 𝜈 ≥ −1,  

𝑡 > 0 , we mention the following:   

1. (𝐼𝑡
𝛼𝐼𝑡
 𝛽
𝑦)(𝑡) = (𝐼𝑡

 𝛽
𝐼𝑡
𝛼𝑦) (𝑡) = (𝐼𝑡

𝛼+ 𝛽
𝑦)(𝑡), 

  2.    𝐼𝑡
𝛼𝑡𝑣 =

𝛤(𝑣+1)

𝛤(𝑣+𝛼+1)
𝑡𝛼+𝑣 , 

  3.    𝐼𝑡
𝛼𝑒𝑎𝑣 = 𝑡𝛼 ∑

(𝑎𝑡)𝑘

𝛤(𝑘+𝛼+1)

∞
𝑘=0  , 

  4.    𝐼𝑡
𝛼sin (𝑎𝑡) = 𝑡𝛼 ∑

(−1)𝑘(𝑎𝑡)2𝑘+1

𝛤(2𝑘+𝛼+2)

∞
𝑘=0  , 

  5.    𝐼𝑡
𝛼cos (𝑎𝑡) = 𝑡𝛼 ∑

(−1)𝑘(𝑎𝑡)2𝑘

𝛤(2𝑘+𝛼+1)

∞
𝑘=0  , 

Definition (1.2): (Weyl Fractional Order Integral, [Oldham, 1974]) 

The left fractional order integral of order 𝛼 > 0 of a given function 𝑦 is 

defined as: 

       𝐼𝑡
𝛼

−∞ 𝑦(𝑡) =
1

𝛤(𝛼)
∫

𝑦(𝑠)

(𝑡−𝑠)1−𝛼
𝑑𝑠,      

𝑡

−∞
                                                     (1.29) 

and the right fractional order integral of order 𝛼 > 0 of a given function 𝑦 is 

given by:   
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       𝐼𝑡
𝛼

∞ 𝑦(𝑡) =
1

𝛤(𝛼)
∫

𝑦(𝑠)

(𝑠−𝑡)1−𝛼
𝑑𝑠,      

∞

𝑡
                                                         (1.30) 

Definition (1.3): (Abel-Riemann Fractional Order Integral, [Mittal, 2008]) 

The Abel-Riemann (A-R) fractional integral of any order 𝛼 > 0, for a 

function 𝑦(𝑡) with 𝑡 ∈ 𝑅+ is defined as: 

        𝐼 
𝛼𝑦(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑦(𝑠)𝑑𝑠, 𝛼 > 0, 𝑡 > 0
𝑡

𝑎
                              (1.31) 

       𝐼 
0 = 𝐼 

  (identity operator) . 

The A-R integral possess the semigroup property:  

       𝐼 
𝛼𝐼 
𝛽 = 𝐼 

𝛼+ 𝛽, for all 𝛼, 𝛽 ≥ 0                                                                      (1.32)  

1.3.3 Fractional order Derivatives: 

In this section some definitions of fractional order derivatives are 

presented: 

Definition (1.4): (Riemann-Liouville Fractional Order Derivatives, [Loverro, 

2004], [Nishimoto, 1983]) 

Let 𝑓 ∶  [𝑎, 𝑏]  →  𝑅 be a function, 𝛼 a positive real number, 𝑛 the integer 

satisfying 𝑛 − 1 ≤ 𝛼 < 𝑛, and 𝛤 is the Euler gamma function. Then, the left 

and right Riemann–Liouville fractional derivatives of order α are defined by: 

𝐷𝑡
𝛼𝑦(𝑡) =

𝑑𝑛

𝑑𝑡𝑛
𝐼𝑡
𝑛−𝛼

𝑎 𝑦(𝑡)𝑎
            =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑦(𝑠)𝑑𝑠.
𝑡

𝑎

 

and  

       𝐷𝑡
𝛼𝑦(𝑡) = (−1)𝑛

𝑑𝑛

𝑑𝑡𝑛
𝐼𝑡
𝑛−𝛼

𝑏 𝑦(𝑡)𝑏  

                         =
(−1)𝑛

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑦(𝑠)𝑑𝑠.
𝑏

𝑡

 

respectively. 
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Definition (1.5): (The A-R Fractional Derivative, [Mittal, 2008]):  

The A-R fractional derivative of order α > 0 is defined as the inverse of 

the corresponding A-R fractional integral, i.e.,  

       𝐷 
𝛼𝐼 
𝛼 = 𝐼 

 ,                                                                                              (1.33)  

for positive integer 𝑚, such that 𝑚 − 1 < 𝛼 ≤ 𝑚, 

       (𝐷 
𝑚𝐼 

𝑚−𝛼)𝐼 
𝛼 = 𝐷 

𝑚(𝐼 
𝛼𝐼 
𝑚−𝛼) = 𝐼 

 ,                                                          (1.34)  

 i.e., 

    𝐷𝛼𝑦(𝑡) =

{
 
 

 
 

1

𝛤(𝑚−𝛼)

𝑑𝑚

𝑑𝑡𝑚
∫

𝑦(𝑠)

(𝑡−𝑠)𝛼+1−𝑚
𝑑𝑠

𝑡

𝑎
,   𝑚− 1 < 𝛼 < 𝑚

          
𝑑𝑚

𝑑𝑡𝑚
𝑦(𝑡),                                                    𝛼 = 𝑚

                  (1.35) 

Definition (1.6): (Caputo Fractional Order Derivative, [Caputo, 1967]) 

The Caputo fractional order derivative of a suitable function  𝑦(𝑡) is 

defined as: 

         𝐷𝑡 
𝛼𝑦𝑐 (𝑡) =

1

𝛤(𝑛−𝛼)
∫ (𝑡 − 𝑠)𝑛−𝛼−1(

𝑑

𝑑𝑡
)𝑛𝑦(𝑠)𝑑𝑠.

𝑡

0
                                   (1.36) 

for 𝑎 ≤ 𝑡 ≤ 𝑏 , where 𝛼 ∈𝑅+ and 𝑛 = [𝛼] ([𝛼] is the integer part of 𝛼). 

 

It is remarkable here to mention some of the important properties of the Caputo 

fractional order derivative as follows: 

1. Caputo introduced an alternative definition, which has the advantage of 

defining integer order initial conditions for fractional order differential 

equations. 

2. Caputo’s fractional differentiation is linear operator, similar to integer 

order differentiation: 

            𝐷𝑡 
𝛼

 
𝑐 (µ𝑓(𝑡)  +  𝜈𝑔(𝑡))  =  µ 𝐷𝑡 

𝛼
 
𝑐 𝑓(𝑡)  +  𝜈 𝐷𝑡 

𝛼
 
𝑐 𝑔(𝑡), 

where µ and 𝜈 are constant. 

3. (𝐼𝑡
𝛼 𝐷𝑡 

𝛼𝑦𝑐 (𝑡)) = 𝑦(𝑡) − ∑ 𝑦(𝑘)(0)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0  , for 𝑚 − 1 < 𝛼 ≤ 𝑚. 
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4. 𝐷𝑡 
𝛼𝑐 (𝐼𝑡

𝛽
𝑦(𝑡)) = 𝐷𝑡 

𝛼−𝛽𝑐 (𝑦(𝑡)).   

Definition (1.7): (Grünwald Fractional Order Derivatives, [Loverro, 2004])  

The Grünwald derivatives of any integer order to any function, can take 

the form: 

       𝐷𝑡
𝛼 = lim

𝑁→∞
{
(
𝑡

𝑁
)
−𝛼

𝛤(−𝛼)
∑

𝛤(𝑗−𝛼)

𝛤(𝑗+1)

𝑁−1
𝑗=0 𝑦 (𝑡 − 𝑗

𝑡

𝑁
)}                                          (1.37) 
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CHAPTER TWO 

Existence and Stability of the Solutions of Delay 

Differential Equations of Fractional Order 

 

 

2.1. Introduction: 

This chapter consists of four sections, in section 2.2, a historical 

background and review of the existence and stability of the solutions of delay 

differential equations of fractional order is presented. While in section 2.3, we 

introduce notations, definitions and preliminary facts. Finally, in section 2.4, 

the existence and stability of the solution of delay differential equations of 

fractional order is derived.  

2.2 Historical Background 

The study of the existence, uniqueness, periodicity, asymptotic behavior, 

stability, and methods of analytic and numerical solutions of fractional order 

differential equations have been studied extensively in a large cycle works 

(see), e.g., [Zhang, 2006], [Ibrahim, 2007], [Xinwei, 2007], [Agarwal, 2008], 

[Lakshmikantham, 2008], [Agarwal, 2009], [Belmekki, 2009], [Agarwal, 

2010], [Andradem 2010], [Ashyralyev, 2011], [Dal, 2011], [Cakir, 2011], 

[Hicdurmaz, 2011], [De la Sen,2011], [Ibeas,2011], [Yuan,2011], 

[Berdyshevm 2011] ,[Yuan, 2012], and the references therein.  

One of the important aspects in the study of delay differential equations of 

fractional order, is the investigation of existence and uniqueness of solutions. 

Lakshmikantham, [Lakshmikantham,2008] developed the basic theory for 

delay differential equations of fractional order (FDDEs). In [Zhou, 2009] and 

[Zhou, 2010] existence and uniqueness for fractional order neutral DDEs have 

been formulated. Existence of positive solutions for nonlinear FDDE involving 
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Riemann-Liouville derivative has been addressed in [Ye, 2007]- [Liao, 2009]. 

Kexue et al. [Kexue, 2011] obtained the existence and uniqueness of the mild 

solutions for a class of abstract FDDE using solution operator approach.  

The existence of a unique solution is proved for a class of nonlinear 

nonautonomous system of Riemann-Liouville fractional differential systems 

with different constant delays and nonlocal condition in [Gaafar, 2011]. De la 

Sen, [De la Sen, 2011] investigated the non-negative solution and the stability 

and asymptotic properties of the solution of fractional differential dynamic 

systems involving delayed dynamics with point delays.  

El-Sayed et al. [El-Sayed, 1996] proved the existence of the solution of 

some kind of delay differential equations of fractional order, El-Sayed, Gaafar 

and Hamadalla [El-Sayed, 2010] discussed the existence and uniqueness of 

solutions for the non-local non-autonomous system of fractional order 

differential equations with delays.  Zhang [Zhang, 2008] established the 

existence of a unique solution for delay differential equations of fractional 

order.  

