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Abstract 



  
  Alternating Direction Implicit method (ADI) was first suggested by 

Peaceman and Rachford in the mid-50s of the last century for solving systems 

of algebraic equations in two dimension of spaces[peaceman and 

rachford,1955], which results from the finite difference discretization method 

for solving PDEs; [Peaceman and Rachford,1955]. From iterative method’s 

perspective, the ADI method may be considered as a special relaxation 

method, where a big system is simplified into a number of smaller sub-

systems, such that each of them may be solved efficiently and the solution of 

the whole system is then obtained from the solutions of the sub-systems in an 

iterative method approach, [Al-Saif and Al-Kanani,2011]. 

 The main theme of this thesis may be directed toward three objective: 

 The first objective is to explain and clarify, in details, the alternative 

direction iteration method in a simple way for each type of differential 

equations, which is produced by rearranging the Crank-Nicholson formulation 

and discuss the stability, convergent and consistency of the solution  using 

normal time steps. we preposed a new alternative direction iteration method 

depending on another time step, a new formula derived to give alternative 

direction iteration method  more accurate. 

 The second objective is to derive and study  the system associated with 

the infected equations of patients with diabetes then the effect of oxygen in 

the treatment of  infected wounds,  the obtained system of related equations  

was  of the first dimension, also  the alternative direction iteration method 

could  be genarlized to solve the equations of  the second dimension. Then we 

went  to re-model the part of this system of equations of the second dimension 

as a prelude to solve. Finally, the third objective  is devoted to solve  a system 

of equations that  re-modeled  by using the discussed alternative direction 

iteration method the results that are obtaind to  find out how the stability of 

the system output and the accuracy of the results affect on the stages of 

treatment. 
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Introduction 

 



Numerical analysis may be considered as the study of algorithms that 

use numerical treatments for certain problems under consideration. One of the 

earliest mathematical mainscripts is a Babylonian tablet from the Yale 

Babylonian Collection, which gives 60 bas numerical approximation of √2 , 

the length of the diagonal in a unit square. Being able to compute the sides of 

a triangle (and hence, being able to compute square roots) is extremely 

important, for instance, in astronomy, carpentry and construction 

[Brezis,1998].  

Numerical analysis naturally finds applications in all fields of 

engineering and physical sciences, but in the 21
st
 century, it also  has 

applications in Biological sciences and even in arts had adopted elements of 

scientific computations where  mathematics has been applied to a wide range 

of applications [Guffey,2015].  

In mathematical analysis and applied mathematics, partial derivative is 

a derivative of any arbitrary order, although the partial term is a misnomer, it 

accepted widely on this type of derivatives. The complexity of any systems of 

equations comes from the involving of the nonlinear equations, especially in a 

matters of applied physics and engineering, medical and others. The 

importance of the finite difference method (FDM) is being one of the earlest 

and best ways and the most widely used approaches in solving Partial 

Differential Equations (PDEs) through simplified approaches and turn it into a 

grid of dots and rounded differential equations by finite difference equations 

equivalent to it[Serov,2010]. 



 In this method, the system of equations resulting from the finite difference 

method will transformed into sub-systems of linear equations produced 

according to directions and then solved by an iterative procedure with the 

cooperation of initial and boundary conditions.  

As is the case of  all medical applications, associated with the treatment 

of inflammatory diabetics by the pressure and spread of oxygen to the wound 

for the purpose of eliminating bacteria causing, It is one of the nonlinear 

complex equations that  need to be solved using a numerical method. So, we 

turned after the submission of the system and remodeled to a second 

dimension to be resolved using the Alternating Direction Iteration (ADI) 

method.  

We are concerned with the numerical solution of problems in two and 

three dimensions. For this purpose, a finite difference method, namely (ADI) 

method which is a type of spiltting method for solving (PDEs) extended, the 

advantages of this method are unconditionally consistent and stable which 

gives convergency for the numerical solution.  

The thesis is ordered as follows. In chapter one, some definitions and 

basic concepts related to (PDEs) and some types of methods used for 

numerical solutions of such equations is introduced.  

In chapter two, the ADI method for solving partial differential 

equations is discussed by taking equation for each type and then 

implementing the formula for each equation. The consistency, stability and 

convergent of such equations have been tested. A new formula is 

implemented here by taking small two time steps, for more accuracy we 

extend the finite difference formula to drive anew formula of order four, 

Finally two illustration examples are given.  

In chapter three, some biological and mathematical backgrounds 

concerning with the oxygen therapy treatment of chronic wounds are given, in 

which, the biological interpretion of the problem is given first, and then the 



derivation of the mathematical model for one dimensional space is presented 

with the analytical solution.  

Finally, in order to solve the obtained system associated with this 

treatment by using ADI method, the model will be developed for a two 

dimensional space and then are solved and debated the results numerically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.1 Introduction : 

In mathematics, partial differential equation (PDE) is an equation that 

contains unknown functions of multiple variables known as the independent 

variables and their derivatives are partial, PDEs are utilized for modeling 

problems that includes functions which contain a number of independent 

variables. Where these equations are expressed as a relationship between the 

function of two or more variables and partial derivatives associated with this 

job, that having to do with these independent variables [Hoffman,2006]. 

The research on  PDEs  goes back to the 18
th
 century, one of the most 

important phenomenas in the application of PDEs in science and engineering 

since the second World War [Jeffrey,2009]. Partial differential equations form 

the basis of  many mathematical models of physical, chemical and biological 

phenomenas and recently they are used in economics, financial forecasting, 

image processing and other fields [Lorenzo,2009].  

Therefore, numerical analysis is a branch of applied mathematics 

containing a variety of techniques to solve PDEs, such as the  finite difference 

method, spectral method [Smith,1978] finite element method [Gilbert,1974], 

mesh free method [Duarte and Oden,1996], finite volume method 

[Leveque,2002], boundary element method [Aliabadi,2011] etc.  

The finite element and finite volume methods are widely used in 

engineering to model problems with complicated  geometries; the FDM is 

often regarded as the simplest method [Saad,2003]; the mesh free method is 

used to facilitate accurate and stable numerical solutions for PDEs without 

using a mesh [Hoffman,2006]. During the 18
th

 century, the foundation of the 

theory of a single first order PDEs and its reduction into a system of ordinary 

differential equations(ODEs) was carried through a reasonably mature form. 

 

 

1.2  Partial Differential Equations: 



The classical  PDEs  which serve as model  for the later development 

also appeared first in the 18
th

 and early 19
th
 century [Jeffrey,2009]. 

         In order to classify partial differential equations, it is known that 

𝑢𝑥𝑦 = 𝑢𝑦𝑥 if u is continous and therefore, the second order PDEs of two 

independent variables in a general form may be given as : 

     𝐴𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹 = 0               … (1.1) 

where the coefficients A, B, C,D,E and F. depend  on  x  and  y. 

 If:  

                         𝐴2  +  𝐵2  + 𝐶2  > 0                                             … (1.2) 

over the region of xy-plane, then the PDE is of the  second order in this 

region,  is said to be [Hoffman,2006]: 

 Elliptic  If   𝐵2   − 4𝐴𝐶 < 0         (e.g. Laplace Eq.)  

 Parabolic  If  𝐵2   − 4𝐴𝐶 = 0      (e.g. Heat Eq.)         

 Hyperbolic If  𝐵2   − 4𝐴𝐶 > 0    (e.g. Wave Eq.)   

 

These definitions can be generalized to higher dimensional spaces and 

higher orders.  If no one of the coefficients depends on the dependent variable 

and all its partial derivatives appearing in the linear form , then it is called  

linear ,  as in the following example: 

                     
𝜕𝑢

𝜕𝑡
= 휀

  𝜕2𝑢

𝜕𝑥2
                                                        …  (1.3)       

      where  𝑥 and  𝑡 are the independent variables, 𝑢 is the unknown function 

and 휀 is the coefficient, otherwise the PDE is called nonlinear if the 

coefficients depend on the dependent variable, or the derivatives appear in a 

nonlinear form; as in following example: 

 

                       
𝜕𝑢

𝜕𝑥
+ 𝑓

 𝜕𝑢

𝜕𝑦
= 0,    𝑥 ∈ [𝑎, 𝑏],   𝑡 ≥ 0                        … (1.4) 

 where 𝑥 and  𝑦 are independent variables and 𝑓 is unknown function, 

[Serov,2010].  



       Also, the PDEs may be classified as homogeneous if the unknown 

function or its derivative appear in each term, otherwise it is called a non-

homogeneous,[Hoffman,2006]. 

      In addition, the  PDE are the equation that  is supplemented by initial and\  

or boundary conditions , there are three types of boundary conditions, namely:  

 1. Dirichlet boundary condition: Numerical values of the function are 

     specific of the boundary of the region . 

 2. Neumann boundary condition: Specifies the values that the derivative of a 

     solution is taken on the boundary of the domain. 

 3. Mixed boundary condition: Defines a boundary value problem in which 

     the solution of the given equation is required to satisfy different boundary  

    conditions on disjoint parts of the boundary of the domain, where the 

    condition is stated. Precisely, in a mixed boundary value problem, the 

     solution is required to satisfy a Dirichlet or a Neumann boundary condition 

    in a mutually exclusive way on disjoint parts of the boundary. 

  

1.3  Finite Difference Methods :  

The finite difference method (FDM) was first developed by  Thomas  

in 1920 under the title (the method of square) to solve nonlinear 

hydrodynamic equations; [Smith,1978]. The basic idea of  the FDM which is 

a numerical method for solving differential equations that is to approximate 

the solution of  differential equations, i.e., to find a function (or some discrete 

approximation to this function) that satisfies certain relationship between 

various of its derivatives on some given region of space and/or time, along 

with some boundary conditions along the edges of this domain; 

[LeVeque,2005].  

As one of the earliest and most commonly used numerical methods for 

computing discrete solutions of differential equations, the finite-difference 

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Boundary_%28topology%29
https://en.wikipedia.org/wiki/Domain_%28mathematics%29
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Boundary_condition
https://en.wikipedia.org/wiki/Boundary_condition
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Boundary_%28topology%29
https://en.wikipedia.org/wiki/Domain_%28mathematical_analysis%29
https://en.wikipedia.org/wiki/Dirichlet_boundary_condition
https://en.wikipedia.org/wiki/Neumann_boundary_condition


methods are based on the Taylor series expansion on a set of grids, most 

commonly, a set of uniformly spaced grids.  

The advantages of the FDM lie in two aspects; they are simple in 

formulation and implementation, and they are highly scalable; [Urroz,2004]. 

 

1.4  Explicit Methods:  

        This type of methods solve directly at a point for all unknown values in 

the finite difference scheme, it is stable only for certain time step sizes. 

Stability can be checked using Fourier or Von Neumann analysis 

[Smith,1978].  

        A forward difference at a time and a second-order central difference for 

the space derivative is used to solve the differential equation, for example 

take the heat equation; [Lorenzo,2009]: 

                              𝑢𝑡  =  𝑢𝑥𝑥                                                              ... (1.5) 

 we get the equation: 

                        
𝑢𝑖
𝑛+1− 𝑢𝑖

𝑛

𝑘
=
𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛

ℎ2
                                  ... (1.6) 

 hence we may obtain   from the other values as: 

           𝑢𝑖
𝑛+1 = (1 − 2𝑟)𝑢𝑖

𝑛 + 𝑟𝑢𝑖−1
𝑛 + 𝑟 𝑢𝑖+1

𝑛  ,  𝑟 = 𝑘

ℎ2
                  ... (1.7) 

where ℎ and 𝑘 are the step size discretization  in the 𝑥  and 𝑡 directions, 

respectively . 

 

          This explicit method is known to be numerically stable and convergent 

whenever  
𝑘

ℎ2
≤ 1

2 
  and the numerical errors are proportional to the time step 

and the square of the space step [Paramvir,2008]: 



          ∆𝑢 = 𝑂(𝑘) + 𝑂(ℎ2)                                                          ... (1.8) 

Where   𝑘 =  ∆𝑡 , ℎ =  ∆𝑥 

1.5  Implicit Methods: 

      Here there is no explicit formula at each point, only a set of simultaneous 

equations which must be solved over the whole grid of the discretization mesh 

most be evaluated [Serov, 2011].    

      If we use the backward difference at time  and a second-order central 

difference for the space derivative at position 𝑥𝑖 (the backward time, centered 

space method) one may get the recurrence equation; [Lorenzo,2009]: 

          
𝑢𝑖
𝑛+1− 𝑢𝑖

𝑛

𝑘
=
𝑢𝑖+1
𝑛+1−2𝑢𝑖

𝑛+1+𝑢𝑖−1
𝑛+1

ℎ2
                                            ... (1.9) 

 and also one may obtain 𝑢𝑖
𝑛+1 by solving the system of  equations: 

        (1 + 2𝑟)𝑢𝑖
𝑛+1 − 𝑟𝑢𝑖−1

𝑛+1 − 𝑟 𝑢𝑖+1
𝑛+1 = 𝑢𝑖

𝑛 , 𝑟 =
𝑘

ℎ2
                    ... (1.10) 

       Despite the fact that implicit methods are stable and convergent for all 

step sizes [Urroz, 2004], but it usually consider more numerically intensive, 

than the explicit method is required for solving a system of numerical 

equations on each time step. The errors are linear over the time step and 

quadratic over the space step [Serov, 2011]: 

                     ∆𝑢 = 𝑂(𝑘) + 𝑂(ℎ2)       

               Where   𝑘 =  ∆𝑡 , ℎ =  ∆𝑥                                

1.6  Cranks–Nicolson Method: 

The Crank Nicolson finite difference scheme was invented by John 

Crank and Phyllis Nicolson. They originally applied it to the heat equation 

and they approximated the solution of the heat equation on some set of finite 



grid points by approximating the derivatives in space x and time t by finite 

differences; [Duffy,2004]. 

