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1 This field of stochastic dynamic is firstly derived and discussed by Kiyosi Itô. In 
literatures such a stochastic dynamic. 
 
2    Robert Brown described the motion of a pollen particle suspended in fluid in 1828. It 
was observed that a particle moved in an irregular, random fashion. 
 

Abstract 

 

Stochastic differential equations are one of the most useful areas of 

the theory of stochastic processes and its applications in mathematics. 

Some nonlinear (Itô) 1 dynamic stochastic control system driven by 

Brownian motion 2 based on dynamic observer have been considered. 

Output feedback (observer – based) robust and optimal control law 

which guarantees global (local) asymptotic stable in probability for the 

nonlinear stochastic dynamic system are discuss and developed. The 

necessary theorems regarding the globalty asymptotic stable in the 

probability of the equilibrium point at the origin of the closed loop stochastic 

system have been developed and proved. The Lyapunov function approach 

of stochastic dynamic system has been adapted to justify our proofs. 

The inverse optimal stabilization in probability with suitable 

performance index has also discussed and developed. The necessary 

mathematical requirements have also been provided. Concluding remarks, 

future work, computational algorithm based on the theoretical results and 

illustrations have been presented. 

Abstract 



I  
 

Introduction  

 

Despite major advances in robust stabilization of deterministic 

nonlinear systems achieved over the last few years and reported in [Krstic, 

95],[Freeman, 96] and references therein, the stabilization problem for 

stochastic systems is yet to be addressed. While not as refined as their 

deterministic counterparts in [Khalil, 96], Lyapunov techniques for stability 

analysis of stochastic systems do exist, see, for example, the classical book 

of Khas’minskii [Kas’minskii, 80] (see also [Kushner,67]). Efforts toward 

(global) stabilization of stochastic nonlinear systems have been initiated in 

the work of Florchinger [Florchinger, 93],[ Florchinger, 95, a], [Florchinger, 

95, b] who, among other things, extended the concept of control Lyapunov 

functions and Sontag’s stabilization formula [Sontag, 89] to the stochastic 

setting. A breakthrough towards arriving at constructive methods for 

stabilization of broader classes of stochastic nonlinear systems came with 

the result of Pan and Basar [Pan&Basar, 96], who derived a robust design 

for strict-feedback systems motivated by a risk-sensitive cost criterion, [Pan 

& Bernhard, 95], [James, 94], [Nagai, 96], [Runolfsson, 94], (for other types 

of optimal control problems, see, e.g., [Haussmann & Suo, 95,a] and 

[Hussmann & suo, 95, b]). 

Stochastic differential equations (SDE’s) constitute an ideal 

mathematical model for a multitude of phenomena and processes 

encountered in areas such as differential equation, stochastic control, signal 

processes and mathematical finance, most notably in option pricing (see for 

Introduction 
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example [Øksendal, 98] and [Kloeden & Platen, 92]). Unlike their 

deterministic counterparts, SDEs do not have explicit solutions, apart from 

in a few exceptional cases; hence the necessity for a sound theory of their 

numerical approximation is important. 

  It is well-known that stochastic integrals and Itô formula play a 

central role in modern probability theory and its applications to stochastic 

differential equation concerned by Brownian motion. 

The theory of Itô stochastic differential equations is one of the most 

beautiful and most useful areas of the theory of stochastic processes. 

However, until recently the range of investigations in this theory have been, 

in our view, unjustifiably restricted: only equations were studied which can, 

in analogy with the deterministic case, be called ordinary stochastic 

equations. The situation has begun to change in the last 10-16 years. The 

necessity of considering equations combining the features of partial 

differential equations and Itô equations has appeared both in the theory of 

stochastic processes and in related areas. [Krylov&Rozovskii, 07]  

Despite huge popularity of the linear-quadratic-Gaussian control 

problem, the stabilization problem for nonlinear stochastic systems has been 

receiving relatively little attention until recently.  

  In [Deng &Krstic, 97, a] and [Deng & Kristic, 97, b], they designed 

simpler inverse optimal control laws for strict-feedback systems which 

guarantee global asymptotic stability in probability and whose algorithms 

can be directly coded in symbolic software. 
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Some stochastic differential system for linear quadratic stochastic 

system (optimal control system) as well as robust controller has been     

adapted. Stabilized and optimal controller designer for some modified 

nonlinear stochastic dynamic system are derived and modified. The work of 

this thesis is to generated of the previous work of the literatures [Hua Deng 

&Krstic, 97], [Hua Deng, 97],[Deng & Kristic, 99], [Florchinger, 93], and 

[Florchinger, 95, a]. 

Based on the previous work, this thesis we design a robust and 

optimal control law which guarantees global asymptotic stability in 

probability. The design is fully systematic and its algorithm can be directly 

coded in symbolic software (for examples Matlab software). 

We deal with nonlinear systems in which the equilibrium at the origin 

is preserved even in the presence of noise because the noise vector field is 

vanishing at the origin. This means that we exclude linear systems with 

additive noise. 

Another preparatory comment of potential interest with technical 

expertise in robust designs is that the Lyapunov function that we construct is 

not of the form  = ∑    but of the form  = ∑    but in our work, the 

form  =     +   ∑    +   (      )      has been adapted. The quartic form 

(fourth-order) is employed in order to handle some special terms in the 

Lyapunov analysis which arise due to the some class of Itô differentiation 

rule system and Itô rule. 
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IV 
 

This thesis consists of three chapters. The first chapter deals with the 

basic concept of stochastic dynamic system. 

In chapter two, the necessary mathematical principles concerning 

stochastic integration, Itô formula, Itô SDE, existence and uniqueness of Itô 

SDEs, as well as some solvable examples have been presented. 

In chapter three, two results have presented. First, we design an out 

put feedback (observer – based) back stepping control law which guarantees 

global asymptotic stability in probability is presented. The stabilizing control 

laws which are also optimal with respect to meaningful cost functional are 

described. The algorithms and examples are also given.   

 

 Future work, concluding remarks, appendixes, and references are 

presented.   
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1 

This chapter presents basic concepts of stochastic dynamic system 

which is divided into three sections, the first one describe the set of algebra, 

the second section deals with the random variable while the third section deals 

with the stochastic processes and some of its kinds. 

 

1.1 ALGEBRA OF SETS : 

The collection of all elementary outcomes of a random experiment is 

called sample space and is denoted by Ω. In the terminology, the sample 

space is termed as the universal set. Thus, the sample space Ω is a set 

consisting of mutually exclusive, collectively exhaustive listing of all possible 

outcomes of a random experiment. That is, Ω = {  ,  , … ,  } denotes the 

set of all finite outcomes, Ω = {  ,   , … } denotes the set of all countably 

infinite outcomes, and , Ω = {0 ≤  ≤  } denotes the set of uncountably 

infinite outcomes.   

 Let Ω represent the sample space which is a collection of  -points as 

defined earlier. The various set operations are complementation, union and 

intersection. Let   and   be two subsets of the sample space Ω, denoted by  ⊂ Ω,  ⊂ Ω. The complement of   , denoted by A , represents the set of all 

ω-points not contained in A, i.e, 

              = { :    ∉  }                                                                                    (1.1)      
Evidently the complement of Ω is the empty set  . The union of sets A 

and B, denoted by  ∪   or A+B, represents the occurrence of  -points in 

either   or  . Similarly, the intersection of sets   and  , denoted by  ∩   or   , represents the occurrence of  -points in   and  . Clearly, if there is no 

commonality of ω-points in   and  , then  ∩   is the empty set  .  
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Example (1.1): 

Let Ω be the  -points on the real line  . 
             Ω = { : −∞ <  < ∞} 

Define               = { :   ∈ (−∞, )} = { :  <  }   ∈     

             = {  :   ∈ ( ,  )} = { :  <  <  }  ∈    

Then the set operations yield                = { ≤  < ∞}  

             = {−∞ <  ≤  } ∪ { ≤  < ∞}  

             ∪  =  { <  }                                                    <           { <  }                                                      <  <   { <  } ∪ { <  <  }                                <     
             ∩  =  { <  <  }                                                    <  { <  <  }                                           <  <                                                                          <     
The union and intersection of an arbitrary collection of sets are defined by              ⋃    ∈ = { :   ∈   for some  ∈  }  

            ⋂   = { :   ∈    ∈ for all  ∈  }   

where   is an arbitrary index set which may be finite or countably infinite.                        

       The union and intersection follow the reflexive, commutative, 

associative, and distributive laws. 

        The complements (⋃    ∈ )  and  (⋂    ∈ )  are given by de-

Morgan’s laws and as follows: (⋃    ∈ ) = { :    does not belong to any   , ∈  } 
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                    = { :    ∉    for all  ∈  } 

                   = ⋂     ∈  (⋂    ∈ ) = { :    does not belong to each and every   ,  ∈  } 

                    = { :    does not belong to some   , ∈  } 

                     = ⋃     ∈  

Definition (1.1) Sequences [Krishnan, 84]: 

   A sequence of sets   ,  ∈  , is increasing if     ⊃    and  

decreasing if      ⊂    for every  ∈  .  

 

Remark (1.1) [Krishnan, 06]:  

1. A sequence  which  is either increasing or decreasing  is called a  monotone  

sequence,  we  can  write  the limits (   countably infinite) of monotone 

sequences as: 

      

 
    →∞   =                            

                     =       ∞

                    {  } increasing
     →∞   =                                                             

                       =     ∞

                    {  }            ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫                           (2.1) 

The limit of monotone sequences {A  } is written as A  ↑ A when it is 

increasing and A ↓ A when it is decreasing.  
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2. We can define a superior limit and inferior limit for any sequence {  } 

not necessarily monotone. We define subsequences {  } and {  } 

derived from {A } as follows: 

      =         =     
    

                               = { :                                    ,    , … }                                                                                                                  

              (1.3) 

   =         =     
                                                                                         

                               = { :                                   ,  , … ,    } 

                                                                                                     (1.4) 

Clearly the sequence {  } and {  } are monotone decreasing and increasing, 

respectively. 

  

Example (1.2): 

Let    be the set of points ( ,  )of the Cartesian plane    where {0 ≤  <  , 0 ≤  < 1  ⁄ }, that is     = { , ∈   : 0 ≤  <  , 0 ≤  < 1 } 

Here {  } does not belong to the monotone class, while the subsequence 

  =    = {( ,  ) ∈   :  0 ≤  < ∞, 0 ≤  < 1 } 
    

is a decreasing sequence, and hence 

 =       =    = {( , ) ∈   : 0 ≤  < ∞,  = 0} =            
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Similarly, 

  =    = {( , ) ∈   : 0 ≤  <  , = 0}                                                  
    

is an increasing sequence, and hence 

 =       =    = {( , ) ∈   : 0 ≤  < ∞, = 0} =            
    

Since            =           = {( , ) ∈   : 0 ≤  < ∞,  = 0}, we 

have  

      =  =  = {( ,  ) ∈   : 0 ≤  < ∞,  = 0}. 
Remark (1.2):   

We define ϑ as the nonempty class of subsets drawn from the sample 

space Ω. We say that the class  ϑ is a field or algebra of sets in Ω if it satisfies 

the following definition. 

                                                              

Definition (1.2) Field (Algebra) [Krishnan, 06]: 

A class of a collection of subsets A  ⊂  Ω  denoted by ϑ is a field   when  

the  following condition are satisfied : 

1.  If      ∈    ,  ℎ        ∈ ϑ,  = 1,2, … ,   

2.  If {    ,i=1,2,…,n} ∈ ϑ,then ⋃                                                    (1.5) 

Remark (1.3):  

Given the above two conditions, de Morgan's law ensures that finite 

intersections also belong to the field. Thus a class of subsets is a field if and 

only if it is closed under all finite set operations like unions, intersection, and 

complementation. Since every Boolean algebra of sets is isomorphic to an 

algebra of subsets of Ω, we can also call the field a Boolean field or Boolean 
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algebra. Every field contains as elements the sample space Ω and the empty 

set  ,   [Krishnan, 84] 

Example (1.3) [Krishnan, 84]: 

Let Ω =   and consider a class ϑ of all intervals of the form ( ,  ], that 

is { ∈  :  <  ≤  }: 
( ,  ] ∩ ( , ] = ⎩⎪⎨

⎪⎧                 ℎ       <  <  <   ( ,  ]          ℎ      <  <  <  ( , ]           ℎ      <  <  <  ( ,  ]            ℎ      <  <  <     ( ,  ]           ℎ    <  <  <  
  

Clearly the class ϑ is closed under intersection. However, 

                  ( ,  ] = (−∞, ] ∪ ( , ∞) ∉ ϑ 

                  ( ,  ] ∪ ( ,  ] ∉ ϑ        if   <  <  <    

The class ϑ is not a field. 

 

Definition (1.3) σ-Field (σ-Algebra) [Krishnan, 06]: 
        A class of a countable infinite collection of subsets A  ⊂ Ω denoted by ℱ 

is a σ-field when the following conditions are satisfied: 

1.  If A ∈ ℱ ,       then  A   ∈  ℱ. 

2. If {   , i=1,2,…} ∈  ℱ , then ⋃   ∞    ∈   ℱ.                                      (1.6) 

In general a σ-field is a field, but a   field may not be a σ-field.  

 

Definition (1.4) Borel σ-Field [Krishnan, 84]:  

The minimum σ-field generated by the collection of open sets of a 

topological space Ω is called the Borel σ-field or Borel field. Members of this 

σ-field are called Borel sets.  
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Remarks (1.4) [Krishnan, 84]: 

1. Clearly the Borel σ-field is a σ-field, and hence each closed set is also a 

Borel set.  

2. The important topological space with which we will be concerned is the 

real line  . The collection of Borel sets on the real line is denoted by ℛ. 

3. Each open interval is a member of ℛ. From the relationships 

                                    ( ,  ] = ⋂   ,  +          

                           [ ,  ) = ⋂   −   ,                                             (1.7) 

                           [ ,  ] = ⋂   −   ,  +         

4. We find the intervals ( ,  ], [ ,  ) and [ ,  ] are Borel sets. Hence the 

Borel field ℛ contains all subsets of the form given above and their 

complements, countable unions, and intersections, Each set { } =[ ,  ] = (−∞,  ) ∩ ( ,∞) consisting of a single point   is in ℛ, and so 

are countable unions of single points. 

Example (1.4): 

Let Ω =   and ϑ be the class of all intervals of the form (−∞, ], ( ,  ], and ( ,∞):        ( ,  ] = (−∞,  ] ∪ ( ,∞) ∈ ϑ  

      ( , ∞) = (−∞, ] ∈ ϑ  

      (−∞, ] = ( , ∞) ∈ ϑ 
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From this example the class ϑ is closed under finite intersection. Similarly, it 

can be shown that ϑ is closed under finite union. Hence the class ϑ is a field. 

However, for infinite intersections of the form  ⋂   −   ,   = [ ,  ) ∉    ϑ  

The class ϑ is not a  -field. 

 

Definition (1.5) Measurable space [Stirazker, 05] : 

          A suitable model of the random experiment is therefore a sample space Ω and a σ-field  ℱof subsets of Ω. The space (Ω,ℱ) thus created is called a 

measurable space. 

 

Remarks (1.5) [Krishnan, 84], [Stirazker, 05]:   

1. Events are defined as the subsets of Ω which are elements in the σ-field. 

2. In particular, Ω is called the certain event.  

3. If two events    and   satisf   ∩  =  , then they are said to be 

disjoint.  

4. The complement Ω  is an event called the impossible event, which we 

denote by Ω =  , the empty set.  

5. If  {   , i=1,2,…,n } is a class of disjoint sets of Ω  such that ⋃       =Ω then the {   } collectively exhaust Ω. 

Definition (1.6) probability measure [Krishnan,06] :  
A probability measure is a set function   defined on a σ-field ℱ of subsets 

of a sample space Ω such that it satisfies the following axioms of Kolmogorov 

for any  ∈ ℱ: 

1.  ( ) ≥ 0         (nonnegativity) 

2.  (Ω) = 1         (normalization)                                                         (1.8) 



Chapter One                                          Some Basic Concepts of Stochastic Dynamic System 

9 

3.  (⋃   ∞   ) = ∑  (  ∞   )          (σ-additivity ) 

Whit     ∈ ℱ, and A   and     being pairwise disjoint. 

