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Summary 

In this thesis, we study the gamma distribution because it has many 

applications in life – testing, survival and reliability investigation that appear in 

medical studies of chronic diseases and industrial life – testing. Approximation to 

the mean and variance of moments method estimators is made theoretically by 

using Taylor series expansion approximated up to second partial derivatives. The 

maximum likelihood estimators are derived and compared with several estimators 

that proposed in the literature. Where the practice show that the bias values of 

moment method estimators are adequate with the simulated bias values for 

moderate and large sample. While the variance values of the scale parameter are 

excellent in comparison with the simulated values.     

A new bias corrected estimator based on the maximum likelihood estimator 

is suggested and show better performance in comparison with the other estimators 

proposed by McCullagh ,Nelder, Cardeiro, and Pearson. 

The theoretical results are tested by using Monte – Carlo simulation and 

compared by utilizing the measurement of mean square error.  
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Notations and Abbreviations 

r.v  random variable. 

r.s  random sample. 

U(a,b)  Uniform distribution with parameters a and b. 

p.d.f   probability density function. 

c.d.f  cumulative distribution function. 

m.g.f  moment generating function. 

  Gamma distribution with parameters   and  

  Chi – square distribution with r degrees of freedom. 

Exp ( )  Exponential distribution with parameter . 

MM  Moments Method. 

MLE  Maximum Likelihood Estimator. 

MLM  Maximum Likelihood Method. 

  bias of  

  Asymptotic variance. 

  Asymptotic covariance. 

distn.  distribution. 

Eq.  Equation. 
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Introduction: 

         The gamma distribution arise as a model from statistical studies of interval 

between events occurring in time or space, specifically when the interest in the 

waiting time from the occurrence of one event until r further events have occurred 

in a Poisson process with constant rate λ, [14]. This distribution sometimes referred 

to as a special Erlangian distribution after the Swedish scientist who used the 

distribution in early studies of queuing problem [2].  

 

         The gamma distribution has an important applications in the study of life 

time models, such as stops of a machine, failure or breakdowns of an equipment 

(e.g. electronic computer), air or road accidents [14], [12], coal mining disasters, 

telephone calls, daily rainfall [9], etc., are examples of such events that occur in a 

real time and have properties experted for gamma case [18]. 

 

          Many authors and researchers concerned with the gamma distribution such 

as Minka, Thomas P. in 2002, [20] derives a fast algorithm for maximum-

likelihood estimation of both parameters of a Gamma distribution or negative-

binomial distribution, Gomes, O. Combes, C.  Dussauchoy, A. in 2008, [7] focuses 

on the parameter estimation of the generalized gamma distribution. Because of 

many difficulties described in the literature to estimate the parameters, they 

propose here a new estimation method. The algorithm associated to this heuristic 

method is implemented in Splus. They validate the resulting routine on the 

particular cases of the generalized gamma distribution, 

 

        David E. Giles and Hui Feng in 2009, [5] considered the quality of the 

maximum likelihood estimators for the two-parameter gamma distribution in small 

samples. They show that the methodology suggested by Cox and Snell (1968) can 

be used very easily to bias-adjust these estimators. A simulation study shows that 

this analytic correction is frequently much more effective than bias-adjusting using 

the bootstrap – generally by an order of magnitude in percentage terms. The two 

bias-correction methods considered result in increased variability in small samples, 

and the original estimators and their bias-corrected counterparts all have similar 

percentage mean squared.  

 

        Apolloni, Bruno and Bassis, Simone in 2009, [3] provide an estimation 

procedure of the two-parameter Gamma distribution based on the Algorithmic 

Inference approach. As a key feature of this approach, they compute the joint 

probability distribution of these parameters without assuming any prior. To this 

end they propose a numerical algorithm which is often beneficial of a highly 



X 

 

 

efficient speed up based on an approximate analytical expression of the probability 

distribution. They contrast the interval and point estimation with those recently 

obtained in Son and Oh (2006). They realize that the estimators are both unbiased 

and more accurate, albeit more dispersed than Bayesian methods.  

 

         H´ector M. Ramos, Antonio Peinado, Jorge Ollero and Mar´ıa G. Ramos in 

2013, [10] analyse fertility curves from a novel viewpoint, that of inequality 

.Through sufficient conditions that can be easily verified, they compare inequality, 

in the Lorenz and Generalized Lorenz sense, in fertility curves fitted by gamma 

distributions, thus achieving a useful complementary instrument for demographic 

analysis. As a practical application, they examine inequality behavior in the 

distributions of specific fertility curves in Spain from 1975 to 2009. 

 

        In neuroscience, the gamma distribution is often used to describe the 

distribution of inter-spike intervals, [17]. Although in practice the gamma 

distribution often provides a good fit, there is no underlying biophysical motivation 

for using it. 

 

         In bacterial gene expression, the copy number of a constitutively expressed 

protein often follows the gamma distribution, where the scale and shape parameter 

are, respectively, the mean number of bursts per cell cycle and the mean number of 

protein molecules produced by a single mRNA during its lifetime.[6] 

 

        This thesis consists of three chapters. In chapter one we gave a brief summary 

of the important mathematical and statistical properties of gamma distribution. 

Where as in chapter two, we gave a full discussion on the approximation to the 

mean and variance of moments estimators by using Taylor series expansion and 

the maximum likelihood estimators which are derived and approximated by using 

Newton – Raphson method. In chapter three we introduce several alternative 

proposed estimators for the shape parameter of the maximum likelihood method 

with theoretical approximation to their biases and variances and a new estimator 

for the shape parameter is suggested which is based on bias correction for the 

maximum likelihood estimator. 
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1.1 Introduction: 

       In this chapter, we shall introduce some definitions and mathematical forms 

related to gamma distribution. Moment properties of the distribution are illustrated, 

such as mean, variance, skewness, and kurtosis. Two methods of estimation are 

used, namely moments method and maximum likelihood method for estimating the 

distribution parameters. Some theorems are considered for generating random 

variates from gamma distribution by Monte – Carlo simulation.  

 

1.2 Definition: [11] 

        A continuous 𝑟. 𝑣 𝑋 has a gamma distribution with parameters α and β, 

denoted by 𝑋~𝐺(𝛼, 𝛽) if and only if its 𝑝. 𝑑. 𝑓. is given by:  

  
 

1 /1
 , 0

Г

x
f x x e x

 


 

 
                                                                                       

(1.1)   

          0                              ,  . .                            e w             

where 𝛼 > 0, 𝛽 > 0 and Г(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
                                 

is called a gamma function                                                                              

         To check the function of Eq. (1.1) is valid 𝑝. 𝑑. 𝑓., we note that 𝑓(𝑥) > 0 for 

all 𝑥 and that  

    1 /

0 0

1
( ) 0

( )

x
f x dx x e dx

 


 

 

 
 


                                                                    (1.2)  

Making the transformation 𝑡 = 𝑥/𝛽 in Eq. (1.2) or equivalently 𝑥 = 𝛽𝑡  with 𝑑𝑥 =

𝛽𝑑𝑡, we have: 

   
 

1

0

1 1
 Г 1

Г Г

t
t e dt



 



 
       

A special case of the gamma distribution is called the exponential distribution 

when 𝛼 = 1, where the 𝑝. 𝑑. 𝑓. in Eq. (1.1) becomes: 
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f x e x
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        Also a special case of the gamma distribution is that play an extremely 

important role in both theoretical and applied statistics when the 𝑟. 𝑣. 

𝑋~𝐺(𝑟 2⁄ , 2), the p.d.f. in this case is:                           

  
1

/ 22

/ 2

1
, 0

Г 2
2

r

x

r

f x x e x
r




   
 
 
 

    

 (1.4)                                                                            0                                  ,  . .e w            

 Where 𝑟 is positive integer. 

       The  𝑟. 𝑣 𝑋 with 𝑝. 𝑑. 𝑓. of Eq. (1.4) is said to have a Chi-square distribution 

with r degrees of freedom and denoted by 𝑋~𝜒2(𝑟).  

       The gamma distribution depends on the two parameters 𝛼 and 𝛽 which are 

often referred to as the shape and scale parameters. By varying the values of 𝛼 

and 𝛽, a wide range of distribution shape can be generated. 

        A computer program is made which gives a graphical representation of 

gamma 𝑝. 𝑑. 𝑓. ′𝑠 when α is an integer. Illustration in fig. (1.1) show some 

𝑝. 𝑑. 𝑓. ′𝑠 for α fixed with 𝛽 varying. The curve increasing to locate its maxima and 

then decreasing to have the x axis as an asymptote, furthermore there is a sever 

skeweness to the right as 𝛽 increasing.   
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x
 

           Fig. (1.1) Gamma distribution for fixed α and various values of  𝜷 
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In Fig. (1.2) show some 𝑝. 𝑑. 𝑓. ′𝑠 for 𝛽 fixed with 𝛼 varying. A well known 

exponential case arise when 𝛼 = 1, and for 𝛼 > 1 the curve arise similar behavior 

as given in the discussion of Fig. (1.1). 

0 2 4 6 8 10
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0.4

0.6

0.8
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f x 2  1 ( )

f x 3  1 ( )

x
 

          Fig. (1.2) Gamma distribution for fixed 𝜷 and various values of 𝜶 

 

1.3 The Cumulative Distribution Function: [11] 

       The 𝑐. 𝑑. 𝑓. of gamma distribution is given by:         

          
 

1 /

0 0

1
                         

Г
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t
F x pr X x f t dt t e dt

 


 

 
                              (1.5)   

The right hand side of Eq. (1.5) is known as incomplete gamma function. 

