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  ۲٣-۲۰:  ١٦الأمثال                            

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


 

 
In the beginning, 

    I extend my profound gratitude to God for helping me to 

complete my thesis. 

   I wish to express my deep appreciation and sincere 

thanks to my supervisors Dr. Akram M. Al-Abood and Dr. 

Zeinab A. Salman for their appreciable advices, important 

comments support and encouragement during the research. 

        I would like also to express my appreciation to the staff 

members of the Department of Mathematics and Computer 

Applications, namely Dr. Alaudeen N. Ahmed, Dr. Ahlam J. 

Khaleel, Dr. Fadhel S. Fadhel, Dr. Shatha A. Aziz, Dr. 

Osama H. Mohammed, Dr. Radhi A. Zboon and all staff 

members in my department.  

   Thanks are extended to the college of Science of Al-

Nahrain University for giving me the chance to complete 

my postgraduate study.  

Last but not least, I am deeply indebted to my family, my 

uncles, my aunts, my friends, and everyone who helped me 

in my project. 

 
                                                                                                       Fadi A. Shabo  

                                                                                             May 2010  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


 
  

SSuuppeerrvviissoorrss  CCeerrttiiffiiccaattiioonn      
 

    We certify that this thesis entitled " Estimation methods for the 

parameters of Extreme Value distribution by utilizing Monte Carlo 

sampling" was prepared by " Fadi Adel Shabo" under our supervision 

at the College of Science / Al-Nahrain University as a partial 

fulfillment of the requirements for the degree of Master of Science in 

Mathematics. 
 

 

Signature:                                           Signature: 

Name: Dr. Akram M. Al-Abood        Name: Dr. Zeinab A. Salman 

Scientific Degree: Assist. Prof.          Scientific Degree: Lecturer 

Date:     /     /2010                               Date:     /     /2010 

 

 
In view of the available recommendations, I forward this thesis for 

debate by the examining committee. 

                           

 

                                           Signature: 

                                           Name: Dr. Akram M. Al-Abood 

                                           Scientific Degree: Assist. Prof. 

                                           Date:     /    /2010 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


CCoommmmiitttteeee  CCeerrttiiffiiccaattiioonn  

We certify that we have read this thesis entitled " A Study of Efficient 

Estimation Methods for the parameters of Extreme Value Distribution 

by Utilizing Monte Carlo Sampling " and as an examining committee 

examined the student ( Fadi Adel Shabo ) in its contents and in what it 

connected with, and that in our opinion it meets the standards of a thesis for 

the degree of Master of Science in Mathematics. 

 
(Chairman ) 

 
Signature: 

                                                    Name: Asst. Prof. Dr. Raid K. Naji 

                                                    Date:      /       / 2010 

                                                                                           
       (Member)                                                        (Member) 
 
Signature:                                                    Signature: 

Name: Asst. Prof. Dr. Nada S. Karm          Name: Lect. Dr. Shatha A. Aziz                      

Date:      /       / 2010                                    Date:      /       / 2010 

 
     (Member and supervisor)                                (Member and supervisor) 
 
Signature:                                                     Signature: 

Name: Asst. Prof. Dr. Akram M. AL-Abood  Name: Lect. Dr. Zeinab A. Salman 

Date:        /       / 2010                                   Date:      /       / 2010 

 
     Approved by the College of Science  
 
Signature: 

Name: Dr. Assis. Prof.Laith Abdul Aziz Al-Ani 

           Dean of College of Science 

 Date:       /       / 2010 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


 
 

 

 

 

 

                                                                          

r.v.  random variable 

r.s.  random sample  

s.s.  sample space 

eq.  equation 

distn.  distribution 

p.d.f.  probability density function 

c.d.f.  cumulative distribution function 

m.g.f. moment generating function 

e.w.  else were 

IT  Inverse Transformation 

M.M.  Moment Method 

m.l .e.  maximum likelihood estimate 

     M.L.M.  Maximum Likelihood Method 

L.S.M.  Least Squares Method 

     O.S.M.  Order Statistic Method 

Ext(α,β)  Extreme Value Distribution with parameters α and β 

    W(a,b)  Weibull Distribution with parameters a and b 

      R(x)  Reliability function of x 

      h(x)  hazard function of x 
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        In this thesis, we consider the extreme value distn. of 
two parameters for the reason of its appearance in many 
statistical fields of applications. Mathematical and 
statistical properties of the distn. such as moments and 
higher moments are collected and unified and the 
properties of reliability and hazard functions of the distn. 
are illustrated. 

        The chi-square goodness - of - fit is used to test 
whether the generated samples from the standardized 
extreme value distn. by Monte Carlo simulation are 
acceptable for use.  

        These samples are used to estimate the distn. 
parameters by four methods of estimation, namely 
moments method, maximum likelihood method, order 
statistic method and least squares method.  

        These methods are discussed theoretically and 
assessed practically in estimating the reliability and hazard 
functions. The properties of the estimator, reliability and 
hazard functions, such as bias, variance, skewness, 
kurtosis, and mean square error are tabled. 

        The computer programs are listed in three appendices 
and the run is made by using "MathCAD 14". 
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           Extreme value distributions are the limiting distributions for the 

minimum or the maximum of a very large collection of random observations 

from the same arbitrary distn. [26]. Probabilistic extreme value theory is a 

curios and fascinating blend of an enormous variety of applications involving 

natural phenomena such as rainfall, floods, wind gusts, air pollution, corrosion, 

delicate advanced mathematical results on point processes, regularly varying 

functions, extreme temperatures, large fluctuations in exchange rates, market 

crashes, and breaking strength of materials. This area of research thus attracted 

initially the interests of theoretical probabilistic as well as engineers and 

hydrologists, and only relatively recently of the mainstream statisticians. [24]  

           A systematic development of the general theory may be regard as 

having started with the paper by von Bortkiewicz (1922) that deal with the 

distn. of range in random samples from a normal distn..[24]  

            In (1943), Gnedenko presented a rigorous foundation for the extreme 

value theory and provided necessary and sufficient conditions for the weak 

convergence of the extreme order statistics. [24] 

         Jenkinson (1955) combined these three extreme-value distributions into 

one, i.e., the general (or generalized) extreme value (GEV) distribution, by 

using a transformation of the three-parameter Weibull distribution. [21]  

         Gumbel made several significant contributions to the extreme value 

analysis; most of them are detailed in his book length account of statistics of 

extremes Gumbel (1958). [10][24] 

         Castillo (1988) has successfully updated Gumbel (1958) and presented 

many statistical applications of extreme value theory with emphasis on 

engineering [5].  
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 V 

           Reiss (1989) discussed various convergence concepts and rates of 

convergence associated with extremes (and also with order statistic). [24]  

           Commonly used distributions for rainfall frequency analysis are the 

Gumbel distn., and the GEV distn., as applied by many authors (Hosking et al., 

1985; Coles et al., 2003). [19][7]  

            The Gumbel distribution is associate parameters have been determined 

with the Probability-Weighted Moments (PWM) method, and the GEV 

distribution in which the three parameters have been calculated with both the 

PWM method (Hosking et al., 1985) [19] and the L-Moments method (Gellens, 

2002) [14]. 

           Based on progressively censored samples, Viveros and Balakrishnan 

(1994) developed a conditional method of inference to derive exact confidence 

intervals for the parameters of the extreme value distn. [41]. Beirlant, Teugels 

and Vynekier (1996) [3] and Reiss and Thomas (1997) [37] provide a lucid 

practical analysis of extreme values with emphasis on actuarial applications. 

           Bayesian estimation, prediction and characterization for the extreme 

value model based on lower record values have been discussed in Mousa 

(2002) [32]. Smith (2003) provides some applications for financial data [39].  

         Balakrishnan et al. (2004) discussed in classical framework, the 
point and interval estimation for parameters of the extreme value 
distribution based on progressively Type-II censored data, Bayes 
estimates of the two (unknown) parameters, the reliability and failure rate 
functions are obtained by using approximation form due to Lindley 
(1980) [2]. 
          The density of the Gumbel distn. is approximated by a finite 

mixture counting data from normal distn. using the log 2
1χ  density 

( Fruhwirth Schnatter−&& and Fruhwirth&& , 2007; Fruhwirth&& -Schnatter and 
Wagner, 2006; Fruhwirth&& -Schnatter et al., 2009). [11][13][12] 
          The Gumbel distn. sometimes is called doubly exponential [24] and 
also natural logarithms of Weibull random variables. [30] 
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 VI 

  This thesis involve three chapters. In chapter one, some important 

mathematical and statistical properties of extreme value distn. and 

moment properties of the distn. are illustrated and modified. Four 

methods of estimation for the distn. parameters are discussed 

theoretically. some concepts and properties the reliability and hazard 

functions are introduced. Four methods of estimation for the reliability 

and hazard functions are introduced. Finally, two theorems related to 

extreme value distn.  

            In chapter two, some concepts of stochastic simulation are 

illustrated. One procedure for generating random numbers and random 

variates from extreme value distn. is discussed theoretically and supported 

by various examples and one algorithm is illustrated. Finally, chi-square 

test as best test to goodness-of-fit test to known the distn. is usable or not 

that observations come  from Ext(0,1) are illustrated. 

           In chapter three, the Monte Carlo simulation results to estimate the 

parameters, the reliability and the hazard functions given in chapter one 

practically by one procedure namely (EV-1) that observations come from 

Ext(1,2) are introduced. 
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1 

 

1.1 Introduction 

            In this chapter, some mathematical and statistical properties of 

extreme value distn. are introduced. 

           This chapter involves six sections. In section (1.2), some 
fundamental concepts of extreme value distn. are illustrated, while section 
(1.3), deal with moments and higher moments properties of the distn. In 
section (1.4), four methods of parameters estimation namely moments 
method , maximum likelihood method , order statistic method and least 
squares method are considered. In section (1.5), some concepts and 
estimation methods to reliability and hazard functions are introduced. In 
section (1.6), some related theorems concerning the distn. are given.  

1.2 Some Fundamentals of Extreme Value Distribution 

          In this section, some properties of the extreme value distn., are 
introduced . 

Definition (1.1), [33] 

A continuous r.v. X is said to have a minimum extreme value 

distn., denoted by X~ Ext(α, β), if X has p.d.f. 

( )
( )1( ; , )

x
x e

f x e

−α  
β−α  −

βα β =
β

, x−∞ < < ∞ …………………….…. (1.1) 
                                                           −∞ < α < ∞ , β>0. 

  where α and β are respectively known as the scale and shape parameters. 
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2 

          The extreme value distn. depends on two parameters α and β and a 
wide variety of distribution shapes can be generated by suitable choices of 

α and β. Figures (1.1) and (1.2) show respectively a graphical 

representation of some p.d.fs. for fixed α and β varying and for fixed β 

and α varying. 
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Fig (1.1): Extreme Value p.d.fs. with α = 0 and β = 1, 1.25, 1.5, 1.75, 2, 2.5.  
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Fig (1.2): Extreme Value p.d.fs. with  α = 0, 1, 2, 3, 4 and β =1. 
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The graph of f(x;α,β) as shown in figure (1.1) and figure (1.2): 

1- Have the x-axis as a horizontal asymptote. 

2- Increasing for x−∞ < <α and decreasing for xα < < ∞ . 

3- Has maximum point at (α,
1e

β

−
). 

4- Have two points of inflection at ln(3 5) ln(2)]x = α + β[ ± − . 

5- Concave upward for ln 5) ln(2)]x−∞ < < α + β[ (3 − − , 

ln 5) ln(2)] xα + β[ (3 + − < < ∞  and Concave downward for 

ln 5) ln(2)] ln 5) ln(2)]xα + β[ (3 − − < < α + β[ (3 + − . 

The details of the above properties are shown in appendix d. 

 

1.2.1 The Cumulative Distribution Function, [33] 

    The c.d.f. of minimum extreme value distn. is defined by the following 
integral: 

1 e

( )
( )

( ; , ) ( ) ; , )
x

dt

t
tx e

F x Pr X x t dt =
β−∞

−α  
β−α  −

βα β = ≤ = ƒ( α β  
−∞
∫ ∫  

Set y = t − α
β

 or equivalent t y= α +β  implies dt dy= β  

( )( ; , ) e

xx

y yy e yeF x dy e e dy

− α−α
β β

= − −α β =  
−∞ −∞
∫ ∫  

Set u =  ye implies du = ye dy  
 

1 e ,

( )

( ; , )
0

x
e

u x

x
eF x due

α
β

 =

−α
β

− − ∞ < < ∞

−
− −α β = ∫ …………...… (1.2) 
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1.3 Moments and Higher Moments Properties of Extreme 

Value Distribution [22] 

           Moments are set of constants used for measuring distn. properties 

and under certain circumstances they specify the distn. The moments of 

r.v. X (or distn.) are defined in terms of the mathematical expectation of 

certain power of X when they exist. For instance,  
rE(X )r′µ =  is called the rth moment of X about the origin and 

( )rE[ X ]rµ = − µ  is called the rth central moment of X. That is 

( ), . .

( ) , .
( )

.

rx f x X is d iscrete r v

rx f x dx X is co ntinu ous r v
xrE Xr

x

µ







′ = =
∑

∫
 

and 

.

( ) ( ) , . .

( )
( ) ( ) , .

rx f x X is discrete r v
xrE Xr rx f x dx X is continuous r v

x

µ

µ µ
µ


   



−

= − =
−

∑
∫

               

           Provided the sum or integral converges absolutely. 

The generating functions reflect certain properties of the distn., they could 

be used to generate moments. Sometimes they are defining some specific 

distns., and also have a particular usefulness in connection with sums of  

independent, r.vs.. 

          First, we shall consider a function of a real t called the moment 

generating function, denoted by M(t), which can be used to generate 

moments of r.v X. 

       For continuous r.v X, the m.g.f. is defined by 
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M(t) ( ) ( )tX txE e e f x dx= =
∞

−∞
∫ , provided the integral converge absolutely. 

          To find the m.g.f. of extreme value distn., whose p.d.f. is given by 

eq. (1.1): 

M (t) 1
( )

( )
txe dx

x
x e

e
β

−α  
β−α∞   −

β=
−∞
∫ , 

Set xy − α=
β

 or equivalent x =  α +  β y implies dx =  β dy ,then  

M (t) ( ) et ye dy
yy eα+β=

∞
−

−∞
∫  ( )

yy ytt ee e e e dyα β −=  
∞

−∞
∫  

Set u =  ye implies du =  ye dy  

M(t) 1 ) 1(1 )
(1 )

0 0

ttt u t ue u e du e t u e du
t

α α (1+β −β − −= = Γ + β
Γ + β

∞ ∞

∫ ∫  

         (1 )te tα=  Γ + β ,  1t −
>

β
…………………………………..(1.3) 

where 
0

1( ) , 0yww y e dy w
∞

−−Γ  =    >∫    is called gamma function.  

          To find the moments and other properties of the minimum extreme 

value distn., we take the logarithm of the m.g.f. of eq. (1.3), then we have  

( ) ln ( ) ln )t M t t tΦ = = α + Γ(1+ β …………………………………..…(1.4) 

The four derivatives of ( )tΦ , are given by  

)
2 )
3( ) )
4( ) )

t t

t t

t t

t t









′Φ ( ) = α + βΨ(1+ β
′′ ′Φ ( ) = β Ψ (1+ β
′″ ′′Φ = β Ψ (1+ β
″″ ″′Φ = β Ψ (1+ β

……………………………………………(1.5) 
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where Ψ (z)= ln ( )d z
dz

Γ is known as digamma function, when t=0, we have 

) ( )......................................................................
2 ) ( ).....................................................................
3(0)

E x

Var x

′Φ (0) = α + βΨ(1 = (1.6)
′′ ′Φ (0) = β Ψ (1 = (1.7) 
′″ ′Φ = β Ψ )...................................................................................

4(0) ).................................................................................

′(1 (1.8) 
″″ ″′Φ = β Ψ (1 (1.9) 

 

The details of finding eqs. (1.6) to (1.9) see in appendix d. 

          Table (1.1) below gives the values of the digamma function and it's 

first, second and third derivatives for specified values of N. [35] 

 

N Γ(Ν)  lnΓ(Ν)  Ψ(Ν)  ′Ψ (Ν)  ′′Ψ (Ν)  ′″Ψ (Ν)  

0.1 9.514 2.253 -10.424 101.433 -2001.861 60004.513 

0.3 2.992 1.096 -3.503 12.245 -75.273 743.142 

0.5 1.772 0.572 -1.964 4.935 -16.829 97.409 

0.7 1.298 0.261 -1.220 2.834 -6.435 25.879 

0.9 1.069 0.066 -0.755 1.923 -3.202 9.739 

1.0 1.000 0.000 -0.577 1.645 -2.404 6.494 

    
The following are the important moments of the distn..  