It is also called probability distribution. 

Remarks (1.6): 

1. Any set function µ defined on a measurable space (Ω, ℱ)  satisfying 

axioms 1 and 3 of definition (1.6) is called a measure, and a probability 

measure is a normed or scaled measure because of axiom 2.[Krishnan, 

84]                                                                                                                     

2. Any bounded measure with suitable normalization can be converted 

into a probability measure.[Krishnan, 84] 

3. If µ( ) is finite for each  ∈ ℱ, then µ is a finite measure. However, if 

µ( )=∞ but if there exists a sequence {  } of members of  ℱ such that     ⊂ ⋃    ∞   and µ(  ) is finite for each n, then µ is a σ-finite 

measure, The triplet (Ω, ℱ, µ) is called a measure space, The measure 

space (Ω,ℱ, ) is  called a probability space.[Krishnan, 84] 

                                         

4. The probability space serves to describe any random experiment where:                                                              

i. Ω is nonempty set called the sample space, whose elements are 

the element outcomes of a random experiment, 

ii. ℱ is an σ-field of subsets of  Ω. 

iii.    is a probability measure defined on the measurable  space 

(Ω,ℱ). [Stirzaker, 05] 

Lemma (1.1) Sequential Monotone Continuity [Krishnan, 84]:  

Let {A  } be a monotone decreasing sequence in  ℱ such that 

  A   ⊂  A  , and let      ⟶∞  =   . Then  
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       →∞  (  ) = 0                                                                                    (1.9) 

The probability measure is said to satisfy the sequential   monotone   

continuity at  . 

 

Proposition (1.1) Sequential Continuity [Krishnan, 84]: 

Let {A  } be a convergent sequence of events in ℱ , with 

      →   =   .  

Then                  →∞  (  )=  (    →∞   ) =  ( )                                        (1.10) 

        The probability measure is sequentially continuous.  

 

Proof :                  

1. If  =  , then this is exactly Lemma (1.1). 

2. If    is nonempty set and {   } is a monotone sequence,   ↓   , 

(figure 1.1)  

            (   ) =  (  −   +  ) =  (  −  ) +  ( )  

Since (  −  ) and A are disjoint. If A ↑ A (figure 1.2) 

           (A ) =  ( A − A + A  ) = ( ) −  ( −   )  

In either case     (    –  ) or     ( −   ) decreases to ø, and by 

lemma 1.1 the result follow. 

3. If {  } is not a monotone sequence, then {  =        } and 

{  =         } are monotone decreasing and increasing 

sequences, respectively, from equation (1.3) and (1.4). Therefore   ⊃   ⊃    and     ↓   and   ↑  . 
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                           Figure (1.1) (in two dimension) 

 

 

 

             

 

 

 

 

         Figure (1.2) (in two dimensional space) 
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1.2 RANDOM VARIABLE [Krishnan, 84],[Stirzaker, 05]: 

        An important class of functions is the measurable functions which are 

different from the measure functions  , whereas measure functions are set 

functions, measurable functions are invariably point functions.  

 

Definition (1.7) Measurable Function [Krishnan, 84]: 

        Let (Ω ,ℱ ) and (Ω ,ℱ ) be two measurable spaces. Let   be a function 

with domain   ⊂ Ω  and range   ⊂ Ω  

                                      : Ω → Ω   g is called an ℱ -measurable function or an ℱ -measurable mapping if for 

every   ∈ ℱ                               (  ) = { :    ( ) ∈   } ≜                                                       (1.11) 

is in the σ-field ℱ . 
 

Remarks (1.7) [Krishnan, 84]: 

1. If   is measurable with respect to the σ-field ℱ of sets that are  -

measurable, then we might also say that   is  -measurable if there is 

no confusion. 

2. The set    given by    (  ) is called the inverse image or inverse 

mapping of    , and it is measurable set. 

3. Inverse mappings preserve all set relations.     

Definition (1.8) Random Variable [Stirzaker, 05]: 

        Measurable space consisting of the real line R and σ-field of Borel 

sets ℛ. Let the probability measure P be defined on (Ω, ℱ). The measurable 

mapping   from (Ω, ℱ) into (R, ℛ) is called a real-valued random variable. 
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Remarks (1.8) [Krishnan, 84], [Stirzaker, 05]: 

1. Naturally, the probability measure   induces a probability measure    

in the space (R, ℛ).  If   E ∈ ℛ ,then                                                                                           (  ) =      (  ) =  (  ) =  { : ( ) ∈   }                     (1.12) 

Equation (1.12) related the probability measure     in (R, ℛ) to the 

probability measure P in (Ω, ℱ). Instead of writing  {ω:  X(ω )∈   }, 

we shall have the abbreviated notation P{ X ∈   }.           

2.  If Ω is a metric topological space, then ℱ is the σ-field of all Borel sets 

of Ω. Then a function   mapping Ω →    is a Borel function if for 

every    ∈  ℛ ,    (  ) is a Borel set of Ω. Since Borel sets of Ω are 

measurable by assumption, every Borel function is ℱ-measurable. 

                                                                                     

Example (1.6) [Evans, 06]: 

Let  ∈ ℱ, then the indicator function of  ,  
                        ( ) =  1         if  ∈                      0        if  ∉      Ω−                                            (1.13) 

 is a random variable. 

 

1.2.1 Borel–Cantelli Lemma [Evans, 06], [Krishnan, 84] : 

We introduce next a simple and very useful approach to check if some 

sequence   , … ,  , … of events “occurs infinitely often”. 

 

Definition (1.9):   

Let   , … ,  , … be a sequence of events in a probability space 

(Ω,ℱ, ), Then the event 

        
   

    = { ∈ Ω|                                  ℎ    }, 
is called “   infinitely often”, abbreviated “    . . ". 
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Lemma (1.2) Borel–Cantelli:  

           If  ∑  (      ) < ∞, then  

                                           (    .  . ) = 0                                                 (1.14)                                       

Remark (1.9): 

In applications, Borel-Cantelli Lemma is a very important technique; 

and will be needed to the guarantee the existence of unique solution of 

stochastic differential equations as one can see this fact later on chapter two. 

The following results are needed later in chapter two. 

A sequence of random variables {  }     defined on some probability 

space converges in probability to a random variable X, provided 

                    lim →  (|  −  | >  ) = 0             for each  > 0.         (1.15) 

 

Theorem (1.1)[Krishnan, 06]: 

If   →   in probability, then there exists a subsequence {   }   ∞ ⊂ {  }     

such that 

                     ( ) →  ( )     for almost every ω.                                   (1.16) 

1.2.2 Distribution Functions [Evans, 06], [Hsu,97] : 

Let (Ω,ℱ, ) be a probability space and suppose   : Ω →    random 

variable, in this section some additional concepts about basic statistical 

definitions and properties of the distribution function are considered.  

 

Definition (1.10) distribution function:  

(i) The distribution function of   is the function    :  → [0,1] 
defined by  
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             ( ) ≔  ( ≤  )  for all  ∈                                                 (1.17) 

(ii) If   ,  , … ,  :Ω →   are random variables, their joint 

distribution function is    ,…,  : (  ) → [0,1], 
         ,…,  (  , … ,   ) ≔  (  ≤   , … ,  ≤   )                                 (1.18) 

   for all   ∈   ,  = 1, … , .   
Definition (1.11) density function:  

Suppose  : Ω →    is a random variable and   =    its distribution 

function. If there exists a nonnegative, integrable function f:   →   such that  ( ) =  (  , … ,   ) =  …  (  ,  , … ,   )   …       
                    (1.19) 

Then f is called the density function for  . 

It follows then that   ( ∈  ) =   ( )              for all  ∈ ℬ                                            (1.20)   

This formula is important as the expression on the right hand side is an 

ordinary integral, and can often be explicitly calculated. 

Remark (1.10): 

If the probability distribution function is differentiable, then we obtain 

the probability density function  ( )  ( ) =   ( )                                                                                              (1.21) 

Example (1.7)[Evans, 06]:  

If  : Ω →    has density 
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 ( ) = 1((2 )      )       (   )   (   )             ( ∈   ) 

for some  ∈    and some positive definite, symmetric matrix C, we say   has a Gaussian (or normal) distribution, with mean m and covariance matrix 

C. We then write    is an N(m,C) random variable. 

 

Remark (1.11) Right continuous [Krishnan, 84]:     

        Functions are those functions for which 

  ( ) =     ↓  ( +  ) Similarly left continuous functions are those 

functions for which  ( ) =     ↓  ( −  )      
 

  We now show how the concept of distribution function is related to 

the concept of measure. Let the measure space be (Ω,ℱ,µ), where  Ω =    the 

real line,  ℱ is the σ-field  of Borel sets on the real line,  and µ is a finite 

measure. Let k be any point in R, we define a function F   as 

 

F ( )= −µ( ,  ]                                         , x < k   0                                                       , x = k   µ ( ,  ]                                            , x > k                            (1.22) 

Clearly    (  ) −    (  ) =  µ(  ,  ]                      ≤                              (1.23) 

and since µ is a measure with   ( ,  ] the function is increasing. Further     ↓  [   ( ) −    ( )] =     ↓   µ( , b] = µ( ) =0             (1.24) 
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1.2.3 Expectation of Random Variables:  
Let (Ω,ℱ, ), be a probability space. The expectation of a random 

variable   is usually defined by the Stieltjes integral                   

             =     ( )∞

 ∞                                                                                    (1.25) 

                                                

Definition (1.12) Expectation [Krishnan, 84]: 

Let(Ω,ℱ, ), be a probability space, and let   be a real random 

variable. The expectation of   is defined by 

       

             =   ( )  ( )                                                                   (1.26) 

 

Remark (1.12): 

There are some properties of expectation operation, such as: 

1. Linearity:  (  +   ) =    +       for all constants a and b.  

2. Homogeneity:  (  ) =     for constant c. 

3. Order preservation  ≥   implies   ≥   . 

 

Lemma (1.3) [Evans, 06]:  

Let  :Ω →    be a random variable, and assume that its distribution 

function  =    which has the density function. Suppose  :    → R, and  =  ( ) is integrable. Then 

                                  ( ) =   ( ) ( )  .   
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In particular,                                           ( ) =    ( )                                            (1.27) 

          

and                                                                              ( ) =  | −  ( )|  ( )  .                              (1.28) 

                                        

 

Example (1.8) [Evans, 06]: 

  If   is  ( ,σ ), then  ( ) =   

and  ( ) =    

 

Lemma (1.4) (Chebyshev’s inequality) [Krishnan, 06]:  

If X is a random variable and 1 ≤ p < ∞, then                    (| | ≥  ) ≤     (| | )           for all λ > 0.                           (1.29) 

Proof: 

E(|X| ) =  |X| 
Ω

dP ≥  |X| {| |  } dP ≥ λ P(|X| ≥ λ). 
1.2.4 Martingales : 
Now suppose   ,  , … are independent real-valued random variables, with 
                          E(  ) = 0     (i = 1, 2, . . . ). 

Define the sum    ≔    + ⋯+   . 
The best guess of     , given the values of   , … ,   . Is coming from the 

following fact  
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  (    |  , … ,   ) =  (    + ⋯+   |  , … ,   )                                                             + (    + ⋯+     |  , … ,   )  
                                   =    + ⋯+   +  (    + ⋯+     ) 

                                   =   . 
Where  (    + ⋯+     ) = 0. 
 

Definition (1.13) [Evans, 06]: 

 Let  (. )be a real–valued stochastic process (as we define later in 

section (1.3)). Then                                 ( ) ≔  ( ( )|0 ≤  ≤  ),                                          (1.30) 

the σ-algebra generated by the random variables X(s) for 0 ≤ s ≤ t, is called 

the history of the process until (and including) time t ≥ 0. 

 

Definition (1.14) [Evans, 06]: 

  Let  (. )be a stochastic process (as define later in section(1.3)), such 

that 

          E(|X(t)|) < ∞ for all t ≥ 0. 

(i)  If 

                X(s) = E(X(t) | U(s))        a.s. for all t ≥ s ≥ 0,                       (1.31) 

then  (. ) is called a martingale. 

 

(ii)  If 

             X(s) ≤  E(X(t)| U(s))     a.s. for all t ≥ s ≥ 0,                                  (1.32) 

 (. ) is a submartingale.  
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Remark (1.13): 

Example of martingale can be found in section three when the 

Brownian motion is define. 

 

Theorem (1.2) (Martingale inequalities) [Krishnan, 84]:   

Let  (. ) be a stochastic process with continuous sample paths a.s. 

(i) If  (. ) is a submartingale, then 

          (         ( ) ≥  ) ≤    ( ( ) )  for all λ > 0,  ≥ 0.        (1.33) 

(ii)  If  (. ) is a martingale and 1 < p < ∞, then 

            (        | ( )| ) ≤         (| ( )| ).                                 (1.34) 

. 

1.2.5 Independence : 
Definition (1.15) Independence [Hsu, 97]:  

i. Let (Ω,ℱ, ), be a probability space and let   , ∈  ℱ . The events  and   are independent   (denoted by   ⊥  ) if   ( ∩  ) =  ( ) ( )  

ii. n events A 1 , A 2 ,…,A n  are independent if for any subset {  ,   , … ,  },where r=1,2,…,n  

       
    =   (   ) 

    

 

Remark (1.14) [Krishnan, 84]: 

 Let (Ω,ℱ, )be a probability space, let ℱ be a sub  -field of ℱ, and let   be an integrable  real–valued  random variable . The conditional 
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expectation of   relative to ℱ is an integrable ℱ -measurable random variable  ( \ℱ ) or   ℱ  , such that for every ∈ ℱ , 

                  

  ( \ ℱ )  =   ℱ    =                                                  (1.35) 

 

1.2.6 Convergence of Random Variable  
The convergence of random variable and their kinds are of our interest 

and then submitted as follows: 

 

Definition (1.16) Almost Surely Convergence [Krishnan, 06]: 

A sequence of random variables {  } converges almost surely (a.s.), or 

almost certainly, or strongly, to   if for every ω-point not belonging to the 

null event A,                 → |  ( ) −  (  )| = 0                                                          (1.36) 

This type of convergence is known as convergence with probability 1 and is 

denoted by  

   ( ) →  . .   X(ω)            

 or     

  X(ω) =     →   ( )                            ( .  . ) 

 

Remark (1.15) [Krishnan, 84]: 

If the limit   is not known a priori, then we can define a mutual 

convergence almost surely. The sequence X  converges mutually almost 

surely if        |  −   | →  . . ⎯  0 

Both definitions are equivalent. 
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Definition (1.17) Convergence in probability [Krishnan, 84]:  

A sequence of random variables {  } converges in probability to X if 

for every  ϵ >0, however small,      →  (|   −   |  ≥   )=0,   or  

               →  (|   −   |  <   )= 1,  It is denoted by  

  ( ) →  . . . ⎯  X(ω), or    

X(ω)=  .  .  . →   (ω)  

(where l.i.p. is   standing for limit in probability) 

Remarks (1.16) [Krihsnan 06]: 

The concept of convergence in probability plays an important role in the 

consistency of estimators and the weak law of large numbers. We give next 

some results concerning this concept. 

i. If a sequence of random variables {  } converges almost surely to  , 

then it converges in probability to the same limit. The converse is not 

true. However, the following is true. 

ii. If {  } converges in probability to  , then there exist a subsequence {   } of {  } which converges almost surely to the same limit. 

iii. {  } Converges in probability if and only if it converges mutually 

in probability.  
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1.3 STOCHASTIC PROCESSES:  

Let (Ω, ℱ,  ) be a probability space. Let T be an arbitrary indexed 

parameter set called the time set. T can be the real line R, the positive real 

line   , the set of positive integers N, or any semiclosed interval in R or   , 

unless otherwise specified. We shall assume that T is a semiclosed time 

interval in    . Sometime we will explicitly state that T is in    . 

 

Definition (1.18) Stochastic Process [Krishnan, 84]: 

          Let (Ω, ℱ,  ) be a complete probability space and let T be any time set. 

Let (R,ℛ ) be a measurable space, where R is the real line and ℛ is the σ-field 

of Borel sets on the real line.  A stochastic process {  ,  ∈  } is a family of 

random variables defined on the probability space (Ω,ℱ,  ) and taking values 

in the measurable space (R,ℛ). 

