[image: image1.png]

[image: image2.png]High

Knowledge

Abstraction

Low Data

Quantity

[image: image3.png]

[image: image4.png]

[image: image5.png]ol e > ol S

[image: image6.png]PEREN-TERT]

[image: image7.png]5 ol 9 0y ol Bl o1
Lo

[image: image8.png]3059 oL RS Bl SLUS 2.5 b
slodyl

بسم الله الرحمن الرحيم

(فَتَعَالَى اللَّهُ الْمَلِكُ الْحَقُّ وَلا تَعْجَلْ بِالْقُرْآنِ مِنْ قَبْلِ أَنْ يُقْضَى إِلَيْكَ وَحْيُهُ وَقُلْ رَبِّ زِدْنِي عِلْماً)
صدق الله العظيم

(طـه:114)

Supervisor Certification

We certify that this thesis was prepared under our supervision at the Department of Computer Science/ college of Science/ Al-Nahrain University, by Abeer Khalid Al-Mashhadany as partial fulfillment of the requirements for the degree of Master of Science in Computer Science.

[image: image9.png]\C DIAGH;
g@ OS (A/
EXPERT: (@)

SYSTOM SHELL

-~ 3 3

[image: image10.png]Upisll Jiss dadia it [

Hilahis
1 dilasall dnsiall
I [K Hagled sl
v oilaial sl
c Hagleal sl
T ol i
]l :

B i

=

In view of the available recommendations, I forward this thesis debate by the examination committee.

[image: image11.jpg]

Certification of the Examination Committee

[image: image12.png]dipal Lae8 Y e s s 24 E:;,

Hilakia
¥ il s
E=ros | = Hagleal il
., il i i
c e il

I —
e s

_IT Josbll 525 AND

|

=

[image: image13.png]Gpt il f i el it [

Hilakia
21 il il
‘Jx_,u\ i | = agled i
cy il il i
i el il

I - >
I s

B i

=

[image: image14.png]Gpt il f i el it [

Hilakie

¥ il dasiall
EPTETS [EPDE| gl sl
® i sl s
coy aglel il

s i el oLl sl s ¢ v E Q8 el
e) L)
v i

\ju\ S st 1) 5] 58U s i sl 3 Jooll o5 5]

|

o |

[image: image15.png]Basds Cila oo 82018 38 E:;

L .HL.U...,.\ SBi Ll dua cll Sl e

I sped Joali
.

ol G

Sl 5
T
’7)-4\ L A.S [t
ey

mwrry el

A sAb

[image: image16.jpg]

[image: image17.png][T 3 90 95 5555 380 326]

We chairman and members of the examination committee, certify that we have studied the thesis entitled (Building Diagnoses Expert System Shell Using An Arabic Interface) presented by the student Abeer Khalid Al-Mashhadany and examined her in its contents and in what is related to it, and we have found it worthy to be accepted for the degree of master of Science in Computer Science with grade Very Good.

[image: image18.png]il g

Cancel

x|
__Cooal|

& 130 Eogg ol g ol g,

إلى الأمّي الذي علم هذه الأمة
مُحَمَّدٍ صلّى الله علَيه وَسَلَّم

إلى من حملتني وهنا على وهن

إلى من زرعتني في الحياة بذرة

وسقتني من دمها قطرة بعد قطرة

كفلاح ينتظر من زرعه ثمرة

أمي أحلى ما في الوجود

إلى من أهداني سنين عمره

وعاند الهم بصبره

أبي أغلى ما في الوجود
Acknowledgment

First of all I would like to express my sincere gratitude and appreciation to my supervisors Dr. Venus W. Samawi and Dr. Taha S. Bashaga for their able guidance, supervision and untiring efforts during the course of this work.

Grateful thanks for the Head of Department of Computer Science Dr. Taha S. Bashaga, and staff.

Grateful thanks to Waleed Khalid for his help during this study. Grateful thanks to Abdulwadod Khalid for his help during the testing phase of this study.

Grateful thanks to the staff of Department of Chemistry Science at Baghdad University for their help during the testing phase of this study.

Finally, my special thanks to my family for their continuous support and encouragement during the period of my studies.

Abbreviations and Acronyms

	Artificial Intelligence
	AI

	Expert System
	ES

	Certainty Factor
	CF

	General Arabic Diagnosing Expert System Shell
	GADESS

	Knowledge Base
	KB

	Measure of Belief
	MB

	Measure of Disbelief
	MD

	Natural Language Processing
	NLP

ABSTRACT

The present work is an attempt to develop an Arabic expert system shell for general diagnosing systems. The system abbreviated as GADESS (General Arabic Diagnosing Expert System Shell), it is constructed of two phases. The first phase responsible for acquiring human expert knowledge in an automatic way provided with menu and windows message (expert interface). The acquired knowledge is analyzed by Arabic morphological system, which analyze the given Arabic phrase and find the required keywords (roots), the system also provided with the required domain dictionary. The second phase is concerned with the design of inference engine together with user interface that uses a backward chaining method (end-user interface).

GADESS considers reasoning under uncertainty using certainty factor method (Stanford Certainty Factor). Also GADESS uses the external database approach to store the human expert knowledge in order to be used by the inference engine. GADESS supports two types of explanations “Why” and “How”. The “Why” concerned the reason that the system asks a specific question, while the “How” concerned conclusion steps.

GADESS was implemented using Visual Prolog version 5.0 with its supplement tools for building the inference engine and for building the interface tools.

Table of Contents

	Acknowledgement
	

	Abstract
	

	Abbreviations
	

	Chapter One: Introduction______________________________
	1

	1.1 Introduction__
	1

	1.2 Literature Survey ______________________________________
	2

	1.3 Aim Of Thesis__
	7

	1.4 Thesis Layout___
	7

	Chapter Two: Theoretical Concepts
	9

	2.1 Introduction__
	9

	2.2 Expert System Characteristics and Benefits_______________________
	10

	2.3 Problems and Limitations_________________________________
	11

	2.4 Expert System Architecture_______________________________
	12

	2.4.1 User Interface____________________________________
	13

	2.4.2 Inference Engine__________________________________
	15

	2.4.2.1 Inference Strategies___________________________
	17

	2.4.3 Explanation Facility________________________________
	18

	2.4.4 Working Memory_________________________________
	20

	2.4.5 Shell__
	20

	2.4.6 Knowledge Base__________________________________
	21

	2.4.6.1 Knowledge Base Representation__________________
	22

	2.4.6.2 Knowledge Acquisition________________________
	25

	2.4.6.3 Levels of Knowledge__________________________
	26

	2.4.6.4 The Knowledge Engineering Process_________________
	27

	2.5 Uncertainty Management in Expert System_______________________
	28

	2.5.1 Methods of Uncertainty Representation_____________________
	30

	2.6 Natural Language Understanding_______________________________
	38

	2.6.1 Arabic Morphological System____________________________
	40

	Chapter Three: GAESS
Design and Construction
	46

	3.1 Introduction__
	46

	3.2 System Architecture____________________________________
	47

	3.3 Automatic Knowledge Acquisition Subsystem____________________
	47

	3.3.1 Create New Knowledge Base Sub-Module__________________
	48

	3.3.2 Tokenizing The Input Phrase Sub-Module___________________
	50

	3.3.3 Human Expert Knowledge and Explanations Sub-Module______
	52

	3.3.4 Add Rule Sub-Module______________________________
	55

	3.3.5 Delete Rule Sub-Module____________________________
	56

	3.3.6 Updating Rule Sub-Module__________________________
	59

	3.3.7 Error Handler Sub-Module___________________________
	61

	3.4 Knowledge Base Subsystem_______________________________
	62

	3.4.1 Knowledge Base Information File______________________
	62

	3.4.2 Knowledge Base Files______________________________
	63

	3.4.3 Dictionary Files___________________________________
	63

	3.4.4 Internal and External Databases___________________________
	64

	3.4.4.1 Internal Databases________________________________
	64

	3.4.4.2 External Databases____________________________
	67

	3.5 Inference Engine and User Interface Subsystem____________________
	69

	3.5.1 User Interface Module___________________________
	70

	3.5.2 Reasoning Under Uncertainty_________________________
	72

	3.5.3 Control Strategy_______________________________
	73

	3.6 Explanation Generator Module_____________________________
	76

	Chapter Four: GAESS User Interface and Implementation
	78

	4.1 Introduction__
	78

	4.2 Construction of A New Knowledge Base_________________________
	79

	4.3 Running The Constructed Expert System_________________________
	84

	4.4 GAESS Implementation__________________________________
	88

	Chapter Five: Discussion, Conclusions and Future Work
	94

	5.1 Discussion___
	94

	5.2 Conclusions__
	95

	5.3 Suggestions for Future Work______________________________
	97

Chapter One

1 Introduction

1.1 Introduction

Expert systems represent a programming approach and methodology that provides expert qualities solutions to problems in a specific domain using Knowledge Base program, it is considered as an important subarea of AI [LUG89].

To develop successful expert systems, it is necessary to adopt a different programming approach. The emphasis for developing expert systems should be places on gathering, representing, and manipulating the knowledge of the expert. To do so, the needs and objectives of the system must be defined at the first step.

All expert systems are composed of an inference engine, a knowledge base, and some type of user interface [WEI88].

The main requirement for developing an expert system (ES) is the choice of the suitable programming language that is used for expert systems implementation, the knowledge representation method, knowledge organization, and the best method of inference engine. It is obvious that the developers of an expert should have high design and programming skills which makes ES development confine on high skill programmers. Therefore, Many attempts have been made to design expert system shell to help experts or developer with restricted programming and designing ability to construct expert systems. Since expert system shells contain facilities that can simplify knowledge acquisition. Non-programmer expert can acquire an understanding of shells without understanding the lengthy learning process that programming other types of software development requires. The developers only needs to do construct the suitable Knowledge base through powerful user interface.

An expert system shell may be either domain specific shell or general purpose shell. Domain specific shell is used for developing specific application domains. General purpose shell allow human experts to build different expert systems using the same tool by each expert system need to be developed [DAR00].

This research is an attempt to develop a general Arabic diagnosing expert system shell. This shell is developed to help human experts in designing their own expert systems without having any considerations for understanding the concepts of the expert systems designing steps and procedures.

1.2 Literature Survey

Several research efforts that are concerned with developing and designing expert systems, several expert system shells have been published. Some of these efforts are summarized below:

1. Edward H. Shortliffe 1972 [McC84], one of the earliest expert systems was MYCIN. It was developed by Edward H. Shortliffe at Stanford University in the 1970s. This rule-based expert system was designed as a medical diagnosis tool. Given information concerning a patient's symptoms and test results, MYCIN attempted to identify the cause of the patient's infection and suggested treatments. MYCIN did better than medical students or practicing doctors, provided its limitations were observed. MYCIN used backward chaining inference strategy. it conducts a question and answer dialog. After asking basic facts about the patient such as name, sex and age, MYCIN asks about suspected bacterial organisms, suspected sites of infection, the presence of specific symptoms (e.g. fever, headache) relevant to diagnosis, the outcome of laboratory tests, and some others. It then recommends a certain course of antibiotics. While the dialog is in English, MYCIN avoids having to understand freely written English by controlling the dialog. It outputs sentences, but the user types only single words or standard phrases. Many of the expert system development techniques currently in use were first developed in the MYCIN project. It uses measures of uncertainty (not probabilities) for its diagnoses and the fact that it is prepared to explain its reasoning to the physician, so he can decide whether to accept it. MYCIN innovated the Stanford certainty factor algebra which is numerical technique used for representing uncertainty in expert systems.

2. Bill VanMelle 1979 [NOR01], the first expert system shell was EMYCIN (Empty MYCIN). It was developed by Bill VanMelle at Stanford University in 1979. This rule-based expert system was resulted by removing the knowledge base from MYCIN. In an effort to reduce the time to develop an expert system the researchers developed EMYCIN by taking all of the rules out of the system and leaving just an empty “shell” in which other developers in other domains could then just “plug-in” their new knowledge base. EMYCIN used domain independent backward chaining interpreter which formed the bases for many early expert system shells.

3. Tarek A. El-Sadany, Mohamed A. Hashish (1989) [SAD89], A rule-based expert system for generating Arabic verbs and derivational nouns from roots using the associated morphological information was developed. The main units of this expert system are:

a. Knowledge base: The knowledge base of this system consists of two parts. One part is the Arabic computational lexicon and the other is the generation module (generation/vowelization module and the morphophonemic and morphographemic module). The knowledge is represented in a rule-based form.

b. Expert shell: The expert shell constitutes the user interface and the inference engine that deals with the knowledge base. The user interface system is designed to communicate in a friendly way with the user, using Arabic natural language. The input sentence given by the user to the system is analyzed using keyword identification. The system has been programmed to recognize specific keywords. In this sense, the grammatical structure is not important because the program does not analyze relationships between words. The stems (words after removing affixes) of the input sentence are the ones to be matched with the specific keywords, i.e., a morphological keyword matching.

c. The inference engine: the inference engine uses the information gained from recognizing the keywords of the input sentence and starts to match this information with the lexicon in the knowledge base. The result of matching is always one out of the following three cases:

· Case 1: A contradiction occurs between the user's requirements and the lexicon. Therefore, a message is sent to the user that the given requirements cannot be achieved.

· Case 2: The morphological information given by the user to generate the word is found to be incomplete. Control is then returned to the user interface system to ask the user about the missing information. The cycle then continues until all the information required to generate a word is completed.

· Case 3: The morphological information given by the user is complete and matches the lexicon. The set of the possible vowelized words having this morphological information is generated using the generation/vowelization and the morphophonemic and morphographemic modules in the knowledge base.
4. Mostafa M. Aref and Husni A. Al-Muhtaseb (1993) [ARE93], KHBEER (خبـيــر) is an Arabic Expert System Shell. KHBEER is a CLIPS-based production system where all the commands and syntax are written in Arabic. CLIPS (C Language Integrated Production System) is a C-based expert system tool developed by the Artificial Intelligence Section at NASA's Johnson Space Center. KHBEER is written in C language to support the goals of high portability, low cost, and ease of integration with external systems. KHBEER uses rules as its primary knowledge representation approach. KHBEER supports a rich pattern-matching language for specifying rule conditions. KHBEER has development interface that supports pull-down menus. Using an Arabic expert system shell will be much easier for some application such as natural language understanding and building Arabic interfaces.
5. Ban Nadeem Thannoun (1994) [THA94], in her work, an expert system application in Iraqi Law (ESAIL) attempts to provide means to manipulate an Iraqi law domain, which is one of the most popular areas in Iraqi’s real life world. The system explains its conclusions by applying the law text associated with. ESAIL is a rule-based system, which stores its knowledge in an external database and uses the B+tree indexing method for retrieval from the database. In its present form, ESAIL deals with a restricted domain in the laws related to the Iraqi personal status law, with its various sections. ESAIL deals with two types of users: the professional lawyers who have unrestricted access to the system during the input of new laws and modifications by an interactive procedures; while ordinary users have access only to the use of the system, without being able to enter or modify laws. ESAIL provides a good user interface which uses Arabic language to interacts with the two types of users.

