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Summary

In this thesis, we study the gamma distribution because it has many
applications in life — testing, survival and reliability investigation that appear in
medical studies of chronic diseases and industrial life — testing. Approximation to
the mean and variance of moments method estimators is made theoretically by
using Taylor series expansion approximated up to second partial derivatives. The
maximum likelihood estimators are derived and compared with several estimators
that proposed in the literature. Where the practice show that the bias values of
moment method estimators are adequate with the simulated bias values for
moderate and large sample. While the variance values of the scale parameter are
excellent in comparison with the simulated values.

A new bias corrected estimator based on the maximum likelihood estimator
Is suggested and show better performance in comparison with the other estimators
proposed by McCullagh ,Nelder, Cardeiro, and Pearson.

The theoretical results are tested by using Monte — Carlo simulation and
compared by utilizing the measurement of mean square error.
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Notations and Abbreviations

r.v = random variable.

r.s = random sample.

U(a,b) = Uniform distribution with parameters a and b.
p.d.f = probability density function.

c.d.f= cumulative distribution function.

m.g.f = moment generating function.

G(a, ) = Gamma distribution with parameters « and 5.
¥*(r) = Chi — square distribution with r degrees of freedom.
Exp (8) = Exponential distribution with parameter 3.
MM = Moments Method.

MLE = Maximum Likelihood Estimator.

MLM = Maximum Likelihood Method.

b(8) = bias of §.

var (&) s, = Asymptotic variance.

cov(d&, ,{?]M}, = Asymptotic covariance.

distn. = distribution.

Eqg. = Equation.
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Introduction:

The gamma distribution arise as a model from statistical studies of interval
between events occurring in time or space, specifically when the interest in the
waiting time from the occurrence of one event until r further events have occurred
in a Poisson process with constant rate 4, [14]. This distribution sometimes referred
to as a special Erlangian distribution after the Swedish scientist who used the
distribution in early studies of queuing problem [2].

The gamma distribution has an important applications in the study of life
time models, such as stops of a machine, failure or breakdowns of an equipment
(e.g. electronic computer), air or road accidents [14], [12], coal mining disasters,
telephone calls, daily rainfall [9], etc., are examples of such events that occur in a
real time and have properties experted for gamma case [18].

Many authors and researchers concerned with the gamma distribution such
as Minka, Thomas P. in 2002, [20] derives a fast algorithm for maximum-
likelihood estimation of both parameters of a Gamma distribution or negative-
binomial distribution, Gomes, O. Combes, C. Dussauchoy, A. in 2008, [7] focuses
on the parameter estimation of the generalized gamma distribution. Because of
many difficulties described in the literature to estimate the parameters, they
propose here a new estimation method. The algorithm associated to this heuristic
method is implemented in Splus. They validate the resulting routine on the
particular cases of the generalized gamma distribution,

David E. Giles and Hui Feng in 2009, [5] considered the quality of the
maximum likelihood estimators for the two-parameter gamma distribution in small
samples. They show that the methodology suggested by Cox and Snell (1968) can
be used very easily to bias-adjust these estimators. A simulation study shows that
this analytic correction is frequently much more effective than bias-adjusting using
the bootstrap — generally by an order of magnitude in percentage terms. The two
bias-correction methods considered result in increased variability in small samples,
and the original estimators and their bias-corrected counterparts all have similar
percentage mean squared.

Apolloni, Bruno and Bassis, Simone in 2009, [3] provide an estimation
procedure of the two-parameter Gamma distribution based on the Algorithmic
Inference approach. As a key feature of this approach, they compute the joint
probability distribution of these parameters without assuming any prior. To this
end they propose a numerical algorithm which is often beneficial of a highly

IX



efficient speed up based on an approximate analytical expression of the probability
distribution. They contrast the interval and point estimation with those recently
obtained in Son and Oh (2006). They realize that the estimators are both unbiased
and more accurate, albeit more dispersed than Bayesian methods.

H ector M. Ramos, Antonio Peinado, Jorge Ollero and Mar’1a G. Ramos in
2013, [10] analyse fertility curves from a novel viewpoint, that of inequality
.Through sufficient conditions that can be easily verified, they compare inequality,
in the Lorenz and Generalized Lorenz sense, in fertility curves fitted by gamma
distributions, thus achieving a useful complementary instrument for demographic
analysis. As a practical application, they examine inequality behavior in the
distributions of specific fertility curves in Spain from 1975 to 2009.

In neuroscience, the gamma distribution is often used to describe the
distribution of inter-spike intervals, [17]. Although in practice the gamma
distribution often provides a good fit, there is no underlying biophysical motivation
for using it.

In bacterial gene expression, the copy number of a constitutively expressed
protein often follows the gamma distribution, where the scale and shape parameter
are, respectively, the mean number of bursts per cell cycle and the mean number of
protein molecules produced by a single mMRNA during its lifetime.[6]

This thesis consists of three chapters. In chapter one we gave a brief summary
of the important mathematical and statistical properties of gamma distribution.
Where as in chapter two, we gave a full discussion on the approximation to the
mean and variance of moments estimators by using Taylor series expansion and
the maximum likelihood estimators which are derived and approximated by using
Newton — Raphson method. In chapter three we introduce several alternative
proposed estimators for the shape parameter of the maximum likelihood method
with theoretical approximation to their biases and variances and a new estimator
for the shape parameter is suggested which is based on bias correction for the
maximum likelihood estimator.


http://en.wikipedia.org/wiki/Bacterial_genetics
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Copy_number_analysis
http://en.wikipedia.org/w/index.php?title=Constitutively_expressed&action=edit&redlink=1
http://en.wikipedia.org/wiki/Protein_molecule
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Chapter one Gamma Distribution

1.1 Introduction:

In this chapter, we shall introduce some definitions and mathematical forms
related to gamma distribution. Moment properties of the distribution are illustrated,
such as mean, variance, skewness, and kurtosis. Two methods of estimation are
used, namely moments method and maximum likelihood method for estimating the
distribution parameters. Some theorems are considered for generating random
variates from gamma distribution by Monte — Carlo simulation.

1.2 Definition: [11]

A continuous r.v X has a gamma distribution with parameters a and p,
denoted by X~G (a, B) if and only if its p.d. f. is given by:

a-1

-x/
x“ e 0<x <w

=0 LeWw .
where @ > 0,5 > 0 and I'(a) = fooox“‘le‘xdx
Is called a gamma function

To check the function of Eq. (1.1) is valid p.d. f., we note that f(x) > 0 for
all x and that

- J'x"’le’“”dx =0 (1.2)
C(a)B”

Tf (x)dx =

Making the transformation t = x/f in Eq. (1.2) or equivalently x = St with dx =
pBdt, we have:

A special case of the gamma distribution is called the exponential distribution
when a = 1, where the p.d. f. in Eq. (1.1) becomes:

1
f (X)z—e_X/ﬁ,OSx < oo

B

=0 JeW . (1.3)
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Also a special case of the gamma distribution is that play an extremely
important role in both theoretical and applied statistics when the r.v.
X~G(r/2,2), the p.d.f. in this case is:

1 r_
f(x)=——x2 e 2 0<x <

=0 ,e.W. 1.4)
Where r is positive integer.

The r.v X with p.d. f. of Eq. (1.4) is said to have a Chi-square distribution
with r degrees of freedom and denoted by X~y 2 (7).

The gamma distribution depends on the two parameters a and £ which are

often referred to as the shape and scale parameters. By varying the values of «a
and B, a wide range of distribution shape can be generated.

A computer program is made which gives a graphical representation of
gamma p.d.f.'s when o is an integer. lllustration in fig. (1.1) show some
p.d. f.'s for o fixed with 8 varying. The curve increasing to locate its maxima and
then decreasing to have the x axis as an asymptote, furthermore there is a sever
skeweness to the right as g increasing.

0.8]" —

f(x,2,2)

0.6 -
f(x,2,1)

f(x,2,0.5)0.4

0.2/‘\

] . NRSAALICY [T AP S e
0 2 4 6 8 10

Fig. (1.1) Gamma distribution for fixed a and various values of [
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In Fig. (1.2) show some p.d.f.'s for g fixed with a varying. A well known
exponential case arise when o = 1, and for a > 1 the curve arise similar behavior

as given in the discussion of Fig. (1.1).