If we use the central difference at time  and a second-order 

central difference for the space derivative at position 𝑥𝑖 we get the  equation: 

       
𝑢𝑖
𝑛+1− 𝑢𝑖

𝑛

𝑘
=
1

2
(
𝑢𝑖+1
𝑛+1−2𝑢𝑖

𝑛+1+𝑢𝑖−1
𝑛+1

ℎ2
+
𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛

ℎ2
 )     …(1.11) 

       The scheme is always numerically stable and convergent but usually 

more numerically intensive as it is required for solving a system of numerical 

equations on each time step. The errors are quadratic over both the time step 

and the space step [Kettle,1978]. 

                  ∆𝑢 = 𝑂(𝑘2) + 𝑂(ℎ2)   

Where   𝑘 =  ∆𝑡 , ℎ =  ∆𝑥                                                 

        Usually, the Crank-Nicolson scheme is the most accurate scheme for 

small time steps. The explicit scheme is  less accurate and may be unstable, 

but is also the easiest to implement and the least numerically intensive. The 

implicit scheme works as the best for large time steps, [Serov,2011]. 

 

 

 

 

1.7 Tridiagonal Matrix Algorithms: 

       In numerical linear algebra, the tridiagonal matrix algorithm (TDMA), 

also known as the Thomas algorithm, is a simplified form of Gaussian 

elimination method that can be used to solve tridiagonal systems of equations. 

A tridiagonal system for n-unknowns may be written as; [Zargari,2007] 



            𝑎𝑖𝑥𝑖−1 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖+1 = 𝑟𝑖                                             … (1.12) 

where 𝑎1 = 0 and  𝑐𝑛 = 0 , 𝑖 = 1,2,… , 𝑛  

       The Thomas algorithm is an efficient way for solving tridiagonal matrix 

systems. It is based on LU decomposition method in which the matrix system 

Mx = r which rewritten as: 

                               𝐿𝑈𝑥 = 𝑟 

where L represents  a lower triangular matrix and U is an upper triangular 

matrix; [Thomas,1960]. 

[

𝑏1 𝑐1
𝑎2 𝑏2

⋯ 0
⋯ ⋮

⋮ 𝑎3
0 ⋮

⋱ 𝑐𝑛−1
⋱ 𝑏𝑛

]

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛]
 
 
 
 

=

[
 
 
 
 
𝑟1
𝑟2
𝑟3
⋮
𝑟𝑛]
 
 
 
 

 

       A matrix  A = [𝑎𝑖𝑗 ], where i, j = 1, 2,…,n; whose nonzero entries lie 

along the main diagonal, and the immediate sub-diagonal and super-diagonal 

of the form : 

𝐴 = [

𝑏1 𝑐1
𝑎2 𝑏2

𝑑1
𝑐2

⋯ 0
⋯ ⋮

⋮ 𝑎3
0 ⋮

𝑏3
⋮

⋱ 𝑐𝑛−1
⋱ 𝑏𝑛

] 

is called tridiagonal matrix. Thus A = [𝑎𝑖𝑗 ], where, 1 ≤ 𝑖, 𝑗 ≤  𝑛 is 

tridiagonal if 𝑎𝑖𝑗 = 0 for |𝑖 − 𝑗| > 1 [Mikkawy,2004]. 

The Thomas algorithm is used because, it is fast and the tridiagonal 

matrices often occur in practice;  [Thomas,1960] .  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

2. 1   Introduction: 

Alternating Direction Implicit method (ADI) was first suggested by 

Peaceman and Rachford in the mid-50s of the last century for solving systems 

of algebraic equations  in two dimensional of spaced, which results from the 

finite difference discretization method for solving PDEs; [Peaceman and 

Rachford,1955].  From the iterative perspective method’s, the ADI method 

may be considered as a special relaxation method, where a big system is 

simplified into a number of smaller sub-systems, such that, each of them may 

be solved efficiently and the solution of the whole system is then obtained  

from the solutions of the sub-systems in an iterative method approach, [Al-

Saif and Al-Kanani,2011]. 

In 1999, Namiki worked on new finite difference time-domain (FDTD) 

algorithm based on the alternating direction implicit method [Namiki,1999]. 

Cheon and Hyeongdong  presented in 2002 an artical on the analysis of 

the power plane resonance using the alternating direction implicit method 

[Cheon and Hyeongdong,2002].  



Then  in 2006 Lee and Smith presented a paper on alternative approach 

for implementing periodic boundary conditions in the FDTD method using 

multiple unit cells [Lee and Smith, 2006].  

Multigrid ADI method for two dimensional electromagnetic 

simulations was also presented by Wang in 2006 [Wang,2006]. Masoud 

Movahhedi, Abdolali Abdipour, Alexandre Nentchev and Siegfried 

Selberherr also worked on alternating direction implicit formulation of the 

finite-element time-domain method in 2007 [Masoud et. al.,2007].  Jihye 

Shin, Sungsoo S. Kim in 2008 resorting to the use of  the ADI method for 

studies of the dynamical evolution of dense spherical stellar systems, 

Interpreters  used  reason for being ADI method reduces the computing time 

by a factor of  two  compared to the fully implicit method [Sungsoo S. 

et.al.,2008], and resolves problems of numerical instability in 2011, Song-

Ping Zhu, Wen-Ting Chen introduced a predictor–corrector scheme based on 

the ADI method for the Heston model, which is considered as a Finance 

Application[Song-Ping et.al.,2011]. 

A generalization of the ADI method for solving numerically 

multidimensional  fractional diffusion equations was described by Concezzi 

and spigler in 2012 [Concezzi et.al.,2012]. 

 Darae Jeong,  Junseok Kim provided in 2013 a comparison study of 

ADI and operator splitting methods on the financial applications [Darae Jeong 

et.al.,2013]. 

In 2014, a high-order alternating direction implicit finite difference 

scheme for the solution of initial-boundary value problems of convection-

diffusion type with mixed  non-constant coefficients was introduced by 

Bertram Duringa [Bertram D.,2014].   

        In numerical analysis, the ADI method is a FDM  for solving PDEs; it is 

an example of an operator splitting method. The idea behind the ADI method 

is to split the FDEs into two categories, the first one with the x-derivative 

https://arxiv.org/find/astro-ph/1/au:+Shin_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Shin_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kim_S/0/1/0/all/0/1


taken implicitly and the second with the  y-derivative taken implicitly [Jeong 

and Kim, 2013]. 

 

      Fig.(2.1) The alternating direction implicit method in finite difference equations 

[Chang, 1991] 

2.2 The ADI Formula for Two Dimensional Non-Homogeneous 

     Parabolic Equations:  

       As an illustration of the ADI method, consider the two dimensional 

parabolic equation[Hoffman,2006]: 

                          u t   =  u xx  + u yy − f(x, y)                             … (2.1)   

where 𝐷 = (0, 𝑙1) × (0, 𝑙2), (x , y ) ∈ D, t ∈ (0,∞], f is a given function with 

initial condition u (x, y, 0)  =  u0(x, y), the boundary conditions are along ∂D, 

assumed that the spatial discretizations on the x  and  y   directions is  k .  

     The finite difference formulation of equation (2.1) using the central 

differences for  u xx  and u yy is:  

 
dui,j

dt
=

1

k2
 [ (ui+1,j − 2ui,j + ui−1,j) + (ui,j+1 − 2ui,j + ui,j−1 )] − 𝑓𝑖,𝑗

𝑛+1
2                                                                    

…(2.2)     

 For all  i, j = 1,2,… ,𝑁 − 1 ,𝑁 ∈ ℕ    



       The Crank-Nicholson reformulation of equation (2.2) is obtained by 

integrating over [ tn , tn+1] 

 ui,j
n+1 = ui,j

n + 
r

2
[( ui+1,j

n+1 − 2 ui,j
n+1 + ui−1,j

n+1 ) + (ui,j+1
n+1 − 2 ui,j

n+1 + ui,j−1
n+1 )

+ (ui+1,j
n − 2ui,j

n + ui−1,j
n ) + (ui,j+1

n − 2ui,j
n + ui,j−1

n )]

− ∆t  𝑓
𝑖,𝑗

𝑛+1
2                                                                          … (2.3) 

 where r =
∆t

k2
 

Equation (2.3) may be subsequently arranged to give:  

ui,j
n+1 − 

r

2
[( ui+1,j

n+1 − 2 ui,j
n+1 + ui−1,j

n+1 ) −
r

2
(ui,j+1
n+1 − 2 ui,j

n+1 + ui,j−1
n+1 )  

= ui,j
n +

r

2
(ui+1,j
n − 2ui,j

n + ui−1,j
n ) +

r

2
(ui,j+1
n − 2ui,j

n + ui,j−1
n )]

− ∆t  𝑓
𝑖,𝑗

𝑛+1
2                                                                            … (2.4) 

       The matrix related to the system (2.4) is no longer tridiagonal and so that 

an iterative procedure is required to find the numerical solution through each 

time step.   

       For simplicity, introduce the finite difference operator  δ defined by: 

                              δ(xn) = xn+1
2
− xn−1

2
                                 

then simplifying equation (2.4) to take the following form:  

ui,j
n+1 = ui,j

n +
r

2
[δx
2 (ui,j

n+1) − δy
2( ui,j

n+1 )] +
r

2
[δx
2(ui,j

n ) + δy
2( ui,j

n  )]

− ∆t  𝑓
𝑖,𝑗

𝑛+1
2                                                                             … (2.5) 

 for all  i , j = 1, 2 …N,  𝑁 ∈ ℕ               

       Since the direct solution is quite costly, the idea behind using the ADI 

method is to spilt system (2.5) into two subsystems, yielding: 

    ui,j
n+1  − r δx

2 (ui,j
n+1)   = ui,j

n  + r δy
2  ( ui,j

n  ) − ∆t  𝑓
𝑖,𝑗

𝑛+1
2                       … (2.6)     

    ui,j
n+2  − r δx

2 (ui,j
n+2) = ui,j

n+1  + r δy
2  ( ui,j

n+1 ) − ∆t  𝑓
𝑖,𝑗

𝑛+1
2                 … (2.7) 



where two time steps [ tn , tn+1] and [ tn+1 , tn+2] are taken.          

       Based on this procedure, δy
2( ui,j

n  ) is explicit and ui,j
n+1 is determined 

implicitly and it is remarkable that,  the rule is reversed in the second equation 

(2.7). The important property of this method is that both steps require the 

solution of  the  tridiagonal system of linear algebraic equations(2.6) and 

(2.7). The first system is to find ui,j
n+1 and the second system is to find  ui,j

n+2. 

 

 

 

 

 

 

 

    Equations (2.6) and (2.7) may be written respectively as: 

   (1 + 2𝑟)uI,j
n+1 − 𝑟ui+1,j

n+1 − 𝑟ui−1,j
n+1  

                                = (1 − 2𝑟)ui,j
n + 𝑟ui,j+1

n + 𝑟ui,j−1
n − ∆t  𝑓

𝑖,𝑗

𝑛+1
2                … (2.8) 

(1 + 2𝑟)ui,j
n+2 − 𝑟ui+1,j

n+2 − 𝑟ui−1,j
n+2              

= (1 − 2𝑟)ui,j
n+1 +  𝑟ui,j+1 

n+1 + 𝑟ui,j−1
n+1  − ∆t  𝑓

𝑖,𝑗

𝑛+1
2                … (2.9) 

Hence, the linear system for  m unknowns of  m equations can written 

in the following matrix form:     

                                                        𝐴𝑈 = 𝐹                                       ... (2.10)        

  where:  

A = 

[
 
 
 
 
 
1 + 2𝑟 −𝑟 …
−𝑟 1 + 2𝑟 −𝑟
0 −𝑟 1 + 2𝑟

…       0       0
…     …       0
−𝑟     …       …

⋮         ⋮           ⋮
0        0           ⋮
0        0            0

⋱       ⋱  ⋮
−𝑟 1 + 2𝑟 −𝑟
0 −𝑟 1 + 2𝑟]

 
 
 
 
 

, 𝑈 =

[
 
 
 
 
 
 
u1,j
n+1

u2,j
n+1

⋮
⋮

um−1,j
n+1

um,j
n+1

]
 
 
 
 
 
 

        



 

 and  F = 

[
 
 
 
 
 
 
 

   

(1 − 2𝑟)u1,j
n + 𝑟(u1,j+1

n + 𝑟u1,j−1
n ) − ∆t  𝑓

1,𝑗

𝑛+1
2

(1 − 2𝑟)u2,j
n + 𝑟(u2,j+1

n + 𝑟u2,j−1
n ) − ∆t  𝑓

2,𝑗

𝑛+1
2

⋮

(1 − 2𝑟)um−1,j
n + 𝑟(um−1,j+1

n + 𝑟um−1,j−1
n ) − ∆t  𝑓

𝑚−1,𝑗

𝑛+1
2

(1 − 2𝑟)um,j
n + 𝑟(um,j+1

n + 𝑟um,j−1
n ) − ∆t  𝑓

𝑚,𝑗

𝑛+1
2

   

]
 
 
 
 
 
 
 

 

       

Similarly, applying the same procedure one may solve the second 

system (2.9). 

 

 

 

 

2.2.1 Consistency of the ADI Method: 

       We start this subsection with the definition of consistent PDE:  

 

Definition (2.1) [Khouider, 2008]: 

        Let 𝐹𝑖,𝑗(𝑢) = 0 represent the difference equation at the (𝑖, 𝑗)𝑡ℎ  mesh 

point. If u is replaced by U at the mesh points of difference equation,  the 

value of  𝐹𝑖,𝑗(𝑈) is called the local truncation error. If this tends to zero as the 

mesh length tend to zero then the difference equation  is said to be consistent 

with the PDE. 

 i.e.,  if the truncation error 𝜏ℎ is defined by: 

                                        𝜏ℎ = 𝐴𝑈 − 𝐹                                              ... (2.11) 

  Then it must satisfies: 

                                                lim
∆𝑡,∆𝑥,∆𝑦→0 

𝜏ℎ = 0 

     



   where  ∆𝑡  is a time step,  ∆𝑥 and  ∆𝑦  are the grid spacing in the x and y 

directions, respectively. 