(i) Mean: 

E(X) = μ = μ′1 is called the mean of r.v X. It is a measure of 

central tendency. By using eq. (1.6), gives 

           ( )E Xµ′Φ (0) = = = α − γβ……………………………….. (1.10) 

         where γ = −Ψ(1)  = 0.577 is Euler’s constant. 
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(ii) Variance: 

             Var (X) = ( )22 E[ X ]σ = − µ  is called the variance of r.v. X. It is a 

measure of dispersion. The use of eq. (1.7), gives  
2 22 2 2) (1.645)
6

πσ β′′ ′Φ (0) = = β Ψ (1 = = β …………….… (1.11) 

(iii) Coefficient of Variation: 

            . .c v σ
µ

=  is called the variational coefficient of r.v. X. It is a 

measure of dispersion. By using eqs. (1.10) and (1.11), gives 

 .
( ) 6

c v σ π
µ

 β= =
α − γβ

………………………………………………(1.12) 

(iv) Coefficient of Skewness: 

           
3

3
1 3 2

2

E[(X ) ]
[Var(x)]3/2

µ − µγ = =
µ

  is called the coefficient of Skewness. It is a 

measure of the departure of the frequency curve from symmetry. If 1 0γ = , 

the curve is not skewed, 1γ > 0, the curve is positively skewed, and 1γ < 0, 

the curve is negatively skewed. By using eqs. (1.8) and (1.11), gives                

        ( )3 3 3
3(0) E[ X ] ) ( 2.404)′″ ′′Φ = µ = − µ = β Ψ (1 = − β        

Thus, 

      
3 3( 2.404) ( 2.404) 1.13952 31 [(1.645) ] (2.1098)

γ
− β − β

= = =  −3/2β β
……………….…….(1.13) 

(v) Coefficient of Kurtosis: 

        
4E[(X ) ]4 3 32 2 2[Var(x)]2

µ − µ
γ = − = −

µ
 is called the coefficient of kurtosis.  
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            It is a measure of the degree of flattening of the frequency curve. 

If 2 0γ = , the curve is called mesokurtic, if 2γ  > 0, the curve is called 

leptokurtic, and  if 2γ  < 0, the curve is called platykurtic. By using eqs. 

(1.9) and (1.11), gives 

( )4 2 2 4 2 2E[ X ] (0) 3( ) ) 3(1.645 )″″ ″′− µ = Φ + σ = β Ψ (1 + β  

                   4 4 4(6.494) (8.118) (14.612)= β + β = β   

Thus, 
4 4(14.612) (14.612)3 3 5.4 3 2.42 2 42 (1.645 )

γ
β β

= − = − = − =
β (2.706)β

…………..……(1.14) 

1.3.1 Other Central Moments, [22] 
(i) Mode: 

A mode of a disn. is the value x of r.v. X that maximize the p.d.f.  

( )f x . For continuous distns., the mode x is a solution of  

2

2
( ) ( )0 0df x d f xand

dx dx
= <  

            A mode is a measure of location. Also we note that the mode may 

not exist or we may have more than one mode.  

  For extreme value case with p.d.f. of eq. (1.1), the logarithm of ( )f x  is 

( )
ln ( ) ln( ) e

x
xf x

α
α

−
− β= − β + −
β

 

( )ln ( ) 1 1 e
x

d f x
dx

α−
β= −

β β
 

For maximum, set  
ln ( ) 0d f x
dx

=   implies  
( )1 1 e 0
x α−

β− =
β β
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implies   1
x

e
α−

β =  implies   ln1 0x α− = =β   implies  

the mode is  x = α ………………………………………..………… (1.15) 

(ii) Median 

          A median of a disn. is defined to be the value x of r.v X such that 

1
2

( ) Pr( )F x X x= ≤ = . The median is measure of location. 

 For extreme value case, the c.d.f. given by eq. (1.2), we have 

( )
1 e1 e
2

x −α
β−= −  implies 

( )
1ee
2

x −α
β− =  implies e ln 2

x −α
β =    implies     

ln[ln(2)]x −α =β     implies  

The median is  x = α + β ln[ln(2)] …………………….…………. (1.16) 

1.4 Point Estimation  
            The point estimation is concerned with inference about the 

unknown parameters of a distn. from a sample. It provides a single value 

for each unknown parameter. 
        The following definitions are needed for the interest of this work. 

Definition (1.2) (Statistic), [27] 

            A statistic is a function of one or more r.vs. which does not 

depends on any unknown parameters. 

Definition (1.3) (Point Estimator), [27]  

           Any statistic whose value is used to estimate the unknown 

parameter θ for some function of θ say τ(θ) is called point estimator. 

Point estimation admits two problems: 
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           First, developing methods of obtaining a statistic, to represent or 

estimate the unknown parameter in the p.d.f. such statistic. 

           Second, selecting criteria and technique to define and find best 
estimator among many possible estimators. 

Definition (1.4) (Unbiased Estimator), [34] 

An estimator θ̂  = u(X1, X2, …, Xn) is defined to be an unbiased 

estimator of θ if and only if E( θ̂ ) = θ for all θ ∈ Ω, where Ω is a 

parameter space. The term [E( θ̂ ) − θ] is called the bias of the estimator 

θ̂ . 

Definition (1.5) (Asymptotically Unbiased Estimator), [34] 

An estimator θ̂  = u(X1, X2, …, Xn) is defined to be asymptotically 

unbiased estimator for θ if 
n
lim
→∞

E( θ̂ ) = θ. 

Definition (1.6) (Consistent Estimator), [34] 

An estimator θ̂  is called consistent estimator for θ if θ̂  converge 

stochastically to θ, i.e 
n
lim
→∞

pr( θ̂ θ− <∈) =1  

1.4.1 Methods of Finding Estimators, [27] 

            Assume that 1 2, ,...,X X X n  be a r.s. of size n from a distn. whose 

p.d.f. 1 2( , ) ( , ,..., )kf x whereθ θ θ θ θ=
% %

 is a vector of unknown parameters. 

On the basis of the observed values 1 2, ,..., nx x x  of  r.vs. 1 2, ,..., nX X X  

the object is to find statistics, say 1 2( , ,..., ),i iU u X X X n=  1,2,...,i k= , 

whose values to be used as estimators for , 1,2,... .i kiθ =  

Several methods could be founds in the literature such as: 

     Moments method, Maximum likelihood method, Bayesian method,  
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Least squares method, Minimum chi-square method, Minimum distance 

method and order statistic method. 

For extreme value case we shall discuss theoretically four methods 

of estimation namely the method of moments, the maximum likelihood 

method, order statistic method and least square method. 

1.4.1.1 Estimation of parameters by Moments Method, [34] 

            Let 1 2, ,..., nX X X  be a r.s of size n from a distn. whose p.d.f. 

( , ),f x θ
%

where 1 2( , ,..., )kθ θ θ θ=
%

 is a vector of k unknown parameters, let 

( )rE Xr′µ =  be the rth distn. moment about origin and 
i 1

1 x
n rMr in =

= ∑  be the 

rth sample moment about origin. The M.M can be described as follows: 

          Since, we have k unknown parameters, equate  r′µ to Mr  at ˆθ = θ
% %

 . 

That is Mr r′µ =  at ˆθ = θ
% %

, r = 1, 2, …, k. for these k eqs., we find a unique 

solution for 1 2 k
ˆ ˆ ˆ, ,...,θ θ θ  and we say that ,ˆ (r 1,2,...,k)rθ =  is an estimate of 

rθ obtained by M.M and the corresponding statistic ˆ rΘ  is the M.M 

estimator of rθ .  

For extreme value distn. case, we have two unknown parameters α 

and β and if a r.s of size n is taken, then we set 

ˆ ,M atr rµ′ = α = α  ˆ , 1,2rβ = β  = . Where  
1

1( ), x
i

nr rE Xr r in
µ

=
∑′ =   Μ =  

For r = 1, we have ( )1 1E X Mµ ′ = = and 
1

1( ) x
i

n
E X Xin =

∑= =   

from eq. (1.10), gives 

ˆˆˆ Xµ = α − γβ =  ………………………………………..…………… (1.17)  
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For r = 2, we have 2( )2 2E X Mµ ′ = =  and  2
1

12( ) ii
x

n
E X

n =
∑=  

from eq. (1.11), gives   
( 1)2 2 2( ) [ ( )] nV ar X E X S X

n
−+ = +   implies 

12 2 2( ) SnVar X X X
n
−+ = +  implies 

2 2ˆ 1 2
6

n S
n

π β −=  implies  

6( 1)ˆ S n
nπ
−β = …………………………….……………………….(1.18)  

where β̂  is the M.M. estimator for β , and 2 21 [ ]
1 1 ix

n
S nX

n i
= −∑− =

 is 

called standard deviation.  

From eqs. (1.18) and (1.19), gives 

6( 1)ˆ  nSX nα
π

−γ= + ………………………………………..……… (1.19) 

where α̂  is the M.M. estimator for α . 

           The estimators α̂  and β̂  given by eqs.(1.18) and (1.19) have the 

following properties : [18] 

(i) 6( 1)ˆ S n
nπ
−β =  is approximately an asymptotic unbiased estimator for 

β, and its variance approach to zero. 

Proof: 

      Since      1 6( 1)ˆ( ) ( )nE E S
nπ
−β = and S →σ , in probability,  then 

ˆ( )E β ( )1 6( 1) 1 6( 1) 11
6

En n
n n n

σ π
π π

→ =− − β = β −  

So   
n
lim
→∞

E ( β̂);β
n
lim
→∞

11
n

−  = β (1 0)−  = β…………………. (1.20)  

2β̂  = 
2 2S 6(n 1) S 6(n 1)

2n n
 − − =   π  π 

,  Since     2 2S σ→  , then 
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2β̂ → 6 1 2(1 )2 n
− σ

π
 

E( 2β̂ ) → 6 1 6 12 2(1 )E( ) (1 )2 2n n
− σ = − σ

π π
 

2 26 62 2 2ˆlim E( ) (1 0)2 2n 6
π β

β − σ = = β
→∞ π π

; ...……………………. (1.21) 

From eqs. (1.20) and (1.21), gives 

Var(β̂ ) = E( 2β̂ ) - 2ˆ[E( )]β ; 2β - 2β = 0 ………….………………… (1.22) 

(ii) 6( 1)ˆ  nSX nα
π

−γ= + is also approximately an asymptotic unbiased 

estimator for α . 

Proof: 

     Since    E ( α̂ ) = E (X )+ 6( 1) ( )Sn E
nπ

γ −  

E( α̂ ); µ + 6( 1) 6( 1) 11
6

n n
n n n

π
π π
γ − γ  β −σ = α − γβ + = α − γβ + γβ −   

lim
n→∞

E ( α̂ )≈ 01α − γβ + γβ − = α …………………….…………. (1.23) 

2
6( 1)2ˆ( ) S nE E X

nπ

        

γ −α = +  

          
2 26( 1) 6( 1)2

2
XS n n SE X

n nπ π

 
 
  

2γ − − γ= + +  

          
26( 1) 6( 1)2 2( ) ( ) ( )2

n nE X E XS E S
n nπ π

2γ − − γ= + +  

Since   X µ→   and   S σ→    then   XS µσ→   

26( 1) 6( 1)2 2 2ˆ( ) ( ) [ ( )] 2
n nE Var X E X
n n

µσ σ
π π

2γ − − γα → + + +  

            
2 2 22 ( 1) ( 1)( 62) 2 6 ( ) 2 66

n n
nn n

σ π π
π π

− −
+

γ  β γ βα − γβ + α − γβ +=  
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2 2 262 2 2 2ˆlim ( ) 2 2 6 ( ) 2 66
En

π παβγ
π π

γ  β γ βα = α − + γ β + α − γβ +→∞  

                    2 2 2 2 2 2 2 22 2− += α αγβ + γ β + αγβ − 2γ β γ β = α …….(1.24) 

From eqs. (1.23) and (1.24), gives 

ˆ( )Var α = E( 2α̂ )- 2ˆ[E( )]α ; 2 2 0α − α = ………………………….. (1.25) 

Definition (1.7) (Likelihood function), [34] 

The likelihood function of a r.s X1,X2,…,Xn of size n from a distn. 

having p.d.f. ( , )f x θ
%

, where θ
%

 = (θ1, θ2, …, θk) is a vector of unknown 

parameters, is defined to be the joint p.d.f. of the n r.vs. X1, X2,…, Xn 

which is considered as a function of θ
%

 and denoted by ( , )L xθ
%%

, that is 

( , ) ( , ) ( , )
1

n
L x f x f xi

i
θ θ θ= =

=
∏% %% % %

 

1.4.1.2 Estimation of Parameters by Maximum Likelihood 

Method, [34] 

Let ( , )L xθ
%%

 be the likelihood function of a r.s X1, X2,..., Xn of size 

n from a distn. whose p.d.f. ( , )f x θ
%

, θ=
%

(θ1, θ2, …, θk) is a vector of 

unknown parameters.  

Let ˆ ( )u xθ =
%% % ( )1 2( ), ( ),..., ( )ku x u x u x=

% % %
 be a vector function of the 

observations 1 2( , ,..., )x x x xn=
%

. If θ̂
%

 have the value of θ
%

 which 

maximizes ˆ( , )L xθ
%%

 then θ̂
%

 is the m. .el  of θ
%

 and the corresponding 

statistic Θ̂
%

 is the M.L.E. of θ
%

. We note that  

(i) Many likelihood functions satisfy the condition that the m. .el  is a 

solution of the likelihood eqs. 
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( , ) 0L x

r

θ
θ

∂ =
∂ %%   , at ˆθ= θ

% %
, r = 1,2,…,k 

(ii) Since ( , )L xθ
%%

and ln ( , )L xθ
%%

 have their maximum at the same value of 

θ
%

 so sometimes it is easier to find the maximum of the logarithm of  

the likelihood. 

In such case, the m. .e.l  θ̂
%

 of θ
%

 which maximizes ( , )L xθ
%%

may be 

given the solution of the likelihood eqs.  

ln ( , ) 0L x

r

θ
θ

∂ =
∂ %%   at  ˆθ= θ

% %
 ,r = 1,2,…,k 

       For extreme value distn. case 

Let X1, X2, …, Xn be a r.s. of size n from Ext(α,β) where the distn. p.d.f. 

is given by (1.1). The likelihood function is 

( , , ) ( , , )L x f xα β = α β
% %

 

                ( , , )
1

n
f xii

= α β
=

∏  

                

( )
( )1 e

1

xixi en

i

−α
  −α β  −

β=
β=

∏  

                1 1

( )
( )

e ei i

xixn ni e
n = =

−α
−α β−∑ ∑β−= β  

( )
( )

ln ( , ; ) ln( )
1 1

xixn niL x n e
i i

−α
− α βα β = − β + −

β= =
∑ ∑%

 

                

( )

ln( )
1 1

xixn nn in e
i i

−α
α β= − β − + −
β β= =

∑ ∑ ………………… (1.26) 
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( )
ln ( , ; ) 1

1

xinL x ne
i

−α
∂ α β β= −

∂α β β=
∑% …………………………..…….. (1.27) 

( )
( )ln ( , ; ) 1

2 2 21 1

xixn nL x n n ix eii i

−α
− α∂ α β − α β= + − +

∂β β β β β= =
∑ ∑% …...... (1.28) 

Set  ln ( , ; ) ln ( , ; ) ˆˆ0 ,L x L x at∂ α β ∂ α β= = α = α β= β
∂α ∂β% %  then 

From eq. (1.27), we have  
ˆ( )

ˆ1 0ˆ ˆ1

xi
n ne

i

−α

β − =
β β=

∑  …………………………………………..…. (1.29) 

From eq. (1.28), we have 

 

ˆ( )
ˆ( ) ˆˆ 1 02 2 2ˆ ˆ ˆ ˆ1 1

xi
xn nn n ix eii i

−α
− α− α β+ − + =

β β β β= =
∑ ∑ ……………......... (1.30) 

solution for α̂  and β̂  cannot be found analytically because of the 

nonlinearity of eq's. (1.29) and (1.30). 