0.8

f(x,1,1)

0.6
f(x,2,1)

f(x,3,1)04

02

Fig. (1.2) Gamma distribution for fixed g and various values of a

1.3 The Cumulative Distribution Function: [11]

The c.d. f. of gamma distribution is given by:

X X

F(x)=pr(X sx):J'f (t)dt:IF(a)ﬂ“

t* e /dt

The right hand side of Eq. (1.5) is known as incomplete gamma function.

1.5)

Specific tables can be found for F(x) in most statistical books when
ther.v.X~G(r/2,2) = x*(r), where r is positive integer because of the

importance of Chi-square distribution in statistical work.

1.4 Genesis of the Gamma Distribution: [11]

One of the widely quoted approach to the gamma distribution comes from a
Poisson process with rate A. To formally define a Poisson process, we consider

events occurring randomly in time in the following sense.

There is a constant rate A>0 called the rate of occurrence of the events and
consider an interval of time (x, x + Ax) involve all the time values that are greater

3



Chapter one Gamma Distribution

than x and less than or equal to x + Ax. Furthermore let u(Ax) be any function of
Ax such that

u(Ax
lim (4%) =0
Ax -0 AX

Then the Poisson postulates are the following:

(@) Pr[no events during (x,Ax)] = 1 — 1 Ax + u(Ax):
(b) Pr[one event during (x, Ax)] = A Ax + u(Ax);
(c) Pr[two or more events during (x, Ax)] = u(Ax).

If the number of events occurring during (x,Ax) is independent of the
occurring during (0, x), a process of events satisfying the above conditions is called
a Poisson process of rate A.

It has been shown, by Hogg, [11] that if W, is ar.v. representing the number
of events occurring in a fixed time, say (0, x), then W, has a Poisson distribution
with p.d. f.

e " (ax)

pr(\Nx =w ):—,w =0,1,2,...
w !

=0 , e.w.;where 1 >0 (1.6)

Now suppose that we are interested in the time X of the occurrence one event
until K further events have occurred. Then the c.d. f. of X is given by:
F(x)=pr(X <x)=1-pr(X >x)

=1-pr [(k —1)or fewerevents during (0, x ):|

k-1

=1-Fprw, =w)

w

Kle ™ (Ax)
:l_Z w ! ¢

Due to Thanon [19] the p. d. f. of X when x > 0 is:

- Ae_i (A )kil = z x e M (1.8)
(k-1 Tk
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With f(x) = 0 when x < 0. Where Eq.(1.8) is as Eq.(1.1) witho= kand g =1/
A

The p.d.f. given by Eq. (1.8) is a special member of the gamma family of
distribution. Eg. (1.7) that is interesting in showing that the c.d.f. of the
distribution can be expressed as a cumulative sum of Poisson probabilities.

1.5 Moments Generating Functions:

The moments are set of constants of a distribution which are used for
measuring its properties and under certain circumstances they specify the
distribution.

The moments of the r. v X, where defined in terms of the expected values of
the powers of X when they exist. For instance u,’ = E(X") is called the rt"
moment of X about the origin and p, = E[(x — u)"] is called the rt" central
moment of X.

The generating function reflects certain properties of the distribution functions.
They are often thought of as transforms of the density function (or probability
function) defining the distribution. They could be used to generate moments and
also have a particular usefulness in connection with sums of independent random
variables. First we shall obtain a function of a real t called the moment generating
function, denoted by M (t), which can be used to find the moments of X as many as
we wish.

For continuous r. v. X, the m.g.f is defined by:
M (t)=E (e” )= }e”f (x )dx 1.9)

Provided the integral converges absolutely.

When X~G (a, $) with p.d.f. given by Eqg. (1.1), we have:

0

M (t)=[e" —x ““e ™ "dx (1.10)
{ I'(a)p
. -1 p)x
1 —_— 7
=J' —x“"e 7 dx
o [ (a)B

Putting u = (1- gt )x implies du = (1- gt )dx
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1 1
= <= 1.11)
- pt)” s

From the theory of mathematical analysis, it has been shown that the existence
of M(t) for t < 1/B implies that the derivatives of M (t) of all orders exist at t=0.

Thus the rt" moment of X about the origin u,’ = E(X") can be found by
finding the " derivative of M(t) evaluated at t=0. That is:

d'™M (t)
Cdtf

u,'=E(X")

t=0

= a(a +1)(a +2)...(a +r _1)ﬂf (1_ﬂt)—(a+r) }

0

= B r=123,... (1.12)

(i) Mean

E(X) = u =y, is called the mean of the r.v.X. It is a measure of central
tendency. Use of Eq. (1.12) with r = 1 give:

= ap (1.13)
(ii) Variance

var (X )=o?=E[(X —u)’] is called the variance of the . v. X. It is a measure of
dispersion. Use of Eq. (1.12) with » = 2 and Eq. (1.13) give:

o' =ap 1.14)
(iii) Coefficient of variation

The variational coefficient of the r.v. X is defined by the ratio o/u. It is a
measure of dispersion, it is independent of scale of measurement and is denoted
by V. Now for gamma case

V =—=—"=qg (1.15)
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Which is independent of the scale parameter .

(iv) Coefficient of skewness

y, = EI(X _”2)] is called the coefficient of skewness. It is a measure of
(E |:(X _,U) :|)3/2

departure of the frequency curve from symmetry. If y; = 0, the curve is not

skewed, y; > 0, the curve is positively skewed, and if y; < 0, the curve is

negatively skewed, by Rahman [15].

Use of Eq. (1.12) with r = 3 give E [(x —ﬂ)g} - 2a¢4° , and so:

2a8°

-1/2
= W =2a >0 (116)

71

(v) Coefficient of Kurtosis

¥, = EI(X _”)2] -31is called the coefficient of kurtosis. It is the measure of the
E[(x -u)' ]’

degree of flattening of a frequency curve. If y, = 0, the curve is called mesokurtic,

if y, >0, the curve is called leptokurtic, and if y, < 0, the curve is called

platykurtic, by Rahman [15].

Use of Eq.(1.12) with r = 4 give E [(x —y)“] = 3a(a +2)B"

_3a(a+2)p’
(aB’)’

2

-3=6a '>0 (1.17)

1.6 Other Central Moments:
(i) Mode

A mode of distribution is defined to be the value of the r.v.X which
maximize the p.d. f f(x). For continuous distribution the mode is the solution of:

df d ’f
(x) _ 0and (ZX)
dx _ dx

X =mo X=mo

<0 .The mode is a measure of location.

For gamma case with p. d. f. given by Eq. (1.1). The logarithm of f(x) is:

Inf (x )= -InT" (a)-alnf +(a-1)inx _XE
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dinf (x) a-1 1

dx X i)
for maximum
dinf (x)
= —0=>mo=(a-1)B,a>1 (1.18)
(ii) Median

A median of a distribution is defined to be the value me of the r.v. X such
that 1/2=F (me)=pr(x <me).The median is a measure of location.

For gamma case, the c.d. f. given by Eq.(1.5), we have:

F(me):1/2=ri|'E

—x “"e Vdx (1.19)
o D(a)p

Where the right hand side of Eq. (1.19) is the incomplete gamma integral.

1.7 Point Estimation:

Point estimation is concerned with inference about the unknown parameters
of a distribution from a sample. It provides a single value for each unknown
parameter. Point estimation admits two problems.

First, developing methods of obtaining a statistic, say, U = u(X; X5, ..., X,) t0
represent or estimate the unknown parameter 6 in the p.d. f of f(x;8) or some
function of 9, say t(8), such statistic is called point estimator.

Second, selecting criteria and technique to define and to find a best estimator
among possible estimators.

(1.7.1) Definition (statistic):

A statistic is a function of one or more r.v's that does not depend upon any
unknown parameter. A statistic itselfisa r. v.

(1.7.2) Definition (Sample mean and Sample variance):

Let X;,X,, ..., X, be a r.s of size n from a given distribution. The statistic

_ 1"
X ==%X, (1.20)
n i=1
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is called the sample mean, and the statistic
sz—in(x -X ) (1.21)
o —1% i '

is called the sample variance
(1.7.3) Definition (Unbiased Estimator):

An estimator (statistic) 8 = u(Xy, X5, ..., X,,) is defined to be an unbiased estimator
of 6 if and only if E(8) = 6, otherwise 8 is said to be biased estimator.

