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Abstract

Stochastic differential equations are one of the most useful areas of

the theory of stochastic processes and its applications in mathematics.

Some nonlinear (It6) * dynamic stochastic control system driven by

Brownian motion  based on dynamic observer have been considered.

Output feedback (observer — based) robust and optimal control law
which guarantees global (local) asymptotic stable in probability for the
nonlinear stochastic dynamic system are discuss and developed. The
necessary theorems regarding the globalty asymptotic stable in the
probability of the equilibrium point at the origin of the closed loop stochastic
system have been developed and proved. The Lyapunov function approach
of stochastic dynamic system has been adapted to justify our proofs.

The inverse optimal stabilization in probability with suitable
performance index has also discussed and developed. The necessary
mathematical requirements have also been provided. Concluding remarks,
future work, computational algorithm based on the theoretical results and

Illustrations have been presented.

! This field of stochastic dynamic is firstly derived and discussed by Kiyosi I1td. In
literatures such a stochastic dynamic.

2 Robert Brown described the motion of a pollen particle suspended in fluid in 1828. It

was observed that a particle moved in an irregular, random fashion.



Introduction

Despite magor advances in robust stabilization of deterministic
nonlinear systems achieved over the last few years and reported in [Krstic,
95],[Freeman, 96] and references therein, the stabilization problem for
stochastic systems is yet to be addressed. While not as refined as their
deterministic counterparts in [Khalil, 96], Lyapunov techniques for stability
analysis of stochastic systems do exist, see, for example, the classical book
of Khas minskii [Kas minskii, 80] (see also [Kushner,67]). Efforts toward
(global) stabilization of stochastic nonlinear systems have been initiated in
the work of Florchinger [Florchinger, 93],[ Florchinger, 95, @, [Florchinger,
95, b] who, among other things, extended the concept of control Lyapunov
functions and Sontag's stabilization formula [Sontag, 89] to the stochastic
setting. A breakthrough towards arriving at constructive methods for
stabilization of broader classes of stochastic nonlinear systems came with
the result of Pan and Basar [Pan& Basar, 96], who derived a robust design
for strict-feedback systems motivated by a risk-sensitive cost criterion, [Pan
& Bernhard, 95], [James, 94], [Nagai, 96], [Runolfsson, 94], (for other types
of optimal control problems, see, eg., [Haussmann & Suo, 95,a] and

[Hussmann & suo, 95, b]).

Stochastic differential equations (SDE’s) constitute an ideal
mathematical model for a multitude of phenomena and processes
encountered in areas such as differential equation, stochastic control, signal

processes and mathematical finance, most notably in option pricing (see for
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example [@ksendal, 98] and [Kloeden & Platen, 92]). Unlike their
deterministic counterparts, SDEs do not have explicit solutions, apart from
in a few exceptional cases; hence the necessity for a sound theory of their

numerical approximation isimportant.

It is well-known that stochastic integrals and [t6 formula play a
central role in modern probability theory and its applications to stochastic

differential equation concerned by Brownian motion.

The theory of 1td stochastic differential equations is one of the most
beautiful and most useful areas of the theory of stochastic processes.
However, until recently the range of investigations in this theory have been,
in our view, unjustifiably restricted: only equations were studied which can,
in analogy with the deterministic case, be called ordinary stochastic
equations. The situation has begun to change in the last 10-16 years. The
necessity of considering equations combining the features of partial
differential equations and 1t6 equations has appeared both in the theory of
stochastic processes and in related areas. [Krylov& Rozovskii, 07]

Despite huge popularity of the linear-quadratic-Gaussian control
problem, the stabilization problem for nonlinear stochastic systems has been

receiving relatively little attention until recently.

In [Deng &Krstic, 97, a] and [Deng & Kiristic, 97, b], they designed
simpler inverse optimal control laws for strict-feedback systems which
guarantee global asymptotic stability in probability and whose algorithms

can be directly coded in symbolic software.
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Some stochastic differential system for linear quadratic stochastic
system (optimal control system) as well as robust controller has been
adapted. Stabilized and optimal controller designer for some modified
nonlinear stochastic dynamic system are derived and modified. The work of
this thesis is to generated of the previous work of the literatures [Hua Deng
&Kirstic, 97], [Hua Deng, 97],[Deng & Kristic, 99], [Florchinger, 93], and
[Florchinger, 95, al.

Based on the previous work, this thesis we design a robust and
optimal control law which guarantees global asymptotic stability in
probability. The design is fully systematic and its algorithm can be directly

coded in symbolic software (for examples Matlab software).

We deal with nonlinear systems in which the equilibrium at the origin
Is preserved even in the presence of noise because the noise vector field is
vanishing at the origin. This means that we exclude linear systems with

additive noise.

Another preparatory comment of potential interest with technical
expertise in robust designs is that the Lyapunov function that we construct is
not of the form V =Y z? but of the formV =Y z* but in our work, the
formV = iy“ + izg;z z} +§(3ZTP3?)2 has been adapted. The quartic form
(fourth-order) is employed in order to handle some special terms in the

Lyapunov analysis which arise due to the some class of 1t0 differentiation

rule system and It0 rule.
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This thesis consists of three chapters. The first chapter deals with the
basic concept of stochastic dynamic system.

In chapter two, the necessary mathematical principles concerning
stochastic integration, 1t0 formula, 1td0 SDE, existence and uniqueness of 1t0

SDEs, as well as some solvable examples have been presented.

In chapter three, two results have presented. First, we design an out
put feedback (observer — based) back stepping control law which guarantees
global asymptotic stability in probability is presented. The stabilizing control
laws which are also optimal with respect to meaningful cost functional are

described. The algorithms and examples are also given.

Future work, concluding remarks, appendixes, and references are

presented.



Chapter One Some Basi ¢ Concepts of Sochastic Dynamic System

This chapter presents basic concepts of stochastic dynamic system
which is divided into three sections, the first one describe the set of algebra,
the second section deals with the random variable while the third section deals

with the stochastic processes and some of its kinds.

1.1 ALGEBRAOF SETS:

The collection of all elementary outcomes of a random experiment is

called sample space and is denoted by Q. In the terminology, the sample
space is termed as the universal set. Thus, the sample space () is a set
consisting of mutually exclusive, collectively exhaustive listing of all possible
outcomes of a random experiment. That is, Q = {w,, w,, ..., w,} denotes the
set of al finite outcomes, Q = {w;, w,, ... } denotes the set of all countably
infinite outcomes, and ,Q0 ={0 <t < T} denotes the set of uncountably
infinite outcomes.

Let Q represent the sample space which is a collection of w-points as
defined earlier. The various set operations are complementation, union and
intersection. Let A and B be two subsets of the sample space ), denoted by
A c Q, B c Q. The complement of A, denoted by A®, represents the set of all

®-pointsnot contained in A, i.e,

A ={w: o ¢ A} (1.1)

Evidently the complement of Q isthe empty set ¢p. The union of sets A
and B, denoted by A U B or A+B, represents the occurrence of w-points in
either A or B. Similarly, the intersection of sets A and B, denoted by A N B or
AB, represents the occurrence of w-pointsinA and B. Clearly, if there is no

commonality of ®-pointsin A and B, then A N B isthe empty set ¢.
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Example (1.1):

Let Q be the w-pointson thereal line R.

Q={w: —0o < w<wx}

Define

A={w: w € (—»,a)}={w:w<a} a€R
B={w: weBc)}={w:b<w<c}b€ER

Then the set operationsyield

A={a < w< o)}

B¢ ={-0o<w<blU{c<w<ow}

{w < a} c<a
AUB =<{w < ¢} b<a<c
{w<alu{b<w<c} a<b
{bh<w<c} c<a
ANB =X{b <w<a} b<a<c
0] a<b

The union and intersection of an arbitrary collection of sets are defined by

Unen A4, ={w: w € A,forsomen € N}
Npeny Ay = {w: w € A, foralln € N}
where N is an arbitrary index set which may befinite or countably infinite.

The union and intersection follow the reflexive, commutative,
associative, and distributive laws.

The complements (U,,ey 4,)€ and (N,ey A,)€ are given by de-

Morgan's laws and as follows:
(Upen4,)¢ = {w: w doesnot belongtoany A,,,n € N}

2
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={w: w¢ A, foraln e N}
= Nnen 4n
(NpenAp)¢ = {w: w does not belong to each and every A,,,n € N}
= {w: w doesnot belong to some A4,,,n € N}
= Unen 4n

Definition (1.1) Sequences [Krishnan, 84]:

A sequence of setsAd,, n€N, is increasng if A,,;, 24, ad

decreasing if A,,,; € A, foreveryn € N.

Remark (1.1) [Krishnan, 06]:

. A sequence which is either increasing or decreasing is called a monotone

sequence, we can write the limits ( N countably infinite) of monotone

Sequences as:
limA, =limA, \
n—oo n
” {4,.} increasing
= U An
n=1
limA, = limA, ( 2.1)
n—oo n
= ﬂ A, {A,.} decreasing
n=1 J

The limit of monotone sequences {A, } is written as A, T A when it is

increasing and A, 1 A when it is decreasing.
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2. We can define a superior limit and inferior limit for any sequence {4,,}
not necessarily monotone. We define subsequences {B,} and {C,}

derived from {A,} asfollows.
B, = supk=nAyx = U Ay
k=n

={w: w belongsto atleast one of A,,Apns1, -}

(1.3
Cn = infiendic = [ | Ax
k=n
={w: w belongsto all Ay except A, A,,...,A_1}

(1.4)
Clearly the sequence {B,,} and {C,,} are monotone decreasing and increasing,

respectively.

Example (1.2):

Let A, be the set of points (x, y)of the Cartesian plane R? where
{0<x<kO0<y<1/k} thais

1
Ak:{X,yERZIOSx<k,OSy<E}

Here {4,} does not belong to the monotone class, while the subsequence

’ 1
Bn:UAk:{(X,y)ERZIOSx<oo, OSy<§}

k=n

Is a decreasing sequence, and hence

[00]

B = lim,B,, = ﬂBn ={(x,y) ER?>:0< x < o0,y =0} = lim sup, A,

n=1
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Similarly,

Cn=ﬂAkZ{(x,y)ERZ:OSx<n,y=O}

k=n

IS an increasing sequence, and hence

C = lim,C, = U C, ={(x,y) € R?>:0 < x < o0,y =0} = lim inf,A,

n=1

Since lim sup,A,, = lim inf,B, ={(x,y) € R>:0 < x < 0,y = 0}, we

have
lim,A, =B =C={(x,y) €ER>0<x <o,y =0}.

Remark (1.2):

We define 9 as the nonempty class of subsets drawn from the sample

space (. We say that the class 9 isafield or algebraof setsin Q if it satisfies

the following definition.

Definition (1.2) Field (Algebra) [Krishnan, 06]:

A class of acollection of subsets A; ¢ Q denoted by 9 isafield when

the following condition are satisfied :

1. If A; € 9,then Af€9,i=12,..,n
2. If{A;,=12,...n}edthenUj-,4; €9 (1.5

Remark (1.3):

Given the above two conditions, de Morgan's law ensures that finite

intersections aso belong to the field. Thus a class of subsetsis a field if and
only if it is closed under all finite set operations like unions, intersection, and
complementation. Since every Boolean algebra of sets is isomorphic to an
algebra of subsets of (2, we can also call the field a Boolean field or Boolean

5
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algebra. Every field contains as elements the sample space  and the empty
set ¢, [Krishnan, 84]
Example (1.3) [Krishnan, 84]:

Let QO = R and consider aclass9 of al intervals of the form (a, b], that

is{x € R:a < x < b}

(¢ when a<b<c<d
| (c,b] when a<c<b<d
(a,b]n(c,d]=4 (a,d] when c<a<d<b
| (¢, d] when a<c<d<b
k (a, b] whenc<a<b<d

Clearly the class 9 is closed under intersection. However,
(a,b]¢ = (—,a] U (b, ) &I
(a,b]uU (c,d] &9 if a<b<c<d

Theclass9 isnot afield.

Definition (1.3) o-Field (6-Algebra) [Krishnan, 06]:

A class of acountable infinite collection of subsets A;  Q denoted by F

Is a o-field when the following conditions are satisfied:

1. If A,€F, then A € F.
2. If {4;,i=12,..} € F ,then UjL;4; € F. (1.6)

In general ac-fieldisafield, but a field may not beac-field.

Definition (1.4) Borel o-Field [Krishnan, 84]:

The minimum o-field generated by the collection of open sets of a

topological space Q is called the Borel o-field or Borel field. Members of this
o-field are called Borel sets.
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Remarks (1.4) [Krishnan, 84]:

1. Clearly the Borel o-field isa o-field, and hence each closed setisalso a

Borel st.
2. The important topological space with which we will be concerned isthe

real line R. The collection of Borel setson thereal line is denoted by R.

3. Each open interval isamember of R. From the relationships
. 1
(av b] = nn_:l (ay b + Z)
o 1
[a,b) = Ny (a - ;,b) 1.7)

[a, b] = ;’f=1(a—%,b+l)

n

4. We find the intervals (a, b], [a, b) and [a, b] are Borel sets. Hence the
Borel field R contains all subsets of the form given above and their
complements, countable unions, and intersections, Each set {b} =
[b, b] = (—o0,b) N (b, ) consisting of asingle point b isin R, and so

are countable unions of single points.

Example (1.4):
Let Q = R and 9 be the class of all intervals of the form
(—o0,a], (b, c], and (d, »):
(b,c]¢ = (—o,b]U (c,®©) €I

(d,0)¢ = (—,d] €9

(_oova]c = (av OO) €Y



Chapter One Some Basi ¢ Concepts of Sochastic Dynamic System

From this example the class 9 is closed under finite intersection. Similarly, it
can be shown that 9 is closed under finite union. Hence the class 9 isafield.

However, for infinite intersections of the form

1

Ney(b—=.c)=1[bc) g9

The class9 isnot ao-field.

Definition (1.5) Measurable space [Stirazker, 05] :
A suitable model of the random experiment is therefore a sample space
Q and a o-field Fof subsets of Q. The space (Q, F) thus created is called a

measurabl e space.

Remarks (1.5) [Krishnan, 84], [Stirazker, 05]:

1. Eventsare defined asthe subsets of ) which are elementsin the o-field.

2. In particular, Q is called the certain event.

3. If two events A and B satisfy An B = ¢, then they are said to be
digoint.

4. The complement Q€ is an event called the impossible event, which we
denote by Q¢ = ¢, the empty set.

S. If {4;,i=1,2,...,n} isaclass of digoint sets of QO such that U™, 4; =
Q then the {4; } collectively exhaust ().

Definition (1.6) probability measur e [Krishnan,06] :

A probability measure is a set function P defined on ao-field F of subsets
of a sample space Q) such that it satisfies the following axioms of Kolmogorov

forany A € F:

1. P(A) =0 (nonnegativity)
2. P(Q) =1 (normalization) (1.8)
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3. P(Usp-14,) =27-1P(4,) (c-additivity )
Whit A, € F,and A; and A; being pairwise digoint.

It isalso called probability distribution.

Remarks (1.6):

1. Any set function p defined on a measurable space (2, F) satisfying
axioms 1 and 3 of definition (1.6) is called a measure, and a probability
measure is a normed or scaled measure because of axiom 2.[Krishnan,
84]

2. Any bounded measure with suitable normalization can be converted
into a probability measure.[Krishnan, 84]

3. If u(A) isfinitefor each A € F, then p isafinite measure. However, if
H(A)=co but if there exists a sequence {A,,} of membersof F such that
A c Uj_; A, and u(4,,) isfinite for each n, then p isao-finite
measure, The triplet (Q, F, 1) is called a measure space, The measure
space (2,F, P) is called aprobability space.[Krishnan, 84]

4. The probability space serves to describe any random experiment where:
I Q is nonempty set called the sample space, whose elements are
the element outcomes of a random experiment,
ii.  Fisano-field of subsetsof Q.
lii. P is a probability measure defined on the measurable space
(Q,F). [Stirzaker, 09]

Lemma (1.1) Sequential Monotone Continuity [Krishnan, 84]:

Let {A, } be amonotone decreasing sequencein F such that

Apii € Ay, andlet lim, A, = ¢ . Then
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lim,,p(4,) =0 (1.9)

The probability measure is said to satisfy the sequential  monotone
continuity at ¢.

Proposition (1.1) Sequential Continuity [Krishnan, 84]:

Let {A, } be aconvergent sequence of eventsin F , with
lim, o Ay = A .
Then
lim,_,., P(4,)= P(lim,_, A,) = P(4) (1.10)

The probability measure is sequentially continuous.

Proof :

1. If A= ¢, thenthisisexactly Lemma (1.1).
2. If A is nonempty set and {4, } is a monotone sequence, 4, 1 A,
(figure 1.1)

P(A,)) =P(4,—A +A)=P(4,, — A)+P(4)
Since (4, — A) and A aredigoint. If A, TA (figure 1.2)
P(A)=P(A —A+A,)=P(A)—P(A—-A4,)
In either case lim, (A, —A ) or lim, (A — A,,) decreases to g, and by

lemma 1.1 the result follow.