Existence and uniqueness of the solutions of the delay differential 

equations of fractional order (FDDEs) under various conditions has been 

established using fixed point theorems, see e.g. [Benchohra, 2008], [Maraaba, 

2008], [Abbas, 2011], [Jalilian, 2013], [Yang, 2013] and [Shengli, 2014]. 

Agarwal et al. [Zhou, 2010] discussed the existence of solutions for the 

neutral fractional differential equation with bounded delay. By employing the 

Krasnoselskii’s fixed point theorem. 

Stability of solution is one of the most basic and interesting 

problem in control theory. The question of stability is of main interest in the 

physical and biological systems, such as the fractional Duffing oscillator, 
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fractional predator-prey and rabies models, etc. Recently, the theory of the 

FDDEs has been studied and some basic results are obtained including stability 

theory.  

Chen and Moore [Chen, 2002] studied stability of 1-dimensional 

fractional systems with retard time. El-Sayed, Gaafar and Hamadalla [El-

Sayed, 2010] discuss the stability of solutions for the non-local non-

autonomous system of fractional order differential equations with delays. 

Najafi et al, [Saberi, 2011], [Refahi, 2012] studied stability analysis of the 

distributed order differential equations with respect to the non-negative density 

function. Gao et al. [Zhenghui, 2013] proved the stability of the solutions for 

nonlinear fractional differential equations with delays and integral boundary 

conditions.  

Time delay plays an important role in mathematical modeling of many 

real world phenomena. Time delay can have an effect on the stability of a 

system and occasionally can cause a system to become unstable. To the best of 

our knowledge, there are relatively few results on the stability of fractional 

order systems with delay, such as Lazarevic and Spasic [Lazarevic, 2009], 

Akbari Moornani and Haeri [Moornani, 2010], Wang et al. [Huang, 2011],       

El-Sayed and Gaafar [Gaafar, 2011] and Kumar and Sukavana [Kumar, 2012].   

In [Lazarevic, 2009], a finite-time stability test procedure is proposed for 

linear nonhomogeneous fractional-order systems with a pure time delay. In 

[Moornani, 2010], two theorems are given to check the stability of two large 

classes of fractional order delay systems (retarded and neutral types), 

respectively.  

In [Kumar, 2012], sufficient conditions are established for the 

approximate controllability of a class of semilinear delay control systems of 

fractional order.  
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We restrict our attention in this chapter on the proof of the existence and 

uniqueness and the stability of the solution of delay differential equations of 

fractional order of the form: 

       𝐷𝑡 
𝛼𝑦𝑐 (𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)), 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 ∈ [0, 𝐴]             (2.1) 

         𝑦(𝑡) = 𝜑(𝑡) , 𝑡 < 0,                                                                                       (2.2) 

         𝑦(𝑖)(0) = 𝑦0 
𝑖    , 𝑖 = 0,1,2,… , 𝑛 − 1                                                            (2.3)  

where 𝐷𝑡 
𝛼  𝑐 is Caputo fractional derivative of order 𝛼, 𝑓: [0, 𝐴]×𝑅2 → 𝑅 are 

continuous functions, 𝑡  is the independent variable, 𝑦(𝑡)  is the unknown 

function, 𝜑(𝑡) is the delay function, 𝜏 ≥ 0 and 𝑦0 
𝑖  are given constants. 

Our aim is to show the existence of a unique solution for (2.1) -(2.3) and 

its uniform stability by employing the Banach fixed point theorem, to show the 

asymptotic stability of the zero solution, we transform (2.1) into an integral 

equation and then using Banach fixed point theorem. 

2.3 Preliminaries [Lax, 2002.] 

In order to prove the existence and uniqueness theorem in addition to the 

stability theorem for the solution of delay differential equations of fractional 

order some basic concepts are needed and it will be given in this section. 

Definition 2.1: (Normed space) 

Let 𝑉 be a vector space. Then A norm on  𝑉 over the field 𝐹 is a function 

        ‖. ‖: 𝑉 → [0,∞) ⊆ 𝑅  

which satisfies the following properties: 
 

 (i)   ‖𝑥 +  𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, (𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑉), (Triangle inequality). 

 (ii)  ‖𝜆𝑥‖  =  |𝜆|‖𝑥‖ , for all 𝜆 ∈ 𝐹, 𝑥 ∈ 𝑉, (scaling property). 

 (iii) ‖𝑥‖ = 0 ⟺  𝑥 = 0 (for 𝑥 ∈  𝑉). 
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A vector space 𝑉 over 𝐹 together with a chosen norm ‖. ‖ is called a normed 

space (over 𝐹) and we write (𝑉, ‖. ‖). 

Definition 2.2: (complete)  

The space   𝑉  is  said  to  be complete  if  whenever   {𝑣𝑛}    is  a Cauchy  

Sequence  in    𝑉  , that is  ‖𝑣𝑛 − 𝑣𝑚‖ → 0   as   𝑛,𝑚 → ∞,   then  there  exists   

a   𝑣 ∈  𝑉  such that   ‖𝑣𝑛 − 𝑣‖ → 0    as   n → ∞,  that is  {𝑣𝑛}  is convergent 

sequence in 𝑉. 

Definition 2.3: (Banach space)  

A Banach space is complete normed vector space. 

Definition 2.4: (contraction mapping) 

Let  𝑓: 𝑋 → 𝑋 be a function on the metric space (𝑋, 𝑑). Then 𝑓 is a 

contraction if there exists a constant 0 ≤  𝑘 < 1 such that 

𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤  𝑘𝑑(𝑥, 𝑦),  for all 𝑥, 𝑦 ∈ 𝑋. 

Theorem 2.1: (Banach fixed point theorem) 

Let 𝑓 be a contraction on the complete metric space 𝑋. Then 𝑓 has a unique 

fixed point 𝑥 ∈  𝑋. 

2.4 Main Results 
 

The existence and stability of the solution of delay differential equations 

of fractional order (2.1) -(2.3) are given in the subsections (2.4.1) and (2.4.2) 

respectively. 

 

2.4.1 Existence and uniqueness Theorem 

In this section we shall prove the existence and uniqueness of the solution 

of the equation given by (2.1)-(2.3) as follows: 

Let 𝑌 is the class of all continuous functions defined on  𝑅+. 

For 𝑦 ∈ 𝑌, the norm is defined by 
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         ‖𝑦‖ = {𝑒−𝑁𝑡|𝑦(𝑡)|},    𝑦 ∈ 𝑌.
𝑡∈𝑅+
sup  

 

where 𝑁 ∈ 𝑅+ will be chosen later. 

Definition 2.5: (Lipschitz condition) 

Let 𝑓 ∶ 𝑅+×𝑅2 → 𝑅 be a continuous function and satisfy the Lipschitz 

condition 

       |𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡 − 𝜏)) − 𝑓(𝑡, 𝑢(𝑡), 𝑣(𝑡 − 𝜏))|  

                                               ≤ ℎ|𝑥 − 𝑢| + 𝑘|𝑦 − 𝑣|                                       (2.4) 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑅, where  ℎ, 𝑘 > 0. 

Lemma )2.1(: 

The function 𝑦(𝑡) is a solution of the problem (2.1) -(2.3) if and only if 

      𝑦(𝑡)=

{
 

  ∑ 𝑦0 
𝑘 𝑡

𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ),   𝑡 > 0  
 
 

𝜙(𝑡),                                                                    𝑡 < 0

                     (2.5) 

Proof: 

For   𝑡 > 0, applying the operator 𝐼𝑡
𝛼 to the both sides of the Eq. (2.1), 

leads to: 

       𝑦(𝑡) − ∑ 𝑦(𝑘)(0+)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0 = 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ). 

Hence 

       𝑦(𝑡) = ∑ 𝑦(𝑘)(0+)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ).                              (2.6) 

Substituting eq.(2.3) in to eq. (2.6), we get 

       𝑦(𝑡) = ∑ 𝑦0 
𝑘 𝑡

𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ). 

Theorem 2.2: 

Let 𝑓 ∶ 𝑅+×𝑅2 → 𝑅 be a continuous function and satisfy the Lipschitz 

condition (2.4) and if 
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         𝜏𝛼[ℎ + 𝑘𝑒1] < 1, where ℎ, 𝑘 > 0. 

Then the delay differential equations of fractional order (2.1) -(2.3) have 

a unique solution. 

Proof: 

For   𝑡 > 0, integrating both sides of equation (2.1), we obtain 

 

       𝑦(𝑡) − ∑ 𝑦(𝑘)(0+)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0 = 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ). 

Then 

       𝑦(𝑡) = ∑ 𝑦(𝑘)(0+)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ).                                 (2.7) 

Substituting eq. (2.3) into eq. (2.7), we get 

       𝑦(𝑡) = ∑ 𝑦0 
𝑘 𝑡

𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ).                                          (2.8) 

 

Now, construct a mapping  𝐹: 𝑌 → 𝑌 be defined by 

       𝐹𝑦 = ∑ 𝑦0 
𝑘 𝑡

𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ). 