       Specific tables can be found for F(x) in most statistical books when 

the 𝑟. 𝑣. 𝑋~𝐺(𝑟 2⁄ , 2) =  𝜒2(𝑟), where 𝑟 is positive integer because of the 

importance of Chi-square distribution in statistical work. 

 

1.4 Genesis of the Gamma Distribution: [11] 

        One of the widely quoted approach to the gamma distribution comes from a 

Poisson process with rate λ. To formally define a Poisson process, we consider 

events occurring randomly in time in the following sense. 

        There is a constant rate λ>0 called the rate of occurrence of the events and 

consider an interval of time (𝑥, 𝑥 + ∆𝑥) involve all the time values that are greater 
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than x and less than or equal to 𝑥 + ∆𝑥. Furthermore let 𝑢(∆𝑥) be any function of 

∆𝑥 such that 

0

( )
 lim 0  

x

u x

x 





          

        Then the Poisson postulates are the following: 

(a) Pr [no events during (𝑥, ∆𝑥)] = 1 − 𝜆 ∆𝑥 + 𝑢(∆𝑥): 

(b) Pr [one event during (𝑥, ∆𝑥)] = 𝜆 ∆𝑥 + 𝑢(∆𝑥); 

(c) Pr [two or more events during (𝑥, ∆𝑥)] = 𝑢(∆𝑥). 

 

        If the number of events occurring during (𝑥, ∆𝑥) is independent of the 

occurring during (0, 𝑥), a process of events satisfying the above conditions is called 

a Poisson process of rate 𝜆.        

        It has been shown, by Hogg, [11] that if 𝑊𝑥 is a 𝑟. 𝑣. representing the number 

of events occurring in a fixed time, say (0, 𝑥), then 𝑊𝑥 has a Poisson distribution 

with 𝑝. 𝑑. 𝑓. 

 
 

,  0,1, 2,
!

wx

x

e x
pr W w w

w






             

(1.6)                                                                0            ,  e.w.; where  0                       

         Now suppose that we are interested in the time 𝑋 of the occurrence one event 

until 𝐾 further events have occurred. Then the 𝑐. 𝑑. 𝑓. of 𝑋 is given by:                               

         1F x pr X x pr X x      

   1 1         0,pr k or few er events during x                  

              
1

0

1 ( )

k

x

w

pr W w





                            

 (1.7)                                                                                      
 1

0

  1
!

wxk

w

e x

w








               

Due to Thanon [19] the 𝑝. 𝑑. 𝑓. of 𝑋 when 𝑥 > 0 is:  

    
 1

0

1
!

wxk

w

e xd d
f x F x

dx dx w








  
   

  

                                                                                       

(1.8)   
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𝛽 = 1/ k andWhere Eq.(1.8) is as Eq.(1.1) with α= 𝑥 ≤ 0.when  𝑓(𝑥) = 0With 

𝜆. 

       The 𝑝. 𝑑. 𝑓. given by Eq. (1.8) is a special member of the gamma family of 

distribution. Eq. (1.7) that is interesting in showing that the 𝑐. 𝑑. 𝑓. of the 

distribution can be expressed as a cumulative sum of Poisson probabilities. 

 

1.5 Moments Generating Functions: 

       The moments are set of constants of a distribution which are used for 

measuring its properties and under certain circumstances they specify the 

distribution. 

        The moments of the 𝑟. 𝑣 𝑋, where defined in terms of the expected values of 

the powers of 𝑋 when they exist. For instance 𝜇𝑟
′ = 𝐸(𝑋𝑟) is called the 𝑟𝑡ℎ 

moment of 𝑋 about the origin and  𝜇𝑟 = 𝐸[(𝑥 − 𝜇)𝑟] is called the  𝑟𝑡ℎ central 

moment of 𝑋. 

       The generating function reflects certain properties of the distribution functions. 

They are often thought of as transforms of the density function (or probability 

function) defining the distribution. They could be used to generate moments and 

also have a particular usefulness in connection with sums of independent random 

variables. First we shall obtain a function of a real t called the moment generating 

function, denoted by 𝑀(𝑡), which can be used to find the moments of 𝑋 as many as 

we wish. 

        For continuous 𝑟. 𝑣. 𝑋, the m.g.f is defined by:        

 (1.9)                                                                                      
tX tx

M t E e e f x dx





     

Provided the integral converges absolutely.     

      When 𝑋~𝐺(𝛼, 𝛽) with p.d.f. given by Eq. (1.1), we have:       
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 (1.11)                                                                                     
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   , 
(1 )

t
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       From the theory of mathematical analysis, it has been shown that the existence 

of 𝑀(𝑡) for 𝑡 < 1/𝛽 implies that the derivatives of 𝑀(𝑡) of all orders exist at t=0. 

        Thus the 𝑟𝑡ℎ moment of 𝑋 about the origin 𝜇𝑟
′ = 𝐸(𝑋𝑟) can be found by 

finding the 𝑟𝑡ℎ derivative of 𝑀(𝑡) evaluated at t=0. That is: 

 
 

0

'

r

r

r r

t

d M t
E X

dt




      

     
( )

0
1 2 1 (1 )

r r

t
r t


     

 


                  

 (1.12)                                        ,  1, 2, 3,r                                 
 

 

Г
        

Г

r
r





          

(i) Mean  

         𝐸(𝑋) = 𝜇 = 𝜇1
′ is called the mean of the 𝑟. 𝑣. 𝑋. It is a measure of central 

tendency. Use of Eq. (1.12) with 𝑟 = 1 give: 

 (1.13)                                                                                                                     

ii) Variance ) 

          
22

[ ]var X E X     is called the variance of the 𝑟. 𝑣. 𝑋. It is a measure of 

dispersion. Use of Eq. (1.12) with 𝑟 = 2 and Eq. (1.13) give:  

          2 2
                                                                                                       (1.14)                                                         

(iii) Coefficient of variation 

        The variational coefficient of the 𝑟. 𝑣. 𝑋 is defined by the ratio 𝜎 𝜇⁄ . It is a 

measure of dispersion, it is independent of scale of measurement and is denoted 

by 𝑉. Now for gamma case 

     1/ 2
V

 


 


                                                                                              (1.15)  
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Which is independent of the scale parameter 𝛽. 

 (iv) Coefficient of skewness 

 
 

 

3

1 2 3 / 2

[ ]
 

( )

E X

E X









 
 

 is called  the coefficient of skewness. It is a measure of 

departure of the frequency curve from symmetry. If 𝛾1 = 0, the curve is not 

skewed, 𝛾1 > 0, the curve is positively skewed, and if 𝛾1 < 0, the curve is 

negatively skewed, by Rahman [15]. 

          Use of Eq. (1.12) with 𝑟 = 3 give  
3 3

2E X    
 

 , and so: 

     
3

1/ 2

1 2 3 / 2

2
2 0

( )


 




                                                                                     (1.16)  

 (v) Coefficient of Kurtosis  

 
 

 

4

2 2 2

[ ]
3

( )

E X

E X







 

 
 

is called the coefficient of kurtosis. It is the measure of the 

degree of flattening of a frequency curve. If 𝛾2 = 0, the curve is called mesokurtic, 

if 𝛾2 > 0, the curve is called leptokurtic, and if 𝛾2 < 0, the curve is called 

platykurtic, by Rahman [15]. 

           Use of Eq.(1.12) with 𝑟 = 4 give  
4 4

3 ( 2)E X       
 

 

 
4

1

2 2 2

3 ( 2)
3 6 0

( )

  
 




                                                                                  (1.17)   

 

1.6 Other Central Moments: 

(i) Mode  

        A mode of distribution is defined to be the value of the 𝑟. 𝑣. 𝑋 which 

maximize the 𝑝. 𝑑. 𝑓 𝑓(𝑥). For continuous distribution the mode is the solution of: 

2

2

( ) ( )
0     0

x m o x m o

df x d f x
and

dx dx
 

   .The mode is a measure of location. 

        For gamma case with 𝑝. 𝑑. 𝑓. given by Eq. (1.1). The logarithm of 𝑓(𝑥) is:     

     1
x

lnf x lnГ ln lnx   
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( ) 1 1dlnf x
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for maximum 
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dlnf x
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                                                                      (1.18)    

(ii) Median 

        A median of a distribution is defined to be the value 𝑚𝑒 of the 𝑟. 𝑣. 𝑋 such 

that    1 / 2 F m e pr X m e   .The median is a measure of location. 

        For gamma case, the 𝑐. 𝑑. 𝑓. given by Eq.(1.5), we have: 

   
 

1 /

0

1
1 / 2

Г

m e

x
F m e x e dx

 


 

 
                                                                     (1.19)                       

Where the right hand side of Eq. (1.19) is the incomplete gamma integral. 

 

1.7 Point Estimation: 

         Point estimation is concerned with inference about the unknown parameters 

of a distribution from a sample. It provides a single value for each unknown 

parameter. Point estimation admits two problems. 

        First, developing methods of obtaining a statistic, say, 𝑈 = 𝑢(𝑋1𝑋2, … , 𝑋𝑛) to 

represent or estimate the unknown parameter 𝜃 in the 𝑝. 𝑑. 𝑓 of 𝑓(𝑥; 𝜃) or some 

function of 𝜃, say 𝜏(𝜃), such statistic is called point estimator. 