 

Remarks (1.17) [Krishnan, 06], [Pritchard, 01]: 

1. The probability space (Ω, ℱ,  ) is called the base space and the 

measurable space (R , ℛ) the state space. 

2. For each t ∈ T, the ℱ-measurable random variable  X  is called the state 

of the process at time t. 

3. For each ω ∈ Ω the mapping  ⟼    ( ) define on T and taking values 

in R is called a sample function. 

4. If the time set T is N, then the stochastic process {  ,  ∈  } becomes 

{  , n ∈ N} and is called a discrete stochastic process. 

5. If the time set T is R or   , then the stochastic process is a continuous 

one. 

6. We are concerned with continuous-time, real-valued stochastic 

processes (  )     . These may be thought of as random function for 

each outcomes of random element, we have a real-valued function of a 
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real variable  . These possible outcomes (functions) are called 

realizations or sample paths. 

Example (1.9) [Pritchard, 01]: 

1. Random walk (one step up or down, with probability 1 2⁄  for each, at 

each integral time), with linear interpolation. 

2. Brownian motion. 

Proposition (1.2) [Krishnan,84]: 

Let {   } be a compatible family of finite dimensional distribution 

functions with all finite     ⊂  . Then we can always construct a probability 

space (Ω, ℱ, ) and a stochastic process {  ,  ∈  } such that the stochastic 

process has the given finite dimensional distribution. 

 

Definition (1.19) (covariance matrix) [Raphael,72]: 

Consider a vector-valued stochastic process  (t). Then we call 

                            ( ) =  { ( )} 

the mean of the process,               (  ,   ) =  {[ (  ) − (  )][ (  ) − (  )] }                   (1.37) 

 The covariance matrix, and 

            (  ,   ) =  { (  )  (  )}                                                        

(1.38) 

Is the second-order joint moment matrix of  ( ).   ( ,  ) =  ( ) is termed 

as the variance matrix, while               ( ,  ) =   ( )                                                                                         (1.39) 

is the second-order moment matrix of the process. 
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Remarks (1.18) [Raphael, 72]:  

1. The joint moment matrix written out more explicitly is         (  ,   ) = 
 { (  )  (  )} =   {  (  )  (  )} …  {  (  )  (  )} {  (  )  (  )} …  {  (  )  (  )}⋮ {  (  )  (  )} …… ⋮ {  (  )  (  )}  

                                                                                                                      (1.40) 
2. Each element of   (  ,   ) is a scalar joint moment function. Similarly, 

each element of   (  ,   ) is a scalar covariance function. 

1.3.1 Classes of Stochastic Processes:   

In this subsection we shall consider several types of stochastic process 

and discuss their properties. 

 

Definition (1.20) stationary process [Hsu, 97]: 

Let {    , t ∈ T} be a stochastic process with time set T defined on a 

probability space (Ω, ℱ, ) taking values in the state space (R, ℛ). Let T = {  ,   , … ,   } be any finite set of values belonging to T. Then the 

process is strictly stationary or stationary if for any ∆t the joint distribution 

of the sequence { (  ), (  ), … , (  )}is the same as the joint distribution of { (  + ∆ ),  (  + ∆ ), … ,  (  + ∆ )}for any positive integer n. 

 

Definition (1.21) Wide Sense Stationary [Krishnan, 84]: 

 A real stochastic process   ,  ∈  , is wide sense stationary or covariance 

stationary if : 

1.     < ∞. 
2. µ  =     a constant. 



Chapter One                                          Some Basic Concepts of Stochastic Dynamic System 

26 

3. CX (t – s) =  {(  - µ)(  - µ)} depends only on the time difference t –s 

and not on either t or s. 

Remark (1.19): 

The strict sense stationary of definition (1.20) implies wide sense 

stationary of definition (1.21), but the converse is not true,[Krishnan, 84].  

                                                                                                              

Example (1.10) [Krishnan, 84]: 

Let us consider a stochastic process consisting of a sequence {X1, X2,…} 

of independent identically distributed random variables with mean µ and 

variance σ2.  The autocovariance  σx( h )=σ2 δh , where h is the lag and δh is 

the kronecker delta. Clearly this process is wide sense stationary according to 

the definition. 

 

Example (1.11): 

Let us define the random signal:                 ( ) =   sin(0.5 +  ) 

Where   is a positive random variable with mean 0.63 and variance 0.11,   is 

uniformly distributed between 0 and  2 , and   and   are uncorrelated.  

where the  .  .   of uniformly distribution is 

                        ( ) =                  0 ≤  ≤ 2 0                 .                       
The mean of this random signal is calculated as:  [ ( )] =  [  sin(0.5 +  )]  
              =  ( ) ∫ sin(0.5 +  )         

              = (0.63) ∫ [sin(0.5 ) cos( ) + cos(0.5 ) sin ( )]         
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             = (0.63)      ( .  )   −     |   +     ( .  )  [     |       
            = 0. 
The correlation function of this signal is calculated as: 

    (  ,   ) =  [ (  ) (  )]                 
               = 12 (  ) [   {0.5(  −   ) + 2 } +    {0.5(  −   )}] 12     

  

               =  14  (  ) [{sin0.5}(  −   ) cos(2 )  
 +    {0.5(    )sin (2 )}     {0.5(  −   )}]    

               = 14  (  )  sin (0.5(  −   ))2   cos(2 )     
 

+ cos (0.5(  −   ))2  sin(2 )   + sin (0.5(  −   ))2      
 

  
   

               = 0.20 cos (0.5(  −   )) 

The mean is independent of time, and the correlation function depends only 

on time difference (  −   ), so this random signal is wide sense stationary. 

This result is reasonable since there is no preferred time if the phase is 

uniformly distributed from 0 to 2 .  

 

Definition (1.22) Independent Increment Process [Krishnan, 06]: 

A stochastic process {  ,  ∈  } define on the probability space 

(Ω, ℱ,  ) is an independent increment process if for any collection {  ,   , … ,   } ⊂   satisfying    <   < ⋯ <    the increment of the 

process  ,     −     ,     −     , … ,     −        are a sequence of 

independent random variables. 
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1.3.2 White Noise: 

The following definitions are needed to complete understanding white 

noise: 

 Definition (1.23) (Spectral Density) [Krishnan, 84]: 

Let {  ,  ∈  , = (−∞,∞)} be a quadratic mean continuous wide sense 

stationary process defined on the probability space (Ω, ℱ, P) with 

autocorrelation function  ( ) =         belonging to the space   . The 

power spectral density function  ( ) is defined as the Fourier transform of the 

autocorrelation function  ( ) given by   

 ( ) =   ( )                                                                                (1.41)   
   

and the inversion of  ( ) given us 

 ( ) =   ( ) 
                                                                             (1.42) 

Since  ( ) is nonnegative definite,  ( ) is also nonnegative definite, and 

since  ( ) is square integrable,  ( ) is also square integrable. The average 

energy contained in the process    is given by  (0) =     , and hence from 

equation (1.41) 

    =   ( )  
                                                                                       (1.43) 

Definition (1.24) (Delta Function) [Krishnan, 84]: 

A delta function belongs to a class of generalized functions whose 

effect on a continuous function of rapid decay  (. ) under an integral is given 

by 

  ( ) ( )  =  (0) 
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The function  ( ) is said to belong to a class of test functions of rapid decay. 

  Delta functions are somewhat loosely defined by     → 1      =     →   (  ) =  ( )                       
Where  ( ) is a function satisfying the requirement ∫  ( )  = 1   . The 

definition is indeed useless without defining the limiting operation since     → (1  ⁄ ) (  ⁄ ) or     →   (  ) does not converge in any accepted 

sense to the delta function. We define the limit in equation above to be the 

delta function in the sense  

    →   ( ) 1        =  (0) 
   

    →   ( )  (  )  = 
   (0) 

Where  ( ) belongs to the class of test functions of rapid decay. We are 

tacitly defining delta function only inside an integral and not out side it. 

 

White noise [Raphel, 72]:: 

One frequently encounters in practice zero-mean scalar stochastic 

process   with the property that  (  ) and  (  ) are uncorrelated even for 

values of |  −   | that are quite small, that is,     (  ,   ) ≅ 0         for |  −   | >                                                            (1.44) 
where   is a small number. The covariance function of such stochastic 

processes can be idealized as follows:     (  ,   ) =  (  ) (  −   ),                                    (  ) ≥ 0.                  (1.45)  

Here  (  −   ) is the delta function and  (  ) is referred to as the intensity 

of the process at time t. Such processes are called white noise processes. We 
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can of course extend the notion of a white noise process to vector-valued 

process: 

 

Definition (1.25) (white noise process) [Raphael, 72]: 

Let  ( ) be a zero mean vector-valued stochastic process with 

covariance matrix                 (  ,   ) =  (  ) (  −   )                                                         (1.46) 

where  (  ) ≥ 0. 
The process  ( ) is then said to be a white noise stochastic process 

with intensity  ( ). 

         

White noise differential equation [Krishnan, 84]: 

 We now investigate the problem of a differential equation driven by 

white noise. Suppose we are given the differential equation in the following 

form:      =  ( )  +  ( )                  ∈  ,                                               (1.47) 

      Where    is the initial condition and    is a white noise process,    is the 

initial condition. Presented in the form (1.47) cannot be interpreted as an 

ordinary differential equation without making assumptions on differentiability 

and separability of    and   , even if    is not white but some other quadratic 

mean continuous random process. Instead of interpreting this equation as a 

differential equation, we can interpret it as an integral equation without 

worrying about these assumptions. We interpret the stochastic process 

{  ,  ∈ [ , )} with  |   | < ∞ as the solution to the differential equation 

(1.47) if it satisfies the following integral equation:   =   +   ( )    +   ( )                 ≤  ≤                   (1.48) 
 

 
  



Chapter One                                          Some Basic Concepts of Stochastic Dynamic System 

31 

Where    is the process of orthogonal increment associated with the white 

noise process   ,    is the initial condition satisfying  |   | < ∞, and  ( ) 

and  ( ) belong to a class of square integrable functions. 

 The above integral equation can also be written as    =  ( )    +  ( )                         ≤  <  ,   ,    |   | < ∞   
We have more to say about these differential equations when we discuss Itô 

stochastic differential equations. 

 

1.3.3 BROWNIAN MOTION: 
       Next we define a Brownian motion process assuming that the time set  =   or any interval [0, a], a > 0. 

 

Definition (1.26) Brownian motion [Krishnan, 06]: 

Let (Ω,ℱ, P) be a complete probability space. The stochastic process {  ,  ∈  } defined on (Ω,ℱ, P) is a Brownian motion process with parameter 

σ2 if 

1.   ( ) = 0. 
2. {  } is a stationary independent increment process. 

3. For every   and  ,  ≤ t, belonging to   the increment   −    are 

Gaussian distributed with mean zero and variance    ( −  ). 

4. For almost all ω ∈ Ω the sample functions  → W ( ) are uniformly 

continuous in the interval T.  

With the definition given above we shall now drive the auto covariance 

function   ( ,  ). 

For   >  .    ( ,  ) =      =  (  −   +   )                     =  (  −   )  +       
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                 =               from 2                  =                from 3  

Similarly, for  <  ,    ( ,  ) =    . Hence   ( ,  ) =   ( ∧  ), where  ∧  = min{ ,  }. 
 

Remark (1.20) [Stirzaker, 05]: 

  If σ2 = 1, then  ( ) is said to be the standard Brownian process 

(standard Wiener process). 

 

Example (1.12) [Evans, 06]: 

 Let  (. ) be a 1-dimensional Brownian motion (wiener process), as 

defined later.  Then                                       (. ) is a martingale. 

To see this, write  ( ) ≔  ( ( )|0 ≤  ≤  ),  and let t ≥ s. Then  ( ( )| ( )) =  ( ( ) −  ( )| ( )) +  ( ( )| ( ))    
                                      =    ( ) −  ( ) +  ( ) 

                                      =  ( )     a.s. 

 

1.3.3.1 Computation of Joint Probabilities [Evans, 06]: 

From the definition if  (. )is a Brownian motion, then for all  > 0 

and a ≤ b,  ( ≤  ( ) ≤  ) =  √   ∫                                                           (1.49) 

since  ( ) is N(0, t). 

for more details see [Evans, 2006]. 

 

Example (1.13) (Geometric Brownian Motion) [Ross, 83]: 

If {  ,  ≥ 0} is Brownian motion, then the process {  ,  ≥ 0}, defined 

by 
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                        ( ) =   ( ), 
is called geometric Brownian motion. 

 Since  ( )is normal with mean 0 and variance  , its mean and variance are  

given by  

                    [  ( )] =     ( ) =      

                    ( ) =  [  ( )] − ( [  ( )])  

                                 =      ( ) −    
                                 =    −   .   
Example (1.14) (Brownian Motion Reflected at the Origin) [Ross, 83]: 

If { ( ),  ≥ 0} is Brownian motion, then the process { ( ),  ≥ 0}, 
where  

                                   Z(t) = |X(t)|,                    t ≥ 0 

is called Brownian motion reflected at the origin. 

   The distribution of Z(t) is easily obtained. For  > 0,  {Z(t) ≤ y} =  { ( ) ≤  } −  { ( ) ≤ − } 

                                              = 2 { ( ) ≤  } − 1 

                                            =  √   ∫       ⁄   − 1,    

Where the last equality follows since  ( )is normal with mean 0. 

The mean and variance of  ( ) are easily computed and   [ ( )] =  2  ⁄  

   [ ( )] =  1 − 2   . 
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Remark (1.21) [Evans, 06]: 

1. Fix a point   ∈ ℛ  and consider then the ordinary differential 

equation: 

                                        ̇( ) =    ( )      ( > 0) (0) =   ,                                    (ODE)                   (1.50) 

where  :ℛ ⟶ ℛ  is a given, smooth vector field and the solution is 

the trajectory  (. ): [0,∞) → ℛ .  
2.  ( ) is the state of the system at time  ≥ 0,                   ̇( ) ≔     ( )                                                             (1.51) 

In many applications, however, the experimentally measured 

trajectories of systems modeled by (ODE) do not in fact behave as 

predicted. 

Hence it seems reasonable to modify (ODE’s), in such away to include 

the possibility of random effects disturbing the system. A formal way to do so 

is to write:              ̇( ) =    ( ) +    ( )  ( )    ( > 0)               (0) =   ,                                                                                            (1.52) 

Where  :ℛ → ℳ × (=space of  ×   matrices) and  

          (. ) ≔  -dimensional “white noise”. 

This approach presents us with these mathematical problems: 

1.  Define the “white noise”  (. )  as we define. 

2.  Define what it means for  (. ) to solve (1.52). 
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3.  Show (1.52) has a solution, discuss uniqueness, asymptotic behavior, 

dependence upon   , b, B, etc. 

Some Heuristics: 
Let us first study equation (1.52) in the case m = n,   = 0, b ≡ 0, and B 

≡ I. The solution of (1.52) in this setting turns out to be the n-dimensional 

Wiener process, or Brownian motion, denoted by  ( ). Thus we may 

symbolically write 

 ̇(. ) =  (. ),                                                                                               (1.53) 

Thereby asserting that “white noise” is the time derivative of the Brownian 

motion. 

Now return to the general case of the equation (1.52), write     instead 

of the dot, yielding:   ( )  =    ( ) +    ( )   ( )  ,                                              (1.54) 

 and finally multiply by “dt”: 

   ( ) =    ( ) +    ( )   ( ) (0) =   ,                                                                          (SDE)                (1.55) 

This expression, properly interpreted, is a stochastic differential equation 

(abbreviated by SDE). We say that  (. ) solves the (SDE) provided 

 ( ) =   + ∫    ( )   + ∫    ( )              for all times  > 0.    (1.56)    

 

Now we must: 
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1.  Construct  ( ). 
2.  Define the stochastic integral . 

3.  Show that equation (1.56) has a solution, etc.  
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2.1 Stochastic Integral: 

It is well-known that stochastic integrals and Itô formula play a central 

role in modern probability theory and its applications in stochastic differential 

equation concerned by Brownian motion, etc. 