Note: The term E (e)— o is called the bias of the estimator 8 and denoted by b(8).

(1.7.4) Definition (Asymptotically Unbiased):

For a biased estimators, an estimator 8 is called asymptotically unbiased
estimator of 6 if and only if 1imE (e): 6.

n—ow

(1.7.5) Definition (Mean — Squared Error):

Let 6-u(x,x,,....x ) be an estimator of 8. The mathematical expectation
E [{9—9}2} is defined to be the mean — squared error of the estimator 8 and is
denoted by MSE|[8, 6].

That is:
MSE [9,9] - E [{9—9}2}

Propositions:

(i) The MSE is a measure of goodness or closeness of 6 to 6

2

(ii) MsE [6,0} ~var (0)+[E (0) - 01" =var (6 )+ {b(9)}
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Proof:

MSE [9,0]: E [{9—9}2

L _ 1
Il
m

—

—_—~—

—_—
S
|
m

—_—
N

~—

~—
+

—_—

m
—_
S
~——
|
S
~—
—_———
| I

—var (49)+O+b2(9) =var (9)+{b(9)}

(1.7.6) Definition (Consistent Estimator):

Let the estimator ¢, =u(x,,x,,...,x ) of 8 based on the sample size n. Then
6, is said to be a mean — squared error consistent estimator of @ if and only if

lim MSE (6.,0) =0

n—w

1.8 Methods of Estimation:

A variety of methods available for finding estimators for the distribution
parameters have been proposed in the literature such as moments, maximum
likelihood, minimum chi-square, minimum distance, least-square, and Bayesian
method. These methods provide a single value for each unknown parameters of the
distribution.

For gamma case, we shall discuss two methods, the method of moments and
the maximum likelihood method, some general on the quality of estimators
provided by these methods.

(1.8.1) Moment Method:

We will generalize the discussion by letting x x,,...,x  represent a r.s. of

PEREE

size n from a distribution whose, p.d.f. f (x;6,,6,.....6,). The expectation ., "
- E(x ") is known as the r*"* distribution moment about origin, r = 1,2,3, ... and
iix " is the r*" moment of the sample about origin, r = 1,2,3, ...

i=1

M =

r

>

10
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The method of moments can be described as follows:

Equate u,' to M, beginning with r =1 and continuing until there is enough
equations to provide a unique solution for ¢,,6,,...,6. say 6.,6,...,0. .

For gamma case, we have two unknown parameters « and 8 and if a r.s. of
sizenistakenthen m =4 'ata=« and g=p,r = 1,2. So we have first

Mlziixi =x and u'=E (X )=ap, SO equate M, with u," witha =& and g =
nia

S we get:
X =af (1.22)

and second

M, :iix cand u,' =€ (X *)=a(a+1)p°, SO equate M, with u," with a = @ and

n i=1
B = B we get:
%zn“x G= (aﬁ)2+aﬂ2 (1.23)

Solving Eq. (1.22) and Eq. (1.23) we get:

nXx
_ 1.24
“ (n—l)S2 ( )
and
(n—l)S2 ) 10 _:
= 2~ where s’-= X —X 2
i — n_lé( =X ) (1.25)

Equations (1.24) and (1.25) represent the moments method estimators for « and f
respectively.

(1.8.2) Maximum Likelihood Method:

The most important and widely used formal estimation technique is the
method of maximum likelihood. Estimation by maximum likelihood is a general
method that may be applied when the underlying distribution of observations is
specified.

The principle of the method of maximum likelihood can be formulated as
follows:

11



Chapter one Gamma Distribution

Let X =(X,X,,....x,) be a set of r.v.§ that they may or may not be
stochastically independent and let the joint p.d. f. f (x;¢)depend on a vector of m
parameters ¢ = (6,,6,,...,6, ). This joint p.d. f. when regarded as a function of ¢ is

called the likelihood function of the r.v.§ and is denoted by L (g x)if the
9=u,(x).j =12,...,m that maximize this likelihood function with respect to 6;,j =
1,2, ..., m, respectively, then the M. L. E. § of the m parameters are:

0;=u;(x),j=12,.,m.

The most important case when x ,x,,....x, represent a random sample of
size n from a distribution whose p.d. f. t (x;9), so that the likelihood function is

L(Q;x)=f[f (x;.€) -

In practice, the most important comments on this method and the obtained
estimators are:

1. Many likelihood functions satisfy the condition that the M. L. E. $ are the

oL (4,x)

solution of the likelihood equations =0 providethat g =¢,j =1,2,....m

2. Since L (g;x)and IlogL (¢;x ) have their maximum at the same value of ¢, so it is
sometimes easier to find the maximum of the logarithm of the likelihood.

3. Due to Zack, S. [21], the M. L. E. $ are not necessarily unique.

4. Due to Zack, S. [21], the M. L. E. s are not necessarily consistent.

5. The M.L.E.$ in general are asymptotically unbiased.

6. Sometimes it is impossible to find the M. L. E. $ in a convenient closed form.

7. The M. L. E. s not necessarily obtained by differentiation.

8. Due to Mood [2], the M.L.E.s has the invariance property. Let ¢ beaM.L.E.$
of ¢ . If T(0) is a function with single-valued inverse, then the M.L.E.$ of t(60) is

7(0).

For gamma case, let x ,,x ,,....x , be a r.s. of size n from G(«, ) where the
distribution p . d. f. is given by Eq. (1.1), so the likelihood function is:

12



Chapter one Gamma Distribution

g ) =TT )= [0 (@] 57 [T | e”™
and
InL (a.8;x)=-nInl" (a)-naln f + (a —l)i Inx —%ixi

olnL
oa

=—nz//(oc)—nlnﬂ+znllnxi (1.26)

where y/(a):d—lnf(a)

da

olnL  -na 10
= +—2 Xi (127)
op g B Zl

We set ag“L —oand 2" _oatw -« and s - 5, we have:
a
—nz//(oz)—nln,8+zn“lnxi =0 (1.28)
and %, L s°x, —o that implies
ﬂ ﬂ i=1
af =X (1.29)

From Egs. (1.28) and (1.29) we have:
- 10
Ina —l//(a): InX —;Izﬂmxi (1.30)

Analytic solution for @ can not be found from Eq.(1.30) so that it is difficult
to maximize L («.g;x) with respect to a and £, owing to the presence of gamma

function 7 («). In such case numerical method must be used such as Newton-
Raphson or bisection method etc.

13



Chapter one Gamma Distribution

1.9 Some Related Theorems:
Theorem (1.9.1) (Independent Sum Distribution):

X is a r.s. of size a from Exp(B),then the r.v.

For the proof, v :Za:xi ~G (a,p) we shall utilize the m.g.f. technique as

i=1

follows:

Since X, ~Exp(B).i =1,2,....a, thenthem.g.f. of X;ism (t):l . ,1-pt#0
let My (t) be the m. g. f.of Y, then

0 T O

M, (t)=E (e" )=E|Le JzELHetXIFHE(etX|)

« “ 1 1 Ch i i i
=TI M, (t)= = which is the m.g.f. of G(a,B) as given in
[T ©=TT— )y g-f (a,f) as ¢

Eq.(1.11).
Theorem (1.9.2):

As a consequence of theorem (1) of section (1.9.1). The sample mean x =

iiXWG[W’Ej withm.g.f. m ()= .
n < n B \na
1-—t)
n
Furthermore, using the relation (1.12) lead to the rt* moment X about origin is

given by:

E (X_f):[ﬁj I(na+r) (1.31)
n I'(na)

Theorem (1.9.3):

X . be a r.s. of size n from any distribution (discrete or

1
n-1

. . . - 1"
continuous) having mean u and variance o2, and let x ==yx, and s’ =
nia

Zn: (X, - x‘)z be the sample mean and the sample variance respectively, then

i=1

14



Chapter one Gamma Distribution

304],n ~1 where » =E [(x —,u)r],r -1,2,3,...
n-1

For gamma case

aﬂz

E(X)=ap, var (x_) -

(1.32)

aBf’(6n —6+2na)
n(n -1)

E(S®)=apB®, var(s’)=
(1.9.4) Random Variate Generating:
We recall the properties of c.d. f. F (x )= pr(x <x)ofther.v.X
l.o<Fx)<1
2. F(-0)=0 and F ()=1
3. F(x) Is non — decreasing function of x.
4. F (x) Is continuous function to the right at each x.
Theorem (1.9.5) (Inverse Transform):
Ther.v.u =F(x)~u (o, ifandonly ifx =r*w) hasc.d.f. pr(X <x)=F(x)

Proof

= Letther.v.u ~u (0,1),then U has c.d. f.