Then 
 

  |𝐹𝑥 − 𝐹𝑦| = |𝐼𝑡
𝛼𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏) ) − 𝐼𝑡

𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) )| 

                    = |∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑓(𝑡, 𝑥(𝑠), 𝑥(𝑠 − 𝜏))𝑑𝑠
𝑡

0
 

                    −∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑓(𝑡, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠
𝑡

0
| 

                    = |∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

{𝑓(𝑡, 𝑥(𝑠), 𝑥(𝑠 − 𝜏))
𝑡

0
 

                    −𝑓(𝑡, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))}𝑑𝑠
 
 | 

                    ≤ ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

0
|𝑓(𝑡, 𝑥(𝑠), 𝑥(𝑠 − 𝜏)) − 𝑓(𝑡, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))|𝑑𝑠 

                    ≤ ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

0
{ℎ|𝑥(𝑠) − 𝑦(𝑠)| + 𝑘|𝑥(𝑠 − 𝜏)−𝑦(𝑠 − 𝜏)|}𝑑𝑠 
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                    ≤ ℎ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

0
|𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠 

                    +𝑘 ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝜏

0
|𝜑(𝑠 − 𝜏) − 𝜑(𝑠 − 𝜏)|}𝑑𝑠 

                    +𝑘 ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

𝜏
|𝑥(𝑠 − 𝜏) − 𝑦(𝑠 − 𝜏)|}𝑑𝑠 

                    ≤ ℎ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

0
|𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠 

                    +𝑘 ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

𝜏
|𝑥(𝑠 − 𝜏) − 𝑦(𝑠 − 𝜏)|}𝑑𝑠 

and 

𝑒−𝑁𝑡 |𝐹𝑥 − 𝐹𝑦| ≤ ℎ∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠)
𝑡

0

𝑒−𝑁𝑠|𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠 

                           +𝑘 ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠+𝜏)
𝑡

𝜏
𝑒−𝑁(𝑠−𝜏)|𝑥(𝑠 − 𝜏) − 𝑦(𝑠 − 𝜏)|}𝑑𝑠 

                           ≤ ℎ {𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠)
𝑡

0
𝑑𝑠 

                           +𝑘 ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠+𝜏)
𝑡

𝜏
𝑒−𝑁(𝑠−𝜏)|𝑥(𝑠 − 𝜏) − 𝑦(𝑠 − 𝜏)|}𝑑𝑠 

Set    𝜗 = 𝑠 − 𝜏  →  𝑑𝜗 = 𝑑𝑠 

at 𝑠 = 𝑡             → 𝜗 = 𝑡 − 𝜏   

at 𝑠 = 0            → 𝜗 = −𝜏   
 

Hence 

𝑒−𝑁𝑡 |𝐹𝑥 − 𝐹𝑦| ≤ ℎ {𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠)
𝑡

0

𝑑𝑠 

                           +𝑘 ∫
(𝑡−𝜗−𝜏)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝜗)
𝑡−𝜏

−𝜏
𝑒−𝑁𝜗|𝑥(𝜗) − 𝑦(𝜗)|𝑑𝜗 

Set  𝑣 = 𝑁(𝑡 − 𝑠)   →   𝑑𝑣 = −𝑁𝑑𝑠  

at 𝑠 = 𝑡                      → 𝑣 = 0   

at 𝑠 = 0                     → 𝑣 = 𝑁𝑡   

at 𝜗 = 𝑡 − 𝜏            → 𝑣 = 0   



CHAPTER TWO                                                                                       Existence and Stability of the Solutions of Delay   

                                                                                                                  Differential Equations of Fractional Order 

 

29 
 

at 𝜗 = −𝜏                 → 𝑣 = 𝑁𝑡   

Hence 

𝑒−𝑁𝑡 |𝐹𝑥 − 𝐹𝑦| ≤ ℎ {𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝 1

𝑁𝛼
∫

𝑣𝛼−1

𝛤(𝛼)
𝑒−𝑣

𝑁𝑡

0

𝑑𝑣 

                              +𝑘 {𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝 1

𝑁𝛼
∫

𝑣

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑣+𝜏)
𝑁𝑡

0

𝑑𝑣 

                              ≤
ℎ

𝑁𝛼
{𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 

𝑡∈𝑅+
𝑠𝑢𝑝

 

                              +𝑘
𝑒−𝑁𝜏

𝑁𝛼
{𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} ∫

𝑣

𝛤(𝛼)

𝛼−1

𝑒−𝑣
𝑁𝑡

0

𝑑𝑣
𝑡∈𝑅+
𝑠𝑢𝑝

 

                              ≤
ℎ

𝑁𝛼
{𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 

𝑡∈𝑅+
𝑠𝑢𝑝

 

                              +𝑘
𝑒−𝑁𝜏

𝑁𝛼
{𝑒−𝑁𝑡|𝑥(𝑡) − 𝑦(𝑡)|} 

𝑡∈𝑅+
𝑠𝑢𝑝

 

                              ≤
ℎ

𝑁𝛼
‖𝑥 − 𝑦‖ +

𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝑥 − 𝑦‖ 

                              ≤
ℎ + 𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝑥 − 𝑦‖. 

Therefore, 

        {𝑒−𝑁𝑡|𝐹𝑥 − 𝐹𝑦|} 
𝑡∈𝑅+
𝑠𝑢𝑝

≤
ℎ + 𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝑥 − 𝑦‖ 

Now, choose 𝑁 large enough such that 
ℎ+𝑘𝑒

𝑁𝛼
< 1 

Let us choose 𝑁 =
1

𝜏
. We get 

        {𝑒−𝑁𝑡|𝐹𝑥 − 𝐹𝑦|} 
𝑡∈𝑅+
𝑠𝑢𝑝

≤ 𝜏𝛼[ℎ + 𝑘𝑒1]‖𝑥 − 𝑦‖ 

We have 𝜏𝛼[ℎ + 𝑘𝑒1] < 1. So, the map. 𝐹: 𝑌 → 𝑌 is a contraction and it has a 

fixed point 𝑦 = 𝐹𝑦. By using Banach fixed point theorem there exists a 

unique 𝑦 ∈ 𝑌 which is a solution of the problem (2.1) –(2.3). 
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2.4.2 Stability of a unique solution for fractional order delay differential 

equations  

In this section, we shall study the stability of the solution of delay 

differential equations of fractional order given by (2.1) -(2.3). 

Given that 𝑦̃(𝑡) is the solution of delay differential equations of fractional order 

        (𝐺̃)   

{
 
 

 
 
 𝐷𝑡 

𝛼𝑦𝑐 (𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)), 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0
 

 𝑦(𝑡) = 𝜑̃(𝑡) , 𝑡 < 0,                                                             
 

𝑦(𝑖)(0) = 𝑦̃0 
𝑖    , 𝑖 = 0,1,2, … , 𝑛 − 1                                      

 

 

Definition 2.6 [Zhenghui, 2013]: 

The solution of delay differential equations of fractional order (2.1)-(2.3) 

is stable if for any  𝜖 > 0,  there exists  𝛿 > 0 such that for any two solutions 

𝑦(𝑡) and 𝑦̃(𝑡) of delay differential equations of fractional order (2.1)-(2.3) and 

𝐺̃ respectively, one has   ‖𝜑(𝑡) − 𝜑̃(𝑡)‖ ≤ 𝛿,   then   ‖𝑦(𝑡) − 𝑦̃(𝑡)‖ ≤ 𝜖  for 

all 𝑡 ≥ 0. 

Definition 2.7 [Zhenghui, 2013]: 

System (2.1) -(2.3)  is said to be asymptotically stable if the solution 𝑦(𝑡)  

tends to zero as 𝑡 → ∞ . 

Theorem 2.3: 

The solution of delay differential equations of fractional order (2.1)-(2.3) 

is uniformly stable. 

 

Proof: 

Let 𝑦(𝑡) and 𝑦̃(𝑡) be the solutions of delay differential equations of 

fractional order (2.1)-(2.3) and 𝐺̃ respectively, then for all 𝑡 > 0, from equation 

(2.4), we have 
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|𝑦(𝑡)  − 𝑦̃(𝑡)| = |𝐼𝑡
𝛼𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏) ) − 𝐼𝑡

𝛼𝑓(𝑡, 𝑦̃(𝑡), 𝑦̃(𝑡 − 𝜏) )| 

                        = |∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑓(𝑡, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠
𝑡

0
 

                        −∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1

𝑓(𝑡, 𝑦̃(𝑠), 𝑦̃(𝑠 − 𝜏))𝑑𝑠
𝑡

0
| 

                         = |∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1
{

𝑡

0
𝑓(𝑡, 𝑦(𝑠), 𝑦(𝑠 − 𝜏)) − 𝑓(𝑡, 𝑦̃(𝑠), 𝑦̃(𝑠 − 𝜏))}𝑑𝑠| 

                         ≤ ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

0
|𝑓(𝑡, 𝑦(𝑠), 𝑦(𝑠 − 𝜏)) − 𝑓(𝑡, 𝑦̃(𝑠), 𝑦̃(𝑠 − 𝜏))|𝑑𝑠 

                       ≤ ∫
(𝑡−𝑠)

𝛤(𝛼)

𝛼−1𝑡

0
{ℎ|𝑦(𝑠)  − 𝑦̃(𝑠)| + 𝑘|𝑦(𝑠 − 𝜏) − 𝑦̃(𝑠 − 𝜏)|}𝑑𝑠 

                         ≤ ℎ∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1𝑡

0

|𝑦(𝑠)  − 𝑦̃(𝑠)|𝑑𝑠 

                        +𝑘∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1𝜏

0

|𝜑(𝑠 − 𝜏) − 𝜑̃(𝑠 − 𝜏)|}𝑑𝑠 

                        +𝑘∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1𝑡

𝜏

|𝑦(𝑠 − 𝜏) − 𝑦̃(𝑠 − 𝜏)|}𝑑𝑠 

and 

𝑒−𝑁𝑡 |𝑦(𝑡) − 𝑦̃(𝑡)| 

          ≤ ℎ∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠)
𝑡

0

𝑒−𝑁𝑠|𝑦(𝑡)  − 𝑦̃(𝑡)|𝑑𝑠 

          +𝑘∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠+𝜏)
𝜏

0

𝑒−𝑁(𝑠−𝜏)|𝜑(𝑠 − 𝜏) − 𝜑̃(𝑠 − 𝜏)|𝑑𝑠 

          +𝑘∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠+𝜏)
𝑡

𝜏

𝑒−𝑁(𝑠−𝜏)|𝑦(𝑠 − 𝜏) − 𝑦̃(𝑠 − 𝜏)|𝑑𝑠 

Set 𝜗 = 𝑠 − 𝜏    →  𝑑𝜗 = 𝑑𝑠 

at 𝑠 = 𝑡               → 𝜗 = 𝑡 − 𝜏   

at 𝑠 = 0              → 𝜗 = −𝜏   
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at 𝑠 = 𝜏             → 𝜗 = 0   

Hence 

𝑒−𝑁𝑡 |𝑦(𝑡) − 𝑦̃(𝑡)| 

          ≤ ℎ∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠)
𝑡

0

𝑒−𝑁𝑠|𝑦(𝑡)  − 𝑦̃(𝑡)|𝑑𝑠 

          +𝑘∫
(𝑡 − 𝜗 − 𝜏)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝜗)
0

−𝜏

𝑒−𝑁𝜗|𝜑(𝜗) − 𝜑̃(𝜗)|𝑑𝜗 

          +𝑘∫
(𝑡 − 𝜗 − 𝜏)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝜗)
𝑡−𝜏

0

𝑒−𝑁𝜗|𝑦(𝜗) − 𝑦̃(𝜗)|𝑑𝜗 

           ≤ ℎ {𝑒−𝑁𝑡|𝑦(𝑡)  − 𝑦̃(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

∫
(𝑡 − 𝑠)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝑠)
𝑡

0

𝑑𝑢 

           +𝑘 {𝑒−𝑁𝑡|𝜑(𝑡) − 𝜑̃(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

∫
(𝑡 − 𝜗 − 𝜏)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝜗)
0

−𝜏

𝑑𝜗 

           +𝑘 {𝑒−𝑁𝑡|𝑦(𝑡)  − 𝑦̃(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

∫
(𝑡 − 𝜗 − 𝜏)