This chapter concerning the most necessary mathematical principles 

discussing stochastic integration, Itô formula, Itô SDE, existence of a unique 

solution of Itô SDEs, as well as some solvable examples. 

Now, we shall define the integral 

                       ( ) =   ( )  ( ) 
                                                                   (2.1) 

 Where  ( ) is a Brownian motion and  ( ) is a stochastic function, and 

study its basic properties. One may define  

 ( ) =  ( ) ( ) −    ( ) ( )   
  

If   is absolutely continuous for each   . However, if   is only continuous, or 

just integrable, this definition does not make sense [Friedman, 75]. 

Remark (2.1) [Friedman, 75]: 

Since  ( ) (the Brownian motion) is nowhere differentiable with 

probability 1, the integral (2.1) cannot be defined in the usual Lebesgue-

Stieltjes sense.  
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The following definitions are needed to later on: 

Definition (2.1) Separable Process [Krishnan, 84]:  

 Let {  ,  ∈  } be stochastic process defined on (Ω,ℱ, ) with time set  ∈  . Let   be any closed subset in  , and let   be an open interval in T. 

Then the process {  ,  ∈  } is separable, relative to the class of all closed 

sets   in  , if there exist a countable subset  ⊂   and an  -set Λ of 

probability 0 such that the two  -sets 

 { :     ( ) ∈  ,  ∈  ∩  }, 
{ :     ( ) ∈  ,  ∈  ∩  } 

differ by Λ.  
Remark (2.2) [Krishnan, 06]: 

The countable set  ⊂   is called a separating set or separant. What 

the definition implies is that if {  ,  ∈  } is separable, then every set of the 

form { :     ( ) ∈  ,  ∈  ∩  } differs from the event { :     ( ) ∈  ,  ∈ ∩  } by the null set Λ and can be made an event by completing the 

underlying probability space. 

Example (2.1): 

The process    defined by 

  ( ) =  1                            =  ,      ∈   0                            ≠                     
We cannot assert that  {  = 0,  ∈    } = 1 because we cannot find a 

separating set. 
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Definition (2.2) Measurability, [Doob, 53]: 

 A stochastic process {  ,  ∈  } defined on a probability space (Ω,ℱ, ) with a time set T is a measurable process if for all Lebesgue 

measurable sets   belonging to the  -field ℒ( ) generated by Lebesgue 

measurable sets the mapping ( , ) ⟶   ( ) is a measurable on  × Ω with 

respect to the product  -field ℒ( )⨂ℱ, that is, {( , ):     ( ) ∈  } ∈ ℒ( )⨂ℱ                                              (2.2) 

Theorem (2.1) [Doob, 53]: 

Let {  ,  ∈  }be a measurable stochastic process with respect to the 

product  -field ℒ⨂ℱ. Then  

1. Almost all sample function of this process are Lebesgue measurable 

function of   ∈  . 
2. If    ( ) exists for all  ∈  , then it also defines a Lebesgue 

measurable function of  ∈  . 
3. If   is a Lebesgue time set in   and if ∫  |  |   < ∞, then almost all 

sample functions   ( ) are Lebesgue integrable on the set  , that is, 

 |  ( )|  < ∞ ,                                       for almost all               
                               

Since the value of an absolutely convergent integral is independent of 

the order of integration, we have  

    ( )  =     ( )                               (2.3)   
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Definition (2.3) Increasing  -field or Filtration  -field [Krishnan, 06]:  

Let(Ω, ℱ) be a complete measurable space and let {ℱ ,  ∈  ,  =   } 

be a family of sub-  -field of ℱ such that for  ≤  , ℱ ⊂ ℱ . Then {ℱ } is 

called an increasing family of sub-  -field on (Ω, ℱ) or the filtration  -field 

of (Ω, ℱ).  

Remark (2.3): 

 ℱ  is called the  -field of events prior to t. If {  ,  ∈  } is a stochastic 

process defined on (Ω,ℱ,  ) then clearly ℱ  given by  ℱ =  {  ,  ≤  ,  ∈  }                                                                  (2.4) 

is increasing. 

Definition (2.4) Adaptation of {  }, [Krishnan, 84]: 

Let {  ,  ∈  ,  =   } be a stochastic process defined on probability 

space (Ω,ℱ,  ) and let {ℱ ,  ∈  ,  =   } be a filtration  -field. The process {  } is adapted to the family {ℱ }, if    is ℱ -measurable for every  ∈  , or  ℱ   =                     ∈   

Remarks (2.4) [Krishnan, 06]: 

1.  ℱ   represents the conditional expectation. 

2. ℱ -adapted random processes are also ℱ -measurable and 

nonanticipative with respect to the  -field ℱ .  
3. If ℱ  is the  -field by{  ,  ≤  }, then clearly the process {  ,  ∈  } 

is adapted to the family {ℱ ,  ∈  }, which is called the natural 

family or natural filtration of the process {  }. 
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2.2 Approximation of functions by step functions: 

We shall call a stochastic process also a stochastic function. 

Let  ( ),  ≥ 0 be Brownian motion on probability space (Ω,ℱ, ). 

Let ℱ ( ≥ 0) be an increasing family of  -fields, i.e., ℱ  ⊂ ℱ  if   <   , 
such that  ℱ ⊂ ℱ,  ℱ( ( ), 0 ≤  ≤  ) is in  ℱ , and  

ℱ( ( +  ) −  ( ),  ≥ 0)     is independent of  ℱ  
for all  ≥ 0. One can take, for instance,  ℱ = ℱ( ( ), 0 ≤  ≤  ). Let 0 ≤  <  < ∞. A stochastic process  ( ) defined for  ≤  <   is called a 

nonanticipative function with respect to  ℱ  if: 
(i)  ( ) is a separable process; (see definition (2.1)). 

(ii)  ( ) is a measurable process, i.e., the function ( , ) →  ( , ) 

from [ , ] × Ω into    is a measurable; (as in definition (2.2)). 

(iii) For each  ∈ [ , ],  ( ) is  ℱ  measurable. 

Remarks (2.5) [Friedman, 75]:  

1. When (iii) holds we say that  ( ) is adapted to  ℱ  (see definition 

(2.4)) . 

2. Let us define    [ ,  ] (1 ≤  ≤ ∞) the class of all nonanticipative 

functions  ( ) satisfying: 

   | ( )|   < ∞ 
  = 1                                                      (2.5) 

3. We denote by    [ ,  ] the subset of    [ , ] consisting of all 

functions   with 
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  | ( )|   < ∞ 
                                                                 (2.6) 

Definition (2.5) step function [Evans, 05], [Strizaker, 05] : 

 A stochastic process  ( ) defined on [ , ] is called a step function if 

there exists a partition  =   <   < ⋯ <   =   of [ ,  ] such that  

          ( ) =  (  )  if     ≤  <     ,  0 ≤  ≤  − 1.                         (2.7)  

Lemma (2.1) [Friedman, 75]:  

Let  ∈    [ , ]. Then : 

(i) There exists a sequence of continuous functions    in    [ ,  ] such 

that  

lim →  | ( ) −   ( )|   = 0    .  ; 
                                         (2.8) 

(ii) There exists a sequence of step functions    in    [ , ] such that  

    lim →  | ( ) −   ( )|   = 0    .  ; 
                                    (2.9) 

Lemma (2.2) [Friedman, 75]: 

Let  ∈    [ , ]. Then : 

(i) There exists a sequence of continuous functions    in    [ , ] 
such that  

  | ( ) −   ( )|   → 0 
                                                            (2.10) 

 If   → ∞; 
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(ii) There exists a sequence of bounded step functions    in    [ , ] 

such that  

  | ( ) −   ( )|   → 0                                                          (2.11) 
  

If  → ∞; 
Remark (2.6): 

The following stochastic integral 

     
  

where  (. ) is a 1-dimensional Brownian motion. A reasonable procedure is 

to construct a Riemann sum approximation, and then–if possible–to pass to 

limits. 

 

The following definitions are concerning: 

 

Definitions (2.6) [Evans, 05]: 

(i) If [0,T] is an interval, a partition P of [0,T] is a finite collection of 

points in [0, T]:  ≔ {0 =    <   < ⋯ <   =  }. 
(ii) Let the mesh size of P be |P|:=           |    −   |. 

(iii) For fixed 0 ≤ λ ≤ 1 and P a given partition of [0, T], set    ≔ (1 −  )  +                ( = 0, … , − 1). 
For such a partition P and for 0 ≤ λ ≤ 1, we define 

 =  ( ,  ) ≔   (   
     )( (     )– (  )). 

This is the corresponding Riemann sum approximation of  ∫      .  
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Lemma (2.3) (Quadratic variation) [Øksendal, 98]: 

Let [α,β] be an interval in [0,∞), and suppose that: 

  ≔ { =    <   < ⋯ <   =  } 

be a partitions of [α,β], with |  |→ 0 as n→∞. Then 

          ( (     )    
   − (   )) → β −  α                                                  (2.12) 

 

in    [ ,  ]  as n→∞. 

Definition (2.7) [Friedman, 75]: 

Let  ( ) be a step function in    [ , ], say  ( ) =    if   ≤  <     ,  0 ≤  ≤  − 1 where  =   <   < ⋯ <   =  , the random variable: 

                    (  )[ (    ) − (  )]   
                                              (2.13) 

where     |    −   | → 0 ,             0 ≤  ≤  − 1;  is denoted by  

                     ( )  ( ) 
                                                                              (2.14) 

and is called the stochastic integral of   with respect to the Brownian 

motion  ; it is also called the Itô integral. 

 

Lemma (2.4) [Evans, 05]:  

We have for all constants a, b ∈ R and for all step processes  
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 ,H ∈   (0,T),   in    [ ,  ] 

(i) ∫ (  +    )  =  ∫     +   ∫     ,       

(ii)   ∫        = 0 , 

(iii)    ∫           =   ∫        . 
 

Lemma (2.5) [Friedman, 75]: 

If   is a step function in    [ , ], then  

                ( )  ( ) = 0,                                                                          (2.15) 
  

            ( )  ( ) 
   =     ( )  .                                                     (2.16) 

  

 

Lemma (2.6) [Friedman, 75]: 

Let  ,  belong to    [ , ] and assume that  ( ) =  ( ) for all  ≤  ≤  ,  ∈ Ω . Then  

                   ( )  ( ) =   ( )  ( ) 
 

 
           . . ∈ Ω .                  (2.17) 

 

Remark (2.7) [Øksendal, 98]: 

1. Let  ∈    [0, ] and consider the integral  

              ( ) =   ( )  ( ),               0 ≤  ≤                                           (2.18) 
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2. By definition, ∫  ( )  ( ) = 0,   and we refer to  ( ) as the 

indefinite integral of   . Notice that  ( ) is ℱ  measurable. 

If   is a step function, then clearly  

  ( )  ( ) +   ( )  ( ) =   ( )  ( ) 
 

 
 

 
  

 if 0 ≤  <  <  ≤  .                                                                                       (2.19)                                                    

By approximation we find that (2.19) holds for any   in    [0, ]. 
 

Theorem (2.2) [Friedman, 75]: 

Let  ∈    [0,  ]. Then 

             ( )  ( ) 
    ≤ 4    ( )  ( ) 

                                    
                                                           = 4    ( )  .                                      (2.20) 

  

 

2.3 Itô Formula: 

Definition (2.8) [Evans, 05]: 

Let  ( )  (0 ≤  ≤  ) be a stochastic process such that for any 0 ≤   <   ≤   

  (  ) −  (  ) =   ( )  +   ( )  ( )  
  

  
   

Where  ∈    [0, ],  ∈    [0,  ]. Then we say that  ( ) has stochastic 

differential   , on [0,  ], given by    ( ) =  ( )  +  ( )  ( ). 
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Observe that  ( ) is a nonanticipative function. It is also a continuous 

process. Hence, in particular, it belongs to    [0,  ].  
 

Example (2.2) [Friedman, 75]:  

By theorem (A.1) (see appendix) 

               ( ) =     →    ,      ,    −  (  , )    
   

  
   

In probability.  

Clearly 

  ( )  =  
      →      ,       ,   −   ,     

    

for all   for which  ( , ) is continuous. The sum in the right-hand sides is 

equal to  

    →     ,       ,    −   ,  (  , )    
   =    (  )−    (  ). 

Hence                ( ) =  ( )  +    ( ).                                                        (2.21) 

 

Definition (2.9) [Friedman, 75]: 

Let  ( ) be as in definition (2.8) and let  ( ) be a function in     [0,  ]. 
We define  ( )  ( ) =  ( ) ( )  +  ( ) ( )  ( ). 
 

Example (2.3) [Friedman, 75]: 

  ( )  ( ) is a stochastic differential   , where  
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 ( ) =   ( ) ( )  +   ( ) ( 
 

 
  )  ( ). 

 

Theorem (2.3) [Friedman, 75]: 

If    ( ) =   ( )  +   ( )  ( )  ( = 1,2), 
Then   (  ( )  ( )) =   ( )   ( ) +   ( )   ( ) +   ( )  ( )  .               (2. 22) 

The integrated form of (2.22) asserts that, for any 0 ≤   <   ≤  ,   (  )  (  ) −   (  )  (  )
=    ( )  ( )  +  

     ( )  ( )  ( ) +  
     ( )  ( )    

  
+    ( )  ( )  ( ) +  

     ( )  ( )  .                           (  
  2. 23) 

 

Theorem (2.4) [Friedman, 75], [Øksendal, 98]: 

Let   ( ) =    +    ( ), and let  ( ,  ) be a continuous function in ( ,  ) ∈   × [0,∞) together with its partial derivatives   ,    ,   . Then the 

process  ( ( ),  ) has a stochastic differential, given by    ( ( ),  ) =    ( ( ),  ) +   ( ( ),  ) ( ) + 12    ( ( ),  )  ( )   +   ( ( ),  ) ( )  ( ).                                                       (2. 24) 

This is called the Itô formula. Notice that if  ( ) were continuously 

differentiable in   , then (by the standard calculus formula for total derivatives 

the term           will not appear. 

Proof: One can see the proof in appendix B. 
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Gronwall Lemma (2.7) [Evans, 05], [Øksendal, 98] : 

Let φ and f be nonnegative, continuous functions defined for 0 ≤ t ≤ T, 

and let   ≥ 0 be a constant. If:  φ ( ) ≤   + ∫   φ                        0 ≤ t ≤ T, 

Then  φ ( ) ≤    ∫                                     0 ≤ t ≤ T. 

 

2.4 Existence and Uniqueness Solution of Stochastic Differential 

Equations [Evans, 06],[Øksendal, 98]: 

If  =       is a matrix, we write | | = ∑         . 
Let  ( ,  ) =    ( ,  ), … ,   ( ,  ) ,  ( ,  ) = ( ( ,  ))      and suppose the 

functions   ( ,  ),    ( ,  ) are measurable in ( ,  ) ∈ R × [0, T]. If  ( ) (0 ≤  ≤  ) is a stochastic process such that                     ( ) =  ( ( ), t)  +  ( ( ), t)  ( ),                                (2.25)                        (0) =                                                                                          (2.26)  

Then we say that  ( ) satisfies the system of stochastic differential equations 

(2.25) and the initial condition (2.26). Note that it is implicitly assumed that  ( ( ), t) belongs to    [0,  ] and  ( ( ), t) belongs to    [0, ].  
Theorem (2.5) [Friedman, 75] ,[Evans, 05] ,[Øksendal, 98] : 

Suppose  ( , t), ( , t) are measurable in ( ,  ) ∈   × [0, ] and  

   | ( ,  ) −  (  ,  )| ≤   | −   |,              | ( ,  ) −  (  ,  )| ≤   | −   |, 
              | ( ,  )| ≤  (1 + | |),             | ( ,  )| ≤  (1 + | |)               (2.27) 
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where   ,  are constants. Let   be any n-dimensional random vector 

independent of ℱ( ( ), 0 ≤  ≤  ), such that  |  | < ∞. Then there exists 

a unique solution of (2.25) and (2.26) in    [0,  ]. 
The assertion of uniqueness means that if   ( ),   ( ) are two solutions of 

(2.25), (2.26) and if they belong to    [0, ], then  

 {  ( ) =   ( )        0 ≤  ≤  } = 1 

Proof: 

To prove the uniqueness, suppose   ( ) and   ( ) be two solutions 

belonging to    [0, ]. Then  

  ( )−   ( )
=  [ (  ( ),  ) −  (  ( ),  )]  +   ( 

 
 

   ( ),  )  ( )
−  ( 

   ( ),  )  ( ).                                                         (2.28) 

  Set   ( ) =  (  ( ),  ) and note that the stochastic integral ∫   ( )  ( )   is defined with respect to an increasing family of σ-fields  ℱ which may depend on  . If   ( ) is a step function, for  = 1,2, then using 

the definition of the stochastic integral we get (Lemma (A.2) and formula 

(a.1)) see the appendix. 
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     ( )  ( ) −   ( )  ( ) 
 

 
                   

=   |  ( ) −   ( )|                                                      (2.29) 
  

By approximation we find that (2.29) is true for any pair   ,    of 

nonanticipative functions with respect to ℱ   and ℱ   respectively, provided 

that   ∫ |  ( )|     < ∞ ( = 1,2). 
Taking the expectation of the squares of the absolute values on both 

sides of (2.28) and using (2.27) and (2.29) with    ( ) =  (  ( ),  ), we find 

that  

 |  ( ) −   ( )| 
≤ 2      |  ( )−   ( )|   + 

 2     |  ( ) −   ( )|    
  

Thus the function  ( ) =  |  ( ) −   ( )|  satisfies  

               ( ) ≤  ∫  ( )  ,                  (0) = 0,   

Where   is a positive constant. Therefore  ( ) ≡ 0, and the assertion of 

uniqueness is proved. 

