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Notoy andAbbreniationy

r.v. random variable
r.s. random sample
S.S. sample space
eq. equation
distn. distribution
p.d.f. probability density function
c.d.f. cumulative distribution function
m.g.f. moment generating function
e.w. else were
T I nverse Transformation
M.M. Moment Method
m. 1 .e. maximum likelihood estimate
M.L.M. Maximum Likelihood Method
L.S.M. Least Squares Method
O.SM. Order Statistic Method
Ext(ea,p) Extreme Value Distribution with parameters e and
W(a,b) Weibull Distribution with parametersa and b
R(X) Reliability function of x
h(x) hazard function of x
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Abstract

In this thesis, we consider the extreme value distn. of
two parameters for the reason of its appearance in many
statistical fields of applications. Mathematical and
statistical properties of the distn. such as moments and
higher moments are collected and unified and the
properties of reliability and hazard functions of the distn.
areillustrated.

The chi-square goodness - of - fit is used to test
whether the generated samples from the standardized
extreme value distn. by Monte Carlo simulation are
acceptable for use.

These samples are used to estimate the distn.
parameters by four methods of estimation, namely
moments method, maximum likelihood method, order
statistic method and least squares method.

These methods are discussed theoretically and
assessed practically in estimating the reliability and hazard
functions. The properties of the estimator, reliability and
hazard functions, such as bias, variance, skewness,
kurtosis, and mean sguare error are tabled.

The computer programs are listed in three appendices
and the run is made by using "MathCAD 14".
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Introduction

Inftrociuction

Extreme value digtributions are the limiting distributions for the
minimum or the maximum of a very large collection of random observations
from the same arbitrary distn. [26]. Probabilistic extreme value theory is a
curios and fascinating blend of an enormous variety of applications involving
natural phenomena such as rainfall, floods, wind gusts, air pollution, corrosion,
delicate advanced mathematical results on point processes, regularly varying
functions, extreme temperatures, large fluctuations in exchange rates, market
crashes, and breaking strength of materials. This area of research thus attracted
initially the interests of theoretical probabilistic as well as engineers and
hydrologists, and only relatively recently of the mainstream statisticians. [24]

A systematic development of the general theory may be regard as
having started with the paper by von Bortkiewicz (1922) that deal with the
distn. of range in random samples from a normal distn..[24]

In (1943), Gnedenko presented a rigorous foundation for the extreme
value theory and provided necessary and sufficient conditions for the weak
convergence of the extreme order statistics. [24]

Jenkinson (1955) combined these three extreme-value distributions into
one, i.e., the general (or generalized) extreme value (GEV) distribution, by
using atransformation of the three-parameter Weibull distribution. [21]

Gumbel made several significant contributions to the extreme value
anayss, most of them are detailed in his book length account of statistics of
extremes Gumbel (1958). [10][24]

Castillo (1988) has successfully updated Gumbel (1958) and presented
many dtatistical applications of extreme value theory with emphasis on

engineering [5].

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Introduction

Reiss (1989) discussed various convergence concepts and rates of
convergence associated with extremes (and also with order statistic). [24]

Commonly used distributions for rainfall frequency analysis are the
Gumbel distn., and the GEV distn., as applied by many authors (Hosking et al.,
1985; Coles et a., 2003). [19][7]

The Gumbel distribution is associate parameters have been determined
with the Probability-Weighted Moments (PWM) method, and the GEV
distribution in which the three parameters have been calculated with both the
PWM method (Hosking et al., 1985) [19] and the L-Moments method (Gellens,
2002) [14].

Based on progressively censored samples, Viveros and Balakrishnan
(1994) developed a conditional method of inference to derive exact confidence
intervals for the parameters of the extreme value distn. [41]. Beirlant, Teugels
and Vynekier (1996) [3] and Reiss and Thomas (1997) [37] provide a lucid
practical analyss of extreme values with emphasis on actuarial applications.

Bayesian estimation, prediction and characterization for the extreme
value model based on lower record values have been discussed in Mousa
(2002) [32]. Smith (2003) provides some applications for financial data[39].

Balakrishnan et al. (2004) discussed in classical framework, the
point and interval estimation for parameters of the extreme value
distribution based on progressvely Type-ll censored data, Bayes
estimates of the two (unknown) parameters, the reliability and failure rate
functions are obtained by using approximation form due to Lindley
(1980) [2].

The density of the Gumbel distn. is approximated by a finite
mixture counting data from normal distn. using the log 012 density

(Frédhwirth - Schnatter and Frééhwirth, 2007; Frédhwirth-Schnatter and
Wagner, 2006; Fréhwirth -Schnatter et a., 2009). [11][13][12]
The Gumbel distn. sometimesis called doubly exponential [24] and

also natural logarithms of Weibull random variables. [30]
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Introduction

This thesis involve three chapters. In chapter one, some important
mathematical and datistical properties of extreme value distn. and
moment properties of the distn. are illustrated and modified. Four
methods of edimation for the distn. parameters are discussed
theoretically. some concepts and properties the reliability and hazard
functions are introduced. Four methods of estimation for the reliability
and hazard functions are introduced. Finally, two theorems related to
extreme value distn.

In chapter two, some concepts of stochastic simulation are
illustrated. One procedure for generating random numbers and random
variates from extreme value distn. is discussed theoretically and supported
by various examples and one algorithm is illustrated. Finally, chi-square
test as best test to goodness-of-fit test to known the distn. is usable or not
that observations come from Ext(0,1) are illustrated.

In chapter three, the Monte Carlo ssimulation results to estimate the
parameters, the reliability and the hazard functions given in chapter one
practically by one procedure namely (EV-1) that observations come from
Ext(1,2) are introduced.
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1.1 Introduction

In this chapter, some mathematical and satistical properties of
extreme value distn. are introduced.

This chapter involves sx sections. In section (1.2), some
fundamental concepts of extreme value distn. are illustrated, while section
(1.3), deal with moments and higher moments properties of the distn. In
section (1.4), four methods of parameters estimation namely moments
method , maximum likelihood method , order statistic method and least
squares method are considered. In section (1.5), some concepts and
estimation methods to reliability and hazard functions are introduced. In
section (1.6), some related theorems concerning the distn. are given.

1.2 Some Fundamentals of Extreme Value Distribution

In this section, some properties of the extreme value distn., are
introduced .

Definition (1.1), [33]

A continuous r.v. X is said to have a minimum extreme value
distn., denoted by X~ Ext(a, f), if X hasp.d.f.
X-a
X-a )-e( b )
f(x;a,b):%e b Y X S¥ (1.1)

-¥ <a<¥, B>0.

whereo and 3 are respectively known as the scale and shape parameters.
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The extreme value distn. depends on two parametersa and f and a
wide variety of distribution shapes can be generated by suitable choices of
a and b. Fgures (1.1) and (1.2) show respectively a graphical
representation of some p.d.fs. for fixed o and b varying and for fixed b

and o varying.
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0.4 T T

f(x,0,1)
f(x,0,1.25)
f(x,0,1.5)
f(x,0,1.75) 0.2
f(x,0,2)
f(x,0,2.5)

Fig (1.1): ExtremeValuep.d.fs. withae=0and p=1,1.25, 1.5, 1.75, 2, 2.5.
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0.3

f(x,0,1)

f(x,1,1)
f(x,2,1)
f(x,3,1)
f(x,4,1)

0.2

0.1

WL

Fig (1.2): Extreme Value p.d.fs.with ¢=0,1, 2, 3,4 and g =1.
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The graph of f(x;a,b) as shown in figure (1.1) and figure (1.2):
1- Have the x-axis as a horizontal asymptote.
2- Increasing for - ¥ <X <o and decreasing for a <x <¥ .

-1
3- Has maximum point at (a,eT).

4- Have two points of inflection at x =a +b[In(3++/5) - In(2)].
5- Concave upward for- ¥ <x <a +b[In(3- /5) - In(2)],
a +b[In(3++/5) - In(2)] <x <¥ and Concave downward for
a +b[In(3- v5)- In(2)] <x <a +b[In@+5)- In(2)].

The details of the above properties are shown in appendix d.

1.2.1 The Cumulative Distribution Function, [33]

The c.d.f. of minimum extreme value distn. is defined by the following

integral:
Cay )
g 1 e
F(x;a,b)=Pr(X £x)= 9: (t;a,b)dt = Q—e dt
) b
Sety:t'Ta or equivalent t =a +by implies dt =bdy
X-a X-a
b y y
Focab)= ey ®ay= e ® e dy
- ¥ - ¥
Setu=eY impliesdu=eY dy
X-a
o b X-a
F(x;a,b) = (‘)e'”du -1- ¢ € ¥ <X <¥ . (1.2)
0
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1.3 Moments and Higher Moments Properties of Extreme
Value Distribution [22]

Moments are set of constants used for measuring distn. properties
and under certain circumstances they specify the distn. The moments of
r.v. X (or distn.) are defined in terms of the mathematical expectation of
certain power of X when they exist. For instance,

rr[t:E(Xr) is caled the ™ moment of X about the origin and

m =E[(X - m"] iscalled the " central moment of X. That is

'é, x ' f(x), X isdiscreter v.
T X
me=E(X" )=t | | |
i ox f(x)dx, X iscontinuousr.v.
TX
and
é (x-m'f (x) X isdiscreter v.

X
C‘jx m) f (x)dx , X iscontinuousr v.

Provided the sum or integral converges absolutely.
The generating functions reflect certain properties of the distn., they could
be used to generate moments. Sometimes they are defining some specific
distns., and also have a particular usefulness in connection with sums of
independent, r.vs..

First, we shall consider a function of a real t called the moment
generating function, denoted by M(t), which can be used to generate

moments of r.v X.

For continuousr.v X, the m.g.f. is defined by
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¥
M(t) :E(etx )= Qetxf (x) dx, provided the integral converge absolutely.

To find the m.g.f. of extreme vaue distn., whose p.d.f. is given by
eqg. (1.1):

y
M (t)= Qetx %e b ox |

Set y =X ;Ja or equivalent x = a+ fyimpliesdx = fdy ,then

¥
M) = & t(a+by) y-eY

¥
Qe e dy =et Q(e

Setu=e¥ impliesdu =eY dy

y )bt e-ey eydy

(1+bt) 1 U 4y

M(t) =e? Ol Lol qu= eatG(1+bt)Qﬂ

=e2! G(1+bt), t>'31 ......................................... (1.3)
¥
where G(w ) = GIW “leYdy ,w >0 iscaled gamma function.
0

To find the moments and other properties of the minimum extreme
value distn., we take the logarithm of the m.g.f. of eg. (1.3), then we have
FU)=INM @) =at +INGLHD) coe et (1.4)

The four derivatives of F (t), are given by
Fit)=a +bY(1+bt).|[.]
F%t) =b2y Q@+bt) §

y
FC)=b3y ®a+bt) i

|
F @) =bt “qa+bt)p
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whereY (z):dilnG(z) Is known as digamma function, when t=0, we have
V4

O R T A 11 N (1.6)
O G (LN 10 S N (1.7)
F B (0) Z03Y D) oo ees e (1.8)
SR (0 ETo R . () Yo (1.9)

The details of finding egs. (1.6) to (1.9) see in appendix d.
Table (1.1) below gives the values of the digamma function and it's

first, second and third derivatives for specified values of N. [35]

)l BZON BAOE BANHE Ba1)
2.253 -2001.861 ||60004.513

0.5 1.772] 0.572 | -1.964 4.935 -16.829 97.409

07) 1208 0261 | -1220 | 2834 | -6.435 25.879
.1.069 0066 | -0755 || 1923 | -3.202 9.739

1.0J 1.000 § 0.000 | -0.577 1.645 -2.404 6.494

The following are the important moments of the distn..

(i) Mean:
E(X) = p = p/1 is called the mean of r.v X. It is a measure of

central tendency. By using eg. (1.6), gives
FIO) =m=E(X)=a- oo, (1.10)

wherey = - Y (1) =0.577 isEuler’s constant.
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(if) Variance:
Var (X)=s?= E[(X - r’rjz] iscalled the variance of r.v. X. Itisa

measure of dispersion. The use of eq. (1.7), gives

F%o0)=s 2=p%y {0 :g = (L645)02 ... e, (1.12)
(iii) Coefficient of Variation:

cv.:% is called the variational coefficient of r.v. X. It is a
measure of digpersion. By using egs. (1.10) and (1.11), gives

cy=S-_Pb

(iv) Coefficient of Skewness:

3
o= H%EZ _ E[/Sr((x)?;lz] is called the coefficient of Skewness, It isa

measure of the departure of the frequency curve from symmetry. If g, =0,

the curve is not skewed, g;> 0, the curveis positively skewed, and ¢; <0,

the curve is negatively skewed. By using egs. (1.8) and (1.11), gives
F®0) =my=E[(X - M) =b3 K1) = (- 2.404)6°

Thus,

g =€ 2.4040% _ (-2.404)0% _
1 @wess)p?1¥2  (2.1008)b3

(v) Coefficient of Kurtosis:

4
gy= 5-3=" "1 3iscaled the coefficient of kurtosis.
% [Va()]
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It is a measure of the degree of flattening of the frequency curve.