Also the method is said to be consistent of order (p, q) if: 

𝜏ℎ = 𝑂((∆𝑥, ∆𝑦)
𝑝 + (∆𝑡)𝑞) 

        In practice, the exact solution is not known in advanced, but assume that 

it is smooth and if we rewrite the ADI algorithm (2.6) and (2.7) they are 

appeared as follows:            

            ( 1 − r δx
2 ) ui,j

n+1 = ( 1 + r δy
2)ui,j

n  − ∆t  𝑓
𝑖,𝑗

𝑛+1
2                        … (2.12) 

       (1 − r δy
2)ui,j

n+2 = (1 + r δx
2) ui,j

n+1  − ∆t  𝑓
𝑖,𝑗

𝑛+1
2                         … (2.13) 

 and after elimination the term at  tn+1  then(2.12) and (2.13) are given as: 

       ( 1 − r δx
2 )(1 − r δy

2)ui,j
n+2      

=  (1 + r δx
2)( 1 + r δy

2)ui,j
n  −  2∆t  𝑓

𝑖,𝑗

𝑛+1
2               … (2.14)  

Hence, after carying some simplifications, we may get: 

   (1 + r2 δx
2δy
2)( un+2 − un)  

                                  = r (δx
2 + δy

2)( un+2 + un) −  2∆t  𝑓
𝑖,𝑗

𝑛+1
2             . . . (2.15)                                                                                                                                       

Now, dividing  by 2h and  replacing r by its definition, we have: 

    (1 + r2 δx
2δy
2) 

 un+2− un

2h
  = (δx

2 + δy
2)

 un+2+ un

2k2
 −  

 ∆t

ℎ
  𝑓
𝑖,𝑗

𝑛+1
2           … (2.16) 

Therefore, by using the finite difference formula, it yields: 

     
 un+2 − un

2h
= un+1 + O(h2)

    un+2 + un = 2un+1 + O(h2)

}                                                  … (2.17) 

Consequently:  

    (δx
2 + δy

2)
 un+2+ un

2k2
=
(δx
2+δy

2)2ut
n+1

2k2
−
∆t

ℎ
  𝑓
𝑖,𝑗

𝑛+1
2 + O(h2)                 

                                          = uxx
n+1 + uyy

n+1 − 𝑓 + O(h2, k2)                … (2.18)  

Finally: 



    
 r2 δx

2δy
2( un+2 − un)

2h
=
h2

k4
 δx
2δy
2(ut

n+1) + O(h2)                    

                                             =  h2utxxyy
n+1 + O(h2, k2)                                … (2.19)      

Assembling component parts for getting: 

ut
n+1 + O(h2) + h2utxxyy

n+1 + O(r2h2)   

= uxx
n+1 + uyy

n+1 − 𝑓 + O(h2, k2)                                 … (2.20)  

which may  rearrange to give : 

   ut
n+1 − uxx

n+1 − uyy
n+1 + 𝑓 =  O(h2, k2)                                              … (2.21) 

       Then the ADI method for two dimensional non-homogeneous parabolic 

equations is unconditionally consistent. 

The local truncation error is given by:     

        𝜏 = Ut
n+1 − Uxx

n+1 − Uyy
n+1 + 𝑓                                                      … (2.22) 

 

In addition, obtainning  a relation between the local error  𝜏  and  the 

global error E:    

                                     𝐸 = 𝑈𝑖,𝑗 −  𝑢𝑖,𝑗                                                 ... (2.23)    

                              ‖𝐸‖∞ = max1≤𝑖,𝑗≤𝑚|𝐸𝑖,𝑗| 

                                     = max1≤𝑖,𝑗≤𝑚|𝑈𝑖,𝑗 −  𝑢𝑖,𝑗| 

which is just the largest possible error.  

        We subtract the equation (2.23) from the equation (2.10) that defines u, 

to obtain: 

                            AE =  −𝜏                                                                 ... (2.24) 

2.2.2 Stability of the ADI Method:  

       Stability means that the error caused by a small perturbation in the 

numerical solution remains bounded [Gilberto and Urroz, 2004]. 

If we look at (2.24) we have: 

                           𝐴𝑘𝐸𝑘 = −𝜏𝑘                                                              ... (2.25) 

Where  k  describe a mesh spacing of a grid point.  



The matrix 𝐴𝑘 is an m × m matrix with: 

                             k = 
1

𝑚+1
 

     So that, its dimension will grown as 𝑘 → 0 . Let  ( 𝐴𝑘 )−1  be the inverse 

of the matrix 𝐴𝑘, we have: 

                                𝐸𝑘 = −(𝐴𝑘)−1 𝜏𝑘 

Taking the norm: 

                        ‖𝐸𝑘‖
∞
= ‖(𝐴𝑘)−1 𝜏𝑘‖

∞
 

                                      ≤ ‖(𝐴𝑘)−1 ‖
∞
‖ 𝜏𝑘‖

∞
  

If we let (𝐴𝑘)−1 to be bounded by some constant independent of k, then: 

                      ‖𝐸𝑘‖
∞
  ≤ 𝐶 ‖ 𝜏𝑘‖

∞
 

and so that, ‖𝐸𝑘‖
∞

 goes to zero as fast as ‖ 𝜏𝑘‖
∞

goes to zero; this means that 

if (𝐴𝑘)−1 exists for all k, and if there was a constant C, the finite difference 

equation  which gives a system of equations that satisfy : 

                              𝐴𝑘𝑢𝑘 = 𝑓𝑘 

which is said to be stable [Leveque, 2005].  

        The basic idea for the stability analysis for PDEs consists of expanding 

the  solutions of  the equation as a complex  Fourier  series  and  analyzing  a 

generic component of the solution; [Khouider, 2008].  

       The stability of the two dimensional ADI algorithm given by equations 

(2.12) and (2.13) can be investigated by the substitution: 

us,q
n  = λnei(αs+βq)n 

where 𝑖 = √−1 , λn is the amplitude of the n-th component, 𝛽 =
2𝜋

𝑇
 = angular 

frequency of the n-th component, 𝑇 = period of the n-th component, α =
2𝜋

𝑙
 

= wave number of the n-th componint and 𝑙 = wave length; [Gilberto and 

Urroz, 2004]; the calculation based on the above observation implies that: 

          𝛿𝑥
2𝑢 = (eiαk − 2 + e−iαk)𝑢 



                  = 2(𝑐𝑜𝑠𝛼𝑘 − 1)𝑢      

                  =  −4(𝑠𝑖𝑛2 𝛼𝑘 2⁄ )𝑢                                                                     … (2.26) 

         𝛿𝑦
2𝑢 = (𝑒𝑖𝛽𝑘 − 2 + 𝑒−𝑖𝛽𝑘)𝑢 

                  = 2(𝑐𝑜𝑠𝛽𝑘 − 1)𝑢 

                  = −4(𝑠𝑖𝑛2 𝛽𝑘 2⁄ )𝑢                                                                       ... (2.27)

  hence, by eliminating the  un+1 from our algorithm we get: 

       (1 − r δx
2 )(1 − r δy

2)un+2 = (1 + r δx
2)(1 + r δy

2)un − 2∆t  𝑓
𝑖,𝑗

𝑛+1
2    … (2.28)                                         

  

 

 

 

Now, applying (2.26) and (2.27) in equation (2.28), we have:  

     λ(1 + 4r(sin2 αk 2⁄ )(1 + 4rsin2 βk 2⁄ ))      

          = 1 + 16r2sin2(αk 2)sin2 (βk 2⁄⁄ ) − 2∆t  𝑓
𝑖,𝑗

𝑛+1
2         … (2.29) 

Then, if 

𝜆 =
1 + 16𝑟2𝑠𝑖𝑛2(𝛼𝑘 2)𝑠𝑖𝑛2 (𝛽𝑘 2⁄⁄ ) − 2∆𝑡  𝑓

𝑖,𝑗

𝑛+1
2

(1 + 4r(sin2 αk 2⁄ )(1 + 4rsin2 βk 2⁄ ))
 

 

and since a simple comparesion between the nominator and demonator will  

implies that 0 < λ < 1, thus it can be seen that the two dimensional ADI 

algorithm is unconditionally stable [Mampaey,1989].  

 

2.2.3 Convergent of the ADI Method:  

       Convergence means that the finite-difference solution approaches the 

exact solution of  the PDE as the increments Δx, Δy, Δt tends to zero 

[Khouider, 2008]. Thus, a method is said to be convergent if:  



                ‖𝐸𝑘‖
∞
 ≤ ‖(𝐴𝑘)−1‖

∞
 ‖𝜏𝑘‖

∞
 

                                ≤  𝐶 ‖𝜏𝑘‖
∞
→ 0   ,      𝑘 → 0 

which represents a combination of the conditions of consistency and stability, 

[Leveque, 2005]. 

       We have introduced above in equations (2.21) and (2.29) the ADI method 

for solving of  the two dimensional non homogeneous parabolic equation 

(2.1) which is consistent and unconditionally stable, and may be  considered 

as the sufficient conditions for convergent according to the  Lax equivalence 

theorem.    

 

 

Theorem (2.1) (Lax equivalence) [Khouider,2008]:  

       The approximate numerical solution to a well posed linear problem 

converges to the exact  solution of the continuous equation if and only if the 

numerical scheme is consistent and stable 

 The prove of this theorem given in appendix A. 

 

2.3 Implementation of the ADI Method for Two Dimensional Elliptic 

     Equation:  

       Consider the two dimensional Poisson’s equation[Hoffman,2006]: 

                         uxx  +  uyy   = f(x, y)  , 𝑥 ∈ [0, 𝐿],   𝑦 ∈ [0,𝑀]              ... (2.23)  

with the boundary conditions: 

 u(0, y) = g1(y) , u(L, y) = g2(y)  , u(x, 0) = φ1(x) , u(x,M) = φ2(x) 

where φ1 , φ2 , g1 and g2 are given continuous functions, L, M > 0. 



        Assuming that the spatial discretization on the 𝑥 and 𝑦  directions equals 

to 𝑘, then the finite difference formulation using central difference of Poisson 

equation is: 

 

                  
   𝑢𝑖−1 ,𝑗  − 2 𝑢𝑖,𝑗 +  𝑢𝑖+1,𝑗 

 𝑘2
 + 

 𝑢𝑖 ,𝑗−1  − 2 𝑢𝑖,𝑗 +  𝑢𝑖,𝑗+1  

𝑘2
 = 𝑓𝑖,𝑗               ... (2.24)  

The Crank-Nicolson reformulation of equation  (2.24) is: 

    (ui+1,j
n+1 − 2 ui,j

n+1 + ui−1,j
n+1 ) + (ui,j+1

n+1 − 2 ui,j
n+1 + ui,j−1

n+1 ) + 

    (ui+1,j
n − 2ui,j

n + ui−1,j
n ) + (ui,j+1

n − 2ui,j
n + ui,j−1

n ) = k2f
i,j

n+
1
2         ... (2.25) 

 

 

which is subsequently may be rearranged to give: 

   ( ui+1,j
n+1 − 2 ui,j

n+1 + ui−1,j
n+1 ) + (ui,j+1

n+1 − 2 ui,j
n+1 + ui,j−1

n+1 ) = 

    −(ui+1,j
n − 2ui,j

n + ui−1,j
n ) − (ui,j+1

n − 2ui,j
n + ui,j−1

n ) + k2f
i,j

n+
1
2           ... (2.26) 

       The related matrix of the system (2.26) is no longer tridiagonal and so, an 

iterative procedure is required to advance the solution through each time step.    

          

       For simplify, introduce the finite difference operator δ is introduced by 

the following definition: 

𝛿𝑥
2𝑢𝑖,𝑗 =

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗
(∆𝑥)2

 

𝛿𝑦
2𝑢𝑖,𝑗 =

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1
(∆𝑦)2

 

  then equation (2.26) becomes: 

      δx
2 (ui,j

n+1) + δy
2( ui,j

n+1 ) = −[δx
2(ui,j

n ) + δy
2( ui,j

n  )] + rf
i,j

n+
1
2            ... (2.27) 



       Therefore,  by using  the ADI method,  the FDE  may be splitted into two 

equations, namely: 

                       δx
2 (ui,j

n+1) = −δy
2( ui,j

n  ) + rf
i,j

n+
1
2                                     ... (2.28) 

                      δy
2( ui,j

n+2 ) = −δx
2(ui,j

n+1) + rf
i,j

n+
1
2                                   ... (2.29) 

        Noting that, for j =1, 2, 3... n −1; equation (2.28) yields a tridiagonal 

system of equations and can be easily solved by using Gaussian elimination 

method. Similarly; for i =1, 2... n −1; equation (2.29) also yields a tridiagonal 

system of equations. Each of the two obtained system of equations (2.28) and 

(2.29) are used alternately. 

 

 

 

2.3.1 Consistency of the ADI Method: 

         As it is worked in the parabolic equation, the consistency of the ADI 

method for the elliptic equation may be carried out similarly, for this purpose 

consider the related FDE:  

           2(δx
2+δy

2)(ui,j
n+2 + ui,j

n ) − 2rf
i,j

n+
1
2  = 0                                    … (2.30)    

Then dividing  by 2k we obtain: 

           (δx+
2 δy

2)   
  ui,j
n+2+ui,j

n  

2k
− 
    r 

2k
 fi,j = 0                                              … (2.31)                  

 and by using the finite difference formula: 

                      ui,j
n+2 + ui,j

n = 2ui,j
n+1 + O(k2) 

we get:  

                       uxx
n+1 + uyy

n+1 − f = O(k2)                                     ... (2.32) 

which means that the ADI method for the  two-dimensional elliptic equation 

is unconditionally consistent.  

 

 2.3.2 Stability of the ADI Method: 



             Similarly using Fourier series method, the stability of the two-

dimensional elliptic equation can be investigated by the substitution: 

                           us,q
n  = λnei(αs+βq)k 

where 

                           δx
2u = −4(sin2 αk 2⁄ )u 

                           δy
2u = −4(sin2 βk 2⁄ )u  

Therefore:               

                 −16λ(sin2 αk 2⁄ ) − 8λ(sin2 βk 2⁄ ) = 0                   ... (2.33) 

      Then λ = 0, which means that the two dimensional ADI method is 

unconditionally stable and by using  Lax equivalence theorem  it can 

completely prove that the ADI method for elliptic equation is convergent 

[Mampaey,1989]. 