To prove the existence of a solution we introduce an increasing family 

of  -fields ℱ  (0 ≤  ≤  ) such that    is ℱ  measurable, and such that  

                                  ℱ( ( +  )−  ( ), 0 ≤  ≤  −  )  
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is independent of ℱ , for all  ≥ 0. We can take for instance ℱ  to be  -field 

generated by    and ℱ( ( ),  ≤  ); here we use the assumption that   is 

independent of ℱ( ( ), 0 ≤  ≤  ). 
Define   ( ) =    and  

    =   +   (  ( ),  )  +     
 

 (  ( ),  )  ( )           (2.30) 

The inductive assumption is that   ∈    [0, ] and hence:  

 |    ( ) −   ( )| ≤ (  )   ( + 1)!              
for all  0 ≤  ≤  − 1                                                                                      (2.31)                                                                       

Where   is some positive constant (depending only on   ,   , ). 

Since   ∈ ℱ ,      is well defined if  = 0. Further  

|  ( ) −   | ≤ 2    ( 
   ,  )    + 2    (  ,  )  ( ) 

   . 
Taking the expectation and using (2.27), we get  

 |  ( ) −   | ≤ 2    (1 +  |  | ) + 2   (1 +  |  | ) ≤    
If  ≥ 2  (1 +  )(1 +  |  | ). Thus implies that   ∈    [0, ] and (2.31) 

holds for  = 0.  

We now make the inductive assumption for any  ≥ 0 and prove it for  + 1 
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Since   ∈    [0,  ] it follows, using (2.27), that  (  ( ),  ) and  (  ( ),  ) belong to    [0, ], thus the integrals on the right-hand side of 

(2.30) are well defined. 

Next, 

|    ( ) −   ( )| ≤ 2   [ (  ( ),  )−  (    ( ),  )] 
     +                       

                                        2   [ (  ( ),  ) −  (    ( ),  )]  ( ) 
            (2.32) 

Taking the expectation and using (2.32), 

 |    ( ) −   ( )| ≤ 2      |  ( ) −     ( )|    
 +                                 

                                      2     |  ( ) −     ( )|   . 
  

Thus,  

 |    ( ) −   ( )| ≤    |  ( ) −     ( )|    
  

If  ≥ 2   ( + 1). substituting (2.31) with  =  − 1 into the right-hand 

side, we get  
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 |    ( ) −   ( )| ≤   (  )  ! 
   = (  )   ( + 1)! 

Thus (2.31) holds for  =  . Since this implies that     ∈    [0, ], the 

proof of the inductive assumption for  + 1 is complete. 

From (2.32) we also have  

        |    ( ) −   ( )| ≤ 2     |  ( ) −     ( )|  
   +                     

                                             2          [ (  ( ),  ) −  (    ( ),  )]  ( ) 
    

Taking the expectation and using theorem (A.1) (see appendix) and (2.31), we 

find that  

         |    ( ) −   ( )| ≤ 2      |  ( ) −     ( )|  
   + 

                                             8   ∫  |  ( ) −     ( )|     ≤  (  )  !  

Where  = 2     + 8    . Hence   

          |    ( ) −   ( )| > 12  ≤ 2   (  )  !  

Since ∑[2 (  )  !⁄ ] < ∞, the Borel cantelli lemma implies that  

          |    ( ) −   ( )| > 12  . .  = 0. 
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Thus, for almost any   there is a positive integer   =   ( ) such that           |    ( ) −   ( )| ≤             if   ≥   ( )  

It follows that the partial sums  

  +       ( ) −   ( ) =   
     ( ) 

are convergent uniformly in  ∈ [0,  ]. Denoted the limit by  ( ). Then  ( ) 

is a continuous process. It is clearly also a nonanticipative function and it 

belongs to    [0,  ]. Since for  .  .  , 
 (  ( ),  ) →  ( ( ),  )  uniformly in  ∈ [0,  ],     

 (  ( ),  ) →  ( ( ),  )   uniformly in  ∈ [0,  ], 

and hence also 

 | (  ( ),  ) −  ( ( ),  )|  
 

 → 0, 
If we take  → ∞ in (2.30) we obtain relation 

         ( ) =   +   ( ( ),  )  +   ( 
 

 
  ( ),  )  ( ).                          (2.33) 

Thus  ( ) is a solution of (2.25), (2.26). 

From (2.30) we have          
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 |    ( )| ≤ 3 |  | + 3    (  ( ),  )   
   + 3    (  ( ),  )   

   
≤  (1 +  |  | ) +      |  ( )|    

Where   is some constant depending only on  ,  . By induction we then get 

 |    ( )| ≤   +    +     2! +⋯+         ( + 1)! [1 +  |  | ]. 
Therefore  

 |    ( )| ≤  (1 +  |  | )   . 
Taking  ↑ ∞ and using Fatou’s lemma; we conclude that  

                             | ( )| ≤  (1 +  |  | )   .                                            (2.34) 

This implies that  ( ) belongs to    [0, ]. 

:) [Friedman, 75]8(2.Remarks  

1. The above method used to prove the existence of a solution  ( ) is 

called the method of successive approximation; it is modeled after the 

corresponding proof for ordinary differential equations. 

2. Very often we shall take the initial value    to be a constant function    .  . notice that this random variable is independent of  ℱ( ( ),  ≥ 0).  
From (2.33) we obtain 
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        | ( )| ≤ 3|  | + 3   | ( ( ),  )|   
   +                                   

                                               3           ( ( ),  )  ( ) 
    

Taking the expectation and using (2.27) and theorem (A.1), we get  

         | ( )| ≤   (1 +  |  | ) +       | ( )|    
Where    is a constant depending only on  , . Making use of (2.34), 

we obtain: 

:[Friedman, 75] )2.1Corollary ( 

Under the assumptions of theorem (2.5)   

                  [        | ( )| ] ≤  ∗(1 +  |  | )                                 (2. 35) 

Where  ∗ is a constant depending only on  ,  . 

Uniqueness and Existence Theorem  :tronger S 6)Theorem (2. 

Suppose   ( ,  ),   ( ,  ) are measurable functions in( ,  ) ∈   × [0,  ], 
for  = 1,2, satisfying  |  ( ,  ) −   ( ̅,  )| ≤   | −  ̅|,           |  ( ,  ) −   ( ̅,  )| ≤   | −  ̅| |  ( ,  )| ≤  (1 + | |),                  |  ( ,  )| ≤  (1 + | |). 
Let   be a domain in   and suppose that  
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        ( ,  ) =   ( ,  ),      
                                                       ( ,  ) =   ( ,  ) 

If  ∈  , 0 ≤  ≤  .                                                                                             (2.36)                                           

Let   ( ) ( = 1,2) be the solution of  

  ( ) =   (  ( ),  )  +    (  ( ),  ),                                (0) =     
in    [0,  ] (with the same family of  -fields ℱ ) where  |   | < ∞. 
Assume finally that    =     for  .  .  for which either    ∈   or    ∈  . 
Denote by    the first time   ( ) intersects    ⁄  if such time  ≤   exists, 

and   =   otherwise. Then 

 (  =   ) = 1, 
           |  ( ) −   ( )| = 0 = 1. 

Thus if two stochastic equation have the same coefficients in a cylinder  =  × [0, ] and if the initial condition coincide in  , then the 

corresponding solution agree until the first time they both leave  ; they first 

leave   at the same time.  

:[Friedman,75]  )(2.9 Remarks 

1. This is local uniqueness theorem. 

2. It remains true for the general domains  .  
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2.5 Examples of Linear Stochastic Differential Equation: 

Example (2.4) [Evans, 05]:  

Let m = n = 1 and suppose g is a continuous function (not a random 

variable ). Then the unique solution of 

                                                       =         (0) = 1                                                            (2.37)   
is   ( ) =     ∫      ∫         
 

for 0 ≤ t ≤ T. To verify this, note that 

 ( ) ≔ − 12     +     
 

 
  

Satisfies    = − 12     +    . 
Thus Itô lemma for  ( ) =   gives   =       + 12                                          =    − 12    +    + 12      =     ,                  
As claimed. 

 

Example (2.5)[Evans, 05] : 

Similarly, the unique solution of                                                            =     +      (0) = 1                                                     (2.38) 
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Is   ( ) =  ∫          ∫         

for 0 ≤  ≤  . 
 

Example (2.6) (Stock prices) [Evans,05] : 

Let P(t) denote the price of a stock at time t. We can model the 

evolution of  P(t) in time by supposing that 
    , the relative change of price, 

evolves according to the SDE    =    +     

for certain constants μ > 0 and σ, called the drift and the volatility of the 

stock. Hence                                     =     +     ;                                                        (2.39) 

and so  (log ( )) =    − 12         

by the Itô formula  =   −   2    +    . 
Consequently   ( ) =      ( )         , 
similarly to Example (2.5). Observe that the price is always positive, 

assuming the initial price    is positive. 

Since (2.39) implies 

 ( ) =   +     +      
 

 
  

and   ∫        = 0, we see that  



 

Stochastic Differential Equations                                        Two                              Chapter 

61 

 

 ( ( )) =   +     ( )   . 
  

Hence   ( ( )) =      ,       ≥ 0.  
The expected value of the stock price consequently agrees with the 

deterministic solution of (2.39) corresponding to σ = 0. 

 

Example (2.7) (Langevin’s equation) [Evans, 05] : 

A possible improvement of our mathematical model of the motion of a 

Brownian particle models frictional forces as follows for the one dimensional 

case:  ̇ = −  +   , 
 

where  (. ) is “white noise”, b > 0 is a coefficient of friction, and σ is a 

diffusion coefficient. 

In this interpretation  (. ) is the velocity of the Brownian particle: see 

Example 6 for the position process  (. ). We interpret this to mean          = −    +     (0) =  °,                                                                                                        (2.40) 

for some initial distribution X0, independent of the Brownian motion. This is 

the Langevin equation. 

The solution is 

 ( ) =      ° +      (   )   
                 ( ≥ 0) 

as is straightforward to verify. Observe that  ( ( )) =      ( °) 

And  
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    ( ) =         ° 

+ 2      °     (   )  +        (   )   
    

  
=       ( ° ) + 2      ( °)      (   )   

  
+        (   )  =       ( ° ) +   2 (1 −      ). 

  

Thus the variance     ( ) =  (  ( ) −  ( ( ))  

Is given by   ( ( )) =       ( °) +   2 (1−      ), 
assuming, of course, V ( °) < ∞. For any such initial condition X0 we 

therefore have 

  ( ( )) → 0 ( ( )) →   2                                     → ∞.  
From the explicit form of the solution we see that the distribution of  ( ) approaches   0,       as t→∞. We interpret this to mean that irrespective 

of the initial distribution, the solution of the SDE for large time “settles 

down” into a Gaussian distribution whose variance      represents a balance 

between the random disturbing force σ  (. ) and the frictional damping force –

b (. ). 
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The output-feedback problem has received considerable attention in the 

recent nonlinear control literatures [Jankovic, 97], [Khalil, 96], [Krstic, 95], 

[Marino, 95], [Praly, 93], [Teel, 95].  

In this chapter an output feedback (observer-based) backstepping 

control law which guarantees global asymptotic stability in probability has 

been proved. The stabilizing control laws which are also optimal with respect 

to meaningful cost functional have also been proved. 

The necessary theorems for a certain nonlinear dynamic stochastic 

control system have been stated and proved. 

Some concluding remarks are also included and discussed. 

 

3.1 Preliminaries on Stability in Probability: 

Consider the nonlinear stochastic system 

                =  ( )  +  ( )                                                                (3.1) 

Where  ∈     is the state,   is an r-dimensional independent standard 

Brownian motion, and   :  →     ,  :  →   ×  are locally Lipschitz 

functions and satisfy  (0) = 0,  (0) = 0.  
The following definitions are needed for complete understanding of the 

subject: 

Remarks (3.1) [Hardy& Littlewood, 89]: 

The following inequality is very important in the present work and is 

discussed as follows: 

1.  Young’s inequality has the form:          

                                 XY≤ ∈  | | +   ∈ | |  

where  > 0, the constants  > 1 and  > 1 satisfy: ( − 1)( − 1) = 1 

And ( , ) ∈    . 
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2. Let   is a positive function, then: |  ( ̅ )| ≤  |  |   

Where   = ( ̅ ,  ̅ , … ,  ̅ ) 

3. Suppose a function  ( ,  ) has domain    in ( ,  )-space and 

suppose there exists    , such that if  ( ,   ), ( ,   ) ∈   , then 

                    ‖ ( ,   ) −  ( ,   )‖ ≤  ‖  −   ‖                                          (3.2) 

Then    satisfies  a  Lipschitz  condition  with  respect  to  x  

in  , and    is a  Lipschitz  constant  for   . [Brauer&Nohel, 73]          

4. If  ( ),  ∈    is differentiable function with bounded partial 

derivatives, then    is simply is the upper bound of the norm of the 

Jacobian matrix for the function  ( ), the upper bound taken over 

the entire   . However, in general, a Lipschitz function may not be 

differentiable.                                                              [Raghavan, 94]   

5. Not necessary that all functions must satisfy the Lipschitz 

conditions; the following example shows a class of function not 

belongs to a class of Lipscitzian functions. 

 

Example (3.1) [Brauer& Nohel, 73]: 

If  ( ,  ) =      in the rectangle  = {( ,  ) | | ≤ 1, | | ≤ 2}, then   

does not satisfy a Lipschitz condition in  . 

   To establish this, we only need to produce a suitable pair of points for which 

(3.2) fails to hold with any constant  . consider the points 

               ( ,   ), ( , 0) With  −1 ≤  ≤ 1,  > 0. 
Then             
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 ( ,  ) −  ( , 0)  − 0 =        = 1    ⁄ . 
Now choosing   > 0 sufficiently small, it is clear that  =      ⁄  can be made 

larger than any preassigned constant. Therefore equation (3.2) fails to hold for 

any  . 

Definition (3.2)[Deng&Krstic, 99]: 

The equilibrium state  = 0 of (3.1) is said to be globally asymptotically 

stable in probability if for any   ≥ 0  and   > 0, lim (  )→ ,   sup    | ( )| >   = 0, and for any initial condition  (  ),  {lim →  ( ) = 0} = 1. 