If g, =0, the curve is called mesokurtic, if g, > 0O, the curve is called
leptokurtic, and if g, <0, the curve is called platykurtic. By using egs.
(1.9) and (1.11), gives
E[(X - m*=F 7 (0) +3(s 2)2 =b*v *41) + 3(1.64502)2

= (6.494)b% + (8.118)b* = (14.612)b*
Thus,

_ (14.612)b* an (14.612)b%

- ] S 3=54-3224.0iiiei., (1.14)
2 (1.6450%)2 (2.706)b%

1.3.1 Other Central Moments, [22]
(i) Mode:
A mode of adisn. isthe value x of r.v. X that maximize the p.d.f.

f (x). For continuous distns., the mode x is a solution of

dfu):Oamjdzfu)<o
dx dx 2

A mode is a measure of location. Also we note that the mode may

not exist or we may have more than one mode.

For extreme value case with p.d.f. of eg. (1.1), the logarithm of f (x) is

(X:2)
Inf (x):-In(b)+X;Ja-e b
(X-a)
dInf(x)zi_ie b
& b b
dinf (x) 11 O
For maximum, set T:O implies B—Be b =0

PDF created with pdfFactory Pro trial version www.pdffactory.com

10


http://www.pdffactory.com
http://www.pdffactory.com

X-a

b X-a

implies e =1implies 5 =In1=0 implies

thEMOdEIS X = 0l v v e e e e e (1.15)
(il) Median

A median of a disn. is defined to be the value x of r.v X such that
F(X)=Pr(X £x) :%. The median is measure of location.
For extreme value case, the c.d.f. given by eg. (1.2), we have

(*:2) (*:2) x-a

1:1- e'e e b
2

L[)—azln[ln(z)] implies

implies e :E implies e =In2 implies

Themedianis x=a+bIn[In(2)] .......cceveiviiiiiiiiin . (1.16)

1.4 Point Estimation

The point estimation is concerned with inference about the
unknown parameters of a distn. from a sample. It provides a single value
for each unknown parameter.

The following definitions are needed for the interest of this work.

Definition (1.2) (Statistic), [27]

A satistic is a function of one or more r.vs. which does not

depends on any unknown parameters.

Definition (1.3) (Point Estimator), [27]
Any datisic whose value is used to estimate the unknown

parameter g for some function of q say t(q) is caled point estimator.
Point estimation admits two problems:

11
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First, developing methods of obtaining a statistic, to represent or
estimate the unknown parameter in the p.d.f. such statistic.

Second, selecting criteria and technique to define and find best
estimator among many possible estimators.
Definition (1.4) (Unbiased Estimator), [34]

An estimator q = u(Xy, X, ..., Xy) is defined to be an unbiased
estimator of q if and only if E(a) =q foral gl W where Wis a

parameter space. The term [E(c}) - g] is called the bias of the estimator

~

g.

Definition (1.5) (Asymptotically Unbiased Estimator), [34]
An estimator g = U(X1, X», ..., Xn) is defined to be asymptotically

unbiased estimator for g if lim E(q) =q.
n

Definition (1.6) (Consistent Estimator), [34]

An estimator q is called consistent estimator for q if q converge

stochastically to g, i.e lim pr(‘d- q‘<T ) =1
n® ¥

1.4.1 Methods of Finding Estimators, [27]

Assume that Xl,X X n be ar.s. of sze n from a distn. whose

AR

p.d.f. f (x ,(a)whereta =(9,.9,.---.0, ) isavector of unknown parameters.

On the basis of the observed values X, X,,...,X of rvs. X ,X Xh

o 1o
the object is to find statistics, say U, =u. (X, X,,...X ), i =12...k,
whose values to be used as estimators for g; I =1,2,..K.
Severa methods could be founds in the literature such as:

Moments method, Maximum likelihood method, Bayesian method,

12
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Least squares method, Minimum chi-square method, Minimum distance
method and order statistic method.

For extreme value case we shall discuss theoretically four methods
of estimation namely the method of moments, the maximum likelihood
method, order statistic method and least square method.

1.4.1.1 Estimation of parameters by Moments Method, [34]

Let X,,X X, bear.sof size n from a distn. whose p.d.f.

2 1eees

f (X ,cnl),where(an =(,,d,,---,0, ) isavector of k unknown parameters, let

n
rr[E:E(Xr) be the r' distn. moment about origin and M :%é x! bethe
i=1

r'" sample moment about origin. The M.M can be described as follows:

Since, we have k unknown parameters, equate nfto My at g :cnj :
Thatisnfp=M, at 9:9, r=1,2, ..., k. for these k egs., we find a unique
solution for g;,q,-..,q, and wesay that qr,(r=1,2,...,k) is an estimate of
grobtained by M.M and the corresponding statistic Qr Is the M.M
estimator of qy.

For extreme value distn. case, we have two unknown parameters o

and b and if a rs of dSze n is taken, then we et

= —-) :A = = r :1 2 r
nf=M, aa=a, b=b,r=12.Where mg=E(X "), M, ~a X,
_ _ _ _1n o s
Forr=1, wehavenhct_ E(X)=M 1and E (X )_Fiilxi =X
from eq. (1.10), gives
= = OIS X oottt e, (1.17)
13
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Forr=2,wehave m0=g (X 2)=M, and E (x 2)= %Q_X?

from eq. (1.11), gives

Var (X ) +[E (X )]2 :(”n;l)sﬂ +X 2 implies

_ - -2, . 2R2 . .
\/ar(X)+X2:nTlSZ+X2 implies P 6b =N-152 implies

n
b= (8 ) (1.18)
p n
where b is the M.M. estimator for b,and s = _1[ a X2- nX 2] is
R 1

called standard deviation.

From egs. (1.18) and (1.19), gives

g=xX + 8 8- (1.19)

P n
where 4 isthe M.M. estimator for a.

The estimators & and b given by egs.(1.18) and (1.19) have the

following properties : [18]
(i) b= g /w is approximately an asymptotic unbiased estimator for

b, and its variance approach to zero.

Proof:

Snce E(h) =l /@E (S)and S® s , in probability, then

E(b)® 1 f6(n 1)E( )_i M%—b 1_%

So lim E(B);blé)nl ol =bJT-0) =b.oceiiieee, (1.20)
n n
, 2
p2=¢s [6n-HU _S?ab(-Do gnce s2@s2, then
epV' n 5 pZ& n 5
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2 6 1, 2
b-® p—2(1- F S
E(b%) - & - HE) =S a- Ls?
n n
p p

lim E(62) ; 2 (1- 0)s2 :iﬁ:t@ ............................ (1.21)
n® ¥ " p2 p2 6
From egs. (1.20) and (1.21), gives
Var(b) = E(62) - [ED)]2 3 b2-b2= 0 oovooeoeeee e, (1.22)
(i) a =X +%S 6(n oF Is also approximately an asymptotic unbiased
estimator for a.

Proof:

Since E(é):E()_()+Q /ME(S)

AN - 6(n 1 gpb 6(n D _ 1
E(a ,m+g N Js-a-gp+3 —a-go+ 1- =
(a) P+ o+ by l- —
n|l® E(a)»a- gb+gb\/ - WU (1.23)

2 &b, &5 [B0 1)02@

E(@9)=EfaX += | == U

SRS T i s

2c 2
82, 20%S [6(n-1) , 6(n- ngZS2y
5 p n w2 g

=E(X_2)+§ /ME()(S)+ME(SZ)
P n np
Since X® mand S®s then XS® ns

E(é2)®Var ()()+[E()()]2 + 4 mms +Ms 2
P n np

2.2
(n- 1>( gb)?/? 6gi(;2 1)p6b

2
—S—+(a gb)2+2§ 6
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2 2.2
: A2\ _ .2 2,2 g pb_ 6g°p“h
lim, E =a‘- 2abg+ghc +2/62(a - +

Ay E@%)=a g+g Io(agb)\/6 7 6

=a2. 2ago+ gzb2 +2ago- 2g2b2 + 92b2 =a?...... (1.24)
From egs. (1.23) and (1.24), gives

Var ()= E(22)-[E(A)]% ; @2- 82 =0.ovovoeeeoe (1.25)

Definition (1.7) (Likelihood function), [34]

The likelihood function of ar.s X1,X,,...,X, of sze n from adistn.

having p.df. f (x,q), where g = (ds, Oz, ..., gv) is a vector of unknown

parameters, is defined to be the joint p.d.f. of the n r.vs. Xi, X,,..., X,
which is considered as a function of g and denoted by L(g,x), that is

Q
L@)=f Q%,gao)i(z)lf ;.9)

1.4.1.2 Estimation of Parameters by Maximum Likelihood
Method, [34]

Let L(g,x) bethe likelihood function of ar.s Xy, Xa,..., X, of size
n from a distn. whose p.d.f. f (x,9), g=(qs, 02, ..., 0« is a vector of
unknown parameters.

Let g =u(x) :(u1(>0/<n),u2(>0%),...,uk (>0/<n)) be a vector function of the

observations X = (X;,X 5, Xp)- |If g have the value of g which

Al

maximizes L(g,x) then g is the mle of g and the corresponding

statistic (nAQ isthe M.L.E. of q. W e note that

() Many likelihood functions satisfy the condition that the m.le is a
solution of the likelihood egs.

16
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1L@Q.x) =0 ,a q:A r=12...k
1'[ r N

(i) Since L(g,x)and InL(g,X) have their maximum at the same value of
g sosometimesit is easier to find the maximum of the logarithm of
the likelihood.

In such case, the m.le. {; of g which maximizes L (g,x)may be

given the solution of the likelihood egs.
finL@g.X) _ _o
WNE@X) -0 a g=q r=12,..k
ﬂqr [l [l

For extreme value distn. case
Let X4, X, ..., X, be ar.s. of size n from Ext(a,b) where the distn. p.d.f.
isgiven by (1.1). Thelikelihood function is
L(a,b,x)=f (x,a,b)

-Of(x ,a,b)
=1
i Bl
8 1 (ﬁt;*a)'e( >
Oge
=1

|=1 b i=1

4 B
:-nln(b)-—+a—' A T (1.26)
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InL(a,b;x) _1 0 n
1 1(]a %):B_ale b S — (1.27)
| =
(x; - )
Y - n n(x -a) 'n
ﬂInL(a,b,{n/%): n+na_iéx_ +y e b (1.28)
b b b2 b2zl iZ1 b
Set ‘ﬂInL(ab>/<U) ‘ﬂInL(ab>/<U)_0 at a=4a,b=Db then
Ta b
From eg. (1.27), we have
(x; -a)
n o
%_ée b -%=o ...................................................... (1.29)
| =
From eg. (1.28), we have
(X _a) (X:é)
A+“g 129x ) e P =0 (130)
b b b=l _1 b

solution for & and b cannot be found analytically because of the
nonlinearity of eg®. (1.29) and (1.30).
An approximate solution for & and b from eg®. (1.29) and (1.30)

can be made iteratively by using Newton-Raphson method for solving a

non-linear eq®. as follows:

Suppose that:
x; -4
flzfl(é,ﬁ):%iézle b -% and
a (x, - a) (L“iA)
f2=f2(él’b)=_bn Eg Bizigzlxi+i§=1 I62 e °

and let (a (g, 6(0)) be given initial approximation. If (& ), 6(5)) is the
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approximate solution of (&,b) a stage (), s=0,12,....... , then the
approximate solution at stage s+1 is given by:
Asr) T A (9 T Ol et (1.31)
Disr) S0 F T v, (1.32)

In matrix form, we may write:

eff, oo’

PR Eaa ~ 0 ¢ ~
gdlgz- e b g ‘?flg ................................... (1.33)
éjZU g ﬂfz ﬂfz H gZU

ala by g

Provided that:
1, 1,
ﬂa(s) ﬂb(s) 1 0
1,  9f,
Tae b
Set:
) (x-l:a)
a= ML - “l3e b
fag bsi=1
(x :a) i (x :a)
M, % _n 10 b p(x-a) g
A, 52 p2d°® ] 3 C
ﬂb(s) ﬂa(s) b< b%i=l i=1 b
. (5-a)
ﬂb(s) b? 63 63i = 1=1 63
. A (Xi:é)
o rXji~ @92 b
-a _ e
i=1[ b’ !
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édlu éa bu éfll] 1 eC -bueflu 24
g, u="¢ 0 &0 - forac- b%t 0
&y & cy gfzu ac- b a ugfzu
Then
_ 1 1
d, = > (cf1- bfy) and  dy=- > (- bfy + af)
ac- a-b
and according egs. (1.31) and (1.32), we have:
A A 1
Ay = Ay - > (cfi- bfy) o (1.34)
a-b
1
b(s+1) b(s) - > (-bfy+af) oo, (1.35)
a-b

where the initial values op = a and o = f.