3. If {4,} is not a monotone sequence, then {B,=supgs,Ax} and
{C,, = infi-,Ax} ae monotone decreasing and increasing
sequences, respectively, from equation (1.3) and (1.4). Therefore
B,2A,>C,and B,lAandC, T A.

10
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S

Figure (1.1) (in two dimension)

Figure (1.2) (in two dimensional space)

11
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1.2 RANDOM VARIABLE [Krishnan, 84].[Stirzaker, 05]:

An important class of functions is the measurable functions which are

different from the measure functions u, whereas measure functions are set

functions, measurable functions are invariably point functions.

Definition (1.7) Measurable Function [Krishnan, 84]:

Let (Q,,F;) and (Q,, F,) be two measurable spaces. Let g be afunction

withdomain E; c Q; andrangeE, c Q,

g:-Qy =,
g is caled an F,-measurable function or an F,-measurable mapping if for
every E, € F,
97 (E) ={w: g(w) €EE} 2 E, (1.11)

isin the o-field F;.

Remarks (1.7) [Krishnan, 84]:

1. If g is measurable with respect to the o-field F of sets that are P-
measurable, then we might also say that g is P-measurable if there is
no confusion.

2. The set E; given by g~1(E,) is called the inverse image or inverse
mapping of E,, and it is measurable set.

3. Inverse mappings preserve all set relations.

Definition (1.8) Random Variable [Stirzaker, 05]:

Measurable space consisting of the real line R and o-field of Borel
setsR. Let the probability measure P be defined on (2, F). The measurable
mapping X from (Q, F) into (R, R) iscalled areal-valued random variable.

12
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Remarks (1.8) [Krishnan. 84]. [Stirzaker, 05]:

1. Naturally, the probability measure P induces a probability measure Py
in the space (R, R). If E, € R,then
Px(E;) = P(X"Y(E,)) = P(E;) = P{w: X(w) € E,} (1.12)
Equation (1.12) related the probability measure Py in (R, R) to the
probability measure P in (Q, F). Instead of writing P{w: X(w )€ E,},
we shall have the abbreviated notation P{ X € E,}.

2. If Q isametric topological space, then F is the o-field of all Borel sets
of Q. Then a function g mapping Q. — R is a Borel function if for
every E, € R, g 1(E,) isaBorel set of Q. Since Borel sets of Q are

measurable by assumption, every Borel function is F-measurable.

Example (1.6) [Evans, 06]:
Let A € F, then the indicator function of 4,

e ifw €A
XA(‘“)_{O ifogAdorQ—A

(1.13)

is arandom variable.

1.2.1 Borel—Cantelli L emma [Evans, 06], [Krishnan, 84] :

We introduce next a ssmple and very useful approach to check if some

sequence A4, ..., 4, ... of events“occurs infinitely often”.

Definition (1.9):

Let A,,..,4,,.. be a sequence of events in a probability space
(Q,F, P), Then the event

ﬂ U A,, = {w € Qlw belongs to infinitely many of the A, },
n=1
m=n

iscalled “ 4,, infinitely often”, abbreviated “A4,,i.0.".

13
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Lemma (1.2) Borel—Cantelli:

If £y P(Ap) < oo, then
P(4,i.0.)=0 (1.14)

Remark (1.9):

In applications, Borel-Cantelli Lemma is a very important technique;

and will be needed to the guarantee the existence of unique solution of
stochastic differential equations as one can see this fact later on chapter two.
The following results are needed later in chapter two.
A sequence of random variables {X,};-, defined on some probability
Space converges in probability to arandom variable X, provided
lim,_ P(|X;, —X|>€)=0 for each e > 0. (1.15)

Theorem (1.1)[Krishnan, 06]:

If X,— X in probability, then there exists a subsequence
{ij}j'o=1 < {Xicti=1
such that
Xk].(w)—>X(w) for amost every w. (1.16)

1.2.2 Distribution Functions[Evans, 06], [Hsu,97] :

Let (Q, F, P) be aprobability space and suppose X: Q — R™ random
variable, in this section some additional concepts about basic statistical

definitions and properties of the distribution function are considered.

Definition (1.10) distribution function:

(i)  Thedidribution function of X isthefunction Fy:R™ — [0,1]
defined by

14
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Fy(x) = P(X <x) foralxeR" (1.17)

i) If Xy, X5, ..., X, Q - R"arerandom variables, their joint

FX1 ’’’’’ Xm(xl, ,xm) = P(X1 < X1y ,Xm < xm) (118)

foral x; e R"i=1,..,m.

Definition (1.11) density function:

Suppose X: O — R™ isarandom variable and F = Fy itsdistribution

function. If there exists a nonnegative, integrable functionf: R™ — R such that

F(x) = Flxg, o xy) = f f O Vo Y)Y oy (1.19)

Then f is called the density function for X.
It follows then that

P(X € B) = f f(x)dx  forallBeB (1.20)
B

Thisformulaisimportant as the expression on the right hand sideisan

ordinary integral, and can often be explicitly calculated.

Remark (1.10):
If the probability distribution function is differentiable, then we obtain

the probability density function f (x)
dF(x)
dx

flx) = (1.21)

Example (1.7)[Evans, 06]:
If X: Q — R™ has dendity

15
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1 1 -1
(x) = e 2CmET M (g e
f ((2m)"det )/ ( )

for some m € R™ and some positive definite, symmetric matrix C, we say
X has a Gaussian (or normal) distribution, with mean m and covariance matrix

C. Wethen write X isan N(m,C) random variable.

Remark (1.11) Right continuous [Krishnan, 84]:

Functions are those functions for which

F(x) = lim. oF(x + €) Similarly left continuous functions are those

functionsfor which F(x) = lim,oF (x — €)

We now show how the concept of distribution function is related to
the concept of measure. Let the measure space be (,F,1), where Q = R the
rea line, F isthe o-field of Borel sets on the real line, and p is a finite

measure. Let k be any point in R, we define afunction F, as

—u(x, k] x<Kk
Fr(x)=¢ 0O X=Kk (1.22)
u(k,x] x>k
Clearly
F,(b)— Fy,(a)= p(a,b] for a<b (1.23)

and since p is ameasure with u(a, b] the function isincreasing. Further
limpia+[ Fie(b) — Fr(a)] = limyyqy p(a, b] = p() =0 (1.24)
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1.2.3 Expectation of Random Variables:

Let (Q,F,P), be a probability space. The expectation of a random
variadble X is usually defined by the Stieltjes integral

EX = f OOXdF(x) (1.25)

Definition (1.12) Expectation [Krishnan, 84]:
Let(Q,F,P), be a probability space, and let X be a rea random
variable. The expectation of X is defined by

EX = f X(w)dP(w)  or f x dP (1.26)
Q Q
Remark (1.12):

There are some properties of expectation operation, such as:

1. Linearity: E(aX + bY) = aEx + bEY for al constantsaand b.
2. Homogeneity: E(cX) = cEX for constant c.

3. Order preservation X > Y impliesEX > EY.

Lemma (1.3) [Evans, 06]:

Let X:Q — R™ be arandom variable, and assume that its distribution
function F = Fyx which has the density function. Supposeg: R™ — R, and
Y = g(X) isintegrable. Then

EY)=| g()f(x)dx.
Rn

17
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In particular,
E(X) = f xf (x)dox 1.27)
Rn
and
V(x) = f Ix — EQO () dx. (1.28)
Rn

Example (1.8) [Evans, 06]:
If X is N(m, o?), then

E(X)=m
and
V(X) = o2

Lemma (1.4) (Chebyshev' sinequality) [Krishnan, 06]:

If Xisarandom variableand 1 < p < «, then
P(IX| 2 ) < - E(IXIP)  forallA>0, (1.29)

Proof:

E(IXIP) = leIde > f IXIP dP = APP(IX| = 2).
O (xi=2}

1.2.4 Martingales :

Now supposeY;,Y,, ... are independent real-valued random variables, with
E(Y))=0 (=12...).

Definethesum S, == Y, + -+ Y,
The best guess of S, given the values of S, ..., S,. Is coming from the

following fact

18
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E(Sn+k|51' vSn) = E( Yl + e+ Ynlsly ySn)
+E(YTl+1 + -+ Yn+k|511 ySn_)

=Y+t VY +EW + o+ V)

n:

Where E(Y,, 4 + -+ Y,,;) = 0.

Definition (1.13) [Evans, 06]:
Let X(.)be a real—valued stochastic process (as we define later in
section (1.3)). Then
U(t) == UX(s)|0 <s <t), (1.30)
the g-algebra generated by the random variables X(s) for 0 <s <t, iscalled

the history of the process until (and including) timet > 0.

Definition (1.14) [Evans, 06]:
Let X(.)be a stochastic process (as define later in section(1.3)), such

that
E(IX(1)]) < oo for al t >0.

G If
X(9) = E(X(t) |U®®) asforalt>s>0, (1.31)

then X (.) iscalled amartingale.

(i) I
X(s) < E(X(t)| U(s)) a.s foralt>s>0, (1.32)
X(.) isasubmartingale.
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Remark (1.13):
Example of martingae can be found in section three when the

Brownian motion is define.

Theorem (1.2) (Martingale inequalities) [Krishnan, 84]:

Let X(.) bea stochastic process with continuous sample pathsa.s.
(i) If X(.)isasubmartingale, then
P(max,<secX(s) 2 1) SZEX(t)*) forall 2> 0,620, (1.33)

(i) IfX(.)isamartingaleand1 < p < o, then

p \P
E(maxoss X (9)IP) < () EAX @), (1:34)

1.2.5 | ndependence :

Definition (1.15) Independence [Hsu, 97]:
i. Let (Q,F,P), be aprobability space and let A,B € F . The events
Aand B are independent (denoted by A L B) if
P(AnB) =P(A)P(B)
ii. n events A, A,,..,A, ae independent if for any subset

{kqi ks, ... k. }wherer=1,2,...,n

P (ﬁAki) = ﬁP(Aki)
i=1 i=1

Remark (1.14) [Krishnan, 84]:
Let (Q, F, P)be aprobability space, let F,be asub o-field of F, and let

X be an integrable rea—valued random variable . The conditiona
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expectation of X relative to F;is an integrable F; -measurable random variable
E(X\F,) or EF1X, such that for everyA € F,,

f E(X\F))dP = ! ET1XdP = f XdP (1.35)

A A

1.2.6 Convergence of Random Variable

The convergence of random variable and their kinds are of our interest

and then submitted as follows:

Definition (1.16) Almost Surely Convergence [Krishnan, 06]:

A sequence of random variables { X,,} converges aimost surely (a.s.), or
almost certainly, or strongly, to X if for every o-point not belonging to the
null event A,

limy, | Xpn(w) — X(w)| =0 (1.36)
This type of convergence is known as convergence with probability 1 and is
denoted by

X (0)nsco — X()
or

X(w) = limy 0 Xn(w) (as.)

Remark (1.15) [Krishnan, 84]:

If the limit X is not known a priori, then we can define a mutua

convergence almost surely. The sequence X, converges mutually almost
surely if

Supmznlxm - ann_)ooﬁ 0

Both definitions are equivalent.
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Definition (1.17) Convergence in probability [Krishnan, 84]:

A sequence of random variables {X,,} converges in probability to X if
for every e >0, however small,
lim, . p(X,, — X| = €)=0, or

lim, . p(|X, — X| < €)= 1, Itisdenoted by

Lip.
X (@)nosco — X(), OF
X(@)= L.i.p-nsoo Xn (o)
(where l.i.p.is standing for limit in probability)

Remarks (1.16) [Krihsnan 06]:

The concept of convergence in probability plays an important role in the

consistency of estimators and the weak law of large numbers. We give next

some results concerning this concept.

i. If asequence of random variables {X,,} converges aimost surely to X,
then it converges in probability to the same limit. The converse is not
true. However, the following is true.

ii. If {X,,} converges in probability to X, then there exist a subsequence
{X i} of {X,,} which converges amost surely to the same limit.

iii.  {X,,} Converges in probability if and only if it converges mutually

in probability.
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1.3 STOCHASTIC PROCESSES:

Let (Q, F,P ) be a probability space. Let T be an arbitrary indexed
parameter set called the time set. T can be the real line R, the postive real
lineR™, the set of positive integers N, or any semiclosed interval in Ror R™,
unless otherwise specified. We shall assume that T is a semiclosed time

interval in R*. Sometime we will explicitly state that Tisin R*.

Definition (1.18) Stochastic Process [Krishnan, 84]:

Let (Q, F, P ) be acomplete probability space and let T be any time set.
Let (RR ) be ameasurable space, where R isthereal line and R is the 5-field
of Borel sets on the real line. A stochagtic process {X;,t € T} is a family of
random variables defined on the probability space (2,F, P ) and taking values
in the measurable space (R,R).

Remarks (1.17) [Krishnan, 06], [Pritchard, 01]:

1. The probability space (Q,F,P)is cdled the base space and the
measurable space (R, R) the state space.

2. Foreacht € T, the F-measurable random variable X, iscalled the state
of the process at timet.

3. For each o € Q the mapping t — X, (t) define on T and taking values
in Riscaled asample function.

4. If the time set T is N, then the stochastic process {X,,t € T} becomes
{X,,,n € N} and is called adiscrete stochastic process.

5. If thetime set T isRor RT, then the stochastic process is a continuous
one.

6. We are concerned with continuous-time, real-valued stochastic
processes (X;)o<t<o- These may be thought of as random function for

each outcomes of random element, we have a real-valued function of a
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real variablet. These possible outcomes (functions) are called

realizations or sample paths.

Example (1.9) [Pritchard, 01]:

1. Random walk (one step up or down, with probability 1/2 for each, at
each integral time), with linear interpolation.

2. Brownian motion.

Proposition (1.2) [Krishnan,84]:

Let {F; } be a compatible family of finite dimensional distribution
functions with al finite T,, c T. Then we can always construct a probability
space (Q, F,P) and a stochastic process{X,,t € T} such that the stochastic

process has the given finite dimensional distribution.

Definition (1.19) (covariance matrix) [Raphael,72]:

Consider a vector-valued stochastic process W (t). Then we call
m(t) = E{W ()}

the mean of the process,

Ry (ty, ty) = E{[W (ty) — m(t)][W (¢2) — m(t,)]"} (1.37)
The covariance matrix, and

Cw(ty, t;) = E(W (t)WT (t,)}
(1.38)
Is the second-order joint moment matrix of W (t). Ry, (t,t) = Q(t) istermed
as the variance matrix, while

Cu(t,t) = Q(t) (1.39)
Is the second-order moment matrix of the process.
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Remarks (1.18) [Raphael, 72]:

1. Thejoint moment matrix written out more explicitly is

Cw(ty, t2) =
E{wi(t)wy(t2)} .. E{w (t)wn(ty)}
E{W (t,)WT(t,)} = E{Wz(tl?wl(tz)} . E{Wz(tl):wm(tz)}
Efw, ()W, (6)} - E{wi (t)wi(£)}
(1.40)

2. Each element of C,,(t;, t,) isascalar joint moment function. Similarly,

each element of Ry, (t,,t,) isascalar covariance function.

1.3.1 Classes of Stochastic Processes:

In this subsection we shall consider several types of stochastic process

and discusstheir properties.

Definition (1.20) stationary process [Hsu, 97]:
Let { X; , t € T} be a stochastic process with time set T defined on a
probability space (2, F,P)taking values in the state space (R, R). Let

T, ={ty. t,, ..., t,,} be any finite set of values belonging to T. Then the
process is strictly stationary or stationary if for any At the joint distribution
of the sequence {X (t,), X(t,), ..., X(¢,,)}is the same as the joint digtribution of
{X(t; + At), X(t, + At), ..., X(t,, + At)}or any positive integer n.

Definition (1.21) Wide Sense Stationary [Krishnan, 84]:

A real stochastic process X;,t € T, iswide sense stationary or covariance

stationary if :

1. EX? < .
2. U, = EX, aconstant.
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3. Cx (t—9 = E{(X;- W(Xs- 1)} depends only on the time differencet —s

and not on either t or s.

Remark (1.19):

The strict sense stationary of definition (1.20) implies wide sense

stationary of definition (1.21), but the converse is not true,[ Krishnan, 84] .

Example (1.10) [Krishnan, 84]:

Let us consider a stochastic process consisting of a sequence {Xi, Xa,...}

of independent identically distributed random variables with mean p and

variance o>

. The autocovariance oy( h )=c28y , where h is the lag and & is
the kronecker delta. Clearly this process is wide sense stationary according to

the definition.