 

Theorem (3.1) [Khas’minskii, 80], [Kushner, 67] , [Mao, 91]: 

Consider the system 

                   =  ( )  +  ( )   

 and suppose there exists a positive definite, radially unbounded, twice 

continuously differentiable function  ( ) such that the infinitesimal generator 

                      ℒ =       + 1 2                                                               (3.3) 

                                            

is negative definite. Then the equilibrium state   = 0 of    =  ( )  + ( )   

 is globally asymptotically stable in probability; where   (. ) is standing for 

the trace operation. 
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3.2 Problem Formulation of Output-Feedback Stabilization in 

Probability: 

The following problem formulation has been considered 

In this section we deal with nonlinear output-feedback systems driven by 

Brownian motion. This class of systems is given by the following nonlinear 

stochastic differential equations: 

 

       =       +   ( ̅ )  +    ( )   +   ( ̅ )   ,     = 1, … , − 1    

                                                                                                            

       =     +   ( ̅ )  +    ( )   +    ( ̅ )    

 

          =                                                                                                    (3.4) 

 

Where  

1.   ∈   , is the state. 

2.   is an r-dimensional independent standard Brownian motion.  

3.  = (  ,   , … ,  ) ,   is a vector valued function, satisfied: 

i.  :  →   ,  (0) = 0. 
ii.   ( ̅ ) =   (   , … ,    ) 

iii. ‖ ( )‖ ≤     ≤ (    ) ≤ (    ( )) | |                    (3.5) 

Where   is a positive definite matrix, and     ( ) is the 

largest eigan value of  , and |. | is standing for suitable norm. 

4.    ( ) are r-vector-valued smooth functions with  = (  ,  , … ,  ) , :  →   ×  and    (0) = 0. 
5.   ( ̅ ) are r-vector-valued smooth functions with  = (  ,  , … ,  ) , :  →   × , with   (0) = 0, Where  ̅ =[  , … ,   ] . 

6.  (0) = 0. 
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7. Let    ,     ,   are satisfied Lipchitz condition. 

8. Since the states   , … ,    are not measured, need to be estimated by a 

dynamic observer which is suggested as 

              ̇ =      +   ( −    )                  = 1,⋯ ,                                  (3.6) 

 

 Now, the entire system can be expressed as: 

    =         +  (  )  +  ( )   +  (  )   ,             

 Where   = ( ̅ ,  ̅ , … ,  ̅ ) and   ̅ = (  ,   , … ,   )            =  1, . . . ,       
 

Remark (3.3): 

1. The observation errors   =  −    satisfy: 

              =  −  ⋮−     0  …   0       +  (  )  +  ( )   +  (  )   ,        

            =         +  (  )  +  ( )   +  (  )     

                                                                                                                     (3.7)            is designed to be asymptotically stable. Now, the entire system can be 

expressed as             =         +  (  )  +  ( )   +  (  )    

and   

           =(   +    )   +    ( )                                                                                 = [   +   ( −    )]   
            ⋮             = [ +   ( −    )]                                                                    (3.8) 

 

2. Since    (0) = 0, the    ’s will vanish at   ̅   = 0, y = 0, as well as at    = 0, where    =(  , … ,   ) . Thus, by the mean value theorem, and     (  ̅ ,  ) and  ( ) can be expressed, respectively, as   



 
Chapter Three                                                                                        Stochastic Nonlinear Stabilization    

68 
 

                      ̅ ,   = ∑              ̅ ,                                                           (3.9)                               ( ) =   ( )                                                                         (3.10)   

         Where      ̅,   and  ( ) are smooth functions.                         
Theorem (3.2):  

Consider the system defined in problem formulation (3.2), and 

assuming that the dynamic observer is designed to be              =        +  (  )  +  ( )   +  (  )       

a sequence of stabilizing functions   (  ̅ ,  ), where   ̅ = [   , … ,    ] , is 

constructed recursively to build a Lyapunov function of the form: 

 ( ,   ) = 14   + 14    +  2 (      )  
    

Define: 

                          =                 (3.11)                           =    −    (  ̅   ,  ),       i=2,…,n       (3.12) 

and, if the following are satisfied:   = −   − 32      )   ( ) − 34      − 34       
− 34       ( )   ( )    

   − 3  √    | ( )|  +  ( )  
and    = −    −      +                (     +      ) +             

+ 12             ( )   ( ) − 34       − 14       
− 34                    − 34                

and  
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 = −    −      +                (    +      ) +             
+ 12              ( )   ( ) − 12                 

 ,        
− 14       − 34                    + 34                

 

and   is a positive definite matrix which satisfies:                       +    = −                                                                   (3.13) 

Then the equilibrium point  = 0  at the origin of the closed-loop 

stochastic system (3.8), (3.29) is globally asymptotically stable in probability. 

 

Proof: 

We have   =   and   =    −    (  ̅   ,  ) 

By using Itô’s differentiation rule of the [Øksendal, 95], [Fridman, 75]  

 

     = (   +    )   +   ( )  +   ( )   +    ( )                             (3.14)   

                                                                                                                                                                              

   =      +      −         
   
        +   ( ̅ ) −         (   +    ) +   ( ̅ ) 

− 12              
   

 ,        − 12           ( )  ( )          
                                                                    = 2, … ,                                           (3.15) 

As we announced previously, we employ a Lyapunov function of the form: 

             ( ,   ) = 14   + 14     +  2 (      )  
                                                (3.16) 

Where   is a suitable positive definite matrix,                          
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Now we start the process of selecting the unknown functions      ̅,   

to make ℒ  negative definite. Along the solutions of (3.7), (3.14), and (3.15), 

we have     ℒ =   (   +    ) + 32     ( )   ( )
+      

         +     ~ −            
        +   ( ̅ ) 

−         (   +    ) +   ( ̅ ) − 12                 
 ,        

− 12           ( )  ( ) + 32     
   (       )   ( )   ( )

+ 22  (      )[      +        ] + 42   {  ( )(2        +         ) ( ) } 

 

by using equation (3.10) we have:     ℒ =   (  +   +    ) +     ( ) + 32     ( )   ( )
+      

        +   +      −          
   
        +   ( ̅ ) 

−         (   +    ) +   ( ̅ ) − 12                 
 ,        

− 12           ( )  ( ) + 32     
   (       )   ( )   ( )

+   (      )[   (   +    )  ] + +2   {  ( )(2        +         ) ( ) } 
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     ℒ =     +     +   x  +     ( ) + 32     ( )   ( ) +      
       

+      
      –      

        −      
            

   
        +   ( ̅ ) 

−     
               −     

               −     
              ( )

− 12     
                   

 ,        
− 12     

                ( )   ( )
+ 32     

   (       )   ( )   ( ) −   (      )|  | 
+ 2  {  ( )(  2        +         )) ( ) } 

                                                                                                                   (3.17)                

Now, by applying Young’s inequality on equation (3.17):   

The first term: take    =    , =    , = 43 ,  = 14   

                                   ≤ 34       + 14                                                  (3.18) 

 

The 3rd term: take   =    , = x   ,  = 43 ,  = 14   

                                                     x  ≤ 34 ϵ    y + 14ϵ      ≤ 34 ϵ    y + 14ϵ  |  |                      (3.19) 

 

The 6th term: take 
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  =    , = x   ,  = 43 ,  = 14   

                                                                                                                                      

                             z   
       ≤ 34          + 14 1            

   
                 (3.20) 

  

The 9th term: take 

  = −                  
   

 
    ,  =  (   ) , = 43  ,  = 14   

−                (   
   

 
      )

≤      34       
                   + 14 1    

   (     ( )) |  |  
                                                                                                                   (3.21) 

 

The 11th term: take 

  = −     
   
        , =     ,  = 43 ,  = 14   

 

−     
   
          ≤ 34       

                  + 14 1        
   ≤ 34       

                  + 14  1   |  |  
    

                                                                                                                   (3.22) 

 

The 15th term: take 
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  = 32      
   (       ) ,  =   ( )   ( ) ,  = 43  ,  = 14   

           32      
   (       )   ( )   ( )

≤ 34  1                + 34       ( )   ( )   
   

     

      

                                                                                                             (3.23) 

The last term: 

      2   { ( )(  2        +         )) ( )}      2   { ( )(  2        +         )) ( )} ≤ 2  | ( )(  2        +         )) ( ) |  

                         ≤ 2  √ | ( )(  2        +         )) ( ) | 
                         ≤ 6  √   | ( )| | | |  |  

                         ≤    √      | ( )| + 3  √    | | |  |                          (3.24)                                            

                By substituting all the terms given in the equations (3.18) , (3.19) , 

(3.20) , (3.21) , (3.22) ,(3.23) and (3.24) in equation (3.17) then we have: 
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ℒ ≤ −[  − 3  √    | | − 14 1   − 14   − 14 
    1    

         ( )  

−         14  1   
 

       ]|  | 
+            ( ) + 34       + 34       
+ 34        ( )   ( )    

   + 3  √    | ( )|  +   ( ) 
+     [  +      −   

                  (    +      ) −             
− 12                 

 ,        − 12             ( )   ( ) + 34        
+ 14       + 34                    + 34                
+      +      −               (    +      ) −             
− 12              ( )   ( ) − 12                 

 ,        
+ 14       + 34                    + 34                
+ 34       

                + 34       
                             (3.25) 

        Where   > 0 is the smallest eigenvalue of  . The second equality comes 

from substituting    =   +      , and the inequality comes from Young’s 
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inequalities. At this point, we can see that all the terms can be cancelled by   

and   . If we choose   ,   ,            to satisfy 

 

  − 3  √    | | − 14 1   − 14   − 14 
    1    

         ( )  
− 14 1    

         ( )  =  > 0 

                                                                                                                   (3.26) 

And             

       = −   32      )   ( ) − 34       − 34       
− 34        ( )   ( )    

   − 3  √    | ( )|  +  ( )  
                                                                                                                   (3.27)   = −    −      +                 (     +      ) +             

+ 12             ( )   ( ) − 34       − 14       
− 34                    − 34                

                                                                                                                   (3.28)  = −    −      +                (    +      ) +             
+ 12              ( )   ( ) − 12                 

 ,        
− 14       − 34                    + 34                

                                                                                                                  (3.29) 
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where    > 0, then the infinitesimal generator of the closed-loop system (3.5), 

(3.14), (3.15), and (3.29) is negative definite 

 

        ℒ ≤ −      −  |  |                                                                   (3.30) 
    

                     

With (3.30) and hence ℒ < 0, from theorem (3.1) the critical point of (3.4) is 

global asymptotically stable in probability. That is complete the proof. 

  

Concluding remark (3. 4): 

If we put   ( ̅ ) = 0, and   ( ̅ ) = 0,  = 1, … ,  , of system (3.4). 

Then we have the work in [Deng & Krstic, 99]. 

 

Remarks (3.5): 

1. Our output-feedback design will consist of applying a backstepping 

procedure to the system ( ,    , … ,    ), which also takes care of the 

feedback connection through the   -system. 

2. The Lyapunov design for stochastic systems cannot be performed using 

the quadratic Lyapunov function (3.8) because of the term 12                 

 

in (3.3). We instead employ quartic (fourth order) Lyapunov functions                               

             =  14 
      + (      )                                                        

3. Our presentation of the backstepping procedure here is very concise: 

instead of introducing the stabilizing functions    in a step-by-step 

fashion, we derive them simultaneously. The technique of back -

stepping is referred to [Krstic, 95]. 
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3.3 PROBLEM FORMULATION OF INVERSE OPTIMAL 

OUTPUT-FEEDBACK STABILIZATION: 

This section first reviews some definitions and theorems established in 

[Deng & Kristic, 97, b], which are then used in the design of an inverse 

optimal stabilizing control law.  

Consider the system                         =  ( )  +   ( )  +   ( )                                  (3.31) 

         Where  (0) = 0,   (0) = 0, and  ∈   . 
 

Definition (3.4) [Deng & Kristic, 97, b]:  

A function  : ℛ ⟶ ℛ  is said to be of class  ∞ if it is continuous, 

strictly increasing, and     →∞ ( ) = ∞. 

Definition (3.5) [Deng & Kristic, 97, b]:   

The problem of inverse optimal stabilization in probability for system 

(3.31) is solvable if there exist a class  ∞ function    whose derivative   ̀ is 

also a class  ∞ function, a matrix-valued function   ( ) such that                                          ( ) =   ( ) > 0        for all  ,  

a positive definite radially unbounded function ℓ( ), and a feedback control 

law  =  ( ) continuous away  from the origin with  (0) = 0, which 

guarantees global asymptotic stability in probability of the equilibrium  = 0 

and minimizes the cost functional 

  ( ) =  {∫   ( ) +   (   ( )     )   }∞                                              (3.32) 

 

Theorem (3.3) [Deng & Kristic, 97, b]:: 

 Consider the control law         
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           =  ( ) = −    (    ) ℓ            ⁄            ⁄                              (3.33) 

where  ( ) is a Lyapunov function candidate,    is a class  ∞  function 

whose derivative is also a class  ∞ function,   ( ) is a matrix-valued 

function such that   ( ) =   ( ) >0, and ℓ   is the Legandre–Fenchel 

transform defined as                                ℓ  =  (  ̀)                                                                 (3.34) 

 

If the control law (3.33) achieves global asymptotic stability in probability for 

the system (3.31) with respect to  ( ), then the control law      ∗ =  ∗     
     = − 2     (    ) (  ̀)             ⁄             ⁄   ,      ≥ 2                      (3.35) 

Solves the problem of the inverse optimal stabilization in probability for the 

system (3.31) by minimizing the cost functional  

 ( ) =  {   ( ) +      2    ( )         }∞

                             (3.36) 

Where  ( ) = 2  ℓ             ⁄   −    − 12                                                              + ( − 2)ℓ             ⁄                    (3.37) 

 

Remark (3.6) [Deng & Kristic, 99]: 

The function  ( ) is positive definite because, by assumption of the 

theorem, the bracketed term is positive definite, ℓ   is in class  ∞, and  ≥ 2. 
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Now we return to the output-feedback system defined in problem 

formulation in section (3.2) and redesign the control law (3.29) to make the 

problem inverse optimal. The following result is instrumental. 

 

Theorem (3.4) ( inverse optimal output – feedback stabilization): 

 Consider the system defined in problem formulation (3.2) assuming 

that the condition of theorem (3.1) are satisfied if there exist a continuous 

positive function  ( ,   ) such that the control law of theorem (3.2) can be 

rewritten as:  =  ( ,   ) = − ( ,   )                                                             (3.38) 

Such that ℒ < 0, when  ( ,   ) =     +   ∑    +   (      )      

Then the control law   ∗ =  ∗( ,   ) =   ( ,  ),            ≥ 43                                       (3.39) 

solve the problem of inverse optimal stabilization in probability. 

 

Remark (3.7): 

From theorem (3.4), if we can design a stabilizing control law that has    as a factor, we can easily find another control law which solves the 

problem of the inverse optimal stabilization in probability, as given by 

equation (3.39). 