𝛤(𝛼)

𝛼−1

𝑒−𝑁(𝑡−𝜗)
𝑡−𝜏

0

𝑑𝜗 

Set  𝑣 = 𝑁(𝑡 − 𝑠)  →  𝑑𝑣 = −𝑁𝑑𝑠 

at 𝑠 = 𝑡                    → 𝑣 = 0   

at 𝑠 = 0                   → 𝑣 = 𝑁𝑡   

at 𝜗 = 𝑡 − 𝜏          → 𝑣 = 0   

at 𝜗 = −𝜏               → 𝑣 = 𝑁𝑡  

at 𝜗 = 0                  → 𝑣 = 𝑁(𝑡 − 𝜏)   

Hence 

𝑒−𝑁𝑡 |𝑦(𝑡) − 𝑦̃(𝑡)| 

             ≤ ℎ {𝑒−𝑁𝑡|𝑦(𝑡)  − 𝑦̃(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝 1

𝑁𝛼
∫

𝑣𝛼−1

𝛤(𝛼)
𝑒−𝑣

𝑁𝑡

0

𝑑𝑣 
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            +𝑘 {𝑒−𝑁𝑡|𝜑(𝑡) − 𝜑̃(𝑡)|} 𝑒−𝑁𝜏
1

𝑁𝛼𝑡∈𝑅+
𝑠𝑢𝑝

∫
𝑣𝛼−1

𝛤(𝛼)
𝑒−𝑣

𝑁𝑡

𝑁(𝑡−𝜏)

𝑑𝑣 

            +𝑘 {𝑒−𝑁𝑡|𝑦(𝑡)  − 𝑦̃(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

𝑒−𝑁𝜏
1

𝑁𝛼
∫

𝑣𝛼−1

𝛤(𝛼)
𝑒−𝑣

𝑁(𝑡−𝜏)

0

𝑑𝑣 

            ≤
ℎ

𝑁𝛼
{𝑒−𝑁𝑡|𝑦(𝑡)  − 𝑦̃(𝑡)|} 

𝑡∈𝑅+
𝑠𝑢𝑝

+
𝑘𝑒−𝑁𝜏

𝑁𝛼
{𝑒−𝑁𝑡|𝑦(𝑡) − 𝑦̃(𝑡)|}

𝑡∈𝑅+
𝑠𝑢𝑝

 

            +
𝑘𝑒−𝑁𝜏

𝑁𝛼
{𝑒−𝑁𝑡|𝜑(𝑡) − 𝜑̃(𝑡)|} 

𝑡∈𝑅+
𝑠𝑢𝑝

 

            ≤
ℎ

𝑁𝛼
‖𝑦 − 𝑦̃‖ +

𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝑦 − 𝑦̃‖ +

𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝜑 − 𝜑̃‖ 

            ≤
ℎ + 𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝑦 − 𝑦̃‖ +

𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝜑 − 𝜑̃‖ 

Then 

        {𝑒−𝑁𝑡|𝑦(𝑡)  − 𝑦̃(𝑡)|} 
𝑡∈𝑅+
𝑠𝑢𝑝

≤
ℎ + 𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝑦 − 𝑦̃‖ +

𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝜑 − 𝜑̃‖ 

It follows that 

                      [1 −
ℎ + 𝑘𝑒−𝑁𝜏

𝑁𝛼
] ‖𝑦 − 𝑦̃‖ ≤

𝑘𝑒−𝑁𝜏

𝑁𝛼
‖𝜑 − 𝜑̃‖ 

we choose 𝑁 =
1

𝜏
, and we have 

                      [1 − 𝜏𝛼[ℎ + 𝑘𝑒 ]] ‖𝑦 − 𝑦̃‖ ≤ 𝜏𝛼𝑘𝑒 ‖𝜑 − 𝜑̃‖ 

therefore, for 𝜖 > 0, we can find  

                      𝛿 = [𝜏𝛼𝑘𝑒 ]
−1
 [1 − 𝜏𝛼[ℎ + 𝑘𝑒 ]] ‖𝑦 − 𝑦̃‖ 

                      𝛿 = [𝜏𝛼𝑘𝑒 ]
−1
 [1 − 𝜏𝛼[ℎ + 𝑘𝑒 ]] 𝜖 > 0 

Such that if  ‖𝜑(𝑡) − 𝜑̃(𝑡)‖ ≤ 𝛿, then ‖𝑦(𝑡) − 𝑦̃(𝑡)‖ ≤ 𝜖  for all 𝑡 ≥ 0, which 

proves that the solution 𝑦(𝑡) of problem (2.1) -(2.3) is uniformly stable. 
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CHAPTER THREE 

A modified Approach for Solving Delay Differential 

Equations of Fractional Order Using Generalized Hat 

Functions 

 

3.1 Introduction 

In this chapter generalized Hat functions operational matrices will be 

presented together with the method of steps in order to find the numerical 

solution of delay differential equations of fractional order. 

This chapter consists of five sections, in section 3.2, a review of the 

generalized Hat functions is described, while in section 3.3, operational 

matrices of the integration for generalized Hat functions is presented. In section 

3.4, we will have focused on the numerical solution of the delay differential 

equation of fractional order using the method of steps with the operational 

matrices of integration for generalized Hat functions. Finally, in section 3.5, 

some illustrative examples have been introduced in order to show the accuracy 

and efficiency of the proposed method. 

3.2 Generalized Hat functions, [Tripathi, 2013] 

Usually the Hat functions are defined on the domain [0,1]. These are 

continuous functions with shape of Hats, when plotted on two dimensional 

planes. We consider the more general case for which the domain of definition 

is [0, 𝐴]. The interval [0, 𝐴] is divided into n equidistant subintervals,[𝑖ℎ, (𝑖 +

1)ℎ] of equal lengths ℎ where ℎ =
𝐴

𝑛
 .The generalized Hat function’s family of 

first (𝑛 + 1)  Hat functions is defined as follows: 

    𝜓0(𝑡)  =

{
 
 

 
      

ℎ−𝑡

ℎ
 ,   0 ≤ 𝑡 < ℎ       

          

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

                                                             (3.1) 
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     𝜓𝑖(𝑡) =

{
 
 

 
    

𝑡−(𝑖−1)ℎ

ℎ
 ,   (𝑖 − 1)ℎ ≤ 𝑡 < ℎ                                 

 

   
(𝑖+1)ℎ−𝑡

ℎ
 ,  𝑖ℎ ≤ 𝑡 < (𝑖 + 1)ℎ ,  𝑖 = 1,2,… , 𝑛 − 1 

         

   0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

                 (3.2) 

 

    𝜓𝑛(𝑡)  =

{
 
 

 
      

𝑡−(𝐴−ℎ)

ℎ
 ,   𝐴 − ℎ ≤ 𝑡 ≤ 𝐴                

          
    0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

                                       (3.3) 

 

According to the definition of Hat functions: 

 

    𝜓𝑖(𝑗ℎ)  = {

 1,                  𝑖 = 𝑗

          

   0,             𝑖 ≠ 𝑗  

                                                                          (3.4) 

 

and 

          𝜓𝑖(𝑡)𝜓𝑗(𝑡) = 0,     |𝑖 − 𝑗| ≥ 2                                                          (3.5) 

 

and 

 

          ∑ 𝜓𝑖(𝑡) =
𝑛
𝑖=0 1 

 

 

3.2.1 Function Approximation 

An arbitrary function  𝑓 ∈ 𝐿2
 [0, 𝐴] is approximated in vector form as: 

 

       𝑓(𝑡) = ∑ 𝑓𝑖𝜓𝑖(𝑡) =
𝑛
𝑖=0 𝐹𝑛+1

𝑇 𝜓𝑛+1(𝑡) = 𝜓𝑛+1
𝑇 (𝑡)𝐹𝑛+1,                        (3.6) 
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 where 

 

        𝐹𝑛+1 ≜ [𝑓0, 𝑓1, 𝑓2,…, 𝑓𝑛] 
𝑇

,                                                                 (3.7) 

 

and  

 

        Ψ𝑛+1(𝑡) ≜ [𝜓0(𝑡), 𝜓1(𝑡),𝜓2(𝑡),…,𝜓𝑛(𝑡)] 
𝑇
.                                     (3.8) 

 

The important aspect of using generalized Hat functions in the 

approximation of function 𝑓(𝑡),  lies in the fact that the coefficients  𝑓𝑖  in the 

eq. (3.6), are given by 

 

          𝑓𝑖 = 𝑓(𝑖ℎ),   𝑖 = 0,1,2,… , 𝑛.                                                              (3.9) 

 

From relation (3.5), we have: 

 

Ψ(𝑡)Ψ(𝑡)𝑇 =

[
 
 
 
 
 

𝜓0
2(𝑡) 𝜓0(𝑡)𝜓1(𝑡)

𝜓0(𝑡)𝜓1(𝑡) 𝜓0
2(𝑡) 𝜓0(𝑡)𝜓1(𝑡)

                                 

 
⋱                     ⋱                     ⋱             

                      ⋱                     ⋱                     ⋱         
      

                           
           ⋱        ⋱ 𝜓0(𝑡)𝜓1(𝑡)

𝜓0(𝑡)𝜓1(𝑡) 𝜓0
2(𝑡) ]

 
 
 
 
 

          (3.10) 

 

 

3.3 Operational Matrices of the Integration for generalized Hat 

Functions 

The integer order and fractional order operational matrices of integration 

for generalized Hat functions is given in the subsections (3.3.1) and (3.3.2) 

respectively. 