2.4 Implementation of  ADI Method for Two Dimensional Hyperbolic 

     Equation: 

       Consider the two dimensional wave equation defined in the rectangular 

domain  Ω ⊂  R2 [Hoffman,2006]: 

                         
 ∂2u

 ∂t2
= ν 2(u xx  + u yy)                                                   ... (2.34) 

with the initial conditions given by: 

                     u(x, y, 0) = u0(x, y)      , (x, y) ∈ Ω 

                     
∂u

∂t
 (x, y, 0) = ut(x, y)   , (x, y) ∈ Ω   

and with boundary conditions: 

                    u(x, y, t) = f(x, y, t),   (x, y) ∈ ∂Ω, t ∈ (0, T]  

Then, the finite difference formulation of equation(2.34) is: 

     ui,j
n+1 − 2 ui,j

n + ui,j
n−1 = 

     
∆t2ν2

k2
[(ui+1,j

n − 2 ui,j
n + ui−1,j

n  ) +  (ui,j+1
n − 2 ui,j

n + ui,j−1
n  )] … (2.35)  

where ∆𝑥 =  ∆𝑦 = 𝑘  



The Crank-Nicholson reformulation of equation (2.35) is: 

     ui,j
n+1 − 2 ui,j

n + ui,j
n−1 = 

     
∆t2ν2

k2
[(ui+1,j

n+1 − 2 ui,j
n+1 + ui−1,j

n+1  ) + (ui,j+1
n+1 −  2 ui,j

n+1 + ui,j−1
n+1  ) +

    (ui+1,j
n − 2 ui,j

n + ui−1,j
n  ) + (ui,j+1

n − 2 ui,j
n + ui,j−1

n  )]           ... (2.36) 

Define the operator δ, such that  

𝛿𝑥
2𝑢𝑖,𝑗 =

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗
(∆𝑥)2

 

𝛿𝑦
2𝑢𝑖,𝑗 =

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1,

(∆𝑦)2
 

Then, equation (2.36) is reduced to:  

      ui,j
n+1 = 2 ui,j

n − ui,j
n−1 + r[δx

2 (ui,j
n+1) + δy

2( ui,j
n+1 ) + δx

2 (ui,j
n ) +

                     δy
2 (ui,j

n )]                                                                                      ... (2.37) 

where r =
∆t2ν2

k2
        

The implementation of the ADI scheme is beginning with the finite 

difference scheme: 

                 ui,j
n+1 − 2 ui,j

n + ui,j
n−1 =  r[δx

2 (ui,j
n ) + δy

2( ui,j
n  )]                 ... (2.38) 

A further time step gives  

                 ui,j
n+2 − 2 ui,j

n+1 + ui,j
n  =  r[δx

2 (ui,j
n+1) + δy

2( ui,j
n+1 )]         ... (2.39) 

 This procedure gives the two – step algorithm: 

              ui,j
n+1 − rδx

2 (ui,j
n+1) = 2 ui,j

n + rδy
2( ui,j

n  ) −  ui,j
n−1                  ... (2.40) 

              ui,j
n+2 − rδy

2( ui,j
n+2 ) = 2 ui,j

n+1 + rδx
2 (ui,j

n+1) − ui,j
n                ... (2.41) 

for all  i , j = 1, 2 …N,  𝑁 ∈ ℕ. 

2.4.1 Consistency of the ADI Method: 

The ADI algorithm for the hyperbolic equation may be rewritten as: 

(1 − rδx
2 )ui,j

n+1 = (2 + rδy
2)ui,j

n − ui,j
n−1 

(1 − rδy
2 )ui,j

n+2 = (2 + rδx
2)ui,j

n+1 − ui,j
n   

and after elimination the term at  tn−1 and tn+1 , we obtain: 



            (1 − rδx
2 )(1 − rδy

2 )ui,j
n+2 = (2 + rδy

2)(2 + rδx
2)ui,j

n         ... (2.42) 

Similarly, as in the parabolic and elliptic equations, the finite difference 

formula will be used, to get: 

                     
 ∂2u

∂t2
− ν2(u xx  + u yy) = O(h

2, k2)                           ... (2.43) 

This means that the method is consistent. 

 

 

 

 

2.4.2 Stability of the ADI Method: 

       Similarly as in the two dimensional parabolic and elliptic equations, the 

stability of the two dimensional hyperbolic equation may be investigated by 

the substitution [Mampaey,1989]. 

                          us,q
n  = λnei(αs+βq)k 

    where, 

                          δx
2u = −4(sin2 αk 2⁄ )u 

                          δy
2u = −4(sin2 βk 2⁄ )u  

    To get: 

 

          λ(1 − 4r(sin2 αk 2⁄ ))(1 − 4rsin2 (βk 2⁄ )) =    

                       (2 + 4r(sin2 αk 2⁄ ))(2 + 4rsin2 (βk 2⁄ )                … (2.44)  

Then by definetion, 

   

λ =
(2 + 4r(sin2 αk 2⁄ ))(2 + 4rsin2 (βk 2⁄ ) 

(1 − 4r(sin2 αk 2⁄ ))(1 − 4rsin2 (βk 2⁄ ))
 

        



Then 0 < λ < 1. Thus, the two dimensional hyperbolic ADI method is 

unconditionally stable and with the unconditional consistency, which implies 

that the convergent of our algorithm have been proved.     

 

 

 

 

 

 

 

 

2.5  A New Formulation for the ADI Method by using Another Time Steps: 

       Consider the two dimensional wave equetion[Hoffman,2006]: 

∂2u

∂t2
= ν2(u xx  + u yy), (𝑥, 𝑦) ∈ Ω = [0,1]

2, t ∈ (0, T] 

with initial and boundary conditions: 

               u(x, y, t) = 𝑓 (x, y, t) 

             u(x, y, 0) = 𝑢0(x, y, t) 

             
∂u(x,y,0)

∂𝑡
= 𝜑(𝑥, 𝑦)      

where 𝑓,  𝑢0  and 𝜑 are given functions and ∂Ω is a boundary in the domain Ω. 

     Now, after replacing this equation by the finite difference approximations, 

one may get: 

   ( ui,j
n+1 − 2 ui,j

n + ui,j
n−1) =

∆t2v2

k2
[(ui+1,j

n − 2 ui,j
n + ui−1,j

n  ) + 

(ui,j+1
n − 2 ui,j

n + ui,j−1
n  )]                  … (2.45) 



To apply the new formula of the (ADI) method we spilt equation (2.45)  as 

follows:        

  (u
i,j

n+ 1
2 − 2 ui,j

n + u
i,j

n−
1

2) =
r

2
[δx
2 (u

i,j

n+ 1
2) +  δy

2(ui,j
n  )]                          … (2.46) 

(ui,j
n+ 1 − 2 u

i,j

n+
1
2 + ui,j

n ) =
r

2
[δx
2 (u

i,j

n+ 1
2) + δy

2(ui,j
n+1 )]                      … (2.47) 

 

 

 

Carying some simplifications:  

 u
i,j

n+ 1
2 − 0.5𝑟 [δx

2 (u
i,j

n+ 1
2)] = 2 (ui,j

n  ) + 0.5 𝑟 δy
2(ui,j

n  ) − u
i,j

n−
1

2               ...(2.48) 

 ui,j
n+ 1 − 0.5𝑟[δx

2(ui,j
n+ 1)] =2(u

i,j

n+ 1
2) + 0.5 𝑟 δy

2 (u
i,j

n+ 1
2 ) − ui,j

n              ... (2.49) 

Rearrange equations (2.48) and (2.49) leads to: 

     [1 − 0.5𝑟 δx
2] (u

i,j

n+ 1
2) = [ 2 + 0.5 𝑟 δy 

2 ] ui,j
n   − u

i,j

n−
1

2                     ... (2.50) 

     [1 − 0.5𝑟 δx
2](ui,j

n+1) = [2 + 0.5 𝑟 δy
2] ui,j

n   − u
i,j

n−
1

2                        ... (2.51) 

        

        This formula is used to spilt the finite difference equation by using two 

small time steps [𝑡
n−

1

2
 
, 𝑡n  ] and [ 𝑡n  ,𝑡n+1

2
 
], with i , j = 1, 2 …N,  𝑁 ∈ ℕ; 

which  give two equations  used alternately and by substituting the initial and 

boundary conditions, finally, the result will be a tridiagonal system which 

solved easily.   



 

 

 

 

 

 

 

 

 

 

 2.6  Increase the Accuracy of the ADI Method of Two Dimensional 

       Equations: 

      Consider the two dimensional diffusion equations[Hoffman,2006]: 

                     u t   =  u xx  + u yy     ,    t ∈ (0,∞]  , (x , y ) ∈ D  

 where 𝐷 = (0, 𝑙1) × (0, 𝑙2),  with initial condition: 

                  u(x, y, 0)  =  u0(x, y)     , (x , y ) ∈ D 

 and the boundary conditions are at along ∂D . 

 

       In classical (ADI) method, a second order (centered with time and 

backward with space) finite difference formulation usually used to obtain a 

scheme, the formulation obtained in this way will be unconditionally stable 

with a consistent condition which will be a sufficient for a method to be 

convergent, the resulting formula will be a second order with time and space 

and as it shown in sections (2.2), (2.3) and (2.4) for each type of PDE.  

       For more accuracy, a new finite difference formulation will be used here 

which will be centered with time and space and as follows: 

   the finite difference formula: 

𝑢𝑡 = 
𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛  

∆𝑡
 



𝑢𝑥𝑥 = 
−𝑢𝑖+2,𝑗

𝑛 + 16𝑢𝑖+1,𝑗
𝑛 − 30𝑢𝑖,𝑗

𝑛 + 16𝑢𝑖−1,𝑗
𝑛 − 𝑢𝑖−2,𝑗

𝑛

(∆𝑥)2
 

𝑢𝑦𝑦 = 
−𝑢𝑖,𝑗+2

𝑛 + 16𝑢𝑖,𝑗+1
𝑛 − 30𝑢𝑖,𝑗

𝑛 + 16𝑢𝑖,𝑗−1
𝑛 − 𝑢𝑖,𝑗−2

𝑛

(∆𝑦)2
 

These two formulations for 𝑢𝑥𝑥 and 𝑢𝑦𝑦 are the centeral differences with 

𝑂(𝑥4)   and 𝑂(𝑦4) respectively. 

      

 

 

      Replacing both sides in diffusion equation by their central difference 

approximations, to get :  

 
𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛  

∆𝑡
=
−𝑢𝑖+2,𝑗

𝑛 + 16𝑢𝑖+1,𝑗
𝑛 − 30𝑢𝑖,𝑗

𝑛 + 16𝑢𝑖−1,𝑗
𝑛 − 𝑢𝑖−2,𝑗

𝑛

(∆𝑥)2
 

                        +
−𝑢𝑖,𝑗+2

𝑛 + 16𝑢𝑖,𝑗+1
𝑛 − 30𝑢𝑖,𝑗

𝑛 + 16𝑢𝑖,𝑗−1
𝑛 − 𝑢𝑖,𝑗−2

𝑛

(∆𝑦)2
      … (2.52) 

Then, after considering ∆𝑥 =  ∆𝑦 = ℎ  , and simplifying equation (2.52), it 

will become: 

𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛 = 
∆𝑡

ℎ2
[(−𝑢𝑖+2,𝑗

𝑛 + 16𝑢𝑖+1,𝑗
𝑛 − 30𝑢𝑖,𝑗

𝑛 + 16𝑢𝑖−1,𝑗
𝑛 − 𝑢𝑖−2,𝑗

𝑛 ) 

                    +( −𝑢𝑖,𝑗+2
𝑛 + 16𝑢𝑖,𝑗+1

𝑛 − 30𝑢𝑖,𝑗
𝑛 + 16𝑢𝑖,𝑗−1

𝑛 − 𝑢𝑖,𝑗−2
𝑛  )] ... (2.53) 

 In the formulation of the ADI method, equation (2.53) is rearranged by 

taking two time steps as follows: 

 𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛 = 𝑟 [(−𝑢𝑖+2,𝑗
𝑛 + 16𝑢𝑖+1,𝑗

𝑛 − 30𝑢𝑖,𝑗
𝑛 + 16𝑢𝑖−1,𝑗

𝑛 − 𝑢𝑖−2,𝑗
𝑛 )  

             +(−𝑢𝑖,𝑗+2
𝑛+1 + 16𝑢𝑖,𝑗+1

𝑛+1 − 30𝑢𝑖,𝑗
𝑛+1 + 16𝑢𝑖,𝑗−1

𝑛+1 − 𝑢𝑖,𝑗−2
𝑛+1  )]      ... (2.54) 

𝑢𝑖,𝑗
𝑛+2 − 𝑢𝑖,𝑗

𝑛+1 = 𝑟[−𝑢𝑖+2,𝑗
𝑛+2 + 16𝑢𝑖+1,𝑗

𝑛+2 − 30𝑢𝑖,𝑗
𝑛+2 + 16𝑢𝑖−1,𝑗

𝑛+2 − 𝑢𝑖−2,𝑗
𝑛+2 ) 

                +( −𝑢𝑖,𝑗+2
𝑛+1 + 16𝑢𝑖,𝑗+1

𝑛+1 − 30𝑢𝑖,𝑗
𝑛+1 + 16𝑢𝑖,𝑗−1

𝑛+1 − 𝑢𝑖,𝑗−2
𝑛+1  )]      ... (2.55) 

  Simplify equations (2.54) and (2.55) with some rearrangement, yields to: 