Proof: 

If we consider carefully the last bracket of equation (3.25) where   is 

given as: 
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 = −    −      +                (    +      ) +             
+ 12             ( )   ( ) − 12                 

 ,        
− 14       − 34                    + 34                

Every term except the second, the third, the fourth, and the fifth has   as a 

factor. With the help of Young’s inequalities, we have: 

In the following inequalities,  ’s are constants to be chosen: 

 

The 2nd term: take   =     , =       ,  =    , =                  ≤ 34     ⁄    + 14                                
≤ 34     ⁄    + 14      |  |                                                        (3.40) 

  The 3rd term: take   = −   ∑                   ,  =     ,  =    ,  =        

−                  ≤ 34   
                     

      ⁄    + 14                           
                      

                                       ≤ 34                   
      ⁄    + 14   |  |               (3.41) 

 The 6th term: take   = −                 ( )   ( ),  =    ,  =    , =                                            

 − 12               ( )   ( ) = − 12               ( )   ( )               
                      ≤ 38              ( )   ( )   ⁄    + 18                       (3. 42) 
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The two terms: 

−             −                      
   = −                 −   
               −                

   
   
     

= −       
   

             −             −             
   

   
            

                  ≤   34                ⁄    + 14            
   + 34                ⁄    
+ 14      +  34                

         ⁄    + 14          
    

=     34                ⁄ + 34   
                ⁄ + 14   

+ 34                 
         ⁄   

    
+  14      +  14      +   

   
   
   

14    
                                                                                                               (3.43)  

The 7th term: take   = −      ∑                 ,       , =    , =    ,  =      

− 12                    
 ,        ≤ 32                   

 ,         ⁄    + 14        
≤ 32                   

 ,         ⁄    + 14   | | |  |                (3.44) 
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Since   ( ,   ) =     +   ∑    +   (      )       

And ℒ  is given as: 

ℒ ≤ −[  − 3  √    | | − 14 1   − 14   − 14 
    1    

         ( )  
−         14 1    

       ]|  | 
+            ( ) + 34       + 34       
+ 34       ( )   ( )    

   + 3  √    | ( )|  +   ( ) 
+     [  +      −   

                  (    +      ) −             
− 12                 

 ,        − 12             ( )   ( ) + 34        
+ 14       + 34                    + 34                
+      +      −               (    +      ) −             
− 12              ( )   ( ) − 12                 

 ,        
+ 14       + 34                    + 34                
+ 34       

                + 34       
                              

 
Then back substation all the terms of   ,equations (3.40), (3.41), (3.42),  

(3.43) and (3.44) in ℒ , to obtain:  
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ℒ ≤ −    − 3  √    | | − 14 1    
   − 14   − 14   − 14      

− 14 1   (  max ( )) − 14 
    1   (  max ( ))  

   − 14   | |  |  | 
+      + 32  ( )   ( ) + 32     ⁄ + 34     ⁄  
+ 34       ( )   ( )   + 3  √     

   |  ( )|  + 14    
+ 18     
+        +      −          (     +      ) −   

   
             

   
− 12                 

 ,        − 12            ( )   ( ) + 34     ⁄   
+ 14       + 34     ⁄            ⁄   + 34               + 14     
+ 14      
+      + 34                 ⁄   + 34   

                ⁄   
+ 14     
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+ 34                     
      ⁄      

   
+ 38               ( )   ( )   ⁄   
+ 34                   

      ⁄   + 34     ⁄   + 14       
+ 34     ⁄            ⁄   + 34               
+ 34                   

 ,         ⁄    
+ 34     ⁄             ⁄ + 34     ⁄            ⁄ 

   
 
    

                                                                                                                  (3.45) 

If   ,   ,   ,   ,   ,   ,   ,   and   are chosen to satisfy  

      − 3  √    | | − 14 1    
   − 14   − 14   − 14   

− 14 1   (  max ( )) − 14 
    1   (  max ( )) − 14   | |  

     
=  > 0                                                                                      (3. 46 ) 

                                                                                                          14   + 18   =   2                                                 (3. 47) 

                                                  14   + 14   =   2                                                (3. 48) 

 

Where    and    are those in (3.27) and (3.28), and  
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From reconstruct a new controller then           = − ( ,   )                 
Where  

 ( ,  ) =   + 34                 ⁄ +   
   

34              ⁄ + 14   
+ 34                     

      ⁄ + 38                ⁄   
   

+ 34                  
      ⁄ + 34     ⁄ + 14     

+ 34     ⁄            ⁄ + 34             
+ 34                   

 ,         ⁄                                            (3.49) 

Then   =   ( ,   ),            ≥ 43                                
With (3.27), (3.28), and (3.48), we have also that: 

ℒ ≤ −12      −  |  | < 0 
    

Thus, according to theorem (3.4), we achieve not only global 

asymptotic stability in probability, but also inverse optimality. 

That completes the proof. 
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Theorem (3.5) [Deng & Kristic, 99]:  

The control law            ∗ = −  ( ,   )  ,                   ≥                                                (3.50) 

guarantees that the equilibrium at the origin of the system defined in problem 

formulation in section (3.2) and equation (3.7) is globally asymptotically 

stable in probability and also minimizes the cost functional  

 ( ) =      ( ,   ) + 2716   ( ,   )       ∞

                                (3. 51) 

 For some positive definite radially unbounded function  ( ,  ) parameterized 

by  . 

 

Proof:  

 Let    ( ) = 14   ,    =  43   (  ⁄ )
 

 Applying Theorem 3.1, the result follows readily.   

 

3.4 Algorithms and Examples:  

Algorithm (3.1) A Robust Controller Stabilization in Probability: 

Input: the dynamic control system described in problem formulation (3.2) 

Output:  robust control   , and the unknown design positive functions                                       ,  = 1, … ,  . and  ( ) is suitable stabilized Lyapunov function.          

Step 1:  consider problem formulation (3.2). 

Step 2: check that Lipschitz condition for the following function:  ,  , . 
(See problem formulation (3.2)).      
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Step 3: if the Lipschitz condition is satisfied go to step 4 otherwise go to (step 

– stop).      

Step 4: design suitable dynamic observer for the dynamic system of step 1:     =     +   ( −    )       =     +         ⋮     =    +         

Step 5: define the error vector :   =   −     
and hence        =       +  (   )  +    ( )  +   (   )  −        −   ( −    )       =        −      +  (   )  +    ( )  +   (   )       =       +  (   )  +    ( )  +   (   )   

            Where 

  = ⎣⎢⎢
⎢⎡ −   1 0−    0 1 ⋯ 00⋮                 ⋱ ⋮−    0 0−    0 0 ⋯ 10⎦⎥⎥

⎥⎤ 
Step 6: find    ,  = 1, … , . so that    is stable matrix. One can use many         

methods such as pole placement, …, etc.see [Ogata, 02].   

Step 7: find the positive definite matrix    of the system:     +    = −  
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where    is defined in step 5,   is stands for n-identity matrix.  

Step 8: suggest the Lyapunov function: 
 ( ,   ) = 14   + 14    +  2 (      )  

    

Where     =   and   =    −    (  ̅   ,  ) , And   is the solution of        
step 7.  

Step 9: select a suitable    ,   ,            to satisfy : 

  − 3  √    | | − 14 1   − 14   − 14 
    1    

         ( )  
− 14 1    
         ( )  =  > 0 

so that ℒ  is negative 

 

Step 10: choose            = −   32      )   ( ) − 34       − 34       
− 34       ( )   ( )    
   − 3  √    | ( )|  +  ( )  

and    

  = −    −      +                (     +      ) +             
+ 12             ( )   ( ) − 34       − 14       
− 34                    − 34                

and  
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 = −    −      +                (    +      ) +             
+ 12              ( )   ( ) − 12                 

 ,        
− 14       − 34                    + 34                

 

Step 11: Then to be grantee that ℒ  is negative definite and hence             

       ℒ ≤ −∑      −  |  | < 0,     where    ,  = 1, … ,  are 

suitable                           

Step 12: the Lypunov function   of step 8 is constructed. 

Step 13: stop. 

Algorithm (3.2) (inverse optimal stabilization): 

Input: the control   in algorithm (3.1) and the dynamic system of problem  

   formulation (3.2). 

Output: optimal control  ∗ =  ( ,   ) = − ( ,   )   

Step 1: consider the steps of algorithum (3.1) from (step 1 – step 10).  

Step 2: redesign the suggested controller   in algorithm (3.1), so that:  = − ( ,   )   

Step 3:  ( ,   ) of step 2 can be derived to be:  
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        ( ,   ) =   + 34                ⁄ +   
   

34              ⁄ + 14   
+ 34                     

      ⁄ + 38               ⁄   
   

+ 34                   
      ⁄ + 34     ⁄ + 14     

+ 34     ⁄            ⁄ + 34             
+ 34                   

 ,         ⁄                 
Then the controller of step 2 is designed.      

Step 4: select   ,   ,   ,   ,   ,   ,   ,   and   are chosen to satisfy: 

                 − 3  √    | | − 14 1    
   − 14   − 14   − 14   

− 14 1   (  max ( )) − 14 
    1   (  max ( )) − 14   | |  

     
=  > 0                                                    

Step 5: on using =     +   ∑    +   (      )      , ℒ ,controller of step 2  

    and    ,    of step 10 algorithm(3.1) to obtain ℒ < 0 . 
Step 6: the controller  ∗is the optimal stably control. 

Step 7: stop. 
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Illustration (3.1): 

Step1: Consider the system:                                   =     +                                            =     + sin       

                                    =             
and |  | < 1. 

Step 2: Check Lipschiz condition: 

Since  ( ) =   ,  |  | < 1 we found that  = 1. 
To check that   satisfy Lipschiz condition, first we must find the 

Jacobian matrix for  : 

Where    =       ,   = sin    

  =     = ⎣⎢⎢
⎡                        ⎦⎥⎥

⎤ =    00        
      = |  | + |     | < 1 + 1 = 2 =    

Then  = (  ,  )  satisfy Lipshiz condition, and  

‖ (  ,   ) −  (   ,   )‖ <       ‖ −   ‖ = 2‖ −   ‖ 

By equation (3.2). 

Step 3: the observer system is:                                   ̇ =    +   ( −    )                                    ̇ =  +   ( −    )    
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Step 4: consider the error system:                =       +     +        + sin       

Where    =  −  1−  0   
One can choose, for simplicity   = 4 ,  = 6.25 so that the matrix    

be a stable matrix. 

Step 5: To find the positive definite matrix   ,the following equation should  

 be solved:       +    = −    
   −4 −6.251 0                +                −4 1−6.25 0 =  −1  0 0 −1  
Now, by using matlab program,   is found to be: 

              =  0.1452 0.08060.0806 1.2226  
It’s clear that   is symmetric matrix: 

The eigen values of   are:   = 0.1392,   = 1.2286 

Since   ,    are positive value, then   is positive definite matrix. 

Step 6: To find the Lyapunov function: 

    = 14   + 14    +  2 (      )                                   
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       = 14   + 14     −   (  ̅ , )  
+  2  [      ]  0.1452 0.08060.0806 1.2226            

          = 14   + 14     −   (  ̅ ,  )  
+  2 (0.1452    + 1.2226    + 0.1612      )  

Where   is a positive constant. 

Step 7: to find   : 
            − 6√2    | | − 14  1   − 14   − 14 

    1    
         ( )  

− 14 1    
         ( )   

=   − 3 2√2   | | − 14 1   − 14   − 14         ( )   

Where   is the smallest eigenvalue of  ,  = 0.1392 

      ( ) is the largest eigenvalue of  .      ( ) = 1.2286 

and if we choose  = 0.1,   = 0.01,   = 50,   = 0.1,   = 0.8 

 | | ≡ the determinant of the matrix  ,    | | ≡ 0.17102516  
So that   > 0. 

Step 8:  

find   and  ∶ 
             = −   − 38   − 34     ⁄  − 34     ⁄  − 364      − 6√2 16      

and  
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 = −    −      +           + 18            − 14     − 34     ⁄          ⁄   + 34              

Hence, on using theorem (3.2), the solution is globally asymptotically 
stable in probability. 

 

Illustration (3.2): 

Step1: Consider the system:                                   =     + 2sin(  )                                      =     + 4 cos       

where   =    and |  | < 1. 
Step 2: check Lipchitz condition: 

Since  ( ) =   , |  | < 1, we found that  = 1. 
To check that   satisfy Lipschiz condition, first we must find the 

Jacobian matrix for  : 

 Where    = 2sin  ,    = 4 cos    

  =     = ⎣⎢⎢
⎡                        ⎦⎥⎥

⎤ =  2     00 −4       
      = |2     | + |−4     | < 2 + 4 = 6 =   

Then  = (  ,  )  satisfy Lipshiz condition, and  

‖ (  ,   ) −  (   ,   )‖ <       ‖ −   ‖ = 6‖ −   ‖ 
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By equation (3.2). 

Step 3: the observer system is:                                   ̇ =    +   ( −    )                                    ̇ =  +   ( −    )    
Step 4: consider the error system:                  =       +     + 2 sin( )   + 4 cos       

Where    =  −  1−  0   
One can choose, for simplicity   = 4 ,  = 6.25 so that the matrix    

be a stable matrix. 

Step 5: To find the positive definite matrix   ,the following equation should  

  be solved:       +    = −    
  −3 −4.51 0                +                −3 1−4.5 0 =  −1  0 0 −1  
Now, by using matlab program, we found   as: 

 =  0.9167 −0.5−0.5 0.537  
And   ,    of   are:   = 0.1920,   = 1.2617 

It’s clear that   is symmetric and positive definite matrix. 

Step 6: To find Lypunov function: 

 = 14   + 14    +  2 (      )                     
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            = 14   + 14     −   (  ̅ ,  )  
+  2  [      ]  0.9167 −0.5−0.5 0.537            

               = 14   + 14     −   (  ̅ , )  +  2 (0.9167    −       + 0.537    )  

Where   is a positive constant. 

Step 7: 

To find   : 
                 − 6 √2   | | − 14 1   − 14   − 14 

    1    
         ( )  

− 14 1    
         ( )  

=   − 3 2√2   | | − 14 1   − 14   − 14         ( )  
 

 

Where   is the smallest eigenvalue of  ,  = 0.1920 

      ( ) is the largest eigenvalue of  .      ( ) = 1.2617 

and if we choose  = 0.1,   = 0.01,   = 50,   = 0.1,   = 0.8 

 | | ≡ the determinate of the matrix  ,    | | ≡ 0.2422679  
So that   > 0. 

Step 8: find   and  ∶   = −   − 6     − 34     ⁄  − 34     ⁄  − 12    (    ) 
− 96√2     |    |  
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 = −    −      +           + 2           (    ) − 14     − 34     ⁄          ⁄   − 34              

Hence, on using theorem (3.2), the solution is globally asymptotically 
stable in probability. 

 

Illustration (3.3): 

Step1: Consider the system:                                   =     + sin(  )                                      =      + cos(    )     

                                  =     + sin        

                                    =            
With |  | < 1, |  | < 1. 

Step 2: check Lipschiz condition: 

1. First, check  (  ,  ) = (  ,   ) = (  ,   )  

  =     =  0 1 00 0 10 0 0  
        < 1 + 1 = 2 =                                                                                   

Then  = (  ,   ) satisfy Lipshiz condition, and  

‖ (  ,   ) −  (   ,    )‖ <       ‖ −   ‖ = 2‖ −   ‖ 

       By equation (3.2). 

2. Check  ( ̅ ,  ̅ ,  ̅ ) satisfied Lipschiz condition: 
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                     = ⎣⎢⎢
⎢⎡                              

            
            ⎦⎥⎥

⎥⎤ =
                           cos   0 0−  sin     −  sin     0  cos     0   cos            

      = |cos   | + |−  sin     | + |−  sin     | + |  cos     |+ |  cos     |              ≤ |cos   | + |  ||sin     | + |  ||sin     | + |  ||cos     |+ |  ||cos     |                      ≤ 1 + 1 + 1 + 1 + 1  

                     ≤ 5 =    

 Then  = (  ,  ,  )  satisfy Lipshiz condition, and  

‖ (  ,   ,   ) −  (   ,   ,    )‖ <       ‖ −   ‖ = 5‖ −   ‖ 

By equation (3.2). 

Step 3: the observer system is:                  ̇ =    +   ( −    )  

                 ̇ =    +   ( −    )                  ̇ =  +   ( −    )   
Step 4: consider the error system:           =       + (  +   )  + sin( )  + cos (    )   + sin        

   Where     =  −  1 0−  0 1−  0 0  
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If we chosen   = 3,  = 4.5,  = 6.25 so that the matrix    be 

stable. 

Step 5: To find  , we must solve:       +    = −    
So that   obtains as: 

 =  5.6940 −0.5000 −2.2931−0.5000 2.2931 −0.5000−2.2931 −0.5000 1.3807   
Where   is positive definite matrix because the eigen value of   are:   = 0.1836,   = 2.4833,   = 6.7009 

Step 6: To find Lypunov function: 

 = 14   + 14    + 14    +  2 (      )  

                  = 14   + 14     −   (  ̅ ,  )  + 14     −   (  ̅ ,  )  
+  2  [         ]  5.6940 −0.5000 −2.2931−0.5000 2.2931 −0.5000−2.2931 −0.5000 1.3807              

 
 

                = 14   + 14     −   (  ̅ ,  )  + 14     −   (  ̅ , )  
+  2 (5.6940    + 2.2931    + 1.3807    −       − 4.5862      −       )  

Where   is a positive constant. 