6. Belal AL-Khateeb (2002) [KHA02], in this work a general expert system shell was designed and implemented. It could be used by a human expert to develop an expert system without any need to understand the concept of building expert systems. Two different shells were designed and implemented depending on two different approaches. Each one of them has its own modules and its own characteristics. The first shell named GADES (General Automatic Diagnosing Expert System). The second shell named GACES (General Automatic Code Expert System). Both shells consists of two phases, the first phase is an automatic, friendly knowledge acquisition interface which is used to acquire data from the expert and convert it to a suitable knowledge base form in order to be used by the second phase. The second phase is designed to implement an inference engine which is used to operate on information that is obtained in the first phase.

GACES was designed using an automatic knowledge acquisition that is used to acquire human knowledge and produces a source code file (in prolog form) including inference engine, databases, user interface, and explanation facility.

1.3 The Aim of Thesis

The aim of this work is to build system that help human experts in different domains to convert their expertise into a knowledge base for an expert system, without having any considerations for understanding the concepts of the expert systems development. The designed shell provides for human expert a powerful Arabic friendly, expert interface together with a powerful help system that allows knowledge adding, deleting, and updating operations.

1.4 Thesis Layout

· Chapter two focuses on the related theoretical concepts, the benefits, limitations of an expert systems, and describe the uncertainty management in the filed of expert systems.

· In chapter three, a detailed description of the structure of GADESS modules and algorithms, design and construction, and the strategy of knowledge representations are presented.

· Chapter four gives a detailed operational description of GADESS with user interface through menu driven system (using Visual Prolog programming language).

· Finally, in chapter five the conclusions of this work are given together with some recommendations for future work in this field.

Chapter Two

2 Theoretical Concepts

2.1 Introduction
Expert system technology is considered as one of the useful and interesting applications of Artificial Intelligence that could be defined as a program that attempts to mimic human expertise by applying inference methods to a specific body of knowledge (domain) [DAR00]. An expert system can offer intelligent advice or takes an intelligent decision about a processing function. Expert system has been successfully applied to diverse range of domains, including interpretation of data, diagnosis of faults or diseases, design, control, and planing [NYL87].

[image: image19.png]ol s

5 eoh o el Sz ol]

[image: image20.png]o et

Cancel

x|
__Cooal|

Ty il 1 35 s Dl

Before exploring expert system, it is important to be clear about the distinction among data, information and knowledge, figure(2.1). Data is a group of alphabetic symbols (e.g. 6), this data item is a symbol which mean nothing on its own. An data item is called information only when some context is added to this item that have any benefit (e.g. 6(C) . An item of knowledge such as (the temperature is 6(C, so it is called the temperature is 6 centigrade) is gained from experience, which expresses relation between premises and rules for manipulating them. Knowledge differ from information because information is passive in the sense that it does not give rise to further generations of information. Knowledge is active in that it can give rise to further generations of information [DAR00].

2.2 Expert System Characteristics and Benefits

Expert system (ES) has become indispensable tool for effective management; this is due to some major benefits such as increased output and productivity (since it can work faster than humans, so fewer workers are needed and this will reduced costs). ES can increase quality by providing advice and reducing the size and rate of errors. Expert systems have the ability to work with incomplete or uncertain information [TUR98]. In an expert system the expertise is permanent (could not be lost). Unlike human experts who may retire, quit or die. In certain cases, ES forces us to integrate the opinions of several experts and thus may increase the quality of the advice, even to point where the ES is more accurate than any single expert. ES provides a rapid feedback on decision consequences, facilitate communication among decision makers in a team and allow rapid response to unforeseen changes in the environment, this improve decision-making processes and decision quality. ES may solve problems whose complexity exceeds human ability [GIA98].

Expert systems have many characteristics, which can be summarized as follows [BRY88, GIA98]:

1. Limitation: Expert system is limited to a specific domain of expertise.
2. Good reliability: The expert system must be reliable and not prone to crashes.
3. High performance: Provides correct solutions most of the time equal or better than accuracy rate expected from human expert(s). also it must present solutions in a reasonable time.
4. Extendable: knowledge can be extended. The knowledge can start off fairly small and can be enlarged in a controlled way. It is possible to add related knowledge bases together.
5. Knowledge and inference mechanism are separated: Expert System shell gives the user the inference engine, but the application still require a knowledge base. An inference engine can be used in association with any knowledge base.
6. Reasoning with uncertainty: It could not be certain that events are absolutely true or events are definitely going to happen, in addition to the uncertainty of an answer to a question. Expert system allows its users to cope with these uncertainties.
7. Understandability: The system should be able to explain the steps of its reasoning while executing.

2.3 Problems and Limitations [TUR98]
Available ES methodologies are not straightforward and effective, even for many applications in the generic categories. Here are some problems that have slowed down the commercial spread of ES:

1. Knowledge is not always available.

2. Knowledge elicitation/acquisition is complex.

3. Extracted knowledge may vary from different experts.

4. Expert system only works well in a limited domain.

5. Good knowledge engineers are rare.

6. Users of expert systems have natural cognitive limits.
7. ES may not always be able to come up with advice.
2.4 Expert System Architecture

There are three major components that appear virtually in every expert system. They are, the knowledge base, inference engine, and user interface, figure (2.2) describes the basic architecture of an expert system [DAR00], while Figure (2.3) illustrates the expert system components. An ES may consists of the following components [TUR98]:

1. Knowledge acquisition Subsystem.

2. Knowledge base.

3. Inference engine.

4. User interface.

5. Notice-board (work place).

6. Explanation subsystem.

7. Knowledge refining system.

[image: image21.png]E -

A=

il

- B bt

-

2.4.1 [image: image22.png]1% jk.,,a.m e

[t]
[ocall ol 2Lt B
ey

Js> (2 = :;r

User Interface

An expert system performs the task of communicating with the user. This component is responsible for receiving messages from the user and sending back messages to the user. An ES user interface is normally of highly interactive nature to reflect the form of dialogue that takes place between a client and a human expert [DAR00]. Expert Systems employ a variety of interface styles, including question and answering, menu-driven, natural language, or graphics interfaces [DAR00, LUG98].
· Question and Answer Interface Style: An ES may interact with the user in a form of dialogue, the system ask and the user answer. Expert Systems usually use questions which its answer either yes or no.

· Menu-Driven Interface Style: A menu interface style allows the user to select interface style of options that are visible on the screen. The user may then select the appropriate choice by highlighting using the keyboard or perhaps, the mouse. A menu interface style is often preferable to direct keyboard entry because it saves time in typing and reduces typing errors, since the user is forced to make selections only from a menu list of choices that are available.

· Natural Language Interface Style: A natural language interface is a communication style in which the user enters commands in a well-defined subset of some natural language such as English.

· Graphical Interface Style: There have been a number of expert systems developed that already have some form of graphical interface. Many of these have been highly application-specific representations which could not be generalized to other domains. Some times graphic user interface can provide a form of human-machine communication that has no direct analog in human-human communication.

2.4.2 Inference Engine

Inference engine is the heart (brain) of an ES, also known as the control structure or rule interpreter (in rule-based ES). This component is essentially a computer program that provides a methodology for reasoning about information in the knowledge base and on the notice-board, and for formulation conclusions [WEI88].

There are three major elements of an inference engine [TUR98]:

· An interpreter (rule interpreter in most systems), which executes the chosen agenda (potential actions awaiting execution) items by applying the corresponding knowledge base rules.

· A scheduler, which maintains control over the agenda. It estimates the effects of applying inference rules in light of item priorities or other criteria on the agenda.

· A consistency enforcer, which attempts to maintain a consistent representation of the emerging solution.

An important aspect of the inference engine is the kind of guidance that is available to direct the search for an answer. Such control mechanisms are referred to as search strategies that are responsible for determining the order in which rules are selected. Among the most widely used control strategies are forward and backward chaining, these are described as follows [DAR00, TUR98]:

· Backward chaining: is a goal-driven approach, which starts from a conclusion and tries to prove the conditions (premises) leading to that conclusion. This is a very common approach in diagnostic systems.

Example (2.1)

Rules: R1:If A and C, Then E.

R2:If D and C, Then F.

R3:If B and E, Then F.

R4:If B, Then C.

R5:If F, Then G.

Given: A, B are true (Stored in the database).

Goal: G.

Backward chaining start with the goal G, tries to satisfy its premises.

Step1: Test the truth of G, test its premise (F).

Step2: R2 is invoked, since D is false then R2 is rejected.

Step3: R3 is invoked, B is true, test E.

Step4: R1 is invoked, A is true, C is tested.

Step5: R4 is invoked. B is true, therefore C becomes true.

Step6: If C is true then E is True, which validates F, which validates G (the goal).

· Forward Chaining: is a data-driven approach, which starts with known facts works toward a conclusion. Consider example (2.1). Try to find G using forward chaining.

Step1: Try to satisfy E. A is true, try to satisfy C.

Step2: R4 is invoked, B is true, C is verified. C is added to the stored facts.

Step3: R1 is satisfied and E is established to be true. E is added to the stored facts then F is satisfied and added to the stored facts, then G is established to be true.

Combinations of these two control strategies can be used to add flexibility to an inference engine.

2.4.2.1 Inference Strategies [DAR00]
Three inference strategies commonly used by experts are:

a. Deductive Inference: The attraction of deductive inference is that it is a form reasoning that is mathematically exact. This means that if the premises are true, then the conclusion is guaranteed also to be true. This is reasoning from general to specific. For example:

Rachel is a programmer; (1)

All programmers are happy, (2)

Therefore Rachel is happy. (3)

 The conclusion (3) in this example can be deduced from premises (1) and (2).

b. Inductive Inference: This is reasoning from specific to general;(e.g.),

Minsky is a cat; (4)

Therefore Minsky has four legs. (5)

For conclusion (5) to be true the assumption that a cat has four legs would have to be induced from human common sense knowledge of the world and added to the given premise (4). For this reason such inferences lack the mathematical exactness of deduction, meaning that there is always the possibility that the conclusions are false. Inductive inference is common in expert systems because it does match human inference in the real world.

c. Abductive Inference: explains effects in terms of their causes. This contrasts with deductive inference, which works from causes to effects. Abductive reasoning also lacks the mathematical exactness of deductive reasoning. For example:

The grass in the garden is wet; (6)

It has been raining. (7)

This rule would be generally accepted even though there is no guarantee of its correctness. It is possible that the grass has become wet because it has been sprayed with water, or perhaps for some other reason.

2.4.3 Explanation Facility

One of the differences between expert systems and traditional programs is the level of explanation. Just as human experts explain their recommendations or decisions, expert systems need to justify and explain their actions. The part of expert system that provides explanations is called an explanation facility [PAR88].

Because an ES is designed to give advice to non-experts, a help facility is built-in. The explanation facility not only satisfies a social need by helping an end-user feel more assured about the actions of the ES (explain reasoning), but also serves a technical purpose by helping the developer follow through the operation of the ES [BRY88].

The ability to explain may amount to nothing more than trace of conclusions obtained during a consultation with the system. Explanations of expert system behavior are important to:

· Users: because they need to satisfy themselves the program’s conclusions are correct.

· Knowledge engineers: because they need some way to know the knowledge is being applied correctly.

· Domain experts: because they need to see a trace of the way their knowledge is being applied in order to judge whether knowledge elicitation was successful.

· Programmers: because they need a window into the program’s behavior.

· Managers: who are responsible for the system need to satisfy themselves that the system’s mode of reasoning is correct.

Two basic types of explanations [DAR00]:

· The Why Explanation: A typical “why” questions posed by the user to the computer after the computer asks the user to provide some information. With “why” question the user asks the system why the system is asking for an answer to a particular question. “Why” question is answered by display the explanation of the question that is putted by the human expert.

· The How Explanations: The typical “how” question is posed by users when they would like to know how a certain conclusion or recommendation was reached. “how” explanation is answered by justify the intermediate results and conclusions , step by step, until reaching the certain conclusion (advice).

2.4.4 Working Memory
Working memory is a dynamic database. It is a global database, which holds the input data (facts that are acquired by the expert system during its operation with dynamic data) [SLA87].

The notice-board is an area of working memory set aside for the description of a current problem, as specified by the input data; it is also used for recording intermediate results (intermediate hypotheses and decisions) [TUR98].

[image: image23.png]dipal Lae8 Y e s s 24 E:;,

Hilakie

¥ il s
f 5.0 2o [i535 6 of51 5.0 =] dngled il

o9 il sl i

i el sl

gl gl sl > ~| ol ks "
] < sl i

LT,J\ o 8] o o ol s ll b £l 5]

o |

Notice-board may be used by expert systems in which the knowledge is held by several experts. In this case each expert has a particular area of expertise which, when brought together, will give a useful expert system application. Figure (2.4) illustrates notice-board structure in case of several experts [BRY88].

2.4.5 Shell

Shells are expert systems that have been emptied of their rules (knowledge base). Shells provide an easy starting point for building an expert system because of their ease of use. Developers can concentrate on entering the knowledge base without having to build every thing, including the inference engine and user interface from scratch. Even non-programming experts can familiarize themselves with shells fairly rapidly [DAR00].

Shells provide the following benefits [TUR98]:

· Once a shell is constructed it can be used for every application.

· Expert systems can be built much faster.

· The programming skill required is much lower.

· All factors together contribute to a cost reduction.

There are two types of shells:

· General purpose shells.

· Domain specific shells.

Domain-specific shells enhance the more general shells by providing specific development support and user interface. Domain-specific shells tend to be more expensive that general purpose shells [DAR00].