1.4.1.3 Estimation of Parameters by Order Statistic Method,
[29]:

This method can be described as follows:

Let X4, Xz, ..., Xnbear.s. of sizen from distn. p.df. f(x, q) where
9 =(du G2, ..., d, ), isavector of k-unknown parameters.

Let Y, <Y,<...<Y,represent the arrangement of the sample set { Xi} in

ascending order of magnitude. Let nt = E(X") be the r™ distn. moment

. 178 .
about the origin and M, = =§ x{ is the r'" sample moment about the
Ni=o

origin,r=1,2,3, ...
In this method, we equate nti =Mj at g = q,, I =1,2,...k and ranking
E(Y:) =Y, beginning with i = 1 until i = k-1 this process will givesk egs.
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to provide a unique solution for g at g ,i=1,2, ..., k.

For extreme value distn. case:

We have two unknown parameters a and b and if we take ar.s. of
size n from Ext(a, b), we let Y, represent the first order statistic of the
sample.

From the statistic theory the p.d.f. of Y, is:

Gu(ys) = n[1- Fyn)]™ *f(ys)
where f(y1) and F(y:1) represent the p.d.f. and c.d.f. of y; as given in egs.
(1.1) and (1.2) respectively. Then

Nn-1 y1-ra
(yl'a) u yl_a_e( b )
1. b

—€e

¥ (Y18 _ pe b
. tyrn

MYl(t):E(etyl): Oeylae b dyl
¥

Letz=Y1"2

,then b dz = dy,

¥ ¥
My, (=0 (\)et(a+bz) Z1€9) 4 _ at (\)(ez)bt & NE)Z 4
-¥ -¥

Let u= e impliesdu = e dz
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¥ ¥ -u at
R - < (1+bt)-1 ne” 1+bt
MYl(t)zneat du)bte U 4 = neft (y( )-1eln g, = Srbt )
0 n
at
e 1+Dbt
=—J%f—l ..................................................... (1.36)
n
¥
where G(w ) = (‘)/W “1e"Ydy , w >0 iscaled gammadistn..
0

Set Fvl(t): Ln le(t): at+Ln Gl +bt)- btLn(n)
F¢l(t) =a+by (1+bt)- bin(n)=a+ B[y (1+bt)— In(n)]
F¢l O)=a+bly (1)-In(M]=E(Y1) cceveiii i (1.37)

whereY (z):diInG(z) Is known as digamma function.
V4

Now, we apply the order datistic method by setting:
mi=a—g=X and E(Y))=Y, a a=4,b=b,which leadsto:

A+ DY (L) - ()] =Yg covee oo (1.38)
B S X A et (1.39)
From egs. (1.38) and (1.39) the estimators of b and a are respectively:
D=2 (1.40)
In(n)
AT X 0D oo (1.41)

wherey (1) = - g=-0.577.

The estimators & and b given by egs. (1.40) and (1.41), have the

following properties:
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(i) b :)Tn-(r:;l Isan unbiased estimator for B, and its variance approach to
zero.
Proof:
. SO G (1 B R \
Since E(b)_ESIn(n)H In(n)@E(X) E(Y)H
=—_[m- a +b(In(n) + g)
In(n)
-1 ra- - a+bin)+ o) =b e (1.42)
In(n)
E(b?) = — X _E[(X-Y1)2=— L _[E(X?)- 2E(XY,)+E(Y,2
(b%) ()2 [( )] (In(n))z[ (X7) - 2E(XYy) + E(Y17)]

=_ 1 [S_2+n?-2E(>‘<Y1)+sz+(m-bln(n))2]
(In(n)? "N

_ 1.8 1 . J
E(XY;) =E(=Y.a X;) =—E[min(X;)a X;]
N iz n i=1

:% E[min(X;)X 1+ min(X)X; + ...+ (Min(X;)) 2+...+ min(X;)X,]

1 no—l 1 n°-1
- Le[x2+8 xx;]= 2[Ex®) + & B X))
it itj

1 no'l

= 1] Ex2)+ & E)EX)
" j=2
it]

Where X;and X ;are independent

_ 1 2 no-l
EXYD) = Hvar(x,)+ g (X, )i + & EC)ECX)]

=1
it ]

23
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E(XYy) = [s +mz+ar‘n2 __g2+n%+(n-1)n%8:%gsz+nn%8

|1J

Hence:
E(b?) = 1 g— nf - 2(—+n?)+s +(m- bin(n))? u
(In(n))* gn
! es bnf- 25 o es?ant- 2nb|n(n)+(b|n(n))28
(In(n)) n a
2
! SSZ-S—-anIn(n)+(bIn(n)) 3
(In(n)) n
_ 52 ] 52 2nb b2
(n(m)%  n@inn)2  In(n)
lim E(b%) » 0- 0- 0402 =b2 oo e (1.43)
n® ¥
From egs. (1,42) and (1.43), gives
Var (b) = E(62) - E[(B)]% ; b2- 020 ..voveeveeceoeeeeereeenn . (L44)

(i) & = X+ gS Is an unbiased estimator for a, and its variance approach
to zero.

Proof:

Since E(&4)=E(X+@)=E(X)+gE(b)=m+gh=a- po+d

E(8?) = E[(X + b)?] = E[(X? +2gbX + g°b?]
= E(X?)+ 2gE(XDb) + g’E(b?)

= Var(X) +[E(X)]? + 2gE(b)E(X) + g°E(b?)
2

=2 1n? +2gome+ b2
n
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E@%) :S—:+(a- o)? +2gb(a - gb) + g’b?

p%® > ) 22, 20 pbE .
= on +a“- 2abg+g™b° +2gab- 2gb° +g°b“ = +a

r!i@n; E(A%) =2 oo (1.46)

From egs. (1.45) and (1.46), gives
Var(d)=E(@2)- [E(A)]? ; a%- 2% =0.ccieiiieieeeieceeee e (1.47)

1.4.1.4 Estimation of Parameters by Least Squares Method,
[29]

The Least squares method is a general technique for estimating
parameters in fitting a set of points to generate a curve whose trend might
be linear, quadratic, or of higher order. In order to utilize this method, the
error terms due to experiment must satisfy the following conditions:

(i) They have zero mean.
(i) They have the same variance.
(iii) They must be uncorrelated.

For good results of fitting curve to the data set, the error must be
minimized as small as possible.

Let us assume that we have a set of n data points (x;, t)) through
which we desire to pass a straight line. This line is representing the best
fit in the least square sense.

Suppose that the best fitting straight line to the data (xi, t) is
X =19+, wherel g and | ; are two unknown parameters representing

respectively the vertical intercept and the slope, as shown in fig (1.3).
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Figure (1.3) The best fitted lineto the data (x;, t;).

The ordinate x; as given by the genera line is | o + | it;. The
difference between these two valuesis the error of fit at thei™ point

e=X- (lo+Iat).
Let the sum of squares of all errors at the data points be:

n n
W=g e =8 (xi-1o-11t)°
i=1 i=1
For minimum, we set:

W -0 and T[\—N:O,atlozfo,llzfl

Mo 1l
n ~ ~
B/ =-28 (Xi- 1 g-T4t)) =0 i, (1.48)
Molo=lo i=1
1=l
n ~ ~
w- =-28 (X 1 o- T4t =0, (1.49)
ﬂ|1:0=|10 i=1
1=l

From (1.48) and (1.49), we can get two egs. as.
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S SR PR,
I R - B - I SR (1.51)
i=1 i=1 i=1

Equations (1.50) and (1.51) are ssimultaneous algebraic egs. for the
two parameters| g and | ;.
In matrix notation (1.50) and (1.51) may be written as:

~

AT S B et (1.52)
where:
é Jou R é D U
en atia . g0 ga X
R=¢ =10, =e 0, b=eist 0
L an n 0" &g.g" én a
~ 9 e .27 1 ~ ’
éati atd €1 e tix;
€i=1 izt 0 8i=1 a

The solution of eq.(1.52) is:

~

| =A'bifandonlyif |A]*0.

[

Thus, whenever the data points t;, " i are given, then the matrix A and

the vector b may be computed and hence In: Is determined as follows:

n n
" Xé ti2 - Té t|X|
| o = ';1 . _';1 ...................................................... (1.53)
at -tat,
i=1 i=1
3 —d
. a tiXI - ta X
— i=1 i=1
|, = " —:P ......................................................... (1.54)
a t| - ta ti
i=1 i=1
0. 0 3 — 5
providedthat?atiz- tati=* 0, where X :la X, t :lati
ei=1 i1 @ Nz Nz

For extreme value distn. case:
Suppose that X1, X,, ..., X, be a random sample of size n from

extreme value distn. having cumulative function:
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X-a

b
F(x)=Pr(X £x)=1- ¢ © , - ¥ <X<¥

b
Weset u; = F(x), thenu, = 1- € © , which implies:
=a+bLn(-In(u)), =12, ...,N i (1.55)
whereO<u<1 implies 0<l-u<1.

Setyi =x, ti=Ln(-In(y;)),i=1,2,....,.nandl,=a,l;=h.

>
>

Then v, =lo+14t,i=1,2,...,n;whered =1 o, b=1,
Utilizing eq.(1.52) for obtaining the estimator |, and I ,, therefore;

The least squares estimators a and b can be obtained from the (1.55):

The etimators & and b given by (1.56) and (1.57) have the

following properties:

J =4
i at,x, ta X;
(i)b=12 =L isan unbiased estimator.
at’-tat
i=1 i=1
lae) 0O
Set Si= a(t-t) -a(t-t)t-at gat—
i=1 i=1 Ngiz1 o
n n n .2
Se= & (x-X)7 =& (x-0x = Ax - 138 %2
=1 i=1 i=1 Ngi=1 o

J — _ 3 — a n n o
=8 (- DeG-0 =8 G- Dx =&t - 153 %8«

i=1 i=1 i=1 Ngiz1 gei-1 g
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p=

Sob may be written as :
St

as[x B u
since  E(B) =EoX Y= L E(S,) = —Ega (- T
nee EP)=Eeg TS T Ty, 88_‘1( Ral
17 — 178 _
=—al(t- HEX) =—a (- t)(a+bt)

t i=1 S[t i=1

1¢ 0
eaa (t - )+ba (ti - Dty
t e i=1 i=1 u

Hence:
(D) = 2 (05) Z Do (1.58)
Si

u
since Var(b) = Varas‘x —V ar(Sx) = iVarea (ti - DX
e t ﬂ t t é=1 a

19
=— & Var|[(t; - T)x (t - 1)%s
[ Stzt i=1

t i=1 ] Stzt i=1

Because x4,K, X, are independent hence:

(t - t) Var(x; )—

Vah)= Ss2g == PO (1.59)
S St o8 4 . T2
6a (t - t)
(ii) 4 isan unbiased estimator. From eq.(1.50), we have:
Since 4 = X- bT implies E(4)=E(X - bT)=E(X)- TE(b)
Since x; =a + bt; + g, then:
3 3 3
axi=na+bat +ae
i=1 i=1 i=1
Which implies that :
X=a+bt +eimplies E(X)=a+bt +0
where E(€) =0
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Hence:
E(A)=a+bt-bt=a ... (1.60)

Since Var(a)=Var(X- bT)=Var(X)+ TVar(b) - 2T Cov(X, b)

2182 2 21,2
p6b , 7 npb
n 0 —

6a (t - T)°

i=1

- 2T Cov(X, b)

Since Cov(X, b) Covg—ax,,s‘x_

&niz; St g

1 & J . 0
= ——Covca xj,a (t - 1)x =
nS; &= = 2

S én. Cov(x;, (t; - T)x;)

NSy =1
- n—;t élgiEg(ti - DX EGOE[ - T ]
_n_éa el(t - D) - (E(x)°Y
= L & (- Dvalx)= —s?8 (t - T)

NSy i1 NS =1

ey Cov(X,b)=0

e , U

~ 21,2 € " u
Var(d) » Ph"gl, ¢ Ureereeremeesesmessessenesssseseenseessesessnans (1.61)

6 én @ —ou

& al(t-1)7y

g o

1.5 Reliability and Hazard Functions of Extreme Value Distn.

In this section, we illustrate some concepts, relations, properties,
estimation for the reliability and hazard functions.
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1.5.1 Some Concepts of Reliability and Hazard Functions

Initially, we shall represent the definition of the reliability and
hazard functions. Billington and Allen (1983). [4] define reliability is the
probability of a device performing its purpose adequately for the period of
time intended under the operating conditions encountered. Chicken &
Posner (1998) define hazard as Situation can cause harm. Harm is taken to
imply injury, damage, loss of performance and finances [6].