 𝑢𝑖,𝑗
𝑛+1 − 30𝑟 𝑢𝑖,𝑗

𝑛+1 = 𝑢𝑖,𝑗
𝑛 − 30𝑟 𝑢𝑖,𝑗

𝑛 + 𝑟(−𝑢𝑖+2,𝑗
𝑛 + 16𝑢𝑖+1,𝑗

𝑛 + 16𝑢𝑖−1,𝑗
𝑛 − 𝑢𝑖−2,𝑗

𝑛 ) +

                                      𝑟( −𝑢𝑖,𝑗+2
𝑛+1 + 16𝑢𝑖,𝑗+1

𝑛+1 + 16𝑢𝑖,𝑗−1
𝑛+1 − 𝑢𝑖,𝑗−2

𝑛+1 )                      ...(2.56) 



𝑢𝑖,𝑗
𝑛+2 − 30𝑟 𝑢𝑖,𝑗

𝑛+2 = 𝑢𝑖,𝑗
𝑛+1 − 30𝑟 𝑢𝑖,𝑗

𝑛+1 + 𝑟(−𝑢𝑖+2,𝑗
𝑛+2 + 16𝑢𝑖+1,𝑗

𝑛+2 + 16𝑢𝑖−1,𝑗
𝑛+2  

                    −𝑢𝑖−2,𝑗
𝑛+2 ) + 𝑟( −𝑢𝑖,𝑗+2

𝑛+1 + 16𝑢𝑖,𝑗+1
𝑛+1 + 16𝑢𝑖,𝑗−1

𝑛+1 − 𝑢𝑖,𝑗−2
𝑛+1 )               ... (2.57) 

Which after some simplification become: 

(1 − 30𝑟)𝑢𝑖,𝑗
𝑛+1 = (1 − 30𝑟)𝑢𝑖,𝑗

𝑛 + 𝑟(−𝑢𝑖+2,𝑗
𝑛 + 16𝑢𝑖+1,𝑗

𝑛 + 16𝑢𝑖−1,𝑗
𝑛 − 𝑢𝑖−2,𝑗

𝑛 ) 

                             +𝑟( −𝑢𝑖,𝑗+2
𝑛+1 + 16𝑢𝑖,𝑗+1

𝑛+1 + 16𝑢𝑖,𝑗−1
𝑛+1 − 𝑢𝑖,𝑗−2)

𝑛+1                     ... (2.58) 

 

(1 − 30𝑟)𝑢𝑖,𝑗
𝑛+2 = (1 − 30𝑟)𝑢𝑖,𝑗

𝑛+1+ 𝑟(−𝑢𝑖+2,𝑗
𝑛+2 + 16𝑢𝑖+1,𝑗

𝑛+2 + 16𝑢𝑖−1,𝑗
𝑛+2 − 𝑢𝑖−2,𝑗

𝑛+2 ) 

                              +𝑟( −𝑢𝑖,𝑗+2
𝑛+1 + 16𝑢𝑖,𝑗+1

𝑛+1 + 16𝑢𝑖,𝑗−1
𝑛+1 − 𝑢𝑖,𝑗−2

𝑛+1 )                     ... (2.59)        

for i , j = 1, 2 …N,  𝑁 ∈ ℕ; equations (2.58) and (2.59) will used alternatively 

and the resulting systems will be tridiagonal that may be solved easily. 

 Next, numerical examples will be considered for an illustration 

purpose: 

Example (2.1): 

 The two dimensional, steady-state conduction problem, with the initial 

and boundary condition, with 0 ≤ 𝑥 , 𝑦 ≤ 1, is given as follows: 

      𝑢(𝑥, 0) = 0  ,    𝑢(𝑥, 1) = 100          

      𝑢(0, 𝑦) = 0  ,    𝑢(1, 𝑦) = 50      

 To determine the temperature u along the surface using the ADI 

method, the steady state condition problem is[Hoffman,2006]: 

                                     u xx  +  u yy  = 0                                               ... (2.59) 

 

        In order to solve this problem, the ADI method given in equations (2.28) 

and (2.29) will be applied, to get: 

                ui+1,j
n+1 − 4ui,j

n+1 + ui−1,j
n+1 = −ui,j−1

n − ui,j+1
n                                 ... (2.60)    

       To start the iteration, set n = 0, for the first row, j = 1, then our equation 

gives : 

              ui+1,1
(1)

− 4ui,1
(1)
+ ui−1,1

(1)
= −ui,0

(0)
− ui,2

(0)
                                     ... (2.61) 

First step calculation with  i = 1 and i = 2  give two more equations: 



            u2,1
(1)
− 4u1,1

(1)
+ u0,1

(1)
= −u1,0

(0)
− u1,2

(0)
                                    ...(2.62)    

            u3,1
(1)
− 4u2,1

(1)
+ u1,1

(1)
= −u2,0

(0)
− u2,2

(0)
                                            ... (2.63) 

       Now, by substituting the values of the boundary conditions, and by 

assuming that  u12 = 100 , u22 = 100, the above equations yields: 

            u2,1
(1)
− 4u1,1

(1)
+ 0 = −100   

           4u1,1
(1)
− 100 = u2,1

(1)
                                                                    ... (2.64) 

           50 − 4u2,1
(1)
+ u1,1

(1)
= −100                                                        ... (2.65) 

By substituting the value of  u2,1
(1)
   from equation (2.64) in equation (2.65): 

          50 − 4(4u1,1
(1)
− 100) + u1,1

(1)
= −100 

          u1,1
(1)
= 78.5714 ,    u2,1

(1)
= 214.2857 

To compute the values over the second row, set j = 2 in equation (2.60). 

Thus: 

           ui+1,2
(1)

− 4ui,2
(1)
+ ui−1,2

(1)
= −ui,1

(0)
− ui,3

(0)
                                      ... (2.66) 

Now, with   i = 1 and i = 2 equation (2.66) gives: 

          u2,2
(1)
− 4u1,2

(1)
+ u0,2

(1)
= −u1,1

(0)
− u1,3

(0)
                                             ... (2.67) 

          u3,2
(1)
− 4u2,2

(1)
+ u1,2

(1)
= −u2,1

(0)
− u2,3

(0)
                                             ... (2.68) 

By substituting  the boundary values and solving the above equations, we get 

         u2,2
(1)
− 4u1,2

(1)
+ 0 = −100                                                 

         u2,2
(1)
=  4u1,2

(1)
− 100                                                                      ... (2.69) 

         50 − 4u2,2
(1)
+ u1,2

(1)
= −0 − 100                                                    ... (2.70) 

        −4 (4u1,2
(1)
− 100) + u1,2

(1)
= −1                                                    ... (2.71)   

        u1,2
(1)
= 78.5714 ,   u2,2

(1)
= 214.2857 

 



       Completing the computations on the two rows, and then alternate the 

direction to compute the value of the solution on the columns, starting with 

the first one, for this purpose  by using the formula: 

           ui,j+1
n+2 − 4ui,j

n+2 + ui,j−1
n+2 = −ui−1,j

n+1 − ui+1,j
n+1                                   ... (2.72) 

with  n = 0, i = 1  and  j = 1,2  respectively: 

           u1,2
(2)
− 4u1,1

(2)
+ u1,0

(2)
= −u0,1

(1)
− u2,1

(1)
                                           ... (2.73) 

           u1,3
(2)
− 4u1,2

(2)
+ u1,1

(2)
= −u0,2

(1)
− u2,2

(1)
                                           ... (2.74) 

 

Now,  substituting the boundary values in the equations  (2.73) and (2.74):  

            u1,2
(2)
− 4u1,1

(2)
= −214.2857                                                              … (2.75)  

          −4u1,2
(2)
+ u1,1

(2)
= −314.2857                                                            … (2.76)  

The above system of equations may be solved  by computing the tridiagonal 

matrix, which will give the system : 

          [
−4 1
1 −4

] [
u1,1
(2)

u1,2
(2)
] = [

−214.2857
−314.2857

] 

and hence: 

          u1,1
(2)
= 78.09522    , u1,2

(2)
= 98.09523  

Now, for  i = 2 , j = 1,2 , we get : 

          u2,2
(2)
− 4u2,1

(2)
+ u2,0

(2)
= −u1,1

(1)
− u3,1

(1)
                                             ... (2.77) 

          u2,3
(2)
− 4u2,2

(2)
+ u2,1

(2)
= −u1,2

(1)
− u3,2

(1)
                                             ... (2.78) 

Substituting the boundary values in the equations (2.77) and (2.78): 

          u2,2
(2)
− 4u2,1

(2)
+ 0 = −78.5714 − 50 

         100 − 4u2,2
(2)
+ u2,1

(2)
= −78.5714 − 50 

           u2,2
(2)
− 4u2,1

(2)
= −128.5714                                                       ... (2.79) 

          −4u2,2
(2)
+ u2,1

(2)
= −228.5714                                                   ... (2.80) 

    Solve the above system of equations by computing tridiagonal matrix: 



          [
−4 1
1 −4

] [
u2,1
(2)

u2,2
(2)
] = [

−128.5714
−228.5714

] 

           u2,1
(2)
= 27.8095 , u2,2

(2)
=  85.5238  

       The iterations are continued to improve the solution function values 

obtained first along the discretization rows and then along the discretization 

columns, and so on ,e.g. we continue our process for n = 1,2,3 ... 

 

 

Example (2.2) : 

     Consider the two dimensional parabolic equation:                

             𝑢 𝑡   =  𝑢 𝑥𝑥  + 𝑢 𝑦𝑦 − 𝑓(𝑥, 𝑦)                                                                                                                                            

 with the exact solutionis given by: 

      𝑢(𝑥, 𝑦, 𝑡) = exp(−𝑡) sin(𝜋𝑥) sin(𝜋𝑦), (𝑥, 𝑦) ∈ 𝐷, 0 ≤ 𝑡 ≤ 1  

where  𝐷 = (0,1)2 . With initial and boundary conditions: 

                     𝑢(𝑥, 𝑦, 0) = 0   , (𝑥, 𝑦) ∈ 𝐷  

                     𝑢(𝑥, 𝑦, 𝑡) = 0  , 0 ≤ 𝑡 ≤ 1 

 

      By using the two dimensional ADI formula for parabolic equation 

          ui,j
n+1  − r δx

2 (ui,j
n+1)   = ui,j

n  + r δy
2  ( ui,j

n  ) − ∆t  𝑓
𝑖,𝑗

𝑛+1
2          

       ui,j
n+2  − r δx

2 (ui,j
n+2) = ui,j

n+1  + r δy
2  ( ui,j

n+1 ) − ∆t  𝑓
𝑖,𝑗

𝑛+1
2     

Which is used alternately with i, j=1,2,..., n − 1 

Here, Dirichlet boundary conditions are taken. One can see that when 

having large grid sizes, with few nodes, it will be better to have few and 

larger time steps. The interesting result is that there seem to be an optimal 

ratio between the grid size, the direction and the time steps. 

 

 



 

 

Figure(2.2)Numerical solution of example (2.2) by using ADI method with ; n = 40 ;  

final time = 0.8, h = (b-a)/n , i,j= 1,2,....  

 

 

Figure(2.3)exact solution for example(2.2)by using ADI method with; n = 40 ;  



 final time = 0.8, h = (b-a)/n , i,j= 1,2,.... 

   3.1 Introduction: 

       Chronic wounds are wounds which fail to proceed through  normally 

therapy processes[Russell,2013] that represent a significant soconomic 

problem,  because those peoples who suffering from chronic wounds test 

large pain affects quality of life and mental condition in which the treatment 

of the symptoms of the disease costs a money and take a lot of time, 

[John,et.al.,2013] 

       Despite recent advances in the knowledge of wound heal, the treatment of 

chronic wounds remains limited basically because there are many different 

causes of wound chronic like diabetes, venous arterial occlusion, venous in 

sufficiency, etc.,[Russell, 2013]. 

       Furthermore, there is  much discussion  about the best way for treatment 

of  those wounds, the required treatment differes depending on the causes of 

the wound chronic, [Guffey,2015]. 

       In order to  full understanding of the situation of chronic wound, and to 

determine what prevents them from healing, time consumption and the 

difficult technology, the mathematical modelling may give a clear vision into 

the wound healing process [Jennifer,2009]. Mathematical modelling has the 

ability to generate a theoretical prediction that cannot be expected before that. 

       Hyperbaric Oxygen Therapy (HBOT) is the process of intermittent 

breathing 100% oxygen at the same time increased while the pressure of the 

treatment room of more than one atmosphere, [Stephen, 2015].  There have 

been several reports that  HBOT aids the healing of ulcerated wounds.  One 

way in which this benefit to be achieved is through an increase in the tissue 

oxygen tension in the injured region, [Jennifer,2009]. 



       The aim of this chapter is to present the one dimensional mathematical 

modelling and then developing of this model for two dimension and explain 

how the effect of oxygen therapy technique in treatment of a chronic wound, 

prelude for solving the system in two dimension by using our approach the 

ADI method, we present in some detail the motivation behind its use. 

 This chapter consist of eight sections. Section one present an 

introduction for the problem, section two present a biological concepts with 

respect to problem, section three  present mathematical model of the problem, 

section four introduce one dimensional model of the problem, section five 

containes the dimensionless of the problem, section sex present the analytical 

results, section seven present the development of the model in two dimension, 

finally, section eight contains numerical method and results.  

 3.2 Biological Concepts of the Problem: 

        The  successful wound healing is throught four stages; namely 

hemostasis, inflammation, proliferation and remodeling [John, 2013]. Each 

stage may be defined as follows: 

           Hemostasis; means that when exposure to infected blood tissue 

capillaries cut currents inside the wound, and is aimed at the immediate 

response of the body to impede blood loss, blood flow in the wound carries 

platelets and fibrinogen, both of them important in the healing process 

[Jennifer, 2009]. 

        Inflammation; is featuring by the arriving of phagocytic to the  wound 

site, [Stephen,2015]. After one day of injury, the attraction of neutrophils in 

the wound by the chemoattractant already been issued in foreign phagocytose 

bacteria and particle coagulation process, [Jennifer,2009]. 