        Second, selecting criteria and technique to define and to find a best estimator 

among possible estimators. 

 (1.7.1) Definition (statistic): 

       A statistic is a function of one or more 𝑟. 𝑣 ′𝑠 that does not depend upon any 

unknown parameter. A statistic itself is a 𝑟. 𝑣. 

(1.7.2) Definition (Sample mean and Sample variance): 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a  𝑟. 𝑠 of size 𝑛 from a given distribution. The statistic  

        
1

1
 

n

i

i

X X
n 

                                                                                                    (1.20)  
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is called the sample mean, and the statistic 

      
2

2

1

1
 

1

n

i

i

XS X
n 

 

                                                                                       (1.21)    

is called the sample variance 

 (1.7.3) Definition (Unbiased Estimator):     

An estimator (statistic) 𝜃 = 𝑢(𝑋1, 𝑋2, … , 𝑋𝑛) is defined to be an unbiased estimator 

of 𝜃 if and only if 𝐸(�̂�) = 𝜃, otherwise 𝜃 is said to be biased estimator. 

Note: The term  E    is called the bias of the estimator 𝜃 and denoted by 𝑏(𝜃). 

 (1.7.4) Definition (Asymptotically Unbiased): 

       For a biased estimators, an estimator 𝜃 is called asymptotically unbiased 

estimator of 𝜃 if and only if  lim
n

E  


 . 

(1.7.5) Definition (Mean – Squared Error): 

        Let 
1 2

( , , ,  )
n

u X X X    be an estimator of 𝜃. The mathematical expectation 

 
2

E  
 


  

 is defined to be the mean – squared error of the estimator 𝜃 and is 

denoted by 𝑀𝑆𝐸[𝜃, 𝜃]. 

That is:  

               
2

,M S E E   
    
    

 

Propositions: 

(i) The MSE is a measure of goodness or closeness of  𝜃 to 𝜃  

(ii)      
2

2
, [ ( ) ] ( )M S E var E var b            
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Proof: 

          
22

,M S E E E E E       
                

 

                               
2 2

2E E E E E       
 

      
 
 

 

                              
2 2

2E E E E E E E       
          
        

 

                        2
2 ( )v ar E E E b          

  
 

                         
2

2
0 ( ) ( )var b var b         

(1.7.6) Definition (Consistent Estimator): 

        Let the estimator 
1 2

( , , ,  )n n
u X X X    of 𝜃 based on the sample size 𝑛. Then 

𝜃𝑛 is said to be a mean – squared error consistent estimator of 𝜃 if and only if  

        lim ( , ) 0n
n

M S E  


    

 

1.8 Methods of Estimation: 

        A variety of methods available for finding estimators for the distribution 

parameters have been proposed in the literature such as moments, maximum 

likelihood, minimum chi-square, minimum distance, least-square, and Bayesian 

method. These methods provide a single value for each unknown parameters of the 

distribution. 

        For gamma case, we shall discuss two methods, the method of moments and 

the maximum likelihood method, some general on the quality of estimators 

provided by these methods. 

 (1.8.1) Moment Method: 

        We will generalize the discussion by letting 
1 2

  , ,
n

X X X  represent a 𝑟. 𝑠. of 

size 𝑛 from a distribution whose, 𝑝. 𝑑. 𝑓. 
1 2

( ; , , , )
r

f x    .The expectation   '
r

  

( )
r

E X  is known as the 𝑟𝑡ℎ distribution moment about origin, 𝑟 = 1,2,3, … and   

1

1
n

r

r i

i

M X
n 

   is the 𝑟𝑡ℎ moment of the sample about origin,  𝑟 = 1,2,3, … . 
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       The method of moments can be described as follows: 

Equate 𝜇𝑟
′ to 𝑀𝑟 beginning with 𝑟 = 1 and continuing until there is enough 

equations to provide a unique solution for 
1 2

  , , ,
r

    say 1 2, , , r   . 

       For gamma case, we have two unknown parameters 𝛼 and 𝛽 and if a  𝑟. 𝑠. of  

size 𝑛 is taken then   '
r r

M   at    and    , 𝑟 = 1,2. So we have first 

  
1

1

1
n

i

i

M X X
n 

  and
  1

 ' E X   , so equate 𝑀1 with 𝜇1
′ with 𝛼 = �̂� and 𝛽 =

�̂� we get: 

                   X                                                                                                  (1.22)                                                                                          

and second  

 2

2

1

1
n

i

i

M X
n 

  and  2 2

2
(' 1)E X      , so equate 𝑀2 with 𝜇2

′ with 𝛼 = �̂� and 

𝛽 = �̂� we get:  

     2 2
2

1

1
( )

n

i

i

X
n

   


                                                                                        (1.23)  

 Solving Eq. (1.22) and Eq. (1.23) we get: 

             
 

2

2
 

1

nX

n S
 


                                                                                            (1.24)  

and 

              
 

2
1n S

nX



 , where    

2

2

1

1

1

n

i

i

S X X
n 

 

                                            (1.25)                                                                               

Equations (1.24) and (1.25) represent the moments method estimators for 𝛼 and  𝛽 

respectively. 

(1.8.2) Maximum Likelihood Method:  

        The most important and widely used formal estimation technique is the 

method of maximum likelihood. Estimation by maximum likelihood is a general 

method that may be applied when the underlying distribution of observations is 

specified.                

       The principle of the method of maximum likelihood can be formulated as 

follows: 
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        Let  1 2
, , ,

n
X X X X   be a set of  𝑟. 𝑣. �́� that they may or may not be 

stochastically independent and let the joint 𝑝. 𝑑. 𝑓.  ;f x  depend on a vector of 𝑚 

parameters  1 2
, , ,

m
     . This joint 𝑝. 𝑑. 𝑓. when regarded as a function of   is 

called the likelihood function of the 𝑟. 𝑣. �́� and is denoted by ( , )L x if the 

  ,  1, 2, ,
j

u x j m    that maximize this likelihood function with respect to 𝜃𝑗 , 𝑗 =

1,2, … , 𝑚, respectively, then the 𝑀. 𝐿. 𝐸. �́� of the 𝑚 parameters are: 

       ,  1, 2, , .j j
u x j m     

        The most important case when 
1 2

  , , ,
n

X X X  represent a random sample of 

size 𝑛 from a distribution whose 𝑝. 𝑑. 𝑓. ( ; )f x  , so that the likelihood function is  

      
1

; ( , )

n

i

i

L x f x 


 . 

         In practice, the most important comments on this method and the obtained 

estimators are: 

1. Many likelihood functions satisfy the condition that the 𝑀. 𝐿. 𝐸. �́� are the 

solution of the likelihood equations 
( , )

0

j

L x







 provide that ,  1, 2, , j m     

2. Since ( ; )L x and ( ; )logL x have their maximum at the same value of  , so it is 

sometimes easier to find the maximum of the logarithm of the likelihood. 

3. Due to Zack, S. [21], the 𝑀. 𝐿. 𝐸. �́� are not necessarily unique. 

4. Due to Zack, S. [21], the 𝑀. 𝐿. 𝐸. �́� are not necessarily consistent. 

5. The 𝑀. 𝐿. 𝐸. �́�  in general are asymptotically unbiased. 

6. Sometimes it is impossible to find the 𝑀. 𝐿. 𝐸. �́� in a convenient closed form. 

7. The 𝑀. 𝐿. 𝐸. �́� not necessarily obtained by differentiation. 

8. Due to Mood [2], the  𝑀. 𝐿. 𝐸. �́� has the invariance property. Let   be a 𝑀. 𝐿. 𝐸. �́� 

of  . If 𝜏(𝜃) is a function with single-valued inverse, then the 𝑀. 𝐿. 𝐸. �́� of  𝜏(𝜃) is 

𝜏(𝜃). 

        For gamma case, let 
1 2
, , ,

n
X X X  be a 𝑟. 𝑠. of size 𝑛 from 𝐺(𝛼, 𝛽) where the 

distribution 𝑝 . 𝑑. 𝑓. is given by Eq. (1.1), so the likelihood function is:  
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          1

11

1 1

. ; ; ,

n

i

i

n n x
n

n

i i

i i

L x f x Г x e




      






 

 
      

 
   

and  

      
1 1

1
. ; ( 1)

nn

i i

i i

lnL x nlnГ n ln lnx x     
 

        

   
1

n

i

i

lnL
n nln lnx  

 


   


                                                                             (1.26)  

where     
d

lnГ
d

  


  

       
2

1

1
n

i

i

lnL n
x



   

 
 


                                                                                     (1.27)  

We set 0
lnL







 and 0

lnL







 at    and   , we have: 

     
1

0

n

i

i

n nln lnx  


                                                                                    (1.28)  

and 
2

1

1
0

n

i

i

n
x



  


   that implies 

       X                                                                                                              (1.29)  

From Eqs. (1.28) and (1.29) we have: 

      
1

1
n

i

i

ln ln lnx
n

X  


                                                                                  (1.30)  

         Analytic solution for �̂� can not be found from Eq.(1.30) so that it is difficult 

to maximize  . ;L x   with respect to 𝛼 and 𝛽, owing to the presence of gamma 

function  Г  . In such case numerical method must be used such as Newton-

Raphson or bisection method etc. 
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1.9 Some Related Theorems: 

Theorem (1.9.1) (Independent Sum Distribution): 

      If 
1 2

  , ,  , X X X


  is a 𝑟. 𝑠. of size 𝛼 from 𝐸𝑥𝑝(𝛽), then the 𝑟. 𝑣. 