Reliability theory is a genera theory about systems failure.
Reliability theory was originally developed for estimating the reliabilities
of physical devices. The source of the reliability failures of physcal
devicesistypically the physical deterioration of the materials used in their
congruction. This physical deterioration provides the basis of stochastic
reliability modeling, since the deterioration is assumed to vary randomly
with time. It predicts the late-life mortality deceleration with subsequent
leveling-off, as well as the late-life mortality plateaus. The theory
explains why mortality rates (hazard rates) increase exponentially with
age (Gompertz law) in many species, by taking into account the initial
flaws (defects) in newly formed systems. It also explains why organisms
prefer to die according to the Gompertz law, while technical devices
usually fail according to the Weibull (power) law. Theoretical conditions
are gspecified when organisms die according to the Weibull law:
organisms should be relatively free of initial flaws and defects. The theory
makes it possible to find a genera failure law applicable to all adult and
extreme old ages, where the Gompertz and the Weibull laws are just
special cases of this more general failure law. Therefore, reliability theory
seems to be a promising approach for developing a comprehensive theory
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of aging and longevity integrating mathematical methods with specific
biological knowledge. [28]

In the reliability modeling, minimum extreme value distributions
are frequently encountered, e.g., if a system consists of n identical
components in series, and the system fails when the first of these
components fails, then system failure times are the minimum of n random
component failure times. Extreme value theory says that, independent of
the choice of component model, the system model will approach a
Weibull as n becomes large. The same reasoning can also be applied at a
component level, if the component failure occurs when the first of many
similar competing failure processes reaches a critical level. The reliability
function isdenoted by R(x; ), is given by

R(x;a,b) = Pr(X>x) =1- Pr(X£x) =1- F(x;a,b) .......... (1.62)
For engineering systems, failure rates or hazard rates are terms
applied to the first failure times for a population of non-repairable
components or to non-repairable systems. The failure rate is defined for
non-repairable populations as the (instantaneous) rate of failure for the
survivors to time x during the next ingant of time. The failure rate (or
hazard rate) is denoted by h(x;a,) and calculated from

f (x;a,b) _f(x;a,b)

h(x;a,b) =1 F(x;a,b) R(x:a,b)

The failure rate is sometimes called a conditional failure rate. The
cumulative hazard function, denoted by H(X; a, ), [26] is defined to be

X
H(x;a,b):(‘)h(w;a,b)dw ............................................. (1.64)
0
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The failure rate function is often used to indicate the health
condition of a working device. A high failure rate indicates a bad health
condition because the probability for the device to fail in the next instant
of timeishigh. [30]

1.5.2 Some Important Relations, [30][26]

It is obvious that one of the functions f (x;a,b),F(x;a,b),
R(x;a,b), h(x;a,b), H(x;a,b) is adequate to specify completely the
lifetime distribution of a device. These functions are satisfy the well-

known relations

“dRr(x:a.b)

- h(x: _ dx _-d :
1- h(x;a,b) RXa.D)  dx InN[R(x;a,b)]

X
- oh(wa,b)dw
2- R(x;a,b)=e 0

Shw:a,b)dw
3- f(x;a,b)=h(x;a,b).R(x;a,b)=h(x;a,b)e O

4-F(x:a,b) =1-¢ H(xab)
5-H(x;a,b) =-InR(x;a,b)

1.5.3 Properties of Reliability and Hazard Functions of the
Extreme Value Distribution, [26]

In this section, we shall give some mathematical properties of the
reliability and the hazard functions of the extreme value distn.
The reliability function of the extreme value distn. can be obtained in

terms of the c.d.f. of eq.(1.2) asfollows
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X-a X-a
R(X;a,B) =1- F(x;o,p) = 1- [1- 7€ " ]=e€ i (1.65)
The reliability function given by (1.65) satisfy the following:
1- 0O<R(x;a,b)£1
2- R(0) =1 and R(x) = 0.
3- The function R(x) is anon-increasing function of x.
4- The function R(x) is continuous from the left at each x.
The hazard function of the extreme value distn. can be obtained in
terms of the p.d.f of eg.(1.1) and the reliability function of eq. (1.65) as

follows:

f(x;a,b): b 1 b
R(x;a,b)

h(x;a.p) =

The hazard function given by (1.66) satisfy the following:

1. h(x;a,p) is an increasing function for dl x and it is Concave upward for

_a
1e b <X <¥.
b

Several typical failure rate curves are given in Figures (1.4.8) and
(1.4.b). Inspection of these curves makes it obvious that the failure rate is

monotonic for all a and b .
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10- 7

h(x,0,2)

h(x,0,2)
h(x,0,3)
h(x,0,4)
h(x,0,5)

5
h(x,0,6)

Fig(1.4.a): failurerate of Extreme Value distribution with ¢ =0
andb=1,234,5,6
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h(x,0,1)

h(x,1,1)
h(x,2,1)
h(x,3,1)
h(x,4,1)
h(x,5,1)

Fig(1.4.b): failurerate of Extreme Value distribution with
a=0,1,23,4,5andb =1
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1.5.4 Estimation of the Reliability and Hazard Functions of

Extreme Value Distribution

The estimators of the parameters by four methods of estimation that
given in section (1.4) can be used to estimate the reliability and the hazard

functions as follows.

1.5.4.1 Estimation by M.M
The M.M estimators of § and a as given by (1.18) and (1.19) are

h=> /M and A= X + b
P n

accordingly the estimators of R(x;a,) and h(x;a,) isnow obtained by
replacing o and b in (1.65) and (1.66) by their estimates & and b given
in (1.18) and (1.19). Accordingly the estimator of R(X) is:

X:a
) o o D
RM M (X;aM M .’bM M ) e (167)
and the estimator of h(x) is:
(X:2)
, oA " _1 b
by v OGau M B M ) == (1.68)

b

1.5.4.2 Estimation by MLM

The M.L.M. of o and b asgiven by (1.34) and (1.35) are

1 1

- b2 (Cfl- bfz) and b(3+1) = b(s) - - b2

Ay =ag - (- bfy + afy)

accordingly the estimators of R(x;a,) and h(x;a,B) isnow obtained by
replacing a and b in (1.65) and (1.66) by their estimates & and b given
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in (1.34) and (1.35). Accordingly the estimator of R(X) is:

X-a
~ R ~ -e b
RM LM (X;aM LM .’bM LM ) T = (169)
and the estimator of h(x) is:
(X:3)
~ A - _1.0 b
hM LM (X 1AM LM .’bM LM ) —Ee ............................ (170)

1.5.4.3 Estimation by 0.S.M

The O.S.M estimators of b and a as given by (1.40) and (1.41) are
=X d  a=X+g
ey - +
In(n) adasX+e

accordingly the estimators of R(x;a,) and h(x;a,f) is now obtained by

replacing o and b in (1.65) and (1.66) by their estimates & and b given
in (1.40) and (1.41). Accordingly the estimator of R(X) is:

X :a
. . e D
ROSM (X,aOSM ’bOSM ) = e .................................. (171)
and the estimator of h(x) is:
- )  C2)
rbSM (X ;aOSM R bOSM ) :Ee ................................ (172)

1.5.4.4 Estimationby L.S.M
The L.S.M estimators of 3 and a asgiven by (1.56) and (1.57) are

o] _0 J —d
) a i-taxi atixi- ta x
b= and é i=1 i=1

n n
atZ-tat at2-Tat
i=1 i=1

38
PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

accordingly the estimators of R(x;a,) and h(x;a,) is now obtained by
replacing o and b in (1.65) and (1.66) by their estimates & and b given
in (1.56) and (1.57). Accordingly the estimator of R(X) is:

~

X-a
A - N
RL.S.M (X;aL_S_M .’bL.S.M ) e (173)
and the estimator of h(x) is:
X-a
X . ) 1 ( 5 )
hL.S.M (X,aL_S_M .’bL.S.M ) —Ee ................................. (174)

1.6 Some Related Theorems, [33]

Theorem (1.1)

If ther.v X ~W (a,b), then ther.v. Y =In(X)~Ext(a,b) where
a

aze b =1
b

Theorem (1.2)
If ther.v X ~Ext(a,b), thentherv Y =-X ~Ext(-a,b)

39
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2.1 Introduction

In this chapter, we shall give some definitions, concepts and
historical review about Monte Carlo simulation.

2.1.1 Definition, [16]

Simulation in a" wide sense " is defined as a numerical technique
for conducting experiments on a digital computer which involve certain
types of mathematical and logical models that describe the behavior of
system over extended periods of real time.

For example, designing games, training pilots on flight conditions,
film to ssimulate objects, atelephone communication system, alarge scale
military battle (to evaluate defensive or offensive wegpon system) and
network traffic simulation.

Where as simulation in a " narrow sense " (also called stochastic
simulation) is defined as experimenting with the model over time, it
includes sampling stochastic variates from probability distn. Often
simulation is viewed as a “Method of Last Resort” to be used when every
things else has failled. Software building and technical development have
made simulation one of the most widely used and accepted tools for
designersin the system analysis and operation research.

2.2 Monte Carlo Simulation

Stochastic simulation is sometimes called Monte Carlo simulation,
because sampling from a particular distribution involve the use of random
numbers. [38]

Historicaly, The name “Monte Carlo” was coined by Metropolis
(1946) (inspired by Ulam’s interest in poker) during the Manhattan
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Project of World War |1, because of the smilarity of statistical simulation
to games of chance, and because Monte Carlo, the capital of Monaco was
a center for gambling. [1]

Courant [8] showed the equivalence of the behavior of certain
random walks to solutions of certain partial differential equations. Early
use of Monte Carlo was the sampling experiment that led student W. S.
Gosset (1908) to the discovery of the distribution of the t-statistic and the
correlation coefficient of the distn.. [15] In the 1930s, Enrico Fermi made
some numerical experiments that called Monte Carlo calculations, which
Is the first of used a random number method to calculated the properties
of the newly-discovered neutron. [36]

During the Second World War, von Neumann, Fermi, Ulam, and
Metropolis and the beginnings of modern digital computers gave a strong
Impetus to the advancement of Monte Carlo. In the late 1940s and early
1950s, there was a surge of interest. Papers appeared that described the
new method and how it could be used to solve problems in statistical
mechanics, radiation transport, economic modeling, and other fields.
[40][9]

The two most influential developments of that kind were the
improvements in methods for the transport equation, especially reliable
methods of ‘‘importance sampling’” [23] and the invention of the
algorithm of Metropolis et. al.. The resulting successes have borne out
the optimistic expectations of the pioneers of the 1940s. In (1948) Fermi,
Metropolis and Ulam obtained Monte Carlo estimates for the eigenvalues
of Schrodinger equation. [31]

The main requirement to use Monte Carlo method for simulation of
a physical system is that it must be possible to describe the system in
terms of p.d.f., also called partition function (Z). Once the p.d.f. or Z for a
system is known, then the simulation begins by random “sampling” from
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the p.d.f.,, and subsequently determining the desired properties of the
sample by conducting some kind of a “trial” and subjecting the outcome
to a reasonable test such as chi-square-goodness of fit test. Many trials
are outcomes of all of these trials are recorded. The final step in the
Monte Carlo method is that the behavior of the overall system is obtained
by computing the average of outcomes of the trails conducted. [1]

Monte Carlo methods provide approximate solutions to a variety of
mathematical problems by performing statistical sampling experiments.
Monte Carlo methods are a collection of different methods that al
basically perform the same process. This process involves performing
many simulations using random numbers and probability to get an
approximation of the answer to the problem. [20]

Monte Carlo simulation is widely used in many fields in
Mathematics and Statistical Physics to numerical solution of complex
multi-dimensional partia differentiation and integration problems, also it
Is used for ssimulating quantum systems to solve optimization problemsin
operations researches. [36]

Also in Engineering, Monte Carlo simulation is used to estimate
reliability of mechanical components in mechanical engineering.
Effective life of pressure vessels in chemical engineering. While in
electronics engineering and circuit design, circuits in computer chips are
simulated using Monte Carlo methods for estimating the probability of
fetching instructions in memory buffers. [16][36]

Also, Monte Carlo Simulation is used in financial [16], and
phenomena modeling such as the calculation of risk in business. Monte
Carlo are useful in studying systems with a large number of coupled
degrees of freedom, such asfluids, disordered materials, strongly coupled
solids, and cellular structures. [36]
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Markov Chain Monte Carlo simulation methods that have been
widely used in recent years in econometrics and statistics. [17]

2.3 Random Number Generation, [25]

The best means of obtaining unpredictable random numbers is by
measuring physical phenomena such as radioactive decay, thermal noise
in semiconductors, sound samples taken in a noisy environment, and
even digitized images of alava lamp.