       Proliferation; here during the phase proliferative of wound healing the 

dominant cell is the fibroblast, which is responsible for making the extra 

cellular matrix (ECM) and collagen, [Russell,2013]. As the inflammatory 

phase progresses and the cells needed for repair and regeneration reach the 

injury site, the proliferative phase begins four crucial events during 

proliferative phase; namely angiogenesis, granulation tissue formation, wound 

contraction and epithelialization [John,2013]. The proliferation of fibroblasts 

depends on the amount of oxygen available and these cells can live only 

duties required in the wound where enough oxygen available [Jennifer,2009]. 

It is stimulated by chemoattractant, such as platelet derived growth factor to 

produce the collagen, [Russell, 2013]. 

       Remodeling, it could be the final stage delayed for several months or 

even years during the remodeling, and the absence of hypoxia results in a 

significant decrease in the density of  blood vessels and increase cellular cells, 

[Jennifer, 2009]. Also during the remodeling phase and the formation of the 

wound is shrinking wound cells completely become a force wound after an 

increase of about 20% of normal tensile strength, and after three weeks of the 

injury will be measuring up to 80% and get this within two years, 

[John,2013].   

Figure 3.1 illustrate the stages of the successfull healing wound.   



 

Figure (3.1): Stages of wound healing [Jinnefer,2009] 

3.3 Mathematical Modelling of the Problem:  

       Over the last century, applied mathematics has been use for a wide range 

of real life and biological fields There is no surprise that mathematics played 

an important and key role in understanding the growth, activity and the 

proliferation of bacteria in nature, chronic wound and the effect of oxygen in 

the treatment of these wounds, [Shuaa,2011]. 

       Mathematical modelling can provide independent insight into biological 

process and has the potential to generate theoretical predictions,  which could 

not been anticipated in advance, therapy stimulating further biomedical 

research and reducing the need for time-consuming, technically difficult and 

often costly experiments, [Jennifer,2009]. 

       Those mathematical modeling researchs give an insight into wound 

healing mechanisms look at the relative importance of the processes and 

information that are also useful in the treatment of methodologies that will be 

carried out by medical staff, [Russell,2013]. Mathematical models can be 

used for a number of different reasons, such as the development of scientific 

understanding and testing the effect of changes in the system, [Shuaa, 2011]. 



Figure 3.2 illustrate the steps followed in studying such type of 

problem formulation and analysis. 

 

Figure (3.2): Stages of modelling (Vetterling, 1987) 

 

3.4 The one Dimensional Model [Guffey,2015]: 

       The  model describes the interactions between oxygen, bacteria and a 

chemoattractant in a radially symmetric wound under hyperbaric oxygen 

therapy. The wound is considered to be one-dimensional with  x=0 at the 

center to x=L, a ≤ x ≤ L, measured in centimeters. Let t denote the time from 

the start of treatment measured in seconds. The variable w represents the 

concentration of oxygen in grams per centimeter, and  let  b denotes the 

concentration of the chemoattractant released by bacteria.  

 

 

real world 
data 

model 

mathematical 
conclusion 

predictions / 
explanation 



3.4.1 Oxygen equation: 

       Oxygen is the key element in this treatment, where this process is under 

pressure oxygen to the wound festering certain quantities with some chemical 

effects are scaled work of the bacteria causing the inflammation. Thus,  the 

model for oxygen parameter in the wound can be formulated as 

follows[Guffey,2015]: 

         
𝜕𝑤

𝜕𝑡
 = 𝐷𝑤  

𝜕2𝑤

𝜕𝑥2
 + 𝛽 + 𝑘𝐺(𝑡) − 𝛾𝑛𝑤𝑛𝑤 − 𝛾𝑏𝑤𝑏𝑤 − 𝛾𝑤𝑤      ... (3.1) 

where:  

     𝐷𝑤   is the constant rate of diffusion measured in  𝑐𝑚2/𝑠.   

     𝑘      represents the oxygen in the wound.  

     𝛽     the constant rate that represent the oxygen enter the wound.  

    𝐺(𝑡)  Oxygen increases through the supplemental oxygen given astherapy.  

   𝛾𝑛𝑤 , 𝛾𝑏𝑤  rates represent oxygen that have been used by bacteria.  

  𝛾𝑤   the rate of losing oxygen.   

 

Figure(3.3): A hyperbaric chamber machine used to provide oxygen therapy to the patients. 

[John G., et. al., 2013] 



3.4.2 Bacterial equation: 

       Injury, bad situation and deaths associated with lack of healing of skin 

wounds and chronic with high numbers of people suffering from obesity and 

chronic diseases, has been emphasizing the role of bacterial communities in 

chronic wounds in recent years, particularly in the context of prolonging the 

duration of inflammatory treatment[Guffey,2015]:  

𝜕𝑏

𝜕𝑡
= 휀𝑏

𝜕2𝑏

𝜕𝑥2
+ 𝑘𝑏𝑏 (1 −

𝑏

𝑏0
) − 𝑏

𝑤𝛿+𝑘𝑛𝑟𝑛

𝑘𝑤+𝑤𝛾𝑟𝑏𝑏+𝛾𝑟
− 𝛾𝑏𝑏                ... (3.2) 

 휀𝑏  Constant random motility for bacteria taken from center of wound 

  𝛾𝑏  Natural death of bacteria 

 

 

Figure (3.4): Progression of healing in a chronic wound [John G., et. al., 2013] 

 

 



 

Figure (3.5): Progression of healing in a chronic wound to patient after two weeks without using 

HBOT   

 

Figure (3.6): Progression of healing in a chronic wound to patient after four weeks without using 

HBOT 

 

Figure(3.7): A machine used to provide oxygen to patients in figures (3.5) and (3.6) 



3.4.3 Chemoattractant equation: 

Chemotaxis is the phenomenon whereby somatic cells, bacteria, and 

other single-cell or multicellular organisms direct their movements according 

to certain chemicals in their environment. This is important for bacteria to 

find food, Chemoattractant is represents inorganic or organic substances 

possessing chemotaxis-inducer effect in motile cells. Effects of 

chemoattractant  are elicited via described or hypothetic chemotaxis receptors, 

the chemoattractant moiety of a ligand is target cell specific and concentration 

dependent [Julius A.,1974]. 

 The chemoattractant equation for our biological problem is as 

follows[Guffey,2015]: 

       
𝜕𝑐

𝜕𝑡
= 𝐷𝑐

𝜕2𝑐

𝜕𝑥2
+ 𝑘𝑏𝑏 − 𝛾𝑐𝑐                                                              ... (3.3) 

where 

  𝐷𝑐  Constant rate of diffusion (  𝑐𝑚2/𝑠  ) 

 𝑘𝑏   Represent the chemoattractant produced by the bacteria 

 𝛾𝑐   Represent the constant rate of chemoattractant decadency  

3.4.4 Initial and boundary conditions: 

       The intial and boundary conditions of one dimensional problem may be 

defined as follows: 

       The selection of  w(x) and its conditions by assumption that the oxygen 

level is stabilized in the wound boundary at the first six hours. Thus, at the 

end of this hours the conditions will be:      

          
∂w

∂x  
|
x=0

= 0     ,          
∂b

∂x
|
   x=0

= 0    ,           
∂c

∂x
|
  x=0

= 0 



         The boundary conditions after this six hours will taken by assuming that 

the blood vessels are located directly after ending of this hours outside the 

chronic wound region and with closed region to keep oxygen level at the skin 

capacity.     

         w(L, t) = w0   ,         
∂b

∂x
|
  x=L

= 0 

        w(x, 0) = L     ,        b(x, 0) = b0(
x−L

L
)2𝑒−(

x

L
)2

    

         
∂c

∂x
|
  x=L

= 0     ,          c(x, 0) = c0 ( 
x−L

L
 ) 𝑒− ( 

x

L
 )2

  

 3.5 Non- Dimensionless of Equations: 

       After non-dimensionlizing  system (3.1) - (3.3) as it is introduced in 

[Guffey, 2015], we get finally: 

 

        
𝜕𝑤

𝜕𝑡
 = 𝐷𝑤  

𝜕2𝑤

𝜕𝑥2
 + 𝛽 + 𝑘𝐺(𝑡) − 𝛾𝑛𝑤𝑛𝑤 − 𝛾𝑏𝑤𝑏𝑤 − 𝛾𝑤𝑤       ... (3.4) 

       
𝜕𝑏

𝜕𝑡
= 휀𝑏

𝜕2𝑏

𝜕𝑥2
+ 𝑘𝑏𝑏(1 − 𝑏𝑜) − 𝑏

𝑤𝛿+𝑘𝑛𝑟𝑛

𝑘𝑤+𝑤𝛾𝑟𝑏𝑏+1
− 𝛾𝑏𝑏                   ... (3.5) 

       
𝜕𝑐

𝜕𝑡
= 𝐷𝑐

𝜕2𝑐

𝜕𝑥2
+ 𝑘𝑏𝑏 − 𝛾𝑐𝑐                                                         ... (3.6) 

where  

      𝐺(𝑡) = {0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1  𝑤ℎ𝑒𝑛 𝑜𝑥𝑦𝑔𝑒𝑛 𝑖𝑠 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑎𝑑 

 With the initial and boundary condition  

        
∂b

∂x
|
   x=0

= 0  ,     
∂b

∂x
|
  x=L

= 0     ,      b(x, 0) = (1 − 𝑥)2𝑒−( 
𝑥

2
  ) 2

    

       
∂w

∂x  
|
x=0

 = 0  ,      w(L, t) = w0   ,      w(x, 0) = L            

        
∂c

∂x
|
  x=0

= 0  ,       
∂c

∂x
|
  x=L

= 0    ,      c(x, 0) = (1 − 𝑥)2𝑒−( 
𝑥

2
  ) 2

 



3.6 Analytical Results: 

       Analytical results may provid valuable insight to the biological 

implications of the model. First, the wound will be examined without the 

pressure of  bacteria in order  to provide a biological description of the 

oxygen and chemoattractant, where  we must examine the steady states of the 

system. Consider the ordinary differential equations satisfied by travelling 

wave solution of equation (3.4) and (3.6) where  b is assumed to be zero 

travelling wave arise frequently in the context of wound healing. Biologically 

this implies that a wave front of cells move with a constant speed and constant 

shape. It is assumed that there is a solution for each equation of the form f(ϕ), 

where ϕ = 𝑥 + 𝑎𝑡 and  𝑎 is the speed of propagation of the travelling wave. 

without presence of bacteria, let: 

                   𝑤(𝑥, 𝑡) = 𝑓(ϕ)  ,      𝑐(𝑥, 𝑡) = 𝑔(ϕ) 

 Then equations (3.4) and (3.6) will becomes : 

                 𝑎 
𝑑𝑓

𝑑ϕ
= 𝐷𝑤

𝑑2𝑓

𝑑ϕ2
+  𝛽 − 𝛾𝑛𝑤𝑓𝑔 − 𝛾𝑤𝑓                               ... (3.7) 

                 𝑎 
𝑑𝑔

𝑑ϕ
= 𝐷𝑐 

𝑑2𝑔

𝑑ϕ2
− 𝛾𝑐𝑔                                                        … (3.8) 

       To examine the steady states of this system, this system will transformed 

to a first order system by setting: 

                     𝑥1 = 𝑓    

                   𝑥2 =
𝑑𝑓

𝑑ϕ
 

                 𝑥3 = 𝑔 

                𝑥4 =
𝑑𝑔

𝑑ϕ
          



       Substituting this change of variables into the system and separate the 

derivatives to one side and remove the terms with spatial derivatives, implies 

that: 

                           𝑎 𝑥2
ˊ =  𝛽 − 𝛾𝑛𝑤𝑥1𝑥3 − 𝛾𝑤𝑥1                       ... (3.9) 

                            𝑎 𝑥4
ˊ = −𝛾𝑐𝑥3                                              ... (3.10) 

and upon dividing on a, implies 

                                𝑥2
ˊ = 𝛽

𝑎
− 𝛾𝑛𝑤

𝑎
 𝑥1𝑥3 − 

𝛾𝑤

𝑎
 𝑥1                              ... (3.11) 

                                𝑥4
ˊ = − 

𝛾𝑐
𝑎
 𝑥3                                                    … (3.12) 

       Afer setting the derivatives to zero, equations (3.11) and (3.12) will gives  

the steady state (𝑥1, 𝑥3) = (
𝛽

𝛾𝑤
, 0). The Jacobian matrix for this system is: 

𝐽 = [
−
𝛾𝑛𝑤
𝑎
 𝑥3 − 

𝛾𝑤
𝑎

    −
𝛾𝑛𝑤
𝑎
 𝑥1

0 − 
𝛾𝑐
𝑎

] 

Then the eigenvalues at 𝐽(𝑥1, 𝑥3) = 𝐽(
𝛽

𝛾𝑤
, 0) will be {− 

𝛾𝑤

𝑎
 , − 

𝛾𝑐

𝑎
}.  

       The real part of the eigenvalues are negative, therefore, the steady state is 

stable. Which  means that, the chemoattractant of the system will tend to zero 

and the oxygen level will be stable naturally in the wound to an average 

equals to  
𝛽

𝛾𝑤
 , without bacteria in the system. 