 
1

~ ,
i

i

Y X G



 


   

      For the proof,  
1

~ ,
i

i

Y X G



 


   we shall utilize the 𝑚. 𝑔. 𝑓. technique as 

follows: 

    Since  ~ ,  1, 2,  ,  ,
i

X Ex p i    then the 𝑚. 𝑔. 𝑓. of 𝑋𝑖 is  
1

1iX
M t

t



, 1 0t   

let 𝑀𝑌(𝑡) be the 𝑚. 𝑔. 𝑓. of  𝑌, then  

      1

1 1

i

i i i

t X

tX tXtY

Y

i i

M t E e E e E e E e



 



 

   
     
   
 

         

 
 1 1

1 1
   

1 1
iX

i i

M t
t t

 


  

  
 

   which is the 𝑚. 𝑔. 𝑓. of 𝐺(𝛼, 𝛽) as given in 

Eq.(1.11). 

Theorem (1.9.2): 

As a consequence of theorem (1) of section (1.9.1). The sample mean X 

1

1
~ ,

n

i

i

X G n
n n






 
 
 

  with 𝑚. 𝑔. 𝑓.  
1

(1 )

X
n

M t

t
n






  

Furthermore, using the relation (1.12) lead to the 𝑟𝑡ℎ moment �̅� about origin is 

given by: 

           
( )

( )

r

r Г n r
E X

n Г n

 



 
  
 

                                                                             (1.31)  

 Theorem (1.9.3):  

       Let 
1 2
, ,  , 

n
X X X  be a 𝑟. 𝑠. of size 𝑛 from any distribution (discrete or 

continuous) having mean 𝜇 and variance 𝜎2, and let 
1

1
n

i

i

X
n

X



   and 2 1
   

1
S

n



 

 
2

1

n

i

i

X X



  be the sample mean and the sample variance respectively, then 
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   E X  ,    
2

var X
n


  

  2 2
E S  ,  2 4

4

1 3
,  1

1

n
var S n

n n
 

 
   

 
 where   ,  1, 2, 3,

r

r
E X r     
 

 

For gamma case  

 E X  ,   
2

var X
n


                                                                                             (1.32)  

 2 2
E S  ,  

4

2 (6 6 2 )

( 1)

n n
v ar S

n n

  



 

(1.9.4) Random Variate Generating: 

     We recall the properties of 𝑐. 𝑑. 𝑓.   ( )F x pr X x  of the 𝑟. 𝑣. 𝑋 

1. 0 ( ) 1F x    

2.   0F    and   1F    

3. ( )F x  is non – decreasing function of 𝑥. 

4. ( )F x  is continuous function to the right at each 𝑥. 

Theorem (1.9.5) (Inverse Transform): 

     The 𝑟. 𝑣. ( ) ~ (0,1)U F x U if and only if 1
( )X F U


  has 𝑐. 𝑑. 𝑓.    ( )pr X x F x   

Proof 

 Let the 𝑟. 𝑣.  ~ 0,1U U , then 𝑈 has 𝑐. 𝑑. 𝑓.  

            

0              ,  0                     

             , 0 1           

1             ,  1                   

u

G u pr U u u u

u




    

 

 

Now        
1

pr X x pr F u x pr u F x F x


         
 

 Conversely, let the 𝑟. 𝑣. 𝑋 has 𝑐. 𝑑. 𝑓.    pr X x F x   

             
1 1

G u pr U u pr F X u pr X F u F F u u
 

        
 

 

      The algorithm of generating 𝑟. 𝑣. by inverse transform method can be described 

by the following steps: 
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IT – Algorithm 

1. Generate U from  U(0,1) 

2. Set X=F-1(U) 

3. Deliver X as a 𝑟. 𝑣. generated from the 𝑝. 𝑑. 𝑓.  f x  

As an application of theorem (3), let us consider a generated 𝑟. 𝑣. from 𝐸𝑥𝑝(𝛽) 

where the 𝑝. 𝑑. 𝑓. 

               
1

  , 0

x

f x e x






     

                        0         ,  . .e w  

with 𝑐. 𝑑. 𝑓. 

 

  

   
0 0

0               ,  0  

01
1          , 0

1             , 

t t xx x

x

F x f t dt e dt e e x
x

x

  



  






        

  



   

Set    1 1   ln 1

x x

x
u F x u e e u u

 



 


          

                βln (1 u)x     

Apply IT – Algorithm 

1. Read 𝛽and 𝛼 (𝛼 is positive integer) 

2. x=0 

3. For I=1 to 𝛼 

4. Generate U from U(0,1) 

5. Set Y=− 𝛽 ln (1 − U) 

6. X=x+Y 

7. Go to step(4) 

8. Deliver X as a 𝑟. 𝑣. generated from 𝐺(𝛼, 𝛽). 

9. End 

 

 

 



  

 

 

-Chapter two- 
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     :2.1 Introduction 

           In this chapter, we shall consider the approximation to the mean and 

variance of moments method and maximum likelihood method estimators due to 

gamma distribution. This approach showed that the estimators are asymptotically 

unbiased with mean square error approach zero as the sample size approach 

infinity. The theoretical approach assessed practically by using Monte – Carlo 

simulation.  

 

2.2 Expectation of Quotient Function of Random Variables: 

         In general, there are no simple exact formulas for the mean and variance of 

the quotient of two random variables in terms of the moments of the two random 

variables; however, there are approximate formulas can be considered. One way of 

finding the approximate formula for 𝐸(
𝑋

𝑌
) by considering Taylor series expansion 

of the function 𝑔(𝑥, 𝑦) =
𝑥

𝑦
 expanded about the point [𝐸(𝑋), 𝐸(𝑌)], where we drop 

all terms of order higher than 2, and then take the expectation of both sides. 

Furthermore the approximate formula for 𝑣𝑎𝑟(
𝑋

𝑌
) is similarly obtained by 

expanding Taylor series and retaining only second-order terms as follows:  

         The Taylor series expansion of the function 𝑔(𝑥, 𝑦) =
𝑥

𝑦
 about the point 

(𝜇𝑥, 𝜇𝑦) is:   

     
 

 
 

 
 

 
 

   
 

2

2

2

2 2
2

2

, , ,1
, ,

2 !

, ,1
                                          (2.1)   

2 !

x x x

y y y

x x

y y

x y x y x

y x y

g x y g x y g x y
g x y g x y x

x y x

g x y g x y
y x y

y x y

  

  

 

 

    

  

  
      

  

 
     

  

 

where 𝜇𝑥 = 𝐸(𝑋) and 𝜇𝑦 = 𝐸(𝑌) 

Given 𝑔(𝑥, 𝑦) =
𝑥

𝑦
 , then  
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 , 1 ( , ) 1
   

x

y

y

g x y g x y

x y x 





 
  

 
   

   
2 2

2 2

, ,
0   0

x x x

y

g x y g x y





 
  

 
                  

   
2 2

, ,
                                                                                          (2.2) 

x

y

x

y

g x y g x yx

y y y 







  
  

 

 
   

2 2

2 3 2 3

, , 22 x
   

y y y x

y

x

y

g x y g x y









 
  

 
     

     
2 2 2

2 2

, , ,1 1
       

x

y

y

g x y g x y g x y

y x x y y y x 





   
   

     
  

Take the expectation of both sides of Eq. (2.1) with substitution the results of Eq. 

(2.2), we have: 

 
 

 

 

  
 

  
 

3 2

E X 1
var Y cov X , Y  

E Y E Y

E XX
E

Y E Y

 
   

 
 

 

 

 

  

     

   
2

var Y E X Y E X E Y
1   

E Y E X E YE Y

E X  
   
 
 

                         

 2.3                   
 

 

 

  

 

   
2

var Y E X Y
   2                                               

E X E YE Y

E X

E Y

 

   
 
 

                       

Take the variance of both sides of Eq. (2.1) with substitution the results of Eq. 

(2.2), we have: 

 

  
 

  

  
 

 

  

2

2 4 3
2 ,

E Xvar X E XX
var var y cov X Y

Y E Y E Y E Y

 
   

 
      

                          
 

 

 

  

 

  

 

   

2

2 2

2 ,
 

E X v ar X v ar Y cov X Y

E Y E X E YE X E Y

  
    
     

 

 

 

  

 

  

      

   

2

2 2

2
      

E X Y E X E YE X v ar X v ar Y

E Y E X E YE X E Y
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2

2 2

2
2                                                          (2.4)

E X v ar X v ar Y E X Y

E Y E X E YE X E Y

  
     
    

     

 

2.3 Approximation to the Mean and Variance of Moments Method 

Estimators: 

          In this section, we shall consider the approximation to the mean and variance 

of moments method estimators by using equations (2.3) and (2.4).  