However, few computers (or users) have access to the kind of
specialized hardware required for these sources, and must rely on other
means of obtaining random data. The term “practicaly strong
randomness” is used here to represent randomness which isn’t
cryptographically strong by the usual definitions but which is as close to
it asis practically possible.

We say that, the random numbers generated by any method is a
“good” one if the random numbers are uniformly distributed, statistically
independent and reproducible, more over the method is necessarily fast
and requires minimum capacity in the computer memory.

The Congruential methods for generating pseudorandom numbers
are designed specifically to satisfy as many of these requirements as
possible.

These methods produce a nonrandom sequence of numbers
according to some recursive formula based on calculating the resdues
module of some integer m of a linear transformation. The Congruential
methods are based on a fundamental congruence relationship, which may
be formulated as:

Xi=(aX; +c)(modm), i =1,2,..,m. ...ccooiiiiiiiii (2.1)

where ais the multiplier, c istheincrement , and m is the modulus (a, c,
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m are non-negative integers), (mod m) mean that eg.(2.1) can be
written as.
Xiyg=aX; +C- mgaXi red

8 m H ..........................................

Is the greater integer in z

ax; +c

Wherez =

Given an initial starting value X, with fixed values of a, ¢ and m,
then eg. (2.2) yields congruence relationship (modulo m) for any values i
of the sequence { Xi}. The seq. {X;} will repest itself in at most m steps
and will be therefore periodic. For instant:

Let a=c=X,;=4, and m=3,then the sequence obtained from the
recursive formula

X4 =(4X; +4)(mod 3) is X; =4,2,012,... .

The random number on the unit interval [0,1] can be obtained by:

U =20 202 M e (2.3)
m
It follows from eq.(2.3) that X; £m, " i , this inequality mean that

the period of the generator cannot exceed m, that is, the sequence {X; }

contains at most m distinct numbers. So we should choose m as large as
possible to ensure, a sufficiently large sequence of distinct numbersin the
cycle.

It is noted in the literature, that good statistical result can be achieved

from computers by choosing a=2"" |, ¢ =1, and m =2%.
2.4 Random Variates Generation from Continuous Distribution

Many methods and procedures are proposed in the literatures for
generating random numbers from different distributions. We shall utilize

the inverse transform method, (1T).

44
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2.4.1 Inverse Transform Method

One of the more useful ways of generating random variates is
through the inverse transformation techniques which is based on the
following theorem:

Theorem (2.1), [38]

The random variable U = F(X) ~ U(0, 1) if and only if the random
variable X = F}(U) has c.d.f pr (X £ x) =F(x).

The algorithm of generating random variates by inverse transform
method can be described by the steps of I T-algorithm:

IT-Algorithm:

1. Generate U from U(0O, 1).

Set U = F(X).

Return X = F }(U) if the inverse exist.

Deliver X as arandom variable generated from the p.d.f f(x).

o &~ 0D

Stop.
As an application of 1T-Algorithm, we shall consider the following

examples:

Example (2.1):

Consider, we wish to generate ar.v. X, where the distn. p.d.f:

- (2)

ie 1-X 0<x <1
f(x)=i 1- x)2"

.I.

1 0, ew.

then, the c.d.f. of thisp.d.f.
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X (1_ )

Y - t

t
It

1

dt
(- t)2

Setu= impliesdu =

X
1- % X

1- X

Fx)= §eldu=1l-e Tk
0

Set u = K(x), implies:

X = In(u)

nw-1° 0 U<t

Apply IT-Algorithm:

1. Generate U from U(0O, 1).

InU)
2. SetX = In(U) 1"
G
3. Deliver X asarandom variable generated from f(x) = W
1-x

4. Stop.

Example (2.2):

If ar.v. X required from the distn. whose distn. p.d.f:

: X 2a2, 2a<x<atb
.I. (b_ a)

f(x) = 1 20 %, atb<x<2b
i (b- )
|
|
() 0, ew.
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then, the c.d.f of thisp.d.fis:

10, X £ 2a
X
J' \((tt;) 2?) dt, 2a<x<a+b
[2alb-a
F(X)= pr(X £ X) :.:. a+b - 23 y -
PO 2 dt+ § —Ldt, atbEf x<2b
L ga(b-a)°  arp(b-a)
£1, x3 2b
i0, X £ 2a
;
i 2a]2, 2a<x<a+bh
So: F(x)=|12 b- a
i 1r2b- xq2
2l- = ], atb£ x<2b
[ 2" b-a
11, x 3 2b
1rx- 2a712 . .
For 2a<x <atb,setu=FXx) b u:E[b a] , implies:
x=2a+(b-a)\/5,for0<UE%
For a+b £x < 2b, setu=F(x) b u=1- %[2;';]2 ,implies

X =2b- (b-a)@,for%<u<l

Apply IT-Algorithm:

1. Read aandb.
2. Generate U from U(O, 1).

3. If 0<U< % set X = 2a+(b- a)V2J : gotostep (5).

4. Else, set X =2- (b- a)WaJ .

5. Deliver X asarandom variable generated from

47
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6. Stop.

We note that:

To apply the inverse transform method, the c.d.f F(x) must exist in
a form for which the corresponding inverse transform can be applied
analytically.

Some probability distn., it's either impossible or possible to find the

X
inverse transform , that is, to solve, u = F(x) = ¢ f(t) dt.
-¥

For example:
1. X ~ Exp(l ), where f(x) = Iie'xf' 0<x<Y¥ (possble).

2. X ~G(2, 1), where f(x) = xe*, 0 < x < ¥ (difficult).

2

1
2" , - ¥ <X <¥ (impossible).

3. X ~N(0, 1), where f(x) = —— e

J2p

2.5 Procedure for generating Random Variates of Extreme

Value Distribution

In this section, we shall consider the procedure for generating
random variates from extreme value distn. by utilizing theorem (2.1).

48
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2.5.1 Procedure (EV-1):

This procedure is based on Inverse Transform method given by
theorem (2.1):

From eg. (1.2), the c.d.f. of extreme value distn. is:
X-a

F(x:;a,b)=1- e ©
X-a

b
Setting u = F(x; a,b) impliesu=1- € ® | impliesthat;
x =a + b Ln(-Ln(u))

The (EV-1) algorithm describe the necessary steps for generating
random variates by the inverse transform method.

Algorithm (EV-1):

1. Reada, b.

2. Generate U form U(O, 1).

3. Set X =a + bLn(—Ln(u)).

4. Deliver X asar.v. generated from Ext(a, b).
5. Stop.

2.6 Goodness _ of _Fit Test for Extreme Value Observations,
[34]
We shall subject the observations of extreme value distn. that obtained
from a computer by smulation to atest to see whether or not it will be
acceptable for use.

Many goodness of fit tests are available could be found throughout
the literature such as Chi-Square, Kolmogorov-Smirnov, Sign-Rank,

49
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Median, Mann-Whitney tests etc. We shall utilize chi-square goodness of
fit test which is consdered as the best known test of all statistical tests.
Such test can described as follows:
Suppose X3, X, ..., X,bear.s. of sze nfrom distn. whose c.d.f
F(x) = pr(X £ x) isunknown and we wish to test the null hypothesis that
the observations
Ho: F(X) = Fo(X) versus Hy : F(X) # Fo(X)

Where Fy(x) is completely specified c.d.f.

we assume that the n observations have been grouped into k mutually
exclusive cells. Let P, be the probability that the outcome of X; of the
sample fallen in the cellsi and let O, be the number of the observed of the
cell i and let g be the expected number of cell i, i=1, 2, ....., k.

Then we have the following table :__

Cdli |1 2 G 2 K Total
O O, 0O, O3 | O N
€ € (S)) €3 | e et i e s €k

K K
Where n=3 O, =3 ¢
i=0 =0

Since, O; ~ b(n,p;), with the expected ( & = n p; ). The test statistic

2
suggested by personis y=§ %
i=0 i

, which tends to be small, when

Ho is true and large when Hy is false the exact distn. of r.v. y is quite
complicated for large n.

50

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

The digtn. of r.v. y is approximately chi_ square with k-1 degrees of

freedom. i.e. as n—w, y ~ cz(k- 1), under Hp (when Hy is true) we expect
pr(Y £ ¢ ) = 1- a, where o is the significance level of the test.

In particular, usually we take o = 0.01, 0.05, or 0.1 and quintile ¢Z ,

that correspond to the probability (1-a) given in chi_ square table

f(x)
ﬂ\

pr(YEC? J)=1a

A

> X
— Acceptance regon — T — rgjection region —

v

Figure (2.1) The Chi-Sguare Goodness-of-Fit Test.

We applied this test on a sample of size n=100 to test whether the

observations come from Ext (0,1) where Fo(X;a,p)= 1- € &% We take the

number of cells k=10 with pooling method will reduce the number of cell

. kO ey
takes and we observe the value of test statistic Y =g 'e—' with
i=1 i
a=0.05 level of significant and the number of repetition 500 is used.
It has been found that 94% of 500 trials are accepted. So we accept
that the observations obtained by the computer as a real observations

come from Ext(0,1).
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3.1 Introduction

In this chapter, we shall utilize Monte Carlo method to estimate the
parameters of extreme value distribution by moment method, maximum
likelihood method, order statistic method and least squares method as
givenineq.s(1.18), (1.19), (1.34), (1.35), (1.40), (1.42), (1.56) and (1.57)
of chapter one, The simulated samples of extreme value are observed by
monte carlo method according to the procedure given in sections (2.5.1).
These estimators are used to estimate the reliability and the hazard
functions by four methods given in section (1.5) of chapter one.

3.2 The Estimates of the Parameters Using Procedure (EV-1)

To access the results obtained by the four methods of estimation, we
generate samples of size n = 5(1) 10(2) 20(5) 30(10) 100 from extreme
value distn. and repetition 500 is used.

A computer program (1) is made in Appendix (A) uses procedure
(EV-1) of section (2.5.1) which utilizing the Inverse Transform Method.

The estimators by the four methods of estimations are displayed in
table (3.1).
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Table (3.1)

Parameters estimation.

Estimation of (d,b)

(0.734,1.677)

M.L.M

(5.956,6.735)

O.SM

(0.929, 2.083)

(0.828,1.690)

(3.639,5.642)

(0.968,2.080)

(0.842,1.727)

(2.448,4.793)

(1.023,2.072)

(0.874,1.760)

(2.169,3.041)

(1.022,1.958)

(0.881,1.836)

(0.207,1.286)

(1.018,2.04)

(0.892,1.844)

(1.819,2.803)

(1.015,2.039)

(0.896,1.868)

(1.683,2.629)

(1.012, 2.037)

(0.901,1.870)

(1.482,1.573)

(0.989, 1.965)

(0,920,1.882)

(0.584,1.601)

(0.990, 1.970)

(0.937,1.909)

(0.636,1.756)

(1.009,1.978)

(0.938,1.910)

(0.725,2.253)

(0.992, 2.022)

(0.961,1.911)

(0.783,1.826)

(1.008,2.016)

(0.965,1.914)

(0.832,2.111)

(0.993,2.014)

(0.970,1.951)

(0.880,1.921)

(1.006,1.990)

(0.971,1.958)

(0.889,1.944)

(0.995, 1.992)

(0.979,1.968)

(0.902,2.064)

(1.005,1.993)

(0.985,1.970)

(0.924,1.988)

(1.004,1.994)

(0.989,1.971)

(0.932,2.011)

(0.996,1.995)

(0.990,1.979)

(0.944,2.004)

(1.003,1.998)

(0.991,1.988)

(0.956,1.997)

(0.999,2.001)
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Table (3.1) shows that the L.S.M. give exact estimate values for a and b
because the estimators & and b are unbiased as shown in egs. (1.56) and (1.57).

For all samples sizes the O.S.M. is best than M.M. and M.L.M. while all
methods are adequate for moderate and large samples. In small samples, we
note that the M.L.M. give estimate higher than the expectation and this might
be dueto the given bound of ending the estimation.