An approximate solution for α̂  and β̂  from eq's. (1.29) and (1.30)  

can be made iteratively by using Newton-Raphson method for solving a 

non-linear eq's. as follows: 

Suppose that: 

f1 = f1( α̂ , β̂) = 

ˆ
ˆ1 eˆ ˆ1

xi
n n

i

−α

β −
β β=

∑     and 

f2 = f2( α̂ , β̂) = 

ˆ( )
ˆ( ) ˆˆ 1

2 2 2ˆ ˆ ˆ ˆ1 1

xi
xn nn n ix eii i

−α
− α− α β+ − +

β β β β= =
∑ ∑  

and let ( α̂ (0), β̂ (0)) be given initial approximation. If ( α̂ (s), β̂ (s)) is the   
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approximate solution of ( α̂ , β̂) at stage (s), s 0,1, 2,.......= , then the 

approximate solution at stage s+1 is given by: 

α̂ (s+1) = α̂ (s) + δ1 ……………………………………………. (1.31) 

β̂ (s+1) = β̂ (s) + δ2  …………………………………………..... (1.32) 

In matrix form, we may write: 

1

2

δ 
 δ 

 = −

1
1 1

(s) (s)

2 2

(s) (s)

f f
ˆˆ

f f
ˆˆ

−∂ ∂ 
 ∂α ∂β 
 ∂ ∂
 

∂α ∂β  

1

2

f
f

 
 
 

 …………..………………... (1.33) 

Provided that: 

1 1

(s) (s)

2 2

(s) (s)

f f
ˆˆ

f f
ˆˆ

∂ ∂
∂α ∂β

∂ ∂
∂α ∂β

 ≠ 0 

Set: 

a = 1

(s)

f
ˆ
∂

∂α
 = 

ˆ( )
ˆ1

2ˆ 1

xi
n

e
i

−α

− β
β =

∑  

b = 1

(s)

f
ˆ
∂

∂β
 = 2

(s)

f
ˆ

∂
∂α

 = 

ˆ ˆ( ) ( )
ˆ( )ˆ ˆ1

2 2 3ˆ ˆ ˆ1 1

x xi i
xn nn ie e

i i

−α −α
− αβ β− −

β β β= =
∑ ∑  

c = 2

(s)

f
ˆ

∂
∂β

 = 2
n

β̂
ˆ2 3ˆ

nα−
β

+ 2
3ˆ 1

n
xiiβ =

∑ − 2

(x )in ˆ(x )i e3ˆi 1

−α
− α β 

β=
∑   

                 2

ˆ(x )in ˆx ˆ2i eˆi 1
[ ]

−α
− α β−

β=
∑  
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We have: 

      1

2

δ 
 δ 

 = 
1a b

b c

−
 

−  
 

1

2

f
f

 
 
 

= 2
c b1
b aac b

− 
−  −−  

1

2

f
f

 
 
 

, for ac − b2 ≠ 0 

Then: 

δ1 = 2
1

ac b
−

−
(cf1 − bf2)    and     δ2 = 2

1
ac b

−
−

(−bf1 + af2) 

and according eqs. (1.31) and (1.32), we have: 

α̂ (s+1) = α̂ (s) 2
1

ac b
−

−
(cf1 − bf2) …………………………….. (1.34) 

β̂ (s+1) = β̂ (s) 2
1

ac b
−

−
(−bf1 + af2) ……………………………. (1.35) 

where the initial values α0 = α and β0 = β.  
1.4.1.3 Estimation of Parameters by Order Statistic Method, 

[29]: 

This method can be described as follows: 

       Let X1, X2, …, Xn be a r.s. of size n from distn. p.d.f. f(x, θ
%

) where  

θ
%

 = (θ1, θ2, …, θ k ), is a vector of k-unknown parameters.  

Let Y1 < Y2 < … < Yn represent the arrangement of the sample set {Xi} in 

ascending order of magnitude. Let µ′r = E(Xr) be the rth distn. moment 

about the origin and Mr = 
n

r
i

i 0

1 x
n =

∑  is the rth sample moment about the 

origin, r = 1, 2, 3, … 

         In this method, we equate µ′1 = M1 at θi = iθ̂ , i =1,2,…k and ranking 

E(Yi) = Yi beginning with i = 1 until i = k-1 this process will gives k eqs.  
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to provide a unique solution for θi  at iθ̂  , i = 1, 2, … , k.  

For extreme value distn. case: 

We have two unknown parameters α and β and if we take a r.s. of 

size n from Ext(α, β), we let Y1 represent the first order statistic of the 

sample. 

From the statistic theory the p.d.f. of Y1 is: 

g1(y1) = n[1 − F(y1)]n−1f(y1) 

where f(y1) and F(y1) represent the p.d.f. and c.d.f. of y1 as given in eqs. 

(1.1) and (1.2) respectively. Then  

( )

y1n 1 ( )y1 y( ) 1 e1eg y n 1 [1 e ] e1 1

−α−−α −α β−β− β= − −
β

 
 
 
  

  

           = 

1
1

(y )
y[ ne ]n e , y1

−α
−α β−β  − ∞ < < ∞  ,−∞ < α < ∞  ,β > 0

β
 

To find E(Y1),we consider the m.g.f. of Y1 

1YM (t) = E( ty1e ) = 

1
1

(y )
y[ ne ]ty n1e e dy1

−α
−α β∞ −β

β−∞
∫  

Let z = 1y − α
β

, then β dz = 1dy  

1
M (t)Y =

zt( z) (z ne )n e e dz
∞

−∞

α+β −∫ n z(e )tt z zne (e ) e e dz
∞

−∞

−βα= ∫  

Let u = ze  implies du = ze  dz 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


 

 
22 

1YM (t)=
0 0

u tne (1 t)(1 t) 1tt un t 1/nne (u) e du ne u e du 1 tn

∞ ∞ − α Γ +β+β −βα − α=  = +β∫ ∫  

             
te (1 t)

tn

α Γ + β
= β ……………………….……………………. (1.36) 

where 1( ) , 0
0

yww y e dy w
∞

−−Γ  =    >∫  is called gamma distn.. 

Set   
1Y (t)Φ = Ln 

1YM (t)= αt + Ln Γ(1 + βt) − βt Ln (n) 

1Y (t)′Φ  = α + βψ (1 + βt) − β ln (n) = α + β[ψ (1 + βt)− ln (n)] 
1Y (0)′Φ = α + β[ψ (1) − ln (n)] = E(Y1) ………….……………….. (1.37) 

where Ψ (z)= ln ( )d z
dz

Γ is known as digamma function. 

Now, we apply the order statistic method by setting: 

    µ′1 = α̂− ˆγβ= X   and  E(Y1) = Y1  at  α = α̂ , β = β̂ , which leads to: 

         α̂  + β̂ [ψ(1) − ln (n)] = 1Y  ………………………………..… (1.38) 

α̂  = X + ˆγβ……………………………………….………….. (1.39) 

From eqs. (1.38) and (1.39) the estimators of β and α are respectively: 

1X Yˆ
ln(n)

−
β =  .............................................................................. (1.40) 

ˆˆ Xα = + βγ  …………………………………………..……….(1.41) 

where ψ(1) = −γ = −0.577. 

The estimators α̂  and β̂  given by eqs. (1.40) and (1.41), have the  

following properties: 
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(i) β̂  = 1X Y
ln(n)

−  is an unbiased estimator for β, and its variance approach to 

zero. 

Proof: 

Since    E(β̂ ) = E 1X Y
ln(n)

 −
 
 

= 1
1 E(X) E(Y )

ln(n)
 −    

                      = 1 [ (ln(n) )]
ln(n)

µ − α + β + γ  

                      = 1 [ ln(n) )]
ln(n)

α − γβ − α + β + γβ = β  ......................(1.42) 

E( 2β̂ ) = 2
1

(ln(n))
E[(X −Y1

2) ]=
2

1
(ln(n))

2 2
1 1[E(X ) 2E(XY ) E(Y )]− +  

           =
2

1
(ln(n))

2
2 2 2

1[ 2E(XY ) ( ln(n)) ]
n

σ
+ µ − + σ + µ − β                  

1 1 i i i

n n

i 1 i 1

1 1
E(XY ) E( Y X ) E[min(X ) X ]

n n= =
= =∑ ∑  

              = 1
n

E[min(Xi)X1+ min(Xi)X2 + …+ (min(Xi)) 2 +…+ min(Xi)Xn] 

              = 1
n

E[ n 1
2
i i j

j 1
i j

X X X
−

=
≠

+ ∑ ]= 1
n
[ 2

iE(X ) + 
n 1

i j
j 1
i j

E(X X )
−

=
≠

∑ ] 

              = 1
n
[ 2

iE(X )+ i j

n 1

j 1
i j

E(X )E(X )]−

=
≠

∑    

Where iX and jX are independent 

1E(XY ) ( ) ( )
n 12

i i i j
j 1
i j

1 Var X E X E(X )E(X )
n
[ ]−

=
≠

= + +   ∑  
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1E(XY ) = 1
n
[ n 1

2 2 2

j 1
i j

−

=
≠

σ + µ + µ∑ ]=
1
n

2 2 2(n 1)σ +µ + − µ  = 1
n

2 2nσ + µ 
   

Hence: 

E( 2β̂ ) = 2
1

(ln(n))

2 2
2 2 2 22( ) ( ln(n))

n n
σ σ

+ µ − + µ + σ + µ − β
 
 
  

 

          = 2
1

(ln(n))

2 2
2 2 2 2 22 2 2 ln(n) ( ln(n))

n n
σ σ

+ µ − − µ + σ + µ − µβ + β
 
 
  

 

           = 2
1

(ln(n))

2
2 22 ln(n) ( ln(n))

n
σ

σ − − µβ + β
 
 
  

 

           = 
2 2 2 2

2 2 ln(n)(ln(n)) n(ln(n))

σ σ µβ
− − + β  

2 2 2

n
ˆlim E( ) 0 0 0

→∞
β ≈ − − + β = β ………..…………………………….. (1.43) 

From eqs. (1,42) and (1.43), gives 

Var (β̂ ) = E( 2β̂ ) - 2ˆE[( )]β ; 2β - 2β = 0 ….…...........…..………… (1.44) 

(ii) α̂  = ˆX + γβ  is an unbiased estimator for α, and its variance approach 

to zero. 

Proof: 

Since      E( α̂ ) = E( ˆX + γβ ) = E( X )+ γ E(β̂ ) = µ + γβ = α − γβ + γβ  

               =α …………………………………………………. (1.45) 
2ˆE( )α  = 2 2 2 2ˆ ˆ ˆE[(X ) ] E[(X 2 X ]+ γβ = + γβ + γ β  

            2 2 2ˆ ˆE (X ) 2 E (X ) E ( )= + γ β + γ β  

            2 2 2ˆ ˆVar(X) [E(X)] 2 E( )E(X) E( )= + + γ β + γ β  

            
2

2 2 22
n

σ
= + µ + γβµ + γ β  
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2ˆE( )α  
2

2 2 2( ) 2 ( )
n

σ= + α − γβ + γβ α − γβ + γ β  

            
2 2

2 2 2 2 2 2 22 2 2
6n

π β
= + α − αβγ + γ β + γαβ − γ β + γ β

2 2
2

6n
π β

= + α  

2 2
n

ˆlim E( )
→∞

α = α ……………………...………………………..………. (1.46) 

From eqs. (1.45) and (1.46), gives 

ˆVar( )α = 2 2ˆ ˆE( ) [E( )]α − α 2 2 0α − α =; .………………………….. (1.47) 

1.4.1.4 Estimation of Parameters by Least Squares Method, 

[29] 

The Least squares method is a general technique for estimating 

parameters in fitting a set of points to generate a curve whose trend might 

be linear, quadratic, or of higher order. In order to utilize this method, the 

error terms due to experiment must satisfy the following conditions: 

(i) They have zero mean. 

(ii) They have the same variance. 

(iii) They must be uncorrelated. 

For good results of fitting curve to the data set, the error must be 

minimized as small as possible. 

Let us assume that we have a set of n data points (xi, ti) through 

which we desire to pass a straight line. This line is representing the best  

fit in the least square sense. 

Suppose that the best fitting straight line to the data (xi, ti) is  

x = λ0 + λ1t, where λ0 and λ1 are two unknown parameters representing 

respectively the vertical intercept and the slope, as shown in fig (1.3). 
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t1    t2                          t i                      t n t

x

 
            Figure (1.3) The best fitted line to the data (xi, ti).  
 
        The ordinate xi as given by the general line is λ0 + λ1ti. The 

difference between these two values is the error of fit at the ith point  

ei = xi − (λ0 + λ1ti).  

         Let the sum of squares of all errors at the data points be: 

Ω = 
n

2
i

i 1
e

=
∑  = 

n
2

i 0 1 i
i 1

(x t )
=

− λ − λ∑   

For minimum, we set: 

0

∂Ω
∂λ

 = 0  and  
1

∂Ω
∂λ

 = 0, at λ0 = 0λ̂ , λ1 = 1λ̂  

0 0
1 1

ˆ0
ˆ

λ =λ
λ =λ

∂Ω
∂λ

 = −2
n

i 0 1 i
i 1

ˆ ˆ(x t )
=

− λ − λ∑  = 0 ……………………… (1.48) 

0 0
1 1

ˆ1
ˆ

λ =λ
λ =λ

∂Ω
∂λ

 = −2
n

i 0 1 i i
i 1

ˆ ˆ(x t )t
=

− λ − λ∑  = 0 ……………………... (1.49) 

From (1.48) and (1.49), we can get two eqs. as: 

n 0λ̂  + 1λ̂
n

i
i 1

t
=
∑  = 

n

i
i 1

x
=
∑  ………………………………………. (1.50) 
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0λ̂
n

i
i 1

t
=
∑  + 1λ̂

n
2
i

i 1
t

=
∑  = 

n

i i
i 1

t x
=
∑  ………………………………… (1.51) 

Equations (1.50) and (1.51) are simultaneous algebraic eqs. for the 

two parameters λ0 and λ1. 

In matrix notation (1.50) and (1.51) may be written as: 

A
%

λ̂
%

 = b
%

 ……………………………………………………. (1.52) 

where: 

A
%

 = 

n

i
i 1

n n
2

i i
i 1 i 1

n t

t t

=

= =

 
 
 
 
 
 

∑

∑ ∑
, λ̂

%
 = 0

1

ˆ

ˆ
 λ
 
λ  

, b
%

 = 

n

i
i 1
n

i i
i 1

x

t x

=

=

 
 
 
 
 
 

∑

∑
 

The solution of eq.(1.52) is: 

λ̂
%

 = A
%

−1 b
%

 if and only if |A
%

| 0≠ . 

Thus, whenever the data points ti, ∀ i are given, then the matrix A
%

 and 

the vector b
%

 may be computed and hence λ̂
%

 is determined as follows: 

0λ̂  = 

n n
2
i i i

i 1 i 1
n n

2
i i

i 1 i 1

X t t t x

t t t

= =

= =

−

−

∑ ∑

∑ ∑
 ......................................................(1.53) 

1λ̂  = 

n n

i i i
i 1 i 1

n n
2
i i

i 1 i 1

t x t x

t t t

= =

= =

−

−

∑ ∑

∑ ∑
 .........................................................(1.54) 

provided that 
n n

2
i i

i 1 i 1
t t t

= =

 
− 

 
∑ ∑  ≠ 0, where x  = 

n

i
i 1

1 x
n =

∑ , t  = 
n

i
i 1

1 t
n =

∑ . 

For extreme value distn. case: 

 Suppose that X1, X2, …, Xn be a random sample of size n from 

extreme value distn. having cumulative function: 
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 ( )
(x )

eF x Pr(X x) 1 e , x

−α
β−= ≤ = − − ∞ < < ∞  

We set ui = F(xi), then ui = 

(x )
e1 e

−α
β−− , which implies: 

xi = α + β Ln i( ln(u ))− , i = 1, 2, …, n ………………………. (1.55) 

where 0 < u < 1   implies    0 < 1-u < 1. 

            Set yi = xi, ti = Ln i( ln(u ))− , i = 1, 2, …, n  and 0λ̂  = α, 1λ̂  = β. 

Then  yi = λ0 + λ1ti, i = 1, 2, …, n; where α̂  = 0λ̂ , β̂  = 1λ̂  

Utilizing eq.(1.52) for obtaining the estimator 0λ̂  and 1λ̂ , therefore; 

The least squares estimators α̂  and β̂  can be obtained from the (1.55): 

α̂  = 0λ̂ ………………………………………………………. (1.56) 

β̂  = 1λ̂ ……………………………………………………….. (1.57) 

The estimators α̂  and β̂  given by (1.56) and (1.57) have the 

following properties: 

(i) β̂  = 

n n

i i i
i 1 i 1

n n
2
i i

i 1 i 1

t x t x

t t t

= =

= =

−

−

∑ ∑

∑ ∑
 is an unbiased estimator. 