                

 

 



         Now, to study the steady states of the system, substitute 

𝑥1, 𝑥2, 𝑥3 and 𝑥4 into the system, implies that: 

  𝑥1
ˊ = 𝑥2 

 𝑥2
ˊ = 

𝛾𝑛𝑤
𝐷𝑤
 𝑥1𝑥3 − 

𝑎

𝐷𝑤
𝑥2 +

𝛾𝑤
𝐷𝑤

−
𝛽

𝐷𝑤
 

 𝑥3
ˊ = 𝑥4  

 𝑥4
ˊ =

𝛾𝑐
𝐷𝑛
𝑥3 − 

𝛾𝑐
𝐷𝑛
 𝑥2𝑥4 −

𝑎

𝐷𝑛
𝑥1 +

𝛾𝑐
𝐷𝑛
 𝑥3(

𝑎

𝐷𝑤
𝑥2 −

𝛾𝑤
𝐷𝑤
𝑥1𝑥3 +

𝛽

𝐷𝑤
) 

    Solving for  𝑥1, 𝑥2, 𝑥3 and 𝑥4, where the Jacobian matrix at the critical 

point (
𝛽

𝛾𝑤
, 0,0,0) 

𝐽 (
𝛽

𝛾𝑤
, 0,0,0)

=

[
 
 
 
 
 

0                               1
𝛾𝑛𝑤
𝐷𝑤

𝑥3                            
−𝑎

𝐷𝑤

  
0              0
 𝛾𝑛𝑤
𝐷𝑤

𝑥1         0

0    0

−
𝛾𝑐
𝐷𝑛

𝛾𝑤
𝐷𝑤
𝑥3 −

𝑎

𝐷𝑛
   − 

𝛾𝑐
𝐷𝑛
 𝑥4 +

𝛾𝑐𝑎

𝐷𝑛𝐷𝑤
 𝑥3
   

 0  1
𝛾𝑐
𝐷𝑛
 −
𝛾𝑤
𝐷𝑤
𝑥1 − 

𝛾𝑐
𝐷𝑛
 𝑥2]
 
 
 
 
 

 

And therefore the characteristic polynomial is : 

𝑝(𝛼) = 𝑎0𝛼
4 + 𝑎1𝛼

3 + 𝑎2𝛼
2 + 𝑎3𝛼 + 𝑎4 

         = 𝛼4 +
𝑎𝐷𝑤+𝑎𝐷𝑛

𝐷𝑛𝐷𝑤
𝛼3 +

𝑎2−𝛾𝑤𝐷𝑛−𝛾𝑐𝐷𝑤

𝐷𝑛𝐷𝑤
𝛼2 +

𝑎(𝛾𝑤+𝛾𝑐)

𝐷𝑛𝐷𝑤
 𝛼 +

(𝛾𝑤𝛾𝑐)

𝐷𝑛𝐷𝑤
 

      All parameter values are positive, therefore 𝑎1, 𝑎2, 𝑎3, 𝑎4 > 0 . Then, 

according to Routh- Hurwitz theorem the system is stable, which means that 

during the inflammatory stage, oxygen level will be vary spatially in the 

wound. 

 



3.7 Model Development:  

To develop the model from one dimensional space to two dimensional 

cases, we must describe the interactions in space and time of the biological 

factors in the healing process, and therefore, three component are considerd 

namely w which represents oxygen, b  which represent  the bacteria  and  c  

which represent chemoattractant. 

    Now, for 0 < 𝑥 < 𝑙1 , 0 < 𝑦 < 𝑙2The boundary conditions are given by: 

        f (0,y) = y           ,      f (x,0) = x 

       f (𝑙1 ,  y) = 𝑙1 + y   ,     f (x, 𝑙2) = x +  𝑙2  

Consider the diffusion equation represented as in the following:        

                     
𝜕𝑓

𝜕𝑡
= 𝐷 ( 

𝜕2𝑓

𝜕𝑥2
+ 

𝜕2𝑓

𝜕𝑦2
 )        

  where D represents the diffusivity rate.    

       Before the development of this biological system, which consists of three 

nonlinear partial differential equations,  we point out that, the oxygen would 

be the same amount that was indicated to it in the form of one dimensional 

model, where the oxygen concentration is increased by the rate 𝛽 , and  the 

chemoattractant acts to stimulate the endothelial cells of vessels in the nearby 

healthy tissue to leave their parent vessel;  however, it is observed that the 

low levels of oxygen can result in sever impairment of wound tissue 

granulation. 

       Modelling will exist by assuming that the death rate of bacteria  𝛾𝑏  are 

increased in the region of hypoxia so that: 

 𝛾𝑏   ∝  
1

𝛾𝑟𝑏𝑏 + 1
 

      Our system of equations will be: 



1. Oxygen equation: 

        The development and modification of equation (3.1) for two 

        dimensional case is: 

     
𝜕𝑤

𝜕𝑡
 = 𝐷𝑤 ∇2𝑤⏟

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝛽⏟
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑜𝑥𝑦𝑔𝑒𝑛 
𝑒𝑛𝑡𝑒𝑟

+ 𝑘 𝐺(𝑡)⏟
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑜𝑥𝑦𝑔𝑒𝑛 
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
𝑠𝑢𝑝𝑝𝑙𝑦

−𝛾𝑛𝑤𝑛𝑤 − 𝛾𝑏𝑤𝑏𝑤⏟            
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑜𝑥𝑦𝑔𝑒𝑛 
𝑢𝑠𝑒𝑑 𝑏𝑦
𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

 −  𝛾𝑤𝑤⏟
𝑙𝑜𝑠𝑠𝑖𝑛𝑔
𝑜𝑥𝑦𝑔𝑒𝑛

 ... (3.10)             

2. Bacteria equation:   

       In two dimensional case, the bacterial equation (3.2) take the form: 

 𝜕𝑏

𝜕𝑡
= ∈𝑏⏟
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑟𝑎𝑛𝑑𝑜𝑚
𝑚𝑜𝑡𝑖𝑙𝑡𝑦

∇2𝑏⏟
 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝑘𝑏𝑏(1−𝑏𝑜)−𝑏
𝑤𝛿+𝑘𝑛𝑟𝑛

𝑘𝑤+𝑤𝛾𝑟𝑏𝑏+1
− 𝛾𝑏𝑏⏟
   𝑑𝑛𝑎𝑡𝑢𝑟𝑎𝑙 
𝑑𝑒𝑎𝑡ℎ
𝑜𝑓

𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

... (3.12) 

3. Chemoattractant equation: 

       The two dimensional formulation of equation (3.3) is: 

             
𝜕𝑐

𝜕𝑡
= 𝐷𝑐 ∇2𝑐⏟

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

   +   𝑘𝑏𝑏⏟
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑐ℎ𝑒𝑚𝑜𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑒𝑛𝑡
𝑓𝑟𝑜𝑚 
𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

− 𝛾𝑐⏟ 𝑐
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑐ℎ𝑒𝑚𝑜𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑒𝑛𝑡
𝑑𝑒𝑐𝑎𝑑𝑒𝑛𝑐𝑦

                    ... (3.11)    

where:     ∇2= 
𝜕2𝑎

𝜕𝑥2
+ 

𝜕2𝑎

𝜕𝑦2
 

4. Intial and boundary conditions: 

The initial and boundary conditions may be developed as: 

       
𝜕𝑤

𝜕𝑥
|
𝑥=0

= 0      ,   
𝜕𝑤

𝜕𝑦
|
𝑦=0

= 0                 

     𝑤(1, 𝑦, 𝑡) = 1  ,   𝑤(𝑥, 1, 𝑡) = 1 ,   𝑤(𝑥, 𝑦, 0) = 1              

     𝜕𝑏
𝜕𝑥
|
𝑥=0

= 0       ,    𝜕𝑏
𝜕𝑦
|
𝑦=0

= 0       ,   𝑏(𝑥, 𝑦, 0) = (1 − 𝑥 − 𝑦)2 𝑒−(
𝑥𝑦
2
)
2

    

     𝜕𝑐
𝜕𝑥
|
𝑥=0

= 0      ,     𝜕𝑐
𝜕𝑦
|
𝑦=0

= 0    

     𝜕
𝜕𝑥
|
𝑥=1

= 0  ,         𝜕𝑐
𝜕𝑦
|
𝑦=1

= 0     ,   𝑐(𝑥, 𝑦, 0) = (1 − 𝑥 − 𝑦)2 𝑒−(
𝑥𝑦
2
)
2

 



      For computer solution purpose,  parameter values used in the numerical 

solution are listed in table  3.1 which are: 

     Table (3.1): Parameter values used in numerical solution [Russell, 2013] 

parameter Non-dimensional Dimensional 

𝑤𝑜 1 5.4*10−6𝑔 ∗ 𝑐𝑚−1 

𝑏𝑜 1 1*10−3𝑔 ∗ 𝑐𝑚−1 

𝑐𝑜 1 1 

𝐷𝑤 1 5*10−6𝑐𝑚2 ∗ 𝑠−1 

𝐷𝑐 1.5 1.5 

∈𝑏 0.0001 0.0001 

𝛽 0.2284 6.1667*10−12𝑐𝑚−1 ∗ 𝑔 ∗ 𝑠−1 

G 0 0 

𝛾𝑛𝑤 37 0.185𝑔−1 ∗ 𝑠−1 

𝛾𝑏𝑤 22.7872 22.7872 

𝛾𝑤 2.4667 0.01233∗ 10−12 𝑠−1 

𝑘𝑏 1.26 7.13∗ 10−5 𝑠−1 

𝛾𝑐 0.9 0.9 

𝑘𝑐 10 10 

𝛿 0.7992 0.7992 

𝛾𝑟𝑏 3.73 3.73 

𝛾𝑏 5 2.5∗ 10−6 𝑠−1 

𝑘𝑛𝑟 2 2 

 

 

 

 



3.8 Numerical Method and Results: 

                The system of equations (3.10), (3.11) and (3.12) can solve easily 

by using two dimensional non homogeneous parabolic equations (2.8) and 

(2.9) as follows, where 𝑟 =
∆t

K2
: 

 

Oxygen equation: 

  (1 + 2𝑟)wi,j
n+1 − rwi+1,j

n+1 − rwi−1,j
n+1  

                   = (1 − 2r)wi,j
n + rwi,j+1

n + rwi,j−1
n + 𝛽 + 𝑘𝐺(𝑡) − ∆t 𝛾𝑛𝑤 𝑛𝑖,𝑗

𝑛+1
2 

𝑤
𝑖,𝑗

𝑛+1
2 − ∆t𝛾𝑏𝑤𝑏𝑖,𝑗

𝑛+1
2 𝑤

𝑖,𝑗

𝑛+1
2 − 𝛾𝑤𝑤𝑖,𝑗

𝑛+1
2  

(1 + 2r)wi,j
n+2 − rwi+1,j

n+2 − rwi−1,j
n+2         

                  = (1 − 2r)wi,j
n+1 +  rwi,j+1 

n+1 + rwi,j−1
n+1 − 𝛽 + 𝑘𝐺(𝑡) − ∆t 𝛾𝑛𝑤 𝑛𝑖,𝑗

𝑛+1
2 

𝑤
𝑖,𝑗

𝑛+1
2 − ∆t𝛾𝑏𝑤𝑏𝑖,𝑗

𝑛+1
2 𝑤

𝑖,𝑗

𝑛+1
2 

Bacteria equation: 

  (1 + 2r)bi,j
n+1 − rb − rbi−1,j

n+1  

               = (1 − 2r)bi,j
n + rbi,j+1

n + rbi,j−1
n + ∆t 𝑘𝑏 𝑏𝑖,𝑗

𝑛+1
2 (1 − 𝑏

𝑖,𝑗

𝑛+1
2) 

− 𝑏
𝑖,𝑗

𝑛+1
2

𝑤𝑖,𝑗
𝑛+
1
2𝛿+𝑘𝑛𝑟𝑛

𝑘𝑤𝑖,𝑗
𝑛+
1
2+𝑤𝑖,𝑗

𝑛+
1
2𝛾𝑟𝑏𝑏𝑖,𝑗

𝑛+
1
2+1

− ∆t𝛾𝑏𝑏𝑖,𝑗
𝑛+1

2  

(1 + 2r)bi,j
n+2 − rbi+1,j

n+2 − rbi−1,j
n+2         

      = (1 − 2r)bi,j
n+1 +  rbi,j+1 

n+1 + rbi,j−1
n+1 + ∆t 𝑘𝑏 𝑏𝑖,𝑗

𝑛+1
2 (1 − 𝑏

𝑖,𝑗

𝑛+1
2) 

− 𝑏
𝑖,𝑗

𝑛+1
2

𝑤𝑖,𝑗
𝑛+
1
2𝛿+𝑘𝑛𝑟𝑛

𝑘𝑤𝑖,𝑗
𝑛+
1
2+𝑤𝑖,𝑗

𝑛+
1
2𝛾𝑟𝑏𝑏𝑖,𝑗

𝑛+
1
2+1

− ∆t𝛾𝑏𝑏𝑖,𝑗
𝑛+1

2 

 

 



Chemoattractant equation: 

(1 + 2r)Ci,j
n+1 − rCi+1,j

n+1 − 𝑟Ci−1,j
n+1  

                   = (1 − 2r)Ci,j
n + rCi,j+1

n + rCi,j−1
n + ∆t  𝑘𝑏 𝑏𝑖,𝑗

𝑛+1
2 −∆t𝛾𝑐𝐶𝑖,𝑗

𝑛+1
2  

 

(1 + 2r)Ci,j
n+2 − rCi+1,j

n+2 − rCi−1,j
n+2         

                  = (1 − 2r)Ci,j
n+1 +  rCi,j+1 

n+1 + rCi,j−1
n+1 + ∆t  𝑘𝑏 𝑏𝑖,𝑗

𝑛+1
2 −∆t𝛾𝑐𝐶𝑖,𝑗

𝑛+1
2  

 

 

Figure (3.5) 

Numerical Solutionof system(3.10)-(3.12) by using ADI method; after(1)day with ,n= 10, h = (b-a)/n  ,  

i,j= 1,2,... Solutions are produced using MATLAB 

 

 

 



 

Figure (3.6) 

Numerical Solutionof system(3.10)-(3.12) by using ADI method; after(25)days with 

e=0.658842875481342,n= 10, h = (b-a)/n , i,j= 1,2,... Solutions are produced using MATLAB 

 

figure (3.7) 

Numerical Solutionof system(3.10)-(3.12) by using ADI method; after(6)months with ,n= 10, h = (b-a)/n , 

i,j= 1,2,... Solutions are produced using MATLAB 

 



 

 4.1 Conclusions:  

  In chapter two, we consider three types of equations then derived a 

second order ADI formula for this equations with the given initial and 

boundary conditions, unconditional consistent and stability was discussed for 

each types, and by this two conditions the convergent become easy to prove. 

Then by using a small time steps we derive another formula of ADI method 

for wave equation, then, for a more accuracy the forth order formula was 

developed here.  

Finally, we solve examples by this derived formula with the using of 

MATLAB program.  