 (2.3.1) Approximation to the mean of �̂�: 

           Consider the expectation of �̂� given by Eq. (1.24)        

 
 

2 2

2   2  
1 1

nX n
E E E

n S n

X

S


    
      

     

    

Use of Eq. (2.3), with 𝑋 = �̅�2 𝑎𝑛𝑑 𝑌 = 𝑆2 , we have: 

 
 

 

 

 

 

   

2 2   2 2  

2   2   2 2 2  
2                                                     (2.5)

1 { }

X X

X

E var S E Sn
E

n E S E S E E S


   
 

      
        

consider  

                              
 

2 2   2 2 2

1

1

1

n

i

i

E X S E X X nX
n 

  
   

   
       

2 2 4

1

1

( 1)

n

i

i

E X X nX
n 

 
  

  
                                

   
 

2

2 4

2

1 1

1

1 1

n n

i i

i i

n
E X X E X

n n n 

    
     

      

                  

                                                                                       A B     

 
 4

1

n
B E X

n



and 

 
 

2

2

2

1 1

1

1

n n

i i

i i

A E X X
n n  

  
   

   

 
 
  

  herew 

  consider 

 

1

2 2

2

1 21 1

1
  2

1

n nn n

i i j i

i ji i

A E X X X X
n n
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2
1

2 2

2

1 21 1

1
  2

1

n n n n

i i i j

i ji i

E X X X X
n n



  

     
      

       

       

 

1 1 2 1

4 2 2 3 2

2

1 2 1 2 1 2 31

1
2 2 2

1

n n n n n n n n

i i j i j i j k

i j i j i j ki

E X X X X X X X X
n n

   

      

 
    

  
      

 

         

     

1 1

4 2 2 3

1 2 1 21

2 2 1

2

1 2 3

2 2
1

1
2

n n n n n

i i j i j

i j i ji

n n n

i j k

i j k

E X E X E X E X E X

n n
E X E X E X

 

   

 

  

 
  

 
 
 
 

   

  

       

Use of Eq. (1.12), with r=1, 2, 3, 4, we have: 

 

       

       

1
24 2 4

1 21

2 1 2 1
23 2

1 2 1 2 3

1 2 3 2 1
1

1
2 1 2   2 1

n n n

i ji

n n n n n

i j i j k

A
n n

       

        



 

  

    

 
     

 
 
     
 

 

    

 

 

         

     
   

 

24 2 4

2
2 4 3 4

1 2 3 1 1
1

2n n 1 n 2
1 2 1 1 2 1

2

n n n

n n n n

       

      

      
 

   
       

 

           

4

2

( 1)
[( 2)( 3)]

( 1)

n
n n

n n

  
 


  


     

and          

                                                                             
 

 4

1

n
B E X

n



     

Use of Eq. (1.31), with r=4, we have: 

                         
 

     

4

  1 2 3
1

n
B n n n n

n n


   

 
     

  
     

 
     

4

2
1 2 3

1
n n n

n n


     


         

  so 

 
 

 
   

 
     

4 4

2 2

2 2

1
2 3 1 2 3

1 1

n
E X S n n n n n

n n n n
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2 3n n
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Now 
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Therefore 
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2

2 4

2 3

11 6 2
2

1 1 n
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n

nn n
E
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2 31

6 2
2                                                                 (2.6)

1 11
1

n nn

n n

n n

 


 

                 
     

             

By taking the limit of Eq. (2.6) as 𝑛 → ∞ ,we get: 
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Therefore, according to definition (1.7.4) 𝛼 ̂is asymptotically unbiased estimator 

for 𝛼, where the bias of �̂� is:                               

                                                                           b E                                   2.7  
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2.3.2) Approximation to the variance of 𝜶 ̂:) 

   Use of Eq. (2.4) with 𝑋 = �̅�2 𝑎𝑛𝑑 𝑌 = 𝑆2 , we have:   
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 2.8                                                   
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(2.3.3) Approximation to the mean of �̂�: 

         Consider the expectation of β ̂given by Eq. (1.25)     
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Use of Eq. (2.3), with 𝑋 = 𝑆2 and 𝑌 = �̅�, we have: 
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Use of Eq. (1.12) with r=2, 3 we have:  
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Use of Eq. (1.31), with r=3, we have: 
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By taking the limit of Eq. (2.9) as 𝑛 → ∞, we get :   
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Therefore �̂� is asymptotically unbiased estimator for 𝛽, where the bias of �̂� is            

           b E                                                                                              2.10  
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(2.3.4) Approximation to the variance of �̂� :   

Use of Eq. (2.4) with 𝑋 = 𝑆2 𝑎𝑛𝑑 𝑌 = �̅�, we have: 
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 (2.3.5) Mean Square Error of the MM Estimators: 

Using the definition (1.7.5), we have: 
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Taking the limit as 𝑛 → ∞, we have: 

         lim , 0
n

M S E  


  

     Then according to the definition (1.7.6), �̂� is mean square error consistent 

estimator of 𝛼, similarly: 
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Where 𝑣𝑎𝑟(�̂�) and 𝐸(�̂�) are given by Eq.'s (2.11) and (2.9) respectively. 
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Taking the limit as 𝑛 → ∞, we have: 

           lim , 0
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Accordingly, �̂� is mean squared error consistent estimator of 𝛽 

 

2.4 Estimation of Parameters by Maximum Likelihood Method: 

       For gamma case, let 𝑋1, 𝑋2, … , 𝑋𝑛 be a 𝑟. 𝑠. of size 𝑛 from 𝐺(𝛼, 𝛽) where the 

distribution 𝑝. 𝑑. 𝑓. is given by Eq. (1.1). So the likelihood function is: 
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The log likelihood function is:  
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 Where       
d
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  are known as the diagamma and 

trigamma respectively. 

The MLE of  𝛼 and 𝛽 are therefore given by setting: 
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From Eq. (2.17) and (2.18), we have: 
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and the large sample information variance – covariance matrix is: 
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The asymptotic variances and covariance of MLE are: 
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                                                                            (2.22)  

        Analytic solution of �̂� and �̂� can not be obtained from the non – linear 

equations (2.19) and (2.20), so iterative (numerical) method to the likelihood is 

required such as Newton – Raphson which can be made as follows: 

Let  
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       The Newton – Raphson approximation for �̂� can be found by using repeatedly 

the following recurrence formula: 
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       If tables of the digamma and trigamma functions are not available, an 

excellent approximation is given by [1]: 
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        Use the approximation of equations (2.26) and (2.27), then equation (2.25) 

becomes: 
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                                   (2.28)  

       The right hand side of Eq. (2.28) yields a new trial value for �̂�, where the 

process is repeated until successive �̂� estimates agree to a given specified 

tolerance. While the value of the estimator �̂� is obtained by using (2.19) which
 X
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3.1 Introduction: 

        In this chapter, we shall introduce several alternative estimators for the shape 

parameter of MLM that are proposed in literatures that are concerned with 

theoretical approximation to their biases and variances were developed and used to 

compare the variance and mean square error properties of the estimators. A new 

estimator for the shape parameter based on bias correction for the maximum 

likelihood estimator is derived and evaluated by simulation. 

 

3.2 Improved Estimators of MLM: 

        Several estimators are proposed in literatures for improvement of MLE and 

some of their properties are developed and investigated.  

       McCullagh and Nelder [12] consider a number of estimators for the shape 

parameter α. The first is the ML estimator �̂� which is the solution of                         

        2n ln D    
 

                                                                                      (3.1)  

Where 𝜓(𝛼) =
𝑑

𝑑α
𝑙𝑛Г(𝛼) is the digamma function and D is the deviance statistic 

given by:  

 (3.2)                                                                                 2  
i

D n n lnX lnx  
            

        The deviance statistic D is proportional to the twice difference between the 

maximum attained value of the log-likelihood and log-likelihood when α is treated 

as known.                                       

         An exact solution for �̂� satisfying Eq. (3.1) has to be found iteratively. 

 Green Wood and Durand [8] give the approximation: 

 1 2

1 1 1 1

2

1 1

12

1 1 1

0.500876 0.1648852 0.0544274 , 0 0.5772

8.898919 9.05995 0.9775373
,  0.5772

(17.79728 11.968477 )

D D D D

D D
D

DD D



    


   


 

  

    where  𝐷1 =
𝐷

2𝑛
. 

     The maximum errors in these approximations are claimed to be 0.0088% and 

0.0054% respectively. 
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Using the asymptotic formula [16]  

 (3.3)                                                               6

2 4
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2 12 120
ln o   

  


          

and usage of the approximation 𝜓(𝛼) given by the equation [1]: 
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          We propose that, if 𝛼 is sufficient large and terms of order 𝛼−2 and 𝛼−1 are 

ignored in equations (3.3) and (3.4) respectively, we have:                                                                                 

        
1

2
ln  


                                                                                       (3.5)  

and  

(3.6)                                                                             
11

    (2 )
3

ln   


                  

Equations (3.5) and (3.6) provide the following simple approximation to �̂� 
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Also, Cordeiro, G.M [4] show that the expectation of the deviance statistic is: 

(3.9)                                                                 12
2E D n ln o n  




                   

         Equating D to its expectation corrected to 𝑜(𝑛−1), McCullage and Nelder 

suggest that the improvement to the ML procedure is to use the estimator �̂�3 which 

is the solution of:  
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 If terms of 𝑜(𝛼−2) are ignored, the estimators  

(3.11)                                                                                          
1

4 2n D


               

Provides an approximation to �̂�3. 
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         The final estimator proposed by McCullagh and Nelder is the moment 

estimator      :  

 (3.12)                                                                                         
1

5           n 2 T


        

Where T = ∑ (𝑥𝑖 − 1)2𝑛
𝑖=1  is the Pearson statistic for the gamma shape 

parameter 𝛼. This estimator has the advantage of being much less sensitive to very 

small samples of gamma distn than the estimators based on the deviance statistic 

which is infinite if any observation is zero.   