Shells do have limitations and disadvantages, because they are inflexible, it may be difficult to fit them to nonstandard problems and tasks. It is difficult to modify or change the way they work with regard to both representation of knowledge and the inference mechanism [TUR98].

2.4.6 Knowledge Base

The knowledge base contains the knowledge necessary for understanding, formulating and solving problems. It comprises the knowledge that is specific to the domain of application including things such as simple facts about the domain, rules or constraints that describe relations or phenomena in the domain, and possibly also methods, heuristics and ideas for solving problems in this domain [BRA01].

2.4.6.1 Knowledge Base Representation

A variety of knowledge representation schemes have been developed over the years. They share two common characteristics. First, they can be programmed with existing computer languages and stored in memory. Second, they are designed so that the facts and other knowledge contained within them can be manipulated by an inference system that uses search and pattern-matching techniques on the knowledge base to answer questions, draw conclusions, or otherwise perform an intelligent function. Knowledge representation schemes employ: logic, rules, frames and semantic networks. The two major of those are rules and frames [WEI88, TUR98].

A. Logic

The predicate logic is a useful form of knowledge representation. Such predicates can be used to represent facts about the world. Predicate logic break a proposition down into two components. These are known as arguments and predicates. It also allows the use of variables to represent arguments. Predicate calculus is the basis for the AI language called PROLOG (Programming in Logic) [TUR98].

B. Semantic Networks

Semantic networks are basically graphic depictions of knowledge composed of nodes and links (arcs) that show hierarchical relationships between objects [TUR98]. In this scheme a node symbolizes an object, a concept, or a situation. An arc represents a relationship between two objects. There are different relationships represented by the arcs such as: Is-a, Has-a, Is [WEI88].

One of the most interesting and useful fact about a semantic network is that it can show inheritance. Because the semantic network is basically a hierarchy, the various characteristics of some nodes actually inherit the characteristics of others. Semantic nets are used basically as a visual representation of relationships, and they can be combined with the representation methods [TUR98].

C. Frames

A frame is a structured piece of information about properties, characteristics or features of an object, act or event. Frames provide a concise structural representation of knowledge in a natural manner. A frame encompasses complex objects, entire situations or a management problem as a single entity. The knowledge is partitioned in a frame into slots. A slot can describe declarative knowledge (such as the color of a car) or procedural knowledge (such as “activate a certain rule if a value exceeds a given level”). Each slot contains one or more facets (sub-slots), which describe some knowledge or procedures about the attribute in the slot. Since slots can reference other frames, often referred to as child frames, they are quite flexible therefore one frame can reference another frame which in turn can reference other frames. The hierarchical arrangement of frames permits inheritance of characteristics as in the object oriented approach. Each frame usually inherits the characteristics of all related frames of higher levels. Inheritances the mechanism for passing knowledge, which is provided in the value of the slots, from frame [TUR98].

D. Rules

Rules sometimes called productions, are used by the majority of expert systems to represent knowledge [DAR00]. Rule-based formalisms are currently the most popular approach to knowledge representation, and the term “expert system” is sometimes formally defined as using rule-based techniques. The basic idea of this representation is that knowledge is presented as production rules in the form of condition-action pairs:

“IF condition (or premise or antecedent) occurs,

THEN action (result, or conclusion, or consequence) will (or should) occur” [SLA87]

IF_THEN rules usually turn out to be a natural form of expressing knowledge, and have the following additional desirable features [BRA01]:

· Modularity: Each rule defines a small, relatively independent piece of knowledge.

· Incrementability: New rules can be added to the knowledge base relatively independently of other rules.

· Modifiability (as a consequence of modularity): Old rules can be changed relatively independent of other rules.

Rules may involve several conditions and/or several actions, which can be combined with the use of AND, called conjunction, and OR called disjunction.

Uncertainty easily combined with rules. A number of techniques have been developed that allow knowledge about uncertainty to be contained within rules certainty factor approach may used, in which, rules in the knowledge base have “certainty factors” attached to them. A certainty factor is a number in the range –1.0 to 1.0 expressing the strength of belief that the conclusion of the rule is true, assuming all its premises are true. During a consultation these values combine to yield an overall confidence estimate attached to the system’s advice [DAR00].
2.4.6.2 Knowledge Acquisition [TUR98, DAR00]
Knowledge acquisition is the process of extracting, structuring, and organizing knowledge from one or more sources. It represent the first step in building expert systems. This process has been identified by many researchers and practitioners as a bottleneck that currently constrains the development of expert systems and other AI systems [TUR98]. The term knowledge elicitation may be used instead of knowledge acquisition. There is a distinction between these terms. Knowledge elicitation is the process whereby knowledge about the domain is obtained from the expert. On the other hand, knowledge acquisition, is the whole process of converting the extracted knowledge into a form suitable for use in an ES [DAR00].

Potential sources of knowledge include human experts, textbooks, databases, special research reports, and pictures. Two major sources exist for the knowledge used in expert systems: experts (which could include the expert system developer) and documents or text. Both sources have advantages and disadvantages, although human experts are almost always preferred.

Experts tend to be more current and have a broader range of knowledge than documents. They also can respond to questions and provide different sets of examples. However, their time is expensive and unless they support the project, they can work against the goals of the expert systems development. In some cases, expertise may have been lost, and the developer must rely on documents.

Documents are generally cheaper to acquire and use. However, they typically have limited amounts of information and what they have is not always completely relevant [TUR98].

With the increased use of the internet it is possible to reach viable amounts of knowledge. The acquisition, accessibility, and management of knowledge via the internet are becoming critical issues for the constructions, particularly because they allow for the acquisition and dissemination of large quantities of knowledge in a short time across organizational and physical boundaries.

2.4.6.3 Levels of Knowledge [TUR98, DAR00]

Knowledge can be represented at different levels. The two extremes are:

· Shallow Knowledge (surface): Is representation of only surface-level information that can be used to deal with very specific situations. Such knowledge is said to be shallow in that its representation of the problem domain is superficial and requires little understanding of the underlying mechanisms. For example:

IF gasoline tank is empty, THEN car will not start.

The shallow version represents basically the input-output relationship of a system. As such, it can be ideally represented in terms of IF-THEN rules.

Shallow representation is limited, a set of rules by itself may have little meaning to the user. It may have little to do with the manner in which experts view the domain and solve problems. This may limit the ability of the system to provide appropriate explanations to the user. Shallow knowledge may also be insufficient in describing complex situations. Therefore, a deeper representation is often required.

· Deep Knowledge: Is the internal and causal structure of a system and considers the interactions among the system’s components. It is possible to implement a computerized representation that is deeper than shallow knowledge.

Let us return to the gasoline example. If we want to investigate a deeper level, the relationship between lack gasoline and a car that won’t start, we need to know the various components of the gas system (for example: pipes, pump, filters, and start). Special knowledge representation methods are used to represent this system and knowledge of its operation, such as semantic networks and frames. They allow the implementation of deeper-level reasoning. So one of the immediate advantages of applying a deep model of the domain is that it provides better quality explanations. Deep knowledge is mach more difficult to collect and validate.

2.4.6.4 The Knowledge Engineering Process [TUR98, DAR00]

The knowledge engineering process includes five major activities:

· Knowledge Acquisition: The first task of the knowledge engineer is to gain some familiarity with the application domain by understanding basic terminology and concepts. Manual methods of knowledge acquisition often require interviews and lengthy verbal analysis. This is time consuming and expensive. Automated knowledge acquisition tools can decrease the costs of acquiring knowledge.

· Knowledge Validation: the knowledge is validated and verified until its quality is acceptable. Test case results are usually shown to expert verify the accuracy of the ES.

· Knowledge Representation: the acquired knowledge is organized in an activity called knowledge representation. This activity involves reparation of a knowledge map and encoding the knowledge in the knowledge base.

· Inferencing: this activity involves the design of software to enable the computer to make inferences based on the knowledge and the specifics of a problem. Then the system can provide advice to a non-expert user.

· Explanation and Justification: This involves the design and programming of an explanation capability; for example, programming the ability to answer questions like why a specific piece of information is needed by the computer or how a certain conclusion was derived by the computer.

2.5 Uncertainty Management in Expert System

Upon consulting a common dictionary about the term uncertain, it was found that the word has a broad semantic content. For example, Webster’s New Twentieth Century Dictionary gives the following clusters of meanings for “uncertainty” term [KLI88]:

1. Not certainly known; questionable; problematical.

2. Vague; not definite or determined.

3. Doubtful; not having certain knowledge; not sure.

4. Ambiguous.

Uncertainty in AI can be treated as a three-step process, as shown in figure (2.5) . In Step 1 an expert provides inexact knowledge, in terms of rules with likelihood values. These can be numeric (such as a probability value), graphic, or symbolic.

In Step 2, the inexact knowledge of the basic set of events can be directly used to draw inferences in simple cases (Step 3). In many cases the various events are interrelated. There, it is necessary to combine the information provided in Step 1 into a global value for the system. Several methods can be used for such integration. The major methods are bayesian probabilities, theory of evidence, certainty factors, and fuzzy sets.

In Step 3, the purpose of the knowledge-based system is to draw inferences. These are derived from the inexact knowledge of Step 1 and 2, and usually they are implemented with the inference engine. Working with the inference engine, experts can adjust the input they give in Step 1 after viewing the results in step 2 and 3 [TUR98].

There are two reasons why it might be necessary to use reasoning with uncertainty. These are [DAR00]:

· The user may be uncertain of an answer to a question.

· The conclusion of a rule may not always be guaranteed to be true, even if the premises of the rule are true.

[image: image24.png]

One source of uncertainty occurs when a user cannot provide a definite answer when prompted for a response. Another source of uncertainty stems from imprecise knowledge. Another source of uncertainty is Incomplete information. The information is simply not available or is too expensive or time-consuming to obtain.

2.5.1 Methods of Uncertainty Representation

There are three basic methods of representing uncertainty are [TUR98]:

· Numeric. The most common method of representing uncertainty is numeric. Using a scale with two extreme numbers. For example, 0 may be used to represent complete uncertainty while 1 or 100 represent complete certainty.

· Graphic and Influence Diagrams. Although many experts can describe uncertainty in terms of numbers, some have difficulties in doing so. By using horizontal bars, for example, it is possible to help experts express their confidence in certain events. Even through graphic presentation is preferred by some experts, the graphs are not as accurate as numbers. Another problem is that most experts do not have experience in marking graphic scales. Many experts, especially managers, prefer ranking over either graphic or numeric methods.

· Symbolic. There are several ways to represent uncertainty by using symbols. Many experts use a Likert scale approach to express their opinion. For example, an expert may be asked to assess the likelihood of inflation on a five-point scale: very likely, likely, nearly, unlikely, and very unlikely. Ranking is a very popular approach among experts which can be either ordinal or cardinal.

Different ways employed to deal with uncertainty, the most popular approaches are: The Probability Theory, Bayesian Reasoning, the Dempster-Shafer Theory, the Stanford Certainty Factor Algebra, and Fuzzy Set Theory.

A. The Probability Theory [TUR98, LUG02]
The degree of confidence in a premise or a conclusion can be expressed as a probability. Probability is the chance that a particular event will occur (or not occur). It is a ratio computed as follows:

[image: image25.png]

no. of outcomes favoring the occurrence of X

[image: image26.png]

P(X) =

Total no. of out comes

The probability of X occurring, stated as P(X), is the ratio of the number of times X occurs to the total number of events that take place.

Multiple probability values occur in many systems. For example, a rule may have three parts to its antecedent, each with a probability value. The overall probability of the rule can be computed as the product of the individual probabilities if the parts of the antecedent are independent of one another. Sometimes one rule references another, the individual rule probabilities can propagate from one to another, the total probability of a sequence of rules must be evaluated to determine whether a specific rule fires. The combined probability may be used to predict the best path through the search tree. If there are dependencies in the system, the Bayes extension theorem can be used.

B. Bayesian Reasoning [TUR98, LUG02]
Bayesian Reasoning is based in formal probability theory and is used extensively in several current areas of research, including pattern recognition and classification.

Bayes provides a way of computing the probability of a hypothesis Hi, following from a particular piece of evidence, given only the probabilities with which the evidence follows from actual causes (hypotheses).

[image: image27.png]

Where, P(Hi|E) is the probability that Hi is true given evidence E. P(Hi) is the probability that Hi is true overall. P(E|Hi) is the probability of observing evidence E when Hi is true. N is the number of possible hypotheses.

There are two major requirements for the use of Baye’s theorem :

· First, all the probabilities on the relationships of the evidence with the various hypotheses must be known, as well as the probabilistic relationships among the pieces of evidence.

· Second, and sometimes more difficult to establish, is that all relationships between evidence and hypotheses, or P(E|Hk), must be independent. In general, and specially in areas such as medicine, this assumption of independence cannot be justified.

A final problem, which makes keeping the statistics of complex Bayesian system intractable, is the need to rebuild probability tables when new relationships between hypotheses and evidence are discovered.

Where these assumptions are met, Bayesian approaches offer the benefit of a mathematically founded handling of uncertainty. Most ES domains do not meet these requirements and must rely on heuristic approaches, it is known that the human expert does not use full Bayesian techniques for successful problem solving.

C. The Dempster-Shafer Theory [LUG02, AHM03]
The Dempster-Shafer theory of evidence is a well-known procedure for reasoning with uncertainty in artificial intelligence. It can be considered an extension of the Bayesian approach. The Dempster-Shafer theory of evidence is a well-known procedure for distinguishes between uncertainty and ignorance by creating belief functions. Belief functions allow us to use our knowledge to bound the assignment of probabilities when these may be unavailable.

The Dempster-Shafer (DS) theory of evidence addresses some of the weaknesses of the probabilistic approach including the representation of ignorance, the unnecessary requirement that the sum of beliefs in an event and its negation be 1 etc. However, it does not specify how the probabilities are to be computed or how the results are to be interpreted. Furthermore, in certain instances, obviously incorrect conclusions can be reached.