3.3.1 Integer Order generalized Hat Functions Operational Matrix of 

Integration 

Since∫ 𝜓𝑖(𝜏)𝑑𝜏 ∈ 𝐿2[0, 𝐴],   
𝑡

0
eq. (3.6) is used to approximate it in the 

terms of generalized Hat functions as 
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       ∫ 𝜓𝑖(𝜏)𝑑𝜏
𝑡

0
≃ ∑ 𝑎𝑖𝑗

𝑛
𝑗=0 𝜓𝑗(𝑡) , 𝑖 = 0,1,2,… , 𝑛 .                                    (3.11) 

 

Using eq. (3.9), we calculate the coefficients 𝑎𝑖𝑗 as 

 

       𝑎𝑖𝑗 = ∫ 𝜓𝑖(𝜏)𝑑𝜏,   
𝑖ℎ

0
𝑗 = 0,1,2,… , 𝑛.                                                      (3.12) 

 

The coefficients 𝑎𝑖𝑗 will form a (𝑛 + 1)×(𝑛 + 1) matrix 𝑃𝑛+1 with 

(𝑖 + 1, 𝑗 + 1)𝑡ℎ entry as  𝑎𝑖𝑗  , for 𝑖 = 0,1,2,… , 𝑛    , 𝑗 = 0,1,2,… , 𝑛. Using the 

values of 𝑎𝑖𝑗’s from eq. (3.12), we obtain the matrix 𝑃𝑛+1 as: 

 

              𝑃𝑛+1=(
   ℎ

2
)

[
 
 
 
 
 
 
 
 
0    
0     
0 
0
0
⋮
0
0
0

 
    

1   
1   
0
0
0
⋮
0
0
0

   

  1   
  2   

 

 1

 

0
0
⋮
0
0
0

   

  1   
  2   

  

2
1
0
⋮
0
0
0

   
  

1    ⋯
2     ⋯
2     ⋯
2     ⋯
1     ⋯
⋮      ⋱
0    ⋯
0    ⋯
0    ⋯

1
2
2
2
2
    ⋱ 
1
0
0

  1 1   
  2 2   

  

2 2
2 2
2 2
⋮  ⋮
2 2
 1  2 
0 1

   

 ]
 
 
 
 
 
 
 
 

(𝑛+1)×(𝑛+1)

 (3.13) 

 

The matrix  𝑃𝑛+1  is  called the integer order Hat functions operational matrix 

of integration. 

It plays a pivotal role in the determination of  ∫ 𝑓(𝜏)𝑑𝜏
𝑡

0
  for  an arbitrary 

𝑓 ∈ 𝐿2[0, 𝐴]. 

With the help of eqs. (3.8) and (3.11), we have 

 

            ∫ Ψ𝑛+1(𝜏)𝑑𝜏 = 𝑃𝑛+1Ψ𝑛+1(t)
𝑡

0
.                                                             (3.14) 

 

3.3.2 Block Pulse Functions [Yi, 2013] 

The block pulse functions are form a complete set of orthogonal functions 

[Wang, 1983] which defined on the interval [0, 𝐴) by: 
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       𝜑𝑖(𝑡) = {

 1 ,      𝑖ℎ ≤ 𝑡 < (𝑖 + 1)ℎ

          

  0 ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,           

                                                                              

 

where ,  𝑖 = 1,2,… , 𝑛 − 1 𝑎𝑛𝑑  ℎ =
𝐴

𝑛
 

The functions 𝜑𝑖 's are disjoint and have compact support [𝑖ℎ, (𝑖 + 1)ℎ].The 

following properties of block pulse functions will be used in the sequel. 

 

     𝜑𝑖(𝑡)𝜑𝑗(𝑡) = {

 𝜑𝑖(t),             𝑖 = 𝑗

          

  0 ,            𝑖 ≠ 𝑗  

                                  

 

     ∫ 𝜑𝑖(𝜏)
𝐴

0
𝜑𝑗(𝜏)𝑑𝜏 =

{
 
 

 
 

𝐴

𝑛
,             𝑖 = 𝑗

          

  0 ,            𝑖 ≠ 𝑗  

                              

  

 

Remark 3.1:      

Each of the Hat functions 𝜓𝑖’s may be expanded into n-block pulse 

functions according as: 

       𝜓𝑖(𝑡) ≃ ∑ Υ𝑖𝑗
𝑛−1
𝑗=0 𝜑𝑗(𝑡), 𝑖 = 0,1,2,… , 𝑛 ,                                               (3.15) 

where  

      Υ𝑖𝑗=
1

ℎ
∫ 𝜓𝑖(𝜏)𝜑𝑗(𝜏)𝑑𝜏,
𝐴

0
                                                

Thus    

      𝛹𝑛+1(𝑡) ≜ [𝜓0(𝑡), 𝜓1(𝑡),𝜓2(𝑡),…,𝜓𝑛(𝑡)] 
𝑇 =  𝛺𝑛𝛷𝑛,                         (3.16) 

where 

     𝛷𝑛(𝑡) ≜ [𝜑0(𝑡), 𝜑1(𝑡),𝜑2(𝑡),…,𝜑𝑛−1(𝑡)] 
𝑇
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and  𝛺𝑛 is a (𝑛 + 1)×(𝑛) matrix whose (𝑖 + 1, 𝑗 + 1)𝑡ℎ entry as Υ𝑖𝑗, for              

𝑖 = 0,1,2, … , 𝑛, 𝑗 = 0,1,2,… , 𝑛 − 1. Calculating the values of Υ𝑖𝑗, the general 

shape of the matrix 𝛺𝑛 is given by 

 

       𝛺𝑛 =

[
 
 
 
 
 
 
 
 

   

1

2
     0      0 ⋯          0
1

2
      

1

2
      0 ⋯         0 

 0      
1

2
      

1

2
   ⋯        0   

  ⋮         ⋮         ⋱             ⋮  

0     0  ⋯   0  
1

2
      

1

2

0     0  ⋯        0       
1

2

   

]
 
 
 
 
 
 
 
 

(𝑛+1)×(𝑛)

 

 

Kilicman and Al Zhour, [Kilicman, 2007] have given the block pulse 

operational matrix of the fractional integration 𝐹𝛼 as follows: 

          (𝐼𝑡
𝛼𝛷𝑛)(𝑡) ≈ 𝐹

𝛼𝛷𝑛(𝑡)                                                                         (3.17) 

 

where 

𝐹𝛼 = (
𝐴

𝑛 + 1
)
𝛼 1

𝛤(𝛼 + 2)

[
 
 
 
 
0 𝜁1 𝜁2
0 1 𝜁1
0 0 1

 ⋯

𝜁𝑛
𝜁𝑛−1
𝜁𝑛−2

⋮ ⋱ ⋮
0 0        0 ⋯ 1 ]

 
 
 
 

(𝑛+1)×(𝑛+1)

 

 

where  𝜁𝑘 = (𝑘 + 1)
𝛼+1−2𝑘𝛼+1 + (𝑘 − 1)𝛼+1,  𝑘 = 1,2,… , 𝑛 − 1. 

 

Next, we derive the generalized Hat functions operational matrix of the 

fractional integration. Let 

 

      ∫ ψ𝑛+1(𝜏)𝑑𝜏 = 𝑃𝑛+1
𝛼 Ψ𝑛+1(t)

𝑡

0
.                                                             (3.18) 

 

where matrix 𝑃𝑛+1
𝛼  is called the generalized Hat functions operational matrix of 

the fractional integration. 

Using eq.'s (3.16) and (3.17), we have: 



CHAPTER THREE                                                     A Modified Approach for Solving Delay Differential Equations of    

                                                                                                   Fractional Order Using Generalized Hat Functions        

 

 

40 
 

          (𝐼𝑡
𝛼𝜓𝑖)(𝑡) ≈ (𝐼𝑡

𝛼𝛺𝑛𝛷𝑛)(𝑡)  

                          ≈ 𝛺𝑛(𝐼𝑡
𝛼𝛷𝑛)(𝑡)           

                          ≈ 𝛺𝑛𝐹
𝛼𝛷𝑛(𝑡)                                                                               (3.19) 

From eq.'s (3.18) and (3.19), we get: 

         𝑃𝑛+1
𝛼 Ψ𝑛+1(t) = 𝑃𝑛+1

𝛼 𝛺𝑛𝛷𝑛 

                               = 𝛺𝑛𝐹
𝛼𝛷𝑛(𝑡) 

Then, the generalized Hat functions operational matrix of the fractional 

integration 𝑃𝑛+1
𝛼  is given by: 

 

        𝑃𝑛+1
𝛼 = 𝛺𝑛𝐹

𝛼𝛺𝑛
−1                                                                              (3.20) 

 

3.3.3 Fractional Order Generalized Hat Functions Operational Matrix of 

Integration 

When we deal with the differential equations of fractional order, the 

operational matrices of fractional order integral are plays an important role. In 

this subsection, we shall present the fractional order of generalized Hat 

functions operational matrices of integration. Several definitions of fractional 

order integration have been proposed [Loverro, 2004]. We formulate problem 

in terms of the Riemann- Liouville fractional order integration, which is defined 

as 

 

     (𝐼𝑡
𝛼𝑓)(t) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏
𝑡

0
  

                       =
1

𝛤(𝛼)
𝑡𝛼−1 ∗ 𝑓(𝑡), 0 ≤ 𝑡 < 𝐴,                                              (3.21) 

where 𝑡𝛼−1 ∗ 𝑓(𝑡) denotes the convolution product of 𝑡𝛼−1  and 𝑓(𝑡). If eq. 

(3.6) used to approximate 𝑓(𝑡) as 𝑓(𝑡)=𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡)  then the Riemann – 

Liouville fractional integral of 𝑓(𝑡) becomes 
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      (𝐼𝑡
𝛼𝑓)(𝑡) =

1

𝛤(𝛼)
𝑡𝛼−1 ∗ 𝑓(𝑡) ≃ 𝐶𝑛+1

𝑇 1

𝛤(𝛼)
{𝑡𝛼−1 ∗ 𝛹𝑛+1(𝑡)} 

Hence 

      (𝐼𝑡
𝛼𝑓)(𝑡) = 𝐶𝑛+1

𝑇 (𝐼𝑡
𝛼𝛹𝑛+1)(𝑡)                                                              (3.22) 

 

Where 

(𝐼𝑡
𝛼𝛹𝑛+1)(𝑡) ≜ [(𝐼𝑡

𝛼𝜓0)(𝑡), (𝐼𝑡
𝛼𝜓1)(𝑡),(𝐼𝑡

𝛼𝜓2)(𝑡),…,(𝐼𝑡
𝛼𝜓𝑛)(𝑡)] 

𝑇
. (3.23) 

The above expression computed through computation of  
1

𝛤(𝛼)
{𝑡𝛼−1 ∗ 𝜓𝑖(𝑡)}, 

as is enables us to calculate the Riemann- Liouville fractional integral of 𝑓(𝑡), 

by using linearity property of the integral transform. 