                                                                                                                         

3.3 Bias Corrected Estimators for the Shape Parameter: 

         The bias of the MLE for the shape parameter 𝛼 of gamma distn was 

developed theoretically to order 𝑛−1 by AL-Abood, A.M. [1] as: 
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by using the expansions:  
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and neglecting terms of o(𝛼−2), we obtain from Eq.(3.13) 
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        Making a direct correction for the bias of �̂�, and terms of o(𝛼−2) are ignored, 

we lead to a new biased estimator 

6

3
(1 )

n
                  

Where �̂� is the MLE for 𝛼. 
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3.4 Monte-Carlo Investigation: 

       In this section, we report the results of a large scale Monte – Carlo 

investigation to assess the approximation to the biases and variances of the MM 

and MLM estimators and to make comparisons by using their mean square error. 

       In order to assess the adequacy of the theoretical approximations, a large 

Monte – Carlo study was made by generating random sample of size n=5 (1) 10 (2) 

20 (5) 30 according to theorems (1.9.5) and (1.9.3), where initial values of 𝛼 =

5,7,9 and 𝛽 = 1. A simulation run size of 500 was used. 

 Tables (1) and (2) show the values of the biases of the MM estimators (�̂�, �̂�) as 

obtained by simulation due to Eq.s (1.24) and (1.25) and by approximation that 

obtained due to Eq.'s (2.6), (2.7), (2.9), and (2.10). 

 

 Table (1): Values of Bias(�̂�) for MM estimators  

 

 

 

 

 

 

𝛽 = 1 

𝛼=5 𝛼=7 𝛼=9 

n Approximation Simulation Approximation Simulation Approximation Simulation 

5 5.25 2.37083 7 2.98716 8.75 3.32808 

6 4.08 2.40943 5.44 2.2744 6.8 2.7626 

7 3.33333 1.42182 4.44444 1.72905 5.55556 3.00455 

8 2.81633 1.68867 3.7551 1.98075 4.69388 1.94989 

9 2.4375 1.93541 3.25 1.15999 4.0625 2.40418 

10 2.14815 2.25317 2.8642 1.90294 3.58025 2.89508 

12 1.73554 1.2234 2.31405 1.36811 2.89256 1.73801 

14 1.45562 1.35262 1.94083 0.98249 2.42604 1.07712 

16 1.25333 1.1387 1.67111 1.45167 2.08889 1.92193 

18 1.10035 0.97917 1.46713 1.47563 1.83391 1.68708 

20 0.98061 0.9987 1.30748 0.99699 1.63435 1.39289 

25 0.77083 0.9141 1.02778 0.9413 1.28472 1.21671 

30 0.63496 0.55858 0.84661 0.83417 1.05826 0.7874 
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 Table (2): Values of Bias(�̂�) for MM estimators  

 

Tables (3) and (4) show the values of the variances of the MM estimators (�̂�, �̂�) as 

obtained by simulation by using the sample variance and by approximation that 

obtained due to Eq.'s (2.8) and (2.11). 

 

 Table (3): Values of Variance(�̂�) for MM estimators  

 

𝛽 = 1 

𝛼 = 5 𝛼 = 7 𝛼 = 9  

n Approximation  Simulation  Approximation  Simulation  Approximation  Simulation  

5 -0.232 -0.15378 -0.22286 -0.11832 -0.21778 -0.11915 

6 -0.19444 -0.11074 -0.18651 -0.08912 -0.1821 -0.06205 

7 -0.16735 0.0127 -0.16035 -0.06793 -0.15646 -0.12339 

8 -0.14687 -0.10286 -0.14063 -0.10512 -0.13715 -0.04692 

9 -0.13086 -0.14353 -0.12522 0.0018 -0.12209 -0.11695 

10 -0.118 -0.18514 -0.11286 -0.06488 -0.11 -0.14579 

12 -0.09861 -0.06449 -0.09425 -0.02788 -0.09182 -0.04229 

14 -0.08469 -0.13184 -0.0809 -0.00416 -0.0788 0.03444 

16 -0.07422 -0.06029 -0.07087 -0.04212 -0.06901 -0.05979 

18 -0.06605 -0.06149 -0.06305 -0.07001 -0.06139 -0.04682 

20 -0.0595 -0.07074 -0.05679 -0.02775 -0.05528 -0.03871 

25 -0.04768 -0.07811 -0.04549 -0.04598 -0.04427 -0.04803 

30 -0.03978 -0.0299 -0.03794 -0.04317 -0.03691 -0.01658 

𝛼 = 5, 𝛽 = 1 𝛼 = 7, 𝛽 = 1 𝛼 = 9, 𝛽 = 1 

n Approximation Simulation Approximation Simulation Approximation Simulation 

5 24.375 12.12293 45 23.72805 71.875 24.86459 

6 17.856 12.18914 33.024 12.81018 52.8 24.38329 

7 14 8.71919 25.92593 10.8948 41.48148 21.70034 

8 11.47522 7.82786 21.27114 11.7356 34.05248 16.22109 

9 9.70313 9.14601 18 9.59002 28.82813 15.59192 

10 8.39506 10.26788 15.58299 14.77234 24.96571 19.54907 

12 6.59955 9.11409 12.26146 14.34252 19.6544 18.6218 

14 5.42922 4.80818 10.09376 7.35904 16.18571 14.63454 

16 4.608 5.97148 8.57126 10.85605 13.74815 17.83718 

18 4.0081 5.00374 7.44474 9.29434 11.94382 15.56929 

20 3.53404 4.59067 6.57822 7.27794 10.55547 11.64068 

25 2.73438 3.4305 5.09259 5.30994 8.17419 8.52178 

30 2.22887 2.3261 4.15269 4.52283 6.66694 6.87471 
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Table (4): Values of Variance(�̂�) for MM estimators 

 

Tables (5) and (6) show the values of the mean square error of the MM estimators 

(�̂�, �̂�) as obtained by simulation by using the sample mean square error and by 

approximation that obtained due to Eq.'s (2.12) and (2.13). 

 

Table (5): Values of Mean Square Error(�̂�) for MM estimators 

  

 

𝛼 = 5, 𝛽 = 1 𝛼 = 7, 𝛽 = 1 𝛼 = 9, 𝛽 = 1 

n Approximation Simulation Approximation Simulation Approximation Simulation 

5 0.3968 0.20328 0.37486 0.18724 0.36267 0.21977 

6 0.34722 0.28505 0.32738 0.23484 0.31636 0.20874 

7 0.30787 0.30435 0.28988 0.17256 0.27988 0.15019 

8 0.27617 0.15397 0.25977 0.13748 0.25065 0.13354 

9 0.25021 0.16917 0.23516 0.16267 0.22679 0.11304 

10 0.2286 0.13217 0.21471 0.17134 0.207 0.10064 

12 0.19479 0.18355 0.18279 0.14324 0.17612 0.14211 

14 0.16961 0.10034 0.15905 0.12591 0.15318 0.16734 

16 0.15015 0.14042 0.14073 0.12996 0.1355 0.12219 

18 0.13467 0.11983 0.12618 0.11163 0.12146 0.11806 

20 0.12207 0.10687 0.11434 0.10645 0.11004 0.09459 

25 0.09892 0.08947 0.0926 0.07083 0.08909 0.06979 

30 0.08313 0.07528 0.07779 0.06948 0.07483 0.06695 

𝛼 = 5, 𝛽 = 1 𝛼 = 7, 𝛽 = 1 𝛼 = 9, 𝛽 = 1 

n Approximation Simulation Approximation Simulation Approximation Simulation 

5 51.9375 17.74376 94 32.65115 148.4375 35.94073 

6 34.5024 17.9945 62.6176 17.98306 99.04 32.01525 

7 25.11111 10.74075 45.67901 13.88441 72.34568 30.72767 

8 19.40691 10.67946 35.37193 15.65898 56.08496 20.02317 

9 15.64453 12.89183 28.5625 10.93559 45.33203 21.37202 

10 13.0096 15.34466 23.78662 18.39353 37.78387 27.93055 

12 9.61164 7.54232 17.61628 16.21425 28.02131 21.64248 

14 7.54806 6.63777 13.86058 8.32432 22.07136 15.79473 

16 6.17884 7.26812 11.36387 11.36387 18.1116 21.53101 

18 5.21158 5.96251 9.5972 11.47182 15.30705 18.41552 

20 3.53404 5.58808 8.28772 8.27193 13.22657 13.58082 

25 3.32856 4.26608 6.14892 6.19598 9.8247 10.00215 

30 2.63205 2.63812 4.86944 5.21867 7.78686 7.49471 
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 Table (6): Values of Mean Square Error(�̂�) for MM estimators 

 

Tables (7), (8) and (9) show the values of the biases, variances and mean square 

error of the MLE (�̂�, �̂�) as obtained by simulation and by theoretical that obtained 

due to Eq.'s (3.16) and (2.22) respectively. 

       While tables (10), (11) and (12) show the values of biases of MLE �̂� together 

with the values of the improved biases �̂�1, �̂�2, �̂�4, �̂�5 and the values of the 

corrected bias estimator �̂�6.  