[image: image28.png]

Dempster-Shafer theory of evidence, considers the sets of propositions and assigns to each of them an interval [belief, plausibility] within which the degree of belief for each proposition must lie. This belief measure, denoted bl, ranges from zero, indicating no evidence of support for a set of propositions, to one denoting certainty. The plausibility of proposition P, Pl(P) is defined as:

 P1 (P) =1- bl (not(P))

It is based on two ideas: First, the idea of obtaining degrees of belief for one question from subjective probabilities for related questions. And second, the use of a rule for combining these degrees of belief when they are based on independent items of evidence.

Using the Dempster-shafer approach in a specific situation involves solving two related problems:

· First, the uncertainties of the situation are sorted into a priori independent pieces of evidence.

· Second, Dempster’s rule is carried out.

[image: image29.png]

Dempster’s rule:

The belief in an hypothesis Z, or M3(Z), is the sum of the products of the hypothetical situations, M1(X) and M2(Y), whose co-occurrence supports Z, that is X∩Y=Z .

D. The Stanford Certainty Factor Algebra [TUR98, LUG02]
Several early expert system projects attempted to adapt Bayesian techniques to their problem-solving needs. The independence assumptions, continuous updates of statistical inference gradually stimulated the search for other measures of “confidence. The most important alternative approach was used at Stanford in developing the MYCIN program.

Stanford certainty theory is based on number of observations:

· First, an expert might have confidence that some relationship is true and have no feeling of it being not true.

· Another assumption, that is the knowledge content of the rules is much more important than the algebra of confidences that holds the system together.

The Stanford certainty theory split “confidence for“ from “confidence against” relationship:

Call MB(H|E) the measure of belief of a hypothesis H given evidence E.

Call MD(H|E) the measure of disbelief of a hypothesis H given evidence E.

Now either

1 > MB(H|E) > 0, while MD(H|E)=0,

or 1 > MD(H|E) > 0, while MD(H|E)=0.

The link between measures of belief and disbelief has been established as:

[image: image30.png]

CF(H|E) = MB(H|E) - MD(H|E).

As the certainty factor (CF) approaches 1, the evidence is stronger for a hypothesis; as (CF) approaches –1, the confidence against the hypothesis gets stronger; and a (CF) around 0 indicates that either little evidence exists for or against the hypothesis or that the evidence for and against the hypothesis is balanced. The premises for each rule are formed of the AND and OR of a number of facts, that are associated with each condition of the premise are combined to produce a certainty measure for the overall premise in the following manner.

 For P1 and P2 premises of the rule,

[image: image31.png]JI3ell o2 [

g 8 Py g9 B> s o oy S 8 <2l s B> s 01 43§
D) it SRl ST
0D Gl 8 Feon 2as JA> Gl o 35 CCopal ol Ind US>

T o) <Coppll o 99> Gl

CF(P1 AND P2)= Min (CF(P1),CF(P2), and

[image: image32.png]Lal(13-l

ey xl

() it s o oo o

CF(P1 OR P2)= Max (CF(P1),CF(P2)).

The combined CF of the premises, using the above combining rules, is then multiplied by the CF of the rule to get the CF for the conclusions of the rule.

How to combine multiple certainty factors when two or more rules support the same result R. Suppose CF R1 is the present certainty factor associated with result R, and a previously unused rule produces result R (again) with CF R2; then the new CF of R is calculated by:

[image: image33.png]

CF(R1)+CF(R2)-(CF(R1)*CF(R2)),

where CF(R1) and CF(R2) are positive.

CF(R1)+CF(R2)+(CF(R1)*CF(R2)),

where CF (R1) and CF(R2) are negative.

Otherwise

CF(R1)+CF(R2) /(1- Min(|CF(R1)|, |CF(R2)|)),

Where |X| is the absolute value of X.

Besides being easy to compute, these combination equations have other desirable properties. First, the certainty factors that result from applying this rule are always between 1 and –1. Second, the result of combining contradictory certainty factors that they cancel each other, as is desired. Final, the combined CF measure is a monotonically increasing (decreasing) function in the manner one would expect for combining evidence.

E. Reasoning with Fuzzy Sets [KLI97, LUG02]
Fuzzy sets theory is an extension of classic set theory. The basic idea behind it is the realization that there exist imprecise boundaries between classes in real situations, allowing an object to partially belong to a certain class.

From a mathematical point of view a fuzzy set is a generalization of the notion of a classical (exact) set. Formally, given a set X , a fuzzy set F is defined by the pairs:

F = {x, μF(x) } μF(x) : X([0,1]
where x (X and membership function μF(x) expresses the degree to which element x belongs to the class defined by the concept F . In this way membership can take values from the interval [0,1] , in contrast with the two permissible values {0,1} that are accepted in classical set theory. A fuzzy subset of S is defined by a membership function mF(S) that measures the “degree” to which S belongs to F.

The sense of uncertainty represented by fuzziness, however, is not the uncertainty of expectation: It is the uncertainty resulting from the imprecision of meaning of a concept expressed by a linguistic term in natural language , such as tall, warm, very warm, rapidly increasing, and the like.

The fuzzy set theory includes rules for combining possibility measures for expressions containing fuzzy variables. The laws for the OR, AND, and NOT of these expressions are similar to those just presented for the Stanford certainty factor.

A is a fuzzy set, A defined on a universal set X, its complement (negation) Ā is another fuzzy set on X that inverts, the degrees of membership associated with A. Ā(x) express the degree to which x does not belong to A. the most natural way to express this idea formally is to use the formula:

 Ā(x) = 1 - A(X), for all x ((X.

2.6 Natural Language Understanding [LUG98, GAZ89]
Natural language is the primary vehicle by which people communicate and record Information. Natural language processing (NLP) is the field that is concerned with theories and techniques that address the problems of natural language communication with computers.

Communicating with natural language, whether as text or as speech, depends heavily on the knowledge and expectations of the domain of discourse. Understanding requires inferences about the speaker’s goals and assumptions, and about the context of the interaction. Implementing a natural language understanding program requires the representation of knowledge and expectations of the domain and reason effectively about them.

Because of the knowledge required to understand unconstrained natural language, much progress in this area has come by restricting our focus to micro-world, limited applications that require little domain knowledge. One of the earliest programs to take this approach was SHRDLU which was built by Terry Winograd in 1971. SHRDLU could converse about a blocks world consisting of differently shaped and colored blocks and a hand for moving them.

Natural language understanding depends on the description of certain aspects of NL: syntax, morphology, and semantics. The different forms of knowledge have traditionally been defined as follows:

a. Phonetic and phonological knowledge: Concern in how words are realized as sound. This type of knowledge is an important concern for automatic speech-understanding systems.

b. Morphological knowledge: Concern in how words are constructed out of more basic meaning units called morphemes. For example the word “friendly” may be constructed from the root “friend” and the suffix “ly”.

c. Syntactic knowledge: Concern in how the words can be put together to form sentences that look correct in the language. This form of knowledge identifies how one word relates to another (for example, whether one word modifies another, or is unrelated).

d. Semantic knowledge: Concern in the meaning of words and how these meaning combine in sentences, to form sentences that has meanings.

e. Pragmatic knowledge: Concern in how sentences are used in different contexts and how context affects the interpretation of the sentence.

f. World knowledge: Includes the general knowledge about the structure of the world that language users must have in order to maintain conversations. And must include what each language user must know about the other user’s beliefs and goals.

Natural language understanding is very wide field, that could not be implemented completely in one program. The proposed system implements a part of this wide field, constrained on the morphological knowledge.

2.6.1 Arabic Morphological System [SAD89, NAH89]

In linguistics morphology is the study of the structure of words, in other words, morphology is simply a term for that branch of linguistics concerned with the words form taken in their different uses and constructions.

Arabic, being a member of the semitics languages family, is highly inflected and derived and therefore needs special techniques and algorithms for solving its morphological problems. The main objectives of Arabic morphological system can be summarized as follows:

1. Convert an Arabic phrase into a list of keywords (roots).
2. Checking that the input represents a useful knowledge.

3. Check if the input phrase represents a duplicated knowledge and refine the knowledge.

the Arabic morphological system must contain the following three separate modules: first, the grammar module, second the computational lexicon module, and finally the analysis module.

· The grammar module contains all the classical Arabic morphological rules. There are many morphological rules such as: the rules that used in the derivation of the verbs in different tenses (اشتقاق الأفعال بصيغ مختلفة), and rules that used in the derivation of the nouns from verbs (اشتقاق الأسماء من الأفعال). Arabic verbs and nouns are generated from roots according to the following structure:

Some examples of prefixes(اللواصق) and suffixes(اللواحق) are illustrated in figure(2.6). The stem is formed by substituting the characters of the root into certain forms, called measures (الأوزان). The measure is a general mould composed of an ordered sequence of characters. Some of these characters are “constants” and some are “variables”. The “variables” characters are to be substituted with the characters of an Arabic root to generate a word called the “stem”. For example the stem “تكاتب” is formed by substituting the characters of the root “كتب” into the form “تفاعل”, while the stem “مكتوب” is formed by substituting the same root “كتب” into the form “مفعول”.

· Computational lexicon module(dictionary) contains all Arabic roots with their associated features. The root is an ordered sequence of valid three or four characters from the alphabet, i.e., the root can be either triliteral or tetraliteral as shown in figure (2.7). A dictionary of a specific domain contains the following:

1. Roots that used to derive verbs and derivational nouns.

2. Non-derivational nouns.

3. Noise words which could be canceled.

4. Synonym words which have the same mean.

· The analysis module is an inference engine that uses the grammar model module and the computational lexicon for word analysis.

When an Arabic phrase (premises, or conclusions) is obtained from human expert, the proposed system try to convert it into a list of keywords (in chapter3 this task will be described in detail with its algorithms), to perform this task the steps to be taken are summarized by the example given in figure (2.8):

1. Tokenizing: This step convert the input phrase (string) into a list of words (list of strings).

2. Removing noise: This step checks the list of words and removes the unnecessary words (which belongs to the “noise” file). “Noise” file contains words considered as noise toward a specific domain of knowledge. These words such as:

· حروف الجر المنفصلة (في، من، على، ..الخ).

· حروف العطف (و، ثم، ..الخ).

· وغيرها من الزوائد (مثل قد، قطّ، بل).
3. Get the key word: this step job is to get the root for each word remaining in the list of words using the Morphological Knowledge.
4. Error checking: For each word in the list try to get its keyword. If the system could not find the keyword for a specific word then it will check the following possibilities:

· The word may be wrong, so use the spell-checker procedure to get the suggestions for the right word, or ask human expert to input the right one. For example if human expert input the word “كاب”, the list of suggestions will be [“كتب”,”كتاب”,”كاتب”,”كاسب”].

· It could be a new-word (its keyword does not belong to the dictionary), then ask the human to determine its type and add it to the dictionary.

5. Replacing with the synonym: This step checks each keyword in the list, if it has a synonym in the dictionary then replace it with its synonym, such as:

Chapter Three

3 GADESS
Construction

3.1 Introduction

As mentioned in chapter one, the aim of the project is to develop expert system shell for a general Arabic diagnosing expert system depending on the main methods used for building expert systems. The resulting shell will help the experts to build their own expert systems without any need to understand the concept of building expert systems.

The result shell named GADESS consists of two phases, the first phase (development environment) is an automatic and friendly knowledge acquisition interface (expert interface) which is used to acquire data from the expert and convert it into a suitable knowledge base (KB) form in order to be used by the second phase (consultation environment). In the second phase a task of inference engine is implemented, which is used to operate on information that is obtained in the first phase. This phase interacts with the end user, which is normally derives advice to a non-expert user.

The inference engine as well as the expert interface are implemented by using the facilities of Visual Prolog programming language since Prolog supports many advanced programming tasks such as searching, pattern matching, and database programming, where facts are stored and can be retrieved easily. Visual Prolog mainly consists of visual interface handling routines, which is used to construct the expert interface to act as an interaction between the user (human expert and end user) and the machine.

3.2 System Architecture

The proposed system is based ideally on the general architecture of the modules of an expert system that is illustrated in figure(3.1).

Automatic knowledge acquisition (expert interface) is used to acquire human expert knowledge by using the If….then rule knowledge representation. The inference engine uses the backward chaining to operate on the human expert knowledge to get conclusions. Menu driven and message windows is used by the end user in order to deal with the system.

GADESS consists of four modules as shown in the figure (3.1), each of which is used to perform specific task. GADESS uses an automatic knowledge acquisition, which is used to acquire expert human knowledge and arrange it in a specified database that represents the knowledge base which can be used by the inference engine to produce the result. Also this approach has the ability to explain its action, and provides a good user interface.

3.3 Automatic Knowledge Acquisition Subsystem

The purpose of automatic knowledge acquisition subsystem is to acquire knowledge from human expert in an automatic and friendly way through constructing expert system shell. One of most important difficulties in building expert system shells is how to acquire knowledge from the human expert. The automatic knowledge acquisition subsystem uses menu-driven approach, it mainly consists of set of menus that help the human expert to construct a KB concerning any diagnosing expert field. The automatic knowledge acquisition subsystem consists of sub-modules as illustrated in figure (3.2), these sub-modules are described in the following sections.

3.3.1 Create New Knowledge Base Sub-Module

This sub-module allows the human expert to input information about its KB. Human expert has to determine first the domain of the KB, then input information concerning his/her identity (such as KB name, password, general domain, specific domain, ..etc). The obtained information is stored in a specific file called “knowledge-bases-information”. The process of this sub-module includes loading “knowledge-bases-information” file, obtaining information about the new KB from human expert, validate the obtained information, then add the obtained information to “knowledge-bases-information” file. After that, construct names to the new files (“Question” file, “Rule” file, “Conclusion” file, “Counter” file) that will be used to store the new KB. At last the counter file is constructed and its facts will be initialized. This sub-module job is given by algorithm (3.1).

3.3.2 Tokenizing the Input Phrase Sub-Module

The first step in the tokenizer is a blank-space eater procedure, that is responsible for eliminating any unnecessary blank-space. The automatic knowledge acquisition subsystem converts each input phrase (premises, or conclusion) into a list of words, then remove the noise words, then for each remaining word get its keyword. If it is impossible to get the key word then the word may be wrong, at this time apply spell-checker procedure to get suggestions. If no suggestion is suitable then human expert has to determine the type of the unknown word, it may be wrong-word, noise-word, new-word. If unknown-word is a wrong-word then human expert must input the right-word. If unknown-word is a noise-word then it must be added to the noise-file. If unknown-word is a new-word then human expert must determine whether it is a “verb” or “noun”, then input its Keyword. Tokenizing sub_module job is to achieve the list of keywords for each input phrase, which is obtained by the following algorithms (3.2 and 3.3).