Example (1.11):
Let us define the random signal:
x(t) = a sin(0.5t + 0)

Where « is apositive random variable with mean 0.63 and variance 0.11, 6 is
uniformly distributed between 0 and 2r, and a and 6 are uncorrelated.

wherethe p.d. f of uniformly distribution is

0 e.w

The mean of thisrandom signal is calculated as:
E[x(t)] = E[a sin(0.5t + 9)]

= E(a) [, " sin(0.5t + 6) —do

= (0.63) ; "[sin(0.5t) cos(6) + cos(0.5t) sin (6)] - do
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. sin (0.50) [ . 2, €0s (0.5t) 2m
= (0.63) [—m [ sinf| e [cosGlO]

=0.
The correlation function of thissignal iscalculated as:
R, (tq,t;) = E[x(t1)x(t1)]

21
= %E(az)f [sin{0.5(t, — t,) + 260} + sin{0.5(t, — t,)}] %d@
0

2T
= 1 E(a?) f [{sin0.5}(t, — t;) cos(20)
4 .

+ c0s{0.5(t,t,)sin (20)} sin{0.5(t, — t;)}] d6

= —E(a?)

. 2T
4ln [sm (0'52(: — tl))f cos(26) db
0

2T 2T
cos (0.5(t, — t sin (0.5(t, — t
4 (0.5(¢, 1))[ sin(26) 6 + (0.5(¢, 1))[ 40
2T 2T
0 0

= 0.20 cos (0.5(t, — t;))

The mean is independent of time, and the correlation function depends only
on time difference (t, — t;), so this random signal is wide sense stationary.
This result is reasonable since there is no preferred time if the phase is

uniformly distributed from O to 2.

Definition (1.22) I ndependent I ncrement Process [Krishnan, 06]:

A stochastic process {X,,t € T} define on the probability space
(Q,F,P) is an independent increment process if for any collection
{ti, ty, ..., t,} c T satisfying t; <t, <--<t,the increment of the
processX;, (Xe, — X¢, ). (Xe, — X¢,), . (Xe, —Xe, ) a@e a sequence of

independent random variables.
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1.3.2 White Noise:

The following definitions are needed to complete understanding white

Nnoise;

Definition (1.23) (Spectral Density) [Krishnan, 84]:

Let {X;,t € T, T = (—o0,)} be a quadratic mean continuous wide sense

stationary process defined on the probability space (Q, F,P) with
autocorrelation function R(zr) = EX,..X, belonging to the space L?. The
power spectral density function S(v) is defined as the Fourier transform of the

autocorrelation function R(t) given by

S) = f R(1)e—/2mt gy (1.41)

and the inversion of S(v) given us

[00]

R(z) = f S(v) e~I2mv gy (1.42)

Since R(7) is nonnegative definite, S(v) is also nonnegative definite, and
since R(7) is square integrable, S(v) is also sguare integrable. The average
energy contained in the process X, is given by R(0) = EX?, and hence from
equation (1.41)

[00]

EX? = f S()dv (1.43)

—00

Definition (1.24) (Delta Function) [Krishnan, 84]:

A delta function belongs to a class of generalized functions whose

effect on a continuous function of rapid decay ¢ (.) under an integral is given

by

f $(5(0)dt = $(0)
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The function ¢ (t) is said to belong to a class of test functions of rapid decay.
Delta functions are somewhat |oosely defined by

lima_)oé f (2) = limy...bf(bt) = 8(t)

Where f(t) is a function satisfying the requirement f_oooof(t)dt =1 The
definition is indeed useless without defining the limiting operation since
limg_o(1/a)f(t/a) or lim,_.bf(bt) does not converge in any accepted
sense to the delta function. We define the limit in equation above to be the

delta function in the sense

limg_., fm O f (2)at = 4(0)

limy oo f $(D)bf(be)dt = p(0)

Where ¢(t) belongs to the class of test functions of rapid decay. We are

tacitly defining delta function only inside an integral and not out side it.

White noise [Raphel, 72]::

One frequently encounters in practice zero-mean scalar stochastic
process X with the property that X(t,) and X(t,) are uncorrelated even for

values of |t, — t;| that are quite small, that is,
Ry(t,, t;) =0 for |t, —t | > ¢ (1.44)

where ¢ is a small number. The covariance function of such stochastic

processes can be idealized as follows:
Ry(t,, ty) =V (t)6(t, — ty), V(t,) = 0. (1.45)

Here 6(t, — t,) is the delta function and V (t,) is referred to as the intensity

of the process at time t. Such processes are called white noise processes. We
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can of course extend the notion of a white noise process to vector-valued

process.

Definition (1.25) (white noise process) [Raphael, 72]:

Let X(t) be azero mean vector-valued stochastic process with
covariance matrix
Rx(ty, t1) = V(t,)6(t; —ty) (1.46)
where V(t;) = 0.
The process X(t) isthen said to be a white noise stochastic process

with intensity V (t).

White noise differential equation [Krishnan, 84]:

We now investigate the problem of a differential equation driven by
white noise. Suppose we are given the differential equation in the following
form:

dy,
d—tt = a(t)Y, + ()X, teT,yY, (1.47)

Where Y, isthe initial condition and X; is a white noise process, Y, is the
initial condition. Presented in the form (1.47) cannot be interpreted as an
ordinary differential equation without making assumptions on differentiability
and separability of Y, and X;, even if X; is not white but some other quadratic
mean continuous random process. Instead of interpreting this equation as a
differential equation, we can interpret it as an integral equation without
worrying about these assumptions. We interpret the stochastic process
{Y,, t € [a,b)} with E|Y, | < o as the solution to the differential equation
(1.47) if it satisfies the following integral equation:

t t
Y, =Y, +f a(s)Y,ds +f B(s)dZ, a<t<b (1.48)
a a
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Where Z, is the process of orthogona increment associated with the white
noise process X,,Y, is the initial condition satisfying E|Y, |? < o, and a(t)
and B (t) belong to aclass of square integrable functions.
The above integral equation can also be written as
ay, = a(t)Y.dt + p(t)dZ, a<t<hbh, Y, E|Y,|? <o
We have more to say about these differential equations when we discuss 1t6

stochastic differential equations.

1.3.3 BROWNIAN MOTION:

Next we define a Brownian motion process assuming that the time set

T = R*or any interval [0, a], a> 0.

Definition (1.26) Brownian motion [Krishnan, 06]:

Let (Q,F,P) be a complete probability space. The stochastic process
{X;,t € T} defined on (Q, F,P) is a Brownian motion process with parameter

o2 if

1. Wy(w) =0.

2. {X.} isadationary independent increment process.

3. For every s and t, s < t, belonging to T the increment W, — W, are
Gaussian distributed with mean zero and variance o2(t — s).

4. For dmost all w € Q the sample functions t - W (w) are uniformly

continuousin theinterval T.

With the definition given above we shall now drive the auto covariance
function C,, (t, s).
For t > s.
Cw(t,s) = EW W, = E(W, — W, + W)W,
= E(W, — W)W, + EW?
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= EW? from 2
= o?s from 3
Similarly, fort <s, C,(t,s) =c?t. HenceC,(t ,s) = c?(t As), where

t As = min{t, s}.

Remark (1.20) [Stirzaker, 05]:

If 6> = 1, thenW(¢) is said to be the standard Brownian process

(standard Wiener process).

Example (1.12) [Evans, 06]:

Let W(.) be a 1-dimensional Brownian motion (wiener process), as
defined later. Then
W (.) isamartingale.
To seethis, write W(t) := U(W(s)|0 < s < t),andlett>s. Then
EW@®)IW(s)) = EW () — W(s)IW(s)) + E(W(s)IW(s))
=E(W(@) —W(s)) + W(s)
=W(s) as

1.3.3.1 Computation of Joint Probabilities [Evans, 06]:

From the definition if W (.)isaBrownian motion, then for all t > 0

and a <b,

Pla<WwW(t) <b) = _g dx (1.49)

1 b
Vot la €
since W (t) isN(O, t).

for more details see [Evans, 2006].

Example (1.13) (Geometric Brownian Motion) [Ross, 83]:

If {X;,t = 0} is Brownian motion, then the process{Y;,t > 0}, defined
by
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Yt(t) = ex(t)’
is called geometric Brownian motion.
Since X (t)is normal with mean 0 and variance t, its mean and variance are

given by

E[Y,(t)] = E[eX®] = ¢72
var(Y,(t)) = E[Y*(t)] — (E[Y(1)])*

— E[er(t)] — et

Example (1.14) (Brownian Motion Reflected at the Origin) [Ross, 83]:
If {X(t),t = 0} is Brownian motion, then the process {Z(t),t = 0},

where
Z(t) = |X(b)], t=0
Is called Brownian motion reflected at the origin.

The distribution of Z(t) iseasily obtained. For y > 0,
P{z(t) <y} = P{X(t) <y} - P{X(t) < —y}

=2P{X(t) <y}—-1
— 2 (Y _-x%/2tg, _
= mf_oo e dx — 1,

Where the last equality follows since X (t)is normal with mean 0.

The mean and variance of Z(t) are easily computed and

E[Z(t)] =/ 2t/m

var[Z(t)] = (l - 2) t.
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Remark (1.21) [Evans, 06]:

1. Fix a point x, € R™ and consider then the ordinary differentia

equation:

X@®)=b(x(@®) (=>0)

X0) = 1, } (ODE) (1.50)

where b: R™ — R"is a given, smooth vector field and the solution is

the trgjectory X(.): [0, ) - R™,

2. X(t)is the sate of the system a time t=>0,

. d
X(t) = Ex(t) (1.51)

In many applications, however, the experimentally measured
trgectories of systems modeled by (ODE) do not in fact behave as
predicted.

Hence it seems reasonable to modify (ODE’s), in such away to include

the possibility of random effects disturbing the system. A formal way to do so

isto write:
X(®) = b(X(®) + B(X(®)£(®) (¢>0) } (152)
X(0) = x,,

Where B: R™ —» M ™™ (=gpace of n x m matrices) and
¢(.) == m-dimensional “white noise”.
This approach presents us with these mathematical problems:

1. Definethe “white noise” ¢(.) aswe define.
2. Define what it meansfor X(.) to solve (1.52).
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3. Show (1.52) has a solution, discuss unigueness, asymptotic behavior,

dependence upon x,, b, B, etc.

Some Heuristics:

Let usfirst study equation (1.52) inthecasem=n, x,=0,b =0, and B
= |. The solution of (1.52) in this setting turns out to be the n-dimensiona
Wiener process, or Brownian motion, denoted by W(t). Thus we may
symbolically write

W()=¢(), (153)

Thereby asserting that “ white noise” is the time derivative of the Brownian

motion.

Now return to the general case of the equation (1.52), write % instead

of the dot, yielding:

dXx dw

%= b(X(t)) +B(X(t))#, (1.54)
and finally multiply by “dt”:
dx(t) = b(X(t)) + B(X(t))dW(t)} (SDE) (L55)
X(O) = X0, .

This expression, properly interpreted, is a stochastic differential equation
(abbreviated by SDE). We say that X(.) solves the (SDE) provided

X(t) = xo + [, b(X(s))ds + [ B(X(s))dw  forall timest > 0. (1.56)

Now we must:
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1. Construct W (t).
2. Define the stochastic integral .
3. Show that equation (1.56) has a solution, etc.
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Chapter Two Stochastic Differential Equations

2.1 Stochastic Integral:

It is well-known that stochastic integrals and 1t6 formula play a central
role in modern probability theory and its applications in stochastic differential

equation concerned by Brownian motion, etc.

This chapter concerning the most necessary mathematical principles
discussing stochagtic integration, 1t0 formula, 1t6 SDE, existence of a unique

solution of 1td6 SDEs, aswell as some solvable examples.

Now, we shall define the integral

T
I(T) = f F(Odw(t) @.1)
0

Where w(t) isaBrownian motion and f(t) is a stochastic function, and

study its basic properties. One may define

T
I(T) = FTYw(T) - f FOWE)dt
0

If f isabsolutely continuousfor each w. However, if f isonly continuous, or

just integrable, this definition does not make sense [Friedman, 75].

Remark (2.1) [Friedman, 75]:
Since w(t) (the Brownian motion) is nowhere differentiable with
probability 1, the integral (2.1) cannot be defined in the usual Lebesgue-

Stieltjes sense.
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Chapter Two Stochastic Differential Equations

The following definitions are needed to later on:

Definition (2.1) Separable Process [Krishnan, 84]:
Let{X;,t € T} be stochastic process defined on (£, F, P) with time set

T € R. Let K be any closed subset in R, and let I be an open interval in T.
Then the process{X;,t € T} is separable, relative to the class of all closed
sets K inR, if there exist a countable subset S ¢ T and an w-set A of
probability O such that the two w-sets

{w: X, (w) EK, t€INT}
{w: X, (w)EK,teINS}
differ by A.

Remark (2.2) [Krishnan, 06]:
The countable set S c T is called a separating set or separant. What

the definition implies is that if {X;,t € T}is separable, then every set of the
form {w: X,(w) € K,t € I n T} differs from the event {w: X,(w) € K,t €
I NS} by the null set A and can be made an event by completing the
underlying probability space.

Example (2.1):
The process X; defined by

_fM w=t, teT
Xt(w)_{O w#t

We cannot assert that P{X;, =0, t €T } =1 because we cannot find a

separating set.
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Chapter Two Stochastic Differential Equations

Definition (2.2) Measurability, [Doob, 53]:

A stochastic process {X;,t € T} defined on a probability space
(Q,F,P) with a time set T is a measurable process if for all Lebesgue
measurable sets B belonging to the o-field L(T) generated by Lebesgue
measurable sets the mapping (t, w) — X;(w) isameasurableon T x Q with
respect to the product o-field L(t)®F, that is,

{(t,®): X,(w) € B} € L(t)®F (2.2)

Theorem (2.1) [Doob, 53]:

Let {X;,t € T}be a measurable stochastic process with respect to the
product o-field LQF. Then

1. Almost all sample function of this process are Lebesgue measurable
functionof t €T.
2. If EX;(w) exists for al t €T, then it also defines a Lebesgue

measurable functionof t € T.

3. If AisalLebesguetimesetinT and if fA E|X,| dt < o, then amost all

sample functions X;(w) are Lebesgue integrable on the set A, that is,

f |X: (w)]dt < o0, for almost all w
A

Since the value of an absolutely convergent integral is independent of

the order of integration, we have

f EX,(0)dt = E f X, (w)dt 2.3)

A A
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Chapter Two Stochastic Differential Equations

Definition (2.3) Increasing o-field or Filtration o-field [Krishnan, 06]:

Let(Q, F) be a complete measurable space and let {F,,t € T,T = R*}
be a family of sub- o-field of F such that fors < t, F, ¢ F;. Then {F.;} is
called an increasing family of sub- o-field on (Q, F) or the filtration o-field
of (Q, F).

Remark (2.3):
F, iscaled the o-field of events prior to t. If {X;,t € T} is astochastic

process defined on (Q, F, P) then clearly F, given by
Fr=o0{X;,s <t teT} (2.4)

Isincreasing.

Definition (2.4) Adaptation of {X,}, [Krishnan, 84]:
Let {X,,t € T,T = R*} be a stochastic process defined on probability
space (Q, F,P) and let {F,,t € T,T = R*} be afiltration o-field. The process

{X.} is adapted to the family {F,}, if X; is F,-measurable for every t € T, or
ETtX, = X, teT

Remarks (2.4) [Krishnan, 06]:

1. E¥t represents the conditional expectation.

2. F.-adapted random processes are aso F;-measurable and
nonanticipative with respect to the o-field F;.

3. If F; isthe o-field by{X;,s < t}, then clearly the process {X;,t € T}
is adapted to the family {F,,t € T}, which is called the natural

family or natural filtration of the process {X,}.
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Chapter Two Stochastic Differential Equations

2.2 Approximation of functions by step functions:

We shall call a stochastic process also a stochastic function.

Let w(t), t = 0 be Brownian motion on probability space (Q,F, P).
Let F.(t = 0) be an increasing family of o-fields, i.e, F; < Fpif t; <t,,

suchthat F, ¢ F, F(w(s),0 < s <t)isin F,, and
Fw@A+t) —w(t),A=0) isindependentof F,

for all t > 0. One can take, for instance, F; = F(w(s),0<s <t). Let
0 < a<p <oo. A gochastic process f(t) defined for a <t < f iscaled a

nonanticipative function with respect to F; if:

(i)  f(t) isaseparable process; (see definition (2.1)).

(i)  f(t) is a measurable process, i.e., the function (t,w) = f(t, w)
from [a, f] < Q into R isameasurable; (asin definition (2.2)).

(i) Foreacht € [a,p], f(t) is F; measurable.