 

 

 

𝛼 = 5, 𝛽 = 1 𝛼 = 7, 𝛽 = 1 𝛼 = 9, 𝛽 = 1 

n Approximation Simulation Approximation Simulation Approximation Simulation 

5 0.45062 0.22692 0.42452 0.20124 0.41009 0.23397 

6 0.38503 0.29732 0.36217 0.24278 0.34952 0.21259 

7 0.33588 0.30451 0.31559 0.17717 0.30436 0.16541 

8 0.29774 0.16455 0.27954 0.14853 0.26946 0.13574 

9 0.26733 0.18977 0.25084 0.16268 0.2417 0.12671 

10 0.24252 0.16645 0.22745 0.17555 0.2191 0.1219 

12 0.20452 0.18771 0.19167 0.14401 0.18455 0.1439 

14 0.17678 0.11772 0.16559 0.12593 0.15939 0.16853 

16 0.15565 0.14405 0.14575 0.13174 0.14026 0.12576 

18 0.13903 0.12361 0.13015 0.11653 0.12522 0.12025 

20 0.12562 0.11187 0.11756 0.10722 0.1131 0.09609 

25 0.10119 0.09558 0.09467 0.07294 0.09105 0.07209 

30 0.08472 0.07617 0.07923 0.07134 0.07619 0.06723 
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Table (7) Values of Bias  and Bias  for MLM estimators 

 

 

 

   

      
n Theoretical Simulation Simulation  Theoretical Simulation Simulation Theoretical Simulation Simulation 

5 3 2.04111 -0.10814 4.2 2.70891 -0.10844 5.4 3.02904 -0.10162 

6 2.5 2.1025 -0.10642 3.5 2.09933 -0.08322 4.5 2.40645 -0.05511 

7 2.14286 1.31711 -0.00551 3 1.60727 -0.07551 3.85714 2.5565 -0.09605 

8 1.875 1.31309 -0.03448 2.625 1.83353 -0.10689 3.375 1.61974 -0.01569 

9 1.66667 1.61363 -0.13241 2.33333 0.81528 0.01817 3 2.12565 -0.10182 

10 1.5 2.04787 -0.17605 2.1 1.67138 -0.03664 2.7 2.71648 -0.13586 

12 1.25 0.95664 -0.04089 1.75 1.06105 0.00314 2.25 1.55872 -0.03055 

14 1.07143 1.08533 -0.10668 1.5 0.97105 -0.0043 1.92857 0.90267 0.03876 

16 0.9375 0.98106 -0.05228 1.3125 1.31881 -0.04178 1.6875 1.64802 -0.05027 

18 0.83333 0.84131 -0.05429 1.16667 1.21819 -0.05314 1.5 1.51209 -0.04039 

20 0.75 0.84259 -0.05756 1.05 0.87179 -0.02577 1.35 1.2887 -0.03513 

25 0.6 0.80161 -0.07397 0.84 0.83423 -0.03704 1.08 1.10255 -0.04064 

30 0.5 0.42132 -0.01699 0.7 0.68198 -0.03341 0.9 0.68123 -0.01359 
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Table (8) Values of Variance  and Variance  for MLM estimators 

 

 

 

   

      
n Theoretical Simulation Simulation  Theoretical Simulation Simulation Theoretical Simulation Simulation 

5 9.41667 11.11392 0.23477 18.77647 22.6066 0.16325 31.33636 22.80789 0.21954 

6 7.84722 10.15468 0.19921 15.64706 12.71802 0.18108 26.11364 21.11633 0.17912 

7 6.72619 7.92019 0.22353 13.41176 9.32675 0.14289 22.38312 19.15875 0.14975 

8 5.88542 8.10156 0.18817 11.73529 10.1473 0.11633 19.58523 16.00244 0.12485 

9 5.23148 7.6699 0.13585 10.43137 7.71405 0.13101 17.40909 14.18832 0.1058 

10 4.70833 9.20799 0.12061 9.38824 14.91269 0.1672 15.66818 18.40463 0.10182 

12 3.92361 5.0632 0.16887 7.82353 12.75732 0.14965 13.05682 18.41361 0.13632 

14 3.3631 3.98227 0.08729 6.70588 7.44462 0.11956 11.19156 13.45246 0.14605 

16 2.94271 5.22839 0.11526 5.86765 9.62167 0.10916 9.79261 15.47995 0.10377 

18 2.61574 4.29514 0.1018 5.21569 8.20768 0.09548 8.70455 14.14481 0.10624 

20 2.35417 4.02474 0.09339 4.69412 6.23494 0.09011 7.83409 10.84131 0.08903 

25 1.88333 2.78473 0.07494 3.75529 4.92104 0.06834 6.26727 7.99315 0.06645 

30 1.56944 1.97305 0.06202 3.12941 3.86593 0.0596 5.22273 5.96691 0.05844 
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Table (9) Values of Mean Square Error  and Mean Square Error  for MLM estimators 

 

 

 

   

      
n Theoretical Simulation Simulation  Theoretical Simulation Simulation Theoretical Simulation Simulation 

5 18.41667 15.28005 0.24646 36.41647 29.94481 0.17501 60.49636 31.98299 0.22987 

6 14.09722 14.57519 0.21054 27.89706 17.1252 0.18801 46.36364 26.90734 0.18216 

7 11.31804 9.65496 0.22356 22.41176 11.91008 0.14859 37.26065 25.69446 0.15898 

8 9.40105 9.82577 0.18936 18.62592 13.50912 0.12775 30.97586 18.62599 0.1251 

9 8.00927 10.2737 0.15338 15.87579 8.37873 0.13134 26.40909 18.70671 0.11617 

10 6.95833 13.40175 0.15161 13.79824 17.70619 0.16854 22.95818 25.78391 0.12027 

12 5.48611 5.97837 0.17054 10.88603 13.88315 0.14966 18.11932 20.8432 0.13725 

14 4.51106 5.16022 0.09867 8.95588 8.38757 0.11958 14.91094 14.26727 0.14755 

16 3.82162 6.19087 0.118 7.59031 11.36092 0.11091 12.64027 18.19592 0.10629 

18 3.31018 5.00294 0.10474 6.57681 9.69166 0.09831 10.95455 16.43123 0.10787 

20 2.91667 4.7347 0.0967 5.79662 6.99497 0.09077 9.65659 12.50205 0.09026 

25 2.24333 3.4273 0.08041 4.46089 5.61698 0.06971 7.43367 9.20876 0.0681 

30 1.81194 2.15056 0.06231 3.61941 4.33102 0.06072 6.03273 6.43099 0.05862 
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Table (10) Values of Improved Bias Estimator for MLM with  

 
Theoretical Simulation 

n        
5 3 2.04111 -3.62401 -3.45734 -4.17441 -4.96307 2.81644 

6 2.5 2.1025 -3.84315 -3.67648 -4.22877 -4.96502 3.55125 

7 2.14286 1.31711 -4.12051 -3.95384 -4.37179 -4.96422 3.60977 

8 1.875 1.31309 -4.23096 -4.06429 -4.42322 -4.95987 3.94568 

9 1.66667 1.61363 -4.28306 -4.11639 -4.44238 -4.95538 4.40908 

10 1.5 2.04787 -4.31137 -4.1447 -4.4491 -4.95391 4.93350 

12 1.25 0.95664 -4.517 -4.35033 -4.5975 -4.9533 4.46748 

14 1.07143 1.08533 -4.57683 -4.41017 -4.63728 -4.95418 4.78133 

16 0.9375 0.98106 -4.63623 -4.46957 -4.6817 -4.95527 4.85961 

18 0.83333 0.84131 -4.68441 -4.51774 -4.71948 -4.95368 4.86775 

20 0.75 0.84259 -4.71591 -4.54924 -4.74432 -4.95386 4.96620 

25 0.6 0.80161 -4.77437 -4.6077 -4.79242 -4.95285 5.10541 

30 0.5 0.42132 -4.82464 -4.65797 -4.83633 -4.95415 4.87918 

 

 

 



Improve Estimators for Maximum Likelihood Method Chapter Three 

41 
 

41 

 

Table (11) Values of Improved Bias Estimator for MLM with  

 
Theoretical Simulation 

n        
5 4.2 2.70891 -5.09075 -4.92409 -5.85445 -6.98424 3.88356 

6 3.5 2.09933 -5.51055 -5.34388 -6.00703 -6.98287 4.54967 

7 3 1.60727 -5.79361 -5.62694 -6.13829 -6.98177 4.91844 

8 2.625 1.83353 -5.91614 -5.74947 -6.1871 -6.98063 5.52096 

9 2.33333 0.81528 -6.14965 -5.98298 -6.33862 -6.98122 5.21018 

10 2.1 1.67138 -6.1491 -5.98243 -6.31928 -6.9799 6.06997 

12 1.75 1.06105 -6.34176 -6.17509 -6.45146 -6.97902 6.04579 

14 1.5 0.97105 -6.44223 -6.27557 -6.52191 -6.97953 6.26297 

16 1.3125 1.31881 -6.49023 -6.32356 -6.55395 -6.97925 6.75903 

18 1.16667 1.21819 -6.55246 -6.38579 -6.60219 -6.97847 6.84845 

20 1.05 0.87179 -6.61453 -6.44786 -6.65307 -6.97838 6.69102 

25 0.84 0.83423 -6.69313 -6.52646 -6.71768 -6.97809 6.89412 

30 0.7 0.68198 -6.74935 -6.58268 -6.76606 -6.97765 6.91378 
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Table (12) Values of Improved Bias Estimator for MLM with  