Set    Stt = 
n

2
i

i 1
(t t )

=
−∑  = 

n

i i
i 1

(t t )t
=

−∑  = 
n

2
i

i 1
t

=
∑  − 

2n

i
i 1

1 t
n =

 
 
 
∑  

         Sxx = 
n

2
i

i 1
(x x)

=
−∑  = 

n

i i
i 1

(x x)x
=

−∑  = 
n

2
i

i 1
x

=
∑  − 

2n

i
i 1

1 x
n =

 
 
 
∑  

         Stx = 
n

i i
i 1

(t t )(x x)
=

− −∑  = 
n

i i
i 1

(t t )x
=

−∑  = 
n

i i
i 1

t x
=
∑  − 

n n

i i
i 1 i 1

1 t x
n = =

   
   
   
∑ ∑  
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So β̂  may be written as : β̂  = tx

tt

S
S

 

Since     E(β̂ ) = E tx

tt

S
S

 
 
 

 = 
tt

1
S

E(Stx) = 
tt

1
S

E
n

i i
i 1

(t t )x
=

 
− 

 
∑  

                       = 
tt

1
S

n

i i
i 1

(t t )E(x )
=

−∑  = 
tt

1
S

n

i i
i 1

(t t )( t )
=

− α + β∑  

                       = 
tt

1
S

n n

i i i
i 1 i 1

(t t ) (t t )t
= =

 
α − + β − 

 
∑ ∑  

Hence: 

E(β̂ ) = 
tt

1
S

(βStt) = β ..................................................................... (1.58) 

since Var(β̂ ) = Var tx

tt

S
S

 
 
 

 = 2
tt

1
S

Var(Stx) = 2
tt

1
S

Var
n

i i
i 1

(t t )x
=

 
− 

 
∑  

          = 2
tt

1
S

[ ]
n

i i
i 1

Var (t t )x
=

−∑ = 2
tt

1
S

n
2

i i
i 1

(t t ) Var(x )
=

−∑ = 2
tt

1
S

n
2 2

i
i 1

(t t )
=

− σ∑  

Because 1 nx , , xK  are independent hence: 

Var(β̂ ) = 2
tt

1
S

σ2Stt = 
2

ttS
σ  = 

2 2

n
2

i
i 1

6 (t t )
=

π β

−∑
 ...............................(1.59) 

(ii) α̂  is an unbiased estimator. From eq.(1.50), we have: 

      Since  α̂  = X − β̂ t  implies   E( α̂ ) = E(X  − β̂ t ) = E(X ) − t E(β̂) 

Since   xi = α + βti + ei, then: 
n

i
i 1

x
=
∑  = nα + β

n

i
i 1

t
=
∑  + 

n

i
i 1

e
=
∑  

Which implies that : 

X = α + β t  + e  implies  E(X ) = α + β t  + 0 

where E( e ) = 0 
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Hence: 

E( α̂ ) = α + β t  − β t  = α ………………………………… (1.60) 

Since   Var( α̂ ) = Var( X − β̂ t ) = Var( X ) + t 2Var(β̂ ) − 2 t Cov( X , β̂ ) 

                         = 
2 2

6n
π β  + 

2
t

2 2

n
2

i
i 1

6 (t t )
=

π β

−∑
 − 2 t  Cov(X , β̂) 

Since     Cov( X , β̂ ) = Cov
n

tx
i

i 1 tt

S1 x ,
n S=

 
 
 

∑  

                   = 
tt

1
nS

Cov
n n

i i i
i 1 i 1

x , (t t )x
= =

 
− 

 
∑ ∑  

                   = 
tt

1
nS

n

i i i
i 1

Cov(x ,(t t )x )
=

−∑  

                   = 
tt

1
nS

[ ]
n

2
i i i i i

i 1
E (t t )x E(x )E (t t )x

=

  − − −  ∑  

                   =
tt

1
nS

n
2 2

i i i
i 1

(t t ) E(x ) (E(x ))
=

 − − ∑  

                   = 
tt

1
nS

n

i i
i 1

(t t )Var(x )
=

−∑ = 
tt

1
nS

σ2
n

i
i 1

(t t )
=

−∑   

ˆlim Cov( , )Xn β =→∞ 0 

Var(α̂ ) → 
2

2 2

n
2

i
i 1

1 t
6 n

(t t )
=

 
 π β  +
 

− 
 

∑
 ................................................(1.61) 

1.5 Reliability and Hazard Functions of Extreme Value Distn. 

         In this section, we illustrate some concepts, relations, properties, 

estimation for the reliability and hazard functions. 
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1.5.1 Some Concepts of Reliability and Hazard Functions  

           Initially, we shall represent the definition of the reliability and 

hazard functions. Billington and Allen (1983). [4] define reliability is the 

probability of a device performing its purpose adequately for the period of 

time intended under the operating conditions encountered. Chicken & 

Posner (1998) define hazard as situation can cause harm. Harm is taken to 

imply injury, damage, loss of performance and finances [6].  

           Reliability theory is a general theory about systems failure. 

Reliability theory was originally developed for estimating the reliabilities 

of physical devices. The source of the reliability failures of physical 

devices is typically the physical deterioration of the materials used in their 

construction. This physical deterioration provides the basis of stochastic 

reliability modeling, since the deterioration is assumed to vary randomly 

with time. It predicts the late-life mortality deceleration with subsequent 

leveling-off, as well as the late-life mortality plateaus. The theory 

explains why mortality rates (hazard rates) increase exponentially with 

age (Gompertz law) in many species, by taking into account the initial 

flaws (defects) in newly formed systems. It also explains why organisms 

prefer to die according to the Gompertz law, while technical devices 

usually fail according to the Weibull (power) law. Theoretical conditions 

are specified when organisms die according to the Weibull law: 

organisms should be relatively free of initial flaws and defects. The theory 

makes it possible to find a general failure law applicable to all adult and 

extreme old ages, where the Gompertz and the Weibull laws are just 

special cases of this more general failure law. Therefore, reliability theory 

seems to be a promising approach for developing a comprehensive theory 
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of aging and longevity integrating mathematical methods with specific 

biological knowledge. [28] 

           In the reliability modeling, minimum extreme value distributions 

are frequently encountered, e.g., if a system consists of n identical 

components in series, and the system fails when the first of these 

components fails, then system failure times are the minimum of n random 

component failure times. Extreme value theory says that, independent of 

the choice of component model, the system model will approach a 

Weibull as n becomes large. The same reasoning can also be applied at a 

component level, if the component failure occurs when the first of many 

similar competing failure processes reaches a critical level. The reliability 

function is denoted by R(x;α,β), is given by 

 R(x; , ) = Pr(X > x) = 1 Pr(X x)  = 1 F(x; , )α β α β− ≤ − ………. (1.62) 

            For engineering systems, failure rates or hazard rates are terms 

applied to the first failure times for a population of non-repairable 

components or to non-repairable systems. The failure rate is defined for 

non-repairable populations as the (instantaneous) rate of failure for the 

survivors to time x during the next instant of time. The failure rate (or 

hazard rate) is denoted by h(x;α,β) and calculated from        

 ( ; , ) ( ; , )( ; , )
1 ( ; , ) ( ; , )

f x f xh x
F x R x

α β α β
α β

α β α β
= =

−
 ……….………………….... (1.63) 

          The failure rate is sometimes called a conditional failure rate. The 

cumulative hazard function, denoted by H(x;α,β), [26] is defined to be  

0
( ; , ) ( ; , )

x
H x h w dwα β α β= ∫ ……………………………………… (1.64) 
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            The failure rate function is often used to indicate the health 

condition of a working device. A high failure rate indicates a bad health 

condition because the probability for the device to fail in the next instant 

of time is high. [30] 

1.5.2 Some Important Relations, [30][26] 

It is obvious that one of the functions ( ; , )f x α β , ( ; , )F x α β , 

( ; , )R x α β , ( ; , )h x α β , ( ; , )H x α β  is adequate to specify completely the 

lifetime distribution of a device. These functions are satisfy the well-

known relations  

1- ln[ ]
( ; , )

( ; , ) ( ; , )
( ; , )

d R ddxh R
R dx

x
x x

x

α β
α β α β

α β

−
−

= =  

2-  
( , )

0( ; , )

x
h w dw

R x e
α β

α β
− ∫

=  

3-  . .
( ; , )

0( ; , ) ( ; , ) ( ; , ) ( ; , )f h R h

x
h w dw

x x x x e
α β

α β α β α β α β= =
− ∫

 

4- F ( ; , )x α β  =  1 - ( ; , )H xe α β−  
5- ( ; , )H x α β   = - ln R ( ; , )x α β  

1.5.3 Properties of Reliability and Hazard Functions of the 

Extreme Value Distribution, [26] 

     In this section, we shall give some mathematical properties of the 

reliability and the hazard functions of the extreme value distn. 

The reliability function of the extreme value distn. can be obtained in 

terms of the c.d.f. of eq.(1.2) as follows 
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R(x;α,β) = 1 - F(x;α,β) = 1 1[ ]
x x

e ee e− =

−α −α
β β− −− …………….. (1.65) 

          The reliability function given by (1.65) satisfy the following: 

1- 0 ( ; , ) 1R x α β< ≤  

2- R(0) = 1 and R(∞) = 0. 

3- The function R(x) is a non-increasing function of x. 

4- The function R(x) is continuous from the left at each x. 

            The hazard function of the extreme value distn. can be obtained in 

terms of the p.d.f of eq.(1.1) and the reliability function of eq. (1.65) as 

follows: 

h(x;α,β) = ( ; , )
( ; , )

f x
R x

α β
α β

= 

1
1

e

x
e

x
x e

e
x

e

−α β β=
β

−α
β−α−β

−α
β−

…...……………(1.66) 

        The hazard function given by (1.66) satisfy the following: 

1. h(x;α,β) is an increasing function for all x and it is Concave upward for 

 1 e x
α
β

β

−
< < ∞ . 

          Several typical failure rate curves are given in Figures (1.4.a) and 

(1.4.b). Inspection of these curves makes it obvious that the failure rate is 

monotonic for all α  and β .  
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Fig(1.4.a): failure rate of Extreme Value distribution with α = 0 

and β = 1, 2, 3, 4, 5, 6 
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Fig(1.4.b): failure rate of Extreme Value distribution with  

α = 0, 1, 2, 3, 4, 5 and β =1 
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1.5.4 Estimation of the Reliability and Hazard Functions of  

Extreme Value Distribution   

 The estimators of the parameters by four methods of estimation that 

given in section (1.4) can be used to estimate the reliability and the hazard 

functions as follows. 

 

1.5.4.1  Estimation by M.M 

      The M.M estimators of β and α as given by (1.18) and (1.19) are 

                  6( 1)ˆ S n
nπ
−β =            and          α̂= X + ˆγβ  

accordingly the estimators of  R(x;α,β) and h(x;α,β)  is now obtained by 

replacing  α and β  in (1.65) and (1.66) by their estimates ˆˆ andα β  given 

in (1.18) and (1.19). Accordingly the estimator of R(x) is: 

. . . ..
ˆˆ = 

ˆ
ˆ

R̂ (x; ) eM M M MM M

x

eα ,β

−α
β

− ……………………………...…(1.67) 

and  the estimator of h(x) is: 

  . . . ..
ˆˆ

ˆ( )ˆ1
ˆ

ˆ ( ; , )M M M MM M

x

eh x α β

−α  
β

β
= ……………………………  (1.68) 

1.5.4.2  Estimation by MLM 

 The M.L.M. of  α and β as given by (1.34) and (1.35) are              

  α̂ (s+1) = α̂ (s) 2
1

ac b
−

−
(cf1 − bf2)   and   β̂ (s+1) = β̂ (s) 2

1
ac b

−
−

(−bf1 + af2)       

accordingly the estimators of  R(x;α,β) and h(x;α,β)  is now obtained by 

replacing α  and β  in (1.65) and (1.66) by their estimates ˆˆ andα β  given  
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in (1.34) and (1.35). Accordingly the estimator of R(x) is:  

. . . . . .. .
ˆˆ ˆR (x = 

ˆ
ˆ

; ) eM L M M L MM L M

x

eα ,β

−α
β

− ………………………….(1.69) 

and  the estimator of h(x) is: 

  . . . . . .. .
ˆˆ ,

ˆ( )ˆ1
ˆ

ˆ ( ; )M L M M L MM L M

x

eh x α β

−α  
β

β
= ………………………. (1.70) 

1.5.4.3   Estimation by  O.S.M 

         The O.S.M estimators of β and α as given by (1.40) and (1.41) are 

                  1ˆ
ln( )

X Y
n

−
β =            and          α̂ = X + ˆγβ  

accordingly the estimators of R(x;α,β) and h(x;α,β) is now obtained by 

replacing  α and β in (1.65) and (1.66) by their estimates α̂ and β̂  given 

in (1.40) and (1.41).  Accordingly the estimator of R(x) is: 

. . . . . .. .
ˆˆ = 

ˆ
ˆ

R̂ (x; ) eO S M O S MO S M

x

eα ,β

−α
β

− ……………………………. (1.71) 

and  the estimator of h(x) is: 

  . . . . . .. .

ˆ( )ˆ1ˆˆ , ˆ
ˆ ( ; )O S M O S MO S M

x

eh x α β

−α  
β

β
= …….……………….…... (1.72) 

1.5.4.4   Estimation by  L.S.M  
        The L.S.M estimators of β and α as given by (1.56) and (1.57) are 

             1 1

2

1 1

ˆ

n n

i i i

i i
n n

i i

i i

t x t x

t t t

= =

= =

−

−
β =

∑ ∑
∑ ∑

           and          α̂ = 

n n

i i i
i 1 i 1

n n
2
i i

i 1 i 1

t x t x

t t t

= =

= =

−

−

∑ ∑

∑ ∑
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accordingly the estimators of  R(x;α,β) and h(x;α,β)  is now obtained by 

replacing  α and β  in (1.65) and (1.66) by their estimates ˆˆ andα β  given 

in (1.56) and (1.57). Accordingly the estimator of R(x) is: 

. . . . . .. .
ˆˆ ˆR (x = 

ˆ
ˆ

; ) eL S M L S ML S M

x

eα ,β

−α
β

− …………...……………….. (1.73) 

and  the estimator of h(x) is: 

  . . . . . .. .
ˆ ˆˆ( ; , )

ˆ( )ˆ1
ˆL S M L S ML S Mh x

x

eα β =

−α  
β

β
…………...……………… (1.74) 

 

1.6 Some Related Theorems, [33]  

 

Theorem (1.1)  

        If the r.v X ~ ( , )W a b , then the r.v. ln( ) ( , )Y X Ext α β= ∼  where  

1,a e b
α
β

β

−
=   =  

  

Theorem (1.2)  

         If the r.v X ~ ( , )Ext α β , then the r.v  ( ),Y X Ext α β= − ∼ −  
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2.1 Introduction 

          In this chapter, we shall give some definitions, concepts and 
historical review about Monte Carlo simulation. 

2.1.1 Definition, [16] 

          Simulation in a " wide sense " is defined as a numerical technique 
for conducting experiments on a digital computer which involve certain 
types of mathematical and logical models that describe the behavior of 
system over extended periods of real time. 
           For example, designing games, training pilots on flight conditions, 
film to simulate objects, a telephone communication system, a large scale 
military battle (to evaluate defensive or offensive weapon system) and 
network traffic simulation. 
          Where as simulation in a " narrow sense " (also called stochastic 
simulation) is defined as experimenting with the model over time, it 
includes sampling stochastic variates from probability distn. Often 
simulation is viewed as a “Method of Last Resort” to be used when every 
things else has failed. Software building and technical development have 
made simulation one of the most widely used and accepted tools for 
designers in the system analysis and operation research. 

2.2 Monte Carlo Simulation 

          Stochastic simulation is sometimes called Monte Carlo simulation, 
because sampling from a particular distribution involve the use of random 
numbers. [38] 
           Historically, The name “Monte Carlo” was coined by Metropolis 
(1946) (inspired by Ulam’s interest in poker) during the Manhattan 
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Project of World War II, because of the similarity of statistical simulation 
to games of chance, and because Monte Carlo, the capital of Monaco was 
a center for gambling. [1] 
           Courant [8] showed the equivalence of the behavior of certain 
random walks to solutions of certain partial differential equations. Early 
use of Monte Carlo was the sampling experiment that led student W. S. 
Gosset (1908) to the discovery of the distribution of the t-statistic and the 
correlation coefficient of the distn.. [15] In the 1930s, Enrico Fermi made 
some numerical experiments that called Monte Carlo calculations, which 
is the first of used a random number method to calculated the properties 
of the newly-discovered neutron. [36] 
            During the Second World War, von Neumann, Fermi, Ulam, and 
Metropolis and the beginnings of modern digital computers gave a strong 
impetus to the advancement of Monte Carlo. In the late 1940s and early 
1950s, there was a surge of interest. Papers appeared that described the 
new method and how it could be used to solve problems in statistical 
mechanics, radiation transport, economic modeling, and other fields. 
[40][9] 
           The two most influential developments of that kind were the 
improvements in methods for the transport equation, especially reliable 
methods of ‘‘importance sampling’’ [23] and the invention of the 
algorithm of Metropolis et. al.. The resulting successes have borne out 
the optimistic expectations of the pioneers of the 1940s. In (1948) Fermi, 
Metropolis and Ulam obtained Monte Carlo estimates for the eigenvalues 
of Schrödinger equation. [31] 
         The main requirement to use Monte Carlo method for simulation of 
a physical system is that it must be possible to describe the system in 
terms of p.d.f., also called partition function (Z). Once the p.d.f. or Z for a 
system is known, then the simulation begins by random “sampling” from 
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the p.d.f., and subsequently determining the desired properties of the 
sample by conducting some kind of a “trial” and subjecting the outcome 
to a reasonable test such as chi-square-goodness of fit test. Many trials 
are outcomes of all of these trials are recorded. The final step in the 
Monte Carlo method is that the behavior of the overall system is obtained 
by computing the average of outcomes of the trails conducted. [1] 
         Monte Carlo methods provide approximate solutions to a variety of 
mathematical problems by performing statistical sampling experiments. 
Monte Carlo methods are a collection of different methods that all 
basically perform the same process. This process involves performing 
many simulations using random numbers and probability to get an 
approximation of the answer to the problem. [20]  
         Monte Carlo simulation is widely used in many fields in 
Mathematics and Statistical Physics to numerical solution of complex 
multi-dimensional partial differentiation and integration problems, also it 
is used for simulating quantum systems to solve optimization problems in 
operations researches. [36] 
           Also in Engineering, Monte Carlo simulation is used to estimate 
reliability of mechanical components in mechanical engineering. 
Effective life of pressure vessels in chemical engineering. While in 
electronics engineering and circuit design, circuits in computer chips are 
simulated using Monte Carlo methods for estimating the probability of 
fetching instructions in memory buffers. [16][36]  
         Also, Monte Carlo Simulation is used in financial [16], and 
phenomena modeling such as the calculation of risk in business. Monte 
Carlo are useful in studying systems with a large number of coupled 
degrees of freedom, such as fluids, disordered materials, strongly coupled 
solids, and cellular structures. [36]  
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         Markov Chain Monte Carlo simulation methods that have been 
widely used in recent years in econometrics and statistics. [17] 

2.3 Random Number Generation, [25]   

           The best means of obtaining unpredictable random numbers is by 
measuring physical phenomena such as radioactive decay, thermal noise 
in semiconductors, sound samples taken in a noisy environment, and  
even digitized images of a lava lamp.  
            However, few computers (or users) have access to the kind of 
specialized hardware required for these sources, and must rely on other 
means of obtaining random data. The term “practically strong 
randomness” is used here to represent randomness which isn’t 
cryptographically strong by the usual definitions but which is as close to 
it as is practically possible.   