Remarks (2.5) [Friedman, 75]:

1. When (iii) holds we say that f(t) isadapted to F; (see definition

(2.4)) .
2. Let usdefine IP [a, f] (1 < p < o) the class of all nonanticipative
functions f (t) satisfying:

B
P {flf(t)lpdt < oo} =1 (2.5)

3. We denote by M? [, ] the subset of IF [a, ] consisting of all

functions f with
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Chapter Two Stochastic Differential Equations

B
E f IF(©)Pdt < o (26)

Definition (2.5) step function [Evans, 05], [Strizaker, 05] :
A stochastic process f(t) defined on [a, £] is caled a step function if

there existsa partitiona = t, < t; < --- < t,, = B of [a, B] such that
fO=fE)If t;<t<ty, 0<i<r-1 .7)

Lemma (2.1) [Friedman, 75]:
Let f € L2 [a, B]. Then:

(i)  There exists a sequence of continuous functions g,, in L3, [a, 8] such
that

B
lim [17©) = gu(®Pdc =0 as; (28)

(i)  There exists a sequence of step functions £, in L2 [, £] such that

B
i f F(6) = fu(®Pdt =0 a.s; 2.9)

Lemma (2.2) [Friedman, 75]:
Let f € M3[a,B]. Then:

(i)  There exists a sequence of continuous functions K,, in M3 [a, ]
such that

B
Eflf(t) _ K, (O)|dt - 0 (2.10)

If n—- oo;
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Chapter Two Stochastic Differential Equations

(i)  There exists a sequence of bounded step functions 1, in M2 [«, 5]
such that

B
E f IF(6) = L (©)]2de - 0 (2.11)

If n - oo;

Remark (2.6):

The following stochastic integral
T
f wdaw
0

where W (.) isa 1-dimensional Brownian motion. A reasonable procedure is
to construct a Riemann sum approximation, and then—if possible-to pass to

limits.
The following definitions are concerning:
Definitions (2.6) [Evans, 05]:

(i) If [0, T]isaninterval, apartition P of [0,T] isafinite collection of
pointsin [0, T]:

P={00=ty<t;<--<t, =T}
(i) Letthe mesh size of P be |P|:= maxo<x<m—1lti+1 — txl.
(iti)  For fixed 0 <A <1and P agiven partition of [0, T], set
T = A —Dtp + Aty ((k=0,..,m—1).

For such a partition P and for 0 </ <1, we define
m-1
R =R(P,1) = Z W (1) (W (trss )- W ().
k=0

Thisisthe corresponding Riemann sum approximation of fOT wdw.
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Chapter Two Stochastic Differential Equations

Lemma (2.3) (Quadratic variation) [@ksendal, 98]:

Let [a,B] be aninterval in [0,0), and suppose that:
Pt :={a=ty,<t; <- <t, =P}

be a partitions of [a,B], with |[P™|— 0 asn—o. Then

my—1

> W) - W) > B- a (2.12)
k=0

in L2 [a, B] asn—oo.

Definition (2.7) [Friedman, 75]:

Let f(t) beastep functionin L3 [a, ], say f(t) = fiif t; <t < t;jyq,

O<i<r—-1lwheea=t;,<t; <:--<t,=p,therandom variable:

r—1
D FEOW (tia) = W (5] (2.13)
k=0
where max|t,., — t,]| = 0, 0 < k <r —1; isdenoted by
B
f f@)dw(t) (2.14)

and is called the stochastic integral of f with respect to the Brownian

motion w; it isalso called the 1t6 integral.

Lemma (2.4) [Evans, 05]:

We have for al constants a, b € R and for all step processes
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Chapter Two Stochastic Differential Equations

G,HeL*0,T),Gin M2[a, B]

() [, (aG+bH)YAW =a [ GdW +b [ HdW,
(ii) E(fOTde):o,

iy E((f, 6aw)?)=E(J, 62at).

Lemma (2.5) [Friedman, 75]:

If £ isastep functionin M3 [a, 8], then

B
E f F()dw(®) = O, (2.15)
B 2 B
E f FOdw®)| = E f F2(0)dt. (2.16)

Lemma (2.6) [Friedman, 75]:
Let f, g belong to L3, [a, B] and assume that £(t) = g(t) for all

a<t<pf, we€Q, Then

B B
f F(O)dw(t) = f g@dw(t) fora.a.w € Q. 2.17)

Remark (2.7) [@ksendal, 98]:
1. Let f € I3[0, T] and consider the integral

I(t) = f £(s)dw(s), 0<t<T (2.18)
0
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Chapter Two Stochastic Differential Equations

2. By definition, foof(s)dw(s) =0, and we refer to I(t) as the
indefinite integral of f. Noticethat I(t) isF; measurable.

If f isastep function, then clearly

B 15 14
f £(s)dw(s) + f £(s)dw(s) = f £(s)dw(s)
a B a

if0<a<pB<y<T. (2.19)
By approximation we find that (2.19) holdsfor any £ in L3,[0, T].

Theorem (2.2) [Friedman, 75]:
Let f € M2[0, T]. Then

2 2

t

f £(s)dw(s)

0

T

f F(Odw (D)

0

E { suposts<r < 4E

T
= 4Eff2(t)dt. (2.20)
0

2.3 1ts Formula:

Definition (2.8) [Evans, 05]:
Let X(t) (0<t<T)be a sochastic process such that for any

0<t;<t, <T

L) L)

X(t,) — X(t,) = f a(t)dt + f b(£)dw(t)

ty
Where a € L1[0,T],b € L%[0,T]. Then we say that X(t) has stochastic
differential dX, on [0, T], given by
dX(t) = a(t)dt + b(t)dw(t).
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Chapter Two Stochastic Differential Equations

Observe that X(t) is a nonanticipative function. It is also a continuous

process. Hence, in particular, it belongsto LS [0, T1.

Example (2.2) [Friedman, 75]:
By theorem (A.1) (see appendix)

)

n—-1

| e (@ = timg o Y e[ w(tnier) = w(en)]
t, k=1
In probability.
Clearly
ta n—1
f W(t)dt = limn—wo Z W(tn,k+1)(tn,k+1 - tn,k)
ty k=1

for all w for which w(t, w) is continuous. The sum in the right-hand sides is

equal to
n—-1
limn—wo Z [tn,k+1w(tn,k+1) - tn,kW(tn,k)] = tZW(tZ) - tlw(tl)'
k=1
Hence
d(tw(t)) = w(t)dt + tdw(t). (2.21)

Definition (2.9) [Friedman, 75]:
Let X(t) beasin definition (2.8) and let f(t) beafunctionin L[0, T].
We define

f@)ax() = f(®)at)dt + f(t)b(t)dw(t).

Example (2.3) [Friedman, 75]:
f(t)dX(t) isastochastic differential dn, where
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Chapter Two Stochastic Differential Equations

n(t) = f £(s)d(s)ds + f £(s)b(s)dw(s).
0 0

Theorem (2.3) [Friedman, 75]:
If

dé;(t) = a;(t)dt + b;(t)dw(t) (i =12),
Then

d(&1()E2(t)) = & (0)dE,(2) + & (t)dé, (¢) + by (t)by(t)dt. (2.22)
The integrated form of (2.22) assertsthat, forany 0 < t; <t, < T,

§1(t2)&, () — &1(t1) &, (t)

= f £ (O ay(6)dt + f £ by (Ddw(t) + f £ (D a, ()dt
+f€z(t)b1(t)dw(t)+ f b, (t)b,(t)dt. (2.23)

Theorem (2.4) [Friedman, 75], [@ksendal, 98]:
Let dé(t) = adt + bdw(t), and let f(x, t) be acontinuous function in

(x,t) € R x [0, ) together with its partial derivatives f,, f.., fr. Then the
process f(&(t), t) has astochastic differential, given by

1
df §(@),0) = |f:(5(6) &) + £(§(), )a(t) + 5 fex (E(0), t)D?(t) | dt
+ £ (§(), ) b(t)dw(¢). (2.24)

This is called the 1t6 formula. Notice that if w(t) were continuously

differentiablein t, then (by the standard calculus formulafor total derivatives
the term % firx b2 dt will not appear.

Proof: One can see the proof in appendix B.
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Gronwall Lemma (2.7) [Evans, 05], [@ksendal, 98] :

Let ¢ and f be nonnegative, continuous functions defined for 0 <t <T,

and let C,> 0 be a constant. If:
(p(t)SC0+f0tf(pds forall 0<t<T,
Then

t
o (t) < Coefofds forall O<t<T.

2.4 Existence and Uniqueness Solution of Stochastic Differential
Equations [Evans, 06].[@ksendal, 98]:

If o = (o) isamatrix, we write [o]2 = X;;|o;;".
Let b(x,t) = (bl(x, t),..,b,(x, t)), o(x,t) = (o(x, t))§3-=1 and suppose the
functions b;(x, t), o;;(x, t) are measurable in (x,t) € R™ x [0, T]. If £(t)
(0 <t < T) isastochastic process such that
dé(t) = b(§(t), Ddt + a(£(t), )dw(d), (2.25)
§(0) =<, (2.26)

Then we say that ¢ (t) satisfiesthe system of stochastic differential equations
(2.25) and the initial condition (2.26). Note that it is implicitly assumed that
b(&(t),t) belongsto L1,[0, T] and o (£(¢), t) belongsto L2,[0, T1].

Theorem (2.5) [Friedman, 75] ,[Evans, 05] ,[@ksendal, 98] :

Suppose b(x, t), o(x,t) are measurablein (x,t) € R™ x [0, T] and
|b(x,t) — b(%,t)] < Kglx — %], lo(x,t) — (X, t)| < Kglx — %],

|b(x,t)] < K1 + |x]), loCxe,t)] < KA+ |x]) (2.27)
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where Ky, K are constants. Let éy,be any n-dimensonal random vector
independent of F(w(t),0 <t < T), such that E|&,]? < oo. Then there exists
aunique solution of (2.25) and (2.26) in M2[0, T].

The assertion of uniqueness means that if &,(t),¢,(t) are two solutions of
(2.25), (2.26) and if they belong to M2 [0, T], then

P{&,(t) =& (O forall0<t<T}=1

Proof:

To prove the uniqueness, suppose &, (t) and &,(t) be two solutions
belonging to M2 [0, T]. Then

§1(6) — §2(0)

t

=fw@x@sy—M@@»@ws+[a@u@smW@)
0 0

- [[atesd )awes) (2.28)
0
Set fi(s) =0(é,(s),s) and note that the stochastic integral
fotfl-(s)dw(s) is defined with respect to an increasing family of o-fields
F.which may depend on i. If f;(s) isa step function, for i = 1,2, then using

the definition of the stochastic integral we get (Lemma (A.2) and formula
(al)) seethe appendix.
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2

E f £,(s)dw(s) — f £(s)dw(s)
0 0

=F [ IF,(5) = fo(s)Ids (2.29)
0

By approximation we find that (2.29) is true for any pair f;,f, of

nonanticipative functions with respect to £} and F? respectively, provided

that E [ |fi(s)|?ds < o0 (i = 1,2).

Taking the expectation of the squares of the absolute values on both
sides of (2.28) and using (2.27) and (2.29) with f;(s) = a(¢,(s),s), we find
that

E|&,(t) — &(0)?

t t

< 263t [ EIEL () — £u0)IPds + 263 [ Elga(s) = £o(5)1Pdls

0 0
Thusthe function ¢(t) = E|&;(t) — &,(t)|? satisfies
¢(t) < C f, p(s)ds, ¢(0) =0,

Where C is a positive constant. Therefore ¢(t) = 0, and the assertion of

uniguenessis proved.

To prove the existence of a solution we introduce an increasing family
of o-fields F; (0 <t < T) suchthat &, isF, measurable, and such that

Fw(t+s)—w(t),0<s<T-1t)
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Is independent of F;, for al t > 0. We can take for instance F; to be o-field
generated by &, and F(w(s),s < t); here we use the assumption that &,is
independent of F(w(s),0 <s <T).

Define é,(t) = ¢, and

t

%ﬂ=%+[b@agsw+[a@agﬂmw@ (2.30)
0

0

The inductive assumption isthat &, € M2 [0, T] and hence:

(Mt)K+1
(k + 1)!

El&rs1(0) = &E@I* <

foral 0<k<m-1 (2.31)
Where M is some positive constant (depending only on K, Ky,T).

Since ¢, € Fy, {41 ISWell defined if m = 0. Further

2 2

t

fd%smW@)

0

18,(6) = §ol* < 2 +2

fb(fo,s)ds
0

Taking the expectation and using (2.27), we get
E|§(6) — $ol* < 2K2¢%(1 + El§o1?) + 2K %t (1 + El$ol*) < Mt

If M > 2K2(1 + T)(1 + E|§,]?). Thusimpliesthat &, € M2[0,T] and (2.31)

holdsfor m = 0.

We now make the inductive assumption for any m > 0 and prove it for
m+1
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Since &, € M2[0,T] it follows, using (2.27), that b(¢,,(t),t) and
a(&,(t),t) belong to M2[0,T], thus the integrals on the right-hand side of
(2.30) are well defined.

Next,

2

|€Emer(8) — En(®)]? < 2

-+

[ [B(En(s),s) — b(E_i(s),5)] ds
0

¢ 2

[ [0(En(5),5) — 0 (Emes (5), $)]dw(s)

0

2 (2.32)

Taking the expectation and using (2.32),

t
E|Ems1(6) — En(©)[? < 2K2LE f 160 (5) — Em_r()Pds +
0

t
2KZE [16n(s) = ma()Pds
0
Thus,
t
E|€m+1(t) - fm(t)lz < M f Elfm(s) - fm—l(s)lzds
0

If M > 2K2(T + 1). subtituting (2.31) with k = m — 1 into the right-hand
side, we get
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t Ms)™ Mt m+1
Bl O ~ (O < [ £ a5 =0
0

Thus (2.31) holds for k = m. Since thisimpliesthat ,,,,; € M2[0, T], the

proof of the inductive assumption for m + 1 is complete.

From (2.32) we also have

T
suposesrl€me1 () — En(O1* < 2TK§ f|fm(5) —&m1(s)Pds +
0

2

2SUPo<t<r

[ [6(Em(5),5) — T (Eme1(s), $)ldw(s)
0

Taking the expectation and using theorem (A.1) (see appendix) and (2.31), we
find that

T

Esup05t5T|€m+1(t) - fm(t)lz < ZTK(? f Elfm(s) - fm—l(s)lz dS +
0

(Mt)™

m!

T
8K§ [y El&m(s) = &moq(s)IPds < C
Where C = 2KZT? + 8KZT. Hence

(Mt)™
m!

1
P {SuP05t5T|fm+1(t) - &)= Z_m} < 2?mc

Since Y:[2™(MT)™ /m!] < o, the Borel cantelli lemmaimplies that

1
P {SuP05t5T|fm+1(t) — &m0 > Z_mi' 0-} =0.

54



Chapter Two Stochastic Differential Equations

Thus, for amost any w there is a positive integer my = my(w) such that

suposesr|Emir(t) = En(O < = if m 2= my(w)

It follows that the partial sums

k-1

S+ Y (Emea () = En(D) =E(0)
m=0

are convergent uniformly in t € [0, T]. Denoted the limit by &(t). Then &(t)
IS a continuous process. It is clearly also a nonanticipative function and it

belongsto L%,[0, T]. Since for a. a. w,
b(¢,,(t),t) = b(é(t),t) uniformlyint € [0, T],
o(&,(),t) » o(é(t),t) uniformlyint € [0, T],

and hence also

T
f 10 (0), £) — 0(E), )12 50,
0

If wetakem — oo in (2.30) we obtain relation

t

£() = &y + f b(£(s), s)ds + f o (£(s), s)dw(s). (2.33)
0

0

Thus é(t) isasolution of (2.25), (2.26).

From (2.30) we have
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2 2

t

t
Eléme1(DI? < 3E|§o|* + 3E fb(fm(S),S)dS + 3E fG(fm(S),S)dW
0 0
t

< C+E|&) +C f E |€,(s)2ds
0

Where C is some constant depending only on K, T. By induction we then get

2 m+1

Eléma (OF < |C+C2t+ €3+t 72— |[1 4+ Elg, ]
ml B 2! (m + 1)! of =

Therefore
El&mi1 (D)7 < CQA + E|§]?)e .
Taking m T co and using Fatou’ slemma; we conclude that
EIE(t)]? < C(1 + E[&pl?)e . (2.34)
Thisimplies that £(t) belongsto M2[0, T].

Remarks (2.8) [Friedman, 75]:

1. The above method used to prove the existence of a solution é(t) is
called the method of successive approximation; it is modeled after the
corresponding proof for ordinary differential equations.

2. Very often we shall take the initial value ¢, to be a constant function
X a.s. notice that this random variable isindependent of
Fw(t),t = 0).

From (2.33) we obtain
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2

t
supost<rl €O < 3I&|? + 3 f b(£(s). s)]ds| +
0

¢ 2
3suposcer f o (£(s), 5)dw(s)

0

Taking the expectation and using (2.27) and theorem (A.1), we get

T

EsuposearlE(O17 < Co(1 + EIEo]2) + o f E|6(s)|2ds
0

Where C, is a constant depending only on K, T. Making use of (2.34),

we obtain:

Corollary (2.1) [Friedman, 75]:

Under the assumptions of theorem (2.5)

Elsupoce<rlE ()71 < C*(1 + E|$]%) (2.35)
Where C* isa congtant depending only on K, T.