NOwW pr (X sx):pr[F’l(u)stzpr[usF(x)]:F(x)
« Conversely, letthe r.v.X hasc.d. f. pr(x <x)=F (x)
G(u)=pr(U <u)=pr(F(X)<u)=pr(X <F(u))=F[F " (u)]=u

The algorithm of generating r. v. by inverse transform method can be described
by the following steps:

15



Chapter one Gamma Distribution

IT — Algorithm

1. Generate U from U(0,1)

2. Set X=F1(V)

3. Deliver X as ar.v. generated fromthe p.d. f.f (x)

As an application of theorem (3), let us consider a generated r.v. from Exp(f)
where the p.d. f.

1 =
f(x)=—e” ,0<x<w
B
=0 ew .
with c.d. f.
[0 X <0
X Xl i 10 7)(
F(x):jf (t)dt:j—eﬁdt——eﬁ =J1-¢” 0<X <o
0 oﬁ X |
t 1 X — o0

Set u =F(x)=>u=1-¢e A :>e7=l—u:>1=ln(1—u)

= X =-BIn(l-u)
Apply IT — Algorithm

1. Read Band a (a is positive integer)

2. x=0

Forl=1to a

Generate U from U(0,1)

Set Y=—In(1 — V)

X=x+Y

Go to step(4)

Deliver X as a r.v. generated from G («, ).
End

© oo N kW
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Approximation to the Mean and Variance of the Moment
Chapter two Method and Maximum Likelihood Method

2.1 Introduction:

In this chapter, we shall consider the approximation to the mean and
variance of moments method and maximum likelihood method estimators due to
gamma distribution. This approach showed that the estimators are asymptotically
unbiased with mean square error approach zero as the sample size approach
infinity. The theoretical approach assessed practically by using Monte — Carlo
simulation.

2.2 Expectation of Quotient Function of Random Variables:

In general, there are no simple exact formulas for the mean and variance of
the quotient of two random variables in terms of the moments of the two random
variables; however, there are approximate formulas can be considered. One way of

finding the approximate formula for E(é) by considering Taylor series expansion
of the function g(x,y) = % expanded about the point [E (X), E(Y)], where we drop

all terms of order higher than 2, and then take the expectation of both sides.
Furthermore the approximate formula for var(%) Is similarly obtained by
expanding Taylor series and retaining only second-order terms as follows:

The Taylor series expansion of the function g(x,y) =§ about the point

(k, 1y s

ag (x,y) og (x.y)| 1 2079 (x.y)
g (X y) =0 (s u)+(x-u) ~ +(y —u,) o ux*’;(X—ﬂx e
1 209 (x,y) 2°g (x.y)
“(y - - - 2.1
+2!(y ) oy +(x =, )y —n,) oy (2.1)

where p,, = E(X) and u,, = E(Y)

Given g(x,y) = § then

17
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Chapter two Method and Maximum Likelihood Method
og (x.y) 1 ag(x.y) 1
A AR AV N A AR D A0 ) B
OX y OX Al
Hy
azg(x,y)_ojé’zg(x I,
ox? ox? .
Hy
og (x,y -X og (x,y —u,
(o) _x oy o
oy y oy |mom,
’UV
o'g () _2x _ a(x.y)| 2
ayz y3 ayz . #ys
Hy
6Zg(x,y)_62g(x,y)___1:>62g(x,y)| -1
dy OxX ox oy y? oyox |w ou,’

“y

Take the expectation of both sides of Eq. (2.1) with substitution the results of Eq.

(2.2), we have:

2

E (X)
E(V)

E (X)

{E(Y)]

3

(2.3)

Take the variance of both sides of Eq. (2.1) with substitution the results of Eq.

(2.2), we have:

var(x—JzMwar y M—Zcov (XY ) (x)
Y e (e ()’ (£ )Y
=[_E(X )TI—var(X) +var(Y) ZCOV( )—I
LEC)J[(E(x ) {E()) E(X)E()]
:|FE (X )T'F var (X)) var(v ) C2{E (XY )-E(X)E(Y )}7|
LEC )] [{Ex)) {E( ) E (X )E(Y) |

18
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Chapter two
LEM) ] {E(x)) {E( ) E(X)E()]

2.3 Approximation to the Mean and Variance of Moments Method
Estimators:

In this section, we shall consider the approximation to the mean and variance
of moments method estimators by using equations (2.3) and (2.4).

(2.3.1) Approximation to the mean of &:

Consider the expectation of & given by Eq. (1.24)

[ ax? ] [n J [X 2]
E

= n-1 LS2J

Ela)=E| >
( ) L(n -1)s |
Use of Eq. (2.3), with X = X? and Y = S?, we have:

[E(x 2)I[ var(s? 2%52)
JORR j|E<X2)||z+ G) _ExS) (2.5)
n—lLE(S )JL {E(S* )} E(X*)E(s )J
consider
[ _ " i
E (X ZSZ)=E|LXz(nl—l){gx'z_nxzh
1 |—_2n 2 _4—|
:(n—l)E X iZ::lXi -nX J
1 e Yre, 0 _
_ | . _2 |_ 4
TRl el | Tl
=A-B
where A = Elr(zn; \z(zn:x.zﬂ and B = " E (X )
oo (& ET (n-1)
consider
A= L qun:x 2+2§ix X 1}(Zn:x al
n*(n-1) h st 'JJ
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S N GLA Vs's )
= — E | ’ X2 XX
CETRRI e (2 2 ]
__! EFZ“:X 4+2§Zn:x 2X 2+2§Zn:x °X +2§§ix X X |
nz(n_l) \J:l I i-1j=2 I : i1 j=2 I : i-1 j=2k=3 I : kJ
|—n 4 i 2 2 i 3 —|
| IR R R E (0 ()R S (e ()
) )| nenas |
- VIRE ST E (e (X ) x,) |

Use of Eq. (1.12), with r=1, 2, 3, 4, we have:

[ 4 A 2 2 4 1
. IZa(a+l)(a+2)(a+3),8 +2> > a(a+l) p i
A = i=1 i=1 j=2
(n-1)l n- n-2n-1 2 |
n-(n 1)I_ ZZ (a+)(a+2)p aﬂ+2222 (a+1)p (aﬂ)J|
. |Fna(a+1)(a+z)(a+3)ﬂ4+n(n—1)a2(a+1)2ﬂ4 1|
:”2(”—1)|F2n(n—1)a2(a+1)(a+2)/34+zn(n_lz)(n_z)oﬁ +1)ﬂ4J
:M[(na+2)(na+3)]
n“(n-1)
and
n ;4
Bz(n_l)E(X )
Use of Eqg. (1.31), with r=4, we have:
= n [24 [24 [24 [24 EA
B_(n—l)n (na+1)(na+2)(n +3)(nj
= aﬂ4 [24 [24 (04
_nz(n—l)(n +1)(na+2)(na +3)
SO
—, 5, Na(a+1) ! 4
E(X°s®)= ni(n 1 [(na+2)(na+3)]—n2(n_1)(na+1)(na+2)(na+3)
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4
_ “nﬂz (na+2)(na +3)
Now
_ B’
E (X 2) B na(na +1)n72_ nea +1
E(S?) ap’ n

E(X D)EGS’)=na(na +1)ﬂ—2aﬁ2 =
n

aB’(6n-6+2na)
n(n -1)

var (8 %) =

vars® _6n-6+2na 6 2

|:E(Sz):|2 nn -1« na n-1

Therefore

aﬁ4

(na+2)(na +3)

|
|

,, 8 .2 a’(na+1)p° I
|

|

]

naa n-1 n

e e ()
)

By taking the limit of Eq. (2.6) asn — oo ,we get:

(2.6)

ime (o)< §5 2000 0N -

Therefore, according to definition (1.7.4) & is asymptotically unbiased estimator
for a, where the bias of & is:

b(a)=E (a)-c (2.7)
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(2.3.2) Approximation to the variance of & :