We say that, the random numbers generated by any method is a 

“good” one if the random numbers are uniformly distributed, statistically 

independent and reproducible, more over the method is necessarily fast 

and requires minimum capacity in the computer memory. 

The Congruential methods for generating pseudorandom numbers 
are designed specifically to satisfy as many of these requirements as 
possible. 

    These methods produce a nonrandom sequence of numbers 
according to some recursive formula based on calculating the residues 
module of some integer m of a linear transformation. The Congruential 
methods are based on a fundamental congruence relationship, which may 
be formulated as:    

 ( )( )1 modi iX aX c m+ = + , 1,2,...,i m= . ……………………….. (2.1) 

where a is the multiplier, c is the increment , and m is the modulus (a, c,  
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m are non-negative integers), (mod m) mean that eq.(2.1) can be  
written as: 

  1
i

i i
a X cX aX c m

m+
+ = + −   

 ...………………………………… (2.2) 

Where z = ia X c
m

+ is the greater integer in z 

Given an initial starting value 1X  with fixed values of a, c and m, 

then eq. (2.2) yields congruence relationship (modulo m) for any values i 

of the sequence {Xi}. The seq. { }iX  will repeat itself in at most m steps  

and will be therefore periodic. For instant:  

Let 1 4a c X= = = , and 3m = ,then the sequence obtained from the 

recursive formula 

( )( )1 4 4 mod 3i iX X+ = +  is 4,2,0,1,2,...iX =  . 

The random number on the unit interval [0,1] can be obtained by:  

i
i

XU
m

= , 1,2,...,i m= ………………………………………… (2.3) 

It follows from eq.(2.3) that iX m≤ , i∀ , this inequality mean that 

the period of the generator cannot exceed m, that is, the sequence { }iX  

contains at most m distinct numbers. So we should choose m as large as 
possible to ensure, a sufficiently large sequence of distinct numbers in the 
cycle. 

It is noted in the literature, that good statistical result can be achieved 

from computers by choosing 7 12a +=  , 1c =  , and 352m = .   

2.4 Random Variates Generation from Continuous Distribution 

Many methods and procedures are proposed in the literatures for 

generating random numbers from different distributions. We shall utilize 

the inverse transform method, (IT). 
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2.4.1 Inverse Transform Method  

One of the more useful ways of generating random variates is 

through the inverse transformation techniques which is based on the 

following theorem: 

Theorem (2.1), [38]  

The random variable U = F(X) ~ U(0, 1) if and only if the random 

variable X = F−1(U) has c.d.f pr (X ≤ x) =F(x).     

The algorithm of generating random variates by inverse transform 

method can be described by the steps of IT-algorithm: 

IT-Algorithm: 

1. Generate U from U(0, 1). 

2. Set U = F(X). 

3. Return X = F−1(U) if the inverse exist. 

4. Deliver X as a random variable generated from the p.d.f f(x). 

5. Stop. 

As an application of IT-Algorithm, we shall consider the following 

examples: 

Example (2.1): 

Consider, we wish to generate a r.v. X, where the distn. p.d.f: 

( )1
, 0 1( ) 2(1 )

0, . .

x
xe xf x x

e w









−
−

< <= −  

 then, the c.d.f. of this p.d.f. 
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F(x) = pr(X ≤ x) = 
x

−∞
∫ f(t) dt = 

0

t( )x 1 te
2(1 t)

− −

−
∫  dt 

Set u = t
1 t− implies du = 1

2(1 t)−
 dt 

F(x) = 

x
1 x

u

0
e du

−
−∫ = 1-

x( )1 xe
− −  

Set u = F(x), implies: 

x = ln( )
ln( ) 1

u
u −

 , 0   < u   < 1 

Apply IT-Algorithm: 

1. Generate U from U(0, 1). 

2. Set X =
( )

( ) 1
ln

ln
U

U − . 

3. Deliver X as a random variable generated from f(x) = 
( )1

2(1 )

x
xe

x

−
−

−
. 

4. Stop. 

Example (2.2): 

If a r.v. X required from the distn. whose distn. p.d.f: 

f(x) = 

2

2

x 2a ,    2a < x < a+b
(b a)
2b x ,    a+b < x < 2b

(b a)

0, e.w.

 −


−
 −


−
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then, the c.d.f of this p.d.f is: 

F(x)= pr(X ≤ x) =
2

2 2

x

2a
a b x

2a a b

0,                            x 2a

(t 2a ) dt,                   2a x a b
(b a )

( t 2a ) (2b t)dt dt,   a+b x 2b
(b a ) (b a )

1,                              x 2b

+

+

≤


− < + −


− − + ≤ < − −
 ≥

∫

∫ ∫

<
              

So:                   F(x) = 

0,                x 2a
1 x 2a 2 ,          2a x a b
2 b a

1 2b x 21 ,    a+b  x 2b
2 b a

1,                x 2b

[ ]

[ ]

≤
 − < +
 −
 − − ≤ <
 −
 ≥

<
 

For 2a < x  < a+b, set u = F(x) ⇒ u = 
1 x 2a 2
2 b a
[ ]−

−
, implies: 

x = 2a+ ( )b a 2u− , for 0 < u ≤  1
2

 

For a+b ≤ x < 2b, set u = F(x) ⇒ u = 1 2b x 21
2 b a
[ ]−

−
−

 , implies: 

         2 ( ) 2x b b a u= − − , for 1
2

< u < 1 

Apply IT-Algorithm: 

1. Read a and b. 

2. Generate U from U(0, 1). 

3. If  0< U ≤ 1
2

 set X = 2a+ ( )b a 2U−  : go to step (5). 

4. Else, set X =2 ( ) 2b b a U− − . 

5. Deliver X as a random variable generated from  
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f(x) =
2

2

x 2a ,    2a<x<a+b
(b a)
2b x ,    a+b<x<2b

(b a)

−
 −
 −
 −

. 

6. Stop. 

We note that: 

To apply the inverse transform method, the c.d.f F(x) must exist in 

a form for which the corresponding inverse transform can be applied 

analytically. 

Some probability distn., it's either impossible or possible to find the 

inverse transform , that is, to solve, u = F(x) = 
x

−∞
∫ f(t) dt. 

For example: 

1. X ~ Exp(λ), where f(x) = 1
λ

e−x/λ, 0 < x < ∞ (possible). 

2. X ~ G(2, 1), where f(x) = xe−x, 0 < x < ∞ (difficult). 

3. X ~ N(0, 1), where f(x) = 1
2π

21 x
2e

−
, −∞ < x < ∞ (impossible). 

2.5 Procedure for generating Random Variates of Extreme 

Value Distribution 

In this section, we shall consider the procedure for generating 

random variates from extreme value distn. by utilizing theorem (2.1). 
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2.5.1 Procedure (EV-1): 

This procedure is based on Inverse Transform method given by 
theorem (2.1): 

From eq. (1.2), the c.d.f. of extreme value distn. is: 

( ; , ) 1 e

x
eF x

−α
β−α β = −  

Setting u = F(x; α,β) implies u = 1 e

x
e

−α
β−− , implies that: 

x = α + β Ln(-Ln(u)) 

The (EV-1) algorithm describe the necessary steps for generating 
random variates by the inverse transform method. 

Algorithm (EV-1): 

1. Read α, β. 

2. Generate U form U(0, 1). 

3. Set X = α + βLn(−Ln(u)). 

4. Deliver X as a r.v. generated from Ext(α, β). 

5. Stop.  
 

2.6  Goodness _ of _Fit Test for  Extreme Value Observations, 

[34] 

     We shall subject the observations of extreme value distn. that obtained 

from a computer by simulation to a test to see whether or not it will be 

acceptable for use.  

          Many goodness of fit tests are available could be found throughout 

the literature such as Chi-Square, Kolmogorov-Smirnov, Sign-Rank, 
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Median, Mann-Whitney tests etc. We shall utilize chi-square goodness of 

fit test which is considered as the best known test of all statistical tests. 

Such test can described as follows:  

          Suppose X1, X2, …, Xn be a r.s. of size n from distn. whose c.d.f 

F(x) = pr(X ≤ x) is unknown and we wish to test the null hypothesis that 

the observations 

              H0 : F(x) = F0(x) versus H1 : F(x) ≠ F0(x) 

Where F0(x) is completely specified c.d.f. 

       we assume that the n observations have been grouped into k mutually 

exclusive cells. Let Pi be the probability that the outcome of Xi of the 

sample fallen in the cells i and let Oi be the number of the observed of the 

cell i and let ei be the expected number of cell i, i=1, 2, ….., k. 

Then we have the following table :_ 

 

Cell i 1 2 3 …………………………… K Total  

Oi O1 O2 O3 …………………………… Ok N 

ei e1 e2 e3 …………………………… ek 

 

Where  n =
k k

i i
i 0 i 0

O e
= =

=∑ ∑  

        Since, Oi ~ ib(n,p ) , with the expected ( ei = n pi ). The test statistic 

suggested by person is 
2k

i i

i 0 i

[O e ]y
e=

−
= ∑ , which tends to be small, when 

H0 is true and large when H0 is false the exact distn. of r.v. y is quite 

complicated for large n.  
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        The distn. of r.v. y is approximately chi_ square with k-1 degrees of 

freedom. i.e. as n→∞, y ~ 2 (k 1),χ − under H0 (when H0 is true) we expect 

pr( Y ≤ 2
1−αχ ) = 1- α, where α is the significance level of the test.  

         In particular, usually we take α = 0.01, 0.05, or  0.1 and quintile  2
1−αχ  

that correspond to the probability (1-α) given in chi_ square table  

Acceptance region rejection region

pr( Y ≤ 2
1−αχ ) = 1- α 

α 

x

f(x)

                Figure (2.1) The Chi-Square Goodness-of-Fit Test. 

       

       We applied this test on a sample of size n=100 to test whether the 

observations come from Ext (0,1) where F0(x;α,β)= 1 e xe− − . We take the 

number of cells k=10 with pooling method will reduce the number of cell 

takes and we observe the value of test statistic 
2( )

1

k O ei iY eii

−
=

=
∑  with 

α=0.05 level of significant and the number of repetition 500 is used. 

       It has been found that 94% of 500 trials are accepted. So we accept 

that the observations obtained by the computer as a real observations 

come from Ext(0,1).  
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3.1 Introduction 

In this chapter, we shall utilize Monte Carlo method to estimate the 

parameters of extreme value distribution by moment method, maximum 

likelihood method, order statistic method and least squares method as 

given in eq.s (1.18), (1.19), (1.34), (1.35), (1.40), (1.42), (1.56) and (1.57) 

of chapter one, The simulated samples of extreme value are observed by 

monte carlo method according to the procedure given in sections (2.5.1). 

These estimators are  used to estimate the reliability and the hazard 

functions by four methods given in section (1.5) of chapter one. 

3.2  The Estimates of the Parameters Using Procedure (EV-1) 

To access the results obtained by the four methods of estimation, we 

generate samples of size n = 5(1) 10(2) 20(5) 30(10) 100 from extreme 

value distn. and repetition 500 is used.  

A computer program (1) is made in Appendix (A) uses procedure 

(EV-1) of section (2.5.1) which utilizing the Inverse Transform Method. 

The estimators by the four methods of estimations are displayed in 

table (3.1). 
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Table (3.1) 
Parameters estimation. 

Sample 
size n 

Estimation of ˆˆ( , )α β  

M.M M.L.M O.S.M L.S.M 

5 (0.734,1.677) (5.956,6.735) (0.929, 2.083) (1,2) 

6 (0.828,1.690) (3.639,5.642) (0.968,2.080) (1,2) 

7 (0.842,1.727) (2.448,4.793) (1.023,2.072) (1,2) 

8 (0.874,1.760) (2.169,3.041) (1.022,1.958) (1,2) 

9 (0.881,1.836) (0.207,1.286) (1.018,2.04) (1,2) 

10 (0.892,1.844) (1.819,2.803) (1.015,2.039) (1,2) 

12 (0.896,1.868) (1.683,2.629) (1.012, 2.037) (1,2) 

14 (0.901,1.870) (1.482,1.573) (0.989, 1.965) (1,2) 

16 (0,920,1.882) (0.584,1.601)  (0.990, 1.970) (1,2) 

18 (0.937,1.909) (0.636,1.756) (1.009,1.978) (1,2) 

20 (0.938,1.910) (0.725,2.253) (0.992, 2.022) (1,2) 

25 (0.961,1.911) (0.783,1.826)  (1.008,2.016) (1,2) 

30 (0.965,1.914) (0.832,2.111) (0.993,2.014) (1,2) 

40 (0.970,1.951) (0.880,1.921) (1.006,1.990) (1,2) 

50 (0.971,1.958) (0.889,1.944)  (0.995, 1.992) (1,2) 

60 (0.979,1.968) (0.902,2.064) (1.005,1.993) (1,2) 

70 (0.985,1.970) (0.924,1.988) (1.004,1.994) (1,2) 

80 (0.989,1.971) (0.932,2.011) (0.996,1.995) (1,2) 

90 (0.990,1.979) (0.944,2.004) (1.003,1.998) (1,2) 

100 (0.991,1.988) (0.956,1.997) (0.999,2.001) (1,2) 
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       Table (3.1) shows that the L.S.M. give exact estimate values for α and β  

because the estimators α̂ and β̂are unbiased as shown in eqs. (1.56) and (1.57). 

        For all samples sizes the O.S.M. is best than M.M. and M.L.M. while all 

methods are adequate for moderate and large samples. In small samples, we 

note that the M.L.M. give estimate higher than the expectation and this might 

be due to the given bound of ending the estimation.  

 

3.3 The Bias of Estimators Using Procedure (EV-1) 

The biases of estimators α̂  and β̂  which can be obtained by: 

Bias( α̂ ) = α̂  − α 

Bias(β̂ ) = β̂  − β 

Tables (3.2) and (3.3) show the biases of estimators ( α̂ ) and (β̂ ) 

obtained by the four methods of estimation: 
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Table (3.2) 
Bias of Estimator (α̂ ). 

Sample 
size n 

Bias of Estimation (α̂ ) 

M.M M.L.M O.S.M L.S.M 

5 -0.266 4.956 -0.071 0 

6 -0.172 2.639 -0.032 0 

7 -0.158 1.448 0.023 0 

8 -0.126 1.169 0.022 0 

9 -0.119 -0.893 0.018 0 

10 -0.108 0.819 0.015 0 

12 -0.104 0.683 0.012 0 

14 -0.099 0.482 -0.011 0 

16 -0.080 -0.416 -0.010 0 

18 -0.063 -0.364 9.354×10−3 0 

20 -0.062 -0.275 -7.721×10−3 0 

25 -0.039 -0.217 8.464×10−3 0 

30 -0.035 -0.168 -6.844×10−3 0 

40 -0.030 -0.120 6.153×10−3 0 

50 -0.029 -0.111 -4.82×10−3 0 

60 -0.021 -0.098 5.306×10−3 0 

70 -0.015 -0.976 3.798×10−3 0 

80 -0.011 -0.068 -3.783×10−3 0 

90 -9.892×10−3 -0.056 3.118×10−3 0 

100 -9.266×10−3 -0.044 -5.478×10−4 0 
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Table (3.3) 
Bias of Estimator ( β̂ ). 

Sample 
size n 

Bias of Estimation ( β̂ ) 

M.M M.L.M O.S.M L.S.M 

5 -0.323 4.735 0.083 0 

6 -0.310 3.642 0.080 0 

7 -0.273 2.793 0.072 0 

8 -0.240 1.041 -0.042 0 

9 -0.164 -0.714 0.040 0 

10 -0.156 0.803 0.039 0 

12 -0.132 0.629 0.037 0 

14 -0.130 -0.427 -0.035 0 

16 -0.118 -0.399 -0.030 0 

18 -0.091 -0.244 -0.022 0 

20 -0.090 0.253 0.022 0 

25 -0.089 -0.174 0.016 0 

30 -0.086 0.111 0.014 0 

40 -0.049 -0.079 -9.509×10−3 0 

50 -0.042 -0.056 -7.544×10−3 0 

60 -0.032 0.064 -7.043×10−3 0 

70 -0.03 -0.012 -6.327×10−3 0 

80 -0.029 0.011 -5.134×10−3 0 

90 -0.021 0.004 -1.564×10−3 0 

100 -0.012 -0.003 9.192×10−4 0 
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Tables (3.2) and (3.3) show that the simulated biases of the estimators  

α̂  and β̂  given by L.S.M. coincide with the theoretical biases given by eqs. 

(1.56) and (1.57). 

For small and moderate samples the biases of M.M. and O.S.M. are 

better than those given by M.L.M.   