3.3.3 Human Expert Knowledge and Explanations Sub-Module

 This sub-module allows the human expert to input knowledge as rules using the format illustrated in figure (3.3). When acquiring knowledge, human expert should input the rules in suitable order. This approach requires that the human expert should input all rules that contain the sub conclusions before input the rules that contain the main conclusions.

For example: “There is a fuse blown problem if there is a power problem”. “The power problem occurs when lights out or not smell smoke”.

The human expert should input the rules in the following order:

1. If lights out then power problem.

2. If not smell smoke then power problem.

3. If power problem then fuse blown.

At this sub-module first, premises and the relation between them are obtained. Each obtained premise is stored in the working memory in a fact called “Premise”. This fact relates the number of the premise, with its code, list of keywords, and a negation flag. Then obtain the conclusion and store it in the working memory in a fact called “Conclusion”. The fact “Conclusion” relates the conclusion-code with its list of keywords. Then each premise is checked (a premise may be a new question, exist question, or an exist sub-conclusion). After checking premises each premise is stored in working memory in a fact called “Premise_1”. If premise is a new question then human expert has to input its explanation, this can be done via message windows. This explanation is the answer of “why” question.

Then construct “Premises-Subsequent-List”, this list represents If-Section of the obtained rule, it describes the relation (and/or) between premises. Each premise in this list is represented by three flags “Premise-Flags”. The first one represents the key-number of this premise, the second one is used to know whether this premise is negated or not, the third one determines whether premise is question or sub-conclusion. Algorithms (3.4 and 3.5) are follow the process of obtaining human expert knowledge in the form: If Premise(s), Then Conclusion, With Certainty. Then validate the input knowledge.

3.3.4 Add Rule Sub-Module

 After obtaining human knowledge, tokenizing process, and error handling operations are applied, add rule sub_module is called to store the human knowledge, but first make sure that the obtained knowledge is not duplicated. This sub-module uses the information stored previously in the working memory, this information includes counters (“question-counter”, “conclusion-counter”, and “rule-counter”), and facts (such as “Premise-Exp”, “Premise_1”, “Conclusion”, and “Certainty”). These information is used to construct new facts that will be added to the existing knowledge files (“Question”, ”Conclusion”, ”Rule”, and “Counter” files).

First step is to construct a “Question-Term” for each new question. The “Question-Term” includes question-code, list of keywords, and explanation. Then new “Question-Terms” will be stored in “Question” file. If there is not any new question then check whether this rule is duplicated, if it is not duplicated then follow the process of storing. Then store the premise-subsequent-list and the certainty in “Rule” file. At last, if the conclusion is a new one then construct a “Conclusion-Term”. The “Conclusion-Term” must be stored in the “Conclusion” file. This sub-module work is given by algorithm (3.6).

3.3.5 Delete Rule Sub-Module

GADESS gives the human expert the ability to delete the rule that is not needed. If a rule is needed then its deletion is not allowed. For example, when “then part” of the rule is a sub-conclusion which has no another rule, the deletion of this rule is not allowed. GADESS gives the human expert the ability to delete a premise from a specific rule, but if the premise is the last one in the rule then the deletion is not allowed. Also this sub-module provides the ability to delete the unnecessary (not useful) questions and conclusions. The process of this sub-module includes loading knowledge base files (“question”, “rule”, “conclusion”, “counter”), determine what the human expert want to delete, check whether the deletion is allowed or not, then update the knowledge base files. Algorithms (3.7, 3.8, 3.9, and 3.10) are used to perform the deletion operations.

3.3.6 Updating Rule Sub-Module

This sub_module allows the human expert to change the content of any rule (“if part” , “then part”, or “certainty part”). GADESS allows the human expert to choose a specific rule, then choose the part that he want to change it then input the new knowledge via edit controls. During rule updating, if human expert input a new question or a new conclusion, then it will be added to the KB. Before saving the new knowledge GADESS error handler sub_module checks whether the changes are allowed or not. GADESS allows the human expert to change a specific conclusion or a specific question with its explanation.

Before starting the updating operation, knowledge base files are loaded. Then human expert choose a specific part from a specific rule and update it. At last the updating will be stored in the knowledge base files. The change of existing knowledge is given by the following algorithms (3.11, 3.12).

3.3.7 Error Handler Sub-Module

 This sub_module job is to handle syntactic and Semantics errors that may occur during the interaction between human expert and automatic knowledge acquisition subsystem. The error handler checks the following:

1. The existence of a specific part of the rule. If a specific part (“If”, “Then”, “Certainty”) is empty then the error handler displays message to the human expert telling that the rule is not complete because this specific part can not be empty. This process is performed during knowledge obtaining sub-module.

2. Spell checker: Error handler uses “spell checker” to check human experts phrases. “Spell checker” checks each word in the phrase, if it is not right, then try to make suggestions and gives the human expert the ability to choose one of them, or input a new word. This process is performed during the tokenizing sub-module.

3. Validation the range of certainty factor (between –1 and 1). if the certainty factor does not belong to the range, the error handler displays message to the human expert telling that the certainty factor must belong to the range [-1 ,1]. This process is performed during the knowledge obtaining sub-module.

4. Remove duplications: Error handler checks the input rule, if it is the duplication of another saved rule, then remove it and tell the human expert that the rule is already exist. If the input rule look like another existing one then ask the human expert whether the input rule is the same as the existing one, if it is the same then remove it. This process is performed during obtaining knowledge and add rule sub-modules.

5. When human expert try to update rule (delete or change). This updating must be checked it may be not allowed then tell the human expert that this updating is not allowed and mention the causes. This process is performed during delete an update rule sub-modules.

3.4 Knowledge Base Subsystem

The purpose of the knowledge base subsystem is to store the formulated human expert knowledge about particular problem. KB is independent from components of other subsystems. It is used by inference engine subsystem for reaching the diagnostic result after the system has inquired for relevant question.

The proposed system uses files to store the knowledge bases and all information about these knowledge bases, in addition it uses files to store the dictionary and another data which is very important to perform the system tasks.

3.4.1 Knowledge Base Information File

The proposed system specifies file (“knowledge-bases-information”) to store information about all knowledge bases that are built using this system. This file is very important to relate each knowledge with its domain, and relate each knowledge with its human expert and its password. Also this file relates each knowledge with the group of files in which the knowledge base is stored. In addition this file relates each domain with its own dictionary.

3.4.2 Knowledge Base Files

The output of GADESS add rule sub-module is organized into four files. These files are:

1. “Question” file, which is used to store the question-number with its code and explanation.

2. “Conclusion” file, which is used to store the relation between conclusion-number, its code, and its rules.

3. “Rule” file, which is used to store the rule-number with its premises-subsequent-list, and certainty of the rule. Premises-subsequent-list represents the “If Part” of rule.

4. “Counters” file, which is used to store the counters of conclusions, questions, and rules that exist in the KB.

3.4.3 Dictionary Files

For each domain there is a specific dictionary. The dictionary is used to store keywords that appear in that domain. These keywords may be noun or verb. Dictionary also contains the noise words and the synonym words. Synonym words are a set of words that the human expert believe that they give the same mean at this domain. A dictionary includes the following files:

1. Verb File: “Verb” file is used to store roots of all verbs which appear at a “general domain”.

2. Noun File: “Noun” file is used to store roots of all nouns which appear at a “general domain”.

3. Synonym File: “Synonym” file is used to store words which have the same mean. Those words are belong to “verb” or “noun” files.

4. Noise File: In which all noise words belong to this ”general domain” are stored.

5. Affix File: Which includes all affixes that added to keywords to derive other words.

3.4.4 Internal and External Databases

Prolog provides a database approach to manipulate with files. Database in prolog is a specification of a set of relations (a set of facts that a program uses to come up with solutions to a problem). Two types of databases are provided by prolog, they are internal database and external database with its associated B+Tree. The proposed system uses these two types as a tool to interact with files. Internal database may be used as a working memory without using file.

3.4.4.1 Internal Databases

Internal databases that are used in this work could be divided into two parts. The first part is used associated with files (store database facts in files). The second part is used as working memory.

First, the first part contains the following databases:

a. Information database: This database is concerning with “data-bases-information” file. This database is declared as follows:

Database-information

Files-names(KB name, “Question” file name, “Conclusion” file name, “Rule” file name, “Counter” file name).

Password(KB name, Password).

Human-name(KB name, human expert name).

Domain-name(List of Domains).

Domain-specific (Domain, List of its Specific-domains).

Specific-kb(Specific-Domain, List of all Knowledge Bases which belong to that Specific-Domain).

Note that names, domains, and password are string values.

b. Separation database: This database concerning with symbol file in which the symbols that separate between words are stored. This database is declared as follows:

Database-separation

Separate(char).

c. Affix database: this database concerning with “affix” file. This database is declared as follows:

Database-affix
Prefix(string).

Suffix(string).

Infix(string).

d. Counter database: This database concerning with “Counter” file, in which counters of knowledge base is stored (“question-counter”, “rule-counter”, “conclusion-counter”). This database is declared as follows:

Database-counter

Question-counter(integer).

Conclusion-counter(integer).

Rule-counter(integer).

Second, the second part of internal databases contains the following facts (relations):

a. “Asked”: This fact is used to store the end-user answers about a given question and uses this information in case of the given question is asked later, which is declared as follows:

asked(question number, user-answer).

Where:

Question-number: Is an integer value.

User-answer: Is a real value represent the certainty.

b. “Diagnosed”: This fact is used to store the certainty of a specific conclusion which is reached after diagnosing it. This information is used in the case of sub-conclusion (in which the diagnosing of a specific conclusion is needed again). “diagnosed” fact is declared as follows:

diagnosed(conclusion-number, result-certainty).

Where:

Question-number: Is an integer value.

User-answer: Is a real value represents the certainty.

c. “Explain”: which is used to store the user answer about a given question, also store the result of sub-conclusion. Then using this information in case of “how” explanation is needed, which is declared as follows:

explain(question, answer).

Where question and answer are strings.

3.4.4.2 External Databases

External databases that are used in this work could be divided into two parts. The first part concerns with knowledge base files (“question”, “rule”, and “conclusion”). The second concerns with dictionary files (“noun”, “verb”, “noise”, and “synonym”).

First, the first part contains the following external databases:

a. “Question”: the question database is used to store the question numbers each one with its code and explanation in the following format:

question(number, code, code-list, explanation)

Where:

Number: is an integer represents a question number.

Code: is a string represents a description of a given question number (which is actually being asked in an inference engine phase).

Code-list: represents a list of keywords of the “code”.

Explanation: is a string represents the explanation of a question that will be used in case of “why” explanation in an inference engine phase.

b. “Conclusion”: the conclusion database is used to store the conclusion numbers each one with its code and its relation with the rule numbers in the following format:

conclusion(number, code, code-list, rule-list)

Where:

Number: is an integer represents a conclusion number.

Code: is a string represents a description of a given conclusion number (which is actually being reached in an inference engine phase).

Code-list: represents a list of keywords of the “code”.

Rule-list: list of integers represents list of Rules.

c. “Rule”: the rule database is used to store the rule number with its premise-subsequent-list and rule certainty in the following format:

rule(number, list, certainty)

Where:

Number: is an integer represents the rule number.

List: is premises-subsequent-list represents the subsequent premises that generate a rule together. This list is a list of lists of Premise-Flags.

Certainty: Real value which is obtained from human expert.

Premise-Flag: is a compound object which describes the premise. It is declared as follows:

Premise-Flag = flags(integer, boolean, boolean), where the first is a premise key, the second is premise negation, the third determine whether a premise is question or sub-conclusion.

Second, the second part of external databases includes the following:

a. “Verb”: is used to store roots of all verbs belong to this dictionary, in the following form:

Verb(string)

b. “Noun”: is used to store all nouns belong to this dictionary, in the following form:

Noun(string)

c. “Synonym”: It is used to store synonym words stored in Verb or Noun databases, in the following form:

Synonym(string, list of string)

d. “Noise”: Is used to store noise words belongs to this domain, in the following form:

Noise(string)

3.5 Inference Engine and User Interface Subsystem

Inference engine in GADESS searches the external database using backward chaining technique to get the specified question and try to prove it in order to get conclusion. It mainly consists of three modules as illustrated in figure (3.4).

3.5.1 User Interface Module

“User interface” module performs the task of communicating with users. Two types of users interact with the expert system, expert and non-expert users. The “expert interface” sub-module performs the task of communicating between the system and the expert to input the KB. Expert interface is constructed depending on menu driven and message windows. The menu is used to give the human expert the ability to choose the function wanted to be performed (create a new KB, edit existing one [delete, add, update]). The menu interface style is often preferable to direct keyboard entry because it saves time in typing and reduces errors, since the user is forced to make selections only from a menu list of choices that are available. Menu driven systems are considered as the most common type of interface that is available in commercial software. Human expert has the ability to input knowledge in natural language. Message windows are used to display notes, display errors and warning, and input knowledge.

The “end user interface” sub-module performs the task of communicating with the “end user” to diagnose a problem belong to a specific domain. At this sub-module a dialog of (question/answer) is begin between the system and end-user. Menu driven is used to give the end user the ability to answer with (YES, No, Yes With Certainty, Do Not Know, Why). End-user can use “why” question to know why the system ask a specific question, also he can use “how” question to know how result is achieved. Message windows are used to display explanations of (“why”, ”how”).
Graphical user interface is used for drawing the KB. GADESS user interface is a combination of the principal categories of user interfaces currently in use: menu driven, natural language, and graphics, as mentioned in chapter two at section (2.4.1).

The following algorithm obtains the end-user answer of a specific question, and find the certainty of the answer. Then construct a fact called “explain” to relate the question with its answer and store this fact in working memory to be used in case of “how” question.

3.5.2 Reasoning Under Uncertainty

Reasoning under uncertainty is integral to all kind of diagnosing, especially the medical diagnoses. Perhaps the reason is that if the physician holds off treatment until the symptoms become absolutely clear and all test results are obtained, it may then be too late to treat the patient.