Use of Eq. (2.4) withX = X? and Y = S?, we have:

var(oc)zvar|r nX ° 1|=( n jvar(x_z\
L(n—l)SZJ n-1 LSZJ

:[ n]ﬁe(iq}{“_E(iq Cvar(s?) 2E (X757) |
U LECTD ] ) (e EXIEET)
where
T2\ |—na nz;zﬂ-lﬁz—|2 2
|FE(x )T| :i ( 2)(n) I :£na+lj
|E(S7) ] L ap J n

B s
E(X 4) na(na+1)(na+2)(na+3)(;) (na+2)(na +3)

~2y [ 27? na(na +1)
BN (2]
var (s °) _6n-6+2na
{E(sz)}2 na(n-1)
2E(X787) Zif (na+2)(na+3)  3(ng+2)(na+3)
E(X_Z)E(sz) az(na+l)ﬂn4 ne (na +1)
Therefore

Vm@ﬂ:(n I(mm&fh+ma+ﬂ@a+®+mwﬁ+Ma_2@&+Q@a+@1

n-1 n i ne(na +1) ne(n-1) na(na+1) J
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- 3 (28)

(2.3.3) Approximation to the mean of :

Consider the expectation of {8 given by Eq. (1.25)

e (). [0-1 le(sz)1||r2+ var(X)  E(xs?) 7|
(ﬂw " JLE<X_>J' E (X)) E(X)E(ST)]
L { ( )} ]
From Eq. (1.31), we have:
— _aﬁz 2 - 2 — Yy
var (X ) = - E(s®)=ap® and E (X )=op
Var(sz):aﬂ“(en—mzna)
n(n -1)
consider
E(XSZ)=E|—X_ ! Zn:x 2 _ X 2

L n-1|< ' J

1 ([~ .) n —,
:n—lELXiZ_:lx J_n—lE(X )

1 Mo " 11 ;
| Pl e el
=A-B

where
1 |—” 3 e 2 _ 3
ATt DX PR XX, | and s = e (X7)
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consider
A LT (T E(XE(X)
n(n _1)L:1 I i=1j=2 I : J

Use of Eq. (1.12) with r=2, 3 we have:

n-1 n

( LZO{ (a +1)(a+2)p° +Y > a a+1ﬂaﬁ}

i=1j=2

o _1)[na(a+1)(a+2)ﬂ3 #n(n-1)a’ (a+1)p°]

na(a+1)(na +2)8°
n(n-1)

Use of Eq. (1.31), with r=3, we have:

B =" na(na+)(na 2y Ly - e 2p
n-1 n n(n-1)
Therefore
£ (X5 na(a+l)(na+2)p° a(na+l)(na+2)p° _a(na+2)p’

n(n-1) n(n-1) n

SO

1 1
n nNa

By taking the limit of Eq. (2.9) asn — o, we get :

: . 1 1
lim E (ﬂ) = lim (1_—](1__]’3 =p
n— o n— o n na
Therefore £ is asymptotically unbiased estimator for 8, where the bias of £ is

b(p)=E(B)-5 (2.10)
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(2.3.4) Approximation to the variance of B :
Use of Eq. (2.4) with X = S?2 and Y = X, we have:

F(n—1)321|

var ([3) =var | ————

L]

ZI— aﬂ4(6n—6+2na) 0(,32 2a(na+2)/331|

:(n_lf(ﬂ\ ). n(n-1) Lo n |

: LaﬂJ'L () (ap) (aﬂ)(aﬂZ)J’
=[HT_1JZ[%+n2_1]ﬂZ (2.11)

(2.3.5) Mean Square Error of the MM Estimators:

Using the definition (1.7.5), we have;
[ v :
MSE (a,a)z E L(a—a) szar(a)+b (a)=var(a)+|—E (a)—a}

Where var(a) and E (@) are given by Eq.'s (2.8) and (2.6) respectively.

S0
(e 217 ( AT AN
|27+iz| ||(a+£\|| 6 5 (a+nJ(a+nJ| |

MSE (a,a) = (a+1)| D la || —D |24 =4 —- —al (212
| 1ot N ||1—1|L ne n-1 a[a+l] J |
=] ) ]

Taking the limit as n — oo, we have:

lim MSE (a,a)=0

n—o

Then according to the definition (1.7.6), @ is mean square error consistent
estimator of a, similarly:
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2

MSE (ﬂ,ﬂ)=Var(/’)+(E (ﬂ)_ﬂ)

Where var () and E () are given by Eq.'s (2.11) and (2.9) respectively.

SO

MSE (ﬂ,ﬁ):(l—%jz[%+ nz_l]ﬁﬁ[(l—%j(l—ijﬂ—ﬂ}

Taking the limit as n — oo, we have:

lim MSE (ﬂ,ﬁ)zo

n—o

Accordingly, 8 is mean squared error consistent estimator of 8

2.4 Estimation of Parameters by Maximum Likelihood Method:

(2.13)

For gamma case, let X;, X,, ..., X,, be a r.s. of size n from G(a, ) where the

distribution p.d. f. is given by Eq. (1.1). So the likelihood function is:

X

n i

L(a.Bix) =TIt (xiia p)={r (a)}'"ﬁ”“{fn[xi}“e

i=1

1 n
o5

The log likelihood function is:

InL = —nInr" (a)—nalnﬂ+(a—1)zn:ln (x, )—%in

i=1 i=1

olnL
oa

:_m,,(a)_nln,miln(xi)

o°InL  d%InL  -n

oadf opoa p

26

(2.14)

(2.15)

(2.16)



Approximation to the Mean and Variance of the Moment
Method and Maximum Likelihood Method

Chapter two
2

Where z//(a):d—lnf (e)and y'(a)= d -

- g inr (e )are known as the diagamma and
a a

trigamma respectively.

The MLE of a and £ are therefore given by setting:

ot _dnk _sat w-eand g=p Thatis

da  op
—n(//(oc)—nlnﬁ+znlln(xi):0 (2.17)
—”—“+izzn;xi _0 (2.18)
B [ o=t
From Eq. (2.17) and (2.18), we have:

-
B =— (2.19)

o
(2.20)

Ina—y/(a):lnx_—%iln (x;)

and the large sample information variance — covariance matrix is:

[ &%nL (oL )

|E(—) E |

I=—| oa oadop |

| o%InL o%InL |

LE( ) E(— )J
dpoa 0B

Where the expectations of Esg.'s (2.14), (2.15) and (2.16) are:

Therefore
@) T (e . (e )
I A =
-n na n na n“(ay'(a)-1)| —n
— —~ = — ny'e)
| 7 7) | s ) W )



Approximation to the Mean and Variance of the Moment

Chapter two Method and Maximum Likelihood Method
[
R n(ay '(a)-1) n(ay'(a)-1) |
-8 fya) | @20

Ln(at// (a)-1) n(aa//'(a)—l)J

The asymptotic variances and covariance of MLE are:

a By (@)
var(a),, =————— ,var(f),, -2V and
@l n(ay'(a)-1) (s n(ay'(a)-1)
B
cov (0, B),, = —— (2.22)
n(ay'(a)-1)

Analytic solution of @ and B can not be obtained from the non — linear
equations (2.19) and (2.20), so iterative (numerical) method to the likelihood is
required such as Newton — Raphson which can be made as follows:

Let

f (a):|na—y/(a)—|nx_+izn:|n(xi)=o (2.23)
n iz
1

f'(a)zg—y/'(a) (2.24)

The Newton — Raphson approximation for @ can be found by using repeatedly
the following recurrence formula:

(=)

f (a)

din=ai— (2.25)

If tables of the digamma and trigamma functions are not available, an
excellent approximation is given by [1]:

v (x )=~ Inx —(2x —§+1L)1 (2.26)

(2.27)

Use the approximation of equations (2.26) and (2.27), then equation (2.25)
becomes:
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1
16

1 n — 1
=3 In(x,)-InX +2ai -+ )
n = 3

aivl1=ai —

2.28
1 1 1 ( )

7—(0“ - —+
a, 2 10q,

)71

The right hand side of Eq. (2.28) yields a new trial value for &, where the

~

process is repeated until successive @& estimates agree to a given specified

tolerance. While the value of the estimator £ is obtained by using (2.19) which
-

/; -

o
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Chapter Three Improve Estimators for Maximum Likelihood Method

3.1 Introduction:

In this chapter, we shall introduce several alternative estimators for the shape
parameter of MLM that are proposed in literatures that are concerned with
theoretical approximation to their biases and variances were developed and used to
compare the variance and mean square error properties of the estimators. A new
estimator for the shape parameter based on bias correction for the maximum
likelihood estimator is derived and evaluated by simulation.