 

3.4 The Variance of Estimators Using Procedure (EV-1) 

The variances of estimator ( α̂ ) are shown in table (3.4), where the 

true values of variances are given: 

1- Equation (1.24) by moments method. 

2- Equation (1.46) by order statistic method. 

3- Equation (1.60) by least squares method. 

4- While the variance concern the M.L.M. is excluded because the non 

linearity appearance to eqs. (1.34) and (1.35) 

Table (3.4) show the variance of estimator ( α̂ ) where the true value 

of variance ( α̂ ) are shown in parenthesis. 
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Table (3.4) 
Variance of Estimator (α̂ ). 

Sample 
size n 

Variance of Estimation (α̂ ) 

M.M M.L.M O.S.M L.S.M 

5 1.021 (0) 331.120 1.136 (0) 0 (2.459) 

6 0.930 (0) 262.316 1.045 (0) 0 (1.782) 

7 0.630 (0) 171.976 0.740 (0) 0 (1.368) 

8 0.608 (0) 111.897 0.721 (0) 0 (1.138) 

9 0.506 (0) 82.016 0.614 (0) 0 (0.989) 

10 0.462 (0) 61.010 0.563 (0) 0 (0.883) 

12 0.408 (0) 42.643 0.540 (0) 0 (0.727) 

14 0.319 (0) 33.031 0.432 (0) 0 (0.604) 

16 0.308 (0) 24.806 0.416 (0) 0 (0.526) 

18 0.283 (0) 14.151 0.386 (0) 0 (0.466) 

20 0.207 (0) 9.613 0.293 (0) 0 (0.420) 

25 0.162 (0) 5.722 0.256 (0) 0 (0.327) 

30 0.153 (0) 1.031 0.244 (0) 0 (0.272) 

40 0.126 (0) 0.642 0.224 (0) 0 (0.201) 

50 0.090 (0) 0.183 0.171 (0) 0 (0.161) 

60 0.079 (0) 0.097 0.170 (0) 0 (0.133) 

70 0.066 (0) 0.061 0.166 (0) 0 (0.114) 

80 0.054 (0) 0.052 0.156 (0) 0 (0.100) 

90 0.049 (0) 0.041 0.130 (0) 0 (0.089) 

100 0.048 (0) 0.035 0.121 (0) 0 (0.080) 
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The variances of estimator ( β̂) are shown in table (3.5), where the 

true values of variances are given: 

1- Equation (1.22) by moments method. 

2- Equation (1.43) by order statistic method. 

3- Equation (1.58) by least squares method. 

4- While the variance concern the M.L.M. is excluded because the non 

linearity appearance to eqs. (1.34) and (1.35). 

Table (3.5) show the variance of estimator (β̂ ) where the true value 

of variance (β̂ ) are shown in parenthesis. 
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Table (3.5) 

Variance of Estimator ( β̂ ). 

Sample 
size n 

Variance of Estimation ( β̂ ) 

M.M M.L.M O.S.M L.S.M 

5 0.693 (0) 301.351 1.658 (0) 0 (2.248) 

6 0.500 (0) 241.012 1.276 (0) 0 (1.595) 

7 0.465 (0) 160.516 1.155 (0) 0 (1.225) 

8 0.413 (0) 100.443 1.064 (0) 0 (0.988) 

9 0.404 (0) 87.511 0.970 (0) 0 (0.761) 

10 0.341 (0) 61.167 0.933 (0) 0 (0.634) 

12 0.326 (0) 49.797 0.863 (0) 0 (0.498) 

14 0.271 (0) 33.224 0.767 (0) 0 (0.412) 

16 0.245 (0) 26.012 0.698 (0) 0 (0.346) 

18 0.180 (0) 19.778 0.565 (0) 0 (0.281) 

20 0.165 (0) 11.654 0.486 (0) 0 (0.252) 

25 0.141 (0) 6.031 0.483 (0) 0 (0.197) 

30 0.125 (0) 1.245 0.453 (0) 0 (0.162) 

40 0.105 (0) 0.731 0.426 (0) 0 (0.114) 

50 0.076 (0) 0.231 0.390 (0) 0 (0.089) 

60 0.069 (0) 0.091 0.380 (0) 0 (0.072) 

70 0.063 (0) 0.059 0.345 (0) 0 (0.062) 

80 0.050 (0) 0.044 0.339 (0) 0 (0.053) 

90 0.049 (0) 0.042 0.327 (0) 0 (0.047) 

100 0.044 (0) 0.039 0.308 (0) 0 (0.042) 
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          Tables (3.4) and (3.5) show that the variances of the estimators α̂  and β̂  

by obtained M.M.,O.S.M. and L.S.M. the true and approximated variances 

respectively are zero values by eqs. (1,25), (1.22), (1.47), (1.44), (1.61), (1.59).  

           The variances of estimators α̂  and  β̂  practically given by M.M., 

M.L.M., O.S.M. and theoretically L.S.M. respectively converge to zero as 

sample sizes increase. Also, note that the variance of estimator α̂  by M.M and 

O.S.M. are adequate in all sample sizes while the variance of estimator β̂by 

obtained M.M. is better than O.S.M. and M.L.M. in small and moderate 

samples. In large sample, the variances of estimators α̂  and  β̂  obtained by 

M.L.M. is better than M.M. and O.S.M. 

  

3.5 The Skewness of Estimators Using Procedure (EV-1) 

     The skewness of estimators ( α̂ ) and (β̂ ) which can be obtained by: 

Skewness ( α̂ ) = 

n n n
3 2 2 3

i i i
i 1 i 1 i 1

2 3/ 2

1 ˆ ˆ ˆ( ) 3 ( ) 3 ( )
n

( )
= = =

 
α − α α + α α − α 

 
σ

∑ ∑ ∑
 

Skewness (β̂) = 

n n n
3 2 2 3

i i i
i 1 i 1 i 1

2 3/ 2

1 ˆ ˆ ˆ( ) 3 ( ) 3 ( )
n

( )
= = =

 
β − β β + β β − β 

 
σ

∑ ∑ ∑
 

Tables (3.6) and (3.7) show the skewness of estimators ( α̂ ) and (β̂ ) 

by the three methods of estimation. 
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Table (3.6) 
Skewness of Estimator (α̂ ). 

Sample 
size n 

Skewness of Estimation (α̂ ) 

M.M M.L.M O.S.M 

5 0.022 -18.052 0.368 

6 0.216 -15.819 0.575 

7 0.806 -7.124 1.252 

8 1.293 -6.456 1.577 

9 1.829 -5.809 2.152 

10 1.857 -1.600 2.245 

12 2.296 1.993 2.500 

14 4.361 5.247 3.676 

16 4.629 6.233 3.753 

18 4.956 8.858 4.083 

20 7.518 11.463 5.123 

25 13.323 20.731 7.469 

30 14.615 24.853 8.298 

40 21.468 37.739 9.923 

50 33.752 43.958 14.629 

60 43.122 52.013 14.789 

70 55.583 61.862 15.841 

80 72.442 79.120 17.242 

90 85.756 89.346 21.629 

100 93.316 97.334 24.931 
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Table (3.7) 

Skewness of Estimator ( β̂ ). 

Sample size 
n 

Skewness of Estimation ( β̂ ) 

M.M M.L.M O.S.M 

5 9.276 -21.035 5.710 

6 14.726 -17.229 7.274 

7 17.469 -13.712 8.214 

8 22.129 -7.033 9.383 

9 24.389 -3.967 9.804 

10 32.073 -0.059 10.736 

12 36.006 8.588 12.022 

14 47.088 20.673 13.233 

16 55.470 34.221 15.255 

18 91.980 51.463 20.475 

20 104.042 82.679 23.284 

25 131.325 105.877 23.663 

30 157.888 164.057 26.529 

40 218.168 246.318 29.252 

50 355.896 543.756 35.861 

60 418.579 909.222 37.598 

70 485.000 1.23×103 39.919 

80 704.112 1.698×103 41.076 

90 710.785 1.967×103 44.963 

100 837.481 2.033×103 47.768 
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       We note that the evaluation of skewness of α̂  and β̂  given by L.S.M. 

converge to the infinity because the zero value of the variance of α̂ and β̂ . 

       Table (3.6) show that there is a small skewness of α̂  to the right of the 

estimators α̂  by M.M. and O.S.M. and rapidly increase away from 

normality for large samples. While there is sever skewness of α̂  given by 

M.L.M. in both direction. 

       Table (3.7) shows that for all sample sizes there is a heavy skewness 

of β̂  to the right of the estimators β̂given by M.M. and O.S.M., while 

there is a sever skewness of β̂given by M.L.M. in both direction. This 

indicate that the distn. of β̂ is away from normality. 

  

3.6 The Kurtosis of Estimators Using Procedure (EV-1) 

        The kurtosis of estimators ( α̂ ) and (β̂ ) which can be obtained by: 

Kurtosis( α̂ )=

n n n n
4 3 2 3

i i i i
i 1 i 1 i 1 i 1

2 2

1 ˆ ˆ ˆ( ) 4 ( ) 6 4
n

3
( )

= = = =

 
α − α α + α α − α α 

  −
σ

∑ ∑ ∑ ∑
 

Kurtosis (β̂ )=

n n n n
4 3 2 3

i i i i
i 1 i 1 i 1 i 1

2 2

1 ˆ ˆ ˆ( ) 4 ( ) 6 4
n

3
( )

= = = =

 
β − β β + β β − β β 

  −
σ

∑ ∑ ∑ ∑
  

Tables (3.8) and (3.9) show the kurtosis of estimators ( α̂ ) and (β̂ ) 

by the three methods of estimation. 
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Table (3.8) 
Kurtosis of Estimator (α̂ ). 

Sample size 
n 

Kurtosis of Estimation (α̂ ) 

M.M M.L.M O.S.M 

5 -0.131 319.035 -0.285 

6 -0.620 268.492 -1.059 

7 -1.149 198.275 -1.601 

8 -2.022 153.623 -2.518 

9 -2.605 128.338 -3.002 

10 -2.957 99.365 -3.103 

12 -3.287 83.438 -3.198 

14 -7.347 67.100 -4.712 

16 -7.892 42.906 -5.656 

18 -8.821 21.836 -6.101 

20 -15.141 7.496 -8.422 

25 -32.459 0.406 -14.264 

30 -36.777 -24.510 -16.643 

40 -60.593 -70.345 -20.366 

50 -109.872 -108.313 -34.478 

60 -151.956 -133.772 -34.954 

70 -212.216 -245.939 -35.959 

80 -301.959 -340.550 -40.649 

90 -379.396 -400.250 -57.213 

100 -423.287 -448.422 -69.700 
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Table (3.9) 

Kurtosis of Estimator ( β̂ ). 

Sample 
size n 

Kurtosis of Estimation ( β̂ ) 

M.M M.L.M O.S.M 

5 -15.120 747.593 -4.263 

6 -30.376 594.523 -5.815 

7 -37.661 424.041 -6.041 

8 -56.839 311.857 -14.760 

9 -66.747 269.538 -14.887 

10 -96.003 186.850 -16.668 

12 -112.716 136.369 -19.829 

14 -164.946 101.539 -23.425 

16 -206.870 89.163 -28.309 

18 -411.859 68.721 -50.180 

20 -485.491 43.048 -59.796 

25 -664.637 -87.155 -61.783 

30 -848.811 -242.537 -72.256 

40 -1.311×103 -565.830 -83.850 

50 -2.522×103 -2.772×103 -110.122 

60 -3.129×103 -8.813×103 -115.703 

70 -3.808×103 -1.319×104 -130.699 

80 -6.261×103 -2.027×104 -135.952 

90 -6.338×103 -2.266×104 -150.758 

100 -7.895×103 -2.577×104 -165.758 
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        We note that the evaluation of kurtosis of α̂ and β̂  given by L.S.M. 

converge to infinity from the left because the zero values of the variance 

of α̂ and β̂ . 

         Table (3.8) shows that the evaluation of kurtosis of estimator α̂  

there is a platykurtic by M.M. and O.S.M. the values rapidly increase 

away from normality for large samples. While there is sever kurtosis of α̂  

given by M.L.M. in both direction, where in small and moderate samples 

give leptokurtic and in large sample give platykurtic. 

         Table (3.9) shows that the evaluation of kurtosis of estimator β̂  

there is heavy kurtosis to the platykurtic given by M.M. and O.S.M., 

while there is a sever kurtosis of β̂ given by M.L.M. in both direction, 

where in small and moderate samples give leptokurtic and in large sample 

give platykurtic. This indicate that the distn. of β̂ is away from normality. 

 

3.7 Mean Square Error of Estimators Using Procedure (EV-1), 

[33] 

The mean square error of estimators ( α̂ ) and (β̂ ) which can be 

obtained by: 

m.s.e ( α̂ ) = Variance( α̂ ) + [bias( α̂ )]2 

m.s.e ( β̂) = Variance(β̂ ) + [bias(β̂ )]2 

Tables (3.10) and (3.11) show the mean square error of estimators 

( α̂ ) and (β̂ ) by the four methods of estimation. 
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Table (3.10) 
Mean square error of Estimator (α̂ ). 

Sample 
size n 

Mean square error of Estimation (α̂ ) 

M.M M.L.M O.S.M L.S.M 

5 1.092 355.682 1.141 0 

6 0.960 269.280 1.046 0 

7 0.655 174.073 0.741 0 

8 0.624 113.264 0.722 0 

9 0.520 82.813 0.614 0 

10 0.474 61.681 0.563 0 

12 0.419 43.110 0.540 0 

14 0.329 33.263 0.432 0 

16 0.314 24.979 0.416 0 

18 0.287 14.283 0.386 0 

20 0.211 9.689 0.293 0 

25 0.164 5.660 0.256 0 

30 0.154 1.059 0.244 0 

40 0.127 0.656 0.224 0 

50 0.091 0.195 0.171 0 

60 0.080 0.107 0.170 0 

70 0.066 0.067 0.166 0 

80 0.054 0.057 0.156 0 

90 0.049 0.044 0.130 0 

100 0.044 0.037 0.121 0 
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Table (3.11) 

Mean square error of Estimator ( β̂ ). 

Sample 
size n 

Mean square error of Estimation ( β̂ ) 

M.M M.L.M O.S.M L.S.M 

5 0.797 323.771 1.665 0 

6 0.596 254.276 1.282 0 

7 0.540 168.317 1.160 0 

8 0.471 101.527 1.066 0 

9 0.431 88.020 0.972 0 

10 0.365 61.812 0.935 0 

12 0.343 50.193 0.864 0 

14 0.288 33.406 0.768 0 

16 0.259 26.171 0.699 0 

18 0.188 20.022 0.565 0 

20 0.173 11.718 0.487 0 

25 0.149 6.061 0.483 0 

30 0.132 1.257 0.453 0 

40 0.107 0.737 0.428 0 

50 0.078 0.234 0.390 0 

60 0.070 0.095 0.380 0 

70 0.064 0.059 0.345 0 

80 0.051 0.044 0.339 0 

90 0.049 0.042 0.327 0 

100 0.044 0.039 0.308 0 
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       We note that the evaluation of m.s.e. of α̂  and β̂ given by L.S.M. are 

zero values because the variances and biases are zero values of α̂  and β̂ . 

        Table (3.10) and Table (3.11) show that the evaluation of m.s.e. α̂  

and β̂  by obtained M.M., M.L.M. and O.S.M. are decreasing as sample 

size increase because the variance and the bias values of these methods 

are decreasing as sample size increase. In small and moderate samples the 

M.M. and O.S.M. better than M.L.M. while in large sample these 

methods are edequate as the variance of these methods because the bias is 

very small value. 