Applying the definition of the convolution for 𝜓𝑖(𝑡) from eq. (3.21) we have 

 

             (𝐼𝑡
𝛼𝜓𝑛+1)(t)= 

1

𝛤(𝛼)
{𝑡𝛼−1 ∗ 𝜓𝑖(𝑡)} 

                               =
1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝜓𝑖(𝑡)𝑑𝜏
𝑡

0
                                         (3.24) 

 

If we expand (𝐼𝑡
𝛼𝜓𝑖)(t) in terms of generalized Hat functions as 

 

 

     (𝐼𝑡
𝛼𝜓𝑖)(t) ≃ ∑ 𝑏𝑖𝑗

𝑛
𝑗=0 𝜓𝑗(𝑡), 𝑖 = 0,1,2, … , 𝑛.                                           (3.25) 

 

Where the coefficient 𝑏𝑖𝑗  is value of  (𝐼𝑡
𝛼𝜓𝑖)(t) at  𝑗𝑡ℎ  node point (𝑗ℎ), then 

from eq. (3.24) we have 

 

      𝑏𝑖𝑗 = (𝐼𝑡
𝛼𝜓𝑖)(𝑗ℎ)=

1

𝛤(𝛼)
∫ (𝑗ℎ − 𝜏)𝛼−1𝜓𝑖(𝜏)𝑑𝜏,
𝑗ℎ

0
𝑗 = 0,1,2,… , 𝑛.         (3.26) 

 

From eq.'s (3.1) – (3.3) and (3.26) we get 
 

  𝑏0𝑗=

{
 
 

 
 

 0 ,                                                              𝑗 = 0 ,                         

          
 ℎ𝛼

𝛤(𝛼+2)
((𝑗 − 1)𝛼+1 + 𝑗𝛼(1 − 𝑗 + 𝛼)), 𝑗 = 1,2,3,… , 𝑛        

           (3.27) 

 

and for 𝑖 = 1,2,3,… , 𝑛,      𝑗 = 1,2,3,… , 𝑛, 
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   𝑏𝑖𝑗=

{
 
 

 
 
0 ,                                                                                                      𝑖 > 𝑗,

 
 ℎ𝛼

𝛤(𝛼+2)
,                                                                                               𝑖 = 𝑗,

         
 ℎ𝛼

𝛤(𝛼+2)
((𝑗 − 𝑖 + 1)𝛼+1 − 2(𝑗 − 𝑖)𝛼+1 + (𝑗 − 𝑖 − 1)𝛼+1)  , 𝑖 < 𝑗.

                        (3.28) 

 

Thus the fractional order generalized Hat functions operational matrix of 

integration 𝑃𝑛+1
𝛼  is (𝑛 + 1)×(𝑛 + 1)  dimensional matrix whose                    (𝑖 +

1, 𝑗 + 1)𝑡ℎ entry as  𝑏𝑖𝑗  . It is computed using the values of 𝑏𝑖𝑗 from eq.'s (3.27) 

and (3.28), and is given by  

 

     𝑃𝑛+1
𝛼 = 

ℎ𝛼

𝛤(𝛼+2)

[
 
 
 
 
0 𝜁1 𝜁2
0 1 𝜉1
0 0 1

 ⋯

𝜁𝑛
𝜉𝑛−1
𝜉𝑛−2

⋮ ⋱ ⋮
0 0        0 ⋯ 1 ]

 
 
 
 

(𝑛+1)×(𝑛+1)

                               (3.29) 

 

where  𝜁𝑘 = 𝑘
𝛼(𝛼 − 𝑘 + 1) + (𝑘 − 1)𝛼+1,  𝑘 = 1,2,… , 𝑛. 

and  𝜉𝑘 = (𝑘 + 1)
𝛼+1−2𝑘𝛼+1 + (𝑘 − 1)𝛼+1.   𝑘 = 1,2,… , 𝑛 − 1. 

As a special case, when 𝛼 = 1, 𝑃𝑛+1
𝛼  becomes the same as 𝑃𝑛+1. 

This establishes that fractional order of generalized Hat functions 

operational matrix of integration  𝑃𝑛+1  is a generalization of integer order 

generalized Hat functions operational matrix of integration 𝑃𝑛+1. 

 

3.4 The Approach 

In this section, we shall approximate solution of the following delay 

differential equations of fractional order: 
 

        𝐷𝑡 
𝛼𝑦𝑐 (𝑡) = 𝐹(𝑡, 𝑦(𝑡), 𝑦(𝜙(𝑡))), 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0                  (3.30) 
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        𝑦(𝑡) = 𝜓(𝑡) , 𝑡 ∈ [−𝜏, 0],                                                                            (3.31) 

 

        𝑦(𝑖)(0) = 𝑦0 
(𝑖)
   , 𝑖 = 0,1,2,… , 𝑛 − 1                                                         (3.32) 

 

Where 𝐷𝑡 
𝛼 𝑐 is Caputo fractional derivative of order 𝛼 , 𝐹  is a nonlinear 

operator, t is the independent variable, 𝑦(𝑡) is the unknown function, 𝜙(𝑡) is 

the delay function 𝜓(𝑡) is given functions and 𝑦0 
(𝑖)

 are given constants. 

First we convert the delay differential equation of fractional order to 

fractional non-delay differential equation by applying the method of steps, as 
 

    𝐷𝑡 
𝛼𝑦 

𝑐 (𝑡) = 𝐹(𝑡, 𝑦(𝑡), 𝜓(𝜙(𝑡))), 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0                      (3.33) 

 

      𝑦(𝑖)(0) = 𝑦0 
(𝑖)
   , 𝑖 = 0,1,2, … , 𝑛 − 1 .                                                        (3.34) 

 

Now in order to solve eq.'s (3.30) and (3.32) by using the operational matrices 

of generalized Hat functions, we approximate 𝐷𝑡 
𝛼𝑦𝑐 (𝑡) and 𝑦(𝑡) in terms of 

generalized Hat functions as follows 
 

       ( 𝐷𝑡 
𝛼𝑦𝑐 )(𝑡)=𝐶𝑛+1

𝑇 𝛹𝑛+1(𝑡).                                                                               (3.35) 

 

And upon operating 𝐼𝑡 
𝛼 to the both sides of equation (3.35) leads to 

       𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡) + ∑ 𝑦(𝑘)(0+)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0   ,                                         (3.36) 

where  

       𝛹𝑛+1(𝑡) ≜ [𝜓0(𝑡), 𝜓1(𝑡),𝜓2(𝑡),…,𝜓𝑛(𝑡)] 
𝑇

, 

and 

       𝐶𝑛+1(t) ≜ [𝑐0, 𝑐1,𝑐2,…,𝑐𝑛] 
𝑇

.   

Hence 
 

 𝐹 (𝑡, 𝑦(𝑡), 𝑦(𝜙(𝑡))) 

            = 𝐹(𝑡, 𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡) +  ∑ 𝑦𝑘(0)
𝑡𝑘

𝑘!

𝑛−1
𝑘=0 , 𝜓(𝜙(𝑡))).           (3.37) 
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Substituting eq.'s (3.35) and (3.37) into eq. (3.33) gives 

 

𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡)= 𝐹(𝑡, 𝐶𝑛+1

𝑇 𝑃𝑛+1
𝛼 𝛹𝑛+1(𝑡) + ∑ 𝑦𝑘(0)

𝑡𝑘

𝑘!

𝑛−1
𝑘=0 , 𝜓(𝜙(𝑡)))         (3.38) 

 

Also, by substituting eq. (3.11) into eq. (3.34), we get 
 

        𝑦(𝑖)(0) = 𝐶𝑛+1
𝑇 𝛹𝑛+1(0)=𝑦0 

(𝑖)
   , 𝑖 = 0,1,2, … , 𝑛 − 1                           (3.39)  

 

Solving eq.'s (3.38)- (3.39), the coefficients 𝐶𝑛+1
𝑇  will be obtained. Then using 

eq. (3.36), one can get the output response 𝑦(𝑡). 

 

3.5 Illustrative Examples 

In this section, we shall solve linear and nonlinear delay differential 

equations of fractional order by the proposed method given in section (3.4), and 

compare the results that we have been obtained with the existing methods such 

as Chebyshev wavelets method [Saeed, 2015] and with the exact solution. 

       we refer 𝒚𝒉𝒂𝒕 to represent the solution by generalized Hat functions, 𝒚𝒄𝒉  

to represent the solution by Chebyshev wavelets method and 𝒚𝒆𝒙𝒂𝒄𝒕  to 

represent the exact solution. 

 

Example (3.1): 

Consider the delay differential equations of fractional order with nonlinear 

delay function 

        𝐷𝑡 
𝛼𝑦𝑐 (𝑡) =1-2𝑦2 (

𝑡

2
),       0 <  𝛼 ≤ 1 ,   0 < 𝑡 ≤ 1                                  (3.40) 

          𝑦(𝑡) = sin (𝑡),     −1 ≤  𝑡 ≤ 0                                                              (3.41) 

          𝑦(0) = 0                                                                                               (3.42) 

The exact solution, when 𝛼 = 1 , is  𝑦(𝑡) = sin (𝑡). 

First we convert the delay differential equation of fractional order to 

fractional order non-delay differential equation by applying the method of 

steps, as    
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      𝐷𝑡 
𝛼𝑦𝑐 (𝑡) =1-2𝑠𝑖𝑛2 (

𝑡

2
), 0 < 𝛼 ≤ 1,  0 < 𝑡 ≤ 1                                   (3.43) 

 

        𝑦(0) = 0 .                                                                                             (3.44) 
 

Now we approximate 𝐷𝑡 
𝛼𝑦𝑐 (𝑡) in eq. (3.43), in terms of generalized Hat 

functions as follows 
 

        ( 𝐷𝑡 
𝛼𝑦𝑐 )(𝑡)=𝐶𝑛+1

𝑇 𝛹𝑛+1(𝑡)                                                                                (3.45) 

Hence 

        𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡)                                                                       (3.46) 

Also writing the term 1 − 2𝑠𝑖𝑛2 (
𝑡

2
)  in eq. (3.43) in terms of generalized Hat 

functions leads to 

      1-2𝑠𝑖𝑛2 (
𝑡

2
) = 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡) ,                                                                          (3.47) 

where 

        𝐹𝑛+1 ≜ [𝑓0, 𝑓1, 𝑓2,…, 𝑓𝑛] 
𝑇

, 

and 

       𝑓𝑖 = 1 − 2𝑠𝑖𝑛
2 (

𝑖ℎ

2
) ,   𝑖 = 0,1,2, … , 𝑛. 