Step 7: to find    
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       − 9 √3   | | − 14 1   − 14   − 14 
    1    

         ( )  
− 14 1    

         ( )   

=   − 3  √    | | − 14 1   − 14 1   − 14   − 14         ( )  − 12        ( )   

Where   is the smallest eigenvalue of  ,  = 0.1836 

      ( ) is the largest eigenvalue of  .      ( ) = 6.7009 

and if we choose  = 0.1,   = 0.01,   = 50,   = 0.1,   =            0.09,   = 0.8,   = 0.5. 
           | | ≡ the determinate of the matrix  ,    | | ≡ 3.0546 

So that   > 0. 
Step 8: find   ,     and  :   = −   − 32 [(    ) +(       ) +(       ) ] − 34    ⁄  − 34     ⁄  − 34       [(    ) + (       ) + (       ) ]

− 9√3     |[                    ]|  

     = −    −      +        (   +      ) +           + 12            [(    ) + (       ) +(       ) ] − 34    ⁄   
− 14     − 34     ⁄          ⁄   − 34              
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 = −    −      +       (   +      ) +           + 12            [(    ) +(       ) +(       ) ]
− 12             

 ,   [(     ) + (        ) +(        ) ]
− 14     − 34     ⁄          ⁄   + 34              

Hence, on using theorem (3.2), the solution is globally asymptotically 
stable in probability. 

 

Illustration (3.4): 

Step 1: consider the system:                                   =     + x                                        =      + cos(  )sin (  )     

                                  =      +     (    )                                     =     + cos(    )    

                                    =            
Step 2: check Lipschiz condition: 

1.  First, check  (  ,   ,   ) = (  ,   ,   ) = (  ,   ,   )  

  =     =  0 1 0 00 0 1 000 00 00 10  
                 = |0| + |1| + |0| + |0| + |0| + |0| + |1| + |0| + |0| + |0| + |0|+ |1| + |0| + |0| + |0| + |0| < 1 + 1 + 1 = 3 =   

Then  = (  ,   ,   ) satisfy Lipshiz condition, and 
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‖ (  ,   ,   ) −  (   ,    ,    )‖ <       ‖ −   ‖ = 3‖ −   ‖ 

       By equation (3.2). 

 

2. Check  ( ̅ ,  ̅ ,  ̅ ,  ̅ ) satisfied Lipschiz condition: 

 we must find jacobian   :             

 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
                                          

                  

                        
            ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

Where                           = 3   ,      = 0,       = 0,       = 0, 
      = − sin(  ) sin(  ) ,       = cos(  ) cos(  ) ,       = 0,      = 0, 

      = 0,       = 2  sin(    ) cos(    ), 
      = 2  sin(    ) cos(    ) ,      = 0, 

      = 0,       = 0,       = −  sin(    ) ,      = −  sin(    ) 



 
Chapter Three                                                                                        Stochastic Nonlinear Stabilization    

103 
 

      = |3   | + |0| + |0| + |0| + |− sin(  ) sin(  )| + |cos(  ) cos(  )|+ |0| + |0| + |0| + |2  sin(    ) cos(    )|+ |2  sin(    ) cos(    )| + |0| + |0| + |0|+ |−  sin(    )| + |−  sin(    )| 
              ≤ 3|   | + |sin(  )||sin(  )| + |cos(  )| + |cos(  )|+ 2|  ||sin(    )||cos(    )| + 2|  ||sin(    )||cos(    )|+ |  ||sin(    )| + |  ||sin(    )| 

          ≤ 3 + 1 + 1 + 1 + 2 + 2 + 1 + 1 = 12 =                                  
Then  = (  ,  ,   ,   )  satisfy Lipshiz condition, and  

‖ (  ,   ,   ,   ) −  (   ,   ,    ,    )‖ <       ‖ −   ‖ ≤ 12‖ −   ‖ 

 By equation (3.2). 

Step 3: the observer system is:                  ̇ =    +   ( −    )  

                 ̇ =    +   ( −    )                  ̇ =    +   ( −    )  

                 ̇ =  +   ( −    ) 

Step 4: consider the error system:                 =       + (  +   +   )  + (   + cos(  )sin(  )      +     (    ))   

Where  
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  =  −  −  1 0 00 1 0−  −  00 00 10  
If we choose   = 2,  = 6.25,  = 7.5,  = 9 so that    be stable 

matrix. Then the matrix   is written as: 

 =  481.9063−0.5000 −0.5000 −128.6250 0.5000128.6250 −0.5000 −35.2500−128.62500.5000 −0.5000−35.2500 35.2500−0.5000 −0.500010.4931   
Where the eigen values of   are given as:   = 0.3093,   = 1.3203,   = 138.3450,   = 516.2997 

It’s clear that   is positive definite matrix. 

Step 6: To find Lypunov function: 

     = 14   + 14    + 14    + 14    +  2 (      )  

   =     +       −   (  ̅ ,  )  +       −   (  ̅ ,  )   +       −   (  ̅ , )   

+  2  [            ]  481.9063−0.5000 −0.5000 −128.6250 0.5000128.6250 −0.5000 −35.2500−128.62500.5000 −0.5000−35.2500 35.2500−0.5000 −0.500010.4931                 
 
 

        = 14   + 14     −   (  ̅ ,  )  + 14     −   (  ̅ , )  
+ 14     −   (  ̅ , )  
+  2 (481.9063    + 128.625    + 35.25    + 10.4931    −       − 257.25      +       −       − 70.5      −       )  
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Where   is a positive constant. 

Step 7: 

To find   : 
          =   − 24    | | − 14 1   − 14   − 14 

    1    
         ( )  

− 14 1    
         ( )   

=   − 24    | | − 14  1   + 1   + 1    − 14   − 12  1   + 1   + 1         ( )   

Where   is the smallest eigenvalue of  ,  = 0.3093 

      ( ) is the largest eigenvalue of  .      ( ) = 516.2997 

and if we choose  = 0.1,   = 0.01,   = 50,   = 0.1,   =0.09,    = 0.07,   = 0.8,   = 0.5,    = 0.4. | | ≡ the determinate of the matrix  ,    | | ≡ 2.9169 × 10   
So that   > 0. 
Step 8:   = −   − 32  [(  ) + (          ) +(        ) +(       ) ]− 34     ⁄  − 34     ⁄  

− 34         
    ((  ) 

+ (          ) +(        ) +(       ) ) − 24     |  +           +         +        |  
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  = −    −      +            
+ 12         [(  ) 
+ (           ) +(         ) +(        ) ] − 34    ⁄   − 14     − 34     ⁄          ⁄   − 34              

   = −    −      +        (   +      ) +           + 12         [(  ) 
+ (           ) +(         ) +(        ) ] − 34    ⁄   − 14     − 34     ⁄          ⁄   − 34              

And  

 = −    −      +          
    (     +      ) +           + 12          [(  ) + (           ) +(         ) +(        ) ]− 12             

 ,   [(  ) 
+ (           ) +(         ) +(        ) ] − 14     − 34     ⁄          ⁄   + 34              

Hence, on using theorem (3.2), the solution is globally asymptotically 
stable in probability. 
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Conclusions 

1. From the present study sufficient conditions for finding robust and 

inverse optimal stabilizing controller in probability for some 

stochastic dynamic system characterized by nonlinear functions which 

are Lipschitz in nature and presented by Brownian motion noise are 

discussed and presented. 

2. Some computational algorithms to justify the work, and make the 

computational regiments for designer based on the present work is 

easily are presented. 

3. The numerical solution for stochastic differential equation is not an 

easy task, so the graph and figures are omitted and left to the future. 

4. The Ito – stochastic integral play a central role in modern probability 

theory and its applications to stochastic differential equation 

concerned by Brownian motion. So the difficulties for solution 

stochastic differential equations are resulted from this type of integrals 

and its computation. 

The numerical difficulties of stochastic differential equations 

are also resulting from the difficulties of evaluating Ito – stochastic 

integrals due to present Brownian motion (time – random variable) 

noise. 

5. The present work is not an easy task and need some good 

backgrounds of probability theory, stochastic process, the dynamic 

system in the present of stochastic noise as well as stochastic 

Conclusions 
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differential control system. And due to all necessary background, the 

task becomes difficult for many, so the work of this field becomes an 

interesting for us. 
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Future Work 

The future works that may be considered are the following: 

1. Due to the complexity of the analytic and numerical solution of SDE, 

some numerical methods of solution of stochastic dynamic system 

(presented in the work) may be considered and developed. 

2. The exponential stability in probability using Lyapunov function 

approach for some stochastic differential equation may also be taken, 

as well as the statistical properties of the solution of SDE may also 

been studied. 

3. Full order observability or reduced order of some stochastic dynamic 

system and its stabilization using Lyapunov function approach may be 

considered. 

Future works 
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Theorem (A.1): 

If  ∈    [ , ] and   is continuous, then, for any sequence Π  of a 

partitions  =   , <   , < ⋯  <   ,  =   of [ , ] with mesh |Π | → 0, 
     ,       ,    −     ,    →   ( )  ( )           → ∞. 

 
    
    

 

Lemma (A.2): 

Let  ∈    [0, ] and let   ,    be stopping times, 0 ≤   ≤    ≤  . 

Then 

   ( )  ( ) = 0,   
   

    ( )  ( )   
    =     ( )  .  

   

 

Theorem (A.3):  

 Let  ∈    [0, ] and let   ,    be stopping times (with respect to ℱ ), 0 ≤   ≤    ≤  . Then  
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    ( )  ( ) ℱ      
   = 0, 

               ( )  ( )   
     ℱ    =      ( )    

   ℱ    .                  ( . 1) 
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The proof of theorem (2.4) 
Proof [Friedman, 75], [Øksendal, 98]:  

The proof will be divided into 6 steps, 

Step 1: 

For any integer  ≥ 2,                ( )  =    ( )    + 12 ( − 1)  ( )      .         ( . 1) 

Indeed, this following by induction, using theorem (2.3). 

By linearity of the stochastic differential we then get                ( ) =     ( )   ( ) + 12     ( )                                   ( . 2) 

For any polynomial  . 
Step 2:  

Let  ( ,  ) =  ( ) ( ) where  ( ) is a polynomial and  ( ) is 

continuously differentiable for  ≥ 0. By theorem (2.3) and (b.2),   ( ( ),  ) =    ( )   ( ) +  ( )    ( ) =     ( )  ́( ) + 12 ( )   ( ( ))   +  ( )    ( )   ( ), 
i.e., for any 0 ≤   <   ≤  , 
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 ( (  ),   ) −  ( (  ),   )
=     ( ( ),  ) + 12   ( ( ),  )     

  
+    ( ( ),  )  ( ).                                                ( . 3)  

   

Step 3: 

Formula (b.3) remains valid if  

 ( ,  ) =    ( )  ( ) 
    

Where   ( ) are polynomials and   ( ) are continuously 

differentiable. Now let   ( ,  ) be polynomials in   and   such that   ( ,  ) →  ( ,  ),      ( ,  ) →   ( ,  ) ,                     ( ,  ) →    ( ,  ),                ( ,  ) →   ( ,  ) 

Uniformly on compact subsets of ( ,  ) ∈   × [0, ∞), we have     ( (  ),   ) −   ( (  ),   )
=        ( ( ),  ) + 12        ( ( ),  )     

  
+       

    ( ( ),  )  ( ).                                      ( . 4) 

It is clear that  
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       ( ( ),  ) + 12        ( ( ),  )     
  

→     ( ( ),  ) − 12    ( ( ),  )            .  . ,  
   

       ( ( ),  ) −   ( ( ),  )    → 0    .  .  
   

Hence, taking  → ∞ in (b.4), we get the relation           ( (  ),   ) −  ( (  ),   )
=     ( ( ),  ) − 12    ( ( ),  )     

  
+    ( ( ),  )  ( )  

                                                         ( . 5)  
Step 4:  

Formula (b.5) extends to the process Φ( ( ),  ) =  (  +    +    ( ),  ) 

Where   ,   ,   are random variables measurable with respect to ℱ  , 
i.e.,        Φ( (  ),   ) − Φ( (  ),   )

=  [     ( ),   +  
       ( ),     + 12       ( ),      ]  

+    (  
    ( ),  )    ( )                                                   ( . 6) 
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Where   ( ) =   +    +    ( ). 
The proof of (b.6) is a repetition of the proof of (b.5) with obvious 

changes resulting from the formula             ( )  
=     ( )    [    +     ( )]+ 12  ( − 1)    ( )         ,                                ( . 7) 

Which replaces by (b.1).  

Step 5: 

 if  ( ),  ( ) are step functions, then           ( (  ),   ) −  ( (  ),   )
=  [  ( ( ),  ) +  

    ( ( ),  ) ( ) + 12    ( ( ),  )  ( )]  
+    (  

   ( ),  ) ( )  ( )                                            ( . 8)  
Indeed, denoted by   , … ,    the successive intervals in [  ,   ] in 

which  ,   are constant. If we apply (b.6) with   ,    replaced by the 

end points of   , and some over  , the formula (b.8) follows. 

Step 6:  

Let   ,    be nonanticipative step functions such that  

          |  ( ) −  ( )|  → 0      .  .                                                        ( . 9) 
  

         |  ( ) −  ( )|    →0,                                                                      ( . 10) 
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And let  

  ( ) =  (0) +    ( )  +    ( )  ( ). 
 

 
  

Then          |  ( ) −  ( )|  → 0. 
Hence, for a subsequence { ́}, 

          |  ( ) −  ( )| → 0         .  .   
   if        =  ́ → ∞.                                                                                                     ( . 11) 

This and (b.10) imply that  

 |  (  ( ),  )  ( ) −   (  ( ),  ) ( )|    → 0         
  

If  =  ́ → ∞. 
It follows that 

   (  ( ),  )  ( )  ( )  →    ( ( ),  ) ( )  ( )  
  

  
   

If  =  ́ → ∞. 
It is clear from (b.9)−(b.11) that also  

         (  ( ),  ) +   (  ( ),  )  ( ) + 12    (  ( ),  )   ( )     
     

 →     ( ( ),  ) +   ( ( ),  ) ( ) + 12    ( ( ),  )  ( )     
   

If  =  ́ → ∞. 
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Writing (b.8) for  =   ,  =   ,  =    and taking  =  ́ → ∞, the 

formula (b.8) follows for general  ,  . This complete the proof of the 

theorem.  

 

 



Abstract 

 

 

 في نظریة المتغیر  واحدة من أھم الحقولالتصادفیة تعتبر المعادلات التفاضلیة 

  .وتطبیقاتھا في حقول الریاضیات) theory of Stochastic Processes( التصادفي

والمشتقة ) Ito(أخذت بنظر الاعتبار بعض الانظمة الدینامیة العشوائیة من نوع 

 .مستندا على نظام دینامیكي مخمن  Browian Motion )(المتغیر براونین بواسطة 

  (optimal control) مثالي مسیطر robust)(حصین  مسیطر ناقشنا و طورَنا

السیطرة لانظمة  in probability)( لضمان نوع من الاستقراریة ضمن الاحتمالیة 

النظریات الاساسیة الضامنة لھكذا نوع من  و برھنا لقد طورنا. الخطیة غیر  التصادفیة

لتسویق وتبریر البرھان الریاضي التصادفیة أسلوبیة دالة لیابانوف  وتبنینا الاستقراریة

  .للنظریات المقترحة

 inverse)من الاستقراریة المثلى المعكوسة تم كذالك عرض و تطویر نوع

optimal stabilization)  ضمن الاحتمال مع دالة ھدف ملائمة مدعمة بالمتطلبات

  .الریاضیة الضروریة

زمیات عددیة خوار, خطة عمل مستقبلیة, لقد تم عرض ملاحظات أستنتاجیة

  .أمثلة تطبیقیةب مستندة على النظریات مدعمة

  

 المستخلص



 

 

      جمهورية العراق
 وزارة التعليم العالي والبحث العلمي

 جامعة النهرين
 كلية العلوم 

   الحاسوب تالرياضيات و تطبيقا قسم
 
 

 

قابلية الاستقرارية لنظام سيطرة غير خطي متغير العشوائية مع 
 الزمن بوساطة مسيطر استرجاعي لمخرجات النظام

 

 رسالة

جامعة النهرين وهي جزء من متطلبات نيل درجة ماجستير  -العلوم كلية  إلىمقدمة 

الرياضيات علوم في   

لقبَِِِ نِْم  

يناس عاجل جاسمإ  

  )٢٠٠٥, جامعة النهرين, علوم سبكالوريو(

 بأشراف

راضي علي زبون. د.م.أ  
تشرين الاول                              شوال                                               

٢٠٠٨                                                                                ١٤٢٩  
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