Reasoning is based on certainty factor method to reflect uncertainty. Certainty can be applied in two cases. First it can be applied with the knowledge item, which is supplied by the expert during expert interface sub-module. The second it can be applied to the information supplied by the end user during querying the system. The inference engine of GADESS uses combine certainty factor method to handle uncertainty, see section (2.5.1) for more details. Algorithm(3.14) takes two certainties and gets the result of combining them. Algorithm(3.15) get certainty of a specific premise.

3.5.3 Control Strategy

The control strategy which is used in GADESS is a “backward chaining”, which selects a goal and find the combination of rules with action parts that can achieve the goal. Each rule contains a list of subsequent premises that represents a rule together. GADESS inference engine tries to prove each premise. These premises may themselves be conclusion of other rules (sub-conclusion). In this case the sub-conclusion becomes a new sub-goal, and the same procedure is applied recursively. When premise is question, if the question is asked before then get its answer from the working memory. Else, GADESS asks the end user to answer the question then answer is entered to the working memory. The inference engine starts with the main (last) conclusion and try to prove it, if it can not be proved then try to prove the previous one. This job is given by algorithms (3.16 and 3.17).

To achieve this method, a rule to get the user answer with its certainty is needed, then get the certainty for each rule. Then combine rule is used to calculate a single combined certainty. For example:

RULE 1:
IF Fever and Cold

THEN Influenza. (0.9)

RULE 2:
IF Fever and Cough

THEN Influenza. (0.85)

Assume that a rule to get the user answer with its certainty is used, then the following answers are achieved:

Fever (Yes/1)

Cold (Yes With Certainty 0.94)

Cough (Yes With Certainty 0.8)

Then get the certainty for each RULE:

Then combine rule is used to calculate a single combined certainty:

CF(Influenza)=CF(R1) + CF(R2) - (CF(R1)*CF(R2))

CF(Influenza)= 0.846 + 0.68 - (0.846 * 0.68)

CF(Influenza)= 0.95

Note that the combination of two rules together is stronger than each either separately.

3.6 Explanation Generator Module

The ability to explain reasoning is usually considered as an important part of any expert system. An explanation facility is useful on many levels. For example, it can help knowledge engineers to debug and test the system during development process. Also it can provides assurance to the users that system’s knowledge and reasoning process is appropriate.

An inference system that can explain its behavior on demand will give confidence to its users. GADESS provides two explanation facilities, they are:

· “Why” explanation facility: End-Usr may ask “why” question when he want to know why the system asked him a specific question. The implementation of “why” in this system is based on the explanation which is stored in “Question” file, which is obtained from human expert. When “end user” selects “why” explanation for a specified question. The inference engine searches “Question” file for that explanation and display it to the “end user”.

· “How” explanation facility: End-Usr may ask “how” question when he want to know how the system achieve a specific conclusion. The implementation of “how” explanation is done by saving each question in working memory together with its answer. Intermediate results are also stored together with their certainty factor. When end-user selects “how” explanation for a specific conclusion the system will display each asked question with its answer, also displays the intermediate result one after another.

Chapter Four

4 GADESS User Interface and Implementation

4.1 Introduction

Chapter three introduced the proposed design and construction for GADESS, which consists of two phases. The first phase “automatic knowledge acquisition”, which is interacted with the human expert. The second phase is “inference engine”, which is constructed with the end user. The two GADESS phases are implemented using Visual Prolog. GADESS provides many facilities to help both the human expert and the end user with writing, editing, and executing their own knowledge.

This chapter briefly describes the menus and windows of GADESS and shows all the screens related to an expected system construction operation.

4.2 Construction of A New Knowledge Base

In this section, the operation of GADESS will be expressed. To do so, a part of medical example is considered to be run using GADESS to show the windows that appear to the user and how to make use of these windows.

1. Example 4.1:

2. إذا تضخم الطحال و دوالي بطنية و رائحة نتنة مميزة للكبد إذاً ارتفاع ضغط الوريد البابي.
3. إذا ارتفاع ضغط الوريد البابي و خروج جيري إذاً دوالي المريئي.
Suppose that the dictionary of “medicine domain” is filled with all key words that may appear in this domain, except some of words that human expert forgot to store them.

By running GADESS, the first form (shown in figure 4.1) will appear, and the following steps should be followed to construct the above example:

1. From the "ملف" menu, select “خلق قاعدة جديدة”. Then “خلق قاعدة معرفة جديدة” window (figure 4.2) will appear, which is used to input information about the new Arabic knowledge base.
2. Input all information about the new knowledge base then create the knowledge base. After that the knowledge base could be open. When it is opened, “إدخال معلومات جديدة إلى قاعدة المعرفة” window (figure 4.3) is appeared.

3. Full "المقدمة المنطقية1 " with the first premise of the first rule, see figure (4.4 -a-). chose “و“ to input the second premise.

4. Full "المقدمة المنطقية2"with the second premise of the first rule, see figure (4.4 -b-). Chose "و" to input the third premise.

5. Full "المقدمة المنطقية3 " with the third premise of the first rule, see figure (4.4 -c-). Full "إذاً" with the conclusion of the first rule. Then input the certainty. Then try to save rule.

6. Look at figure (4.5 -a-) human expert has to determine whether the word is [“صحيحة”,”خاطئة”,”زائدة”], chose “صحيحة”. Then human expert has to determine whether the new-word is [“فعل”,”اسم”], see figure (4.5 -b-), chose “اسم”. Figure (4.5 -c-) displays a message which ask the human expert to input the root of the new word, cancel this message. Then input the new word after removing all addition letters (see figure 4.5 -d-). Tell GADESS that there is no synonym words for the new word, See figure (4.5 -e-).

7. Get the explanation of each question. Since this rule has three questions, “نافذة شرح السؤال “ appears three times as shown in figure (4.6).

8. Now “إذا - إذاً” windows are prepared to input the second rule. Full "المقدمة المنطقية1 " with the first premise of the second rule. Then chose "و" to input the second premise.

9. Full "المقدمة المنطقية2 " with the second premise of the second rule, see figure (4.7). Then full “إذاً “ with the conclusion of the second rule. Then full “نسبة التأكد” with the certainty.

10. Use “أضف المعلومة” to get the explanation of each question. Since this rule has one question, “"نافذة شرح السؤال appears only one time as shown in figure (4.8).
11. To see the complete information stored in the knowledge base, show figure (4.9).
4.3 Running The Constructed Expert System

To run the constructed expert system by the end user, he has to know the knowledge base name and to which domain it is belong. Look at figure (4.1) then follow the following steps to run the constructed expert system:

1. From “تشخيص” menu, chose “تشخيص الحل لمشكلة معيّنة” see figure (4.10). Then determine the knowledge base name which will be used to solve the problem, and to which domain it is belong. Then information about the human expert who build the knowledge base is appeared, then enter to the diagnose window, see figure (4.11).

2. Begin the diagnose. A question is appeared in “سؤال “ window (see figure 4.12). Answer the question by “نعم” .

3. The next question is appeared, see figure (4.13). Then answer the question by choose “نعم مع نسبة التأكد”, choose the certainty (see figure 4.14). Then continue diagnosing.

4. The next question is appeared. Answer the question by “لماذا “ (see figure 4.15).

5. “جواب السؤال لماذا” is appeared to explain why GADESS asks this question, see figure (4.16).

6. Answer the question by choose “نعم” ,see figure (4.17).

7. The next question is appeared. Select “لا “ (see figure 4.18).

8. Now the conclusion is appeared in “الاستنتاج “ window (see figure 4.19).

9. Use “كيف “ to display how GADESS achieved this conclusion, see figure (4.20).

4.4 GADESS Implementation

It is important to show the steps followed when constructing an expert system using GADESS, and how GADESS generates knowledge base. To do so an example has been taken to be constructed using GADESS.

Consider example 4.1:

1. Obtain the first rule.

· Obtain the first premise:

· Call space eater module. The output is “تضخم الطحال”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“تضخم”, ”الطحال”].

· Check the correctness of input Premise. The output is [“ضخم”, ”طحال”].

· Call error handler sub-module. There is no error.

· Obtain the second premise:

· Call space eater module. The output is “دوالي بطنية”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“دوالي”, ”بطنية”].

· Check the correctness of input Premise. The output is [“دوالي”, ”بطن”].

· Call error handler sub-module. There is no error.

· Obtain the third premise:

· Call space eater module. The output is “رائحة نتنة مميزة للكبد”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“رائحة”, ”نتنة”, ”مميزة”, ”للكبد”].

· Check the correctness of input Premise. The output is [“رائحة”, ”نتن”, ”مميز”, ” كبد”].

· Call error handler sub-module. There is no error.

· Obtain the conclusion:

· Call space eater module. The output is “ارتفاع ضغط الوريد البابي”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“ارتفاع”, ”ضغط”, ”الوريد”, ”البابي”].

· Check the correctness of input Premise. “البابي” is an error word:

· Call spell checker module to generate suggestions. Output is empty list (there is no suggestion).

· Ask the human expert to determine what is this word. The output is “new word”.

· Ask human expert to input the type of this word. The output is “it is a noun, has no root, its form after removing all addition letters ((باب, has no synonyms word”.

· The final key list is [“رفع”, ”ضغط”,”وريد”, ” باب”].

· Call error handler sub-module. There is no error.

· Obtain the certainty:

· Check its existence. There is no error.

· Check the validation. There is no error.

· Call error handler sub-module. There is no error.

· Call obtaining explanations module. The output is:

Premise-Exp (1, “بسبب انسداد الوريد البابي يتجمع الدم في الطحال”).

Premise-Exp (2, “بسبب انسداد الوريد البابي يبحث الدم عن منفذ آخر”).

Premise-Exp (3. “بسبب عجز الكبد تكون هناك مواد في الدم تسبب رائحة نتنة في النفس”).

· Call add rule module. The output:

Question(1, “تضخم الطحال”, [“تضخم”, ”الطحال”], “بسبب انسداد الوريد البابي يتجمع الدم في الطحال”).

Question(2, “دوالي بطنية”, [“دوالي”, ”بطنية”], “بسبب انسداد الوريد البابي يبحث الدم عن منفذ آخر”).

Question(3, “رائحة نتنة مميزة للكبد”, [“رائحة”, ”نتنة”, ”مميزة”, ”للكبد”], “بسبب عجز الكبد تكون هناك مواد في الدم تسبب رائحة نتنة في النفس”).

Rule(1, [(1,’y’,1),(2,’y’,1),(3.’y’,1)], 1).

Conclusion(1, “ارتفاع ضغط الوريد البابي”, [“رفع”, ”ضغط”,”وريد”, ” باب”], [1]).

Counters:

Conclusion-counter(1).

Question-counter(3).

Rule-counter(1).

2. Obtain the second rule.

· Obtain the first premise:

· Call space eater module. The output is “ارتفاع ضغط الوريد البابي”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“ارتفاع”, ”ضغط”, ”الوريد”, ”البابي”].

· Check the correctness of input Premise. The output is [“رفع”, ”ضغط”,”وريد”, ” باب”].

· Call error handler sub-module. There is no error.

· Obtain the second premise:

· Call space eater module. The output is “خروج جيري”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“خروج”, ”جيري”].

· Check the correctness of input Premise. The output is [“خرج”, ”جير”].

· Call error handler sub-module. There is no error.

· Obtain the conclusion:

· Call space eater module. The output is “دوالي المريئي”.

· Check its existence. There is no error.

· Call tokenizer module. The output is [“دوالي”, ”المريئي”].

· Check the correctness of input Premise. The output is [“دوالي”, ”مريء”].

· Call error handler sub-module. There is no error.

· Obtain the certainty:

· Check its existence. There is no error.

· Check the validation. There is no error.

· Call error handler sub-module. There is no error.

· Call obtaining explanations module. The output is:

 Premise-Exp(4, “التقرحات تسبب نزف داخلي يظهر بشكل دم متكلس جيري مع البراز”).

· Call add rule module. The output:

Question(4, “خروج جيري”, [“خروج”, ”جيري”], “التقرحات تسبب نزف داخلي يظهر بشكل دم متكلس جيري مع البراز”).

Rule(2, [(1,’y’,0),(4,’y’,1)], 1).

Conclusion(2, “دوالي المريئي”, [“دوالي”, ”المريئي”], [2]).

Counters:

Conclusion-counter(2).

Question-counter(4).

Rule-counter(2).

3. The final output is:

Question(1, “تضخم الطحال”, [“تضخم”, ”الطحال”], “بسبب انسداد الوريد البابي يتجمع الدم في الطحال”).

Question(2, “دوالي بطنية”, [“دوالي”, ”بطنية”], “بسبب انسداد الوريد البابي يبحث الدم عن منفذ آخر”).

Question(3, “رائحة نتنة مميزة للكبد”, [“رائحة”, ”نتنة”, ”مميزة”, ”للكبد”], “بسبب عجز الكبد تكون هناك مواد في الدم تسبب رائحة نتنة في النفس”).

Question(4, “خروج جيري”, [“خروج”, ”جيري”], “التقرحات تسبب نزف داخلي يظهر بشكل دم متكلس جيري مع البراز”).

Rule(1, [(1,’y’,1),(2,’y’,1),(3.’y’,1)], 1).

Rule(2, [(1,’y’,0),(4,’y’,1)], 1).

Conclusion(1, “ارتفاع ضغط الوريد البابي”, [“رفع”, ”ضغط”,”وريد”, ” باب”], [1]).

Conclusion(2, “دوالي المريئي”, [“دوالي”, ”المريئي”], [2]).

Counters:

Conclusion-counter(2).

Question-counter(4).

Rule-counter(2).

Chapter Five

5 Discussion, Conclusions and Future Work

5.1 Discussion

This system is an attempt to develop a diagnosing expert system shell that acts visually. The approach which is used called GADESS, its features and characteristics can be stated as follows:

· GADESS attempts to match the steps of designing expert system shells that contains all the facilities, which help the users to complete their jobs easily and efficiently by providing them with visual environments (menus, windowing, etc).

· It provides its users (experts and non experts) with a simple and good help system that enables them to build their expert systems in an easy way, and diagnose their problems.

· It uses two types of database internal and external databases. Prolog internal database provide fast data retrieving since the principle of searching techniques is the same of relational database. While the advantage of using Prolog external database becomes evident when there is a need to write systems that use large amounts of data. Moving the data to external files reduces the storage space which is valuable processing memory.