3.3 The Bias of Estimators Using Procedure (EV-1)

The biases of estimators & and b which can be obtained by:

Tables (3.2) and (3.3) show the biases of estimators (a) and (6)
obtained by the four methods of estimation:
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Table (3.2)

Bias of Egtimator (a).

Bias of Estimation (&)

-0.266

M.L.M

O.SM

-0.071

-0.172

-0.032

-0.158

0.023

-0.126

0.022

-0.119

0.018

-0.108

0.015

-0.104

0.012

-0.099

-0.011

-0.080

-0.010

-0.063

9.354" 10°3

-0.062

-7.721° 103

-0.039

8.464 103

-0.035

-6.844" 103

-0.030

6.153 103

-0.029

-4.82°10°°

-0.021

5.306" 10°°

-0.015

3.798 103

-0.011

-3.783 103

-9.892" 103

3.118 10°°

-9.266" 10°3

-5.478 104
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Table (3.3)

Bias of Estimator (6).

Bias of Estimation (6)

M.L.M

O.SM

0.083

0.080

0.072

-0.042

0.040

0.039

0.037

-0.035

-0.030

-0.022

0.022

0.016

0.014

-9.509" 103

-7.544 103

-7.043 103

-6.327 103

-5.134" 103

-1.564" 103

9.192" 104
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Tables (3.2) and (3.3) show that the smulated biases of the estimators

d and b given by L.S.M. coincide with the theoretical biases given by egs.
(1.56) and (1.57).

For small and moderate samples the biases of M.M. and O.S.M. are

better than those given by M.L.M.

3.4 The Variance of Estimators Using Procedure (EV-1)
The variances of estimator (a) are shown in table (3.4), where the
true values of variances are given:
1- Equation (1.24) by moments method.
2- Equation (1.46) by order statistic method.
3- Equation (1.60) by least squares method.

4- While the variance concern the M.L.M. is excluded because the non

linearity appearance to egs. (1.34) and (1.35)

Table (3.4) show the variance of estimator (a ) where the true value

of variance (a) are shown in parenthesis.
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Table (3.4)
Variance of Egtimator (a ).

Variance of Egtimation (&)

M.L.M O.SM

1.021 (0) 331.120 1.136 (0) 0 (2.459)

0.930 (0) 262.316 1.045 (0) 0 (1.782)

0.630 (0) 171.976 0.740 (0) 0 (1.368)

0.608 (0) 111.897 0.721 (0) 0 (1.138)

0.506 (0) 82.016 0.614 (0) 0 (0.989)

0.462 (0) 61.010 0.563 (0) 0 (0.883)

0.408 (0) 42.643 0.540 (0) 0(0.727)

0.319 (0) 33.031 0.432 (0) 0 (0.604)

0.308 (0) 24.806 0.416 (0) 0 (0.526)

0.283 (0) 14.151 0.386 (0) 0 (0.466)

0.207 (0) 9.613 0.293 (0) 0 (0.420)

0.162 (0) 5.722 0.256 (0) 0(0.327)

0.153 (0) 1.031 0.244 (0) 0(0.272)

0.126 (0) 0.642 0.224 (0) 0 (0.201)

0.090 (0) 0.183 0.171 (0) 0 (0.161)

0.079 (0) 0.097 0.170 (0) 0(0.133)

0.066 (0) 0.061 0.166 (0) 0(0.114)

0.054 (0) 0.052 0.156 (0) 0 (0.100)

0.049 (0) 0.041 0.130 (0) 0 (0.089)

0.048 (0) 0.035 0.121 (0) 0 (0.080)
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The variances of estimator (6) are shown in table (3.5), where the

true values of variances are given:

1- Equation (1.22) by moments method.

2

Equation (1.43) by order statistic method.

w
1

Equation (1.58) by least squares method.

SN
1

While the variance concern the M.L.M. is excluded because the non
linearity appearance to egs. (1.34) and (1.35).

Table (3.5) show the variance of estimator (6) where the true value

of variance (6) are shown in parenthes's.
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Table (3.5)

Variance of Estimator ( b ).

Variance of Estimation (6)

0.693 (0)

M.L.M

301.351

O.SM

1.658 (0)

0 (2.248)

0.500 (0)

241.012

1.276 (0)

0 (1.595)

0.465 (0)

160.516

1.155 (0)

0 (1.225)

0.413 (0)

100.443

1.064 (0)

0 (0.988)

0.404 (0)

87.511

0.970 (0)

0 (0.761)

0.341 (0)

61.167

0.933 (0)

0 (0.634)

0.326 (0)

49.797

0.863 (0)

0 (0.498)

0.271 (0)

33.224

0.767 (0)

0(0.412)

0.245 (0)

26.012

0.698 (0)

0 (0.346)

0.180 (0)

19.778

0.565 (0)

0(0.281)

0.165 (0)

11.654

0.486 (0)

0 (0.252)

0.141 (0)

6.031

0.483 (0)

0(0.197)

0.125 (0)

1.245

0.453 (0)

0(0.162)

0.105 (0)

0.731

0.426 (0)

0(0.114)

0.076 (0)

0.231

0.390 (0)

0 (0.089)

0.069 (0)

0.091

0.380 (0)

0(0.072)

0.063 (0)

0.059

0.345 (0)

0 (0.062)

0.050 (0)

0.044

0.339 (0)

0 (0.053)

0.049 (0)

0.042

0.327 (0)

0 (0.047)

0.044 (0)

0.039

0.308 (0)
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Tables (3.4) and (3.5) show that the variances of the estimators a and b

by obtained M.M.,0.SM. and L.S.M. the true and approximated variances
respectively are zero values by egs. (1,25), (1.22), (1.47), (1.44), (1.61), (1.59).

A~

The variances of estimators & and b practicaly given by M.M.,

M.L.M., O.SM. and theoretically L.S.M. respectively converge to zero as

sample sizesincrease. Also, note that the variance of estimator & by M.M and

O.S.M. are adequate in all sample sizes while the variance of estimator by

obtained M.M. is better than O.SM. and M.L.M. in smal and moderate

samples. In large sample, the variances of estimators a and b obtained by

M.L.M. isbetter than M.M. and O.S.M.

3.5 The Skewness of Estimators Using Procedure (EV-1)

The skewness of estimators (a) and (6) which can be obtained by:

168 3 nzd (N2, 0228 ~3U
—@a (@) - 3aa (@) +3a%a (a)-a’y
Skewness (4) = —22 '_1(32)3,2 = =
1€8 - g "5 d ~3U
~&a (0)°- B3 () +30%4 (0y)- by
Sy = Né=1 i=1 i=1 u
Skewness (b) = : P

Tables (3.6) and (3.7) show the skewness of estimators (a) and (6)
by the three methods of estimation.
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Table (3.6)
Skewness of Estimator (a ).

Skewness of Estimation (a )

M.L.M
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Table (3.7)

Skewness of Estimator (b ).

Sample size Skewness of Estimation (6 )

M.L.M

9.276 -21.035

14.726 -17.229

17.469 -13.712

22.129 -7.033

24.389 -3.967

32.073 -0.059

36.006 8.588

47.088 20.673

55.470 34.221

91.980 51.463

104.042 82.679

131.325 105.877

157.888 164.057

218.168 246.318

355.896 543.756

418.579 909.222

485.000 1.23x10°

704.112 1.698x103

710.785 1.967x10°

837.481 2.033x10°
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We note that the evaluation of skewness of 4 and b given by L.SM.

converge to the infinity because the zero vaue of the variance of a and b.

Table (3.6) show that there is a small skewness of a to the right of the
egdimators a by M.M. and O.S.M. and rapidly increase away from
normality for large samples. While there is sever skewness of a given by
M.L.M. in both direction.

Table (3.7) shows that for al sample sizes there is a heavy skewness

of b to the right of the estimators Bgiven by M.M. and O.S.M., while
there is a sever skewness of Bgiven by M.L.M. in both direction. This

indicate that the distn. of bis away from normality.

3.6 The Kurtosis of Estimators Using Procedure (EV-1)

The kurtosis of estimators (a) and (6) which can be obtained by:

1é2 4 a0 3 A2 .38 U
nga(ai) -4aa (a))"+6a"a ai-4a7a aiq
Kurtoss(é): =1 i=1 i=1 i=1 U_ 3
(s%)°
ed ~ g "2 ~38 U
A 123 (b)*- 4b3 (b;)* +65624 b; - 46° by
Kurtosis (b)=—2=L =1 =1 = U3
(s%)°

Tables (3.8) and (3.9) show the kurtosis of estimators (a) and (6)
by the three methods of estimation.
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Table (3.8)

Kurtosis of Estimator (a ).

Kurtosis of Egtimation (a )

-0.131

M.L.M
319.035

-0.620

268.492

-1.149

198.275

-2.022

153.623

-2.605

128.338

-2.957

99.365

-3.287

83.438

-7.347

67.100

-7.892

42.906

-8.821

21.836

-15.141

7.496

-32.459

0.406

-36.777

-24.510

-60.593

-70.345

-109.872

-108.313

-151.956

-133.772

-212.216

-245.939

-301.959

-340.550

-379.396

-400.250

-423.287

-448.422
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Table (3.9)

Kurtosis of Estimator (6 ).

Kurtosis of Estimation (6 )

-15.120

M.L.M

747.593 -4.263

-30.376

594.523 -5.815

-37.661

424.041 -6.041

-56.839

311.857 -14.760

-66.747

269.538 -14.887

-96.003

186.850 -16.668

-112.716

136.369 -19.829

-164.946

101.539 -23.425

-206.870

89.163 -28.309

-411.859

68.721 -50.180

-485.491

43.048 -59.796

-664.637

-87.155 -61.783

-848.811

-242.537 -72.256

-1.311x10°

-565.830 -83.850

-2.522x10°

-2.772x10° -110.122

-3.129x10°

-8.813x10° -115.703

-3.808x10°

-1.319x10* -130.699

-6.261x10°

-2.027x10* -135.952

-6.338x10°

-2.266x10% -150.758

-7.895x10°

-2.577x10% -165.758
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We note that the evaluation of kurtosis of & and b given by L.S.M.
converge to infinity from the left because the zero values of the variance
of dand b.

Table (3.8) shows that the evaluation of kurtosis of estimator a
there is a platykurtic by M.M. and O.S.M. the values rapidly increase
away from normality for large samples. While there is sever kurtosis of a
given by M.L.M. in both direction, where in small and moderate samples

give leptokurtic and in large sample give platykurtic.

A~

Table (3.9) shows that the evaluation of kurtosis of estimator b
there is heavy kurtosis to the platykurtic given by M.M. and O.S.M.,
while there is a sever kurtosis of Bgiven by M.L.M. in both direction,
where in small and moderate samples give leptokurtic and in large sample

give platykurtic. Thisindicate that the distn. of bis away from normality.

3.7 Mean Square Error of Estimators Using Procedure (EV-1),
[33]

The mean square error of estimators (&) and (b) which can be
obtained by:

m.s.e (4) = Variance(a) + [bias(a)]?

m.s.e (b) = Variance(b) + [bias(b)]?

Tables (3.10) and (3.11) show the mean square error of estimators
() and (b) by the four methods of estimation.
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Table (3.10)
Mean square error of Estimator (a ).

Mean sguare error of Estimation (a )

M.L.M O.SM

355.682

269.280

174.073

113.264

82.813

61.681

43.110

33.263

24.979

14.283

9.689

5.660

1.059

0.656

0.195

0.107

0.067

0.057

0.044

O o oo 0olo o 0ojolojojlolojlojlojlo|o|o| o |oo
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Table (3.11)

Mean square error of Estimator ( b ).

Mean square error of Estimation (6)

M.L.M O.SM

323.771

254.276

168.317

101.527

88.020

61.812

50.193

33.406

26.171

20.022

11.718

6.061

1.257

0.737

0.234

0.095

0.059

0.044

0.042
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We note that the evaluation of m.s.e. of a and Bgiven by L.S.M. are

zero values because the variances and biases are zero valuesof & and b .

Table (3.10) and Table (3.11) show that the evaluation of m.s.e. a
and b by obtained M.M., M.L.M. and O.S.M. are decreasing as sample
Size increase because the variance and the bias values of these methods
are decreasing as sample size increase. In small and moderate samples the
M.M. and O.S.M. better than M.L.M. while in large sample these
methods are edequate as the variance of these methods because the biasis

very small value.