3.2 Improved Estimators of MLM:

Several estimators are proposed in literatures for improvement of MLE and
some of their properties are developed and investigated.

McCullagh and Nelder [12] consider a number of estimators for the shape
parameter a. The first is the ML estimator @ which is the solution of

Zn[lna—(//(a)}:D (3.1)
Where Y(a) = %lnf(a) Is the digamma function and D is the deviance statistic
given by:

D =2n [nlnx_—ZInxiJ (3.2)

The deviance statistic D is proportional to the twice difference between the
maximum attained value of the log-likelihood and log-likelihood when « is treated
as known.

An exact solution for & satisfying Eq. (3.1) has to be found iteratively.

Green Wood and Durand [8] give the approximation:

D ~,(0.500876+0.1648852D, —0.0544274D *),0 < D, < 0.5772

[
|

o= 8.898919 +9.05995D, +0.9775373D %,
| D, >0.5772
|

D,(17.79728 +11.968477D, + D °))
D
where D; = p

The maximum errors in these approximations are claimed to be 0.0088% and
0.0054% respectively.
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Using the asymptotic formula [16]

(@) =1n 1 1 1
via)=lha —-————+
2 12a® 120a’

vo(a) (3:3)

and usage of the approximation ¥ (a) given by the equation [1]:

T 1
w(a):lna—(Za—§+— ) (3.4)

We propose that, if « is sufficient large and terms of order =2 and a~? are
ignored in equations (3.3) and (3.4) respectively, we have:

c,z/(ac)zlnot—i (3.5)
2a
and
1.
v (a) zlna—(Za—g) (3.6)
Equations (3.5) and (3.6) provide the following simple approximation to @
a1=nD ! (3.7)
and
a,=nD "'+ L (3.8)
2 = 6 .
Also, Cordeiro, G.M [4] show that the expectation of the deviance statistic is:
E(D):2n[|na—z,xx(a)]—£+o(n’l) (3.9)
[24

Equating D to its expectation corrected to o(n~1), McCullage and Nelder
suggest that the improvement to the ML procedure is to use the estimator @; which
is the solution of:

2n[|na3—w(a3)}—2a;l:D (3.10)
If terms of o(a~2) are ignored, the estimators

as=(n-2)D " (3.11)

Provides an approximation to @;.

31



Chapter Three Improve Estimators for Maximum Likelihood Method

The final estimator proposed by McCullagh and Nelder is the moment
estimator :

as=(n-2)T" (3.12)

Where T =Y",(x; —1)? is the Pearson statistic for the gamma shape
parameter a. This estimator has the advantage of being much less sensitive to very
small samples of gamma distn than the estimators based on the deviance statistic
which is infinite if any observation is zero.

3.3 Bias Corrected Estimators for the Shape Parameter:

The bias of the MLE for the shape parameter ¢ of gamma distn was
developed theoretically to order n=1 by AL-Abood, A.M. [1] as:

bias (a): rllf |—l_a W. () +1]1 (3.13)
2[ay (a)—lﬂ ay (a)-1
by using the expansions:
ay'(a)-1=—+ ! +o(a™) (3.14)
v - a 6a’ '
al "(a)+l——£— ! +0(a74) (3.15)
v - a 2a’ '
and neglecting terms of o(a~2), we obtain from Eq.(3.13)
. 3
blas(a)—T (3.16)

Making a direct correction for the bias of @, and terms of o(a™2) are ignored,
we lead to a new biased estimator

as=a(l-—)
n

Where @ is the MLE for «.
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3.4 Monte-Carlo Investigation:

In this section, we report the results of a large scale Monte — Carlo
investigation to assess the approximation to the biases and variances of the MM
and MLM estimators and to make comparisons by using their mean square error.

In order to assess the adequacy of the theoretical approximations, a large
Monte — Carlo study was made by generating random sample of size n=5 (1) 10 (2)
20 (5) 30 according to theorems (1.9.5) and (1.9.3), where initial values of a =
5,7,9 and § = 1. A simulation run size of 500 was used.

Tables (1) and (2) show the values of the biases of the MM estimators (&, ) as
obtained by simulation due to Eq.° (1.24) and (1.25) and by approximation that

obtained due to Eq.® (2.6), (2.7), (2.9), and (2.10).

Table (1): Values of Bias(@) for MM estimators

p=1
a=5 a=7 a=9
n | Approximation | Simulation | Approximation | Simulation | Approximation | Simulation
5 5.25 2.37083 7 2.98716 8.75 3.32808
6 4.08 2.40943 5.44 2.2744 6.8 2.7626
7 3.33333 1.42182 4.44444 1.72905 5.55556 3.00455
8 2.81633 1.68867 3.7551 1.98075 4.69388 1.94989
9 2.4375 1.93541 3.25 1.15999 4.0625 2.40418
10 2.14815 2.25317 2.8642 1.90294 3.58025 2.89508
12 1.73554 1.2234 2.31405 1.36811 2.89256 1.73801
14 1.45562 1.35262 1.94083 0.98249 2.42604 1.07712
16 1.25333 1.1387 1.67111 1.45167 2.08889 1.92193
18 1.10035 0.97917 1.46713 1.47563 1.83391 1.68708
20 0.98061 0.9987 1.30748 0.99699 1.63435 1.39289
25 0.77083 0.9141 1.02778 0.9413 1.28472 1.21671
30 0.63496 0.55858 0.84661 0.83417 1.05826 0.7874
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Table (2): Values of Bias(f) for MM estimators

p=1
a=>5 a=7 a=9
n | Approximation | Simulation | Approximation | Simulation | Approximation | Simulation
5 -0.232 -0.15378 -0.22286 -0.11832 -0.21778 -0.11915
6 -0.19444 -0.11074 -0.18651 -0.08912 -0.1821 -0.06205
7 -0.16735 0.0127 -0.16035 -0.06793 -0.15646 -0.12339
8 -0.14687 -0.10286 -0.14063 -0.10512 -0.13715 -0.04692
9 -0.13086 -0.14353 -0.12522 0.0018 -0.12209 -0.11695
10 -0.118 -0.18514 -0.11286 -0.06488 -0.11 -0.14579
12 -0.09861 -0.06449 -0.09425 -0.02788 -0.09182 -0.04229
14 -0.08469 -0.13184 -0.0809 -0.00416 -0.0788 0.03444
16 -0.07422 -0.06029 -0.07087 -0.04212 -0.06901 -0.05979
18 -0.06605 -0.06149 -0.06305 -0.07001 -0.06139 -0.04682
20 -0.0595 -0.07074 -0.05679 -0.02775 -0.05528 -0.03871
25 -0.04768 -0.07811 -0.04549 -0.04598 -0.04427 -0.04803
30 -0.03978 -0.0299 -0.03794 -0.04317 -0.03691 -0.01658
Tables (3) and (4) show the values of the variances of the MM estimators (&, 8) as
obtained by simulation by using the sample variance and by approximation that
obtained due to Eq.*(2.8) and (2.11).
Table (3): Values of Variance(&) for MM estimators
a=5p=1 a=76=1 a=9p=1
n | Approximation | Simulation | Approximation | Simulation | Approximation | Simulation
5 24.375 12.12293 45 23.72805 71.875 24.86459
6 17.856 12.18914 33.024 12.81018 52.8 24.38329
7 14 8.71919 25.92593 10.8948 41.48148 21.70034
8 11.47522 7.82786 21.27114 11.7356 34.05248 16.22109
9 9.70313 9.14601 18 9.59002 28.82813 15.59192
10 8.39506 10.26788 15.58299 14.77234 24.96571 19.54907
12 6.59955 9.11409 12.26146 14.34252 19.6544 18.6218
14 5.42922 4.80818 10.09376 7.35904 16.18571 14.63454
16 4.608 5.97148 8.57126 10.85605 13.74815 17.83718
18 4.0081 5.00374 7.44474 9.29434 11.94382 15.56929
20 3.53404 4.59067 6.57822 7.27794 10.55547 11.64068
25 2.73438 3.4305 5.09259 5.30994 8.17419 8.52178
30 2.22887 2.3261 4.15269 4.52283 6.66694 6.87471
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Table (4): Values of Variance(f) for MM estimators

a=5pF=1 a=7=1 a=9p=1
n | Approximation | Simulation | Approximation | Simulation | Approximation | Simulation
5 0.3968 0.20328 0.37486 0.18724 0.36267 0.21977
6 0.34722 0.28505 0.32738 0.23484 0.31636 0.20874
7 0.30787 0.30435 0.28988 0.17256 0.27988 0.15019
8 0.27617 0.15397 0.25977 0.13748 0.25065 0.13354
9 0.25021 0.16917 0.23516 0.16267 0.22679 0.11304
10 0.2286 0.13217 0.21471 0.17134 0.207 0.10064
12 0.19479 0.18355 0.18279 0.14324 0.17612 0.14211
14 0.16961 0.10034 0.15905 0.12591 0.15318 0.16734
16 0.15015 0.14042 0.14073 0.12996 0.1355 0.12219
18 0.13467 0.11983 0.12618 0.11163 0.12146 0.11806
20 0.12207 0.10687 0.11434 0.10645 0.11004 0.09459
25 0.09892 0.08947 0.0926 0.07083 0.08909 0.06979
30 0.08313 0.07528 0.07779 0.06948 0.07483 0.06695