Theorem (2.6) Stronger Uniqgueness and Existence Theorem :

Suppose b;(x, t), g;(x, t) are measurable functionsin(x,t) € R™ x [0, T],
fori = 1,2, satisfying

|b;(x,t) — b;(x, )| < Kglx — XI, oy (x, t) — 0;(x, 0)| < Kplx — x|
|b;(x, )] < K(1 + |x]), oy (x, )] < K(1 + [x]).

Let D beadomain in R™and suppose that
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bi(x,t) = by(x,t),
o,(x,t) = oy(x, t)
fxeD0<t<T. (2.36)
Let £,(t) (i = 1,2) be the solution of
d§(t) = b;(§;(t), )dt + 0;(&:(t), 0), §1(0) = &y

in M3[0,T] (with the same family of o-fields F,) where E|&;|? < oo.
Assume finally that &, = &, for a. a. w for which either £;, € D or &, € D.
Denote by t; the first time &;(t) intersects R™/D if such time t < T exists,

and 7; = T otherwise. Then
P(Tl = Tz) = 1,

P{SuP05t5r1|f1(S) — &) = O} =1.

Thusif two stochastic equation have the same coefficients in a cylinder
Q =D x[0,T] and if the initial condition coincide in D, then the
corresponding solution agree until the first time they both leave D; they first

leave D at the sametime.

Remarks (2.9) [Friedman,75] :

1. Thisisloca unigueness theorem.

2. It remainstrue for the general domains Q.
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2.5 Examples of Linear Stochastic Differential Equation:

Example (2.4) [Evans, 05]:

Let m=n =1 and suppose g is a continuous function (not arandom

variable ). Then the unique solution of

dX = gXdw
Yo ot } (2.37)
IS
X() = e st o
for 0 <t <T. To verify this, note that
t t
1
Y(t) = _Ef gds + f gdw
0 0
Satisfies
1
ay = — Egzdt + gdw.
Thus Itd lemmafor u(x) = e*gives
ax = Mgy 1O oy,
~ ox 20x29
1 1
=e¥ (— Egzdt + gdw + Egzdt>
= gXdw,
As claimed.
Example (2.5)[Evans, 05] :
Similarly, the unique solution of
dX = fXdt + gXdw
YO =1 } (2.38)
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X() = olir- Lot Lo

forO0<t<T.

Example (2.6) (Stock prices) [Evans,05] :

Let P(t) denote the price of a stock at time t. We can model the
evolution of P(t) in time by supposing that %P , the relative change of price,

evolves according to the SDE

dP
7 = udt + adw

for certain constants 4 > 0 and o, called the drift and the volatility of the

stock. Hence
dP = uPdt + oPdw; (2.39)
and so
d(log (P)) = dp _1otPdt
P 2 P2

by the 1t6 formula

o2
= <u — ?> dt + odw.

Consequently

2

P(t) — PoeGW(t)-l-(#_%)t,

smilarly to Example (2.5). Observe that the price is always positive,
assuming the initial price P, is positive.
Since (2.39) implies
t t
P(t) = P, +f/des + f oPdw
0 0
t
and E (fo anw) = 0, we see that
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t

E(P(t)) = P, + f HE(P(s))ds.
0
Hence

E(P(t)) = Pye*t, t=>0.
The expected value of the stock price consequently agrees with the

deterministic solution of (2.39) corresponding to ¢ = 0.

Example (2.7) (Langevin’s equation) [Evans, 05] :

A possible improvement of our mathematical model of the motion of a
Brownian particle models frictional forces as follows for the one dimensiona

case.

X = —bX + 0¢,

where £(.)is “white noise”, b > 0 is a coefficient of friction, and ¢ is a
diffusion coefficient.

In this interpretation X(.)is the velocity of the Brownian particle: see
Example 6 for the position process Y (. ). We interpret this to mean

dX = —bXdt + odw

X(0) =X. } (2.40)
for some initia distribution X0, independent of the Brownian motion. Thisis
the Langevin equation.

The solution is
t
Xt)=eX. +¢ f e b= gy (t =0)
0
asisstraightforward to verify. Observe that

EX(t)) = e P E(X)
And
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E(X%(t)) = E| e ?Ptx?

¢ 2

t
+ 20e Pt X, f e =) gy + 52 fe_b(t_s)dw
0 0

t
= e 2PLE(X2) + 20e P E(X.)E f e b{t=s) gy,
0

t
2

+ 02 f e—2b(t—s)ds — e_thE(on) +g_b(1 _ e_th).
0

Thusthe variance

V(X)) = E(X?(t) — E(X(t))?
Is given by
0.2
V(X (t)) = e 2PV (X.) + o5 (- e %),
assuming, of course, V (X-) < o. For any such initial condition X, we

therefore have

E(X(t)) -0
2

o
V(X(t)) - T

From the explicit form of the solution we see that the distribution of

ast — oo,

2
X (t) approaches N (O,Z—b) ast—oo. We interpret this to mean that irrespective
of the initial distribution, the solution of the SDE for large time “settles
2
down” into a Gaussian distribution whose variance Z—b represents a balance

between the random disturbing force ¢ £(.) and the frictional damping force —
bx(.).
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Chapter Three Stochastic Nonlinear Stabilization

The output-feedback problem has received considerable attention in the
recent nonlinear control literatures [Jankovic, 97], [Khalil, 96], [Krstic, 95],
[Marino, 95], [Praly, 93], [Teel, 95].

In this chapter an output feedback (observer-based) backstepping
control law which guarantees global asymptotic stability in probability has
been proved. The stabilizing control laws which are also optimal with respect
to meaningful cost functional have also been proved.

The necessary theorems for a certain nonlinear dynamic stochastic
control system have been stated and proved.

Some concluding remarks are also included and discussed.

3.1 Preliminaries on Stability in Probability:

Consider the nonlinear stochastic system
dX = f(X)dt + g(X)dw (3.1

Where X € R™ is the dstate, w is an r-dimensiona independent standard
Brownian motion, and f:R™ - R™ , g:R™ —» R™" are locally Lipschitz
functions and satisfy f(0) = 0, g(0) = 0.

The following definitions are needed for complete understanding of the
subject:
Remarks (3.1) [Hardy& Littlewood, 89]:

The following inequality is very important in the present work and is

discussed as follows:

1. Young' sinequality has the form:
E1xIP + LIyla
XY< > |X| +qu|Y|
where e > 0, the constantsp > 1 and g > 1 satisfy:

p-D@-1=1
And (X,Y) € R?™,
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2. Lety isapositive function, then:
[ (x)] < yIz]*
Where X = (x4, %5, ..., X,,)

3. Suppose a function f(t,x) has domain D in (¢t x)-space and
suppose there exists K , such that if (t,x;),(t,x;) € D , then

ILf(t, x1) — f(t,x) < Kllxg — x4l 3.2)

Then f satisfies a Lipschitz condition with respect to X
inD, and K isa Lipschitz constant for f. [Brauer& Nohel, 73]

4. If f(x),x € R™is differentiable function with bounded partial
derivatives, then K is ssimply is the upper bound of the norm of the
Jacobian matrix for the function f(x), the upper bound taken over
the entire R™. However, in general, a Lipschitz function may not be
differentiable. [Raghavan, 94]

5. Not necessary that all functions must satisfy the Lipschitz
conditions, the following example shows a class of function not

belongs to aclass of Lipscitzian functions.

Example (3.1) [Brauer& Nohel, 73]:

If f(t,y)= y1/3 intherectangleD = {(t,y) |t] < 1,|y|l < 2}, then f
does not satisfy a Lipschitz conditionin D.

To establish this, we only need to produce a suitable pair of points for which

(3.2) failsto hold with any constant K. consider the points
(t,y), (t,0)With —1<t<1y, >0.

Then
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/3

1
) = F(E0) _ " _ 1
y1—0 Y1 y12/3'

Now choosing y; > 0 sufficiently small, itisclear that K = ZLB can be made
Y1

larger than any preassigned constant. Therefore equation (3.2) failsto hold for

any K.

Definition (3.2)[Deng& Krstic, 99]:
The equilibrium state x= 0 of (3.1) is said to be globally asymptotically

stable in probability if for any t, =0 and €>0, limyq o,
P{supes¢ |x(t)| > €} =0, and for any initid condition x(ty),
p{lim,_x(t) = 0} = 1.

Theorem (3.1) [Khas minskii, 80], [Kushner, 67] , [Mao, 91]:
Consider the system
dX = F(X)dt + g(X)dw

and suppose there exists a posdtive definite, radially unbounded, twice

continuously differentiable function V (x) such that the infinitesimal generator

12V=a—VF+£ tr{gTaz—Vg} (3.3)
X 2 0X?

is negative definite. Then the equilibrium state X= 0 of dX = F(X)dt +

g(X)dw

is globally asymptotically stable in probability; where tr(.) is standing for

the trace operation.
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3.2 Problem Formulation of Qutput-Feedback Stabilization in
Probability:

The following problem formulation has been considered

In this section we deal with nonlinear output-feedback systems driven by
Brownian motion. This class of systems is given by the following nonlinear

stochastic differential equations:

dxl- = xi+1dt —+ fl(fl)dt —+ (pl(y)TdW —+ lpi(fi)TdW, i=1...n—-1

dx, = wdt + f(%,)dt + () dw + P, (%) dw

y=x1 (34)

Where
1. x € R™, isthe state.
2. w isanr-dimensional independent standard Brownian motion.
3. f = fa . [T, f isavector valued function, satisfied:
i.  fiR™ - R" f(0)=0.
i fitx) = filey i)
i, IfGIN < x"Qx < (x"Qx)? < (Amax(Q))?|x|* (35)
Where @ is a positive definite matrix, and Amax(Q) isthe
largest eigan value of Q, and |. | is standing for suitable norm.

4. @;(y) arer-vector-valued smooth functions with

(p = ((ply(pZy y(pn)Ty(p:Rn - RTlXT and (pl(O) = O

5. Y;(x;) are r-vector-valued smooth functions with
Y=Yy )T PR - R, with ;(0) =0, Where &; =
[xy, ..., x;]7.

6. u(0) = 0.
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7. Let f;, @; ,; are satisfied Lipchitz condition.
8. Since the states x,, ..., x,, are not measured, need to be estimated by a
dynamic observer which is suggested as

.
A~

Xi = Xipr + ki(y — %1) i=1-n (3.6)

Now, the entire system can be expressed as:
dx = Ay X dt + f(X)dt + () dw + Y(&)Tdw,

Where ¥ = (X;,%5, ..., X,) and x; = (xq, x5, ..., Xx;) i=1..,n
Remark (3.3):
1. The observation errorsx = x — x satisfy:
_kl |
dx =| 0 o] xdt + f(X)dt + () dw + P(X) dw,
—k,

dx = Ag X dt + f(X)dt + () dw + P(&)Tdw
(3.7)
A, isdesigned to be asymptotically stable. Now, the entire system can be
expressed as
dX = Ay xdt + f(®)dt + () dw + P (E) dw
and
dy =(%, + %) dt + ¢;(y)" dw
dx, = [£5 + ko (y — £1)]dt

dn, = [u+k,(y — %,)]dt (3.8)
2. Since ¢;(0) =0, thea ;’swill vanishat%;,_; =0,y =0, aswell asat

z,= 0, where z,=(z,, ..., z;)T. Thus, by the mean value theorem, and

a ;(%;,y) and ¢ (y) can be expressed, respectively, as
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a i(ﬁiJ’) = 2%:121“ i (éiv}’) (3.9)
o) =y () (3.10)
Where a;(Z,y) and 1(y) are smooth functions.
Theorem (3.2):

Consider the system defined in problem formulation (3.2), and
assuming that the dynamic observer is designed to be
dx = Ay xdt + f(X)dt + o(y)Tdw + P (X)Tdw
a sequence of stabilizing functions a; (%;, v), where £; = [%,, ..., £;]7, is

constructed recursively to build a Lyapunov function of the form:
1, 1v b
V() =7yt ZZZ 2t + 5 (FPR)?
1=

Define:
Z1 =y (3.11)
zi=%—a;(Xi_.,y), i=2,...n (3.12)
and, if the following are satisfied:

3 3 4 3 4
ay = =61y =5y (y)Twl(y) — 70 By — 761 3y
n
3 2 3bn\/7—1
- ZZ (1N Y1 (1) y — = lpWI*y + f(y)]
i=2 2
and
_ . Hllai_q . da;_q1\ .
a; = —c;jz; — ki X; + tha—fl(le + k%) + ( 3y )xz
1 azai_l 3 4’/ 1
+§< 3y2 ><p1(y)T<p1(y) ——0,"%z T 2ot 4
3 4/, <6ai_1>4/3 3 (aai—1>4
2™ oy % 482\ dy %
and
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n-19q; oa,_
—knXy + Z = (xl+1 + k%) + (#) X,

n—1
1/0%,,_, r 1 0%ay_1 o
+ - — —_ -
2< 377 ><p1(y) »:1(y) qu a%,0%, ®pPq

1 3 4, <6an 1>/ N 3 <6an_1>4
doi " a™ oy ) T Tag\Tay )

and P isapositive definite matrix which satisfies:
ATP + PA, = —1I (3.13)
Then the equilibrium point x = 0 at the origin of the closed-loop
stochastic system (3.8), (3.29) is globally asymptotically stable in probability.

Proof:
We haVeZl =y and Z; = 5C\l' - i(k_\i—lvy)
By using 1t0’ s differentiation rule of the [@ksendal, 95], [Fridman, 75]

dz; = (X, + X,)dt + f1(y)dt + 1 (y) dw + P, (y) (3.14)
i-1 da
dz; = X4 + k% — L (xl+1 + fl(xl)) - ((552 +X,) + fi(f1))
=1
1« 9% 10%a
_= -1 r, _ -2 *i-1 T
> 9%, 0%, PoPa =5 5,2 () ()

i=2..,n (3.15)
Aswe announced previoudy, we employ aLyapunov function of the form:

V(z.%) == 4Zz +o (xTPx)z (3.16)

Where P is asuitable positive definite matrix,
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Now we start the process of selecting the unknown functions a; (%, y)

to make LV negative definite. Along the solutions of (3.7), (3.14), and (3.15),

we have

3
LV = y3(%, + X,) + §y2<p1(y)T<p1(y)

n i—
aa
3| A~ - i1 1
+ Z Z] | Xjpq + kixy — (xl+1 + fl(xl))
1=2

=1

aal 1

1
((xz +X;) + fl(x1)) >

10%a; a;—
~5 aazlw(y)%(y) Zzz ( 1) 01 01 (y)

2 4
+ 5 bETPR)[XAPx + X" PAox] + S tr{ p(y)(2PZ 7P

+ Z'PXP)o(y)"}

by using equation (3.10) we have:

3
LV =y3(zy + a; + %) +y3fi(y) + §y2<p1(y)T<p1(y)

i—-1

da;
3 ~ i—1
+ Z Z; | Zjy1 +a; + kX — (xz+1 + f;(x)
i=2 =1
i—1
aal ) 1« 0%,

((xz +X,) + fi(%,)) — > ax ox, (pp(pq

~379y7 —oM k) Zzz (—— )<p1(y)T<p1(y)

+ b(ETPE)[XT (AoP + PAY)X] + +2 tr{ p(y)(2P% TP
+ ZTPEP)p(¥)"}
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3
LV = y3z, + y3ay + y3%, + y3fi(y) + §y2<p1(y)T<p1(y) + Z Z7 Ziyq

i=2
n n n i—-1 P
- di—1
"'Zzig a’i—z z} k% _Zzigz = (xl+1 "'fl(xl))
i=2 i=2 i=2  1=1
= /0 =0 =0
a;_ a a
-2 A (G- A () R ) A () A)
. y .
i=2 i=2 i=2
1211: 5 E 0’1
24,70 L ax,0x, PP
=2 p.q=1

3 oa;_
+5 0.2 Co 00 0. 0) ~ bGP
i=2

+ 2tr{ (y)( 2P% ¥TP + T PZP))(y)T}

(3.17)
Now, by applying Y oung’ sinequality on equation (3.17):
The first term: take
(r=rr=np=a=)
_yl _szp_3vq_4
3 4/3 ‘y 1
vz <500y (3.18)
2550 Y T agh
The 3" term: take
(X— 3 Y =X _2 —1>
=¥V, = X2,P = 3 1 q _4
5 3 4 1 3 4 (I
y3%, =724 3y4+4—€‘1}x§ =74 3)/4"'4—641;|9C|4 (319)

The 6 term: take
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3 5 4 1
(x=r¥r=%p=3.0=3)

n

n-1
3 4/ I 1
Z Zig Zit1 < ZZ O'i 32{1' +Zzi_3o'.lelfl- (320)
i=2 B

i=2

The 9" term: take

- 3 : aai_l N 4
X:_Zzi (ax ),Y:f(xz),p:§,q:—
i—2  1=1 L
n i—1
daj_q -
_ZZIB ( a;l )f(xZ)
=2 =1
371 /3 aa’i—14/34 1"1 2| =4
< 24" () g mGumaxyiia
i=2 =2
(3.21)
The 11" term: take
n
Ja; 4 1
_ 3 i-1 — _
= _ : Y - _ —
( Zl ay ' 2P T30 4)
=2
n n 4 n
Z 360cl_1)z - 32774/3 <6al_1> /324+ 12 1 ”
- i 2 =7 i i n a2
i=2 9y 4 i=2 9y 4 i=2 i
3 4. dag_q\ 13 v
53 () 35 L
=2 y =2 nl
(3.22)