 
Theoretical Simulation 

n        
5 5.4 2.61479 -6.70971 -6.54305 -7.62583 -8.99102 4.64592 

6 4.5 2.40645 -7.12617 -6.9595 -7.75078 -8.99045 5.70323 

7 3.85714 2.5565 -7.37243 -7.20577 -7.83745 -8.98929 4.95277 

8 3.375 1.61974 -7.69295 -7.52628 -8.01971 -8.98972 6.63734 

9 3 2.12565 -7.78199 -7.61532 -8.05266 -8.98842 7.4171 

10 2.7 2.71648 -7.84471 -7.67805 -8.07577 -8.98815 8.20154 

12 2.25 1.55872 -8.13372 -7.96705 -8.2781 -8.98791 7.91904 

14 1.92857 0.90267 -8.30432 -8.13765 -8.4037 -8.98821 7.78067 

16 1.6875 1.64802 -8.34471 -8.17804 -8.42662 -8.98759 8.65152 

18 1.5 1.51209 -8.42507 -8.2584 -8.48895 -8.98742 8.76008 

20 1.35 1.2887 -8.49373 -8.32707 -8.54436 -8.98747 8.74539 

25 1.08 1.10255 -8.60243 -8.43577 -8.63424 -8.98719 8.89024 

30 0.9 0.68123 -8.68273 -8.51607 -8.70388 -8.98702 8.71311 
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Conclusions and Recommendations 

(1) The biases of moment method estimators �̂� and �̂� as given in tables (1) and (2) 

show that the approximation values is over estimate than the simulation values 

for small sample sizes and it is rapidly become adequate for moderate and large 

samples. 

 

(2) Tables (3) and (4) show that the values of variance �̂� as given by 

approximation equation (2.8) approach slowly to the simulated values as 𝛼 and 

the sample size n are increases. While the values of variance �̂� as given by the 

approximation equation (2.11) are excellent in comparison with the simulated 

values, and that reflect on the values of the mean square error of �̂� and �̂� as a 

consequences behavior of the variances. 

 

(3) Table (7) show an excellent closeness between the values of the biases of 

maximum likelihood method estimators �̂� and �̂� as obtained theoretically by 

equation (3.16) and by simulation. These biases show that they are superior 

than those of moment method. 

 

(4) Tables (8) and (9) show that the variances and mean square errors values of 

maximum likelihood method of �̂� and �̂� as obtained theoretically by equation 

(2.22) and by simulation are good for all sample sizes and approach zero as the 

sample size n increase . Furthermore these results are better than the results as 

given by tables (3), (4), (5) and (6). 

  

(5) Tables (10), (11) and (12) show the bias values of maximum likelihood method 

𝑏(�̂�) with the values of the McCllage and Nelder bias estimators 

𝑏(�̂�1), 𝑏(�̂�2), 𝑏(�̂�4) and  𝑏(�̂�5) together with the value of a new bias estimator 

�̂�6. We disagree with the proposed estimators of McCllage and Nelder that 

give an improvement while the new corrected bias that we propose gives 

results better than the results of moment method and maximum likelihood 

method. 

      For future works, the following problems may be recommended: 

(1)  Other numerical method could be used for an approximate solution of equation 

(2.24) such as bisection method, fixed point method, secant method ,..,etc, 

which might be compared with the used Newton – Raphson method in this 

thesis. 
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(2)  The approximate biases and variances values of moment method as given in 

tables (1) and (2) become more closer to the simulation biases and variances 

values if we approximate by the Taylor series expansion up to 3rd order of 

partial derivatives. 

 

(3) This work can be used to generalize gamma distribution of three parameters 

and other life distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

45 
 

References 

[1] Akram M. Al-Abood, "Some statistical Problems Relating to Exponential                 

and Gamma Regression", Ph.D. Thesis, West London, University England 

U.K.   (1986). 

 

[2]  Alexander M. M., "Introduction to the Theory of Statistics", Franklin A. Gray 

bill, Pittenger Duane C. Bose, McGraw-Hill, 3rd edition, (2005).  

 

[3] Apolloni, B. and Bassis, S., "Algorithmic Inference of Two-Parameter Gamma 

Distribution", communications in statistics - Simulation and Computation, 

LSSP – 0057. R1, Original paper, (2009).   

      

[4]  Carderio, G.M., "Improved likelihood ratio statistics for generalized linear 

models", J.R. stat. soc. B, 45, 404 – 413, (1983). 

 

[5]  David E. Giles and Hui F., "Bias of the Maximum Likelihood Estimators of 

the Two-Parameter Gamma Distribution Revisited", September, (2009). 

 

[6] Friedman N., Cai L. and Xie X. S., "Linking stochastic dynamics to 

population distribution: An analytical framework of gene expression", Phys. 

Rev. Lett. 97, 168302, (2006). 

 

[7]  Gomes, Combes O., Dussauchoy C., A.," Parameter estimation of the 

generalized gamma distribution", Mathematics and Computers in Simulation, 

Vol 79, Issue: 4 Pages: 955-963, Provider: Elsevier, Publisher: North-Holland, 

(2008). 

 

[8]  Greenwood, J. A. and Durand, D., "Aids for fitting the gamma distribution by 

maximum likelihood", Techno metrics, 2, 55 – 65, (1960). 

 

[9]  Hafzullah A., "Use of Gamma Distribution in Hydrological Analysis", 

Istanbul Technical University, civil Engineering Faculty, Hydraulics Division, 

80626 Ayazaga, Istanbul-TURKEY, (1999). 

 

[10] H´ector M. R., Antonio P., Jorge O. and Mar´ıa G. R., " Analysis of inequality 

in fertility curves fitted by gamma distributions", SORT 37 (2) July-

December , 233-240, (2013). 

 

[11] Hogg, R. V. and Craig, A. T., "Introduction to Mathematical Statistics", 

Macmillan Publishing Co., Inc., New York, Collier Macmillan Publisher 

London, the university of  Iwo A., (1970). 

 



 

46 
 

[12] McCullagh, P. and Neider, J. A. "Generalized Linear models", London: 

Chapman and Hill, (1983). 

 

[13] Mitra S. a, Washington S. b,"On the nature of over-dispersion in motor vehicle 

crash prediction models", a civil and Environmental Engineering  Department, 

Cal Poly. State University, San Luis Obsipo,CA 93407-0353, United states, b 

Department of civil and Environmental Engineering. Arizona State 

University, PO Box 875306, Tempe, AZ 85287-53006, United States, (2003). 

 

[14] Oscar A. R-J, Araceli C. C-C, Oscar L. S-F, "Prediction under Bayesian 

approach of car accident in urban intersections", 3rd International Conference 

on Road Safety and Simulation, September 14-16, USA, (2011).  

 

[15] Rahman. N. A. "A Course in Theoretical Statistics", Hafner Pub. Co. , New 

York , (1968). 

 

[16] R.D. Al – Faris, "Approximation to incomplete complete gamma integral 

with random variates procedures simula", Msc. Thesis, Dept. of Math. and 

Comp. Applications, college of science, Al – Nahrain University, Baghdad, 

IRAQ, (1997). 

 

[17] Robson J. G. and Troy J. B, "Nature of the maintained discharge of Q, X, and 

Y retinal ganglion cells of the cat", J. Opt. Soc. Am. A 4, 2301–2307 (1987). 

 

[18] Smith,O.E; Adelfang, S.I.; Tubbs, J.D, "A bivariate gamma probability 

distribution with application to gust modeling", for the ascent flight of the 

space shuttle., Technical Report, NASA-TM-82483, NAS 1.15:82483, 

(1982). 

 

[19] Thanon, B. U., "Probability and Random Variares", Mosel University, (1991). 

 

[20] Thomas P.M, "Estimating a Gamma distribution" (2002).    

http://research.microsoft.com/en-us/um/people/minka/papers/minka-

gamma.pdf. 

 

[21] Zack, S. "The Theory of Statistical Inference", John Wiley and Sons. Inc. , 

New York, (1971). 

 

 

 

 

 

http://research.microsoft.com/en-us/um/people/minka/papers/minka-gamma.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/minka-gamma.pdf


 
 

 الملخص

تطرقنا الى توزيع كاما لاهميته في تطبيقات الاختبارات الحياتيه وبحوث البقاء والتي تظهر  الرسالةفي هذه 

 في الدراسات الطبيه للامراض المزمنه وحياه المركبات الصناعيه.

 ةباستخدام مفكوك تايلر مقرب لغايه المشتق تقريب لمعدل وتباين مخمنات طريقة العزوم اشتقت نظريا  

. مخمنات الترجيح الاعظم اشتقت نظريا وقورنت مع مخمنات مقترحه في الموسوعه العلميه . ةالثاني ةالجزئي

حيث اظهر التطبيق عند حجوم العينات المتوسطة والكبيرة أن قيم التحيز لمخمنات طريقة العزوم متفقه مع 

 .متفقه تماما  بالطرقتين التباين لمعلمة القياس اكاة. بينما كانت قيمقيم التحيز لطريقة المح

مع  ةهر تحسن اكبر بالمقارنظفترضنا تحيز لمخمن معدل جديد يعتمد على مخمن الترجيح الاعظم والذي اأ

 ةالنتائج النظري .Pearsonو,McCullagh ,Nelder,Cordeiroالمقترحة من قبل  المخمنات الاخرى

 كارلو وقورنت باستخدام مقياس معدل مربع الخطأ. –اختبرت باستخدام طرائق مونت 
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