Tables (5) and (6) show the values of the mean square error of the MM estimators
(&, B) as obtained by simulation by using the sample mean square error and by
approximation that obtained due to Eq.® (2.12) and (2.13).

Table (5): Values of Mean Square Error(@) for MM estimators

a=5p=1 a=76=1 a=9p=1

n | Approximation | Simulation | Approximation | Simulation | Approximation | Simulation
5 51.9375 17.74376 94 32.65115 148.4375 35.94073
6 34.5024 17.9945 62.6176 17.98306 99.04 32.01525
7 25.11111 10.74075 45.67901 13.88441 72.34568 30.72767
8 19.40691 10.67946 35.37193 15.65898 56.08496 20.02317
9 15.64453 12.89183 28.5625 10.93559 45.33203 21.37202
10 13.0096 15.34466 23.78662 18.39353 37.78387 27.93055
12 9.61164 7.54232 17.61628 16.21425 28.02131 21.64248
14 7.54806 6.63777 13.86058 8.32432 22.07136 15.79473
16 6.17884 7.26812 11.36387 11.36387 18.1116 21.53101
18 5.21158 5.96251 9.5972 11.47182 15.30705 18.41552
20 3.53404 5.58808 8.28772 8.27193 13.22657 13.58082
25 3.32856 4.26608 6.14892 6.19598 9.8247 10.00215
30 2.63205 2.63812 4.86944 5.21867 7.78686 7.49471
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Table (6): Values of Mean Square Error(f) for MM estimators

a=5pF=1 a=7=1 a=9pL=1
n | Approximation | Simulation | Approximation | Simulation | Approximation | Simulation
5 0.45062 0.22692 0.42452 0.20124 0.41009 0.23397
6 0.38503 0.29732 0.36217 0.24278 0.34952 0.21259
7 0.33588 0.30451 0.31559 0.17717 0.30436 0.16541
8 0.29774 0.16455 0.27954 0.14853 0.26946 0.13574
9 0.26733 0.18977 0.25084 0.16268 0.2417 0.12671
10 0.24252 0.16645 0.22745 0.17555 0.2191 0.1219
12 0.20452 0.18771 0.19167 0.14401 0.18455 0.1439
14 0.17678 0.11772 0.16559 0.12593 0.15939 0.16853
16 0.15565 0.14405 0.14575 0.13174 0.14026 0.12576
18 0.13903 0.12361 0.13015 0.11653 0.12522 0.12025
20 0.12562 0.11187 0.11756 0.10722 0.1131 0.09609
25 0.10119 0.09558 0.09467 0.07294 0.09105 0.07209
30 0.08472 0.07617 0.07923 0.07134 0.07619 0.06723

Tables (7), (8) and (9) show the values of the biases, variances and mean square

error of the MLE (&, 8) as obtained by simulation and by theoretical that obtained
due to Eq.® (3.16) and (2.22) respectively.

While tables (10), (11) and (12) show the values of biases of MLE & together
with the values of the improved biases @,,&,, a4, @z and the values of the
corrected bias estimator &.
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Table (7) Values of Bias(@) and Bias[ﬁ] for MLM estimators

a=5F=1 a=7F=1 a=9pF=1
b(&) b(B) b(&) b(B) b(&) b(B)
n | Theoretical | Simulation | Simulation | Theoretical | Simulation | Simulation | Theoretical | Simulation | Simulation
5 3 2.04111 -0.10814 4.2 2.70891 -0.10844 5.4 3.02904 -0.10162
6 2.5 2.1025 -0.10642 3.5 2.09933 -0.08322 4.5 2.40645 -0.05511
7 | 2.14286 1.31711 -0.00551 3 1.60727 -0.07551 3.85714 2.5565 -0.09605
8 1.875 1.31309 -0.03448 2.625 1.83353 -0.10689 3.375 1.61974 -0.01569
9 | 1.66667 1.61363 -0.13241 2.33333 0.81528 0.01817 3 2.12565 -0.10182
10 1.5 2.04787 -0.17605 2.1 1.67138 -0.03664 2.7 2.71648 -0.13586
12 1.25 0.95664 -0.04089 1.75 1.06105 0.00314 2.25 1.55872 -0.03055
14| 1.07143 1.08533 -0.10668 1.5 0.97105 -0.0043 1.92857 0.90267 0.03876
16| 0.9375 0.98106 -0.05228 1.3125 1.31881 -0.04178 1.6875 1.64802 -0.05027
18| 0.83333 0.84131 -0.05429 1.16667 1.21819 -0.05314 1.5 1.51209 -0.04039
20 0.75 0.84259 -0.05756 1.05 0.87179 -0.02577 1.35 1.2887 -0.03513
25 0.6 0.80161 -0.07397 0.84 0.83423 -0.03704 1.08 1.10255 -0.04064
30 0.5 0.42132 -0.01699 0.7 0.68198 -0.03341 0.9 0.68123 -0.01359
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Table (8) Values of Variance(&) and Variance{’ﬁ] for MLM estimators

a=5pF=1 a=7F=1 a=9pF=1

var(&) var(f) var(a) var(f) var(@) var(f)
n | Theoretical | Simulation | Simulation | Theoretical | Simulation | Simulation | Theoretical | Simulation | Simulation
5| 9.41667 11.11392 | 0.23477 18.77647 22.6066 0.16325 31.33636 | 22.80789 | 0.21954
6 | 7.84722 10.15468 | 0.19921 15.64706 | 12.71802 | 0.18108 26.11364 | 21.11633 | 0.17912
7 | 6.72619 7.92019 0.22353 13.41176 9.32675 0.14289 22.38312 | 19.15875 | 0.14975
8 | 5.88542 |8.10156 0.18817 11.73529 10.1473 0.11633 19.58523 | 16.00244 | 0.12485
9 | 5.23148 7.6699 0.13585 10.43137 7.71405 0.13101 17.40909 | 14.18832 0.1058
10| 4.70833 9.20799 0.12061 0.38824 14.91269 0.1672 15.66818 | 18.40463 | 0.10182
12| 3.92361 5.0632 0.16887 7.82353 12.75732 | 0.14965 13.05682 | 18.41361 | 0.13632
14| 3.3631 3.98227 0.08729 6.70588 7.44462 0.11956 11.19156 | 13.45246 | 0.14605
16| 2.94271 5.22839 0.11526 5.86765 9.62167 0.10916 9.79261 15.47995 | 0.10377
18| 2.61574 4.29514 0.1018 5.21569 8.20768 0.09548 8.70455 14.14481 | 0.10624
20 | 2.35417 4.02474 0.09339 4.69412 6.23494 0.09011 7.83409 10.84131 | 0.08903
25| 1.88333 2.78473 0.07494 3.75529 4.92104 0.06834 6.26727 7.99315 0.06645
30| 1.56944 1.97305 0.06202 3.12941 3.86593 0.0596 5.22273 5.96691 0.05844
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Table (9) Values of Mean Square Error(&@) and Mean Square Error{’ﬁ] for MLM estimators