Substituting eq.'s (3.45) and (3.47) into eq. (3.43), we have 
 

        𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡) = 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡),                                                                        (3.48)    

 which implies that 

           𝐶𝑛+1
𝑇 =𝐹𝑛+1

𝑇                                                                                         (3.49)    

Then using eq. (3.46), one can get the output response 𝑦(𝑡). 

For 𝑛 = 8, it seems from table (3.1) that the results obtained from the proposed 

method when 𝛼 = 1 provides better results as compared with the Chebyshev 

wavelet method and with the exact solution. 
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 (Table 3.1) 

Comparison of the approximate solution of example (3.1) using the 

proposed method and Chebyshev wavelet method when 𝜶 = 𝟏 with the 

exact solution. 
 

 

t 
𝒚𝒄𝒉 

𝜶 = 𝟏 

𝒚𝒉𝒂𝒕 
𝜶 = 𝟏 

𝒚𝒆𝒙𝒂𝒄𝒕 
𝜶 = 𝟏 

0 0 0 0 

0.125 0.124 0.124 0.124 

0.250 0.246 0.247 0.247 

0.375 0.355 0.365 0.366 

0.500 0.464 0.478 0.479 

0.625 0.581 0.584 0.585 

0.750 0.682 0.680 0.681 

0.875 0.755 0.766 0.767 

1 0.846 0.840 0.841 

 

Following figure (3.1) represent the approximate solution of example (3.1) 

using the proposed method for different values of 𝛼 and with the exact solution 

when 𝛼 = 1 . 
 



CHAPTER THREE                                                     A Modified Approach for Solving Delay Differential Equations of    

                                                                                                   Fractional Order Using Generalized Hat Functions        

 

 

47 
 

  

 

Fig. 3.1: Solution by the proposed method at different values of 𝜶 

compared with the exact solutions at 𝜶 = 𝟏 . 

 

Example (3.2):  

Consider the delay differential equation of fractional order 

        𝐷𝑡 
𝛼𝑦𝑐 (𝑡) −  𝑦 (

𝑡

2
) = 0,      0 <  𝛼 ≤ 1 ,   0 < 𝑡 ≤ 1                           (3.50) 

         𝑦(𝑡) = 1 + t ,  −1 ≤  𝑡 ≤ 0                                                              (3.51) 

         𝑦(0) = 1                                                                                             (3.52) 

The exact solution is 𝑦(𝑡) = ∑
(
1

2
)
1
2
𝑘(𝑘−1)

𝑘!
𝑡𝑘∞

𝑘=0 . 

First we convert the delay differential equation of fractional order to 

fractional order non-delay differential equation by applying the method of 

steps, as:    

        𝐷𝑡 
𝛼𝑦𝑐 (𝑡) = 1 +

𝑡

2
,  0 < 𝛼 ≤ 1,  0 < 𝑡 ≤ 1                                         (3.53) 
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         𝑦(0) = 1                                                                                              (3.54) 

 

Now we approximate 𝐷𝑡 
𝛼𝑦𝑐 (𝑡) in eq. (3.53), in terms of generalized Hat 

functions as follows 
 

        ( 𝐷𝑡 
𝛼𝑦𝑐 )(𝑡)=𝐶𝑛+1

𝑇 𝛹𝑛+1(𝑡)                                                                                (3.55) 

 

Hence 
 

 

        𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡) + 1                                                                   (3.56) 

Also writing the term 1 +
𝑡

2
  in eq. (3.53) in terms of generalized Hat functions 

leads to 
 

      1 +
𝑡

2
= 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡) ,                                                                          (3.57) 

 

Where 

        𝐹𝑛+1 ≜ [𝑓0, 𝑓1, 𝑓2,…, 𝑓𝑛] 
𝑇

, 

 

and 

       𝑓𝑖 = 1 +
𝑖ℎ

2
,   𝑖 = 0,1,2, … , 𝑛. 

Substituting eq.'s (3.55) and (3.57) into eq. (3.53), we have 
 

        𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡)=𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡),                                                                          (3.58) 

which implies that 
 

           𝐶𝑛+1
𝑇 =𝐹𝑛+1

𝑇                                                                                          (3.59)    

Then using eq. (3.56), one can get the output response 𝑦(𝑡). 
 

For 𝑛 = 8, it seems from table (3.2) that the results obtained from the proposed 

method when 𝛼 = 1 provides better results as compared with the Chebyshev 

wavelet method and with the exact solution. 
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 (Table 3.2) 

Comparison of the approximate solution of example (3.2) using the 

proposed method and Chebyshev wavelet method when 𝜶 = 𝟏 with the 

exact solution. 

 

 

t 
𝒚𝒄𝒉 

𝜶 =1 

𝒚𝒉𝒂𝒕 
𝜶 = 𝟏 

𝒚𝒆𝒙𝒂𝒄𝒕 
𝜶 = 𝟏 

0 1 1 1 

0.125 1.13 1.13 1.12 

0.250 1.28 1.26 1.26 

0.375 1.44 1.41 1.41 

0.500 1.62 1.56 1.56 

0.625 1.82 1.72 1.72 

0.750 2.03 1.89 1.90 

0.875 2.26 2.06 2.08 

1 2.50 2.25 2.27 
 

 

 

 

Following figure (3.2) represent the approximate solution of example (3.2) 

using the proposed method for different values of 𝛼 and with the exact solution 

when 𝛼 = 1 . 
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Fig. 3.2: Solution by the proposed method at different values of 𝜶 

compared with the exact solutions at 𝜶 = 𝟏 . 

 

 

Example 3.3:  

Consider the following delay differential equation of fractional order of 

second order 

       𝐷𝑡 
𝛼𝑦 

𝑐 (𝑡) =
3

4
𝑦(𝑡) + 𝑦 (

𝑡

2
) + 2 − 𝑡2, 1 <  𝛼 ≤ 2, 0 < 𝑡 ≤ 1              (3.60) 

        𝑦(𝑡) = 𝑡2,  −1 ≤  𝑡 ≤ 0                                                                        (3.61) 

        𝑦(𝑖)(0) = 0   , 𝑖 = 0,1                                                                           (3.62) 

The exact solution of the above equation when 𝛼 = 2, is 𝑦(𝑡) = 𝑡2. 

First we convert the delay differential equation of fractional order to the 

fractional order non-delay differential equation by applying the method of 

steps, as  

0
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       𝐷𝑡 
𝛼𝑦𝑐 (𝑡) −

3

4
𝑦(𝑡) = 2 −

3 𝑡2

4
, 1 <  𝛼 ≤ 2,  0 < 𝑡 ≤ 1                    (3.63) 

        𝑦(𝑖)(0) = 0   , 𝑖 = 0,1                                                                           (3.64) 

Now we approximate 𝐷𝑡 
𝛼𝑦𝑐 (𝑡) in eq. (3.63), in terms of generalized Hat 

functions as follows 
 

        ( 𝐷𝑡 
𝛼𝑦𝑐 )(𝑡)=𝐶𝑛+1

𝑇 𝛹𝑛+1(𝑡)                                                                                   (3.65) 

Hence 

        𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡)                                                                        (3.66) 

Also writing the term 2 −
3𝑡2

4
  in eq. (3.63) in terms of generalized Hat 

functions leads to 

 

        2 −
3𝑡2

4
= 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡) ,                                                                          (3.67) 

where 

        𝐹𝑛+1 ≜ [𝑓0, 𝑓1, 𝑓2,…, 𝑓𝑛] 
𝑇

, 

and 

       𝑓𝑖 = 2 −
(𝑖ℎ)2

4
,   𝑖 = 0,1,2, … , 𝑛. 

 

Substituting eq.'s (3.65) - (3.67) into eq. (3.63), we have 
 

        𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡)−

3 

4
𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡)=𝐹𝑛+1
𝑇 𝛹𝑛+1(𝑡),                            (3.68) 

 

Then using eq. (3.66), one can get the output response 𝑦(𝑡). 

For 𝑛 = 8, it seems from table (3.3) that the results obtained from the proposed 

method when 𝛼 = 2 provides better results as compared with the Chebyshev 

wavelet method and with the exact solution. 
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(Table 3.3) 

Comparison of the approximate solution of example (3.3) using the 

proposed method and Chebyshev wavelet method when 𝜶 = 𝟐 with the 

exact solution. 

 

t 𝒚𝒄𝒉 
𝜶 =2 

𝒚𝒉𝒂𝒕 
𝜶 = 𝟐 

𝒚𝒆𝒙𝒂𝒄𝒕 
𝜶 = 𝟐 

0 0 0 0 

0.125 0.004 0.016 0.016 

0.250 0.054 0.083 0.063 

0.375 0.180 0.177 0.141 

0.500 0.517 0.325 0.250 

0.625 0.619 0.473 0.391 

0.750 0.828 0.636 0.563 

0.875 1.073 0.809 0.766 

1 1.356 0.987 1 

 

Following figure (3.3) represent the approximate solution of example (3.3) 

using the proposed method for different values of 𝛼 and with the exact solution 

when 𝛼 = 2 . 
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Fig. 3.3: Solution by the proposed method at different values of 𝜶 

compared with the exact solutions at 𝜶 = 𝟐. 

 

Example 3.4: 

        Consider the delay differential equations of fractional order with 

nonlinear delay function 

      𝐷𝑡 
𝛼𝑦𝑐 (𝑡) = −2𝑦2(𝑡 − 0.01) +

1

Γ(2−𝛼)
𝑡1−𝛼 + 2(𝑡 − 0.01)2, 

                             0 <  𝛼 ≤ 1 , 0 < 𝑡 ≤ 1                                                (3.69) 

         𝑦(𝑡) = 𝑡, −1 ≤  𝑡 ≤ 0                                                                     (3.70) 

         𝑦(0) = 0                                                                                           (3.71) 

The exact solution, when 𝛼 = 1 , is  𝑦(𝑡) = 𝑡. 