The 15" term: take
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n
_3 2 aa’l'—lz _ T _4 —1
(X—ZZZL-( 5y )Y =00 ¢1(0) p=3.0=7
1=

n
3 aa"_l
EZZ 7 (5 0N 91)
i=

W (C o B
i i=2

(3.23)
The last term:
2btr{p(y)( 2P% TP + ¥TPxP))o(y)}

2btr{p(y)( 2P% X"P + %"PXP))p(y)}
< 2bnlp(y)( 2PX ¥"P + X"PZP))p(¥)" o
< 2bnvn|e(y)( 2P% TP + XTPEP))p(y)T|
< 6bnvny? [y () |PI? %]

< 2RI + 3bnvied|PI )" (3.24)

By substituting all the terms given in the equations (3.18) , (3.19) ,
(3.20), (3.21), (3.22) ,(3.23) and (3.24) in equation (3.17) then we have:
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n
1w 1
LV < —[bA — 3bnvne |P|4——Z————— = (ymax(Q))’
4e 4i=2€i

2

1e 1
— AZmax(ZZf_{*Q) 11%]*

i=2

3 ¥ 3 ¥
+y3 (e <¢1(y) +20 3y+261 Sy

bn/n
2

3% 3
+ ZZ HAORA) S W1ty + fl(y)]
i=2

n—1 ; s i-1 aai—l ( P ) (6(1’1-_1) .
+ E Sl + — E —
£, zi[a; 1X1 <2 0%, X141 1X1 dy X2

-1
1 1/(0%a;_4 3 4,
_EZ ‘Pp‘l’q E(a—yz>‘l’1(y)T(p1(y)+Zgi z;
1 3 4 aa / 3 aa,__ 4
e i e 2 )
40_1'—1 4 ay 451

3 N n1loa;_q N day_1)
oz |ut kX, — ——— (vqq + ki %) - X2

=2 0% dy
L (L) o )0 Haz“T
p.q=1
N 1 3 4, <6an 1>/ N 3 <6an_1>4
dor_ g Ty ) Tz Tay ) M

() Z ()"
2
Where A > 0 isthe smallest eigenvalue of P. The second equality comes

from subgtituting X; = z; + a;_, , and the inequality comes from Y oung’s
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inequalities. At this point, we can see that al the terms can be cancelled by u

and a;. If we choose ey, €,, n; and &; to satisfy

n n
1 1 1 1
bA—3bnVneilPl*—— ) ————-=- ) = (Almax(Q))
4 — b 4e] 4i=2€
1 n
4 54 (Azmax(Q)) =p >0
(3.26)
And a; and u as
3 4/ 3 4/
a; = _C1}’§ylp1< )T¢1(Y) - —U 2 €4 33’
n
3 bnvn
- ZZ THCAORA > y+f (y)]
i=2
(3.27)
=1da;_4 oa;_q
z; — ko % +Z 1 0p +k9?)+< )9?
i 1X1 iy 0%, 1+1 1X1 3y 2
1 azai_l 3 / 1
+= T _ 3. _
2< 577 ><p1(y) »:1(y) z; 401_4_121
4
3 Qe B, S (_f’“i—l)"z_
470\ oy oAg l
(3.28)
n-19q; oa,,_
—CnZp — kn¥y + Z ek (xl+1 + k%) + ( an 1)@
1/0% 1% 92a
> <#{1> 010N 01 (0) -5 o, > x1 05 @q
p.q=1
_ 1 z _3 Y (aan_1>4/3z +i<aa"_1>4z
407,34 (Tay "ooag2 "
(3.29)
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where c¢;> 0, then the infinitessimal generator of the closed-loop system (3.5),
(3.14), (3.15), and (3.29) is negative definite

n

LV < - Z ezt — pla|* (3.30)

i=1

With (3.30) and hence LV < 0, from theorem (3.1) the critical point of (3.4) is
globa asymptotically stable in probability. That is complete the proof.

Concluding remark (3. 4):
If weput f;(x;) = 0,andy;(x;) =0, i =1,...,n, of system (3.4).
Then we have the work in [Deng & Krstic, 99].

Remarks (3.5):
1. Our output-feedback design will consist of applying a backstepping

procedure to the system (y, X,,...,%,), which also takes care of the
feedback connection through the x-system.

2. The Lyapunov design for stochastic systems cannot be performed using
the quadratic Lyapunov function (3.8) because of the term

1 - (0%V
219 \5x2)9

in (3.3). We instead employ quartic (fourth order) Lyapunov functions
— C 1 4 =T p~\2
V= Zzzi + (X' PX)
i=1

3. Our presentation of the backstepping procedure here is very concise:
instead of introducing the stabilizing functions « ;in a step-by-step
fashion, we derive them simultaneously. The technique of back -

stepping isreferred to [Krstic, 95].
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3.3 PROBLEM FORMULATION OF INVERSE OPTIMAL
OQUTPUT-FEEDBACK STABILIZATION:

This section first reviews some definitions and theorems established in

[Deng & Kristic, 97, b], which are then used in the design of an inverse
optimal stabilizing control law.
Consider the system
dx = f(x)dt + g,(x)dw + g, (x)udt (3.31)
Where f(0) = 0,9,(0) =0,andu € R™.

Definition (3.4) [Deng & Kristic, 97, b]:

A functiona: R, — R, issaid to beof class K, if it is continuous,

strictly increasing, and lim,_,,a(r) = .

Definition (3.5) [Deng & Kristic, 97, b]:

The problem of inverse optimal stabilization in probability for system

(3.31) is solvable if there exist a class K, function y, whose derivative y, is
aso a classX, function, a matrix-valued function R,(x) such that
Ry,(x) =R,(x)T >0  forall x,

a positive definite radially unbounded function ¢(x), and a feedback control
law u = a(x) continuous away from the origin witha(0) = 0, which
guarantees globa asymptotic stability in probability of the equilibrium x= 0

and minimizes the cost functional

J@) = E{; 160 + va(|Ra () V2u)) | dr (332)

Theorem (3.3) [Deng & Krigtic, 97, bl::

Consgder the control law
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2y, (Lg2VR;?)

u=a(x) =—-R;'(LsV)" (3.33)

|LgZVRz_1/2|2

where V(x) is a Lyapunov function candidate, y, is a classX,, function
whose derivative is aso a class K, function, R,(x) is a matrix-valued
function such that R,(x) = R,(x)T>0, and £y, is the Legandre—Fenchel

transform defined as

Ly, = f 2)~! (3.34)

If the control law (3.33) achieves global asymptotic stability in probability for
the system (3.31) with respect to V (x), then the control law

* *

u —=a

@) (|Leavry "))

Lyevi

B _
== ERz 1(Lg2V)T

. B=2 (3.35)

Solves the problem of the inverse optimal stabilization in probability for the
system (3.31) by minimizing the cost functional

1) = B[ [169+ g2 (5[ Rot0 o] (336)
0
Where
I(x) =28 [fyz (|Lg2VR2_1/2|) — LV — %tr {gT%g}]

+B(B — 2y, (|Lg2VRS?|) (3.37)

Remark (3.6) [Deng & Kristic, 99]:

The function [(x) is positive definite because, by assumption of the
theorem, the bracketed term is positive definite, £y, isin class K, and
p = 2.
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Now we return to the output-feedback system defined in problem
formulation in section (3.2) and redesign the control law (3.29) to make the

problem inverse optimal. The following result is instrumental.

Theorem (3.4) ( inverse optimal output — feedback stabilization):

Consider the system defined in problem formulation (3.2) assuming
that the condition of theorem (3.1) are satisfied if there exist a continuous
positive function M(y,X) such that the control law of theorem (3.2) can be

rewritten as:
u=a(y,x)=-M(y, %)z, (3.38)
Such that LV < 0, when V(z, %) = ;y* + 2 X, 2} + 2 (¥ P)?

Then the control law

4

solve the problem of inverse optimal stabilization in probability.

Remark (3.7):

From theorem (3.4), if we can design a stabilizing control law that has

z, as a factor, we can eadly find another control law which solves the
problem of the inverse optimal stabilization in probability, as given by
equation (3.39).
Proof:

If we consider carefully the last bracket of equation (3.25) where u is

given as.
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n-19q; oa,
— kn¥y + Z = (xl+1 + k%) + (#) X,

n—1

+1 azan_l 016 01 (3) 1 0%a,_,
p.q=1
1 3 4, <6an 1>/ N 3 <6an_1>4
T a0t nTa Ty ) T ag\Tay )

Every term except the second, the third, the fourth, and the fifth has z,,as a
factor. With the help of Y oung’sinequalities, we have:

In the following inequalities, €’ s are constants to be chosen:

The 2™ term: take(X:zf;,Y= k,%X, ., p =z ' q =—)

3 4

3 - 1
Znk, X, < ZE3

— kn %t
463 1

/34+

3 1
3

The 3% term: take(X——z3Z” 16“” 1kl , —fl,p=% ,q=-)

3 0,1 1
< Z <€4 - kl) Zﬁ + P |X‘|4 (3.41)

%an_ _ 3 1
The 6" term: take (X = —2 23 2, ) 10D Y =y* p =7 g =)

1 0%, 1 0%, 4
= 1<p1(y)T<p1(y)=—§Zfi aynz V1 () Y1 (y)y?

0 Vi
An-1
(65 a—ynz%(Y)T%(Y)) Zy + 8_e§y4 (3.42)
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The two terms:
n-—1
a0-’11—1 a0-’11—1
-z Xy _ZBZ X1
n dy n 0X;
1=2
n—-1 n-1 1
=-z3 aarl_lz z3 aarl_lz —z3 Zaan_lz
n afl +1 n ay 2 n afl k
=2 =1 k=1
n—-1 n—-1 1
= —223 aarl_lz z On-s, _ Zaan_laf ZyZ
n a/\l [+1 n ay 2 ak\l lk4n4k
1=2 =1 k=1
n-—1
3/ da, \*° 1 3/ da, \*°
< Z - L 7z zr €p —2 z2
—= 4 6 aAl n 43 +1 4 6 aAl n
1=2
1 n-1 3 n—1a 4/3
a
4 n-1 4 4
+ z +Z —| e —« Zy + z
64 2 4 7 axl lk n 4 4“k
6 =1 1=k 7

k=1 =k
n—1 1 n—-1 1 1
* A i Y aagn Y
=2 6 =2 7 7

th ) _ 1 3¢i-1 %%ana T oy _ -3 —l)
The7 term.take(X— > Zn P’q=1ax,,axq(pp’y_(pq’p_4’q_4

-1 i-1 4/3
1 Z < 3 azan_l T 4 + 1 | |4-
27 - axq e Egp’qﬂaxpaxq Po | T gexla
-1 2 4/3
3 0“an_q 1
< — T 44 4114 3.44
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Since V(z, %) =iy4+i nozF+= (xTPx)2

And LV isgiven as.

Ivl1l 1 1¢1 2
LV < —[bA — 3bnvneZ|P|* - Z n__ iy = (4max(Q))

— Azmax< 2—4 ) 11%]*

3 4 3 4
+y3 oy <¢1()’) + 201/33’ + Zfl/g

\/T—l

y

42 (W) 1))y 3

=1da;_q . oa;_q\ .
+ Z zi Jla; + k¥ — Zl=2 ax, (X141 + k%) — ( 3y )xz

l 1

1 ?a;i_y 1<62ai_1

lp()|*y + fl(y)]

3 4
> 0:10)"0:(3) + 70, Bz,

PoPqg — 5 2
qu 1axpaxq 2\ 0dy
1 3 4/, (Bay_p\ /3 3 /da_\*
T agr Lt T\, ) AT g Zi
0" 4 4 dy 4¢; 0

n-1gq._ oa,,_
+z3 [u+ k% — Zl—z a;ll (X141 + k1 %y) — ( ar; 1)@

n—1 2
0“a,_1

1/0%xa,_4
—§< aynz ><p1(y)T<p1(y)—§ )@,

1,3 dan_1\ 13 3 Ay \*
T agr "n3< oy ) Z"+_2< 3 )Z"
Jn—l 4 y 4511 y

4-/3

4

AN s (001 ke 3% 5 (01
e

4 0x; 4 dy

i=2 i=2

0x,0Xx
pa=1 Pta

Then back substation all the terms of u ,equations (3.40), (3.41), (3.42),
(3.43) and (3.44) in LV, to obtain:
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n

1 1 1 1 1
LV < —|bA—3b 2IPI* - = ) — — — 4
[ nne;|P| 4 bodel def ded T

i=2
1w 1 1w 1
-7 Mmax (@) -3 ) 5 (G,max (@)
4La¢; 4La¢;
1=2 =2
1
o 4 ~|4
el ]|x|
3 3 3
+y3a; + §¢1(Y)T¢1(Y)y + 553/3 + Zef/gy
3¢ 3bnvn 1
2 nvn
+ 72 SO 00y + = Oy + 5y
i=2 2 7
1
+_
8e§y
n—1 i—1
Ja;_ oa;_
=+ Z Zi3 al' + kifl - 6—11(5514_1 + klfl) _—llfz
X1 ay
1=2 =2
1< 9% 1 10%a;_, 3 43
_Z Ty — 1 T +-=8"°7
5 o 0x. P13 5, 1) @1 (y) + 76,77z
st 9 %%q
1 3 43 <6ai_1>4/3 3 <6ai_1>2 1
+ zZ; +—n. _— zZ; +— Zi+——=2z;
wn ot 5y) wrap(Gy) mr g
1
+4_6_‘71'Zl
3T e\ 3, dan\*?
+Zn ”+Zl_2<66 afl> Zn Z<6 dy ) #n
1
+4—62-Zn
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_ _ 4/3
3n 1 n 160111_1
+Z 67 afl alk ZTl
k=1 1=k
4/3
3 0% r
*3 Y'Y )|z
_ 4/3
L3 ”1aan_1k R
4 64l=2 9z, ‘L) TS T ggain
3 43 (0an_1\*? 3 /da, \*
w50 mra(Tay )
4 oy 462\ 0y
3 = 9% Y
n-1 r
+ - €g D Zn
4 p’q=16xp6xq

4/3

n
ANECSIIHC
4 dx; 4 ¢ dy

i=2
(3.45)
If €1, €, €3, €4, €5, €6, €7 €g aNd 1;@re chosen to satisfy
1 1
bA — 3bnyneZ|P|* — —Z—— -
3bnyne;|Pl 4er 4l 4l
1v 1 1v 1
- = ?(/11max (Q))* - 2 _2 (Azmax (Q))* — |}’|4
L =2
=p=>0 (3.46)
L oA 3.47
4t 8el 2 (3.47)
L LG 3.48
Aek  4et 2 (3.48)

Where ¢, and c¢; are those in (3.27) and (3.28), and
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From reconstruct a new controller then

u=-M(y,X)z,

Where
n—-1
3 da, N\ 3, da,\YP 1
M =c, +— +— —
v 0) =en 4L, (66 0% ) 4(66 dy ) 4
_ _ 4/3
3%/ “oa, 3/ %a, \"*
Y220\ L Tax, “w) T &Toy2
k=1 =k
_ 4/3
+3 n 1aan_1k 3 4/3 1
VAT 4% T 5T
=2
o2 (L) 2 Py’
4 oy 42\ 0y
-1 4/3
- Ot 7 3.49
7\ €8 axpaxq‘pp (349)
p.q=1
Then
A 4
u = Ba(y,x), B = 3

With (3.27), (3.28), and (3.48), we have also that:

V<——Z cizi — plx|* <0

Thus, according to theorem (3.4), we achieve not only global
asymptotic stability in probability, but aso inverse optimality.
That compl etes the proof.
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Theorem (3.5) [Deng & Krigtic, 99]:
The control law
u = _IBM(yvf)va :8 =

guarantees that the equilibrium at the origin of the system defined in problem

(3.50)

WA

formulation in section (3.2) and equation (3.7) is globally asymptotically

stable in probability and also minimizes the cost functional

27
1632

Ju) = E{ f [l(x,f) + M(y,)?)‘3u4] dr] (3.51)
0

For some positive definite radially unbounded function [(x, X) parameterized
by B.

Proof:
Let
4 -(3/2)

rar) = 37 Ry = (3)

Applying Theorem 3.1, the result follows readily.

3.4 Algorithms and Examples:

Algorithm (3.1) A Robust Controller Stabilization in Probability:

I nput: the dynamic control system described in problem formulation (3.2)

Output:  robust control u, and the unknown design positive functions

a; i =1,..,n and V(x) is suitable stabilized Lyapunov function.
Step 1: consider problem formulation (3.2).
Step 2: check that Lipschitz condition for the following function: f, ¢ , .