3.8 Reliability and Hazard functions of Estimators Using
Procedure (EV-1)

In this section, we shall use the estimators in sub-section (1.6.3) to
estimate the reliability and hazard functions. The estimators in table (3.1)
are used to find the estimates of the reliability and the hazard functions by
four methods given in section (1.6.3), the result is display in tables (3.12)
and (3.13), the biased of the estimators shown in tables (3.14) and (3.15).
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Table(3.12)
Estimation of R(x)

Estimation of R(x)

M.L.M

O.SM
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Table (3.13)
Estimation of h(x)

Estimation of ﬁ(x)

4.019

13.186

M.L.M

0.617

O.SM

3.319

4.019

5.891

15.658

1.184

6.006

5.891

8.794

32.051

2.885

8.368

8.794

17.767

42.677

12.885

17.405

17.767

20.097

52.177

26.383

19.649

20.097

39.102

75.982

47.146

29.036

39.102

68.741

144.546

88.761

47.341

68.741

72.315

195.298

112.160

70.796

72.315

668.604

1.542x10°

731.208

662.653

668.604

1.358x10°

2.855x10°

3.328x10°

1.816x10°

1.358x103

2.765x10°

5.491x10°

6.7x10°

2.369x103

2.765x10°

1.794x10*

4.158x10*

4.57x10%

2.314x10*

1.794x10*

1.913x10%

4.309x10"

5.09x10%

2.627x10"

1.913x10%

4.625x10"

6.655x10"

7.469x10"

4.926x10*

4.625x10*

2.803x10°

3.792x10°

4.461x10°

3.013x10°

2.803x10°

6.502x10°

1.100x10°

2.47x10°

7.143x10°

6.502x10°

3.519x10’

4.623x10’

4.98x10’

2.173x10’

3.519x10’

1.064x10°

1.698x10°

7.695%10°

1.083x10°

1.064x10°

2.117x10°

3.28x10°

4.277x10°

1.23x10°

2.117x10°

1.704x10%°

2.092x10%°

3.334x10%

PDF created with pdfFactory Pro trial version www.pdffactory.com

1.338x10%°

1.704x10%°

72


http://www.pdffactory.com
http://www.pdffactory.com

We note that the R(x) and h(x) have exact values as R(x) and h(x)

by using L.S.M. because the estimations of a and b have exact values
asa and

Table (3.12) shows that the R(x) values in M.M., M.L.M. and
O.SM. are very near to the exact values of R(x) for all sample sizes.
Furthermore, the R(x)values are increasing values as sample sizes
increase.

Table (3.13) shows that h(x)values in M.M., M.L.M. and O.S.M.

are converge to infinity as samples sizes increase as shown in fig (1.4.9)
and fig (1.4.b). Furthermore, we see for large and moderate samples there

is higher difference in variation of h(x)given by these methods with
respect to the true values of h(x).
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Table (3.14)

Bias of Estimator R(x).

Bias of Estimation R(x)

-1.488 103

M.L.M

-3.823x10°°

O0.S.M

4.783 10°*

-2.406 103

-5.747x10°3

1.87 103

-5.205 103

-3.728x10°°

-4.372° 103

-8.355" 10°*

-9.576x10™*

-1.749 10°°

-1.751 1073

-4.13x10°3

-1.309" 10°3

-1.518 103

-3.822x10°°

-1.404" 10°3

5.747 10°*

1.103x10™

2.019 10°*

-2.203 104

-5.957x10™

2,227 1074

-1.319° 104

-2.486x10™

-1.519 103

4.4 104

-1.19x10™

-4.322 10°*

4.763 10°*

3.645x10™

4.4 104

4941 104

3.811x10*

4.663 10°*

4.293 10°*

3.73x10™

3.779 104

-1.282° 103

-3.832x10°3

-1.502" 10°3

-8.997" 10°°

-2.261x10°

-1.172° 104

1.419 104

1.639x10™

1.427 104

5.245 10°°

9.465x10

9.266" 10°°

1.997 10°*

8.364x10™

1.341 104

-2.051" 104

-2.139° 104

-1.737° 10°*

2724 104

-7.226x10™

-2.689 10°*
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Table (3.15)

Bias of Estimator h(x).

Bias of Estimation ﬁ(x)

9.166

M.L.M

-2.636

O.SM

-0.700

9.767

-4.556

0.115

23.257

-3.563

-0.426

24.910

0.897

-0.362

32.080

3.404

-0.448

36.881

0.109

-10.065

75.805

78.664

-21.400

122.982

57.96

-1.519

873.493

160.084

-5.951

1.496" 10°

933.225

457.995

2.726" 10°

1.097" 10°

-395.657

O O ol ojlojlo|lo|lo|l oo | oo

2364 107

0.962

520.317

2395 10

3487

7.138 10°

203 10%

1572

3017 10°

9.885 10°

1.444

2,004 10%

4.498 10°

3.635

6.412 10"

1.103 10’

3.094

-1.346° 10"

6.34 10°

4.486°

1.015 10’

1.163 10°

3.438

-8.87 10°

3.875 10°

-5.394
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We note that the biases of the R(x) and h(x) by using L.S.M. are

zero values because the R(x ) and h(x) values are the exact values to R(x)
and h(x).

Table (3.14) shows that the biases of R(x) by obtained M.M.,
M.L.M. and O.S.M. are converge to zero value in al sample sizes.

Table (3.15) shows that the biases of h(x) by obtained M.M.,

M.L.M. and O.S.M. are converge to infinity as samples sizes increase. In
large samples the difference among biases the three methods.
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Cov\dmftk)wy

1. For all sample sizes the estimators a and b by obtained O.S.M. is
superior than M.M. and M.L.M.

2. The L.S.M. give exact estimate values for a and b because the
estimators of & and b are unbiased.

3. The simulated biases of the estimators & and b given by L.S.M.
coincide with the theoretical biases.

4. The variances of the estimators & and b obtained by the three

methods of estimation which M.M., O.S.M. and L.S.M. are rapidly
approach to true zero values as sample sizes increase.

5. The skewness of the estimators & and b and the kurtosis of the

A~

esimators a and b given by L.S.M. converge to the infinity

because the zero value of the variances of the estimators 4 and b.

6. Theestimators & and b obtained by M.M. and O.S.M. are skewed
to the right as a ssimple size increase. While the estimators a and
b by M.L.M. skewed to both direction.

7. Theestimators & and b obtained by M.M. and O.S.M. are kurtosis
to the leptokurtic as a simple size increase. While the estimators a
and b by M.L.M. kurtosis to both direction.
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Conclusions

8. The evaluation of mse of & and b given by L.SM. are zero
values because the variances and biases are zero values of a and

A~

b.

9. The R(x) and h(x) have exact values as R(x) and h(x) by using
L.S.M. because the estimations of & and b have exact values as a
and

10. The R(x) valuesin M.M., M.L.M. and O.S.M. are very near to the
exact values of R(x) for all sample sizes.

11.The h(x) vaues in M.M., M.L.M. and O.S.M. are converge to

infinity as sample sizes increase as shown in fig (1.4.a) and fig
(1.4.b).

12. The biases of the R(x)and h(x)obtained by M.M., M.L.M. and

O.S.M. are respectively converge to zero value and infinity as
sample sizesincrease, while the L.S.M. gives exact biases.

13. The disadvantage of Monte Carlo methods depends on generating
pseudorandom variates and that might carry dirty data, and that

might effect the results of M.L.M. of estimation a and b when we
use Newton-Raphson iteration.
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Future Work:

1. This work can be used for Generalized Extreme Value distn. of
three parameters, maximum Extreme Value distn. and other life
distn.

2. Another methods of estimation could be used to estimate the distn.
parameters, R(x) and h(x) such as minimum Chi-sguare, minimum

distance, Bayesian method, .....etc.

3. It can generate r.v°. from Extreme Value distn. by other new
procedures which can be compared with other used procedures.

4. The bias of estimation is ar.v. of unknown distribution which can
be investigated approximately by using well-known statistical tests
such as Kolmogorov-Smirnov Goodness-of-Fit Test, Serial Tedt,
...6tC.
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Appendix A

Appendix A
Computer Programs of Estimation
Methods

Program (1) :procedure (EV-1)

Enter your values of a, b, kand n

a:=s b:=u n:=a k:=u
i:=0.n-1 j:=0.k-1
u:=|for jT 0.k-1
ww; - for il 0.n- 1
wki—- rnd(1)
wk
ww

x:= | for il 0.n- 1
kwk - |for ji 0.k- 1
kk = a+ bxn(-ln(uj))

kk

kwk
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Appendix B

Appendix B
Computer Programs of Estimation
Methods

Program 2: Estimation by Moments Method

Enter your values of a, b, kand n

n:i=a k:=4

a.=s b:=a =
n-1 j:=0.k-1

i:=0..
u:=for jT 0.k-1
WW].- for il 0.n-1 u.=
wki—- rnd(1)
x:=for il 0.n-1
kwk- for jT O.k- 1
] 0~
kk = a+ b>{n( In(uj))
wq :=for jT 0.k-1
S
j_| n a‘ (])i
i=0
of :=for jT 0.k- 1
g1 2{:1 o=
tr. - € )
17 gy
=0 L
of :=for j1 O.k- 1
¢ X _
i, - mw) 95 =
1

ty, - [———2
] n-
ofgf :=for j1 0.k-1

gof . ;

1o

bl:=->q (gfgfi)
i=0 bl =1
aaa] ::wqj + 0.57759fgfj aa, =
1k-1

a]_:;xo aaal
i=0 al =1
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Appendix B

sk12 -

k-1€7 ! E (s11) =4
1 57 3 'Y 2 25 f
A (e0)- e (em)”+ M) am - @)Y
w11 8=0 i=0 i=0 a
3 (sk11) =4
s117
1 &0 4 'S 3 251 2 35! zt'
e () - Hang (ma) oS (wm) - Mg e ()]
kut1:= —8 =9 120 1=0 i=0 u_.
s11°
; 2
11:=s11 11
msell:=s11 + (baisll) msell = (kuld) =
baisl2:=bl - b
baisl2 =1
g1 %
1 o i
ﬂzrifzfa_(qqi m){ 2=y
=0 ¢
1 57 3 'Y 2 25 %
o5A (og) - Heq (g )T+ HeDSG ot - (0D
wipe 850 i=0 i=0 a
3
s12°
1 57 4 'Y 3 2 kst 2 35t 4%'
EQ () - b0 (g )"+ eonSG (ofdf)"- o) o+ 0D
kul2:= g=0 120 120 120 U-.’:
5122
msel2:=s12 + (bais12)2 Kul2 =
=1
msel2 =
reaw:=for j1 0.k- 1
nsl kc-)l
3*20 (XJ)| rea:= g rean
b i=0 rea=u
- €
WGWj o e
hazw := for jT 0.k- 1
) a+n61 ( ) 1 k-1
a % i haz::—xé hazw.
i=0 k I haz_
" i=0 =1
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Appendix B

reall:= for jT 0.k- 1
nc-,l
-al+ § (Xj)i
i=0
bl

- €
wewj—-e

haz311:= for j1 0.k- 1
n-1
[¢]
-ar g (x),
i=0
1 bl
weew. - —X
I b1
bal :=real - rec

hal :=haz61 - haz

Program 3: Estimation by Maximum Likelihood

Method

Enter your values of a, b, kand n

a:=a b:=
i:=0..n-
u:=for jT 0.k-1
ww; = for il 0.n-1
wki—- rnd(1)
x:=for il 0.n-1
kwk—- for jT 0.k- 1
kk - a+ bxn(-ln(uj))

[] -
1 j:=0.k-

real :—xé real
i=0
k-1
hazbl = <x8  haz3ll.
&z '_ka |
i=0
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Appendix B

f144.=for wi 0.k- 1
dq,, - for jiTo.k-1

o
—_
o
S
=
o
ooc

fl44=1
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Appendix B

f14:=for wi 0.k- 1

dq,, - for jT 0.k-1
(x).- 23
nl
-n, 1. g _ by
5w e a
) - o (x50
naa nl n1 —L,
f2—-t')—tr:+ 12- 12><° (XW),+é - ZJE ™ u
) (im0 o (0 5 g
(%) - 28
nl
-1 o bby
f3 = —Zxa e
[ s
(%)~ 23 ex) (%) -aa0
1 1 L
- nz_ 12:2 o b ”é Wi Sltie o
(b8)" (bb)i=0 =0 () § G
) - o () - g0
>vea n1 1 Q%) - FY
f5 = d Ly zxé(x)-ZXégl—Qe ’h
(bb)2 (bb)3 (bb)3 AP I (bb)3 :
i) h j) i=0 i=og P g
g5A1 - 42
@ -aa-62 1 1YW
P s ()X
e J'( J) a
342 - X1
bb . - bb - 621 1 I
i €135 - (f4)2'7
€177 il a
2, 2
oo [T g
é y  é iy
839 (4o €319 (g
break if fE}<1O_6
qu_' bbj+1
k-1 Lkl
a2:==xg (f144|) b2:=5Q) (f14i)
i=0 i=0
az=1u
bais2l:=a2 - & bais21 =1
1 Kt 2
s21:= =3 (1144 - @) s21=1
ji=0
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Appendix B