      First we convert the delay differential equation of fractional order to the 

fractional order non-delay differential equation by applying the method of 

steps, as    
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      𝐷𝑡 
𝛼𝑦𝑐 (𝑡) =

1

Γ(2−𝛼)
𝑡1−𝛼 . 0 <   𝛼  ≤ 1.     0 < 𝑡 ≤ 1                          (3.72) 

        𝑦(0) = 0                                                                                            (3.73) 

Now we approximate 𝐷𝑡 
𝛼𝑦𝑐 (𝑡) in eq. (3.72), in terms of generalized Hat 

functions as follows  

       ( 𝐷𝑡 
𝛼𝑦𝑐 )(𝑡)=𝐶𝑛+1

𝑇 𝛹𝑛+1(𝑡)                                                                   (3.74) 

Hence 

       𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡)                                                                      (3.75) 

Also writing the term  
1

Γ(2−𝛼)
𝑡1−𝛼  in eq. (3.72) in terms of generalized Hat 

functions leads to 

      
1

Γ(2−𝛼)
𝑡1−𝛼 = 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡) ,                                                               (3.76) 

where 

        𝐹𝑛+1 ≜ [𝑓0, 𝑓1, 𝑓2,…, 𝑓𝑛] 
𝑇

, 

and 

       𝑓𝑖 =
1

Γ(2−𝛼)
(𝑖ℎ)1−𝛼 ,   𝑖 = 0,1,2,… , 𝑛. 

Substituting eq.'s (3.74) and (3.76) into eq. (3.72), we have 

        𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡)=𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡),                                                              (3.77)    

 which implies that 

        𝐶𝑛+1
𝑇 =𝐹𝑛+1

𝑇                                                                                          (3.78)    

Then using eq. (3.75), one can get the output response 𝑦(𝑡). 

For 𝑛 = 8, it seems from table (3.4) that the results obtained from the proposed 

method when 𝛼 = 1 provides better results as compared with the  

Chebyshev wavelet method and the exact solution. 
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(Table 3.4) 

Comparison of the approximate solution of example (3.4) using the 

proposed method and Chebyshev wavelet method when 𝜶 = 𝟏 with the 

exact solution. 

 

𝒕 
𝒚𝒄𝒉 

𝜶 = 𝟏 

𝒚𝒉𝒂𝒕 
𝜶 = 𝟏 

𝒚𝒆𝒙𝒂𝒄𝒕 
𝜶 = 𝟏 

0 0 0 0 

0.125 0.1250 0.1250 0.1250 

0.250 0.2501 0.2500 0.2500 

0.375 0.3752 0.3750 0.3750 

0.500 0.5002 0.5000 0.5000 

0.625 0.6253 0.6250 0.6250 

0.750 0.7504 0.7500 0.7500 

0.875 0.8754 0.8750 0.8750 

1 1.0040 1 1 

 

Following figure (3.4) represent the approximate solution of example (3.4) 

using the proposed method for different values of 𝛼 and with the exact solution 

when 𝛼 = 1 . 
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Fig. 3.4: Solution by the proposed method at different values of 𝜶 

compared with the exact solutions at 𝜶 = 𝟏 . 

 

 

Example (3.5):  

      Consider the following fractional order delay differential equation 

      𝐷𝑡 
𝛼𝑦 

𝑐 (𝑡) = −𝑦(𝑡) − 𝑦(𝑡 − 0.3) + 𝑒−𝑡+0.3, 

                         2 <  𝛼 ≤ 3 , 0 < 𝑡 ≤ 1                                                    (3.79) 

        𝑦(𝑡) = 𝑒−𝑡 ,  −1 ≤  𝑡 ≤ 0                                                                           (3.80) 

        𝑦(0) = 1, 𝑦′(0) = −1, 𝑦′′(0) = 1                                                           (3.81) 

The exact solution of the above equation when 𝛼 = 3,  is 𝑦(𝑡) = 𝑒−𝑡 . 

      First we convert the fractional delay differential equation to the fractional 

non-delay differential equation by applying the method of steps, as: 

     𝐷𝑡 
𝛼𝑦𝑐 (𝑡) + 𝑦(𝑡) = 0,   2 <  𝛼 ≤ 3,  0 < 𝑡 ≤ 1                                  (3.82) 
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      𝑦(0) = 1, 𝑦′(0) = −1, 𝑦′(0) = 1                                                             (3.83) 

Now we approximate 𝐷𝑡 
𝛼𝑦𝑐 (𝑡) in eq. (3.82), in terms of generalized Hat 

functions as follows 

      ( 𝐷𝑡 
𝛼𝑦𝑐 )(𝑡)=𝐶𝑛+1

𝑇 𝛹𝑛+1(𝑡)                                                                               (3.84) 

Hence 

      𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡)+1 − 𝑡 +
𝑡2

2
                                                       (3.85) 

Also writing the term 1 − 𝑡 +
𝑡2

2
  into eq. (3.82) in terms of generalized Hat 

functions leads to 

      1 − 𝑡 +
𝑡2

2
= 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡) ,                                                                             (3.86) 

where 

     𝐹𝑛+1 ≜ [𝑓0, 𝑓1, 𝑓2,…, 𝑓𝑛] 
𝑇

, 

and 

      𝑓𝑖 = 1 − 𝑖ℎ +
(𝑖ℎ)2

2
,   𝑖 = 0,1,2,… , 𝑛. 

Substituting eq.'s (3.86) into eq. (3.85), we get 

      𝑦(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡)+𝐹𝑛+1
𝑇 𝛹𝑛+1(𝑡)                                                 (3.87) 

Substituting eq.'s (3.87) and (3.84) into eq. (3.82), we have 

      𝐶𝑛+1
𝑇 𝛹𝑛+1(𝑡) + [𝐶𝑛+1

𝑇 𝑃𝑛+1
𝛼 𝛹𝑛+1(𝑡) + 𝐹𝑛+1

𝑇 𝛹𝑛+1(𝑡) ] = 0                   (3.88) 

From eq. (3.88), one can obtain the coefficients 𝐶𝑛+1
𝑇 . Then using eq. (3.85), 

one can get the output response 𝑦(𝑡). 

For 𝑛 = 8, it seems from table (3.5) that the results obtained from the proposed 

method when 𝛼 = 3 provides better results as compared with the Chebyshev 

wavelet method and the exact solution. 
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(Table 3.5) 

Comparison of the approximate solution of example (3.5) using the 

proposed method and Chebyshev wavelet method when 𝜶 = 𝟑 with the 

exact solution. 

 

𝒕 
𝒚𝒄𝒉 

𝜶 =3 

𝒚𝒉𝒂𝒕 
𝜶 = 𝟑 

𝒚𝒆𝒙𝒂𝒄𝒕 
𝜶 = 𝟑 

0 1 1 1 

0.125 0.882 0.882 0.882 

0.250 0.779 0.778 0.778 

0.375 0.691 0.687 0.687 

0.500 0.617 0.606 0.606 

0.625 0.558 0.535 0.535 

0.750 0.513 0.472 0.472 

0.875 0.482 0.416 0.416 

1 0.458 0.367 0.367 

 

Following figure (3.5) represent the approximate solution of example (3.5) 

using the proposed method for different values of 𝛼 and the exact solution when 

𝛼 = 3 . 
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Fig. (3.5): Solution by the proposed method at different values of 𝜶 

compared with the exact solutions at 𝜶 = 𝟑 . 
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Conclusions and Future Works 
 

        From the present study, we conclude the following:  

1- The existence and uniqueness theorem of the solution of delay differential 

equations of fractional order and the stability theory of the solution of such 

equations are proved in chapter two. 

2- A generalized Hat functions operational matrices together with the method 

of steps have been presented to be an efficient method for solving delay 

differential equations of fractional order. 

3- One can conclude from the results of the numerical examples that the 

proposed method gave us a good agreement with the exact solutions. 

4- The obtained results of the numerical examples that have been presented in 

chapter three are compared with the solutions obtained by some other 

numerical methods such as including Chebyshev wavelet method and from 

the results we conclude that the present method gives more accurate values 

as compared to the Chebyshev wavelet method.  

For future works we recommended the following: 

1- Numerical solution of variable order fractional delay differential equations 

using the proposed method.  

2- Numerical solution of integro-delay differential equations of fractional order 

using generalized Hat basis functions.  

3- Solving system of delay differential equations of fractional order using 

generalized Hat functions. 

4- Numerical solution of delay partial differential equations of fractional order 

using Hat basis function together with another basis function such as Haar 

basis function. 
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صخلالم  
 

التباطؤية ذات  التفاضلية لمعادلاتل ةالعددي للوالح وإيجاد دراسة هو الأطروحة لهذه الرئيسي غرضلا

 :التاليوك هدفين إلى غرضال هذا تقسيم ويمكنالرتب الكسرية 

 التفاضلية لمعادلاتل للوحال يةستقراراو وحدانيةالو الوجودنظرية  اثبات هو ولالأ الهدف

 .الرتب الكسرية التباطؤية ذات

 التباطؤية ذات الرتب الكسرية التفاضلية لمعادلاتل ةالعددي للوالح إيجاد هو الثاني الهدف

 .(Hat)لدوال  العمليات مصفوفة باستخدام

التباطؤية  التفاضلية لمعادلاتا لحل( Hat)دوال و الخطوات طريقة يتضمن دمج أسلوب م اقتراحت

 .ذات الرتب الكسرية

 معادلات إلى التباطؤية ذات الرتب الكسرية التفاضلية لمعادلاتا تحويلب يقوم الأسلوب هذه

 مصفوفة أستخدام ثم ومن طريقة الخطوات ستخدامأ بواسطة ذات الرتب الكسرية غير تباطؤية تفاضلية

الخطية وغير  تباطؤية ذات الرتب الكسرية غيرال التفاضليةالمعادلت  لتحويل( Hatلدوال ) العمليات

 .لها الحل إيجادثم  ومن الجبرية معادلاتمنظومة ى ال الخطية

 مثل موجودةال الطرق بعض مع الأمثلة هذه نتائج مقارنة وتم يحيةالتوض     الأمثلة بعض أعطاء تم       

 .المقترحة الطريقة وكفاءة دقة توضيح أجل من مضبوطال والحل تشيبيشيف مويجات طريقة

 

 



 جمهـــورية العــــراق

 وزارة التعليم العالي والبحث العلمي

 جـامعــــة النهـــــرين

 ـومــــلـــــة العيــــــكل

 قسم الرياضيات وتطبيقات الحاسوب

 

 

ية ذات ؤالحلول العددية للمعادلات التفاضلية التباط

 الرتب الكسرية

 

 رسالة

                                    جامعة النهرين-مقدمة الى كلية العلوم
 هي جزء من متطلبات نيل درجة ماجستير علوم في الرياضيات

 
                                                           من قبل

                                            يمـبراهإ ة واديـقتيبـ

 (٢٠١٤ ،جامعة النهرين ،)بكالوريوس علوم
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