(See problem formulation (3.2)).
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Step 3: if the Lipschitz condition is satisfied go to step 4 otherwise go to (step
— sop).

Step 4: design suitable dynamic observer for the dynamic system of step 1:
d.fl = xzdt + kl(y - fl)dt

dz, = xsdt + k,%,dt

dz, = udt + k, %, dt

Step 5: define the error vector :

and hence

dX; = x4, dt + f(&)dt + ¢] (y)dw + ;(%)dw — %4, dt
—k;(y — %,)dt
d%; = X dt — k% + f(%)de + dT (v)dw + (%) dw

dx; = Ao&dt + f(%;)dt + ¢ (y)dw + 9, (F;)dw

Where
[—kl 1 0 O]
| -k, 0 1 0]
Ay =1 : :
|-k,, 0 0 1l
|-k, o o ™ o

Step 6: find k; ,i = 1,...,n. 0 that A, is stable matrix. One can use many

methods such as pole placement, ..., etc.see [Ogata, 02].
Step 7: find the positive definite matrix P of the system:

AP+ PAy = -1
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where A, isdefined in step 5, I is stands for n-identity matrix.

Step 8: suggest the Lyapunov function:

n
1 1 b
V(Z’_f) = Zy4 +ZZ Zlfl' +§(fTPf)2

Where z; = yandz; = £; — a ;(X;_1,v) , And P isthe solution of
step 7.
Step 9: select asuitable €4, €5, n; and &; to satisfy :
Ivl 1 1v
bA — 3bn\/7—1 |P|4 —Z 25_4_6{}_ Z £, 54 (AlmCLX(Q))
1=

n

1
I =
4i=2€l

so that LV is negative

()lzmax(Q)) =p=>0

Step 10: choose

3 3 3
a, = —cly§y¢1< )1 (y) — K o, %y — 7 1/33/
3¢ 3bnvn
- ZZ EE (1N Yy y+f (y)]
i=2
and
=19a;_, da;_q
— k% +Z (R4 + kX )+< )9?
141 _ a l [+1 141 ay 2
1 azai_l 3 / 1
+§< ayz > 1(3’)T 1(y)_ 321_40_1_4_1Zi
3 4500y s 3 (dai_1\"
305 " Y
and

88



Chapter Three Stochastic Nonlinear Stabilization

n-19q; oa,_
—knXy + Z = (xl+1 + k%) + (#) X,

-1
1/0%,,_, 1w« 0%a, ,
+ - —— T — = o7
2< 3y2 ><p1(y) ¢1(y) =5 ox,0x, 7P ¥
p.q=1
1 3 4, <6an 1>/ N 3 <6an_1>4
a0, a4 oy ) T Tag\Tay )

Step 11: Then to be grantee that LV is negative definite and hence
LV < =Y" . ¢z} —plx|* <0, wherec;,i =1,.., nae
suitable

Step 12: the Lypunov function IV of step 8 is constructed.
Step 13: stop.

Algorithm (3.2) (inverse optimal stabilization):

Input: the control u in algorithm (3.1) and the dynamic system of problem
formulation (3.2).
Output: optimal control u* = a(y,x) = —M(y, %)z,
Step 1: consider the steps of algorithum (3.1) from (step 1 — step 10).
Step 2: redesign the suggested controller u in algorithm (3.1), so that:
u=-M(y, %)z,

Step 3: M (y, X) of step 2 can be derived to be:
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n-—1
3 da, N3 3, da,_ P 1
MyD=coty) (e gt) +ales) ta
1=2 ! 6
_ _ 4/3
3w/ —oa, 3/ 9%a, ,\"*
T2\ Loz, M) Tg\B ey
k=1 =k
n-1 4/3
3 0,4 3 43 1
+—| € —k; +—€ +
<4l=2 0%, ) 43 aA8%
2+ 33 (aan_1>“/3+ 3 (aan_1>“
4 oy 462\ 0Oy
3 = 0%a v
n—-1 T
+—| €3 Pp
4 p’q=16xp6xq

Then the controller of step 2 is designed.

Step 4: select €4, €,, €3, €4, €5, €¢, €7 €g and n;are chosen to satisfy:

n
11 1
bA — 3b 2P4——Z——
ny/ne3|P| 4 s nt ef 464 46§

n n

1 1

1 1
g(/llmax (@) -7 7 (2;max (Q))? — |}/|4

=2
:p>0

Step 5: onusing = %y“ + %Z?ﬂ zi + g(fTPf)z , LV ,controller of step 2
and a , a; of step 10 algorithm(3.1) to obtain LV < 0.

Step 6: the controller u*is the optimal stably control.

Step 7: stop.
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[Hlustration (3.1):
Stepl: Consider the system:

dx; = x,dt + %xfdw
dx, = u dt + sin x,dw
y=x1
and [x,| < 1.
Step 2: Check Lipschiz condition:

Since f(x) = x5, |x,] <1 wefound that k = 1.

To check that y satisfy Lipschiz condition, first we must find the

Jacobian matrix for y:

12 — i
Where y; = 2 P, = Sinx,

@ 0n)
]:a_l/J:|6x1 Oxy | _[x1 O ]
Ox |% %| 0 cosx,
dx; 0x,
B
||£|| = |x;| +lcosx,| <1+1=2=k

Theny = (y,,9,)T satisfy Lipshiz condition, and

I Ces ) ~ G 2l < |5 o — 21 = 2lx 1
By equation (3.2).
Step 3: the observer system is:

1= %, ki (y— %)

s = u+ky(y — %)

=D
[l

.

=D
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Step 4: consider the error system:

. N 1 .
dX = AyXdt + x,dt + = xZdw + sinx, dw
2

Where A, = k O]
2

One can choosg, for ssimplicity k; = 4 ,k, = 6.25 so that the matrix A,
be a stable matrix.

Step 5: To find the positive definite matrix P ,the following equation should
be solved:
AP+ PAy = —1I

I |l it | e I I

Now, by usng matlab program, P isfound to be:

P14 P12] _ [0.1452 0.0806
Py1 Py 0.0806 1.2226

It'sclear that P is symmetric matrix:
The eigen values of P are:
A, =0.1392,
A, = 1.2286
Since A4, A, are positive value, then P is positive definite matrix.

Step 6: To find the Lyapunov function:

1 1 b
V= Zy4 + ZZEL + E(XTPX)Z
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1 1 _
= Zy4 + 2 (9?2 - 0—’1(9?113’))4

+9<[f 7,7 01452 0.0806 [9?1])2
2\""t 720 lo.0806 1.2226!|%,

1 1 _
V= Zy4 + _(9?2 - 0—’1(9?113’))4

+ = (o 145252 + 1.2226%2% + 0.1612%, %,)?

Where b is a positive constant.

Step 7: to find p;:

2 2
1 1 1 1
bA—6V2beZ|P|*—= Y ————= Aymax(P)
Aalan}  def 54( ! )y
2
1
) 4 ()lzmax(P))
i=2 7t
11 1
= bA —3b2V2eZ|P|* — - —— — ()llmax(P))

4ny  def A&
Where 1 isthe smallest eigenvalue of P, 1 = 0.1392
Aymax(P) isthe largest eigenvalue of P. 1;max(P) = 1.2286
and if wechoosebh = 0.1,¢, = 0.01,¢, =50,n, =0.1,¢, =0.8
|P| = the determinant of the matrix P, |P| = 0.17102516
So that p; > 0.
Step 8:
find a;and u :

3 5.8 an, 3 3 6v2b
ay c1y 8y 201 Y€ /3y — 64523/ 16622y

and
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. <6a1> o 1(0%a\ , 1
u=—c,z, —kx; +|\—\)x, +—= ——Z
222 2X1 3y 27g dy? y 4014 2
4/3 3

3 43 <6a1> N (6(11)4
2™ oy) 7 ag\ay) 7

Hence, on using theorem (3.2), the solution is globally asymptotically
stable in probability.

[Hlustration (3.2):
Stepl: Consider the system:

dx1 = xzdt + 25|n(xl)dW
dx, = udt + 4cosx, dw

where y = x; and |x,| < 1.
Step 2: check Lipchitz condition:
Since f(x) = x,, |x,| < 1, wefound that k = 1.

To check that y satisfy Lipschiz condition, first we must find the

Jacobian matrix for i:

Where ; = 2sinx,, Y, = 4C0Sx;

[0%1 9]
_0Y _|0x; 0xy|_ [2cosxy 0
J= ax |0y, oy,| 0 —4sinx,
dx; Ox,

0
||£|| = |2cosx,| + |-4sinx,| <2+4=6=k
Theny = (4,1,)" satisfy Lipshiz condition, and

o < 12— .
I Gea ) = ey, )1 < |52l = 2 = e — 1

94



Chapter Three Stochastic Nonlinear Stabilization

By equation (3.2).
Step 3: the observer system is:

1= % ki (y— %)

=D
[l

X, = u+ky(y — %)
Step 4: consider the error system:

dxX = AgXdt + x,dt + 2sin(y) dw + 4cos x, dw

Where A, = _:1 é]
—R2

One can choose, for simplicity k; = 4 ,k, = 6.25 so that the matrix 4,
be a stable matrix.
Step 5: To find the positive definite matrix P ,the following equation should

be solved:
ATP +PAy = -1

[—3 —4.5] [P11 P12] + [P11 P12] [ -3 1] _ [—1 0]
1 0 11Pyy Py Py Pypll-45 0O 0 -1
Now, by usng matlab program, we found P as.

09167 -05

P=1"05 0537

And A4, 4, of P are:
A, =0.1920,1, = 1.2617

It's clear that P is symmetric and positive definite matrix.

Step 6: To find Lypunov function:

1 1 b
=yt + 24+ (T P%)?
/4 7V g% 2(x PXx)
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1 1 _
= Zy4 "'Z(fz - 0—’1(9?113’))4

b 09167 —05 2
d T
+2<[x1 %] 0537[ ])

1
4y +— (x2 al(xl,y)) + = (09167x1 %, %, +0.537%2)?

Where b is a positive constant.

Step 7:
To find py:
el 1 1%
bA—6bV2eRP|* == ————= 4()llmax(P))
4 nl de; 44 ;
=2 =2
1w 1 )
— —Z = ()lzmax(P))
4La¢;
=2
= bA — 3b2V2€3|P|* - L B (A;max(P))’
? Ant Aef agr\ ™t

Where 1 isthe smallest eigenvalue of P, 1 = 0.1920
Aymax(P) isthelargest eigenvalue of P. 1;max(P) = 1.2617
and if wechoosebh = 0.1,¢, = 0.01,¢, =50,n, =0.1,¢, =0.8
|P| = the determinate of the matrix P, |P| = 0.2422679
So that p; > 0.

Step 8: find a;and u :

, 3 3 .
a, = —c,y — 6ysiny — 401 y 4 y 12&2y(siny)

96\/— 2b

2

ylsiny|*
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oa 0%a 1
U= —Cpzy — k¥ + (a_yl> X, +2 < ay21>y2(5in3’)2 T 1522
1
4/3 3

3 4/ <6a1> (6(11)4
2" oy) "7 ag\ay) 7
Hence, on using theorem (3.2), the solution is globally asymptotically
stable in probability.

[lustration (3.3):

Stepl: Consider the system:

dx1 = xzdt + Sln(xl)dW
de = X3 dt + COS(xle) dw
dx; = udt + sin x,x3 dw
y=x1
With |x,| < 1,|x3] < 1.

Step 2: check Lipschiz condition:

1. Firgt, check f(x;,x3) = (f1, fo) = (x5, x3)7

af [0 10
]f=a—=[0 0 1‘
* lo oo

d
<1 +1=2-s
dx
Then f = (x,, x3) T satisfy Lipshiz condition, and
s af . .
If Ger, ) = F G2 < |[5-||Ie — 2 = 211 - 21
By equation (3.2).
2. Check ¥ (%, %,, x3) satisfied Lipschiz condition:
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0y, 0Y1 0P,
dx; Oxp, Oxs
j= B B D)
6x1 axZ ax3
alp3 alng 61/;3
Lox; O0x,  Ox3-
COS x4 0 0
_xz Sln x1x2 —x1 Sln x1x2 O
X3 COS X1 X3 0 X1 COS X1X3
oY _ _

+ |x; cOS x;x5]

< |cosxq| + |x,lIsinx; x| + [xq |[sinx; x, | + |x3[[cos x; x5

+ [xq[|cos x1 x5
<1l1+1+1+1+1
<5=K

Theny = (Y, y,,P3)T satisfy Lipshiz condition, and
RN 0y . .
I Gea 2, %5) = G g, B < ||l = 21 = Sl —

By equation (3.2).
Step 3: the observer system is:

X, =%, +k(y — %)
55'\2 =X+ k(y — %,)

x3 = u+k3(y_.£1)

Step 4: consider the error system:

dx = Aofdt + (xZ + X3)dt + Sln(y)dW + COS (xle) dw + sin X1X3 dw

_k1 1 O
Where Ay =|-k, O 1]
—k; 0 O
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If wechosen k; = 3,k, = 4.5,k; = 6.25 s0 that the matrix A, be
stable.

Step 5: To find P, we must solve:
AP+ PAy = —1I

So that P obtains as;

56940 -05000 -—2.2931
P =1-05000 22931 -0.5000
—2.2931 -0.5000 1.3807

Where P is positive definite matrix because the eigen value of P are:
A, = 0.1836,1, = 2.4833,1; = 6.7009

Step 6: To find Lypunov function:

1,1, 1, b,
V= Zy4 +ZZ§+ZZ§+§(XTPX)2

1, 1. I ~ 4
V:Z)’ +Z(x2—a’1(x1,y)) +Z(x3—a’2(x2,y))
56940 —05000 —2.293171[%iT\”
523

b
+§<[f1 X, x]" [—0.5000 22931 —0.5000
—22931 -05000 1.3807

1, 1, I I _ .4
V=—y"+ _(xz - 0-’1(95113’)) +—(x3 - a’z(sz’))
4 4 4
b
+3 (5.6940%2 + 2.2931%% + 1.3807%% — %, %, — 4.5862%, %,
— %,%3)°
Where b is a positive constant.

Step 7: to find p,
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3 3

1 1 1 1
4
= —2y S P
b1 — 9bV/3e2|P] a2 e A, 5 (/hmax( )
=2 't i=2 "t
13
o 7 ()lzmax(P))
i=2 1
11 11 1
= bA—3bnvnei|P|* ———5 ——— —— — Aymax(P)
4ny 4n;  Adef 452( ' )

253 ()lmax(P))

Where 1 isthe smallest eigenvalue of P, 1 = 0.1836
Aymax(P) isthe largest eigenvalue of P. 1;max(P) = 6.7009

and if wechoosebh =0.1,¢, =0.01,¢, =50,7, =01, n, =
0.09,¢,=08,¢, =05

|P| = the determinate of the matrix P, |P| = 3.0546
So that p; > 0.

Step 8: find a4, a, and u:

3 43 3

a; = —C1y — E[(siny)2+(cosx1x2)2+(sinx2x3)2] —201 YT 76

4/3y

— —52253?[(51'7131)2 + (cosxyx,)? + (sinx,x3)?]

9\/—b

2

yllsiny cosx;x, sinx,x3]|*

_ Oay - day\
Ay = —Cp2Zp — Xy + ﬁ(xg + k%) + <W> X2

1 0%a, ,
+ §y6 < 5y > [(siny)? + (cosxyx,)2+(sinx,x3)?] — ZJ24/322

1 3 43 <6a1> +/3 3 (6(11)4
agi 274 \By) 27 ag2\ay) 7
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_ Oay, B oay\
u = _C323 - k3x1 + a_xz(xB + k3x1) + (W) xz

. azaz ] ) ) ' ,
y ayz [(Slny) +(COSX1X'2) +(Smx2x3) ]

2
0%a

Z 2 [(ysiny)? + (ycosx;x,)%+(ysinx,x3)?]
Xp0Xxgq

4/3 N 3 (6(12)4
B Tag\oy)
Hence, on using theorem (3.2), the solution is globally asymptotically
stable in probability.

1 3 43 <6a2>
452 4" Gy

[Hlustration (3.4):
Step 1: consider the system:

dx; = x,dt + x3dw

dx, = x5 dt + cos(x;)sin (x,) dw

dx; = x, dt + sin?(x,x3)dw

dx, = u dt + cos(x3x,)dw
y=x1

Step 2: check Lipschiz condition:

1. First, check f(x, x5, x4) = (f1, fo f3) = (xz, x3,x4)7

0100
]:ﬁ2001o
f=6x [0 0 0 1

0000

of
||a|| = 0] + |1] + [O[ + 0] + |O] + [0] + [1| + [O] + O] + |Of + |O|
+ 1]+ 0]+ 0]+ 0] +|0]<1+1+1=3=k
Then f = (x5, x3, x,) T satisfy Lipshiz condition, and
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vt < 1P !
I Ger, 00 5) = £ G, F 5D < [ 1 = 211 = 3l - 21

By equation (3.2).