L gl , k-1 , Lkl 4:,
2€3 (f144)°- 2 (f144)° + 2 144 -
s (4] - 3o (1144)" + e f144 - a2
o1 870 j=0 j=0 i
3
s212
L g1 , k-1 , k1 , Skl 4:,
[o] [o] [o] [o]
?ga (f144|) - peQ) (f144|) + Ba2 (f144|) - da2xg 144 + ;
e 80 i=0 i=0 i=0 0
s21°
mee21:= 521 + (bais21)?
mse2l =3
bais22:=b2 - b b9
1 5t 2
$22:= 1xé (f14i- b2)
) i=o (s22) =1
1 -1 3 k-1 ) 2k-l :{j
[o] [o] [o]
Eia (f14i) - b2 (f14i) +302°%Q  f14 - b2
yope 80 i=0 i=0
' 3
s22°?
1 -1 4 k-1 3 2k-l : 3k-1
?S;ié (f14i) - 42 (f14i) + 602 (f14i) - b2 f14 + b2
€
iz e 870 i=0 i=0 i=0 )
s22°
mse22 = 522 + (bais22)?
mse22 =1
rea221:=for j1 0. k- 1
n-1 1
a+ X. -~
1
.:O(J)' reaZSZ::EXé rea221,
P i=0
WGNj - e
haz221:= for j1 0.k- 1
k-1
5! haz223:= SxQ  haz221
a2 g (), “a '
i=0 |:O
1 b2
weew. 0 —x
J b2
ba2 :=rea232 - ree
ba2 =1
ha2 := haz223 - haz
ha2 =1
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Appendix B

Program 4: Estimation by Order Statistic Method

Enter your values of a, b, kand n

o
i

a=u ] .
i=0.n-1 j:=0.k-1
u:=for jT 0.k-1
ww; = for il 0.n-1 u. =
wki—- rnd(1)
x:=for il 0.n-1
kwk- for jT O.k- 1

] 0~
kk = a+ b>{n( In(uj))
ofh := for jT 0.k-1
- mi gthy =1
ty; - mir{x) 0
y:=for jT 0.k-1
- gfh, _
tty. - - I Yo =t
J In(n)
1 kc-)l
b3 :==x
k Y b3 =1
i=0
.:=wqg. + 0.577y.
& qu 05 yl ayozu
1t
aS:ZEx ¥ a3=q
i=0
bais3l:=a3- ¢ bais3l = 4
kc-)l 5
s31:= a (ayi i 33) s3l =1y
i=0
1 k-1 k-1
1 é(° 3 o 2 2 o :%J
12 () 12, ).
i () e () reeog () @]
§(31: é:O |:O |_O l’:l
. g k31 =1
3312
1 651 4 K 3 e 5 3%t 4:'
S8 (o) oh (oo (o e ot
ku31:: GZO i=0 2|:O i=0 u-e
s31 ~
mse31:= s31 + (bais3L)’ N ku3L= 1
=
bais32:=b3- b bais32 = 4
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Appendix B

sk32:= sk32 =1

s32

N

L&, €1 Skl Y Iy
E’gé (yi) - #b3Q (yi) + B8 (yi) - 4p3xg y; + b3t

€ L.
S C C_ i=0 L
ku32:= g=0 120 120 I u. i
5 s322
mse32:=s32 + (bais32) ku32 =1
mse32 =a
rea3l:=for j1 0.k- 1 rea3l =4
. E
.£+a (Xj)i 1 kal
S rea3:=—xg readl
b3 k I
WGNJ.- e_e i=0 rea3 =1
haz3l:=for j1 0.k- 1
n-1 ha23102|
[¢]
- (Xi)i Lkl
i=0 hazS:zExa hazS].I
weew. -~ — b3 =0 haz3 =
I b3
ba3:=rea3- rec ba3 = &
ha3:=haz3 - haz had = s
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Appendix B

Program 5: Estimation by Least Squares Method
Enter your values of a, b, kand n

a:=a b:=a n:=u k:=a
i:=0.n-1 j:=0.k-1
u:=for jT 0.k-1
ww, = for iT 0.n-1 u.=
J 0
wki—- rnd(1)
x:=for il 0.n-1
kwk- for jT O.k- 1
i o7
kk = a+ b>{n( In(uj))

tt:=for il 0.n- 1
kwk- for jT 0.k- 1
- - . tt. =1
e ) :
twq:=for jI 0.k-1

n-1
v - —x3 (tt) twg. =
a jl qo
i=0
tg:=for jT 0.k-1
e ml 0 él u
Gwg, x3 L. €3 (it L
e (XJ);; a 2(1),("1)&
é i=0 u éa=o0 u -
eW].—| ’ 1 l:l é1 1 dgl tqo—l
é i i
Gwgx (tt.)L- €] dit)p
e ( J);; éa 2( J)%L
€ i=0 ¢ é@=o0 C
16t
b4 :Exa tql b4 =
i=0
aad. = twqg. Xq. =
i wq ij qj aa40 1
1%t
a4:E>< aa4i A=
i=0 bais4l =
basAl =a4 - &
1 5t 2
[o]
41:= x - s41 =
s —a (aa4] a4) '
j=0
varl:=for jT 0.k- 1
varl =
2.2€ ) u k-1
pob~ €1 (twa) ¢ 19
ew. - Xe— + ” v1.——><a varl 1=
] 6 & n1 u k i vl=a
é Q 2( i=0
tt.) -t
e 4a 4 J)~ WAL
€ ~oe i ct
€ =0 C

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Appendix B

var2:=for j1 0.k- 1

var2 =a k-1

1o
2,2 R
aw. - p b V2= kxa varz, oo
boona , i=0
6Q g’(ttj).- twgg
€ 7l L
i=0
g1 k-1 k-1 :{j
1 (¢} o o
wed (@) -3 () e vehg (w)- o
sk4l:= 8-0 L 3 L U sk4l=1u
S412
1 851 4 K 3 e 2 3%t ztl
3 S RO AR R
A _ _ . . =
kud1:= —8 =0 120 1=0 =0 u_. '
S412
ms;e41::s41+(bais,41)2 msedl =a
bais42:=b4 - b bais42 =
1 k-1 ,
¢} —
S42 = x ta. - b4 S42 =
cra (-0
j=0
1850 3 Kl 2 )1 :{l
[o] o o
LR (t9)’- 300 (t9)+ 3045 1,- b4l
8 = i = i= ) 42 =
scaz:=—8=0 1=0 - i=0 a 1
s42°
1 - 4 k1 3 Zk'l 9 Sk-l z{'l
[o] o o o
a (ta)" - 4paq (ta)” + obagq (tg)"- 4ba™q tg + b4
kud2:= @=0 120 120 120 u-e kud2 =1
s42’
msed2:=s42 + (bais42)2 e =
readl:=for jT O.k- 1 -t
n-1 l'ea410:| 1kc->l
o
@ () redi=oxg redL  read =
i=0 o
- e
WGN] - e
haz4l:= for j1 0.k- 1
n1
-aar g (y), ezt =a Lkl
i=0 haz4::—xa haz41
k ! haz4 =
1 b4 i=0
weew. . —X
I b4
bad :=read - rec bad =
had := haz4 - haz had =
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Appendix C

Appendix C
Computet Program of Chit-Square
Goodness-of-Fit Test for
Ext(0,1)

Program (6) :Chi-Square Goodness—of-Fit Test

Enter your values of k and n

n:=s k:=1

i:=0.n-1 j:=0.k-1

u:=for jT 0.k- 1
ww; = for il O.n-1
wki—- rnd(1)

x:=for il 0.n-1
kwk- for jT O.k- 1 o

= )
qq:=for jT 0.k-1
for t1 0..4

Vt—| 0

tf]. - for il 0.n-1

Vo~ v0+1 if 23 (x]).>.6

i
vy v1+1 if 63 (x])i> 5
- if -.53 -
vV, v2+1|f 5 (Xl)i> 15 qu:|
4 if - 3 -
v3 v3+1 if -15 (x])i> 2.4
Vo v4+1 if -2.43 (Xl)i> 7
o =118 Yy, =754
¥y, = 18.39: Yy, i=3678E yy =254 W3 4
rif:=for jT 0.k-1
rt]. - for il 0..¢ rrfozu
yy
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Appendix C

ddd;:= @ ot ddd =
i=0 1
yu :=C
fr:=for jT 0. k-1
yu = yu+1if ddd, > 0.4¢ fr=1
yot
y'_k ty =
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Appendix D

The p.d.f. of extreme value distn. is:

(%;2)
p (FpP)-e
f(x;a,b) SHE (1)
The details about the graph of y = f(x;a,p),
(+2)
p (p)-e
The term Ee 1 0, that implies the x-axisis an horizontal
asymptote.
Thefirst derivative of y, gives
C8), xean
L (X3)e P Te (Xzayu
g H
X-a
(x-a)_e( b )
because e b >0 and b—12>0, (B >0) implies
(X;2) (X;2)

b

l-e b =0 implies e =1l implies x =a implies

y increasing function for - ¥ <x <a and decreasing function for

a <x <¥,and having the maximum point at (a , %e' 1)

The second derivative of y, gives

/, \2 _ ~\
. (X;Ja)_e b g (X;Ja)3 (Xba)g
y¢—§e gg.'e @-e H—O
€e H u
e u
X-a
(x-a)_e( b )
because e b >0 and is>0, (B >0) implies
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Appendix D

¢ (XAt (x:a (X:8) ¢ (Xza)i
al-e b q-e b =0implies 1- 3 b +& b q =0
8 H 8 i
impliesx:a+blng¥5implies
e e
y concaveupward for -¥ <x<a+b In#ﬂ and
e ¢!
atb In#%x <¥ whiley concave downward for
e ¢!
a+b|n 3- 59 <x<a+bInA3 \/53
8 2 & 8 2 g
Set x =a +b|n§#5ineq. (), gives
e
, 35!
y:leé—:gi\/gﬂeg 2 , implies
beg 2 ¢
RS 4
y have two points of inflection at (a +bIne3+\/§3,1231\53eg 2 7
6 2 gbe 2 g
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Appendix D

To finding the moments and other properties of extreme value distn. ,
then we have :

F(t)=InM )

Fio=tr0 =1 =EX)

£y MOM&)- [Mozt)]
M ()
2
i =M OM€O- [ Mo M¢(0)-[M°<‘0)]
M)
£y <M O OM &) +M @M &)- 2060 €)M (OM &) (M ) M M @)
o
_IMEIM @) - M M G)M &) - 2M (M €)M &) + M )]

=E(X?)- nf =E[(X - M?] Var(X)

M
_[M@©)] M‘“’x‘t) 3M(t)M°<‘t)M“’<‘t)+2[MQt)] _Meg) M‘It)M‘(t) ZeMQt)U
MO M (t) M )] eM )
3 3
20 -MEO_ MM, [MGzO)] e D) L
M (0 [M ()] [M of 1 1
F2 1) =M OMK)- M@)MW) qM(t)] [MQt)Mﬁk‘t)+[M4(t)]] 2M(t)M4(t)[Ma;t)]

M) é M’ 0

oM czt)u MOM &) [V @)
M1 M (£)]°

22 _M(@OQM®O)- M °<'0)M ®0) QM (O1°IM €M %0) +[M €0)] ] 2M (OM €O[M ¢0))° U

F =
M (O] é M1 u
oM 0{0)u M(OM €0)- (M o)
&M (00 M (O]

CEXX )-nE(x3)_3érrE(x3)+[E(x - onfE(X 2 )u gl a2 E(X2) - nf
B 1 € e18 1

e
=EX Y- nEX3)- anEx d)- FEX F)° +6nfE(X )+6n12E(X )- 6nit
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Appendix D

F*(0) = E(X

N

Y- 4nE (X 3) - qvar (X )+ nf]2 +12mPVar (X ) + ] - 6nt

)- 4nE (X 3) - avar (X)]? - nVar (X ) - ami* +12mAvar (X ) + 12" - 6
)- 4nE (X 3)- qvar (X)]? - 2m* + 6mAvar (X ) + 3ni"

=E(X 4 - anE (X 3y + 6nfvar (X ) +3ni" - Jvar (X )]2

=E[(X - m*- var(x )1

= E (X
= E (X

R

E[(X - m*=F " (0) +avar (x )]
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