· The visual interface design is simplified due to using visual tools in designing menus and help ability. Visual interface make use of external memory size, which provides the property of operating on large amounts of data.

· GADESS inference engine was implemented using visual prolog to:

· Provide accessing to the human expert knowledge through databases.

· Provide a fast searching technique (backward chaining), which is used to get the conclusions from the evaluation of the premises.

· GADESS expert interface is developed in an automatic and friendly way together with an graphical user interface to draw the knowledge base.

· It analyzes Arabic phrase using Arabic morphological rules. This operation helps to discover the phrases which have the same meaning, and prevent duplication.

· GADESS end-user interface is designed in an automatic and friendly way which provides explanation facility.

· It provides a security system (depends on passwords) that prevents the end user from altering human expert knowledge.

5.2 Conclusions

GADESS were tested by human experts in their operation and its performance was successful. To study the behavior of the designed shell, it was used to construct a medical diagnosis expert system, and chemical diagnosing system. The there are some conclusions reached as a test result from human expert point of view and designer point of view:

· GADESS may be useful in the education field for beginners (non expert users) because of the existence of the explanation facility that it provides together with help system.

· Since GADESS used fast inference engine strategy (backward chaining) and used B+tree indexing method which is quickly look up information stored in external databases, so one can conclude that using GADESS to construct large knowledge bases will not cause any space or time problem in construction and updating knowledge point of views, making the system powerful shell.

· GADESS could be used in any diagnosing field, which gives the system the generality. This generality could cause losing some diagnosing systems power points, for example in medical field; one could loos information (concerning historical medical information, laboratory analysis information, and imaging procedures information) about the patients which could helpful in the diagnosing process.

· From human expert and non-expert usage point of view, it was found that GADESS is easy to use, because of providing help system, and friendly interface (which draws knowledge base that enables knowledge monitoring during construction process).

· GADESS succeeded in discovering the Arabic phrases which have the same meaning in one domain, by applying the Arabic morphological rule and concerning the synonym words in that domain. But there is a weakness point, because of the wideness of Arabic morphological rule, and irregular cases, which could not be covered completely in this work.

· GADESS program which was written in Visual Prolog (version 5.0), is executable, so it is portable and can run under different events and operating systems.

5.3 Suggestions for Future Work

1. Manipulating Arabic phrase in GADESS should be developed to cover the complete Arabic morphological rules including the irregular cases. Arabic syntax and morphological rules should be combined together to be used in manipulating Arabic phrases.

2. Develop GADESS in a new form that specify different dictionary for each sub-domain. Also it is suitable to use many levels of sub-domains. These features are useful to increase system accuracy.

3. Develop a new version of GADESS that combine all knowledge bases in sub-domain in one inclusive knowledge base. Then end-user can use the inclusive knowledge base to diagnose a problem which belongs to this sub-domain.

References

1. [AHM03] Abdul Rahim Ahmad, Otman Basir, Khaled Hassanein, “Fuzzy Inferencing in the Web Page Layout Design”, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada, 2003. (internet)
2. [ARE93] Mostafa M. Aref and Husni A. Al-Muhtaseb, “An Arabic Expert System Shell”, Information and Computer Science Department, King Fahd University of Petroleum and Minerals, 1993.(internet)
3. [BRA01] Ivan Bratko, “Prolog Programming for Artificial Intelligence”, Pearson Education Limited, 2001.

4. [BRY88] Nigel Bryant, “Managing Expert Systems”, John Wiley & Sons Ltd , 1988.

5. [DAR00] Keith Darlington, ” The Essence of Expert System”, Pearson Education Limited, 2000.

6. [GAZ89] Gerald Gazdar and Chris Mellish, “Natural Language Processing In POP-11, An Introduction to Computational Linguistics”, Addison-Wesley Publishing Company, 1989.

7. [GIA98] Joseph Giarratano, “Expert Systems Principles and Programming”, PWS Publishing Company, a division of International Thomson Publishing Inc, 1998.
8. [KHA02] Belal Ismail AL-Khateeb, “Design and Implementation of Diagnosing Expert System Shell”, MSc. Thesis, Department of Computer Science, AL-Nahrain University (Previously Saddam University), 2002.

9. [KLI88] George J.Klir, Tina A.Folger, “Fuzzy Sets, Uncertainty and Information”, Prentice-hall USA, 1988.

10. [KLI97] George J.Klir, Ute St.Clair, Bo Yuan, “Fuzzy Set Theory Foundations and Applications”, Prentice-hall PTR, 1997.

11. [LUG98] G.F. Luger, William A. Stubblefield, “Artificial Intelligence: Structures and Strategies for Complex Problem Solving”, Addison Wesley Longman, 1998.

12. [LUG02] G.F. Luger, “Artificial Intelligence: Structures and Strategies for Complex Problem Solving”, Addison Wesley Longman, 2002.

13. [McC84] John McCarthy, “Some Expert System Need Common Sense”, Department of Computer Science, Stanford University, Stanford, CA 94305, 1984. (Internet)
14. [NAH89] Hadi Naher, “الصرف الوافي”, “الجامعة المستنصرية”, 1989.

15. [NOR01] Tomas E. Nordlander, “AI Surveying: Artificial Intelligence in Business”, MSc. thesis, Department of Management Science and Statistics, DE Montfort University, 2001.
16. [NYL87] Chris Nylor, “Build Your Own ES”, Sigma Press, 1987.

17. [PAR88] Kamran Parsaye, Mark Chignell, “Expert System for Experts”, John Wiley and Sons, Inc., 1988.

18. [SAD89] T. A. El-Sadany, and M. A. Hashish, “an Arabic Morphological System”, IBM Cairo Scientific Center, 1989.(Internet)
19. [SLA87] P.E. Slatter, “Building expert systems”, Ellis Horwood Limited, 1987.
20. [THA94] Ban Nadeem Thannoun, “An Expert System Approach to an Application in Iraqi Law”, MSc. Thesis, , Department of Computer Science, AL-Nahrain University (Previously Saddam University), 1994.

21. [TUR98] Efraim Turban, The Jay E. Aronson, “Decision Support Systems and Intelligent Systems”, A Simon & Schuster Company, 1998.

22. [WEI88] Keith Weiskamp, Terry Hengl, “Artificial Intelligence Programming with Turbo Prolog”, John Wiley & Sons, Inc., 1988.

الخـلاصة

البحث الحالي عبارة عن محاولة لبناء قشرة لنظام تشخيصي خبير معتمداً اللغة العربية يمكن تطبيقه في أي مجال عام أو خاص. اسم النظام (GADESS) مشتق من العبارة الإنكليزية (General Arabic Diagnosing Expert System Shell). النظام الخبير يتكون من طورين متعاقبين. الأول يهتم ببناء واجهة خاصة بجمع المعرفة من الشخص الخبير. خلال هذا الطور تتم تحليل المعرفة الداخلة إلى النظام باستعمال قواعد الصرف في اللغة العربية لإيجاد جذور الكلمات. النظام مزود أيضاً بقاموس بالكلمات التي يمكن استخدامها في مجال التطبيق المعين. الطور الثاني خاص ببناء مشغل أو محرك استدلال (Inference Engine) الذي يستخدم طريقة بحث الرجوع (backward chaining). هذا الطور يختص بالتخاطب مع المستخدم النهائي (الغير خبير).

النظام GADESS يأخذ بنظر الاعتبار نسبة التأكد باستخدام الموثوقية المصممة من قبل جامعة Stanford. بالإضافة إلى ذلك النظام يدعم نوعين من التفسيرات: "لماذا" و"كيف". السؤال "لماذا" يوضح سبب توجيه سؤال محدد من قبل النظام. أما "كيف" تهتم بتوضيح الخطوات التي من خلالها تم التوصل إلى تشخيص محدد.

تم إنجاز العمل باستخدام اللغة البرمجية (Visual Prolog version 5.0).

جمهورية العراق

جامعة النهرين

كلية العلوم
Figure (2.1) distinction among data, information and knowledge.

Knowledge base

Inference Engine

User Interface

Questions

Solutions

Stored data

New data

New data

Figure (2.2) Basic architecture of an expert system.

USER INTERFACE

EXPLANATION FACILITY

INFERENCE ENGIN

KNOWLEDGE BASE

BLACKBOARD (work place)

User

Knowledge Engineer

Expert Knowledge

KNOWLEDGE AQUISITION

KNOWLEDGE REFINEMENT

SHELL

Recommended Action

Figure (2.3) structure of an expert system.

notice-board

User Interface

Inference Engine

Knowledge Sub-domain 1

Knowledge Sub-domain 3

Knowledge Sub-domain 2

Knowledge Sub-domain 4

Explanation Facility

Figure (2.4) notice-board structure in the case of several experts

Drawing inferences

Combining bodies of uncertain information

Representation of uncertainty of basic set of events

Step 1

Step 2

Step 3

Alternative route

Figure (2.5) three-step Process for Dealing with Uncertainty in AI

(2.1)

P (E|Hi) * P (Hi)

P (Hi|E) =

(P(E|Hk) * P(Hk))

Σ

k=1

n

(2.2)

(2.3)

m3 (Z) =

Σ X∩Y = Z m1(X) m2(Y)

1- Σ X∩Y = Ф m1(X) m2(Y)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Verb (فعل) = Prefixes + Stem + Suffixes

Noun (اسم) = Prefixes + Stem + Suffixes

اللواصق (Prefixes)

حروف العطف.

حروف الجر المتصلة.

"ال" التعريف.

أدوات النصب والجزم المتصلة. …الخ

اللواحق (suffixes)

الضمائر المتصلة.

لواحق التثنية والجمع.

نون التوكيد.

نون النسوة.

Figure (2.6) some examples of prefixes and affixes in Arabic language.

أقسام الفعل باعتبار التجرّد والزّيادة

مجرّد

مزيد

رباعي:

ثلاثي:

مزيد الثلاثي

مزيد الرباعي

بحرف:

بحرفين:

بثلاثة حروف:

بحرف:

بحرفين:

فعل

فعلل

افعل

فاعل

فعّل

انفعل

افتعل

افعلّ

تفعّل

تفاعل

استفعل

افعوعل

افعالّ

تفعلل

افعنلل

افعللّ

Figure (2.7), a kind of partitioning the verbs in Arabic language.

ارتفاع ضغط الوريد البابي

[ارتفاع، ضغط، الوريد، البابي]

[ارتفاع، ضغط، الوريد، البابي]

[رفع، ضغط، وريد، باب]

Tokenizing

Removing noise

Get keywords

Figure (2.8), steps to convert an input phrase into list of keywords.

دمّر، قصف، حطّم، ضرب.

Automatic Knowledge Acquisition and Knowledge Engineer

Knowledge Base

Inference Engine and User Interface

Explanation Generator

Human Expert

End User

Expert Knowledge

Figure (3.1) system modules

Create New Knowledge Base

Obtain Human Knowledge

Tokenizer

Error Handler

Obtaining Explanation

Add Rule

Delete Rule

Update Rule

Figure (3.2) GADESS Automatic Knowledge Acquisition

Knowledge Base

Algorithm 3.1 “Construction of New Knowledge Base”

Input: Information about the new knowledge base which is obtained from the human expert,.

Output: Store the obtained information in the “knowledge-bases-information” file, and create new files to be used for storing the knowledge base.

Step1: For each field of the obtained information do

If the field is empty Then tell the human expert to input it.

Step2: If knowledge-base-name is duplicated then input it again,

If password <> confirm-password then input them again.

Step3: If “general domain” is not already exist in the “knowledge-bases-information” file then add it, and add its relation with the “specific domain”.

Else if “specific domain” is not exist in the “knowledge-bases-information” file then assert its relation with the “general domain”.

Step4: Assert the relation between the “specific domain” and the knowledge base name. Then store information in the “knowledge-base-information” file.

Step5: Construct names for files in which knowledge base is stored.

Step6: Construct counter-file for this knowledge base and initialize it to: conclusion-number(0), question-number(0), rule-number(0).

Step7: Stop.

Algorithm 3.2 “Achieve The Keyword”

Input: Word {this word is obtained from the input phrase}.

Output: Keyword of the input Word.

Step1: If (Word) is Keyword {stored in the dictionary} then:

(Keyword = Word).

Else, if (Word) is a word derived from a stored Keyword then, return (Word) to its (Keyword).

Else, perform a spell-checker procedure and display suggestions words to the human expert.

If the right word is in the suggestions then, put (Word = right-suggestion), and return it to its (Keyword).

Else, if (Word) is a wrong-word then get the right-word. put (Word = right-word), and return it to its (Keyword). {human expert has to determine the type of the unknown-word}.

Else, If (Word) is a noise-word then, add this word to the Noise file.

Else, (Word) is a new-word. The (Keyword) as well as the synonym words must be stored in the appropriate place of the dictionary.

{human expert determines type of new-word. Then input its (Keyword). Synonym words must be obtained if found.}

Step2: Stop.

Algorithm 3.3 “Tokenizer and Correctness”

Input: Str1 {The input phrase is a stream of words}.

Output: L3 {List of keywords}.

Step1: Get (Str2) by removing unnecessary blank-spaces from (Str1).

Step2: Convert string (Str2) into list of words (L1).

Step3: Remove all noise wards appear in (L1), to get (L2).

Step4: Initialize (L3)=[].

Step5: While L2 is not empty do

Step4.1: Cut the first element from (L2), call it (H2).

Step4.2: Call algorithm (3.2) to get the (Keyword) of the word (H2). Then add (Keyword) to list L3.

Step3.3: End While.

Step6: For each keyword (K) in keyword list (L3), if (K) has a synonym stored in the dictionary, then replace (K) with its synonym-word.

Step7: Stop.

� EMBED PBrush ���

Figure (3.3) obtaining human expert knowledge sub module.

إذاً

نسبة التأكد

Algorithm 3.4 “Check Premise(s)”

Input: List of premises (L1), Premise-Counter, Question-Counter, working memory.

Output: New-Question-Counter, Premise-Subsequent-List (L).

Step1: Initialize: (new-question-counter = 0).

Step2: For I=1 to Premise-Counter do:

If Premise is an existing Question or an existing Conclusion. Then get the number of existing one, construct the fact “Premise_1”, then store “Premise_1” in working memory.

Else, increment new-question-counter by one, obtain “explanation” from human expert, then store the facts “Premise_1” and “Premise-Exp” in working memory.