2. Check Y (%4, %5, X3,Xx,) satisfied Lipschiz condition:

we must find jacobian ] :

0y, 0Y; 0Y; 0¢y]
dx; O0x, OJx3 0Jx,
0y, 0y, 0P, 09,
_{0xq 0xp Ox3 0x4
T=0ys o, ows oy
dx; 0x, Jx3 0x,
0, 0, 09y 01y

[ dx; 0dx, O0x3 Ox,]

Where
0 0 0 0
ﬂ—Sxf, ¢1_O’ 1P1_O’ ¢1_O’
d0x, dx, dx dx,
61/)2 _ i . alpz _ alp alpz
a—xl = - sm(xl) sm(xz) , E = COS(Xl) COS(XZ) 6_3 =0, 6_4 =0,
03 03 .
o, =0, ox, = 2x5 Sin(x,x3) cos(x,x3),
0 0
MWs _ = 2x, sin(x,x3) cos(xzxg) MW _ =0,
6 3 4-
0y, Y, Y, 0P, .
o =0,=— ox, =0, Fr = —x, Sin(x3x,), N = —x3 sin(x3x,)
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oY _ _
|55 = 13421 + lo1+ 101 + 0] + |- sin(x,) sinCx,)] + eos(x,) cos(x, )

+ |0] + [O] + |O] + |2x3 sin(x,x3) cos(x,x3)]
+ |2x, sin(x,x3) cos(x,x3)| + [0] + O] + O]

+ |—x4 SiN(x3x,) | + |—x3 Sin(x3x,) |

oY _ _
||a|| < 3|x2] + |sin(xy)|Isin(x,)| + [cos(xy)| + [cos(x,)]

+ 2|x5]|sin(x,x3) [lcos(x, x3)| + 2]x,|Isin(x,x3) | [cos(x, x35)]

+ [x4lIsinCesxg) | + |xslISin(xzx,)]
oY
||a|| <3+1+1+1+2+2+1+1=12=K
Theny = (Y, Y5, 3, P3)T satisfy Lipshiz condition, and

B L i
I Gea 5, 34) = G, o i R < [ e = 21 < 2201 - 31

By equation (3.2).

Step 3: the observer system is:

5C'\1 =%, +k(y — %)
X, = X3+ k(y — %)
55'\3 =Xy +k3(y —%,)

.
~

Xy =u+ky(y— %)
Step 4: consider the error system:

dx = Apgxdt + (x, + x5 + x,)dt + (x3 + cos(x;)sin(x,)

+ sin?(x,x3))dw

Where
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-k; 1 0 O
-k, 0 1 0
A
" l-k; 0 0 1
-k, 0 0 O

If wechoose k; = 2,k, =6.25,k; = 7.5k, =9 sothat A, be stable

matrix. Then the matrix P is written as:

4819063 —0.5000 -128.6250 0.5000

p = | —0.5000 1286250 -0.5000 —35.2500
—128.6250 —0.5000 35.2500 -—0.5000
0.5000 —35.2500 —-0.5000 10.4931

Where the eigen values of P are given as.
A1 =0.3093,4, = 1.3203,1; = 138.3450, 4, = 516.2997
It'sclear that P is positive definite matrix.
Step 6: To find Lypunov function:

1 1 1 b
V= Zy4 + ZZEL + Zz§ + ZZ;L + E(XTPX)Z

i} 4 - =
V= iy4 +i(f2 —a(21,y)) + %(’?3 B ‘7‘2(’?2'3'))4 +%(Q4 B a3(£3’y))4

4819063 —0.5000 -128.6250 0.5000

%, %, %5 %] —0.5000 128.6250 -0.5000 -—35.2500
172 “11-1286250 —05000 352500 —0.5000

0.5000 —35.2500 —-0.5000 10.4931

b
+ —

1, 1, I o 4
V:Z)’ "'Z(xz _0-’1(9511)’)) +Z(x3 _a’z(sz’))

1 _
+ 2 (554 - 0-’3(55313’))4

b
+5 (481.9063%2 + 128.625%7 + 35.25%% + 10.4931%

- xlfz - 25725.%1%3 + f1f4 - f2f3 - 705%2.%4 - f3f4)2
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Where b is a positive constant.

Step 7:
Tofind p;:
el 1 1w-1
2
:bﬂ—24b6%|P|4—ZZn—?—4—ef—Z 5—14(/11771(196(13))
=2 =2
1w 1
) g ()lzmax(P))
l

bA — 24be3|P|* 1[1+1+1] !
= — € —_—— _ ] - —
i 4lnz mz mil A€

N3
1[1 1

-5 + i] ()lmax(P))2

—_ —

& & &

Where 1 isthe smallest eigenvalue of P, 1 = 0.3093

A;max(P) isthelargest eigenvalue of P. 1;max(P) = 516.2997

and if wechoosebh = 0.1,¢; =0.01,¢6, =50,7, = 0.1, n; =
0.09, n; =0.07,¢,=08,¢; =05, ¢, =04.

|P| = the determinate of the matrix P, |P| = 2.9169 x 10*

So that p; > 0.
Step 8:
a, = —cyy — 531[(313)2 + (cosxysinx,)?+(sin%x,x3)?+(cosxzx,)?]

3 a3 3
_40-1 y_461 y

4
3
- Zy132s‘i2y((y3)2
i=2

+ (cosxysinx,)?+(sin%x,x3) %+ (cosxsx,)?)?

24b
— ——y|y3 + cosx{sinx, + sin®x,x; + cosxzx,|*
2 yiy 1 2 2X3 3X4
2
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- daq\
Ay = —CpZp — KXy + (W) X

1/0%a, .
+2< >[(y )?
4/3

3
+ (ycosxysinx, ) +(ysin?x,x3)?+(ycosx3x,)?] — 202 %2

1 3 45 (0an\*? 3 (dap\*
O L TR

40, 4 oy 42
da, da,
= — — kaX, + — (X2 + kX +<—>A
as €373 3X1 9%, (%3 3%1) 3y X2
1/0%
+2< 2)[(y4)2

3
+ (ycosxysinx,)*+(ysin®x,x3)?+(ycosx3x,)*] — ZU§/BZ3

1 3 4/3<6a2> 4/3 3 (6(12)4
45772 \gy) T agz\ay) B

And

das)
= —CyZy — ky¥ + Z (Ry4q + kyXy) + ( 3y )xz

1/0?
"2 < a3> o7
+ (ycosx;sinx,)%+(ysin?x,x3)%+(ycosx3x,)?]
3
1 0%a
=3 2 o 0
Sy PO
1
+ (ycosx;sinx,)%+(ysin?x,x3)?+(ycosx3x,)?] — P
03

3 4/ (60(3)4/3 3 <6a3>
2" oy) H7ag\ay) "

Hence, on using theorem (3.2), the solution is globally asymptotically
stable in probability.
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Conclusions

. From the present study sufficient conditions for finding robust and
inverse optimal stabilizing controller in probability for some
stochastic dynamic system characterized by nonlinear functions which
are Lipschitz in nature and presented by Brownian motion noise are
discussed and presented.

. Some computational algorithms to justify the work, and make the
computational regiments for designer based on the present work is
easily are presented.

. The numerical solution for stochastic differential equation is not an
easy task, so the graph and figures are omitted and left to the future.

. The Ito — stochastic integral play a central role in modern probability
theory and its applications to stochastic differential equation
concerned by Brownian motion. So the difficulties for solution
stochastic differential equations are resulted from this type of integrals

and its computation.

The numerical difficulties of stochastic differential equations
are also resulting from the difficulties of evaluating Ito — stochastic
integrals due to present Brownian motion (time — random variable)

noise.

. The present work is not an easy task and need some good
backgrounds of probability theory, stochastic process, the dynamic

system in the present of stochastic noise as well as stochastic
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Conclusion

differential control system. And due to all necessary background, the
task becomes difficult for many, so the work of this field becomes an

interesting for us.
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Future works

The future works that may be considered are the following:

1. Due to the complexity of the analytic and numerical solution of SDE,
some numerical methods of solution of stochastic dynamic system
(presented in the work) may be considered and developed.

2. The exponential stability in probability using Lyapunov function
approach for some stochastic differential equation may also be taken,
as well as the statistical properties of the solution of SDE may also
been studied.

3. Full order observability or reduced order of some stochastic dynamic
system and its stabilization using Lyapunov function approach may be

considered.
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Appendix A

Theorem (A.1):

If £ € L3[a Bland f is continuous, then, for any sequence I1,, of a

partitions a = t, g < tpq < <tp,, = B of [a B] with mesh |IT,| - O,

my—1 B
Z f(tn,k)[w(tn,kﬂ) - W(tn,k)] 5’ j f(t)dW(t) as n — oo,
k=0 p

Lemma (A.2):

Let £ € M2[0,T] and let {;,{, be stopping times, 0 < {; < {, <T.
Then

G2
E f F()dw(t) = 0,
€

2

02 02
E j FOaw®)| = E j F2(t)t.
{1 {1

Theorem (A.3):

Let f € M3[0,T] and let {;,{, be stopping times (with respect to F,),
0<{;<{<T.Then



Appendix

¢2
E { j f(t)dw(t)|ﬂ-}1} =0
¢
2 %
|7-"¢1} =F {j f2(t)dt |7-"¢1}. (a.1)
¢

02
[ r@awe
¢1

1



The proof of theorem (2.4)
Proof [Friedman, 75], [@Jksendal, 98]:
The proof will be divided into 6 steps,

Step 1:
For any integer m > 2,

dw®)" =mw®)" " + %m(m —D(w®)" dt.  (b.1)

Indeed, this following by induction, using theorem (2.3).
By linearity of the stochastic differential we then get

) 1.
dQ(w(t)) = Q(w(t))dw(t) + zQ(W(t))dt (b.2)
For any polynomial Q.
Step 2:

Let G(x,t) = Q(x)g(t) where Q(x) isapolynomial and g(t) is
continuously differentiable for t > 0. By theorem (2.3) and (b.2),
dG(w(t),t) = f(w(t))dg(t) + g()df (w(t))
= [Fw@)d® + 39O Fwie))] ar
+g(O)f (w®))dw(t),

e, forany0<t, <t, <T,
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Gw(ty), t;) — G(w(ty), t1)

ty

= [ [o:w 0.0+ 5 6extwi®) )] at

+ j G (w(t), )dw(t). (b.3)

t1

Step 3:
Formula (b.3) remains valid if

6(.t) = ) fi()gi(®)

Where f;(x) are polynomials and g;(t) are continuously

differentiable. Now let G,,(x, t) be polynomialsin x and t such that

Gn(x, t) - f(x, t),
2

0 0
aGn(x, t) - fx(x, t), ﬁan(xi t) - fxx(x’ t),

0
- Gax,0) = £, )

Uniformly on compact subsets of (x,t) € R! x [0, ), we have
Go(w(ty), t3) — G (w(ty), ty)

‘1o 1 92
= f [EGn(W(t),t)+§ﬁ6n(w(t),t) dt

+ j aa—xGn(W(t), £ dw (). (b.4)

It is clear that
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0 1 92
j [E G,(w(t),t) + 5322 G (w(t), t)] dt

> f [ft(w(t),t)—%fxx(W(t)’t)] dt  as.,

2
dt - 0 a.s.

t, ;
[ 56w, = w0

Hence, takingn — oo in (b.4), we get the relation
fw(tz), £2) — f(w(ty), ty)

= f [ft(w(t), t) — %fxx(w(t), t)] dt

+ [ R, 0aw (b.5)

Step 4:
Formula (b.5) extends to the process

d(w(t), t) = f(& + ast + byw(t), t)
Where ¢;, aq, by are random variables measurable with respect to F, ,
e,
D(w(ty), ty) — P(w(ty), tq)

t, ) ) 1 ~
— j[ft(f(t),t) + £, (£(0), t)ay "'zfxx(f(t),t)blz]dt
+ f fe(E(t), )by dw(t) (b.6)

C
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Where £(t) = &, + a,t + byw(t).
The proof of (b.6) is arepetition of the proof of (b.5) with obvious

changes resulting from the formula
1608
=m(£0)" layde + bydw(©)]
+ %m(m —1) (é(t))m_2 b2dt, (b.7)

Which replaces by (b.1).

Step 5:
if a(t), b(t) are step functions, then

fE(t2), t2) — f(E(t) t2)

ty 1
= [ 6600+ £G©,0a(0) + 5 £ul@, 0P Ot

+ [ fs@.0p@aw© (b.8)

Indeed, denoted by I, ..., I, the successiveintervalsin [t,, t,] in
which a, b are constant. If we apply (b.6) with t{, t, replaced by the

end points of I;, and some over [, the formula (b.8) follows.

Step 6:
Let a;, b; be nonanticipative step functions such that

T
jlai(t) —a(t)|ldt >0 a.s. (b.9)
0

T
jlbi(t) — b(t)|2dt >0, (b.10)
0
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And let

t

&(t) =¢(0) + j a;(s)ds + j b;(s)dw(s).
0 0

Then

P
supo<e<rl&i(t) —E(@)| - 0.
Hence, for a subsequence {i},

supo<t<rl$i(t) — &) - 0 as.
if
(=i (b.11)
This and (b.10) imply that

T
j (600, DB(D) — £ (&:(0), Db (©)[2de 50
0

Ifi=1—- oo,

It follows that

f fx(fi(t),t)bi(t)dw(t)i j £ (E@), )b(t)dw(t)

Ifi=1- oo,

Itisclear from (b.9)—(b.11) that also

ty

[ 7600+ A6, 000 + 5 fule®. OB ) at

t1

t, .
5 f [ft(f (), t) + £ (£(@), t)a(t) + §fxx(€(t), t)bZ(t)] dt

Ifi=1—- oo,



Appendix B

Writing (b.8) fora = a;, b = b;, £ = §; and takingi = { — oo, the
formula (b.8) follows for general a, b. This complete the proof of the

theorem.



pciall 4k 3 Jsiall aal (e Baa) 5 ddaliail) A laladll Y aleal) e
bl )l J g8 8 Le3lawlai ¢ (theory of Stochastic Processes) (s2baill

A5l 5 (Tto) & 55 (e Al sulind) Apalall Aalail) (amy jliie W) iy cadal
i Saaliny ollai e Jaiiis ( Browian Motion ) sl ssdall dda 5

(optimal control) e shuse (robust) Gmas e Uy sh 5 Ll
3 bl Y (in probability ) Alia¥) Gaca 4yl 8 (e & 53 Claal
O s 138 Al Ad¥) il pail G s 5 Uk il dukadll ye ddsbail
el Ol 5 (el Aol o Ll Al sl Ui s 4y ) i)

Aa yidal) cly ylasll

(inverse A Saall Bl &) yaia) (e g5 gkl g aye SIS N
Glllaially dacoe daiBle i Aly e JWiaY¥l e optimal stabilization)

A5 pall dusaly )l
e Gle)lsa lsiee Jee dbd Aalitinl s (e e a8 W8
Agnday AL dac e b plail) e 3atii



Al
7N

Al
/N

7NZ

E

Al
7N
7N
Al
/N
Al
7N\
Al
7N
Al
7N
Al
/N
Al
/N
Al
7N
Al
/N
Al
7N
Al
/N
Al
/N
Al
/N
Al
/N
Al
/N
Al
/N
Al
/N
Al
/N
Al
/N
Al
7N
Al
7N
Al
7N
Al
7N
Al
7N
Al
7N
Al
7N
Al
7N
Al
7N

Al
7N

23X

3Lyl ¢y gasn

alell iaglly @iell gflegll 25154
sl dealy

solell 312

ssgalall sylaglas o alpanlysll gud

@@‘M‘W@ayﬂéayewwpw%\s
e\.u‘ Qbﬂ&bﬁ‘%ﬁb\.«y &5},‘

il ¢

spaale iy s Jg alilhga s e3a @iy sl ealy - gglell iyl (] dasa

Jodl gy a3
Tl

alpal sl ggle @4
5 4
gl Jale Galyyl
(T+0 ,csgpaill Realy g9l u gy 34112y)
sslal,

U99) Qlt gals mgl
Jda
1£rq

Az
7N

Al
/N
Al
I\
Al
7N\
Az
7N
Al
I\
Al
/N
Al
I\
Al
7N
Al
I\
Al
/N
Al
I\
V4
7N
Al
I\
Al
7N
Al
I\
Al
/N
Al
I\
Al
/N
Al
I\
Al
/N
Al
I\
Al
/N
Al
I\
Al
/N
Al
7\
Al
/N
Al
7\
Al
/N
Al
7\
Al
/N
Al
7\
Al
/N

Al
/N



	en
	الاية القرانية
	الاهداء
	certification
	examining committee's
	Acknoldegent
	contents...
	Abstract
	Introduction
	Chapter One
	Chapter Two                                                 
	Chapter Three
	Conclusions
	Future Work
	References
	appendixA
	appendixB
	المستخلص
	ar