In chapter three, we introduce a biological model of the treatment of 

bacterial infection in a chronic wound by using the oxygen therapy technique, 

the biological and mathematical model was discussed .Also, the stability of 

this system was proved to one dimensional system in an analytical result. 

Then the system was developed in  two dimensions in order to solve it by the 

ADI method.  



4.2 Recommendations  
There are a number of extensions to the methods presented in this thesis 

that could be pursued in the future. In particular, the following areas could 

lead to fruitful research:  

1.  Investigate our numerical method (ADI method) with other boundary 

conditions, numerical schemes presented in this thesis can be adapted 

to other boundary conditions (non-homogeneous Dirichlet or Neumann 

conditions) with nonlinear source terms  

2.  Investigate the consistency and stability of the developed high- 

accuracy (ADI) formula.  

3. Implementation of our numerical methods in higher-dimensional 

problems with nonlinear fractional differential equation, come with the 

associated increase in computational complexity associated with larger 

matrices, but these may be addressed by the aforementioned high-

efficiency technique.  

4.  Solving the full system realted with the treatment of chronic wounds 

with oxygen therapy technique, which contains six nonlinear equations 

by using the (ADI) method  
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APPENDIX A 

Equivalence Theorem (Lax-Richtmyer) 

The Fundamental Theorem of Numerical Analysis. For consistent 

numerical approximations, stability and convergence are equivalent. 

Lax proved for IVPs. The theorem applies as well to BVPs, 

approximations to functions and integrals, and PDEs. Here we will prove that 

for consistent numerical schemes, stability implies convergence. The converse 



is more difficult to prove, and will be proved in the context of PDEs, using 

functional analysis. Approximate Lu = f by 𝐿∆ 𝑢∆ = 𝑓∆  . We will assume the 

problems are close, and prove that the solutions are close. Consistency 

implies 𝑓∆ → f and 𝐿∆u → Lu as n → 1, ∆t → 0, with n∆t = t fixed. Stability 

implies 𝐿∆
−1  remains uniformly bounded. Then as n→1, ∆𝑡 → 0, with n ∆ = t 

fixed, 𝑢∆ converges to u: 

u − 𝑢∆ = 𝐿∆
−1   (L∆u − Lu) + 𝐿∆

−1  (f − 𝑓∆) → 0 

Let’s look at the details for the IVP du/dt = au, 𝑢(0) = 𝑢0 (proof due to 

Strang). The exact solution is u(t) = 𝑒𝑎𝑡𝑢0 ≡ 𝐻𝑛 𝑢0, where H = exp{a∆t} is 

the exact growth factor. The approximate solution is 𝑢𝑛 = 𝐺𝑛𝑢0. Stability 

implies 

|𝐺𝑛| ≤ 𝑒𝑘𝑛∆t = 𝑒𝑘t 

where K is a positive constant independent of n. (For A-stability, K = 0 

and 𝑒𝑘t = 1.) Consistency implies 

|G − H| ≤ C∆𝑡𝑝+1, p > 0 

Then we’ll prove convergence: 

|𝐺𝑛𝑢0 − 𝐻𝑛𝑢0| → 0 

as n→ ∞, ∆t → 0, with n ∆t = t fixed. We use a telescoping identity 

   𝐺𝑛 − 𝐻𝑛 = 𝐺𝑛 − 𝐺𝑛−1H + 𝐺𝑛−1H − 𝐺𝑛−2𝐻𝑛 + . . . + G𝐻𝑛−1− 𝐻𝑛 

                    = 𝐺𝑛−1 (G − H) + 𝐺𝑛−2 (G − H)H + . . . + (G − H) 𝐻𝑛     (⋆) 

    Every term has a factor G−H, and |G−H| ≤ C∆𝑡𝑝+1 by consistency. Every 

term has a power of G (possibly 𝐺0) which is bounded by stability. Every 

term has a power of H (possibly 𝐻0) which is bounded since the continuous 

problem is well-posed. There are n = t/∆t terms in Eq. (⋆). Therefore as as 

n→ ∞, ∆t → 0, with n∆t = t fixed, 

|𝐺𝑛 − 𝐻𝑛 |≤ 𝑡

∆t
 𝑒𝑘𝑡C∆𝑡𝑝+1 = 𝑂(∆𝑡𝑝) → 0            (⋆⋆) 

 



The telescoping series (⋆) is exactly how error accumulates in a 

difference equation. 

 𝐺𝑛 − 𝐻𝑛 = ∑ 𝐺𝑛−𝑗  (G −  H)𝑛
𝑗=1 𝐻𝑗−1 

𝐻𝑗−1propagates the exact solution to time level j − 1; (G − H) is the local 

error going from timelevel j −1 to j; and 𝐺𝑛−𝑗propagates this error forward 

with the difference method to time level n. 

Note that Eq. (⋆⋆) implies that although the local error 𝑒𝑙 = LTE ≡ ∆t τ to 

leading order in ∆t, the (global) error 

e ~ t 𝑒𝑘𝑡 max𝑗=1…𝑛|𝜏𝑗| 

where here ~means of the same order ∆𝑡𝑝 in ∆t. Thus e ~τ ; in other 

words, the (global) error and the (global) truncation error are of the same 

order ∆𝑡𝑝 in ∆t, but the constants in front of ∆𝑡𝑝 are different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

Fisher's equation 

     Consider the following ODE model for population growth: 

𝑢ˊ(𝑡) = 𝑎(𝑢(𝑡))𝑢(𝑡)  ,  𝑢(𝑡) = 𝑢𝑜  at  𝑡 = 0       



where 𝑢(𝑡) denotes the population size at time t, and 𝑎(𝑢) plays the role of 

the population dependent growth rate. The model asserts that the population 

changes at a rate that is proportional to the present population size. Moreover, 

if we suppose 

𝑎(𝑢) = 𝛼 (1 −
𝑢(𝑡)

𝑢∞
) 

for constant positive parameters, 𝛼, 𝑢∞, then the population grows when the 

population is smaller than the `limiting value" 𝑢∞ and the population size 

decreases if u exceeds this value. Thus the model predicts behaviour that is 

qualitatively consistent with the way we observe populations to behave. This 

autonomous differential equation has critical points at u = 0 and u = 𝑢∞ and it 

is easy to see that the critical point at zero is unstable while the other is a 

stable critical point. Then the population u(t) will tend to the limiting value 

𝑢∞ as t tends to infnity, regardless of the initial population size. This equation 

is a special case of the more general autonomous equation, 𝑢ˊ(𝑡)  =  𝐹(𝑢(𝑡)). 

Now the partial differential equation 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝐹(𝑢(𝑡)), 𝑥 ∈ 𝑅𝑛  ,   𝑡 > 0          

can be viewed as an attempt to incorporate the mechanism of diffusion into 

the population model. We are going to discuss equations of this form in the 

case n = 1 where the equation can be written more generally as 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝑏(𝑢(𝑥, 𝑡))

𝜕𝑥2
= 𝐹(𝑢(𝑡)) , 𝑏ˊ > 0          

 

          Equations of this form arise in a variety of  biological applications and 

in modelling certain chemical reactions and are referred to as reaction. 

diffusion equations. To clear the reaction diffusion equation with positive 

constant parameters, D, 𝛼 and 𝑢∞: 



𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
− 𝐷

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝛼𝑢(𝑥, 𝑡) (1 −

𝑢(𝑥, 𝑡)

𝑢∞
)        

        

                This is know as Fisher's equation and it is usually viewed as a 

population growth model. The various parameters in the equation have the 

following dimensions 

D denotes diffusivity (𝐿2𝑇−1) 

𝛼 denotes growth rate (𝑇−1); 

𝑢∞ denotes carrying capacity 

      (number of individuals) 

                To reduction to dimensionless form, it is often useful to rewrite the 

partial differential equation in terms of dimensionless variables. We define 

                       𝜏 = 𝛼𝑡  time scaled to the growth rate 

𝑧 = 𝑥√
𝛼

𝐷
  distance scaled to diffusion length 

     𝑣 =
𝑢(𝑥,𝑡)

𝑢∞
  population scaled to carrying capacity 

         and then the equation becomes: 

𝜕𝑣(𝑧, 𝜏)

𝜕𝜏
− 𝐷

𝜕2𝑣(𝑥, 𝜏)

𝜕𝑧2
= 𝑣(1 − 𝑣)                           

        

 

 

              Now, in order to investigate the existence of travelling wave 

solutions, we suppose 𝑣(𝑧, 𝜏) = 𝑉(𝑧 − 𝑐𝜏) with V(s) tending to constant 

values as s tends to plus orminus infnity. Then 

−𝑐𝑉 ˊ(𝑠) − 𝑉˝(𝑠) = 𝑉(𝑠)(1 − 𝑉(𝑠)),   − ∞ < 𝑠 = 𝑧 − 𝑐𝜏 < ∞   

 

                This second order equation reduces to the following autonomous 

dynamical system: 



                                 𝑉ˊ(𝑠) = 𝑊(𝑠) 

𝑊 ˊ(𝑠) = −𝑐𝑊(𝑠) − 𝑉(𝑠)(1 − 𝑉(𝑠)) 

 

              This system has critical points at (0, 0) and (1, 0). Since 

𝐽(𝑉,𝑊) = [
0 1

2𝑉 − 1 −𝑐
] 

              We can classify the critical points according to the eigenvalues of 

this matrix. 

at  (0,0)      𝜆± =
1

2
(−𝑐 ± √𝑐2 − 4 ) 

    a stable node if c > 2 and stable focus if 0 < c < 2, 

at (1; 0)       𝜆± =
1

2
(−𝑐 ± √𝑐2 − 4 ) 

   

              A saddle point for all values of c. In the case 0 < c < 2, the origin is a 

stable focus and the orbits of the system are curves in the (V;W) - plane. 

{
𝑉 = 𝑉(𝑠),    𝑉(−∞) = 𝑉0
𝑊 = 𝑊(𝑠), 𝑉(−∞) = 𝑉0 

} −∞ < 𝑠 < ∞ 

 

        

 

 

 

         With (V (s), W(s)) → (0; 0) as s → ∞. Since the origin is a focus, the 

orbits are such that V and W assume both positive and negative values as the 

curve spirals toward the origin. Negative values for V are not physically 

meaningful in the population interpretation of  V = u. Therefore, we conclude 

that there are no relevant travelling wave solutions for wave speeds between 

zero and 2,  In the case c > 2 the origin is a stable node and the orbits in the 

fourth quadrant that are attracted to the origin approach the node with V 

positive and W negative. Then these are physically relevant orbits. If there 



exists an orbit with Vo = 1;Wo = 0 that is attracted to the origin, then this 

orbit, which is in fact a heteroclinic orbit joining the two critical points, 

corresponds to a travelling wave solution to the Fisher's equation. The 

component V = V (s) of the heteroclinic orbit is a smooth function such that V 

0(s) = W(s) < 0 for all s. In addition, V (s) tends to 1 as s tends to minus 

infnity and V (s) tends to 0 as s tends to plus infnity so that 0 and 1 are the 

state values ahead of and behind the wave, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 الملخص      

 

 تضمنت هذه الرسالة ثلاث اهداف رئيسة منها:

 الهدف الأول هو لدراسة و توضيح طريقة الاتجاه التكراري المتناوب

 (Alternative Direction Iteration method)  لحل المعادلات التفاضلية الجزئية في البعد

-الفضاءات الثنائية و لكل نوع من أنواع المعادلات التفاضلية وذلك عن طريق تجزئة معادلة كرانك

الناتجة من معادلة الفروقات المنتهية أضافة الى مناقشة  (Crank-Nicholson)نيكولسون 



الاتساق و (convergence)والتقارب  (Stability)الاستقرار

(consistency)  ومن ثم إعطاء صيغة جديدة اعتمادا على خطوة

زمن مختلفة. تعتبر طريقة الاتجاه التكراري المتناوب من الدرجة 

تكون الثانية و لزيادة دقة هذه الطريقة تم ايجاد تقنية عددية جديدة 

 بنفس خصائص المعادلة من الدرجة الثانية لكن بدقة اكثر. 

الثاني لهذه الرسالة هو أشتقاق و دراسة نظام المعادلات المرتبطة بألتهابات الجروح الهدف         

وتأثير الأكسجين في علاج    (patients with diabetes)للمرضى الذين يعانون من مرض السكري

الجروح المصابة عن طريق تقليل فعالية ونشاط البكتريا المسببة لالتهاب، ودراسة استقرارية الحل 

حليلي لهذا النظام الذي يكون عادة في فضاء البعد الأول. وبما ان طريقة الاتجاه التكراري المتناوب الت

يمكن استخدامها لحل المعادلات في فضاءات البعد الثاني فأكثر، فقد اعيدت نمذجة النظام المرتبط بهذه 

 المعالجة الى فضاء البعد الثاني تمهيدا لحله بأستخدام هذه الطريقة. 

وأخيرا، فإن الهدف الثالث من هذا البحث هو لحل نظام من المعادلات التي اعيدت نمذجتها الى         

فضاءات البعد الثاني باستخدام طريقة الاتجاه التكراري المتناوب ومناقشة النتائج التي حصلنا عليها 

 .ومدى مقدار استقرار النظام، ودقة النتائج في مراحل مختلفة من العلاج

 

 

 

 

 

 العراق جمھوریة
 العلمي والبحث العالي التعلیم وزارة
 النھرین جامعة
 العلوم كلیة

 الریاضیات و تطبیقات الحاسبات قسم

 
 
 



طریقة الاتجاه التكراري المتناوب المطورة لحل 
المعادلات التفاضلیة الجزئیة مع تطبیق على 

 الجروح المزمنة لمرضى السكر
 

 

 رسالة

 النھرین جامعة العلوم كلیة الى مقدمة

 علوم ماجستیر درجة نیل متطلبات من جزء وھي

 الریاضیات  في

 

 ق بَل نم  

 میلاد جمیل حمود
 2003 )  النھرین , جامعة ,  العلوم كلیة  ریاضیات , بكلوریوس) 

 

 

 

 بأشراف

فاضل صبحي فاضلالاستاذ المساعد الدكتور   

 

 

2017                                                                                                    1438  

 