{“new-question-counter” is the number of the new question, and the “explanation” is a string}.

Step3: Initialize (L=[]).

Step4: For each element of (L1) construct a compound object which contains its “Premise-Flags”, then add the compound object to (L).

Step5: Stop.

Algorithm 3.5 “Obtain Knowledge”

input: Premises, Conclusion, and Certainty.{obtained from human expert}.

Output: Premise-Subsequent-List (L), New-Question-Counter.

Step1: Initialize: (premise-counter =0, list of premises(L1) = []).

Step2: For each input premise (P1) do:

(P1 <> “”), call algorithm(3.3) to get its list of key words (key-list), increment (premise-counter), add premise-counter to (L1), store fact “Premise” in working memory.

Step3: Get Conclusion (Conc1). Make sure that (Conc1 <> “”). Then call algorithm (3.3) to tokenize (Conc1), and return its list of keywords(L1). Then store the fact “Conclusion” in working memory.

Step4: Get Certainty and make sure that its value at the range[-1,1]. Then assert the fact “Certainty” to the working memory.

Step5: Call algorithm (3.4) {to check premises, get new-question-counter, and construct Premise-Subsequent-List (L)}.

Step6: Stop.

Algorithm (3.6) Save the Obtained Knowledge

Input: Knowledge files, and use the working memory facts.

Output: Store new facts in the existing knowledge base files.

Step1: Call algorithm (3.5) {obtain knowledge, get Premise-Subsequent-List (L)}

Step2: For each fact “Premise-Exp” construct a new “Question-Term” and insert it in the “Question” file.

Step3: If the obtained Rule is already exist then go to Step5.

Else: Increment Rule-Counter by one, insert the new “Rule-Term” into the “Rule” file.

Step4: If Conclusion is a new one then: increment Conclusion-Counter by one. Then insert a new “Conclusion-Term” in the “conclusion” file.

Else: The conclusion is existing in the “conclusion” file. Then update its term.

Step5: Stop.

Algorithm (3.7) “Delete Unnecessary Question”

Input: (“Question”, “rule”, “counter”) files, and question-number (Q1).

Output: Update (“Question”, “rule”, “counter”) files.

Step1: Delete the Term of (Q1), and its Keys from “Question” file. Then decrement Question-Counter by 1.

Step2: For (I = Q1 + 1) to Question-Counter shrink the Question-Number by one.

Step3: For all Rule Terms (stored in the “Rule” file), check the Premise(s) appeared in the Premises-Subsequent-List: If it is a Question and its Number greater than Q1 then decrement it by 1.

Step4: Stop.

Algorithm (3.8) “Delete Unnecessary Conclusion”

Input: (“Conclusion”, “rule”, “counter”) files, and conclusion-number (C1).

Output: Update (“Question”, “rule”, “counter”) files.

Step1: Delete the Term of (C1), and its Keys from “Conclusion” file. Then decrement the Conclusion-Counter by 1.

Step2: For (I = C1 + 1) to Conclusion-Counter shrink the (Conclusion Number) by 1.

Step3: For all Rule Terms (stored in “Rule” file), check the Premise(s) appear in the Premises-Subsequent-List: If it is a Conclusion and its Number greater than or equal to C1 then decrement it by 1.

Step4: Stop.

Algorithm (3.9) “Delete Specific Rule”

Input: (“Conclusion”, “Rule”, “Counter”) files, and rule-number (R1).

Output: Update (“Question”, “Rule”, “Counter”, and “Conclusion”) files.

Step1: Get the Conclusion-Number (C1) of Conclusion which represents “Then Part” of Rule (R1), and make sure that the deletion of this Rule is allowed. Then delete the Term of Rule (R1) and its Keys from “Rule” file.

Step2: For (I = R1 + 1) to Rule-Counter shrink Rule-Number by 1.

Step3: Decrement the Rule-Counter by 1.

Step4: Use (C1) to get the term (T1) from “Conclusion” file. Then update this term in the “Conclusion” file.

Step5: For all Conclusion Terms (stored in the “Conclusion” file), check the Rule List: If a Rule Number is greater than or equal to (R1) then decrement it by 1.

Step6: Stop.

Algorithm (3.10) “Delete Specific Premise from A Specific Rule”

Input: “Rule” file, and rule-number (R1).

Output: Update “Rule” file.

Step1: Determine whether the specific Premise is a Question or a Sub-Conclusion.

Step2: Use Rule-Number (R1) to get term (T1) from “Rule” file. This term contains the “Premise-subsequent-list” (L1).

Step3: Achieve the list L2 by removing the Specific Premise from the list L1.

Step4: Update the term (T1) in the “Rule” file, by updating the “Premise-Subsequent-List”.

Step5: Stop.

Algorithm 3.11 ”Change Conclusion”

Input: Rule-number (R1), conclusion-number (C1), “conclusion” file.

Output: Update “conclusion” file.

Step1: Use (C1) to get the term (T1) from “Conclusion” file. this term contain “Code”.

Step2: Obtain Conclusion (Code2). And make sure that the updating of the selected Conclusion is allowed.

Step3: If (Code2 <> Code) then: construct a new “Conclusion-Term” (T4), which contains (Code2).

Step4: If Code2 is new conclusion then increment conclusion-counter by one, and insert the new “Conclusion-Term” (T4) into “Conclusion” file.

{else, Code2 is existing in “conclusion” file}

Else, use (Code2) to get the term (T5) from “Conclusion” file. the “Conclusion-Term” (T5) contains “Rule-List” (L1). Update (T5) in the “Conclusion” file by adding (R1) to the list (L1).

Step5: Stop.

Algorithm 3.12 ”Change Operation”

Input: Rule-number (R1), knowledge base files.

Output: Update knowledge base files.

Step1: Use (R1) to get the “Rule-Term” (T1) from “Rule” file. term (T1) contains the “Premise-subsequent-list”(L1), and Certainty-Factor (CF).

Step2: If human expert wants to change Certainty part, then do:

Obtain certainty-value from human expert,

If certainty-value = CF then go to Step3,

Else, update the term (T1) in the “Rule” file, by updating the value of the (CF).

Else, if human expert wants to change “If Part”, then do:

Obtain “IF-Part” from human expert (Premises and the relationships among them).

call algorithm (3.4) to return rule-subsequent-list (L2).

If (L2 <> L1) then save new questions and update term (T1) in “rule” file, by updating the “Rule-Subsequent-List”.

Else, go to Step3.

Else, call algorithm(3.11).{human expert wants to change “Conclusion Part”}

Step3: Stop.

Knowledge Base

Inference Engine

User Interface

Reasoning Under Uncertainty

Control Strategy

Figure (3.4) GADESS Inference engine.

Algorithm 3.13 “Obtain User Answer”

Input: Question.

Output: Certainty-Factor (CF) obtained from end-user, store the fact “explain” in working memory.

Step1: Get the end-user Answer.

Step2: If Answer = “Why”, then:

display explanation, then go to Step1.

{achieve the explanation of Question from the “Question” file}

Else, if Answer = “Yes”, then CF = 1.

Else, if Answer = “No”, then CF = -1.

Else, if Answer = “Yes with Certainty”, then:

Obtain the User-Certainty (CF). Make sure that CF belongs to the range [-1,1].

Else, Answer = “Do not Know”, CF = 0.

Step3: Store the fact “Explain” in working memory. { this fact relates Question with Answer in order to generate “How” explanation.

Step4: Stop.

Algorithm 3.14 “Calculate Compound Certainty”

Input: (CF), (CF2) {certainty factors of two rules}.

Output: the result certainty (CF3) {the result of combining the two certainties}.

Step1: If (CF, CF2) are contradictory(-1, 1), then Cf3=0.

Else, if (CF, CF2) >=0 then: CF3 = (CF + CF2)-(CF * CF2) .

Else, if (CF, CF2) <0 then: CF3= (CF + CF2)+(CF * CF2).

Else, if one is negative, and the other is positive then:

C1=abs(CF), C2=abs(CF2), Min = min(C1, C2),

Cf3 = (CF + CF2)/(1-Min).

Step2: Stop.

Algorithm 3.15 “Achieve Certainty of A Specific Premise”

Input: Premise-Flags (P), working memory.

Output: The result certainty (CF1), and store facts in working memory.

Step1: If (P) is Question, and it is not asked before then: call algorithm(3.13) to get Certainty. Then store the fact “Asked” in working memory. {“Asked” relates the Question with its answer}

Else, (P) is Conclusion then: {this premise is Sub-Conclusion}

If Conclusion is not Diagnosed then: achieve Certainty of this sub-conclusion, store the facts “Diagnosed” and “Explain” in working memory.{these facts relate the Conclusion with its Certainty}

Step2: CF1 = Certainty * F1.

Step3: Stop.

RULE 1= min[Fever(1), Cold(0.94)] * 0.9 CF(R1)=0.846

RULE 2= min[Fever(1), Cough(0.8)] * 0.85 CF(R2)=0.68

Algorithm 3.16 “Achieve Rule Certainty”

Input: Rule-term (T1), OR-CF.

Output: OR-CF.

Step1: T1= Rule(R1, L1, CF).

Step2: While (L1 is not empty)and(OR-CF <>1) do:

Step2.1: Initialize And-CF, remove first element of (L1), call it (H1).

Step2.2: While (H1 is not empty)and(And-CF <> -1) do:

Step2.2.1: Remove first element of (H1) call it (H2), call algorithm(3.15). {get certainty (CF1) of Premise H2}

Step2.2.2: If not(CF1 = -1) then: And-CF = min(And-CF, CF1).

Else, And-CF= -1.

Step2.2.3: End while.

Step2.3: If not(And-CF= 1) then: OR-CF= max(OR-CF, And-CF).

Else, OR-CF= 1.

Step2.4: End while.

Step3: Stop.

Algorithm 3.17 “Diagnose Operation”

Input: “Counter” file, “Conclusion” file, “Rule” file.

Output: Conclusion-Code, Certainty-Factor.

Step1: Get conclusion-counter (C1),

Step2: Term1= Conclusion(C1, Code, Code List, L).

Step3: Initialize Rule-CF.

Step4: While L is not empty do:

Step4.1: Initialize OR-CF, cut the first element of (L), call it (H), Term2=Rule(H, L1, CF),

Step4.2: Call algorithm(3.16). {return OR-CF of this rule}

Step4.3: Call algorithm(3.14). {return the compound certainty (CF1) of (Rule-CF, OR-CF)}

Step4.5: Rule-CF=CF1.

Step4.6: End while.

Step5: If Rule-CF >= 0.5 then: Conclusion-Code = Code, Certainty-Factor = Rule-CF, go to Step6.

Else, if not(C1 = 1) then: decrement (C1), go to Step2.

Else, display message “problem could not be solve”.

Step6: Stop.

Figure (4.1) GADESS task window

Figure (4.2) create a new Arabic knowledge base.

Figure (4.3) acquire human expert knowledge with Arabic interface.

مقطع إذاً

Figure (4.4 -b-) acquire premise “دوالي بطنية”

مقطع إذاً

Figure (4.4 -a-) acquire premise “تضخم الطحال”

مقطع إذاً

Figure (4.4 -c-) full the certainty.

مقطع إذاً

Figure (4.5 -a-), what is the unknown word.

Figure (4.5 -b-) what is the new word.

Figure (4.5 -c-) is there a root for the new word.

Figure (4.5 -d-) the new word after removing all addition letters.

Figure (4.5 -e-) is there a synonym word.

Figure (4.6) obtain the explanation for the three new questions.

Figure (4.7) obtains second premise, conclusion, and certainty of the second rule.

مقطع إذاً

Figure (4.8) obtains the explanation of the new question.

دوالي المريئي

ارتفاع ضغط الوريد البابي

تضخم الطحال

دوالي بطنية

خروج جيري

رائحة نتنة مميزة للكبد

Figure (4.9) show the stored knowledge.

Figure (4.11) Arabic diagnose window.

Figure (4.10) determine a specific Arabic knowledge base to solve a specific problem.

Figure (4.12) chose the appropriate answer for the appeared question.

Figure (4.15) call why explanation for the appeared question.

Figure (4.13) chose the answer for the second question.

Figure (4.14) chose the appropriate certainty.

Figure (4.16) the explanation of “لماذا” question.

جواب السؤال لماذا

Figure (4.17) chose “نعم” to answer the appeared question.

Figure (4.18) chose “لا” to answer the appeared question.

Figure (4.19) the conclusion is appeared in the conclusion window.

Figure (4.20) displays “كيف” explanation.

د. طه سعدون باشاغا

ربيع الأول 1426

د. فينوس وزير سماوي

نيسان 2005

رسالة مقدمة إلى كلية العلوم، جامعة النهرين

كجزء من متطلبات نيل شهادة الماجستير في علوم الحاسوب

من قبل

عبير خالد أحمد المشهداني

بكالوريوس

2002

المشرفون

Dr. Taha S. Bashaga

Rabeea-Awel 1426

Dr. Venus W. Samawi

April 2005

A THESIS

SUBMITTED TO THE

COLLEGE OF SCIENCE, AL-NAHRAIN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SCIENCE

By

Abeer Khalid Al-Mashhadany

(B.Sc. 2002)

SUPERVISORS

Republic of Iraq

Al-Nahrain University

College of Science

Signature:

Name: Venus W. Samawi

Title: Assistant Professor

Date: / / 2005

Signature:

Name: Taha S. Bashaga

Title: Lecturer

Date: / / 2005

Signature:

Name: Taha S. Bashaga

Title: Head of the department of Computer Science, AL-Nahrain University.

Date: / / 2005

Signature:

Name: Venus W. Samawi

Title: Assistant Professor

(Supervisor)

Date: / / 2005

Signature:

Name: Dr. Laith abdul Aziz Al-Ani

Title: Dean of College of Science

Date: / / 2005

Signature:

Name: Jamal M. Kadhaum

Title: Lecturer

 (Member)

Date: / / 2005

Signature:

Name: Taha S. Bashaga

Title: Lecturer

 (Supervisor)

Date: / / 2005

Signature:

Name: Loay A. George

Title: Senior Researcher

(Chairman)

Date: / / 2005

Signature:

Name: Moaid A. Fadhil

Title: Senior Researcher

(Member)

Date: / / 2005

_1175450588