a=5pF=1 a=7F=1 a=9pF=1
MSE (&) MSE(B) MSE (&) MSE(B) MSE (&) b(B)
n | Theoretical | Simulation | Simulation | Theoretical | Simulation | Simulation | Theoretical | Simulation | Simulation
5 | 18.41667 | 15.28005 0.24646 | 36.41647 | 29.94481 | 0.17501 | 60.49636 | 31.98299 | 0.22987
6 | 14.09722 | 1457519 | 0.21054 | 27.89706 17.1252 0.18801 | 46.36364 | 26.90734 | 0.18216
7 | 11.31804 | 9.65496 0.22356 22.41176 | 11.91008 | 0.14859 | 37.26065 | 25.69446 | 0.15898
8 | 9.40105 9.82577 0.18936 18.62592 | 13.50912 | 0.12775 | 30.97586 | 18.62599 0.1251
9 | 8.00927 10.2737 0.15338 15.87579 | 8.37873 0.13134 | 26.40909 | 18.70671 | 0.11617
10| 6.95833 13.40175 | 0.15161 13.79824 | 17.70619 | 0.16854 | 22.95818 | 25.78391 | 0.12027
12 | 5.48611 5.97837 0.17054 10.88603 | 13.88315 | 0.14966 18.11932 20.8432 0.13725
14| 451106 5.16022 0.09867 8.95588 8.38757 0.11958 14.91094 | 14.26727 | 0.14755
16| 3.82162 6.19087 0.118 7.59031 11.36092 | 0.11091 12.64027 | 18.19592 | 0.10629
18| 3.31018 5.00294 0.10474 6.57681 9.69166 0.09831 10.95455 | 16.43123 | 0.10787
20| 2.91667 4.7347 0.0967 5.79662 6.99497 0.09077 9.65659 12.50205 | 0.09026
25| 2.24333 3.4273 0.08041 4.46089 5.61698 0.06971 7.43367 9.20876 0.0681
30| 1.81194 2.15056 0.06231 3.61941 4.33102 0.06072 6.03273 6.43099 0.05862
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Table (10) Values of Improved Bias Estimator for MLM with & = 5
a=5B=1
Theoretical Simulation

n b(@) b(@) b(a,) b(&,) b(&,) b(as) s

5 3 2.04111 -3.62401 -3.45734 -4,17441 -4.96307 2.81644
6 2.5 2.1025 -3.84315 -3.67648 -4.22877 -4.96502 3.55125
7 2.14286 1.31711 -4.12051 -3.95384 -4,37179 -4.96422 3.60977
8 1.875 1.31309 -4.23096 -4.06429 -4.42322 -4.95987 3.94568
9 1.66667 1.61363 -4.28306 -4.11639 -4.,44238 -4.95538 4.40908
10 15 2.04787 -4.31137 -4.1447 -4.4491 -4.95391 4.93350
12 1.25 0.95664 -4.517 -4.35033 -4.5975 -4,9533 4.46748
14 1.07143 1.08533 -4.57683 -4.41017 -4.63728 -4.95418 4.78133
16 0.9375 0.98106 -4.63623 -4.46957 -4.6817 -4.95527 4.85961
18 0.83333 0.84131 -4.68441 -4.51774 -4,71948 -4.95368 4.86775
20 0.75 0.84259 -4.71591 -4.54924 -4,74432 -4.95386 4.96620
25 0.6 0.80161 -4.77437 -4.6077 -4,79242 -4.95285 5.10541
30 0.5 0.42132 -4.82464 -4.65797 -4.83633 -4.95415 4.87918
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Table (11) Values of Improved Bias Estimator for MLM with & = 7

a=7,=1
Theoretical Simulation

n b(&) b(&) b(é,) b(é,) b(é,) b(és) g

5 4.2 2.70891 -5.09075 -4.92409 -5.85445 -6.98424 3.88356
6 3.5 2.09933 -5.51055 -5.34388 -6.00703 -6.98287 4.54967
7 3 1.60727 -5.79361 -5.62694 -6.13829 -6.98177 491844
8 2.625 1.83353 -5.91614 -5.74947 -6.1871 -6.98063 5.52096
9 2.33333 0.81528 -6.14965 -5.98298 -6.33862 -6.98122 5.21018
10 2.1 1.67138 -6.1491 -5.98243 -6.31928 -6.9799 6.06997
12 1.75 1.06105 -6.34176 -6.17509 -6.45146 -6.97902 6.04579
14 1.5 0.97105 -6.44223 -6.27557 -6.52191 -6.97953 6.26297
16 1.3125 1.31881 -6.49023 -6.32356 -6.55395 -6.97925 6.75903
18 1.16667 1.21819 -6.55246 -6.38579 -6.60219 -6.97847 6.84845
20 1.05 0.87179 -6.61453 -6.44786 -6.65307 -6.97838 6.69102
25 0.84 0.83423 -6.69313 -6.52646 -6.71768 -6.97809 6.89412
30 0.7 0.68198 -6.74935 -6.58268 -6.76606 -6.97765 6.91378

41




Chapter Three Improve Estimators for Maximum Likelihood Method

Table (12) Values of Improved Bias Estimator for MLM with &« = 9

a=9B=1
Theoretical Simulation
n b(&) b(&) b(é,) b(é,) b(é,) b(és) &g
5 5.4 2.61479 -6.70971 -6.54305 -7.62583 -8.99102 4.64592
6 4.5 2.40645 -7.12617 -6.9595 -7.75078 -8.99045 5.70323
7 3.85714 2.5565 -7.37243 -7.20577 -7.83745 -8.98929 495277
8 3.375 1.61974 -7.69295 -7.52628 -8.01971 -8.98972 6.63734
9 3 2.12565 -7.78199 -7.61532 -8.05266 -8.98842 7.4171
10 2.7 2.71648 -7.84471 -7.67805 -8.07577 -8.98815 8.20154
12 2.25 1.55872 -8.13372 -7.96705 -8.2781 -8.98791 7.91904
14 1.92857 0.90267 -8.30432 -8.13765 -8.4037 -8.98821 7.78067
16 1.6875 1.64802 -8.34471 -8.17804 -8.42662 -8.98759 8.65152
18 1.5 1.51209 -8.42507 -8.2584 -8.48895 -8.98742 8.76008
20 1.35 1.2887 -8.49373 -8.32707 -8.54436 -8.98747 8.74539
25 1.08 1.10255 -8.60243 -8.43577 -8.63424 -8.98719 8.89024
30 0.9 0.68123 -8.68273 -8.51607 -8.70388 -8.98702 8.71311
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Conclusions and Recommendations

(1) The biases of moment method estimators @ and § as given in tables (1) and (2)
show that the approximation values is over estimate than the simulation values
for small sample sizes and it is rapidly become adequate for moderate and large
samples.

(2) Tables (3) and (4) show that the values of variance @& as given by
approximation equation (2.8) approach slowly to the simulated values as « and
the sample size n are increases. While the values of variance S as given by the
approximation equation (2.11) are excellent in comparison with the simulated
values, and that reflect on the values of the mean square error of @ and j as a
consequences behavior of the variances.

(3) Table (7) show an excellent closeness between the values of the biases of
maximum likelihood method estimators @ and f as obtained theoretically by
equation (3.16) and by simulation. These biases show that they are superior
than those of moment method.

(4) Tables (8) and (9) show that the variances and mean square errors values of
maximum likelihood method of & and 8 as obtained theoretically by equation
(2.22) and by simulation are good for all sample sizes and approach zero as the
sample size n increase . Furthermore these results are better than the results as
given by tables (3), (4), (5) and (6).

(5) Tables (10), (11) and (12) show the bias values of maximum likelihood method
b(a) with the values of the McCllage and Nelder bias estimators
b(a,),b(a,),b(a,) and b(&s) together with the value of a new bias estimator
as. We disagree with the proposed estimators of McCllage and Nelder that
give an improvement while the new corrected bias that we propose gives
results better than the results of moment method and maximum likelihood
method.

For future works, the following problems may be recommended:

(1) Other numerical method could be used for an approximate solution of equation
(2.24) such as bisection method, fixed point method, secant method ,..,etc,
which might be compared with the used Newton — Raphson method in this
thesis.
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(2) The approximate biases and variances values of moment method as given in
tables (1) and (2) become more closer to the simulation biases and variances
values if we approximate by the Taylor series expansion up to 3 order of
partial derivatives.

(3) This work can be used to generalize gamma distribution of three parameters
and other life distribution.
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