           

3.8  Reliability and Hazard functions of Estimators Using 

Procedure (EV-1) 

          In this section, we shall use the estimators in sub-section (1.6.3) to 

estimate the reliability and hazard functions. The estimators in table (3.1) 

are used to find the estimates of the reliability and the hazard functions by 

four methods given in section (1.6.3), the result is display in tables (3.12) 

and (3.13), the biased of the estimators shown in tables (3.14) and (3.15). 
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Table (3.12) 
Estimation of R(x) 

Sample 
size n 

Estimation of ˆ ( )R x  

True 
Value M.M M.L.M O.S.M L.S.M 

5 0.520 0.519 0.482 0.521 0.520 

6 0.528 0.526 0.489 0.530 0.528 

7 0.535 0.530 0.492 0.531 0.535 

8 0.539 0.539 0.519 0.539 0.539 

9 0.556 0.555 0.540 0.555 0.556 

10 0.562 0.561 0.558 0.561 0.562 

12 0.567 0.567 0.565 0.567 0.567 

14 0.570 0.569 0.568 0.569 0.570 

16 0.574 0.572 0.570 0.572 0.574 

18 0.578 0.578 0.577 0.578 0.578 

20 0.588 0.589 0.586 0.589 0.588 

25 0.600 0.600 0.599 0.600 0.600 

30 0.607 0.607 0.607 0.607 0.607 

40 0.638 0.637 0.639 0.637 0.638 

50 0.645 0.645 0.646 0.645 0.645 

60 0.653 0.653 0.654 0.653 0.653 

70 0.687 0.687 0.688 0.687 0.687 

80 0.718 0.718 0.719 0.718 0.718 

90 0.722 0.722 0.723 0.722 0.722 

100 0.725 0.725 0.726 0.725 0.725 
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Table (3.13) 
Estimation of h(x) 

Sample 
size n 

Estimation of ˆ( )h x  

True 
Value M.M M.L.M O.S.M L.S.M 

5 4.019 13.186 0.617 3.319 4.019 

6 5.891 15.658 1.184 6.006 5.891 

7 8.794 32.051 2.885 8.368 8.794 

8 17.767 42.677 12.885 17.405 17.767 

9 20.097 52.177 26.383 19.649 20.097 

10 39.102 75.982 47.146 29.036 39.102 

12 68.741 144.546 88.761 47.341 68.741 

14 72.315 195.298 112.160 70.796 72.315 

16 668.604 1.542×103 731.208 662.653 668.604 

18 1.358×103 2.855×103 3.328×103 1.816×103 1.358×103 

20 2.765×103 5.491×103 6.7×103 2.369×103 2.765×103 

25 1.794×104 4.158×104 4.57×104 2.314×104 1.794×104 

30 1.913×104 4.309×104 5.09×104 2.627×104 1.913×104 

40 4.625×104 6.655×104 7.469×104 4.926×104 4.625×104 

50 2.803×105 3.792×105 4.461×105 3.013×105 2.803×105 

60 6.502×105 1.100×106 2.47×106 7.143×105 6.502×105 

70 3.519×107 4.623×107 4.98×107 2.173×107 3.519×107 

80 1.064×109 1.698×109 7.695×109 1.083×109 1.064×109 

90 2.117×109 3.28×109 4.277×109 1.23×109 2.117×109 

100 1.704×1010 2.092×1010 3.334×1010 1.338×1010 1.704×1010 
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       We note that the ˆ ( )R x  and ˆ( )h x  have exact values as R(x) and h(x) 

by using  L.S.M. because the estimations of α̂  and β̂  have exact values 
as α and β 

       Table (3.12) shows that the ˆ ( )R x  values in M.M., M.L.M. and 
O.S.M. are very near to the exact values of R(x) for all sample sizes. 
Furthermore, the ˆ ( )R x values are increasing values as sample sizes 
increase. 

       Table (3.13) shows that  ˆ( )h x values in M.M., M.L.M. and O.S.M. 
are converge to infinity as samples sizes increase as shown in fig (1.4.a) 
and fig (1.4.b). Furthermore, we see for large and moderate samples there 
is higher difference in variation of ˆ( )h x given by these methods with 
respect to the true values of h(x). 
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Table (3.14) 

Bias of Estimator ˆ ( )R x . 

Sample 
size n 

Bias of Estimation ˆ ( )R x  

M.M M.L.M O.S.M L.S.M 

5 -1.488×10−3 -3.823×10-3 4.783×10−4 0 

6 -2.406×10−3 -5.747×10-3 1.87×10−3 0 

7 -5.205×10−3 -3.728×10-3 -4.372×10−3 0 

8 -8.355×10−4 -9.576×10-4 -1.749×10−5 0 

9 -1.751×10−3 -4.13×10-3 -1.309×10−3 0 

10 -1.518×10−3 -3.822×10-3 -1.404×10−3 0 

12 5.747×10−4 1.103×10-4 2.019×10−4 0 

14 -2.203×10−4 -5.957×10-4 -2.227×10−4 0 

16 -1.319×10−4 -2.486×10-4 -1.519×10−3 0 

18 -4.4×10−4 -1.19×10-4 -4.322×10−4 0 

20 4.763×10−4 3.645×10-4 4.4×10−4 0 

25 4.941×10−4 3.811×10-4 4.663×10−4 0 

30 4.293×10−4 3.73×10-4 3.779×10−4 0 

40 -1.282×10−3 -3.832×10-3 -1.502×10−3 0 

50 -8.997×10−5 -2.261×10-5 -1.172×10−4 0 

60 1.419×10−4 1.639×10-4 1.427×10−4 0 

70 5.245×10−5 9.465×10-5 9.266×10−6 0 

80 1.997×10−4 8.364×10-4 1.341×10−4 0 

90 -2.051×10−4 -2.139×10−4 -1.737×10−4 0 

100 -2.724×10−4 -7.226×10-4 -2.689×10−4 0 
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Table (3.15) 
Bias of Estimator ˆ( )h x . 

Sample 
size n 

Bias of Estimation ˆ( )h x   

M.M M.L.M O.S.M L.S.M 

5 9.166 -2.636 -0.700 0 

6 9.767 -4.556 0.115 0 

7 23.257 -3.563 -0.426 0 

8 24.910 0.897 -0.362 0 

9 32.080 3.404 -0.448 0 

10 36.881 0.109 -10.065 0 

12 75.805 78.664 -21.400 0 

14 122.982 57.96 -1.519 0 

16 873.493 160.084 -5.951 0 

18 1.496×103 933.225 457.995 0 

20 2.726×103 1.097×103 -395.657 0 

25 2.364×104 0.962×104 520.317 0 

30 2.395×104 3.487×104 7.138×103 0 

40 2.03×104 1.572×104 3.017×103 0 

50 9.885×104 1.444×104 2.094×104 0 

60 4.498×105 3.635×105 6.412×104 0 

70 1.103×107 3.094×107 -1.346×107 0 

80 6.34×108 4.486×108 1.915×107 0 

90 1.163×109 3.438×109 -8.87×108 0 

100 3.875×109 -5.394×109 -3.665×109 0 
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         We note that the biases of the R(x) and h(x) by using  L.S.M. are 
zero values because the ˆ ( )R x and ˆ( )h x  values are the exact values to R(x) 
and h(x).  

         Table (3.14) shows that the biases of ˆ ( )R x  by obtained M.M., 
M.L.M. and O.S.M. are converge to zero value in all sample sizes. 

Table (3.15) shows that the biases of ˆ( )h x  by obtained M.M., 
M.L.M. and O.S.M. are converge to infinity as samples sizes increase. In 
large samples the  difference among biases the three methods. 
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1. For all sample sizes the estimators α̂ and β̂ by obtained O.S.M. is 
superior than M.M. and M.L.M. 

2. The L.S.M. give exact estimate values for α and β  because the 

estimators of α̂ and β̂  are unbiased. 

3. The simulated biases of the estimators α̂  and β̂  given by L.S.M. 
coincide with the theoretical biases. 

4. The variances of the estimators α̂  and β̂ obtained by the three 
methods of estimation which M.M., O.S.M. and L.S.M. are rapidly 
approach to true zero values as sample sizes increase. 

5. The skewness of the estimators α̂  and β̂ and the kurtosis of the 

estimators α̂  and β̂ given by L.S.M. converge to the infinity 

because the zero value of the variances of the estimators α̂ and β̂. 

6. The estimators α̂  and β̂ obtained by M.M. and O.S.M. are skewed 
to the right as a simple size increase. While the estimators α̂  and 
β̂ by M.L.M. skewed to both direction. 

7. The estimators α̂  and β̂ obtained by M.M. and O.S.M. are kurtosis 
to the leptokurtic as a simple size increase. While the estimators α̂  
and β̂ by M.L.M. kurtosis to both direction. 
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8. The evaluation of m.s.e. of α̂  and β̂  given by L.S.M. are zero 
values because the variances and biases are zero values of α̂  and 
β̂ . 

9. The ˆ( )R x  and ˆ( )h x  have exact values as R(x) and h(x) by using  

L.S.M. because the estimations of α̂  and β̂  have exact values as α 
and β 

10. The ˆ( )R x  values in M.M., M.L.M. and O.S.M. are very near to the 
exact values of R(x) for all sample sizes. 

11. The ˆ( )h x  values in M.M., M.L.M. and O.S.M. are converge to 
infinity as sample sizes increase as shown in fig (1.4.a) and fig 
(1.4.b). 

12. The biases of the ˆ ( )R x and ˆ( )h x obtained by M.M., M.L.M. and 
O.S.M. are respectively converge to zero value and infinity as 
sample sizes increase, while the L.S.M. gives exact biases. 

13. The disadvantage of Monte Carlo methods depends on generating 
pseudorandom variates and that might carry dirty data, and that 
might effect the results of M.L.M. of estimation α̂  and β̂ when we 
use Newton-Raphson iteration. 
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1. This work can be used for Generalized Extreme Value distn. of 

three parameters, maximum Extreme Value distn. and other life 

distn. 

2. Another methods of estimation could be used to estimate the distn. 

parameters, R(x) and h(x) such as minimum Chi-square, minimum 

distance, Bayesian method, …..etc. 

3. It can generate r.v's. from Extreme Value distn. by other new 

procedures which can be compared with other used procedures. 

4. The bias of estimation is a r.v. of unknown distribution which can 

be investigated approximately by using well-known statistical tests 

such as Kolmogorov-Smirnov Goodness-of-Fit Test, Serial Test, 

…etc.  
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Program (1) :procedure (EV-1)  

Enter your values of a, b, k and n 

 

  

  

  
  

  

    

  

 

 

a := b := n := k :=

i 0 n 1−..:= n j 0 k 1−..:= k

u

wwj
wki rnd 1( )←

i 0 n 1−..∈for

wk

←

j 0 k 1−..∈for

ww

:= k

x

kwk

kkj a b ln ln uj( )−( )⋅+←

j 0 k 1−..∈for

kk

←

i 0 n 1−..∈for

kwk

:=

u
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Program 2: Estimation by Moments Method  

Enter your values of a, b, k and n 

  

  

  

  

  

  

  

  

  

  

a := b := n := k :=
i 0 n 1−..:= n j 0 k 1−..:= k

u

wwj
wki rnd 1( )←

i 0 n 1−..∈for←

j 0 k 1−..∈for:= k

u0 =u

x

kwk

kkj a b ln ln uj( )−( )⋅+←

j 0 k 1−..∈for←

i 0 n 1−..∈for:=

u
x0 =x

wq

ewj
1
n

0

n 1−

i

xj( )
i∑

=

⋅←

j 0 k 1−..∈for:=

x wq0 =wq

gf

trj
0

n 1−

i

xj( )
i







2∑
=











←

j 0 k 1−..∈for:=

x
gf0 =gf

ggf

tyj

gf j n wq j( )2⋅−





n 1−
←

j 0 k 1−..∈for:=

gf gg0 =gg

gfgf

tty j

ggf j

π
6 n 1−( )⋅

n
⋅←

j 0 k 1−..∈for:=

ggf
gfgf 0 =gfgf

b1
1
k

0

k 1−

i

gfgf i( )∑
=

⋅:= gfgf

b1 =b1

aaaj wq j 0.577 gfgf j⋅+:=aaaj wq j 0.577 gfgf j⋅+:= aaa0 =aaa

a1
1
k

0

k 1−

i

aaai∑
=

⋅:= aaa
a1 =a1

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


  
 

  

  

  

  

  

  

  

  

  

σ11
1

k 1−
0

k 1−

i

aaai a1−( )2∑
=











⋅:= aaa
σ11( ) =σ11

sk11

1
k

0

k 1−

i

aaai( )3∑
=

3 a1( )⋅

0

k 1−

i

aaai( )2∑
=

⋅− 3 a1( )2⋅

0

k 1−

i

aaai∑
=

⋅+ a1( )3−










⋅

σ11

3

2

:=

aaa

sk11( ) =sk11

ku11

1
k

0

k 1−

i

aaai( )4∑
=

4 a1( )⋅

0

k 1−

i

aaai( )3∑
=

⋅− 6 a1( )2
⋅

0

k 1−

i

aaai( )2∑
=

⋅+ 4 a1( )3
⋅

0

k 1−

i

aaai∑
=

⋅− a1( )4
+











⋅

σ112
3−:=

aaa

mse11 σ11 bais11( )2+:= σ11
mse11 =mse11

bais12 b1 b−:= b1
bais12 =bais12

σ12
1

k 1−
0

k 1−

i

gfgf i b1−( )2∑
=











⋅:= gfgf
σ12 =σ12

sk12

1
k

0

k 1−

i

gfgf i( )3∑
=

3 b1( )⋅

0

k 1−

i

gfgf i( )2∑
=

⋅− 3 b1( )2⋅

0

k 1−

i

gfgf i∑
=

⋅+ b1( )3−










⋅

σ12

3

2

:=

gfgf

sk12 =sk12

ku12

1
k

0

k 1−

i

gfgf i( )4∑
=

4 b1( )⋅

0

k 1−

i

gfgf i( )3∑
=

⋅− 6 b1( )2⋅

0

k 1−

i

gfgf i( )2∑
=

⋅+ 4 b1( )3⋅

0

k 1−

i

gfgf i∑
=

⋅− b1( )4+










⋅

σ122
3−:=

gfgf

mse12 σ12 bais12( )2+:= σ12

mse12 =mse12
reaw

wewj e e

a−

0

n 1−

i

xj( )
i∑

=

+

b−
←

j 0 k 1−..∈for:=

x rea
1
k

0

k 1−

i

reawi∑
=

⋅:= reaw

rea =rea

hazw

wewj
1
b

e

a−

0

n 1−

i

xj( )
i∑

=

+

b
⋅←

j 0 k 1−..∈for:=

x

ku11( ) =ku11

ku12 =ku12

haz
1
k

0

k 1−

i

hazwi∑
=

⋅:= hazw
haz =haz

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


  
 

  

  

  
 

 

Program 3: Estimation by Maximum Likelihood 
Method 

Enter your values of a, b, k and n 
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bbj( )3









e

xw( )
i

aaj−

bbj⋅













∑
=

⋅−

0

n 1−

i

xw( )
i

aaj−

bbj( )2









2

e

xw( )
i

aaj−

bbj⋅













∑
=

−←

aaj 1+ aaj

f5j f1j⋅ f4j f2j⋅−

f3j f5j⋅ f4j( )2−











−←

bbj 1+ bbj

f3j f2j⋅ f4j f1j⋅−

f3j f5j⋅ f4j( )2−











−←

f6j

f3j f2j⋅ f4j f1j⋅−

f3j f5j⋅ f4j( )2−











2 f5j f1j⋅ f4j f2j⋅−

f3j f5j⋅ f4j( )2−











2

+←

break f6j 10 6−
<if

j 0 k 1−..∈for←

dqw aaj 1+←

w 0 k 1−..∈for:=

x

f144 =f144
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f14

dqw

f1j
n−

bbj

1
bbj 0

n 1−

i

e

xw( )
i

aaj−

bbj∑
=

⋅+←

f2j
n−

bbj

n aaj⋅

bbj( )2
+

1

bbj( )2 0

n 1−

i

xw( )
i∑

=

⋅−

0

n 1−

i

xw( )
i

aaj−

bbj( )2








e

xw( )
i

aaj−

bbj⋅













∑
=

+←

f3j
1−

bbj( )2 0

n 1−

i

e

xw( )
i

aaj−

bbj∑
=

⋅←

f4j
n

bbj( )2
1

bbj( )2
0

n 1−

i

e

xw( )
i

aaj−

bbj∑
=

⋅−

0

n 1−

i

xw( )
i

aaj−

bbj( )3








e

xw( )
i

aaj−

bbj⋅













∑
=

−←

f5j
n

bbj( )2
2 n⋅ aaj⋅

bbj( )3
−

2

bbj( )3 0

n 1−

i

xw( )
i∑

=

⋅+ 2

0

n 1−

i

xw( )
i

aaj−

bbj( )3








e

xw( )
i

aaj−

bbj⋅













∑
=

⋅−

0

n 1−

i

xw( )
i

aaj−

bbj( )2








2

e

xw( )
i

aaj−

bbj⋅













∑
=

−←

aaj 1+ aaj

f5j f1j⋅ f4j f2j⋅−

f3j f5j⋅ f4j( )2−











−←

bbj 1+ bbj

f3j f2j⋅ f4j f1j⋅−

f3j f5j⋅ f4j( )2−











−←

f6j

f3j f2j⋅ f4j f1j⋅−

f3j f5j⋅ f4j( )2−











2 f5j f1j⋅ f4j f2j⋅−

f3j f5j⋅ f4j( )2−











2

+←

break f6j 10 6−
<if

j 0 k 1−..∈for←

dqw bbj 1+←

w 0 k 1−..∈for:=

x

f14 =f14

bais21 a2 a−:= a2 bais21 =bais21

σ21
1

k 1−
0

k 1−

j

f144j a2−( )2∑
=

⋅:= f144 σ21 =σ21

a2 =a2

a2
1
k

0

k 1−

i

f144i( )∑
=

⋅:= f144 b2
1
k

0

k 1−

i

f14i( )∑
=

⋅:= f14

b2 =b2
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sk21

1
k

0

k 1−

j

f144j( )3∑
=

3 a2⋅

0

k 1−

j

f144j( )2∑
=

⋅− 3 a22⋅

0

k 1−

j

f144j∑
=

⋅+ a23−










⋅

σ21

3

2

:=

f144

sk21( ) =sk21

ku21

1
k

0

k 1−

i

f144i( )4∑
=

4 a2⋅

0

k 1−

i

f144i( )3∑
=

⋅− 6 a22⋅

0

k 1−

i

f144i( )2∑
=

⋅+ 4 a23⋅

0

k 1−

i

f144i∑
=

⋅− a24+










⋅

σ212
3−:=

f144

ku21( ) =ku21
mse21 σ21 bais21( )2+:= σ21

mse21 =mse21
bais22 b2 b−:= b2 bais22 =bais22

σ22
1

k 1−
0

k 1−

i

f14i b2−( )2∑
=

⋅:= f14
σ22( ) =σ22

sk22

1
k

0

k 1−

i

f14i( )3∑
=

3 b2⋅

0

k 1−

i

f14i( )2∑
=

⋅− 3 b22⋅

0

k 1−

i

f14i∑
=

⋅ b23−+










⋅

σ22

3

2

:=

f14

sk22( ) =sk22

ku22

1
k

0

k 1−

i

f14i( )4∑
=

4 b2⋅

0

k 1−

i

f14i( )3∑
=

⋅− 6 b22
⋅

0

k 1−

i

f14i( )2∑
=

⋅+ 4 b23
⋅

0

k 1−

i

f14i∑
=

⋅− b24
+











⋅

σ222
3−:=

f14

mse22 σ22 bais22( )2+:= σ22 ku22( ) =ku22
mse22 =mse22

rea221

wewj e e

a2−

0

n 1−

i

xj( )
i∑

=

+

b2−
←

j 0 k 1−..∈for:=

a2
rea232

1
k

0

k 1−

i

rea221i∑
=

⋅:= rea221

rea232 =rea232

haz221

weewj
1
b2

e

a2−

0

n 1−

i

xj( )
i∑

=

+

b2⋅←

j 0 k 1−..∈for:=

b2

haz223
1
k

0

k 1−

i

haz221i∑
=

⋅:= haz221

haz223 =haz223

ba2 rea232 rea−:= rea232

ba2 =ba2

ha2 haz223 haz−:= haz223
ha2 =ha2
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Program 4: Estimation by Order Statistic Method  

Enter your values of a, b, k and n  

  

  

  

  

  

  

  

  

  

a := b := n := k :=
i 0 n 1−..:= n j 0 k 1−..:= k

u

wwj
wki rnd 1( )←

i 0 n 1−..∈for←

j 0 k 1−..∈for:= k

u0 =u

x

kwk

kkj a b ln ln uj( )−( )⋅+←

j 0 k 1−..∈for←

i 0 n 1−..∈for:=

u
x0 =x

gfh

tty j min xj( )←

j 0 k 1−..∈for:=

x gfh0 =gfh

y

tty j

wq j gfh j−

ln n( )
←

j 0 k 1−..∈for:=

wq y0 =y

b3
1
k

0

k 1−

i

yi∑
=

⋅:= y
b3 =b3

ayj wq j 0.577yj+:=ayj wq j 0.577yj+:= ay0 =ay

a3
1
k

0

k 1−

i

ayi∑
=

⋅:= ay
a3 =a3

bais31 a3 a−:= bais31 =bais31

σ31 =σ31

sk31

1
k

0

k 1−

i

ayi( )3∑
=

3 a3⋅

0

k 1−

i

ayi( )2∑
=

⋅− 3 a32⋅

0

k 1−

i

ayi( )∑
=

⋅ a33−+










⋅

σ31

3

2

:=

ay

sk31 =sk31

ku31

1
k

0

k 1−

i

ayi( )4∑
=

4 a3⋅

0

k 1−

i

ayi( )3∑
=

⋅− 6 a32
⋅

0

k 1−

i

ayi( )2∑
=

⋅+ 4 a33
⋅

0

k 1−

i

ayi∑
=

⋅− a34
+











⋅

σ312
3−:=

ay

ku31 =ku31mse31 σ31 bais31( )2+:= σ31
mse31 =mse31

bais32 b3 b−:= b3 bais32 =bais32

σ31
1

k 1−
0

k 1−

i

ay i a3−( )2∑
=

⋅:= ay
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σ32 =σ32

sk32

1
k

0

k 1−

i

yi( )3∑
=

3 b3⋅

0

k 1−

i

yi( )2∑
=

⋅− 3 b32⋅

0

k 1−

i

yi∑
=

⋅ b33−+










⋅

σ32

3

2

:=

y

sk32 =sk32

ku32

1
k

0

k 1−

i

yi( )4∑
=

4 b3⋅

0

k 1−

i

yi( )3∑
=

⋅− 6 b32
⋅

0

k 1−

i

yi( )2∑
=

⋅+ 4 b33
⋅

0

k 1−

i

yi∑
=

⋅− b34
+











⋅

σ322
3−:=

y

mse32 σ32 bais32( )2+:= σ32 ku32 =ku32
mse32 =mse32

rea31

wewj e e

a3−

0

n 1−

i

xj( )
i∑

=

+

b3−
←

j 0 k 1−..∈for:=

a3

rea310 =rea31

rea3
1
k

0

k 1−

i

rea31i∑
=

⋅:= rea31

rea3 =rea3

haz31

weewj
1
b3

e

a3−

0

n 1−

i

xj( )
i∑

=

+

b3
⋅←

j 0 k 1−..∈for:=

b3

haz310 =haz31

haz3
1
k

0

k 1−

i

haz31i∑
=

⋅:= haz31

haz3 =haz3

ba3 rea3 rea−:= rea3 ba3 =ba3
ha3 haz3 haz−:= haz3 ha3 =ha3

σ32
1

k 1−
0

k 1−

i

yi b3−( )2∑
=

⋅:= y
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Program 5: Estimation by Least Squares Method 
Enter your values of a, b, k and n 

  

  

  

  

  

  

  

  

a := b := n := k :=
i 0 n 1−..:= n j 0 k 1−..:= k

u

wwj
wki rnd 1( )←

i 0 n 1−..∈for←

j 0 k 1−..∈for:= k

u0 =u

x

kwk

kkj a b ln ln uj( )−( )⋅+←

j 0 k 1−..∈for←

i 0 n 1−..∈for:=

u
x0 =x

tt

kwk

kkj ln ln uj( )−( )←

j 0 k 1−..∈for←

i 0 n 1−..∈for:=

u tt0 =tt

twq

ewj
1
n

0

n 1−

i

ttj( )
i∑

=

⋅←

j 0 k 1−..∈for:=

tt twq0 =twq

tq

ewj

twqj
0

n 1−

i

xj( )
i∑

=

⋅








 0

n 1−

i

ttj( )
i

xj( )
i

⋅



∑

=











−

twqj
0

n 1−

i

ttj( )
i∑

=

⋅








 0

n 1−

i

ttj( )
i







2∑
=











−

←

j 0 k 1−..∈for:=

twqtwq

tq0 =tq

aa40 =aa4

b4
1
k

0

k 1−

i

tqi∑
=

⋅:= tq b4 =b4

aa4j wq j twqj tqj⋅−:=aa4j wq j twqj tqj⋅−:=

bais41 a4 a−:= a4

var1

ewj
π

2 b2
⋅

6
1
n

twqj( )2

0

n 1−

i

ttj( )
i

twqj−





2∑
=

+















⋅←

j 0 k 1−..∈for:=

twq
var1 =var1

v1 =v1

σ41
1

k 1−
0

k 1−

j

aa4j a4−( )2∑
=

⋅:= aa4

a4
1
k

0

k 1−

i

aa4i∑
=

⋅:= aa4 a4 =a4

bais41 =bais41

σ41 =σ41

v1
1
k

0

k 1−

i

var1i∑
=

⋅:= var1
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v2 =v2

 

sk41

1
k

0

k 1−

i

aa4i( )3∑
=

3 a4⋅

0

k 1−

i

aa4i( )2∑
=

⋅− 3 a42⋅

0

k 1−

i

aa4i( )∑
=

⋅ a43−+










⋅

σ41

3

2

:=

aa4

var2 =var2
v2

1
k

0

k 1−

i

var2i∑
=

⋅:= var2

sk41 =sk41

var2

ewj
π

2 b2
⋅

6

0

n 1−

i

ttj( )
i

twqj−





2∑
=

←

j 0 k 1−..∈for:=

tttt

ku41 =ku41

mse41 σ41 bais41( )2+:= σ41σ41 mse41 =mse41

bais42 b4 b−:= b4 bais42 =bais42

sk42 =sk42

ku42 =ku42ku42

1
k

0

k 1−

i

tqi( )4∑
=

4 b4⋅

0

k 1−

i

tqi( )3∑
=

⋅− 6 b42
⋅

0

k 1−

i

tqi( )2∑
=

⋅+ 4 b43
⋅

0

k 1−

i

tqi∑
=

⋅− b44
+











⋅

σ422
3−:=

tq

rea4 =rea4

haz41

weewj
1
b4

e

a4−

0

n 1−

i

xj( )
i∑

=

+

b4
⋅←

j 0 k 1−..∈for:=

b4

haz410 =haz41
haz4

1
k

0

k 1−

i

haz41i∑
=

⋅:= haz41

σ42
1

k 1−
0

k 1−

j

tq j b4−( )2∑
=

⋅:= tq

ku41

1
k

0

k 1−

i

aa4i( )4∑
=

4 a4⋅

0

k 1−

i

aa4i( )3∑
=

⋅− 6 a42
⋅

0

k 1−

i

aa4i( )2∑
=

⋅+ 4 a43
⋅

0

k 1−

i

aa4i∑
=

⋅− a44
+











⋅

σ412
3−:=

aa4

σ42 =σ42

sk42

1
k

0

k 1−

i

tqi( )3∑
=

3 b4⋅

0

k 1−

i

tqi( )2∑
=

⋅− 3 b42⋅

0

k 1−

i

tq i∑
=

⋅ b43−+










⋅

σ42

3

2

:=

tq

mse42 σ42 bais42( )2+:= σ42
mse42 =mse42

rea41

wewj e e

a4−

0

n 1−

i

xj( )
i∑

=

+

b4−
←

j 0 k 1−..∈for:=

a4a4

rea410 =rea41
rea4

1
k

0

k 1−

i

rea41i∑
=

⋅:= rea41

haz4 =haz4

ba4 rea4 rea−:= rea4
ha4 haz4 haz−:= haz4

ba4 =ba4
ha4 =ha4
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Program (6) :Chi-Square Goodness–of-Fit Test  

Enter your values of k and n  

  

  

  

  

  
  

  

  

  

n := k :=

i 0 n 1−..:= n j 0 k 1−..:= k

u

wwj
wki rnd 1( )←

i 0 n 1−..∈for←

j 0 k 1−..∈for:= k
u0 =u

x

kwk

kkj ln ln uj( )−( )←

j 0 k 1−..∈for←

i 0 n 1−..∈for:=

u

x0 =x

qq

vt 0←

t 0 4..∈for

tfj
v0 v0 1+← 2 xj( )

i
≥ .6>if

v1 v1 1+← .6 xj( )
i

≥ .5−>if

v2 v2 1+← .5− xj( )
i

≥ 1.5−>if

v3 v3 1+← 1.5− xj( )
i

≥ 2.4−>if

v4 v4 1+← 2.4− xj( )
i

≥ 7−>if

i 0 n 1−..∈for←

j 0 k 1−..∈for:=

x

qq0 =qq

yy 2 25.46:=
yy 4 7.541:=

yy 0 18.391:= yy 1 36.788:= yy 3 11.82:=

rrf

rtj
yy

i 0 9..∈for←

j 0 k 1−..∈for:= k

rrf0 =rrfrrf
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 ddd j
0

4

i

qq j( )
i

rrfj( )
i

−





2

rrfj( )
i

∑
=

:=

qq

ddd =ddd

yu 0:=

fr

yu yu 1+← ddd j 9.49>if

j 0 k 1−..∈for:=

ddd fr =fr

ty
fr
k

:=
frfr

ty =tyty
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The p.d.f. of extreme value distn. is : 

( )

( )
( )1f x; ,

x
x e

eα β

−α  
β−α  −

β=
β

……………………………………..(1) 

The details about the graph of y = f(x;α,β),  

The term  

( )
( )1 0

e
e

−α  
β−α  −

β ≠
β

,  that implies  the x-axis is an horizontal 

asymptote.  
The first derivative of y, gives 

( )
( ) ( )1 1 02

x
x xe

y e e
 
 
 
  

−α  
β−α −α  −   

β β′ = − =
β

  

because   

( )
( )

0

x
x e

e

−α  
β−α  −

β >  and   1 02 >
β

, (β > 0)  implies 

( )
1 0

x
e

−α  
β− =  implies  

( )
1

x
e

−α  
β =  implies  x α=  implies  

y increasing function for x α−∞ < < and decreasing function for 

xα < < ∞ , and having the maximum point at (α , 1 1e −
β

)  

The second derivative of y, gives  
( ) 2( ) ( ) ( )1 1 03

x
x x xe

y e e e

 
  
  −  
   

 

−α  
β−α −α −α  −     

β β β′ = − =
β

 

because   

( )
( )

0

x
x e

e

−α  
β−α  −

β >  and  1 03 >
β

, (β > 0)  implies  
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2( ) ( )

1 0
x x

e e
 
 
 
  

−α −α    
β β− − = implies  

2( ) ( )
1 3 0

x x
e e

 
 
 
  

−α −α    
β β− + =  

implies 3 5ln 2x α β
 
 
  

±= +  implies  

y  concave upward for    3 5ln 2x α β
 
 
  

−−∞ < < +  and 

3 5ln 2 xα β
 
 
  

++ < < ∞  while y concave downward for 

3 5 3 5ln ln2 2xα β α β
  
  
     

− ++ < < +  

Set  3 5ln 2x α β
 
 
  

±= +  in eq. (1), gives  

3 5
21 3 5

2y e
β

 
 
 
 
  

 
 
  

±−
±=  , implies 

y have two points of inflection at ( 3 5ln 2α β
 
 
  

±+ ,
3 5

21 3 5
2 e

β

 
 
 
 
 

 
 
  

±−
± ) 
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To finding the moments and other properties of extreme value distn. , 
then we have :

( ) ln ( )

( )
( )

(0)
( )

(0) 1
2( ) ( ) [ ( )]

2[ ( )]
2 2(0) (0) [ (0)] (0) [ (0)] 2 2 2( ) [( ) ] ( )2 1[ (0)]

2[ ( )] [ ( ) ( ) ( ) ( ) 2
( )

t M t

M t
t

M t

M
E X

M

M t M t M t
t

M t

M M M M M
E X E X Var X

M

M t M t M t M t M t M
t

µ

µ µ

Φ =

′′Φ ( ) =

′′Φ (0) = = =

′′ ′−′′Φ ( ) =

′′ ′ ′′ ′− −′′Φ (0) = = = − = − =

′′′ ′ ′′ ′+ −′″Φ =
2( ) ( )] 2[ ( ) ( ) [ ( )] ] ( ) ( )

4[ ( )]
2 3[ ( )] ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) 2[ ( )]

3[ ( )]
2 3[ ( )] ( ) 3 ( ) ( ) ( ) 2[ ( )] ( ) ( ) ( ) (3 23 2( )[ ( )] [ ( )]

t M t M t M t M t M t M t

M t

M t M t M t M t M t M t M t M t M t

M t

M t M t M t M t M t M t M t M t M t M
M tM t M t

′′ ′′ ′ ′− −

′′′ ′ ′′ ′ ′′ ′− − +
=
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في ھذه الرسالة الى توزیع القیمة المتطرفة ذو المعلمتین  طرقم التت
خواص الریاضیة  .بسبب ظھوره في العدید من مجالات الاحصاء وتطبیقاتھ

 ،قد جمعت ووحدت العزوم والعزوم العلیاك التوزیعلھذا  والاحصائیة
  . مخاطرةدالتي المعولیة والكل من استعراض خواص بالاضافة الى 

من المولدة العینات  كاي لجودة التوفیق لاختبار مربع رختباأ استخدم
ما اذا محاكاة مونت كارلو لمعرفة فیتوزیع القیمة المتطرفة القیاسیة بطریقة 

   .كانت قابلة للاستخدام

استخدمت ھذه العینات في تخمین معالم التوزیع باربع طرق وھي 
للعینات  المعدلة طریقة العزوم، الأعظمطریقة العزوم، طریقة الترجیح 

  وطریقة المربعات الصغرى المرتبة احصائیاً

في تخمین دالتي المعولیة وطبقت عملیاً  نوقشت ھذه الطرق نظریاً 
 التباینوالتحیز مقیاس وضعت في جداول كخواص المخمنات . والمخاطرة

  .الخطأ مربعمعدل قیاس وم فلطحالتمعامل ومعامل الالتواء و

و نفذت باستخدام برنامج  ثلاث ملحقاتفي  برامج الحاسوبتم وضع  
)MathCAD 14.(  
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      جمھوریة العراق
 وزارة التعلیم العالي والبحث العلمي

 جامعة النھرین
 كلیة العلوم

الریاضیات و تطبیقات الحاسوب  قسم   
 

معلمات توزيع لتقدير الطرق دراسة كفاءة 
كارلو  مونت قيمة المتطرفة باستخدام معاينةلا  

 

 رسالة

جامعة النھرین وھي جزء من متطلبات نیل درجة  - كلیة العلوم  إلىمقدمة 

الریاضیات علوم في ماجستیر   

 مِنِِْ قبَِِل

 فادي عادل ابراهيم يونان شعبو
  )٢٠٠٦ین،جامعة النھر ،بكالوریوس علوم(

 بأشراف

زينب عبد النبي سلمان. د.م      أكرم محمد العبود. د.م.أ  

 
 

 جمادي الاخرة  آیار 

١٤٣١                  ٢٠١٠ 
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